A Field-Programmable
Prototyping Board: XC4000 BORG

User’s Guide

Pak K. Chan*

UCSC-CRL-94-18
April 1994 (6/27/95, 12/11/98 revised)

Board of Studies in Computer Engineering
University of California, Santa Cruz

Santa Cruz, CA 95064

ABSTRACT

The XC4000 BORG board is a PC-based prototyping board with two
“user” FPGAs, two “routing” FPGAs, and a fifth FPGA which implements
the glue logic for the PC bus. The BORG board is a reusable educational
tool intended for a variety of classes; the BORG board, its toolset, and the
reprogrammability of the FPGAs further reduce the time/cost of constructing
prototypes using FPGAs. This report documents the design, implementation,
and the use of BORG: A Field-Programmable Prototyping Board.

*Development of the XC4000 prototyping board is supported in part by National Science Foun-
dation Grant MIP-9111607 and Xilinx Inc.

CONTENTS

Contents

1. Introduction

1.1
1.2
1.3
1.4
1.5

Field-Programmable Prototyping Boards
What BORG Is? e
Xilinx XC4000 FPGA parts o oo
Limits on the number of connections between the FPGAs

About this User’s Guide e

2. Installation

2.1
2.2
2.3
2.4

What Do You Need? o o
Software Retrieval and Installation
Hardware Installation

Testing the BORG Board

3. Simple Demonstrations

3.1
3.2

A Tetris Machine e
A Maze Solver Machineo

4. Principle of Operation

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

4.16

Status indicators e
Stand-alone BORG board oL,
BORG board as a Peripheral Device of the PC/XT
Put the BORG Board Inside or Qutside the PC?
I[/O Address Mapping o o
Memory Mapping o
Hardware Interrupt Channelo o oo,
DMA Channel e
Configuring the controller X0 FPGA
Programming the R1, X1, R2 and X2 FPGAs
Global Reset o
Readback
JTAG Boundary Scan L
System Clock and Single Step o oL,
On-board SRAM and arbitration
4.15.1 8Kx8 SRAM
4.15.2 Dual-port SRAM arbitration,
Limits on the Number of Connections Between the FPGAs

© © 0w ot ot W

10
10
10
11
14

17
17
18

2 CONTENTS

5. Software 37
5.1 Memory related programs mtest and inspect 37
5.2 Board Wiring test program Scan Lo 38
5.3 Pin assignment program assign 38

5.3.1 Projects, Demos and their MCS files 38

6. Design flow 40
6.1 Introduction L 40
6.2 Detailso 40

7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyp-

ing Board 47
7.1 Preface to earlier versions oL 47
7.2 Assign as a Pin Assignment Program oL 47

7.2.1 Place in the design process 47
7.2.2 Command Line Arguments 49
7.2.3 An Environment Variable 0L 50
724 Alas Files oo oo oL 50
7.2.5 Rxinfo oo 52
7.2.6 Examplesof using assign 55
7.2.7 Xilinx XC3000 Series Design 55
7.2.8 X(C4000 Series Design oL oL 55

7.3 1/O Specification File L o oL 55
74 BORG Wiring File o o 57
7.5 Theory of ASSIGN o 57
7.6 Problem Description L o 57
7.7 Graph Reduction 58
7.8 Augmentation Lo 59
7.9 Main Program Loop Lo 60
7.10 Performance L 61
7.11 BORG wiring connections oo 64
7.11.1 XC3000-series BORG wiring connections 64
7.11.2 XC4000-series BORG wiring connections 69

8. Using the Protoboard and Schematic Drawings 73

8.1 Proto-area, Common Anode LEDs 73

CONTENTS

9. Guide to Some Laboratory Experiments

10.

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18

9.19
9.20

Creating user /O portsin R1
Hardware Interrupt and Interrupt Service Routine
Synchronization Problemo
Music Lab o oo
DMA Lab o o e
Boundary Scan Lab oo oo
Possible Term Project Description
Initialization of the Bottle o oo
9.8.1 Pill encodings L o o
Initialization of the Dr. Mario Machine
Handshake and Timing
Project
Design of a Dr. Mario player 0.

Your responsibilities L o
SUEEESTION o e
Initialization of the Bottle o oo
9.18.1 Pill encodings o
Initialization of the Dr. Mario Machine
Handshake and Timing

Maze Runner project report

10.1
10.2
10.3
10.4

10.5

Maze Runner Specifications o oL,
Hardware Requirement o oo
Host Program o e
Design and Implementation
10.4.1 Algorithm L
10.4.2 Implementation o oL
10.4.3 R1: The I/O Port o .
10.4.4 X1: The Brain o o
10.4.5 Finder Box
10.4.6 Mover o e e
10.4.7 Memory Controller Signals
10.4.8 Selector
10.4.9 Statuso L
10.4.10 Direction Processing Logic
R2: The Memory Controller
10.5.1 Memory I/O

78

78

82

87

90

96
103
103
104
105
105
105
106
107
107
107
108
108
109
109
110
110
110

10.5.2 6-Bit Up/Down Counter (C64BUDRD)
10.5.3 5-Bit Up/Down Counter (C32BUDRD)

10.5.4 Counter Control Logic

10.5.5 1/0 pads, buffers, and tri-state buffers

10.6 Testing and Verification
10.7 Timing and Chip Utilization
10.8 Credits o oo

11.Troubleshooting

12.Acknowledgements

CONTENTS

1. Introduction

1.1 Field-Programmable Prototyping Boards

Field-Programmable Gate Arrays (FPGAs) provide a medium to accelerate the
process of prototyping digital designs. For designs incorporating multiple FPGAs,
the bottleneck is now the process of wire-wrapping, bread-boarding, constructing a
printed circuit board, or constructing a multi-chip module. In addition to being time
consuming, these processes cannot be carried out until all FPGA designs have been
completed (placed and routed), since locking or preassigning 1/O pins often prevent
FPGA place-and-routers from completing the routing.

To circumvent this bottleneck, FPGAs can be used as re-programmable intercon-
nection chips. The BORG, as shown in Fig. 1.1, is a PC-based prototyping board
that contains two user FPGAs, two routing FPGAs; a fifth FPGA implements the
glue logic to the PC bus.! To facilitate the design process using the BORG board,
algorithms and tools have been developed to aid in the configuration of the routing

FPGAs.

The BORG board, its toolset, and the reprogrammability of the FPGAs further
reduce the time/cost of constructing prototypes using FPGAs. There are two versions
of the BORG boards. Twenty five XC3000 BORG boards were built in 1992, and the
XC4000 boards were manufactured in March 1994. This document describes the
XC4000 BORG board. It documents the design, implementation, and the use of
BORG: A Field-Programmable Prototyping Board.

1.2 What BORG Is?

The BORG board is a reusable PC-based educational tool intended for classes
such as logic design, advanced logic design, processor design, and introduction to
ASIC design. The BORG board uses the XC4000 family Field-Programmable Gate
Arrays (FPGAs). The XC4000 FPGAs are reprogrammable, so one BORG board can
be shared by more than one group at the same time. With one XC4002A FPGA on
the board, the BORG board can support a 1,000 gate-count design. When it is pop-
ulated with four XC4010D FPGAs, it can accommodate a 40,000 gate-count design.
However, the BORG board is not a supercomputer nor a high-performance “generic”
processor. Production of 100 BORG boards in March 1994 is generously supported
by Xilinx Inc. Half of the boards produced have been (or will be) distributed for free.
2

!P. K. Chan, M. Schlag, and M. Martin, “BORG: A reconfigurable prototyping board using Field-
Programmable Gate Arrays,” in Proceedings of the 1*' International ACM/SIGDA Workshop on
Field-Programmable Gate Arrays, (Berkeley, California, USA), pp. 47-51, Feb. 1992.

?The manufacturing cost of a populated XC4000 BORG board is US$250.00 as of March 1994.
Contact dlam@xilinx.com for details.

6 1. Introduction

You can install the BORG board internally to a PC with XT/ISA bus; it will
occupy one 8-bit XT expansion slot. This is not the most convenient way to use the
BORG board. With the help of the protozone adapter card® which extends the XT
bus signal to a 50-pin ribbon cable, the BORG board can be used ezternally to a PC.

The BORG board has 5 programmable FPGAs, and all of them can be pro-
grammed by a user. There are two user FPGAs, two routing FPGAs, and a fifth
FPGA (X0) that implements the glue logic to the PC bus as illustrated in Fig. 1.2.

The glue logic FPGA (X0) is programmed by a serial PROM on power-up. With
the appropriate setting of one jumper and dip switches on the BORG board, you
can also program X0 with the Xilinx xchecker. The rest of the FPGAs can be
programmed directly from the PC or by the xchecker hardware and software (see
Section 4.2 of Chapter 4).

The PC and the FPGAs can communicate using port I/O, interrupts, the shared
memory on the BORG, or DMA transfers. Port I/0 is the simplest and fastest, while
DMA is the most complicated and surprisingly slow. Just as any other I/O expansion
card (disk controller, parallel port, serial port), you need to map the BORG board
I/0 ports, interrupt channels, DMA channels into the PC’s valid I/O space, memory
space, or channel numbers. Section 9.1 of Chapter 9 describes the procedure for
constructing your own I/O ports in the FPGAs, and Section 4.7 illustrates the basic
interrupt structure.

There is a built-in dual-ported 8K x8 SRAM on the BORG board. The SRAM is
shared between the FPGAs and the PC. Naturally, it is mapped into the PC’s memory
address space. Access to the SRAM by the PC and user FPGAs is arbitrated by X0.
The arbitration can be performed under program control as detailed in Chapter 4.

Different designs run at different speeds. With the XC4000-6 speed grade part on
the board, a typical design runs at 8MHz. A 8 MHz TTL clock is supplied on the
board as the system clock. This clock can be further divided down to accommodate
lower speed designs, refer to Chapter 4 for details.

With multiple-FPGA designs, connecting the signals between the FPGAs is an
additional task that must be incorporated into the design flow. User FPGAs are placed
and routed individually, and the I/O (pin) assignments of the individual FPGAs do
not ordinarily match the constraints on the board. You can use the tool assign to
match up the pin assignments so that the signals between the FPGAs are correctly

connected. Assign is described in Chapter 7, and multiple-chip design flow is in
Chapter 6.

You will have design projects that need components which are not on the BORG
board. For example, you will need operational amplifiers and a digital-to-analog
converter in conjunction with an FPGA to build a frequency analyzer; or you will
need a piezoelectric buzzer and some transistors to build a digital music synthesizer.
A protoarea on the left-hand side of the prototyping board is there to accommodate
any extra components.

*Developed by Stanford University, Professor Abbas El Gamal’s group. Available from —
Proto Tools, 3500 Granada Avenue #156, Santa Clara, CA 95051, Attn: Kalon Goodrich. email:
kalon@cup.portal.com

1.2. What BORG Is?

Figure 1.1: A portrait of the XC4000 BORG board.

8 1. Introduction

LAL]

XC4077PC84 XC4077PC84 PC Bus
R1 X1

Yy

A

X0
YIVIIVY
XC4003APG120
X2
XC4077PCR4 XC4077PCR4 SRAM
8K x 8bit

Figure 1.2: Connections between the user FPGAs, X0 and the PC

Some simple laboratory experiments are presented in Chapter 9 to illustrates some
uses of the BORG board. Projects which have used the BORG board in the past

include Tetris machine, Dr. Mario machine, and a mazer runner.

1.3 Xilinx XC4000 FPGA parts

The XC4000 BORG board can be populated with 2 user Xilinx XC4000 family
FPGAs X1 and X2 and 2 routing FPGAs R1 and R2. R1 and R2 connect the
two user FPGAs together electronically and also provide connections to the 8K x8
dual-port SRAM, the PC bus (via X0), and other devices. Figure 1.2 illustrates the
basic concept. We shall refer to R1, X1, R2, X2 collectively as the ASICs.

The ASICs can be any one of the XC4000 FPGAs in a 84-pin PLCC package, for
example, XC4002PC84, XC4002APC84, XC4003PC84, XC4003APC84, XC4004PC84,
XC4005PC84, and XC4010DPC84 with either —5 or —6 speed grade parts. These
PLCC packages are pin-to-pin compatible.

For introductory-level classes, you may not need all the ASICs. The ASICs can
be extracted from the BORG board using a PLCC-chip extraction tool.

1.4. Limits on the number of connections between the FPGAs 9

1.4 Limits on the number of connections between the FPGAs

Some of the I/O pads on R1 and R2 are used to support the dual-ported SRAM
and port I/O communications with the PC. Thus although the number of user pads
available on a 84-pin PLCC package is 54, the maximum number of connections
between X1 and X2 which can be realized with R1 and R2 is , with the plastic
jumpers of J11-J23 on the left side.

With the plastic jumpers of J11-J23 on the right side, the maximum number
of connections between X1 and X2 which can be realized with R1 and R2 is .
Section 4.16 elaborates this limitation further.

The BORG board has been tested on 8MHz, 11MHz, and 13MHz buses (note:
bus speed not CPU speed) with 386/486 DX-33, DX-40, and DX-50 CPUs; it has not
been tested with a 33MHz PC bus.

1.5 About this User’s Guide

This user’s guide consists of the following chapters:

Chapter 2 describes how to install the software and hardware for the first time users,
and a 4-step procedure to test the BORG board.

Chapter 3 demonstrates two multiple-FPGA designs: a Tetris machine and a maze
solver machine.

Chapter 4 describes the detailed operation of the BORG board and its controller
interface with the PC.

Chapter 5 describes some utility programs.

Chapter 6 describes the complete design flow using multiple FPGAs, and the soft-
ware tools that you will need to use the BORG board with multiple FPGAs.

Chapter 7 details the pin asssignment program assign that is essential for designing
multiple FPGAs.

Chapter 8 describes the bits and pieces that are needed to use the BORG board
from a “hardware” perspective.

Chapter 9 suggests a range of projects of varying degree of difficulties.

10 2. Installation

2. Installation

This chapter describes how to install the BORG board inside or outside a PC/XT.
The hardware and software you will need is listed in Section 2.1. Sections 2.2 and 2.3
guide you step-by-step through the installation (and retrieval) of the software, and
installation of the BORG board, respectively. After the installation, in Section 2.4
you will test the functionality of the BORG board. Although the BORG boards were
tested by the manufacturer (BAT PC Technology of Milpitas, CA) before shipment,
you may want to test your BORG board one more time just to be sure.

2.1 What Do You Need?

In addition to a PC/XT, you will need internet access to retrieve the software
package and this user’s guide(!). You need the following hardware and software to

use the BORG board:
1. Xilinx XC4000 FPGA core implementation tools.
2. An xchecker cable.

3. An IBM compatible Personal Computer (PC/XT), with 1 Mbyte of available
storage space, and an available 8-bit expansion slot.

This machine will be used as a prototyping machine.
4. Some vacant I/O port addresses on the PC/XT.

The default address is 0x30X (0x300 to 0x30F). See Fig. 2.6 for other options.
5. Some vacant 8K-byte memory addresses on the PC/XT.

The default base address is 0xd000Oh. See Fig. 2.6 for other options.
Only items #3-5 are required to test the BORG board.

2.2 Software Retrieval and Installation

You need to have internet £tp access. All the software are available by ftp to the
internet depository ftp@cse.ucsc.edu(128.114.134.19). Login as anonymous and use
yourname@your.host.name as the password (for our records).

% ftp ftp@cse.ucsc.edu

ftp > user anonymous

Connected to ftp.

220 ftp FTP server (Version wu-2.1c(13) Fri Feb 18 10:49:37 PST 1994) ready.
ftp> Name: anonymous

ftp> Password: yourname@your.host.name
ftp> cd pudb

ftp> cd borg

ftp> binary

ftp> get borg.zip

ftp> get pkunzip.exe

ftp> quit

2.3. Hardware Installation 11

At this point you have obtained the BORG distribution borg.zip in zip format, and
a public domain program pkzip to unpackage the distribution. Transfer both files to
your PC. Now assuming the files you ftp’ed are on drive A:, on your PC do

mkdir borg

cd borg

copy a:pkzip.exe
copy a:borg.zip

set borg=0x300
pkunzip -d borg.zip

QOO0
vV V.V V V V

Don’t forget the “~-d” option. Compare the result of the directory listing below.

C:> dir/w

with the following files and directory

L.] L..] BD.EXE SCAN.EXE ASSIGHN.EXE

MTEST.EXE TESTME.BAT INSPECT.EXE CLOCK.EXE MAZE.EXE

ARBIT.EXE SETASSIG.BAT [DESIGN] #README PORTEST.EXE

[EMPTY] BSCAN.EXE [ucs] ISR.COM INTPC.EXE

CLEAR.EXE [ASSIGN] [SrcC] DEFAULT.EXE TETRIS.EXE
25 file(s) 777777 bytes

Congratulations, you have successfully installed the package if there are no discrep-
ancies.

2.3 Hardware Installation

Figure 2.1 illustrates the location and function of the BORG board components.
For this installation, you need to locate jumpers J3, J11-J23 and J24, and the red dip
switches SW1 and SW2.

If you DO NOT have a protozone adapter card, then you will install the BORG board
in add-in mode as follows:

1. Turn the PC power .

2. Set the dip switches SW1 and SW2 on the BORG board according to Fig. 2.5.

3. Place the plastic jumpers at locations J11-J23 and J24 on the two left pins (the
two pins closest to the proto-area) as in Fig. 2.5.

4. Plug the BORG board card into a PC expansion slot as shown in Fig. 2.4.

5. Turn the PC power [on]
6. Go to Section 2.4.

12 2. Installation

PROM to program X0 (default)
common anode yeor PPGAs R1 X1, R2, X2

Jumper to control X0
S XC4000 series PLCCS84 package dlg-llczles stem dOCk programming mode
Xchecker downlo RESET
one Smgle step Power ON
(move jump
xchecker download for for othe EDe]Eower 0 Of JlO tO lef)zA
PGA\ fuse

o BB /@W
B | R x1 | Loty HHHHHIIHEI =

< X0 — =

LTI

||!HHHHHHI]

protoarea

X2

R2

J11-J23 select connection between R2 and other FPG?S/

or from R2 to dual-port SRAM
plastic jumpers on LEFT: FPGAs)
plastic Jumpers on RIGHT: to memory)

8K X 8 SRAM 74245 TTL buffers

accessible by PC and R2

50-pin connector to protozone card

Figure 2.1: BORG board and some of its features.

If you DO have a protozone adapter card, then you can install the BORG board in
host mode as follows:

1. Turn the PC power .

2. Set the dip switches SW1 and SW2 on the BORG board according to Fig. 2.3.

3. Place the plastic jumpers at locations J11-J23 and J24 on the two left pins (the
two pins closest to the proto-area) as in Fig. 2.3.

4. Plug the protozone adapter card into a PC expansion slot.

5. Connect the protozone adapter card to jumper J3 of the BORG board using
the 50-pin flat ribbon cable accompanying the protozone card as illustrated in
Fig. 2.2.

6. Turn the PC power [on]

7. Go to Section 2.4.

2.3. Hardware Installation 13

50-wire ribbon cable
protozone adapter card

\
IBM compatible

personal computer

Figure 2.2: Using the BORG board in host mode

CLOSED Note: two different switch positions
up
UW -
ON
[00|[| J24
Put plastic jumpers
on the left side of J24

Put plastic jumpers

on the left side of J11 to J23

@E J11 Host mode: BORG board external
to the PC

Figure 2.3: Setting for testing BORG board (host mode) with port address
0x30X and memory based address 0xd0000h.

14 2. Installation

2.4 Testing the BORG Board

These tests require:
e /O port addresses: 0x30X (0x300 to 0x30F) must be vacant. These are the
default 1/O port addresses. See Fig. 2.6 for other options.

e Memory address: Also the 8K-byte memory addresses with base address
0xd0000h must be vacant. See Fig. 2.6 for other options.

Now, take the following steps:
1. Slide SW5 to ON to supply power to BORG board

2. LED1 & LED2 of BORG board should turn ON, and LED3 should be OFF. If
not, proceed to the diagnostics in Chapter 11 after checking that the jumper
J24 is correctly positioned.

3. Run the bd program as shown below:
C:> bd mcs\scan.mcs

Wait for LED3 to turn ON (this will take a few seconds and all three LEDs
LED1, LED2, and LED3 will be ON). If not, proceed to the diagnostics in
Chapter 11.

4. Run the scan program as shown below:
C:> scan

It should report:
Board scan test done.
Datain -> O
Board test passed. Accept BORG board.

If not, proceed to the diagnostics in Chapter 11.

5. Run the memory test program as shown below:
C:> mtest

It should report:
Finished 8192 bytes. Total errors O.

If program does not report 0 errors, then proceed to the diagnostics in Chap-
ter 11 after checking that jumpers J11-23 are correctly positioned.

The tests which you have just completed exercise all of the connections between the
FPGAs and most (but not all) of the components on the BORG.

2.4. Testing the BORG Board 15

personal computer

Figure 2.4: Using the BORG board in add-in mode.

CLOSED Note: two different switch positions

PDW M sy
ON

g CC|[| J24

u Put plastic jumpers

on the left side of J24

—

Put plastic jumpers

on the left side of J11 to J23

[@El J11 Add-in mode: BORG board
inside the PC

Figure 2.5: Setting for testing BORG board (add-in mode) with port address
0x30X and memory based address 0xd0000h

2. Installation

16
145 [Tz [
@Eﬂ:k
J24
S ET| xa | Lo] R
I}ﬁﬂ S SW2
et gp ef 5P
a | E
(] (] 1 []
X2
L
protoarea | HEEEE
CLOSED
up
Note: two different
down switch positions
OPEN
/ V
SW2
SW1 (})PEN \ N OREN\
trols MO. M1 / use protozone X0 ngt \] mterrupt
controls) host card powerdown disabled
of R1 FPGA PO 1L lusi controls MO, M1 memory mapping
default is as exclusive I/O mapping of X0 FPGA SRAM
. access to dual-port :
peripheral mode SRAM port address master serial base address
address 0x30X mode 0xd0000h

options:

ﬂ uz
change it to
slave mode for

xchecker
download

6
|

e
-

OanOOOh 5 6 7 8

address
3 FPGA has 1L 0x20X m Alme
access to 5 6
dual-port . OXbOOOOh
SRAM lu address
blocking PC pBO%{G | | . 0x21X power- Als A17A16 e.g. IRQB
access down change it to interrupt
board 5 6 X0 slave mode enabled
access can also be directly 0xc0000h
- . for xchecker (select
determined under into a
address download one only)
program control PC slot 0x31X Als A1TAl6

etc

Figure 2.6: Defaults and Options of the BORG board.

17

3. Simple Demonstrations

3.1 A Tetris Machine

In this demonstration we shall download a Tetris machine which is a multiple-chip
design. It uses the X1 and X2 FPGAs for logic, R1 and R2 FPGA for routing. This
Tetris machine is realized with approximately 150 XC4000 CLBs. A program running
on the PC displays the Tetris bucket (Fig. 3.1) and communicates with the Tetris
machine running in the ASICs using port I/O. The program randomly draws a tile
type and presents it to the Tetris machine. The Tetris machine determines how to
rotate and move the tile before the tile drops. The Tetris machine uses the XC4000
“on-chip” RAM for keeping track of the Tetris bucket; it is not using the dual-ported
SRAM on the BORG board.

For this demonstration, the BORG board can be either installed in the add-
in mode or host-mode with the default settings as given in Fig. 2.4 or Fig. 2.2,
respectively. If the required settings are not as prescribed for your installation mode,
please set them as described in Section 2.3 now. This demonstration requires 1/0
port addresses 0x30X (0x300 to 0x30F) to be vacant. These are the default I/O port
addresses. See Fig. 2.6 for options to change the 1/O port mapping.

|£’ Next tile

Figure 3.1: A Tetris bucket and some of its tiles.

Important:| This Tetris demo requires that your PC is preloaded with the
ans

i.sys device driver. If this is not the case, the problem can be corrected by
including this line in your config.sys file, and rebooting your machine.

DEVICE=C:\DOS\ANSI.SYS

18 3. Simple Demonstrations

1. Download the mcs file of the Tetris machine, by typing
C:> bd mcs\martine.mcs

Observe that the DONE indicator LIED3 should turn off and then ON again,
indicating all ASICs are programmed.

2. Exercise the Tetris machine by typing
C:> tetris

Terminate the program with ~C and clean up the screen by using the supplied
program clear. If your screen is all messed up now, this means that your PC
was not running the ansi.sys device driver.

3.2 A Maze Solver Machine

The mazer machine is a multiple-chip design which solves a maze. The machine
uses the R1 and R2 FPGAs for logic, and X1 and X2 FPGAs for routing (not a
mistake). This maze machine is realized with approximately 120 XC4000 CLBs. It
uses 2K bytes of the on-board (dual-ported SRAM) SRAM for keeping track of the

maze.

For this demonstration, the BORG board can be installed either in add-in mode
or host-mode with the required settings as given in Fig. 3.2 or Fig. 3.3, respectively.
If the required settings are not as prescribed in these figures, please set them this way
now. Note that jumpers J11-J23 are set to the right which is not the default setting
that was given in Section 2.3. This demonstration requires I/O port addresses 0x30X
(0x300 to 0x30F) to be vacant. These are the default I/O port addresses. See Fig. 2.6
for options to change the 1/O port mapping.

Important: | This mazer demonstration requires that your PC is preloaded with
the ansi.sys device driver. If this is not the case, the problem can be corrected by
including the following line in your config.sys file, and rebooting your machine.

DEVICE=C:\DOS\ANSI.SYS

‘Important: You need to block the PC’s access to the dual-ported SRAM by
using the program

C:> arbit xilinx

This gives the R2 FPGA exclusive access to the dual-ported SRAM.

3.2. A Maze Solver Machine

Note: two different switch positions

CLOSED
up
I C W
down
OPEN ON
123456738 12345678 124
ununun n nunuuu u Put plastic jumpers
OPEN OPEN on the left side of J24
SW1 SW2
h
Put plastic jumpers
E@] J22 on the RIGHT side
P of Jumpers J11 to J23
[}

Host mode: BORG board
E@] j11 external to the PC

Figure 3.2: Setting for running Maze machine with the BORG board in host
mode, with port address 0x30X and memory based address 0xd0000Oh

Note: two different switch positions

CLOSED
down SW5
OPEN oNn
123156738 |[12345678 [@2”4
HUHQQEUN n nungg}ﬁg\l u Put plastic jumpers

on the left side of J24
SW1 SW2

E@ 399 Put plastic jumpers
on the RIGHT side of
(4 jumpers J11 to J23

E@] Ji1 Add-in mode: BORG board
inside the PC

Figure 3.3: Setting for running Maze machine with the BORG board in add-
in mode, using port address 0x30X and memory based address 0xd0000h

19

20 3. Simple Demonstrations

Please follow the given steps:

1. Download the mcs file of the maze machine, by typing
C:> bd mcs\maze.mcs

Observe that the DONE indicator LIED3 should turn off and then ON again,
indicating all FPGAs are programmed.

2. You can exercise the maze machine by typing
C:> maze

This program displays a randomly generated maze with one exit (character %).
Starting from a randomly chosen location (the origin), the mazer (@) runs the
magze in two passes. In the first pass, the mazer traverses and explores the maze.
When the mazer reaches the exit, it is teleported back to the origin. On the
second run the mazer tries to reach the exit in record time.

Level 2 maze. Total moves 108

You may terminate the program with ~C and clean up the screen by using the
supplied program clear. If your screen is all messed up now, this means that
your PC was not running the ansi.sys device driver.

21

4. Principle of Operation

4.1 Status indicators

There are three LEDs on the BORG board which indicate the status of the FPGAs
and the board.

POWER This LED (LEDI rightmost LED on the top) indicates that the BORG
board has power.

X0 This LED (LED2) indicates that the PC/XT bus controller FPGA X0 is config-
ured.

DONE The DONE pins of the user FPGAs R1, X1, R2, X2 are tied together to
the DONE LED (LED3) to indicate that the four user FPGAs (ASICS) are
configured.

