
1

TAP User Manual
Stand Januar 2011

Wilfried Kausel

Institut für Wiener Klangstil (Musikalische Akustik),
Universität für Musik und darstellende Kunst Wien
Anton von Webernplatz 1 / MO2
A - 1030 Wien

email: ima@mdw.ac.at
http://www.bias.at/

2

Inhalt

TAP User Manual .. 1
Inhalt .. 2
Einleitung ... 3
Anwendungsbeispiel ... 6
Anhang A: TAP Reference Manual, Basic Level .. 9

Table of Contents .. 9
Index of TAP functions .. 11

Signal Sources ... 12
Signal Sinks ... 21
Time Domain Processing ... 29
Frequency Domain Processing ... 41
Time or Frequency Domain Processing .. 48
Operations on Single Input Vector .. 51
Operations requiring Multiple Input Vectors .. 57
Control Statements .. 62

Anhang B: Basic TAP Examples .. 68
Spectral Synthesis and Analysis ... 68
Finding MLS Seeds .. 69
Create and Save Windowing Signal .. 70
Spectral Domain Filtering .. 71
Gain Tracking and Total Distortion .. 72
Dynamic Harmonic Analysis .. 74
3D Spectrogram (Waterfall Chart) ... 77
Simulation of Nine Level CMOS DAC with Dynamic Averaging ... 78

Anhang C: TAP Macro Scripts .. 90
Harmonic Analysis on Scales (harmonics.ana) ... 90
Spectral Dynamic Analysis (specdens.ana) .. 92
Sound File Segmentation (segmentation.ana) .. 94

3

Einleitung

Die Transfer Analysis Package (TAP) ist eine Sammlung von kleinen Programmen, sozusagen ein
Baukasten mit Programm-Modulen, die per Kommandozeile oder Scriptfile zusammengefügt wer-
den, um komplexe Aufgaben der Klanganalyse oder Signalverarbeitung vollautomatisch durchzu-
führen. Z.B. erlaubt das Paket die Entwicklung von neuen Klangdarstellungen, die skriptgesteuert
auch eine große Anzahl von zu untersuchenden Aufnahmen analysieren können. Für die graphi-
sche Ausgabe auf Bildschirm oder Drucker in TAP ist das mächtige freie Graphikprogramm „GNU-
Plot“ integriert.

Das Signal Analyse Programmpaket TAP wurde von Wilfried Kausel und Herbert Nachtnebel ent-
wickelt und ursprünglich an der Technischen Universität Wien für die Auswertung der übertra-
gungstechnischen Eigenschaften von Telefonie-Schaltkreisen eingesetzt. Am Institut für Wiener
Klangstil wurde es dann in wesentlichen Funktionen erweitert und für die Analyse und Visualisie-
rung von Klängen verwendet.

Das Programmpaket TAP stellt eine Vielzahl von elementaren signalverarbeitenden Einzelpro-
grammen zur Verfügung, die über die Windows-NT Kommandozeile aufgerufen werden und deren
Ein- und Ausgabedaten über den Kommandozeilenoperator | („pipe“) miteinander verknüpft wer-
den können. Dabei kann das Verhalten jedes Einzelprogramms durch sogenannte Befehlszeilen-
optionen genau gesteuert werden.

Zur Illustration des Prinzips möge das folgende Beispiel dienen:

C:\>stim -freq 440 -sample 44100 -len 1000 -noise 0.1 | window -kaiser 10 | dft | db -ref 9 | plot -dx 44.1

Das Einzelprogramm stim (stim.exe) ist der Stimulusgenerator. Im Beispiel wird ein Sinussignal mit
einer Frequenz von 440Hz bei einer Abtastfrequenz von 44100 Abtastwerten pro Sekunde er-
zeugt, dem ein Rauschpegel von 0.1Vrms überlagert wurde. Als Länge des zu erzeugenden Daten-
stromes wurden 1000 Werte angegeben.

Die Ausgabe des Stimulusgenerators wird dann mit dem pipe-Operator (|) zur window-Funktion
(window.exe) weitergeleitet, die ein Kaiserfenster mit Beta=10 erzeugt und den Datenstrom mit
den Werten dieser Fensterfunktion multipliziert. Auf diese Weise wird das Signal im auszuwerten-
den Zeitraum weich ein und ausgeblendet, was den störenden Effekt reduziert, den hart abge-
schnittene Signalperioden bei der Fourier-Transformation bewirken. Eine Voraussetzung für die
Anwendbarkeit der Fourier-Transformation ist ja die strenge Periodizität des zu untersuchenden
Signals.

4

Das Programm dft (dft.exe) führt die Fourier-Transformation durch. Ohne Angabe von weiteren
Befehlszeilen-Parametern wird nur der Betrag des Spektrums weitergegeben.

Die db-Funktion (db.exe) interpretiert seine Eingangsdaten entsprechend der linearen Skala und
gibt die entsprechenden logarithmischen Werte in [dB] aus. Im Beispiel wird der aktuelle Wert der
neunten Spektrallinie, das ist der Beitrag des 440Hz Sinustones als Bezugspegel (0dB) gewählt.

Die plot-Funktion (plot.exe) erzeugt dann eine graphische Darstellung des Ergebnis-Spektrums in
einem neuen Fenster ohne selbst weitere Ausgabedaten zu erzeugen. Im Plotfenster stehen dann
Menü und Mausfunktionen zur Verfügung mit deren Hilfe eine Vielzahl von Darstellungsparame-
tern, wie z.B. Plotbereich, Maßstab, Skala, Beschriftungen, Liniendarstellung u.s.w. verändert wer-
den können. Auch das Ausdrucken sowie das Exportieren der graphischen Daten in andere Pro-
gramme ist hier vorgesehen.

Im Anhang findet sich die vollständige Beschreibung aller zur Verfügung stehender Einzelpro-
gramme samt einer Beschreibung der unterstützten Befehlszeilenparameter. Die Funktionen las-
sen sich dabei in mehrere Gruppen unterteilen:

1. Signalquellen (wie z.B. der Stimulusgenerator oder das häufig verwendete Programm zum
Einlesen von Wave-Files)

2. Signalsenken (wie z.B. die plot-Funktion oder verschiedene Analyse-Programme)

3. Signalverarbeitende Funktionen für Zeit und/oder Frequenzbereich

4. Arithmetische Operationen für ein und mehrere Datenströme

5. Steuerungsfunktionen zum Programmieren von Programmschleifen und Automatisieren
von komplexeren Analyseaufgaben

Die mit TAP am Institut für Wiener Klangstil durchgeführten Klanganalysen setzen auf
parametrisierbaren Analyse-Skripts auf, die für diesen Zweck entwickelt wurden. Die Benutzung
dieser Skripts erfordert nicht mehr die Kenntnis und das Verständnis der oben erwähnten Einzel-
programme, sondern setzt nur mehr sehr rudimentären Umgang mit dem NT-Kommandozeilen-
Interpreter voraus.

Im Idealfall muss ein vorbereitetes Skript nur mehr im Windows-Explorer ausgeführt werden, um
eine so komplexe Aufgabe, wie das Auswerten von Wave-Files mit Aufnahmen von chromatischen
Tonleitern, gespielt auf 31 verschiedenen Klavieren, vollautomatisch durchführen zu können. Die-
se Prozedur umfasst z.B. das Segmentieren, d.h. das Auffinden von Anfang und Ende aller ange-
schlagenen Töne, die Grundtonerkennung, die statische und dynamische harmonische Analyse,
die graphische Darstellung und die Erzeugung der vielfältigen Printouts für die Dokumentation.

5

Derzeit stehen zwei unterschiedliche parametrisierbare Analysemodule zur Verfügung:

• Harmonische Analyse von Tonleitern [Harmonic Analysis on Scales (harmonics.ana)]
• Analyse der Spektraldynamik [Spectral Dynamic Analysis (specdens.ana)]

Die Module werden in den Batch-Skripts mit frei definierbaren Parametern aufgerufen (options)
und liefern verschiedene spezifizierbare Ausgabedaten (targets). Options und Targets der beiden
Makromodule finden sich im Anhang C, eine Beschreibung des Programmes „do“ zum Ausführen
von TAP Makro-Modulen im Anhang A.

Die Kommandozeile für die Erzeugung aller Plots zu einer chromatischen Tonleiter lautet z.B.:

C:\>do -f harmonics.ana all WAV=myWaveFile min=500 f0=40

Die Segmentierungs-Schwelle (min=500) ergibt sich aus dem Rauschpegel der Aufnahme und
kann einer vorhergehenden RMS Analyse entnommen werden. Die Startfrequenz (f0=40) ist die
erwartete Frequenz des ersten angeschlagenen Tones und soll die Grundtonerkennung erleich-
tern.

Die drei Schnittstellen-Ebenen, das sind die Ebenen der Einzelprogramme, der Makro-Module und
der projektspezifischen Skripts, machen TAP zu einem äußerst flexiblen Werkzeug, das umso
mächtiger wird, je besser der Anwender sich mit den vielen Einstellmöglichkeiten vertraut macht.
Ein nicht zu unterschätzender Vorteil des Konzepts der vielen Einzelprogramme, die durch Pipes
(|) verbunden werden, ist die Multi-Prozessor-Fähigkeit. Das Betriebssystem Windows parallelisiert
solche Aufgaben, indem jedes Einzelprogramm einem sogenannten Thread zugeordnet wird. Die-
se Threads werden auf die verfügbaren Prozessoren aufgeteilt und kommunizieren miteinander
über die im Skript definierten Pipes.

6

Anwendungsbeispiel

In der Folge werden einige Beispiele für verschiedene skriptgesteuerte TAP-Analysen gegeben.
Die verwendeten Skripts basieren auf dem Makro-Modul zur harmonische Analyse von Tonleitern
und erlauben die Ausgabe der Ergebnisgraphiken wahlweise auf dem Bildschirm, dem Drucker
oder direkt in ein „.pdf“ oder Postscript Dokument.

Die X-Achse beider Analysegrafiken entspricht dem zeitlichen Verlauf einer auf einem Klavier ge-
spielten chromatischen Tonleiter über die gesamte Klaviatur.

Abb. 1: TAP Analyse 1 (RMS/
Mask): Im ersten Schritt wird
der RMS der aufgenommenen
Töne berechnet (rote Kurve).
Diese dient zur Segmentierung,
bei der jeweils eine Sekunde
pro Tastenanschlag in einem
neuen Soundfile zusammenge-
schnitten werden. Die grünen
Balken zeigen die Maske an,
welche zum Schneiden ver-
wendet wird.

Die in TAP verfügbare Segmentierung basiert entweder auf der Anschlagerkennung mit Hilfe einer
Pegelschwelle oder auch auf einem fixen Zeitraster, das aber eher nur bei maschinell oder streng
mit Metronom eingespielten Aufnahmen Verwendung finden kann. Für den eigentlichen Schnitt
können sowohl fixe (Anschnitt) als auch variable (reale) Tonlängen herangezogen werden. Die
statische Spektralanalyse erfordert jedoch fixe Tonlängen.

Die weiteren Auswertungen basieren auf dem segmentierten Soundfile, das für jede Taste eine
Sekunde Klangsignal enthält, das mit dem Anschlag beginnt. Die Zeitangabe in Sekunden ent-
spricht daher auch der Tonnummer.

7

Abb. 2: TAP Analyse 2 (F0 +
Centroids): Die Darstellung
zeigt das Ergebnis der Grund-
tonextraktion (F0) als roten
Kurvenverlauf, basierend auf
dem segmentierten Soundfile,
in welchem jeder Ton eine
Sekunde andauert. Die Zeit-
Achse entspricht daher auch
der Tastennummer

Die grüne Kurve ist das
„Hamonic Centroid“, der pe-
gelgewichtete Mittelwert der
ersten 10 Teiltonfrequenzen
aller gespielten Töne.

Die blaue Kurve stellt das
„Spectral Centroid“ dar, die
pegelgewichtete Mittelfrequenz
des Gesamtspektrums aller
gespielten Töne.

Die obige Abbildung zeigt klangliche Schwankungen benachbarter Töne (z.B. Registerbrüche) als
unregelmäßigen Verlauf der spektralen Mittelwertkurven (Centroids).

Abb. 3: TAP Analyse 3a (Ten
Harmonics + NOI): Die X-Achse
entspricht sowohl der Zeit in
Sekunden als auch der Tas-
tennummer. Die Y-Achse zeigt
den Pegel in einem logarithmi-
schen 20dB Raster.

In verschiedenen Farben (siehe
Legende) wird der Intensitäts-
verlauf der ersten 10 Harmoni-
schen dargestellt.

Zusätzlich zu den 10 Teiltönen
(H1…H10) werden die An-
schlaggeräusche als elfte Kur-
ve (NOI) dargestellt.

Während die obige Abbildung einen Überblick über den zeitlichen Teiltonverlauf im gesamten
Tonumfang gibt, zeigen Ausschnitte einzelner Bereiche viel mehr Details. In den Auswertungs-
skripts wurden daher von jedem Klavier automatisch gleich drei weitere Detailplots für das tiefe,
das mittlere und das hohe Register ausgegeben. Die folgende Abbildung zeigt einen noch kleine-
ren Ausschnitt von 6 Tönen.

8

Abb. 4: TAP Analyse 3b (Ten
Harmonics + NOI ZOOM): Diese
Abbildung zeigt einen kleinen
Ausschnitt in entsprechender
zeitlicher Vergrößerung. Der
dargestellte Ausschnitt um-
fasst sechs Töne des mittleren
Registers.

In Ausschnitten wie diesem
wird die zeitliche Entwicklung
der Teiltöne weitaus deutlicher.
Bei weiterer Vergrößerung wird
auch der Einschwingvorgang
sichtbar.

Auch die nächsten Darstellungen beruhen auf dem segmentierten Soundfile, bei dem die erste
Sekunde aller Tastenanschläge zusammengeschnitten wurden. Im Gegensatz zu den bisherigen
Analysen sind bei den nächsten Auswertungen nur ein Mittelwert pro Sekunde d.h. pro Ton darge-
stellt und nicht ein Verlauf über der Zeit.

Abb. 5: TAP Analyse 4 (Mean
Relative Harmonics): Von je-
dem angeschlagenen Ton wur-
de ein Mittelwertspektrum
berechnet (erste Sekunde des
Anschlags) und die Intensität
der ersten zehn Teiltöne sowie
des Rausch(Rest-)anteils rela-
tiv zur Stärke des Grundtones
(1. Harmonische) aufgezeich-
net.

Während der Grundton im
hohen Register den Klang
dominiert, ist seine Intensität
im tiefen Register um bis zu 40
dB geringer, als die höherer
Harmonischer.

9

Anhang A: TAP Reference Manual, Basic Level

Table of Contents

Signal Sources ... 12
Stimulus Generator (stim) .. 12
Floating point (ASCII file) to binary stream conversion (flo2bin) ... 16
PCM (ASCII file) to binary stream conversion (pcm2bin) .. 17
Windows Sound File (.WAV file) to Binary Stream Conversion (wav2bin) 18
Windows Video File (.AVI file) to Binary Stream Conversion (avi2bin) 18
DAC (ASCII file) to binary stream conversion (dac2bin) ... 19

Signal Sinks ... 21
Plot (plot) .. 21
Binary stream to PCM (ASCII file) conversion (bin2pcm) ... 23
Binary to floating point (ASCII file) conversion (bin2flo) .. 24
Binary Stream to Windows Sound File (.WAV file) Conversion (bin2wav) 25
Binary Stream to Windows Multimedia File (.AVI file) Conversion (bin2avi) 26

Time Domain Processing ... 29
Envelope Sort (envsort) ... 29
Sigma Delta Modulator (sigma) ... 30
Decimation, Interpolation, DC-component (sinc) ... 31
Linear Section (Infinite Impulse Response Filter) (integr) ... 32
Biquadratic Section (Infinite Impulse Response Filter) (biquad) ... 35
Finite Impulse Response Filter (fir) .. 38
Cross Correlation (xcorr) .. 40
Time Domain Analysis (tana) ... 40

Frequency Domain Processing ... 41
Frequency Domain Analysis (fana) .. 41
Sweep Analysis (swana) .. 43
Harmonic Analysis (dftpeaks) .. 46

Time or Frequency Domain Processing .. 48
DFT Processor (dft) .. 48
Windowing (window) .. 49

Operations on Single Input Vector .. 51
Clip (clip) ... 51
Up- or Downsample by Integer Factor (resample) .. 52
Difference (dif) .. 52
Integrator (int) ... 52

10

Moving Mean (movemean) .. 53
dB (db) .. 53
Inverse dB (invdb) .. 53
Degree (deg) .. 54
General Function (func) ... 54
Table Reshape (table) .. 55

Operations requiring Multiple Input Vectors .. 57
Pick Values according to Boolean Template (pick) ... 57
Resegment Binary Stream (reseg) .. 58
General Vector Function (vecfunc) .. 60
Vector Comparison (same) .. 61
Merge Multiple Streams (merge) ... 61

Control Statements .. 62
Execute Script (do) ... 62
Execute Shell (run) ... 63
Map command line (map) .. 63
Varying Parameters (vary) ... 64
Create Named Signal (signal) .. 65
Flag (flag) ... 65
Continue on flag (cont) ... 66
Create Textfile from Template (fill) .. 67

Spectral Synthesis and Analysis ... 68
Finding MLS Seeds .. 69
Create and Save Windowing Signal .. 70
Spectral Domain Filtering .. 71
Gain Tracking and Total Distortion .. 72
Dynamic Harmonic Analysis .. 74
3D Spectrogram (Waterfall Chart) ... 77
Simulation of Nine Level CMOS DAC with Dynamic Averaging ... 78

Multi-bit CMOS D/A Converter with Integrated Low-Pass Filter ... 78
Dynamic Averaging .. 80
Data Weighted Dynamic Element Selection .. 82
Enhanced Data Weighted Averaging (EDWA) .. 83
Gain and Linearity Compensated D/A Converter with Integrated Low-Pass Filter 85
Simulation Example ... 88

Harmonic Analysis on Scales (harmonics.ana) ... 90
Spectral Dynamic Analysis (specdens.ana) .. 92
Sound File Segmentation (segmentation.ana) .. 94

11

Index of TAP functions

avi2bin ... 18
bin2avi ... 26
bin2flo .. 24
bin2pcm ... 23
bin2wav ... 25
biquad .. 35
clip ... 51
cont .. 66
dac2bin .. 19
db ... 53
deg ... 54
dft ... 48
dftpeaks ... 46
dif ... 52
do ... 62
envsort ... 29
fana .. 41
fill ... 67
fir ... 38
flag ... 65
flo2bin .. 16
func .. 54
int ... 52
integr .. 32

invdb .. 53
map ... 63
merge .. 61
movemean .. 53
pcm2bin ... 17
pick .. 57
plot ... 21
resample .. 52
reseg ... 58
run ... 63
same .. 61
sigma ... 30
signal ... 65
sinc .. 31
stim .. 12
swana .. 43
table ... 55
tana ... 40
vary .. 64
vecfunc .. 60
wav2bin ... 18
window .. 49
xcorr .. 40

12

Signal Sources

Stimulus Generator (stim)

Generates a binary stream representing a signal to be used by other TAP operators. It combines a
sine-wave source, a DC-source, a rectangular signal source, a single Dirac pulse source, various
noise sources, a ramp generator and different PCM quantisers.

The sine-wave generator recognizes the level specification (option -lev in dBm0) which is the vol-
tage level relative to the zero reference level. The overload level (option -ovlev in dB) is the maxi-
mum level which can be created. It corresponds to an output magnitude specified by option
-vpeak. The defaults for -ovlev and -vpeak are normally 0 dB and 1, that means a sine wave be-
tween -1 and +1 is generated when no level options are given.

A-law, µ-law and linear (certain number of bits) quantisation can be enabled. The quantisation
range is the overload level. If A-law quantisation (-Alaw) is requested then the defaults are ad-
justed to 3.14 dB and 4096, in µ-law (-Ulaw) mode they are 3.17 dB and 8192. In linear PCM mode
(-linear #bits) -vpeak should be set to the available number range and #bits to the selected resolu-
tion.

The full scale tuning pitch with standard audio resolution would be specified by:

C:\>stim -freq 440 -linear 16 -vpeak 32767 -sample 44100 ...

The frequency can either be specified by the number of signal periods in the buffer (-periods) or
directly (-freq). In this case the frequency input is adjusted in a way to have an integer (-adjust 1)
or odd integer (-adjust 2) number of periods (at least one) in the buffer. If no frequency adjustment
is allowed then -adjust 0 must explicitly be specified. If the frequency is set to zero then the sine-
wave source is turned off.

