
A Field-Programmable

Prototyping Board: XC4000 BORG

User's Guide

Pak K. Chan�

UCSC-CRL-94-18
April 1994 (6/27/95, 12/11/98 revised)

Board of Studies in Computer Engineering
University of California, Santa Cruz

Santa Cruz, CA 95064

abstract

The XC4000 BORG board is a PC-based prototyping board with two
\user" FPGAs, two \routing" FPGAs, and a �fth FPGA which implements
the glue logic for the PC bus. The BORG board is a reusable educational
tool intended for a variety of classes; the BORG board, its toolset, and the
reprogrammability of the FPGAs further reduce the time/cost of constructing
prototypes using FPGAs. This report documents the design, implementation,
and the use of BORG: A Field-Programmable Prototyping Board.

�Development of the XC4000 prototyping board is supported in part by National Science Foun-
dation Grant MIP-9111607 and Xilinx Inc.

CONTENTS 1

Contents

1. Introduction 5

1.1 Field-Programmable Prototyping Boards : : : : : : : : : : : : : : : : : 5

1.2 What BORG Is? : 5

1.3 Xilinx XC4000 FPGA parts : 8

1.4 Limits on the number of connections between the FPGAs : : : : : : : 9

1.5 About this User's Guide : 9

2. Installation 10

2.1 What Do You Need? : 10

2.2 Software Retrieval and Installation : 10

2.3 Hardware Installation : 11

2.4 Testing the BORG Board : 14

3. Simple Demonstrations 17

3.1 A Tetris Machine : 17

3.2 A Maze Solver Machine : 18

4. Principle of Operation 21

4.1 Status indicators : 21

4.2 Stand-alone BORG board : 21

4.3 BORG board as a Peripheral Device of the PC/XT : : : : : : : : : : : 22

4.4 Put the BORG Board Inside or Outside the PC? : : : : : : : : : : : : 22

4.5 I/O Address Mapping : 22

4.6 Memory Mapping : 25

4.7 Hardware Interrupt Channel : 26

4.8 DMA Channel : 27

4.9 Con�guring the controller X0 FPGA : : : : : : : : : : : : : : : : : : : 27

4.10 Programming the R1, X1, R2 and X2 FPGAs : : : : : : : : : : : : : : 28

4.11 Global Reset : 30

4.12 Readback : 30

4.13 JTAG Boundary Scan : 30

4.14 System Clock and Single Step : 30

4.15 On-board SRAM and arbitration : 32

4.15.1 8K�8 SRAM : 32

4.15.2 Dual-port SRAM arbitration : : : : : : : : : : : : : : : : : : : 33

4.16 Limits on the Number of Connections Between the FPGAs : : : : : : 34

2 CONTENTS

5. Software 37

5.1 Memory related programs mtest and inspect : : : : : : : : : : : : : : 37

5.2 Board Wiring test program Scan : 38

5.3 Pin assignment program assign : 38

5.3.1 Projects, Demos and their MCS �les : : : : : : : : : : : : : : : 38

6. Design ow 40

6.1 Introduction : 40

6.2 Details : 40

7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyp-

ing Board 47

7.1 Preface to earlier versions : 47

7.2 Assign as a Pin Assignment Program : : : : : : : : : : : : : : : : : : : 47

7.2.1 Place in the design process : 47

7.2.2 Command Line Arguments : 49

7.2.3 An Environment Variable : 50

7.2.4 Alias Files : 50

7.2.5 Rx.info : 52

7.2.6 Examples of using assign : 55

7.2.7 Xilinx XC3000 Series Design : : : : : : : : : : : : : : : : : : : 55

7.2.8 XC4000 Series Design : 55

7.3 I/O Speci�cation File : 55

7.4 BORG Wiring File : 57

7.5 Theory of ASSIGN : 57

7.6 Problem Description : 57

7.7 Graph Reduction : 58

7.8 Augmentation : 59

7.9 Main Program Loop : 60

7.10 Performance : 61

7.11 BORG wiring connections : 64

7.11.1 XC3000-series BORG wiring connections : : : : : : : : : : : : 64

7.11.2 XC4000-series BORG wiring connections : : : : : : : : : : : : 69

8. Using the Protoboard and Schematic Drawings 73

8.1 Proto-area, Common Anode LEDs : 73

CONTENTS 3

9. Guide to Some Laboratory Experiments 78

9.1 Creating user I/O ports in R1 : 78

9.2 Hardware Interrupt and Interrupt Service Routine : : : : : : : : : : : 82

9.3 Synchronization Problem : 87

9.4 Music Lab : 90

9.5 DMA Lab : 96

9.6 Boundary Scan Lab : 103

9.7 Possible Term Project Description : 103

9.8 Initialization of the Bottle : 104

9.8.1 Pill encodings : 105

9.9 Initialization of the Dr. Mario Machine : : : : : : : : : : : : : : : : : 105

9.10 Handshake and Timing : 105

9.11 Project : 106

9.12 Design of a Dr. Mario player : 107

9.13 The game environment : 107

9.14 What will be �nalized later? : 107

9.15 Evaluation : 108

9.16 Your responsibilities : 108

9.17 Suggestion : 109

9.18 Initialization of the Bottle : 109

9.18.1 Pill encodings : 110

9.19 Initialization of the Dr. Mario Machine : : : : : : : : : : : : : : : : : 110

9.20 Handshake and Timing : 110

10.Maze Runner project report 115

10.1 Maze Runner Speci�cations : 115

10.2 Hardware Requirement : 115

10.3 Host Program : 115

10.4 Design and Implementation : 116

10.4.1 Algorithm : 116

10.4.2 Implementation : 116

10.4.3 R1: The I/O Port : 117

10.4.4 X1: The Brain : 117

10.4.5 Finder Box : 117

10.4.6 Mover : 123

10.4.7 Memory Controller Signals : 123

10.4.8 Selector : 124

10.4.9 Status : 124

10.4.10Direction Processing Logic : 124

10.5 R2: The Memory Controller : 124

10.5.1 Memory I/O : 124

4 CONTENTS

10.5.2 6-Bit Up/Down Counter (C64BUDRD) : : : : : : : : : : : : : 132

10.5.3 5-Bit Up/Down Counter (C32BUDRD). : : : : : : : : : : : : : 132

10.5.4 Counter Control Logic : 132

10.5.5 I/O pads, bu�ers, and tri-state bu�ers : : : : : : : : : : : : : : 134

10.6 Testing and Veri�cation : 134

10.7 Timing and Chip Utilization : 134

10.8 Credits : 135

11.Troubleshooting 136

12.Acknowledgements 138

5

1. Introduction

1.1 Field-Programmable Prototyping Boards

Field-Programmable Gate Arrays (FPGAs) provide a medium to accelerate the
process of prototyping digital designs. For designs incorporating multiple FPGAs,
the bottleneck is now the process of wire-wrapping, bread-boarding, constructing a
printed circuit board, or constructing a multi-chip module. In addition to being time
consuming, these processes cannot be carried out until all FPGA designs have been
completed (placed and routed), since locking or preassigning I/O pins often prevent
FPGA place-and-routers from completing the routing.

To circumvent this bottleneck, FPGAs can be used as re-programmable intercon-
nection chips. The BORG, as shown in Fig. 1.1, is a PC-based prototyping board
that contains two user FPGAs, two routing FPGAs; a �fth FPGA implements the
glue logic to the PC bus.1 To facilitate the design process using the BORG board,
algorithms and tools have been developed to aid in the con�guration of the routing
FPGAs.

The BORG board, its toolset, and the reprogrammability of the FPGAs further
reduce the time/cost of constructing prototypes using FPGAs. There are two versions
of the BORG boards. Twenty �ve XC3000 BORG boards were built in 1992, and the
XC4000 boards were manufactured in March 1994. This document describes the
XC4000 BORG board. It documents the design, implementation, and the use of
BORG: A Field-Programmable Prototyping Board.

1.2 What BORG Is?

The BORG board is a reusable PC-based educational tool intended for classes
such as logic design, advanced logic design, processor design, and introduction to
ASIC design. The BORG board uses the XC4000 family Field-Programmable Gate
Arrays (FPGAs). The XC4000 FPGAs are reprogrammable, so one BORG board can
be shared by more than one group at the same time. With one XC4002A FPGA on
the board, the BORG board can support a 1,000 gate-count design. When it is pop-
ulated with four XC4010D FPGAs, it can accommodate a 40,000 gate-count design.
However, the BORG board is not a supercomputer nor a high-performance \generic"
processor. Production of 100 BORG boards in March 1994 is generously supported
by Xilinx Inc. Half of the boards produced have been (or will be) distributed for free.
2

1P. K. Chan, M. Schlag, and M. Martin, \BORG: A recon�gurable prototyping board using Field-
Programmable Gate Arrays," in Proceedings of the 1st International ACM/SIGDA Workshop on
Field-Programmable Gate Arrays, (Berkeley, California, USA), pp. 47{51, Feb. 1992.

2The manufacturing cost of a populated XC4000 BORG board is US$250.00 as of March 1994.
Contact dlam@xilinx.com for details.

6 1. Introduction

You can install the BORG board internally to a PC with XT/ISA bus; it will
occupy one 8-bit XT expansion slot. This is not the most convenient way to use the
BORG board. With the help of the protozone adapter card3 which extends the XT
bus signal to a 50-pin ribbon cable, the BORG board can be used externally to a PC.

The BORG board has 5 programmable FPGAs, and all of them can be pro-
grammed by a user. There are two user FPGAs, two routing FPGAs, and a �fth
FPGA (X0) that implements the glue logic to the PC bus as illustrated in Fig. 1.2.

The glue logic FPGA (X0) is programmed by a serial PROM on power-up. With
the appropriate setting of one jumper and dip switches on the BORG board, you
can also program X0 with the Xilinx xchecker. The rest of the FPGAs can be
programmed directly from the PC or by the xchecker hardware and software (see
Section 4.2 of Chapter 4).

The PC and the FPGAs can communicate using port I/O, interrupts, the shared
memory on the BORG, or DMA transfers. Port I/O is the simplest and fastest, while
DMA is the most complicated and surprisingly slow. Just as any other I/O expansion
card (disk controller, parallel port, serial port), you need to map the BORG board
I/O ports, interrupt channels, DMA channels into the PC's valid I/O space, memory
space, or channel numbers. Section 9.1 of Chapter 9 describes the procedure for
constructing your own I/O ports in the FPGAs, and Section 4.7 illustrates the basic
interrupt structure.

There is a built-in dual-ported 8K �8 SRAM on the BORG board. The SRAM is
shared between the FPGAs and the PC. Naturally, it is mapped into the PC's memory
address space. Access to the SRAM by the PC and user FPGAs is arbitrated by X0.
The arbitration can be performed under program control as detailed in Chapter 4.