There are also two common-anode seven segment displays and two common-anode
four-bar LEDS in the proto-area that can be used to monitor additional signals.

4.2 Stand-alone BORG board

You can use the BORG board in the same way as the Xilinx XC4000 demo board.
This is the simplest but not the best way to use the BORG board. In this mode,
you can use the four user XC4000 FPGAs. To use the BORG board as a stand-alone
board, you must

1. set position PDWDWN of the BORG board to open, this disables (power downs)
the X0 controller.
connect an xchecker cable to jumper J8,
set position MOR1 of DIP switch SW1 to open,

set position M1R1 of DIP switch SW1 to open, and

Ot = W N

. supply power (+5V) to the board via jumper J5.

Steps 3 and 4 have just put R1 into slave mode. For programming the FPGAs,
use the xchecker program and cable. The FPGAs are daisy-chained in the following
order:

R1 -> X1 -> R2 -> X2
This means the Dout (Data out program pin) of the first FPGA R1 is connected
to the Din of the second FPGA X1 and so forth so on. Their DONE pins are tied
together. LIED3 turns to red if the four FPGAs are successfully programmed.

If you need only one FPGA, you must use the R1 FPGA. You can either extract
the rest of the FPGAs with a PLCC extractor tool made by a company called AUGAT,
or download the rest of the FPGAs with “empty” bit streams. You can find null bit
streams for the individual FPGA types in the distribution package under the directory

[onpry
em4002a.bit em4003a.bit

Important:| You need to “concatenate” the bit streams of the individual FPGAs
for download, by using the Xilinx makeprom program.

22 4. Principle of Operation

makeprom -o design.mcs -u O myrl.bit em4003a em4002a em4003a

This example assumes that your design bit stream is in the bit file myr1.bit.

4.3 BORG board as a Peripheral Device of the PC/XT

The BORG board is just like any other PC/XT peripheral cards; it interfaces with
the PC/XT via port I/O, memory map, interrupt, and DMA. The next few sections
will guide you to map the BORG board into the PC vacant and valid 1I/O address
space and memory address space, interrupt and DMA channels.

Also, the BORG board draws its power from the PC’s power supply. You don’t
have to worry, because most PCs have 150 Watt to 250 Watt power supply. The
BORG board consumes approximately 5W of power. There is also a 3-Ampere fuse
on the BORG board, just in case.

For now, you should study Fig. 2.6 to identify the locations of jumpers, switches
and reference designators on the BORG board.

4.4 Put the BORG Board Inside or Outside the PC?

The BORG board has two modes of installation. You can install the BORG board
inside or outside a PC; we refer the first option as add-in mode and the latter as host
mode.

Add-in mode The BORG can be plugged into a PC/XT expansion slot, as illus-
trated in Fig. 2.4. This has the disadvantage that the FPGAs’ signals are
inaccessible. But you can use a PC/XT signal extension card to accommodate
the BORG card. The extender card is recommended since it allows easier access

to signals on the BORG board.

Host mode Alternatively, with the Protozone ! host card in an PC/XT expansion
slot and a 50-wire flat ribbon cable from the protozone host card plugged into
connector J3, the BORG board can be used outside the PC, as illustrated in
Fig. 2.2.

4.5 1/0 Address Mapping

Minimally, the BORG board must be mapped into some vacant locations in the
PC/XT’s I/O address space. The BORG board’s controller X0 has four predefined

I/0 ports for maintaining the vital communication with the PC to support download-

ing bitstreams. We call these I/O ports .

You can build additional 1/O ports to support your design in the R1 FPGA. In
a “typical” PC configuration, you will find that the I/O addresses from to

0x30F | are vacant. Examples of occupied 1/0 address locations are 0x378 and 0x2F8
which are the printer port LPT1 and serial port COM2, respectively. There are

YA. El Gamal, “Protozone: The PC-Based ASIC Design Frame, User’s Guide,” Tech. Rep.
SIS1.90-777, Stanford Information Systems Laboratory, Stanford University, Aug. 1990.

T

‘preoq
T'F 9In3t

c [D

A
CLK_PAD> CLK STARTUP Bl OW
From Xi linx R1
o = =F
o *r [
BUFGP en
Bl OR UERTAY ol cowarvi der | BUF —perk poner v —
RANMSEL
1 AND2 BIrOR> T~ Bl OR DECODE = N XI OR> RANMPADS OBUFT T 1 BUR 1
Xl OR PULL DO BDO [BO0 BPO|_RAMDO Bl1>
PAD 12 EAD 12 PAD BD1 BP1[TRAVDL {PaD
From PC | SA Bus EQUAL PORTI O, BD2 BP2[RA L B1
FAST Bl O |,B\ur= B fFwa. eq_ @ CRF XI OWe FAsT BD3 BP3[RAT BD1L b >
Bl OW X1 ow BD4 A RAT
PAD 15 | TE PAD BD5 FAM BPSRANVDS
- BD6 Jatl BPE[RAl OBUFT T BUR
I BUF OBUF BD7 BP7|
BMVEVR> IoE P B2> @
-@ ” = B ‘ B2
caMux b BDZ 17 >
st
- Bvemns | BuF Il ' Bidirectiona é e -
@ > BNVEMW RANMDO OBUET 1 BUF
IRAML
-wr . RANE £ B3> @
1| BUF RAVDSE _|RANB o ¢ B3
AV RANVDA_[RAVA = BD3 <
BAEN, COVPARES shared pin R IRANG L
T770 VEPPT NG| during configuration: RDY RANVDG _|RANB N .
HOST BA7 A0 after configuration: |NIPC R IRAM7 o OBUET | BUF
BAS AL (=) F
AnDz| WEAS A2 oo BPO B4> @
jas o v @ B4
Aa 2 T BD4
BAZ NS A = B ? gl g
2 k= =z ¢ 2
a7 | 0 CBUFT T BUF
6|
TOARD Bl o7 ~ B5> @
Oy | — =7 - ¢ ’
3
EQUAL
TOAT 5 1
l B——ps
7 TDO of others
access thru PORTC
ADDRPAD >
BAO ESS P, PORTDEC PROG>
| A0 Bl OR BIOR CONFI G | BUF PAD
a1 TOW Bl OW PORTAPCRTA ORT
PORT

OBUFT | BUF
COVPARE4

A0 i na
AL

e

YO Y} JO I9[[0I3U0d (X 913 JO SurmeIp 213RWAYDS [949]-dOT, 0X

AND2 OBUF
UC SANTA CRUZ X XlLl
FAST BAS> INBUF BAS AND2 BUF
oy sate- _ Bate . swe
> BAS> |l BAS XO BORG Il 4K BOARD CONTROLLER
ARG, et BA17 pgue BAL7 Sw7= yaue sva7 a

st BAT> 1 QUF BAT G (Pan > Top- Level Di agram

raar_ Bais=ygue Bas Sws= L gur s
BaB> yaur BAS PART=4003APG120- 6 Sheet 1/8
-—$—lm — o EA19>. Bato © e A7 — 1503
p - yaueBas -+.@ T ’_4$_. ;

need to change | BUF

(ero) > FasT 1 BUF BUF AUG 28, 1993 REVL | praw sy: P2k K. Chan

A [5 [c o

BORG (4/ 26/ 94)

N ssoIppy O/1 “¢'F

surdde

€¢

24 4. Principle of Operation

provisions to modify the I/O mapping to suit your needs. Referring to Fig. 4.1 for the
top-level schematic of the X0 controller. You will find that the module CcOMPARES
decodes address A4-A9 and the settings of the DIP switch SW2 positions IOA0 and
IOA1 to determine the I/O mapping. The XT bus active-low signal baen is used only
in add-in mode (host=1), as illustrated in Fig. 4.2.

compare ———> 1 I0AO O 0 0 IOAL O O X X X X
with [I I I I I

I/0 ---> BA9 BA8 BA7 BA6 BA5 BA4 O (host & baen) BA3 BA2 BA1 BAO
addresses

Figure 4.2: 1/0O Address Decoding in X0.

So the the comparator’s output is asserted when address lines BA8 and BA4 match
the setting of positions IOA0 and IOA1 of DIP switch SW2. The least significant four
address lines BAO-BA3 are decoded in X0, but only the lower 4 1/O locations are
taken by X0 controller. The I/O mapping is listed in Table 4.1. Also, the address
lines BAO-BA3 are provided as inputs in R1, and must be fully or partially decoded in
R1 to avoid conflict with the portsin the X0 controller. You should consult Section 9.1
for further information on building your own I/O ports in the R1 FPGA.

I0OA0 | IOA1 | addresses
0 0 0x20X
0 1 0x21X
1 0 0x30X
1 1 0x31X

Table 4.1: I/O mappings of BORG board (note: I0A=0 means switch is
closed, IOA=1 means switch is open, and X is a don’t-care).

Referring to Fig. 4.1, the BORG board’s controller X0 has four pre-
defined 1/0 ports defined in the module PORTDEC for maintaining the vital communi-
cation with the PC to facilitate downloading bitstreams. We call them . So
depending on the settings of positions IOAQ and IOA1 of DIP switch SW1, X0Oports’
port addresses in X0 are given in Table 4.2. The functions of the XOports are given
in Table 4.3.

I/O Ports IOAO | IOA1 | addresses
PORTA,B.CD | 0 0 | 0x200 to 0x203
PORTA,B,CD | 0 1 | 0x210 to 0x213
PORTA,B,CD | 1 0 | 0x300 to 0x303
PORTA,B,C.D | 1 1 | 0x310 to 0x313

Table 4.2: Occupied I/0O addresses in XO0.

4.6. Memory Mapping 25

XOport | Function

PORTA | set control functions of other ports
and SRAM arbitration

PORTB | download bit streams

PORTC | read port (contains a zero)

PORTD | boundary scan and global reset

Table 4.3: Functions of I/O ports (X0Oports) in X0.

As shown in Table 4.4, the 1/0 signals - IOR, IOW, A0, Al, A2, A3, D0O-D7 are
available to the R1 FPGA. Port I/O is the simplest way for the BORG board to
communicate with the PC. The C library functions

inportb(port)
outportb(port, byte)

can be used for reading and writing the ports, respectively.

The I/0 read and write signals: XIOR and XIOW have already been decoded by
X0 to ensure that the I/O signals IOR and IOW are directed towards the BORG
Board. (The decoding is controlled by switch positions IOAQ and I0A1 of the DIP
switch SW1.) Four of the 16 available ports are used by X0 as described. This leaves
12 port addresses available for the R1 FPGA to communicate with the PC.

Signal Pin # of R1 FPGA
INTERRUPT 70
A0 83
Al 81
A2 82
A3 80
XIOR 51
XIOW 50
Do 71
D1 69
D2 67
D3 65
D4 61
D5 59
D6 58
D7 56
Global Clock 13
Global RESET 10

Table 4.4: System signals available to R1.

4.6 Memory Mapping

The dual-ported SRAM (U2) can be accessed by your PC/XT if the SRAM is
properly mapped into the PC/XT’s vacant memory address space.

In the host mode, the mapping is determined by the setting dip switch SW2 of
your protozone adapter card, please consult your Protozone adapter card user’s guide.

26 4. Principle of Operation

In the add-in mode, you can control the mapping with switch positions A18, A17,
and A16 of DIP switch SW2 (on the BORG board) which set the equality comparison
with the PC address lines A19, A18, A17, A16. In either case, for dual-port access,
the 8K dual-port SRAM 6116 (U2) must be mapped into a block of locations in your
PC upper memory area (UMA). UMA are higher than 640K and less than 1024K in
the memory address space.

Finding vacant locations is tricky. Typically, this can be either locations with base

memory address 0xd0000 or 0xe0000. Table 4.5 shows a typical high memory map
in DOS.

A19,A18,A17,A16 | Typical usage

System BIOS (ROM)

probably not used ?

probably not used ?

Network Adapter, Video ROM, HD controller
Video RAM

Video RAM

FmOgE=

Table 4.5: Typical UMA address map in a PC computer.

If your PC is using DOS 5.0 or higher, there may also be a problem if the
memory manager is using some of the upper memory area to accommodate your device
drivers (e.g., mouse, ansi.sys etc). You can avoid memory conflicts by commenting
“DOS=HIGH” out from your config.sys, and also avoiding the use of “loadhi”
commands. At any rate, do the following in DOS 5.0 (or higher) to display a memory
map and find an area that is vacant to accommodate the 8K dual-port RAM.

C:> mem /p

or

C:> mem /c

You should consult Section 4.15 for further information on arbitrating the dual-

port SRAM.

4.7 Hardware Interrupt Channel

Pin 70 of the R1 FPGA is connected to hardware interrupt channel of your PC/XT.
The IBM PC AT and PC/XT computers have different channel assignments, so be
careful. Table 4.6 shows a typical hardware interrupt channel in a PC AT computer.

You can enable an interrupt channel by the DIP switch SW2 on the BORG board.
If you are in add-in mode, you can select either IRQ3, or IRQ5, or IRQ7, or IRQY by
the DIP switch SW2 to enable interrupt; or none to disable an interrupt. Make sure
that the channel you chose is not in conflict with other devices in your system, for
example, a serial mouse uses IRQ4; and IRQ5 may be used by a printer in LPT2.

4.8. DMA Channel 27

Hardware Interrupt | Vector | Description
TRQO 0x08 | System Timer
TRQ1 0x09 | Keyboard Interrupt
TRQ2 0x0A | unused connect to another 8259A chip
TRQ3 0x0B | serial port COM2
TRQ4 0x0C | serial port COM1
IRQ5 0x0D | parallel port LPT2 in PC/AT (hard disk in PC/XT !)
TRQ6 0x0E | floppy disk controller
TRQ7 0x0F | parallel port LPT1
TRQ8 0x70 real time clock
IRQY 0x71 | (0x0A) rerouted to IRQ 2
IRQ10-IRQ15 PC/AT only

Table 4.6: Typical hardware interrupt channel in a PC AT computer.

If you are in host mode, you need to select the interrupt channel in the protozone
adapter card. You can use a lab given later in Section 9.2 as a guide to write interrupt
service routine, and the use the hardware interrupt feature.

4.8 DMA Channel

You need to change the default design of the controller X0 to practice DMA
transfer using the BORG board, and you must use the protozone adapter card in
order to use DMA. The protozone adapter card’s DMA channel is designed for an
PC/AT computer. Also, you need to select the proper DMA channel in the protozone
adapter card.

Three DMA related signals: terminal count expire (TC), DMA request (DMA),
DMA acknowledge (DACK) are availble in X0 for you to build your own DMA
controller.

You can follow a lab given later in Chapter 9 as a guide to use the DMA feature.

4.9 Configuring the controller X0 FPGA

‘Master serial mode ‘: By default, the controller X0 (U1) is programmed by a
small serial PROM xc1765D (in U3) using the master serial mode. To set X0 to this
mode:

1. shunt J24 on the left side with a plastic jumper,
2. set position M0X0 of dip switch SW1 to closed, and
3. set position M1x0 of dip switch SW2 to closed.

: Alternatively, customize your own controller by programming X0

in the slave mode using the Xilinx xchecker cable via J9. To set X0 to this mode:
1. shunt jumper J24 on the right side with a plastic jumper,
2. set position M0X0 of dip switch SW1 to open, and
3. set position M1X0 of dip switch SW2 to open.

28 4. Principle of Operation

In either case, the light emitting diode LED2 turns to green when X0 is successfully
programmed.

4.10 Programming the R1, X1, R2 and X2 FPGAs

For programming purpose, the FPGAs R1, X1, R2, and X2 are daisy-chained,
which means the Dout of the first FPGA R1 is connected to the Din of the second
FPGA X1 and so forth so on. Their DONE pins are tied together.

The R1 FPGA can be programmed either in peripheral mode or slave mode; the
other three X1, X2, R2 FPGAs are always configured in the slave serial mode. Since,
the mode pins M0, M1 and M2 pins of X1, R2, and X2 are tied to vcc, this puts
them into daisy chained slave programming mode with the R1 FPGA as the master.
Remember:

R1 -> X1 -> R2 -> X2

This means the Dout of the first FPGA R1 is connected to the Din of the second
FPGA X1 and so forth so on. Their DONE pins are tied together.

Important | You need to “concatenate” the bit streams of the individual FPGAs
for download. You do so by using the Xilinx makeprom program, see the next two
paragraphs.

If you need only one FPGA, you must use the R1 FPGA. You can either extract
the rest of the FPGAs with a PLCC extractor tool made by a company called AUGAT,

or fill the rest of the FPGAs with “empty” bit streams. You can find null bit streams
for each of the individual FPGA types in the distribution package under the directory

nvty]

em4002a.bit em4003a.bit

Use them to generate a single mcs file of your design along with the bit stream of
your design in the R1 FPGA (say: myrl.bit) using the Xilinx makeprom utility:

makebits myril
makeprom -o design.mcs -u O myrl.bit em4003a em4002a em4003a

To use the R1 FPGA in the peripheral mode, you set both positions MOR1 and
MIR1 of DIP switch SW1 to open and closed, respectively. The bit streams to
configure the FPGAs are downloaded via the 8-bit PC databus sent by the supplied
download program bd. LED3 (DONE) turns to red if the FPGAs are successfully
programmed.

c:> bd design.mcs

To use the R1 FPGA in the standalone mode, refer to Section 4.2.

From X0

4.10. Programming the R1, X1, R2 and X2 FPGAs

29

RESET TDO
AN I I I B
10 9 8 7 6 5 4 3 8483 82 81 80 79 78 77 75
—1 13 CLK a0 a2 al a3 DOUT 72
—1 14 doDIN 71
15 TDI INT 7
16 TCK dl 69
17 TMS 68
- 18 d2 67
- 19 66
R1 FPGA
1 20 d3 65
- 23 62
1 24 d4 61
- 25 60
- 26 d5 59
- 27 46 58
-1 28 X X
OI % 57
- 29 W R 56
1

35 36 37 38 39 40 44 45 46 47 48 49 50 51 (7
T T T T 1T T T T T T 77

RESET TDO
i i G I B A H B B G i e
109 8 7 6 5 4 3 8483 82 81 80 79 78 7T 75

— 13 CLK DOUT 72

-1 14 DIN 71
15 TDI 70O
16 TCK 69O
17 TMS es—

i . 7l

- 19 X]. FPGA 66

i 65—

— 23 62—

o oy -

S| 25 60(

— 26 59—

. s

— 28 57

S| 29 56

35 36 37 38 39 40 44 45 46 47 48 49 50 51

OT T T T T OT7T T T T O OD

O @ L g

TDO

PP

10 9 8 7 6 5 4 3 8483 82 81 80 79 78 77 75

— 13 CLK DOUT 79

-] 14 DIN 71

15 TDI 70

16 TCK 69

17 TMS 68

- 18 67
— 19 sel

2 X2 FPGA o

— 23 62

— 24 61

— 25 60

— 26 59

- 27 58

O 28 57

S 29 56

35 36 37 38 30 40 44 45 46 47 48 49 50 51

1
REISET TD’d

A S I I N O I |

10 9 8 7 6 5 4 3 8483 82 8180 79 78 77 75
— 13 CLK DOUT 72
-1 14 DIN 71

15 TDI 70—

16 TCK 69

17 TMS 68 [
— 18 67
- 19 66
2 R2 FPGA 65—
- 23 62—
— 24 61—
- 25 60
— 26 59—
- 27 58
- 28 57
— 29 56—

35 36 37 38 39 40 44 45 46 47 48 49 50 51

-

TO PC

Figure 4.3: User FPGAs and Global Signals.

30 4. Principle of Operation

4.11 Global Reset

You can reset the R1, X1, R2 and X2 FPGAs manually by depressing the push
button SW4. This global reset can be also initiated under (port I/O) program control.
It is connected to Pin 10 of all user FPGAs, as illustrated in Fig. 4.3. As mentioned
earlier in Section 4.5, the BORG board’s controller X0 has four predefined 1/0 ports.
Bit 0 of PORTD is used for global reset.

4.12 Readback

Only the R1 and X0 FPGAs are available for readback using the xchecker program
and cable. The mode pins of the other FPGAs are tied to vce, so readback is not
possible.

4.13 JTAG Boundary Scan

You can only use R1, X1, R2 and X2 FPGAs for boundary scan. X0 is the
controller of the boundary scan chain. As mentioned, the BORG board’s controller
X0 has four predefined 1/0O ports. The three JTAG boundary scan pins: TMS, TCK,
TDI of the R1, X1, R2 and X2 FPGAs are connected to bit 1 to bit 3 of PORTD of
X0 to boundary scan the user FPGAs under port I/O program control. X0 reads the
TDO from the user FPGAs via the TDO_PC pin.

Warning: | Since bit 0 of PORTD is reserved for global reset (active low), don’t
write a zero to bit 0 of this port unless you really mean to.

4.14 System Clock and Single Step

You may find the on-board (default 8 MHz) TTL-crystal clock generator useful.
Place the plastic jumper on the right side of J10 to use the crystal clock. It is divided
internally by a counter in the X0 controller (if X0 is not powered down). The clock
divisor can be selected by the clock program. For example, you use

c:> clock turbo

for a divided by 1 clock (default 8 MHz), and

c:> clock slow

for a divided by 8 clock.

The clock utility loads 2 bits to select the desired divisor that resides in bits 4
and 5 of PORTA of X0port inside X0 (see Section 4.5).

You can toggle the system manually by placing the plastic jumper on the left side
of J10 and use the push buttom for single stepping. The global clock is broadcast to

Pin 13 of all user FPGAs, as illustrated in Fig. 4.3.
A listing of the clock utility is given on the next page.

4.14. System Clock and Single Step

#include<stdio.h>
#include<dos.h>
#include<stdlib.h>

main(int argc, char *argv[]) /* clock speed selection */
{

unsigned int Portl;

char * portenv;

setcbrk(1);

printf("\nCLOCK Ver. #1.0\n");
printf("UC SANTA CRUZ, COMPUTER ENGINEERING, August 1993\n");
printf("(c) Copyright 1993 UC Regents. All rights reserved\n\n");

if(arge==1) {
printf(" Function: Set BORG Protoboard global CLOCK speed\n");

printf(" Usage: clock [slow | quick | fast | turbo]J\n\n");
printf(" /8 /4 /2 /1\n\n") ;
exit(1);

}

portenv = getenv("BORG");

/* Control Port in X0 */
if(!strcmp(portenv,'0x300"))
PortA = 0x300;
else if(!strcmp(portenv,"0x200"))
PortA = 0x200;
else if(!strcmp(portenv,"0x210"))
PortA = 0x210;
else if(!strcmp(portenv,"0x310"))
PortA = 0x310;
else {
printf(" Wrong PORT address\n");
printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");
exit(1);

printf(" >BORG PORT address is %s\n",portenv);

if(argc==2){
switch(argv[1]1[0])
{
case ’s’: outportb(PorthA, Oxce);
printf(" >Global clock is now slow \n");
break;
case ’q’: outportb(PortA, Oxde);
printf(" >Global clock is now quick \n");
break;
case ’f?: outportb(PorthA, Oxee);
printf(" >Global clock is now fast \n");
break;
case ’t?: outportb(PorthA, Oxfe);
printf(" >Global clock is now turbo \n");
break;
default: printf(" Error: flag not recognize ’%s’\n", argv[1]);
printf(" Usage: clock [slow | quick | fast | turbo J\n\n");
}
exit (0);
}
}

32 4. Principle of Operation

pin of SRAM | pin of R2 PC84 package FPGA
DO R2.46
D1 R2.45
D2 R2.44
D3 R2.40
D4 R2.39
D5 R2.38
D6 R2.37
D7 R2.36
A0 R2.47
Al R2.48
A2 R2.49
A3 R2.50
A4 R2.51
A5 R2.56
A6 R2.57
A7 R2.58
A8 R2.61
A9 R2.62
A10 R2.67
A1l R2.66
A12 R2.59
Cs R2.30
OE R2.65
WE R2.60

Table 4.7: Memory signals from R2 to dual port SRAM; the connections
to memory addresses A0-A12 depend on jumpers J11-J23. To use the pin
assignment tool assign you need to use the appropriate wiring file and
flag (see assign command option in Chapter 7) to reflect the status of the
jumpers.

4.15 On-board SRAM and arbitration

4.15.1 8Kx8 SRAM

If your design requires only a wide but shallow amount of memory, it is much
better to use the XC4000 on-chip RAM. If you need deep but narrow memory, the
on-board 8K x8 SRAM can be useful.

As indicated on the BORG board, pin 2 of jumpers J11-J23 are the (A0-A12)
address lines to the SRAM coming out from the R2 FPGA. You can move the plastic
jumpers of J11-J23 to the right side to use all the on-board 8Kx8 SRAM. In this
case, you have less connections available between X1 and X2 FPGAs, as illustrated
in Fig. 4.4.

In Fig. 4.4, you will find that the SRAM is connected to the R2 FPGA, the pin
assignment of R2 FPGA is given in Table 4.7. All the memory access signals (8-bit
data lines, 13-bit address lines, R/W, OE-, and CS-) of the user FPGAs have to go
through R2 before reaching the SRAM (see also Figure 1.2). In particular, pin 30 of
R2 is the chip select (CS-). This signal is tri-stated and is in wire-AND configuration
with the RAMSEL signal of X0. You need to use the special MD1 symbol in your
schematic drawing to use this pin. This active-low signal is normally pulled high by a
4.7K resistor. Figure 4.5 illustrates the memory write timing as the SRAM is under
tested.

4.15. On-board SRAM and arbitration 33

Address Lines A0-A3
Data Lines D0-D7
IOR,IOW

INTPC (interrupt PC)

i

XC4077PC84 PC Bus
X1 X0 yyy XC4003APG120

> 27
=] XC4077PC84 s
"] Data
YIVIIVY pp——
.::: RAMSEL2
X2 R2 Soo
add(i“)ess gli SRAM
XC4077PC84 XC4077PC84 J11-323|8K x 8bit buffer
control lines
ata lines

Figure 4.4: SRAM and the rest of the FPGAs.

On the other hand, if you need more connections between the user FPGAs X1 and
X2, you may move the plastic jumpers of J11-J23 to the left side (this is the default
configuration, see Fig. 2.6); and the on-board 8Kx8 SRAM is inaccessible.

4.15.2 Dual-port SRAM arbitration
The 8K dual-port SRAM can be accessed either by the PC or the R2 FPGA. The

X0 controller provides some simple arbitration logic. There are three mechanisms for
arbitration.

First, you can control the default dual-port SRAM access by setting position 3
of DIP switch SW1 (DURAM). If this switch position is open, the PC has exclusive
access to the SRAM. By the same token, you can make the SRAM inaccessible to the
PC by closing this switch.

Second, you can arbitrate the dual-port SRAM access under program control,
overwriting the default set by DIP switch SW1 (DURAM). Bit 2 and bit 3 of PortA
of X0Oport arbitrates the memory access, as illustrated by the arbit utility on the
next page.

Third, jumper J1 is connected to the ASIC pin of the X0 controller. This active-
low signal can be used to block the PC access to the dual-port SRAM by tristating
the data and address buffers surrounding the dual-port SRAM on the PC side. The

34 4. Principle of Operation

Tek Run: 200MS/s Sample . Trig?
I [
LT 1

: | r 1A s40ns
- e l@: 520ns
L ﬂr//’/\r«-]

1of SO v B dern
oo WW""“‘} prwen

2-f (TN S r e v I
E ﬂw}}lr MWwWWh

34 Www
WW”\ i]

a-f »WWMMN\ o
i A Y - e]
CHT .00 A2 00V M 250rs CH1 3207V 16 jun 1994
Ch3 4.00V Chga 4.00V 17:01:08

Figure 4.5: SRAM write timing of two consecutive write cycles. Channel 1
is the chip select CS signal. Channel 2 is the write WE signal. Channel 3 is
address line AO, a ‘1’ on the first write cycle, and then a ‘0’ on the second
one. Channel 4 is the data line DO, zeros for both cycles.

static RAM 6264 is of 70ns speed grade. We have tested the BORG board using
150ns RAM without problems. We use the 70ns speed grade because it is available
and cheap.