Levels of the other signal sources are specified in Volts or units depending on whether an analo-
gue or a PCM source is to be simulated. The other signal sources are a DC source (option -dc), a
ramp generator with programmable step size (option -step), a square wave source with given am-
plitude and frequency (option -square, no frequency adjustment!), a normal distributed white noise
source with given RMS value (option -noise), a random noise source with specified peak value
(option -rnoise), a pseudo random digital noise source (option -prnoise) implemented as a re-
circulating shift register and a sine sweep source with a given sweep rate (option -sweep).

13

The option -pulse affects only the first sample of the buffer. It will be set to the chosen full-scale
amplitude.

The pseudo random digital noise source can be used as generator for maximum length sequence
(MLS) signals. To generate MLS streams the following seeds can be used:

bits period seeds
8 255 29, 43, 45, 77, 95, 99, 101, 105, 113, 135, 141, 169, 195, 207, 231, 245
9 511 17, 27, 33, 45, 51, 89, 95, 105, 111, 119, 125, 135, 149, 163, 165, 175, 183, 189, 207, 209, 219, 245, 249, 275, 277, 287, 291,

305, 315, 335, 347, 353, 363, 365, 371, 383, 389, 399, 437, 441, 455, 459, 461, 469, 473, 483, 489, 507
10 1023 9, 27, 39, 45, 101, 111, 129, 139, 197, 215, 231, 243, 255, 269, 281, 291, 305, 317, 323, 343, 363, 389, 399, 407, 417, 455, 485,

503, 507, 531, 533, 549, 567, 579, 591, 603, 633, 639, 649, 693, 705, 723, 735, 765, 791, 797, 801, 825, 839, 845, 853, 857, 867,
893, 909, 915, 945, 987, 1011, 1017

11 2047 5, 23, 43, 45, 71, 99, 101, 113, 123, 141, 149, 159, 169, 177, 207, 209, 225, 231, 235, 245, 269, 275, 293, 297, 315, 317, 325,
329, 337, 347, 371, 373, 383, 387, 399, 427, 429, 441, 455, 473, 485, 503, 513, 519, 531, 533, 553, 585, 609, 621, 633, 639, 645,
657, 669, 679, 683, 691, 693, 725, 735, 745, 751, 753, 763, 771, 777, 785, 819, 831, 833, 843, 857, 863, 869, 879, 893, 903, 907,
915, 917, 943, 951, 957, 969, 987, 989, 999, 1005, 1035, 1037, 1049, 1055, 1111, 1121, 1131, 1139, 1157, 1161, 1175, 1179,
1181, 1203, 1215, 1223, 1229, 1235, 1237, 1251, 1257, 1271, 1283, 1295, 1309, 1319, 1325, 1345, 1351, 1365, 1369, 1379,
1391, 1393, 1427, 1439, 1449, 1467, 1469, 1481, 1495, 1499, 1505, 1511, 1525, 1541, 1565, 1569, 1575, 1579, 1587, 1593,
1607, 1611, 1621, 1631, 1649, 1659, 1661, 1665, 1683, 1695, 1699, 1723, 1743, 1757, 1779, 1785, 1803, 1817, 1841, 1847,
1885, 1899, 1901, 1909, 1923, 1937, 1943, 1947, 1959, 1965, 1973, 1997, 2003, 2021, 2025

12 4095 83, 105, 123, 125, 153, 209, 235, 263, 287, 291, 315, 335, 343, 353, 363, 389, 435, 473, 479, 525, 567, 573, 615, 627, 639, 697,
705, 715, 783, 797, 801, 825, 831, 845, 881, 921, 931, 937, 1031, 1073, 1079, 1103, 1117, 1127, 1141, 1191, 1197, 1235, 1295,
1309, 1357, 1427, 1477, 1495, 1501, 1515, 1545, 1607, 1621, 1625, 1701, 1725, 1813, 1817, 1859, 1861, 1909, 1929, 1965,
1971, 1983, 1985, 2135, 2141, 2193, 2199, 2233, 2287, 2331, 2357, 2369, 2405, 2427, 2443, 2481, 2493, 2505, 2511, 2535,
2587, 2603, 2611, 2665, 2699, 2769, 2785, 2805, 2827, 2835, 2847, 2903, 2961, 2983, 3007, 3009, 3027, 3077, 3089, 3095,
3111, 3149, 3207, 3231, 3237, 3259, 3269, 3273, 3279, 3315, 3335, 3363, 3395, 3409, 3419, 3445, 3461, 3465, 3605, 3609,
3631, 3653, 3665, 3687, 3699, 3727, 3811, 3857, 3867, 3879, 3953, 3993, 4027, 4029, 4041

13 8191 27, 39, 53, 83, 101, 111, 139, 141, 159, 165, 175, 187, 189, 195, 201, 225, 243, 269, 277, 297, 303, 315, 323, 359, 363, 377, 393,
407, 413, 447, 449, 455, 461, 479, 483, 497, 507, 537, 549, 567, 573, 579, 603, 605, 633, 639, 649, 663, 667, 691, 703, 717, 751,
759, 763, 773, 807, 811, 839, 853, 857, 879, 881, 893, 903, 909, 917, 931, 937, 945, 951, 955, 993, 1005, 1017, 1035, 1043,
1055, 1061, 1065, 1085, 1105, 1111, 1121, 1133, 1151, 1155, 1179, 1181, 1205, 1215, 1217, 1223, 1227, 1251, 1289, ...

14 16383 43, 57, 83, 95, 123, 169, 175, 187, 189, 207, 235, 243, 269, 275, 315, 323, 411, 413, 423, 429, 437, 469, 473, 497, 525, 599, 609,
639, 645, 669, 711, 715, 717, 739, 745, 751, 777, 801, 831, 893, 903, 917, 943, 969, 1003, 1005, 1035, 1091, 1139, 1235, 1237,
1247, 1251, 1275, 1323, 1337, 1369, 1391, 1433, 1439, 1445, 1463, 1477, 1495, 1511, 1523, 1535, 1551, 1565, 1575, 1589,
1607, 1625, 1635, 1649, 1659, 1701, 1733, 1743, 1755, 1841, 1871, 1919, 1959, ...

15 32767 3, 17, 23, 45, 53, 95, 119, 129, 135, 147, 165, 195, 207, 221, 231, 245, 257, 277, 293, 343, 349, 353, 365, 389, 417, 423, 441,
459, 461, 479, 509, 531, 571, 581, 639, 649, 655, 667, 715, 729, 791, 795, 811, 819, 839, 845, 863, 867, 873, 881, 907, 921, 943,
957, 965, 977, 1049, 1059, 1071, 1073, 1079, 1127, 1133, 1145, 1155, 1175, 1185, 1205, 1247, 1271, 1277, 1309, 1313, 1319,
1331, 1351, 1355, 1375, 1393, 1403, 1409, 1421, 1443, 1457, 1477, 1481, 1499, 1517, 1523, 1545, 1553, 1565, ...

16 65535 45, 57, 63, 83, 189, 215, 303, 317, 335, 349, 407, 417, 429, 447, 455, 533, 537, 549, 559, 605, 621, 645, 657, 673, 741, 797, 843,
873, 881, 903, 909, 927, 931, 989, 1017, 1065, 1111, 1127, 1155, 1161, 1169, 1215, 1217, 1331, 1351, 1385, 1415, 1475, 1501,
1515, 1601, 1611, 1619, 1675, 1731, 1899, 1901, 1913, 1923, 2033, 2061, 2145, 2239, 2261, 2271, 2275, 2289, 2299, 2361,
2429, 2443, 2469, 2479, 2499, 2501, 2535, 2547, 2685, 2689, 2747, 2757, 2817, 2835, 2837, 2897, 2909, 3021, …

17 131071 9, 15, 33, 45, 51, 63, 65, 85, 105, 123, 141, 153, 163, 175, 187, 197, 245, 267, 269, 281, 293, 317, 343, 353, 359, 365, 383, 387,
449, 455, 459, 473, 497, 525, 547, 553, 561, 567, 581, 619, 633, 639, 643, 657, 693, 711, 735, 739, 745, 765, 777, 785, 791, 795,
807, 819, 821, 851, 887, 945, 951, 963, 977, 987, 1003, 1031, 1045, 1049, 1055, 1071, ...

18 262143 39, 63, 77, 123, 129, 219, 231, 237, 263, 335, 401, 483, 489, …

The procedure of generating the above seed values using TAP is described as one of the exam-
ples given in the Appendix B.

Using the -merge option it is possible to add the generated stimulus signal to an already existing
input data stream which must match in length, of course. This way it is possible to apply quantisa-
tion to an input signal. This option also allows composition of input stimuli containing more than
one sine (multi-tone), ramp (piece wise linear) or square wave sources or to add a dither signal to
an input wave form.

14

The option -extend creates an extra prologue to the signal without effecting the calculation of sig-
nal frequencies or signal periods. The actual length of the generated output stream is given by the
-len option plus the -extend option. The idea is to allow a simulated system to settle. Before
processing the system’s response the clip command can be used to remove that extra prologue
again leaving -len samples to reflect the steady state system response.

The -rep option simulates a sample and hold term by repeating each sample several times. This
does not actually increase the buffer length specified by -len. It rather divides the visible sampling
frequency specified by the -sample option. It does not effect the frequency or the number of pe-
riods of a sine-wave signal but it does effect the frequency of a square-wave signal and the slope
of a ramp.

The sine-sweep generator is turned on using the -sweep option. It will use the sine-wave genera-
tor’s settings as its initial frequency and it will sweep according to its specification given in decades
per second.

Number of signal periods (nsp) Round(freq / sample * len)
Adjusted signal frequency (fs) nsp * sample / len
Time step (T) rep / sample
Generated sine-wave peak * 10^((lev-3.17) / 20) * sin(2 Pi fs n T)

Table 1: Stimulus Generator Formulas

SIN

DC

NOISE

RAMP

+ S/H

+/-1

+/-1 +/-peak

vdc

vnoise

Σ step

(uses peak) (repeat)

SQU

merge

+/-squarewave peak

Figure 1: Stimulus Generator

15

Usage: stim [options] [< infile1] > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-freq double [Hz] signal frequency (approximate) (1023.44 Hz)
-adjust int adjust frequency for {0=any | 1=int | 2=odd} number of periods (2)
-periods double number of signal periods in buffer <off>
-phase double [rad] initial phase for sine wave (0 rad)
-sweep double [Decades / sec] frequency sweep rate (2.3518 Decades / sec)
-lev double [dBm0] signal level relative to vpeak (0 dBm0)
-ovlev double [dBm0] overflow level corresponding to vpeak (0 dBm0)
-vpeak double [V|units] peak value (corresponding to 3.14/3.17 dB) (1 V|units)
-sample double [Hz] sampling rate (8000 Hz)
-dc double [V] dc offset (0 V)
-noise double [V] white noise RMS (normal distributed) (0 V)
-rnoise double [V] random noise peak (0 V)
-prnoise bitlen seed zero one
 int bitlen
 unsigned seed
 double zero
 double one

[V]
[V]

pseudo random digital noise
 shift register length
 seed (defines feedback polynom)
 amplitude assigned to logical 0
 amplitude assigned to logical 1

<off>
(12)
(83)
(1.0 V)
(-1.0 V)

-step double [V] ramp generator step (0 V)
-Alaw enable A-law quantiser G.711 <off>
-Ulaw enable U-law quantiser G.711 <off>
-lin int linear PCM representation (0)
-square vpeak freq
 double vpeak
 double freq

 sqare wave
 peak value
 frequency

<off>

-pulse create Dirac pulse <off>
-rep int [times] repeat each sample (1 times)
-len int [samples] buffer length (1024 samples)
-extend int [samples] extend buffer length with settling time (0 samples)
-merge merge (add) with data from stdin <off>
-query output actual frequency and periods <off>
-info print actual settings to statistic <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

1 If merge option set

16

Floating point (ASCII file) to binary stream conversion (flo2bin)

Converts an input stream containing a table of numerical values into a TAP compatible binary
stream. Reads ASCII integer or floating point numbers or packed binary int32 arrays.

Especially when signals are generated by external programs (e.g. a VHDL simulator) it is neces-
sary to convert an ASCII file containing a table of numerical values into the binary output stream
required by the other signal processing functions contained in this package.

The ASCII input file usually contains one number per text line. It should start with an integer num-
ber representing the number of floating-point values to follow (if this is not the case automatic size
detection can be enabled by using the -nocnt option). This starting number must be followed by the
indicated number of floating-point values separated by white space characters. The file must not
contain anything except valid IEEE floating-point formats. However, a known number of header
lines containing text in any format will be skipped when specified using the -header option.

Alternatively a packed binary array of 32-bit machine precision integers can be read using the -
int32 option. The number of values is determined from the file size and must not be given in that
case.

Usage: flo2bin [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-nocnt no number of values in input stream <off>
-int32 input stream is array of int32 (no count upfront) <off>
-header number of header lines to skip in input stream (0)
-stat char* write program statistics to file <off>
-swap exchange adjacent bytes of values <off>
-? | -help generates this help screen <act>

17

PCM (ASCII file) to binary stream conversion (pcm2bin)

Converts an input stream containing an ASCII table of PCM values into a TAP compatible binary
stream.

Especially when signals are generated by external programs e.g. a VHDL simulator it is necessary
to convert an ASCII file containing a table of PCM values in binary, octal, decimal or hexadecimal
format into a binary output stream required by the other signal processing functions contained in
this package.

The ASCII input file usually contains one number per text line. It should start with an integer num-
ber representing the number of PCM values to follow (if this is not the case automatic size detec-
tion can be enabled by using the -nocnt option). This starting number must be followed by the indi-
cated number of PCM values. The PCM numbers must conform to the format and number base
specified (hexadecimal, decimal, octal, binary). The default number format is hexadecimal with no
sign extension (expecting sign & magnitude).

If a fixed number of input bits (less than 32) is specified then the sign bit expected at position 2bits is
extended in order to convert the number to 32 bit binary integer representation. Specifying -bits 0
selects a sign magnitude format with variable number of digits.

Usage: pcm2bin [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-nocnt no number of values in input stream <off>
-bits int number of bits of PCM value (32)
-lin int linear PCM representation (0)
-Alaw use A-law conversion <off>
-Ulaw use U-law conversion <off>
-radix int input radix (16)
-hex hexadecimal input <off>
-dec decimal input <off>
-oct octal input <off>
-bin binary input <off>
-stat char* write program statistics to file <off>
-swap exchange adjacent bytes of values <off>
-? | -help generates this help screen <act>

18

Windows Sound File (.WAV file) to Binary Stream Conversion (wav2bin)

Converts a windows .WAV sound file (Microsoft RIFF format) into a TAP compatible binary stream.

Read windows sound file (.wav) and generate a binary output stream required by the other signal
processing functions contained in this package. If the sound file is a stereo file then left and right
channel data words are interleaved. Data words are numbers in the range of -32768 to +32767 if
the wave file resolution is 16 bit. 8, 16 and 24 bit audio files are supported.

The sound file name must be specified with the -fname option. If the -merge option is set then the
content of the sound file is appended to the input stream.

To separate f.e. the right channel of a stereo sound file the stream can be processed like in the
following example:

C:\>wav2bin -fname mySound.wav | table -sig 2 -extr 2 | ...

Usage: wav2bin [options] < infile > outfile

Options:

-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-fname char* name of existing wave file to read from <off>
-merge append wave file data to input stream <off>
-stat char* write program statistics to file <off>
-swap exchange adjacent bytes of values <off>
-? | -help generates this help screen <act>

Windows Video File (.AVI file) to Binary Stream Conversion (avi2bin)

Converts a windows .AVI video file (Microsoft RIFF format) into a TAP compatible binary stream.

Read compressed or uncompressed video file (.avi) and generate a binary output stream required
by the other signal processing functions contained in this package.

Specify a certain subset of video frames using the options -start, -stop and -step. Select a clipping
window using the -clip option. If detailed format information is required the -term option (do not
propagate data stream) may be given in conjunction with the -stat option (write status information
to external text file).

19

The video file name must be specified with the -fname option. If the -merge option is set then the
pixel content of the video file is appended to the input stream.

To do image processing a video file can be read, modified and written back like in the following
example:

C:\>avi2bin -fname myVideo.avi | map ... | bin2avi -fn out.avi ...

Usage: avi2bin [options] < infile > outfile

Options:

-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-fname char* name of existing wave file to read from <off>
-start int first frame to output (first)
-stop int last frame to output (last)
-step int frame step for output (1)
-clip
 left int
 right int
 bottom int
 top int}

 clipping rectangle
 (negative means from opposite edge)
 (0 for full width)

 (0 for full height)

<0 0 0 0>

-merge append wave file data to input stream <off>
-vfw use video_for_windows avi parser <off>
-term do not generate output stream (file check only) <off>
-stat char* write program statistics to file <off>
-swap exchange adjacent bytes of values <off>
-? | -help generates this help screen <act>

DAC (ASCII file) to binary stream conversion (dac2bin)

Simulates a switched capacitor DAC driven by clock signals specified in an ASCII table. Reads
clock states from textual input stream and creates a TAP compatible binary output stream contain-
ing the simulated DAC output signal. Can be used to analyse the effect of data-weighted-averaging
if corresponding clock signals are applied.

A nine level switched-capacitor digital-to-analogue converter with integrated low-pass filter can be
simulated. The nine level circuit allows dynamic averaging even of absolute gain. Its circuit dia-
gram with a complete functional description is shown in Appendix B as Figure 19.

By controlling the DAC elements in a certain manner (specifying an appropriate SC-clock se-
quence in the input stream), data weighted averaging of all capacitor values can be achieved. In-
put data is interpreted as a set of bits corresponding to the states of DAC element control lines in
the order PHA[8], PHB[8], PHC[8], reserved, reserved, reserved, PH1. It is assumed that PH1 (the
preparation phase) is the inverse of PH2 (the working phase). The output values are created by
summing up the contributions of all DAC elements which are enabled by their corresponding con-

20

trol lines during PH2. No output is generated during PH1. Two input lines are therefore required to
produce one output sample.

The ASCII input file usually contains one circuit state per text line. It should start with an integer
number representing the number of data lines to follow (if this is not the case automatic size detec-
tion can be enabled by using the -nocnt option). This starting number must be followed by the indi-
cated number of data lines. The data format must conform to the format and number base speci-
fied by options (hexadecimal, binary). The default number format is seven-digit hexadecimal with
right adjusted status data.

Capacitor mismatch can be specified and the continuous time feedback capacitor can be varied to
achieve different filter cut-off frequencies. The clock signals driving the CMOS switches of the si-
mulated circuit are usually generated by a logic or behavioural simulator like VERILOG or VHDL.

Usage: dac2bin [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-nocnt no number of values in input stream <off>
-radix int input radix (16)
-hex hexadecimal input <off>
-dec decimal input <off>
-oct octal input <off>
-bin binary input <off>
-vref double [V] reference voltage (+- full range) (1.4125 V)
-fb double [pF] feedback capacitor (tau * fsample * Cunit) (13 pF)
-cap
 C1 double
 C2 double
 C3 double
 C4 double
 C5 double
 C6 double
 C7 double
 C8 double

[pF]
[pF]
[pF]
[pF]
[pF]
[pF]
[pF]
[pF]

capacitor values (Cunit +- dC)
.value of feedback capacitor 1
.value of feedback capacitor 2
.value of feedback capacitor 3
.value of feedback capacitor 4
.value of feedback capacitor 5
.value of feedback capacitor 6
.value of feedback capacitor 7
.value of feedback capacitor 8

<off>
(1.00870 pF)
(1.00873 pF)
(1.01947 pF)
(1.00983 pF)
(1.00354 pF)
(0.99873 pF)
(0.991411 pF)
(1.00877 pF)

-stat char* write program statistics to file <off>
-swap exchange adjacent bytes of values <off>
-? | -help generates this help screen <act>

21

Signal Sinks

Plot (plot)

Creates a PX-Graph or GNU-Plot window to display input stream data. For the window a new in-
teractive child process is created. The graphical window offers a zooming function and allows crea-
tion of postscript files for a printer. Options control the shape of the plot, the number of signals, plot
and axes labels and other features. Plot -all combines all open plots in a single plot window.

If the option -signals is set to a value > 1 then multi column input is assumed. If no y columns are
selected using the option -ycol then all columns are displayed in one frame. If an x-axis column is
specified by the option -xcol then this column is used to label the x-axes instead of being displayed
as a separate trace. Column numbers are starting with the number one.

If no column for the x-axis is given then an x-axis start value can be specified using the option -x0
and an x-axis increment can be entered using the option -dx.

