
Unity Pro

33002515 07/2012
33
00

25
15

.1
2

www.schneider-electric.com

Unity Pro
Concept Application Converter
User Manual

07/2012

The information provided in this documentation contains general descriptions and/or
technical characteristics of the performance of the products contained herein. This
documentation is not intended as a substitute for and is not to be used for
determining suitability or reliability of these products for specific user applications. It
is the duty of any such user or integrator to perform the appropriate and complete
risk analysis, evaluation and testing of the products with respect to the relevant
specific application or use thereof. Neither Schneider Electric nor any of its affiliates
or subsidiaries shall be responsible or liable for misuse of the information that is
contained herein. If you have any suggestions for improvements or amendments or
have found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic
or mechanical, including photocopying, without express written permission of
Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when
installing and using this product. For reasons of safety and to help ensure
compliance with documented system data, only the manufacturer should perform
repairs to components.

When devices are used for applications with technical safety requirements, the
relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware
products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2012 Schneider Electric. All rights reserved.
2 33002515 07/2012

Table of Contents
Safety Information . 7
About the Book . 9

Part I Requirements and conversion 11
Chapter 1 General Description of the Unity Pro Concept Converter 13

General Description. 14
Conversion with the Conversion Wizard . 15

Chapter 2 Requirements . 17
Concept Version . 18
Supported Hardware Platforms. 19
Configuration . 20
System . 22
EFBs . 31
Programming Language SFC . 35
Programming Language LD . 36
Programming Language ST/IL . 47
Programming Language LL984. 49
Programming Language FBD . 50

Chapter 3 Language Differences . 51
Functions Not Present in Unity . 53
EFB Replaced by Function . 54
FFBs Not Available For All Platforms . 55
INOUT Parameters . 59
Parameter Type Changed. 60
ANY_ARRAY_WORD Parameters . 61
Unique Naming required . 62
Incomplete LD Generation . 63
LD Execution Order Changed . 64
Constants . 68
Indices in ST and IL. 69
Calculate with TIME and REAL . 70
WORD Assignments to BOOL Arrays . 71
Topological Address Overlapping . 72
Substitute %QD by %MF. 73
33002515 07/2012 3

Structure Alignment Changed . 74
Undefined Output on Disabled EFs . 75
Variables at Empty Pins. 77
SFC Section Retains its State When Performing an Online Modification 78
SFCCNTRL Function Block in Unity Behaves Different to Concept 79
Weekday Numbering . 80
System Timer. 81
Initial Values . 82
Macros . 84

Chapter 4 Possible application behavior change. 85
General . 86
Concept Behavior . 88
IEC Demands. 89
Unity Behavior . 92
Consequences. 94

Chapter 5 The Conversion Process. 101
Conversion Process. 101

Chapter 6 Conversion Procedure . 103
Exporting a Project from Concept . 104
Importing a Project into Unity Pro . 105
Missing Datatypes at the Beginning of the Import 106
Converting Only Parts of a Concept Application 107
Removing Accidentally Included Concept Macros. 108
Initialization Values . 109

Part II Blocks from Concept to Unity Pro 111
Chapter 7 BYTE_TO_BIT_DFB: Type conversion 113

Description. 113
Chapter 8 CREADREG: Continuous register reading 117

Description. 118
Mode of Functioning . 121
Parameter description . 122
Modbus Plus Error Codes . 123

Chapter 9 CWRITREG: Continuous register writing 125
Description. 126
Mode of Functioning . 129
Parameter description . 130

Chapter 10 DINT_AS_WORD_DFB: Type conversion 131
Description. 131

Chapter 11 DIOSTAT: Module function status (DIO) 133
Description. 133

Chapter 12 GET_TOD: Reading the hardware clock (Time Of Day) . 135
Description. 135
4 33002515 07/2012

Chapter 13 LIMIT_IND_DFB: Limit with indicator 139
Description . 139

Chapter 14 LOOKUP_TABLE1_DFB: Traverse progression with 1st
degree interpolation . 143
Description . 144
Detailed description. 146

Chapter 15 PLCSTAT: PLC function status . 149
Description . 150
Derived Data Types. 152
PLC status (PLC_STAT) . 154
RIO status (RIO_STAT) for Quantum . 156
DIO status (DIO_STAT). 158

Chapter 16 READREG: Read register. 165
Description . 166
Mode of Functioning . 169
Parameter description . 170

Chapter 17 RIOSTAT: Module function status (RIO). 173
Description . 173

Chapter 18 SET_TOD: Setting the hardware clock (Time Of Day). . 177
Description . 177

Chapter 19 WORD_AS_BYTE_DFB: Type conversion 181
Description . 181

Chapter 20 WORD_TO_BIT_DFB: Type conversion 183
Description . 183

Chapter 21 WRITEREG: Write register . 187
Description . 188
Mode of Functioning . 191
Parameter description . 192

Appendices . 195
Appendix A FAQ Build Errors . 197

General . 198
Object Link Creation Error. 199
Object Must be Connected to a Successor . 200
Link Together with Variable isn’t Allowed . 201
Data Type ’xxxx’ Expected . 202
Empty DFB to Replace Obsolete EFB . 207
Undefined Symbol ’xxxx’ . 208
Call of Non-Function Block . 210
Parameter ’xxxx’ Has to Be Assigned . 213
’ xxxx’ Is Not a Parameter of ’yyyy’ . 214
33002515 07/2012 5

DDT Component Is Missing . 215
EHC Parameters Out of Range . 216
Not a Valid Address . 217
140 NOG 111 00 Configuration Not Converted . 218

Index . 219
6 33002515 07/2012

§

Safety Information
Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with
the device before trying to install, operate, or maintain it. The following special
messages may appear throughout this documentation or on the equipment to warn
of potential hazards or to call attention to information that clarifies or simplifies a
procedure.
33002515 07/2012 7

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by
qualified personnel. No responsibility is assumed by Schneider Electric for any
consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction
and operation of electrical equipment and its installation, and has received safety
training to recognize and avoid the hazards involved.
8 33002515 07/2012

About the Book
At a Glance

Document Scope

This document describes the functionality and performance scope of the Concept
Application Converter for Unity Pro.

Validity Note

This document is valid for Unity Pro from Version 6.0.

Related Documents

You can download these technical publications and other technical information from
our website at www.schneider-electric.com.

User Comments

We welcome your comments about this document. You can reach us by e-mail at
techcomm@schneider-electric.com.

Title of Documentation Reference Number

Unity Pro Software Reference Manual -

Unity Pro Software Operating Modes Manual -
33002515 07/2012 9

10 33002515 07/2012

33002515 07/2012
I

Unity Pro

Requirements and conversion

33002515 07/2012
Requirements and conversion
Overview

This section contains requirements and information about the conversion.

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page

1 General Description of the Unity Pro Concept Converter 13

2 Requirements 17

3 Language Differences 51

4 Possible application behavior change 85

5 The Conversion Process 101

6 Conversion Procedure 103
11

Requirements and conversion

12 33002515 07/2012

33002515 07/2012
1

Unity Pro

General Description

33002515 07/2012
General Description of the Unity
Pro Concept Converter
Overview

This chapter contains a general description of the Unity Pro Concept Converter.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

General Description 14

Conversion with the Conversion Wizard 15
13

General Description
General Description

Brief description

The Concept Converter is an integrated function in Unity Pro, which is used to
convert Concept applications into Unity Pro. This means that Concept programs can
also be operated in Unity Pro.

Substitute objects are used in place of objects that cannot be converted. The Unity
Pro project can be analyzed using the main menu Create → Analyze Project.
Subsequently messages are displayed in the output window to find the substitute
objects.

Elements on the Concept application that can not be converted are logged in the
conversion report.

Descriptions of the respective procedures are provided in chapter Conversion
procedure (see page 103).

NOTE: Back conversion from Unity Pro to Concept is not possible.

Conversion

The conversion is carried out in 4 steps:
1. In Concept: Export the Concept application using the Concept converter which

creates an ASCII file (*.ASC).
NOTE: Do not use the project with used DFBs (Re-Connect to Equal) option
when creating the *.ASC file. Unity Pro cannot import the application if this option is
used.

2. In Unity Pro: Open the exported ASCII file (*.ASC) in Unity Pro.
3. In Unity Pro: Automatic conversion of the ASCII file into Unity Pro source file

format.
4. In Unity Pro: Automatic import of the Unity Pro source file.

Conversion options for Concept projects

You can enter conversion options (see Unity Pro, Operating Modes) in Unity Pro
before the conversion that have effects on the conversion result.

Atrium cannot be converted

Atrium configurations cannot be converted into Unity Pro.

Conversion Wizard

Please refer to Conversion with the Conversion Wizard (see page 15).
14 33002515 07/2012

General Description
Conversion with the Conversion Wizard

Application Conversion as a Whole

To convert an application as a whole, while keeping the same PLC family, and
selection of application parts or remapping of I/O objects is not needed, use the
Concept Application Converter directly via the Unity Pro menu File → Open.

Partial Application Conversion

To convert an application partially and/or the PLC family must be changed or
remapping of I/O objects is needed, use the conversion wizard via the Unity Pro
menu Tools → Convert Partially.

For detailed information, please refer to the Operating Modes Manual -> Conversion
Wizard.

Conversion Wizard

The conversion wizard is an integrated part of Unity Pro.

You can use it to
convert applications, exported out of legacy applications (Concept, PL7, LL984)
to Unity Pro.
convert legacy applications partially or as a whole.
remap I/O objects (channels, variables etc.) during conversion by means of the
wizard.
adapt concurrently the hardware configuration of the new application in Unity Pro.
modify the amount of used memory in the CPU.

The conversion wizard is available if you have chosen to install a converter (e.g.
Concept Application Converter) during the setup of Unity Pro.
33002515 07/2012 15

General Description
General Procedure

General procedure to convert a legacy application to Unit Pro

Conversion Wizard Documentation

For detailed information on the conversion wizard, please refer to the Operating
Modes Manual -> Conversion Wizard.

Step Action

1 Export your application out of your legacy programming system (e.g. as an ASC
file out of Concept).

2 Create a new application in Unity Pro selecting a CPU with enough memory and
the I/O access capabilities needed.
Optionally you can configure the I/O modules expected to be needed but you can
modify the hardware configuration even later (see step 6).

3 Launch the conversion wizard in Unity Pro via Tools → Convert Partially.
Result: The conversion wizard asks you to select the exported legacy source
file.

4 Select the exported legacy source file.
Result: The converter analyzes the source file and displays the result in the 3
tabs of the conversion wizard.

5 Select the parts of the application (or the complete application) to be converted
in the Structure tab.

6 Remap the I/O objects for getting them compliant with the new hardware
configuration.
Concurrently you can modify the hardware configuration of the new application
in Unity Pro.
Note: To save a backup file of your intermediate I/O mapping you can use the
Save button. With Load you can reload your latest saved intermediate I/O
mapping.

7 After finishing all your selections and manual modifications click OK.
Result: The converter applies the defined remapping to the selected parts of the
source file and imports the results into the opened Unity Pro Application.

8 Continue working on the opened application, save it or export as an XEF file.
16 33002515 07/2012

33002515 07/2012
2

Unity Pro

Requirements

33002515 07/2012
Requirements
Overview

This chapter contains the requirements for converting a Concept project into a Unity
Pro project.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Concept Version 18

Supported Hardware Platforms 19

Configuration 20

System 22

EFBs 31

Programming Language SFC 35

Programming Language LD 36

Programming Language ST/IL 47

Programming Language LL984 49

Programming Language FBD 50
17

Requirements
Concept Version

General

Projects from Concept versions 2.11 and 2.5 and 2.6 can be converted to Unity Pro
projects.

Preconversion

If an older version of a Concept project should be converted to Unity Pro, the project
must be first converted within Concept to bring it to version 2.6 status for security
reasons.
18 33002515 07/2012

Requirements
Supported Hardware Platforms

General

The Concept Converter accepts applications using the following hardware
platforms:

Quantum
Compact
Momentum

Manual Corrections

NOTE: The Concept Converter converts as far as possible the modules when
equivalencies are existing. It is mandatory to check the result according to the
process needs. The settings of the hardware modules (parameters) are not
converted but set to default values and must be entered for each module in Unity
Pro. Channel objects are converted as far as possible. Nevertheless, the program
may have to be adapted according to the different behavior with the original module.

Quantum Applications

Concept Quantum applications are converted to Unity Pro Quantum applications.

Compact Applications

With global conversion, Concept Compact applications are converted to Quantum
applications with a default hardware configuration containing a CPU (140 CPU 534
14A/U) and a power supply (140 CPS 424 00).

With partial conversion (conversion wizard) it is recommended to prepare a Modicon
M340 hardware configuration.

Momentum Applications

With global conversion, Concept Momentum applications are converted to Quantum
applications with a default hardware configuration containing a CPU (140 CPU 534
14A/U) and a power supply (140 CPS 424 00).

With partial conversion (conversion wizard) it is recommended to prepare a Modicon
M340 hardware configuration.

Safety PLC

NOTE: It is not possible to recover an application from Concept to Unity Pro Safety
PLC. To build a safety system, refer to the Safety Manual.
33002515 07/2012 19

Requirements
Configuration

General

Unity Pro only supports IEC conformant programming.

Concept sections created using the LL984 programming language are converted to
the LD programming language in Unity Pro in a later version.

Restrictions for old LL984 configurations

The following points from LL984 configurations are no longer supported by Unity
Pro:

Not supported by Unity Pro Supported by Unity Pro

LL984 loadables Concept system and IEC loadables are completely
integrated.

ASCII messages Will not be converted.

User loadables Unity Pro provides the equivalent EFBs or DFBs
instead.

6x range (register in expanded
memory)

Will not be converted.

Mixed programmed projects
(LL984 + IEC)

When you want to convert mixed programmed projects,
please contact Product Support at Schneider Electric.

Data protection configuration
extension

Will not be supported.
20 33002515 07/2012

Requirements
Hot Standby (HSBY)

There are the following differences for converting the Concept Hot Standby to Unity
Pro:

The Concept converter replaces the CPU from Concept with the new Hot Standby
CPU 671 60 and the Concept Hot Standby Module 140 CHS 111 00 is removed. All
Hot Standby parameters will be transferred to the Unity application.

NOTE: It is not possible to recover an application from Concept to Unity Pro safety
PLC. To build a safety system, refer to the safety manual.

NOTE: As the CPU in Concept only requires one slot, but the new Unity CPU
requires two, overlaps in the rack my arise. These must be resolved manually by the
user.

Concept Unity Pro

The Hot Standby system in
Concept is based on the
140 CHS 111 00 module.

This module is no longer supported by Unity Pro.

The 140 CHS 111 00 module is
purely a Hot Standby Module for a
single slot. The power is supplied
via the rack.

The CPU 671 60 module is a CPU module for two
slots with a fixed assigned connection for data
exchange.
The Hot Standby system is integrated into the
CPU 671 60 module.
33002515 07/2012 21

Requirements
System

Security

The access authorizations defined in Concept are not converted to Unity Pro.

Security under Unity Pro does not - refer to the corresponding installation as it does
under Concept.

Program Execution

Program execution using Concept and Unity Pro are different. It can lead to different
behavior during the first program run after a restart.

Program execution for Concept:
1. Write the outputs (program run n-1)
2. Read the inputs (program run n)
3. Program processing

Program execution for Unity Pro:
1. Read the inputs
2. Program processing
3. Write the outputs

Example:

In Concept, you have assigned a 4x register to a digital output and stopped the PLC
when the value is "true". After a restart, the value remains "True" during the first
program run even if you have modified the process conditions.

Specified Execution Order

The execution order in the function block language in Concept is determined first of
all by how the FFBs are positioned. If the FFBs are then linked graphically, the
execution order is determined by the data flow. After this the execution order can be
changed based on the intention.

In Unity Pro after conversion it is not possible to see in what order the FFBs were
positioned. Therefore, whenever the order cannot be determined unambiguously
from the data flow rule alone, the order is defined by the Concept project.

The defined execution sequence is shown by means of a rectangle with the step
number in the upper right-hand corner of the FFB.

Single Sweep Function

The single sweep function is no longer supported by Unity Pro.

The corresponding functionality can be realized in Unity Pro using the Debug
function "Breakpoints".
22 33002515 07/2012

Requirements
EFB Download

Using Concept, all platform dependent EFBs can be placed at any time and loaded
in all PLC platforms. Any errors detected during the program execution are written
to the message memory.

In Unity Pro, only valid EFBs can be placed. Download to the PLC is only possible
if the EFBs used are consistent with the PLC platform.

Reference Data Editor (RDE)

RDE tables created in Concept are converted to Unity Pro when they are placed in
the same directory as the Concept ASCII file.

Global Variable Values

Because of different restart behaviors after a power outage, it is possible that the
global variable states of two PLCs that restart differently are not the same after the
first program run.

There are two different types of restart behavior:

1. All 16 bit PLCs (all Momentum, Quantum 113, 213, 424) continue executing the
program at the point at which it was interrupted.

2. All 32 bit PLCs (Quantum 434, 534) start the program run at the beginning.

Unity Pro supports the 1st type of restart behavior described above.

State RAM

The Concept State RAM register addresses are assigned to IEC conforming
addresses in Unity Pro.

I/O module addresses are converted either to "flat" addresses or to topological
addresses.
33002515 07/2012 23

Requirements
State RAM Register Without I/O Module

State RAM register addresses without assigned I/O modules are represented with
"flat" addresses:

For this, the register number is added to the end of the introduction.

The address reads as follows:

%[IM][W]Register number

State RAM Register With I/O Module

State RAM register addresses with assigned I/O modules can either be represented
on Quantum with "flat" addressing as described above or with topological
addressing.

To define that State RAM register addresses will be converted to topological
addressing, open the Conversion Settings tab via Tools → Options in Unity Pro
and activate the Generate Topological Addresses for Quantum check box before
converting.

If the check box is not activated, the State RAM register addresses are converted to
"flat" addresses (for Quantum only).

If Compact or Momentum applications are converted with the conversion wizard,
topological addressing is used by default, regardless whether the check box is
activated or not.

State RAM register addresses with assigned I/O modules (topological)

Concept Unity Pro

4x %MWx

3x %IWx (1)

0x %Mx

1x %Ix

(1) = If Modicon M340 is the target platform, there is no equivalent for input State RAM
registers (%IWx). The addresses are converted formally to flat addresses and must be
corrected by the user.

Concept Unity Pro

4x %QWt

3x %IWt

0x %Qt

1x %It

t = topological description
24 33002515 07/2012

Requirements
The following information is read from the configuration to provide a sufficient
topological description of State RAM register addresses with assigned I/O modules:

Bus number (corresponds to drop head in Concept)
Drop
Rack
Module
Channel

The complete address reads as follows:

%[IQ][W]<\Busnumber.Drop\>Rack.Module.Channel

State RAM Assignment Using Derived Data Types

In Concept, data structure elements begin at BYTE limits.

In Unity Pro, data structure elements begin at WORD limits.

Example of a derived data type:

TYPE
 SKOE:
 STRUCT
 PAR1: BOOL;
 PAR2: BYTE;
 PAR3: BOOL;
 PAR4: WORD;
 PAR5: BOOL;
 PAR6: WORD;
 END_STRUCT;
END_TYPE
33002515 07/2012 25

Requirements
 The derived data types are stored in the state RAM when using Concept:

The same derived data types are stored in the state RAM when using Unity Pro:
26 33002515 07/2012

Requirements
Timer, Date, Battery Monitoring

Timer address, date/time of day and the battery monitoring can no longer be
assigned to the State RAM with Unity Pro. All required information can be accessed
via the control panel.

When Concept is converted to Unity Pro, DFBs are created which can be simulated
in Unity Pro without further manual modifications of these functionalities.

NOTE: The Concept Timer Register is 16 bits long and has an accuracy of 10 ms.
The equivalent system word %SW18 in Unity Pro is 32 bits long and has an
accuracy of 100 ms. If this accuracy is not sufficient, the FREERUN function from
the System library can be used, which delivers accuracy of up to 1 ms.