Di�erent designs run at di�erent speeds. With the XC4000-6 speed grade part on
the board, a typical design runs at 8MHz. A 8 MHz TTL clock is supplied on the
board as the system clock. This clock can be further divided down to accommodate
lower speed designs, refer to Chapter 4 for details.

With multiple-FPGA designs, connecting the signals between the FPGAs is an
additional task that must be incorporated into the design ow. User FPGAs are placed
and routed individually, and the I/O (pin) assignments of the individual FPGAs do
not ordinarily match the constraints on the board. You can use the tool assign to
match up the pin assignments so that the signals between the FPGAs are correctly
connected. Assign is described in Chapter 7, and multiple-chip design ow is in
Chapter 6.

You will have design projects that need components which are not on the BORG
board. For example, you will need operational ampli�ers and a digital-to-analog
converter in conjunction with an FPGA to build a frequency analyzer; or you will
need a piezoelectric buzzer and some transistors to build a digital music synthesizer.
A protoarea on the left-hand side of the prototyping board is there to accommodate
any extra components.

3Developed by Stanford University, Professor Abbas El Gamal's group. Available from |
Proto Tools, 3500 Granada Avenue #156, Santa Clara, CA 95051, Attn: Kalon Goodrich. email:
kalon@cup.portal.com

1.2. What BORG Is? 7

Figure 1.1: A portrait of the XC4000 BORG board.

8 1. Introduction

X2

R1

R2

X1

X0

SRAM

PC Bus

XC4003APG120

8K x 8bit

XC40??PC84 XC40??PC84

XC40??PC84XC40??PC84

Figure 1.2: Connections between the user FPGAs, X0 and the PC

Some simple laboratory experiments are presented in Chapter 9 to illustrates some
uses of the BORG board. Projects which have used the BORG board in the past
include Tetris machine, Dr. Mario machine, and a mazer runner.

1.3 Xilinx XC4000 FPGA parts

The XC4000 BORG board can be populated with 2 user Xilinx XC4000 family
FPGAs X1 and X2 and 2 routing FPGAs R1 and R2. R1 and R2 connect the
two user FPGAs together electronically and also provide connections to the 8K�8
dual-port SRAM, the PC bus (via X0), and other devices. Figure 1.2 illustrates the
basic concept. We shall refer to R1, X1, R2, X2 collectively as the ASICs.

The ASICs can be any one of the XC4000 FPGAs in a 84-pin PLCC package, for
example, XC4002PC84, XC4002APC84, XC4003PC84, XC4003APC84, XC4004PC84,
XC4005PC84, and XC4010DPC84 with either �5 or �6 speed grade parts. These
PLCC packages are pin-to-pin compatible.

For introductory-level classes, you may not need all the ASICs. The ASICs can
be extracted from the BORG board using a PLCC-chip extraction tool.

1.4. Limits on the number of connections between the FPGAs 9

1.4 Limits on the number of connections between the FPGAs

Some of the I/O pads on R1 and R2 are used to support the dual-ported SRAM
and port I/O communications with the PC. Thus although the number of user pads
available on a 84-pin PLCC package is 54, the maximum number of connections
between X1 and X2 which can be realized with R1 and R2 is 38 , with the plastic
jumpers of J11-J23 on the left side.

With the plastic jumpers of J11-J23 on the right side, the maximum number
of connections between X1 and X2 which can be realized with R1 and R2 is 32 .
Section 4.16 elaborates this limitation further.

The BORG board has been tested on 8MHz, 11MHz, and 13MHz buses (note:
bus speed not CPU speed) with 386/486 DX-33, DX-40, and DX-50 CPUs; it has not
been tested with a 33MHz PC bus.

1.5 About this User's Guide

This user's guide consists of the following chapters:

Chapter 2 describes how to install the software and hardware for the �rst time users,
and a 4-step procedure to test the BORG board.

Chapter 3 demonstrates two multiple-FPGA designs: a Tetris machine and a maze
solver machine.

Chapter 4 describes the detailed operation of the BORG board and its controller
interface with the PC.

Chapter 5 describes some utility programs.

Chapter 6 describes the complete design ow using multiple FPGAs, and the soft-
ware tools that you will need to use the BORG board with multiple FPGAs.

Chapter 7 details the pin asssignment program assign that is essential for designing
multiple FPGAs.

Chapter 8 describes the bits and pieces that are needed to use the BORG board
from a \hardware" perspective.

Chapter 9 suggests a range of projects of varying degree of di�culties.

10 2. Installation

2. Installation

This chapter describes how to install the BORG board inside or outside a PC/XT.
The hardware and software you will need is listed in Section 2.1. Sections 2.2 and 2.3
guide you step-by-step through the installation (and retrieval) of the software, and
installation of the BORG board, respectively. After the installation, in Section 2.4
you will test the functionality of the BORG board. Although the BORG boards were
tested by the manufacturer (BAT PC Technology of Milpitas, CA) before shipment,
you may want to test your BORG board one more time just to be sure.

2.1 What Do You Need?

In addition to a PC/XT, you will need internet access to retrieve the software
package and this user's guide(!). You need the following hardware and software to
use the BORG board:

1. Xilinx XC4000 FPGA core implementation tools.

2. An xchecker cable.

3. An IBM compatible Personal Computer (PC/XT), with 1 Mbyte of available
storage space, and an available 8-bit expansion slot.

This machine will be used as a prototyping machine.

4. Some vacant I/O port addresses on the PC/XT.

The default address is 0x30X (0x300 to 0x30F). See Fig. 2.6 for other options.

5. Some vacant 8K-byte memory addresses on the PC/XT.

The default base address is 0xd0000h. See Fig. 2.6 for other options.
Only items #3-5 are required to test the BORG board.

2.2 Software Retrieval and Installation

You need to have internet ftp access. All the software are available by ftp to the
internet depository ftp@cse.ucsc.edu(128.114.134.19). Login as anonymous and use
yourname@your.host.name as the password (for our records).

% ftp ftp@cse.ucsc.edu

ftp > user anonymous

Connected to ftp.

220 ftp FTP server (Version wu-2.1c(13) Fri Feb 18 10:49:37 PST 1994) ready.

ftp> Name: anonymous

ftp> Password: yourname@your.host.name

ftp> cd pub

ftp> cd borg

ftp> binary

ftp> get borg.zip

ftp> get pkunzip.exe

ftp> quit

2.3. Hardware Installation 11

At this point you have obtained the BORG distribution borg.zip in zip format, and
a public domain program pkzip to unpackage the distribution. Transfer both �les to
your PC. Now assuming the �les you ftp'ed are on drive A:, on your PC do

C:> mkdir borg

C:> cd borg

C:> copy a:pkzip.exe

C:> copy a:borg.zip

C:> set borg=0x300

C:> pkunzip -d borg.zip

Don't forget the \-d" option. Compare the result of the directory listing below.

C:> dir/w

with the following �les and directory

[.] [..] BD.EXE SCAN.EXE ASSIGN.EXE

MTEST.EXE TESTME.BAT INSPECT.EXE CLOCK.EXE MAZE.EXE

ARBIT.EXE SETASSIG.BAT [DESIGN] #README PORTEST.EXE

[EMPTY] BSCAN.EXE [MCS] ISR.COM INTPC.EXE

CLEAR.EXE [ASSIGN] [SRC] DEFAULT.EXE TETRIS.EXE

25 file(s) ?????? bytes

Congratulations, you have successfully installed the package if there are no discrep-
ancies.

2.3 Hardware Installation

Figure 2.1 illustrates the location and function of the BORG board components.
For this installation, you need to locate jumpers J3, J11-J23 and J24, and the red dip

switches SW1 and SW2.

If you DO NOT have a protozone adapter card, then you will install the BORG board
in add-in mode as follows:

1. Turn the PC power o� .

2. Set the dip switches SW1 and SW2 on the BORG board according to Fig. 2.5.

3. Place the plastic jumpers at locations J11-J23 and J24 on the two left pins (the
two pins closest to the proto-area) as in Fig. 2.5.

4. Plug the BORG board card into a PC expansion slot as shown in Fig. 2.4.

5. Turn the PC power on .

6. Go to Section 2.4.

12 2. Installation

PROM

SW1

f pge

ba cd

f pge

ba cd

J10

Done
LED

FPGAs

J11-J23 select connection between R2 and other FPGAs

(plastic jumpers on LEFT: FPGAs)
or from R2 to dual-port SRAM

(plastic jumpers on RIGHT: to memory)

�

SW2

J45

protoarea

a b

ce

f

g
d

R1

X2

X1

R2

50-pin connector to protozone card

user FPGAs R1, X1, R2, X2
XC4000 series PLCC84 package (divided by X0)

8MHz system clock

GCLOCK

power on
LED

xchecker download
for X0X0

Done
LEDfor other

8K � 8 SRAM
accessible by PC and R2

74245 TTL bu�ers

xchecker download for
R1, X1, R2, X2 FPGAs

common anode
LEDs

PROM to program X0 (default)
Jumper to control X0
programming mode

single step
(move jumper
of J10 to left)

SW5

J24

RESET
Power ON

fuse
2A

X0

Figure 2.1: BORG board and some of its features.

If you DO have a protozone adapter card, then you can install the BORG board in

host mode as follows:

1. Turn the PC power o� .

2. Set the dip switches SW1 and SW2 on the BORG board according to Fig. 2.3.

3. Place the plastic jumpers at locations J11-J23 and J24 on the two left pins (the
two pins closest to the proto-area) as in Fig. 2.3.

4. Plug the protozone adapter card into a PC expansion slot.

5. Connect the protozone adapter card to jumper J3 of the BORG board using
the 50-pin at ribbon cable accompanying the protozone card as illustrated in

Fig. 2.2.

6. Turn the PC power on .

7. Go to Section 2.4.

2.3. Hardware Installation 13

BORG
Board

IBM compatible
personal computer

50-wire ribbon cable

expansion slot in a personal computer

protozone adapter card

Figure 2.2: Using the BORG board in host mode

.

J11

J23

Put plastic jumpers
on the left side of J11 to J23

ON
SW5

Host mode: BORG board external
to the PC

J24

Put plastic jumpers
on the left side of J24

OPEN

1 2 3 4 5 6 7 8

OPEN

1 2 3 4 5 6 7 8

SW1 SW2

down

up

OPEN

Note: two di�erent switch positionsCLOSED

Figure 2.3: Setting for testing BORG board (host mode) with port address
0x30X and memory based address 0xd0000h.

14 2. Installation

2.4 Testing the BORG Board

These tests require:

� I/O port addresses: 0x30X (0x300 to 0x30F) must be vacant. These are the
default I/O port addresses. See Fig. 2.6 for other options.

� Memory address: Also the 8K-byte memory addresses with base address
0xd0000h must be vacant. See Fig. 2.6 for other options.