4.16 Limits on the Number of Connections Between the FPGAs

Some of the I/O pads on R1 and R2 are used to support the dual-ported SRAM
and port I/O communications with the PC. Thus, although the number of user pads
available on a 84-pin PLCC package is 54, the maximum number of connections
between X1 and X2 which can be realized with R1 and R2 is , with the plastic
jumpers of J11-J23 on the left side, and using TDO and TDI pins.

With the plastic jumpers of J11-J23 on the right side, the maximum number of
connections between X1 and X2 which can be realized with R1 and R2 is . Fig-
ure 4.6 shows the pin distribution between the FPGAs. There are some unconnected
pin in the X1 and X2 FPGAs are indicated with a small circle on their pins in Fig. 4.3.
They can be used for probing/debugging purposes.

4.16. Limits on the Number of Connections Between the FPGAs

R1

19

X1

A

20

X2

15

Y

18

Y

A

R2

35

2 O(PO_
J11-J2

SRAM
S x 8bit

11

Figure 4.6: Pin Distribution between the FPGAs.

/* program arbit

#include<stdio.h>
#include<dos.h>
#include<stdlib.h>

dual-port SRAM arbitration */

main(int argc, char *argv[])

{

unsigned int Portl;

char * portenv;

setcbrk(1);

printf("\nRAM ARBITER Ver. #1.0\n");

printf("UC SANTA CRUZ, COMPUTER ENGINEERING, August 1993\n");

printf("(c) Copyright 1993 UC Regents. All rights reserved\n\n");

if(arge==1) {

printf("

printf("

exit(1);
}

Function: Arbitrate BORG II Protoboard’s RAM\n");
arbit [xilinx | pc]1\n\n");

Usage:

portenv = getenv("BORG");

/* Control Port in X0 */
if(!strcmp(portenv,'0x300"))

PortA = 0x300;
if(!strcmp(portenv,'0x200"))
PortA = 0x200;

else

36 4. Principle of Operation

else if(!strcmp(portenv,"0x210"))
PortA = 0x210;
else if(!strcmp(portenv,"0x310"))
PortA = 0x310;
else {
printf(" Wrong PORT address\n");
printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");
exit(1);
}
printf(" >BORG PORT address is %s\n",portenv);

if(arge==1) {
printf(" Function: Arbitrate BORG II Protoboard’s RAM\n");
printf(" Usage: arbit [xilinx | pc J\n\n");
exit(1);
}
if(argc==2){
switch(argv[11[01)
{
case ’x’: outportb(PortA, 0xf3);
printf(" >BORG Xilinx’s has exclusive access to the RAM\n");
break;
case ’p’: outportb(Portd, 0x£f7);
printf(" >PC has exclusive access to the RAM\n");

break;
default:
printf(" Error: unknow flag ’%s’\n", argv[1]);
printf(" Usage: arbit [xilinx | pc]\n\n");
exit(1);
}
printf("\n Warning: RAM access can be hardwired by a\n");
printf(" : switch position 3 (DURAM) of DIP SW#1\n");
printf(" : Open: PC access closed: FPGA access\n");
exit (0);

5. Software

37

The software programs and subdirectories in the distribution package are
described in Table 5.1.

| file name | description
arbit arbitrates dual-port SRAM access
assign pin assignment program to connect multiple FPGAs (need a 386)
bscan boundary scan program (unsupported!)
bd downloads an mes file to the BORG board (runs on XT compatible)
clear clear a messy screen
clock program to change the system clock rate
default print out the default DIP switch settings
inspect list content of dual-port SRAM
isr.com interrupt service routine for interrupt lab
ntpc interrupt generator for the interrupt lab
maze maze runner driver project example
mtest checks (by writing after reading) the
8k dual-port SRAM 6264 on the BORG Board
portest lab example to show building I/O ports in R1

setassig.bat

example bat file to set an environment variable
for the program assign

scan scan test to check all the I/O on BORG board

tetris driver for the Tetris project (runs on XT compatible)

sre\ subdirectory containing the source code

designs\ subdirectory with the LCA files for the project examples

mes\ subdirectory with the mcs files for the design examples

empty\ subdirectory with null bit-streams for XC4003a and XC4002a 84PLCC packages
X0\ subdirectory viewdraw schematic of the X0 controller

assign\ subdirectory supporting files

Table 5.1: Contents of Software Distribution.

5.1 Memory related programs mtest and inspect

The memory test mtest program checks whether the dual-port SRAM is accessible
from the PC. The inspect program displays the entire contents of the 8K dual-port

SRAM.

Before running these programs, you need to disable any access to the dual-port

SRAM from the user FPGAs, by closing position 3 DURAM of SWI.

to download a “null” bit stream into R2.

You need
You can use the supplied bit stream

portest.mcs or scan.mcs that are in this distribution. Both of these mcs files have
the necessary bit stream to tristate the I/O pins of R2). You should make sure that
the PC has exclusive access to the memory, do

c:> arbit pc

38 5. Software

before running either programs.

5.2 Board Wiring test program Scan

The design file scan.mcs contains bit streams that chain up most of the I/O pads
of the user FPGAs to be a shift register. The program scan shifts a zero into the
chain and checks whether the zero successfully arrives after certain number of clock
cycles.

5.3 Pin assignment program assign

Assign is a C4++ program which assigns pads on the routing FPGAs to connect
the two user FPGAs. | You must run assign on 32-bit 386/486 machines. | Both its
source code and executables are included. Assign has been compiled with the g++
(DJ) public domain compiler. You should read the section on the options available
with assign in Chapter 7.

5.3.1 Projects, Demos and their MCS files

The directory designs)\ contains the projects and their LCA files. Their mcs files
are in the mcs\ directory.

tetris4 - Martine Schlag’s Tetris project in Aug 1991, the original design used one
X(C3020 and one XC3042. I have converted the XC3000 design to XC4000 for
the purpose of this distribution.
x1tetdf.lca - the controller of the Tetris machine design
x2tet4f.lca - the datapath of the Tetris machine design
Rltet4f.lca - the 1st routing FPGA design
R2tet4f.lca - the 2nd routing FPGA design

tetris4.mes the bit stream of the complete design

amazer - Jason Y. Zien and David Van Brink’s maze runner project in Fall 1992
(CMPE 225 UC Santa Cruz). Their maze runner machine used the XC3000
Borg board for development of the project in Fall 1992. I have converted the
XC3000 design to XC4000 for the purpose of this distribution.

Rlnewg.lca - the 1st FPGA design

R2newg.lca - the 2nd FPGA design
amazerg.lca - the 3rd FPGA design
amazerd.mcs - the bit stream of the complete design

randmaze - David Van Brink’s “random” maze runner project in Fall 1992 (CMPE
225 UC Santa Cruz). I have converted the XC3000 design to XC4000 for the
purpose of this distribution.
randmaze.lca - the single FPGA design.

5.3. Pin assignment program assign 39

This Maze Solver was designed in XACT and uses 15 CLBs to make random, but
legal, moves through the maze. For each move, it takes into account the mouse’s
previous direction, and the state of the walls around it, and a random bit, to
decide what move to make next. Essentially, it has 50% chance of following a
right- hand rule, and 50% chance of following a left hand rule.

The system is clocked by the falling edge of the PC’s YourMove signal line. The
random element comes from the system clock on the Borg board, toggling a flip-
flop. Since the BORG’s clock is independent from the PC’s clock, this seems to
work well enough.

portest - testing parallel 1/O ports configured in R1 FPGA
sch schematic drawing of the design in viewdraw

portest.lca - 4 I/O ports in R1
portest.mcs the bit stream of the design

intpc - hardware interrupt demo using the R1 FPGA
sch schematic drawing of the demo in viewdraw

intpc.lca - one I/O port in R1 by generating hardware interrupt
intpc.mecs - the bit stream of the design

intpc.exe - a driver to trigger the generation of an interrupt
isr.com - a interrupt service routine for the demo

asylab - synchronization failure lab demo using the R1 FPGA
sch schematic drawing of the demo in viewdraw

asylab.mecs - the bit stream of the design
asylab.exe - the driver to demonstrate synchronization failure

music - frequency synthesizer demo using the R1 FPGA, you need a digital-to-analog
converter and a small transistor amplifier to “listen” to this lab
sch schematic drawing of the demo in viewdraw
music.mcs - the bit stream of the design

music.exe - a driver to use the keyboard to control the frequency of sine wave

generated by the FPGA

40 6. Design flow

6. Design flow

6.1 Introduction

The essence of the design process using the BORG board for a multiple FPGA
design can be summarized in the following steps.
1. Place and route X1 and X2 (the 2 user FPGAs), letting the placement and
routing program ppr (or apr) choose the pad assignments.

2. Re-arrange the pad assignments of X1 and X2 with the assign utility to
conform to the hardwired constraint of the BORG printed circuit board.

3. Place and route the X1 and X2 again using the incremental place-and-route
flags of ppr (or apr).
4. Place and route R1 and R2 (the routing FPGAs).

5. Generate the bit streams of R1, X1, R2, and X2 using makebits and concate-

nate them using makeprom.
Note: in principle, you can also treat X1 and X2 as the routing chips, and use R1

and R2 for logic; or even use all four FPGAs for logic. Assign is able to handle these
situation, but you have to read Chapter 7.

6.2 Details

In greater details, suppose that you have two cooperating XC4003a LCA designs,
the following steps illustrate the process of using the tool set to connect the two LCA
designs electronically on the BORG board. !

1. Hand partition your design into two XC4003aPC84 FPGAs.

2. Place and route the FPGA designs without imposing any constraints on the

pad assignments. You should let ppr determine the pad assignments of your
LCA designs. Say, the two (routed) LCA design files are called X1a.LCA and
X2a.LCA; and their XNF files are called X1a.XNF and X2a.XNF, respectively.

C:> ppr Xla
C:> ppr X2a
3. Run “assign” with an “alias.file” to obtain an interconnection map Rx.info.

C:> assign -1 Xla.LCA -2 X2a.LCA -a alias.file
-x1 Xla.cst -x2 X2a.cst -rl1 Rl.cst -r2 R2.cst -i

'You may use an XC4002, XC4003, XC4004, XC4005, or XC4010D in place of any user FPGAs
currently on your BORG board. This distribution provides two XC4003a as the user FPGAs, and
two XC4002a as the routing FPGAs.

6.2. Details 41

Hand Partition designs into
two chips X1 and X2

(Prepare schematic drawings
of routing chips R1 and R2,
after running assign)

X1 X2
| | |
viewdraw viewdraw viewdraw viewdraw
|
regular
wir2xnf wir2xnf wir2xnf wir2xnf Xilinx
Design
Flow
R1.XNF
ppr ppr
R2.XNF
Xla.LCA | X2a.LCA
Pin Assignment for BORG board generate constraint files
that conform with
assign -1 X1a.LCA -2 X2a.LLCA -a alias.ali -1 BORG board
-x1 Xla.cst -x2 X2a.cst -r1 Rl.cst -r2 R2.csf]
R1 X1 R2 X2 rerun ppr
with incremental

ppr ppr ppr PP option

(available in XACT 5.0)

R1.LCA X1.LCA R2.LCA X2.LCA

makebits R1||makebits X1||makebits R2| [makebits X2

makeprom -o des.mcs -u 0 R1 X1 R2 X2 concatenate

bit streams into
a single mcs file

| bd des.mcs | download to BORG
board

Figure 6.1: Using Assign to augment the Xilinx Design Flow for multiple-
chip design. Draw the schematics of R1 and R2 after using assign, not
before.

42

6. Design flow

The alias.file is used to match nets which are to be connected between X1
and X2 which (may) have different names. Ideally, you created designs for X1
and X2 in which all nets that are to be interconnected have the same name.
However, if for some reason, you gave different names to the signals, for example
“Select” on X1 and “select_data” on X2, an alias in the alias.file will cause
these signals to be matched. This is particularly useful if you want to use the
memory chip or PC-bus. You MUST alias those signals to the names given
in the wiring file (refer to Chapter 7 for details). Some of these special signal
names are:

PC Bus Data Lines:
&&BusData_0, &&BusData_1, &BusData_2, &&BusData_3,
&&BusData_4, &&BusData_5, &&BusData_6, &&BusData_7
PC Bus Address Lines:
&&BusAddress_0, &&BusAddress_1, &&BusAddress_2, &&BusAddress_3
PC Bus Control Lines:
&&BusControl_0, &&BusControl_1
Memory Data Lines:
&&MData_0, &&MData_1, &&MData_2, &&MData_3
&&MData_4, &&MData_5, &&MData_6, &&MData_7
Memory Address Lines:
&&MAddress_0O, &&MAddress_1, &&MAddress_2, &&MAddress_3,
&&MAddress_4, &&MAddress_5, &&MAddress_6, &&MAddress_7
Memory Control Lines:
&&M_WE, &&M_OE, &&M_CS
Forced Nets:
&&R1, &&R2

The alias file itself contains pairs of net names that are to be matched. One
example is:

; a sample alias file

; comments started with a semicolon

memaddr0 &&MAddress_0O

memaddrl &&MAddress_1

memaddr2 &&MAddress_2

memaddr3 &&MAddress_3

start Start_Machine
which illustrates forcing some nets to be used as memory address signals.

Another example is:
Prot<i1> &&R1
Prot<2> &&R1
PLateral<1> &&R1
PLateral<2> &&R1

6.2. Details

PLateral<3> &&R1

PMoveready &&R1
I0B1 &&R1
PYourmove &&R1

Pnewtile<1> &&R1
Pnewtile<2> &&R1
Pnewtile<3> &&R1

PSavcol<1> &&R1
PSavcol<2> &&R1
PSavcol<3> &&R1
- Pclk

which illustrates forcing some nets that must go to the R1 FPGA.

43

The interconnection map Rx.info suggests a consistent way of connecting the
user FPGAs X1 and X2 using the routing FPGAs R1 and R2, hopefully.? A
sample interconnection map is given below:

NET NAME
PSavcol<3>
PSavcol<3>

Pcol<3>
Pcol<3>
Pc<13>
Pc<i6>
Pc<i6>
Pcond<2>
Pnewtile<2>
Pc<9>
Pc<9>
Prot<1>
Prot<1>
Pcond<7>
Pc<17>
Pc<17>
PYourmove
PYourmove
PMoveready
PMoveready
Pc<3>
Pc<3>
Pcond<4>
Pcond<4>
Pc<20>
Pc<20>

NET ALIAS COST

&&R1 [0]
Pcol<3> [0]
Pcol<3> [0]

Pc<13> [0]
Pc<16> [0]
Pc<16> [0]
Pcond<2> [0]
&&R1 [0]
Pc<9> [0]
Pc<9> [0]
&&R1 [0]
&&R1 [0]
Pcond<7> [0]
Pc<17> [0]
Pc<17> [0]

&&R1 [0]

&&R1 [0]

&&R1 [0]

&&R1 [0]

Pc<3> [0]
Pc<3> [0]
Pcond<4> [0]
Pcond<4> [0]
Pc<20> [0]
Pc<20> [0]

SRC

X1.38

X0
X1

X1
X1

X1

X1

X0

.37
X2.
.4

.26
X2.
.40
X2.
.23
X2.

X2.
X2.
.36
X2.
.59

X1

X1
X0
X1
X0
X1

X1

6

79

81

27

7
70

14

.28

.5
X2.
X1.
X2.
.68
X2.

26
19
23

68

DEST

R1.

R1

R2.
R2.
R2.
.60
.49
.44
.47
R2.
R2.

R1
R1
R1
R1

R1
R1

R1
R1
R1
R1
R1
R1
R1
R1

48

5
28
4

9
47

.37
R2.
.36
.35
.24

62

Y

.79
.26
R2.
R2.
R2.
R2.

8

68
69
18

0_PAD

I_PAD
0_PAD
I_PAD
I_PAD
0_PAD
0_PAD
0_PAD
I_PAD
0_PAD

I_PAD
I_PAD
I_PAD
0_PAD
0_PAD

I_PAD

I_PAD
0_PAD
0_PAD
I_PAD
I_PAD
0_PAD

The first column is the PAD (net) name, the second is the PAD’s alias name,
the third column is the cost, and the fourth column is the source FPGA’s pad
number, and the last column is the destination FPGA’s pad number and are
connections that need to be made inside R1 and R2.

?There may not be a consistent assignment and this problem is NP-complete.

44

6. Design flow

Assign will also generate two constraints files X1a.cst and X2a.cst. Use these
two files to route X1a.LCA and X2a.LCA with ppr again. You should use the
incremental option of (apr -g for the XC3000 designs) ppr (available in XACT
5.0 in May 1994) to guide the new placement and routing processes using the
old designs, and the new constraints files X1a.cst and X2a.cst. For example,

C:> ppr Xla outfile=X1

C:> ppr X2a outfile=X2

Now, you have two new LLCA files X1.LCA and X2.LCA with the pad assignments
determined by assign.

. With the I/O map generated by assign, draw a schematic diagram for each

of the routing chips, R1 and R2, using viewdraw. The constraint files for the
routing chips have also been generated by assign.

Figure 6.2 illustrates a rather typical schematic drawing of the R1 routing chip.

Notice that there is actually some logic in the “routing chips.” Please generate
the routed LCA files of the routing chips using the Xilinx ADI software wir2xnf
and ppr (or xmake, if you like).

C:> wir2xnf ri

C:> wir2xnf r2

C:> ppr ri

C:> ppr r2

Now you have two routed LCA files: R1.LCA and R2.LCA.

. You generate the bit files for all the LCA files:

C:> makebits X1
C:> makebits X2
C:> makebits R1
C:> makebits R2

Now you put these bit files together into a single mcs file. Use makeprom, and set
the promsize to 64K, set the file format to Intel mcs, and load the bit files in the
upward direction starting from location 0. Gather the bit files and concatenate
them into a single mcs file, say design.mcs, by loading the bit files in the
following order

makeprom -o design.mcs -u 0 R1.bit X1.bit R2.bit X2.bit

The order is important since it corresponds to the order in which the FPGAs

are daisy-chained on the BORG board.

6. Download the mcs file using the program bd.

C:> bd design.mcs

¢'9 2Im3I g

"Preoq HYOQ 1) Sulsn
o SUrinol 1Y ue Jo SUIMBIpP 211eWRYIs [948[-d0] SISUUNI 9ZRTN

dr

X74- 139
L=1

X1_PYOURMOVEL I N

c9

spreso(]

PART=4002APC84
ALl c=1
B PORTJ
A0 BITO CBUF
o DO QO
A2 AL PORTK X1_PATFI NI SHL_I N
@B Bl T1 D1 QL
Xl OW ——QgEens 1> PAD
B _QL/ @B Bl T2 |D2 Q2
— oBUF
OR3B1 BI T3 |D3 (@c]
Bl T4 D4
A3 (o4
B BI T5 D5 (@3
Bl T6 D6 (@3]
Loc=P10 STARTUP Bl T7 |D7 Q7
ICLK
- SYSRESET ’ ’ 0 &R @ B s
I BUF Y — s S —
At — PORTJ
GCL OCKNET LK DONE! NI
X1_PMOVEREADYL_OUT), BI TO BI T[7: 0]
LOC=P71 |BI TOB
3 PAD l’>
LOC=P1
PAD]’> w—CU(NE‘E I BUF CBUFT I BUF
BUFGP
PAD
| BUF OBUFT 1 BUF
PAD Bl TO DO QO
Bl T1 D1 QL
X1_PTELEPORTL_OUY B T2 D2 ®
- N - Bl T3 D3 [@c]
PAD > Bl T4 D4 4
| BUF BI T5 DS (@5
Xl OR- P X1 OR- Bl T6 D6 (@3]
> N Bl T7 D7 Q7
LOC=P51 I BUF PAD 1 CLK
Xiow P XI OW — P s
| BUF 1 BUF
> OBUFT o « OR
LOC=PSO, | 1BUF
oy >—u P >
LOC=P83 | BUF | BUF OBUFT | BUF
AP AL D
Loc=P81 I BUF PAD {>
AzP A2 I BUF OBUFT I BUF
G Rl in BORG Maze
LOC=P82 I BUF
BAD N Mbdi fied by Jason Zien & David VanBri nk
A3P A3 L~ 12-7-92
- ’ = I BUF OBUFT I BUF
X1 OR-
LOC=P80 | BUF — Jan 26, 1994 Pak K. Chan
DRAWN BY:
A B c D

Y

46

6. Design flow

47

7. ASSIGN (Ver 3.0) A Pin Assignment Program for
BORG Prototyping Board

7.1 Preface to earlier versions

! Assign 3.0 may not necessarily be compatible with earlier versions of assign.
This new version generates pin assignment for connections involving one or two
user FPGAs (earlier versions are restricted to connection between two user FPGAs).
Although the algorithms used are deterministic, they are dependent upon the ordering
of the pads read in from the LCA files. The ordering of the pads is randomly changed
after each iteration, that is why multiple iterations of the algorithm can be run.
Therefore, minor changes to the LCA files may yield very different output from assign.
Assign 3.0 has been tested with Xilinx apr 3.2, apr 3.3 (with incremental place
and route version), and ppr 1.31 (without incremental place and route). Incremental
placement and routing is necessary for the efficient use of assign. Assign supports
XILINX X(C3020, XC3030, XC3042, XC3064, XC3090, XC4002, XC4003, XC4004,
and XC4005 PC84-package FPGAs used in the BORG I and II prototyping board.
The X1 and X2 user FPGAs are assumed to be of the same type.

7.2 Assign as a Pin Assignment Program

Locking (constraining) I/O pins down during placement and routing is known to
be harmful. Not only that it increases the time taken to place and route a design, but
locking down I/O pins also reduces your chances of having a successful placed and
routed designs. Assign is a pin (I/O pad) assignment program which will increase the
chance of successful placement and routing runs even under the given BORG board
level constraint.

Assign does so in two steps. First, use the placement and routing program (ppr
or apr) to place and route your designs without constraints. In other words, let ppr
or apr choose the initial pin assignments freely. Next, assign will then perturb the
initial pin assignments to satisfy the board level constraint. The designs are rerouted
using the incremental placement and routing option.

7.2.1 Place in the design process

Assign is a program that produces consistent pin assignments for the BORG pro-
totyping board. Assign takes two user LCA files which are intended to be downloaded
to BORG, and produces two corresponding constraint files which can then be used
by apr or ppr to generate a valid pin assignment.

BORG is a rapid prototyping board for PC-based machines. It contains two user-
programmable XILINX FPGAs (X1 and X2) and two dedicated routing FPGAs (R1
and R2) as shown earlier in Fig. 1.2. Wires going from each user chip to each routing

! Assign is written by Jason Y. Zien

48 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

chip follow roughly an alternating pattern (wire ¢ of X1 goes to R1, wire i+1 of X1 goes
to R2, wire i+3 of X1 goes to R1, ...). Since BORG contains hardwired connections
between the user FPGAs and routing FPGAs, the initial pin assignments generated
by the XILINX tools (which have no knowledge of these board-level pin assignment
constraints), must be rearranged to produce a correct, usable circuit. The advantage
of having hardwired connections is the elimination of wire-wrapping a circuit, which
can be extremely time consuming and tedious.

The typical design process for BORG has several steps. Assign fits in the middle
of that process. The major steps in the design process are:

1. Draw schematics for X1 and X2 FPGAs.
2. Draw schematics for R1 and R2 FPGAs.
3. Create the unconstrained LCA files using apr or ppr.

4. Create the alias file for assign to match up nets with different names or to force
nets to go to a specific routing chip.

5. Run assign on the X1 and X2 LCA files.

6. Edit the R1 and R2 schematics so that nets which pass through these chips are
connected. These net names must match the incoming X1 or R1 net name, with
the X1_ or X2_ prefix attached, depending on the source of the net.

7. Rerun apr or ppr on each LCA file using the incremental placement and routing
option. For apr, use the ‘-c [file.cst]’ option so that the constraint file
generated by assign will lock the pads to the proper places. If running ppr
[file.xnf], it will automatically read in a constraint file named [file.cst].

8. Use makebits to create the bit files.

9. Use makeprom to group together the bit files into one .mcs file for downloading.

IMPORTANT |1 The constraint files generated for R1 and R2 prepend either
X1_or X2_to a net name depending on the source of the net. This is necessary because
if matched nets in X1 and X2 have the same name, that would cause a name clash on
the routing chip through which the net pass. Example: suppose nets neta on X1 and
bnet on X2 are to be forced through R1. The net adjacent to the pad in which neta
enters/leaves must be named X1 neta while the net adjacent to the pad in which bnet
leaves/enters must be named X2 bnet. This only applies if one uses the constraint

files generated by assign. Of course, one may choose to not use these net names, and
directly set the pad locations in the schematic based on the information in Rx.info.

IMPORTANT |: The user must exercise extreme care in making sure that nets
which are NOT to be matched have different names. In particular, one needs to be
careful of such things as CLOCK nets. assign may inadvertently match the clock
signals on both user chips. See Section 7.2.4.

7.2. Assign as a Pin Assignment Program 49

7.2.2 Command Line Arguments

assign takes a number of command line arguments. Its usage is as follows:

assign [options ...]

Options (and their descriptions, which follow the ’;’ symbol) include:
-1 x1file.lca ; xl1file.lca=name of the X1 lca file
-2 x2file.lca ; x2file.lca=name of the X2 lca file

-a aliasfile ; aliasfile= file that gives aliases to nets for matching
-u ; flag, use memory connections

-s num ; num=starting window size

—-e num ; num=ending window size

-m num ; num=maximum solutions allowed outside the window

-x1 x1file.cst ; xlfile.cst=name of the constraint file for chip X1
-x2 x2file.cst ; x2file.cst=name of the constraint file for chip X2
-rl rifile.cst ; rifile.cst=name of the constraint file for chip R1
-r2 r2file.cst ; r2file.cst=name of the constraint file for chip R2

-i ; run single and pairwise swap improvement phase
-g ; run greedy graph reduction
-c ; Output a CLB Locking constraint file (for apr ver 3.3)

If none of the constraint file output options (-x1 -x2 -r1 -r2) are specified,
then by default, the program writes out constraint files x1.cst, x2.cst, rl.cst,
and r2.cst. The constraint file output format is chip-specific. That is, the constraint
files for Xilinx XC3000 series FPGAs differ from XC4000 series FPGAs. It is assumed
that XC3000 series designs will be placed and routed using apr while XC4000 series
designs will be placed and routed using ppr. The output constraint files are generated
to be compatible with the corresponding place and route program.

The -u option allows assign to use special lines from R2 to the on-board memory.
Because of pin limitations of the FPGA packages used, and due to the large number
of memory address lines, these lines are selectively activated or not activated by some
switches on the BORG board. If the memory lines are not used, then extra connections
between the routing chips and user chips are available for general use. However, if the
memory lines are used, then these connections are unavailable for general-purpose use.
This option affects the use of all memory address lines for the 4K borg, but only the
upper address lines (bits 8-10) of the 3K BORG. *** BE SURE THAT THE BORG
DIP SWITCHES which affect the memory lines are set properly, or your design might
not work! #fstk

Due to a change in the way apr ver 3.3 handles the locking of blocks, the ‘-¢’
option of assign should be used to speed up the placement phase of apr. When
‘-¢’ is used, two files, x1clb.cst and x2clb.cst are created and the line ‘Include
x1lclb.cst;’ is included at the end of x1.cst and ‘Include x2clb.cst;’is included
at the end of x2.cst. The files x1clb.cst and x2clb.cst lock all of the CLBs which

were found in the input LCA files.

50 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

Previously, the recommended usage of constraint files generated by assign was:

% assign -1 x1.lca -2 x2.1lca -a file.ali
h apr -1 -c xl.cst xl.lca xlnew.lca
h apr -1 -c x2.cst x2.lca x2new.lca

The -c option does not do anything when the chips are Xilinx XC4000 series FPGAs.
Now, for apr ver 3.3 (and later versions) we recommend:

% assign -1 x1.lca -2 x2.1lca -a file.ali -c
h apr -q -c xl.cst xl.lca xlnew.lca
h apr -q -c x2.cst x2.lca x2new.lca

By default, assign uses the augmentation algorithm. It has been experimentally
noted that using the default mode tends to produce better results for very large, dense
I/O designs, while the greedy graph reduction heuristic (-g option) tends to produce
better results for small, sparse designs.