NOTE: When dealing with days of the week, the value 1 corresponds to Sunday in
Concept and Monday in Unity Pro.

Quantum Diagnostics Words

In Unity, the diagnostics words are specified to be a certain number:

Local I/O: 16 Words
RIO I/O: 16 Words
DIO I/O: 16 Words

In Concept it was also possible to specify a smaller number of diagnostics words for
the individual I/Os.

Keep this difference in mind, since it can cause problems.

Topological Addresses

The topological addresses are assigned so that if the hardware configuration
remains the same, they occupy the same I/O connections as they were assigned in
Concept.

The user sees the hardware addresses in Unity Pro that they are using, without
having to carry out the intermediate step via the State RAM.
33002515 07/2012 27

Requirements
Located Variable

Located BOOL variables in Concept are converted to EBOOL variables in Unity Pro.

Unity Pro provides this new EBOOL variable for the detection of transitions (edges).
This "Elementary BOOL type" is used for %Ix, %Mx and unlocated variables.

EBOOL variables can be forced.

The EBOOL variable provides three informational items:

Current value
Historical value
Force information.

Only the current value can be accessed, the other values can only be accessed via
product specific functions.

Longer Cycle Time via EBOOL

In Unity, as opposed to Concept, the edge and force information is updated from
EBOOL variables during program runtime.

For this reason on the Quantum CPU 434, CPU 534 and CPU 311 platforms the
assignment of EBOOL variables is only half as fast as the assignment of BOOL
variables.

NOTE: If you need variables in the signal memory, use BOOL variables and assign
them to the memory area %MW (e.g. BoolVar : BOOL AT %MW10). Otherwise use
unlocated BOOL variables.

Constants

Constants in Concept are converted to write-protected variables in Unity Pro.

Unity Pro does not provide constants. Comparable functionality is achieved using
write-protected variables.

%Mx Register

In Concept, the 0x registers are not buffered. They are reset to zero with every
warm restart.

In Unity Pro, the %Mx registers are buffered ("RETENTIVE", "VAR_RETAIN"), i.e.
Conform to IEC.

Do not use the possibility to set the 0x register to zero on every warm restart if you
use a project in Concept that you want to convert to Unity Pro.

NOTE: If you require non-buffered behavior, define the warm restart event with the
SYSSTATE function block and explicitly copy the value 0 (zero) to the %Mx register.
28 33002515 07/2012

Requirements
Forced Outputs (%M)

WARNING
UNEXPECTED SYSTEM BEHAVIOR

Do not relay on the Memory Protect switch.

The behavior of forced outputs (%M) between Modsoft/Proworx/Concept and
Unity Pro has changed.

With Modsoft/ProWORX/Concept you cannot force outputs when the Memory
Protect switch of the Quantum CPU is set to the "On" position.
With Unity Pro you can force outputs even when the Memory Protect switch of
the Quantum CPU is set to the "On" position.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

WARNING
UNEXPECTED SYSTEM BEHAVIOR

Reforce the outputs following a cold start.

The behavior of forced outputs (%M) between Modsoft/Proworx/Concept and
Unity Pro has changed.

With Modsoft/ProWORX/Concept, forced outputs maintain their values
following a cold start.
With Unity Pro, forced outputs lose their values following a cold start.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.
33002515 07/2012 29

Requirements
Quantum Remote I/O Control

In Concept, only LL984 sections can be assigned I/O stations (Drops). This is not
possible in Concept projects with IEC conforming sections (FBD, LD, SFC, IL, ST).

Unity Pro offers this option, in which a logic is recreated in accordance with LL984.
This logic must be entered manually, however.

Example of a section processing order in Unity Pro:

Section n-2

Section n-1

RIO call (u,v,w)

Section n

Section n+1

RIO call (u+1,w,x)

Section n+2

RIO call (u+2,x,y)

RIO (x,y,z) is the explicit I/O call here:
Write the outputs to the I/O station x.
Wait at the inputs of the I/O station y.
Prepare the inputs of the I/O station z.

NOTE: Take these new settings into consideration when structuring your project.

Setting Variables Cyclically

Unlocated variables cannot be set cyclically in Unity Pro. (It is possible in Concept).

If you need to set variables cyclically in your project, you should use located
variables.

%Mx/%1x registers (EBOOL) can be forced.

%MWx/%IWx registers can be set cyclically (only numerical values).
30 33002515 07/2012

Requirements
EFBs

General

The following options are available for converting Concept EFBs to Unity Pro:
The EFBs are also supported in Unity Pro; they are mapped on a one to one
basis.
The EFBs are no longer supported in Unity Pro.
Instead of EFBs appropriate DFBs are placed in the application. The functionality
remains unaffected by this.
The EFBs are no longer supported by Unity Pro.
Instead of EFBs, DFBs with no programmatic content are placed in the
application. These DFBs contain all the Concept parameters.
An error message is displayed that says that the programmatic content for these
DFBs must still be created.

Generic EFs

There are only a few generic elementary functions in Concept (EFs) e.g. MOVE,
SEL, MUX. With many other functions, the elementary data type is added to the
name of the function.

In Unity Pro, many of these functions are used without the elementary data type
added to the name (as defined in IEC 61131). Therefore, the converter removes the
added data type from the name of the function.

In some cases, the use of generic functions in Unity Pro will lead to analytic errors.
In these cases, disable the Generate Generic EFs check box.

Open the Conversion Settings tab via Tools → Options in Unity Pro to
enable/disable the Generate Generic EFs check box before converting.

When this checkbox is enabled, the converter removes the added data type from
the name of the function.
When this checkbox is not enabled, the converter will leave the added data type
in the name of the function.
33002515 07/2012 31

Requirements
DIAGNO Library

When converting Concept to Unity Pro for all DIAGNO blocks the station parameter
is omitted.

The following EFBs from the DIAGNO library in Concept are converted to empty
DFBs in Unity Pro.

ACT_DIA
XACT_DIA
ERR2HMI
ERRMSG

NOTE: These DFBs, created in Unity Pro have all the Concept parameters but no
programmatic content. An error message is displayed that says that the
programmatic content for these DFBs must still be created.

During the program creation in Unity Pro replace the DFBs ACT_DIA, and
XACT_DIA with the DFB XACT.

For all DIAGNO blocks which can be extended in Concept (D_PRE, D_GRP ...), the
extensible inputs (IN1 ... INx) are gathered together in one input. This is
implemented using a nested logic AND link. In the FBD language the AND block is
positioned at the same location as the DIAGNO block by the converter. This overlap
must be resolved manually by the user.

SYSTEM Library

The SKP_RST_SCT_FALSE and LOOPBACK EFBs cannot be used in Unity Pro.

FUZZY Library

The FUZZY library is not supported with the normal Unity Pro range but can be
installed as an optional library.

HANDTABL Library

The HANDTABL library is no longer supported by Unity Pro.
32 33002515 07/2012

Requirements
EXPERTS Library

The following Concept EFBs are converted to DFBs in Unity Pro:
ERT_TIME
SIMTSX22
EFBs from the EX family
EFBs from the MVB family
EFBs from the ULEX family

NOTE: These DFBs, created in Unity Pro have all the Concept parameters but no
programmatic content. An error message is displayed that says that the
programmatic content for these DFBs must still be created.

The data structures DPM_TIME and ERT_10_TTAG from the time stamp module
140 ERT 854 10 have been changed. The MS element was broken up into MS_LSB
and MS_MSB. For more information about this, see State RAM Assignment Using
Derived Data Types, page 25.

Outputs which describe data structures must be assigned event variables using the
(=>) assignment operator within the parameter brackets in the ST and IL languages.
This happens automatically during conversion (from Unity 2.0 onwards). The
functionality remains the same but the section of the program looks a little different.

EFBs that Use Time Functions

In Unity Pro, function components using Time functions (Timer, Diagnostic, Control
Components) remain in RUN mode, even if the SPS is set to STOP mode.

Converted EFBs

During conversion, Unity Pro standardizes the EFB offer by grouping redundant
EFBs. The respective EFBs are automatically converted and the project adjusted
accordingly.

CAUTION
UNEXPECTED BEHAVIOR OF THE CONTROL

Function components using Time functions behave differently in Unity Pro and
Concept.

You must take these different behaviors into consideration during the conversion
of Concept applications.

Failure to follow these instructions can result in injury or equipment damage.
33002515 07/2012 33

Requirements
Renamed EFBs

The following diagnostics EFBs are renamed when converting Concept to Unity Pro:

The Quantum configuration EFB for the Backplane Expander 140 XBE 100 00 is
renamed when converting Concept to Unity Pro:

Concept Unity Pro

XACT D_ACT

XREA_DIA D_REA

XLOCK D_LOCK

XGRP_DIA D_GRP

XDYN_DIA D_DYN

XPRE_DIA D_PRE

Concept Unity Pro

XBP XBE
34 33002515 07/2012

Requirements
Programming Language SFC

General

For some programming languages there are restrictions to observe when converting
a project from Concept to Unity Pro.

Parallel/Alternative Sequence

A parallel branch may not be directly followed by an alternative branch.

This type of sequence is not permitted according to IEC 1131.

Unity Pro does not support this type of sequence, although it is possible in Concept.

The converter transfers this type of project to Unity Pro, but manual modifications
are subsequently required.

This problem can be solved by inserting an dummy step between the branches.
33002515 07/2012 35

Requirements
Programming Language LD

General

For some programming languages there are restrictions to observe when converting
a project from Concept to Unity Pro.

Conversion of the picture

When converting a Concept project to Unity Pro, the ladder diagram LD Picture is
also converted, which can lead to a restructuring of the picture.

Crossovers with connections between Boolean objects

In Concept, FFB connections between Boolean objects may be edited.

This may result in crossovers.

Example of an FFB connection between Boolean objects (coils, contacts, horizontal,
and vertical connections) in Concept:

Following the conversion from Concept to Unity, an FFB connection between
Boolean objects may look like this:
36 33002515 07/2012

Requirements
In the Unity LD Editor, such FFB connection may be:

deleted,
moved,
copied and pasted.

However, such FFB connection cannot be created in the Unity LD Editor.

The FFB connection will remain after moving in Unity.

Connection to the right bus bar

A connection to the right bus bar is no longer required.
33002515 07/2012 37

Requirements
Automatically created connections

In Concept, the contact c9 is not connected with INPUT PV of the component.

In Unity, the contact c9 would automatically be connected with INPUT PV because
both cells directly border in Concept.

During the conversion from Concept to Unity, the contact c9 is therefore moved
down to avoid the creation of an automatic connection in Unity.
38 33002515 07/2012

Requirements
Conversion of the output picture

During the conversion it is desired that the conversion of the picture from Concept
to Unity is as exact as possible. To achieve this, the following rules are applied.

Rules for Object Positioning:

The distance between two objects must be at least one cell.
When two FFBs are connected, the minimum distance must equal the number of
cells of the first FFB’s width.
The cells in Unity are smaller. If an FFB partially occupies another cell, an
additional cell is required for the FFB.
If an object (contact or coils) has a vertical connection (OR Link), this vertical
connection will be located at the end of the cell of the object.
An additional cell is required if:

a vertical connection (OR Link) with an INPUT FFB exists
the source FFB has output variables
the target FFB has input variables

A coil may not be directly connected to the left bus bar.

Rules for the conversion of FFB connections:

FFB connections between variables/constants and FFBs will be ignored. In these
cases, Unity will automatically create a connection.
Purely horizontal FFB connections between objects that are not FFBs will be
replaced with horizontal connections with multiple segments.
When two OR objects are connected, a horizontal connection is first connected
to the right side of the source OR object. An FFB connection will then be created
between this horizontal connection and the target object. This occurs because
the two OR objects would otherwise be combined during the import into Unity.
Each point of the left bus bar can only be occupied by one connection.
33002515 07/2012 39

Requirements
Example of a picture in Concept:

The picture after the conversion to Unity.
40 33002515 07/2012

Requirements
The following actions were performed during the conversion according to the rules
above:

The space that is occupied by the FFB was expanded to two columns.
One column each was added at the Input and Output sides of the FFB.
The connections between coils/contacts and the FFB were realized with FFB
connections, not with horizontal connections with multiple segments.

Recognize and disconnect LD Networks

The converter must recognize networks in LD sections during the conversion. To
achieve this, the following rules are applied:

An LD Network is a group of objects that are connected with each other without
any other connections to other objects (except the bus bar).
The minimum distance is always applied to a complete column of a network. This
means that if an object of a column requires a certain minimum distance, all other
objects are also moved with a higher or equal horizontal position.
If there are several networks in the same row in Concept, the following network
will be moved vertically until it no longer occupies the same rows with the
preceding network.
To avoid undesired automatically created FFB connections, the space that is
occupied by an FFB and its connection space will be checked for crossovers. In
the event of crossovers the following objects will be moved horizontally.

Schematic diagram of an LD Network in Concept with crossovers
33002515 07/2012 41

Requirements
Schematic diagram of an LD Network after the conversion to Unity
42 33002515 07/2012

Requirements
Separate LD Networks

IEC LD sections contain many independent graphic areas (networks).

During the conversion of IEC LD sections, additional columns are added to the
networks to avoid undesired automatically generated links in Unity Pro.

If the additionally inserted columns were to extend across the entire section, the
original graphic would be modified too much. Therefore, the sections are divided in
networks during the conversion and additional columns are only inserted for the
associated network.

Inserting additional columns may cause a network to exceed its maximum section
width and it is then wrapped into the next line.

If this causes networks to vertically overlap, the overlapping of the logic can lead to
undesired automatic links in Unity Pro.

Open the Conversion Settings tab via Tools → Options in Unity Pro to
enable/disable the Separate LD Networks check box before converting.

When this checkbox is enabled, recognized networks are moved vertically, which
prevents overlapping.
When this checkbox is not enabled, recognized networks are not vertically
moved. The original vertical arrangement of the graphics is maintained, but error
messages may occur due to overlapping.

LD Column Break

Inserting additional columns may cause a network to exceed its maximum section
width and it is then wrapped into the next line.

Open the Conversion Settings tab via Tools → Options in Unity Pro to edit the LD
Column Break option before converting.

The number entered here determines the column after which a network is wrapped
to the next column.
33002515 07/2012 43

Requirements
Wrapping networks that are too wide

Since the width of the networks is expanded during the conversion the maximum
section width may be exceeded.

To show the network that is now too wide, the part of the network that reaches
beyond the far right edge of the section will be shown in a new row.

The connections are shown as connectors.

Example of an LD Network in Concept.
44 33002515 07/2012

Requirements
The wrapped LD Network after the conversion to Unity.

Objects to recognize transitions

The different ways of handling ladder diagram LD objects in Concept (calling an FB)
and in Unity Pro (system call) makes the use of State RAM variables (0x/1x register)
necessary.

Because of the requirement that several write accesses to the 0x/1x register are
possible during a cyclical sweep, there can be differing Online behavior between
Concept and Unity Pro.
33002515 07/2012 45

Requirements
The objects affected are:
Contact to recognize positive transitions
Contact to recognize negative transitions

In Concept the "Old Value" to recognize a transition will only be updated once per
cycle.

In Unity Pro the "Old Value" will be updated during every write access.

Example:

Concept: Switch %QX1 from 0 -> 1 and the value of %MW1 and %MW2 increase.

Unity Pro: Switch %QX1 from 0 -> 1 and only the value of %MW1 increases.

NOTE: Use objects to recognize transitions with a certain variable only once per
cycle.

Also see Located Variable, page 28 and Unity Pro Reference Manual, Use of set
and reset coils leads to edge loss (see Unity Pro, Program Languages and
Structure, Reference Manual).

Macros

Macros (name begins with @) will be rejected by the converter because macros
cannot be implemented in Unity. However, if you try to import an application with
macros, the macros will be replaced with Dummy DFBs (indicated with the ‘~’ in the
application name).

Error messages regarding these Dummy DFBs will appear during the analysis of the
project. To correct these errors, simply remove all DFBs that were created to replace
macros.
46 33002515 07/2012

Requirements
Programming Language ST/IL

General

For some programming languages there are restrictions to observe when converting
a project from Concept to Unity Pro.

Generic EFBs

Only call generic EFBs instances once.

Using Concept 2.2, assign the outputs directly after the EFB call of a variable.

Syntax with Concept 2.5

Only use the new syntax for Concept 2.5 (from Unity V2.0 onwards it is automatically
converted).

Syntax with Concept 2.5:

GenEFB(in1:=x1, in2:=x2, out1=>x3, out2=>X4;

in1, in2, out1 and out2 are type ANY.

Generic EFBs in Concept

List of generic EFBs in Concept:
COMM library

XXMIT

CONT_CTL library
DEADTIME

EXTENDED library
HYST
INDLIM
LIMD
SAH

LIB984 library
FIFO
LIFO
R2T
SRCH
T2T
GET_3X
GET_4X
PUT_4X
33002515 07/2012 47

Requirements
Declaring EFBs

The declaration of EFBs in Unity Pro is found in the variables editor and no longer
in the ST/IL sections as with Concept.

EFBs declared this way are no longer limited to only one section.
48 33002515 07/2012

Requirements
Programming Language LL984

General

For some programming languages there are restrictions to observe when converting
a project from Concept to Unity Pro.

LL984 is no longer supported by Unity Pro

Unity Pro only supports IEC conforming programming. The programming languages
LL984 and LL984 specific configurations are not supported by Unity Pro.

See also Restrictions for old LL984 configurations, page 20.
33002515 07/2012 49

Requirements
Programming Language FBD

General

For some programming languages there are restrictions to observe when converting
a project from Concept to Unity Pro.

Macros

When converting a Concept project to Unity Pro, sections created using macros are
also converted.

These sections can also be manually copied and modified.
50 33002515 07/2012

33002515 07/2012
3

Unity Pro

Language Differences

33002515 07/2012
Language Differences
Overview

This chapter contains information about language differences.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Functions Not Present in Unity 53

EFB Replaced by Function 54

FFBs Not Available For All Platforms 55

INOUT Parameters 59

Parameter Type Changed 60

ANY_ARRAY_WORD Parameters 61

Unique Naming required 62

Incomplete LD Generation 63

LD Execution Order Changed 64

Constants 68

Indices in ST and IL 69

Calculate with TIME and REAL 70

WORD Assignments to BOOL Arrays 71

Topological Address Overlapping 72

Substitute %QD by %MF 73

Structure Alignment Changed 74

Undefined Output on Disabled EFs 75

Variables at Empty Pins 77

SFC Section Retains its State When Performing an Online Modification 78

SFCCNTRL Function Block in Unity Behaves Different to Concept 79

Weekday Numbering 80
51

Language Differences
System Timer 81

Initial Values 82

Macros 84

Topic Page
52 33002515 07/2012

Language Differences
Functions Not Present in Unity

DFB Wrapper

Functions from Concept that are not present in Unity get a DFB wrapper if they are
called in ST sections (e.g., WORD_AS_UDINT). For example:

WAUD(* UDINT *) := WORD_AS_UDINT (LOW := WAUL, (* WORD *) HIGH
:= WAUH(* WORD *));

. . . looks like this after conversion:

WAUD(* UDINT *) := FBI_ST1_75_33 (LOW := WAUL, (* WORD *)HIGH
:= WAUH(* WORD *));

Manual Correction

FBI_ST1_75_33 is the instance name of the provided DFB wrapper. However, the
call is still invalid for the analyzer because the converter cannot yet do multi-object
syntax corrections in ST. (Will be present in V2.0).

You must correct this manually to:

FBI_ST1_75_33 (LOW := WAUL, (* WORD *) HIGH := WAUH(* WORD *),
OUT => WAUD);
33002515 07/2012 53

Language Differences
EFB Replaced by Function

DFB Wrapping

Some standard Concept EFBs are implemented in Unity as functions.

In such cases, a wrapping DFB is provided so that the original interface of the
Concept EFB remains valid.
54 33002515 07/2012

Language Differences
FFBs Not Available For All Platforms

Overview

The FFBs (functions/function blocks) listed below can only be used on Quantum
platforms (except SFC_RESTORE, see table below).