Now, take the following steps:

1. Slide SW5 to ON to supply power to BORG board

2. LED1 & LED2 of BORG board should turn ON, and LED3 should be OFF. If
not, proceed to the diagnostics in Chapter 11 after checking that the jumper
J24 is correctly positioned.

3. Run the bd program as shown below:
C:> bd mcs\scan.mcs

Wait for LED3 to turn ON (this will take a few seconds and all three LEDs
LED1, LED2, and LED3 will be ON). If not, proceed to the diagnostics in
Chapter 11.

4. Run the scan program as shown below:
C:> scan

It should report:
Board scan test done.

Datain -> 0

Board test passed. Accept BORG board.

If not, proceed to the diagnostics in Chapter 11.

5. Run the memory test program as shown below:
C:> mtest

It should report:
Finished 8192 bytes. Total errors 0.

If program does not report 0 errors, then proceed to the diagnostics in Chap-
ter 11 after checking that jumpers J11-23 are correctly positioned.

The tests which you have just completed exercise all of the connections between the
FPGAs and most (but not all) of the components on the BORG.

2.4. Testing the BORG Board 15

IBM compatible
personal computer

BORG
Board expansion slot in a personal computer

Figure 2.4: Using the BORG board in add-in mode.

J11

J23

Put plastic jumpers
on the left side of J11 to J23

ON
SW5

J24

Put plastic jumpers
on the left side of J24

OPEN

1 2 3 4 5 6 7 8

OPEN

1 2 3 4 5 6 7 8

SW1 SW2

down

up

OPEN

Note: two di�erent switch positionsCLOSED

Add-in mode: BORG board
inside the PC

Figure 2.5: Setting for testing BORG board (add-in mode) with port address
0x30X and memory based address 0xd0000h

.

16 2. Installation

switch positions
Note: two di�erent

down

up

OPEN

CLOSED

1 2

3 4

PC has exclusive
access to dual-port
SRAM

of R1 FPGA
controls M0, M1

default is
peripheral mode

3

I/O mapping
port address
address 0x30X

use protozone
host card

change it to
slave mode for
xchecker
download

X0 not
powerdown

2 3 4

PROM

SW1

f pge

ba c d

f pge

ba cd

J10

4

PC slot

directly
board

into a

BORG
plug power-

down

7

X0

8 1

change it to
slave mode

download
for xchecker

address
0x31X

address
0x20X

address
0x21X

65

65

65

5 6 7 8

5 6 7 80xa0000h
2 3 4

A18 A17A16

2 3 4

A18 A17A16

0xb0000h

2 3 4

A18 A17A16

0xc0000h

interrupt
disabled

OPENSW1

1 2

OPEN

defaults:

5 6

options:

access can also be
determined under
program control

FPGA has
access to
dual-port
SRAM

7

blocking PC
access

base address
0xd0000h

memory mapping
SRAM

18

�

SW2

J45

protoarea

a
b

ce

f

g

d

R1

X2

X1

R2

GCLOCK X0

SW5

J24

controls M0, M1
of X0 FPGA
master serial
mode

SW2

interrupt
enabled
(select

e.g. IRQ5

etc

one only)

Figure 2.6: Defaults and Options of the BORG board.

17

3. Simple Demonstrations

3.1 A Tetris Machine

In this demonstration we shall download a Tetris machine which is a multiple-chip
design. It uses the X1 and X2 FPGAs for logic, R1 and R2 FPGA for routing. This
Tetris machine is realized with approximately 150 XC4000 CLBs. A program running
on the PC displays the Tetris bucket (Fig. 3.1) and communicates with the Tetris
machine running in the ASICs using port I/O. The program randomly draws a tile
type and presents it to the Tetris machine. The Tetris machine determines how to
rotate and move the tile before the tile drops. The Tetris machine uses the XC4000
\on-chip" RAM for keeping track of the Tetris bucket; it is not using the dual-ported
SRAM on the BORG board.

For this demonstration, the BORG board can be either installed in the add-
in mode or host-mode with the default settings as given in Fig. 2.4 or Fig. 2.2,
respectively. If the required settings are not as prescribed for your installation mode,

please set them as described in Section 2.3 now. This demonstration requires I/O
port addresses 0x30X (0x300 to 0x30F) to be vacant. These are the default I/O port
addresses. See Fig. 2.6 for options to change the I/O port mapping.

Next tile

Figure 3.1: A Tetris bucket and some of its tiles.

Important: This Tetris demo requires that your PC is preloaded with the
ansi.sys device driver. If this is not the case, the problem can be corrected by
including this line in your config.sys �le, and rebooting your machine.

DEVICE=C:\DOS\ANSI.SYS

18 3. Simple Demonstrations

1. Download the mcs �le of the Tetris machine, by typing
C:> bd mcs\martine.mcs

Observe that the DONE indicator LED3 should turn o� and then ON again,
indicating all ASICs are programmed.

2. Exercise the Tetris machine by typing
C:> tetris

Terminate the program with ^C and clean up the screen by using the supplied
program clear. If your screen is all messed up now, this means that your PC
was not running the ansi.sys device driver.

3.2 A Maze Solver Machine

The mazer machine is a multiple-chip design which solves a maze. The machine
uses the R1 and R2 FPGAs for logic, and X1 and X2 FPGAs for routing (not a
mistake). This maze machine is realized with approximately 120 XC4000 CLBs. It
uses 2K bytes of the on-board (dual-ported SRAM) SRAM for keeping track of the
maze.

For this demonstration, the BORG board can be installed either in add-in mode

or host-mode with the required settings as given in Fig. 3.2 or Fig. 3.3, respectively.
If the required settings are not as prescribed in these �gures, please set them this way

now. Note that jumpers J11-J23 are set to the right which is not the default setting
that was given in Section 2.3. This demonstration requires I/O port addresses 0x30X

(0x300 to 0x30F) to be vacant. These are the default I/O port addresses. See Fig. 2.6
for options to change the I/O port mapping.

Important: This mazer demonstration requires that your PC is preloaded with
the ansi.sys device driver. If this is not the case, the problem can be corrected by

including the following line in your config.sys �le, and rebooting your machine.

DEVICE=C:\DOS\ANSI.SYS

Important: You need to block the PC's access to the dual-ported SRAM by
using the program

C:> arbit xilinx

This gives the R2 FPGA exclusive access to the dual-ported SRAM.

3.2. A Maze Solver Machine 19

J24

ON

SW5
down

up

OPEN

Note: two di�erent switch positions
CLOSED

J11

Host mode: BORG board
external to the PC

J23

OPEN

1 2 3 4 5 6 7 8

OPEN

1 2 3 4 5 6 7 8

SW1 SW2
on the left side of J24
Put plastic jumpers

Put plastic jumpers

of Jumpers J11 to J23
on the RIGHT sideJ22

Figure 3.2: Setting for running Maze machine with the BORG board in host
mode, with port address 0x30X and memory based address 0xd0000h

.

ON

SW5

J24

OPEN

1 2 3 4 5 6 7 8

OPEN

1 2 3 4 5 6 7 8

SW1 SW2

Add-in mode: BORG board
inside the PC

on the left side of J24
Put plastic jumpers

down
OPEN

Note: two di�erent switch positions

up

CLOSED

Put plastic jumpers

on the RIGHT side of
jumpers J11 to J23

J23

J11

J22

Figure 3.3: Setting for running Maze machine with the BORG board in add-
in mode, using port address 0x30X and memory based address 0xd0000h

.

20 3. Simple Demonstrations

Please follow the given steps:

1. Download the mcs �le of the maze machine, by typing
C:> bd mcs\maze.mcs

Observe that the DONE indicator LED3 should turn o� and then ON again,
indicating all FPGAs are programmed.

2. You can exercise the maze machine by typing
C:> maze

This program displays a randomly generated maze with one exit (character %).
Starting from a randomly chosen location (the origin), the mazer (@) runs the
maze in two passes. In the �rst pass, the mazer traverses and explores the maze.
When the mazer reaches the exit, it is teleported back to the origin. On the
second run the mazer tries to reach the exit in record time.

| | ^

- | | --- ----- --- -----

| | | | | | | |

| |.| | | --- | --- ----- |

|%.@| | | | |

--------------------- ----

Level 2 maze. Total moves 108

You may terminate the program with ^C and clean up the screen by using the
supplied program clear. If your screen is all messed up now, this means that
your PC was not running the ansi.sys device driver.

21

4. Principle of Operation

4.1 Status indicators

There are three LEDs on the BORG board which indicate the status of the FPGAs
and the board.
POWER This LED (LED1 rightmost LED on the top) indicates that the BORG

board has power.

X0 This LED (LED2) indicates that the PC/XT bus controller FPGA X0 is con�g-
ured.

DONE The DONE pins of the user FPGAs R1, X1, R2, X2 are tied together to
the DONE LED (LED3) to indicate that the four user FPGAs (ASICS) are
con�gured.

There are also two common-anode seven segment displays and two common-anode
four-bar LEDS in the proto-area that can be used to monitor additional signals.

4.2 Stand-alone BORG board

You can use the BORG board in the same way as the Xilinx XC4000 demo board.
This is the simplest but not the best way to use the BORG board. In this mode,
you can use the four user XC4000 FPGAs. To use the BORG board as a stand-alone
board, you must

1. set position pdwdwn of the BORG board to open, this disables (power downs)
the X0 controller.

2. connect an xchecker cable to jumper J8,

3. set position m0r1 of DIP switch SW1 to open,

4. set position m1r1 of DIP switch SW1 to open, and

5. supply power (+5V) to the board via jumper J5.
Steps 3 and 4 have just put R1 into slave mode. For programming the FPGAs,

use the xchecker program and cable. The FPGAs are daisy-chained in the following
order:

R1 -> X1 -> R2 -> X2

This means the Dout (Data out program pin) of the �rst FPGA R1 is connected
to the Din of the second FPGA X1 and so forth so on. Their DONE pins are tied
together. LED3 turns to red if the four FPGAs are successfully programmed.

If you need only one FPGA, you must use the R1 FPGA. You can either extract
the rest of the FPGAs with a PLCC extractor tool made by a company called AUGAT,
or download the rest of the FPGAs with \empty" bit streams. You can �nd null bit
streams for the individual FPGA types in the distribution package under the directory
empty :

em4002a.bit em4003a.bit

Important: You need to \concatenate" the bit streams of the individual FPGAs
for download, by using the Xilinx makeprom program.

22 4. Principle of Operation

makeprom -o design.mcs -u 0 myr1.bit em4003a em4002a em4003a

This example assumes that your design bit stream is in the bit �le myr1.bit.

4.3 BORG board as a Peripheral Device of the PC/XT

The BORG board is just like any other PC/XT peripheral cards; it interfaces with
the PC/XT via port I/O, memory map, interrupt, and DMA. The next few sections
will guide you to map the BORG board into the PC vacant and valid I/O address
space and memory address space, interrupt and DMA channels.

