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Einleitung 

Die Transfer Analysis Package (TAP) ist eine Sammlung von kleinen Programmen, sozusagen ein 
Baukasten mit Programm-Modulen, die per Kommandozeile oder Scriptfile zusammengefügt wer-
den, um komplexe Aufgaben der Klanganalyse oder Signalverarbeitung vollautomatisch durchzu-
führen. Z.B. erlaubt das Paket die Entwicklung von neuen Klangdarstellungen, die skriptgesteuert 
auch eine große Anzahl von zu untersuchenden Aufnahmen analysieren können. Für die graphi-
sche Ausgabe auf Bildschirm oder Drucker in TAP ist das mächtige freie Graphikprogramm „GNU-
Plot“ integriert. 

Das Signal Analyse Programmpaket TAP wurde von Wilfried Kausel und Herbert Nachtnebel ent-
wickelt und ursprünglich an der Technischen Universität Wien für die Auswertung der übertra-
gungstechnischen Eigenschaften von Telefonie-Schaltkreisen eingesetzt. Am Institut für Wiener 
Klangstil wurde es dann in wesentlichen Funktionen erweitert und für die Analyse und Visualisie-
rung von Klängen verwendet. 

Das Programmpaket TAP stellt eine Vielzahl von elementaren signalverarbeitenden Einzelpro-
grammen zur Verfügung, die über die Windows-NT Kommandozeile aufgerufen werden und deren 
Ein- und Ausgabedaten über den Kommandozeilenoperator | („pipe“) miteinander verknüpft wer-
den können. Dabei kann das Verhalten jedes Einzelprogramms durch sogenannte Befehlszeilen-
optionen genau gesteuert werden. 

Zur Illustration des Prinzips möge das folgende Beispiel dienen: 

C:\>stim -freq 440 -sample 44100 -len 1000 -noise 0.1 | window -kaiser 10 | dft | db -ref 9 | plot -dx 44.1 

 

Das Einzelprogramm stim (stim.exe) ist der Stimulusgenerator. Im Beispiel wird ein Sinussignal mit 
einer Frequenz von 440Hz bei einer Abtastfrequenz von 44100 Abtastwerten pro Sekunde er-
zeugt, dem ein Rauschpegel von 0.1Vrms überlagert wurde. Als Länge des zu erzeugenden Daten-
stromes wurden 1000 Werte angegeben.  

Die Ausgabe des Stimulusgenerators wird dann mit dem pipe-Operator (|) zur window-Funktion 
(window.exe) weitergeleitet, die ein Kaiserfenster mit Beta=10 erzeugt und den Datenstrom mit 
den Werten dieser Fensterfunktion multipliziert. Auf diese Weise wird das Signal im auszuwerten-
den Zeitraum weich ein und ausgeblendet, was den störenden Effekt reduziert, den hart abge-
schnittene Signalperioden bei der Fourier-Transformation bewirken. Eine Voraussetzung für die 
Anwendbarkeit der Fourier-Transformation ist ja die strenge Periodizität des zu untersuchenden 
Signals. 
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Das Programm dft (dft.exe) führt die Fourier-Transformation durch. Ohne Angabe von weiteren 
Befehlszeilen-Parametern wird nur der Betrag des Spektrums weitergegeben. 

Die db-Funktion (db.exe) interpretiert seine Eingangsdaten entsprechend der linearen Skala und 
gibt die entsprechenden logarithmischen Werte in [dB] aus. Im Beispiel wird der aktuelle Wert der 
neunten Spektrallinie, das ist der Beitrag des 440Hz Sinustones als Bezugspegel (0dB) gewählt. 

Die plot-Funktion (plot.exe) erzeugt dann eine graphische Darstellung des Ergebnis-Spektrums in 
einem neuen Fenster ohne selbst weitere Ausgabedaten zu erzeugen. Im Plotfenster stehen dann 
Menü und Mausfunktionen zur Verfügung mit deren Hilfe eine Vielzahl von Darstellungsparame-
tern, wie z.B. Plotbereich, Maßstab, Skala, Beschriftungen, Liniendarstellung u.s.w. verändert wer-
den können. Auch das Ausdrucken sowie das Exportieren der graphischen Daten in andere Pro-
gramme ist hier vorgesehen. 

Im Anhang findet sich die vollständige Beschreibung aller zur Verfügung stehender Einzelpro-
gramme samt einer Beschreibung der unterstützten Befehlszeilenparameter. Die Funktionen las-
sen sich dabei in mehrere Gruppen unterteilen: 

1. Signalquellen (wie z.B. der Stimulusgenerator oder das häufig verwendete Programm zum 
Einlesen von Wave-Files) 

2. Signalsenken (wie z.B. die plot-Funktion oder verschiedene Analyse-Programme) 

3. Signalverarbeitende Funktionen für Zeit und/oder Frequenzbereich 

4. Arithmetische Operationen für ein und mehrere Datenströme 

5. Steuerungsfunktionen zum Programmieren von Programmschleifen und Automatisieren 
von komplexeren Analyseaufgaben 

Die mit TAP am Institut für Wiener Klangstil durchgeführten Klanganalysen setzen auf 
parametrisierbaren Analyse-Skripts auf, die für diesen Zweck entwickelt wurden. Die Benutzung 
dieser Skripts erfordert nicht mehr die Kenntnis und das Verständnis der oben erwähnten Einzel-
programme, sondern setzt nur mehr sehr rudimentären Umgang mit dem NT-Kommandozeilen-
Interpreter voraus.  

Im Idealfall muss ein vorbereitetes Skript nur mehr im Windows-Explorer ausgeführt werden, um 
eine so komplexe Aufgabe, wie das Auswerten von Wave-Files mit Aufnahmen von chromatischen 
Tonleitern, gespielt auf 31 verschiedenen Klavieren, vollautomatisch durchführen zu können. Die-
se Prozedur umfasst z.B. das Segmentieren, d.h. das Auffinden von Anfang und Ende aller ange-
schlagenen Töne, die Grundtonerkennung, die statische und dynamische harmonische Analyse, 
die graphische Darstellung und die Erzeugung der vielfältigen Printouts für die Dokumentation. 
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Derzeit stehen zwei unterschiedliche parametrisierbare Analysemodule zur Verfügung: 

• Harmonische Analyse von Tonleitern [Harmonic Analysis on Scales (harmonics.ana)] 
• Analyse der Spektraldynamik [Spectral Dynamic Analysis (specdens.ana)] 

 

Die Module werden in den Batch-Skripts mit frei definierbaren Parametern aufgerufen (options) 
und liefern verschiedene spezifizierbare Ausgabedaten (targets). Options und Targets der beiden 
Makromodule finden sich im Anhang C, eine Beschreibung des Programmes „do“ zum Ausführen 
von TAP Makro-Modulen im Anhang A. 

Die Kommandozeile für die Erzeugung aller Plots zu einer chromatischen Tonleiter lautet z.B.: 

C:\>do -f harmonics.ana all WAV=myWaveFile min=500 f0=40 

 

Die Segmentierungs-Schwelle (min=500) ergibt sich aus dem Rauschpegel der Aufnahme und 
kann einer vorhergehenden RMS Analyse entnommen werden. Die Startfrequenz (f0=40) ist die 
erwartete Frequenz des ersten angeschlagenen Tones und soll die Grundtonerkennung erleich-
tern.  

Die drei Schnittstellen-Ebenen, das sind die Ebenen der Einzelprogramme, der Makro-Module und 
der projektspezifischen Skripts, machen TAP zu einem äußerst flexiblen Werkzeug, das umso 
mächtiger wird, je besser der Anwender sich mit den vielen Einstellmöglichkeiten vertraut macht. 
Ein nicht zu unterschätzender Vorteil des Konzepts der vielen Einzelprogramme, die durch Pipes 
(|) verbunden werden, ist die Multi-Prozessor-Fähigkeit. Das Betriebssystem Windows parallelisiert 
solche Aufgaben, indem jedes Einzelprogramm einem sogenannten Thread zugeordnet wird. Die-
se Threads werden auf die verfügbaren Prozessoren aufgeteilt und kommunizieren miteinander 
über die im Skript definierten Pipes. 
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Anwendungsbeispiel 

In der Folge werden einige Beispiele für verschiedene skriptgesteuerte TAP-Analysen gegeben. 
Die verwendeten Skripts basieren auf dem Makro-Modul zur harmonische Analyse von Tonleitern 
und erlauben die Ausgabe der Ergebnisgraphiken wahlweise auf dem Bildschirm, dem Drucker 
oder direkt in ein „.pdf“ oder Postscript Dokument.  

Die X-Achse beider Analysegrafiken entspricht dem zeitlichen Verlauf einer auf einem Klavier ge-
spielten chromatischen Tonleiter über die gesamte Klaviatur. 

 

Abb. 1: TAP Analyse 1 (RMS/ 
Mask): Im ersten Schritt wird 
der RMS der aufgenommenen 
Töne berechnet (rote Kurve). 
Diese dient zur Segmentierung, 
bei der jeweils eine Sekunde 
pro Tastenanschlag in einem 
neuen Soundfile zusammenge-
schnitten werden. Die grünen 
Balken zeigen die Maske an, 
welche zum Schneiden ver-
wendet wird. 

 

Die in TAP verfügbare Segmentierung basiert entweder auf der Anschlagerkennung mit Hilfe einer 
Pegelschwelle oder auch auf einem fixen Zeitraster, das aber eher nur bei maschinell oder streng 
mit Metronom eingespielten Aufnahmen Verwendung finden kann. Für den eigentlichen Schnitt 
können sowohl fixe (Anschnitt) als auch variable (reale) Tonlängen herangezogen werden. Die 
statische Spektralanalyse erfordert jedoch fixe Tonlängen. 

Die weiteren Auswertungen basieren auf dem segmentierten Soundfile, das für jede Taste eine 
Sekunde Klangsignal enthält, das mit dem Anschlag beginnt. Die Zeitangabe in Sekunden ent-
spricht daher auch der Tonnummer. 
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Abb. 2: TAP Analyse 2 (F0 + 
Centroids): Die Darstellung 
zeigt das Ergebnis der Grund-
tonextraktion (F0) als roten 
Kurvenverlauf, basierend auf 
dem segmentierten Soundfile, 
in welchem jeder Ton eine 
Sekunde andauert. Die Zeit-
Achse entspricht daher auch 
der Tastennummer 

Die grüne Kurve ist das 
„Hamonic Centroid“, der pe-
gelgewichtete Mittelwert der 
ersten 10 Teiltonfrequenzen 
aller gespielten Töne. 

Die blaue Kurve stellt das 
„Spectral Centroid“ dar, die 
pegelgewichtete Mittelfrequenz 
des Gesamtspektrums aller 
gespielten Töne.  

 
 

Die obige Abbildung zeigt klangliche Schwankungen benachbarter Töne (z.B. Registerbrüche) als 
unregelmäßigen Verlauf  der spektralen Mittelwertkurven (Centroids).  

 

 

Abb. 3: TAP Analyse 3a (Ten 
Harmonics + NOI): Die X-Achse 
entspricht sowohl der Zeit in 
Sekunden als auch der Tas-
tennummer. Die Y-Achse zeigt 
den Pegel in einem logarithmi-
schen 20dB Raster. 

In verschiedenen Farben (siehe 
Legende) wird der Intensitäts-
verlauf der ersten 10 Harmoni-
schen dargestellt.  

Zusätzlich zu den 10 Teiltönen 
(H1…H10) werden die An-
schlaggeräusche als elfte Kur-
ve (NOI) dargestellt. 

 

Während die obige Abbildung einen Überblick über den zeitlichen Teiltonverlauf im gesamten 
Tonumfang gibt, zeigen Ausschnitte einzelner Bereiche viel mehr Details. In den Auswertungs-
skripts wurden daher von jedem Klavier automatisch gleich drei weitere Detailplots für das tiefe, 
das mittlere und das hohe Register ausgegeben. Die folgende Abbildung zeigt einen noch kleine-
ren Ausschnitt von 6 Tönen. 
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Abb. 4: TAP Analyse 3b (Ten 
Harmonics + NOI ZOOM): Diese 
Abbildung zeigt einen kleinen 
Ausschnitt in entsprechender 
zeitlicher Vergrößerung. Der 
dargestellte Ausschnitt um-
fasst sechs Töne des mittleren 
Registers.  

In Ausschnitten wie diesem 
wird die zeitliche Entwicklung 
der Teiltöne weitaus deutlicher. 
Bei weiterer Vergrößerung wird 
auch der Einschwingvorgang 
sichtbar. 

 

 

Auch die nächsten Darstellungen beruhen auf dem segmentierten Soundfile, bei dem die erste 
Sekunde aller Tastenanschläge zusammengeschnitten wurden. Im Gegensatz zu den bisherigen 
Analysen sind bei den nächsten Auswertungen nur ein Mittelwert pro Sekunde d.h. pro Ton darge-
stellt und nicht ein Verlauf über der Zeit. 

 

Abb. 5: TAP Analyse 4 (Mean 
Relative Harmonics): Von je-
dem angeschlagenen Ton wur-
de ein Mittelwertspektrum 
berechnet (erste Sekunde des 
Anschlags) und die Intensität 
der ersten zehn Teiltöne sowie 
des Rausch(Rest-)anteils rela-
tiv zur Stärke des Grundtones 
(1. Harmonische) aufgezeich-
net. 

Während der Grundton im 
hohen Register den Klang 
dominiert, ist seine Intensität 
im tiefen Register um bis zu 40 
dB geringer, als die höherer 
Harmonischer.   
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Anhang A: TAP Reference Manual, Basic Level 
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Signal Sources 

Stimulus Generator (stim) 

Generates a binary stream representing a signal to be used by other TAP operators. It combines a 
sine-wave source, a DC-source, a rectangular signal source, a single Dirac pulse source, various 
noise sources, a ramp generator and different PCM quantisers. 

The sine-wave generator recognizes the level specification (option -lev in dBm0) which is the vol-
tage level relative to the zero reference level. The overload level (option -ovlev in dB) is the maxi-
mum level which can be created. It corresponds to an output magnitude specified by option 
-vpeak. The defaults for -ovlev and -vpeak are normally 0 dB and 1, that means a sine wave be-
tween -1 and +1 is generated when no level options are given.  

A-law, µ-law and linear (certain number of bits) quantisation can be enabled. The quantisation 
range is the overload level. If A-law quantisation (-Alaw) is requested then the defaults are ad-
justed to 3.14 dB and 4096, in µ-law (-Ulaw) mode they are 3.17 dB and 8192. In linear PCM mode 
(-linear #bits) -vpeak should be set to the available number range and #bits to the selected resolu-
tion.  

The full scale tuning pitch with standard audio resolution would be specified by: 

C:\>stim -freq 440 -linear 16 -vpeak 32767 -sample 44100 ... 

The frequency can either be specified by the number of signal periods in the buffer (-periods) or 
directly (-freq). In this case the frequency input is adjusted in a way to have an integer (-adjust 1) 
or odd integer (-adjust 2) number of periods (at least one) in the buffer. If no frequency adjustment 
is allowed then -adjust 0 must explicitly be specified. If the frequency is set to zero then the sine-
wave source is turned off.  

Levels of the other signal sources are specified in Volts or units depending on whether an analo-
gue or a PCM source is to be simulated. The other signal sources are a DC source (option -dc), a 
ramp generator with programmable step size (option -step), a square wave source with given am-
plitude and frequency (option -square, no frequency adjustment!), a normal distributed white noise 
source with given RMS value (option -noise), a random noise source with specified peak value 
(option -rnoise), a pseudo random digital noise source (option -prnoise) implemented as a re-
circulating shift register and a sine sweep source with a given sweep rate (option -sweep).  
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The option -pulse affects only the first sample of the buffer. It will be set to the chosen full-scale 
amplitude. 

The pseudo random digital noise source can be used as generator for maximum length sequence 
(MLS) signals. To generate MLS streams the following seeds can be used: 

bits period seeds 
8 255 29, 43, 45, 77, 95, 99, 101, 105, 113, 135, 141, 169, 195, 207, 231, 245 
9 511 17, 27, 33, 45, 51, 89, 95, 105, 111, 119, 125, 135, 149, 163, 165, 175, 183, 189, 207, 209, 219, 245, 249, 275, 277, 287, 291, 

305, 315, 335, 347, 353, 363, 365, 371, 383, 389, 399, 437, 441, 455, 459, 461, 469, 473, 483, 489, 507 
10 1023 9, 27, 39, 45, 101, 111, 129, 139, 197, 215, 231, 243, 255, 269, 281, 291, 305, 317, 323, 343, 363, 389, 399, 407, 417, 455, 485, 

503, 507, 531, 533, 549, 567, 579, 591, 603, 633, 639, 649, 693, 705, 723, 735, 765, 791, 797, 801, 825, 839, 845, 853, 857, 867, 
893, 909, 915, 945, 987, 1011, 1017 

11 2047 5, 23, 43, 45, 71, 99, 101, 113, 123, 141, 149, 159, 169, 177, 207, 209, 225, 231, 235, 245, 269, 275, 293, 297, 315, 317, 325, 
329, 337, 347, 371, 373, 383, 387, 399, 427, 429, 441, 455, 473, 485, 503, 513, 519, 531, 533, 553, 585, 609, 621, 633, 639, 645, 
657, 669, 679, 683, 691, 693, 725, 735, 745, 751, 753, 763, 771, 777, 785, 819, 831, 833, 843, 857, 863, 869, 879, 893, 903, 907, 
915, 917, 943, 951, 957, 969, 987, 989, 999, 1005, 1035, 1037, 1049, 1055, 1111, 1121, 1131, 1139, 1157, 1161, 1175, 1179, 
1181, 1203, 1215, 1223, 1229, 1235, 1237, 1251, 1257, 1271, 1283, 1295, 1309, 1319, 1325, 1345, 1351, 1365, 1369, 1379, 
1391, 1393, 1427, 1439, 1449, 1467, 1469, 1481, 1495, 1499, 1505, 1511, 1525, 1541, 1565, 1569, 1575, 1579, 1587, 1593, 
1607, 1611, 1621, 1631, 1649, 1659, 1661, 1665, 1683, 1695, 1699, 1723, 1743, 1757, 1779, 1785, 1803, 1817, 1841, 1847, 
1885, 1899, 1901, 1909, 1923, 1937, 1943, 1947, 1959, 1965, 1973, 1997, 2003, 2021, 2025 

12 4095 83, 105, 123, 125, 153, 209, 235, 263, 287, 291, 315, 335, 343, 353, 363, 389, 435, 473, 479, 525, 567, 573, 615, 627, 639, 697, 
705, 715, 783, 797, 801, 825, 831, 845, 881, 921, 931, 937, 1031, 1073, 1079, 1103, 1117, 1127, 1141, 1191, 1197, 1235, 1295, 
1309, 1357, 1427, 1477, 1495, 1501, 1515, 1545, 1607, 1621, 1625, 1701, 1725, 1813, 1817, 1859, 1861, 1909, 1929, 1965, 
1971, 1983, 1985, 2135, 2141, 2193, 2199, 2233, 2287, 2331, 2357, 2369, 2405, 2427, 2443, 2481, 2493, 2505, 2511, 2535, 
2587, 2603, 2611, 2665, 2699, 2769, 2785, 2805, 2827, 2835, 2847, 2903, 2961, 2983, 3007, 3009, 3027, 3077, 3089, 3095, 
3111, 3149, 3207, 3231, 3237, 3259, 3269, 3273, 3279, 3315, 3335, 3363, 3395, 3409, 3419, 3445, 3461, 3465, 3605, 3609, 
3631, 3653, 3665, 3687, 3699, 3727, 3811, 3857, 3867, 3879, 3953, 3993, 4027, 4029, 4041 

13 8191 27, 39, 53, 83, 101, 111, 139, 141, 159, 165, 175, 187, 189, 195, 201, 225, 243, 269, 277, 297, 303, 315, 323, 359, 363, 377, 393, 
407, 413, 447, 449, 455, 461, 479, 483, 497, 507, 537, 549, 567, 573, 579, 603, 605, 633, 639, 649, 663, 667, 691, 703, 717, 751, 
759, 763, 773, 807, 811, 839, 853, 857, 879, 881, 893, 903, 909, 917, 931, 937, 945, 951, 955, 993, 1005, 1017, 1035, 1043, 
1055, 1061, 1065, 1085, 1105, 1111, 1121, 1133, 1151, 1155, 1179, 1181, 1205, 1215, 1217, 1223, 1227, 1251, 1289, ... 