If Modicon M340 is the target platform, these FFBs appear marked in red and
indicated as "type error".

FFBs Not Available

Communication library

Family FFB Platform

Extended CREAD_REG Quantum only

CWRITE_REG

MBP_MSTR

READ_REG

WRITE_REG

MODBUSP_ADDR

SYMAX_IP_ADDR

TCP_IP_ADDR

XXMIT
33002515 07/2012 55

Language Differences
I/O Management library

Family FFB Platform

Analog I/O Configuration I_FILTER Quantum only

I_SET

O_FILTER

O_SET

Analog I/O Scaling I_NORM Quantum only

I_NORM_WARN

I_PHYS

I_PHYS_WARN

I_RAW

I_RAWSIM

I_SCALE

I_SCALE_WARN

O_NORM

O_NORM_WARN

O_PHYS

O_PHYS_WARN

O_RAW

O_SCALE

O_SCALE_WARN

Immediate I/O IMIO_IN Quantum only

IMIO_OUT
56 33002515 07/2012

Language Differences
Quantum I/O Configuration ACI030 Quantum only

ACI040

ACO020

ACO130

AII330

AII33010

AIO330

AMM090

ARI030

ATI030

AVI030

AVO020

DROP

ERT_854_10

NOGSTATUS

QUANTUM

XBE

XDROP

Family FFB Platform
33002515 07/2012 57

Language Differences
Motion library

Obsolete Lib library

System library

Family FFB Platform

MMF Start CFG_CP_F Quantum only

CFG_CP_V

CFG_CS

CFG_FS

CFG_IA

CFG_RA

CFG_SA

DRV_DNLD

DRV_UPLD

IDN_CHK

IDN_XFER

MMF_BITS

MMF_ESUB

MMF_INDX

MMF_JOG

MMF_MOVE

MMF_RST

MMF_SUB

MMF_USUB

Family FFB Platform

Extensions/Compatibility GET_3X Quantum only

IEC_BMDI

Family FFB Platform

SFC Management SFC_RESTORE Quantum and Premium,
not for Modicon M340

Hot StandBy HSBY_RD Quantum only

HSBY_ST

HSBY_WR

REV_XFER
58 33002515 07/2012

Language Differences
INOUT Parameters

Manual Correction

INOUT parameter syntax in ST (and IL) must be corrected manually. Examples are
shown:

Ascii_FIFO_OUT (Pile := AscFifo_Mess);

AscFifo_Out := Ascii_FIFO_OUT.DataOut;

. . . is manually corrected to:

Ascii_FIFO_OUT (Pile := AscFifo_Mess, DataOut => AscFifo_Out);

Output Parameters

INOUT parameters in ST sections that were output parameters in Concept (e.g.,
DataOut of FIFO) must be moved manually in ST and IL to the parameters inside
parentheses associated with the call.

If INOUT parameters that were outputs only in Concept are connected only to a link
at the output side, they must get a manually declared variable at the input side as
well. The link must be deleted if it is not connected to another IN/OUT variable.
Targets of the deleted link must be assigned to the manually declared variable.

This is done automatically in V2.0.

Change of Variable Type

The converter changes the type of direct variables at INOUT parameters of
communication blocks to ARRAY[0..0] OF WORD.

This must be corrected manually to correspond to the size of the array.
33002515 07/2012 59

Language Differences
Parameter Type Changed

Change

The parameter type has been changed from type WORD to an array of located words.

Explanation

Unity Comm EFBs no longer accept a single WORD address for the communication
field because more than one WORD is written. So the converter introduces an artificial
array (shown in the conversion report) that can be reached from the project tree
through the appropriate hyperlink:

"For var WORD1 type ARRAY[0..0] OF WORD generated"

The array has a single word size because the converter can not determine its size.
The user, therefore, needs to manually configure the correct array size.
60 33002515 07/2012

Language Differences
ANY_ARRAY_WORD Parameters

Error Message

For EF/EFB pins that have the type WORD in Concept and have been changed to
ANY_ARRAY_WORD in Unity, "Cannot import variables" will be the reported type.
Such pins usually have a single register address as a formal parameter in Concept,
but it is actually used to point to an array of words for which the size has not been
explicitly declared.

Change of Parameter Type

In Unity, an array of words has to be declared for this purpose. This is why the
converter changes the type to ARRAY[0..0] OF WORD.

However, the converter cannot determine the required size because a size
declaration is absent in the Concept application. Therefore, the converter defines
one data element, [0..0], as a replacement for the original variable.

It is up to the user to replace this default range of one element with the number of
elements required by the application.

Redefine Back to a One-Dimensional WORD Array

In case the application defined data structures that are mapped to registers that
describe the data to be worked with, significant work to redefine this back to a one-
dimensional WORD array is required. However, this is necessary for Unity V1.0, for
example:

{Echanges_CR2 : [MAST]} : (r: 42, c: 7) E1092 data types do
not match (’CREADREG.REG_READ:ANY_ARRAY_WORD’<-
>’table_rec_cr2:peer_Table’)

Example:

The Unity converter V2.0 will change these EFB parameter types to ANY, avoiding
this problem.
33002515 07/2012 61

Language Differences
Unique Naming required

Unique name

In Concept applications, section names can have the same name as a DDT. That is
not the case in Unity.

The converter checks section names to see if they are redundant of DDT names. If
so, the converter appends "_Sect" to the section name.
62 33002515 07/2012

Language Differences
Incomplete LD Generation

LD Generation Not Done Completely

In some cases, LD generation cannot be completed. This can happen when the
algorithm allows an object that requires the same position as an existing object. In
these cases, the pre-existing object is overwritten.

Messages are issued to make you aware of this:

{SAFETY_INTERLOCKS_PLC3 : [MAST]} :
(r: 8, c: 3) E1189 converter error: ’Overwrite happened when
generating LD network - see report’

{SAFETY_INTERLOCKS_PLC3 : [MAST]} : (r: 8, c: 3) E1002 syntax
error

Details in Conversion Report

In the conversion report, which may be opened after being imported through the
hyperlink in the project tree, some additional detail about the message is given:

09:29:05.953 > Error: LD Object PTFDTP1_ENABLED with type coil
overwritten

The user should compare the conversion result to a printout of the original section
and correct the converted section accordingly.
33002515 07/2012 63

Language Differences
LD Execution Order Changed

Different Execution Orders

NOTE: Unity’s LD execution order can differ from Concept’s. In Unity, one LD
network can be completed before the next is started.

The converter follows the Concept execution order in graphical positioning, making
the original order visible to the user. However, since Unity calculates the order anew
(without the possibility of forcing it from the converter), there can be execution order
discrepancies.

Generate ConvError Hints

Open the Conversion Settings tab via Tools → Options in Unity Pro to
enable/disable the Generate ConvError Hints check box before converting.

When this checkbox is enabled, ConvError objects are generated in the LD
programs during the conversion to draw attention to special issues.
When this checkbox is not enabled, no ConvError objects will be generated
during the conversion.

Concept

When analyzing in Concept, the execution order is calculated. The result is shown
in parentheses after the instance names in this image.

The selected block is executed in the middle of the other network, even though it has
no direct connection to it. Concept calculates the execution order from the block
position.
64 33002515 07/2012

Language Differences
This is the original section as it appears in Concept:

The used variables are initialized in a way that the result of the comparator EQ_INT
becomes "true" after execution of the first cycle in Concept:
33002515 07/2012 65

Language Differences
Testing execution in single cycle mode in Concept shows the expected result. The
comparator result becomes "true" after the first cycle:
66 33002515 07/2012

Language Differences
Unity

The converted network reflects the Concept execution order in the graphical position
of the blocks:

The image also shows the execution status stopped at a breakpoint in the first cycle.
The comparator EQ_INT is already executed and will not deliver a "true" result
because the first ADD_INT integrator block is executed after it.

Solution

Replace the connection via a variable by a link to achieve the same result as in
Concept.
33002515 07/2012 67

Language Differences
Constants

Losing the Read-Only Behavior

Constants are not accepted as private DFB variables. Therefore, they are converted
to initialized variables in DFBs, in this way losing the read-only behavior.
68 33002515 07/2012

Language Differences
Indices in ST and IL

High Resolution

In addition to INT now DINT will be allowed as array index type in all areas of Unity
Pro, but with limited value ranges.

For DINT the index may only contain INT values (-32768 ... 32767).
33002515 07/2012 69

Language Differences
Calculate with TIME and REAL

Manual Correction

When TIME and REAL variables are multiplied in ST, REAL_TO_DINT must be
inserted into the REAL variable manually.
70 33002515 07/2012

Language Differences
WORD Assignments to BOOL Arrays

Manual Correction

Assignments of HEX WORDS to complete Bool arrays sent to Word registers are
possible in Concept, but not in Unity. A manual correction must be done, for
example:

(’AR2_BOOL[0]:BOOL’<->’16#0100:DINT’)

(’AR2_BYTE[0]:BYTE’<->’16#55AA:DINT’)

(’AR2_BYTE[0]:BYTE’<->’16#AA55:DINT’)

Solution

The ST code must be changed to single-component assignments.

The hex word must be split into single bits:

AR2_BOOL[17] := true;
33002515 07/2012 71

Language Differences
Topological Address Overlapping

Same Topological Address

In Unity, you are warned (during application analysis) if the same topological
address is assigned to multiple variables.
72 33002515 07/2012

Language Differences
Substitute %QD by %MF

Introduction

Variables that are directly addressed in Concept with %QD can be initialized floating
point constants or dual word constants.

When mainly floating point constants appear, the Substitute %QD by %MF
checkbox should be enabled.

Conversion Settings

Open the Conversion Settings tab via Tools → Options in Unity Pro to
enable/disable the Substitute %QD by %MF check box before converting.

When this checkbox is enabled, %QD variables are converted to %MF variables.
When this checkbox is not enabled, %QD variables are converted to MW
variables.
33002515 07/2012 73

Language Differences
Structure Alignment Changed

DPM_Time Structure

Unity uses a 2-byte alignment for structures in contrast to Concept (1-Byte) to speed
up the access to structure components. This affects system structures mapped to
StateRam, because the same structures in Unity can be bigger including some byte
gaps.

The concerned structure is DPM_Time, which has been redefined for Unity to re-
map to the correct hardware addresses.

Concept’s DPM_Time definition:

sync: BOOL
ms: WORD
...

Unity’s DPM_Time definition:

sync: BOOL
ms_lsb: BYTE
ms_msb: BYTE
...

Manual Correction

If an application that includes the DPM_time structure is converted, the
analyze/build process will fail for the redefined structure components (in the above
example, ms_lsb, ms_msb).

The user has to manually change the usage of these structure components in the
application accordingly.
74 33002515 07/2012

Language Differences
Undefined Output on Disabled EFs

Outputs of EFs Not Kept

In case the EN switches from TRUE to FALSE, the outputs of EFs from the previous
cycle are not kept in Unity. This reduces the memory consumption in the PLC. This
is different from EFBs, which keep their value from the previous cycle. Concept uses
static links to latch the value from the previous cycle.

Execution Behavior Differs Significantly

If a Concept application relies on the outputs of EFs to keep their old values, the
execution behavior in UNITY will differ significantly.

Manual Correction

The application has to be changed manually.

Links from outputs, which are assumed to keep their value, need to be replaced by
variables. If the EN of an EF is set to false, the EF is not executed and a connected
variable is not touched.

Concept

The output of the disabled SEL EF is kept and used as input for the EQ_INT function
block:
33002515 07/2012 75

Language Differences
Unity

The output of the disabled SEL EF gets an undefined value, in this case 0. Therefore
the output of EQ_INT function block has become true:

Solution

If the EN of the SEL is set to false, the ENO of the EQ_INT is also set to false, but the
connected output variable keeps its value from the previous cycle:

NOTE: The use of a variable is mandatory to retain network results in case an EF
becomes disabled.
76 33002515 07/2012

Language Differences
Variables at Empty Pins

Introduction

In Unity Pro it is necessary to fill provided inputs and outputs for derived data types
or I/O parameters (this is not necessary in Concept).

If these types are not generic, the converter will fill these initially empty inputs and
outputs with variables created by the converter.

Conversion Settings

Open the Conversion Settings tab via Tools → Options in Unity Pro to
enable/disable the Variables at empty pins check box before converting.

When this checkbox is enabled, empty link points will be filled with variables
created by the converter.
When this checkbox is not enabled, empty link points will not be filled with
variables created by the converter.
33002515 07/2012 77

Language Differences
SFC Section Retains its State When Performing an Online Modification

Online Modifications Without Resetting

In Unity it is possible to do online modifications of an SFC chart without resetting it.
The SFC chart retains its state and will continue the execution.

NOTE: In Concept, the online modification of an SFC chart usually results in the
resetting of the chart.
78 33002515 07/2012

Language Differences
SFCCNTRL Function Block in Unity Behaves Different to Concept

RESETSFC vs. INIT

In Concept the RESETSFC input of SFCCNTRL resets all action variables of the
related SFC section.

In Unity the INIT input of SFCCNTRL (that has a similar function as RESETSFC input
in Concept) only resets the action variables that have been set by the SFC step.
Action variables, for example, set by user logic or the Animation Table will not be
reset.
33002515 07/2012 79

Language Differences
Weekday Numbering

Different Numbering

In Unity the numbering of weekdays is different than Concept:

SET_TOD / GET_TOD

Function blocks: SET_TOD and GET_TOD will be converted to Unity as DFBs, which
work in both directions.

Because SET_TOD expects a "Concept" numbered weekday and translates it as a
Unity coded value. Also the GET_TOD reads Unity value and returns to User the
Concept value.

System Word %SW49

NOTE: We do not recommend that you mix GET_TOD and SET_TOD programming
with the use of system words (e.g. %SW49) in the same application.

Number Unity Concept

1 Monday Sunday

7 Sunday Saturday
80 33002515 07/2012

Language Differences
System Timer

Concept

Concept’s system timer was located on a user-defined register word (16-bit) and
incremented at 10 ms.

Unity

Unity provides an incremental timer with 100 ms updating (%SW18).

A 10 ms timer can be logically created using the FREERUN function (sec timer).
33002515 07/2012 81

Language Differences
Initial Values

Definition of Initial Values

Concept allows the initial values on DFB pins of a structured array to be defined.

Unity forbids this option for pins of array type. This option is reserved for output pins
of structure type.

The converter reflects this with the following error message in the conversion log:

Error: Cannot convert initial values of call-by-reference data
(pin Add_PV.in1)

Pins to be Connected

At the same time, Unity enforces pins of array type and input pins of structured type
to be connected, which in this case leads to analysis errors:

{ALL:[MAST]}: (r:26, c:68) E1194 oarameter ´IN2´has to be
assigned
{ALL:[MAST]}: (r:26, c:68) E1194 oarameter ´IN1´has to be
assigned
82 33002515 07/2012

Language Differences
Solution

To solve this problem, create a variable of the pin’s type and initialize it with the
original values.

Connect this constant to the appropriate pin of each DFB instance.

Example

Solution: Add initialized variable.
33002515 07/2012 83

Language Differences
Macros

Macros Replaced by Dummy DFBs

Macros (name starting with @) are refused by the converter because Unity does not
implement macros. However, if you try to import an application containing macros,
they will be replaced by dummy DFBs (as indicated by the ’~’ character in the
application name).

While analyzing the project, you will get error messages regarding these dummy
DFBs. To correct these errors, simply remove all of the DFBs that were created as
a replacements for macros.

AXx, EPARx Parameters

AXx and EPARx parameters in Concept’s extensible motion blocks are automatically
invoked with the newly required array instead of with Unity’s formerly present
extensible pins. Constants present at the Concept pins are also placed as
initialization values to such arrays. However, variables and links must be attached
manually with move blocks to these arrays.
84 33002515 07/2012

33002515 07/2012
4

Unity Pro

Possible application behavior change

33002515 07/2012
Possible application behavior
change
Overview

This chapter contains information about possible application behavior change, when
migrating from Concept to Unity Pro.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

General 86

Concept Behavior 88

IEC Demands 89

Unity Behavior 92

Consequences 94
85

Possible application behavior change
General

Concept

In Concept and Unity Function Block interfaces are implemented with data
structures (instance areas) collecting parameters, according to the standard
IEC61131 which both systems refer to.

Function Block invocations refer to those data structures. However, Concept does
not include output parameters into those instance areas. All parameters of
DFB/EFBs (Elementary Function Blocks) are generally handled by reference,
therefore output parameters are directly written to by the Function Block code by
Concept. Unity DFB/EFBs buffer output parameters in the instance area, as the
standard IEC61131 prescribes.

The Concept behavior was used to enable, for example, easy manual mode
implementation of closed-loop-control function blocks.

If the output is written to, only once in a cycle, the behavior is the same in both
systems.If output values are not written in all invocation cases, but are assigned by
several Function Block instances, different behavior between both systems can
result.

If the concerned variable is written to by some other control part prior to a Function
Block having the same output parameter, invoked in a case where the Function
Block does not write to the output, nothing changes in Concept, but in Unity the
variable buffer value in the instance area resulting from a previous invocation is
assigned to the output parameter.

To detect such cases, multiple assignments to elementary variables or derived data
type components from Function Blocks are detected by the Concept converter, if the
appropriate option is checked:

Detected for Elementary and Derived Function Blocks.
Works in DFB and Program Sections.
Reports during conversion in the build tab of the output window with textual
identification of the concerned locations.
The same textual report appears in the Conversion report.
Reports in FBD and LD sections with ‘ConvError’ blocks placed above the
concerned Function Blocks.
86 33002515 07/2012

Possible application behavior change
On Analysis messages appear in the Analyze/Build tab of the output window,
which can be opened by double clicking and opening the concerned section and
directly showing the concerned Function Block.

Using this report, the user can adapt this code to ensure common operation, e.g. by
changing the DFB outputs to InOut parameters, which offer direct writing also in
Unity.

NOTE: If the application uses multi-assignment on EFB outputs, you should
carefully read the following chapter to verify that the converted application works in
the intended way (EFBs cannot be changed by the user, only new ones can be
introduced).
33002515 07/2012 87

Possible application behavior change
Concept Behavior

Parameters are Handled by Reference

In Concept all function block parameters are handled by reference, means the
blocks receives a pointer to the data of every function block pin and works directly
on the connected variable.

Connected variables:

Function Block Code

Therefore in Concept it is up to the function block code to decide whether:
to behave IEC compliant or
to write input data or
to read output data or
not to write output data.
88 33002515 07/2012

Possible application behavior change
IEC Demands

Function Block

For the purposes of programmable controller programming languages, a function
block is a program organization unit which, when executed, yields one or more
values.

Multiple, named instances (copies) of a function block can be created.

Each instance shall have an associated identifier (the instance name), and a data
structure containing its output and internal variables, and, depending on the
implementation, values of or references to its input variables.

All the values of the output variables and the necessary internal variables of this data
structure shall persist from one execution of the function block to the next.

Therefore, invocation of a function block with the same arguments (input variables)
need not always yield the same output values.

Assignment of a Value

Assignment of a value to an output variable of a function block is not allowed except
from within the function block.

The assignment of a value to the input of a function block is permitted only as part
of the invocation of the function block.

Unassigned or unconnected inputs of a function block shall keep their initialized
values or the values from the latest previous invocation, if any.

Allowable usage of function block inputs and outputs are summarized in table below,
using the function block FF75 of type SR.
33002515 07/2012 89

Possible application behavior change
The examples are shown in the ST language.

EN and ENO in Function Blocks

For function blocks also an additional Boolean EN (Enable) input or ENO (Enable
Out) output, or both, can be provided by the manufacturer or user according to the
declarations.

When these variables are used, the execution of the operations defined by the
function block shall be controlled according to the following rules:
1. If the value of EN is FALSE (0) when the function block instance is invoked, the

assignments of actual values to the function block inputs may or may not be made
in an implementation-dependent fashion, the operations defined by the function
block body shall not be executed and the value of ENO shall be reset to FALSE
(0) by the programmable controller system.