A plot title can be specified using the -title option. Axis labels are entered using the -xunit and
-yunit strings. If enough signal names are provided using the -names option then signals are
named rather than numbered. The options -ltype and -lwidth allow to specify lists of line type codes
and line width numbers.

The options -lnx and -lny select logarithmic axis scaling providing data values are positive and non-
zero. The option -grid turns grid display on. The -opts string is directly passed to GNUPlot.

The combination of the -mask option (gt2, gtn, td3, tdn, wn4, tn5, sd6, ob7, gf8, gfx, ov9, gd10), the -dir
option (tx or rx) and the -law option (a or u) selects several specification masks used in the ITU
telecommunication standards G711, G712 and others.

2 Gain Tracking
3 Total Distortion
4 Weighted Noise
5 Total Noise
6 Single Frequency Distortion
7 Out of Band Noise
8 Gain over Frequency
9 Overflow Level
10 Group Delay Distortion

22

To create a GNUPlot console window linked to a plot window hit the <space> bar. Hit the <h> key
to display a list of all such key stroke commands in that console window. The console window con-
tains additional online help functions. The [Replot] button will execute all modifications which might
have been made. Zooming can be accomplished by clicking two corners of a zoom window using
the right mouse button. The <p> key will bring you back to the previous view.

The window menu, the icon at the left top corner of a plot window, contains important options like
print and copy to clipboard.

Usage: plot [options] < infile
Options:

-isignal ipipe read input signal from (stdin)
-signals int number of columns in stream (1)
-nowait do not enter interactive mode <off>
-surface plot surface spanned by signals <off>
-xcol int select column for x axis <off>
-ycol int
 { int }

 select column for y axis
 more than one columns may be specified

<off>

-normcol int scale columns, let RMS of this column be unity <off>
-pluscol int add this column to ycols <off>
-minuscol int subtract this column from ycols <off>
-timescol int multiply this column to ycols <off>
-divcol int divide ycols by this column <off>
-yoffs double subtract this value from ycols <off>
-xref double y value of this sample is offset <off>
-x0 double x axis begin (0)
-dx double y axis increment (1)
-title char* plot title <off>
-name char*
 { char* }

 signal name
 more than one name may be specified

<off>

-ltype int
 { int }

 line type
 more than one type may be specified

<off>

-lwidth int
 { int }

 line width
 more than one width may be specified

<off>

-dots use dots for plotting <off>
-xunit char* x axis label (x)
-yunit char* y axis label (y)
-lnx logarithmic x axis <off>
-lny logarithmic y axis <off>
-grid draw grid lines <off>
-mask char* name of predefined mask <off>
-dir char* transmit or recieve mask (tx or rx) <off>
-law char* A-law or U-law mask (a or u) <off>
-cmask double draw horizontal line at y position <off>
-opts char* additional GNUPLOT options or commands

 (use ; and ' as delimiters)
<off>

-all join all active plots <off>
-swap exchange adjacent bytes of values <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

23

Binary stream to PCM (ASCII file) conversion (bin2pcm)

Converts a TAP compatible binary input stream into a textual output stream containing an ASCII
table of PCM values.

While most functions are getting binary input streams and creating binary output streams it is
sometimes necessary to convert such a binary result into a readable ASCII representation. The
ASCII file created contains one number per text line. It normally starts with an integer number
representing the number of PCM values to follow (if this is not turned off by using the -nocnt op-
tion). This starting line is followed by the indicated number of data lines. The binary input values
are converted to PCM values either according to G.711 A-law or U-law or truncated to a certain
number of fixed point fractional bits.

The default number format for A-law and U-law is two-digit hexadecimal, for linear PCM eight-digit
hexadecimal. Other number systems like decimal or octal can be selected, too. If the number of
bits is set to zero then sign-magnitude representation with a variable number of digits is selected
otherwise sign-extension and zero-padding for the indicated number of bits is chosen.

Usage: bin2pcm [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-nocnt suppress generation of values count <off>
-bits int number of bits of PCM value (32)
-lin int linear PCM representation (0)
-Alaw use A-law conversion <off>
-Ulaw use U-law conversion <off>
-radix int output radix to use (16)
-hex generate hexadecimal output <off>
-dec generate decimal output <off>
-oct generate octal output <off>
-bin generate binary output numbers <off>
-stat char* write program statistics to file <off>
-swap exchange adjacent bytes of values <off>
-? | -help generates this help screen <act>

24

Binary to floating point (ASCII file) conversion (bin2flo)

Converts a TAP compatible binary input stream into a textual output stream containing an ASCII
table of floating point values.

While most functions are getting binary input streams and creating binary output streams it is
sometimes necessary to convert such a binary result into a readable ASCII representation. The
ASCII file created contains as many numbers per text line as specified by the -columns option. It
normally starts with a separate line containing an integer number representing the number of float-
ing-point values to follow (if this is not turned off by using the -nocnt option). This starting line is
followed by the indicated number of data lines. The default number format can be overwritten by
specifying a format string following C-language printf syntax.

ASCII files will be used to interface the VHDL simulator and to export the final numerical result of a
sequence of stream processing operators.

Usage: bin2flo [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-nocnt suppress generation of values count <off>
-format char* format string of double values (%20.12lg)
-columns int number of columns written to stream (1)
-stat char* write program statistics to file <off>
-swap exchange adjacent bytes of values <off>
-? | -help generates this help screen <act>

25

Binary Stream to Windows Sound File (.WAV file) Conversion (bin2wav)

Converts a TAP compatible binary input stream into a windows .WAV sound file (Microsoft RIFF
Format).

Take a TAP compatible binary input stream and create a windows sound file in RIFF format (stan-
dard wave file which usually has the extension .wav). Only PCM format is supported (-format 1)

The sound file format can be specified using the -channels, -samples and -bits options or by using
the -like option to specify the file name of an unrelated wave file with a matching format.

The format to be used to create an audio CD is:

-channels 2 -samples 44100 -bits 16

If a stereo file is to be generated then input samples of left and right channel must be interleaved.
The filename of the new wave file must be given using the -fname option.

Usage: bin2wav [options] < infile

Options:

-isignal ipipe read input signal from (stdin)
-fname char* name of new wave file to create <off>
-like char* name of another existing wave file

 to copy header descriptions from
<off>

-stat char* write program statistics to file <off>
-format int wave file format (1)
-channels int number of channels (1)
-samples int number of samples per second (8000)
-bits int number of bits per sample (8)
-swap exchange adjacent bytes of values <off>
-? | -help generates this help screen <act>

26

Binary Stream to Windows Multimedia File (.AVI file) Conversion (bin2avi)

Converts a TAP compatible binary input stream into a windows .AVI multimedia file (Microsoft
RIFF Format).

Take a TAP compatible binary input stream and create a windows multimedia file in RIFF format
(standard movie file which usually has the extension .avi). Compressed and uncompressed frame
format is supported (-compress FOURCC)

The frame format of the output video may be controlled independently of the dimension of the input
stream by using the -width, -height and -interpolation options.

The command line to be used to create an uncompressed video stream with 400x400 RGB pixes
from a 20x20 input data stream using green shades for positive displacement amplitudes and red
shades for negative displacement is:

-fname test.avi -wid 20 -height 20 -interpol 20 -colpair -fps 15 -auto

The playback rate is set to 15 fps and automatic scaling of input level is used. The filename of the
generated file must be given using the -fname option.

The samples of the input stream after scaling are either interpreted as color-map indices (-colmap
option) or as signal amplitudes to be mapped onto a range of intensities of a color pair (-colpair
option) or gray scale (-colbw option) or directly as RGB values.

The stream has to contain any number of complete frames, each consisting of a specified number
of lines (-height option) with a specified number of pixels (-width option).

Input pixels are over-sampled by a user specified interpolation factor (-interpolation option) to
create target resolutions higher than input resolutions. Available interpolation methods are pixel
repetition, linear interpolation and overlapping 2D-Hamming window weighting.

Animation title (-title), sampling time, frame count or an external frame identifier (-time) as well as a
color bar legend (-legend) can be included. A background image stored in a Windows bitmap file
(*.bmp) may also be specified (-background).

A straight line may be defined (-xsection) specifying any point and any inclination angle which will
define a cross-section through the two dimensional data plane. A line plot of the signal magnitude
profile across that line is then plotted and updated in all animation frames.

Usage: bin2avi [options] < infile

27

Options:

-isignal ipipe read input signal from (stdin)
-fname char* name of new avi file to create <off>
-width int width of input stream in pixels (32)
-height int height of input stream in pixels (24)
-interpolation
 factor int
 order int

 yfactor int

 interpolate (increase avi resolution)
 oversampling factor
 interpolation order:
 0..sample repetition
 1..linear interpolation
 2..Hamming filter
 oversampling factor in y-direction
 (if different from x)

<off>
(1)
(2)

(0)

-circular
 orad int
 irad int
 list int
 { int }

 circular symmetry
 radius of outer edge
 radius of inner edge
 list of radii (one radius per input row,
 smallest first)

<off>
(0)
(0)

-cplx
 resolution int
 periods int

 input stream is complex (mag,arg)
 number of frames per period
 number of periods to animate

<off>
(36)
(2)

-ac eliminate common magnitude per frames <off>
-clip clip amplitude range to avoid color periodicity <off>
-colpair

 pcol int
 ncol int

 display neg/pos input using color pair
 (0=Blue, 1=Green, 2=Red)
 positive color
 negative color

<off>

(1)
(2)

-colbw display black and white only <off>
-colmap

 fname char*
 upsampling int
 lines int
 lwidth int

[%]

specify custom color map (RGB triples)
 colors are assigned from most
 negative to most positive values
 name of binary data file
 number of interpolated color triples
 number of contour lines (pos..white, neg..black)
 width of contour lines

<off>

("rgb.bin")
(254)
(0)
(20)

-compression
 char*

 name of codec to be used (FOURCC) <off>
(“TSCC”)

-fps int frames per second to be generated (5)
-scale double initial scale (1.0)
-range

 llim double
 ulim double
 ext char*

 signal amplitude range (if -autoscale or ext
 then only distance is preserved!)
 lower amplitude limit
 upper amplitude limit
 read upper limits from external binary file

<off>

(-1.0)
(1.0)

-autoscale
 tconst double

[s]

rescale dynamically
 recovering time constant
 (0 for immediate recover)

<off>
(10)

-log
 base double
 range double

 logarithmic compression
 base of logarithm
 logarithmic range (exponent)

<off>
(2.0)
(12.0)

-background
 filename char*
 saturation double
 brightness double

 background image
 name of bitmap file (*.bmp)
 saturation factor (0=BW)
 adjust brightness (1=white)

<off>
(“bg.bmp”)
(0.5)
(0.5)

-time
 format char*
 fps double
 x int
 y int
 points int
 font char*
 col int
 bgcol int
 ext char*

[pixel]
[pixel]
[points]

[RGB]
[RGB]

annotate time or frame number
 format string (e.g. '%2.3fms' for time in ms)
 original frame rate (1 for frame count)
 x position (0=center | neg=from right)
 y position (0=middle | neg=from bottom)
 height of font in points
 name of font
 text color
 text background color
 read from external binary file

<off>
("%6.0f")
(1)
(5)
(5)
(8)
("Arial")
(0xffffff)
(0x000000)

28

-title
 format char*
 x int
 y int
 points int
 font char*
 col int
 bgcol int

[pixel]
[pixel]
[points]

[RGB]
[RGB]

annotate animation title
 title string
 x position (0=center | neg=from right)
 y position (0=middle | neg=from bottom)
 height of font in points
 name of font
 text color
 text background color

<off>
(“”)
(5)
(8)
("Arial")
(0xffffff)
(0x000000)

-legend
 width int
 height int
 hpos int
 vpos int
 points int
 font char*
 col int
 bgcol int

[pixel]
[pixel]
[pixel]
[pixel]
[points]

[RGB]
[RGB]

include legend
 x legend bar width (-1 full width)
 legend bar height (-1 full height)
 distance to left edge (neg=to right)
 distance to top edge (neg=to bottom)
 height of font in points
 name of font
 text color
 text background color

<off>
(10)
(-1)
(-5)
(0)
 (8)
("Arial")
(0xffffff)
(0x000000)

- xsection
 scale int
 fi int
 x int
 y int
 col int
 wid int
 typ int
 xcol int
 typ int

[%]
[deg]
[pixel]
[pixel]
[RGB]
[pixel]
[0..4]
[RGB]
[0..4]

plot cross-sectional displacment
 relative scale
 cross-section angle (90=vertical)
 x position (0=center)
 y position (0=center)
 line color
 line width
 line type (solid,dash,dot,dashdot,dashdotdot)
 axis color
 axis line type

<off>
(50)
(0)
(0)
(0)
(0xffff80)
(1)
(0)
(0x808080)
(2)

-BMPout
 name char*
 frame int

 create a series of bitmap files
 name of file (group)
 frame (-1 for all)

<off>

(0)

-binout create binary output pixel stream <off>
-noavi suppress avi file generation <off>
-debug write debug output to statistics file <off>
-stat char* write program statistics to file <off>
-swap exchange adjacent bytes of values <off>
-? | -help generates this help screen <act>

29

Time Domain Processing

Envelope Sort (envsort)

The envelope sort operation sorts a buffer containing a certain number of signal periods in a way
to move all samples into a single period increasing the effective sampling frequency. This opera-
tion is very similar to what a sampling oscilloscope does.

The effect of the envsort command can be illustrated most easily by comparing the results of the
following two command lines:

stim | plot

 stim | envsort | plot

Using just the default settings of the stimulus generator, a 1024 sample long binary stream is gen-
erated representing a sine wave signal with exactly 131 periods contained in the interval. The
envelope sort command resorts those 1024 samples in a way to represent a sine wave signal with
one period sampled at a virtual sampling rate which is 131 times higher than the original sampling
rate.

The required up-sampling rate is tried to be recognized automatically but it can be specified using
the -periods option. In order to work properly an integer number of signal periods must be con-
tained in the original buffer. If the number of original periods is prime then there is no redundancy
in the signal and the resorted result will look most smoothly.

The -orgphase option will keep the original phase, while the default setting tries to resort the signal
in a way to present a zero phase output signal.

Usage: envsort [options] < infile > outfile

Options:

-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-periods unsigned number of periods <off>
-orgphase preserve original phase <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

30

Sigma Delta Modulator (sigma)

The sigma delta modulator simulates a first or second order, single bit, switched capacitor sigma
delta loop. Symmetric (+1/-1) output as well as logic (1/0) output is provided. Cyclical reset of out-
put and feedback can be selected. Integrator gains as well as operating ranges are programmable.

The sigma function takes an input stream representing an analogue input signal and simulates a
first or second order sigma delta modulator with a single bit output. The operating range of the first
order version is up to ±vref while the second order version requires an additional margin of about
3 dB. When the default configuration of the circuit is not altered using the options -order, -g1, -g2,
-lim1, -lim2, -vref then the working input range is ±1V and a DC output offset of 0.5 V is generated.

The single bit output stream when filtered by a good low pass filter represents with very high preci-
sion the analogue input signal. The -sym option switches from the [1,0] set of output states to the
[1,-1] set thus eliminating the output DC-offset.

The following command lines will illustrate the operation of sigma delta modulation. The sinc term
is the decimation filter, the func term compensates the 3dB loss caused by the second order sigma
delta circuit.

stim -per 1 | sigma -sym | plot

stim -per 1 | sigma -sym | sinc -n 16 | func -att 3 | plot

By zeroing every nth feedback value long strings of the same logic level can be avoided when big
input magnitudes are present. This helps to overcome overrun conditions of simple comb decima-
tion filters.

Usage: sigma [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-order int mudulator order (1 or 2) (2)
-sym symetric output <off>
-g1 double gain of first integrator (0.25)
-g2 double gain of second integrator (0.5)
-lim1 double [V] operating range of first integrator (1.5 V)
-lim2 double [V] operating range of second integrator (1.5 V)
-zero int zero every nth feedback value <off>
-vref double [V] feedback reference voltage (1.41254 V)
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

31

Decimation, Interpolation, DC-component (sinc)

A Sinc decimator applies a digital filtering operation (comb or Sinc filter) to the input stream and
then down-samples the signal to a lower sampling rate. The Sinc interpolator up-samples the sig-
nal obtained by the input stream and then applies a Sinc interpolation filter at the higher sampling
rate. The first order sinc interpolator (n<0) is actually a sample value repeater.

The filtering operation which is generally referred to as Sinc or comb filter creates zeroes at the
lower sampling rate and its multiples. Orders up to three are implemented. A first order Sinc deci-
mator is equivalent to a block-wise running average (accumulate and dump operation). A first order
Sinc interpolator basically is a circuit which repeats each input sample n times. A second order
Sinc interpolator is a linear interpolation circuit.

The spectral effect of a Sinc filter on the pass-band can be compensated by a subsequent window
operation using the -invsinc option.

Using the -a option or setting the decimation rate to the buffer length (which is what the -a option
actually does) outputs the mean value of all samples which is the dc-component of the signal if first
order is selected.

 ()f z D
z
z

D

, =
−
−

−

−

1
1 1 ()

() ()()
() ()h x D
x i x
x i x

D

x f
fs

,
cos sin

cos sin
=

− +
− +

−

=

1
1 2π

Usage: sinc [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-order int decimation or interpolation order (3)
-n int decimation rate (negative for interpolation) (2)
-phase int starting index for zero order decimation <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

32

Linear Section (Infinite Impulse Response Filter) (integr)

Simulates a first order section taking a limited number range and different overflow handling into
account.

This function simulates a lossy integrator. The limited number range [-min.. -max] can be enforced
by saturation. Other realistic numerical behaviour like wrap around or zeroing can be simulated at
all three arithmetic circuit nodes.

As a first order section a topology has been chosen which guarantees no loss of numerical preci-
sion in the pass-band and sufficient accuracy in the stop-band. This was achieved with an architec-
ture containing a direct data-path between input and output. The z-domain equivalent circuit
representing a general 1st order section and its circuit equations are shown in Figure 2. The op-
tions -a, -b and -scale of the integr function correspond to the variables a, b and c in the figure.

Choosing b = -1 a high-pass filter can be derived. Its transmission function
()

az
zaczH HP −
−

=
1)(

can be calculated using the relations given in Figure 2. At frequencies which are higher than the
cut-off frequency of the high-pass filter (normal pass-band operation) the signal

() () ()
az

azazvzv
−
−

=−×=
11)(12 becomes very small and does no longer significantly contribute to

the output. The adder adding vi and v2 mainly propagates the filter input vi without loosing any nu-
merical precision.

z-1

ca

b

vi vo

v1

V2

()

()bavv
z
avvv

vvcv

i

io

+=

+=

+=

12

1
1

2

za
zcbcaccazH

−
++−

=
)()(

zB
zAA

v
v

zH
i

o

+
+

==
1

01)(

a B= − 1 b B
B A

A
= + −1

1 0

1
1 c

A
B

= 1

1

Figure 2: General First Order IIR Section

With default coefficients the circuit behaves as a first order low-pass with a 3 dB cut-off at 39% of
the sampling frequency. The plot below was created by the command line:

33

stim -freq 0 -prn 12 83 -len 4095 -sampl 44100 | integr | dft | db | clip -keep -pro 2048 |

 plot -dx 10.77 -title "Lossy Integrator Gain" -gr -xu [Hz] -yu [dB] -opt "set yr [-3.5:0.5]"

It shows how the perfectly flat spectrum of an MLS signal is filtered by the first order low-pass sec-
tion. From the symmetric spectrum just the first half is passed to the plot procedure.

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0 5000 10000 15000 20000

[d
B

]

[Hz]

Lossy Integrator Gain

Col 1

Figure 3: MLS filtered by integr

34

Usage: integr [options] < infile > outfile

Options:

-isignal ipipe Read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-scale double scale factor (0.399447)
-a double coeffecicient a (0.347656)
-b double coeffecicient b (0.655273)
-min double lower limit (-1)
-max double upper limit (1)
-wrap wrap around output if outside limits <off>
-sat saturate output if outside limits <off>
-zero bound output to zero if outside limits <off>
-wrap1 wrap around node 1 if outside limits <off>
-sat1 saturate node 1 if outside limits <off>
-zero1 bound node 1 to zero if outside limits <off>
-wrap2 wrap around node 2 if outside limits <off>
-sat2 saturate node 2 if outside limits <off>
-zero2 bound node 2 to zero if outside limits <off>
-block indicate saturation by forcing y=x (debug) <off>
-allnodes write all internal node to stream <off>
-debug generate internal debug information <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

35

Biquadratic Section (Infinite Impulse Response Filter) (biquad)

Simulates a second order wave digital filter section taking a limited number range and different
overflow handling into account.