14 16383 43, 57, 83, 95, 123, 169, 175, 187, 189, 207, 235, 243, 269, 275, 315, 323, 411, 413, 423, 429, 437, 469, 473, 497, 525, 599, 609, 
639, 645, 669, 711, 715, 717, 739, 745, 751, 777, 801, 831, 893, 903, 917, 943, 969, 1003, 1005, 1035, 1091, 1139, 1235, 1237, 
1247, 1251, 1275, 1323, 1337, 1369, 1391, 1433, 1439, 1445, 1463, 1477, 1495, 1511, 1523, 1535, 1551, 1565, 1575, 1589, 
1607, 1625, 1635, 1649, 1659, 1701, 1733, 1743, 1755, 1841, 1871, 1919, 1959, ... 

15 32767 3, 17, 23, 45, 53, 95, 119, 129, 135, 147, 165, 195, 207, 221, 231, 245, 257, 277, 293, 343, 349, 353, 365, 389, 417, 423, 441, 
459, 461, 479, 509, 531, 571, 581, 639, 649, 655, 667, 715, 729, 791, 795, 811, 819, 839, 845, 863, 867, 873, 881, 907, 921, 943, 
957, 965, 977, 1049, 1059, 1071, 1073, 1079, 1127, 1133, 1145, 1155, 1175, 1185, 1205, 1247, 1271, 1277, 1309, 1313, 1319, 
1331, 1351, 1355, 1375, 1393, 1403, 1409, 1421, 1443, 1457, 1477, 1481, 1499, 1517, 1523, 1545, 1553, 1565, ... 

16 65535 45, 57, 63, 83, 189, 215, 303, 317, 335, 349, 407, 417, 429, 447, 455, 533, 537, 549, 559, 605, 621, 645, 657, 673, 741, 797, 843, 
873, 881, 903, 909, 927, 931, 989, 1017, 1065, 1111, 1127, 1155, 1161, 1169, 1215, 1217, 1331, 1351, 1385, 1415, 1475, 1501, 
1515, 1601, 1611, 1619, 1675, 1731, 1899, 1901, 1913, 1923, 2033, 2061, 2145, 2239, 2261, 2271, 2275, 2289, 2299, 2361, 
2429, 2443, 2469, 2479, 2499, 2501, 2535, 2547, 2685, 2689, 2747, 2757, 2817, 2835, 2837, 2897, 2909, 3021, … 

17 131071 9, 15, 33, 45, 51, 63, 65, 85, 105, 123, 141, 153, 163, 175, 187, 197, 245, 267, 269, 281, 293, 317, 343, 353, 359, 365, 383, 387, 
449, 455, 459, 473, 497, 525, 547, 553, 561, 567, 581, 619, 633, 639, 643, 657, 693, 711, 735, 739, 745, 765, 777, 785, 791, 795, 
807, 819, 821, 851, 887, 945, 951, 963, 977, 987, 1003, 1031, 1045, 1049, 1055, 1071, ... 

18 262143 39, 63, 77, 123, 129, 219, 231, 237, 263, 335, 401, 483, 489, … 
 

The procedure of generating the above seed values using TAP is described as one of the exam-
ples given in the Appendix B. 

Using the -merge option it is possible to add the generated stimulus signal to an already existing 
input data stream which must match in length, of course. This way it is possible to apply quantisa-
tion to an input signal. This option also allows composition of input stimuli containing more than 
one sine (multi-tone), ramp (piece wise linear) or square wave sources or to add a dither signal to 
an input wave form. 
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The option -extend creates an extra prologue to the signal without effecting the calculation of sig-
nal frequencies or signal periods. The actual length of the generated output stream is given by the 
-len option plus the -extend option. The idea is to allow a simulated system to settle. Before 
processing the system’s response the clip command can be used to remove that extra prologue 
again leaving -len samples to reflect the steady state system response. 

The -rep option simulates a sample and hold term by repeating each sample several times. This 
does not actually increase the buffer length specified by -len. It rather divides the visible sampling 
frequency specified by the -sample option. It does not effect the frequency or the number of pe-
riods of a sine-wave signal but it does effect the frequency of a square-wave signal and the slope 
of a ramp. 

The sine-sweep generator is turned on using the -sweep option. It will use the sine-wave genera-
tor’s settings as its initial frequency and it will sweep according to its specification given in decades 
per second.  

Number of signal periods (nsp) Round(freq / sample * len) 
Adjusted signal frequency (fs) nsp * sample / len 
Time step (T) rep / sample 
Generated sine-wave peak * 10^((lev-3.17) / 20) * sin(2 Pi fs n T) 

Table 1: Stimulus Generator Formulas 
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Figure 1: Stimulus Generator 
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Usage: stim [options] [ < infile1 ] > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-freq double [Hz] signal frequency (approximate) (1023.44 Hz) 
-adjust int  adjust frequency for {0=any | 1=int | 2=odd} number of periods (2) 
-periods double  number of signal periods in buffer <off> 
-phase double [rad] initial phase for sine wave (0 rad) 
-sweep double [Decades / sec] frequency sweep rate (2.3518 Decades / sec) 
-lev double [dBm0] signal level relative to vpeak (0 dBm0) 
-ovlev double [dBm0] overflow level corresponding to vpeak (0 dBm0) 
-vpeak double [V|units] peak value (corresponding to 3.14/3.17 dB) (1 V|units) 
-sample double [Hz] sampling rate (8000 Hz) 
-dc double [V] dc offset (0 V) 
-noise double [V] white noise RMS (normal distributed) (0 V) 
-rnoise double [V] random noise peak (0 V) 
-prnoise bitlen seed zero one 
  int bitlen 
  unsigned seed 
  double zero 
  double one 

 
 
 
[V] 
[V] 

pseudo random digital noise 
 shift register length 
 seed (defines feedback polynom) 
 amplitude assigned to logical 0 
 amplitude assigned to logical 1 

<off> 
(12) 
(83) 
(1.0 V) 
(-1.0 V) 

-step double [V] ramp generator step (0 V) 
-Alaw  enable A-law quantiser G.711 <off> 
-Ulaw  enable U-law quantiser G.711 <off> 
-lin int  linear PCM representation (0) 
-square vpeak freq 
  double vpeak 
  double freq 

 sqare wave 
 peak value 
 frequency 

<off> 

-pulse  create Dirac pulse <off> 
-rep int [times] repeat each sample (1 times) 
-len int [samples] buffer length (1024 samples) 
-extend int [samples] extend buffer length with settling time (0 samples) 
-merge  merge (add) with data from stdin <off> 
-query  output actual frequency and periods <off> 
-info  print actual settings to statistic <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 

                                                 
1 If merge option set 
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Floating point (ASCII file) to binary stream conversion (flo2bin) 

Converts an input stream containing a table of numerical values into a TAP compatible binary 
stream. Reads ASCII integer or floating point numbers or packed binary int32 arrays. 

Especially when signals are generated by external programs (e.g. a VHDL simulator) it is neces-
sary to convert an ASCII file containing a table of numerical values into the binary output stream 
required by the other signal processing functions contained in this package.  

The ASCII input file usually contains one number per text line. It should start with an integer num-
ber representing the number of floating-point values to follow (if this is not the case automatic size 
detection can be enabled by using the -nocnt option). This starting number must be followed by the 
indicated number of floating-point values separated by white space characters. The file must not 
contain anything except valid IEEE floating-point formats. However, a known number of header 
lines containing text in any format will be skipped when specified using the -header option.  

Alternatively a packed binary array of 32-bit machine precision integers can be read using the -
int32 option. The number of values is determined from the file size and must not be given in that 
case. 

Usage: flo2bin [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-nocnt  no number of values in input stream <off> 
-int32  input stream is array of int32 (no count upfront) <off> 
-header  number of header lines to skip in input stream (0) 
-stat char*  write program statistics to file <off> 
-swap  exchange adjacent bytes of values <off> 
-? | -help  generates this help screen <act> 
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PCM (ASCII file) to binary stream conversion (pcm2bin)  

Converts an input stream containing an ASCII table of PCM values into a TAP compatible binary 
stream.  

Especially when signals are generated by external programs e.g. a VHDL simulator it is necessary 
to convert an ASCII file containing a table of PCM values in binary, octal, decimal or hexadecimal 
format into a binary output stream required by the other signal processing functions contained in 
this package.  

The ASCII input file usually contains one number per text line. It should start with an integer num-
ber representing the number of PCM values to follow (if this is not the case automatic size detec-
tion can be enabled by using the -nocnt option). This starting number must be followed by the indi-
cated number of PCM values. The PCM numbers must conform to the format and number base 
specified (hexadecimal, decimal, octal, binary). The default number format is hexadecimal with no 
sign extension (expecting sign & magnitude).  

If a fixed number of input bits (less than 32) is specified then the sign bit expected at position 2bits is 
extended in order to convert the number to 32 bit binary integer representation. Specifying -bits 0 
selects a sign magnitude format with variable number of digits. 

Usage: pcm2bin [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-nocnt  no number of values in input stream <off> 
-bits int  number of bits of PCM value (32) 
-lin int  linear PCM representation (0) 
-Alaw  use A-law conversion <off> 
-Ulaw  use U-law conversion <off> 
-radix int  input radix (16) 
-hex  hexadecimal input <off> 
-dec  decimal input <off> 
-oct  octal input <off> 
-bin  binary input <off> 
-stat char*  write program statistics to file <off> 
-swap  exchange adjacent bytes of values <off> 
-? | -help  generates this help screen <act> 
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Windows Sound File (.WAV file) to Binary Stream Conversion (wav2bin) 

Converts a windows .WAV sound file (Microsoft RIFF format) into a TAP compatible binary stream. 

Read windows sound file (.wav) and generate a binary output stream required by the other signal 
processing functions contained in this package. If the sound file is a stereo file then left and right 
channel data words are interleaved. Data words are numbers in the range of -32768 to +32767 if 
the wave file resolution is 16 bit. 8, 16 and 24 bit audio files are supported. 

The sound file name must be specified with the -fname option. If the -merge option is set then the 
content of the sound file is appended to the input stream. 

To separate f.e. the right channel of a stereo sound file the stream can be processed like in the 
following example:  

C:\>wav2bin -fname mySound.wav | table -sig 2 -extr 2 | ... 

Usage: wav2bin [options] < infile > outfile  

 

Options: 

-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-fname char*  name of existing wave file to read from <off> 
-merge  append wave file data to input stream <off> 
-stat char*  write program statistics to file <off> 
-swap  exchange adjacent bytes of values <off> 
-? | -help  generates this help screen <act> 

 

Windows Video File (.AVI file) to Binary Stream Conversion (avi2bin) 

Converts a windows .AVI video file (Microsoft RIFF format) into a TAP compatible binary stream. 

Read compressed or uncompressed video file (.avi) and generate a binary output stream required 
by the other signal processing functions contained in this package.  

Specify a certain subset of video frames using the options -start, -stop and -step. Select a clipping 
window using the -clip option. If detailed format information is required the -term option (do not 
propagate data stream) may be given in conjunction with the -stat option (write status information 
to external text file). 
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The video file name must be specified with the -fname option. If the -merge option is set then the 
pixel content of the video file is appended to the input stream. 

To do image processing a video file can be read, modified and written back like in the following 
example:  

C:\>avi2bin -fname myVideo.avi | map  ... | bin2avi -fn out.avi ...   

Usage: avi2bin [options] < infile > outfile  

 

Options: 

-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-fname char*  name of existing wave file to read from <off> 
-start int  first frame to output (first) 
-stop int  last frame to output (last) 
-step int  frame step for output (1) 
-clip 
  left int 
  right int 
  bottom int 
  top int} 

 clipping rectangle  
  (negative means from opposite edge) 
  (0 for full width) 
 
  (0 for full height) 

<0 0 0 0> 

-merge  append wave file data to input stream <off> 
-vfw  use video_for_windows avi parser  <off> 
-term  do not generate output stream (file check only) <off> 
-stat char*  write program statistics to file <off> 
-swap  exchange adjacent bytes of values <off> 
-? | -help  generates this help screen <act> 

DAC (ASCII file) to binary stream conversion (dac2bin) 

Simulates a switched capacitor DAC driven by clock signals specified in an ASCII table. Reads 
clock states from textual input stream and creates a TAP compatible binary output stream contain-
ing the simulated DAC output signal. Can be used to analyse the effect of data-weighted-averaging 
if corresponding clock signals are applied. 

A nine level switched-capacitor digital-to-analogue converter with integrated low-pass filter can be  
simulated. The nine level circuit allows dynamic averaging even of absolute gain. Its circuit dia-
gram with a complete functional description is shown in Appendix B as Figure 19. 

By controlling the DAC elements in a certain manner (specifying an appropriate SC-clock se-
quence in the input stream), data weighted averaging of all capacitor values can be achieved. In-
put data is interpreted as a set of bits corresponding to the states of DAC element control lines in 
the order PHA[8], PHB[8], PHC[8], reserved, reserved, reserved, PH1. It is assumed that PH1 (the 
preparation phase) is the inverse of PH2 (the working phase). The output values are created by 
summing up the contributions of all DAC elements which are enabled by their corresponding con-
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trol lines during PH2. No output is generated during PH1. Two input lines are therefore required to 
produce one output sample. 

The ASCII input file usually contains one circuit state per text line. It should start with an integer 
number representing the number of data lines to follow (if this is not the case automatic size detec-
tion can be enabled by using the -nocnt option). This starting number must be followed by the indi-
cated number of data lines. The data format must conform to the format and number base speci-
fied by options (hexadecimal, binary). The default number format is seven-digit hexadecimal with 
right adjusted status data. 

Capacitor mismatch can be specified and the continuous time feedback capacitor can be varied to 
achieve different filter cut-off frequencies. The clock signals driving the CMOS switches of the si-
mulated circuit are usually generated by a logic or behavioural simulator like VERILOG or VHDL. 

Usage: dac2bin [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-nocnt  no number of values in input stream <off> 
-radix int  input radix (16) 
-hex  hexadecimal input <off> 
-dec  decimal input <off> 
-oct  octal input <off> 
-bin  binary input <off> 
-vref double [V] reference voltage (+- full range) (1.4125 V) 
-fb double [pF] feedback capacitor (tau * fsample * Cunit) (13 pF) 
-cap  
  C1 double 
  C2 double 
  C3 double 
  C4 double 
  C5 double 
  C6 double 
  C7 double 
  C8 double 

 
[pF] 
[pF] 
[pF] 
[pF] 
[pF] 
[pF] 
[pF] 
[pF] 

capacitor values (Cunit +- dC)  
.value of feedback capacitor 1 
.value of feedback capacitor 2 
.value of feedback capacitor 3 
.value of feedback capacitor 4 
.value of feedback capacitor 5 
.value of feedback capacitor 6 
.value of feedback capacitor 7 
.value of feedback capacitor 8 

<off> 
(1.00870 pF) 
(1.00873 pF) 
(1.01947 pF) 
(1.00983 pF) 
(1.00354 pF) 
(0.99873 pF) 
(0.991411 pF) 
(1.00877 pF) 

-stat char*  write program statistics to file <off> 
-swap  exchange adjacent bytes of values <off> 
-? | -help  generates this help screen <act> 
 



21 

Signal Sinks 

Plot (plot) 

Creates a PX-Graph or GNU-Plot window to display input stream data. For the window a new in-
teractive child process is created. The graphical window offers a zooming function and allows crea-
tion of postscript files for a printer. Options control the shape of the plot, the number of signals, plot 
and axes labels and other features. Plot -all combines all open plots in a single plot window. 

If the option -signals is set to a value > 1 then multi column input is assumed. If no y columns are 
selected using the option -ycol then all columns are displayed in one frame. If an x-axis column is 
specified by the option -xcol then this column is used to label the x-axes instead of being displayed 
as a separate trace. Column numbers are starting with the number one. 

If no column for the x-axis is given then an x-axis start value can be specified using the option -x0 
and an x-axis increment can be entered using the option -dx.  

A plot title can be specified using the -title option. Axis labels are entered using the -xunit and 
-yunit strings. If enough signal names are provided using the -names option then signals are 
named rather than numbered. The options -ltype and -lwidth allow to specify lists of line type codes 
and line width numbers. 

The options -lnx and -lny select logarithmic axis scaling providing data values are positive and non-
zero. The option -grid turns grid display on. The -opts string is directly passed to GNUPlot. 

The combination of the -mask option (gt2, gtn, td3, tdn, wn4, tn5, sd6, ob7, gf8, gfx, ov9, gd10), the -dir 
option (tx or rx) and the -law option (a or u) selects several specification masks used in the ITU 
telecommunication standards G711, G712 and others. 

                                                 
2 Gain Tracking 
3 Total Distortion 
4 Weighted Noise 
5 Total Noise 
6 Single Frequency Distortion 
7 Out of Band Noise 
8 Gain over Frequency 
9 Overflow Level 
10 Group Delay Distortion 
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To create a GNUPlot console window linked to a plot window hit the <space> bar. Hit the <h> key 
to display a list of all such key stroke commands in that console window. The console window con-
tains additional online help functions. The [Replot] button will execute all modifications which might 
have been made. Zooming can be accomplished by clicking two corners of a zoom window using 
the right mouse button. The <p> key will bring you back to the previous view. 

The window menu, the icon at the left top corner of a plot window, contains important options like 
print and copy to clipboard. 

Usage: plot [options] < infile  
Options: 

-isignal ipipe  read input signal from (stdin) 
-signals int  number of columns in stream (1) 
-nowait  do not enter interactive mode <off> 
-surface  plot surface spanned by signals <off> 
-xcol int  select column for x axis <off> 
-ycol int 
  { int } 

 select column for y axis 
 more than one columns may be specified 

<off> 

-normcol int  scale columns, let RMS of this column be unity <off> 
-pluscol int  add this column to ycols <off> 
-minuscol int  subtract this column from ycols <off> 
-timescol int  multiply this column to ycols <off> 
-divcol int  divide ycols by this column <off> 
-yoffs double  subtract this value from ycols <off> 
-xref double  y value of this sample is offset <off> 
-x0 double  x axis begin (0) 
-dx double  y axis increment (1) 
-title char*  plot title <off> 
-name char* 
  { char* } 

 signal name 
 more than one name may be specified 

<off> 

-ltype int 
  { int } 

 line type 
 more than one type may be specified 

<off> 

-lwidth int 
  { int } 

 line width 
 more than one width may be specified 

<off> 

-dots  use dots for plotting <off> 
-xunit char*  x axis label (x) 
-yunit char*  y axis label (y) 
-lnx  logarithmic x axis <off> 
-lny  logarithmic y axis <off> 
-grid  draw grid lines <off> 
-mask char*  name of predefined mask <off> 
-dir char*  transmit or recieve mask (tx or rx) <off> 
-law char*  A-law or U-law mask (a or u) <off> 
-cmask double  draw horizontal line at y position <off> 
-opts char*  additional GNUPLOT options or commands 

 (use ; and ' as delimiters) 
<off> 

-all  join all active plots <off> 
-swap  exchange adjacent bytes of values <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Binary stream to PCM (ASCII file) conversion (bin2pcm) 

Converts a TAP compatible binary input stream into a textual output stream containing an ASCII 
table of PCM values. 

While most functions are getting binary input streams and creating binary output streams it is 
sometimes necessary to convert such a binary result into a readable ASCII representation. The 
ASCII file created contains one number per text line. It normally starts with an integer number 
representing the number of PCM values to follow (if this is not turned off by using the -nocnt op-
tion). This starting line is followed by the indicated number of data lines. The binary input values 
are converted to PCM values either according to G.711 A-law or U-law or truncated to a certain 
number of fixed point fractional bits.  

The default number format for A-law and U-law is two-digit hexadecimal, for linear PCM eight-digit 
hexadecimal. Other number systems like decimal or octal can be selected, too. If the number of 
bits is set to zero then sign-magnitude representation with a variable number of digits is selected 
otherwise sign-extension and zero-padding for the indicated number of bits is chosen. 