In order to run assign, the user first needs to have at least one LCA file which
he/she intends to download to X1 and X2 of the BORG prototyping board. Also,
an alias file may be created so that nets having different names in the two LCA files
can be matched (or prohibited from being matched). These net names MUST BE
adjacent to I/O pads. Assign can not match nets which are not adjacent to I/O pads.
Assign is NOT case sensitive with respect to net names, however, the special alias
names which will be described below are case-sensitive.

7.2.3 An Environment Variable

You need to set an environment variable before assign can be run. In the UNIX
environment, the following line must be placed in the user’s .cshrc file.

setenv BORG_ASSIGN <Directory_Where_Assign_Resides>/

In the MS-DOS environment, the following lines must be added to the autoexec.bat
file:

set BORG_ASSIGN=<Directory_Where_Assign_Resides>/

where <Directory Where Assign Resides> is the full path to the directory in which
the assign program has been installed and which also contains the three data files:
xc3020.1i0, xc3042.10, alt3042.wir. Also, the directory contains several pin map-
ping files used internally, which are: 3020.map, 3030.map, 3042.map, 3064.map,
3090 .map, 4002 .map, 4003 .map, 4004 .map, and 4005.map.

7.2.4 Alias Files

By default, assign matches ALL nets in X1 and X2 which have the same name
(insensitive to case). An alias file is used to match nets which are to be connected
between two user FPGA chips which have different names. In the ideal case, the user
has created their design for the two user FPGAs X1 and X2 such that all nets which
are to be interconnected have the same name.

7.2. Assign as a Pin Assignment Program 51

The alias file itself contains pairs of net names that are to be matched. The first
column should be the X1 net name. The second column can contain the X2 net name,
or one of the special reserved names given above. If the first and second column are
X1 and X2 nets respectively, then the third column may contain one of the special
reserved names to force both other nets to go through a particular routing chip.

A special name is the - symbol. If the - symbol is the first name, then the next
string name signifies a net that is not to be matched by assign. This may be useful
for example, when a net such as the CLOCK net appears in both user chips, but have
already been given fixed locations which should not be modified by assign.

Another situation which requires the use of aliases is if for some reason, the user
gave different names to the signals, for example Select on X1 and select_data on X2,
an alias in the alias file will still allow the signals to be matched. This is particularly
useful if the user wants to use the memory chip or PC-bus. The user MUST alias
those signals to the names given in the wiring file. Those special signal names are
given below.

Forced Nets (nets forced to either R1 or R2):
&&R1, &&R2
PC Bus Data Lines:

&&BusData_0, &&BusData_1, &BusData_2, &&BusData_3,
&&BusData_4, &&BusData_5, &&BusData_6, &&BusData_7

PC Bus Address Lines:

&&BusAddress_0, &&BusAddress_1, &&BusAddress_2, &&BusAddress_3
PC Bus Control Lines:

&&BusControl_0, &&BusControl_1
Memory Data Lines:

&&MData_0, &&MData_1, &&MData_2, &&MData_3 &&MData_4,
&&MData_5, &&MData_6, &&MData_7

Memory Address Lines:

&&MAddress_0O, &&MAddress_1, &&MAddress_2, &&MAddress_3,
&&MAddress_4, &&MAddress_5, &&MAddress_6, &&MAddress_7

Memory Control Lines:
&&M_WE, &&M_OE, &&M_CS

In practice, it is sufficient to force nets using just &&R1 and &&R2. The other
aliases are included for backward compatibility with previous versions of assign. For
example, using &&M WE is equivalent to &&%R2. An example of an alias file is given
below.

52 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

; some single forced nets
DirO &&BusData_0
Dirl &&BusData_1
Dir2 &&BusData_2

ROTS &&BusData_3
finish &&BusData_4
Startin &&BusData_5

tile_O &&BusAddress_O0
tile_1 &&BusAddress_1
tile_2 &&BusAddress_2

; some alias matching plus forced nets
CEO clkenO &&R1

CE1 clkenl &&R1

CE2 clken2 &&R1

CE3 clken3 &&R1

CE4 clken4 &&R1

CE5 clkenb &&R1

CLK_in CLKin &&R2

FIT Fit_in &&R2

; some matching aliases
ROT_IN ROTS

TO CSO

T1 Cs1

T2 CS2

T3 CS3

T4 CsS4

T5 CS&

clkenO CEO

; some nets with same name that SHOULD NOT be matched by assign
- GlobalClock
- GlobalReset

7.2.5 Rx.info

The Rx.info file contains information necessary to generate the routing chips LCA
files for downloading (see Fig. 7.1). The first column is the pad (net) name, the second
is the pad (net) alias name, the third column is the cost (distance in usable pads from
its original pad position), the fourth column is the source chip and pin, and the last
column is the destination chip and pin.

7.2. Assign as a Pin Assignment Program 53

NET NAME NET ALIAS COST SRC DEST
Fit_in &&R2 [1] X1.84 -> R2.2 7_PAD
Fit_in &&R2 [1] X0 -> R2

CE5 &&R1 [0] X0 -> R1
CE5 &&R1 [0] X2.84 -> R1.84 O0_PAD
CsS4 T4 [0] X1.9 -> R2.8 I_PAD
CsS4 T4 [0] X2.37 -> R2.51
Cso TO [1] X1.83 -> R1.2 I_PAD
Cso TOo [1] X2.45 -> R1.40
ROT_IN &&BusData_3 [1] X1.47 -> R1.42 O0O_PAD
ROT_IN &&BusData_3 [1] X0 -> R1
Col COL [1] X1.70 -> R2.82 O0_PAD
Col COL [1] X2.48 -> R2.59 1I_PAD
clkeni &&R1 [3] X1.71 -> R1.77 I_PAD
clkeni &&R1 [3] X0 -> R1
clkenb &&R1 [2] X1.72 -> R1.73 I_PAD
clkenb &&R1 [2] X0 -> R1

tile_1 &&BusAddress_1 [0] X1.63 -> R1.63 0O_PAD
tile_1 &&BusAddress_1 [0] X0 -> R1

Clkin &&R2 [3] X1.3 -> R2.4 O0_PAD
Clkin &&R2 [3] X0 -> R2

CE3 &&R1 [0] X0 -> R1

CE3 &&R1 [0] X2.3 -> R1.3 O0_PAD

Cs2 T2 [2] X1.81 -> R1.83 I_PAD

Cs2 T2 [2] X2.20 -> R1.18

CE2 &&R1 [0] X0 -> R1

CE2 &&R1 [0] X2.82 -> R1.82 O0_PAD
decall DECALL [1] X1.16 -> R2.10 I_PAD
decall DECALL [1] X2.63 -> R2.68 0_PAD

Cs1 T1 [0] X1.77 -> R2.84 1I_PAD

Cs1 T1 [0] X2.66 -> R2.70

FIT &&R2 [0] X2.83 -> R2.83 I_PAD

CE1 &&R1 [0] X0 -> R1

CE1 &&R1 [0] X2.78 -> R1.78 O0_PAD
clken2 &&R1 [0] X1.66 -> R1.68 I_PAD
clken2 &&R1 [0] X0 -> R1

Figure 7.1: A sample Rx.info file.

There may be some extraneous rows generated in Rx.info. These are output for
informative purposes and the user need not use the information in any way.

Assign infers the pad type based on the filel.lca and file2.1lca pads. Cur-
rently, it only supports I_.PAD and O_PAD types, and all other pads output in the
Rx.info file are marked 7_PAD. The user must determine the pad type in those cases.

54 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

Place Block clken4 P63;
Place Block Clkin P16;
Place Block Diril P2;
Place Block CS1 P17;
Place Block CS4 P3;
Place Block finish P71;
Place Block ROTS P39;
Place Block zero P44;
Place Block Dir0O P4;
Place Block CS2 P15;
Place Block clkenb P72;
Place Block Startin P21;
Place Block ROT_IN P30;
Place Block decall P60;
Place Block clkenO P56;
Place Block Dir2 P19;
Place Block Fit_in P84;
Place Block CS5 P77;
Place Block clken2 P66;
Place Block clken3 P61;
Place Block CSO P9;
Place Block tile_2 P26;
Place Block CS3 PS;
Place Block tile_0 P28;
Place Block Col P18;
Place Block clkenl P68;
Place Block tile_1 P24;
; Comment out next line if CLB locking is not desired
Include x1clb.cst;

Figure 7.2: A Sample XC3000-series Constraint File.

all: chip.ali eval2.lca brains2.lca

brains2.cst, eval2.cst: brains2.xnf eval2.xnf chip.ali
run apr once without constraints to generate lca files for assign
- the next 2 lines may be unnecessary in subsequent design runs
apr brains2.lca
apr eval2.lca
assign -1 brains2.lca -2 eval2.lca -a chip.ali \\
-x1 brains2.cst -x2 eval2.cst -rl rl.cst -r2 r2.cst -i -g

brains.lca: brains2.cst
apr —q -c brains2.cst brains2.lca brains.lca
makebits brains2

eval.lca: eval2.cst

apr —q —-c eval2.cst eval2.lca eval.lca
makebits eval2

Figure 7.3: A Sample Makefile for XC3000 Series FPGAs.

7.3. 1/0 Specification File 55

7.2.6 Examples of using assign

Assign tries to generate a consistent pad assignment that matches all pads of the
same name between the two LCA files. Assign produces up to five output files, (four
.cst constraint files — one per chip) and a summary file, Rx. info (on DOS machines
Rx.inf). The constraint files are then used by apr (for XC3000 series FPGAs) or
ppr (for XC4000 series FPGAs) to force the pin assignments of the appropriate nets.
First, let us assume that the user already has generated the XNF files for his/her
design. In order to complete the design, the user must create unconstrained LCA files,
run assign and then create constrained LCA files.

7.2.7 Xilinx XC3000 Series Design

The Makefile in Fig. 7.3 shows the process of generating a XC3000 series design
and Fig. 7.2 shows an example of a constraint file. The constraint file consists of two
parts. The first part locks all the IOBs, and the second part locks the CLBs, if the
-c option was used. In the rare event that apr can’t complete the routing process,
unlocking the CLBs by commenting out the last line

Include x1clb.cst;
of the constraint file should help. Note that you must also create the routing chips
and place and route them before the final design can be downloaded.

7.2.8 XC4000 Series Design

The design flow for XC4000 parts is very much like that of XC3000-series parts,
except you use ppr instead of apr; except that the current version (April 1994) of ppr
has no incremental placement and routing option. We shall update assign as soon
as the incremental place and route option is available with ppr.

The constraint files generated thus conform to the syntax expected by ppr, and also
have the same pre-extension name as the XNF file to be placed and routed. Figure 7.5
shows a Makefile for running assign. In Fig. 7.4, we have shown the constraint file
generated for a routing chip. Notice that there are X1_ and X2_ prefixes to the normal
net names, indicating which user chip the nets come from. The same prefixes are used
in XC3000-series routing chip constraint files.

7.3 1/0 Specification File

There are two special files used by assign. These are xc3020.1i0 and xc3042. io.
These files contain information about the physical pin locations on the chip (which is
84 pin PLCC package) and the usable pins. You should not change these files. The
commands contained in the files include:

; a semicolon in the first column of a line denotes a comment MAP
<pin# start: pin# end> -> (start_x:start_y, end_x:end_y) I0
<startpin:endpin> <startpin:endpin> CIO <startpin:endpin>
<startpin:endpin> ...

56 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

Place instance X1_PSavcol<3>: P48;
Place instance X2_PLateral<2>: P46;
Place instance X2_Pnewtile<3>: P39;
Place instance X1_Pc<12>: P62;
Place instance X2_Pc<12>: P14;
Place instance X2_Pnewtile<2>: P47;
Place instance X2_Prot<i>: P37;
Place instance X1_Pc<17>: P36;
Place instance X2_Pc<17>: P35b;
Place instance X1_PYourmove: P24;
Place instance X1_PMoveready: P57;
Place instance X1_Pc<3>: P79;

Place instance X2_Pc<3>: P26;

Place instance X1_PSavcol<2>: P18;
Place instance X2_Prot<2>: P29;
Place instance X2_Pnewtile<1>: P28;
Place instance X2_PLateral<i>: P4;
Place instance X1_Pcond<i1>: P72;
Place instance X2_Pcond<i1>: P25;

Figure 7.4: A Sample XC4000 Series Constraint File.

all: amazerg.lca r2newg.lca rinewg.lca
makeprom —o amazer4 -u O rinewg amazerg r2newg e4003a

amazerx.cst: amazerx.ali amazerx.xnf
run ppr once without constraints to generate amazerg.lca
- the next line may be unnecessary in subsequent design runs
ppr amazerx.xnf outfile=amazerg
assign -1 amazerg.lca —a amazerx.ali -s 1 -x1 amazerx.cst\\
-rl rl.cst -r2 r2.cst -i -u

amazerg.lca: amazerx.cst
ppr amazerx outfile=amazerg logfile=amazerg
makebits amazerg

r2newg.lca: amazerx.cst
ppr r2 outfile=r2newg logfile=r2newg
makebits r2newg

rinewg.lca: amazerx.cst
ppr rl outfile=rinewg logfile=rinewg
makebits rinewg

Figure 7.5: A Sample Makefile for XC4000 series FPGAs (non-incremental
place and route version).

7.4. BORG Wiring File 57

Use MAP to specify the relation between the actual pin number and the logical
coordinate of the pin, taking the upper left corner of the chip to be (x=0, y=0) and
the lower right to be (x=22,y=22).

10 specifies the list of usable pins on the particular chip. Finally, CIO specifies

the list of possibly usable pins (pins which are used in configuration mode, but may
be used later).

7.4 BORG Wiring File

The alt3042.wir file contains a net list of physical wires on the XC3000 BORG
board. The 4k.wir file contains a net list of physical wires on the XC4000 BORG
board. The file specifies how your X1 and X2 FPGAs are connected to the routing
(R1, R2) chips. The BORG wiring configuration is hardwired, so this file should NOT
be changed by the user.

The connections are specified by:
<source>.<pin#> -> <dest>.<pin#> [&&alias_name]

where source € X1, X2, X0, M1 and dest ¢ R1, R2. A comment is denoted by a ’;’
semicolon at the start of a line. The X0 chip is an on-board chip of BORG which
contains logic to interface to the PC bus. The M1 chip is the memory chip. The
optional

[&&alias_name]

parameter is ONLY used with X0 and M1 mapping in order to specify the alias name
for these forced nets. The actual wiring configuration is listed in Section 7.11.

7.5 Theory of ASSIGN

The pin assignment problem is formulated as a graph problem, which we call the
two-color assignment problem. The goal of the two-color assignment problem is to
find a consistent, minimum weight node assignment. I describe my solution to the

problem, which uses two methods, called graph reduction and augmentation 2.

7.6 Problem Description

The problem is formally defined as follows: Graph G(V, E) consists of three sets
of vertices, P, Q, and N, which are connected by a set of edges such that every edge
has one endpoint in P U Q, and the other endpoint in N. The N vertices represent
the nets which need to be matched on the user-programmable chips. The P vertices
represent the X1 pads to which the nets may be assigned, and the Q vertices represent
the X2 pads to which the nets may be assigned.

2The augmentation algorithm was created and implemented first by Professor Martine Schlag

58 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

(P U Q, N) is a bipartition of G. Each vertex v e P U Q, has a color, ¢(v)=red or
green. These colors correspond to choosing a routing path through a routing chip R1
or R2, so the color of the vertex in P and the color of the vertex in Q of a matched
pair must be the same. It is because of these colors that a standard graph matching
algorithm cannot be used. A valid assignment consists of two one to one functions,
fp and fq, which map a vertex from N to either P or Q.
fp: N—= P, fq: N — Q

The weight of an assignment is the sum of all of the edge weights in the assignment.
Ideally, one would like to find the graph assignment of minimum weight. Edge weights
in the graph represent the distance of the chosen pad from the original pad assigned by
apr. It is beneficial to perturb the pad positions as little as possible so that apr may
be able to re-route the design WITHOUT re-placing the design, saving a substantial
amount of time.

In general, | N | < | P |and | N| < | Q| . There is one further constraint where
certain nets (such as those which go to the memory or PC bus) must be assigned to
a specific color (routing chip). These nets are called forced nets. The corresponding
pads associated with these forced nets are called forced-net-pads.

7.7 Graph Reduction

The first method for generating consistent pin assignments is called graph reduc-
tion. The graph reduction heuristic works as follows:
1. Remove edges from the graph that are impossible to match.

These are the pads of some color ¢ in set P which have no corresponding pads
of the same color in set Q, or vice versa. Repeat this step until there are no
more impossible edges to remove.

2. Find and remove forced pads.

A forced pad is one which some net MUST choose because it has no other
unmarked pads to choose from. These forced pads are NOT ONLY forced-net-
pads (defined above), but also pads which are forced due to vertex removal done
in the next step. The pad is marked as part of the solution set. Repeat this
step until no more forced pads remain.

3. Remove one vertex from the graph.

The edge removed depends on the current operating mode of the algorithm.
In GLOBALLY GREEDY mode, the edge chosen for removal is the largest
weight edge remaining in the graph. In LOCALLY GREEDY mode, the vertex
removed is the largest weight edge of the net at the head of the queue containing
unassigned nets. In RANDOM mode, the vertex removed is the vertex being
considered when a random number exceeds a threshold value (varied from 50%
to 90%). Vertices are considered based on their order in the list of vertices
connected to a particular net in N.

4. While there are still edges in G, loop back to the first step.

7.8. Augmentation 59

This algorithm is fairly fast (polynomial time), and, if it finds a solution, it is
likely to be very close to the ideal solution since high weight edges are removed. The
main problem with this heuristic is that incomplete solutions may be generated since
a greedy vertex removal might cause some nets to become unassignable. Thus, after
the entire algorithm has completed, two more solution-searching phases are used:
Find_Last, and Augment2() (described in the next section).

The Find_Last phase looks at every unassigned net and searches for any vertex
(pad) which is unused and which the net can use. These are vertices that may have
been discarded in the greedy graph reduction. If one is found, the assignment is made.

7.8 Augmentation

There are two augmentation algorithms used: Augment1() and Augment2(). Both
algorithms search for alternating paths in the N, P and N, Q subgraphs. A breadth
first search is done on the graph starting with an incompletely assigned net vertex.
The algorithm recursively searches for a net which can choose some other pad for its
solution. In the Augment1() algorithm, the net looks only at pads of the same color
as its current solution for possible swapping. This is a standard augmenting path
algorithm consisting of only N and pads in P of the same color. In the Augment2()
algorithm the net also checks to see if a net can swap its solution with pads of the
opposite color.

The simplest way to describe the algorithm is with an example. Figure 7.6
illustrates how the Augment1() procedure works. In the figure, the dashed lines
show pads which a net may choose, provided that no other net has chosen to use that
pad. Solid lines represent a pad that a net has chosen as part of its matching. The
O’s inside the vertices represent routing chip R1, the X’s represent routing chip R2.
Net a is currently incompletely assigned. So, net a looks at all of the other nets which
have a solution that it can use. In this case, net b is the only one. Now, net b checks
to see if it can pick some other pad so that it can give its solution to net a. It cannot,
so it looks at all nets which have a solution that it could possibly use. In this case, it
looks at net ¢. Net ¢ cannot choose any other pads for its solution, so we recur once
again, and check if net d can choose some other pad for its solution. It can. So, net
d takes the unassigned pad, and then returns the pad it gave up, so net ¢ can take
that pad and return its previous solution to net b, which finally gives up its previous
solution to net a.

The Augment2() procedure is nearly the same as that of Augment1(). In fact,
Augment1() is called as a subroutine from Augment2(), and if no solution is found
by Augment1(), then the algorithm searches for pads of the opposite color which a
net can take as its solution. Note that forced nets cannot be considered because they
can not change colors (routing chips). Figure 7.7 illustrates how the Augment2()
procedure works. Starting at net a, we consider all nets that have a solution net
a could use. Nets b and d are the only ones. Net b cannot pick solutions of the
opposite color, so we recursively check all nets which could give up its solution to net
b. Net cis such a net. Now, net ¢ can pick a solution pair of the opposite color, so it
does. Net b can then pick a pair of solutions of the opposite color. Finally, net a can

60 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

gélgs&gned

W ® O

BEFORE AFTER
Figure 7.6: Example of the Augment1() Algorithm

Unassigned Unassigned
Pad Pad

BEFORE AFTER
Figure 7.7: Example of the Augment2() Algorithm

be assigned a new solution pair. The algorithm is then executed from the beginning
again, starting at net e, since it does not have a complete assignment, and a solution
is eventually found for it.

The pseudocode for each of the two algorithms is nearly identical, so we shall only
provide the code for Augment2() in Fig. 7.8. Many of the details of the algorithm
have been left out so that the general idea of the algorithm would not be overwhelmed
by the particular implementation details.

7.9 Main Program Loop

The augmentation and graph reduction algorithms are the major components of
assign, but it is also useful to see how they are used in the overall scheme of the

7.10. Performance 61

Augment2(NetNodes, SOLUTION_DESIRED) {
/* Recursive Breadth— First—Search */
for each unassigned node ’cnn’ {
mark cnn;

/¥ check if nel cnn can pick a pad of opposite color for
its solulion which some other net wants */
pad = swap_if_available2(¢nn,SOLUTION_DESIRED);
if (Ipad) pad = Augmentl(NetNodes,SOLUTION_DESIRED);

if (pad) return(pad);

for each unmarked pad ’p’ connected to cnn {
for each unmarked node ’nn’ connected to p {
if (’nn’ has a solution that cnn is looking for using pad p) {
mark p;
put nn onto NextQ;

}
}
}
}

/] recursive call

pad = Augment2(NextQ,SOLUTION_DESIRED);

if (pad) {
find the node ’cnn’ which wants to use pad for its solution;
rpad = swap(pad, cnn);
return(rpad);

}
}

Figure 7.8: The Augment2() Algorithm.

program. Figure 7.9 shows the pseudocode for the main program loop, and for the
Solve() procedure called by the main loop.

7.10 Performance

Let n be the number of nets to be pairwise assigned, p be the maximum number
of pads each net can be assigned to, and w be the number of window sizes spanned.

The default Augment2() algorithm runs in O(n®p?) time. This is because of the
particular implementation of the breadth first search algorithm, which looks at every
node, and every pad connected to every node. One would expect that the algorithm

62 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

Solve(mode, parameter) {

/* __ */

/¥ first run graph reduction if the command line switch was set */
S — %/
if (switch option ’-g’) {

graph_reduction(mode,parameter);
}

/* __ */

/¥ run improvement step, if the command line switch was set */
S — %/
if (switch option ’-i%) {
Singular_Improvements();
Pair_ Wise_Swap_lmprovements();

) — %/
/* Run the Augment2() and Find_Last() procedures */

R ———————— */
do {
foundsolution=0;
for each remaining unmatched net {
foundsolution += Find_Last();
founsolution += Augment2();

}

} while (foundsolution);

/* __ */

/¥ run improvement step, if the command line switch was set */
S — %/
if (switch option ’-i%) {
Singular_Improvements();
Pair_ Wise_Swap_lmprovements();

}

Save_Solution_If Better();

main() {

/¥ try as many window sizes as is necessary */
for (windowsize=start; windowsize<=end; windowsize++) {
if (the option ’-g’ was used) {
Solve(option, GLOBALLY GREEDY,NULL);
Solve(option, LOCALLY_GREEDY,NULL);
for (i=50; i<=90; i+=10) {
Solve(option, RANDOM., i);
}

/¥ check for exit condition */

if (Complete_And_Consistent_Solution_Found) exit_and_output_solution;

}
}

Figure 7.9: The Main Program of Assign.

7.10. Performance 63

Design Blocks Nets | Pads Assigned | Switch Options | Total Weight | Runtime
Rb 714125 TT+92 29419 — 18 7.2s
Rb 714125 TT+92 29419 -1 17 13.9s
Rb 714125 TT+92 29419 -g 25 13.1s
Rb 714125 TT+92 29419 -g -1 25 18.3s
Mecl 714132 724118 26421 — 21 7.2s
Mecl 714132 724118 26421 -1 21 12.9s
Mecl 714132 724118 26421 -g 23 12.1s
Mecl 714132 724118 26421 -g -1 21 18.2s
Mtn 205499 2304107 51439 — 175 93.6s
Mtn 205499 2304107 51439 -1 158 282.7s
Mtn 205499 2304107 51439 -g 245 546.2s
Mtn 205499 2304107 51439 -g -1 185 933.6s

Table 7.1: Assign Performance

takes O(np) time, but because of the call to Augment1() within Augment2(), the total
execution time is O(n?p?).

The greedy reduction algorithm runs in O(np?) time. This comes from the fact
that at most p edges must be removed before the algorithm terminates, and for every
edge removed, it takes O(np) to find all of the forced pads and all of the pads which
are unmatchable.

Running the improvement phase takes O(n?) time. So, the overall program

performance is O(wn?e?).

Table 7.1 shows the actual performance of the program on three designs. All tests
were run with an initial window size of one, and were executed on a Sun Sparcstation

14.