Also, the BORG board draws its power from the PC's power supply. You don't
have to worry, because most PCs have 150 Watt to 250 Watt power supply. The
BORG board consumes approximately 5W of power. There is also a 3-Ampere fuse
on the BORG board, just in case.

For now, you should study Fig. 2.6 to identify the locations of jumpers, switches
and reference designators on the BORG board.

4.4 Put the BORG Board Inside or Outside the PC?

The BORG board has two modes of installation. You can install the BORG board
inside or outside a PC; we refer the �rst option as add-in mode and the latter as host
mode.

Add-in mode The BORG can be plugged into a PC/XT expansion slot, as illus-
trated in Fig. 2.4. This has the disadvantage that the FPGAs' signals are
inaccessible. But you can use a PC/XT signal extension card to accommodate
the BORG card. The extender card is recommended since it allows easier access
to signals on the BORG board.

Host mode Alternatively, with the Protozone 1 host card in an PC/XT expansion
slot and a 50-wire at ribbon cable from the protozone host card plugged into
connector J3, the BORG board can be used outside the PC, as illustrated in
Fig. 2.2.

4.5 I/O Address Mapping

Minimally, the BORG board must be mapped into some vacant locations in the
PC/XT's I/O address space. The BORG board's controller X0 has four prede�ned
I/O ports for maintaining the vital communication with the PC to support download-

ing bitstreams. We call these I/O ports X0ports .

You can build additional I/O ports to support your design in the R1 FPGA. In
a \typical" PC con�guration, you will �nd that the I/O addresses from 0x300 to

0x30F are vacant. Examples of occupied I/O address locations are 0x378 and 0x2F8

which are the printer port LPT1 and serial port COM2, respectively. There are

1A. El Gamal, \Protozone: The PC-Based ASIC Design Frame, User's Guide," Tech. Rep.
SISL90-???, Stanford Information Systems Laboratory, Stanford University, Aug. 1990.

4
.5.

I/
O
A
d
d
ress

M
a
p
p
in
g

23

BD0

WPORTD

ADDRESS_PAD
ADDRPAD

RAMSEL
A6
A5
A4
A3
A2
A1
A0

BSCAN

BSCAN

COMPARE4

EQU

B3
B2
B1
B0

A5
A4

A3
A2
A1
A0

memory

mapping

DMA>

IBUF
PAD

PAD

TC

DACK

OR2

C

D Q

FD

OBUF+5

VCC

IBUF

DACK>

TC>

PULLDOWN

PWRDWN>

PAD

OBUF PAD

IBUFclock

CLKGEN

CLKSW1

CLK

CK

CLKSW0

divider

M

CMUX

TDO_PC
RAMSEL

RAM7
RAM6
RAM5
RAM4
RAM3
RAM2
RAM1
RAM0

R1
R0 O7

O6
O5
O4
O3
O2
O1
O0

DIR

D7
D6
D5
D4
D3
D2
D1
D0

bidirectional

U

X

RAM
data

PAD

RAMPADS

OE
BP7
BP6
BP5
BP4
BP3
BP2
BP1
BP0

BD7
BD6
BD5
BD4
BD3
BD2
BD1
BD0

after configuration: INTPC
during configuration: RDY

shared pin

RDY>

IBUF

PULLDOWN

PADA = B ?

I/O Mapping
COMPARE8

B7
B6
B5
B4
B3
B2
B1
B0
A7
A6
A5
A4
A3
A2
A1
A0

EQUAL

BD2

default
control by
PC has
control
SRAM
dual-port

OBUF
FAST

PAD

S
E
T
_
C
L
K

P
R
O
G

A
R
B
I
T

S
E
T
_
A
R
B

C
L
K
S
W
0

C
L
K
S
W
1

B
S
C
A
N

I
N
I
T

BD4

CLKSW1

C

CE

D Q

SD

FDSD

CLKSW0

IBUF BD7
BD7>

BD6

INIT=S

C

CE

D Q

SD

FDSD

C

D Q

FD

C

D Q

FDAND2

OBUF

AND2

OR2B1
AND2

GSR

GTS

CLK

Q2

Q3

Q1Q4

DONEIN

STARTUP

OR2

IBUF

PORTDEC

PORTA
BIOR

BA3

BA0
EQUAL

PORTB
PORTC
PORTDBA1

BA2

BIOW

DECODE

XW

XR

WRITE

READ

EQUAL EQ

DECODE

XW

XR

WRITE

READ

EQUAL EQ

FAST

PAD

PAD

OBUFT

OBUFT

TDO>

OBUFT FAST

PADBMEMW

SEL

BMEMR

BIOW
IBUF

BIOR

RAMSEL
XMEMR

XMEMW

OR2

IBUF

PB

PAD

OBUFNAND2

PULLUP

IBUF

CONFI
OBUFT

BIOW

INT INTPC>

PORTC

PORTC
PROG
WS

PROG>

PAD

PORTB

BD1
BIOW PAD

INIT

WS>

BIOR
BIOW
BA3
BA2
BA1
BA0
EQUAL

FAST

PAD

RAMSEL2>

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

BD0>

OBUFT

BAEN

AND2

PULLUP

IBUF

IBUF

FAST

PAD

BMEMW>

IBUF

FAST

PAD

FAST

PAD

BMEMR>

BD1

BD2

TDO

BD3

OBUF

PORTIO

MEMACCESS

DIR>

IBUF

B2>

B1>

B3>

B4>

B5>

B6>

B7>

PULLUP

PULLUP

PULLUP

PULLUP

PULLUP

PULLUP

B0>

BD2

GND

BD1

PAD

RESET>

PAD

OBUF

RESET

AND2

IBUF

BA6>

BA8>

BA7>

BA8IBUF

BA7

BA6

BA4

BA0

BUF

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

BIOR

IOA0

IOA1

BA0

IBUF

BA0>

BA1

IBUF

BA1>

BA2

IBUF BA3

IBUF BA4BA4>

IBUF

BA16

IBUF BA17

IBUF

BA17>

BA18

IBUF

DONE>
B7

DONE
DONE

IBUF

BORG
UC SANTA CRUZ

I

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Pak K. Chan

I

XIOW

BIOW

INIT

IBUF

BP0

RAMD7
RAMD6
RAMD5
RAMD4
RAMD3
RAMD2
RAMD1
RAMD0

RAMD0

RAMD7
BD6
BD5
BD4
BD3
BD2

BD0

B0

BA18>

BA16>

OBUF
EQUAL

IBUF

BD1
BP1

BD1>

B2

IBUF

XIOR>

PAD

PAD

BA2>

BD0
B0

B1
BD1

BD3
B3

IBUF

BD4
B4

BD5
B5

IBUF

BD6
B6

BD7
B7

IBUF
BP7

BD6
BP6

BD6>
IBUF

BD5
BP5

BD5>
IBUF

BD4
BD4>

IBUF

BD3
BP3

BD3>
IBUF

BD2
BP2

BD2>

BP4

BA5>

BA19>

SW16>

SW17>

SW18>

IBUF

BA5

IBUF

IBUF

BA19

Top-Level Diagram

BIOR>

BP0
BP1
BP2
BP3
BP4
BP5
BP6
BP7

B1
B2
B3
B4
B5
B6

BA3>

RAMD5

RAMD1
RAMD2
RAMD3
RAMD4

RAMD6

BIOR

CLKOUT>

XIOW>

XIOR

PORTIO
BIOW>

OR2

Sheet 1/8PART=4003APG120-6

BORG II 4K BOARD CONTROLLERX0

RDY-INT

IOA1

IOA0

BA5
BA4

BA9
BA8
BA7
BA6

HOST

BUFGP

CLK_PAD>

IOA1>

IOA0>

IBUF

IBUF

IBUF

I
/
O

P
a
d
s

T
o
/
F
r
o
m

R
A
M

BMEMW

BIOW

BA9>

BAEN>

IBUF

SW18

SW19

PAD

BAEN

BA9

OBUFT

IBUF

PAD

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

CONFI

XMEMR

RAMSEL

From Xilinx R1

IBUF

IBUF

OBUFT

FAST

PAD

OBUFT

FAST

PAD

OBUFT

FAST

PAD

OBUFT

FAST

PAD

OBUFT

FAST

PAD

FAST

PAD

IBUF

OBUFT

FAST

PAD

IBUF

PULLUP

OBUFT

FAST

PAD

PULLUP

EN245>

OBUF

AND2

BD7
XMEMW

PAD

ASIC>

BIOW
BIOR
BA19
BA18
BA17
BA16
SW19
SW18
SW17
SW16

OR2B1HOST

HIGH_EQU
SEL

EQUAL

TDO of others
access thru PORTC

RDY

PAD

PAD

TDO_PC>

TDO_PC

OBUFT

PB>

PAD

MEMACCESS
RAM_CS>

PAD

TDO

OBUFT

TCK

TCK>

TMS>

TMS

FAST

PAD

RAMSEL2

IBUF

INV

RDY-INT

C

CE

D Q

SD

FDSD

C

CE

D Q

SD

FDSD

BD5

WPORTA

BSCAN
INIT

BD7

WS
PROGPORTB

PORTA

CONF
BIOW
BD1

CONFIG

BD6
PORTD

PORTD

BD7

WPORTA

INV

BD3

ASIC

AND2

INV

From PC ISA Bus

BD0

CLK

IBUF

PAD

BA2
BA3

BA1

BA6
RAMSEL

BA5

the same pin
are sharing
RDY and INTPCD6D5D4D3D2D1D0

WPORTA
BIOW

OR2

Peripheral Mode

D7

April 17, 1993

AUG 28, 1993 REV1

PAD

HOST>

IBUF

HOST

PORTA

RAMSEL2

SW17

SW16

FAST

PAD

PADneed to change

this part for DMA

PORTA

BORG (4/26/94)

F
igu

re
4
.1
:
X
0
T
o
p
-level

sch
em

atic
d
raw

in
g
of
th
e
X
0
con

troller
of
th
e
B
O
R
G

b
oard

.

24 4. Principle of Operation

provisions to modify the I/O mapping to suit your needs. Referring to Fig. 4.1 for the
top-level schematic of the X0 controller. You will �nd that the module compare8
decodes address A4-A9 and the settings of the DIP switch SW2 positions IOA0 and
IOA1 to determine the I/O mapping. The XT bus active-low signal baen is used only
in add-in mode (host=1), as illustrated in Fig. 4.2.

compare ---> 1 IOA0 0 0 0 IOA1 0 0 X X X X

with | | | | | | | |

I/O ---> BA9 BA8 BA7 BA6 BA5 BA4 0 (host & baen) BA3 BA2 BA1 BA0

addresses

Figure 4.2: I/O Address Decoding in X0.