2. Otherwise, the value of ENO shall be set to TRUE (1) by the programmable
controller system, the assignments of actual values to the function block inputs
shall be made and the operations defined by the function block body shall be
executed. These operations can include the assignment of a Boolean value to
ENO.

3. If the ENO output is evaluated to FALSE (0), the values of the function block
outputs (VAR_OUTPUT) keep their states from the previous invocation.

Usage Inside function block Outside function block

Input read IF IN1 THEN ... Not allowed 1, 2

Input
assignment

Not allowed 1 FB_INST(IN1:=A,IN2:=B);

Output read OUT := OUT AND NOT IN2; C := FB_INST.OUT;

Output
assignment

OUT := 1; Not allowed 1

In-out read IF INOUT THEN ... IF FB1.INOUT THEN...

In-out
assignment

INOUT := OUT OR IN1; 3 FB_INST(INOUT:=D);

1 Those usages listed as "not allowed" in this table could lead to implementation-
dependent, unpredictable side effects.

2 Reading and writing of input, output and internal variables of a function block may be
performed by the "communication function", "operator interface function", or the
"programming, testing, and monitoring functions" defined in IEC 61131-1.

3 Modification within the function block of a variable declared in a VAR_IN_OUT block is
permitted.
90 33002515 07/2012

Possible application behavior change
Not Connected EN Inputs

When EN inputs are left open the concerned blocks are not executed in Concept
whereas they would be executed in Unity Pro.

To eliminate this difference the Concept Converter applies a constant boolean value
of FALSE to not connected EN inputs. In this way achieving the same behavior as in
Concept.

In-Out Variables

In-out variables are a special kind of variable used with program organization units
(POUs), i.e., functions, function blocks and programs.

They do not represent any data directly but reference other data of the appropriate
type. They are declared by use of the VAR_IN_OUT keyword. In-out variables may
be read or written to.

Inside a POU, in-out variables allow access to the original instance of a variable
instead of a local copy of the value contained in the variable.

Function Block Invocation

A function block invocation establishes values for the function block’s input variables
and causes execution of the program code corresponding to the function block body.

These values may be established graphically by connecting variables or the outputs
of other functions or function blocks to the corresponding inputs, or textually by
listing the value assignments to input variables.

If no value is established for a variable in the function block invocation, a default
value is used.

Depending on the implementation, input variables may consist of the actual variable
values, addresses at which to locate the actual variable values, or a combination of
the two.

These values are always passed to the executing code in the data structure
associated with the function block instance.

The results of function block execution are also returned in this data structure.

Hence, if the function block invocation is implemented as a procedure call, only a
single argument - the address of the instance data structure - need be passed to the
procedure for execution.
33002515 07/2012 91

Possible application behavior change
Unity Behavior

Changed Parameter Handling

To fulfill the IEC demands the normal EDT (Elementary Data Types) parameter
handling was changed from Concept to Unity.

The following figure describes the actual implementation in Unity.

The EFBs no longer get pointers to their connected pin variables.

They always get the data by value.

In every scan the application code updates the copy of the input data in the instance
data, before the function block is called (1).

The copy of the pin data is located in the instance data of the block and the function
block code always works on the instance data (2).

After the function block code execution the application code copies the updated
function block output data from the instance data to the connected output variables
(3).

This is valid for all EDTs. Derived data types and more complex data types are
treated still by reference in some cases.
92 33002515 07/2012

Possible application behavior change
Addressing Modes

The addressing mode of a Function Block element is directly linked to the type of the
element.

The currents known addressing modes are:
by value (VAL)
by address (L-ADR)
by address + Number of elements (L-ADR-LG)

Table with four columns and legend

Function Block Invocation

The following rules must be taken into account while invoking a Function Block
instance:

All input_output parameters have to be filled
All input parameters using the L-ADR or L-ADR-LG addressing modes have to
filled
All output parameters using the L-ADR or L-ADR-LG addressing modes have to
filled

All other kind of parameters could be omitted while Function Block Instance
invocation.

For input parameters, the following rules are applied (in the given order):
The values of the previous invocation are used.
If no previous invocation, the initial values are used.

- EDT
(Except
STRING)

STRING DDT Array DDT
Struct

ANY_
ARRAY

ANY...

Input
parameter

VAL L-ADR-LG L-ADR-LG L-ADR L-ADR-LG L-ADR-LG

Input_Output
parameter

L-ADR 1 L-ADR-LG L-ADR-LG L-ADR L-ADR-LG L-ADR-LG

Output
parameter

VAL VAL L-ADR-LG VAL L-ADR-LG L-ADR-LG

Public
Variable

VAL VAL - VAL - -

Private
Variable

VAL VAL - VAL - -

1 Except for BOOL type, the addressing mode is VAL.
33002515 07/2012 93

Possible application behavior change
Consequences

Potential Problems

NOTE:

Because of this architectural change, when an application is migrated from Concept
to Unity you have to evaluate the consequences of the migration, and specially in
the following cases:

Multi assignment of connected output variables:
In Concept there are function blocks, mainly in the closed-loop-control area,
which do not write their output values to the connected variables in special
operating modes (manual mode).
In these special modes it was possible to write the variables from other locations
inside the application.
This will work in Unity only, if the variables are written after the function block call.
If they are written before the function block call, the copy process from the
instance data to the connected variables will overwrite this value with the old
value from the instance data.
Controlling output variables by animation table or HMI:
If a block doesn’t write his outputs in special operating modes (like manual mode,
see above), it was possible to modify the connected output variables by
animation tables or HMI.
This will no longer work in Unity, since the copy process from the instance data
to the connected variables of the function block will overwrite the modified value
with the old value from the instance data.

Changed EFB Layout

To avoid major problems, a lot of function blocks (mainly in the Motion and CLC
area) were changed in their layout from Concept to Unity to ensure a correct mode
of operation in the intended way for the function blocks.

The concerned pins were changed from type OUT to IN/OUT.

In nearly all cases the modification meets better the reality, since it is read from the
concerned output pins and so they are in fact IN/OUTs.

WARNING
UNEXPECTED APPLICATION BEHAVIOR

Take care when an application is migrating from Concept to Unity.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.
94 33002515 07/2012

Possible application behavior change
The following tables summarize the EFBs, where at least one pin was changed from
OUT to IN/OUT during migration from Concept to Unity.

Library CONT_CTL:

Library Motion:

Family Function Block Concerned Pin

Controller PI_B OUT

PIDFF OUT

Output Processing MS OUT

Setpoint Management SP_SEL SP

Family Function Block Concerned Pin

MMF Start CFG_CP_F MFB, CFG_BLK

CFG_CP_V MFB, CFG_BLK

CFG_CS MFB, CFG_BLK

CFG_FS MFB, CFG_BLK

CFG_IA MFB, CFG_BLK

CFG_RA MFB, CFG_BLK

CFG_SA MFB, CFG_BLK

DRV_DNLD MFB

DRV_UPLD MFB

IDN_CHK MFB

IDN_XFER MFB

MMF_BITS MFB

MMF_ESUB MFB

MMF_INDX MFB

MMF_JOG MFB

MMF_MOVE MFB

MMF_RST MFB

MMF_SUB MFB

MMF_USUB MFB
33002515 07/2012 95

Possible application behavior change
Library Obsolete Lib:

Concept Converter Behavior

The Concept Converter normally handles the layout change in the following way,
when a Concept application is imported into Unity:

Case 1: A variable is connected to the output pin in Concept:
The Concept Converter keeps the variable at the output side of the IN/OUT pin
and adds the variable additionally at the input side of the pin.
Case 2: A link is connected to the output pin in Concept:
The Concept Converter removes the link, creates a new variable of the needed
type and writes this new variable to the start and end position of the removed link.
Additionally the variable is added to the input side of the pin.

Family Function Block Concerned Pin

CLC_PRO ALIM Y

COMP_PID Y, YMAN_N, OFF_N, SP_CAS_N

DERIV Y

INTEG Y

LAG Y

LAG2 Y

LEAD_LAG Y

PD_OR_PI Y

PI Y

PID Y

PID_P Y

PIP Y

PPI Y

VLIM Y

Extensions/Compatibility R2T OFF

SRCH INDEX

T2T OFF
96 33002515 07/2012

Possible application behavior change
Further Potential Problems

The following tables contain blocks, where also some consequences of the
architectural change from Concept to Unity may arise in case of multi-assignment,
because in Concept:

The blocks do not write their listed output pin in case of errors inside the block.
The blocks do not write their listed output pin in COLD or WARM INIT scan.
The blocks write their listed output pin conditionally depending from internal mode
of operation.

Library CONT_CTL:

Family Function Block Concerned Pin

Conditioning DTIME OUT

SCALING OUT

TOTALIZER OUT, INFO

Controller AUTOTUNE TRI, INFO

PI_B OUT_D, DEV

PIDFF OUT_D, INFO

STEP2 DEV

STEP3 DEV

Output Processing MS OUTD, STATUS

MS_DB OUTD, STATUS

SPLRG OUT1, OUT2

Setpoint Management RAMP SP

RATIO KACT, SP

SP_SEL LSP_MEM
33002515 07/2012 97

Possible application behavior change
Library I/O Management:

Library Motion:

Family Function Block Concerned Pin

Analog I/O
Configurationj

I_SET CHANNEL

O_SET CHANNEL

Analog I/O Scaling I_NORM_WARN WARN

I_PHYS_WARN WARN

I_SCALE_WARN WARN

Quantum I/O
Configurationj

ACI040 CHANNL1..16

ACO130 CHANNEL1..8

AII330 CHANNEL1..8, INTERNAL

AII33010 CHANNEL1..8

AIO330 CHANNEL1..8

ARI030 CHANNEL1..8

Family Function Block Concerned Pin

MMF Start CFG_CP_F Q, ERROR

CFG_CP_V Q, ERROR

CFG_CS Q, ERROR

CFG_FS Q, ERROR

CFG_IA Q, ERROR

CFG_RA Q, ERROR

CFG_SA Q, ERROR

DRV_DNLD Q, ERROR, IDN_CNT

DRV_UPLD Q, ERROR, REG_CNT, DATA_B, LK

IDN_CHK Q, ERROR, NOT_EQ

IDN_XFER Q, ERROR, OUT_RAW, OUTCONV

MMF_ESUB Q, ERROR, RET1, RET2, RET§

MMF_INDX Q, ERROR

MMF_JOG Q, ERROR

MMF_MOVE Q, ERROR

MMF_RST Q

MMF_SUB Q, ERROR, RET1, RET2, RET§

MMF_USUB Q, ERROR, RET1, RET2, RET§
98 33002515 07/2012

Possible application behavior change
Library Obsolete Lib:

NOTE: The pins were not changed, because in normal operation mode of the blocks
this has no influence.

Family Function Block Concerned Pin

CLC DELAY Y

PI1 ERR

PID1 ERR

PIDP1 ERR

THREE_STEP_CON1 ERR_EFF

THREEPOINT_CON1 ERR_EFF

TWOPOINT_CON1 ERR_EFF

CLC_PRO COMP_PID STATUS, ERR

DEADTIME Y

FGEN Y, N

INTEG STATUS

PCON2 ERR_EFF

PCON3 ERR_EFF

PD_OR_PI ERR, STATUS

PDM Y_POS, Y_NEG

PI ERR, STATUS

PID ERR, STATUS

PID_P ERR, STATUS

PIP ERR, SP2, STATUS

PPI ERR, SP2, STATUS

PWM Y_POS, Y_NEG

QPWM Y_POS, Y_NEG

SCON3 ERR_FF

VLIM STATUS

Extensions/Compatibility FIFO EMPTY, FULL

LIFO EMPTY, FULL
33002515 07/2012 99

Possible application behavior change

100 33002515 07/2012

33002515 07/2012
5

Unity Pro

The Conversion Process

33002515 07/2012
The Conversion Process
Conversion Process

General

A Concept project is exported from Concept and then converted automatically into
a Unity Pro project using the Unity Pro Concept Converter.

Conversion Process

Representation of the conversion process:
101

The Conversion Process
Description of the conversion levels:

Error Report and Analysis

Errors that occur during conversion are logged in an error report and displayed in an
output window.

Substitute objects are used in place of objects that cannot be converted. The
Unity Pro project can be analyzed using the main menu Create → Analyze Project.
Subsequently messages are displayed in the output window to find the substitute
objects.

The errors displayed in the output window must be corrected manually to ensure the
Unity Pro project runs correctly.

Level Description

1 A project is exported from Concept.
An ASCII file is created.

2 The Unity Pro Concept Converter is called.
The ASCII file is converted into an XEF file.

3 The XEF file is imported into Unity Pro.
A Unity Pro project is created.

4 The error report is checked.
There must be no errors.

5 The project is now available in Unity Pro and can be generated and then loaded
into a PLC or processed in Unity Pro.
102 33002515 07/2012

33002515 07/2012
6

Unity Pro

Conversion Procedure

33002515 07/2012
Conversion Procedure
Overview

This chapter contains the procedures required to convert a Concept project into a
Unity Pro project.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Exporting a Project from Concept 104

Importing a Project into Unity Pro 105

Missing Datatypes at the Beginning of the Import 106

Converting Only Parts of a Concept Application 107

Removing Accidentally Included Concept Macros 108

Initialization Values 109
103

Conversion Procedure
Exporting a Project from Concept

General

A Concept project that should be used in Unity Pro must first be exported from
Concept. It is then possible to use the Unity Concept Converter to make the
conversion to a Unity Pro project.

Export Project

Perform the following steps to export a project:

Step Procedure

1 Start the Concept Converter program from the Concept program group.

2 Select File → Export..., to open the menu for selecting the export range.

3 Select the export range:
Project with DFBs: All project information including the DFBs and data
structures (derived data types) used in the project are exported.
Project without DFBs: All project information including all data structures
(derived data types), but not DFBs and macros, is exported.

Result: The dialog box for selecting the files to be exported is opened.

4 Select the following file extension:
Export projects: Select the extention .prj from the format list box.

5 Select the project and confirm using OK.
Result: The project is stored in the current directory as an ASCII file (.asc).

6 End the Concept Converter program using File → Exit.
104 33002515 07/2012

Conversion Procedure
Importing a Project into Unity Pro

General

A Concept project that is be used in Unity Pro must first be exported from Concept.
It is then possible to use the Unity Concept Converter to make the conversion to a
Unity Pro project.

Import Project

Carry out the following steps to convert and import a project:

Step Procedure

1 Launch Unity Pro.

2 Open the project exported from Concept using File → Open. Select the data
type CONCEPT PROJECTS (*.ASC).
NOTE: Do not use the project with used DFBs (Re-Connect to Equal) option
when creating the *.ASC file. Unity Pro cannot import the application if this option
is used.

3 Result:
The ASCII file is converted to Unity Pro source file format and imported
automatically.
Import errors and messages about objects that cannot be converted and have
substitute objects in their place, are displayed in an output window.

4 Edit the errors and messages in the output window manually to ensure the Unity
Pro project runs correctly.

5 To ensure that a project contains no more errors, select the menu command
Build → Analyse Project again.
33002515 07/2012 105

Conversion Procedure
Missing Datatypes at the Beginning of the Import

General

If the dialog at the beginning of the import claims for unknown DDTs, search for local
type declarations in this DDT and find out which of these are undefined.

Further, types unused but present in the opened *.asc file are reported as unknown
in a dialog during import.

Concept System Data Types

This happens for Concept system data types, which are considered for Concept to
be always presented and therefore not included in the export by Concept.

The Converter automatically includes the standard system data types of Concept
individually, if they are needed. They are part of the converter command and include
file CConv.xml present in the execution directory of Unity.

If the read-only-flag is removed, this file can be extended to include additional data
types for user EFB libraries.

Such data type files beyond the global/local ones are placed in the lib subdirectory
of Concept to be merged into the Concept application, but these data types do NOT
appear in the Concept export file.

Concept *.dty Files

The V1.1 version of the Concept converter will have the capability to add Concept
*.dty files, which are stored in the same directory as the *.asc file, to the converted
application, as if their content were appearing inside the *.asc file itself.
106 33002515 07/2012

Conversion Procedure
Converting Only Parts of a Concept Application

General

The Concept converter is prepared to convert complete applications and parts of
applications.

If only parts of a Concept application are needed either
use a reduced application export with Concept (see sections below) or
use the Conversion Wizard (see Conversion with the Conversion Wizard,
page 15).

Single DFB

If a single DFB is needed, make a new application with 1 single section and place a
call to the desired DFB into this section.

Export the application using the menu item Export with used DFBs in Concept.

Convert the resulting *.asc file in Unity Pro via File → Open.

Subset of Sections

To export a subset of sections use the File → Export → Program: Section(s) menu
in Concept.

Select the source application and the desired sections and follow the user guidance
to get a reduced application.

However, if the section contains references to SFC steps, Concept requires to
export the referenced SFC section as well.

Convert the resulting *.sec file in Unity Pro with the Conversion Wizard via Tools →
Convert Partially.

Subset of Variables

To export a subset of variables first open the Variable Editor in Concept and select
the desired variables.

After that use the File → Export → Variables: Text delimited menu.

Convert the resulting *.txt file in Unity Pro with the Conversion Wizard via Tools →
Convert Partially.

Animation Tables

If animation table files are present in the application export directory, the animation
tables will be automatically included in the conversion result.
33002515 07/2012 107

Conversion Procedure
Removing Accidentally Included Concept Macros

General

If a Concept Macro has been included into the Concept export, this Macro is
converted as if it were a DFB and appears in the project browser tree as a DFB.

Delete this DFB because Unity Pro does not support Macros.
108 33002515 07/2012

Conversion Procedure
Initialization Values

General

Initialization values are contained in Concept export in an array, describing the
State RAM.

This array is converted in Unity Pro to clusters, i.e. that it is cut into contiguous
sequences of non-zero values with single-zero values tolerated.

Each cluster is converted to an individual array with the names LL_SRAMxxx.
33002515 07/2012 109

Conversion Procedure

110 33002515 07/2012

33002515 07/2012
II
Unity Pro

Blocks from Concept to Unity Pro

33002515 07/2012
Blocks from Concept to Unity Pro
Overview

This part contains a description of the blocks which are not part of Unity Pro as
standard.

However, if these blocks were used in Concept they are generated during the project
conversion from Concept to Unity Pro in order to map the functionality configured in
Concept into Unity Pro on a one to one basis.

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page

7 BYTE_TO_BIT_DFB: Type conversion 113

8 CREADREG: Continuous register reading 117

9 CWRITREG: Continuous register writing 125

10 DINT_AS_WORD_DFB: Type conversion 131

11 DIOSTAT: Module function status (DIO) 133

12 GET_TOD: Reading the hardware clock (Time Of Day) 135

13 LIMIT_IND_DFB: Limit with indicator 139

14 LOOKUP_TABLE1_DFB: Traverse progression with 1st
degree interpolation

143

15 PLCSTAT: PLC function status 149

16 READREG: Read register 165

17 RIOSTAT: Module function status (RIO) 173

18 SET_TOD: Setting the hardware clock (Time Of Day) 177

19 WORD_AS_BYTE_DFB: Type conversion 181

20 WORD_TO_BIT_DFB: Type conversion 183

21 WRITEREG: Write register 187
111

Blocks from Concept to Unity Pro

112 33002515 07/2012

33002515 07/2012
7

Unity Pro

BYTE_TO_BIT_DFB

33002515 07/2012
BYTE_TO_BIT_DFB: Type
conversion
Description

Function description

This derived function block converts one input word from the BYTE data type to 8
output values of the BOOL data type.

The individual bits of the byte at the input are assigned to the outputs according to
the output names.

EN and ENO can be configured as additional parameters.