64 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

7.11 BORG wiring connections

7.11.1 XC3000-series BORG wiring connections

; Jan 29, 1992 (Pak K. Chan)

X1.83 -> R1.2
X1.84 -> R2.2
X1.2 -> R1.4
X1.3 -> R2.4
X1.4 -> R1.8
X1.5 -> R2.6
; X1.6 -> R1.6
; X1.7 -> R2.6
X1.8 -=> R1.10
X1.9 -> R2.8
; X1.10 -> R1.10
; X1.11 -> R2.8

; pin 13 is for GCLK input
; X1.14 -> R1.14 R1.14 is connected to X0
X1.15 -> R1.15
X1.16 -> R2.10
X1.17 -> R1.17
X1.18 -> R2.36
X1.19 -> R1.19
X1.20 -> R2.41
X1.21 -> R1.21
X1.23 -> R2.18
X1.24 -> R1.24
X1.25 -> R2.20
X1.26 -> R1.26
X1.27 -> R2.48
X1.28 -> R1.28
X1.29 -> R2.50
X1.30 -> R1.30
; pin 33 is M2
X1.37 -> R2.52
X1.39 -> R1.34
X1.40 -> R2.56
X1.42 -> R1.36
X1.44 -> R2.58

;X1.38 -> R1.41

X1.45 -> R1.39
X1 46 -> R2.60
; X1.41 -> Ri1.41
X1.47 -> R1.42
X1.48 -> R2.62
X1.49 -> R1.45

7.11. BORG wiring connections

X1.52 -> R2.65
X1.53 -> R1.47
X1.56 -> R2.67
X1.57 -> R1.49

; X1.50 ->

; X1.51 -> R2.50
X1.58 -> R2.69
X1.59 -> R1.53
X1.60 -> R2.71
X1.61 -> R1.59
X1.62 -> R2.76
X1.63 -> R1.63
X1.65 -> R2.78
X1.66 -> R1.68
X1.67 -> R2.80
X1.68 -> R1.75
X1.70 -> R2.82
X1.71 -> R1.77
X1.72 -> R1.73

; X1.72 and X1.73 can also be used as user I/0 pins
; X1.73 -> R2.72
X1.77 -> R2.84

; end of 25 pins

; extra pins

X1.78 -> R1.81
X1.81 -> R1.83

; X1 extra pins for XC3030s
;X1.38 -> R1.38
;X1.41 -> R1.41
;X1.50 -=> R1.50
;X1.51 -> R1.51

; one X2 pin for XC3030s
;X2.6 -> R2.7

X2.71 -> R2.79

; X2

; X2 north east face
X2.2 -> R2.3

X2.4 -> R2.5

X2.8 -> R2.9

X2.15 -> R2.11

; X2 north west face
X2.83 -> R2.83
X2.81 -> R2.81
X2.77 -> R2.77
X2.75 -> R2.75

; west face
; special addresses - BORG jumpers affect which lines are usable
; *¥*%% *REF1* The following 3 nets are not allowed when the memory

66 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

; is used, otherwise, if the -u option is used in assign, then
; these lines are unavailable. See *REF2*

; X2.68 -> R2.15
; X2.70 -> R2.16
; X2.17 -> R2.17

X2.19 -> R2.42
X2.24 -> R2.19
X2.27 -> R2.21
X2.29 -> R2.49
; south face of X2
X2.37 -> R2.51
X2.40 -> R2.53
; extra from memory address A_11
X2.44 -> R2.14
X2.46 -> R2.57
X2.48 -> R2.59
; east face of X2
X2.57 -> R2.61
X2.59 -> R2.63
X2.61 -> R2.66
X2.63 -> R2.68
X2.66 -> R2.70
; end of 24 pins
; connection to R1
X2.3 -> R1.3
X2.5 -> R1.5
X2.9 -> R1.9
X2.16 -> R1.11
; west face
X2.18 -> R1.16
X2.20 -> R1.18
X2.23 -> R1.23
X2.25 -> R1.20
X2.26 -> R1.25
X2.28 -> R1.27
X2.30 -> R1.29
; south face
X2.35 -> R1.33
X2.39 -> R1.35
X2.42 -> R1.37
X2.45 -> R1.40
X2.47 -> R1.46
X2.49 -> R1.44
X2.52 -> R1.48
; east face
X2.58 -> R1.52
X2.60 -> R1.57
X2.62 -> R1.61
X2.65 -> R1.66
X2.67 -> R1.71

7.11. BORG wiring connections 67

; east north face
X2.72 -> R2.73
X2.76 -> R1.76
X2.78 -> R1.78
X2.82 -> R1.82
X2.84 -> R1.84

; end

; force nets
; R1 force nets

; data bits

X0.1 -> R1.72 &&BusData_0
X0.1 -> R1.70 &&BusData_1
X0.1 -> R1.67 &&BusData_2
X0.1 -> R1.65 &&BusData_3
X0.1 -> R1.62 &&BusData_4
X0.1 -> R1.60 &&BusData_5b
X0.1 -> R1.58 &&BusData_6
X0.1 -> R1.56 &&BusData_7

; address bits

X0.8 -> R1.79 &&BusAddress_0

X0.9 -> R1.80 &&BusAddress_1

X0.10 -> R1.69 &&BusAddress_2
X0.11 -> R1.14 &&BusAddress_3

; 1o control bits

X0.12 -> R1.6 &&BusControl_O
X0.13 -> R1.7 &&BusControl_1

; R2 forced nets

; memory data pins DO-D7
M1.9 -> R2.23 &&MData_0
M1.10 -> R2.24 &&MData_1
M1.11 -> R2.25 &&MData_2
M1.13 -> R2.26 &&MData_3
M1.14 -> R2.27 &&MData_4
M1.15 -> R2.28 &&MData_b
M1.16 -> R2.29 &&MData_6
M1.17 -> R2.30 &&MData_7

; memory address pins AO-A7
M1.8 -> R2.37 &&MAddress_0
M1.7 -> R2.38 &&MAddress_1

M1.6 -> R2.39 &&MAddress_2
M1.5 -> R2.40 &&MAddress_3
M1.4 -> R2.44 &&MAddress_4
M1.3 -> R2.45 &&MAddress_5
M1.2 -> R2.46 &&MAddress_6
M1.1 -> R2.47 &&MAddress_7

; special addresses - BORG jumpers affect which lines are usable

68 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

; *%k* *REF2%
; The following 4 nets are usable when the -u option of assign is
; used. Otherwise, the *REF1* lines will be allowed.

M1.23 -> R2.17 &&MAddress_8
M1.22 -> R2.16 &&MAddress_9
M1.19 -> R2.15 &&MAddress_10
M1.19 -> R2.14 &&MAddress_11

; memory control pins WE OE CS
M1.21 -> R2.35 &&M_WE
M1.20 -> R2.34 &&M_OE
M1.18 -> R2.33 &&M_CS

; Dummy pins used by assign to generate forced nets for R1 and R2
X0.1 -> R1.1 &&R1
X0.1 -> R2.1 &&R2

; end

7.11. BORG wiring connections

7.11.2 XC4000-series BORG wiring connections

; Oct 26, 1993 (Pak K. Chan)
; Jan 20, 1994 (Jason Y. Zien) Added memory address, data, control lines

; BORG II XC4000-PC84 wiring file
; wiring file for BORG IT

; Dummy pins used by assign to generate forced nets for R1 and R2
X0.1 -> R1.1 &&R1
X0.1 -> R2.1 &&R2

; *%%*k Memory lines #*#*

; These are not present in 4knomem.wir

; these lines are allowed when the -u command-line option

; of assign is used, otherwise, 4knomem.wir is used if the

; -u option is not used.

; BORG dip-switch settings affect which set is physically active.

; mem. address lines
M1.1 -> R2.47 &&MAddress_0
M1.2 -> R2.48 &&MAddress_1

M1.3 -> R2.49 &&MAddress_2
M1.4 -> R2.50 &&MAddress_3
M1.5 -> R2.51 &&MAddress_4
M1.6 -> R2.56 &&MAddress_b5
M1.7 -> R2.57 &&MAddress_6
M1.8 -> R2.58 &&MAddress_7
M1.9 -> R2.61 &&MAddress_38

M1.10 -> R2.62 &&MAddress_9
M1.11 -> R2.67 &&MAddress_10
M1.12 -> R2.66 &&MAddress_11

; mem. data lines

M1.12 -> R2.46 &&MData_0
M1.13 -> R2.45 &&MData_1
M1.14 -> R2.44 &&MData_2
M1.15 -> R2.40 &&MData_3
M1.16 -> R2.39 &&MData_4
M1.17 -> R2.38 &&MData_5
M1.18 -> R2.37 &&MData_6
M1.19 -> R2.36 &&MData_7

; mem. control lines

M1.20 -> R2.65 &&M_OE
M1.21 -> R2.60 &&M_WE
M1.22 -> R2.30 &&M_CS

70 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

; *%*% end of Memory lines **x*

; The following lines are not usable when the memory is used

; (not usable when -u option of assign is set).

; They are used by default.

; BORG dip-switch settings affect which set is physically active.

; AO

; X2.27 -> R2.47
; Al

; X2.35 -> R2.48
; A2

; X2.39 -> R2.49
; A3

; X2.40 -> R2.50
; A4

; X2.45 -> R2.51
; A5

; X2.50 -> R2.56
; A6

; X2.51 -> R2.57
s A7

; X2.47 -> R2.58
; Al12

; X2.46 -> R2.59
; A8

; X2.37 -> R2.61
; A9

; X2.70 -> R2.62
; A11 and A10

; X1.56 -> R2.66
; X1.58 -> R2.67
; end

; R1

=</
_

force nets to PC

-> R1.71 &&BusData_0
-> R1.69 &&BusData_1
-> R1.67 &&BusData_2
-> R1.65 &&BusData_3
R1.61 &&BusData_4
-> R1.59 &&BusData_5
-> R1.58 &&BusData_6
-> R1.56 &&BusData_7

Lo
o
~N O O WN RO
1
v

; 4 address lines

X0.8 -> R1.83 &&BusAddress_0
X0.9 -> R1.81 &&BusAddress_1

7.11. BORG wiring connections

X0.10 -> R1.82 &&BusAddress_2
X0.11 -> R1.80 &&BusAddress_3

; 3 io control lines

; Xior

X0.12 -> R1.51 &&BusControl_0O
; Xiow

X0.13 -> R1.50 &&BusControl_1
; interrupt

X0.14 -> R1.70 &&BusControl_3

X2.44 -> R1.14
X1.67 -> R1.18
X1.65 -> R1.19
X1.61 -> R1.20
X2.38 -> R1.23
X1.59 -> R1.24

X2.36 -> R1.25
X2.26 -> R1.26
X2.24 -> R1.27
X2.20 -> R1.28
X2.18 -> R1.29
X1.81 -> R1.3
X2.14 -> R1.35
X1.36 -> R1.36
X2.7 -> R1.37
X2.69 -> R1.4
X1.46 -> R1.40
X1.40 -> R1.44
X2.3 -> R1.45
X2.83 -> R1.46
X2.81 -> R1.47
X2.79 -> R1.49
X2.67 -> R1.5
X1.28 -> R1.57
X2.65 -> R1.6
X1.26 -> R1.60
X1.20 -> R1.66
X1.18 -> R1.68
X2.61 -> R1.7
X1.71 -> R1.72
X1.5 -> R1.79
X2.59 -> R1.8
X1.83 -> R1.84
X2.48 -> R1.9
; TDO

;R1.75 -> X1.15
X1.24 -> R1.62
X1.3 -> R1.78
X1.38 -> R1.48

X1.48 -> R1.38

72 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

X2.5 -> R1.39

; R2

X1.27 -> R2.14

; X1.75 is TDO

; R2.15 -> X1.75
X2.68 -> R2.18
X2.66 -> R2.20
X2.62 -> R2.24
X1.14 -> R2.7
X1.62 -> R2.70

X2.84 -> R2.256
X2.4 -> R2.26
X2.60 -> R2.27
X2.25 -> R2.29
X2.49 -> R2.356
X2.41 -> R2.41
X1.72 -> R2.71
X2.71 -> R2.72
X1.60 -> R2.77
X2.19 -> R2.79
X1.80 -> R2.80
X1.19 -> R2.8
X1.23 -> R2.9
X1.37 -> R2.5
X1.39 -> R2.3
X1.4 -> R2.4
X1.45 -> R2.83
X1.47 -> R2.81
X1.6 -> R2.6
X1.66 -> R2.78
X1.68 -> R2.69
X1.82 -> R2.82
X1.84 -> R2.84
;R2.75 -> X2.15 TDO cannot be used okay 777
X2.6 -> R2.28
X2.80 -> R2.19
X2.82 -> R2.23

X2.23 -> R2.68

73

8. Using the Protoboard and Schematic Drawings

8.1 Proto-area, Common Anode LEDs

The proto-area is on the left-hand-side of the protoboard. Each 1/O pad of the
XC4000 FPGAs can only supply 3 mA of current, which is not sufficient to drive
most LEDs. The author is certainly aware of the availability of the miniature HP
2 mA LEDs, unfortunately, they are not available as 7-segment displays. Therefore,
the 7-segment LEDs are common ANODE LEDs, with headers J48 and J49 providing
the access to the segments.

None of the LEDs are connected to the FPGAs, so you need to use jumpers/wires
(with sockets on both end) to display your signals. Each segment (in general each
LED in the proto-area) can source roughly 4mA to a maximum of 10mA. Header J45
provides the connections to the 4-bar LED4 and LED5 which are also common anode
LEDs. SW6 and SWT are connected to header J46 and J47 respectively; each position
is pulled high with a 10K resistor. The header supplies a ‘1’ when the switch is open,
and a ‘0’ otherwise.

SGCK1 GND PGCK4 GND
vee vee 'J_| c51lj_| Wslj_l TDO
1 e N e N e Y e s Y N | i N e O I s I e N | 1 1
/11 100 9 8 7 6 5 4 3 2 1 84 83 82 8180 79 78 77 76 75
GND I: 12 74 :| vcC
PGCKL []13 73|]ceLk
(12 72[] SGCK4, DOUT
I []15 71]] Do, DIN
TCK I: 16 70 :| RCLK-BUSY/RDY
T™S[]17 69]] D1
[e8]
[ee 67]] D2
1B 66|] RS
GND []21 65]] D3
vee [z XC4003A-PC84 aaf] GND
1 EE e3]] vee
024 62|]
I: 25 61 :| D4
[2s 60]] CSO
IEG so]] D5
[J2s s8] D6
SGCK2 20 57|] PGCK3
M1 I: 30 56 :| D7
GND I: 31 55 :| PROG
Mo I: 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 534 :l vee

LJLJd LI JLIJL I LI L IL]
vcc M2 HDCIT, TVCCIT, ITlGNDIT'

PGCK2 LDC GND SGCK3 DONE
ERR, INIT

Figure 8.1: XC4007A-PC84 package footprint.

74 8. Using the Protoboard and Schematic Drawings

WEOOOOB® O
VWOOOOOO®O OO

POROODOOD®®
PR|[PPVEPIOPROPROA||@
PO 0o 00| 0e
PO| 06 00| 0o
OO ew I eleliiel®
00|00 PO |6
0e|oo Comonent 0|06
PO 0o o PR| Qe
00|06 0| 0o
PO oo PR | 6o
PO oo P®| e
R|PPPPIPRIPEIOOO |0
PPRPVPOROO®
EEEPEEEEEE

69 Go 69 W @ W W @ & &

Figure 8.2: 84-pin PLCC Package Footprint and headers, Component Side.

For debugging purposes all the user FPGA pins are connected to the headers for
easy signal access. Figures 8.1 and 8.2 provide the 84-pin PLCC footprints and its
headers for the “component” side. The assembly drawing of the BORG board with
all the reference designators are given in Fig. 8.3. Finally, two sheets of the schematic
drawings (drawn with PADs LOGIC) of the BORG board are given in Fig. 8.4 and

8.5 for documentation and debugging purposes.

8.1. Proto-area, Common Anode LEDs

Figure 8.3: The BORG board’s assembly drawing with reference designators.

®

n
=
>
OFF—ON F1
o—{__1e FUSE

pJo) Joydopy o)

®

805

44

24 443 DT

SW3 SW4
ole
K
mlm
ESETCLK
T¥Roi]
e ol

J

J
@m
€29

Copy Right

Santa Cruz

S
4
&
o
S
2
I
2
&
T
5
3
£
=
£
e
=
S
2
&
o
S
8
<
S
<
©
&2
S
a2

University of Californi

®

cLOCK Su01yIRW00 310w 1oy
GCLK apis vd uo Jadunp jng
CLK(STEP) & =

=
Kiowasw

Eg
5455
(o o]

o~
s
RSeee

3

A
ecceccccee eeee S N m—
o lm —
= = a—
Heecccccoce ceee —
—
PC-CLOCK —
AKeeoeoeseee eseccsccee —
g — o[® e —
[b |5 8fh |8 —_
Heeecsccce Heeescccoe A10 em—
g —
w2 a—
ccecscccee —
—
—
—
—
—
= —
< A20 cnmm—"
o= : cm—
= 3 ¢ cmm—
3.8 T e—
=50 3} O cmmmmp
L Z . e
ass o T e
Bs2e ;3—-
<=3 L cm—
z=8 W o
o —
E]U A3 cm—

VY 03LY0d-OML 8XX8
eececccccee

38

g L.
$037 300NY_NONAOD €1d £

ot
o
=] N 3
SRR s
8 | lo|S
B (6)
2 o <
FiRessssssssclel &
82r < =
g wsL| e . [N T
w9 e
@ o c =
@ o —
@ o S
o o £
o o 2
@ o A
@ o = >
o o 28

eeeccccceelND

O

75

[ZEZ0IVN V9ELIOX ~
SRS OSON , : T Ll
" ullaaulbuy Jayndwoy mm 23 m = m 4929 —oR 30 o o
[S1o) SYISWL SELLEELYIELY vive 80
o € jo | :u3ms _EL 1:} :31vos 5a sn
= L wm w« (14 muz«ma VOELIOX
T} AR
W uoyd "y 3od £6/51/6 eV > | — g o % M 5 anro| no anro
s A8 NNYa0 awva| azs| 3 SvaE|re v 222222333 g0 30 5T e 15
S| sHsE Y hime |22EEE2ES ZHo¥030 Iz
D 100Q03 04 Zva 718 A i s FEEEREEREEEY N v1vapf
piooqojold Q00+IX Il 9408 ovaar]'8 Wiz Zovn ARRRARARR w0/1 N o0 e
: T VY9E€LIOX
9 U] [Kaeog 2071 3
= 89d3sn4 A6 90/1 N, S
5 s L low BrTifos B e e ()
5 g £ INO¥O3D W ma X >
10/1 0 | ‘0]vI L IVN dH-031
.mc o £n 1 A zam
d WO¥J ¥3MOd n
[} [Oo— = SYISTvL N v
w2 5= (N P a— - 1]) Y FIL;
= vz L8 Ly NIve 1 & 33 Y
= = pLi 1 98 9v| QT —_— B 3 gL s 5 —
] e —<0 [yovag MM m« gOT) o HESN S
3+ = S £g £V k4 EE B REEEB @3 =]
R = oV B B _SRRE PP n #
EA) 8 e g q &
Je=er 3 g v ~F wﬂ‘ g T
.m £ = (] qV 1 MW\? g &
e wMﬁ g - ¥ = 3 33 ST SS S e L
=cr| £ = 30pob——4 22 s 5 RRR g
Qo =¢r|_* rZovay = I =3 38 LLL =
= - =
> SEDE et vl M o o g 5 o0 sdol ONO/¥IMOd
= 1 -
m wﬂﬂzmi . | VST 0d 041
(F=CTININd =
m = org |59 o JT M ¥0IX
P gt Sl MOId & o8 v R [_ scw,x uxwwuxm
=¢r] 90/ [mrand 1] 98 sy LELS 1"908d LINI/ 4S9
< = va Y —_ T9_508d m
3¢ I LEL] 3ANDa
L Se—cr | [=Cr 60Vd ag 9] £8 sy VT 1 JNDd 1peyox xux
e—Cl 6-¢r_10vd Qvd £ v
ﬂhb CE—CT [INT g=cr80vdY| |feova &r'® i v—t——T} T 104 ‘s150d |DUIWIS
=er =¢ro0vd ¥ial = b t— -
r hy - [— [} 61 -
ap 11 z s T LA " = :
= 2 an 2| K] 661 SAL o
o~ 10399UYO: = =60 A0 =
wn + ouw L Iy m [z:0]8 6-6M 101 0I=6r 0X 3NO(
=) - pJ SYTSTHL] <&y " =6 PXA100
= su0Z0}019 o o 0219d-£00%X m AQH/ INI Ti-60] |
!
FLovd g 1y OX L1 ON in o8 o 25 !
. 2oV 98 v [6:0lv ITE 1) xd Si=6l 91=6r
o0 : S8 Sv| F0€131307 gy st
m va 1 ¢ N
g 8 Y TNTEIV Iﬂw 1]
‘ T Y m%ﬁ”wﬁ%m%w%w%%s%ssz
g
9] 9. o | Chfl bElnEELAs BEEEE wdm%nm t——1 %1
) B3 0%t (Lolag BEER BPEBRP EFP['E 'R B
S : B
EN n E —<Jsm
a S £ +
£\ SYTSWL == —
d 2
yd 4 .
A e T &
a] [2loe v g =
504 T M 3 T MEVPY = "
¥0d a: f—
¥a Y g -
£9d £g £, g WV NS <
8 e -
10d 7 10 N9 14-zon
oo '8 Yo 4IRS T,AKK/A N,Iv\ [Ty
=4 xu,m Ll _ o N9l v v|m1< fo—
d = L 7INT S Xeory v o —
= MQld o) NAA N o
R D _ 9N o] 5 S T
CT=CT ARING STI= ~ T » WL oL) e CRAvAA] i 3 o010 |pqolb
o = mn £ S 2 s HD0¥-HILIMS PETEY WD0U-HILINS sg ey 1000 1090l
= = mn S a & 17, 0X”908d SYYSy g| Lo L O O O LA O = W' 5755 <
= = = 620 2
=2r —r—30d aH=031 2 g 2 uoyisod|[]]
anwﬁmUEAH_ = Wam 1 Z M\/\/\/\A 9d M ‘_WQESH O__‘—Db@v 17 i m
= 1= 6 2 g
P— =g ud S = - 8 RSHSHS GG RS+ A+ AT+ NG+ NG+ NG+ NG+ NG+ T, 8< mo_o
3 g R 5 RIBBB IEEEEEEEE S azmlo.._m
40329uu0) 13buy 36p3 3d 3 = 2 sE®® 'R mS S o> 2 3 7m0 3 8
e ' o S 8858 38888 NN N N N N N NN B
Ne) oLy Ve 2 < SRR 328888888 88
[< tz,\mmuczx

f the BORG Board (Sheet 1/2).

Drawing o

1C

Schemati

Figure 8.4

o

N
M
<
Te}

7
¥9096 9 ‘219 ojuog owo: ano \hﬁo\rs.c \rz.c \rz.g\h Eo\rs.o\rz.c \rz.g\hﬁ.c \rz.a \F;o\rso\ﬁkz.a\ﬁmzo\ﬁﬁ.c;!
buisesuibu3 seyndwoy Rulm\ 920 Im\mwu Im\&u Iﬁmwulm\ qulﬁ,mu @\amulﬁ m,ug\ m,ulﬁ :ug\ m,ulm\m,ulﬁ :ug\ EUIM\ N,ulﬁ
I~ <
I~ €40 Z:LIMS _EL [REERTEH ¥
=
S
uoyg ¥ aod ce6l ‘vl 1des | €V B o [z1:00)vX .
. e [0
A8 NMY3O I zs , [z:00]rvN
»
3
P4DOG030.d 000¥OX Il 9408 3 LT
aun g EEEEEBEPR R S b<bal Bhebe INSSN
A . REIR2E Agls zl BBhBE S BB
V| o A T =577 O =30 N Alag BRRR FRR
= o [l nlals)
D Il H S| wmusgv_mmnoaa/. . xcmzwa szsgvﬁwﬂowa =
forvi JOTVA @ IN0a 2l © @ 2§ =
<5z a7 Sl &
sv 50vX T8 508d_co|-208d 3 T9 5089 g |-204d 8
il GOCVN 96 b 2
oTV I 0TV S LS| £
G
ZYN ovn _ 818 65 -
T T g roe ¥80d—£00¥OX chrggl ¥80d=£00%OX
9 | i
orvim GorvA majmw‘lc N,x E] 244 o4 2]
EVN TOVR oV SOVR A,T;‘nx o ,A;‘Mx YA
A ol — t 4%} af—vm—s
oy s ¢ cg g9 S¥ D
orvi 99138 4
AL FOVR ovH BOTVA gL -ty
TN _ RN L1 - -
- > [w% AQY/Asng +80d-£00+0X o221 Aqu/ Asng +80d-£00+0X
S OIrvR YN Yoo vin sin
S — 7 P
. = = g4-SL] 17
VL 2
m) z\Tz T 3 mw\TEmeuxz; =
-) e N e g x%
"~ Bg 2 3 = oto u!,haaaaaa o * MHWHNM PR
M 5 B8R i
] = S R R o) IR o [
18 TITVA 2 (NN IO NN ol
o S ~ 8 RRIBRRER = = _\.ﬁJy \waaw[,
- i S
T
< T s
1373N0a 1 = d hkkRkEr — ||
— i g R El —
R = 'W_wvwmv o 147TON
o > r 1T =
S i Sk e culRuuaGsE
E @ INoa Z|
= 3 T8I0 Ce] 208 h -
] Uvx [\m NEm 9 I
DO %&w T " o8 8¢
- <8 G -
= i emite ¥80d—-€00VOX [id S ¥80d-£00¥0X
Qo O 0z 1 [UZ_ 19 19 Ge
= 02§64 <9 3 20 0
= - g %QM ©
< 5 > o IX il o Y
- 79 59 [0z 99 @ =
3 ree -4 H
891
= 691 ,qu/4sng #89d-£00%IX f£b SAL AQy/Asng +83d-£00¥0X
3 391 NI
Xz O Ty 0L un 33
&5 74Nz 4190 £in 72y ipog FE
m i Ry va R [™9 8 3
S L - EE
Q Sdvl ONNO¥9 - <o) d—h elelg= ™ SR =T P e i
O 8| saoLZEunT_r% ! > 10l = %
= botototols=v lotatoto | 3 ¥ E 22| Xo
3 E CECCE MOPLE Pee x s AAN 5T SR i Cec cecec
< pHREL R [B B 2 555 S5&55&
BI'RFR pPP © g3 0L agy eovf JTTE SRR AR
m 93¢y z¥ 001 E E] mm A0 3 t?. w2 =R
~ =
-)
n_a 247001 = N
&
O AR A7z X
+> O - %
Q AQ¥/INI T 2
DM T AT
001]
1
- >?HM_</\/\ ey |
147904d
. SWL
™ s 1sod Jaxyoayox
. LINI/¥S9
[o'¢) 3199

<

m

(@]

o

Schematic Drawing of the BORG Board (Sheet 2/2).

Figure 8.5

78 9. Guide to Some Laboratory Experiments

9. Guide to Some Laboratory Experiments

This chapter serves as a simple guide to use the BORG board. Suggestions for
some possible digital design experiments are provided but not elaborated.

9.1 Creating user I/O ports in R1

Two sheets of schematic drawings portest given in Fig. 9.1 and 9.2 provide the
basic idea of implementing I/O ports in R1 to communicate with the PC. We are
creating four user I/O ports. We use a 74139-like part from the Xilinx library for port
address decoding. Notice that the outputs of the decoder are active LOW, and the
selected output is used to clock the 74374-like (positive edge-triggered) octal registers.
The outputs of the octal registers share an 8-bit bus which is tri-stated. The signal
XIOR is used to control the direction of data on the bus. Note that the I/O pad
assignments are provided directly in the schematic in Fig. 9.1.

A simple program portest.c which writes and then reads from the I/O ports
created in R1 FPGA is given on the next page.

Given that the schematic drawing’s file name is portasy, you can download this
port test demo by taking the following steps:
wir2xnf portasy
ppr portasy
makebits portasy
makeprom -o portest.mcs -u O portasy.bit em4003a em4002a em4003a
bd portest.mcs
portest

O 0 0 0 0 0
vV V V V VvV Vv

"VO4I 19 oY) ut syrod (/T Suipying :1°6 9Insi|

AO>

AO

PAD 1’>

LOC=P83 !