Usage: bin2pcm [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-nocnt  suppress generation of values count  <off> 
-bits int  number of bits of PCM value (32) 
-lin int  linear PCM representation (0) 
-Alaw  use A-law conversion <off> 
-Ulaw  use U-law conversion <off> 
-radix int  output radix to use (16) 
-hex  generate hexadecimal output <off> 
-dec  generate decimal output <off> 
-oct  generate octal output <off> 
-bin  generate binary output numbers <off> 
-stat char*  write program statistics to file <off> 
-swap  exchange adjacent bytes of values <off> 
-? | -help  generates this help screen <act> 
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Binary to floating point (ASCII file) conversion (bin2flo) 

Converts a TAP compatible binary input stream into a textual output stream containing an ASCII 
table of floating point values. 

While most functions are getting binary input streams and creating binary output streams it is 
sometimes necessary to convert such a binary result into a readable ASCII representation. The 
ASCII file created contains as many numbers per text line as specified by the -columns option. It 
normally starts with a separate line containing an integer number representing the number of float-
ing-point values to follow (if this is not turned off by using the -nocnt option). This starting line is 
followed by the indicated number of data lines. The default number format can be overwritten by 
specifying a format string following C-language printf syntax. 

ASCII files will be used to interface the VHDL simulator and to export the final numerical result of a 
sequence of stream processing operators. 

Usage: bin2flo [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-nocnt  suppress generation of values count <off> 
-format char*  format string of double values (%20.12lg) 
-columns int  number of columns written to stream (1) 
-stat char*  write program statistics to file <off> 
-swap  exchange adjacent bytes of values <off> 
-? | -help  generates this help screen <act> 
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Binary Stream to Windows Sound File (.WAV file) Conversion (bin2wav) 

Converts a TAP compatible binary input stream into a windows .WAV sound file (Microsoft RIFF 
Format). 

Take a TAP compatible binary input stream and create a windows sound file in RIFF format (stan-
dard wave file which usually has the extension .wav). Only PCM format is supported (-format 1) 

The sound file format can be specified using the -channels, -samples and -bits options or by using 
the -like option to specify the file name of an unrelated wave file with a matching format. 

The format to be used to create an audio CD is:  

-channels 2 -samples 44100 -bits 16  

If a stereo file is to be generated then input samples of left and right channel must be interleaved. 
The filename of the new wave file must be given using the -fname option. 

Usage: bin2wav [options] < infile  

 

Options: 

-isignal ipipe  read input signal from (stdin) 
-fname char*  name of new wave file to create <off> 
-like char*  name of another existing wave file 

 to copy header descriptions from 
<off> 

-stat char*  write program statistics to file <off> 
-format int  wave file format (1) 
-channels int  number of channels (1) 
-samples int  number of samples per second (8000) 
-bits int  number of bits per sample (8) 
-swap  exchange adjacent bytes of values <off> 
-? | -help  generates this help screen <act> 

 



26 

Binary Stream to Windows Multimedia File (.AVI file) Conversion (bin2avi) 

Converts a TAP compatible binary input stream into a windows .AVI multimedia file (Microsoft 
RIFF Format). 

Take a TAP compatible binary input stream and create a windows multimedia file in RIFF format 
(standard movie file which usually has the extension .avi). Compressed and uncompressed frame 
format is supported (-compress FOURCC) 

The frame format of the output video may be controlled independently of the dimension of the input 
stream by using the -width, -height and -interpolation options. 

The command line to be used to create an uncompressed video stream with 400x400 RGB pixes 
from a 20x20 input data stream using green shades for positive displacement amplitudes and red 
shades for negative displacement is:  

-fname test.avi -wid 20 -height 20 -interpol 20 -colpair -fps 15 -auto  

The playback rate is set to 15 fps and automatic scaling of input level is used. The filename of the 
generated file must be given using the -fname option. 

The samples of the input stream after scaling are either interpreted as color-map indices (-colmap 
option) or as signal amplitudes to be mapped onto a range of intensities of a color pair (-colpair 
option) or gray scale (-colbw option) or directly as RGB values.  

The stream has to contain any number of complete frames, each consisting of a specified number 
of lines (-height option) with a specified number of pixels (-width option).  

Input pixels are over-sampled by a user specified interpolation factor (-interpolation option) to 
create target resolutions higher than input resolutions. Available interpolation methods are pixel 
repetition, linear interpolation and overlapping 2D-Hamming window weighting.  

Animation title (-title), sampling time, frame count or an external frame identifier (-time) as well as a 
color bar legend (-legend) can be included. A background image stored in a Windows bitmap file 
(*.bmp) may also be specified (-background). 

A straight line may be defined (-xsection) specifying any point and any inclination angle which will 
define a cross-section through the two dimensional data plane. A line plot of the signal magnitude 
profile across that line is then plotted and updated in all animation frames. 

Usage: bin2avi [options] < infile  
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Options: 

-isignal ipipe  read input signal from (stdin) 
-fname char*  name of new avi file to create <off> 
-width int  width of input stream in pixels (32) 
-height int  height of input stream in pixels (24) 
-interpolation 
  factor int 
  order int 
 
 
 
  yfactor int 

 interpolate (increase avi resolution) 
 oversampling factor 
 interpolation order: 
    0..sample repetition 
    1..linear interpolation 
    2..Hamming filter 
 oversampling factor in y-direction 
    (if different from x) 

<off> 
(1) 
(2) 
 
 
 
(0) 

-circular 
  orad int 
  irad int 
  list int 
 { int } 

 circular symmetry 
 radius of outer edge 
 radius of inner edge 
 list of radii (one radius per input row, 
    smallest first) 

<off> 
(0) 
(0) 
 

-cplx 
  resolution int 
  periods int 

 input stream is complex (mag,arg)  
 number of frames per period 
 number of periods to animate 

<off>  
(36) 
(2) 

-ac  eliminate common magnitude per frames <off> 
-clip  clip amplitude range to avoid color periodicity <off> 
-colpair 
 
  pcol int 
  ncol int 

 display neg/pos input using color pair 
                                (0=Blue, 1=Green, 2=Red) 
 positive color 
 negative color 

<off> 
 
(1) 
(2) 

-colbw  display black and white only <off> 
-colmap 
 
  
  fname char* 
  upsampling int 
  lines int 
  lwidth int 

 
 
 
 
 
 
[%] 

specify custom color map (RGB triples) 
              colors are assigned from most  
              negative to most positive values 
 name of binary data file 
 number of interpolated color triples 
 number of contour lines (pos..white, neg..black) 
 width of contour lines 

<off> 
 
 
("rgb.bin") 
(254) 
(0) 
(20) 

-compression 
                      char* 

 name of codec to be used (FOURCC) <off> 
(“TSCC”) 

-fps int  frames per second to be generated (5) 
-scale double  initial scale (1.0) 
-range 
 
  llim double 
  ulim double 
  ext char* 

 signal amplitude range (if -autoscale or ext 
                         then only distance is preserved!) 
 lower amplitude limit 
 upper amplitude limit 
 read upper limits from external binary file 

<off> 
 
(-1.0) 
(1.0) 
 

-autoscale 
  tconst double 

 
[s] 

rescale dynamically  
 recovering time constant 
    (0 for immediate recover) 

<off> 
(10) 

-log 
  base double 
  range double 

 logarithmic compression 
 base of logarithm 
 logarithmic range (exponent) 

<off> 
(2.0) 
(12.0) 

-background 
  filename char* 
  saturation double 
  brightness double 

 background image 
 name of bitmap file (*.bmp) 
 saturation factor (0=BW) 
 adjust brightness (1=white) 

<off> 
(“bg.bmp”) 
(0.5) 
(0.5) 

-time 
  format char* 
  fps double 
  x int 
  y int 
  points int 
  font char* 
  col int 
  bgcol int 
  ext char* 

 
 
 
[pixel] 
[pixel] 
[points] 
 
[RGB] 
[RGB] 
 

annotate time or frame number 
 format string (e.g. '%2.3fms' for time in ms) 
 original frame rate (1 for frame count) 
 x position (0=center  | neg=from right) 
 y position (0=middle | neg=from bottom)  
 height of font in points 
 name of font 
 text color 
 text background color 
 read from external binary file 

<off> 
("%6.0f") 
(1) 
(5) 
(5) 
(8) 
("Arial") 
(0xffffff) 
(0x000000) 
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-title 
  format char* 
  x int 
  y int 
  points int 
  font char* 
  col int 
  bgcol int 

 
 
[pixel] 
[pixel] 
[points] 
 
[RGB] 
[RGB] 

annotate animation title 
 title string 
 x position (0=center  | neg=from right) 
 y position (0=middle | neg=from bottom)  
 height of font in points 
 name of font 
 text color 
 text background color 

<off> 
(“”) 
(5) 
(8) 
("Arial") 
(0xffffff) 
(0x000000) 

-legend 
  width int 
  height int 
  hpos int 
  vpos int 
  points int 
  font char* 
  col int 
  bgcol int 

 
[pixel] 
[pixel] 
[pixel] 
[pixel] 
[points] 
 
[RGB] 
[RGB] 

include legend 
 x legend bar width (-1 full width) 
 legend bar height (-1 full height) 
 distance to left edge (neg=to right) 
 distance to top edge (neg=to bottom) 
 height of font in points 
 name of font 
 text color 
 text background color 

<off> 
(10) 
(-1) 
(-5) 
(0) 
 (8) 
("Arial") 
(0xffffff) 
(0x000000) 

- xsection 
  scale int 
  fi int 
  x int 
  y int 
  col int 
  wid int 
  typ int 
  xcol int 
  typ int 

 
[%] 
[deg] 
[pixel] 
[pixel] 
[RGB] 
[pixel] 
[0..4] 
[RGB] 
[0..4] 

plot cross-sectional displacment 
 relative scale 
 cross-section angle (90=vertical) 
 x position (0=center) 
 y position (0=center)  
 line color 
 line width 
 line type (solid,dash,dot,dashdot,dashdotdot) 
 axis color  
 axis line type 

<off> 
(50) 
(0) 
(0) 
(0) 
(0xffff80) 
(1) 
(0) 
(0x808080) 
(2) 

-BMPout 
  name char* 
  frame int 

 create a series of bitmap files 
 name of file (group) 
 frame (-1 for all) 

<off> 
  
(0) 

-binout  create binary output pixel stream <off> 
-noavi  suppress avi file generation <off> 
-debug  write debug output to statistics file <off> 
-stat char*  write program statistics to file <off> 
-swap  exchange adjacent bytes of values <off> 
-? | -help  generates this help screen <act> 
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Time Domain Processing 

Envelope Sort (envsort) 

The envelope sort operation sorts a buffer containing a certain number of signal periods in a way 
to move all samples into a single period increasing the effective sampling frequency. This opera-
tion is very similar to what a sampling oscilloscope does. 

The effect of the envsort command can be illustrated most easily by comparing the results of the 
following two command lines: 

stim | plot 

 stim | envsort | plot 

Using just the default settings of the stimulus generator, a 1024 sample long binary stream is gen-
erated representing a sine wave signal with exactly 131 periods contained in the interval. The 
envelope sort command resorts those 1024 samples in a way to represent a sine wave signal with 
one period sampled at a virtual sampling rate which is 131 times higher than the original sampling 
rate. 

The required up-sampling rate is tried to be recognized automatically but it can be specified using 
the -periods option. In order to work properly an integer number of signal periods must be con-
tained in the original buffer. If the number of original periods is prime then there is no redundancy 
in the signal and the resorted result will look most smoothly. 

The -orgphase option will keep the original phase, while the default setting tries to resort the signal 
in a way to present a zero phase output signal. 

Usage: envsort [options] < infile > outfile  

 

Options: 

-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-periods unsigned  number of periods <off> 
-orgphase  preserve original phase <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Sigma Delta Modulator (sigma) 

The sigma delta modulator simulates a first or second order, single bit, switched capacitor sigma 
delta loop. Symmetric (+1/-1) output as well as logic (1/0) output is provided. Cyclical reset of out-
put and feedback can be selected. Integrator gains as well as operating ranges are programmable. 

The sigma function takes an input stream representing an analogue input signal and simulates a 
first or second order sigma delta modulator with a single bit output. The operating range of the first 
order version is up to ±vref while the second order version requires an additional margin of about 
3 dB. When the default configuration of the circuit is not altered using the options -order, -g1, -g2, 
-lim1, -lim2, -vref then the working input range is ±1V and a DC output offset of 0.5 V is generated. 

The single bit output stream when filtered by a good low pass filter represents with very high preci-
sion the analogue input signal. The -sym option switches from the [1,0] set of output states to the 
[1,-1] set thus eliminating the output DC-offset.  

The following command lines will illustrate the operation of sigma delta modulation. The sinc term 
is the decimation filter, the func term compensates the 3dB loss caused by the second order sigma 
delta circuit. 

stim -per 1 | sigma -sym | plot 

stim -per 1 | sigma -sym | sinc -n 16 | func -att 3 | plot 

By zeroing every nth feedback value long strings of the same logic level can be avoided when big 
input magnitudes are present. This helps to overcome overrun conditions of simple comb decima-
tion filters. 

Usage: sigma [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-order int  mudulator order (1 or 2) (2) 
-sym  symetric output <off> 
-g1 double  gain of first integrator (0.25) 
-g2 double  gain of second integrator (0.5) 
-lim1 double [V] operating range of first integrator (1.5 V) 
-lim2 double [V] operating range of second integrator (1.5 V) 
-zero int  zero every nth feedback value <off> 
-vref double [V] feedback reference voltage (1.41254 V) 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Decimation, Interpolation, DC-component (sinc) 

A Sinc decimator applies a digital filtering operation (comb or Sinc filter) to the input stream and 
then down-samples the signal to a lower sampling rate. The Sinc interpolator up-samples the sig-
nal obtained by the input stream and then applies a Sinc interpolation filter at the higher sampling 
rate. The first order sinc interpolator (n<0) is actually a sample value repeater. 

The filtering operation which is generally referred to as Sinc or comb filter creates zeroes at the 
lower sampling rate and its multiples. Orders up to three are implemented. A first order Sinc deci-
mator is equivalent to a block-wise running average (accumulate and dump operation). A first order 
Sinc interpolator basically is a circuit which repeats each input sample n times. A second order 
Sinc interpolator is a linear interpolation circuit. 

The spectral effect of a Sinc filter on the pass-band can be compensated by a subsequent window 
operation using the -invsinc option. 

Using the -a option or setting the decimation rate to the buffer length (which is what the -a option 
actually does) outputs the mean value of all samples which is the dc-component of the signal if first 
order is selected.  
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Usage: sinc [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-order int  decimation or interpolation order (3) 
-n int  decimation rate (negative for interpolation) (2) 
-phase int  starting index for zero order decimation <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Linear Section (Infinite Impulse Response Filter) (integr) 

Simulates a first order section taking a limited number range and different overflow handling into 
account. 

This function simulates a lossy integrator. The limited number range [-min.. -max] can be enforced 
by saturation. Other realistic numerical behaviour like wrap around or zeroing can be simulated at 
all three arithmetic circuit nodes. 

As a first order section a topology has been chosen which guarantees no loss of numerical preci-
sion in the pass-band and sufficient accuracy in the stop-band. This was achieved with an architec-
ture containing a direct data-path between input and output. The z-domain equivalent circuit 
representing a general 1st order section and its circuit equations are shown in Figure 2. The op-
tions -a, -b and -scale of the integr function correspond to the variables a, b and c in the figure. 

Choosing b = -1 a high-pass filter can be derived. Its transmission function 
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Figure 2: General First Order IIR Section 

With default coefficients the circuit behaves as a first order low-pass with a 3 dB cut-off at 39% of 
the sampling frequency. The plot below was created by the command line: 
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stim -freq 0 -prn 12 83 -len 4095 -sampl 44100  | integr | dft | db | clip -keep -pro 2048 | 

 plot -dx 10.77 -title "Lossy Integrator Gain" -gr -xu [Hz] -yu [dB] -opt "set yr [-3.5:0.5]"    

It shows how the perfectly flat spectrum of an MLS signal is filtered by the first order low-pass sec-
tion. From the symmetric spectrum just the first half is passed to the plot procedure. 
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Figure 3: MLS filtered by integr 
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Usage: integr [options] < infile > outfile  

 

Options: 

-isignal ipipe  Read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-scale double  scale factor (0.399447) 
-a double  coeffecicient a (0.347656) 
-b double  coeffecicient b (0.655273) 
-min double  lower limit (-1) 
-max double  upper limit (1) 
-wrap  wrap around output if outside limits <off> 
-sat  saturate output if outside limits <off> 
-zero  bound output to zero if outside limits <off> 
-wrap1  wrap around node 1 if outside limits <off> 
-sat1  saturate node 1 if outside limits <off> 
-zero1  bound node 1 to zero if outside limits <off> 
-wrap2  wrap around node 2 if outside limits <off> 
-sat2  saturate node 2 if outside limits <off> 
-zero2  bound node 2 to zero if outside limits <off> 
-block  indicate saturation by forcing y=x (debug) <off> 
-allnodes  write all internal node to stream <off> 
-debug  generate internal debug information <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Biquadratic Section (Infinite Impulse Response Filter) (biquad) 

Simulates a second order wave digital filter section taking a limited number range and different 
overflow handling into account. 

The biquad operator performs a digital filtering operation on the input stream. The four filter coeffi-
cients a1, a2, b1, b2 and the scale factor are input by options. Scaling is applied to the input signal 
before it enters the actual filter block which otherwise would not have the gain as a free parameter. 

The wave digital biquad which is simulated by this operation has been described by Fettweis11. Its 
z-domain representation together with its network equations are presented in Figure 4. 

The solution in the z-domain is a biquadratic term which has one parameter less than the most 
general biquadratic section. It can be seen that any general transmission function can be realized if 
the DC-gain is defined externally. The relationship of the four factors a1, a2, b1, b2 and the general 
biquad coefficients are described in Table 2. 

For frequency domain analysis of z-domain transmission functions the substitution sf
fj

ez
π2

→  can 

be used to plot magnitude and phase or group delay over frequency. 
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Figure 4: Wave Digital Biquad (z-Domain Representation) 

 

                                                 
11 Fettweis; Wave Digital Filters: Theory and Practice; Proc. IEEE, vol.74, pp. 270-327, Feb. ’86 
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Table 2: Wave Digital Biquad (Transmission Function and Coefficients) 

There are no restrictions on the coefficients Ai and Bi that means they can be optimised freely. As 
long as the transformation rules are applied correctly in order to derive the actual coefficients ai 
and bi  this second order section enjoys all the stability properties of wave digital filters, including 
forced-response stability providing proper scaling and number representation. 

The biquad architecture is very efficient in terms of overflow handling because it calculates the 
output signal from many partial sums which may overflow in two’s complement arithmetic as long 
as the final output of the filter stage does not overflow. The input signal and the output signal of the 
stage are multiplied with constant coefficients less than one so there will not be any multiplier over-
flow as long as input signal and output signal do not overflow. If the signal is scaled properly then 
there will not be any overflow in the output signal and saturation circuits are not required. 

In order to analyse the effect of different implementations simulation of overflow conditions is pro-
vided by the biquad function. Anyhow, fixed point arithmetic has not been implemented so internal 
quantization distortion cannot be simulated. 

Because of two partial sums lef  and rig which have to be stored in the memory representing the 
two z-1 products the overflow rule for partial sums cannot be applied completely. Three typical 
overflow handling methods (saturate, wrap-around and set-to-zero) can be applied to the memory 
terms lef  and rig using the options -satmem, -wrapmem and -zeromen. 

Output overflow can be simulated using the options -sat, -wrap and -zero. If only the propagated 
signal should be effected but not the internal signal fed back to the multiplications by the coeffi-
cients a1 and a2 then the options  -satout, -wrapout and -zeroout have to be used.  