Representation in FBD

Representation:
113

BYTE_TO_BIT_DFB
Representation in LD

Representation:

Representation in IL

Representation:

CAL BYTE_TO_BIT_DFB_Instance (IN:=BYTE_variable,
 BIT0=>BOOL_variable1, BIT1=>BOOL_variable2,
 BIT2=>BOOL_variable3, BIT3=>BOOL_variable4,
 BIT4=>BOOL_variable5, BIT5=>BOOL_variable6,
 BIT6=>BOOL_variable7, BIT7=>BOOL_variable8)
114 33002515 07/2012

BYTE_TO_BIT_DFB
Representation in ST

Representation:

BYTE_TO_BIT_DFB_Instance (IN:=BYTE_variable,
 BIT0=>BOOL_variable1, BIT1=>BOOL_variable2,
 BIT2=>BOOL_variable3, BIT3=>BOOL_variable4,
 BIT4=>BOOL_variable5, BIT5=>BOOL_variable6,
 BIT6=>BOOL_variable7, BIT7=>BOOL_variable8) ;

Parameter description

Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning

IN BYTE Input

Parameter Data type Meaning

BIT0 BOOL Output bit 0

BIT1 BOOL Output bit 1

: : :

BIT7 BOOL Output bit 7
33002515 07/2012 115

BYTE_TO_BIT_DFB

116 33002515 07/2012

33002515 07/2012
8

Unity Pro

CREADREG

33002515 07/2012
CREADREG: Continuous register
reading
Introduction

This chapter describes the CREADREG block.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Description 118

Mode of Functioning 121

Parameter description 122

Modbus Plus Error Codes 123
117

CREADREG
Description

Function description

This derived function block reads the register area continuously. It reads data from
addressed nodes via Modbus Plus.

EN and ENO can be configured as additional parameters.

NOTE: It is necessary to be familiar with the routing procedures of your network
when programming a CREADREG function. Modbus Plus routing path structures will
be described in detail in "Modbus Plus Network Planning and Installation Guide".

NOTE: This function block only supports the local Modbus Plus interface (no NOM).

If using a NOM please work with the block CREAD_REG from the communication
block library.

NOTE: This function block does not support TCP/IP- or SY/MAX-Ethernet.

If TCP/IP- or SY/MAX-Ethernet is needed, please use the block CREAD_REG of the
communication block library.

NOTE: Several copies of this function block can be used in the program. However,
multiple instancing of these copies is not possible.

Representation in FBD

Representation:
118 33002515 07/2012

CREADREG
Representation in LD

Representation:

Representation in IL

Representation:

CAL CREADREG_Instance (NODEADDR:=DeviceAddress,
 ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress,
 NO_REG:=NumberOfRegisters,
 REG_READ:=ArrayForValuesRead,
 STATUS=>ErrorCode)

Representation in ST

Representation:

CREADREG_Instance (NODEADDR:=DeviceAddress,
 ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress,
 NO_REG:=NumberOfRegisters,
 REG_READ:=ArrayForValuesRead,
 STATUS=>ErrorCode;
33002515 07/2012 119

CREADREG
Parameter description

Description of the input parameters:

Description of input / output parameters:

Description of the output parameters:

Parameters Data type Meaning

NODEADDR INT Device address within the target segment

ROUTPATH DINT Routing path to target segment

SLAVEREG DINT Offset address of the first 4x register in the slave to
be read from

NO_REG INT Number of registers to be read from slave

Parameters Data type Meaning

REG_READ ANY_ARRAY_WORD Writing data
(For the file to be read a data structure must be
declared as a located variable.)

Parameters Data type Meaning

STATUS WORD Error Code
120 33002515 07/2012

CREADREG
Mode of Functioning

Function mode of CREADREG blocks

Although a large number of CREADREG function blocks can be programmed, only
four read operations may be active at the same time. It makes no difference whether
these operations are performed using this function block or others (e.g. MBP_MSTR,
READREG). All function blocks use one data transaction path and require multiple
cycles to complete a task.

The complete routing information must be separated into two parts:
in the NODEADDR of the destination node (regardless of whether it is located in the
local segment or in another segment) and
the routing path, in case there is a link via network bridges.

The resulting destination address consists of these two information components.

The routing path is a DINT data type, which is interpreted as a sequence of two-digit
information units. It is not necessary to use "00" extensions (e.g. both routing paths
4711 and 47110000 are valid, for NODEADDR 34 the result is destination address
47.11.34.00.00).

NOTE: This function block puts a heavy load on the network. The network load must
therefore be carefully monitored. If the network load is too high, the program logic
should be reorganized to work with the READREG function block, which is a variant
of this function block that does not operate in continuous mode, but is command
driven.
33002515 07/2012 121

CREADREG
Parameter description

NODEADDR

Identifies the node address within the target segment.

The parameter can be entered as an address, located variable, unlocated variable
or literal.

ROUTPATH

Identifies the routing path to the target segment. The two-digit information units run
from 01 64 (see Mode of Functioning, page 121). If the slave resides in the local
network segment, ROUTPATH must be set to "0" or must be left unconnected.

The parameter can be entered as an address, located variable, unlocated variable
or literal.

SLAVEREG

Start of the area in the addressed slave from which the source data are read. The
source area always resides within the 4x register area. SLAVEREG expects the
source reference as offset within the 4x area. The leading "4" must be omitted (e.g.
59 (contents of the variables or value of the literal) = 40059).

The parameter can be entered as an address, located variable, unlocated variable
or literal.

NO_REG

Number of registers to be read from slave processor (1 ... 100).

The parameter can be entered as an address, located variable, unlocated variable
or literal.

STATUS

Error code, see Modbus Plus Error Codes, page 123

The parameter can be specified as an address, located variable or unlocated
variable.

REG_READ

An ANY_ARRAY_WORD that is the same size as the requested transmission must be
agreed upon (≥ NO_REG) for this parameter. The name of this array is defined as a
parameter. If the array is defined too small, then only the amount of data is
transmitted that is present in the array.

The parameter must be defined as a located variable.
122 33002515 07/2012

CREADREG
Modbus Plus Error Codes

Form of the function error code

The form of the function error code for Modbus Plus is Mmss, which includes:
M is the high code
m is the low code
ss is a subcode

Hexadecimal error code

Hexadecimal error code for Modbus Plus:

Hex. Error
Code

Meaning

1001 Abort by user

2001 An operation type that is not supported was specified in the control block

2002 One or more control block parameters were modified while the MSTR element
was active (this only applies to operations which require several cycles for
completion). Control block parameters my only be modified in inactive MSTR
components.

2003 Illegal value in the length field of the control block

2004 Illegal value in the offset field of the control block

2005 Illegal value in the length and offset fields of the control block

2006 Unauthorized data field on slave

2007 Unauthorized network field on slave

2008 Unauthorized network routing path on slave

2009 Routing path equivalent to own address

200A Attempting to retrieve more global data words than available

30ss Unusual response by Modbus slave (see page 124)

4001 Inconsistent response by Modbus slave

5001 Inconsistent response by network

6mss Routing path error (see page 124)
Subfield m shows where the error occurred (a 0 value means local node, 2
means 2nd device in route, etc) .
33002515 07/2012 123

CREADREG
ss hexadecimal value in 30ss error code

ss hexadecimal value in 30ss error code:

ss hexadecimal value in 6mss error code

NOTE: Subfield m in error code 6mss is an Index in the routing information that
shows where an error has been detected (a 0 value indicates the local node, 2
means the second device in the route, etc.).

The ss subfield in error code 6mss is as follows:

ss hex. Value Meaning

01 Slave does not support requested operation

02 Non-existent slave registers were requested

03 An unauthorized data value was requested

05 Slave has accepted a lengthy program command

06 Function cannot currently be carried out: lengthy command running

07 Slave has rejected lengthy program command

ss hexadecimal value Meaning

01 No response receipt

02 Access to program denied

03 Node out of service and unable to communicate

04 Unusual response received

05 Router-node data path busy

06 Slave out of order

07 Wrong destination address

08 Unauthorized node type in routing path

10 Slave has rejected the command

20 Slave has lost an activated transaction

40 Unexpected master output path received

80 Unexpected response received

F001 Wrong destination node specified for MSTR operation
124 33002515 07/2012

33002515 07/2012
9

Unity Pro

CWRITEREG

33002515 07/2012
CWRITREG: Continuous register
writing
Introduction

This chapter describes the CWRITREG block.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Description 126

Mode of Functioning 129

Parameter description 130
125

CWRITEREG
Description

Function description

This derived function block writes continuously to the register area. It transfers data
from the PLC via Modbus Plus to a specified slave destination processor.

EN and ENO can be configured as additional parameters.

NOTE: When programming a CWRITREG function, you must be familiar with the
routing procedures used by your network. Modbus Plus routing path structures will
be described in detail in "Modbus Plus Network Planning and Installation Guide".

NOTE: This function block only supports the local Modbus Plus interface (no NOM).

If using a NOM please work with the CWRITE_REG block from the communication
block library.

NOTE: This function block does not support TCP/IP- or SY/MAX-Ethernet.

If TCP/IP- or SY/MAX-Ethernet is needed, please use the CWRITE_REG block from
the communication block library.

NOTE: Several copies of this function block can be used in the program. However,
multiple instancing of these copies is not possible.

Representation in FBD

Representation:
126 33002515 07/2012

CWRITEREG
Representation in LD

Representation:

Representation in IL

Representation:

CAL CWRITREG_Instance (NODEADDR:=DeviceAddress,
 ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress,
 NO_REG:=NumberOfRegisters,
 REG_WRIT:=SourceDataArea,
 STATUS=>ErrorCode)

Representation in ST

Representation:

CWRITREG_Instance (NODEADDR:=DeviceAddress,
 ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress,
 NO_REG:=NumberOfRegisters,
 REG_WRIT:=SourceDataArea,
 STATUS=>ErrorCode) ;
33002515 07/2012 127

CWRITEREG
Parameter description

Description of the input parameters:

Description of input / output parameters:

Description of the output parameters:

Parameters Data type Meaning

NODEADDR INT Device address within the target segment

ROUTPATH DINT Routing path to target segment

SLAVEREG DINT Offset address of the first 4x register in the slave to
be written to

NO_REG INT Number of registers to be written from slave

Parameters Data type Meaning

REG_WRIT ANY_ARRAY_WORD Source data field
(A data structure must be declared as a located
variable for the source file.)

Parameters Data type Meaning

STATUS WORD Error Code
128 33002515 07/2012

CWRITEREG
Mode of Functioning

Function mode of CWRITREG blocks

Although an unlimited number of CWRITREG function blocks can be programmed,
only four write operations may be active at the same time. It makes no difference
whether these operations are performed using this function block or others (e.g.
MBP_MSTR, WRITEREG). All function blocks use one data transaction path and
require multiple cycles to complete a task.

If several CWRITREG function blocks are used within an application, they must at
least differ in the values of their NO_REG or REG_WRIT parameters.

The complete routing information must be separated into two parts:
in the NODEADDR of the destination node (regardless of whether it is located in the
local segment or in another segment) and
the routing path, in case there is a link via network bridges.

The resulting destination address consists of these two information components.

The routing path is a DINT data type, which is interpreted as a sequence of two-digit
information units. It is not necessary to use "00" extensions (e.g. both routing paths
4711 and 47110000 are valid, for NODEADDR 34 the result is destination address
47.11.34.00.00).

NOTE: This function block puts a heavy load on the network. The network load must
therefore be carefully monitored. If the network load is too high, the program logic
should be reorganized to work with the WRITEREG function block, which is a variant
of this function block that does not operate in continuous mode, but is command
driven.
33002515 07/2012 129

CWRITEREG
Parameter description

NODEADDR

Identifies the node address within the target segment.

The parameter can be specified as an address, located variable, unlocated variable
or literal.

ROUTPATH

Identifies the routing path to the target segment. The two-digit information units run
from 01 64 (see Mode of Functioning, page 129). If the slave resides in the local
network segment, ROUTPATH must be set to "0" or must be left unconnected.

The parameter can be specified as an address, located variable, unlocated variable
or literal.

SLAVEREG

Start of the destination area in the addressed slave to which the source data are
written. The destination area always resides within the 4x register area. SLAVEREG
expects the destination address as an offset within the 4x area. The leading "4" must
be omitted (e.g. 59 (contents of the variables or value of the literal) = 40059).

The parameter can be entered as an address, located variable, unlocated variable
or literal.

NO_REG

Number of registers to be written to slave processor (1 ... 100).

The parameter can be specified as an address, located variable, unlocated variable
or literal.

REG_WRIT

An ANY_ARRAY_WORD that is the same size as the planned transmission must be
agreed upon (≥ NO_REG) for this parameter. The name of this array is defined as a
parameter. If the array is defined too small, then only the amount of data is
transmitted that is present in the array.

The parameter must be defined as a located variable.

STATUS

If MSTR error code is returned, see Modbus Plus Error Codes, page 123

The parameter can be specified as an address, located variable or unlocated
variable.
130 33002515 07/2012

33002515 07/2012
10
Unity Pro

DINT_AS_WORD_DFB

33002515 07/2012
DINT_AS_WORD_DFB: Type
conversion
Description

Function description

This derived function block converts one input word from the DINT data type to 2
output values of the WORD data type.

The individual words of the DINT input are assigned to the outputs according to the
output names.

EN and ENO can be configured as additional parameters.

Representation in FBD

Representation:

Representation in LD

Representation:
131

DINT_AS_WORD_DFB
Representation in IL

Representation:

CAL DINT_AS_WORD_DFB_Instance (IN:=DINT_variable,
 LOW=>LowWord, HIGH=>HighWord)

Representation in ST

Representation:

DINT_AS_WORD_DFB_Instance (IN:=DINT_variable,
 LOW=>LowWord, HIGH=>HighWord) ;

Parameter description

Description of the input parameters:

Description of the output parameters:

Parameters Data type Meaning

IN DINT Input

Parameters Data type Meaning

LOW WORD least significant word

HIGH WORD most significant word
132 33002515 07/2012

33002515 07/2012
11
Unity Pro

DIOSTAT

33002515 07/2012
DIOSTAT: Module function status
(DIO)
Description

Function description

This function provides the function status for I/O modules of an I/O station (DIO).

Each module (slot) is displayed as an output "status" bit. The bit on the far left side
in "status" corresponds to the slot on the far left side of the I/O station.

NOTE: If a module of the I/O station is configured and works correctly, the
corresponding bit is set to "1".

EN and ENO can be configured as additional parameters.

Representation in FBD

Representation:

Representation in LD

Representation:
133

DIOSTAT
Representation in IL

Representation:

CAL DIOSTAT_Instance (LINK:=LinkNumber, DROP:=DropNumber,
 STATUS=>Status)

Representation in ST

Representation:

DIOSTAT_Instance (LINK:=LinkNumber, DROP:=DropNumber,
 STATUS=>Status) ;

Parameter description

Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning

LINK UINT Link No. (0...2)

DROP UINT I/O station no: (1...64)

Parameter Data type Meaning

STATUS WORD Status bit pattern (see page 133) of an I/O station
134 33002515 07/2012

33002515 07/2012
12
Unity Pro

GET_TOD

33002515 07/2012
GET_TOD: Reading the hardware
clock (Time Of Day)
Description

Function description

This function block searches (together with the other function blocks in the HSBY
group) the configuration of the respective PLC for the necessary components.
These components always refer to the hardware actually connected.

Therefore the correct functioning of this function block on the simulators cannot be
guaranteed.

The GET_TOD function block reads the hardware clock, if relevant registers are
provided with this configuration. If these registers are not present, the TOD_CNF
output is set to "0".

EN and ENO can be configured as additional parameters.

Representation in FBD

Representation:
135

GET_TOD
Representation in LD

Representation:

Representation in IL

Representation:

CAL GET_TOD_Instance (TOD_CNF=>RegisterPresentFlag,
 D_WEEK=>DayOfWeek, MONTH=>Byte_variable2,
 DAY=>Byte_variable3, YEAR=>Byte_variable4,
 HOUR=>Byte_variable5, MINUTE=>Byte_variable6,
 SECOND=>Byte_variable7)

Representation in ST

Representation:

GET_TOD_Instance (TOD_CNF=>RegisterPresentFlag,
 D_WEEK=>DayOfWeek, MONTH=>Byte_variable2,
 DAY=>Byte_variable3, YEAR=>Byte_variable4,
 HOUR=>Byte_variable5, MINUTE=>Byte_variable6,
 SECOND=>Byte_variable7) ;
136 33002515 07/2012

GET_TOD
Parameter description

Description of the output parameters:

Parameters Data type Meaning

TOD_CNF BOOL "1" = 4x-register for hardware system clock was
found and the clock is operational.
"0" = time is set at the moment. In this case the other
outputs keep their values.

D_WEEK BYTE Weekday, 1 = Sunday .. 7 = Saturday

MONTH BYTE Month 1..12

DAY BYTE Day 1..31

YEAR BYTE Year 0..99

HOUR BYTE Hour 0..23

MINUTE BYTE Minute 0..59

SECOND BYTE Second 0..59
33002515 07/2012 137

GET_TOD

138 33002515 07/2012

33002515 07/2012
13
Unity Pro

LIMIT_IND_DFB

33002515 07/2012
LIMIT_IND_DFB: Limit with
indicator
Description

Function description

This derived function block transfers the unchanged input value (Input) to the
Output, if the input value is not less than the minimum value (LimitMinimum) and
does not exceed the maximum value (LimitMaximum). If the input value (Input)
is less than the minimum value (LimitMinimum), the minimum value will be
transferred to the output. If the input value (Input) exceeds the maximum value
(LimitMaximum), the maximum value will be transferred to the output.

Additionally, a indication is given if the minimum or maximum value is violated. If the
value at the (Input) input is less than the value at the (LimitMinimum) input, the
(MinimumViolation) output becomes "1". If the value at the (Input) input is more
than the value at the (LimitMaximum) input, the (MaximumViolation) output
becomes "1".

The data types of the (LimitMinimum, Input, LimitMaximum) input values and
the (Output) output value must be identical.

EN and ENO can be configured as additional parameters.

Formula

Block formula:

OUT = IN, if (IN ≤ MX) & IN ≥ MN

OUT = MN, if (IN < MN)

OUT = MX, if (IN > MX)

MN_IND = 0, if IN ≥ MN

MN_IND = 1, if IN < MN

MX_IND = 0, if IN ≤ MX

MX_IND = 1, if IN > MX
139

LIMIT_IND_DFB
Representation in FBD

Representation:

Representation in LD

Representation:

Representation in IL

Representation:

CAL LIMIT_IND_DFB (MN:=LimitMinimum, IN:=INPUT,
 MX:=LimitMaximum, MN_IND=>MinimumViolation,
 OUT=>Output, MX_IND=>MaximumViolation)

Representation in ST

Representation:

LIMIT_IND_DFB (MN:=LimitMinimum, IN:=INPUT,
 MX:=LimitMaximum, MN_IND=>MinimumViolation,
 OUT=>Output, MX_IND=>MaximumViolation) ;
140 33002515 07/2012

LIMIT_IND_DFB
Parameter description

Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning

LimitMinimum BOOL, BYTE, WORD,
DWORD, INT, DINT,
UINT, UDINT, REAL,
TIME

Limit of minimum value

Input BOOL, BYTE, WORD,
DWORD, INT, DINT,
UINT, UDINT, REAL,
TIME

Input

LimitMaximum BOOL, BYTE, WORD,
DWORD, INT, DINT,
UINT, UDINT, REAL,
TIME

Limit of maximum value

Parameter Data type Meaning

MinimumViolation BOOL Display of minimum value violation

Output BOOL, BYTE, WORD,
DWORD, INT, DINT,
UINT, UDINT, REAL,
TIME

Output

MaximumViolation BOOL Display of maximum value violation
33002515 07/2012 141

LIMIT_IND_DFB

142 33002515 07/2012

33002515 07/2012
14
Unity Pro

LOOKUP_TABLE1_DFB

33002515 07/2012
LOOKUP_TABLE1_DFB: Traverse
progression with 1st degree
interpolation
Introduction

This chapter describes the LOOKUP_TABLE1_DFB block.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Description 144

Detailed description 146
143

LOOKUP_TABLE1_DFB
Description

Function description

This function block linearizes characteristic curves by means of interpolation. The
function block works with variable support point width.

The number of XiYi inputs can be increased to 30 by modifying the size of the block
frame vertically. This corresponds to a maximum of 15 support point pairs.