Al

AND2

MAP t o addr esses

A3 A2 A1l AO
o 1 X X

Xl OR

OBUFT

OBUFT

OBUFT

OBUFT

D3> BF

| BUF

OBUFT

OBUFT

DI NO tristate-374 DI N4 tristate-374
= TATN = TAIN
DOUTO DOoUT4
PORT4 IPORTA DATACUT| PORT4 PORTA DATAOUT|
PORTB —] PORTB
Ee EeEm T
IPORTD PORTD
-XI OR <1 orR = Xl OR I OR
DI N1 tristate=37 DI N5 Tistate=387
[\TATN B
DOUT1 DOUTS
PORT4 IPORTA DATAOCUT| PORT4 PORTA DATAOCUT|
IPORTB — | PORTB — |
I Eég § PORTC PORTC
PORTD PORTD
-XI OR X1 or [Xl OR I OR
DI N2 Tistate-37 DI N6 Tistate-37
[TATTN = TAT N
DOouUT2 DOUT6
PORTA4 IPORTA DATACQUT| PORT4 PORTA DATAOUT|
S - E=E
IPORTC PORTC
IPORTD PORTD
-XI OR X1 or -)(I OR I OR
DI N3 tristate-374 DI N7 tristate-374
[\TATN TAT N
DOUT3 DOUT7
PORT4 IPORTA DATAOUT| PORT4 PORTA DATAOCUT|
IPORTB — | PORTB — |
%mc Fere
PORTD PORTD
-XI OR paUN® 23 -XI OR I OR

DI N6

Four 8-bit read/wite ports

Asynchronous 1/ 0O
1/O Ports Realizers by 374s

beore 1 @ XILINX

| BUF

Port 1/ O Test
PART=4002APC84- 6

UC Santa Cruz/ Conput er Engi neeri ng

sheet 1 of 2 Pak K. Chan

DRAWN BY:

D

['6

Ty ul syprod ()/T Iesn Suijear;)

6.2

O1YRWAYDS [LSHATYOd U} Ul 921A9p OYI[-PLET . 3RISIL], :g°6 2IndI

08

PORTA
a XIOR | p—aa

NAND2 B2
PORTB

PORTC Nano2e2

XI OR <
NAND2 B2
PORTD o
2 XIOR | p—a
DATAI N NAND2 B2
—
FD AT
PORTA ° © I &
| pC TBUF
ED BT DATAOUT
D Q ! -
PORTB
| O TBUF
.CT
PORTC o ° I P
| pC o TBUF
DTt
|
b o N
PORTD L~
L TBUF
Tri-State 74374
Drawn By: Pak K. Chan

UC SANTA CRUZ

BORG I

&7 XILINX

PORTEST sheet 2

sheet 2 of 2

DRAVWN BY:

Pak K. Chan

syuowirzedxy] A103vI0qR 9WOG 0O} 9pINL) 6

9.1. Creating user 1/0O ports in R1

/* portest: write and then read four PORTs in R1x*/
#include <stdio.h>

#include <dos.h>

#include <stdlib.h>

main O

{

unsigned int PORT1, PORT2, PORT3, PORT4;
unsigned int Portl;

int i, j;

float error;
unsigned char x;
char * portenv;

error=0;
setcbrk(1);

portenv=getenv("BORG") ;
/* Control Port in X0 */
if(!strcmp(portenv,"0x300"))
PortA = 0x300;
else if(!strcmp(portenv,"0x200"))
PortA = 0x200;
else if(!strcmp(portenv,"0x210"))
PortA = 0x210;
else if(!strcmp(portenv,"0x310"))
PortA = 0x310;
else {
printf(" \n Wrong PORT address\n");
printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");
exit(1);
}
printf(" BORG PORT address is %s\n",portenv);

PORT1=PortA+4;
PORT2=PortA+5;
PORT3=PortA+6;
PORT4=PortA+7;

for (i =0; i < 15; i++)
{outportb (PORT1,i);
outportb (PORT2,i+1);
outportb (PORT3,i+2);
outportb (PORT4,i+3);
printf (“Sent to port Data Read Data\n");

printf (" PORT1: %d %d \n",i,inportb (PORT1));
printf (" PORT2: %d %d \n",i+1,inportb (PORT2));
printf (" PORT3: %d %d \n",i+2,inportb (PORT3));
printf (" PORT4: %d %d \n",i+3,inportb (PORT4));
printf ("(hit return to continue ..)");

getchar ();

}

printf ("Starting automatic check (read after write)....\n");
printf ("This will take a minute or so\n");

for (j =0; j < 10000; j++)
for (i =0; i < 127; i++)
{outportb (PORT1,i);
x=inportb (PORT1);
if(x !'= i) ++error;

outportb (PORT2,i+1);
x=inportb (PORT2);
if(x != i+l) ++error;

82 9. Guide to Some Laboratory Experiments

outportb (PORT3,i+2);
x=inportb (PORT3);
if(x != i+2) ++error;

outportb (PORT4,i+3);
x=inportb (PORT4);

if(x != i+3) ++error;
}

printf (“"Total errors %6.0f\n",error);

9.2 Hardware Interrupt and Interrupt Service Routine

This experiment will illustrate the hardware interrupt feature supported by the
BORG board.

The interrupt service routine is called isr.c. It indicates that it is serving a
hardware interrupt by beeping the PC’s speaker. This interrupt service routine counts
the number of times that it has been interrupted. It services 10 interrupts and then
removes itself. This interrupt service routine is loaded as a memory-resident program,
as documented in the code.

The schematic drawing that generates the hardware interrupt (from the BORG
board) is intpc.1, which is essentially an I/O address decoder connected to a toggle
flip-flop. The flip-flop toggles the interrupt request line every time that a predefined
I/0 address is selected. Now, enable IRQ9 on your board for this demo.

To load the interrupt generator intpc, you do:

:> wir2xnf intpc

ppr intpc

makebits intpc

makeprom -o intpc.mcs -u O intpc.bit em4003a em4002a em4003a
bd intpc.mcs

:> isr

O o 0 0 00
vV V V Vv

We use a small program intpc.c which activates the toggle flip-flop to demon-
strate the hardware interrupt generation and service processes
c:> intpc
BORG PORT address is 0x300

Make sure that you load ISR isr.com first.

Board Board interrupts PC.

ISR will ring the speaker 10 times.
1 (hit return to continue ..)

2 (hit return to continue ..)

3 (hit return to continue ..)

9.2. Hardware Interrupt and Interrupt Service Routine

#include <stdio.h>
#include <dos.h>
#include <stdlib.h>

main () /# Interrupt PC demo requires schematic drawing INTPC */

{
unsigned int PORT1, PortA;

int i, j;
unsigned char x;
char * portenv;

setcbrk(1);

portenv=getenv("BORG");
/* Control Port in X0 */
if(!strcmp(portenv,'0x300"))
PortA = 0x300;
else if(!strcmp(portenv,"0x200"))
PortA = 0x200;
else if(!strcmp(portenv,"0x210"))
PortA = 0x210;
else if(!strcmp(portenv,"0x310"))
PortA = 0x310;
else {
printf(" \n Wrong PORT address\n');
printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");
exit(1);
}
printf(" BORG PORT address is %s\n",portenv);

PORT1=PortA+4;
printf ("\n Make sure that you load ISR isr.com first.\n");
printf ("\n Board Board interrupts PC.\n ISR will ring the speaker 10 times.\n");

for (i =1; i < 15; i++)
{
outportb (PORT1,i); /* toggle the flip-flop inside R1 */
delay(1);
outportb (PORT1,i);
printf (" %24 (hit return to continue ..)", i);
getchar ();

83

84

/*

Interrupt Service Routine isr.c
Modified from and credit to the Protozone User’s manual

9. Guide to Some Laboratory Experiments

A simple interrupt handler example using C without assembly language.

Code

in Borland C.

This program assumes IRQ9 is used and shows how to handle

the slave and master Programmable Interrupt Controllers 82594s (PICs)

We need to take care of both the PICs because IRQ9 is cascaded thru IRQ2.
The interrupt vector for IRQ2 is 0xOA as defined by the PC

Note: You need to pull IRQY low inorder to run this program properly

*/
/*

Compile and execute isr.com with
tcc -mt -M isr.c
exe2bin isr.exe isr.com

*/

#include <dos.h>
#include <conio.h>
#include <stdio.h>

#define PIC_master 0x20 /# Programmable Interrupt Controller PIC master */

#define PIC_slave 0xA0 /# Programmable Interrupt Controller PIC slave */

#define EOI 0x20 /#* end of interrupt code to send to PICs */

#define IRQ2_mask 0xFB /# interrupt mask to enable interrupt request 2
bit 2 is reset */

#define IRQ9_mask 0xFD /# interrupt mask to enable interrupt request 9
bit ‘9’ is reset */

#define IRQ9 0x0A /# interrupt number */

#define TIMES 10

void IntRemove();

void interrupt (*oldVector)();
unsigned char oldMaskl, oldMask2;
void Install(Q);

void interrupt mybeep(unsigned bp,
unsigned ds,
unsigned cx,

int 1i,j;
static count=0;

char originalbits, bits;
unsigned char bcount;

/* get the current control port

disable();
/* port for speaker */

unsigned di, unsigned si,
unsigned es, unsigned dx,
unsigned bx, unsigned ax)

of the PIC setting */

bits = originalbits = inportb(0x61);

bcount=500;
for(i=0;i<=bcount; i++){

outportb(0x61, bits & Oxfc);

for(j=0;3j<=300; j++);
outportb(0x61, bits | 2);
for(j=0;3j<=200; j++);

outportb(0x61, originalbits);
outport(PIC_master, EOI);

9.2. Hardware Interrupt and Interrupt Service Routine

outport(PIC_slave, EOI);
if ((++count) >= TIMES) IntRemove();
enable() ;

void Install(faddr, inum)
void interrupt (* faddr)();
int inum;
{
disable();
oldVector = getvect(inum);
setvect(inum, faddr);
oldMaskl = inportb(PIC_master +1);
oldMask2 = inportb(PIC_slave +1);
outportb(PIC_master+l, IRQ2_mask & oldMaskl);
outportb(PIC_slave +1, IRQ9_mask & oldMask2);

printf("Interrupt Handler installed.\n\n");
printf("This interrupt handler intercepts 10 interrupts\nand then remove itself.\n");
enable() ;

void IntRemove()
{
disable();
setvect (IRQ9, oldVector);
outportb(PIC_master+l, oldMaskl);
outportb(PIC_slave +1, oldMask2);
enable() ;
oldVector();

main()
{
char ch;
Install(mybeep,IRQ9);
/* check with isr.map
when compile with
tcc -mt -M isr.c
to generate a memory map

Start Stop Length Name Class
00000H 01594H 01595H _TEXT CODE
015A0H 019BBH 0041CH _DATA DATA
019BCH 019BFH 00004H _EMUSEG DATA
019COH 019C1H 00002H _CRTSEG DATA
019C2H 019C3H 00002H _CVTSEG DATA
019C4H 019C9H 00006H _SCHNSEG DATA
019CAH 01A15H 0004CH _BSS BSS

01A16H 01A16H O0000H _BSSEND STACK

*/
keep(0, 0x01C0); /* make the interrupt handler resident */
}

VOdd 1Y

9y ur 2180] Aq pojeiausr) jdniieju] rows(jdnileju] oremple]] ¢'G 2INJI

98

PAD

LOC=P83

PAD

LOC=P81 pao>

PAD

LOC=pP82

PAD

LOC=P80

PAD

LOC=P51

PAD

LOC=P50

I Nt er r upt
Al so need

AO> AO

PC Deno
i nt errupt

V4

o
c
T

v
X

V4

@
c
T

V4

o
=
G

Xl OR> Xl OR

V4

o
c
T

Xl ONW- Xl ow

\V4

@
c
T

servi ce

r out i

ne and dri ver

<]

1INV

FD

o]

I NTPC>

acti vat e
PORT4

\V4

;

PAD

LOC=P70

I NTPC every tine
is sel ect ed

UC SANTA CRUZ

¥ BORG |l

&7 XILINX

Port 1/ O Test

PART=4002APC84- 6

UC sant a Cr uz/ Conput er

Engi neeri ng

DRAWN BY:

Pak K. Chan

D

SlHQHI_I.IQCng A.IOl’l?.IOC[’E"I JWoOg 0} opInty ‘g

9.3. Synchronization Problem 87

9.3 Synchronization Problem

The PC and the BORG board are driven by different clocks. You need to syn-
chronize any information transfer between them to avoid any timing problems. Par-
ticularly when you have sequential logic (such as a finite state machine) inside the R1
FPGA, the data transfer from the PC to your sequential logic must be synchronized
by synchronization registers using the (not the PC) system clock.

The schematic drawing as shown in Fig. 9.4 has an I/O port located at
address PORT4. The output of this port feeds two D flip-flops, FFONE and FFTWO.
These two D flip-flops are clocked by the system clock, and these D flip-flops are
constrained to be mapped into different CLBs (just to exaggerate the failure rate,
you can put them together in the same CLB if you want). The counter registers the
number of times that the output of the flip-flops are different.

: What causes the outputs of the D flip-flops to be different? How

would you fix the problem?
To load this lab asylab, you do:
:> wir2xnf asylab
ppr asylab
makebits asylab
makeprom -o asylab.mcs -u O asylab.bit em4003a em4002a em4003a
bd asylab.mcs
c:> asylab

o o o0 00
vV V V Vv

A sample driver for this lab is included on the next page.

88

9. Guide to Some Laboratory Experiments

/A kK Kok ok oK o K K KoK SR K K KoK oK oK o K Kok ok Sk o K K Kok ok ok K K Kok ok ko ok
/* asylab v1.0
/A kK Kok ok oK o K K KoK SR K K KoK oK oK o K Kok ok Sk o K K Kok ok ok K K Kok ok ko ok
#include<stdio.h>
#include<dos.h>

#include<stdlib.h>

int main(int argc,char *argv[])

{

unsigned char loc, oldloc;

int wait;

char * portenv;

unsigned int PORTRESET, PORT4;
unsigned PortA;

setcbrk(1);
portenv = getenv("BORG");

/* Control Port in X0 */
if(!strcmp(portenv,'0x300"))
PortA = 0x300;

April 5,1994%/

else if(!strcmp(portenv,"0x200"))

PortA = 0x200;

else if(!strcmp(portenv,"0x210"))

PortA = 0x210;

else if(!strcmp(portenv,"0x310"))

PortA = 0x310;
else {

printf(" Wrong PORT address\n");

printf(" Please specify P
exit(1);

}

PORTRESET = PortA + 3;

PORT4 = PortA + 4;

/* reset the machine */
outportb(PORTRESET, 0x00);
outportb(PORTRESET, 0x01);
delay(1);

/* read Port 4 until all zeroes */
wait = 10;

while((loc=inportb(PORT4)) '= O
{wait--; delay(1);
printf("Waiting for counter to

/* stop reading */
if(loc!=0) {printf("Counter in R1
}

else

{printf("Counter in R1 set to O
while(1){
outportb(PORT4, 0x01);
delay(1);
loc=inportb(PORT4);
if(loc !'= oldloc) {
printf("Counter --> %d
}
outportb(PORT4, 0x00) ;
delay(1);
loc=inportb(PORT4);
if(loc !'= oldloc) {
printf("Counter --> %d
}

ORT address\n e.g. set BORG=0x300%s\n");

&& wait !1=0)
reset.\n"); }

never reset.\n");

An"); oldloc = -1;

\n",loc); oldloc=loc;

\n",loc); oldloc=loc;

VOJ4A 1Y ul uSisa("qe[2In[rej UOIJRZIUOIIUAS f°G 2In31]

A0

AND2

I BUF

X74- 139
PORT4
b
b
b
STARTUP
RESET> RESET
SAD N Gsr @l
- ars
LOC=P10 1'BUF W =
Qe
—bCLK DONEI Nf—
FD
FFONE DI FFERENT
—° Q) C256BCR o[0] [, pouro g
o 7: 0] L
XOR2 q7:0] o 1] F o
Loc=CLB_RsCs —R TCI—
. UF
of 2] pouT2
FD L
UF
o o of 3] bouTa
FFTWD count er
PORT4 4 L ooura
Loc=cLB RiCL
= UF
& o 5] bouTs
UF
6 DouTe
UF
oL 7] DOUT7.

CBUFT

| BUF

UC SANTA CRUZ

¥ BORG I

&7 XILINX

Synchroni zation failure | ab

PART=4002APC84- 6

UC Sant a Cruz/ Conput er Engi neeri ng

praww By: Pak K. Chan

D

uro[qol UOIBZIUOIYOUAS "£°6

68

90 9. Guide to Some Laboratory Experiments

9.4 Music Lab

This frequency synthesizer lab demonstrates the use of XC4000 CLBs as Read-
Only-Memories (ROMs). You will also need the following additional components to
appreciate this lab.!

1. one digital-to-analog converter part # TI TLC5H602CN

one 2N2219A NPN transistor, one 2N2222 NPN transistor
some resistors
three 10puF capacitors

one potentiometer

Ot W N

an 8) speaker

The DAC yields only one volt dynamic range, so we use some discrete components
to build a simple two-stage transistor amplifier with a voltage gain of 2, as shown in
Fig. 9.5. You can replace this part with a higher qualify amplifier.

D0D1D2D3D4D5D6D7
CLK
TLC5602CN Stage 1 Stage 2
® DAC Voltage Gain = Voltage Gain =1

+5V

1 |Nc L
= LI~
10uF
From R1 FPGA
L0uF 2N2219A
I I 2N2222
- Speaker
potentiometer
adjust Vref to approx. 3.96V =~
47 — 10uF

Figure 9.5: Digital-to- Analog Converter and a two-stage transistor amplifier
for the “music” lab.

As illustrated in Fig. 9.5, the DAC is used to convert the digital output of the
R1 FPGA to an analog (sine-wave like) signal. The transistors and the rest of the
discrete components form a simple two-stage amplifier to drive a small 8Q speaker.

1Credit to Tom W. Geocaris.

9.4. Music Lab 91

Referring to the schematic drawings as shown in Figs. 9.6 and 9.7, the module
ROM64W stores a (low fidelity) discretized “sine” wave. The content of the module is
initialized by using the Xilinx memgen utility on the data file rom64w.mem.

; rom64w.mem: A 64-word deep by 8-bit wide ROM memory.

TYPE ROM ; The memory is a ROM

DEPTH 64 ; The memory is 64 words deep
WIDTH 8 ; Each memory word is 8 bits wide

SYMBOL VIEWLOGIC PINS ; Build a VIEWLOGIC symbol with pin inputs
DATA 10#128%,
10#140%,
10#153%,
10#165%,
10#1774#,
10#188%#,
10#199%,
10#209%,
10#218%,
10#226%,
10#234#,
10#240%,
10#245%,
10#250%,
10#253%#,
10#254#,
10#255%,
10#254#,
10#253%#,
10#250%,
10#245%,
10#240%,
10#234#,
10#226%,
10#218%,
10#209%,
10#199%,
10#188%#,
10#1774#,
10#165%,
10#153%,
10#140%,
10#128%,
10#116%,
10#103%,
10#91%,
10#79%,
10#68%#,
10#574#,
10#47#,
10#38%,
10#30%,
10#22%,
10#16%,
10#11%,

92

10#6#,
10#3#,
10#2#,
10#1#,
10#2#,
10#3#,
10#6#,
10%#11#,
10#16#,
10%#22#,
10#30#,
10#38#,
10#47#,
10#57#,
10#68#,
10#79#,
10%#91#,

10#103#,

10#116#

9. Guide to Some Laboratory Experiments

A 16-bit binary counter ¢NT16 is used to scan the ROM64W module at different
rates to produce sine waves of different frequencies. The scan rate is loadable from
the PC’s keyboard via two I/O ports located at the R1 FPGA.

To load this lab synth, you do:

c:

O o0 0 0 00
vV V V V VvV Vv

:>

wir2xnf synth

xnfmerge synth music

ppr music

makebits music

makeprom -o music.mcs -u O music.bit em4003a em4002a em4003a
bd music.mcs

music

Use the PC’s keyboard to change the frequency of the sound! A very primitive
driver is included for the purpose of illustration.

#include <stdio.h>
#include <math.h>
#tdefine PORT1 0x304
#tdefine PORT2 0x305
#tdefine CLK 8000000
#tdefine BUF_SIZE 64
#define CTRL_C 0x3

main(int argc, char **argv)

{

unsigned int n;
int i;
char buf[128];

while (1) {
switch (getch())
{

9.4. Music Lab

J J .
case ’q’:
case ’w’:
case ’e’:
case ’r’:
case ’t’:

J J .
case ’y’:
case ’u’:
case ’i’:
case ’0’:

case ’'p’:
i= 9;
break;
case ’[’:
i= 10;
break;
case ’]’:
i= 11;
break;
case CTRL_C:
exit(1);
default:
continue;
}
n=floor (CLK/BUF_SIZE/ (440 .0%pow(1.0594631,1))+0.5) ;
outportb(PORT1, n & Oxff);
outportb(PORT2, (n & 0xff00) >> 8);

93

9°6 2131

(/T 199US) VOII Ty Ul uSso("qeT IOZISajuig Louonbaig

Da>
G
P LOC=P6
_DOUT4 DI N4
|
csueT D! BUF
G
e LOC=P5%9
— DOoUTS DI N5
oBUFT 1BUF |2 >
[csuFT Y
P > LoCc=Pg7 - WOC:PS
OV > $—DooTe DI N6
e e 1%
D) I oy D7
= LOC=PG5 DI NG Loepde
==t % DOUT7 R DI N7
cBUFT 1 BUF % >
oo o

@
@
@
@
w @
= =
akm e
RO
T
WAVE
COovP1l6H
CNT16 FREQRE] 15:0]

Al 15: 0]

Q 15: 0]
ak e

CTN[15: 0]

E

baccLK>
N FAD

Bl 15: 0]

Tef—

BUS=A[15: 0] ; B[15: 0]

[Re==—A

A frequency
16bi t

freqg = cl k/ (

FREQUENCY REGQ STER -

DI N 7: 0]

e

PORTS

I

FREQUENCY REGQ STER -

—— O 7: O]

PORT4

X1

i nt eger
The foll owi ng equati on
t he desired frequency.

RESET> STARTUP
o el
LOC=P10 'BUF [il :—
A —

RESET —poik ponel Nf—

CcLK

LOC=P13 Burcs

is generated by witing a
to the frequency register.

(N =

buffer_si ze*N) = 8WMhz/ (64*N)

PORT 2 (H GH BYTE)

RD8

o701 | FREQREG 15: 8]
QA 7: 0] (—

NANDZ2 B2 T

PORT 1 (LOW BYTE)

RD8

FREQREQ] 7: 0]
A 7: 0] —

is used to determ ne
Fr equency regi ster)

UC SANTA CRUZ

¥ BORG Il

&7 XILINX

Synt hesi zer Lab

PART=4002APC84- 6

UC santa Cruz/ Conputer

Engi neeri ng

Tom Geocari s
DRAVN BY:

76

i)

syuowirzedxy] A103eI0qR] 9WOG 0} OPINL)

(/2 1994G) YOI Ty ur udise(] qer Iazisejuig £ousnbal :)°6 21nd1 |

C256BCR

Qq7:0]
TC

b

L[7: 0]

C256BCR

Qq7:0]
TC

H[7: 0]

6g 7

' hyel

HL @
BUF

H2 Qo
BUF

H3 Q1
BUF

Ha Q2
BUF

H5 [eik:)
BUF

H6 Qa
BUF

H7 Qs

BUF

 15: 0]

porc 1 & XILINX

BORG I

16 Bit Counter

uUC santa Cruz /

Conput er Engi neeri ng

Tom Geocari s
DRAVWN BY:

D

qeq OIsny 6

G6

96 9. Guide to Some Laboratory Experiments

9.5 DMA Lab

This lab demonstrates transferring data from the BORG board to the PC’s mem-
ory using DMA. This lab illustrates the steps involved in

e programming the Intel 8237A-5 DMA controller on the PC,

e initiating the DMA request and transfer with the X0 controller of the BORG
board
The data to be transferred are generated by a counter in the R1 FPGA on the BORG
board. The first data byte has the value 1, the second byte is 2, and the last byte is
256.

You need:

1. a Protozone adapter card, set dip switch positions 6 and 5 of SW1 to ON to enable
DMA channel 3,

2. make sure that the 74LS367A TTL on the protozone board is not excessively noisy, use
an oscilloscope to observe the terminal count signal (TC) on the BORG board. T have

to hand-pick a good 74LS367A buffer for this lab,

3. set the BORG board to host mode, use position 4 of dip switch SW1 of the BORG
board,

4. change the BORG board controller X0 by programming X0 in the slave mode using the
Xilinx xchecker cable via J9. To set X0 to this mode:
(a) shunt jumper J24 on the right side with a plastic jumper,

(b) set position MOXO0 of dip switch SW1 to open, and
(¢) set position M1X0 of dip switch SW2 to open.

You can download the supplied bit files xOdma.bit and dmaio.mcs by using the
xchecker cable.
c:> xchecker x0dma /* download the X0 controller */

c:> bd dmaio.mcs /* program the R1 FPGA to
generate the data for the transfer */
c:> tst /* program the 8237A-5 DMA controller */

/* initiate the DMA transfer */

9.5. DMA Lab

Tek Run: 20.0MS/s Sample Trig?
I [T 1

I C L)

Q

1oy
i

H———
—

3+WWWWWWWW~WVJ vr'Wywn

B

4 PO

]
?

MZ.50us Chil J 08V 5 Aug 1994
12:24:42

ChT 4.00 h2 .00V
Ch3 4.00V Chd4 4.00V

Figure 9.8: DMA transfer timing of four consecutive bytes from the BORG
board to PC’s memory. Channel 1 is the DMA request DMAREQ signal.
Channel 2 is the IO read IOR signal. Channel 3 is the terminal count TC
signal on the ISA bus. Channel 4 is the DMA ACK DACK signal.

You should see the output:

Initialize DMA controller.

Used first half of data area.

Load counters values.

Trigger DMA transfer.
Terminal count now 80.
. Terminal count pending 80.
Terminal count has expired 8.

DMA transfers of 256 bytes completed. Hit to continue.
Used first half of data area.

0 : 1
16 : 11
32 ¢ 21
48 : 31
64 : 41
80 : b1
96 : 61

112 ¢ 71
128 : 81
144 : 91
160 : al
176 : bl
192 : c1

208 : d1i

97

98 9. Guide to Some Laboratory Experiments

224 : el
240 : f1

It means 256 bytes have been transferred from the R1 FPGA to the PC’s main memory
using DMA.

Figure 9.8 depicts the DMA transfer timing of four consecutive bytes from the
BORG board to PC’s memory. Two sheets of schematic drawings xOdma and ridma

are provided in Figs. 9.9 and 9.10, respectively to illustrate the supporting hardware
for this DMA lab.

#include <stdio.h>
#include <dos.h>
/*
DMATST.C: DMA transfer from R1 Xilinx FPGA to PC memory

Mostly from the protozone manual Prof El Gamal Stanford University
Modified by Pak K. Chan for the BORG II protoboard 7/15/94

Supporting hardware in the Protozone board: DMA channel 3
make sure that your PC is not using this channel,
otherwise this demo may crash your system
use an oscilloscope to probe the DACK on the borg board
to be sure

Supporting hardware in the BORG board:
X0 with DMA xOdma.bit
R1 with DMA rl1.bit
all four chips with DMA dmaio.mcs

Port 0x304 a write triggers DMA transfer from R1’s counter to PC’s memory

compile with: tcc -etst dmatst.c dmaini.asm

*/

#tdefine DSIZE 256 /* data set size for DMA transfer */
#define INC 16

/* public variables defined in assembly code dmaini.asm */

extern unsigned char dbeg[DSIZE];
extern unsigned char dmid[DSIZE];
extern unsigned int usebeg;

#tdefine RESETPORT 0x303
#define DMAPORT 0x304

extern int dmainit();
main()
{
unsigned int i;
unsigned char tc;

166 2In3r

a qe1 vINd

I U31s9

VO 1[[013T00 (X U

XO Controll er

Wi

t h DVA

N

[B

[

c

D

Bl OR
RANMSEL

From PC

AND2

I SA

o OBUF

‘Lg& ICLKOUT) - PVRDWA> —esr =
! Ay

STARTUP

ars @
@

after

orz2

shared pin
during configuration:
confi gurati on

VBUF —pax ooen |-
RAMPADS
BDO [BOO BPU| RAMDO
PAD BD1 BP1|
BD2 BP2|
FasT IBD3 BP3|
BD4 BP4
PAD BD5 AV BPS
IBD6 BP6|
FasT BD7 BP7|
] L
b3
i di rect i onal g
RANDO _[RA
IRAML c
IRANVE £
IRANB o
IRANY -
RANG L
RDY IRANMB ~
I NTPC RAM? o
DO M F
D1 co| BPO
D2 o1)
D3 Yol T
D4 s g
D5 x| o4
D6 5| 0
o7 s3]
RO o7| ~
IR1 -

Bl OW

TDO of
access

ot hers
thru PORTC

I NTPC i s|

PAD

sdge sensitive

I NTPC>

o S—a o>——>—u
G5 —a G S5 —a &

From Xi li

nx

| BUF 1

| BUF

| BUF

AND2 OBUF
UC SANTA CRUZ
BORG I XILINX
X0 BORG |1 4K BOARD CONTROLLER
.