The biquad operator performs a digital filtering operation on the input stream. The four filter coeffi-
cients a1, a2, b1, b2 and the scale factor are input by options. Scaling is applied to the input signal
before it enters the actual filter block which otherwise would not have the gain as a free parameter.

The wave digital biquad which is simulated by this operation has been described by Fettweis11. Its
z-domain representation together with its network equations are presented in Figure 4.

The solution in the z-domain is a biquadratic term which has one parameter less than the most
general biquadratic section. It can be seen that any general transmission function can be realized if
the DC-gain is defined externally. The relationship of the four factors a1, a2, b1, b2 and the general
biquad coefficients are described in Table 2.

For frequency domain analysis of z-domain transmission functions the substitution sf
fj

ez
π2

→ can

be used to plot magnitude and phase or group delay over frequency.

+

+

+

-b2

a2

+

+

+

-b1

a1

rig

rig1

lef

lef1

y1

x y

z-1 z-1

() 2
2121

2
2121

1
1)(

zzazaaa
zzbzbbbzxzy

+−−−+
+−−−+

=

lef a y b x

rig a y b x

lef lef
rig
z

rig rig
lef
z

y x
lef
z

y y
rig
z

1 1 1

1 2 2

1

1

1

1

= −

= −

= +

= −

= +

= +

Figure 4: Wave Digital Biquad (z-Domain Representation)

11 Fettweis; Wave Digital Filters: Theory and Practice; Proc. IEEE, vol.74, pp. 270-327, Feb. ’86

36

H z
A A z A z

B B z z
() =

+ +
+ +

2 1 0
2

2 1
2

a
B B

1
2 1 1

2
=

− −
 a

B B
2

2 11
2

=
− −

 b
A A A

A1
0 2 1

02
=

− −
 b

A A A
A1

2 1 0

02
=

− −

Table 2: Wave Digital Biquad (Transmission Function and Coefficients)

There are no restrictions on the coefficients Ai and Bi that means they can be optimised freely. As
long as the transformation rules are applied correctly in order to derive the actual coefficients ai
and bi this second order section enjoys all the stability properties of wave digital filters, including
forced-response stability providing proper scaling and number representation.

The biquad architecture is very efficient in terms of overflow handling because it calculates the
output signal from many partial sums which may overflow in two’s complement arithmetic as long
as the final output of the filter stage does not overflow. The input signal and the output signal of the
stage are multiplied with constant coefficients less than one so there will not be any multiplier over-
flow as long as input signal and output signal do not overflow. If the signal is scaled properly then
there will not be any overflow in the output signal and saturation circuits are not required.

In order to analyse the effect of different implementations simulation of overflow conditions is pro-
vided by the biquad function. Anyhow, fixed point arithmetic has not been implemented so internal
quantization distortion cannot be simulated.

Because of two partial sums lef and rig which have to be stored in the memory representing the
two z-1 products the overflow rule for partial sums cannot be applied completely. Three typical
overflow handling methods (saturate, wrap-around and set-to-zero) can be applied to the memory
terms lef and rig using the options -satmem, -wrapmem and -zeromen.

Output overflow can be simulated using the options -sat, -wrap and -zero. If only the propagated
signal should be effected but not the internal signal fed back to the multiplications by the coeffi-
cients a1 and a2 then the options -satout, -wrapout and -zeroout have to be used.

The default filter coefficients yield a low-pass with unity gain and a cut-off frequency close to one
quarter of the sampling frequency. The plot below was created by the command line:

stim -freq 0 -prn 12 83 -len 4095 -sampl 44100 | biquad | dft | db | clip -keep -pro 2048 |

 plot -dx 10.77 -title "Biquad Gain" -gr -xu [Hz] -yu [dB] -opt "set yr [-30.5:0.5]"

37

-30

-25

-20

-15

-10

-5

 0

 0 5000 10000 15000 20000

[d
B

]

[Hz]

Biquad Gain

Col 1

Figure 5: MLS filtered by biquad

Usage: biquad [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-scale double scale factor for x (0.399447)
-a1 double coeffecicient a1 for y (0.347656)
-a2 double coeffecicient a2 for y (0.855469)
-b1 double coeffecicient b1 for x (0.655273)
-b2 double coeffecicient b2 for x (0.631836)
-min double lower limit of number range (-1)
-max double upper limit of number range (1)
-wrap wrap around node y using limits <off>
-sat saturate node y using limits <off>
-zero reset node y to zero while out of limits <off>
-wrapmem wrap around memory using limits <off>
-satmem saturate memory using limits <off>
-zeromem reset memory to zero while out of limits <off>
-wrapout wrap around output signal using limits <off>
-satout saturate output signal using limits <off>
-zeroout reset output signal to zero while out of limits <off>
-allnodes write all internal node to stream <off>
-debug generate internal debug information <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

38

Finite Impulse Response Filter (fir)

Performs an FIR filtering operation on the input stream. The filter coefficients are either read from
an external binary file (if a file name is given) or precomputed in several different ways.

The FIR-filter is applied in a way to calculate an output sample from its corresponding input sample
and left and right neighbouring input samples. The number of left and right neighbours plus one
must match the number of coefficients. If input samples before the first or beyond the last sample
of the buffer are needed then the first or the last input sample is taken instead. The default setup
with right = 0 and left = len - 1 creates the standard situation where the output is valid after a delay
corresponding to the length of the coefficient vector - 1 while the last output sample is exact.

The Savitzky - Golay12 convolution smoothes input data by calculating each output sample from its
corresponding input sample and specified numbers of left and right neighbour samples. Coeffi-
cients for the Savitzky - Golay convolution are precomputed for up to 8 neighbour samples per
side, for an order between one and four and for smoothing the curve (deriv = 0) or for calculating a
smoothened derivative (deriv = 1).

12 Numerical Recipes in C, Press/Teukolsky/Vetterling/Flannery, Cambridge University Press, page 650f

39

Usage: fir [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-fname char* file containing FIR coefficients <off>
-len unsigned [samples] FIR filter length <off>
-left unsigned [samples] leftside part of coefficients <off>
-right unsigned [samples] rightside part of coefficients <off>
-rectang filter with rectangular window <off>
-triang filter with triangular window <off>
-hamming filter with hamming window <off>
-ghamming alpha
 alpha double

 filter with generalised hamming window
 filter alpha value

<off>

-hanning filter with hanning window <off>
-blackman filter with blackman window <off>
-nuttall filter with nuttall window <off>
-kaiser attn
 attn double

[dB]

filter with kaiser window
 filter attenuation

<off>

-chebyshev
 ripple double
 trans double

[dB]
[*fs]

filter with chebychev window
 filter ripple
 normalized filter transition width

<off>

-savitzky
 order int
 deriv int

 local smoothing filter
 filter order
 filter derivation

<off>

-lowpass
 cutoff double

[*fs]

use low pass filter
 normalized cut-off frequency

<off>

-highpass
 cutoff double

[*fs]

use high pass filter
 normalized cut-off frequency

<off>

-bandpass
 low double
 high double

[*fs]
[*fs]

use band pass filter
 lower cut-off frequency
 higher cut-off frequency

<off>

-bandrej
 low double
 high double

[*fs]
[*fs]

use band rejection filter
 normalized lower cut-off frequency
 normalized higher cut-off frequency

<off>

-printwin print window to statistic <off>
-printcoeff print coeffs to statistic <off>
-info print filter characteristic to statistic<off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

40

Cross Correlation (xcorr)

Cross correlates two data streams or auto-correlates one data stream yielding vector result. With
MLS option auto correlation is compared with Dirac impulse yielding a scalar boolean result. An
MLS sequence can be created using the stim command with the prnoise option.

The output vector of the correlation function is not scaled in any way. It is simply the sum of all
products.

Usage: xcorr [options] < infile > outfile

Options:

-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-vector char* binary file containing second vector operand (must have same length) <off>
-MLS compare auto correlation of stream with Dirac impulse <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

Time Domain Analysis (tana)

Calculates signal characteristics and includes a selected subset in the output stream. The output
stream can be either binary or textual and can be directed either to a file or to the standard output
device. The order of the selected characteristics in the output stream does not depend on the order
of the option statements. They always appear in the order shown below.

Usage: tana [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-var output variance of signal <off>
-rms output root mean square of signal <off>
-dc output mean value of signal <off>
-min output minimum of signal <off>
-max output maximum of signal <off>
-peak output maximum of abs (signal) <off>
-imin output position of first min <off>
-imax output position of first max <off>
-ipeak output position of first peak <off>
-size output number of sample <off>
-len int number of samples to process <off>
-nl append new line character <off>
-db output all voltages in db <off>
-dboffs double [dB] zero dB value (0 dB)
-negpos output positions near the end relative to end <off>
-fname char* name of output file (stdout)
-binary create binary output <off>
-term don't propagate input data <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

41

Frequency Domain Processing

Frequency Domain Analysis (fana)

Calculates a spectrum and includes a selected subset of frequency domain signal characteristics
in the output stream. The output stream can be either binary or textual and can be directed either
to a file or to the standard output device. The order of the selected characteristics in the output
stream does not depend of the order of the option statements. They appear in the order shown
below.

The selected frequency domain analysis results can be sent to the standard output pipe in binary
format using the option -binary. In this case the -term is enforced which means that input data are
not propagated from input to output.

If -binary is not included then textual output is directed to the file which must be specified using the
-fname option. In that case it is possible to terminate the input stream or to propagate it, depending
on the presence of the -term option.

The options -len, -freq, -lev, -adjust and -sample should match the corresponding options given to
the stimulus generator which has generated the input stream. The fana command calculates the
RMS power of three differently filtered versions of the input stream.

First, the whole AC RMS energy contained in the signal band limited by -noisehp and -noisebw is
calculated (rms). Second, the AC RMS energy contained in the above signal band is determined
after a perfect band-pass filter with a width of -stimbw around the stimulus frequency -freq has
been applied (sel). Third, the AC RMS energy contained in the signal band is determined after a
perfect band-reject filter with a width of -stimbw around the stimulus frequency -freq has been ap-
plied to eliminate the stimulus signal (noi). Using the option -weight one of two noise weighting
filters can be turned on in that case.

From these three results the obtainable output measures are derived according to the table below:

option description derivation definition
-rmswb Deviation of wide band stimulus level dB(rms) minus -dboffs minus -lev; ITU O.132, bw=300..3400Hz
-rmssel Deviation of selective stimulus level dB (sel) minus -dboffs minus -lev; ITU O.132, stim=1020Hz, bw=100Hz
-rmsnoi Absolute level of weighted noise and quantisation products dB (noi) minus -dboffs; ITU O.132, bw=300..3400Hz minus stim
-distwb Total distortion (wide band stimulus) dB (rms / noi) minus cal; ITU O.132, cal=10 log(3100Hz/3000Hz)
-distsel Total distortion (selective stimulus) dB (sel / noi) minus cal; ITU O.133, cal=10 log(3100Hz/3000Hz)
-pwrwb Wide band signal level dB (rms) minus -dboffs; ITU O.132, bw=300..3400Hz

An application of the fana command to analyze transmission characteristics of telecommunication
circuits is described as one of the examples given in the Appendix B.

42

Usage: fana [options] < infile > outfile

Options:

-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-len int useful buffer length (1024)
-freq double [Hz] stimulus frequency (1020)
-lev double [dBm0] stimulus level <off>
-adjust int adjust frequency for

 0=any, 1=int, 2=odd number of periods
(2)

-sample double [Hz] sampling rate (8000)
-decim int decimate before FFT (use 3rd order Comb) (1)
-noisehp double [Hz] noise band lower bound (0)
-noisebw double [Hz] noise band width (4000)
-stimbw double [Hz] selectivity band width <off>
-weight char* spectral weights (psopho or Cmess) (none)
-dboffs double [dB] zero dBm0 offset (absolute gain) (0)
-rmswb rms wideband (deviation from lev) <off>
-rmssel rms selective (deviation from lev) <off>
-rmsnoi rms noise <off>
-distwb distortion wideband <off>
-distsel distortion selective <off>
-pwrwb rms wideband (absolute) <off>
-nl append new line character <off>
-fname opipe name of output file (stdout)
-binary create binary output <off>
-term don't propagate input data <off>
-debug generate internal debug information <off>
-trace char* sub process output to trace file <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

43

Sweep Analysis (swana)

Performs spectral analysis in a window which is shifted along the input stream. Creates a multi-
column output stream containing base frequency and signal levels of all selected harmonic com-
ponents for each window being processed. Many different strategies and algorithms are available
in order to find the correct fundamental frequencies even if they are missing in the recorded
sound.

The sweep analysis tool is applied to a time domain signal. Often the recorded response of a sys-
tem to a sweep excitation signal is used as an input. Another important application is the analysis
of sound recordings e.g. of musical instruments.

The main purpose of the program is to calculate the time varying signal power at certain frequen-
cies of interest. A window of specified length (windowsize) moves stepwise (step) over the input
stream. If the last windows are not complete then they are optionally (decay) padded with zeros
until they are completely empty. For each window a spectral analysis is done and the requested
output values are generated.

One line of output contains the fundamental frequency, the levels of a specified number (harm) of
harmonics, the optional (inharmonics) cent-deviations of those harmonics, the optional centroid of
all seleceted harmonics (centroid), the optional centroid of the complete spectrum (totcentroid) and
the optional noise level (noise) which is the unweighted or weighted (psopho, Cmessage) RMS of
the total spectrum with all or a selected number (partials) of harmonics zeroed out.

The fundamental frequencies for all window buffers can be read from an external binary file
(fname), specified as a known sweep (sweep, start, rate) or they can be calculated using several
methods containing different heuristics. Some options have a range parameter which limits their
effect to a certain number of steps counted either from the beginning (positive range) or from the
end of the signal (negative range). This allows to have three different strategies in three different
sections of the signal (for example low register, middle register and high register of a musical
scale).

The fundamental frequency detection tries to find a harmonic grid containing up to a user specified
number of partials in the spectral buffer. Two different methods can be selected.

The grid method allows some harmonic frequency tolerance (tol) and takes only true peaks bigger
than a specified threshold (floor) - defined relatively with respect to the spectral buffer’s maximum
value - into account. The peak amplitudes are completely neglected as long as peaks are bigger
than the floor of a buffer, just their positions are of interest. It is not necessary that a fundamental
actually exists. As long as there is a sufficient number of equidistant peaks a virtual fundamental

44

frequency is defined by their distance. The score of a harmonic grid is determined from the number
of peaks which are sufficiently close to a harmonic grid regardless of their level. It is the weighted
sum of the harmonic indices of existing partials up to the limit specified with the partials option. The
resulting fundamental frequency is the weighted geometric mean of the correct integer fractions of
all partials taken into account. The weighting function is defined by the user specified coefficient w
(weight) which is the exponent decaying harmonics with their index n: weightn = (1/n)w. With the
default value w=0.0 no specific weight is applied.

The default method scores with weighted peak magnitudes. Here the virtual_f0 option determines
if a true peak at the f0 frequency is a requirement for a valid fundamental frequency. The weighting
function is the same as above and it is again specified by the partials option which also determines
how many harmonics participate in the calculation of a score. The fundamental frequency with the
best score is optionally interpolated parabolically (interpolate) if it is not virtual. Goertzel interpola-
tion is not implemented yet.

If the fundamental frequency is known to change smoothly, like in sweep responses or musical
scales, it is advisable to specify the continuos option with a first guess for the initial frequency (f0)
and upper and lower limits (llim, rlim) for the frequency differences in [%] between adjacent spec-
tral buffers. This specification puts constraints on the search range for fundamental frequencies.
These ranges can be overwritten manually using the hint option. Hint frequencies and new toler-
ance limits can be introduced at any signal position.

Usage: swana [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-windowsize uint [samples] analysis window size (1024 samples)
-step uint [samples] analysis window step (256 samples)
-decay zero pad last incomplete windows <off>
-sample double [Hz] sampling rate (8000 Hz)
-interpolate int interpolate between spectral lines

 (0 = parabolic, 1 = goertzel)
(0)

-operation int infinitesimal operation on result
 (-1 = integ, +1 = diff)

(0)

-harmonic uint include up to nth harmonic (1)
-inharmonics
 range uint
 floor double

[Cents]
[dB]

include in-harmonic deviations of harmonics
 maximum deviation
 ignore harmonics less than floor

<off>
(150 Cents)
(-40 dB)

-centroid append spectral centroid to each row
 (of selected harmonics only)

<off>

-totcentroid append spectral centroid to each row
 (of total spectrum)

<off>

-noise append non-harmonics to each row <off>
-fname
 char*
 range int

 read frequencies from external file
 filename and points to get with this method
 (neg counts from end)

<off>

(0)

45

-sweep
 start double
 rate double
 range int

[Hz]
[Dec/sec]

analyse synthetic sweep response
 start frequency
 sweep rate
 points to get with this method
 (neg counts from end)

<off>
(50 Hz)

(0)

-grid
 tol double
 floor double
 range int

[%]
[dB]

use harmonic grid strategy
 harmonic tolerance
 ignore peaks smaller than floor
 points to get with this method
 (neg counts from end)

<off>
(5 %)
(-40 dB)
(0)

-hint double double
 { double double }

 hints for fundamental detection
 alternate time [sec] and frequency [+ Hz]
 or time [sec] and range [- %]
 (0 means full range)

<off>

-partials
 n uint

 weight double

 search for partials
 number of partials to search for
 (incl. fundamental)
 weighting function (1/n)^w

<off>
(1)

(0.0)

-virtual_f0 detect virtual fundamentals
 (no actual peak in spectrum)

<off>

-continuous
 llim double
 rlim double
 f0 double

[%]
[%]
[Hz]

assume continuous stimulus frequencies
 left limit relative to previous f0
 right limit relative to previous f0
 starting frequency

<off>
(-10 %)
(80 %)
(0 Hz)

-triang filter with triangular window <off>
-hamming filter with hamming window <off>
-ghamming
 alpha double

 filter with generalised hamming window
 filter alpha value

<off>

-hanning filter with hanning window <off>
-blackman filter with blackman window <off>
-nuttall filter with nuttall window <off>
-kaiser
 attn double

[dB]

filter with kaiser window
 filter attenuation

<off>

-chebyshev
 ripple double
 trans double

[dB]
[*fs]

filter with chebychev window
 filter ripple
 filter transistion width

<off>

-psopho use psophometric noise weighting <off>
-Cmessage use C-message noise weighting <off>
-printwin print window to statistic <off>
-stat char* write program statistics to file <off>
-debug
 verbose int
 from int
 to int
 fname char*

 output debug information
 amount of debug information
 trace range left limit
 trace range right limit
 write spectral buffers to binary files

<off>
(1)
(1)
(0)
(“spec”)

-? | -help generates this help screen <act>

46

Harmonic Analysis (dftpeaks)

Performs harmonic analysis in a window which is shifted along the input stream. Creates a multi-
column output stream containing base frequency and signal levels of all selected harmonic com-
ponents for each window being processed. Many different strategies and algorithms are available
in order to find the correct fundamental frequencies even if they are missing in the recorded
sound.

The harmonic analysis tool is applied to a time domain signal. It complements the swana functio-
nality because there is no segmentation required and input sound does not need to sweep or step
regularly.

The program tries to track sine-wave components which are specified using the -freq option even if
their frequencies slowly change. Selected components do not need to be harmonics. They are
related to the fundamental but do not need to be integer multiples of the base frequency.

The program outputs frequencies and magnitudes. Output data therefore contain two columns for
each sound component which is part of the -freq list. If the -rms option is given then an additional
column of data points is included in the output stream.

The input stream is analyzed using two moving windows. A long window giving the frequency reso-
lution required to track component frequencies and a shorter window giving the time resolution to
track magnitude variations. These windows are specified using the options -llen, -loffs, -slen,
-soffs. If the stepping offset of a window is shorter than its length then subsequent windows will
overlap. In order to window the analysis buffers before Fourier transform different window types
can be selected (-kaiser, -nuttall, -hamming, -hanning, -blackman…).

The fundamental recognition works better when the search range is limited by specifying the op-
tions -fu and -fo. These limits specify a strict range for all fundamentals, not only for the initial one.
The options -feps defines the tolerable frequency jitter of the harmonic grid. The option -frel speci-
fies the fastest rate of change in fundamental frequency which has still to be tracked properly. If
the detected fundamental frequency in an observation interval deviates more than the given per-
centage values from the previous one then the detected fundamental frequency is dropped and the
one from the previous interval is used instead. The same is true if the running rms signal level
drops below the threshold level specified using the -threshold option.

An example of how to use this program in a dynamic harmonic analysis is given in Appendix B.