The number of inputs must be even.

The X values must be in ascending order.

EN and ENO can be configured as additional parameters.

Representation in FBD

Representation:

Representation in LD

Representation:
144 33002515 07/2012

LOOKUP_TABLE1_DFB
Representation in IL

Representation:

CAL LOOKUP_TABLE1_DFB_Instance (X:=InputVariable,
 XiYi1:=X_Coord_1_SupportPoint,
 XiYi2:=Y_Coord_1_SupportPoint, Y=>OutputVariable,
 QXHI=>IndicatorSignalX>Xm, QXLO=>IndicatorSignalX<X1)

Representation in ST

Representation:

LOOKUP_TABLE1_DFB_Instance (X:=InputVariable,
 XiYi1:=X_Coord_1_SupportPoint,
 XiYi2:=Y_Coord_1_SupportPoint, Y=>OutputVariable,
 QXHI=>IndicatorSignalX>Xm, QXLO=>IndicatorSignalX<X1) ;

Parameter description

Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning

XiYi1 REAL X coordinate 1. Support point

XiYi2 REAL Y coordinate 1. Support point

XiYin REAL X coordinate m/2. Support point

XiYim REAL Y coordinate m/2. Support point

X REAL Input variable

Parameter Data type Meaning

Y REAL Output variable

QXHI BOOL Indicator: X > Xm

QXLO BOOL Indicate X < X1
33002515 07/2012 145

LOOKUP_TABLE1_DFB
Detailed description

Parameter description

Each two sequential inputs (XiYi) represent a support point pair. The first input
XiYi corresponds to X1, the next one to Y1, the one after that to X2, etc.

For all types of input value in X found between these support points, the
corresponding Y output value is interpolated, while the traverse progression
between the support points is viewed linearly.

For X < X 1 is Y = Y 1

For X > X m is Y = Y m

If the value at input X is higher than the value of the last support point Xm, the output
QXHI becomes "1".

If the value at input X is less than the value of the first support point X1, the output
QXLO becomes "1".

Principle of interpolation

Traverse progression with 1st degree interpolation)
146 33002515 07/2012

LOOKUP_TABLE1_DFB
Interpolation

The following algorithm applies to a point Y:

for X i ≤ X ≤ X i+1 and i = 1 ... (m-1)

Assuming: X 1 ≤ X 2 ≤ ... ≤ X i ≤ X i+1 ≤ ... ≤ X m-1 ≤ X m

The X values must be in ascending order.

Two consecutive X values can be identical. This could cause a discrete curve
progression.

In this instance, the special case applies:

Y = 0.5 x (Y i + Y i+1)

for

X i = X = X i+1 and i = 1 ... (m-1)
33002515 07/2012 147

LOOKUP_TABLE1_DFB

148 33002515 07/2012

33002515 07/2012
15
Unity Pro

PLCSTAT

33002515 07/2012
PLCSTAT: PLC function status
Introduction

This chapter describes the PLCSTAT block.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Description 150

Derived Data Types 152

PLC status (PLC_STAT) 154

RIO status (RIO_STAT) for Quantum 156

DIO status (DIO_STAT) 158
149

PLCSTAT
Description

Function description

This derived function block reads the Quantum PLC internal states and error bits
and copies this data to the data structures allocated to the respective outputs.

EN and ENO can be configured as additional parameters.

Only data with the input bit (PLC_READ, RIO_READ, DIO_READ) set to "1" will be
read.

Evaluation

The evaluation of PLC_STAT (PLC status), RIO_STAT (I/O status) and DIO_STAT
(I/O communications status) is possible.

NOTE: The name of the output DIO_STAT is confusing. This output only relates to
the remote I/O Drop Status Information (S908) and not to the Distributed I/O status.
To read the distributed I/O status use the function block DIOSTAT
(see page 133).

Representation in FBD

Representation:

Representation in LD

Representation:
150 33002515 07/2012

PLCSTAT
Representation in IL

Representation:

CAL PLCSTAT_Instance (PLC_READ:=CopyPLCStatusFlag,
 RIO_READ:=CopyRIOStatusFlag,
 DIO_READ:=CopyDIOStatusFlag,
 PLC_STAT=>PLC_IO_Status, RIO_STAT=>RIO_IO_Status,
 DIO_STAT=>DIO_IO_Status)

Representation in ST

Representation:

PLCSTAT_Instance (PLC_READ:=CopyPLCStatusFlag,
 RIO_READ:=CopyRIOStatusFlag,
 DIO_READ:=CopyDIOStatusFlag,
 PLC_STAT=>PLC_IO_Status, RIO_STAT=>RIO_IO_Status,
 DIO_STAT=>DIO_IO_Status) ;

PLCSTAT parameter description

Description of the input parameters:

Description of the output parameters:

Parameters Data type Meaning

PLC_READ BOOL 1 = copies the PLC status from the status table to the
output PLC_STAT.

RIO_READ BOOL 1 = copies the RIO status from the status table to the
output RIO_STAT.

DIO_READ BOOL 1 = copies the DIO status from the status table to the
output DIO_STAT.

Parameters Data type Meaning

PLC_STAT PLCSTATE, Contains the PLC status.

RIO_STAT RIOSTATE, Contains the RIO status (I/O status) for Quantum

DIO_STAT DIOSTATE, Contains the DIO status (I/O communication status)
Note: The name of this output is confusing. This
output only relates to the remote I/O Drop Status
Information (S908) and not to the Distributed I/O
status. To read the distributed I/O status use the
function block DIOSTAT (see page 133).
33002515 07/2012 151

PLCSTAT
Derived Data Types

Element description PLCSTATE

Description of the PLCSTATE element:

Element description RIOSTATE

Description of the RIOSTATE element

Element Data type Meaning

word1 WORD CPU status

word2 WORD Hot Standby Status

word3 WORD PLC status

word4 WORD RIO Status

word5 WORD Reserve

word6 WORD Reserve

word7 WORD Reserve

word8 WORD Reserve

word9 WORD Reserve

word10 WORD Reserve

word11 WORD Reserve

Element Data type Meaning

word1 WORD I/O station 1, module rack 1

word2 WORD I/O station 1, module rack 2

...

word5 WORD I/O station 1, module rack 5

word6 WORD I/O station 2, module rack 1

word7 WORD I/O station 2, module rack 2

...

word160 WORD I/O station 32, module rack 5
152 33002515 07/2012

PLCSTAT
Element description DIOSTATE

Description of the DIOSTATE element

Element Data type Meaning

word1 WORD Switch on error numbers:

word2 WORD Cable A error

word3 WORD Cable A error

word4 WORD Cable A error

word5 WORD Cable B error

word6 WORD Cable B error

word7 WORD Cable B error

word8 WORD Global communication status

word9 WORD Global cumulative error counter for cable A

word10 WORD Global cumulative error counter for cable B

word11 WORD I/O station 1 health status and repetition counter
(first word)

word12 WORD I/O station 1 health status and repetition counter
(second word)

word13 WORD I/O station 1 health status and repetition counter
(third word)

word14 WORD I/O station 2 health status and repetition counter
(first word)

...

word104 WORD I/O station 32 health status and repetition counter
(first word)

word105 WORD I/O station 32 health status and repetition counter
(second word)

word106 WORD I/O station 32 health status and repetition counter
(third word)
33002515 07/2012 153

PLCSTAT
PLC status (PLC_STAT)

General information

NOTE: Information corresponds to status table words 1 to 11 in the dialog PLC
status.

The conditions are true when the bits are set to 1.

PLC status (PLCSTATE: word1)

Bit allocation:

Hot Standby status (PLCSTATE: word2)

Bit allocation:

Bit Allocation

10 Run light OFF

11 Memory protect OFF

12 Battery failed

Bit Allocation

1 CHS 110/S911/R911 present and OK

11 0 = CHS shift switch set to A
1 = CHS shift switch set to B

12 0 = PLCs have equal logic
1 = PLCs have unequal logic

13, 14 Remote system condition

15, 16 Local system condition
154 33002515 07/2012

PLCSTAT
PLC status (PLCSTATE: word3)

Bit allocation:

RIO status (PLCSTATE: word4)

Bit allocation:

Bit Allocation

1 First cycle

Bit Allocation

1 IOP defect

2 IOP timeout

3 IOP Loopback

4 IOP memory disturbance

13-16 00 IO has not responded
01 no response
02 Loopback defect
33002515 07/2012 155

PLCSTAT
RIO status (RIO_STAT) for Quantum

General information

NOTE: The information corresponds to status table words 12 to 171 in the PLC
status dialog.

The words show the I/O module function status.

Five words are reserved for each of the maximum 32 I/O stations. Each word
corresponds to one of maximal 2 possible module racks in each I/O station.

Function display for Quantum hardware

Each of the module racks for Quantum hardware can contain up to 15 I/O modules
(except for the first rack which contains a maximum 14 I/O modules). Bit 1... 16 in
each word show the corresponding I/O module function display in the racks.

I/O module function status

Bit allocation:

Bit Allocation

1 Slot 1

2 Slot 2

... ...

16 Slot 16
156 33002515 07/2012

PLCSTAT
Conditions for a correct function display

Four conditions must be fulfilled if an I/O module can give a correct function display:
The data traffic of the slot has to be monitored.
The slot must be valid for the inserted module.
Valid communication must be established between the module and the RIO
interface at RIO stations.
Valid communication must be established between the I/O processor in the PLC
and the RIO interface at the RIO station.

Status words for the MMI user controllers

The status of the 32 element button controllers and PanelMate units in a RIO
network can also be monitored with an I/O function status word. The button
controllers are located on slot 4 in a I/O rack and can be monitored at bit 4 of the
corresponding status word. A PanelMate on RIO is located on slot 1 in module rack
1 of the I/O station and can be monitored at bit 1 of the first status word for the I/O
station.

NOTE: The ASCII keyboard communication status can be monitored with the error
numbers in the ASCII read/write instructions.
33002515 07/2012 157

PLCSTAT
DIO status (DIO_STAT)

General information

NOTE: The information corresponds to status table words 172 to 277 in the PLC
status dialog.

The words contain the I/O communication status (DIO status) Words 1 to 10 are
global status words. Of the remaining 96 words, three words are allocated to each
of the up to 32 I/O stations.

word1 saves the switch on error numbers. This word is always 0 when the system
is running. If an error occurs, the PLC does not start but generates a PLC stop status
(word5 from PLC_STAT).

The conditions are true when the bits are set to 1.

Switch on error numbers (DIOSTATE word1)

The conditions are true when the bits are set to 1.

Switch on error numbers:

Code Error Meaning (location of error)

01 BADTCLEN Traffic cop length

02 BADLNKNUM RIO link number

03 BADNUMDPS I/O station number in traffic cop

04 BADTCSUM Traffic cop checksum

10 BADDDLEN I/O station descriptor length

11 BADDRPNUM I/O station number

12 BADHUPTIM I/O station stop time

13 BADASCNUM ASCII port number

14 BADNUMODS Module number in I/O station

15 PRECONDRP I/O station is already configured

16 PRECONPRT Port is already configured

17 TOOMNYOUT More than 1024 output locations

18 TOOMNYINS More than 1024 input points

20 BADSLTNUM Module slot address

21 BADRCKNUM Rack address

22 BADOUTBC Number of output bytes

23 BADINBC Number of input bytes

25 BADRF1MAP First reference number

26 BADRF2MAP Second reference number
158 33002515 07/2012

PLCSTAT
Status of cable A (DIOSTATE: word2, word3, word4)

Bit allocation for word2:

Bit allocation for word3:

27 NOBYTES No input or output bytes

28 BADDISMAP I/O marker bit not at 16 bit limit

30 BADODDOUT Unmated, odd output module

31 BADODDIN Unmated, odd input module

32 BADODDREF Unmated odd module reference

33 BAD3X1XRF 1x-reference after 3x-register

34 BADDMYMOD Dummy module reference already in use

35 NOT3XDMY 3x-module is not a dummy module

36 NOT4XDMY 4x-module is not a dummy module

40 DMYREAL1X Dummy module, then real 1x-module

41 REALDMY1X Real, then 1x-dummy module

42 DMYREAL3X Dummy module, then real 3x-module

43 REALDMY3X Real, then 3x-dummy module

Code Error Meaning (location of error)

Bit Allocation

1 - 8 Counts frame fields

9 - 16 Counts DMA receiver overflows

Bit Allocation

1 - 8 Counts receiver errors

9 - 16 Counts I/O station receiver failures
33002515 07/2012 159

PLCSTAT
Bit allocation for word4:

Status of cable B (DIOSTATE: word5, word6, word7)

Bit allocation for word5:

Bit allocation for word6:

Bit allocation for word7:

Bit Allocation

1 1 = frame too short

2 1 = no frame end

13 1 = CRC error

14 1 = alignment error

15 1 = overflow error

Bit Allocation

1 - 8 Counts frame fields

9 - 16 Counts DMA receiver overflows

Bit Allocation

1 - 8 Counts receiver errors

9 - 16 Counts I/O station receiver failures

Bit Allocation

1 1 = frame too short

2 1 = no frame end

13 1 = CRC error

14 1 = alignment error

15 1 = overflow error
160 33002515 07/2012

PLCSTAT
Global communication status (DIOSTATE: word8)

The conditions are true when the bits are set to 1.

Bit allocation for word8:

Global cumulative error counter for cable A (DIOSTATE: word9)

The conditions are true when the bits are set to 1.

Bit allocation for word9:

Global cumulative error counter for cable B(DIOSTATE: word10)

The conditions are true when the bits are set to 1.

Bit allocation for word10:

Bit Allocation

1 Comm. function display

2 Cable A status

3 Cable B status

5 - 8 Communication counter lost

9 - 16 Cumulative repetition counter

Bit Allocation

1 - 8 Counts recognized errors

9 - 16 Counts zero responses

Bit Allocation

1 - 8 Counts recognized errors

9 - 16 Counts zero responses
33002515 07/2012 161

PLCSTAT
RIO status (DIOSTATE: word11 to word106)

Words 11 to 106 are used to describe the RIO station status, three status words are
planned for each I/O station.

The first word in each group of three shows the communication status for the
corresponding I/O station:

The second word in each group of three is the cumulative I/O station error counter
at cable A for the corresponding I/O station:

The third word in each group of three is the cumulative I/O station error counter at
cable B for the corresponding I/O station:

NOTE: For PLCs where the I/O station 1 is reserved for the local I/O, words word11
to word13 are allocated as follows:

Bit Allocation

1 Communication health

2 Cable A status

3 Cable B status

5 - 8 Counter for lost communications

9 - 16 Cumulative repetition counter

Bit Allocation

1 - 8 Minimum one error in words 2 to 4

9 - 16 Counts zero responses

Bit Allocation

1 - 8 Minimum one error in words 5 to 7

9 - 16 Counts zero responses
162 33002515 07/2012

PLCSTAT
word11 shows the global I/O station status:

word12 is used as a 16 bit I/O bus error counter.

word13 is used as a 16 bit I/O repetition counter.

Bit Allocation

1 All modules OK

9 - 16 Counts, how often a module is regarded as not OK, counter overflow is at 255
33002515 07/2012 163

PLCSTAT

164 33002515 07/2012

33002515 07/2012
16
Unity Pro

READREG

33002515 07/2012
READREG: Read register
Introduction

This chapter describes the READREG block.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Description 166

Mode of Functioning 169

Parameter description 170
165

READREG
Description

Function description

With a rising edge at the REQ input, this function block reads a register area from an
addressed slave via Modbus Plus.

EN and ENO can be configured as additional parameters.

NOTE: When programming a READREG function, you must be familiar with the
routing procedures used by your network. Modbus Plus routing path structures will
be described in detail in "Modbus Plus Network Planning and Installation Guide".

NOTE: This function block only supports the local Modbus Plus interface (no NOM).

If using a NOM please work with the CREAD_REG block from the communication
block library.

NOTE: This function block does not support TCP/IP- or SY/MAX-Ethernet.

If TCP/IP- or SY/MAX-Ethernet is needed, please use the CREAD_REG block from
the communication block library.

NOTE: Several copies of this function block can be used in the program. However,
multiple instancing of these copies is not possible.

Representation in FBD

Representation:
166 33002515 07/2012

READREG
Representation in LD

Representation:

Representation in IL

Representation:

CAL READREG_Instance (REQ:=StartReadOnce,
 NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
 SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
 REG_READ:=ArrayForValuesRead,
 NDR=>SetAfterReadingNewData, ERROR=>SetInCaseOfError,
 STATUS=>ErrorCode)

Representation in ST

Representation:

READREG_Instance (REQ:=StartReadOnce,
 NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
 SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
 REG_READ:=ArrayForValuesRead,
 NDR=>SetAfterReadingNewData, ERROR=>SetInCaseOfError,
 STATUS=>ErrorCode;
33002515 07/2012 167

READREG
Parameter description

Description of the input parameters:

Description of input / output parameters:

Description of the output parameters:

Parameter Data type Meaning

REQ BOOL With a rising edge at the REQ input, this function
block reads a register area from an addressed slave
via Modbus Plus.

NODEADDR INT Device address within the target segment

ROUTPATH DINT Routing path to target segment

SLAVEREG DINT Offset address of the first 4x register in the slave to
be read from

NO_REG INT Number of registers to be read from slave

Parameters Data type Meaning

REG_READ ANY_ARRAY_WORD Writing data
(For the file to be read a data structure must be
declared as a located variable.)

Parameters Data type Meaning

NDR BOOL Set to "1" for one cycle after reading new data

ERROR BOOL Set to "1" for one scan in case of error

STATUS WORD Error Code
168 33002515 07/2012

READREG
Mode of Functioning

Function mode of READREG_DFB blocks

Although a large number of READREG function blocks can be programmed, only four
read operations may be active at the same time. It makes no difference whether
these operations are performed using this function block or others (e.g. MBP_MSTR,
CREAD_REG). All function blocks use one data transaction path and require multiple
cycles to complete a task. The status signals NDR and ERROR report the function
block state to the user program.

The complete routing information must be separated into two parts:
in the NODEADDR of the destination node (regardless of whether it is located in the
local segment or in another segment) and
the routing path, in case there is a link via bridges.

The resulting destination address consists of these two information components.

The routing path is a DINT data type, which is interpreted as a sequence of two-digit
information units. It is not necessary to use "00" extensions (e.g. both routing paths
4711 and 47110000 are valid, for NODEADDR 34 the result is destination address
47.11.34.00.00).
33002515 07/2012 169

READREG
Parameter description

REQ

A rising edge triggers the read transaction.

The parameter can be specified as an address, located variable, unlocated variable
or literal.

NODEADDR

Identifies the node address within the target segment.

The parameter can be specified as an address, located variable, unlocated variable
or literal.

ROUTPATH

Identifies the routing path to the target segment. The two-digit information units run
from 01 64 (see Mode of Functioning, page 169). If the slave resides in the local
network segment, ROUTPATH must be set to "0" or must be left unconnected.

The parameter can be specified as an address, located variable, unlocated variable
or literal.

SLAVEREG

Start of the area in the addressed slave from which the source data is read. The
source area always resides within the 4x register area. SLAVEREG expects the
source reference as offset within the 4x area. The leading "4" must be omitted (e.g.
59 (contents of the variables or value of the literal) = 40059).

The parameter can be specified as an address, located variable, unlocated variable
or literal.

NO_REG

Number of registers to be read from slave processor (1 ... 100).

The parameter can be specified as an address, located variable, unlocated variable
or literal.

NDR

Transition to ON state for one program cycle signifies receipt of new data ready to
be processed.

The parameter can be specified as an address, located variable or unlocated
variable.
170 33002515 07/2012

READREG
ERROR

Transition to ON state for one program cycle signifies detection of a new error.

The parameter can be specified as an address, located variable or unlocated
variable.

STATUS

Error code, see Modbus Plus Error Codes, page 123

The parameter can be specified as an address, located variable or unlocated
variable.

REG_READ

An ANY_ARRAY_WORD that is the same size as the requested transmission must be
agreed upon (≥ NO_REG) for this parameter. The name of this array is defined as a
parameter. If the array is defined too small, then only the amount of data is
transmitted that is present in the array.