The default filter coefficients yield a low-pass with unity gain and a cut-off frequency close to one 
quarter of the sampling frequency. The plot below was created by the command line: 

stim -freq 0 -prn 12 83 -len 4095 -sampl 44100  | biquad | dft | db | clip -keep -pro 2048 | 

 plot -dx 10.77 -title "Biquad Gain" -gr -xu [Hz] -yu [dB] -opt "set yr [-30.5:0.5]"    
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Figure 5: MLS filtered by biquad 

 

 

Usage: biquad [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-scale double  scale factor for x (0.399447) 
-a1 double  coeffecicient a1 for y (0.347656) 
-a2 double  coeffecicient a2 for y (0.855469) 
-b1 double  coeffecicient b1 for x (0.655273) 
-b2 double  coeffecicient b2 for x (0.631836) 
-min double  lower limit of number range (-1) 
-max double  upper limit of number range (1) 
-wrap  wrap around node y using limits <off> 
-sat  saturate node y using limits <off> 
-zero  reset  node y to zero while out of limits <off> 
-wrapmem  wrap around memory using limits <off> 
-satmem  saturate memory using limits <off> 
-zeromem  reset  memory to zero while out of limits <off> 
-wrapout  wrap around output signal  using limits <off> 
-satout  saturate output signal using limits <off> 
-zeroout  reset  output signal to zero while out of limits <off> 
-allnodes  write all internal node to stream <off> 
-debug  generate internal debug information <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Finite Impulse Response Filter (fir) 

Performs an FIR filtering operation on the input stream. The filter coefficients are either read from 
an external binary file (if a file name is given)  or precomputed in several different ways. 

The FIR-filter is applied in a way to calculate an output sample from its corresponding input sample 
and left and right neighbouring input samples. The number of left and right neighbours plus one 
must match the number of coefficients. If input samples before the first or beyond the last sample 
of the buffer are needed then the first or the last input sample is taken instead. The default setup 
with right = 0 and left = len - 1 creates the standard situation where the output is valid after a delay 
corresponding to the length of the coefficient vector - 1 while the last output sample is exact. 

The Savitzky - Golay12  convolution smoothes input data by calculating each output sample from its 
corresponding input sample and specified numbers of left and right neighbour samples. Coeffi-
cients for the Savitzky - Golay convolution are precomputed for up to 8 neighbour samples per 
side, for an order between one and four and for smoothing the curve (deriv = 0) or for calculating a 
smoothened derivative (deriv = 1). 

                                                 
12 Numerical Recipes in C, Press/Teukolsky/Vetterling/Flannery, Cambridge University Press, page 650f 
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Usage: fir [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-fname char*  file containing FIR coefficients <off> 
-len unsigned [samples] FIR filter length <off> 
-left unsigned [samples] leftside part of coefficients <off> 
-right unsigned [samples] rightside part of coefficients <off> 
-rectang  filter with rectangular window <off> 
-triang  filter with triangular window <off> 
-hamming  filter with hamming window <off> 
-ghamming alpha 
  alpha double 

 filter with generalised hamming window 
 filter alpha value 

<off> 

-hanning  filter with hanning window <off> 
-blackman  filter with blackman window <off> 
-nuttall  filter with nuttall window <off> 
-kaiser attn 
  attn double 

 
[dB] 

filter with kaiser window 
 filter attenuation 

<off> 

-chebyshev  
  ripple double 
  trans double 

 
[dB] 
[*fs] 

filter with chebychev window 
 filter ripple 
 normalized filter transition width 

<off> 

-savitzky  
  order int 
  deriv int 

 local smoothing filter 
 filter order 
 filter derivation 

<off> 

-lowpass 
  cutoff double 

 
[*fs] 

use low pass filter 
 normalized cut-off frequency 

<off> 

-highpass 
  cutoff double 

 
[*fs] 

use high pass filter 
 normalized cut-off frequency 

<off> 

-bandpass  
  low double 
  high double 

 
[*fs] 
[*fs] 

use band pass filter 
 lower cut-off frequency 
 higher cut-off frequency 

<off> 

-bandrej  
  low double 
  high double 

 
[*fs] 
[*fs] 

use band rejection filter 
 normalized lower cut-off frequency 
 normalized higher cut-off frequency 

<off> 

-printwin  print window to statistic <off> 
-printcoeff  print coeffs to statistic <off> 
-info  print filter characteristic to statistic<off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Cross Correlation (xcorr) 

Cross correlates two data streams or auto-correlates one data stream yielding vector result. With 
MLS option auto correlation is compared with Dirac impulse yielding a scalar boolean result. An 
MLS sequence can be created using the stim command with the prnoise option. 

The output vector of the correlation function is not scaled in any way. It is simply the sum of all 
products.  

Usage: xcorr [options] < infile > outfile 

 

Options: 

-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-vector char*  binary file containing second vector operand (must have same length) <off> 
-MLS  compare auto correlation of stream  with Dirac impulse <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 

Time Domain Analysis (tana) 

Calculates signal characteristics and includes a selected subset in the output stream. The output 
stream can be either binary or textual and can be directed either to a file or to the standard output 
device. The order of the selected characteristics in the output stream does not depend on the order 
of the option statements. They always appear in the order shown below. 

Usage: tana [options] < infile > outfile  

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-var  output variance of signal <off> 
-rms  output root mean square of signal <off> 
-dc  output mean value of signal <off> 
-min  output minimum of signal <off> 
-max  output maximum of signal <off> 
-peak  output maximum of abs (signal) <off> 
-imin  output position of first min <off> 
-imax  output position of first max <off> 
-ipeak  output position of first peak <off> 
-size  output number of sample <off> 
-len int  number of samples to process <off> 
-nl  append new line character <off> 
-db  output all voltages in db <off> 
-dboffs double [dB] zero dB value (0 dB) 
-negpos  output positions near the end relative to end <off> 
-fname char*  name of output file (stdout) 
-binary  create binary output <off> 
-term  don't propagate input data <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Frequency Domain Processing 

Frequency Domain Analysis (fana) 

Calculates a spectrum and includes a selected subset of frequency domain signal characteristics 
in the output stream. The output stream can be either binary or textual and can be directed either 
to a file or to the standard output device. The order of the selected characteristics in the output 
stream does not depend of the order of the option statements. They appear in the order shown 
below. 

The selected frequency domain analysis results can be sent to the standard output pipe in binary 
format using the option -binary. In this case the -term is enforced which means that input data are 
not propagated from input to output. 

If -binary is not included then textual output is directed to the file which must be specified using the 
-fname option. In that case it is possible to terminate the input stream or to propagate it, depending 
on the presence of the -term option. 

The options -len, -freq, -lev, -adjust and -sample should match the corresponding options given to 
the stimulus generator which has generated the input stream. The fana command calculates the 
RMS power of three differently filtered versions of the input stream. 

First, the whole AC RMS energy contained in the signal band limited by -noisehp and -noisebw is 
calculated (rms). Second, the AC RMS energy contained in the above signal band is determined 
after a perfect band-pass filter with a width of -stimbw around the stimulus frequency -freq has 
been applied (sel). Third, the AC RMS energy contained in the signal band is determined after a 
perfect band-reject filter with a width of -stimbw around the stimulus frequency -freq has been ap-
plied to eliminate the stimulus signal (noi). Using the option -weight one of two noise weighting 
filters can be turned on in that case. 

From these three results the obtainable output measures are derived according to the table below: 

option description derivation definition 
-rmswb Deviation of wide band stimulus level dB(rms) minus -dboffs minus -lev; ITU O.132, bw=300..3400Hz 
-rmssel Deviation of selective stimulus level dB (sel) minus -dboffs minus -lev; ITU O.132, stim=1020Hz, bw=100Hz 
-rmsnoi Absolute level of weighted noise and quantisation products dB (noi) minus -dboffs; ITU O.132, bw=300..3400Hz minus stim 
-distwb Total distortion (wide band stimulus) dB (rms / noi) minus cal; ITU O.132, cal=10 log(3100Hz/3000Hz) 
-distsel Total distortion (selective stimulus) dB (sel / noi) minus cal; ITU O.133, cal=10 log(3100Hz/3000Hz) 
-pwrwb Wide band signal level dB (rms) minus -dboffs; ITU O.132, bw=300..3400Hz 
 

An application of the fana command to analyze transmission characteristics of telecommunication 
circuits is described as one of the examples given in the Appendix B. 
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Usage: fana [options] < infile > outfile  

 

Options: 

-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-len int  useful buffer length (1024) 
-freq double [Hz] stimulus frequency (1020) 
-lev double [dBm0] stimulus level <off> 
-adjust int  adjust frequency for 

 0=any, 1=int, 2=odd number of periods 
(2) 

-sample double [Hz] sampling rate (8000) 
-decim int  decimate before FFT (use 3rd order Comb)  (1) 
-noisehp double [Hz] noise band lower bound (0) 
-noisebw double [Hz] noise band width (4000) 
-stimbw double [Hz] selectivity band width <off> 
-weight char*  spectral weights (psopho or Cmess) (none) 
-dboffs double [dB] zero dBm0 offset (absolute gain) (0) 
-rmswb  rms wideband (deviation from lev) <off> 
-rmssel  rms selective (deviation from lev) <off> 
-rmsnoi  rms noise <off> 
-distwb  distortion wideband <off> 
-distsel  distortion selective <off> 
-pwrwb  rms wideband (absolute) <off> 
-nl  append new line character <off> 
-fname opipe  name of output file (stdout) 
-binary  create binary output <off> 
-term  don't propagate input data <off> 
-debug  generate internal debug information <off> 
-trace char*  sub process output to trace file <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Sweep Analysis (swana) 

Performs spectral analysis in a window which is shifted along the input stream. Creates a multi-
column output stream containing base frequency and signal levels of all selected harmonic com-
ponents for each window being processed. Many different strategies and algorithms are available 
in order to find the correct fundamental frequencies even if they are missing in the  recorded 
sound. 

The sweep analysis tool is applied to a time domain signal. Often the recorded response of a sys-
tem to a sweep excitation signal is used as an input. Another important application is the analysis 
of sound recordings e.g. of musical instruments. 

The main purpose of the program is to calculate the time varying signal power at certain frequen-
cies of interest. A window of specified length (windowsize) moves stepwise (step) over the input 
stream. If the last windows are not complete then they are optionally (decay) padded with zeros 
until they are completely empty. For each window a spectral analysis is done and the requested 
output values are generated.  

One line of output contains the fundamental frequency,  the levels of a specified number (harm) of 
harmonics, the optional (inharmonics) cent-deviations of those harmonics, the optional centroid of 
all seleceted harmonics (centroid), the optional centroid of the complete spectrum (totcentroid) and 
the optional noise level (noise) which is the unweighted or weighted (psopho, Cmessage) RMS of 
the total spectrum with all or a selected number (partials) of harmonics zeroed out. 

The fundamental frequencies for all window buffers can be read from an external binary file 
(fname), specified as a known sweep (sweep, start, rate) or they can be calculated using several 
methods containing different heuristics. Some options have a range parameter which limits their 
effect to a certain number of steps counted either from the beginning (positive range) or from the 
end of the signal (negative range). This allows to have three different strategies in three different 
sections of the signal (for example low register, middle register and high register of a musical 
scale). 

The fundamental frequency detection tries to find a harmonic grid containing up to a user specified 
number of partials in the spectral buffer. Two different methods can be selected.  

The grid method allows some harmonic frequency tolerance (tol) and takes only true peaks bigger 
than a specified threshold (floor) - defined relatively with respect to the spectral buffer’s maximum 
value - into account. The peak amplitudes are completely neglected as long as peaks are bigger 
than the floor of a buffer, just their positions are of interest. It is not necessary that a fundamental 
actually exists. As long as there is a sufficient number of equidistant peaks a virtual fundamental 
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frequency is defined by their distance. The score of a harmonic grid is determined from the number 
of peaks which are sufficiently close to a harmonic grid regardless of their level. It is the weighted 
sum of the harmonic indices of existing partials up to the limit specified with the partials option. The 
resulting fundamental frequency is the weighted geometric mean of the correct integer fractions of 
all partials taken into account. The weighting function is defined by the user specified coefficient w 
(weight) which is the exponent decaying harmonics with their index n: weightn = (1/n)w. With the 
default value w=0.0 no specific weight is applied. 

The default method scores with weighted peak magnitudes. Here the virtual_f0 option determines 
if a true peak at the f0 frequency is a requirement for a valid fundamental frequency. The weighting 
function is the same as above and it is again specified by the partials option which also determines 
how many harmonics participate in the calculation of a score. The fundamental frequency with the 
best score is optionally interpolated parabolically (interpolate) if it is not virtual. Goertzel interpola-
tion is not implemented yet.  

If the fundamental frequency is known to change smoothly, like in sweep responses or musical 
scales, it is advisable to specify the continuos option with a first guess for the initial frequency (f0) 
and upper and lower limits (llim, rlim) for the frequency differences in [%] between adjacent spec-
tral buffers. This specification puts constraints on the search range for fundamental frequencies. 
These ranges can be overwritten manually using the hint option. Hint frequencies and new toler-
ance limits can be introduced at any signal position.  

Usage: swana [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-windowsize uint [samples] analysis window size (1024 samples) 
-step uint [samples] analysis window step (256 samples) 
-decay  zero pad last incomplete windows <off> 
-sample double [Hz] sampling rate (8000 Hz) 
-interpolate int  interpolate between spectral lines 

 (0 = parabolic, 1 = goertzel) 
(0) 

-operation int  infinitesimal operation on result 
 (-1 = integ, +1 = diff) 

(0) 

-harmonic uint  include up to nth harmonic (1) 
-inharmonics 
  range uint 
  floor double 

 
[Cents] 
[dB] 

include in-harmonic deviations of harmonics 
 maximum deviation 
 ignore harmonics less than floor 

<off> 
(150 Cents) 
(-40 dB) 

-centroid  append spectral centroid to each row 
 (of selected harmonics only) 

<off> 

-totcentroid  append spectral centroid to each row 
 (of total spectrum) 

<off> 

-noise  append non-harmonics to each row <off> 
-fname 
  char*  
  range int 

 read frequencies from external file 
 filename and points to get with this method 
 (neg counts from end) 

<off> 
 
(0) 
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-sweep  
  start double 
  rate double 
  range int 

 
[Hz] 
[Dec/sec] 

analyse synthetic sweep response 
 start frequency 
 sweep rate 
 points to get with this method 
    (neg counts from end) 

<off> 
(50 Hz) 
 
(0) 

-grid  
  tol double 
  floor double 
  range int 

 
[%] 
[dB] 

use harmonic grid strategy 
 harmonic tolerance 
 ignore peaks smaller than floor 
 points to get with this method 
 (neg counts from end) 

<off> 
(5 %) 
(-40 dB) 
(0) 

-hint double double 
  { double double } 

 hints for fundamental detection 
 alternate time [sec] and frequency [+ Hz] 
 or time [sec] and range [- %] 
 (0 means full range) 

<off> 

-partials  
  n uint 
 
  weight double 

 search for partials 
 number of partials to search for 
 (incl. fundamental) 
 weighting function (1/n)^w 

<off> 
(1) 
 
(0.0) 

-virtual_f0  detect virtual fundamentals 
 (no actual peak in spectrum) 

<off> 

-continuous  
  llim double 
  rlim double 
  f0 double 

 
[%] 
[%] 
[Hz] 

assume continuous stimulus frequencies 
 left limit relative to previous f0 
 right limit relative to previous f0 
 starting frequency 

<off> 
(-10 %) 
(80 %) 
(0 Hz) 

-triang  filter with triangular window <off> 
-hamming  filter with hamming window <off> 
-ghamming  
  alpha double 

 filter with generalised hamming window 
 filter alpha value 

<off> 

-hanning  filter with hanning window <off> 
-blackman  filter with blackman window <off> 
-nuttall  filter with nuttall window <off> 
-kaiser 
  attn double 

 
[dB] 

filter with kaiser window 
 filter attenuation 

<off> 

-chebyshev 
  ripple double 
  trans double 

 
[dB] 
[*fs] 

filter with chebychev window 
 filter ripple 
 filter transistion width 

<off> 

-psopho  use psophometric noise weighting <off> 
-Cmessage  use C-message noise weighting <off> 
-printwin  print window to statistic <off> 
-stat char*  write program statistics to file <off> 
-debug 
  verbose int 
  from int 
  to int 
  fname char* 

 output debug information 
 amount of debug information 
 trace range left limit 
 trace range right limit 
 write spectral buffers to binary files 

<off> 
(1) 
(1) 
(0) 
(“spec”) 

-? | -help  generates this help screen <act> 
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Harmonic Analysis (dftpeaks) 

Performs harmonic analysis in a window which is shifted along the input stream. Creates a multi-
column output stream containing base frequency and signal levels of all selected harmonic com-
ponents for each window being processed. Many different strategies and algorithms are available 
in order to find the correct fundamental frequencies even if they are missing in the  recorded 
sound. 

The harmonic analysis tool is applied to a time domain signal. It complements the swana functio-
nality because there is no segmentation required and input sound does not need to sweep or step 
regularly. 

The program tries to track sine-wave components which are specified using the -freq option even if 
their frequencies slowly change. Selected components do not need to be harmonics. They are 
related to the fundamental but do not need to be integer multiples of the base frequency. 

The program outputs frequencies and  magnitudes. Output data therefore contain two columns for 
each sound component which is part of the -freq list. If the -rms option is given then an additional 
column of data points is included in the output stream. 

The input stream is analyzed using two moving windows. A long window giving the frequency reso-
lution required to track component frequencies and a shorter window giving the time resolution to 
track magnitude variations. These windows are specified using the options -llen, -loffs, -slen, 
-soffs. If the stepping offset of a window is shorter than its length then subsequent windows will 
overlap. In order to window the analysis buffers before Fourier transform different window types 
can be selected (-kaiser, -nuttall, -hamming, -hanning, -blackman…). 

The fundamental recognition works better when the search range is limited by specifying the op-
tions -fu and -fo. These limits specify a strict range for all fundamentals, not only for the initial one. 
The options -feps defines the tolerable frequency jitter of the harmonic grid. The option -frel speci-
fies the fastest rate of change in fundamental frequency which has still to be tracked properly. If 
the detected fundamental frequency in an observation interval deviates more than the given per-
centage values from the previous one then the detected fundamental frequency is dropped and the 
one from the previous interval is used instead. The same is true if the running rms signal level 
drops below the threshold level specified using the -threshold option. 

An example of how to use this program in a dynamic harmonic analysis is given in Appendix B. 
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Usage: dftpeaks [options] < infile > outfile  

 

Options: 

-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-samples int [Hz] number of samples per second (44100) 
-llen int [samples] large window length (32768) 
-slen int [samples] small window length (4096) 
-lofs int [samples] large window move step size (32768) 
-sofs int [samples] small window move step size (4096) 
-fu double [Hz] lower frequency bound for base tone estimation (100) 
-fo double [Hz] higher frequency bound for base tone estimation (2000) 
-freq double 
  { double } 

 
[Hz] 

frequency grid where peaks are searched (have to be sorted by magnitude) 
 list of frequency rates 

<off> 

-frel lower upper 
   double lower 
   double upper 

 
[%] 
[%] 

maximum deviation factor of expected base tone's frequency (relative to last base tone) 
 lower deviation factor 
 upper deviation factor 

<off> 
(0) 
(0) 

-threshold double  minimum rms level for fundamental tone detection (0) 
-feps double [%] jitter of harmonic frequencies (1) 
-nearest  use only nearest peaks in jitter <off> 
-triang  use triangular window <off> 
-blackman  use blackman window <off> 
-nuttall  use nuttall window <off> 
-hanning  use hanning window <off> 
-hamming  use hamming window <off> 
-genhamming 
   double alpha 

 use generalized hamming window 
 alpha 

<off> 
(0.54) 

-kaiser attn 
   double attn 

 
[dB] 

use kaiser window 
 desired attenuation 

<off> 
(40.0) 

-rms  append rms column to output <off> 
-debug  int debug level (0) 
-stat char*  write program statistics to file <off> 
-? |-help  generates this help screen <act> 
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Time or Frequency Domain Processing 

DFT Processor (dft) 

Performs Discrete Fourier Transform or its inverse, taking real as well as complex values from the 
input stream. Real as well as complex output data are generated. Selectable co-ordinate systems 
for complex signals are the Cartesian (real/imaginary) and the Polar (magnitude/argument) co-
ordinate system. 