47

Usage: dftpeaks [options] < infile > outfile

Options:

-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-samples int [Hz] number of samples per second (44100)
-llen int [samples] large window length (32768)
-slen int [samples] small window length (4096)
-lofs int [samples] large window move step size (32768)
-sofs int [samples] small window move step size (4096)
-fu double [Hz] lower frequency bound for base tone estimation (100)
-fo double [Hz] higher frequency bound for base tone estimation (2000)
-freq double
 { double }

[Hz]

frequency grid where peaks are searched (have to be sorted by magnitude)
 list of frequency rates

<off>

-frel lower upper
 double lower
 double upper

[%]
[%]

maximum deviation factor of expected base tone's frequency (relative to last base tone)
 lower deviation factor
 upper deviation factor

<off>
(0)
(0)

-threshold double minimum rms level for fundamental tone detection (0)
-feps double [%] jitter of harmonic frequencies (1)
-nearest use only nearest peaks in jitter <off>
-triang use triangular window <off>
-blackman use blackman window <off>
-nuttall use nuttall window <off>
-hanning use hanning window <off>
-hamming use hamming window <off>
-genhamming
 double alpha

 use generalized hamming window
 alpha

<off>
(0.54)

-kaiser attn
 double attn

[dB]

use kaiser window
 desired attenuation

<off>
(40.0)

-rms append rms column to output <off>
-debug int debug level (0)
-stat char* write program statistics to file <off>
-? |-help generates this help screen <act>

48

Time or Frequency Domain Processing

DFT Processor (dft)

Performs Discrete Fourier Transform or its inverse, taking real as well as complex values from the
input stream. Real as well as complex output data are generated. Selectable co-ordinate systems
for complex signals are the Cartesian (real/imaginary) and the Polar (magnitude/argument) co-
ordinate system.

The DFT result is scaled in a way to equalize the root mean square of the time domain buffer and
the frequency domain buffer. The number of elements in the frequency domain is the same as in
the time domain. The first output sample is the DC-component, the second one (which has the
same value as the last one) corresponds to the sampling frequency divided by the number of
points. The sampling frequency itself as mirror image of the DC-value is not contained in the output
spectrum.

If 2-dimensional (complex) output is turned on (-out2D), then the output stream consists of two
columns. These columns normally contain magnitude and phase pairs. Cartesian representation
(real part, imaginary part) can also be selected (-reim) and the order of the data pairs can be re-
versed (-swap) for the output. Note, that the co-ordinate system is valid for both input and output,
while order swapping only concerns the output. The output order is especially important when 1-
dimensional output (the default case) is selected, because then every second value is dropped.
The default phase unit is radiant but degree units (-deg) are possible, too.

If a length is specified which is greater than the actual length of the input stream then the input
stream is zero padded. If the specified length is shorter than the actual length of the input stream
then a long term average spectrum (LTAS) is calculated. If the actual stream length is not an in-
teger multiple of the given length then the last buffer will be zero padded. In LTAS mode no phase
information is available.

The DFT buffer length should preferably but not necessarily be a power of two. Complex (two di-
mensional) input files (-inp2D) must have even length.

The option -smooth post-processes phase results in a way to avoid discontinuities. Near 360°
(2×Pi) jumps are eliminated by extending the number range beyond the usual phase interval
[-180..180]. Phase results can be trimmed by specifying a minimum magnitude level where non-
zero phases are returned.

49

Usage: dft [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-len int [samples] overrides DFT length <off>
-reverse invoke reverse fourier transformation <off>
-inp2D input data are complex <off>
-out2D request complex output <off>
-reim cartessian values instead of polar form <off>
-swap swap complex numbers before output <off>
-min double [dB] minimum magnitude with nonzero phase <-200 dB>
-smooth reconstruct phase outside base circle <off>
-deg phase in degrees <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

Windowing (window)

Applies a window function to an input stream. Typically used for time domain windowing or fre-
quency domain filtering. Windows can also be applied periodically. Third octave band and octave
band analysis applied to a spectrum returns a two column table with centre frequencies and sound
intensities being the RMS of the related spectral bands. All other windows are being multiplied with
the input stream and therefore do not alter the total stream length.

The windowing operation calculates a buffer usually containing as many weights as there are input
samples and then applies these weighting factors to the input data. If a shorter window is explicitly
specified using the -len option then this window is periodically applied until the end of the input
stream is reached.

Applying a Nuttall or Kaiser window to a buffer with a sampled signal is required to eliminate spec-
tral analysis errors caused by non-periodic signal components. Periodic windowing and periodic
DFT analysis can be combined to obtain long term average spectra (LTAS) of audio data.

Psophometric or C-message weighting13 is often applied to noise and distortion spectra in order to
reflect the non-linear sensitivity characteristic of the human ear.

All general filter types (low-pass, high-pass, band-pass, band-reject) are available in an ideal (or-
der = 0) and a real passive (order > 0) implementation. The default versions of these filters have
been selected according to ITU O.132 recommendations. The inverse Sinc filter compensates the
spectral effect of a decimation in the time domain using the Sinc operator. It is allowed to specify
any meaningful combination of filters and weights in the same call.

13 Requires buffer sampling rate

50

If the mirror option14 is set then the filter rejects not only the selected band but also the mirror im-
age of the selected band. The spectral weighting functions and the filters require specification of
the buffer sampling rate.

To speed up execution time it sometimes can be desirable to save the calculated window in a bi-
nary file which is restored later on instead of recalculated. It is also possible to scale all output
samples using a constant scale factor.

Usage: window [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-nuttall nuttall window <off>
-kaiser double kaiser window with given beta (10)
-psopho psophometric weights <off>
-Cmess C-message weights <off>
-thirdoctavebands
 res double

[Hz]

ISO third octave bands (12.5Hz-20kHz center frequency)
 spectral resolution

<off>
(1.0 Hz)

-octavebands
 res double

[Hz]

ISO octave bands (16Hz-16kHz center frequency)
 spectral resolution

<off>
(1.0 Hz)

-db output sound levels of band analysis in dB <off>
-bp standard bandpass (860 ... 1180 Hz, ideal) <off>
-bandpass
 fc double
 bw double
 order int

[Hz]
[Hz]

bandpass
 center frequency
 bandwidth
 filter order

<off>
(1020.0 Hz)
(320.0 Hz)
(0)

-br standard bandreject (860 ... 1180 Hz, ideal) <off>
-bandrej
 fc double
 bw double
 order int

[Hz]
[Hz]

bandreject
 center frequency
 bandwidth
 filter order

<off>
(1020.0 Hz)
(320.0 Hz)
(0)

-lp standard lowpass (3400Hz, ideal) <off>
-lowpass
 fc double
 order int

[Hz]

lowpass
 cutoff frequency
 filter order

<off>
(3400.0 Hz)
(0)

-hp standard highpass (300Hz, ideal) <off>
-highpass
 fc double
 order int

[Hz]

highpass
 cutoff frequency
 filter order

<off>
(300.0 Hz)
(0)

-invsinc
 order int
 rate int

 inverse characteristic of sinc
 order of sinc function to compensate
 decimation rate

<off>

-mirror mirror window at window half length <off>
-sample double [Hz] sampling rate (8000 Hz)
-save char* save window to file <off>
-len int apply window of this length periodically until end of stream <off>
-restore char* restore window from file <off>
-originate no input stream, only generate window <off>
-scale double constant scale factor (1)
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

14 First value (DC) is not mirrored

51

Operations on Single Input Vector

Clip (clip)

Drops or keeps a specified number of leading and trailing signal samples when the input stream is
copied to the output stream.

The main functionality of this operation is to clip a leading part, the prologue, or a trailing part, the
epilogue, of a signal. The length of the prologue and epilogue to be clipped are specified using the
-prolog and -epilog options. If the -len option us used to specify the length of the central part then
one of the two other lengths is redundant and can be calculated from the actual length of the input
stream.

The -keep option reverses the meaning and keeps rather than cuts off prologue and epilogue and
drops the central part instead. The -fill option does not clip at all but instead it fills the specified
signal parts with a constant value.

The -ac option has nothing to do with clipping the stream. It rather removes a DC part of a signal.
The -insert option inserts a constant signal part right after the prolog which has a length as speci-
fied by the -len option.

The -fname option allows to specify a mask file which must match in length. For each nonzero
element of the mask file the corresponding value of the input stream is copied to the output. With
the -like option stream and file lengths will be matched. Either by truncation or by zero padding.

Usage: clip [options] < infile > outfile

Options:

-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-prolog int [samples] length of signal prologue <off>
-epilog int [samples] length of signal epilogue <off>
-length int [samples] length of signal center part <off>
-keep keep pro-,epilogue; drop,fill center <off>
-insert double insert constant signal section (0)
-fill double fill signal section with constant (0)
-like char* make length like other file <off>
-ac remove DC-component of result <off>
-fname char* template for picking up values <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

52

Up- or Downsample by Integer Factor (resample)

Converts the sampling rate by picking out every nth sample from the input stream or by inserting a
number of zeroes between every two input samples.

Usage: resample [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-inc int increase sampling rate by this factor <off>
-red int reduce sampling rate by this factor <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

Difference (dif)

Calculates the differences between every two consecutive input samples (discrete derivative) or
between samples read from the primary and a secondary input stream (vector difference) or be-
tween input samples and a constant (offset). The secondary input stream is usually connected to
an external binary file.

Usage: dif [options] < infile > outfile

Options:

-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-fname char* file to read second operands from <off>
-offs double offset <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

Integrator (int)

Accumulates input samples and propagate intermediate accumulation result to output stream (dis-
crete integration).

Usage: int [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

53

Moving Mean (movemean)

Calculates a moving mean over the input signal. Length of output stream is always equal to the
length of the input stream. The last sample in the output stream is the mean of the last n samples
of the input stream, which has been preceeded by n-1 zero samples.

Usage: movemean [options] < infile > outfile

Options:

-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-n int length of moving mean (1)
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

dB (db)

The dB calculation operator uses the formula out = offs + a log10 (inp) - a log10 (inp[ref]). The pa-
rameter a is 20.0 or 10.0 (with -pow). If (inp <= zero) or (out < min) then out = min.

Usage: db [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-ref int [samples] number of reference sample (0 dB value) <off>
-offs double [dB] offset (0 dB)
-min double [dB] minimum result (-200 dB)
-pow signal is power <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

Inverse dB (invdb)

The Inverse dB calculation operator uses the formula out = 10^ ((in - offs) / a). The parameter a is
20.0 or 10.0 (with -pow).

Usage: invdb [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-offs double [dB] Offset <off>
-pow signal is power <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

54

Degree (deg)

The deg operator converts phase in radiant into phase in degree. Optionally it tries to reconstruct
original phase values outside the base range ±PI. It is also possible to specify a reference phase
which will be added to the output.

Usage: deg [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-ref int [samples] number of reference sample (0 deg value) <off>
-offs double [deg] offset <off>
-smooth reconstruct phase outside base circle <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

General Function (func)

Applies a scalar function to all samples of the input data stream.

Usage: func [options] < infile > outfile

Options:

-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-plus double add value to samples <off>
-minus double subtract value from samples <off>
-times double multiply samples with value <off>
-divide double divide samples by value <off>
-ratio num den
 num double
 den double

 multiply samples with ratio
 numerator
 denominator

<off>

-abs take absolute value of samples <off>
-rct rectify signal (zero negative samples) <off>
-rcp apply reciprocal (1/x) on samples <off>
-sqrt square root of samples <off>
-sqr square samples <off>
-ln take natural logarithm of samples <off>
-log take logarithm of samples <off>
-exp calculate e^sample <off>
-exp10 calculate 10^sample <off>
-pow double calculate sample^value <off>
-sin calculate sine of samples <off>
-cos calculate cosine of samples <off>
-tan calculate tangens of samples <off>
-att double calculate sample * 10^(value/20) <off>
-trunc int keep digits after decimal point (negative allowed) (0)
-sign calculate sign of values <off>
-lowlimit double clip values lower than min <off>
-highlimit double clip values higher than max <off>
-greater double result greater than value <off>
-less double result less than value <off>
-equal double result equal to value <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

55

Table Reshape (table)

Reads a single or multi column table from the primary input stream and creates another single or
multi column table as output stream. Another suitable single or multi-column table may be present
at the secondary input stream. Any combination of input columns of any of both source tables can
be selected in any order to be included in the output table. Matrix transpose can also be per-
formed. All related columns must have equal length.

Using the -remove option the indicated primary input columns will be deleted from the stream while
using the -extract option all columns except the indicated ones will be deleted.

A table from the secondary input can be merged into the output stream by specifying columns us-
ing the -select option. A column position may be specified to indicate the insertion point. Column
position 0 designates insertion in front of the first primary input stream column, which is the default.
The column width of the primary input table must be specified using the -signals option, the column
width of the optional secondary table is specified using the -width option. The secondary input
stream can also be prepended or appended to the primary input stream using the -merge option.

The -xcol option works in conjunction with -extract and -select. It specifies one of the columns of
the input stream (-xcol <= -signals) or input file (-xcol > -signals) to be included as first column of
the output stream. If this column appears also in the -extract or -select list it is ignored there. The
-reverse option operates only on the primary input stream. Any secondary input is ignored. It
makes the last row the first one keeping the column order.

The -transpose option is another exclusive matrix operation. A standard matrix transposition is
performed by exchanging rows and columns. Note that the -signals parameter must be updated in
subsequent table operations. If actual matrix elements are groups of values, f.e. complex number
pairs, then group size must be given as parameter to the transpose command. In that case,
-signals should be set to the number of groups per row rather than values per row. The same is
true for the -shift operation which moves all subgroups of size grp down within their column by a
certain number of positions. Subgroups which are shifted out of the table are lost (if rot=0) or pre-
pended to their column (rot=1). A global shift distance can be entered using the -position option, if
all columns are to be shifted differently an external file with exactly one number per column has to
be specified using -fname.

The combination of the options -sort -resample -border is used to create a linearly rising and equal-
ly spaced x-axes starting at the -border value. This is done by first sorting the rows according to
the first column, applying a heuristic algorithm to find a proper x-axis grid and to calculate the other
column’s center of distribution around these grid points. The -sort option must not receive any col-
umn parameter in that case.

56

Usage: table [options] < infile > outfile

Options:

-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-signals int number of columns in input stream (1)
-remove int
 { int }

 remove these columns
 more than one column may be given

<off>

-extract int
 { int }

 extract these columns from input stream
 more than one column may be given

<off>

-transpose int transpose rows and columns of subgroups
 (parameter is subgroup length)

(1)

-reverse reverse rows (make last one first) <off>
-merge int merge stream and file

 (0..append, 1..prepend)
(0)

-fname char* file to read second operands from <off>
-width int number of columns in input file (1)
-select int
 { int }

 select these columns from input file
 more than one column may be given

<off>

-position int position to insert selected columns (0)
-xcol int extract or select x-axes column

 (move in front)
<off>

-sort int
 { int }

 sort rows over these columns
 more than one column may be given
 (negative numbers to sort down)

<off>
(1)

-resample with sorting, makes first column linearily rising <off>
-shift
 grp int
 rot int

 shift columns down vertically15
 subgroup length
 (0..shift out of table, 1..rotate, shift cyclically)

<off>
(1)
(0)

-border double with resampling, defines start point for resampling (0)
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

15 requires -position (shift all columns down a constant number of samples) or -fname (with exactly one value per column)

57

Operations requiring Multiple Input Vectors

Pick Values according to Boolean Template (pick)

Pick out values from or insert values into the primary input stream according to masking
information read from the secondary input stream.

Picks out and propagates to the output stream only those samples of the primary input stream
whose corresponding boolean control flag, read from the secondary input stream is true (nonzero).
The other input samples are simply skipped (omitted) and not copied to the output stream.

The -space option enforces separation between picked groups by inserting separation blocks as
specified by length and padding value.

The -fill option instead fills up picked groups to make them equally long by padding them with the
padding value.

If an -insert value is specified a different mode of operation is entered. Instead of skipping input
samples when their corresponding mask value is zero, the given constant value is inserted into the
output stream for each zero mask sample. Reading the input stream is on hold until another
nonzero mask value is read. The insert mode is exclusive and does not support the space and fill
features.

Periodic templates are supported in all modes using the -wrap option. In that case the control
stream can be read multiple times as long as there are still input samples to process.

Usage: pick [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-fname char* template for picking out values <off>
-space length value
 length int
 value double

 insert space between picked groups
 length of spacing
 padding value

<off>

(0.0)

-fill length value
 length int
 value double

 fill picked groups for equal length
 group length
 padding value

<off>

(0.0)

-wrap wrap mask file around <off>
-insert double insert fill value where template is zero(0)
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

58

Resegment Binary Stream (reseg)

Creating a resegmentation mask for the pick command based on a signal’s running RMS, peak
value or slope and a given threshold. Spike and gap elimination, length trimming and segment
augmentation. Can also be used to calculate the running signal parameters and to downsample.

The reseg function performs several operations related to resegmentation of audio files. Exactly
one of the operation modes -rms, -peak, -slope, -compare, -despike, -merge, -augment and -trim
must be selected.

The -rms, -peak, -slope and -compare modes operate directly on analog audio signal streams,
while the other modes take boolean masking streams as their input which might have been created
using the -compare mode before.

In -rms, -peak or -slope mode running RMS, peak or slope values are calculated over the input
stream using the window length and stepping distance given by the options -windowsize and -step.
The length of the output stream matches that of the input stream unless the -downsample option
has been given. In that case only one output sample is created for each RMS value which has
been calculated. The down-sampling ratio is therefore determined by the stepping distance. With-
out -downsample the calculated RMS and peak values are simply repeated in order to match the
stream sizes. Slopes are calculated by linear regression. They are linearly interpolated between
the breakpoints given by the stepping distance.

In -compare mode the running RMS, peak or slope values are compared with the given threshold.
Instead of the calculated values the Boolean results of these comparisons are sent to the output
stream. The -downsample option has exactly the same meaning as in -rms, -peak or -slope mode.
Different on-threshold and off-threshold values can be specified.

Boolean mask streams created in the -compare mode can be post-processed by the remaining
operation modes. The -despike mode can eliminate short spikes while the -merge mode does the
same with short gaps. Spikes and gaps which are shorter than the specified minimum length are
eliminated, that means, the Boolean masking values inside of those short regions are toggled in
order to match their environment.

Other ways to post-process Boolean masks are the -augment and -trim operating modes. Augmen-
tation shifts leading and trailing edges of selection regions by a specified number of samples in
either direction.

Trimming tries to cut the selection regions to equal lengths. Handling of overlapping selection re-
gions depends on the trimming mode. With “retrigger disabled”, a selection region starting when

59

another one is already active will be ignored. With “retrigger prolongs”, both regions will be merged
and longer regions might be created. With “retrigger aborts”, the first one will be truncated leaving
a region behind which is shorter than specified. The later one will be trimmed correctly and it will
be separated from the aborted one by one zero sample. Aborted regions can be removed like
spikes, prolonged regions can be re-trimmed in a second pass. Processing a sound file containing
double attacks, in the first two cases the start of the segmentation window will be placed in front of
the first attack, while in the third case it will be placed in front of the second attack.

The created and post-processed mask stream is usually used as secondary input stream of a pick
command which actually finishes the segmentation process.

Usage: reseg [options] < infile > outfile

Options:

-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-windowsize uint [samples] analysis window size (1024 samples)
-step uint [samples] analysis window step (256 samples)
-decay zero pad last incomplete windows <off>
-rms calculate running RMS <off>
-peaks calculate local peak value <off>
-slope calculate local slope

 (by linear regression)
<off>

-downsample output only one value per window <off>
-compare
 on_threshold double
 off_threshold double
 mode int

 compare signal with threshold levels
 Signal level required to turn on the gate
 Signal level required to turn off the gate
 Signal property compared to threshold:
 0..running RMS
 1..peak value
 2..signed comparison
 3..slope

<off>
(0.5)
(0.5)
(0)

-despike
 minlen int

[Samples]

remove short spikes
 minimum segment length

<off>
(1024 Samples)

-merge
 minlen int

[Samples]

remove short gaps
 minimum pause length

<off>
(1024 Samples)

-augment
 prolog int
 epilog int

[Samples]
[Samples]

augment by adding prolog and epilog
 shift leading edges left(+), right(-)
 shift trailing edges right(+), left(-)

<off>
(100 Samples)
(100 Samples)

-trim
 fixedlen int
 mode int

[Samples]

trim segment to fixed length
 segment length
 0..retrigger disabled
 1..retrigger longens active phase
 2..retrigger aborts active phase

<off>
(1024 Samples)

(0)

-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

60

General Vector Function (vecfunc)

Applies a real or complex vector operation to the signals read from the primary and secondary in
put stream. Samples flagged as invalid by another Boolean stream are interpolated.