The parameter must be defined as a located variable.
33002515 07/2012 171

READREG

172 33002515 07/2012

33002515 07/2012
17
Unity Pro

RIOSTAT

33002515 07/2012
RIOSTAT: Module function status
(RIO)
Description

Function description

This function block provides the function status for I/O modules of an I/O station
(local/remote I/O).

Quantum I/O or 800 I/O can be used.

An output STATUSx is allocated to each rack. Each module (slot) of this rack is
characterized by a bit of the corresponding STATUSx output. The bit on the far left-
hand side in STATUSx corresponds to the slot on the far left-hand side of the rack x.

Using STATUS1 to STATUS5:
Quantum I/O
There is only one rack for an I/O station, e.g. only STATUS1 is used.
800 I/O
There can be up to 5 racks for an I/O station, e.g. STATUS1 corresponds to
module rack 1, STATUS5 corresponds to module rack 5.

NOTE: If a module on the module rack has been configured and works correctly, the
corresponding bit is set to "1".

EN and ENO can be configured as additional parameters.
173

RIOSTAT
Representation in FBD

Representation:

Representation in LD

Representation:
174 33002515 07/2012

RIOSTAT
Representation in IL

Representation:

CAL RIOSTAT_Instance (DROP:=Local_RemoteDropNo,
 STATUS1=>StatusBitPatternRack1,
 STATUS2=>StatusBitPatternRack2,
 STATUS3=>StatusBitPatternRack3,
 STATUS4=>StatusBitPatternRack4,
 STATUS5=>StatusBitPatternRack5)

Representation in ST

Representation:

RIOSTAT_Instance (DROP:=Local_RemoteDropNo,
 STATUS1=>StatusBitPatternRack1,
 STATUS2=>StatusBitPatternRack2,
 STATUS3=>StatusBitPatternRack3,
 STATUS4=>StatusBitPatternRack4,
 STATUS5=>StatusBitPatternRack5) ;

Parameter description

Description of the input parameters:

Description of the output parameters:

Parameters Data type Meaning

DROP UINT Local/remote I/O station no. (1...32)

Parameters Data type Meaning

STATUS1 WORD Module rack 1 status bit pattern

STATUS2 WORD Module rack 2 status bit pattern (800 I/O only)

...

STATUS5 WORD Module rack 5 status bit pattern (800 I/O only)
33002515 07/2012 175

RIOSTAT

176 33002515 07/2012

33002515 07/2012
18
Unity Pro

SET_TOD

33002515 07/2012
SET_TOD: Setting the hardware
clock (Time Of Day)
Description

Function description

This function block searches (together with the other function blocks in the HSBY
group) the configuration of the respective PLC for the necessary components.
These components always refer to the hardware actually connected.

Therefore the correct functioning of this function block on the simulators cannot be
guaranteed.

The function block sets the hardware system clock, if the corresponding registers
are provided within this configuration. If these registers are not present, the
TOD_CNF output is set to "0".

The function block reads the input values on the S_PULSE input at a rising edge and
transfers them to the hardware clock.

For all input values:
If the value exceeds the specified maximum value, the maximum is used.
If the value falls below the specified minimum value, the minimum is used.

EN and ENO can be configured as additional parameters.
177

SET_TOD
Representation in FBD

Representation:

Representation in LD

Representation:
178 33002515 07/2012

SET_TOD
Representation in IL

Representation:

CAL SET_TOD_Instance (S_PULSE:=InputAcceptedFlag,
 D_WEEK:=DayOfWeek, MONTH:=Byte_variable2,
 DAY:=Byte_variable3, YEAR:=Byte_variable4,
 HOUR:=Byte_variable5, MINUTE:=Byte_variable6,
 SECOND:=Byte_variable7, TOD_CNF=>ClockReady)

Representation in ST

Representation:

SET_TOD_Instance (S_PULSE:=InputAcceptedFlag,
 D_WEEK:=DayOfWeek, MONTH:=Byte_variable2,
 DAY:=Byte_variable3, YEAR:=Byte_variable4,
 HOUR:=Byte_variable5, MINUTE:=Byte_variable6,
 SECOND:=Byte_variable7, TOD_CNF=>ClockReady) ;

Parameter description

Description of the input parameters:

Description of the output parameters:

Parameters Data type Meaning

S_PULSE BOOL "0 -> 1" = the input values are accepted and written
into the clock.

D_WEEK BYTE Day of week, 1 = Sunday 7 = Saturday

MONTH BYTE Month 1..12

DAY BYTE Day 1..31

YEAR BYTE Year 0..99

HOUR BYTE Hour 0..23

MINUTE BYTE Minute 0..59

SECOND BYTE Second 0..59

Parameters Data type Meaning

TOD_CNF BOOL "1" = %MW register (4x) for the hardware system
clock was found and the clock is operational.
"0" = Time is currently being set or hardware clock
was not found.
33002515 07/2012 179

SET_TOD

180 33002515 07/2012

33002515 07/2012
19
Unity Pro

WORD_AS_BYTE_DFB

33002515 07/2012
WORD_AS_BYTE_DFB: Type
conversion
Description

Function description

This derived function block converts one input word from the WORD data type to 2
output values of the BYTE data type.

The individual bytes of the word at the input are assigned to the outputs according
to the output names.

EN and ENO can be configured as additional parameters.

Representation in FBD

Representation:

Representation in LD

Representation:
181

WORD_AS_BYTE_DFB
Representation in IL

Representation:

CAL WORD_AS_BYTE_DFB_Instance (IN:=WORD_variable,
 LOW=>LowByte, HIGH=>HighByte)

Representation in ST

Representation:

WORD_AS_BYTE_DFB_Instance (IN:=WORD_variable,
 LOW=>LowByte, HIGH=>HighByte) ;

Parameter description

Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning

IN WORD Input

Parameter Data type Meaning

LOW BYTE least significant byte

HIGH BYTE most significant byte
182 33002515 07/2012

33002515 07/2012
20
Unity Pro

WORD_TO_BIT_DFB

33002515 07/2012
WORD_TO_BIT_DFB: Type
conversion
Description

Function description

This derived function block converts one input word from the WORD data type to 16
output values of the BOOL data type.

The individual bits of the word at the input are assigned to the outputs according to
the output names.

EN and ENO can be configured as additional parameters.
183

WORD_TO_BIT_DFB
Representation in FBD

Representation:

Representation in LD

Representation:
184 33002515 07/2012

WORD_TO_BIT_DFB
Representation in IL

Representation:

CAL WORD_TO_BIT_DFB_Instance (IN:=WORD_variable,
 BIT0=>Bit1, BIT1=>Bit2, BIT2=>Bit3, BIT3=>Bit4,
 BIT4=>Bit5, BIT5=>Bit6, BIT6=>Bit7, BIT7=>Bit8,
 BIT8=>Bit9, BIT9=>Bit10, BIT10=>Bit11, BIT11=>Bit12,
 BIT12=>Bit13, BIT13=>Bit14, BIT14=>Bit15, BIT15=>Bit16)

Representation in ST

Representation:

WORD_TO_BIT_DFB_Instance (IN:=WORD_variable,
 BIT0=>Bit1, BIT1=>Bit2, BIT2=>Bit3, BIT3=>Bit4,
 BIT4=>Bit5, BIT5=>Bit6, BIT6=>Bit7, BIT7=>Bit8,
 BIT8=>Bit9, BIT9=>Bit10, BIT10=>Bit11, BIT11=>Bit12,
 BIT12=>Bit13, BIT13=>Bit14, BIT14=>Bit15,
 BIT15=>Bit16) ;

Parameter description

Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning

IN WORD Input

Parameter Data type Meaning

BIT0 BOOL Output BIT0

BIT1 BOOL Output BIT1

: : :

BIT15 BOOL Output BIT15
33002515 07/2012 185

WORD_TO_BIT_DFB

186 33002515 07/2012

33002515 07/2012
21
Unity Pro

WRITEREG

33002515 07/2012
WRITEREG: Write register
Introduction

This chapter describes the WRITEREG block.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Description 188

Mode of Functioning 191

Parameter description 192
187

WRITEREG
Description

Function description

With a rising edge at the REQ input, this function block writes a register area from the
PLC to an addressed slave via Modbus Plus.

EN and ENO can be configured as additional parameters.

NOTE: When programming a WRITEREG function, you must be familiar with the
routing procedures used by your network. Modbus Plus routing path structures will
be described in detail in "Modbus Plus Network Planning and Installation Guide".

NOTE: This derived function block only supports the local Modbus Plus interface (no
NOM).

If using a NOM please work with the WRITE_REG block from the communication
block library.

NOTE: This derived function block also does not support TCP/IP- or SY/MAX-
Ethernet.

If TCP/IP- or SY/MAX-Ethernet is needed, please use the WRITE_REG block from
the communication block library.

NOTE: Several copies of this function block can be used in the program. However,
multiple instancing of these copies is not possible.

Representation in FBD

Representation:
188 33002515 07/2012

WRITEREG
Representation in LD

Representation:

Representation in IL

Representation:

CAL WRITEREG_Instance (REQ:=StartWriteOnce,
 NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
 SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
 REG_WRIT:=SourceDataArea,
 DONE=>SetAfterWritingData,ERROR=>SetInCaseOfError,
 STATUS=>ErrorCode)

Representation in ST

Representation:

WRITEREG_Instance (REQ:=StartWriteOnce,
 NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
 SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
 REG_WRIT:=SourceDataArea,
 DONE=>SetAfterWritingData,ERROR=>SetInCaseOfError,
 STATUS=>ErrorCode) ;
33002515 07/2012 189

WRITEREG
Parameter description

Description of input parameters:

Description of input / output parameters:

Description of the output parameters:

Parameter Data type Meaning

REQ BOOL With a rising edge at the REQ input, this function
block writes a register area from the PLC to an
addressed slave via Modbus Plus.

NODEADDR INT Device address within the target segment

ROUTPATH DINT Routing path to target segment

SLAVEREG DINT Offset address of the first 4x register in the slave to
be written to

NO_REG INT Number of registers to be written from slave

Parameters Data type Meaning

REG_WRIT ANY_ARRAY_WORD Source data field
(A data structure must be declared as a located
variable for the source file.)

Parameters Data type Meaning

DONE BOOL Set to "1" for one scan after writing data

ERROR BOOL Set to "1" for one scan in case of error

STATUS WORD Error Code
190 33002515 07/2012

WRITEREG
Mode of Functioning

Function mode of WRITEREG blocks

Although a large number of WRITEREG function blocks can be programmed, only
four write operations may be active at the same time. It makes no difference whether
these operations are performed using this function block or others (e.g. MBP_MSTR,
CWRITE_REG). All function blocks use one data transaction path and require
multiple cycles to complete a task.

If several WRITEREG function blocks are used within an application, they must at
least differ in the values of their NO_REG or REG_WRIT parameters.

The status signals DONE and ERROR report the function block state to the user
program.

The complete routing information must be separated into two parts:
in the NODEADDR of the destination node (regardless of whether it is located in the
local segment or in another segment) and
the routing path, in case there is a link via network bridges.

The resulting destination address consists of these two information components.

The routing path is a DINT data type, which is interpreted as a sequence of two-digit
information units. It is not necessary to use "00" extensions (e.g. both routing paths
4711 and 47110000 are valid, for NODEADDR 34 the result is destination address
47.11.34.00.00).
33002515 07/2012 191

WRITEREG
Parameter description

REQ

A rising edge triggers the write transaction.

The parameter can be entered as an address, located variable, unlocated variable
or literal.

NODEADDR

Identifies the node address within the target segment.

The parameter can be entered as an address, located variable, unlocated variable
or literal.

ROUTPATH

Identifies the routing path to the target segment. The two-digit information units run
from 01 64 (see Mode of Functioning, page 191). If the slave resides in the local
network segment, ROUTPATH must be set to "0" or must be left unconnected.

The parameter can be entered as an address, located variable, unlocated variable
or literal.

SLAVEREG

Start of the destination area in the addressed slave to which the source data is
written. The destination area always resides within the 4x register area. SLAVEREG
expects the destination address as an offset within the 4x area. The leading "4" must
be omitted (e.g. 59 (contents of the variables or value of the literal) = 40059).

The parameter can be entered as an address, located variable, unlocated variable
or literal.

NO_REG

Number of registers to be written to slave processor (1 ... 100).

The parameter can be entered as an address, located variable, unlocated variable
or literal.

REG_WRIT

An ANY_ARRAY_WORD that is the same size as the planned transmission must be
agreed upon (≥ NO_REG) for this parameter. The name of this array is defined as a
parameter. If the array is defined too small, then only the amount of data is
transmitted that is present in the array.

The parameter must be defined as a located variable.
192 33002515 07/2012

WRITEREG
DONE

Transition to ON state for one program scan signifies data have been transferred.

The parameter can be entered as an address, located variable or unlocated
variable.

ERROR

Transition to ON state for one program cycle signifies detection of a new error.

The parameter can be specified as an address, located variable or unlocated
variable.

STATUS

Error code, see Modbus Plus Error Codes, page 123

The parameter can be specified as an address, located variable or unlocated
variable.
33002515 07/2012 193

WRITEREG

194 33002515 07/2012

Unity Pro

33002515 07/2012
Appendices
33002515 07/2012 195

196 33002515 07/2012

33002515 07/2012
A

Unity Pro

FAQ Build Errors

33002515 07/2012
FAQ Build Errors
Overview

This chapter includes information on build errors.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

General 198

Object Link Creation Error 199

Object Must be Connected to a Successor 200

Link Together with Variable isn’t Allowed 201

Data Type ’xxxx’ Expected 202

Empty DFB to Replace Obsolete EFB 207

Undefined Symbol ’xxxx’ 208

Call of Non-Function Block 210

Parameter ’xxxx’ Has to Be Assigned 213

’ xxxx’ Is Not a Parameter of ’yyyy’ 214

DDT Component Is Missing 215

EHC Parameters Out of Range 216

Not a Valid Address 217

140 NOG 111 00 Configuration Not Converted 218
197

FAQ Build Errors
General

Overview

After converting a Concept application, the Rebuild All Menu should be invoked.

If the application is not built with this command, all error messages in the build output
window should be examined by double-clicking on them. This opens the section with
the origin of the problem.

The whole section should be compared to the original in Concept and functional
differences should be manually corrected in the converted application.

Example

Examples for messages:

{SCADA_Info : [MAST]} : (r: 172, c: 4) E1218 Object must be
connected to a successor, at least the Right-Power-Rail
{FC124_Visual_call_up_part_3 : [MAST]} : (r: 31, c: 5) E1189
converter error: ’Object Link creation error (Link pin can
not be located in original object) : Link to pin (linkSource:
row=30, col=4, Object=, Pin=OUT1.) can not be created.
Object has not been created during import.’

Potential Messages

Short forms of potential messages are given in the following list, which are linked to
explanation details:

Object Link Creation Error, page 199
Object Must be Connected to a Successor, page 200
Link Together with Variable isn’t Allowed, page 201
Data Type ’xxxx’ Expected, page 202
Empty DFB to Replace Obsolete EFB, page 207
Undefined Symbol ’xxxx’, page 208
Call of Non-Function Block, page 210
Parameter ’xxxx’ Has to Be Assigned, page 213
’ xxxx’ Is Not a Parameter of ’yyyy’, page 214
DDT Component Is Missing, page 215
EHC Parameters Out of Range, page 216
Not a Valid Address, page 217
198 33002515 07/2012

FAQ Build Errors
Object Link Creation Error

Cause

One reason of this message, which occurs during import already and when
analyzing, can be that the converter does not have implemented the substituion of
the extensible diagnostic blocks with dual FBs.

Explanation

D_GRP and D_PRE both need an AND block attached to their IN input. This
additional AND has to be implemented so, thatit gets all inputs of the former
extensible area. Add the missing block by hand. (IPR 20791)

Example

{_9_TIME : [MAST]} : (r: 2, c: 1) E1189 converter error:
’Object Link creation error (Link pin can not be located in
original object) : Link to pin (linkSource: row=1, col=0,
Object=FBI_9_2_DRAW, Pin=OUT.) can not be created. Object has
not been created during import.’

{_9_TIME : [MAST]} : (r: 2, c: 1) E1002 syntax error

{_9_TIME : [MAST]} : (r: 6, c: 13) E1189 converter error:
’Object Link creation error (Link pin can not be located in
original object) : Link to pin (linkDestination: row=5,
col=12, Object=FBI_9_2, Pin=.) can not be created. Object has
not been created during import.’

{_9_TIME : [MAST]} : (r: 6, c: 13) E1002 syntax error

Figure
33002515 07/2012 199

FAQ Build Errors
Object Must be Connected to a Successor

Cause

A message as follows, can have its reason in a Concept 2.1 LD bug:

{TANKVLVS <DFB> : [TVALVE]} : (r: 93, c: 3) E1218 Object must
be connected to a successor, at least the Right-Power-Rail

When connecting contacts to an OR (a vertical short), it sometimes happens that the
intended first output contact is connected to the input of the OR.

Concept even shows this in its graphics with a small dot at the input of the OR:

In this case, the ALARM coil is connected ONLY to the ontact V01ALARM. The OR
output is connected to NOTHING.

Consequently, the Unity V1.1 converter translates this to:
200 33002515 07/2012

FAQ Build Errors
Link Together with Variable isn’t Allowed

Overview

This error is reported in connection with INOUT pins.

Example

Solution

Delete the link and insert the variable to the destination parameter of the link.
33002515 07/2012 201

FAQ Build Errors
Data Type ’xxxx’ Expected

Example

Solution

Replace used data types according to the required type.

The following picture shows the error correction for the 115.1 function block, where
the type of output (MW100) has been modified to the type used for the input (REAL).

The Concept converter of V1.0 estimates the type from the address and does not
take the actual type into account. This is subject to a later version.
202 33002515 07/2012

FAQ Build Errors
Retyping EFB Parameter

Another reason of this message can be e.g., that the EFB parameter has been
retyped to ANY_ARRAY_WORD. See also Parameter type changed.

Combinations of Variables, Variable Instances and Parameters from Concept

Coming from Concept are the following combinations of variables, variable
instances and parameters (pins):

NOTE: So there are three + n different types possible to be declared for a register
variable in Concept (1(2=>n),4,6) .

Element Description

Variable
Declarations

The variable declaration has a type of its own and can have a register
Several variable declarations can have individual types and the same
register

CP_GV1 "Symbol" 4:100 DPM_Time INIT: FALSE 0 EXP: FALSE
RET: FALSE READONLY: FALSE MAS: FALSE TEXT:
CP_GV1 "SymbolElem" 4:100 IEC_INT_ID INIT: FALSE 0 EXP:
FALSE RET: FALSE READONLY: FALSE MAS: FALSE TEXT:

Varaiable
Instances

Variable INSTANCES coming with a SYMBOL have no own type and no
register and use the type of the necessary variable declaration.

CP_GVI NAMED_VAR: "SymbolElem" 10 9 FP_IO_OUTPUT
The variable instance can come with a register, in this case it has a type
of its own in the instance declaration and no symbol.

CP_GVI REG_VAR: 4:100 27 16 FP_IO_INPUT DPM_Time EXP:
FALSE RET: TRUE MAS: FALSE

It is not necessary to have a variable declaration for register variable
instances:

Textual anonymous declarations (AT %MWxx:DDT;) are equivalent
to variable instance declarations with register and declare the type as
well.
The type is forced to be the same as an existing variable declaration.
If they are conflicting, the declaration is refused in Concept.

CP__ST AT %QW102: REAL;

Parameters The pin a variable instance is attached to has a type of its own, which is not
necessarily the same as that of the variable instance.
It cannot be changed and can be generic.
VS_FRM "IN1" HIDE POSL 2 FP_IO_INPUT FP_INP_NORMAL
FP_LOC_OUTSIDE INT TEXT:
VS_FRM "IN" HIDE POSL 2 FP_IO_INPUT FP_INP_NORMAL
FP_LOC_OUTSIDE ANY TEXT:
33002515 07/2012 203

FAQ Build Errors
Type Declaration in Unity

Unity accepts one type declared with a symbol associated to a register. If the
register is used directly, only its default type is assumed.