So the the comparator's output is asserted when address lines BA8 and BA4 match
the setting of positions IOA0 and IOA1 of DIP switch SW2. The least signi�cant four
address lines BA0-BA3 are decoded in X0, but only the lower 4 I/O locations are
taken by X0 controller. The I/O mapping is listed in Table 4.1. Also, the address
lines BA0-BA3 are provided as inputs in R1, and must be fully or partially decoded in
R1 to avoid conict with the ports in the X0 controller. You should consult Section 9.1
for further information on building your own I/O ports in the R1 FPGA.

IOA0 IOA1 addresses

0 0 0x20X

0 1 0x21X

1 0 0x30X

1 1 0x31X

Table 4.1: I/O mappings of BORG board (note: IOA=0 means switch is
closed, IOA=1 means switch is open, and X is a don't-care).

Important: Referring to Fig. 4.1, the BORG board's controller X0 has four pre-

de�ned I/O ports de�ned in the module portdec for maintaining the vital communi-

cation with the PC to facilitate downloading bitstreams. We call them X0ports . So
depending on the settings of positions IOA0 and IOA1 of DIP switch SW1, X0ports'
port addresses in X0 are given in Table 4.2. The functions of the X0ports are given
in Table 4.3.

I/O Ports IOA0 IOA1 addresses
PORTA,B,C,D 0 0 0x200 to 0x203

PORTA,B,C,D 0 1 0x210 to 0x213

PORTA,B,C,D 1 0 0x300 to 0x303

PORTA,B,C,D 1 1 0x310 to 0x313

Table 4.2: Occupied I/O addresses in X0.

4.6. Memory Mapping 25

X0port Function
PORTA set control functions of other ports

and SRAM arbitration
PORTB download bit streams
PORTC read port (contains a zero)
PORTD boundary scan and global reset

Table 4.3: Functions of I/O ports (X0ports) in X0.

As shown in Table 4.4, the I/O signals - IOR, IOW, A0, A1, A2, A3, D0-D7 are
available to the R1 FPGA. Port I/O is the simplest way for the BORG board to
communicate with the PC. The C library functions

inportb(port)

outportb(port, byte)

can be used for reading and writing the ports, respectively.

The I/O read and write signals: XIOR and XIOW have already been decoded by
X0 to ensure that the I/O signals IOR and IOW are directed towards the BORG
Board. (The decoding is controlled by switch positions IOA0 and IOA1 of the DIP
switch SW1.) Four of the 16 available ports are used by X0 as described. This leaves
12 port addresses available for the R1 FPGA to communicate with the PC.

Signal Pin # of R1 FPGA

INTERRUPT 70

A0 83

A1 81

A2 82

A3 80

XIOR 51

XIOW 50

D0 71

D1 69

D2 67

D3 65

D4 61

D5 59

D6 58

D7 56

Global Clock 13

Global RESET 10

Table 4.4: System signals available to R1.

4.6 Memory Mapping

The dual-ported SRAM (U2) can be accessed by your PC/XT if the SRAM is
properly mapped into the PC/XT's vacant memory address space.

In the host mode, the mapping is determined by the setting dip switch SW2 of
your protozone adapter card, please consult your Protozone adapter card user's guide.

26 4. Principle of Operation

In the add-in mode, you can control the mapping with switch positions A18, A17,
and A16 of DIP switch SW2 (on the BORG board) which set the equality comparison
with the PC address lines A19, A18, A17, A16. In either case, for dual-port access,
the 8K dual-port SRAM 6116 (U2) must be mapped into a block of locations in your
PC upper memory area (UMA). UMA are higher than 640K and less than 1024K in
the memory address space.

Finding vacant locations is tricky. Typically, this can be either locations with base
memory address 0xd0000 or 0xe0000. Table 4.5 shows a typical high memory map
in DOS.

A19,A18,A17,A16 Typical usage
F System BIOS (ROM)
E probably not used ?
D probably not used ?
C Network Adapter, Video ROM, HD controller
B Video RAM
A Video RAM

Table 4.5: Typical UMA address map in a PC computer.

If your PC is using DOS 5.0 or higher, there may also be a problem if the
memory manager is using some of the upper memory area to accommodate your device
drivers (e.g., mouse, ansi.sys etc). You can avoid memory conicts by commenting
\DOS=HIGH" out from your config.sys, and also avoiding the use of \loadhi"
commands. At any rate, do the following in DOS 5.0 (or higher) to display a memory
map and �nd an area that is vacant to accommodate the 8K dual-port RAM.

C:> mem /p

or

C:> mem /c

You should consult Section 4.15 for further information on arbitrating the dual-
port SRAM.

4.7 Hardware Interrupt Channel

Pin 70 of the R1 FPGA is connected to hardware interrupt channel of your PC/XT.
The IBM PC AT and PC/XT computers have di�erent channel assignments, so be
careful. Table 4.6 shows a typical hardware interrupt channel in a PC AT computer.

You can enable an interrupt channel by the DIP switch SW2 on the BORG board.
If you are in add-in mode, you can select either IRQ3, or IRQ5, or IRQ7, or IRQ9 by
the DIP switch SW2 to enable interrupt; or none to disable an interrupt. Make sure
that the channel you chose is not in conict with other devices in your system, for
example, a serial mouse uses IRQ4; and IRQ5 may be used by a printer in LPT2.

4.8. DMA Channel 27

Hardware Interrupt Vector Description
IRQ0 0x08 System Timer
IRQ1 0x09 Keyboard Interrupt
IRQ2 0x0A unused connect to another 8259A chip
IRQ3 0x0B serial port COM2
IRQ4 0x0C serial port COM1
IRQ5 0x0D parallel port LPT2 in PC/AT (hard disk in PC/XT !)
IRQ6 0x0E oppy disk controller
IRQ7 0x0F parallel port LPT1
IRQ8 0x70 real time clock
IRQ9 0x71 (0x0A) rerouted to IRQ 2

IRQ10-IRQ15 PC/AT only

Table 4.6: Typical hardware interrupt channel in a PC AT computer.

If you are in host mode, you need to select the interrupt channel in the protozone
adapter card. You can use a lab given later in Section 9.2 as a guide to write interrupt
service routine, and the use the hardware interrupt feature.

4.8 DMA Channel

You need to change the default design of the controller X0 to practice DMA
transfer using the BORG board, and you must use the protozone adapter card in
order to use DMA. The protozone adapter card's DMA channel is designed for an
PC/AT computer. Also, you need to select the proper DMA channel in the protozone
adapter card.

Three DMA related signals: terminal count expire (TC), DMA request (DMA),
DMA acknowledge (DACK) are availble in X0 for you to build your own DMA
controller.

You can follow a lab given later in Chapter 9 as a guide to use the DMA feature.

4.9 Con�guring the controller X0 FPGA

Master serial mode : By default, the controller X0 (U1) is programmed by a
small serial PROM xc1765D (in U3) using the master serial mode. To set X0 to this
mode:

1. shunt J24 on the left side with a plastic jumper,

2. set position m0x0 of dip switch SW1 to closed, and

3. set position m1x0 of dip switch SW2 to closed.

Slave mode : Alternatively, customize your own controller by programming X0
in the slave mode using the Xilinx xchecker cable via J9. To set X0 to this mode:

1. shunt jumper J24 on the right side with a plastic jumper,

2. set position m0x0 of dip switch SW1 to open, and

3. set position m1x0 of dip switch SW2 to open.

28 4. Principle of Operation

In either case, the light emitting diode LED2 turns to green when X0 is successfully
programmed.

4.10 Programming the R1, X1, R2 and X2 FPGAs

For programming purpose, the FPGAs R1, X1, R2, and X2 are daisy-chained,
which means the Dout of the �rst FPGA R1 is connected to the Din of the second
FPGA X1 and so forth so on. Their DONE pins are tied together.

The R1 FPGA can be programmed either in peripheral mode or slave mode; the
other three X1, X2, R2 FPGAs are always con�gured in the slave serial mode. Since,
the mode pins M0, M1 and M2 pins of X1, R2, and X2 are tied to vcc, this puts
them into daisy chained slave programming mode with the R1 FPGA as the master.
Remember:

R1 -> X1 -> R2 -> X2

This means the Dout of the �rst FPGA R1 is connected to the Din of the second
FPGA X1 and so forth so on. Their DONE pins are tied together.

Important : You need to \concatenate" the bit streams of the individual FPGAs
for download. You do so by using the Xilinx makeprom program, see the next two
paragraphs.

If you need only one FPGA, you must use the R1 FPGA. You can either extract
the rest of the FPGAs with a PLCC extractor tool made by a company called AUGAT,
or �ll the rest of the FPGAs with \empty" bit streams. You can �nd null bit streams
for each of the individual FPGA types in the distribution package under the directory
empty :

em4002a.bit em4003a.bit

Use them to generate a single mcs �le of your design along with the bit stream of
your design in the R1 FPGA (say: myr1.bit) using the Xilinx makeprom utility:

makebits myr1

makeprom -o design.mcs -u 0 myr1.bit em4003a em4002a em4003a

To use the R1 FPGA in the peripheral mode, you set both positions m0r1 and
m1r1 of DIP switch SW1 to open and closed, respectively. The bit streams to
con�gure the FPGAs are downloaded via the 8-bit PC databus sent by the supplied
download program bd. LED3 (DONE) turns to red if the FPGAs are successfully
programmed.

c:> bd design.mcs

To use the R1 FPGA in the standalone mode, refer to Section 4.2.

4.10. Programming the R1, X1, R2 and X2 FPGAs 29

35 36 37 38 39 40 44 45 46 47 48 49 50 51

56

57

58

59

60

61

62

65

66

67

68

69

72

71

70

10 9 8 7 6 5 4 3 84 83 82 81 80 79 78 77 75

DOUT

DIN

RESET

14

16

17

18

19

20

23

24

25

26

28

29

27

13 CLK

15 TDI

TCK

TDO

TMS

35 36 37 38 39 40 44 45 46 47 48 49 50 51

56

57

58

59

60

61

62

65

66

67

68

69

72

71

70

10 9 8 7 6 5 4 3 84 83 82 81 80 79 78 77 75

DOUT

DIN

RESET

14

16

17

18

19

20

23

24

25

26

28

29

27

13 CLK

15 TDI

TCK

TDO

TMS

35 36 37 38 39 40 44 45 46 47 48 49 50 51

56

57

58

59

60

61

62

65

66

67

68

69

72

71

70

10 9 8 7 6 5 4 3 84 83 82 81 80 79 78 77 75

DOUT

DIN

RESET

14

16

17

18

19

20

23

24

25

26

28

29

27

13 CLK

15 TDI

TCK

TDO

TMS

35 36 37 38 39 40 44 45 46 47 48 49 50 51

56

57

58

59

60

61

62

65

66

67

68

69

72

71

70

10 9 8 7 6 5 4 3 84 83 82 81 80 79 78 77 75

DOUT

DIN

RESET

14

16

17

18

19

20

23

24

25

26

28

29

27

13 CLK

15 TDI

TCK

TDO

TMS

a3a0 a2 a1

d0

d1

d2

d3

d4

d5

d6

d7

X X

W R

I I
O O

INT

From X0

TO PC

R1 FPGA X1 FPGA

X2 FPGA R2 FPGA

Figure 4.3: User FPGAs and Global Signals.