The DFT result is scaled in a way to equalize the root mean square of the time domain buffer and 
the frequency domain buffer. The number of elements in the frequency domain is the same as in 
the time domain. The first output sample is the DC-component, the second one (which has the 
same value as the last one) corresponds to the sampling frequency divided by the number of 
points. The sampling frequency itself as mirror image of the DC-value is not contained in the output 
spectrum.  

If 2-dimensional (complex) output is turned on (-out2D), then the output stream consists of two 
columns. These columns normally contain magnitude and phase pairs. Cartesian representation 
(real part, imaginary part) can also be selected (-reim) and the order of the data pairs can be re-
versed (-swap) for the output. Note, that the co-ordinate system is valid for both input and output, 
while order swapping only concerns the output. The output order is especially important when 1-
dimensional output (the default case) is selected, because then every second value is dropped. 
The default phase unit is radiant but degree units (-deg) are possible, too. 

If a length is specified which is greater than the actual length of the input stream then the input 
stream is zero padded. If the specified length is shorter than the actual length of the input stream 
then a long term average spectrum (LTAS) is calculated. If the actual stream length is not an in-
teger multiple of the given length then the last buffer will be zero padded. In LTAS mode no phase 
information is available. 

The DFT buffer length should preferably but not necessarily be a power of two. Complex (two di-
mensional) input files (-inp2D) must have even length. 

The option -smooth post-processes phase results in a way to avoid discontinuities. Near 360° 
(2×Pi) jumps are eliminated by extending the number range beyond the usual phase interval 
[-180..180]. Phase results can be trimmed by specifying a minimum magnitude level where non-
zero phases are returned. 
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Usage: dft [options] < infile > outfile 

  

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-len int [samples] overrides DFT length <off> 
-reverse  invoke reverse fourier transformation <off> 
-inp2D  input data are complex <off> 
-out2D  request complex output <off> 
-reim  cartessian values instead of polar form <off> 
-swap  swap complex numbers before output <off> 
-min double [dB] minimum magnitude with nonzero phase <-200 dB> 
-smooth  reconstruct phase outside base circle <off> 
-deg  phase in degrees <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 

Windowing (window) 

Applies a window function to an input stream. Typically used for time domain windowing or fre-
quency domain filtering. Windows can also be applied periodically. Third octave band and octave 
band analysis applied to a spectrum returns a two column table with centre frequencies and sound 
intensities being the RMS of the related spectral bands. All other windows are being multiplied with 
the input stream and therefore do not alter the total stream length. 

The windowing operation calculates a buffer usually containing as many weights as there are input 
samples and then applies these weighting factors to the input data. If a shorter window is explicitly 
specified using the -len option then this window is periodically applied until the end of the input 
stream is reached. 

Applying a Nuttall or Kaiser window to a buffer with a sampled signal is required to eliminate spec-
tral analysis errors caused by non-periodic signal components. Periodic windowing and periodic 
DFT analysis can be combined to obtain long term average spectra (LTAS) of audio data. 

Psophometric or C-message weighting13 is often applied to noise and distortion spectra in order to 
reflect the non-linear sensitivity characteristic of the human ear.  

All general filter types (low-pass, high-pass, band-pass, band-reject) are available in an ideal (or-
der = 0) and a real passive (order > 0) implementation. The default versions of these filters have 
been selected according to ITU O.132 recommendations. The inverse Sinc filter compensates the 
spectral effect of a decimation in the time domain using the Sinc operator. It is allowed to specify 
any meaningful combination of filters and weights in the same call. 

                                                 
13 Requires buffer sampling rate 
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If the mirror option14 is set then the filter rejects not only the selected band but also the mirror im-
age of the selected band. The spectral weighting functions and the filters require specification of 
the buffer sampling rate. 

To speed up execution time it sometimes can be desirable to save the calculated window in a bi-
nary file which is restored later on instead of recalculated. It is also possible to scale all output 
samples using a constant scale factor. 

Usage: window [options] < infile > outfile 

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-nuttall  nuttall window <off> 
-kaiser double  kaiser window with given beta (10) 
-psopho  psophometric weights <off> 
-Cmess  C-message weights <off> 
-thirdoctavebands 
  res double 

 
[Hz] 

ISO third octave bands (12.5Hz-20kHz center frequency) 
 spectral resolution 

<off> 
(1.0 Hz) 

-octavebands 
  res double  

 
[Hz] 

ISO octave bands (16Hz-16kHz center frequency) 
 spectral resolution 

<off> 
(1.0 Hz) 

-db  output sound levels of band analysis in dB <off> 
-bp  standard bandpass (860 ... 1180 Hz, ideal) <off> 
-bandpass  
  fc double 
  bw double 
  order int 

 
[Hz] 
[Hz] 

bandpass 
 center frequency 
 bandwidth 
 filter order 

<off> 
(1020.0 Hz) 
(320.0 Hz) 
(0) 

-br  standard bandreject (860 ... 1180 Hz, ideal) <off> 
-bandrej  
  fc double 
  bw double 
  order int 

 
[Hz] 
[Hz] 

bandreject 
 center frequency 
 bandwidth 
 filter order 

<off> 
(1020.0 Hz) 
(320.0 Hz) 
(0) 

-lp  standard lowpass (3400Hz, ideal) <off> 
-lowpass  
  fc double 
  order int 

 
[Hz] 

lowpass 
 cutoff frequency 
 filter order 

<off> 
(3400.0 Hz) 
(0) 

-hp  standard highpass (300Hz, ideal) <off> 
-highpass  
  fc double 
  order int 

 
[Hz] 

highpass 
 cutoff frequency 
 filter order 

<off> 
(300.0 Hz) 
(0) 

-invsinc  
  order int 
  rate int 

 inverse characteristic of sinc 
 order of sinc function to compensate 
 decimation rate  

<off> 

-mirror  mirror window at window half length <off> 
-sample double [Hz] sampling rate (8000 Hz) 
-save char*  save window to file <off> 
-len int  apply window of this length periodically until end of stream <off> 
-restore char*  restore window from file <off> 
-originate  no input stream, only generate window <off> 
-scale double  constant scale factor (1) 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 

                                                 
14 First value (DC) is not mirrored 
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Operations on Single Input Vector 

Clip (clip) 

Drops or keeps a specified number of leading and trailing signal samples when the input stream is 
copied to the output stream. 

The main functionality of this operation is to clip a leading part, the prologue, or a trailing part, the 
epilogue, of a signal. The length of the prologue and epilogue to be clipped are specified using the 
-prolog and -epilog options. If the -len option us used to specify the length of the central part then 
one of the two other lengths is redundant and can be calculated from the actual length of the input 
stream. 

The -keep option reverses the meaning and keeps rather than cuts off prologue and epilogue and 
drops the central part instead. The -fill option does not clip at all but instead it fills the specified 
signal parts with a constant value. 

The -ac option has nothing to do with clipping the stream. It rather removes a DC part of a signal. 
The -insert option inserts a constant signal part right after the prolog which has a length as speci-
fied by the -len option. 

The -fname option allows to specify a mask file which must match in length. For each nonzero 
element of the mask file the corresponding value of the input stream is copied to the output. With 
the -like option stream and file lengths will be matched. Either by truncation or by zero padding.  

Usage: clip [options] < infile > outfile  

 

Options: 

-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-prolog int [samples] length of signal prologue <off> 
-epilog int [samples] length of signal epilogue <off> 
-length int [samples] length of signal center part <off> 
-keep  keep pro-,epilogue; drop,fill center <off> 
-insert double  insert constant signal section (0) 
-fill double  fill signal section with constant (0) 
-like char*  make length like other file <off> 
-ac  remove DC-component of result <off> 
-fname char*  template for picking up values <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Up- or Downsample by Integer Factor (resample) 

Converts the sampling rate by picking out every nth sample from the input stream or by inserting a 
number of zeroes between every two input samples. 

Usage: resample [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-inc int  increase sampling rate by this factor <off> 
-red int  reduce sampling rate by this factor <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 

Difference (dif) 

Calculates the differences between every two consecutive input samples (discrete derivative) or 
between samples read from the primary and a secondary input stream (vector difference) or be-
tween input samples and a constant (offset). The secondary input stream is usually connected to 
an external binary file. 

Usage: dif [options] < infile > outfile  

 

Options: 

-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-fname char*  file to read second operands from <off> 
-offs double  offset <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 

Integrator (int) 

Accumulates input samples and propagate intermediate accumulation result to output stream (dis-
crete integration). 

Usage: int [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Moving Mean (movemean) 

Calculates a moving mean over the input signal. Length of output stream is always equal to the 
length of the input stream. The last sample in the output stream is the mean of the last n samples 
of the input stream, which has been preceeded by n-1 zero samples.  

Usage: movemean [options] < infile > outfile  

 

Options: 

-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-n int  length of moving mean (1) 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 

dB (db)  

The dB calculation operator uses the formula out = offs + a log10 (inp) - a log10 (inp[ref]). The pa-
rameter a is 20.0 or 10.0 (with -pow). If (inp <= zero) or (out < min) then out = min. 

Usage: db [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-ref int [samples] number of reference sample (0 dB value) <off> 
-offs double [dB] offset (0 dB) 
-min double [dB] minimum result (-200 dB) 
-pow  signal is power <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 

Inverse dB (invdb)  

The Inverse dB calculation operator uses the formula out = 10^ ((in - offs) / a). The parameter a is 
20.0 or 10.0 (with -pow). 

Usage: invdb [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-offs double [dB] Offset <off> 
-pow  signal is power <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Degree (deg)  

The deg operator converts phase in radiant into phase in degree. Optionally it tries to reconstruct 
original phase values outside the base range ±PI. It is also possible to specify a reference phase 
which will be added to the output. 

Usage: deg [options] < infile > outfile  

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-ref int [samples] number of reference sample (0 deg value) <off> 
-offs double [deg] offset <off> 
-smooth  reconstruct phase outside base circle <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 

General Function (func) 

Applies a scalar function to all samples of the input data stream. 

Usage: func [options] < infile > outfile  

Options: 

-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-plus double  add value to samples <off> 
-minus double  subtract value from samples <off> 
-times double  multiply samples with value <off> 
-divide double  divide samples by value <off> 
-ratio num den 
  num double 
  den double 

 multiply samples with ratio 
 numerator 
 denominator 

<off> 

-abs  take absolute value of samples <off> 
-rct  rectify signal (zero negative samples) <off> 
-rcp  apply reciprocal (1/x) on samples <off> 
-sqrt  square root of samples <off> 
-sqr  square samples <off> 
-ln  take natural logarithm of samples <off> 
-log  take logarithm of samples <off> 
-exp  calculate e^sample <off> 
-exp10  calculate 10^sample <off> 
-pow double  calculate sample^value <off> 
-sin  calculate sine of samples <off> 
-cos  calculate cosine of samples <off> 
-tan  calculate tangens of samples <off> 
-att double  calculate sample * 10^(value/20) <off> 
-trunc int  keep digits after decimal point (negative allowed) (0) 
-sign  calculate sign of values <off> 
-lowlimit double  clip values lower than min <off> 
-highlimit double  clip values higher than max <off> 
-greater double  result greater than value <off> 
-less double  result less than value <off> 
-equal double  result equal to value <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Table Reshape (table) 

Reads a single or multi column table from the primary input stream and creates another single or 
multi column table as output stream. Another suitable single or multi-column table may be present 
at the secondary input stream. Any combination of input columns of any of both source tables can 
be selected in any order to be included in the output table. Matrix transpose can also be per-
formed. All related columns must have equal length. 

Using the -remove option the indicated primary input columns will be deleted from the stream while 
using the -extract option all columns except the indicated ones will be deleted. 

A table from the secondary input can be merged into the output stream by specifying columns us-
ing the -select option. A column position may be specified to indicate the insertion point. Column 
position 0 designates insertion in front of the first primary input stream column, which is the default. 
The column width of the primary input table must be specified using the -signals option, the column 
width of the optional secondary table is specified using the -width option. The secondary input 
stream can also be prepended or appended to the primary input stream using the -merge option. 

The -xcol option works in conjunction with -extract and -select. It specifies one of the columns of 
the input stream (-xcol <= -signals) or input file (-xcol > -signals) to be included as first column of 
the output stream. If this column appears also in the -extract or -select list it is ignored there. The 
-reverse option operates only on the primary input stream. Any secondary input is ignored. It 
makes the last row the first one keeping the column order. 

The -transpose option is another exclusive matrix operation. A standard matrix transposition is 
performed by exchanging rows and columns. Note that the -signals parameter must be updated in 
subsequent table operations. If actual matrix elements are groups of values, f.e. complex number 
pairs, then group size must be given as parameter to the transpose command. In that case, 
-signals should be set to the number of groups per row rather than values per row. The same is 
true for the -shift operation which moves all subgroups of size grp down within their column by a 
certain number of positions. Subgroups which are shifted out of the table are lost (if rot=0) or pre-
pended to their column (rot=1). A global shift distance can be entered using the -position option, if 
all columns are to be shifted differently an external file with exactly one number per column has to 
be specified using -fname. 

The combination of the options -sort -resample -border is used to create a linearly rising and equal-
ly spaced x-axes starting at the -border value. This is done by first sorting the rows according to 
the first column, applying a heuristic algorithm to find a proper x-axis grid and to calculate the other 
column’s center of distribution around these grid points. The -sort option must not receive any col-
umn parameter in that case.  
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Usage: table [options] < infile > outfile  

 

Options: 

-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-signals int  number of columns in input stream (1) 
-remove int 
  { int } 

 remove these columns 
 more than one column may be given 

<off> 

-extract int 
  {  int } 

 extract these columns from input stream 
 more than one column may be given 

<off> 

-transpose int  transpose rows and columns of subgroups 
 (parameter is subgroup length) 

(1) 

-reverse  reverse rows (make last one first) <off> 
-merge int  merge stream and file 

    (0..append, 1..prepend) 
(0) 

-fname char*  file to read second operands from <off> 
-width int  number of columns in input file (1) 
-select int 
  { int } 

 select these columns from input file 
 more than one column may be given 

<off> 

-position int  position to insert selected columns (0) 
-xcol int  extract or select x-axes column 

    (move in front) 
<off> 

-sort int 
  { int } 

 sort rows over these columns 
 more than one column may be given 
    (negative numbers to sort down) 

<off> 
(1) 

-resample  with sorting, makes first column linearily rising <off> 
-shift 
  grp int 
  rot int 

 shift columns down vertically15 
 subgroup length 
 (0..shift out of table, 1..rotate, shift cyclically) 

<off> 
(1) 
(0) 

-border double  with resampling, defines start point for resampling (0) 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 

 

                                                 
15 requires -position (shift all columns down a constant number of samples) or -fname (with exactly one value per column) 
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Operations requiring Multiple Input Vectors 

Pick Values according to Boolean Template (pick) 

Pick out values from or insert values into the primary input stream according to masking 
information read from the secondary input stream. 

Picks out and propagates to the output stream only those samples of the primary input stream 
whose corresponding boolean control flag, read from the secondary input stream is true (nonzero). 
The other input samples are simply skipped (omitted) and not copied to the output stream. 

The -space option enforces separation between picked groups by inserting separation blocks as 
specified by length and padding value. 

The -fill option  instead fills up picked groups to make them equally long by padding them with the 
padding value. 

If an -insert value is specified a different mode of operation is entered. Instead of skipping input 
samples when their corresponding mask value is zero, the given constant value is inserted into the 
output stream for each zero mask sample. Reading the input stream is on hold until another 
nonzero mask value is read. The insert mode is exclusive and does not support the space and fill 
features. 

Periodic templates are supported in all modes using the -wrap option. In that case the control 
stream can be read multiple times as long as there are still input samples to process. 

Usage: pick [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-fname char*  template for picking out values <off> 
-space length value 
  length int 
  value double 

 insert space between picked groups 
 length of spacing 
 padding value 

<off> 
 
(0.0) 

-fill length value 
  length int 
  value double 

 fill picked groups for equal length 
 group length 
 padding value 

<off> 
 
(0.0) 

-wrap  wrap mask file around <off> 
-insert double  insert fill value where template is zero(0)  
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Resegment Binary Stream (reseg) 

Creating a resegmentation mask for the pick command based on a signal’s running RMS, peak 
value or slope and a given threshold. Spike and gap elimination, length trimming and segment 
augmentation. Can also be used to calculate the running signal parameters and to downsample. 

The reseg function performs several operations related to resegmentation of audio files. Exactly 
one of the operation modes -rms, -peak, -slope, -compare, -despike, -merge, -augment and -trim 
must be selected.  

The -rms, -peak, -slope and -compare modes operate directly on analog audio signal streams, 
while the other modes take boolean masking streams as their input which might have been created 
using the -compare mode before.  

In -rms, -peak or -slope mode running RMS, peak or slope values are calculated over the input 
stream using the window length and stepping distance given by the options -windowsize and -step. 
The length of the output stream matches that of the input stream unless the -downsample option 
has been given. In that case only one output sample is created for each RMS value which has 
been calculated. The down-sampling ratio is therefore determined by the stepping distance. With-
out -downsample the calculated RMS and peak values are simply repeated in order to match the 
stream sizes. Slopes are calculated by linear regression. They are linearly interpolated between 
the breakpoints given by the stepping distance. 

In -compare mode the running RMS, peak or slope values are compared with the given threshold. 
Instead of the calculated values the Boolean results of these comparisons are sent to the output 
stream. The -downsample option has exactly the same meaning as in -rms, -peak or -slope mode. 
Different on-threshold and off-threshold values can be specified. 

Boolean mask streams created in the -compare mode can be post-processed by the remaining 
operation modes. The -despike mode can eliminate short spikes while the -merge mode does the 
same with short gaps. Spikes and gaps which are shorter than the specified minimum length are 
eliminated, that means, the Boolean masking values inside of those short regions are toggled in 
order to match their environment. 

Other ways to post-process Boolean masks are the -augment and -trim operating modes. Augmen-
tation shifts leading and trailing edges of selection regions by a specified number of samples in 
either direction.  

Trimming tries to cut the selection regions to equal lengths. Handling of overlapping selection re-
gions depends on the trimming mode. With “retrigger disabled”, a selection region starting when 
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another one is already active will be ignored. With “retrigger prolongs”, both regions will be merged 
and longer regions might be created. With “retrigger aborts”, the first one will be truncated leaving 
a region behind which is shorter than specified. The later one will be trimmed correctly and it will 
be separated from the aborted one by one zero sample. Aborted regions can be removed like 
spikes, prolonged regions can be re-trimmed in a second pass. Processing a sound file containing 
double attacks, in the first two cases the start of the segmentation window will be placed in front of 
the first attack, while in the third case it will be placed in front of the second attack.  

The created and post-processed mask stream is usually used as secondary input stream of a pick 
command which actually finishes the segmentation process. 

Usage: reseg [options] < infile > outfile  

 

Options: 

-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-windowsize uint [samples] analysis window size (1024 samples) 
-step uint [samples] analysis window step (256 samples) 
-decay  zero pad last incomplete windows <off> 
-rms  calculate running RMS <off> 
-peaks  calculate local peak value <off> 
-slope  calculate local slope 

 (by linear regression) 
<off> 

-downsample  output only one value per window <off> 
-compare 
  on_threshold double 
  off_threshold double 
  mode int 

 compare signal with threshold levels 
 Signal level required to turn on the gate 
 Signal level required to turn off the gate 
 Signal property compared to threshold: 
   0..running RMS 
   1..peak value 
   2..signed comparison 
   3..slope 

<off> 
(0.5) 
(0.5) 
(0) 

-despike 
  minlen int 

 
[Samples] 

remove short spikes 
 minimum segment length 

<off> 
(1024 Samples) 

-merge 
  minlen int 

 
[Samples] 

remove short gaps 
 minimum pause length 

<off> 
(1024 Samples) 

-augment  
  prolog int 
  epilog int 

 
[Samples] 
[Samples] 

augment by adding prolog and epilog 
 shift leading edges left(+), right(-) 
 shift trailing edges right(+), left(-) 

<off> 
(100 Samples) 
(100 Samples) 

-trim 
  fixedlen int 
  mode int 

 
[Samples] 

trim segment to fixed length 
 segment length 
 0..retrigger disabled 
 1..retrigger longens active phase 
 2..retrigger aborts active phase 

<off> 
(1024 Samples) 
 
 
(0) 

-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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General Vector Function (vecfunc) 

Applies a real or complex vector operation to the signals read from the primary and secondary in 
put stream. Samples flagged as invalid by another Boolean stream are interpolated. 