The operations implemented on vector operands are -plus, -minus, -times and -divide. One of
those options must be selected. They can be applied to vectors of real values and to complex vec-
tors.

The complex mode is enabled by the option -complex. In this case both vectors must have exactly
the same format. The value pairs can either contain real and imaginary parts (option -reim) or
magnitude and argument. Arguments can either be degrees (option -degree) or radiants. The de-
fault format for complex numbers is magnitude and argument in radiants.

If the masking option is used a filename must be specified using the -valid option. The masking file
must contain one Boolean flag value for each pair of operands. If the masking value corresponding
to an operand pair is false (zero) then the arithmetic operation is not performed and the previous
result is repeated instead.

Usage: vecfunc [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-plus add vector to stream <off>
-minus subtract vector from stream <off>
-times multiply stream with vector <off>
-divide divide stream by vector <off>
-vector char* binary file containing second vector operand, must have same

 length or shorter (if vector is periodic)
<off>

-valid char* binary file containing boolean vector
 identifying valid samples

<off>

-complex perform operation on complex data <off>
-reim interpretation of inputs as (real,imag) not (mag,arg) <off>
-degree interpretation of argument is degree <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

61

Vector Comparison (same)

Compares data read from primary and secondary input stream for identity.

Comparison can detect small phase shifts between operands and counts the number of matching
samples. The option -full makes comparison more strict, the option -tolerance can exclude a prolo-
gue and epilogue of given length from the comparison.

The maximum phase shift between the two signals which is recognized properly is 2 samples
ahead or behind in any direction. Matching results are output in textual format to the standard out-
put device. No output is generated if perfect matching is detected.

Usage: same [options] < infile

Options:

-isignal ipipe read input signal from (stdin)
-fname char* 2nd file for compare <off>
-tolerance int number of samples to ignore at head and tail <off>
-title char* string to identify output ()
-full strict comparison over full length <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

Merge Multiple Streams (merge)

Merges several input streams into one output stream.

All input files must match in length. The interleaving length specified by the option -interleave
defines the size of the data blocks which are read from each of the sources in turn. In case
complex data streams are to be merged interleave should be set to 2. If the input files should
simply be concatenated, interleave has to be set to the length of the streams.

Usage: merge [options] > outfile

Options:

-osignal opipe write output signal to (stdout)
-files char*
 { char* }

 names of input files
 more than one columns may be specified

<off>

-interleave int sample interleave factor (1)
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

62

Control Statements

Execute Script (do)

This program executes a TAP macro script.

The user who wants to execute a predefined macro script just might enter

do -f macro.ana

to obtain further information about functionality and specific options of a macro script. TAP macro
scripts should have the extension .ana and must be located in the current directory. The default
script which is executed if no filename is specified is named makefile and should also be located in
the current directory. It is part of the TAP distribution kit, just like two other predefined macro
scripts named specdens.ana and harmonics.ana.

Macro specific options and macro specific targets can then be entered according to

do -f macro.ana [option_assignments] [targets]

like in the example
do -f specdens.ana WAV=myWav fu=60 fo=1800 Frequency Magnitude

The user who wants to change, extend or create macro scripts has to know, that TAP script
processing is based on the nmake script processor. Macro scripts actually are makefiles for the
GNU nmake utility. Syntax specification and programming instructions should be taken from the
documentation delivered by the GNU usergroup.

Usage: do [options]

Options:
-f char* name of the macro script to be executed <off>
macro options macro options depend on application
-? | -help nmake help screen <off>

63

Execute Shell (run)

This primitive creates a shell command providing proper CPU-time accounting.

The UNIX syntax is emulated. Multiple commands can be separated by semicolons. The spawn
operator & and the option -bg is not implemented yet. Pipes can be used in the command string.

Usage: run [options]

Options:
-sh char* shell command <off>
-bg execute in background <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

Map command line (map)

Create a window which is shifted along the input data stream and direct window data to the pri-
mary input stream of a shell which executes the specified command line. Compose output stream
from partial streams created by the single shell processes. Let partial output streams overlap addi-
tively by given number of samples.

A window with a given number of samples (-windowsize option) is stepped along the input data.
The step distance (-step option) can be smaller than the window size (overlapping input windows),
it can be equal to the window size (contiguous input windows), and it can be greater than the win-
dow size (sparse sampling). If decay is specified (-decay option) then the input stream is padded
with zeroes and the window is stepped until it does no longer contain any non-zero value. Just
before that condition is reached the mapping process stops.

For each position of the input window the specified TAP command line (-cmd option) is executed
and supplied with its input stream. Its output stream is collected and aligned sequentially without or
with some specified overlap (-overlap option). If an overlap is specified then overlapping buffer
segments are accumulated (added). A typical application for overlapping output buffers is a fre-
quency domain filter with a Gaussian window. If such windows overlap by half of their lengths, their
sum is always unity.

Place holders can be used in the TAP command string. “%d” will be replaced by the buffer index
and “%e”,”%f”,”%g”,”%E” or ”%G” by the first consecutive input samples of each data frame. Up to
four replacements are allowed. If the mapped command lines are signal sources which do not re-
quire any input data then the -originate option must be set. The -terminate option must be given if
command lines are signal sinks not producing any output data.

64

Usage: map [options] < infile > outfile

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-windowsize uint [samples] analysis window size (1024 samples)
-step uint [samples] analysis window step (256 samples)
-overlap uint [samples] result window overlap (0 samples)
-decay zero pad last incomplete windows <off>
-terminate no output stream created by cmd <off>
-originate input stream not used in cmd <off>
-cmd char* command string to map (func -att 10)
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

Varying Parameters (vary)

This operator repeats a command line varying a parameter between certain limits. Special charac-
ters are used as place holders in the command line. A @-sign is replaced by the varying parame-
ter. A #-sign is replaced by the channel number in case of multi-channel operation. A &-sign is re-
placed by the result of the reference run. The part enclosed by [] is executed only once for all
channels. Normally it is preceded by the stimulus generator part and succeeded by the analysis
part.

If in a multi-channel simulation the reference string contains an empty common part (like []) then
no separate run will be made and channel zero will be assigned to the reference simulation. The
resulting value will be used as a reference for all channels. Otherwise a reference analysis will be
made for each channel separately and these different references will be used for different chan-
nels. In the reference string xref will be substituted for all @-signs while &-signs are replaced by
zero.

If the -xinput option is set then discrete input values are read from a binary input stream instead of
looping between start to stop with increment. This is illustrated by the example Gain Tracking and
Total Distortion Analysis found in appendix B.

Usage: vary [options] < infile

Options:
-isignal ipipe read input signal from (stdin)
-xinput read external binary table <off>
-x0 double start value (0)
-x1 double stop value (10)
-dx double increment (1)
-xref double reference value (0)
-chan int number of channels (1)
-dut char* command line (echo @)
-ref char* command line for reference calculation ()
-debug generate internal debug information <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

65

Create Named Signal (signal)

This operator is used to name the signal of the pipe. It can be used to synchronise processes or to
fork a signal to a second process.

Usage: signal [options] name < infile > outfile

 char* name name of pipe file

Options:
-isignal ipipe read input signal from (stdin)
-osignal opipe write output signal to (stdout)
-? | -help generates this help screen <act>

Flag (flag)

This primitive creates one or more named flags in order to allow other processes to wait for proper
input data.

To synchronize multiple processes the flag and cont operators can be used. One process calls flag
to set a named flag as soon as it has finished to create a set of valid output information needed by
another process.

The other process calls cont in order to wait until the required flag information is received. When
cont returns it is save to access the data files created by the other process.

Using the -n option more than one flag can be generated simultaneously. The flags will get names
created from the name specified using the option -o plus a postfix character from the set [0,1,2,…]
up to the value of the -n option minus one.

The synchronization procedure is based on creating and polling for zero-sized disk-files having the
indicated names.

Usage: flag [options]

Options:

-n int number of flags to set <off>
-o char* flag name (“flag”)
-? | -help generates this help screen <act>

66

Continue on flag (cont)

This primitive continuously polls for one or more named flags. It actually waits until other processes
are signalling a certain execution state. Waiting for flags puts the process in a suspended state in
order not to block the CPU.

This operation waits for one or more named flags created by another processes using the flag
command.

Using the -n option it is possible to wait for more than one flag at once. Execution goes on as soon
as all flags of the group are active. The names of the group members are derived by appending a
number to the name specified using the -i option (name0, name1, name2...). This name conver-
sion applies as soon as the -n option is specified even if it is set to one.

Once a flag has been sensed active it is reset automatically unless the -nodelete option is given. A
time-out terminates the waiting state after a given number of seconds (-timeout) to prevent dead-
lock.

Usage: cont [options]

Options:
-n int number of flags to wait for <off>
-i char* flag name (“flag”)
-nodelete don't reset flag <off>
-timeout int number of seconds to wait (1000)
-? | -help generates this help screen <act>

67

Create Textfile from Template (fill)

Vary text stream according to some directives contained in it. Variation is history dependent. Inte-
ger sequences, random integers, token sequences and random token selections are implemented.

Searches an textual input stream for directives which are replaced in the output stream by the re-
sult of their evaluation. The evaluation depends on history. History is stored in a temporary history
file. Its name can be specified using the -tmpname option. Deleting this temporary file resets the
history.

A seed for the random number generator may be specified using the -seed option. If this option is
not used, random sequences will differ in different runs. Subsequent calls of fill on the same input
stream will create different output if some variation directives are included in the input text. The
recognized variation directives are:

{seq x0 x1 dx rx} Generate one value of a periodic sequence {x0..x1} which increments by dx after every rx runs.
The variables x0, x1, dx and rx represent integer numbers.

{ran x0 x1} Generate random integer in range x0..x1 per run
{sel t1 t2...tn [rx]} Sequential selection out of given list of tokens. The iterator is incremented after every rx runs. Valid

tokens my contain any characters except a token delimiter, which can be freely chosen, the end of
line character and the closing brace <}>. The character terminating the sel directive is accepted as
token delimiter. A numeric value can be entered between the last token delimiter and the closing
brace. If the closing brace is preceded by the token delimiter, rx defaults to one and a new selec-
tion is made in each single run.

{rsel t0 t1 t2...} Random selection out of given list of tokens. A new random selection is made in each single run.
Valid tokens my contain any characters except a token delimiter, which can be freely chosen, the
end of line character and the closing brace <}>. The character terminating the rsel directive is ac-
cepted as token delimiter.

Usage: fill [options] < infile > outfile

Options:
-tname char* name of template file (stdin) <off>
-oname char* name of output file (stdout) <off>
-tmpname char* name of file keeping status info

(delete this file to reset history)
(~history.tmp)

-logname char* name of log file <off>
-seed int seed of random number generator <off>
-stat char* write program statistics to file <off>
-? | -help generates this help screen <act>

68

Anhang B: Basic TAP Examples

Spectral Synthesis and Analysis

In the example below several sine-wave stimuli signals are merged additively, windowed, zero-
padded and Fourier transformed before the logarithmic magnitude spectrum is sent to the plot
function. The table operation is used to append a previously created zero string to the windowed
signal. The db values are related to the 990th spectral line, which is the sine-wave component hav-
ing 99 periods in the original, 10 times shorter buffer.

stim -freq 0 -len 9216 | signal zero.bin

stim -per 6 | stim -merg -per 22.4 | stim -merg -per 27 | stim -merg -per 99 | stim -merg -per 34 |

window -nutt | table -fn zero.bin -merge 0 | dft | db -ref 990 |

plot -grid -name "spectrum with 6, 22.4, 27, 34 and 99 periodes in buffer using nuttall window and

zero padding" -title "Demonstrating stim, window, table, dft, db and plot commands"

-200

-150

-100

-50

 0

 50

 0 2000 4000 6000 8000 10000

Demonstrating stim, window, table, dft, db and plot commands

spectrum with 6, 22.4, 27, 34 and 99 periodes in buffer using nuttall window and zero padding

Figure 6: Spectral Synthesis and Analysis

69

Finding MLS Seeds

Uses the ramp generator to generate a vector of all possible 8-bit seeds. For all these seeds a
maximum length pseudo random sequence is generated and its auto correlation is compared with
the delta function.

From the initial seed vector all values are picked where the auto correlation matches the delta
function. Intermediate results are stored in readable format in order to allow interruption of the
lengthy process without loosing already calculated data.

stim -fre 0 -dc 1 -step 2 -len 128 > seed8.bin

vary -xin -dut "stim -len 255 -fre 0 -prn 8 @ | xcorr -MLS | bin2flo -nocnt" < seed8.bin > MLS8.flo

flo2bin -nocnt < MLS8.flo > MLS8.bin

pick -fn MLS8.bin <seed8.bin | bin2flo -nocnt > MLS8.txt

70

Create and Save Windowing Signal

The command line below creates a windowing signal which is the square-root of a Hamming win-
dow. It is needed in the following example when a spectral filtering operation is to be applied.

It uses the fact that the pulse response of the fir filter is the window it is based on. The Dirac pulse
is created as spectrum of a single sine-wave signal. The stimulus contains 1024 sine-wave periods
in the 4096 sample long buffer. Its Fourier transform is a Dirac pulse at the 1024th position and its
mirror image which is clipped. This signal filtered by the fir term yields the hamming window itself.
After clipping prolog and epilog the square root is calculated and saved.

stim -vp 0.03125 -len 4096 -per 1024 | dft | clip -epi 1024 | fir -hamming -len 1024 |

clip -epi 1024 -pro 1024 | func -sqrt > sqrtham1024.bin

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

[msec]

Sqrt Hamming Window

Col 1

Figure 7: Sqare-root of Hamming Window

A filter which could be used for the following example can be created by the windowing function
itself. The command line below creates a band-pass filter of 4th order with a pass-band centered
around 1020 Hz with a 3 dB width of 320 Hz. The stimulus sets up a unity vector of proper length.
Multiplied with the window it yields the window itself. The -mirror option makes it symmetrical. The

71

sinc function of order one is used as a sample and hold to repeat each value two times. In the fol-
lowing example two identical multiplicators are required for real and imaginary part of the complex
spectrum.

stim -dc 1 -freq 0 -len 1024 | window -bandp 1020 320 4 -sampl 44100 -mir |

 sinc -or 1 -n -2 | signal filter.bin

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 5000 10000 15000 20000 25000 30000 35000 40000

[d
B

]

[Hz]

Bandpass 1020Hz, order 4

Col 1

Figure 8: Bandpass Filter

Spectral Domain Filtering

Read input sound file and map a TAP command line performing a 1024 samples long frequency
domain filter to overlapping portions of the input stream. The data window is 1024 samples long
and is shifted by 256 samples after each step. The filter output windows which are overlapping by
768 samples are assembled back again to a contiguous output stream.

The window function which has to be applied twice - before and after the transition to the spectral
domain - has been pre-computed and saved as sqrtham1024.bin in the previous example.

72

The command line which is mapped to the sound file segments applies the “square-root of ham-
ming” window before the Fourier transformation and after the reverse Fourier transformation. The
Fourier transformations (dft) are performed complex in rectangular coordinates. The data file fil-
ter.bin must be symmetric and must contain 1024 pairs of weighting coefficients. It is multiplied
with the complex spectrum before this is scaled and retransformed:

wav2bin -fn myInFile.wav |

map -win 1024 -step 256 -over 768 -cmd "window -rest sqrtham1024.bin |

dft -reim -out2D | vecfunc -times -vector filter.bin | func -tim 0.25 |

dft -rev -reim -inp2D | window -rest sqrtham1024.bin" |

bin2wav -fn myOutFile.wav -like myInFile.wav

The weighting coefficients for a simple bandpass filter can be created according to:

stim -dc 1 -freq 0 -len 1024 | window -bandp 1020 320 4 -sampl 44100 -mir | sinc -or 1 -n -2 | sig-

nal filter.bin

Gain Tracking and Total Distortion

Gain tracking and total distortion over input level are quality measures which are applied in tele-
communications. The quantisation methods which are used are the Northern American μ-law and
the European A-law. Both laws employ signal level dependent quantisation steps to maintain equal
S/N ratio over a wide range of levels. This way linear bit resolutions of 12 to 13 bits are com-
pressed to 8 bits.

The effect of the nonlinear quantisation scheme on gain over level (gain tracking) and on quantisa-
tion distortion over level is calculated by the following command lines. The tolerance masks for
telecommunication systems have been taken from the ITU standards.

First a vector containing 650 level values is created to cover the level range from +3 dB down to
-62 dB with a resolution of 0.1 dB. Next the vary operation is used to run the command line speci-
fied using the -dut option 650 times, replacing the place holders in the level statements by the val-
ues taken one by one from the input stream. The fana operation is used to generate gain and pso-
phometrically weighted distortion values of its A-law stimulus with defaults for stimulus frequency
(1020Hz), sampling frequency (8kHz) and buffer length (1024 samples). The resulting values are
written in readable format to the text file alaw.flo

After conversion of the result file into a binary two-column signal, the initial levels vector is merged
to create the first column of the resulting three-column signal. This is accomplished by the table
command which can handle multi-column streams and files.

73

The plot commands are straight forward, and tolerance masks, axis labels and plot titles are speci-
fied. The first column is selected as x-axes column, while one of the remaining columns is chosen
for display.

stim -dc 3 -fre 0 -step -0.1 -len 650 | signal levels.bin

signal levels.bin | vary -xinp -dut "stim -A -lev @ | fana -lev @ -db 60 -wei psopho -stimbw 120

-rmswb -distwb -bin | bin2flo -noc" > alaw.flo

flo2bin -nocnt < alaw.flo | signal alaw.bin

table -sig 2 -fn levels.bin -sel 1 -pos 0 < alaw.bin |

plot -sig 3 -xcol 1 -ycol 3 -mask td -dir tx -law a -xu [dB] -yu [dB] -tit "Total Distortion over

Level, A-law Quantisation"

table -sig 2 -fn levels.bin -sel 1 -pos 0 < alaw.bin |

plot -sig 3 -xcol 1 -ycol 2 -mask gt -dir tx -law a -xu [dB] -yu [dB] -tit "Gain Tracking, A-law

Quantisation"

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-60 -50 -40 -30 -20 -10 0

[d
B

]

[dB]

Gain Tracking, A-law Quantisation

Col 2
mask G/l

Figure 9: Gain Tracking, A-law

74

 10

 15

 20

 25

 30

 35

 40

 45

 50

-60 -50 -40 -30 -20 -10 0

[d
B

]

[dB]

Total Distortion over Level, A-law Quantisation

Col 3
mask Dx/l

Figure 10: Total Distortion, A-law

Dynamic Harmonic Analysis

Dynamic harmonic analysis without segmentation can be performed using the dftpeaks command.
In the first step ten seconds of a slightly distorted (μ-law quantisation at -40 dB level) sine-wave
sweep is generated and stored in the wave file to be analysed.

stim -Ulaw -sampl 44100 -len 441000 -lev -40 -freq 100 -sweep 0.1 |

bin2wav -bit 16 -sampl 44100 -chan 1 -fn mySig.wav

In the next step the analysis is started. In order to get smooth and accurate frequency curves the
long window is stepped by the same amount as the small window. As we know a sweep signal is
processed so the relative catch range -frel can be set to small percentages. The first nine harmon-
ics are to be analyzed and the rms curve is to be added. The fundamental range lies between 90
and 1100 Hz. The last eventually incomplete frame is dropped before the results are saved.

wav2bin -fn mySig.wav | dftpeaks -slen 2048 -sofs 1024 -llen 8192 -lofs 1024 -feps 1 -frel 2 2

-freq 1 2 3 4 5 6 7 8 9 -rms -nuttall -fu 90 -fo 1100 | clip -epi 19 | signal myResult.bin

The complete command lines to generate the following four analysis plots are shown below. The
last one is more interesting because a fir filter with the savitzky smoothing kernel of order two and
length 3+1+3 coefficients is applied to the whole data stream. The table commands do the matrix

75

transposing (428x19 ⇒ 19x428 ⇒ 428x19) required in order to have the data vectors separated. It
is tolerated here for the sake of simplicity that the filter is running over the joints of the columns.

signal myResult.bin | plot -sig 19 -ycol 1 3 5 7 9 11 13 15 17

-title Frequencies -dx 0.02322 -xu [sec] -yu [Hz]

signal myResult.bin | plot -lny -sig 19 -xcol 1 -ycol 2

-title Magnitude -name Fundamental -xu [Hz] -yu [dB]

signal myResult.bin | plot -lny -sig 19 -xcol 1 -ycol 19 2 4 6

-title Magnitude -nam RMS H1 H2 H3 -xu [Hz]

signal myResult.bin | table -sig 19 -tra | fir -sav 2 -lef 3 -rig 3 | table -sig 428 -tra |

 plot -lny -sig 19 -xcol 1 -ycol 4 6 8 10 -title Magnitude -nam H2 H3 H4 H5 -xu [Hz]

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1 2 3 4 5 6 7 8 9

[H
z]

[sec]

Frequencies

Col 1
Col 3
Col 5
Col 7
Col 9

Col 11
Col 13
Col 15
Col 17

Figure 11: plot -sig 19 -ycol 1 3 5 7 9 11 13 15 17 -title Frequencies -dx 0.02322 -xu [sec] -yu [Hz]

76

 100 200 300 400 500 600 700 800 900

[d
B

]

[Hz]

Magnitude

Fundamental

Figure 12: plot -lny -sig 19 -xcol 1 -ycol 2 -title Magnitude -name Fundamental -xu [Hz] -yu [dB]

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 200 300 400 500 600 700 800 900

[Hz]

Magnitude

RMS
H1
H2
H3

Figure 13: plot -lny -sig 19 -xcol 1 -ycol 19 2 4 6 -title Magnitude -nam RMS H1 H2 H3 -xu [Hz]

77

 0.001

 0.01

 0.1

 1

 200 300 400 500 600

[Hz]

Magnitude

H2
H3
H4
H5

Figure 14: plot -lny -sig 19 -xcol 1 -ycol 4 6 8 10 -title Magnitude -nam H2 H3 H4 H5 -xu [Hz]

3D Spectrogram (Waterfall Chart)

The first command line creates ten seconds of a sine-wave sweep with some white noise superim-
posed on top of it. The sweep starts at 100 Hz and rises with 0.1 decades per second. Therfore it
goes up to 1 kHz after 10 seconds.