30 4. Principle of Operation

4.11 Global Reset

You can reset the R1, X1, R2 and X2 FPGAs manually by depressing the push
button SW4. This global reset can be also initiated under (port I/O) program control.
It is connected to Pin 10 of all user FPGAs, as illustrated in Fig. 4.3. As mentioned
earlier in Section 4.5, the BORG board's controller X0 has four prede�ned I/O ports.
Bit 0 of PORTD is used for global reset.

4.12 Readback

Only the R1 and X0 FPGAs are available for readback using the xchecker program
and cable. The mode pins of the other FPGAs are tied to vcc, so readback is not
possible.

4.13 JTAG Boundary Scan

You can only use R1, X1, R2 and X2 FPGAs for boundary scan. X0 is the
controller of the boundary scan chain. As mentioned, the BORG board's controller
X0 has four prede�ned I/O ports. The three JTAG boundary scan pins: TMS, TCK,
TDI of the R1, X1, R2 and X2 FPGAs are connected to bit 1 to bit 3 of PORTD of
X0 to boundary scan the user FPGAs under port I/O program control. X0 reads the
TDO from the user FPGAs via the TDO PC pin.

Warning: Since bit 0 of PORTD is reserved for global reset (active low), don't
write a zero to bit 0 of this port unless you really mean to.

4.14 System Clock and Single Step

You may �nd the on-board (default 8 MHz) TTL-crystal clock generator useful.
Place the plastic jumper on the right side of J10 to use the crystal clock. It is divided
internally by a counter in the X0 controller (if X0 is not powered down). The clock
divisor can be selected by the clock program. For example, you use

c:> clock turbo

for a divided by 1 clock (default 8 MHz), and

c:> clock slow

for a divided by 8 clock.

The clock utility loads 2 bits to select the desired divisor that resides in bits 4
and 5 of PORTA of X0port inside X0 (see Section 4.5).

You can toggle the system manually by placing the plastic jumper on the left side
of J10 and use the push buttom for single stepping. The global clock is broadcast to
Pin 13 of all user FPGAs, as illustrated in Fig. 4.3.

A listing of the clock utility is given on the next page.

4.14. System Clock and Single Step 31

#include<stdio.h>

#include<dos.h>

#include<stdlib.h>

main(int argc, char *argv[]) /* clock speed selection */

{

unsigned int PortA;

char * portenv;

setcbrk(1);

printf("\nCLOCK Ver. #1.0\n");

printf("UC SANTA CRUZ, COMPUTER ENGINEERING, August 1993\n");

printf("(c) Copyright 1993 UC Regents. All rights reserved\n\n");

if(argc==1) {

printf(" Function: Set BORG Protoboard global CLOCK speed\n");

printf(" Usage: clock [slow | quick | fast | turbo]\n\n");

printf(" /8 /4 /2 /1\n\n");

exit(1);

}

portenv = getenv("BORG");

/* Control Port in X0 */

if(!strcmp(portenv,"0x300"))

PortA = 0x300;

else if(!strcmp(portenv,"0x200"))

PortA = 0x200;

else if(!strcmp(portenv,"0x210"))

PortA = 0x210;

else if(!strcmp(portenv,"0x310"))

PortA = 0x310;

else {

printf(" Wrong PORT address\n");

printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");

exit(1);

}

printf(" >BORG PORT address is %s\n",portenv);

if(argc==2){

switch(argv[1][0])

{

case 's': outportb(PortA, 0xce);

printf(" >Global clock is now slow \n");

break;

case 'q': outportb(PortA, 0xde);

printf(" >Global clock is now quick \n");

break;

case 'f': outportb(PortA, 0xee);

printf(" >Global clock is now fast \n");

break;

case 't': outportb(PortA, 0xfe);

printf(" >Global clock is now turbo \n");

break;

default: printf(" Error: flag not recognize '%s'\n", argv[1]);

printf(" Usage: clock [slow | quick | fast | turbo]\n\n");

}

exit(0);

}

}

32 4. Principle of Operation

pin of SRAM pin of R2 PC84 package FPGA

D0 R2.46

D1 R2.45

D2 R2.44

D3 R2.40

D4 R2.39

D5 R2.38

D6 R2.37

D7 R2.36

A0 R2.47

A1 R2.48

A2 R2.49

A3 R2.50

A4 R2.51

A5 R2.56

A6 R2.57

A7 R2.58

A8 R2.61

A9 R2.62

A10 R2.67

A11 R2.66

A12 R2.59

CS R2.30

OE R2.65

WE R2.60

Table 4.7: Memory signals from R2 to dual port SRAM; the connections
to memory addresses A0-A12 depend on jumpers J11-J23. To use the pin
assignment tool assign you need to use the appropriate wiring �le and
ag (see assign command option in Chapter 7) to reect the status of the
jumpers.

4.15 On-board SRAM and arbitration

4.15.1 8K�8 SRAM

If your design requires only a wide but shallow amount of memory, it is much
better to use the XC4000 on-chip RAM. If you need deep but narrow memory, the
on-board 8K�8 SRAM can be useful.

As indicated on the BORG board, pin 2 of jumpers J11-J23 are the (A0-A12)
address lines to the SRAM coming out from the R2 FPGA. You can move the plastic
jumpers of J11-J23 to the right side to use all the on-board 8K�8 SRAM. In this
case, you have less connections available between X1 and X2 FPGAs, as illustrated
in Fig. 4.4.

In Fig. 4.4, you will �nd that the SRAM is connected to the R2 FPGA, the pin
assignment of R2 FPGA is given in Table 4.7. All the memory access signals (8-bit
data lines, 13-bit address lines, R/W, OE-, and CS-) of the user FPGAs have to go
through R2 before reaching the SRAM (see also Figure 1.2). In particular, pin 30 of
R2 is the chip select (CS-). This signal is tri-stated and is in wire-and con�guration
with the RAMSEL signal of X0. You need to use the special md1 symbol in your
schematic drawing to use this pin. This active-low signal is normally pulled high by a
4.7K resistor. Figure 4.5 illustrates the memory write timing as the SRAM is under
tested.

4.15. On-board SRAM and arbitration 33

X2

R1

R2

X1

SRAM

XC40??PC84

XC40??PC84 XC40??PC84

XC40??PC84

PC Bus

Address Lines A0-A3
Data Lines D0-D7
IOR,IOW
INTPC (interrupt PC)

XC4003APG120X0

Address

Data

Control

Data

I/O PORTs

8K x 8bit

RAMSEL2

bu�erJ11-J23

address lines

data lines
control lines

Figure 4.4: SRAM and the rest of the FPGAs.

On the other hand, if you need more connections between the user FPGAs X1 and
X2, you may move the plastic jumpers of J11-J23 to the left side (this is the default
con�guration, see Fig. 2.6); and the on-board 8K�8 SRAM is inaccessible.

4.15.2 Dual-port SRAM arbitration

The 8K dual-port SRAM can be accessed either by the PC or the R2 FPGA. The
X0 controller provides some simple arbitration logic. There are three mechanisms for
arbitration.

First, you can control the default dual-port SRAM access by setting position 3
of DIP switch SW1 (DURAM). If this switch position is open, the PC has exclusive
access to the SRAM. By the same token, you can make the SRAM inaccessible to the
PC by closing this switch.

Second, you can arbitrate the dual-port SRAM access under program control,
overwriting the default set by DIP switch SW1 (DURAM). Bit 2 and bit 3 of PortA
of X0port arbitrates the memory access, as illustrated by the arbit utility on the
next page.

Third, jumper J1 is connected to the ASIC pin of the X0 controller. This active-
low signal can be used to block the PC access to the dual-port SRAM by tristating
the data and address bu�ers surrounding the dual-port SRAM on the PC side. The

34 4. Principle of Operation

Figure 4.5: SRAM write timing of two consecutive write cycles. Channel 1
is the chip select CS signal. Channel 2 is the write WE signal. Channel 3 is
address line A0, a `1' on the �rst write cycle, and then a `0' on the second
one. Channel 4 is the data line D0, zeros for both cycles.

static RAM 6264 is of 70ns speed grade. We have tested the BORG board using
150ns RAM without problems. We use the 70ns speed grade because it is available
and cheap.

4.16 Limits on the Number of Connections Between the FPGAs

Some of the I/O pads on R1 and R2 are used to support the dual-ported SRAM
and port I/O communications with the PC. Thus, although the number of user pads
available on a 84-pin PLCC package is 54, the maximum number of connections

between X1 and X2 which can be realized with R1 and R2 is 38 , with the plastic
jumpers of J11-J23 on the left side, and using TDO and TDI pins.

With the plastic jumpers of J11-J23 on the right side, the maximum number of
connections between X1 and X2 which can be realized with R1 and R2 is 28 . Fig-
ure 4.6 shows the pin distribution between the FPGAs. There are some unconnected

pin in the X1 and X2 FPGAs are indicated with a small circle on their pins in Fig. 4.3.
They can be used for probing/debugging purposes.

4.16. Limits on the Number of Connections Between the FPGAs 35

R2X2

R1 X119

18

2

11
SRAM

8K x 8bit

20

15

2

11

J11-J23

Figure 4.6: Pin Distribution between the FPGAs.

/* program arbit

dual-port SRAM arbitration */

#include<stdio.h>

#include<dos.h>

#include<stdlib.h>

main(int argc, char *argv[])

{

unsigned int PortA;

char * portenv;

setcbrk(1);

printf("\nRAM ARBITER Ver. #1.0\n");

printf("UC SANTA CRUZ, COMPUTER ENGINEERING, August 1993\n");

printf("(c) Copyright 1993 UC Regents. All rights reserved\n\n");

if(argc==1) {

printf(" Function: Arbitrate BORG II Protoboard's RAM\n");

printf(" Usage: arbit [xilinx | pc]\n\n");

exit(1);

}

portenv = getenv("BORG");

/* Control Port in X0 */

if(!strcmp(portenv,"0x300"))

PortA = 0x300;

else if(!strcmp(portenv,"0x200"))

PortA = 0x200;

36 4. Principle of Operation

else if(!strcmp(portenv,"0x210"))

PortA = 0x210;

else if(!strcmp(portenv,"0x310"))

PortA = 0x310;

else {

printf(" Wrong PORT address\n");

printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");

exit(1);

}

printf(" >BORG PORT address is %s\n",portenv);

if(argc==1) {

printf(" Function: Arbitrate BORG II Protoboard's RAM\n");

printf(" Usage: arbit [xilinx | pc]\n\n");

exit(1);

}

if(argc==2){

switch(argv[1][0])

{

case 'x': outportb(PortA, 0xf3);

printf(" >BORG Xilinx's has exclusive access to the RAM\n");

break;

case 'p': outportb(PortA, 0xf7);

printf(" >PC has exclusive access to the RAM\n");

break;

default:

printf(" Error: unknow flag '%s'\n", argv[1]);

printf(" Usage: arbit [xilinx | pc]\n\n");

exit(1);

}

printf("\n Warning: RAM access can be hardwired by a\n");

printf(" : switch position 3 (DURAM) of DIP SW#1\n");

printf(" : Open: PC access closed: FPGA access\n");

exit(0);

}

}

37

5. Software

The software programs and subdirectories in the distribution package Ver 1.0 are
described in Table 5.1.