The operations implemented on vector operands are -plus, -minus, -times and -divide. One of 
those options must be selected. They can be applied to vectors of real values and to complex vec-
tors.  

The complex mode is enabled by the option -complex. In this case both vectors must have exactly 
the same format. The value pairs can either contain real and imaginary parts (option -reim) or 
magnitude and argument. Arguments can either be degrees (option -degree) or radiants. The de-
fault format for complex numbers is magnitude and argument in radiants. 

If the masking option is used a filename must be specified using the -valid option. The masking file 
must contain one Boolean flag value for each pair of operands. If the masking value corresponding 
to an operand pair is false (zero) then the arithmetic operation is not performed and the previous 
result is repeated instead. 

Usage: vecfunc [options] < infile > outfile  

 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-plus  add vector to stream <off> 
-minus  subtract vector from stream <off> 
-times  multiply stream with vector <off> 
-divide  divide stream by vector <off> 
-vector char*  binary file containing second vector operand, must have same 

    length or shorter (if vector is periodic) 
<off> 

-valid char*  binary file containing boolean vector  
    identifying valid samples 

<off> 

-complex  perform operation on complex data <off> 
-reim  interpretation of inputs as (real,imag) not (mag,arg) <off> 
-degree  interpretation of argument is degree <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 

 



61 

Vector Comparison (same) 

Compares data read from primary and secondary input stream for identity. 

Comparison can detect small phase shifts between operands and counts the number of matching 
samples. The option -full makes comparison more strict, the option -tolerance can exclude a prolo-
gue and epilogue of given length from the comparison. 

The maximum phase shift between the two signals which is recognized properly is 2 samples 
ahead or behind in any direction. Matching results are output in textual format to the standard out-
put device. No output is generated if perfect matching is detected. 

Usage: same [options] < infile  

 

Options: 

-isignal ipipe  read input signal from (stdin) 
-fname char*  2nd file for compare <off> 
-tolerance int  number of samples to ignore at head and tail <off> 
-title char*  string to identify output () 
-full  strict comparison over full length <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 

Merge Multiple Streams (merge) 

Merges several input streams into one output stream. 

All input files must match in length. The interleaving length specified by the option -interleave 
defines the size of the data blocks which are read from each of the sources in turn. In case 
complex data streams are to be merged interleave should be set to 2. If the input files should 
simply be concatenated, interleave has to be set to the length of the streams. 

Usage: merge [options] > outfile  

 

Options: 

-osignal opipe  write output signal to (stdout) 
-files char* 
  { char* } 

 names of input files 
 more than one columns may be specified 

<off> 

-interleave int  sample interleave factor (1) 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Control Statements 

Execute Script (do)  

This program executes a TAP macro script.  

The user who wants to execute a predefined macro script just might enter 

do -f macro.ana  

to obtain further information about functionality and specific options of a macro script. TAP macro 
scripts should have the extension .ana and must be located in the current directory. The default 
script which is executed if no filename is specified is named makefile and should also be located in 
the current directory. It is part of the TAP distribution kit, just like two other predefined macro 
scripts named specdens.ana and harmonics.ana. 

Macro specific options and macro specific targets can then be entered according to  

do -f macro.ana [option_assignments] [targets] 

like in the example 
do -f specdens.ana WAV=myWav fu=60 fo=1800 Frequency Magnitude  

The user who wants to change, extend or create macro scripts has to know, that TAP script 
processing is based on the nmake script processor. Macro scripts actually are makefiles for the 
GNU nmake utility. Syntax specification and programming instructions should be taken from the 
documentation delivered by the GNU usergroup. 

Usage: do [options]  

 

Options: 
-f char*  name of the macro script to be executed <off> 
macro options  macro options depend on application  
-? | -help  nmake help screen <off> 
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Execute Shell (run)  

This primitive creates a shell command providing proper CPU-time accounting. 

The UNIX syntax is emulated. Multiple commands can be separated by semicolons. The spawn 
operator & and the option -bg is not implemented yet. Pipes can be used in the command string.  

Usage: run [options]  

 

Options: 
-sh char*  shell command <off> 
-bg  execute in background <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 

Map command line (map) 

Create a window which is shifted along the input data stream and direct window data to the pri-
mary input stream of a shell which executes the specified command line. Compose output stream 
from partial streams created by the single shell processes. Let partial output streams overlap addi-
tively by given number of samples.  

A window with a given number of samples (-windowsize option) is stepped along the input data. 
The step distance (-step option) can be smaller than the window size (overlapping input windows), 
it can be equal to the window size (contiguous input windows), and it can be greater than the win-
dow size (sparse sampling).  If decay is specified (-decay option) then the input stream is padded 
with zeroes and the window is stepped until it does no longer contain any non-zero value. Just 
before that condition is reached the mapping process stops. 

For each position of the input window the specified TAP command line (-cmd option) is executed 
and supplied with its input stream. Its output stream is collected and aligned sequentially without or 
with some specified overlap (-overlap option). If an overlap is specified then overlapping buffer 
segments are accumulated (added). A typical application for overlapping output buffers is a fre-
quency domain filter with a Gaussian window. If such windows overlap by half of their lengths, their 
sum is always unity. 

Place holders can be used in the TAP command string. “%d” will be replaced by the buffer index 
and “%e”,”%f”,”%g”,”%E” or ”%G” by the first consecutive input samples of each data frame. Up to 
four replacements are allowed. If the mapped command lines are signal sources which do not re-
quire any input data then the -originate option must be set. The -terminate option must be given if 
command lines are signal sinks not producing any output data.   
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Usage: map [options] < infile > outfile  

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-windowsize uint [samples] analysis window size (1024 samples) 
-step uint [samples] analysis window step (256 samples) 
-overlap uint [samples] result window overlap (0 samples) 
-decay  zero pad last incomplete windows <off> 
-terminate  no output stream created by cmd <off> 
-originate  input stream not used in cmd <off> 
-cmd char*  command string to map (func -att 10) 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 

Varying Parameters (vary) 

This operator repeats a command line varying a parameter between certain limits. Special charac-
ters are used as place holders in the command line. A @-sign is replaced by the varying parame-
ter. A #-sign is replaced by the channel number in case of multi-channel operation. A &-sign is re-
placed by the result of the reference run. The part enclosed by [ ] is executed only once for all 
channels. Normally it is preceded by the stimulus generator part and succeeded by the analysis 
part. 

If in a multi-channel simulation the reference string contains an empty common part (like [ ] ) then 
no separate run will be made and channel zero will be assigned to the reference simulation. The 
resulting value will be used as a reference for all channels. Otherwise a reference analysis will be 
made for each channel separately and these different references will be used for different chan-
nels. In the reference string xref will be substituted for all @-signs while &-signs are replaced by 
zero. 

If the -xinput option is set then discrete input values are read from a binary input stream instead of 
looping between start to stop with increment. This is illustrated by the example Gain Tracking and 
Total Distortion Analysis found in appendix B.  

Usage: vary [options] < infile  

Options: 
-isignal ipipe  read input signal from (stdin) 
-xinput  read external binary table <off> 
-x0 double  start value (0) 
-x1 double  stop value (10) 
-dx double  increment (1) 
-xref double  reference value (0) 
-chan int  number of channels (1) 
-dut char*  command line (echo @) 
-ref char*  command line for reference calculation () 
-debug  generate internal debug information <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Create Named Signal (signal) 

This operator is used to name the signal of the pipe. It can be used to synchronise processes or to 
fork a signal to a second process. 

Usage: signal [options] name < infile > outfile 

 char* name  name of pipe file 

Options: 
-isignal ipipe  read input signal from (stdin) 
-osignal opipe  write output signal to (stdout) 
-? | -help  generates this help screen <act> 

Flag (flag)  

This primitive creates one or more named flags in order to allow other processes to wait for proper 
input data.  

To synchronize multiple processes the flag and cont operators can be used. One process calls flag 
to set a named flag as soon as it has finished to create a set of valid output information needed by 
another process.  

The other process calls cont in order to wait until the required flag information is received. When 
cont returns it is save to access the data files created by the other process. 

Using the -n option more than one flag can be generated simultaneously. The flags will get names 
created from the name specified using the option -o plus a postfix character from the set [0,1,2,…] 
up to the value of the -n option minus one. 

The synchronization procedure is based on creating and polling for zero-sized disk-files having the 
indicated names. 

Usage: flag [options]  

 

Options: 

-n int  number of flags to set <off> 
-o char*  flag name (“flag”) 
-? | -help  generates this help screen <act> 
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Continue on flag (cont)  

This primitive continuously polls for one or more named flags. It actually waits until other processes 
are signalling a certain execution state. Waiting for flags puts the process in a suspended state in 
order not to block the CPU. 

This operation waits for one or more named flags created by another processes using the flag 
command. 

Using the -n option it is possible to wait for more than one flag at once. Execution goes on as soon 
as all flags of the group are active. The names of the group members are derived by appending a 
number to the name specified using the -i option  (name0, name1, name2...). This name conver-
sion applies as soon as the -n option is specified even if it is set to one.  

Once a flag has been sensed active it is reset automatically unless the -nodelete option is given. A 
time-out terminates the waiting state after a given number of seconds (-timeout) to prevent dead-
lock. 

Usage: cont [options]  

 

Options: 
-n int  number of flags to wait for <off> 
-i char*  flag name (“flag”) 
-nodelete  don't reset flag <off> 
-timeout int  number of seconds to wait (1000) 
-? | -help  generates this help screen <act> 
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Create Textfile from Template (fill) 

Vary text stream according to some directives contained in it. Variation is history dependent. Inte-
ger sequences, random integers, token sequences and random token selections are implemented. 

Searches an textual input stream for directives which are replaced in the output stream by the re-
sult of their evaluation. The evaluation depends on history. History is stored in a temporary history 
file. Its name can be specified using the -tmpname option. Deleting this temporary file resets the 
history.  

A seed for the random number generator may be specified using the -seed option. If this option is 
not used, random sequences will differ in different runs. Subsequent calls of fill on the same input 
stream will create different output if some variation directives are included in the input text. The 
recognized variation directives are: 

{seq x0 x1 dx rx} Generate one value of a periodic sequence {x0..x1} which increments by dx after every rx runs. 
The variables x0, x1, dx and rx represent integer numbers. 

{ran x0 x1} Generate random integer in range x0..x1 per run  
{sel t1 t2...tn [rx]} Sequential selection out of given list of tokens. The iterator is incremented after every rx runs. Valid 

tokens my contain any characters except a token delimiter, which can be freely chosen, the end of 
line character and the closing brace <}>. The character terminating the sel directive is accepted as 
token delimiter. A numeric value can be entered between the last token delimiter and the closing 
brace. If the closing brace is preceded by the token delimiter, rx defaults to one and a new selec-
tion is made in each single run.  

{rsel t0 t1 t2...} Random selection out of given list of tokens. A new random selection is made in each single run. 
Valid tokens my contain any characters except a token delimiter, which can be freely chosen, the 
end of line character and the closing brace <}>. The character terminating the rsel directive is ac-
cepted as token delimiter. 

Usage: fill [options] < infile > outfile  
 

Options: 
-tname char*  name of template file (stdin) <off> 
-oname char*  name of output file (stdout) <off> 
-tmpname char*  name of file keeping status info 

(delete this file to reset history) 
(~history.tmp) 

-logname char*  name of log file <off> 
-seed int  seed of random number generator <off> 
-stat char*  write program statistics to file <off> 
-? | -help  generates this help screen <act> 
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Anhang B: Basic TAP Examples 

Spectral Synthesis and Analysis 

In the example below several sine-wave stimuli signals are merged additively, windowed, zero-
padded and Fourier transformed before the logarithmic magnitude spectrum is sent to the plot 
function. The table operation is used to append a previously created zero string to the windowed 
signal. The db values are related to the 990th spectral line, which is the sine-wave component hav-
ing 99 periods in the original, 10 times shorter buffer. 

stim -freq 0 -len 9216 | signal zero.bin 

stim -per 6 | stim -merg -per 22.4 | stim -merg -per 27 | stim -merg -per 99 | stim -merg -per 34 | 

window -nutt | table -fn zero.bin -merge 0 | dft | db -ref 990 | 

plot -grid -name "spectrum with 6, 22.4, 27, 34 and 99 periodes in buffer using nuttall window and 

zero padding" -title "Demonstrating stim, window, table, dft, db and plot commands" 

 

-200 

-150 

-100 

-50 

 0 

 50 

 0  2000  4000  6000  8000  10000

Demonstrating stim, window, table, dft, db and plot commands 

spectrum with 6, 22.4, 27, 34 and 99 periodes in buffer using nuttall window and zero padding

 

Figure 6: Spectral Synthesis and Analysis 
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Finding MLS Seeds 

Uses the ramp generator to generate a vector of all possible 8-bit seeds. For all these seeds a 
maximum length pseudo random sequence is generated and its auto correlation is compared with 
the delta function.  

From the initial seed vector all values are picked where the auto correlation matches the delta 
function. Intermediate results are stored in readable format in order to allow interruption of the 
lengthy process without loosing already calculated data. 

stim -fre 0 -dc 1 -step 2 -len 128 > seed8.bin 

vary -xin -dut "stim -len 255 -fre 0 -prn 8 @ | xcorr -MLS | bin2flo -nocnt" < seed8.bin > MLS8.flo 

flo2bin -nocnt < MLS8.flo > MLS8.bin 

pick -fn MLS8.bin <seed8.bin | bin2flo -nocnt > MLS8.txt 
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Create and Save Windowing Signal  

The command line below creates a windowing signal which is the square-root of a Hamming win-
dow. It is needed in the following example when a spectral filtering operation is to be applied. 

It uses the fact that the pulse response of the fir filter is the window it is based on. The Dirac pulse 
is created as spectrum of a single sine-wave signal. The stimulus contains 1024 sine-wave periods 
in the 4096 sample long buffer. Its Fourier transform is a Dirac pulse at the 1024th position and its 
mirror image which is clipped. This signal filtered by the fir term yields the hamming window itself. 
After clipping prolog and epilog the square root is calculated and saved. 

stim -vp 0.03125 -len 4096 -per 1024 | dft | clip -epi 1024 | fir -hamming -len 1024 | 

clip -epi 1024 -pro 1024 | func -sqrt > sqrtham1024.bin 
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Figure 7: Sqare-root of Hamming Window 

A filter which could be used for the following example can be created by the windowing function 
itself. The command line below creates a band-pass filter of 4th order with a pass-band centered 
around 1020 Hz with a 3 dB width of 320 Hz. The stimulus sets up a unity vector of proper length. 
Multiplied with the window it yields the window itself. The -mirror option makes it symmetrical. The 
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sinc function of order one is used as a sample and hold to repeat each value two times. In the fol-
lowing example two identical multiplicators are required for real and imaginary part of the complex 
spectrum. 

stim -dc 1 -freq 0 -len 1024 | window -bandp 1020 320 4 -sampl 44100 -mir | 

 sinc -or 1 -n -2 | signal filter.bin 
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Figure 8: Bandpass Filter 

Spectral Domain Filtering 

Read input sound file and map a TAP command line performing a 1024 samples long frequency 
domain filter to overlapping portions of the input stream. The data window is 1024 samples long 
and is shifted by 256 samples after each step. The filter output windows which are overlapping by 
768 samples are assembled back again to a contiguous output stream. 

The window function which has to be applied twice - before and after the transition to the spectral 
domain - has been pre-computed and saved as sqrtham1024.bin in the previous example. 
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The command line which is mapped to the sound file segments applies the “square-root of ham-
ming” window before the Fourier transformation and after the reverse Fourier transformation. The 
Fourier transformations (dft) are performed complex in rectangular coordinates. The data file fil-
ter.bin must be symmetric and must contain 1024 pairs of weighting coefficients. It is multiplied 
with the complex spectrum before this is scaled and retransformed: 

wav2bin -fn myInFile.wav | 

map -win 1024 -step 256 -over 768 -cmd "window -rest sqrtham1024.bin | 

dft -reim -out2D | vecfunc -times -vector filter.bin | func -tim 0.25 | 

dft -rev -reim -inp2D | window -rest sqrtham1024.bin" | 

bin2wav -fn myOutFile.wav -like myInFile.wav 

The weighting coefficients for a simple bandpass filter can be created according to: 

stim -dc 1 -freq 0 -len 1024 | window -bandp 1020 320 4 -sampl 44100 -mir | sinc -or 1 -n -2 | sig-

nal filter.bin 

Gain Tracking and Total Distortion 

Gain tracking and total distortion over input level are quality measures which are applied in tele-
communications. The quantisation methods which are used are the Northern American μ-law and 
the European A-law. Both laws employ signal level dependent quantisation steps to maintain equal 
S/N ratio over a wide range of levels. This way linear bit resolutions of 12 to 13 bits are com-
pressed to 8 bits. 

The effect of the nonlinear quantisation scheme on gain over level (gain tracking) and on quantisa-
tion distortion over level is calculated by the following command lines. The tolerance masks for 
telecommunication systems have been taken from the ITU standards. 

First a vector containing 650 level values is created to cover the level range from +3 dB down to 
-62 dB with a resolution of 0.1 dB. Next the vary operation is used to run the command line speci-
fied using the -dut option 650 times, replacing the place holders in the level statements by the val-
ues taken one by one from the input stream. The fana operation is used to generate gain and pso-
phometrically weighted distortion values of its A-law stimulus with defaults for stimulus frequency 
(1020Hz), sampling frequency (8kHz) and buffer length (1024 samples). The resulting values are 
written in readable format to the text file alaw.flo 

After conversion of the result file into a binary two-column signal, the initial levels vector is merged 
to create the first column of the resulting three-column signal. This is accomplished by the table 
command which can handle multi-column streams and files. 
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The plot commands are straight forward, and tolerance masks, axis labels and plot titles are speci-
fied. The first column is selected as x-axes column, while one of the remaining  columns is chosen 
for display. 