Top- Level Di agram

PART=4003APGl120- 6 Sheet 1/8
ST BAL9> U BA1D © 1 BUF SWLo
April 17, 1993
UG 28, 993
FAST 1 BUF BUF omdi i ot he DAGK <1 l:”B“UEM e A July 117, leQ\t/‘l REV2 DRAVWN BY: Pak K. Chan
A [B c D

66

Qe T VINd

66

YDA 1Y Ul uSse "qe VIN(:01°6 2181

B

[

c

(el

LOC=P50 + FDRD RDY- DMA RDY- DMvA> RESET> STARTUP
1 ow o IS SN FAD L
POV~ e L~ Loc=P70 D
& @LEQ o ST e g i &
| BUF RD Ad |—
oR2 —PCLK DONEI N f—
Loc=P51 o
I OR 1oR
| OR> ’—{>o
PAD l’> 1NV
1 BUF G\I?D
voo
C256BCR 4. o
fos] DoUTO
q 7: 0] l’> =
AO R TC|— SUF
AO>
N a or cE @ DOoUTL
PAD ,\
oc=pP83 > > .
1 BUF BUF
AL> Al X74- 139 BUFGs @ otz
N PORT4 +.
o z: 0—5. o] S oours
PORT6 +.
weBp—— — »

@B

Do LOC=P71 o
OBUFT I BUF CBUET
D1> LOC=P69 1 DouTs g
|
OBUFT I BUF OCBUFT
o= LOC=P67 p
OBUFT | BUF OBUFT
[~ LOC=P65 pg DoUT?7
|
OBUFT | BUF OBUFT

D7>

| BUF

LOC=P59 g

I BUF

| BUF

LOC=P56

| BUF

I ncr enent

DIVA

Tr ansf er

count er
1/ O read
cont ent of

every

count er

to PC s nenbry data segnent

UC SANTA CRUZ

BORG I

7 XILNX

for DWVA Lab

R1 i n BORG board

PART=4002APC84- 6

July 28, 1994

pravw By: Pak K. Chan

o

00T

syuowiizedxyy A10jeIOqRT 9WOG O} OPINL) "6

9.5. DMA Lab 101

/* initialize the DMA controller - dmainit() in assembly language */
setcbrk(1);

printf("Initialize DMA controller.\n");
i = dmainit();
if (usebeg) {
printf('"Used first half of data area.\n");
} else
printf ('"Used second half of data area.\n'");

printf('"Load counters values.\n");
outportb (RESETPORT, 0);
outportb(RESETPORT, O0xff);

printf ("Trigger DMA transfer.\n");
outportb (DMAPORT, Oxff); /* send a 1 to request for DMA */

/* check terminal count of DMAC bit 3 of status register */
/* note: status register is destructive read */

tc = inportb(8);

printf (" Terminal count now %3x.\n", tc);

while (((tc=inportb(8)) & 0x08) !'= 0x08){

printf(" . Terminal count pending %3x.\n", tc);

/* if you see this, it means trouble */
}
printf (" Terminal count has expired %3x.\n", tc);
outportb(0x0a, 0x07); /# mask (disable) DMA Channel 3 */
putchar(’\n’);

printf ("DMA transfers of %d bytes completed. Hit to continue.\n'",DSIZE);
getchar();

if (usebeg) {
printf('"Used first half of data area.\n");
for(i = 0; i < DSIZE; i+= INC)
printf (" %3d : %2x\n", i, dbegl[il);
} else {
printf ('"Used second half of data area.\n'");
for(i = 0; i < DSIZE; i+= INC)
printf(" %3d : %2x\n", i, dmid[i]);

102

; DMAINT.ASM
Module to initalize DMA controller and make sure

9. Guide to Some Laboratory Experiments

that the segment register and offset are corrected

such that only a single DMA transfer is needed even
if the data area cross the 64K segment boundary

Originated from the Protozone manual,
Professor E1 Gamal, Stanford University

use Turbo Assembler Version 1.0
and link to turbo C main module dmatst.c

.MODEL
.STACK
dmactl EQU
dmapage EQU
dhalf EQU
dval EQU
tcl EQU
tch EQU
.DATA
dbeg DB 2
dmid DB 2
usebeg DW 1
PUBLIC
PUBLIC
PUBLIC
PUBLIC
.CODE

dmainit PROC

mov
mov
rol

mov
and
sub
add
jnc
inc

nocarry:

cmp
jle
mov
mov
mov
rol

small, c

0
80h
2565

65535 - dhalf ;
dhalf AND 255 ;

dhalf / 256

56 DUP (0)
56 DUP (0)

dbeg
dmid
usebeg
dmainit

ax, 0data

cl, 4

ax, cl
dx, ax
dl, OFh
al, dl
ax, OFFSET dbeg;
nocarry
dx

ax, dval
destok
usebeg, 0
bx, @data
cl, 4

bx, cl

Base of DMA controller 1 port space
Base of DMA page register space
Size of desired data area is half
the size of the allocated block

one less than the number of bytes
transfer 7

64K - Base count

Data Segment

beginning of reserved data area
midway thru reserved data area

external variable accessible from C program
external variable
external variable

get the value of the data segment register

rotate by 4 bits

; save it
; keep the lower nibble in dx
; kill the lower nibble in ax

add offset of the data area

add one to dx if carry

compare ax with 64K - Base count

go ahead if it is smaller

else set dok = 0

get the value of the data segment register

rotate the bits so that the 4 highest
bits are now the 4 lowest bits

9.6. Boundary Scan Lab

mov
and
inc
and
mov
add

destok:
out
mov
shr
out

mov
out

out
mov
out
mov
out
mov
out
mov
out
ret

ENDP

END

dx, bx

dx, 000Fh

dx

bx, OFFFOh

ax, OFFSET dmid
ax, bx

dmactl+6, al
cl, 8
ax, cl
dmactl+6, al

al, 57h
dmactl+11, al

dmactl+12, al
al, tcl
dmactl+7, al
al, tch
dmactl+7, al
al, dl
dmapage+2, al
al, 3

103

copy the value into dx
keep only the lower 4 bits in dx
increment

; kill the low 4 bits in bx

get the offset of the data area
add offset and bx

AX contains the base address - send
the low half followed by the high half

; to the appropriate port

set the desired mode of the DMA controller

clear the byte pointer bit
set the terminal count
According to TCL and TCH
will be transferred

777 bytes

set DMA page register

dmactl+10, al ; unmask the channel

9.6 Boundary Scan Lab

I’ll fill in this part in the second revision of this user’s guide.

9.7 Possible Term Project Description

A little bit of history, I have given this Dr. Mario design as a term project in
Advanced Logic Design in Spring 1993. Four out of six groups (two per group) of
students finished their projects using the older XC3000 BORG board. A project
description is given on the next page.

104 9. Guide to Some Laboratory Experiments

University of California, Santa Cruz, Fall ‘97 CMPE 126 P.K.Chan, Oct, 1997

Project Description Part 11
CMPE 126: Advanced Logic Design

Dg. MARIO ? Digital Machine (due Dec 4, 1997)
This is part two of the project description.

9.8 Initialization of the Bottle

The host program (PC) writes 8-bit words one at a time to an output port at I/O
address 0x0304. There is a one-bit RDY’ flag (the least-significant bit) at the outport
port of I/O address location 0x0305. You can use a simple FSM in the R1 FPGA to
capture TWO successive words from the PC:

wordl = DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO
wordO = DA7 DA6 DA5 DA4 DA3 DA2 DA1 DAO

which represent the encoding of the initial viruses. There will be no more than 8
viruses at any levels, and the viruses are always located at the bottom of the bottle.
Here is the virus encoding:

Bitl bitO0 wvirus

0 0 S
0 1 A
1 0 L
1 1 (no virus)

For example, an initial bottle status such as:
SSA LLSS

from left to right (column 0 to 7), they will be encoded as:
Position 01 2 3 4 5 6 7

1}
(@]
(@]
(@]

11 1 0 0 (bit 1)
11 0 0 0 0 (bit 0)

wordil

1}
(@]
(@]

wordO

The PC writes the first word word0O and then asserts RDY low, the FSM machine
reads the outport port and saves the word in a bank of 8-bit registers. The PC waits
for roughly 1ms, then deasserts RDY to high. It then sends out the second word
wordl and then asserts RDY low. The PC waits for roughly 1ms, then deasserts
RDY to high. The FSM machine reads the outport port and saves the second word in
another bank of 8-bit registers. The RDY signal then becomes the YourMove’ signal
in the game.

2D|3<. MARIO is a trademark of Nintendo of America Inc.

9.9. Initialization of the Dr. Mario Machine

9.8.1 Pill encodings
There are six distinct pills, and their encodings are:

Bit Bit Bit

9.9 Initialization of the Dr. Mario Machine

The host (driver) provides a global reset signal that resets all the flip-flops before
each round of the game.

9.10 Handshake and Timing

After initialization and sending the viruses to the ports, the PC communicates
with the DR. MARIO Machine using the following protocol.

PS: your machine is required to register the laterals (column location) and pill
rotation (0, 1, 2, or 3 clockwise increment).

The port assignments in the R1 FPGA are:

I/0 Address: 0x300 Function: used by XO
I/0 Address: 0x301 Function: used by XO
I/0 Address: 0x302 Function: used by XO

I/0 Address: 0x303 Function: Global Reset- used by XO
I/0 Address: 0x304 (from PC to Mario machine)

Bit 7 6 5 4 3 2 1 0

Bit 7 6 5 4 3 2 1 0
| Pill Typel RDY’/ |
| Bit | I
| 2 1 0 | YourMovel

105

106 9. Guide to Some Laboratory Experiments

I/0 Address: 0x306 (from Dr. Mario machine to PC)

Bit 7T 6 5 4 3 2 1 0

| Rot | Lateral | |
[ation| | |
| 1 012 1 0| MoveReadyl

bdsyn/verify viewdraw/viewsim

evaluation function

FSM
Design debug report
D ettt e >
11/18 11/20 11/25 11/27 12/2 12/4 12/11

This is part one of the project description. There will be one more handout which
will specify the interface and hardware protocols.

9.11 Project

You will devise strategies to play DR;. MARIO and implement one of the
strategy with two Xilinx XC4003A-PC84s, and an SK-byte SRAM. Your design will
interface with a “host” computer that will be responsible for keeping track of the Dr.
Mario screen and your machine’s score. The only information provided by the host
computer will be the next pill.

DR. MARIO is a 2-dimensional color matching game in which the doctor
(player) must consume the pills (and possibly viruses) before the pills destroy the
patient. Figure 9.11 shows the DR. MARIO “pill bottle”. There are nine different
pills, as shown in Figure 9.12, which are presented one at a time at the top of the
bottle. The two halves of the capsules are colored Scarlet, Aquamarine, or Liemon.3
(Actually, there are only six different pills but we are counting the mirror images of
the multi-colored pills as different pills.) The doctor must choose how to place the
pill within the rectangular 8x 16 bottle. The pill can be rotated in units of 90 degrees

?To avoid poisoning color-blind patients the pills are also labeled with S’s, Avsand Los.

9.12. Design of a Dr. Mario player

and the pill can be moved left or right to the desired position. The pill then drops
to the bottom of the bottle or until it is stopped by other pills already in the bottle.
Figure 9.13 shows the bottle after several pills have been placed and the next pill at

the top of the bottle is .

If the doctor succeeds in placing the pill so that there is a rectangular grid region
of size 1 x n where n > 4 of the same color, then this region vanishes. Note that this
may cause the other remaining halves of the pills to fall further down in the bottle,
and when they fall, other regions may vanish, and so on. The game continues until
no more pills can be placed because the two grid squares in the center columns and
the top row are occupied.

Figure 9.14 illustrates an example. Suppose the doctor decides to place the
pill in the sixth column (from the left) after rotating it so that the A is at the
bottom. The two regions which vanish are the one in row 8 fills with S’s and the
one in column 6 filled with A’s. But causes the pill in row 9 to fall down one
row creating a vertical region filled with L’s in column 3. After removing these 4
Ls, their other halves fall down in columns 2 and 4 as illustrated in the third bottle.
Nothing interesting happens in column 2, but in column 4 there is now a vertical
region of S’s. There is also a horizontal region of S’s in row 2. This brings out the
point that one side of a capsule may create both horizontal and vertical regions. After
removing these two regions we end up with the fourth bottle in Figure 9.14.

One last detail that need to be mentioned is that the bottle might not be empty
to begin with. There may be some viruses clinging around at different points. These
viral beats look exactly like half-pills and will vanish in the same manner as the pills.

9.12 Design of a Dr. Mario player

As your term project in cmpel26, design and debug a digital-DR. MARIO -
player machine using two Xilinx XC4003A-PC84 and an 8K-byte RAM.

To know and understand the game, a copy of the game is in the Athena cmpel126
directory called Mario. The program is called bugs and all the source codes are there.
The controls are: h for left, 1 for right, s for clockwise rotate, a for counter-clockwise
rotate, j for dropping the pill down, and q for quitting the game.

9.13 The game environment

Your machine will interface to a host PC that present the pills one at a time. 1
shall write (provide) the host PC driver. You are also allowed to an 8K-byte RAM as
part of your machine. The host maintains the screen, informs the player on the next
pill type, processes the player’s decision, keeps track of the state of the bucket and
the score.

9.14 What will be finalized later?

I reserve the right to modify:

107

108 9. Guide to Some Laboratory Experiments

Viruses: whether or not there will be viruses and how they will be given.
Scoring: how the player will be scored.
Interface: protocol with the host PC.

System clock rate: of your machine. The host and your machine may be driven by
separate clocks.

I’ll be responsible for building the host. When the host is completed in the sixth or

seventh week, all the above items will be finalized.

9.15 Evaluation

There will be a (single elimination?) tournament on Dec 4, 1997 in AS 240 (2:00-
4:00pm). Also, the quality of your design will be evaluated based on

a. Your score.

b. the number of XC4000 .LCAs used, and the number of CLBs and IOBs used.

c. the propagation delay along the critical path(s), in other words, the maximum
clock rate of your design.

d. estimate your machine’s scores at different clock rates (8 MHz, 16 MHz, and 20
MHz).

e. the documentation of your design.

9.16 Your responsibilities

a. Devise and test at least two basic strategies with a (behavioral) high-level
simulation. To examine how good your strategy is: code your strategy in C
and integrated into the DR. MARIO source code that is supplied to you.

DUE BY Nov 4, 1997 |

Be prepared to present your strategy(ies) to the class.

There is always the danger that the high-level language constructs in C are too
powerful and may not be implemented efficiently or directly in hardware. Just
keep in mind that your strategy has to be realized in Xilinx FGPA, eventually.
Estimate the number of CLBs that is required by your strategy(ies).

b. Work individually. You MUST have a complete hardware prototype of the project
by Dec 4, 1997.

c. Submit a good quality final report documenting you strategy, design, schematic
diagrams, timing diagrams, test plans, simulation results, design files (.1ca and
viewlogic), and your (logic synthesis) .eqn and .bds files on Athena. DUE BY
Dec 11, 1997, 5:00pm. Please place and submit the design files on a floppy disk.

d. Realize your design either with the BORG prototyping board.

9.17. Suggestion

9.17 Suggestion

When devising your strategy to solve this problem, keep the implementation con-
straints in mind. Students have a tendency to come up with “interesting” strategies
which are not easily implementable in hardware. Please start with a VERY simple
strategy first, and estimate the hardware resources needed to realize it. You can
improve the game strategy later on when you have a better understandings of the
constraints and the game.

A successful project requires good planning, step by step documentation, and
innovation. Procrastination leads to disaster. Start working on it now.

9.18 Initialization of the Bottle

Like your midterm, an XT/PC writes 8-bit words one at a time to an output
port at address 0x0304. There is a one-bit RDY flag (the least-significant bit) at
the outport port at address 0x0305. Your FSM in the R1 FPGA captures TWO
successive words from the PC.

wordB = DB7Y DB6 DB5 DB4 DB3 DB2 DB1 DBO
DA7 DA6 DAS5 DA4 DA3 DA2 DA1 DAO

wordA

which represent the encoding of 8 initial viruses. Here is the virus encoding:

Bit
10
00 S
01 A
10 L

For example, an initial bottle status such as:
SSAALLSS

from left to right (column 0 to 7), they will be encoded as:
Position 01 2 3 4 5 6 7

wordB=0 0 0 O 1 1 O O
wordA

1]
o
o
=
=
o
o
o
o

The PC writes the first word wordA and then asserts RDY low, the FSM machine
reads the outport port and saves the word in a bank of 8-bit registers. The PC waits
for roughly 1ms, then deasserts RDY to high. It then sends out the second word
wordB and then asserts RDY low. The PC waits for roughly 1ms, then deasserts
RDY to high. The FSM machine reads the outport port and saves the second word in
another bank of 8-bit registers. The RDY signal then becomes the YourMove’ signal
in the game.

109

110 9. Guide to Some Laboratory Experiments

9.18.1 Pill encodings

There are six distinct pills, so their encodings are:
Bit Bit Bit

2 1 0
AA 0 0 0
LL 0 0 1
SS 0 1 0
AL 0 1 1
AS 1 0 0
LS 1 0 1

9.19 Initialization of the Dr. Mario Machine

The host (driver) provides a global reset signal that resets all the flip-flops before
each round of the game.

9.20 Handshake and Timing

After initialization and sending the viruses to the ports, the PC communicates
with the DR. MARIO Machine using the following protocol.

PS. your machine is required to register the laterals and pill rotation.
The port assignments in the R1 FPGA are:

I/0 Address: 0x300 Function: used by XO
I/0 Address: 0x301 Function: used by XO
I/0 Address: 0x302 Function: used by XO

I/0 Address: 0x303 Function: Global Reset- used by XO
I/0 Address: 0x304 (from PC to Mario machine)

Bit 7 6 5 4 3 2 1 0

Bit 7 6 5 4 3 2 1 0
| Pill Typel RDY/ |
| Bit | I
| 2 1 0 | YourMovel

9.20. Handshake and Timing 111

I/0 Address: 0x306 (from machine to PC)

Bit 7T 6 5 4 3 2 1 0

| Rot | Lateral | |
[ation| | |
| 1 012 1 0| MoveReadyl

112 9. Guide to Some Laboratory Experiments

Figure 9.11: DR.. MLARIO (8 x 16) bottle.

@a ado @&
@p @ @9

Figure 9.12: DR.. MARIO pills.

9.20. Handshake and Timing

Figure 9.13: A typical game state in DF. MARIO .

XD

Figure 9.14: A typical game state in DRK. MARIO

113

114

Host PC

~_Pill Rotation

9. Guide to Some Laboratory Experiments

Your_move’

RESET’

Pill Type

Dr.Mario Machine CLOCK

SMhz

3 —
Pill Lateral k

7 \
/
7 \

Move ready’

=

Think Time (5ms)_ \

Your_move’ «
P

Pill Type ><

Move ready’

Pill_Rotation

Pill_Lateral

X

Figure 9.15: Host/ DR. MARIO Machine Handshake, after initialization

(Tentative 1) .

10. Maze Runner project report

CMPE126 — Advanced Logic Design
Maze Runner
Spring 1995 UC Santa Cruz
Instructor: Pak K. Chan
Prepared by: Ali Ersheid (ersheido@cats)
Hernan Saab (saab@cats)
Due Date: June 15, 1995

Abstract The Maze Runner is an FPGA-based design that solves mazes running
on a PC and interacting with the XC4000 BORG board. This report documents
the algorithm used to solve the mazes, the implementation, and the complete design
specifications.

10.1 Maze Runner Specifications

The Maze Runner machine is implemented using the XC4000 BORG board. It
solves simply connected and multi-connected mazes created randomly by a PC-based
host program. After the Maze Runner solves each maze the first time and finds its
exit, it asks to be teleported in order to solve the maze one more time. As a rule,
solving the maze the second times takes less steps than the first time.

10.2 Hardware Requirement

The Maze Runner Machine was implemented using three of the chips on the

XC4000 BORG board. The following table shows the chips used:

Position Typex* Purpose

R1 40024 Port Controller.
X1 40034 State Machine.

R2 40024 Memory Controller.
X2 40034 Not used.

* The Xilinx 4002A can been used for all chips.

In addition, an 8K-byte SRAM was also used to keep track of the back pointers
and for solving the maze again after discovering it.

10.3 Host Program

The host program is written by Professor Pak Chan in C. It interacts with the
BORG board and provides the Maze Runner with the following signals: Ilight signals
that inform that Maze Runner of the status of its surroundings:

115

116 10. Maze Runner project report

» W o

1
e
7

o ;N

A 1 indicates that the position is a wall and a 0 indicates that it is a floor or the exit.
The Maze Runner uses four of these signals only (North, South, East, and West).
A signal to indicate that the program is ready for your next move. A signal that
indicates that you are on the exit. A global reset signal.

The Maze Runner provides the following signals to the host program: Two signals
to indicate the direction of the movement (North: 00, South: 01, West: 10, East: 11).
A signal indicating that the move signals are ready. A signal asking to be teleported.

10.4 Design and Implementation

The Maze Runner was designed using a variation of a depth-first search algorithm
to find the exit. While discovering it, an image of the maze is mapped into the first

2K bytes of the SRAM.

10.4.1 Algorithm

The algorithm used to solve the maze is a depth-first search. The search algorithm
works as follows: Three bits of memory are used for each cell to indicate whether the
cell is visited, blocked, or is a backpointer to another cell. When the hero lands on
the first cell, that cell is initialized to 100 to indicate that it has been visited. The
hero checks its surrounding cells and moves into the first unvisited cell it finds. In
doing the checking, the wall signals from the host program are checked first. If there
are now walls, the memory is checked. This minimizes unnecessary memory access.
When the hero moves into a new cell, that cell is marked depending on what position
the hero came from according to the following code:

100 - North
101 - South
110 - West
111 - East

The hero continues as in steps 2 and 3 until it finds the exit or it reaches a dead-
end. If a dead-end is reached, the first two bits of the cell value are used as back
pointers after inverting the first bit. Once a cell belongs to a dead-end, it is marked
with the code 011 indicating that it is blocked. If the hero finds the exit, it asks to
be teleported. At this point, the Maze Runner runs in a different mode in which it
reads the pointers to the exit directly from memory. This algorithm does not find the
shortest path, but one that is short.

10.4.2 Implementation

The design for the Maze Runner was implemented using two XC4002A and one
XC4003A FPGAs. The same design could have been implement using three 4002A
FPGAs or one 4003A and one 4002A FPGAs. The next three sections describe the
details of the design for each FPGA.

10.4. Design and Implementation

10.4.3 R1: The I/O Port

Since R1 is the only FPGA on the BORG board that is directly connected to the
PC data bus, it had to be used for communicating with the PC. The I/O Port design
is very simple and does not require much work. As can be seen in the MAZEPORT
diagram on the following page, only the necessary signals are read off of the PC
data bus. The I/O port reads from two different addresses from the PC. The first
is labeled PORTJ and it reads the two signals Your Move and On Exit, which are
indications from the PC that it is the Maze Runner’s turn to move and the hero is
on the exit, respectively. The second address is labeled PORTK and it reads the
eight signals corresponding to the surrounding cells’ status. Note that even though
the PC host program provides eight signals, the Maze Runner only reads four signals
corresponding to North, South, East, and West. As for writing data to the PC host
program, the Maze Runner sends four bits which are Move Ready, Move0, Movel,
and Teleport. These signals communicate to the host program that the data for the
next move is ready, the first bit of the move , the second bit of the move, and the
teleport request, respectively. The I/O Port schematic diagram is shown in Fig. 10.1.

10.4.4 X1: The Brain

The choice for placing the brain of the Maze Runner in the X1 FPGA was made
because X1 had to be used to connect the I/O Port with the Memory Controller
FPGAs. Instead of just using it as a routing chip, it was used as the brain at the
same time. The BRAIN FPGA consists of the main FSM driving the Maze Runner
machine, I/O buffers and pads, and some logic that is used primarily as an edge
catcher which catches a 001 instead of 01. This logic ensures a true active signal
and avoids any noise signals. The FSM of the BRAIN is called the BIGONE and it
consists of the following parts:

1. Finder Box (FNDRBOX)

Mover

Memory Controller Signals (TOMEM)
Selector

Status

. Direction Processing Logic
The BRAIN and BIGONE schematic diagrams are shown in Figures 10.2 and 10.3.

S O AW N

10.4.5 Finder Box

The Finder Box is simply the FFSM that is used to find the exit and to control
the various instructions necessary to initialize the memory, move the hero, detect the
exit, and teleport. Inside the Finder Box, the Finder part is the combinational logic
for the state machine. The mustang description for the Finder is as follows:

.19
.0 14
.8 b

-—1-——- ADD ADD 00-10010001-10

117

10T 9Ingr

110d O/1

ST

D
RESET_| STARTUP
SAD N RESET >O GsR @l
A0 X74- 139 L~
PAD N Loc=P10 I BUF I NV —|Crs @ —
L~ DOBD—~ porTI A —
Loc=pPs3 ™ I BUF 2‘; asph —bCLK DONE! Nf—
PAD 1’> @eBp——
ENB
Loc=P81 o I BUF ceB PR
PAD I
1> v FD YOURMOVE
Loc=Ps2 5 I BUF N
FAD ~ N V_OLGéBl o Q—{ >0 > FAD
oo |lé|: N —C v cBUR Loc=P62
X1 OR
PAD I
l/
I BUF
X1 ow
FD
Loc=P50 1 BUF FOUND
D Q-—{>O 1’> PAD
Y —c [N\ CBUF LOC=P78
MOVEREADY
FAD I
l/
Loc=P40 I BUF
FD
MOVEO NORTH
PAD 1’> & D Q| 1’> PAD
Loc=P18 I BUF CBUET - (FADS 1 BUF *—C cBUF Loc=P57
»ﬁ\ Loc=P67 FD
PAD MOVEL N B2 VEST
L~ 5 o Q l,> PAD
Bu *—C cBUF Loc=P60
FD
EAST
Loc=Pa4 I BUF CBUFT I BUF o < 1’> i
B4 > *—cC cBUF Loc=Pe6
I BUF FD "
PAD B6 1’> [>) Q 1’> PAD
Loc=Ps8 I BUF —c OBUF Loc=Pe8
1 O Port
Maze Runner
[MAZEPORT]
For DRAWN BY: |
CE 126| A. Ersheid & H Saab
A s c [o

110daa gosford Jeuunyy ezep\y 0l

¢’0T 2Im3rg

q:

‘urelr

A B c
s STARTUP ';T BUSY_I
PAD) RESET_I {> >Q GSR @ ~J i
Loc=p27
Loc=P10 1 BUF Y —crs B — 1 BUF e
A — 1 _ PAD
—pCLK DONEI Nf— ~J
PAD__CLK_ I N Loc=P14
L N CTR_MODE_O
Loc=P13 BUFGP 1> PAD
oBUF Loc=P62
PAD NORTHL| IS N neceTRo
L ‘ cLK 1> PAD
Loc=P28 1 BUF
oBUF Loc=P72
PAD SOUTH_I N NORTH T rwo
L~ SOUTH [SSPT. I _ PAD
Loc=P18 I BUF 1>
EAST feast 1 _pe oc=
PAD EAST_| N - oBUF L P60
1> WVEST st 1 _pc /EN_O
= IS PAD
TELEPORT __lreercr o re =
o - o oBUF o Loc=peo
LOoC=P26 | BUF » e IS _ PAD
kv e 7_1 _pc |
PAD TELEPORT_O 1 fnsver_reany_o pe oBUF Loc=P19
~J g Ubx_o
LOC=P40 oBUF == | PAD
oo o Five-m cone py= ey o Lo=P23
v
I - PAD
NAND3 B2 L~
oBUF Loc=P37
rescrore| __RESET_O o
caowo .
Il> PAD
cauE Loc=P39
@ © D2_1
<l[PAD
1 BUF Loc=P4
D1l
YOURMOVE_I FD b < PAD
8 \/ 8 \Vi 8 V4 ~
G ° 9 ’ ¢ ¢ ¢ . Loo=pas
Loc=P24 1 BUF v —F v
<l‘ Do | FAD
D2_o D1_o Do_o
’ FD LOC=P47
>o o < >o— N RESTCTR O (an
o &S Y |
A oBUF Loc=Pe
FD §
OoN_EXI T_I
PAD L = 1’> o Q| R LX-pes L-pa2
Loc=P3 I BUF —c X"—lNX
oBUF
AD__ANSVER READY._O 1
Loc=Pas oa\lup Maze Brain Controller
SAD_ MOVEL O Q Maze Runner
Loc=P6S oBUF
SAD__MOVEO_O 1
< S :
Loc=P67 A. Ersheid & H Saab
A [B c [D

uonyeyuswerduwiy pue udse(] 'y O]

61T

€01 2Insry

d

*9UOJI

TELEPORT
[

o PC

HERE| GOES THE TC FROM

DY COMES FROM THE | O DEVI CE

[THE TWDO UD COUNTERS | N CTR MODE

MRDY_|
—a

TC |

[YOUR_MOVE SI GNAL COMS FROM PC

u
YOUR _MOVE | _PC
VOVELPog

u

ON_EXI T _COVES FROM PC OoN EXIT_I_PC
fce @
C8BCR RESETEl G
Ma- 1 R <
R @ - RSTACT o] CcTR om
g NORTH | _PC Do cE @ o o ocrre Bl a:rREio.
SOUTH I _PC o1 Tel e Rw o
WVEST_I_PC e e EVEM O
1 o2 WALL a
mEAST L _PC D3 o] ww 2crren| 2CTREN
o oar ronm] MOVVEM
L o R ANSWER_READY_O _PC
so D2_1 = - a
st - cors e | BAGKIVE
aro ancans CHTOFOUND
— TELEPORT_O _PC
< “esteote ve e
R | Wi TEBLKI‘L
ci
WRI TE_O
%0 status
T D1 DO = Acka T frreo
l T s @ _og
aur @_o
0 visiTeD Pl L
b [] — L aro @_o
PO | L
Do_t a0 tomem
T]
J
o
uf
" Lot 4
PCL_O,
Sl PCO_O,
! a
re P o] __CEX_O
in2 from men 1%
e wx__UDX_O
g0l fromme —]
D N0 from mem T | CEY_ =
w|__UDY_O
nover —
[BI GONE]

For DRAVW BY:
CE 126| A. Ersheid & H Saab

0cl

110daa gosford Jeuunyy ezep\y 0l

10.4. Design and Implementation

—-1-1--1-
--0-1--0-
--0-1--1-
__1_0____
--0-0---0
--0-0---1

ADD
START
WAITST
WAITST
INWAIT
WAITIN
WAITIN
WAITIN
A1

A1

A1
INC1
R1

R1
WAITR1
WAITR1
WAITR1
WAITR1
WAITR1
WAITR1
Wi

Wi
WAITW1
WAITW1
WAITW1
FOUND
FOUND
WAITMV
WAITMV
WAITMV
WAITMV
WAIT
WAITMV
WAITMV

START
WAITST
WAITST
In

In

In
WAITIN
A1
INC1
R1

R1

A1
WAITR1
WAITR1
WAITR1
INC1
Wi
WAITMV
INC1
Wi
WAITW1
WAITW1
WAITW1
WAITW1
WAITMV
FOUND
A1
WAITMV
WAITMV
A1

A1
MVWAITMV
FOUND
A1

00-10010001-00
10000010001100
10010010001100
11010010001000
10000010101-00
11110010101-00
10010010101-00
11-1001-001-00
00-10010001-00
00-10010001-00
00-10010001-00
00-11010001-00
00100110001-00
00100010001-00
00110010001-00
00110111001-00
00110010001-00
00110010001-00
00110111001-00
00110010001000
00000010001000
00000010001100
00010010001000
00010010001100
00-10010001000
00-10010010-11
00-10010001-11
00-10000001-00
00-10001001-00
00-10010001-01
00-10111001-01
00-10010001-01
00-10010001-01
00-10010001-01

The state diagram is shown on the next page.