The second command line generates a 3D surface plot by mapping a spectral analysis command
line to the original input stream. For this purpose an analysis window of 4096 samples is stepped
over the input data stream with a stepping distance of 4410 samples (corresponds to 0.1 seconds).
The command string argument of the -cmd option is then executed for each analysis frame and the
resulting spectra are concatenated.

The plot function gets a 100x100 data grid. The -surface option initiates the 3D surface plot and
the first dimension is specified using the -signals option. Surface mash is turned off in the -options
string.

stim -sampl 44100 -len 441000 -freq 100 -sweep 0.1 -noise 0.01 | signal mySig.bin

signal mySig.bin | map -win 4096 -step 4410 -cmd "window -nutt | dft | clip -keep -pro 100 | db" |

 plot -surf -sig 100 -opt "set pm3d; set view 20,10,1.5,1; set nosurface"

78

 20

 30

 40

 50

 60

 70

 80

 90

Figure 15: Waterfall Spectrogram of Sweep

Simulation of Nine Level CMOS DAC with Dynamic Averaging

Multi-bit CMOS D/A Converter with Integrated Low-Pass Filter

In CMOS technology a multi-bit D/A converter can most efficiently be implemented as a switched
capacitor structure. This way it is even possible to include a low-pass filter with the D/A converter
for the only additional cost of one capacitor. A switched capacitor summing stage with a conti-
nuous time feed-back, often referred to as lossy integrator stage, is well suited for this purpose. Its
input is permanently connected to the reference voltage and the steady state gain of that stage
which is defined by a capacitance ratio will determine the DAC output voltage.

79

Vcm

Vcm

Vref

VcmVcm

PH1

PH1

PH2

PH1 (PH2 to invert)

PH2 (PH1 to invert)

PH2

CD CN

DACOUT

CF

Vcm

Vref

DACOUT

CF

RN RD

PH1

PH2

Clock signals driving switches

DACIN
DACIN

Figure 16: DAC with Low-Pass Function, Voltage defined by Capacitor Ratio

To understand its operation a simple summing amplifier as shown in Figure 16 should be consi-
dered. The steady state output voltage is defined by the resistance ratio RN/RD. If resistors are re-
placed by switched capacitors their equivalent resistance 1/(fs C) has to be inserted and the steady
state output voltage VDAC = Vref × CN / CD .

The signals PH1 and PH2 in the switched capacitor circuit are two non-overlapping clock signals
both running at the DAC’s sampling frequency (e.g. 4 MHz) which never are active at the same
time (refer to Figure 16). By swapping the two clock phases driving the switches to the right of CN
(as indicated in the figure) the steady state output voltage will reverse its polarity.

This leads to a practical implementation of a nine level DAC where CN consists of up to four unit
capacitors which are switched in parallel contributing to the numerator of the fractional expression
for the output voltage - CN is the capacitor group between circuit input and summing node. Four
other unit capacitors, switched in parallel, generate CD , the denominator value - the group is con-
nected to the amplifier output and to summing node. The input to the circuit is the reference vol-
tage for non-zero magnitudes and the common mode voltage (analogue ground) for a zero magni-
tude. The polarity bit of the signal value drives a multiplexer which exchanges the clock phases
PH1 and PH2 in the indicated positions.

Topologically the whole array of eight unit capacitors has to be connected together at the capaci-
tors’ top plates. The reason is the parasitic capacitance between capacitor plates and chip sub-
strate (ground). Bottom plates have parasitic ground capacitances which are very big. They always
have to be connected to low impedance voltage sources, like OPAMP outputs or supply voltages.
High impedance nodes, like the summing node of an amplifier, must be connected to the capaci-
tor’s top plate, which has a very small parasitic capacitance to ground, because it is shielded com-
pletely by the bottom plate.

The common top plate is switched to ground at PH1 (the precharge phase) and switched to the
inverting amplifier input at PH2 (the evaluation phase).

80

One group of four unit capacitors (their total value is the denominator of the fractional expression
for the output voltage) is switched to ground at PH1 and switched to the amplifier output at PH2.
The other group of 1..4 capacitors (depending on the magnitude of the signal value) is switched
either to the reference voltage or to ground. In case of a positive sample the capacitor subset de-
fined by the signal magnitude is switched to ground at PH1 and to Vref at PH2. In case that a nega-
tive output voltage is required this group is switched to Vref at PH1 and to ground at PH2.

All eight elements are involved in the generation of four steps. The step voltages are given by

ref ref ref refV c

c c c c V c c
c c c c V c c c

c c c c V c c c c
c c c c×

+ + +
×

+

+ + +
×

+ +

+ + +
×

+ + +

+ + +

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
1

5 6 7 8

1 2

5 6 7 8

1 2 3

5 6 7 8

1 2 3 4

5 6 7 8

, , ,

or in the ideal case

ref ref ref refV V V V× × × ×

⎧
⎨
⎩

⎫
⎬
⎭

1
4

2
4

3
4

4
4

, , ,

which means that Vref directly defines the maximum output level.

The case of zero magnitude is a special case. Instead of disabling all capacitors of the numerator
group for the charge transfer it is better to generate the zero output voltage by activating the com-
plete numerator group but connecting the circuit input to ground instead of Vref. This way circuit
parasitics like OPAMP offset voltage, channel charges of CMOS switches, gate-drain capacitances
of MOS transistors and bottom plate capacitances do not effect the accuracy of the DAC output
voltage as much.

Dynamic Averaging

There is an essential drawback connected to multi-bit D/A converters. Bad linearity or symmetry
properties have a dramatic effect on the overall converter performance and much of the accuracy
gained by a ΣΔ-approach is lost again. In order not to loose a significant part of the accuracy pro-
vided by ΣΔ-converters matching of unit resistors or capacitors in the DAC must be better than
what is currently achievable by technology. This has considerably limited the use of multi-bit ΣΔ-
converters in the past.

As already outlined a multi-bit CMOS D/A converter can be designed in a way, that its output vol-
tage VDAC = Vref × CN / CD is proportional to the ratio of two capacitances CN and CD. Both capa-
citances are composed from unit capacitors which are turned on and off by activating and deacti-
vating the clock signals which connect these elements to the circuit. Without much circuit overhead
any fixed assignment of a unit capacitor to a certain DAC output value can be avoided. It is even
possible to allow that a unit capacitor can be used to contribute to the numerator of the voltage
term as well as to its denominator.

81

It is also known that the inversion of the output voltage of switched capacitor circuits can easily and
accurately be achieved by swapping the two clock phases controlling one of the capacitor groups.
This means that the same group of capacitors is responsible for both the gain in the positive and in
the negative half of the operating range. This way perfect symmetry of output voltages can be
achieved which does not depend on capacitor matching.

The method called ‘dynamic element selection’ or ‘dynamic averaging’ makes now use of these
properties to eliminate linearity problems caused by non ideal matching of unit elements. It uses
the flexibility in the circuit topology to select the unit capacitors contributing to the DAC output vol-
tage dynamically and algorithmically in order to average their mismatch over time.

Just as the spectral distribution of quantisation noise is shaped by a ΣΔ-converter in order to move
most of the noise power up into a frequency range where a simple post filter can get rid of it, dy-
namic element selection shapes the noise spectrum which is connected to bad DAC element
matching and moves most if it up, where it is removed by the post-filter in the same way. With dy-
namic averaging the effect of DAC element mismatch of up to 3% and more is eliminated com-
pletely from the base-band signal. 3% capacitor matching can easily be achieved in production
even on less silicon area which is usually spent for unit capacitors.

A multi-bit ΣΔ-converter in conjunction with dynamic element selection is now the way to put mini-
mum requirements on all analogue circuit parts while modern production technologies are allowing
high density digital circuits occupying less and less silicon area. For all these reasons a 3 bit ΣΔ-
converter in conjunction with a 9 level DAC using an improved data-weighted dynamic element
selection algorithm has been selected for the actual application example.

This new and enhanced DWA (data weighted averaging) concept allows not only to make linearity
but also gain independent of capacitor matching which is important because another source of the
total gain error is the reference voltage generator - an analogue sub-circuit. If the total transmission
gain is no longer influenced by the DAC component values there is more margin for the reference
voltage itself.

In order to meet the very stringent absolute gain specifications of ±0.3 dB over all temperatures,
supply voltages and process conditions component value trimming was commonly applied to the
reference voltage. If the reference voltage becomes the only source of gain errors this trimming
can eventually be omitted and an expensive production step can be saved.

82

Data Weighted Dynamic Element Selection

The principle of data weighted dynamic element selection is to use the whole set of DAC elements
(in our special case capacitors) as often as possible16. To do this an array index I(n) always point-
ing to the next DAC element in turn is introduced. Depending on the DAC value X(n) a certain
number of DAC control lines Ei(n) starting at the index position is activated and the index is incre-
mented by the number of elements used. Modulo arithmetic is used of course. As an illustration a
possible code sequence for a 9 level DAC (value range from 0..8) together with the result of a data
weighted dynamic element selection (8 selectable elements with indices 0..7) is shown in Table 3.

DAC input array index index increment selected elements
X(n) I(n) D(n) Ei(n)

1 0 1 0
0 1 0 none
2 1 2 1, 2
3 3 3 3,4,5
2 6 2 6,7
4 0 4 0,1,2,3
3 4 3 4,5,6
5 7 5 7,0,1,2,3
6 4 6 4,5,6,7,0,1
7 2 0 2,3,4,5,6,7,0,1
0 2 0 none
...

Table 3: Data Weighted Dynamic Element Selection (Example Code Sequence, 8 Elements)

A real implementation which generates four enable signals Ei(n) for any kind of DAC elements, a
signal S(n) representing the sign information of the analogue output value and a signal Z(n) indi-
cating that a zero value has to be generated is shown in Figure 17.

17.0

MSB

LSB

2.0

combinatorial

logic

z-1

sign bit S(n)
zero bit Z(n)

enable E1(n)
enable E2(n)
enable E3(n)
enable E4(n)

lookup
table

from truncation

4.0

2.0

0 => 0
1 => 3
2 => 2
3 => 1
4 => 0
5 => 1
6 => 2
7 => 3
8 => 0

array index I(n)

DAC input X(n)

S := (X=0) or (X=1) or (X=2) or (X=3);
Z := (X=4);
E1 := Z or (I=0) or (X=0) or (x=8) or
 ((x<>3) and (x<>5) and (I=3)) or
 (((X=0) or (x=1) or (x=7) or (x=8)) and (I=2));
E2 := ...
E3 := ...
E4 := ...

Figure 17: Data Weighted Averaging (Typical Implementation)

The lookup table for the input value X(n) takes care of the unsigned to signed conversion required
to transform the ΣΔ-demodulator output range [0..8] into the range [-4..+4] which is used by the
DAC. It delivers the number of positions the array index I(n) has to advance after a sample has

16 Baird, Fiez; Lin. Enhancem. of Multibit ΔΣ A/D and D/A Conv. Using Data Weighted Averaging; IEEE Trans. Circuits & Syst.

II, vol. 42, pp. 753-762, Dec.’95

83

been processed. This increment is 0 when no or when all DAC elements are used to compose the
output value. The combinatorial logic block is typically defined by a lot of straight forward boolean
equations which will be optimised by a synthesis tool and finally implemented as array logic.

Enhanced Data Weighted Averaging (EDWA)

In the switched capacitor DAC according to Figure 16 the output voltage is given by VDAC = Vref ×
CN / CD as was already outlined above. CN defines the magnitude and is composed from 0 .. 4 unit
capacitors referred to as the numerator elements. CD is the reference capacitor and it is always
composed from 4 unit capacitors, the denominator elements. The sign of the output voltage can be
inverted directly as was shown so just the magnitude is of interest when an element selection algo-
rithm is applied.

The conventional dynamic element selection circuit as described above would algorithmically se-
lect as many unit capacitors as are needed for the actual output voltage aiming to average their
mismatches over time. This way a perfect linearity can be achieved but any mismatch between the
mean unit capacitance of the reference group and the one of the working group will cause an ab-
solute gain error.

Therefore the basic principle of data weighted averaging has been modified by including the refer-
ence capacitance in the averaging process. Actually two different groups of unit capacitors are
swapped after each frame. In even frames the first group serves as the pool which a data depend-
ent number of elements is selected from while the complete other group serves as reference ca-
pacitance. In odd frames the two groups change their place.

In a DWA algorithm it is required to keep track of the index of the last element which has been
used to ensure that each element is used exactly the same number of times thus equally contribut-
ing to the output voltage. To do this a modulo 4 accumulator is required integrating all data inputs
which have to be processed. Its output is the array index I(n) which points into the capacitor array
indicating where to take the next element from. According to the data value X(n) a certain number
of elements is then enabled by control lines Ei(n) which contribute to the numerator of the gain
term before the pointer I(n) is updated.

A zero magnitude must be treated slightly differently due to the structure of the used DAC. Instead
of disabling all numerator elements (Ei(n)=0) it is better to enable all of them (Ei(n)=1) but at the
same time to make the value of the reference voltage temporarily to zero. This is done by means
of the control signal Z(n). When this is active I(n) does not increment because no element has con-
tributed to the output voltage.

84

In the enhanced algorithm there are two independent groups of capacitors so two different DWA
pointers I1(n) and I2(n) must be used. A circuit which generates the required control signals for the
D/A converter taking group swapping into account is shown in Figure 18.

The lookup table takes care of properly incrementing the index pointers depending on how many
elements of each group have to be used. Usage of 0 elements does not increment the correspond-
ing pointer and usage of 4 elements would move the pointer a complete turn again resulting in no
index movement.

The least significant bit of the frame counter indicates which group of unit capacitors is active in a
frame and contributes to the magnitude of the DAC output value. All capacitors of the other group
are used as feedback capacitances. The least significant frame counter bit is also used to toggle
between the two array pointers I1(n)and I2(n).

17.0

MSB

LSB

2.0
combinatorial

logic

z-1

sign bit S(n)
zero bit Z(n)

enable E1(n)
enable E2(n)
enable E3(n)
enable E4(n)lookup

table

from truncation

4.0

2.0

even frames odd
Inp => A, B Inp => A, B
0 => 0, 0 0 => 0, 0
1 => 3, 0 1 => 0, 3
2 => 2, 0 2 => 0, 2
3 => 1, 0 3 => 0, 1
4 => 0, 0 4 => 0, 0
5 => 1, 0 5 => 0, 1
6 => 2, 0 6 => 0, 2
7 => 3, 0 7 => 0, 3
8 => 0, 0 8 => 0, 0

2.0

z-1
2.0

frame
clock

Inp A

B

array index I1(n)

DAC input X(n)

array index I2(n)

frame
clock

Figure 18: Enhanced Data Weighted Averaging (Element Selection Circuit)

The correspondence between the EDWA circuit state I1(n), I2(n) and frame clock, the input data
X(n) and the output signals sign S(n), zero Z(n) and enable 1..4 Ei(n) is defined by a page of boo-
lean equations written in VHDL. These equations are very similar to those of the standard DWA
circuit but toggling between odd and even frames has to be taken into account. A synthesis tool
implements this set of equations as a combinatorial matrix which is optimised very efficiently. This
leads to a very compact and area efficient digital circuit implementation especially suitable for
multi-channel devices.

The proposed kind of data weighted averaging which eliminates not only the effect of mismatch on
linearity but also on absolute gain invalidates the usually very stringent specifications for capacitor
matching. This allows the usage of very small unity capacitors even in the feedback path of the
D/A converter. In system simulations a capacitor mismatch of up to 5% has been simulated and it

85

did not have a significant influence on the signal distortion. The absolute gain showed a very little
sensitivity to capacitance mismatch, too.

However, it has to be noted that group swapping cannot eliminate the effect of group mismatch on
the DAC gain completely. If the mismatch between the two groups is very big then higher order
terms of the error propagation function cannot be neglected. They are not identical for the numera-
tor and denominator of a quotient.

Two simple examples: (3/4 + 4/3) / 2 = 1.041666666667, (99/100 + 100/99) / 2 = 1.000050505051.
In the first case a group mismatch of 33% is reduced by a factor of 8 to a gain mismatch of about
4% by group swapping. In the second case 1% group mismatch is reduced to 0.005% gain error,
an improvement by a factor of 200. Therefore a remaining gain error can be neglected as long as
the group matching is not extremely bad.

Gain and Linearity Compensated D/A Converter with Integrated Low-Pass Filter

The actual DAC circuit which is controlled by the EDWA circuit described above is very similar to
the one shown already in Figure 16. But there are some differences. In order to swap the two ca-
pacitor groups in odd and even clock frames more switches are required. Each capacitor bottom
plate must be connected to three switches. One connects it to ground (normally activated at PH1)
the second connected to the amplifier output (activated at PH2 if the group is the denominator
group) and the third connected to Vref (for positive values activated at PH2 if the group is the nu-
merator group).

Figure 19 shows this stage in a single ended configuration. A corresponding differential version is
obvious. The output voltage DACout is defined by the sequence and activity of its clock inputs PHAi,
PHBi, PHCi. In total these are 24 clock lines which are generated by an optimised array logic cre-
ated by the synthesis tool.

The correspondence between these 24 control lines PHA1..8, PHB1..8 and PHC1..8 and the master
clock phases PH1 and PH2 (refer to Figure 16) depending on data enables Ei(n), zero flag Z(n),
sign bit S(n) and LSB of frame counter is shown in Table 4 and Table 5. The DWA unit which gen-
erates the control signals taking group swapping into account is shown in Figure 18.

The clock signals PHA1..8 are used to connect the capacitors to Vcm (analogue ground). During
normal operation with positive input values they all are connected to PH1, the pre-charge clock
phase. The clock signals PHB1..8 are used to connect to Vref (input voltage of summing stage),
while signals PHC1..8 are used to connect to the OPAMP output closing the feedback loop.

86

During normal operation with positive input values all PHC signals of a complete group are con-
nected to PH2, the evaluation clock phase. This makes the involved capacitors feedback capaci-
tors, their values contributing to the denominator of the gain term.

Vcm Vref

Vcm

Vcm

Vref

Vcm

Vref

Vcm

Vref

Vcm

Vref

Vcm

Vref

Vcm

Vref

Vcm

Vref

Vcm

PHA4

PHA3

PHA2

PHA1

PHB4

PHB3

PHB2

PHB1

PH1

PHC4

PHC3

PHC2

PHC1

PHA8

PHA7

PHA6

PHA5

PHB8

PHB7

PHB6

PHB5

PHC8

PHC7

PHC6

PHC5

PH2

C1

C2

C3

C4

C5

C6

C7

C8

DACOUT

Figure 19: Nine level DAC with Low-Pass Function

At the same time PHB signals of a data dependent number of capacitors of the other group are
also connected to PH2. This makes a data dependent number of unit capacitors the input group
which contributes to the numerator of the gain term. For negative data values pre-charge and
evaluation phase connected to this input group capacitors are swapped.