�le name description

arbit arbitrates dual-port SRAM access
assign pin assignment program to connect multiple FPGAs (need a 386)
bscan boundary scan program (unsupported!)
bd downloads an mcs �le to the BORG board (runs on XT compatible)
clear clear a messy screen
clock program to change the system clock rate
default print out the default DIP switch settings
inspect list content of dual-port SRAM
isr.com interrupt service routine for interrupt lab
intpc interrupt generator for the interrupt lab
maze maze runner driver project example
mtest checks (by writing after reading) the

8k dual-port SRAM 6264 on the BORG Board
portest lab example to show building I/O ports in R1
setassig.bat example bat �le to set an environment variable

for the program assign
scan scan test to check all the I/O on BORG board
tetris driver for the Tetris project (runs on XT compatible)
srcn subdirectory containing the source code
designsn subdirectory with the LCA �les for the project examples
mcsn subdirectory with the mcs �les for the design examples
emptyn subdirectory with null bit-streams for XC4003a and XC4002a 84PLCC packages
X0n subdirectory viewdraw schematic of the X0 controller
assignn subdirectory supporting �les

Table 5.1: Contents of Software Distribution.

5.1 Memory related programs mtest and inspect

The memory test mtest program checks whether the dual-port SRAM is accessible
from the PC. The inspect program displays the entire contents of the 8K dual-port
SRAM.

Before running these programs, you need to disable any access to the dual-port
SRAM from the user FPGAs, by closing position 3 DURAM of SW1. You need
to download a \null" bit stream into R2. You can use the supplied bit stream
portest.mcs or scan.mcs that are in this distribution. Both of these mcs �les have
the necessary bit stream to tristate the I/O pins of R2). You should make sure that
the PC has exclusive access to the memory, do

c:> arbit pc

38 5. Software

before running either programs.

5.2 Board Wiring test program Scan

The design �le scan.mcs contains bit streams that chain up most of the I/O pads
of the user FPGAs to be a shift register. The program scan shifts a zero into the
chain and checks whether the zero successfully arrives after certain number of clock
cycles.

5.3 Pin assignment program assign

Assign is a C++ program which assigns pads on the routing FPGAs to connect

the two user FPGAs. You must run assign on 32-bit 386/486 machines. Both its

source code and executables are included. Assign has been compiled with the g++
(DJ) public domain compiler. You should read the section on the options available
with assign in Chapter 7.

5.3.1 Projects, Demos and their MCS �les

The directory designsn contains the projects and their LCA �les. Their mcs �les
are in the mcsn directory.

tetris4 - Martine Schlag's Tetris project in Aug 1991, the original design used one
XC3020 and one XC3042. I have converted the XC3000 design to XC4000 for
the purpose of this distribution.
x1tet4f.lca - the controller of the Tetris machine design

x2tet4f.lca - the datapath of the Tetris machine design

R1tet4f.lca - the 1st routing FPGA design

R2tet4f.lca - the 2nd routing FPGA design

tetris4.mcs the bit stream of the complete design

amazer - Jason Y. Zien and David Van Brink's maze runner project in Fall 1992
(CMPE 225 UC Santa Cruz). Their maze runner machine used the XC3000
Borg board for development of the project in Fall 1992. I have converted the
XC3000 design to XC4000 for the purpose of this distribution.
R1newg.lca - the 1st FPGA design

R2newg.lca - the 2nd FPGA design

amazerg.lca - the 3rd FPGA design

amazer4.mcs - the bit stream of the complete design

randmaze - David Van Brink's \random" maze runner project in Fall 1992 (CMPE
225 UC Santa Cruz). I have converted the XC3000 design to XC4000 for the
purpose of this distribution.
randmaze.lca - the single FPGA design.

5.3. Pin assignment program assign 39

This Maze Solver was designed in XACT and uses 15 CLBs to make random, but
legal, moves through the maze. For each move, it takes into account the mouse's
previous direction, and the state of the walls around it, and a random bit, to
decide what move to make next. Essentially, it has 50% chance of following a
right- hand rule, and 50% chance of following a left hand rule.

The system is clocked by the falling edge of the PC's YourMove signal line. The
random element comes from the system clock on the Borg board, toggling a ip-
op. Since the BORG's clock is independent from the PC's clock, this seems to
work well enough.

portest - testing parallel I/O ports con�gured in R1 FPGA
sch schematic drawing of the design in viewdraw

portest.lca - 4 I/O ports in R1

portest.mcs the bit stream of the design

intpc - hardware interrupt demo using the R1 FPGA
sch schematic drawing of the demo in viewdraw

intpc.lca - one I/O port in R1 by generating hardware interrupt

intpc.mcs - the bit stream of the design

intpc.exe - a driver to trigger the generation of an interrupt

isr.com - a interrupt service routine for the demo

asylab - synchronization failure lab demo using the R1 FPGA
sch schematic drawing of the demo in viewdraw

asylab.mcs - the bit stream of the design

asylab.exe - the driver to demonstrate synchronization failure

music - frequency synthesizer demo using theR1 FPGA, you need a digital-to-analog
converter and a small transistor ampli�er to \listen" to this lab
sch schematic drawing of the demo in viewdraw

music.mcs - the bit stream of the design

music.exe - a driver to use the keyboard to control the frequency of sine wave
generated by the FPGA

40 6. Design ow

6. Design ow

6.1 Introduction

The essence of the design process using the BORG board for a multiple FPGA
design can be summarized in the following steps.

1. Place and route X1 and X2 (the 2 user FPGAs), letting the placement and
routing program ppr (or apr) choose the pad assignments.

2. Re-arrange the pad assignments of X1 and X2 with the assign utility to
conform to the hardwired constraint of the BORG printed circuit board.

3. Place and route the X1 and X2 again using the incremental place-and-route
ags of ppr (or apr).

4. Place and route R1 and R2 (the routing FPGAs).

5. Generate the bit streams of R1, X1, R2, and X2 using makebits and concate-
nate them using makeprom.

Note: in principle, you can also treat X1 and X2 as the routing chips, and use R1
and R2 for logic; or even use all four FPGAs for logic. Assign is able to handle these
situation, but you have to read Chapter 7.

6.2 Details

In greater details, suppose that you have two cooperating XC4003a LCA designs,
the following steps illustrate the process of using the tool set to connect the two LCA
designs electronically on the BORG board. 1

1. Hand partition your design into two XC4003aPC84 FPGAs.

2. Place and route the FPGA designs without imposing any constraints on the
pad assignments. You should let ppr determine the pad assignments of your
LCA designs. Say, the two (routed) LCA design �les are called X1a.LCA and
X2a.LCA; and their XNF �les are called X1a.XNF and X2a.XNF, respectively.

C:> ppr X1a

C:> ppr X2a

3. Run \assign" with an \alias.file" to obtain an interconnection map Rx.info.

C:> assign -1 X1a.LCA -2 X2a.LCA -a alias.file

-x1 X1a.cst -x2 X2a.cst -r1 R1.cst -r2 R2.cst -i

1You may use an XC4002, XC4003, XC4004, XC4005, or XC4010D in place of any user FPGAs
currently on your BORG board. This distribution provides two XC4003a as the user FPGAs, and
two XC4002a as the routing FPGAs.

6.2. Details 41

pprppr ppr ppr

makebits X1 makebits R2 makebits X2makebits R1

regular
Xilinx
Design
Flow

viewdraw

wir2xnf

ppr

viewdraw

wir2xnf

ppr

X1

Pin Assignment for BORG board

assign -1 X1a.LCA -2 X2a.LCA -a alias.ali -i
-x1 X1a.cst -x2 X2a.cst -r1 R1.cst -r2 R2.cst

R2 X2X1R1 rerun ppr
with incremental
option

makeprom -o des.mcs -u 0 R1 X1 R2 X2

bd des.mcs

bit streams into
a single mcs �le

download to BORG
board

Hand Partition designs into

(available in XACT 5.0)

R1.LCA X1.LCA R2.LCA X2.LCA

two chips X1 and X2

(Prepare schematic drawings
of routing chips R1 and R2,
after running assign)

X2a.LCAX1a.LCA

viewdraw

wir2xnf

viewdraw

wir2xnf

R1.XNF

generate constraint �les
that conform with
BORG board

R2.XNF

X2

concatenate

Figure 6.1: Using Assign to augment the Xilinx Design Flow for multiple-
chip design. Draw the schematics of R1 and R2 after using assign, not
before.

42 6. Design ow

The alias.file is used to match nets which are to be connected between X1
and X2 which (may) have di�erent names. Ideally, you created designs for X1
and X2 in which all nets that are to be interconnected have the same name.
However, if for some reason, you gave di�erent names to the signals, for example
\Select" on X1 and \select data" on X2, an alias in the alias.file will cause
these signals to be matched. This is particularly useful if you want to use the
memory chip or PC-bus. You MUST alias those signals to the names given
in the wiring �le (refer to Chapter 7 for details). Some of these special signal
names are:

PC Bus Data Lines:

&&BusData_0, &&BusData_1, &BusData_2, &&BusData_3,

&&BusData_4, &&BusData_5, &&BusData_6, &&BusData_7

PC Bus Address Lines:

&&BusAddress_0, &&BusAddress_1, &&BusAddress_2, &&BusAddress_3

PC Bus Control Lines:

&&BusControl_0, &&BusControl_1

Memory Data Lines:

&&MData_0, &&MData_1, &&MData_2, &&MData_3

&&MData_4, &&MData_5, &&MData_6, &&MData_7

Memory Address Lines:

&&MAddress_0, &&MAddress_1, &&MAddress_2, &&MAddress_3,

&&MAddress_4, &&MAddress_5, &&MAddress_6, &&MAddress_7

Memory Control Lines:

&&M_WE, &&M_OE, &&M_CS

Forced Nets:

&&R1, &&R2

The alias �le itself contains pairs of net names that are to be matched. One
example is:

;

; a sample alias file

; comments started with a semicolon

;

memaddr0 &&MAddress_0

memaddr1 &&MAddress_1

memaddr2 &&MAddress_2

memaddr3 &&MAddress_3

start Start_Machine

which illustrates forcing some nets to be used as memory address signals.