A PLA file was created from the above description using the one-hot assignment
option in mustang as follows:

mustang -1 finder > finder.pla

The PLA description file was modified to change the names of 1/O signals and the

states. The resulting PLA description looks like this:

L1022
.0 27

.i1b MRDY TC YOUR_MOVE WALL ON_EXIT MVSTD BACKPTS TC2 FOUND PS12

PS11 PS10 PS9 PS8 PS7 PS6 PS5 PS4 PS3 PS2 PS1 PSO
.ob NS12 NS11 NS10 NS9 NS8 NS7 NS6 NS5 NS4 NS3 NS2 NS1 NSO

CTR_MODE BIGCTRE RW EMEM 2CTREN MOVMEM ANSWER_READY BACKMEM

WRITE_O CHTOFOUND TELEPORT WRITEBLKD RST ALL RST2CTR

1000000000000
0100000000000

00-10010001-10
00-10010001-00

121

--0-0---0
--0-0---1

0010000000000
0010000000000
0001000000000
0000100000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000100000
0000010000000
0000000010000
0000000010000
0000000010000
0000001000000
0000000001000
0000000000100
0000001000000
0000000001000
0000000000010
0000000000010
0000000000010
0000000000010
0000000000100
0000000000001
0000010000000
0000000000100
0000000000100
0000010000000
0000010000000
0000000000100
0000000000001
0000010000000

10. Maze Runner project report

10000010001100
10010010001100
11010010001000
10000010101-00
11110010101-00
10010010101-00
11-1001-001-00
00-10010001-00
00-10010001-00
00-10010001-00
00-11010001-00
00100110001-00
00100010001-00
00110010001-00
00110111001-00
00110010001-00
00110010001-00
00110111001-00
00110010001000
00000010001000
00000010001100
00010010001000
00010010001100
00-10010001000
00-10010010-11
00-10010001-11
00-10000001-00
00-10001001-00
00-10010001-01
00-10111001-01
00-10010001-01
00-10010001-01
00-10010001-01

To create logic equations, the above file was imported into misll. The entire file was
collapsed using the clp command and an equation file was exported to an eqn file.
The eqn file was then modified manually to make some of the obvious logic reductions.
The eqn file was brought into misll and the boolean script was run on it to produce
the following eqn description file:
INORDER = MRDY TC YOUR_MOVE WALL ON_EXIT MVSTD BACKPTS TC2 FOUND PS12 PS11 PS10
PS9 PS8 PS7 PS6 PSb PS4 PS3 PS2 PS1 PSO;
OUTORDER = NS12 NS11 NS10 NS9 NS8 NS7 NS6 NS5 NS4 NS3 NS2 NS1 NSO CTR_MODE
BIGCTRE RW EMEM 2CTREN MOVMEM ANSWER_READY BACKMEM WRITE_O

CHTOFOUND TELEPORT WRITEBLKD RSTALL RST2CTR;

NS12
NS11
NS10
NS9
NS8
NS7

NS6

YOUR_MOVE*PS12;
I YOUR_MOVE#PS12;
MRDY#PS10 + PS11;

IMRDY*PS10 + [33];

MRDY#PS8 + PS9;

I'YOUR_MOVE*FOUND*PS2 + !MRDY*TC*PS8 + !YOUR_MOVE*[35] +

PS6;
WALL*!TC2%PS7 + [27];

'YOUR_MOVE#PSO +

10.4. Design and Implementation 123

NS5 = TC2%PS7 + 'WALL*PS7;

NS4 = MRDY#PS4 + PS5;

NS3 = !MVSTD*!FOUND*[34] + TC2%[34];

S2 = BACKPTS*FOUND*[34] + !'MRDY*PS1 + YOUR_MOVE*PS2;
NS1 = MRDY#PS1 + PS3;

NSO = !YOUR_MOVE#!0N_EXIT#!FOUND*PS2 + !TELEPORT;
CTR_MODE = PS8 + PS9 + PS10 + PSii1;

BIGCTRE = !MRDY#PS8 + !MRDY*PS10;

RW = [33] + PS4 + PS5;

EMEM = !'PS11%!PS9%!PS5*!PS3;

MOVMEM = !YOUR_MOVE*TC2+#[35] + !TC2%PS5 + [27];
ANSWER_READY = !PS2 + !ON_EXIT + !YOUR_MOVE;
BACKMEM = TC2*[35] + [27];

WRITE_O = !TC#PS8 + NS8;

CHTOFOUND = !TELEPORT;

TELEPORT = !PSO + !YOUR_MOVE;

WRITEBLKD = TC2#NS1 + NS10;

RSTALL = NS12 + PSO;

RST2CTR = !ON_EXIT*PS2 + !YOUR_MOVE*PS2 + PSO;
2CTREN = PS6;

[27] = MVSTD#*!TC2*!FOUND*[34] + !BACKPTS*FOUND=*[34];
[33] = 'MRDY*!TC*PS8;

[34] IMRDY*PS4 ;

[35] = ON_EXIT*PS2;

The eqn file was used to create an xnf file using eqn2xnf:
eqn2xnf -4 finder.eqn
Finally, the following two programs were run on the xnf file in order to create the
Viewdraw schematic:
xnf2wir finder
viewgen finder

The resulting schematic diagram is shown in 10.4.

10.4.6 Mover

Activates the signals necessary to move the hero in the host program and it’s
pointer in memory according to the input signals generated from the Finder FSM.
Two of the output signals PC0 and PC1 are connected directly to the host program
as the necessary move bits (move0 and movel). The four other output signals are
connected to the 5-bit and 6-bit up/down counters in the Memory Controller. Two of
the four signals are for chip enable and the other two are for choosing the appropriate
up/down signals for the counter. The Mover schematic diagram is in 10.5.

10.4.7 Memory Controller Signals

This part is designed to control the three data bits that go directly to the memory.
If the F'SM is in the initialization mode, the part deasserts the data lines; otherwise,
it generates the proper 3-bit code depending on the direction and the blocked status
of the cell. The TOMEM schematic diagram is shown in 10.6.

124 10. Maze Runner project report

10.4.8 Selector

This part consists of two muxes that choose between the pointer in memory and
the pointers in the FSM according the selector signal, which is an indication from
a counter that all the surrounding cells have been checked. The Selector Schematic
Diagram is shown in 10.7.

10.4.9 Status

This part decodes the 3-bit cell data and determines if the cell is visited or i f is
a backpointer to another cell. The status schematic diagram is in 10.8.

10.4.10 Direction Processing Logic

The 2-bit counter creates the selector signals for the 4-1 multiplexer. The purpose
of the mux is to select one surrounding cell status at a time. The 3-bit counter is
reset on every move. It’s purpose is to create the circular movement of the hero. The
Q2 signal out of the this counter is high when all of the four surrounding cells have
been checked, indicating the hero should check the memory about their status.

10.5 R2: The Memory Controller

The R2 FPGA was chosen to control the memory because it is the only chip on
the BORG board that is directly connected to the 8KB SRAM chip. The function
of the memory controller is basically to read and write data to and from the SRAM
chip. It’s design is simple. The only thing that is of concern in this design is the
timing problem. The Memory Controller is comprised of the following parts:

1. Memory 1/0 (MEMIO).

2. 5-bit up/down counter (C32BUDRD).

3. 6-bit up/down counter (C64BUDRD).

4. Counter control logic.

5. 1/0 pins, pads, buffers, and tri-state buffers.
The schematic diagram for the Memory controller is shown in 10.9.

10.5.1 Memory I/O

The Memory 1/0O part was designed using the conventional design tools mustang,
misll, and Viewdraw. The mustang description for the Memory 1/0 part is as follows:
.12
.0 5
.8 5

Inputs : /EN, R/W
Outputs: CS, WE, OE, 0B, BS

1- S0 SO0 11110

10.5. R2: The Memory Controller

N ‘ 5 = [5)
1
2
3
a
s
6
fi nder
R C\AALI\WR\ finder. 1
ISCH: ©: \ ALI\ SCH i nder . 1
1isunos 10: 22 SHEET 1 oF 1
A B c ‘ [=]

Figure 10.4: Finder.

125

*I9AOTN :G°(T 9InS3L

xom L 1>
AND2B1
oRrR2
BACKMVER——————————@ « -
AND2B1 AND2
AND2
MOVE .
uDY
X1 .
L»i: AND2
AND2B1
PCO
XOR2
PC1
> .
BUF
nover
30May95 10: 27 [SHEET 1 OF 1
A B C D E ‘ F

9¢l

110daa gosford Jeuunyy ezep\y 0l

“WRWIOT, :9°(0T 2INSL

VARl TEBLKD [}

auTt2

AND2B2

e
AND2B1 ouT1

oR2
AND2B1 ouTo
oRrR2
I NO ——|
e
AND2B1
N —
VRI TE_O —— ANDZB1
t onem
R C\ HERNAN\ W R\t omrem 1
[SCH: C: \ HERNAN\ SCH\ t orrem 1
30May95 11:51 [SHEET 1 OF 1
A B c F

£ l

Joqjoaguoyy L1owapy a9y, 2y 601

Lcl

128

10. Maze Runner project report

M- 1
CO
. T DO
D1
o < -
SE
P-4
DO Do
L ;8
D1
B D1 o u
B fEL ECTOR sE

Figure 10.7: Selector.

10.5. R2: The Memory Controller 129

A ‘ B ‘ c D E
1
X1
O W AND2B1
*—
AND2 B2
2
*—
AND2B1
AND2
DO @ ?j] AND2 3

D2 B ANDS B2) BACKPOI NTS
oRra
D1 = ANDZ2

=

pa

| OR3

st at us 6

M R C: \ HERNAN W R\ st at us. 1

ISCH: C: \ HERNAN\ SCH\ st at us. 1

30NVvay95 10: 28 [SHEET 1 OF 1

- R R S S

Figure 10.8: Status.

6°0T @In3r]

‘[o1puo) AIOWSA

LK PAD STARTUP
CLK 1NN N LK foLk ReseT
PAD - e > ’0 GSR @—
BY
> il F——>—>0— P
Loc=P13 1 BUF BUFGS Loc=P10 I BUF v —
S s s .
— PAD
PADN LEN LN /EN EN J L —BOLK DONEI Nf—
1> v WT WE_DOC=P65 >O
Loc=P80 | BUF ve| > PAD
v
FADN RW I N RwW R w 0ﬁcﬁj<-r cs_poc=P60
cg
1>] (o)
Loc=P77 | BUF
MEM O OBUFT]’> BUSY_O /pan
oBUF Loc=P14
1’> Do_o PAD
PAD 0L 1’> oBUF Loc=P81
|
Loc=P82 | BUF °©
PADN DL [N ~ DL O /pab
| 1 |
Loc=P69 1 BUF cBUF Loc=Pa3
PAD Y D21 [[oo 5o
L 12 |
LOC=P78 | BUF OBUFT | BUF [—qp o OBUF LOC=P4
Tc l’> TC O paD
FD OBUF LOC=P7
[
D Q
REsEr,cTR,lI be ADR10 o—<(PA0)
@ > — LOoC=P67
Loc=P6 I BUF o PAD)
SN e Loc=P62
LCE | Me- 1
D > anee m s
Loc=P5 1 BUF o
Loc=P61
S/ N_UD_I G
PAD N sin
1) Loc=Ps8
Loc=P3 1 BUF
ore - PAD
oMl c3 Loc=P57
PRy > »
PAD
Loc=P70 1 BUF
INCLI Loc=Ps6
> >tee
Loc=P71 1 BUF SUBTY ADRA w—P0)
o SBUFT Loc=P51
o =
A _E/ W CE | N f o) =) ADR3 3
TC @ SBUFT Loc=P50
E/ W CE [’W
Loc=ps | BUF cE o 1> PAD Menory Controll er
ADR2
] | . @ CBUFT LOC=Pa9 Maze Runner
Ewub i N\ Ew @ >
PAD V.UD | xr— PAD)
L~ or2 s " <
Loc=Po 1 BUF @ CBUFT Loc=Pag [MEMCTRL]
@ For DRAVWN BY: .
ADRO o<"°) |CE 126| A Ersheid & H. Saab
C64BUDRD CBUFT Loc=Pa7

0€T

110daa gosford Jeuunyy ezep\y 0l

10.5. R2: The Memory Controller 131

00 S0 S1 01101
01 S0 S3 01011
-- S1 52 00101
-- S2 S50 11110
-- S3 5S4 01011
-- 5S4 S50 11110

The above description allows for an two input signals that will directly come from
the BRAIN FSM. The two signals are enable and read/write. Once the enable signal
is asserted, the Memory 1/O reads or writes, depending the R/W signal, until the
process is completed regards of the enable signal.

The first three outputs (CS, WE, OE) control the memory chip directly. The
output buffer (OB) signal controls the tri-state buffers on the data lines. The busy
(BS) signal is asserted while the Memory 1/0 is reading or writing and is connected
to the BRAIN FSM. A PLA file was created from the above description using the
one-hot assignment o ption in mustang as follows:

mustang -1 memio > memio.pla

The PLA file description was modified to change the names of the input and output
signals. The resulting PLA description looks like this:

17

.0 10

.i1lb /EN R/W PS4 PS3 PS2 PS1 PSO

.ob NS4 NS3 NS2 NS1 NSO CS WE OE 0B BS

1- 1---- 1000011110

00 1---- 0100001101

01 1---- 0010001011

-- -1--- 0001000101

-- ---1- 1000011110

-- --1-- 0000101011

-- -——-- 11000011110

To create logic equations, the above file was imported into misll. The entire file was
collapsed using the clp command and an equation file was exported to look as follows:

INORDER = /EN R/W PS4 PS3 PS2 PS1 PSO;
OUTORDER = NS4 NS3 NS2 NS1 NSO z4 z3 z2 z1 z0;

NS4 = /EN*PS4 + PSO + PSi;
NS3 = ! /EN*!R/W*PS4;
NS2 = ! /EN*R/WxPS4;
NS1 = PS3;NSO = PS2;

CS = /EN#*PS4 + PSO + PSi;

WE = PSO + PS2 + PS1 + PS4;

0E = 'R/WxPS4 + /EN*PS4 + PSO + PS1 + PS3;

0B = R/WxPS4 + /EN*PS4 + PSO + PS2 + PSi;

BS = !/EN*PS4 + PS2 + PS3;
Before implementing the above logic equations in Viewdraw, some of the output eq
uations were reduced manually to look like this:

132 10. Maze Runner project report

WE = !PS3;
OE = !R/W*xPS4 + /EN*PS4 + !PS2*!PS4;
OB = R/WxPS4 + /EN*PS4 + !PS3%!PS4;

At this point, the logic equations for the Memory I/O were implement in Viewdraw
manually. The schematic for the Memory I/O is shown in 10.10 and the timing
diagram is shown on the page after that.

10.5.2 6-Bit Up/Down Counter (C64BUDRD)

This counter is from the Viewdraw 4000 library. This counter is connected to
the lower six bits (5-0) of the memory address lines to control the memory access
of the hero’s East-West movement. This counter is also used for nitializing the
first 3 bits of the first 2KB of memory when cascaded with the 5-bit up/down
counter (C32BUDRD). The input signals to this counter are described below under
the Counter Control Logic section.

10.5.3 5-Bit Up/Down Counter (C32BUDRD).

This counter is from the Viewdraw 4000 library. This counter is connected to the
upper five bits (10-6) of the memory address lines to control the memory access of
the hero’s North-South movement. This counter is also used for initializing the first
3 bits of the first 2KB of memory when cascaded with the 6-bit up/d own counter
(C64BUDRD) . The input signals to this counter are described below under the
Counter Control Logic section.

10.5.4 Counter Control Logic

Since the two up/down counters serve two purposes (initialize memory and ad-
dressing), their input signals must be controlled to determine their current purpose.
The operation mode of the counters is determined by a signal coming from the BRAIN
FSM. This signal is called counter mode (CM) and is asserted when the counters are
used to initialize the memory and deasserted otherwise. When in counter mode, the
two counters are cascaded together to create an 11-bit counter. In this case, the
counters operate as follows:

1. The CE input signal to the 5-bit counter is the TC output signal of the 6-bit
counter.

2. The CE input signal to the 6-bit counter is the increment (INC) signal from
the BRAIN FSM. The INC signal is used to increment the now 11-bit counter.
This signal is used only in the counter mode.

3. The U/D input signals to both counters is high, causing both of them to act as
up counters.
When not in counter mode, the two counters operate independently. In this case, the
two counters’ inputs come directly from the BRAIN FSM.

"Q/1 K10WRIN :0T°0T onSL]

RW

CLK

FD PS4
’—‘T\ NS4
AND2 D Q)
— TR e
S = a
C FD [
ns3
D Q|
—ic psa Ve
ANDGEZ H So——=a
I NV
FD
NS2
R DD
PS2 ocE
. AND3B1 ‘ r .F AND2B1 —L§>—.
OR3
7t
hd NOR2
FD .
PS1
0—‘ N N\
D Q| 4|—/L/ 2
*—C AND2 oR3
—)]
BS
':D AND2B1 OR3
D QF——
Pso
Menory 1/ O Contr ol
Maze Runner
[MEM O
For DRAVWN BY:
CE 126‘ A. Ersheid & H Saab

c ‘

D

Joqjoaguoyy L1owapy oy, 2y G 01

€el

134 10. Maze Runner project report

10.5.5 I/0O pads, buffers, and tri-state buffers

Only three data lines and 11 address lines are used in the Memory Controller. Two
of the data bits are used to store the back pointer and one for the visited /unvisited
flag. The use of only 2 KB of memory limits the maximum size of the maze to 64
columns by 32 rows. The address lines are tri-stated using the CS signal in order to
release them when not in use. The data lines are tri-stated using the OB signal in
order to control reading and writing using those lines. The use of the I/O pads and
buffers is self-explanatory.

10.6 Testing and Verification

Testing and verification for the Maze Runner consisted of downloading to the
BORG board and observing its action on the screen. On occasions, the digital
oscilloscope had to be used. Viewsim was also used to test the values of the address
bits, the data bits, and other functions of the Maze Runner. The only critical timing
problem was the timing of the Memory Controller, which was very simple and worked
from the first time it was designed. Most of the debugging had to be done in the
BRAIN FSM and its components. The design of the BRAIN FSM had a bug that
took several days to find. The bug was not marking the first position that the hero
lands on as visited. This bug caused the teleport action to do strange things. Since
the position was not marked properly, the hero kept visiting that position. After the
Maze Runner Machine was completed, it was run for over 1,600 levels. The average
for the first try was 417 and for second try is 142.

10.7 Timing and Chip Utilization

According to XDELAY, the maximum clock speed for the Maze Runner machine
is 12.2 Mhz. The utilization of the FPGA components is shown in the table below:

Component R1 X1 R2 Total
Occupied CLBs 5 40 29 T4
Packed CLBs 3 32 20 55
Package Pins 23 29 35 87
FG Function Generators 4 64 41 109
H Function Generators 2 11 13 26
Flip Flops 6 22 20 48
Memory Write Controls 0 0 0 o©
3-State Buffers 0 0 0 0
3-State Buffer Output Lines 0 0 0 o©
Address Decoders 0 0 0 0
Address Decoder Output Lines 0 0 0 0

The Memory Controller has taken up more CLBs than necessary because of the use
of built-in parts such as the counters and the muxes.

10.8. Credits

10.8 Credits

The design, functionality, and algorithm used for this Maze Runner was originated
by the authors. However, the design of the strategy for solving the maze has changed
greatly since the beginning of the project. Both Hernan and Ali worked on the C
program that developed the algorithm. Hernan has designed the BRAIN of this Maze
Runner. He spent countless hours, day and night, on debugging it. Ali has helped
in the design of the FSM machine of the BRAIN. Ali has taken on the responsibility
of creating the Memory Controller, the Maze 1/O Port, putting the entire project
together (chip layout and pin assignment, etc.), and preparing this report. Hernan
has also helped in the preparation of this report. Throughout the entire project
both Ali and Hernan have been aware of what the other was doing, from design and
implementation to debugging. Hernan spent a lot of time debugging the BRAIN FSM.

135

136 11. Troubleshooting

11. Troubleshooting

This section may help you isolate the problem and as a result, eliminate the need
to contact technical support and allow continued productivity (variations from SONY
TV guide).

Most the problems can be corrected with a better understanding of your com-
puter’s PC/XT configuration. Use diagnostic software such as QAPLUS to display
your PC’s configuration. You need to know the occupied port addresses, occupied IRQ
channels, occupied DMA channels, and occupied memory address. Do not configure
the BORG board in conflict with the occupied resources.

‘ Symptom ‘ Check these items ‘
No LEDI1 slide switch SW5 to ON,

check the conductivity of the fuse with a ohmmeter,
an high impedance indicates that the fuse is blown.

computer crashed | are you using a protozone adapter card?

If so, check IC 7T4HCT04 and connect (solder)

a 22K Ohm resistor between pin 1 and pin 7 of the IC.
This is a known manufacturing bug in the protozone
adapter card.

No LED2 This is an indication that X0 is not configured,

LED2 is tied to the DONE pin of X0 (xc4003APG120).
Check that a PROM is in U3.

Check plastic jumper is on the left side of J24

shunting positions 1 and 2.

check position 8 of SW1 and position 1 of SW2 are open.
This configuration sets X0 in the master serial mode.

bd complains This may be an indication that X0 is not configured,
x0 is dead or the communication between the PC and the BORG board
is broken.
Check the TTLs one by one.
board fail Check that the plastic jumpers are on the left side
scan test of jumpers J11-J23.
If they all are, some of the I/O pins of the user FPGAs
are dead.
board fail Check that the plastic jumpers are on the left side
scan test of jumpers J11-J23.

If they all are, they might not be making very
good contacts with the metal headers,

push the plastic jumpers in

and see if that improves the situation.

Table 11.1: To be Continued.

board fail

memory test

Check that position 3 of SW1 is closed. This enables
the PC to access the dual-ported SRAM exclusively.
Check that the memory (base) address mapping

of the SRAM are matched on both the BORG board (hardware)

and the software mtest.exe
Consult Fig. 2.6 for the hardware mapping.

No LED3

All the DONE pins of the user FPGAs R1, X1, R2, and X2

are tied to LED3.

Check that when you make the mecs file for download,
you had all the correct bit stream and the correct
part type for the FPGAs.

No LED3

If you are downloading using the bd program,
check positions 1 and 2 of SW1 to make sure that
R1 is configured to peripheral mode.

If you are downloading using the xchecker cable,
check positions 1 and 2 of SW1 to make sure that
R1 is configured to slave mode.

Can’t interrupt

pPC

If you are using the protozone host adapter card,
check the setting of the IRQ requests.

If you are using the BORG board in the add-in mode,
check positions 5 to 8 of SW2 to select the IRQ
channel.

Check that the IRQ channel selected has no

conflict with other peripheral cards.

DMA not
working

You must use the protozone host adapter card for DMA.

Check the correct setting of the DMA channel selection.
Some DMA channels are only valid with a PC/XT

but not a PC/AT.

The standard X0 has no DMA mechanism built-in,

but you can easily build your own.

design doesn’t
run properly

Check the maximum clock speed of your design.
The default system clock is 8MHz, this may be too
fast for some designs. Slow down the system clock
by using the CLOCK utility.

design can’t

access SRAM

Check the logic for the arbitration of the dual-ported SRAM

1s correct.

Check position 3 of SW1 for the favourtism of arbitration.

Use the utility arbit to change the default.

Table 11.2: Troubleshooting and diagnostics.

137

138 12. Acknowledgements

12. Acknowledgements

The development of the BORG board is supported in part by an National Sci-
ence Foundation Research Initiation Award supplement. The manufacturing of the
100 BORG boards is supported entirely by Xilinx, Inc. for educational purposes.
Therefore, I am grateful to Xilinx, Inc. for their support of the BORG project, in
particularly to David Lam for his magnificent coordination of the BORG project, and
his wonderful ability to pull all the resources together to finish this project. I am also
indebted to Xilinx engineering and technical staff: Carol Henley who taught me PCB
layout using PADs, IXd Resler who was willing to share his wisdom in manufacturing
hardware, and Fric Wright who had given me his expert advice and read the initial
draft of this users’ guide.

I can’t thank Jason Y. Zien enough for finding all sorts of way to improve assign
and taking the responsibility of coding and supporting two versions of it. I thank
Professor Abbas El Gamal of Stanford University for his pioneering work in FPGA
education and his inspiration. Finally, special thanks to Martine Schlag for the basic
algorithm of assign and insisting on designing an additional Tetris machine.