 

stim -dc 3 -fre 0 -step -0.1 -len 650 | signal levels.bin 

signal levels.bin | vary -xinp -dut "stim -A -lev @ | fana -lev @ -db 60 -wei psopho -stimbw 120 

-rmswb -distwb -bin | bin2flo -noc" > alaw.flo 

flo2bin -nocnt < alaw.flo | signal alaw.bin 

table -sig 2 -fn levels.bin -sel 1 -pos 0 < alaw.bin |  

plot -sig 3 -xcol 1 -ycol 3 -mask td -dir tx -law a -xu [dB] -yu [dB] -tit "Total Distortion over 

Level, A-law Quantisation" 

table -sig 2 -fn levels.bin -sel 1 -pos 0 < alaw.bin |  

plot -sig 3 -xcol 1 -ycol 2 -mask gt -dir tx -law a -xu [dB] -yu [dB] -tit "Gain Tracking, A-law 

Quantisation" 
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Figure 9: Gain Tracking, A-law 
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Figure 10: Total Distortion, A-law 

Dynamic Harmonic Analysis 

Dynamic harmonic analysis without segmentation can be performed using the dftpeaks command. 
In the first step ten seconds of a slightly distorted (μ-law quantisation at -40 dB level) sine-wave 
sweep is generated and stored in the wave file to be analysed. 

stim -Ulaw -sampl 44100 -len 441000 -lev -40 -freq 100 -sweep 0.1 | 

bin2wav -bit 16 -sampl 44100 -chan 1 -fn mySig.wav 

In the next step the analysis is started. In order to get smooth and accurate frequency curves the 
long window is stepped by the same amount as the small window. As we know a sweep signal is 
processed so the relative catch range -frel can be set to small percentages. The first nine harmon-
ics are to be analyzed and the rms curve is to be added. The fundamental range lies between 90 
and 1100 Hz. The last eventually incomplete frame is dropped before the results are saved. 

wav2bin -fn mySig.wav | dftpeaks -slen 2048 -sofs 1024 -llen 8192 -lofs 1024 -feps 1 -frel 2 2  

-freq 1 2 3 4 5 6 7 8 9 -rms -nuttall -fu 90 -fo 1100 | clip -epi 19 | signal myResult.bin 

The complete command lines to generate the following four analysis plots are shown below. The 
last one is more interesting because a fir filter with the savitzky smoothing kernel of order two and 
length 3+1+3 coefficients is applied to the whole data stream. The table commands do the matrix 
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transposing (428x19 ⇒ 19x428 ⇒ 428x19) required in order to have the data vectors separated. It 
is tolerated here for the sake of simplicity that the filter is running over the joints of the columns. 

signal myResult.bin | plot -sig 19 -ycol 1 3 5 7 9 11 13 15 17  

-title Frequencies -dx 0.02322 -xu [sec] -yu [Hz] 

signal myResult.bin | plot -lny -sig 19 -xcol 1 -ycol 2  

-title Magnitude -name Fundamental -xu [Hz] -yu [dB] 

signal myResult.bin | plot -lny -sig 19 -xcol 1 -ycol 19 2 4 6  

-title Magnitude -nam RMS H1 H2 H3 -xu [Hz] 

signal myResult.bin | table -sig 19 -tra | fir -sav 2 -lef 3 -rig 3 | table -sig 428 -tra | 

 plot -lny -sig 19 -xcol 1 -ycol 4 6 8 10 -title Magnitude -nam H2 H3 H4 H5 -xu [Hz] 
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Figure 11: plot -sig 19 -ycol 1 3 5 7 9 11 13 15 17 -title Frequencies -dx 0.02322 -xu [sec] -yu [Hz] 
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Figure 12:  plot -lny -sig 19 -xcol 1 -ycol 2 -title Magnitude -name Fundamental -xu [Hz] -yu [dB] 
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Figure 13: plot -lny -sig 19 -xcol 1 -ycol 19 2 4 6 -title Magnitude -nam RMS H1 H2 H3 -xu [Hz] 
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Figure 14: plot -lny -sig 19 -xcol 1 -ycol 4 6 8 10 -title Magnitude -nam H2 H3 H4 H5 -xu [Hz] 

3D Spectrogram (Waterfall Chart) 

The first command line creates ten seconds of a sine-wave sweep with some white noise superim-
posed on top of it. The sweep starts at 100 Hz and rises with 0.1 decades per second. Therfore it 
goes up to 1 kHz after 10 seconds. 

The second command line generates a 3D surface plot by mapping a spectral analysis command 
line to the original input stream. For this purpose an analysis window of 4096 samples is stepped 
over the input data stream with a stepping distance of 4410 samples (corresponds to 0.1 seconds). 
The command string argument of the -cmd option is then executed for each analysis frame and the 
resulting spectra are concatenated.  

The plot function gets a 100x100 data grid. The -surface option initiates the 3D surface plot and 
the first dimension is specified using the -signals option. Surface mash is turned off in the -options 
string. 

stim -sampl 44100 -len 441000 -freq 100 -sweep 0.1 -noise 0.01 | signal mySig.bin 

signal mySig.bin | map -win 4096 -step 4410 -cmd "window -nutt | dft | clip -keep -pro 100 | db" | 

 plot -surf -sig 100 -opt "set pm3d; set view 20,10,1.5,1; set nosurface" 
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Figure 15: Waterfall Spectrogram of Sweep 

Simulation of Nine Level CMOS DAC with Dynamic Averaging 

Multi-bit CMOS D/A Converter with Integrated Low-Pass Filter 

In CMOS technology a multi-bit D/A converter can most efficiently be implemented as a switched 
capacitor structure. This way it is even possible to include a low-pass filter with the D/A converter 
for the only additional cost of one capacitor. A switched capacitor summing stage with a conti-
nuous time feed-back, often referred to as lossy integrator stage, is well suited for this purpose. Its 
input is permanently connected to the reference voltage and the steady state gain of that stage 
which is defined by a capacitance ratio will determine the DAC output voltage. 
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Figure 16: DAC with Low-Pass Function, Voltage defined by Capacitor Ratio 

To understand its operation a simple summing amplifier as shown in Figure 16 should be consi-
dered. The steady state output voltage is defined by the resistance ratio RN/RD. If resistors are re-
placed by switched capacitors their equivalent resistance 1/(fs C) has to be inserted and the steady 
state output voltage VDAC = Vref  × CN / CD . 

The signals PH1 and PH2 in the switched capacitor circuit are two non-overlapping clock signals 
both running at the DAC’s sampling frequency (e.g. 4 MHz) which never are active at the same 
time (refer to Figure 16). By swapping the two clock phases driving the switches to the right of CN 
(as indicated in the figure) the steady state output voltage will reverse its polarity. 

This leads to a practical implementation of a nine level DAC where CN  consists of up to four unit 
capacitors which are switched in parallel contributing to the numerator of the fractional expression 
for the output voltage - CN is the capacitor group between circuit input and summing node. Four 
other unit capacitors, switched in parallel, generate CD , the denominator value - the group is con-
nected to the amplifier output and to summing node. The input to the circuit is the reference vol-
tage for non-zero magnitudes and the common mode voltage (analogue ground) for a zero magni-
tude. The polarity bit of the signal value drives a multiplexer which exchanges the clock phases 
PH1 and PH2 in the indicated positions. 

Topologically the whole array of eight unit capacitors has to be connected together at the capaci-
tors’ top plates. The reason is the parasitic capacitance between capacitor plates and chip sub-
strate (ground). Bottom plates have parasitic ground capacitances which are very big. They always 
have to be connected to low impedance voltage sources, like OPAMP outputs or supply voltages. 
High impedance nodes, like the summing node of an amplifier, must be connected to the capaci-
tor’s top plate, which has a very small parasitic capacitance to ground, because it is shielded com-
pletely by the bottom plate. 

The common top plate is switched to ground at PH1 (the precharge phase) and switched to the 
inverting amplifier input at PH2 (the evaluation phase).  
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One group of four unit capacitors (their total value is the denominator of the fractional expression 
for the output voltage) is switched to ground at PH1 and switched to the amplifier output at PH2. 
The other group of 1..4 capacitors (depending on the magnitude of the signal value) is switched 
either to the reference voltage or to ground. In case of a positive sample the capacitor subset de-
fined by the signal magnitude is switched to ground at PH1 and to Vref at PH2. In case that a nega-
tive output voltage is required this group is switched to Vref at PH1 and to ground at PH2. 

All eight elements are involved in the generation of four steps. The step voltages are given by 
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which means that Vref directly defines the maximum output level. 

The case of zero magnitude is a special case. Instead of disabling all capacitors of the numerator 
group for the charge transfer it is better to generate the zero output voltage by activating the com-
plete numerator group but connecting the circuit input to ground instead of Vref. This way circuit 
parasitics like OPAMP offset voltage, channel charges of CMOS switches, gate-drain capacitances 
of MOS transistors and bottom plate capacitances do not effect the accuracy of the DAC output 
voltage as much.  

Dynamic Averaging 

There is an essential drawback connected to multi-bit D/A converters. Bad linearity or symmetry 
properties have a dramatic effect on the overall converter performance and much of the accuracy 
gained by a ΣΔ-approach is lost again. In order not to loose a significant part of the accuracy pro-
vided by ΣΔ-converters matching of unit resistors or capacitors in the DAC must be better than 
what is currently achievable by technology. This has considerably limited the use of multi-bit ΣΔ-
converters in the past. 

As already outlined a multi-bit CMOS D/A converter can be designed in a way, that its output  vol-
tage VDAC = Vref  ×  CN / CD is proportional to the ratio of two capacitances CN and CD. Both capa-
citances are composed from unit capacitors which are turned on and off by activating and deacti-
vating the clock signals which connect these elements to the circuit. Without much circuit overhead 
any fixed assignment of a unit capacitor to a certain DAC output value can be avoided. It is even 
possible to allow that a unit capacitor can be used to contribute to the numerator of the voltage 
term as well as to its denominator.  
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It is also known that the inversion of the output voltage of switched capacitor circuits can easily and 
accurately be achieved by swapping the two clock phases controlling one of the capacitor groups. 
This means that the same group of capacitors is responsible for both the gain in the positive and in 
the negative half of the operating range. This way perfect symmetry of output voltages can be 
achieved which does not depend on capacitor matching. 

The method called ‘dynamic element selection’ or ‘dynamic averaging’ makes now use of these 
properties to eliminate linearity problems caused by non ideal matching of unit elements. It uses 
the flexibility in the circuit topology to select the unit capacitors contributing to the DAC output vol-
tage dynamically and algorithmically in order to average their mismatch over time.  

Just as the spectral distribution of quantisation noise is shaped by a ΣΔ-converter in order to move 
most of the noise power up into a frequency range where a simple post filter can get rid of it, dy-
namic element selection shapes the noise spectrum which is connected to bad DAC element 
matching and moves most if it up, where it is removed by the post-filter in the same way. With dy-
namic averaging  the effect of DAC element mismatch of up to 3% and more is eliminated com-
pletely from the base-band signal. 3% capacitor matching can easily be achieved in production 
even on less silicon area which is usually spent for unit capacitors. 

A multi-bit ΣΔ-converter in conjunction with dynamic element selection is now the way to put mini-
mum requirements on all analogue circuit parts while modern production technologies are allowing 
high density digital circuits occupying less and less silicon area. For all these reasons a 3 bit ΣΔ-
converter in conjunction with a 9 level DAC using an improved data-weighted dynamic element 
selection algorithm has been selected for the actual application example. 

This new and enhanced DWA (data weighted averaging) concept allows not only to make linearity 
but also gain independent of capacitor matching which is important because another source of the 
total gain error is the reference voltage generator - an analogue sub-circuit. If the total transmission 
gain is no longer influenced by the DAC component values there is more margin for the reference 
voltage itself.  

In order to meet the very stringent absolute gain specifications of ±0.3 dB over all temperatures, 
supply voltages and process conditions component value trimming was commonly applied to the 
reference voltage. If the reference voltage becomes the only source of gain errors this trimming 
can eventually be omitted and an expensive production step can be saved. 
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Data Weighted Dynamic Element Selection 

The principle of data weighted dynamic element selection is to use the whole set of DAC elements 
(in our special case capacitors) as often as possible16. To do this an array index I(n) always point-
ing to the next DAC element in turn is introduced. Depending on the DAC value X(n) a certain 
number of DAC control lines Ei(n) starting at the index position is activated and the index is incre-
mented by the number of elements used. Modulo arithmetic is used of course. As an illustration a 
possible code sequence for a 9 level DAC (value range from 0..8) together with the result of a data 
weighted dynamic element selection (8 selectable elements with indices 0..7) is shown in Table 3. 

DAC input array index index increment selected elements
X(n) I(n) D(n) Ei(n) 

1 0 1 0 
0 1 0 none 
2 1 2 1, 2 
3 3 3 3,4,5 
2 6 2 6,7 
4 0 4 0,1,2,3 
3 4 3 4,5,6 
5 7 5 7,0,1,2,3 
6 4 6 4,5,6,7,0,1 
7 2 0 2,3,4,5,6,7,0,1
0 2 0 none 
... ... ... ... 

Table 3: Data Weighted Dynamic Element Selection (Example Code Sequence, 8 Elements) 

A real implementation which generates four enable signals Ei(n) for any kind of DAC elements, a 
signal S(n) representing the sign information of the analogue output value and a signal Z(n) indi-
cating that a zero value has to be generated is shown in Figure 17. 
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S := (X=0) or (X=1) or (X=2) or (X=3);
Z := (X=4);
E1 := Z or (I=0) or (X=0) or (x=8) or
         ((x<>3) and (x<>5) and (I=3)) or
         (((X=0) or (x=1) or (x=7) or (x=8)) and (I=2));
E2 := ...
E3 := ...
E4 := ...  

Figure 17: Data Weighted Averaging (Typical Implementation) 

The lookup table for the input value X(n) takes care of the unsigned to signed conversion required 
to transform the ΣΔ-demodulator output range [0..8] into the range [-4..+4] which is used by the 
DAC. It delivers the number of positions the array index I(n) has to advance after a sample has 

                                                 
16 Baird, Fiez; Lin. Enhancem. of Multibit ΔΣ A/D and D/A Conv. Using Data Weighted Averaging; IEEE Trans. Circuits & Syst. 

II, vol. 42, pp. 753-762, Dec.’95 
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been processed. This increment is 0 when no or when all DAC elements are used to compose the 
output value. The combinatorial logic block is typically defined by a lot of straight forward boolean 
equations which will be optimised by a synthesis tool and finally implemented as array logic.  

Enhanced Data Weighted Averaging (EDWA) 

In the switched capacitor DAC according to Figure 16 the output voltage is given by VDAC = Vref  ×  
CN / CD as was already outlined above. CN defines the magnitude and is composed from 0 .. 4 unit 
capacitors referred to as the numerator elements. CD is the reference capacitor and it is always 
composed from 4 unit capacitors, the denominator elements. The sign of the output voltage can be 
inverted directly as was shown so just the magnitude is of interest when an element selection algo-
rithm is applied. 

The conventional dynamic element selection circuit as described above would algorithmically se-
lect as many unit capacitors as are needed for the actual output voltage aiming to average their 
mismatches over time. This way a perfect linearity can be achieved but any mismatch between the 
mean unit capacitance of the reference group and the one of the working group will cause an ab-
solute gain error. 

Therefore the basic principle of data weighted averaging has been modified by including the refer-
ence capacitance in the averaging process. Actually two different groups of unit capacitors are 
swapped after each frame. In even frames the first group serves as the pool which a data depend-
ent number of elements is selected from while the complete other group serves as reference ca-
pacitance. In odd frames the two groups change their place.  

In a DWA algorithm it is required to keep track of the index of the last element which has been 
used to ensure that each element is used exactly the same number of times thus equally contribut-
ing  to the output voltage. To do this a modulo 4 accumulator is required integrating all data inputs 
which have to be processed. Its output is the array index I(n) which points into the capacitor array 
indicating where to take the next element from. According to the data value X(n) a certain number 
of elements is then enabled by control lines Ei(n) which contribute to the numerator of the gain 
term before the pointer I(n) is updated. 

A zero magnitude must be treated slightly differently due to the structure of the used DAC. Instead 
of disabling all numerator elements (Ei(n)=0) it is better to enable all of them (Ei(n)=1) but at the 
same time to make the value of the reference voltage temporarily to zero. This is done by means 
of the control signal Z(n). When this is active I(n) does not increment because no element has con-
tributed to the output voltage. 
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In the enhanced algorithm there are two independent groups of capacitors so two different DWA 
pointers I1(n) and I2(n) must be used. A circuit which generates the required control signals for the 
D/A converter taking group swapping into account is shown in Figure 18. 

The lookup table takes care of properly incrementing the index pointers depending on how many 
elements of each group have to be used. Usage of 0 elements does not increment the correspond-
ing pointer and usage of 4 elements would move the pointer a complete turn again resulting in no 
index movement. 

The least significant bit of the frame counter indicates which group of unit capacitors is active in a 
frame and contributes to the magnitude of the DAC output value. All capacitors of the other group 
are used as feedback capacitances. The least significant frame counter bit is also used to toggle 
between the two array pointers I1(n)and I2(n).  
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Figure 18: Enhanced Data Weighted Averaging (Element Selection Circuit) 

The correspondence between the EDWA circuit state I1(n), I2(n) and frame clock, the input data 
X(n) and the output signals sign S(n), zero Z(n) and enable 1..4 Ei(n) is defined by a page of boo-
lean equations written in VHDL. These equations are very similar to those of the standard DWA 
circuit but toggling between odd and even frames has to be taken into account. A synthesis tool 
implements this set of equations as a combinatorial matrix which is optimised very efficiently. This 
leads to a very compact and area efficient digital circuit implementation especially suitable for 
multi-channel devices.  

The proposed kind of data weighted averaging which eliminates not only the effect of mismatch on 
linearity but also on absolute gain invalidates the usually very stringent specifications for capacitor 
matching. This allows the usage of very small unity capacitors even in the feedback path of the 
D/A converter. In system simulations a capacitor mismatch of up to 5% has been simulated and it 
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did not have a significant influence on the signal distortion. The absolute gain showed a very little 
sensitivity to capacitance mismatch, too.  

However, it has to be noted that group swapping cannot eliminate the effect of group mismatch on 
the DAC gain completely. If the mismatch between the two groups is very big then higher order 
terms of the error propagation function cannot be neglected. They are not identical for the numera-
tor and denominator of a quotient.  

Two simple examples: (3/4 + 4/3) / 2 = 1.041666666667, (99/100 + 100/99) / 2 = 1.000050505051. 
In the first case a group mismatch of 33% is reduced by a factor of 8 to a gain mismatch of about 
4% by group swapping. In the second case 1% group mismatch is reduced to  0.005% gain error, 
an improvement by a factor of 200. Therefore a remaining gain error can be neglected as long as 
the group matching is not extremely bad. 

Gain and Linearity Compensated D/A Converter with Integrated Low-Pass Filter 

The actual DAC circuit which is controlled by the EDWA circuit described above is very similar to 
the one shown already in Figure 16. But there are some differences. In order to swap the two ca-
pacitor groups in odd and even clock frames more switches are required. Each capacitor bottom 
plate must be connected to three switches. One connects it to ground (normally activated at PH1) 
the second connected to the amplifier output (activated at PH2 if the group is the denominator 
group) and the third connected to Vref (for positive values activated at PH2 if the group is the nu-
merator group). 

Figure 19 shows this stage in a single ended configuration. A corresponding differential version is 
obvious. The output voltage DACout is defined by the sequence and activity of its clock inputs PHAi, 
PHBi, PHCi. In total these are 24 clock lines which are generated by an optimised array logic cre-
ated by the synthesis tool. 

The correspondence between these 24 control lines PHA1..8, PHB1..8 and PHC1..8 and the master 
clock phases PH1 and PH2 (refer to Figure 16) depending on data enables Ei(n), zero flag Z(n), 
sign bit S(n) and LSB of frame counter is shown in Table 4 and Table 5. The DWA unit which gen-
erates the control signals taking group swapping into account is shown in Figure 18. 

The clock signals PHA1..8 are used to connect the capacitors to Vcm (analogue ground). During 
normal operation with positive input values they all are connected to PH1, the pre-charge clock 
phase. The clock signals PHB1..8 are used to connect to Vref (input voltage of summing stage), 
while signals PHC1..8 are used to connect to the OPAMP output closing the feedback loop. 
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During normal operation with positive input values all PHC signals of a complete group are con-
nected to PH2, the evaluation clock phase. This makes the involved capacitors feedback capaci-
tors, their values contributing to the denominator of the gain term. 
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Figure 19: Nine level DAC with Low-Pass Function 

At the same time PHB signals of a data dependent number of capacitors of the other group are 
also connected to PH2. This makes a data dependent number of unit capacitors the input group 
which contributes to the numerator of the gain term. For negative data values pre-charge and 
evaluation phase connected to this input group capacitors are swapped. 

The Table 4 and Table 5 below contain the complete connection maps taking the special zero case 
(with two alternatives) and group swapping into account. Table 4 and Table 5 are identical except 
that group 1..4 and group 5..8 are exchanged. One is applied in even clock frames the other one in 
odd. 

The tables can directly be used to generate the CASE statements with the signal assignments 
used to describe such a structure in VHDL. Schematic diagrams or clock timing sheets would be 
voluminous and confusing and have therefore not been used. 
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 positive (S=0) negative (S=1) zero (Z=1) 
PHA1..4 on during PH1 on during PH1 on during PH1 
PHA5..8 on during PH1 on during PH2 if E1..4 on during PH1 (also PH2)
PHB1..4 off off off 
PHB5..8 on during PH2 if E1..4 on during PH1 off 
PHC1..4 on during PH2 on during PH2 on during PH2 
PHC5..8 off off off 

Table 4: SC-Clock Assignment in Even Frames 

 positive (S=0) negative (S=1) zero (Z=1) 
PHA1..4 on during PH1 on during PH2 if E1..4 on during PH1 (also PH2)
PHA5..8 on during PH1 on during PH1 on during PH1 
PHB1..4 on during PH2 if E1..4 on during PH1 off 
PHB5..8 off off off 
PHC1..4 off off off 
PHC5..8 on during PH2 on during PH2 on during PH2 

Table 5: SC-Clock Assignment in Odd Frames 

During even frames C1 .. C4 are switched into the feedback branch while a programmable selec-
tion of  C5 .. C8  creates the actual output value. During odd frames two capacitor groups are 
swapped. C5 .. C8 are switched into the feedback branch while a selection of C1 .. C4 defines the 
output value. 