To generate code, the type and size of a variable attached to a pin must be
determined to one type. Different pins might have different types.

Register Variable Instance

If there is a register variable instance with its type and additionally a variable
declaration with a different type and the same register, Concept generates code
according to the type supplied with the register or with the symbol individual for each
pin.

Default Type

Unity knows only a default type for registers. If this type is to be changed, a variable
with a symbol must be declared to carry the type, but two symbols with different
types for one register are not accepted.

Unity does not import the second variable, if this application is imported.

Behaviour of Variables, Variable Instances and Parameters in Unity

If... And There Is... Then...

symbols are used with a
variable instance

- the type declared in the
declaration with the
symbol is to be used
the type of a possibly
present register variable
instance is not

a register variable with a type
different from the default is to
be used

already a variable declaration
with the same register, but a
different type

an error message for this
impossibility is issued.

a register variable with a type
different from the default is to
be used

a variable declaration with the
same register with the same
type

its symbol is to be used
instead of the direct address.

a register variable with a type
different from the default is to
be used

no variable declaration with
the same register

an artificial symbol is to be
declared and used instead of
the direct address.
204 33002515 07/2012

FAQ Build Errors
Other Type Mismatch Cases

Other type mismatch cases are reported with a build(=analyze) message and left to
be resolved by the user.

Word Arrays in Communication Blocks

Communication blocks have Word arrays as parameters, whic are defined in
Concept with a reference to the first Word only.

The size of the array is often given by the content of a variable, which is defined
during run-time. So the size cannot be determined by the converter.

The user must determine the maximum size and declare the array accordingly by
himself.

Example from Concept

a pin in the Unity template
has the type
ANY_ARRAY_WORD

- an attached register variable
could get the type
ARRAY[0..0] OF WORD, if it
previously had the type
WORD.

the register is used also at
pins with the type WORD

- the register gets the index [0]
attached.

If... And There Is... Then...

Step Action

1

All array members appear as single variables. In Unity, they must be combined to an array.

2 This is prepared by the converter by declaring a variable with the range of [0..0].
33002515 07/2012 205

FAQ Build Errors
3 This leads to a set of analyze messages to make the user aware of the correction need. In this case, the
correction of the user should look like:

4 The source code related to this is in this case:
{RESET_CONV <DFB> : [RC_HSK_1]} : (r: 2, c: 2) E1063 call of non-function block
{RESET_CONV <DFB> : [RC_HSK_1]} : (r: 4, c: 29) E1067 ’Q’ is not a member of
’SECT_CTRL’

Step Action
206 33002515 07/2012

FAQ Build Errors
Empty DFB to Replace Obsolete EFB

Cause

A few standard EFB have not been ported from Concept to Unity.

If the Converter finds one of them, it inserts an Empty DFB with the same
parameters as the original to allow building of the application and to give the
possibility to the user to substitute the original with code of his own.

Solution

Insert the code into the body of the empty DFB, which contains the command to
generate a message like the following in it:

{S1 : [REAL_W2]} : (r: 1, c: 2) E1189 converter error: ’Empty
DFB to replace obsolete EFB - fill by user’

The command for the message has to be deleted, if valid code has been filled into
the DFB body to allow building of the application.

NOTE: Because the ANY type is not allowed on DFBs in Unity, an additional
problem occurs if this type has been used in the substituted EFB (e.g. XXMIT EFB).

Customer Defined EFBs

Customer defined EFBs are not converted. If you want to convert an application
using Customer defined EFBs, get in contact with Schneider support.
33002515 07/2012 207

FAQ Build Errors
Undefined Symbol ’xxxx’

Wrong SFC Section Name

Explanation This message is given sometimes in conjunction with the block
SFCCNTRL.
The message means, that the SFC section name, which has to be
attached to the CHARTREF input is not the name of an existing SFC
section inside of the current application.

Solution Create the according section and the message disappears.
208 33002515 07/2012

FAQ Build Errors
Wrong Instance Name

Explanation Another reason of such a message can be (IPR 20020), that a Concept
function block now in Unity is a function or a procedure.
The converter does conversion work in the textual languages ST and IL half-
automatic in the case of this incompatibility. The instance name of Concept
is removed and substituted by the type name, also for addressing outputs,
which is then an illegal syntax:
LOOKUP_TABLE1(X := ODT,
XiYi1 := -30.0, XiYi2 := PARA.p1,
XiYi3 := -20.0, XiYi4 := PARA.p2,
XiYi5 := -10.0, XiYi6 := PARA.p3,
XiYi7 := 0.0, XiYi8 := PARA.p4,
XiYi9 := 10.0, XiYi10:= PARA.p5,
XiYi11:= 20.0, XiYi12:= PARA.p6);
OUT := LOOKUP_TABLE1.Y;

Solution The last line must be corrected manually. Using the output assign operator,
this statement must be changed and moved inside the call parentheses:
LOOKUP_TABLE1(X := ODT,
XiYi1 := -30.0, XiYi2 := PARA.p1,
XiYi3 := -20.0, XiYi4 := PARA.p2,
XiYi5 := -10.0, XiYi6 := PARA.p3,
XiYi7 := 0.0, XiYi8 := PARA.p4,
XiYi9 := 10.0, XiYi10:= PARA.p5,
XiYi11:= 20.0, XiYi12:= PARA.p6,
Y=>OUT);
33002515 07/2012 209

FAQ Build Errors
Call of Non-Function Block

Cause

This message can appear, when a Concept function block now in Unity is a function
or a procedure.

The converter removes the instance name of the Concept-block and substitutes it
with the type name and moves assignments of outputs inside the invocation
parentheses.

For the blocks GET_BIT and SET_BIT, the treatment does not completely apply
(IPR 20015). During analysis, messages occur:

{INPUTS : [MAST]} : (r: 7, c: 4) E1063 call of non-function
block

The function names remain marked as erroneous after conversion, because the
functions are converted with the procedure syntax in ST, not with the needed
function syntax, as the corrected version shows. Also, the converter has dropped the
indices for the result variable of GET_BIT.

Example

Original Concept Codes After Conversion Corrected Version

VAR
INPUT_WORD : GET_BIT;
END_VAR;

FOR I_BASE := 1 TO 20 DO
FOR I_POINT := 1 TO 16 DO
INPUT_WORD
(IN:=IO_SCAN_IN_WORD[I_BASE]
, NO:=I_POINT);
INPUT[I_BASE,I_POINT] :=
INPUT_WORD.RES;
END_FOR;
END_FOR;

FOR I_BASE := 1 TO 20 DO
FOR I_POINT := 1 TO 16 DO
GET_BIT(IN:=IO_SCAN_IN_WORD
[I_BASE],
NO:=I_POINT,
RES => INPUT);
;
END_FOR;

FOR I_BASE := 1 TO 20 DO
FOR I_POINT := 1 TO 16 DO
INPUT[I_BASE,I_POINT]:=
GET_BIT(IN:=IO_SCAN_IN_WORD
[I_BASE],
NO:=I_POINT);
END_FOR;
END_FOR;
210 33002515 07/2012

FAQ Build Errors
Conjunction With Other Messages

This message can appear in conjunction with other messages:

{RESET_CONV <DFB> : [RC_HSK_1]} : (r: 2, c: 2) E1063 call of
non-function block
{RESET_CONV <DFB> : [RC_HSK_1]} : (r: 4, c: 29) E1067 ’Q’ is
not a member of ’SECT_CTRL’

Related Source Code

The source code related to this is in this case:

RESET_CONV147(IN := (CTRL.TB.RC_INI AND V_SYNCHRO), PT :=
t#500ms);
T_CONVRESET := RESET_CONV147.Q;

VAR
OUTPUT_WORD : SET_BITX;
END_VAR;

FOR O_BASE := 1 TO 20 DO
FOR O_POINT := 1 TO 16 DO
OUTPUT_WORD (RES :=
IO_SCAN_OUT_WORD[O_BASE], IN
:= OUTPUT[O_BASE,O_POINT],
NO := O_POINT);
END_FOR;
END_FOR;

FOR O_BASE := 1 TO 20 DO
FOR O_POINT := 1 TO 16 DO
SET_BIT(RES :=
IO_SCAN_OUT_WORD[O_BASE],
IN :=
OUTPUT[O_BASE,O_POINT], NO
:= O_POINT);
END_FOR;
END_FOR;

FOR O_BASE := 1 TO 20 DO
FOR O_POINT := 1 TO 16 DO
IO_SCAN_OUT_WORD[O_BASE]:=
SET_BIT(IN :=
OUTPUT[O_BASE,O_POINT], NO
:= O_POINT);
END_FOR;
END_FOR;

Original Concept Codes After Conversion Corrected Version
33002515 07/2012 211

FAQ Build Errors
Double Use of the Instance Name

Unity Pro associates the instance name to the derived data type SECT_CTRL, even
though it is intended to address a timer. This usually happens, if the Concept
application used the instance name twice. To find this out, proceed as follows:

Substitute Procedures in ST/IL

Some EFBs from Concept are implemented as procedures in Unity Pro without
instance names.

Open the Conversion Settings tab via Tools → Options in Unity Pro to
enable/disable the Substitute Procedures in ST/IL check box before converting.

When this checkbox is enabled, the instance name of the Concept call will be
replaced with the type name.
When this checkbox is not enabled, a DFB will be created, which will then access
the procedure.

Step Action

1 Open the Concept .asc export file, and search the instance name without the
figures at the end with a search command of the text editor.
Result: In this case here we find:
STR_RCI: (* RC Eingänge = SPS Ausgänge *)
STRUCT
AUTO : BOOL ; (* Betriebsart Automatik / Hand *)
AXIS_EN : BOOL ; (* Achsen angewählt *)
Z_UP : BOOL ; (* Z-Achse auf *)
RESET_PROG : BOOL ; (* Programm abbrechen *)
RESET_CONV : BOOL ; (* Förderer synchronisieren *)

2 The line introduction...STR has been omitted.
CP_GVS "RESET_CONV" SECT_CTRL INIT: FALSE 0 EXP: FALSE RET:
TRUE READONLY: FALSE MAS: FALSE TEXT:
CP_SEC "RESET_CONV" SECTK_F_SECTION LANG_ST SVB: FALSE ID:
27 EXEC: 26 TEXT:
CP__ST
CP__ST VAR
CP__ST RESET_CONV : TP; (* Impuls Reset Conveyor *)
The same name has been used as a structure component name, a section name
with its control variable, and for a "TP" timer instance.

3 Change the type of the instance in the Data editor to "TP".
212 33002515 07/2012

FAQ Build Errors
Parameter ’xxxx’ Has to Be Assigned

Cause

For inputs, left open pins at blocks get an automatically generated variable with the
approriate type. For outputs, this is not done yet.

In the case of generic data types, it cannot be done easily.

Solution

In these cases the user still must declare appropriate variables and attach them to
the left-open pins.
33002515 07/2012 213

FAQ Build Errors
’ xxxx’ Is Not a Parameter of ’yyyy’

Cause

The diagnostic EFBs, which have been extensible in Concept, do not get the right
calling syntax in IL. (IPR 19689)

{_9_TIME : [MAST]} : (r: 43, c: 17) E1031 ’IN1’ is not a
parameter of function block ’GRP_DIA_9’

{_9_TIME : [MAST]} : (r: 44, c: 17) E1031 ’IN2’ is not a
parameter of function block ’GRP_DIA_9’

Solution

In the case of the in Concept extensible diagnostic EFBs, the extension can be done
with a logical AND function the output of which is tied to the single input of the
diagnostic function. This is done with the first three lines in the correction.

The used output must be processed by BOOL_TO_TIME, which is bypassed in the
automatic conversion and which is corrected in the last three lines.

Example

Original Concept Code After Conversion Corrected Version

CAL GRP_DIA_9 (ED
:=DUMMY_1_91,
DTIME :=IN92,
IN1 :=DUMMY_1_94,
IN2 :=DUMMY_1_96)
LD GRP_DIA_9.ERR
BOOL_TO_TIME
ST OUT90

CAL GRP_DIA_9 (ED
:=DUMMY_1_91,
DTIME :=IN92,
IN1 :=DUMMY_1_94,
IN2 :=DUMMY_1_96,
ERR => OUT90)
BOOL_TO_TIME

LD DUMMY_1_94
AND DUMMY_1_96
ST GRP_DIA_9.IN
CAL GRP_DIA_9 (ED
:=DUMMY_1_91,
DTIME :=IN92)
LD GRP_DIA_9.ERR
BOOL_TO_TIME
ST OUT90
214 33002515 07/2012

FAQ Build Errors
DDT Component Is Missing

Cause

Keywords may not be used as symbols of DDT components or as variable names.
Such a case is the name slot (IPR 19938).

Solution

If DDT components are missing or import conflicts are imported, proceed as follows:

Step Action

1 Search for the occurrence of the name in the .asc file with another meaning.

2 Change the name for the conflicting meaning.
33002515 07/2012 215

FAQ Build Errors
EHC Parameters Out of Range

Cause

For the High speed counter module, parameter limits are not treated right (IPR
19656).

Example

Parameter <OUTPUT START ADDRESS> out of range (Error with param
17)

Solution

Such Parameters must be manually corrected.
216 33002515 07/2012

FAQ Build Errors
Not a Valid Address

Cause

A message like the following one is generated at analyze time, if a Hot_Stand-By
system is incompletely defined.

Analyzing...

{Cpu (1.2) 140 CPU 671 60} : %MW0 is not a valid address in
Quantum

Solution

Step Action

1 Open the local rack of the configuration and the CPU configuration itself and
select the Hot Stand-By tab of the CPU configuration.

2 In its lower part appear State Ram and Non Transfer area. Usually both the
Start and Length fiels both contain a Zero, directly passed through from the
Concept application.

3 To remove the error message, enter 1 into the start field.
33002515 07/2012 217

FAQ Build Errors
140 NOG 111 00 Configuration Not Converted

Concept

The 140 NOG 111 00 is used as a NOM in Concept.

Configuration Not Converted

The conversion creates also a NOM in Unity Pro but the I/O configuration gets lost.
218 33002515 07/2012

Unity Pro

Index

33002515 07/2012
CBA
Index
0-9
140 NOG 111 00 configuration

not converted, 218

A
analyzing

projects, 51, 101
application behavior

changes, 85

B
build errors, 197
BYTE_TO_BIT_DFB, 113

C
Concept

conversion wizard, 15
33002515 07/2012
Concept Converter - instructions
BYTE_TO_BIT_DFB, 113
CREADREG, 117
CWRITREG, 125
DINT_AS_WORD_DFB, 131
DIOSTAT, 133
GET_TOD, 135
LIMIT_IND_DFB, 139
LOOKUP_TABLE1_DFB, 143
PLCSTAT, 149
READREG, 165
RIOSTAT, 173
SET_TOD, 177
WORD_AS_BYTE_DFB, 181
WORD_TO_BIT_DFB, 183
WRITEREG, 187

configuration
differences, 20

conversion wizard for Concept), 15
converter, 11
convertion

procedure, 103
process, 101

CREADREG, 117
CWRITREG, 125

D
DINT_AS_WORD_DFB, 131
DIOSTAT, 133
219

Index
E
EFBs

differences, 31
EN

not connected, 91
error messages, 51, 85, 101, 106
exporting

DFBs, 104
macros, 104
projects, 13, 104
sections, 104

F
Function Block Diagram

differences, 50

G
GET_TOD, 135

H
hardware

correspondences, 19
hardware platforms

supported, 19

I
importing

DDTs, 106
macros, 51, 108
projects, 13, 105

initialization values
array, 109
cluster, 109
LL_SRAMxxx, 109

Instruction List
differences, 47

instructions
differences, 31
220
L
Ladder Diagram

differences, 36
Ladder Logic

differences, 49
language objects, 51

differences, 22
LIMIT_IND_DFB, 139
LL_SRAMxxx

array, 109
initialization values, 109

LOOKUP_TABLE1_DFB, 143

O
object types

differences, 51

P
PLCSTAT, 149
preconditions, 17
program execution

differences, 22

R
READREG, 165
requirements, 17
RIOSTAT, 173

S
Sequential Function Chart

differences, 35
SET_TOD, 177
Structured Text

differences, 47
system objects

differences, 22
33002515 07/2012

Index
W
WORD_AS_BYTE_DFB, 181
WORD_TO_BIT_DFB, 183
WRITEREG, 187
33002515 07/2012
 221

Index

222 33002515 07/2012

	Unity Pro
	Table of Contents
	Safety Information
	About the Book
	Requirements and conversion
	General Description of the Unity Pro Concept Converter
	General Description
	Conversion with the Conversion Wizard

	Requirements
	Concept Version
	Supported Hardware Platforms
	Configuration
	System
	EFBs
	Programming Language SFC
	Programming Language LD
	Programming Language ST/IL
	Programming Language LL984
	Programming Language FBD

	Language Differences
	Functions Not Present in Unity
	EFB Replaced by Function
	FFBs Not Available For All Platforms
	INOUT Parameters
	Parameter Type Changed
	ANY_ARRAY_WORD Parameters
	Unique Naming required
	Incomplete LD Generation
	LD Execution Order Changed
	Constants
	Indices in ST and IL
	Calculate with TIME and REAL
	WORD Assignments to BOOL Arrays
	Topological Address Overlapping
	Substitute %QD by %MF
	Structure Alignment Changed
	Undefined Output on Disabled EFs
	Variables at Empty Pins
	SFC Section Retains its State When Performing an Online Modification
	SFCCNTRL Function Block in Unity Behaves Different to Concept
	Weekday Numbering
	System Timer
	Initial Values
	Macros

	Possible application behavior change
	General
	Concept Behavior
	IEC Demands
	Unity Behavior
	Consequences

	The Conversion Process
	Conversion Process

	Conversion Procedure
	Exporting a Project from Concept
	Importing a Project into Unity Pro
	Missing Datatypes at the Beginning of the Import
	Converting Only Parts of a Concept Application
	Removing Accidentally Included Concept Macros
	Initialization Values

	Blocks from Concept to Unity Pro
	BYTE_TO_BIT_DFB: Type conversion
	Description

	CREADREG: Continuous register reading
	Description
	Mode of Functioning
	Parameter description
	Modbus Plus Error Codes

	CWRITREG: Continuous register writing
	Description
	Mode of Functioning
	Parameter description

	DINT_AS_WORD_DFB: Type conversion
	Description

	DIOSTAT: Module function status (DIO)
	Description

	GET_TOD: Reading the hardware clock (Time Of Day)
	Description

	LIMIT_IND_DFB: Limit with indicator
	Description

	LOOKUP_TABLE1_DFB: Traverse progression with 1st degree interpolation
	Description
	Detailed description

	PLCSTAT: PLC function status
	Description
	Derived Data Types
	PLC status (PLC_STAT)
	RIO status (RIO_STAT) for Quantum
	DIO status (DIO_STAT)

	READREG: Read register
	Description
	Mode of Functioning
	Parameter description

	RIOSTAT: Module function status (RIO)
	Description

	SET_TOD: Setting the hardware clock (Time Of Day)
	Description

	WORD_AS_BYTE_DFB: Type conversion
	Description

	WORD_TO_BIT_DFB: Type conversion
	Description

	WRITEREG: Write register
	Description
	Mode of Functioning
	Parameter description

	Appendices
	FAQ Build Errors
	General
	Object Link Creation Error
	Object Must be Connected to a Successor
	Link Together with Variable isn’t Allowed
	Data Type ’xxxx’ Expected
	Empty DFB to Replace Obsolete EFB
	Undefined Symbol ’xxxx’
	Call of Non-Function Block
	Parameter ’xxxx’ Has to Be Assigned
	’ xxxx’ Is Not a Parameter of ’yyyy’
	DDT Component Is Missing
	EHC Parameters Out of Range
	Not a Valid Address
	140 NOG 111 00 Configuration Not Converted

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