The Table 4 and Table 5 below contain the complete connection maps taking the special zero case
(with two alternatives) and group swapping into account. Table 4 and Table 5 are identical except
that group 1..4 and group 5..8 are exchanged. One is applied in even clock frames the other one in
odd.

The tables can directly be used to generate the CASE statements with the signal assignments
used to describe such a structure in VHDL. Schematic diagrams or clock timing sheets would be
voluminous and confusing and have therefore not been used.

87

 positive (S=0) negative (S=1) zero (Z=1)
PHA1..4 on during PH1 on during PH1 on during PH1
PHA5..8 on during PH1 on during PH2 if E1..4 on during PH1 (also PH2)
PHB1..4 off off off
PHB5..8 on during PH2 if E1..4 on during PH1 off
PHC1..4 on during PH2 on during PH2 on during PH2
PHC5..8 off off off

Table 4: SC-Clock Assignment in Even Frames

 positive (S=0) negative (S=1) zero (Z=1)
PHA1..4 on during PH1 on during PH2 if E1..4 on during PH1 (also PH2)
PHA5..8 on during PH1 on during PH1 on during PH1
PHB1..4 on during PH2 if E1..4 on during PH1 off
PHB5..8 off off off
PHC1..4 off off off
PHC5..8 on during PH2 on during PH2 on during PH2

Table 5: SC-Clock Assignment in Odd Frames

During even frames C1 .. C4 are switched into the feedback branch while a programmable selec-
tion of C5 .. C8 creates the actual output value. During odd frames two capacitor groups are
swapped. C5 .. C8 are switched into the feedback branch while a selection of C1 .. C4 defines the
output value.

The zero case can be viewed as a special positive case with zero input magnitude. During PH1 the
numerator group (C1..C4 in Table 5, C5..C8 in Table 4) is discharged (by PHAi) like in the positive
case. At PH2 the enabled elements of this group are normally connected to the reference voltage
(by PHBi) to divide it by the proper factor. In the zero case the complete group should again be
connected to ground instead (by PHAi) which is indicated by the expression given in parenthesis.
This action is not mandatory because no charges should be transferred in the ideal case but it is
recommended because it compensates clock feed-through of other switches. The table entry
therefore means PHA1..4 (in odd frames) respective PHA5..8 (in even frames) should be connected
to a logical or of PH1 and PH2 in the zero case.

PH1 and PH2 can most easily be derived from an 8 MHz master clock with a duty cycle of 25%
each. Alternatively these clocks could be generated from the 4 MHz sampling clock using certain
cross-coupled gating to enforce non overlap at slightly less than 50% duty cycle.

Using this DAC in conjunction with the enhanced DWA (Data-Weighted-Averaging) algorithm de-
scribed in the previous section all capacitor mismatches are eliminated. Not only the linearity is
improved by the averaging but also the absolute gain. The average value of the feed back capaci-
tor is exactly four times the mean value of all eight unit capacitors making the gain of the DAC per-
fectly unity.

88

Simulation Example

The command line below was used to generate the simulation results shown in Figure 20. The
contents of the input file dac2bin.dat are listed in Table 6. To keep the table small linefeeds have
been replaced by spaces.

dac2bin -noc -vref 1 -fb 10 < dac2bin.dat | plot

The file was generated by a C-program implementing Table 4 and Table 5. It is listed in Table 7.
To keep it simple, no dynamic averaging other than group swapping was implemented. The main
program generates one period of a 1000 Hz sine wave sampled at 64 kHz. The low-pass filter has
been readjusted by the -fb option while the reference voltage -vref has been set to 1V.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

Col 1

Figure 20: Simulation of Switched-Capacitor DAC

ff00001 0f00f00 ff00001 f0000f0 ff00001 0001f00 ff00001 00100f0 ff00001 0003f00 ff00001 00300f0
ff00001 0007f00 ff00001 00700f0 ff00001 0007f00 ff00001 00700f0 ff00001 000ff00 ff00001 00f00f0
ff00001 000ff00 ff00001 00f00f0 ff00001 000ff00 ff00001 00f00f0 ff00001 000ff00 ff00001 00f00f0
ff00001 000ff00 ff00001 00f00f0 ff00001 000ff00 ff00001 00f00f0 ff00001 000ff00 ff00001 00700f0
ff00001 0007f00 ff00001 00700f0 ff00001 0007f00 ff00001 00300f0 ff00001 0003f00 ff00001 00100f0
ff00001 0001f00 ff00001 f0000f0 ff00001 0f00f00 ff00001 f0000f0 f00f001 0100f00 0ff0001 10000f0
f00f001 0300f00 0ff0001 30000f0 f00f001 0700f00 0ff0001 70000f0 f00f001 0700f00 0ff0001 70000f0
f00f001 0f00f00 0ff0001 f0000f0 f00f001 0f00f00 0ff0001 f0000f0 f00f001 0f00f00 0ff0001 f0000f0
f00f001 0f00f00 0ff0001 f0000f0 f00f001 0f00f00 0ff0001 f0000f0 f00f001 0f00f00 0ff0001 f0000f0
f00f001 0f00f00 0ff0001 70000f0 f00f001 0700f00 0ff0001 70000f0 f00f001 0700f00 0ff0001 30000f0
f00f001 0300f00 0ff0001 10000f0 f00f001 0100f00 ff00001 f0000f0 ff00001 0f00f00

Table 6: dac2bin.dat

89

#include <stdio.h>
#include <math.h>

int PHAL (int c, int e) {
 if (!((c>>1)&1)) { // even frames
 if (!(c&1))/*PH1*/ return (e>0)?15:((e<0)?15:15); else/*PH2*/ return (e>0)?0:((e<0)?0:0);}
 else { // odd frames
 if (!(c&1))/*PH1*/ return (e>0)?15:((e<0)?0:15); else/*PH2*/ return (e>0)?0:((e<0)?abs(e):15);}};

int PHAH (int c, int e) {
 if(!((c>>1)&1)) { // even frames
 if (!(c&1))/*PH1*/ return (e>0)?15:((e<0)?0:15); else/*PH2*/ return (e>0)?0:((e<0)?abs(e):15);}
 else { // odd frames
 if (!(c&1))/*PH1*/ return (e>0)?15:((e<0)?15:15); else/*PH2*/ return (e>0)?0:((e<0)?0:0);}};

int PHBL (int c, int e) {
 if(!((c>>1)&1)) { // even frames
 if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?0:0); else/*PH2*/ return (e>0)?0:((e<0)?0:0);}
 else { // odd frames
 if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?15:0); else/*PH2*/ return (e>0)?abs(e):((e<0)?0:0);}};

int PHBH (int c, int e) {
 if(!((c>>1)&1)) { // even frames
 if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?15:0); else/*PH2*/ return (e>0)?abs(e):((e<0)?0:0);}
 else { // odd frames
 if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?0:0); else/*PH2*/ return (e>0)?0:((e<0)?0:0);}};

int PHCL (int c, int e) {
 if(!((c>>1)&1)) { // even frames
 if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?0:0); else/*PH2*/ return (e>0)?15:((e<0)?15:15);}
 else { // odd frames
 if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?0:0); else/*PH2*/ return (e>0)?0:((e<0)?0:0);}};

int PHCH (int c, int e) {
 if(!((c>>1)&1)) { // even frames
 if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?0:0); else/*PH2*/ return (e>0)?0:((e<0)?0:0);}
 else { // odd frames
 if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?0:0); else/*PH2*/ return (e>0)?15:((e<0)?15:15);}};

void DACLine (int c, int e, FILE* fout) {
 fprintf(fout,"%x%x%x%x%x%x%x\n",
 PHAL(c,e),PHAH(c,e),PHBL(c,e),PHBH(c,e),PHCL(c,e),PHCH(c,e),!(c&1));};

void DACPoint (int* LineCnt, int e, FILE* fout) {
 if (e == -4) e = -15;
 else if (e == -3) e = -7;
 else if (e == -2) e = -3;
 else if (e == 2) e = 3;
 else if (e == 3) e = 7;
 else if (e == 4) e = 15;
 DACLine((*LineCnt)++, e, fout);
 DACLine((*LineCnt)++, e, fout);};

int main() {
 int LineCnt = 0;
 double t = 0;
 while (t < 0.001) {
 DACPoint(&LineCnt, (int)floor(0.5+4.5 * sin(2.0*3.141592*1000.0*t)), stdout);
 t += (1./64000.);}
 return(0);}

Table 7: C-program to generate ramp

90

Anhang C: TAP Macro Scripts

Harmonic Analysis on Scales (harmonics.ana)

This macro script performs analysis of harmonic content over time or tone step. Available targets
are for segmentation, overload recognition, static and dynamic partial analysis and plot generation.

The RMS target creates and displays the running RMS which is the base of subsequent segmenta-
tion. The RMS display is useful in determining a suitable segmentation threshold which has to be
entered using the min= option when the actual segmentation has to be performed.

The Overflow target creates a display to check if the input wave file is overloaded and contains
clipping in some regions. Harmonic analysis results should be neglected in regions marked as
overloaded.

The Mask target displays the running RMS together with the segmentation mask where the level
exceeds the specified minimum. The Mask display is useful to crosscheck the segmentation mask.

The targets SegmentRMS and SegmentOverflow are similar to the corresponding targets above
but the segmentation has already been performed and only the masked regions are displayed.

The targets Stat and Dyn display the actual static and dynamic analysis results. The static plots
which can also be displayed specifying separate targets are StatF0, StatHarm and StatInharm.

StatF0 shows the detected fundamental frequency with harmonic and spectral centroid over the
tone number. StatHarm shows the average harmonic levels over the tone number and StatInharm
shows the average inharmonicity over the tone number.

The dynamic analysis targets are DynF0, DynHarmLog, DynHarmLin and DynFreq.

DynF0 shows the detected fundamental frequency with the harmonic now over time rather than
over tone number. DynHarmLog and DynHarmLin show the harmonic levels dynamically over
time and DynFreq shows the actual frequencies of the harmonics over time.

The targets Clean or Clear remove all intermediate results and the target Help displays the table
with options and targets below.

The most essential option is the WAV= option which specifies the sound file which is to be ana-
lyzed. No extension should be given, because all intermediate result files will get that file name
with different terminations and extensions. The min= option has already been mentioned. It speci-

91

fies the segmentation threshold amplitude and has to be entered correctly when the actual mask-
ing is performed.

The f0= option guides the fundamental recognition and should be set to the estimated fundamental
frequency at the beginning of the sound file. Together with the option df= which specifies the max-
imum frequency deviation in % (in upward direction) between two subsequent notes these two
values are passed to the -continuous option of the swana command. The macro is setup for rising
scales or sweeps only and had to be changed if descending scales are to be analysed.

The options hg= and ex= are passed to the -partials option of the swana command. It guides the
search for a harmonic grid by specifying how many partials should take part in this search and how
their contribution should be weighted. Refer to the swana command in Appendix A for a detailed
description of the effect of the -partials option.

The options sw= and dw= specify the static and dynamic window size which are used by the
Fourier transform in the static and dynamic mode. Especially the static window must be shorter
than the actual tone duration in order not to cross the border to the next tone. The static window is
stepped tone by tone by the distance related to the cut= option. The cut specification is used dur-
ing the segmentation process but it also defines the window stepping distances in static and dy-
namic mode. In static mode the stepping distance is 100x the cut input, in dynamic mode the step-
ping distance is the cut input itself. A corresponding dx= definition must be given in order to scale
the x-axes of all dynamic plots properly.

The options opt= and pltopt= are forwarded to all plot commands and can be used to select a plot
device, to define plot titles, specific plot ranges or other plot related settings. The combination opt=
“set term postscript landscape color solid; set output '\\\\PDC\\HPLJ4500'" and pltopt=-nowait will
send the plots to the printer without showing them

• TAP - Transfer Analysis Package - Harmonic Analysis on Scales - Version 1.0 by W. Kausel, IWK (harmonics.ana)

Displays harmonic content over time or tone step

Options:
WAV= wave file to process (without .wav extension!)
min= threshold level for segmentation (def=1000)
f0= expected initial base tone frequency
df= maximum frequency deviation in [%] (def=20)
hg= harmonic grid size (def=7)
ex= exponent of weight function (def=0.2)
sw= static window size (def=32768)
dw= dynamic window size (def=4096)
cut= note length in samples / 100 (def=441)
dx= note length in sec / 100 (def=0.01)
opt= plot command option string
pltopt= additional plot options

Targets:
help: displays this help page
clean / clear: remove intermediate/all files
RMS: displays the running RMS over time
Overflow: displays regions with overflowing (> 32766) input levels
SegmentRMS: displays the running RMS over time
SegmentOverflow: displays regions with overflowing input levels
Mask : displays segmentation mask with RMS > min
Stat: static result plots (statf0,statharm,statinharm)
Dyn: dynamic result plots (dynf0,dynharmlog,dynharmlin,dynfreq)
All: static and dynamic result plots

92

Spectral Dynamic Analysis (specdens.ana)

This macro script primarily analyses the harmonic content over the dynamic level, but it also can
do analysis of harmonic content over time without any segmentation on any kind of sound file in-
put. No scale or sweep must be present in the recording. Available targets are for calculation and
display of partial frequency variation, partial magnitude variation, partial harmonicity variation and
spectral dynamic analysis.

The Frequency target performs a fundamental extraction by searching for a harmonic grid. The
extracted fundamental frequencies together with the frequencies of the partials are plotted over
time.

The Harmonicity target creates a plot where partial frequencies are related to their fundamental
frequency so that harmonicity can be seen as harmonic ratios over time.

The Magnitude target displays the intensity of the partials over time.

The SpectralDynamic target sorts all harmonic results according to the magnitude of the funda-
mental and creates a plot which shows harmonic content over the dynamic level. For this analysis
a recording of a single note played at varying dynamic levels will be most suitable.

The Batch target does all the lengthy processing without generating any graphical output. Subse-
quent calls to the other targets will then be able to immediately present the requested the plots.

The targets Clean or Clear remove all intermediate results and the target Help displays the table
with options and targets below.

The most essential option is again the WAV= option which specifies the sound file which is to be
analyzed. No extension should be given, because all intermediate result files will get that file name
with different terminations and extensions.

The fu= and fo= options are guiding the fundamental recognition. They limit the frequency range
where fundamentals are to be expected. They are directly passed to dftpeaks. By specifying max-
imum relative deviations using the options lu= and lo= discontinuities in the fundamental frequency
curve can be avoided. These limits can be set to small percentage values if constant pitch or slow-
ly varying sweeps are analyzed. They are passed to dftpeaks -frel lower upper.

Another option effecting fundamental recognition is the min= value. It is the threshold for the run-
ning rms signal level which must be exceeded in order to enable fundamental recognition. If the
signal is below that level, fundamental detection is skipped and the last valid fundamental frequen-
cy is used instead. The option value is passed to the dftpeaks -threshold option.

93

The options lwin=, lstep=, swin= and sstep= define the long and short window sizes and stepping
distances. The corresponding dftpeaks options are -llen, -lofs, -slen and -sofs. The long window
should provide the required frequency resolution while the small window should be small enough
for tracking the spectral content in time.

The minlev= option is used for the SpectralDynamic target to define the left x-axes limit of the dis-
played level range. The dx= option is the x-axis resolution of all time domain plots. It has to be set
to sstep / sample. The sampling rate can be changed using the sample= option. Its default is
44100 Hz. The option string opt= is passed to the GNUPlot utility and can be a string like “set ter-
minal postscript landscape color solid; set output '\\\\PDC\\HPLJ4500'". The pltopt= string is
passed to the plot function and could be a string like “-nowait” in case of batch printing.

• TAP - Transfer Analysis Package - Spectral Dynamic Analysis - Version 1.0 by H. Nachtnebel, IWK (specdens.ana)

Displays the spectral density over the base tone power.

Options:
 WAV=... wave file to process (without .wav extension!)
 sample=... sampling rate of wave file [44100Hz]
 fu=... lower limit of base tone frequency range
 fo=... upper limit of base tone frequency range
 lu=... rel lower limit of next base tone frequency deviation [3%]
 lo=... rel upper limit of next base tone frequency deviation [15%]
 lwin=... long window size for base tone detection [8192]
 lstep=... long window step for base tone detection [4096]
 swin=... short window size for harmonics detection [2048]
 sstep=... short window step for harmonics detection [1024]
 dx=... X-axis scaling (sstep / sample) [1024/44100sec]
 min=... minimum rms power to calculate f0 [0]
 minlev=... minimum db level for SpectralDynamic
 opt=... plot command option string
 pltopt=... additional plot options

Targets:
Help: displays this help page
Clean / Clear: remove intermediate files
Batch: does the lengthy part without any plot afterwards
Frequency: displays the spectral frequencies found over time
Harmonicity: displays the harmonic ratios found over time
Magnitude: displays the spectral magnitude found over time
SpectralDynamic: displays the spectral density over the base tone power

94

Sound File Segmentation (segmentation.ana)

This macro script reads an audio file in windows .wav format and detects sound events and pe-
riods of silence in order to repartition the file. The script can eliminate all periods of silence creating
a sound file with all significant sound events concatenated. The single segments can be trimmed to
a given length. It is also possible to cut the input wave file into separate short wave files each con-
taining exactly one significant sound event.

Detecting significant sound events requires an analysis of the RMS sound level first which can be
plotted using the RMS target. The Overflow target can be used to check whether input data do not
exceed the valid audio range.

The most essential option needed by all targets is the WAV= option which specifies the sound file
which is to be analyzed. No extension should be given, because all intermediate result files will get
that file name with different terminations and extensions.

Using the options on= and off= threshold levels can be specified for the detection of the sound
events. The levels should be given such that no significant event fails to reach the threshold but
background noise should always be below this level. The RMS plot is a useful tool to determine a
suitable threshold level. The off threshold is optional and is set to the on threshold by default.

The Mask target again plots the running RMS but now with the binary segmentation mask supe-
rimposed. This way the segmentation thresholds can easily be checked before further processing.
The ymax= option can be used to adjust the range of all plots. Portions where the segmentation
mask is zero will later on be eliminated.

The running RMS is calculated by stepping a user definable window over the audio data stream.
The step size is 441 samples corresponding to a time resolution of 10ms or 100 points per second.
The window size may be specified using the win= parameter. Usually the default of 1000 will work
well in most cases. For very low frequencies a bigger value might be required if a smooth RMS
curve is desired. Shorter windows will better reflect sharp transitions of the signal energy and yield
more accurate slew-rates during attack.

Segmentation can be controlled using several options to modify the selected intervals. Using the
spike= and gap= option minimum segment lengths and minimum segment distances can be spe-
cified. All hits which consist of fewer samples than 100 times the given spike length will be ignored
and all gaps which consist of fewer samples than 100 times the given gap size will be eliminated
from the mask. Detected segments can be augmented using the aug= option and trimmed to equal
length by using the cut= option. Again the parameter is a number of samples divided by 100.

95

The opt= and pltopt= options allow to forward option strings to the plot command for e.g. PDF
printing, scaling or setting plot title, axis labels, display grid etc. The option string opt= is passed to
the GNUPlot utility and can be a string like “set terminal postscript landscape color solid; set output
'\\\\PDC\\HPLJ4500'". The pltopt= string is passed to the plot function and could be a string like
“-nowait” in case of batch printing or “-title SegmentationPlot -grid -xunit [Hz]”.

• TAP - Transfer Analysis Package - Segmentation of wave files - Version 1.0 by W. Kausel, IWK (segmentation.ana)

Performs wave file segmentation based on sound power detection.

Options:
WAV=... wave file to process (without .wav extension!)
on=... on threshold level for segmentation (def=1500)
off=... off threshold level for segmentation (def=200)
aug=... augment segments by 100*aug samples (def=10)
spike=... eliminate spikes shorter than 100*samples (def=20)
gap=... eliminate gaps shorter than 100*samples (def=20)
win=... processing window length in audio samples (def=1000)
cut=... segment length in samples / 100 (def=441, this is 1 sec)
ymax=... y plot range for rms plots
opt=... plot command option string
pltopt=... additional plot options

Targets:
Help: displays this help page
Clean / Clear: remove intermediate files
RMS: displays the running RMS over time
Overflow: displays regions with overflowing (> 32766) input levels
SegmentRMS: displays the running RMS over time after segmentation
SegmentOverflow: displays regions with overflowing input levels
Mask: displays segmentation mask with RMS > on
SegmentWAV: perform segmentation on wave file (time consuming)
CutWAV: store segments in separate wave files
NormaliseWAV: normalise all segments in segmented wave file
CutNorm: store normalised segments in separate wave files
All: perform all operations