The zero case can be viewed as a special positive case with zero input magnitude. During PH1 the 
numerator group (C1..C4 in Table 5, C5..C8 in Table 4) is discharged (by PHAi) like in the positive 
case. At PH2 the enabled elements of this group are normally connected to the reference voltage 
(by PHBi) to divide it by the proper factor. In the zero case the complete group should again be 
connected to ground instead (by PHAi) which is indicated by the expression given in parenthesis. 
This action is not mandatory because no charges should be transferred in the ideal case but it is 
recommended because it compensates clock feed-through of other switches. The table entry 
therefore means PHA1..4 (in odd frames) respective PHA5..8 (in even frames) should be connected 
to a logical or of PH1 and PH2 in the zero case. 

PH1 and PH2 can most easily be derived from an 8 MHz master clock with a duty cycle of 25% 
each. Alternatively these clocks could be generated from the 4 MHz sampling clock using certain 
cross-coupled gating to enforce non overlap at slightly less than 50% duty cycle. 

Using this DAC in conjunction with the enhanced DWA (Data-Weighted-Averaging) algorithm de-
scribed in the previous section all capacitor mismatches are eliminated. Not only the linearity is 
improved by the averaging but also the absolute gain. The average value of the feed back capaci-
tor is exactly four times the mean value of all eight unit capacitors making the gain of the DAC per-
fectly unity. 



88 

Simulation Example 

The command line below was used to generate the simulation results shown in Figure 20. The 
contents of the input file dac2bin.dat are listed in Table 6. To keep the table small linefeeds have 
been replaced by spaces.  

dac2bin -noc -vref 1 -fb 10 < dac2bin.dat | plot 

The file was generated by a C-program implementing Table 4 and Table 5. It is listed in Table 7. 
To keep it simple, no dynamic averaging other than group swapping was implemented. The main 
program generates one period of a 1000 Hz sine wave sampled at 64 kHz. The low-pass filter has 
been readjusted by the -fb option while the reference voltage -vref has been set to 1V. 
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Figure 20: Simulation of Switched-Capacitor DAC 

ff00001 0f00f00 ff00001 f0000f0 ff00001 0001f00 ff00001 00100f0 ff00001 0003f00 ff00001 00300f0 
ff00001 0007f00 ff00001 00700f0 ff00001 0007f00 ff00001 00700f0 ff00001 000ff00 ff00001 00f00f0 
ff00001 000ff00 ff00001 00f00f0 ff00001 000ff00 ff00001 00f00f0 ff00001 000ff00 ff00001 00f00f0 
ff00001 000ff00 ff00001 00f00f0 ff00001 000ff00 ff00001 00f00f0 ff00001 000ff00 ff00001 00700f0 
ff00001 0007f00 ff00001 00700f0 ff00001 0007f00 ff00001 00300f0 ff00001 0003f00 ff00001 00100f0 
ff00001 0001f00 ff00001 f0000f0 ff00001 0f00f00 ff00001 f0000f0 f00f001 0100f00 0ff0001 10000f0 
f00f001 0300f00 0ff0001 30000f0 f00f001 0700f00 0ff0001 70000f0 f00f001 0700f00 0ff0001 70000f0 
f00f001 0f00f00 0ff0001 f0000f0 f00f001 0f00f00 0ff0001 f0000f0 f00f001 0f00f00 0ff0001 f0000f0 
f00f001 0f00f00 0ff0001 f0000f0 f00f001 0f00f00 0ff0001 f0000f0 f00f001 0f00f00 0ff0001 f0000f0 
f00f001 0f00f00 0ff0001 70000f0 f00f001 0700f00 0ff0001 70000f0 f00f001 0700f00 0ff0001 30000f0 
f00f001 0300f00 0ff0001 10000f0 f00f001 0100f00 ff00001 f0000f0 ff00001 0f00f00 

Table 6: dac2bin.dat 
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#include <stdio.h>  
#include <math.h> 
 
int PHAL (int c, int e) { 
 if (!((c>>1)&1)) { // even frames 
  if (!(c&1))/*PH1*/ return (e>0)?15:((e<0)?15:15); else/*PH2*/ return (e>0)?0:((e<0)?0:0);} 
 else { // odd frames 
  if (!(c&1))/*PH1*/ return (e>0)?15:((e<0)?0:15); else/*PH2*/ return (e>0)?0:((e<0)?abs(e):15);}}; 
 
int PHAH (int c, int e) { 
 if(!((c>>1)&1)) { // even frames 
  if (!(c&1))/*PH1*/ return (e>0)?15:((e<0)?0:15); else/*PH2*/ return (e>0)?0:((e<0)?abs(e):15);} 
 else { // odd frames 
  if (!(c&1))/*PH1*/ return (e>0)?15:((e<0)?15:15); else/*PH2*/ return (e>0)?0:((e<0)?0:0);}}; 
 
int PHBL (int c, int e) { 
 if(!((c>>1)&1)) { // even frames 
  if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?0:0); else/*PH2*/ return (e>0)?0:((e<0)?0:0);} 
 else { // odd frames 
  if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?15:0); else/*PH2*/ return (e>0)?abs(e):((e<0)?0:0);}}; 
 
int PHBH (int c, int e) { 
 if(!((c>>1)&1)) { // even frames 
  if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?15:0); else/*PH2*/ return (e>0)?abs(e):((e<0)?0:0);} 
 else { // odd frames 
  if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?0:0); else/*PH2*/ return (e>0)?0:((e<0)?0:0);}}; 
 
int PHCL (int c, int e) { 
 if(!((c>>1)&1)) { // even frames 
  if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?0:0); else/*PH2*/ return (e>0)?15:((e<0)?15:15);} 
 else { // odd frames 
  if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?0:0); else/*PH2*/ return (e>0)?0:((e<0)?0:0);}}; 
 
int PHCH (int c, int e) { 
 if(!((c>>1)&1)) { // even frames 
  if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?0:0); else/*PH2*/ return (e>0)?0:((e<0)?0:0);} 
 else { // odd frames 
  if (!(c&1))/*PH1*/ return (e>0)?0:((e<0)?0:0); else/*PH2*/ return (e>0)?15:((e<0)?15:15);}}; 
 
void DACLine (int c, int e, FILE* fout) { 
 fprintf(fout,"%x%x%x%x%x%x%x\n", 
  PHAL(c,e),PHAH(c,e),PHBL(c,e),PHBH(c,e),PHCL(c,e),PHCH(c,e),!(c&1));}; 
 
void DACPoint (int* LineCnt, int e, FILE* fout) { 
 if (e == -4)      e = -15; 
 else if (e == -3) e = -7; 
 else if (e == -2) e = -3; 
 else if (e == 2)  e = 3; 
 else if (e == 3)  e = 7; 
 else if (e == 4)  e = 15; 
 DACLine((*LineCnt)++, e, fout); 
 DACLine((*LineCnt)++, e, fout);}; 
 
int main() { 
 int LineCnt = 0; 
 double t = 0; 
 while (t < 0.001) { 
  DACPoint(&LineCnt, (int)floor(0.5+4.5 * sin(2.0*3.141592*1000.0*t)), stdout); 
  t += (1./64000.);} 
 return(0);} 

Table 7: C-program to generate ramp 
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Anhang C: TAP Macro Scripts 

Harmonic Analysis on Scales (harmonics.ana) 

This macro script performs analysis of harmonic content over time or tone step. Available targets 
are for segmentation, overload recognition, static and dynamic partial analysis and plot generation. 

The RMS target creates and displays the running RMS which is the base of subsequent segmenta-
tion. The RMS display is useful in determining a suitable segmentation threshold which has to be 
entered using the min= option when the actual segmentation has to be performed.  

The Overflow target creates a display to check if the input wave file is overloaded and contains  
clipping in some regions. Harmonic analysis results should be neglected in regions marked as 
overloaded. 

The Mask target displays the running RMS together with the segmentation mask where the level 
exceeds the specified minimum. The Mask display is useful to crosscheck the segmentation mask.  

The targets SegmentRMS and SegmentOverflow  are similar to the corresponding targets above 
but the segmentation has already been performed and only the masked regions are displayed. 

The targets Stat and Dyn display the actual static and dynamic analysis results. The static plots 
which can also be displayed specifying separate targets are StatF0, StatHarm and StatInharm. 

StatF0 shows the detected fundamental frequency with harmonic and spectral centroid over the 
tone number. StatHarm shows the average harmonic levels over the tone number and StatInharm 
shows the average inharmonicity over the tone number. 

The dynamic analysis targets are DynF0, DynHarmLog, DynHarmLin and DynFreq. 

DynF0 shows the detected fundamental frequency with the harmonic now over time rather than 
over tone number. DynHarmLog and DynHarmLin show the harmonic levels dynamically over 
time and DynFreq shows the actual frequencies of the harmonics over time. 

The targets Clean or Clear remove all intermediate results and the target Help displays the table 
with options and targets below. 

The most essential option is the WAV= option which specifies the sound file which is to be ana-
lyzed. No extension should be given, because all intermediate result files will get that file name 
with different terminations and extensions. The min= option has already been mentioned. It speci-
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fies the segmentation threshold amplitude and has to be entered correctly when the actual mask-
ing is performed.  

The f0= option guides the fundamental recognition and should be set to the estimated fundamental 
frequency at the beginning of the sound file. Together with the option df= which specifies the max-
imum frequency deviation in % (in upward direction) between two subsequent notes these two 
values are passed to the -continuous option of the swana command. The macro is setup for rising 
scales or sweeps only and had to be changed if descending scales are to be analysed. 

The options hg= and ex= are passed to the -partials option of the swana command. It guides the 
search for a harmonic grid by specifying how many partials should take part in this search and how 
their contribution should be weighted. Refer to the swana command in Appendix A for a detailed 
description of the effect of the -partials option. 

The options sw= and dw= specify the static and dynamic window size which are used by the 
Fourier transform in the static and dynamic mode. Especially the static window must be shorter 
than the actual tone duration in order not to cross the border to the next tone. The static window is 
stepped tone by tone by the distance related to the cut= option. The cut specification is used dur-
ing the segmentation process but it also defines the window stepping distances in static and dy-
namic mode. In static mode the stepping distance is 100x the cut input, in dynamic mode the step-
ping distance is the cut input itself. A corresponding dx= definition must be given in order to scale 
the x-axes of all dynamic plots properly. 

The options opt= and pltopt= are forwarded to all plot commands and can be used to select a plot 
device, to define plot titles, specific plot ranges or other plot related settings. The combination opt= 
“set term postscript landscape color solid; set output '\\\\PDC\\HPLJ4500'" and pltopt=-nowait will 
send the plots to the printer without showing them 

• TAP - Transfer Analysis Package - Harmonic Analysis on Scales - Version 1.0 by W. Kausel, IWK (harmonics.ana) 

Displays harmonic content over time or tone step 

Options:  
WAV= wave file to process (without .wav extension!)  
min= threshold level for segmentation (def=1000) 
f0= expected initial base tone frequency 
df= maximum frequency deviation in [%] (def=20) 
hg= harmonic grid size (def=7) 
ex= exponent of weight function (def=0.2) 
sw= static window size (def=32768) 
dw= dynamic window size (def=4096) 
cut= note length in samples / 100 (def=441) 
dx= note length in sec / 100 (def=0.01) 
opt= plot command option string 
pltopt= additional plot options 
 

Targets:  
help: displays this help page  
clean / clear: remove intermediate/all files  
RMS: displays the running RMS over time  
Overflow: displays regions with overflowing (> 32766) input levels 
SegmentRMS: displays the running RMS over time  
SegmentOverflow: displays regions with overflowing input levels 
Mask : displays segmentation mask with RMS > min 
Stat: static result plots (statf0,statharm,statinharm) 
Dyn: dynamic result plots (dynf0,dynharmlog,dynharmlin,dynfreq)  
All: static and dynamic result plots  
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Spectral Dynamic Analysis (specdens.ana) 

This macro script primarily analyses the harmonic content over the dynamic level, but it also can 
do analysis of harmonic content over time without any segmentation on any kind of sound file in-
put. No scale or sweep must be present in the recording. Available targets are for calculation and 
display of partial frequency variation, partial magnitude variation, partial harmonicity variation and 
spectral dynamic analysis. 

The Frequency target performs a fundamental extraction by searching for a harmonic grid. The 
extracted fundamental frequencies together with the frequencies of the partials are plotted over 
time. 

The Harmonicity target creates a plot where partial frequencies are related to their fundamental 
frequency so that harmonicity can be seen as harmonic ratios over time. 

The Magnitude target displays the intensity of the partials over time. 

The SpectralDynamic target sorts all harmonic results according to the magnitude of the funda-
mental and creates a plot which shows harmonic content over the dynamic level. For this analysis 
a recording of a single note played at varying dynamic levels will be most suitable. 

The Batch target does all the lengthy processing without generating any graphical output. Subse-
quent calls to the other targets will then be able to immediately present the requested  the plots. 

The targets Clean or Clear remove all intermediate results and the target Help displays the table 
with options and targets below. 

The most essential option is again the WAV= option which specifies the sound file which is to be 
analyzed. No extension should be given, because all intermediate result files will get that file name 
with different terminations and extensions.  

The fu= and fo= options are guiding the fundamental recognition. They limit the frequency range 
where fundamentals are to be expected. They are directly passed to dftpeaks. By specifying max-
imum relative deviations using the options lu= and lo= discontinuities in the fundamental frequency 
curve can be avoided. These limits can be set to small percentage values if constant pitch or slow-
ly varying sweeps are analyzed. They are passed to dftpeaks -frel lower upper.  

Another option effecting fundamental recognition is the min= value. It is the threshold for the run-
ning rms signal level which must be exceeded in order to enable fundamental recognition. If the 
signal is below that level, fundamental detection is skipped and the last valid fundamental frequen-
cy is used instead. The option value is passed to the dftpeaks -threshold option. 
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The options lwin=, lstep=, swin= and sstep= define the long and short window sizes and stepping 
distances. The corresponding dftpeaks options are  -llen, -lofs, -slen and -sofs. The long window 
should provide the required frequency resolution while the small window should be small enough 
for tracking the spectral content in time. 

The minlev= option is used for the SpectralDynamic target to define the left x-axes limit of the dis-
played level range. The dx= option is the x-axis resolution of all time domain plots. It has to be set 
to sstep / sample. The sampling rate can be changed using the sample= option. Its default is  
44100 Hz. The option string opt= is passed to the GNUPlot utility and can be a string like “set ter-
minal postscript landscape color solid; set output '\\\\PDC\\HPLJ4500'". The pltopt= string is 
passed to the plot function and could be a string like “-nowait” in case of batch printing. 

• TAP - Transfer Analysis Package - Spectral Dynamic Analysis - Version 1.0 by H. Nachtnebel, IWK (specdens.ana) 

Displays the spectral density over the base tone power. 

 

Options:  
 WAV=... wave file to process (without .wav extension!)  
 sample=... sampling rate of wave file [44100Hz]  
 fu=... lower limit of base tone frequency range  
 fo=... upper limit of base tone frequency range  
 lu=... rel lower limit of next base tone frequency deviation [3%] 
 lo=... rel upper limit of next base tone frequency deviation [15%] 
 lwin=... long window size for base tone detection [8192]  
 lstep=... long window step for base tone detection [4096]  
 swin=... short window size for harmonics detection [2048]  
 sstep=... short window step for harmonics detection [1024]  
 dx=... X-axis scaling (sstep / sample) [1024/44100sec]  
 min=... minimum rms power to calculate f0 [0]  
 minlev=... minimum db level for SpectralDynamic  
 opt=... plot command option string  
 pltopt=... additional plot options  

Targets:  
Help: displays this help page  
Clean / Clear: remove intermediate files  
Batch: does the lengthy part without any plot afterwards 
Frequency: displays the spectral frequencies found over time 
Harmonicity: displays the harmonic ratios found over time 
Magnitude: displays the spectral magnitude found over time 
SpectralDynamic: displays the spectral density over the base tone power  
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Sound File Segmentation (segmentation.ana) 

This macro script reads an audio file in windows .wav format and detects sound events and pe-
riods of silence in order to repartition the file. The script can eliminate all periods of silence creating 
a sound file with all significant sound events concatenated. The single segments can be trimmed to 
a given length. It is also possible to cut the input wave file into separate short wave files each con-
taining exactly one significant sound event. 

Detecting significant sound events requires an analysis of the RMS sound level first which can be 
plotted using the RMS target. The Overflow target can be used to check whether input data do not 
exceed the valid audio range.  

The most essential option needed by all targets is the WAV= option which specifies the sound file 
which is to be analyzed. No extension should be given, because all intermediate result files will get 
that file name with different terminations and extensions.  

Using the options on= and off= threshold levels can be specified for the detection of the sound 
events. The levels should be given such that no significant event fails to reach the threshold but 
background noise should always be below this level. The RMS plot is a useful tool to determine a 
suitable threshold level. The off threshold is optional and is set to the on threshold by default. 

The Mask target again plots the running RMS but now with the binary segmentation mask supe-
rimposed. This way the segmentation thresholds can easily be checked before further processing. 
The ymax= option can be used to adjust the range of all plots. Portions where the segmentation 
mask is zero will later on be eliminated. 

The running RMS is calculated by stepping a user definable window over the audio data stream. 
The step size is 441 samples corresponding to a time resolution of 10ms or 100 points per second. 
The window size may be specified using the win= parameter. Usually the default of 1000 will work 
well in most cases. For very low frequencies a bigger value might be required if a smooth RMS 
curve is desired. Shorter windows will better reflect sharp transitions of the signal energy and yield 
more accurate slew-rates during attack. 

Segmentation can be controlled using several options to modify the selected intervals. Using the 
spike= and gap= option minimum segment lengths and minimum segment distances can be spe-
cified. All hits which consist of fewer samples than 100 times the given spike length will be ignored 
and all gaps which consist of fewer samples than 100 times the given gap size will be eliminated 
from the mask. Detected segments can be augmented using the aug= option and trimmed to equal 
length by using the cut= option. Again the parameter is a number of samples divided by 100. 
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The opt= and pltopt= options allow to forward option strings to the plot command for e.g. PDF 
printing, scaling or setting plot title, axis labels, display grid etc. The option string opt= is passed to 
the GNUPlot utility and can be a string like “set terminal postscript landscape color solid; set output 
'\\\\PDC\\HPLJ4500'". The pltopt= string is passed to the plot function and could be a string like  
“-nowait” in case of batch printing or “-title SegmentationPlot -grid -xunit [Hz]”. 

 

• TAP - Transfer Analysis Package - Segmentation of wave files - Version 1.0 by W. Kausel, IWK (segmentation.ana) 

Performs wave file segmentation based on sound power detection. 

 

Options:  
WAV=... wave file to process (without .wav extension!) 
on=...  on threshold level for segmentation (def=1500) 
off=... off threshold level for segmentation (def=200) 
aug=... augment segments by 100*aug samples (def=10) 
spike=... eliminate spikes shorter than 100*samples (def=20)  
gap=... eliminate gaps shorter than 100*samples (def=20)  
win=... processing window length in audio samples (def=1000) 
cut=... segment length in samples / 100 (def=441, this is 1 sec) 
ymax=... y plot range for rms plots  
opt=... plot command option string 
pltopt=... additional plot options  

Targets:  
Help: displays this help page  
Clean / Clear: remove intermediate files  
RMS: displays the running RMS over time 
Overflow: displays regions with overflowing (> 32766) input levels 
SegmentRMS: displays the running RMS over time after segmentation 
SegmentOverflow:   displays regions with overflowing input levels 
Mask: displays segmentation mask with RMS > on 
SegmentWAV: perform segmentation on wave file (time consuming) 
CutWAV: store segments in separate wave files 
NormaliseWAV: normalise all segments in segmented wave file 
CutNorm: store normalised segments in separate wave files 
All: perform all operations 

 

 
 