Another example is:
Prot<1> &&R1

Prot<2> &&R1

PLateral<1> &&R1

PLateral<2> &&R1

6.2. Details 43

PLateral<3> &&R1

PMoveready &&R1

IOB1 &&R1

PYourmove &&R1

Pnewtile<1> &&R1

Pnewtile<2> &&R1

Pnewtile<3> &&R1

PSavcol<1> &&R1

PSavcol<2> &&R1

PSavcol<3> &&R1

- Pclk

which illustrates forcing some nets that must go to the R1 FPGA.

The interconnection map Rx.info suggests a consistent way of connecting the
user FPGAs X1 and X2 using the routing FPGAs R1 and R2, hopefully.2 A
sample interconnection map is given below:

NET NAME NET ALIAS COST SRC DEST

-------- --------- ---- --- ----

PSavcol<3> &&R1 [0] X1.38 -> R1.48 O_PAD

PSavcol<3> &&R1 [0] X0 -> R1

Pcol<3> Pcol<3> [0] X1.37 -> R2.5 I_PAD

Pcol<3> Pcol<3> [0] X2.6 -> R2.28 O_PAD

Pc<13> Pc<13> [0] X1.4 -> R2.4 I_PAD

Pc<16> Pc<16> [0] X1.26 -> R1.60 I_PAD

Pc<16> Pc<16> [0] X2.79 -> R1.49 O_PAD

Pcond<2> Pcond<2> [0] X1.40 -> R1.44 O_PAD

Pnewtile<2> &&R1 [0] X2.81 -> R1.47 O_PAD

Pc<9> Pc<9> [0] X1.23 -> R2.9 I_PAD

Pc<9> Pc<9> [0] X2.27 -> R2.47 O_PAD

Prot<1> &&R1 [0] X0 -> R1

Prot<1> &&R1 [0] X2.7 -> R1.37 I_PAD

Pcond<7> Pcond<7> [0] X2.70 -> R2.62 I_PAD

Pc<17> Pc<17> [0] X1.36 -> R1.36 I_PAD

Pc<17> Pc<17> [0] X2.14 -> R1.35 O_PAD

PYourmove &&R1 [0] X1.59 -> R1.24 O_PAD

PYourmove &&R1 [0] X0 -> R1

PMoveready &&R1 [0] X1.28 -> R1.57 I_PAD

PMoveready &&R1 [0] X0 -> R1

Pc<3> Pc<3> [0] X1.5 -> R1.79 I_PAD

Pc<3> Pc<3> [0] X2.26 -> R1.26 O_PAD

Pcond<4> Pcond<4> [0] X1.19 -> R2.8 O_PAD

Pcond<4> Pcond<4> [0] X2.23 -> R2.68 I_PAD

Pc<20> Pc<20> [0] X1.68 -> R2.69 I_PAD

Pc<20> Pc<20> [0] X2.68 -> R2.18 O_PAD

The �rst column is the PAD (net) name, the second is the PAD's alias name,
the third column is the cost, and the fourth column is the source FPGA's pad
number, and the last column is the destination FPGA's pad number and are
connections that need to be made inside R1 and R2.

2There may not be a consistent assignment and this problem is NP-complete.

44 6. Design ow

Assign will also generate two constraints �les X1a.cst and X2a.cst. Use these
two �les to route X1a.LCA and X2a.LCA with ppr again. You should use the
incremental option of (apr -g for the XC3000 designs) ppr (available in XACT
5.0 in May 1994) to guide the new placement and routing processes using the
old designs, and the new constraints �les X1a.cst and X2a.cst. For example,

C:> ppr X1a outfile=X1

C:> ppr X2a outfile=X2

Now, you have two new LCA �les X1.LCA and X2.LCA with the pad assignments
determined by assign.

4. With the I/O map generated by assign, draw a schematic diagram for each
of the routing chips, R1 and R2, using viewdraw. The constraint �les for the
routing chips have also been generated by assign.

Figure 6.2 illustrates a rather typical schematic drawing of the R1 routing chip.

Notice that there is actually some logic in the \routing chips." Please generate
the routed LCA �les of the routing chips using the Xilinx ADI software wir2xnf
and ppr (or xmake, if you like).

C:> wir2xnf r1

C:> wir2xnf r2

C:> ppr r1

C:> ppr r2

Now you have two routed LCA �les: R1.LCA and R2.LCA.

5. You generate the bit �les for all the LCA �les:

C:> makebits X1

C:> makebits X2

C:> makebits R1

C:> makebits R2

Now you put these bit �les together into a single mcs �le. Use makeprom, and set
the promsize to 64K, set the �le format to Intel mcs, and load the bit �les in the
upward direction starting from location 0. Gather the bit �les and concatenate
them into a single mcs �le, say design.mcs, by loading the bit �les in the
following order

makeprom -o design.mcs -u 0 R1.bit X1.bit R2.bit X2.bit

The order is important since it corresponds to the order in which the FPGAs
are daisy-chained on the BORG board.

6. Download the mcs �le using the program bd.

C:> bd design.mcs

6
.2.

D
eta

ils
45

SYSRESET

INVIBUF

GSR

GTS

CLK

Q2

Q3

Q1Q4

DONEIN

STARTUP

GCLOCKNET
LOC=P13
PAD

BUFGP

PAD

PAD

PAD

BIT7

BIT3

BIT5

BIT6

BIT7

BIT4

BIT0

BIT1

BIT2

BIT1

BIT2

BIT3

BIT4

BIT5

BIT6

BIT0

BIT6

BIT5

BIT4

BIT3

BIT2

BIT1

BIT0

BIT7

BIT[7:0]

PORTK

PORTJ

X1_PMOVEREADYL_OUT

X1_PMOVED0_OUT

X1_PMOVED1_OUT

X1_PTELEPORTL_OUT

PART=4002APC84

Jan 26, 1994

IBUF

BIT4B

IBUF

IBUF

BIT1B

IBUF

IBUF

PAD

OBUF

PAD

OBUF

South

East

West

NORTH

PORTS

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

D7

D6

D5

D4

D3

D2

D1

D0

CLK

A3P

A1P

XIOW-P

PAD

BIT3B

BIT2B

PAD

SQ7

SQ5

X1_PPCE_IN

X1_PPCW_IN

SQ2

X1_PPCN_IN

SQ0
PAD

X1_PYOURMOVEL_IN

X1_PATFINISHL_IN

OBUFT

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

LOC=P58

PAD

A3

A2

A1

A0

XIOW-

XIOR-

IBUF

IBUF

IBUF

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

Pak K. Chan

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

R1 in BORG Maze

OBUFT

IBUF

IBUF

IBUF

IBUF

A1

OBUFT

IBUF

IBUF

IBUF

IBUF

IBUF

PAD

PAD

IBUF

PAD

IBUF

PAD

XIOR-P

A2P

XIOR-

IBUF

IBUF

PAD

PAD

PAD

PAD

X1_PPCS_IN

PAD

PAD

XIOW-

A2

A3

OR3B1

N0

N1

N2

N3

N4

N5

N6

N7

Modified by Jason Zien & David VanBrink

12-7-92

PORTJ
C=1
L=1

LOC=P56

PAD

A0

A1

ENB

O0B

O1B

O2B

O3B

X74-139
A0

PORTK

IBUF

A0P

LOC=P83

PAD

LOC=P50

PAD

LOC=P51

PAD

LOC=P80

PAD

LOC=P82

PAD

LOC=P81

PAD

BIT0BLOC=P71

PAD

LOC=P69

PAD

LOC=P67

PAD

LOC=P65

PAD

LOC=P61

PAD

LOC=P59

PAD

BIT5B

BIT6B

BIT7B

PORTS

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

D7

D6

D5

D4

D3

D2

D1

D0

CLK

LOC=P10

PAD

GCLOCKNET

F
igu

re
6.2

:
M
aze

ru
n
n
ers'

top
-lev

el
sch

em
atic

d
raw

in
g
of
an

R
1
rou

tin
g
ch
ip

u
sin

g
th
e
B
O
R
G
b
o
ard

.

46 6. Design ow

47

7. ASSIGN (Ver 3.0) A Pin Assignment Program for
BORG Prototyping Board

7.1 Preface to earlier versions

1 Assign 3.0 may not necessarily be compatible with earlier versions of assign.
This new version generates pin assignment for connections involving one or two

user FPGAs (earlier versions are restricted to connection between two user FPGAs).
Although the algorithms used are deterministic, they are dependent upon the ordering
of the pads read in from the LCA �les. The ordering of the pads is randomly changed
after each iteration, that is why multiple iterations of the algorithm can be run.
Therefore, minor changes to the LCA �les may yield very di�erent output from assign.
Assign 3.0 has been tested with Xilinx apr 3.2, apr 3.3 (with incremental place
and route version), and ppr 1.31 (without incremental place and route). Incremental
placement and routing is necessary for the e�cient use of assign. Assign supports
XILINX XC3020, XC3030, XC3042, XC3064, XC3090, XC4002, XC4003, XC4004,
and XC4005 PC84-package FPGAs used in the BORG I and II prototyping board.
The X1 and X2 user FPGAs are assumed to be of the same type.

7.2 Assign as a Pin Assignment Program

Locking (constraining) I/O pins down during placement and routing is known to
be harmful. Not only that it increases the time taken to place and route a design, but
locking down I/O pins also reduces your chances of having a successful placed and
routed designs. Assign is a pin (I/O pad) assignment program which will increase the
chance of successful placement and routing runs even under the given BORG board
level constraint.

Assign does so in two steps. First, use the placement and routing program (ppr
or apr) to place and route your designs without constraints. In other words, let ppr
or apr choose the initial pin assignments freely. Next, assign will then perturb the
initial pin assignments to satisfy the board level constraint. The designs are rerouted
using the incremental placement and routing option.

7.2.1 Place in the design process

Assign is a program that produces consistent pin assignments for the BORG pro-
totyping board. Assign takes two user LCA �les which are intended to be downloaded
to BORG, and produces two corresponding constraint �les which can then be used
by apr or ppr to generate a valid pin assignment.

BORG is a rapid prototyping board for PC-based machines. It contains two user-
programmable XILINX FPGAs (X1 and X2) and two dedicated routing FPGAs (R1
and R2) as shown earlier in Fig. 1.2. Wires going from each user chip to each routing

1Assign is written by Jason Y. Zien

48 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

chip follow roughly an alternating pattern (wire i of X1 goes to R1, wire i+1 of X1 goes
to R2, wire i+3 of X1 goes to R1, ...). Since BORG contains hardwired connections
between the user FPGAs and routing FPGAs, the initial pin assignments generated
by the XILINX tools (which have no knowledge of these board-level pin assignment
constraints), must be rearranged to produce a correct, usable circuit. The advantage
of having hardwired connections is the elimination of wire-wrapping a circuit, which
can be extremely time consuming and tedious.

The typical design process for BORG has several steps. Assign �ts in the middle
of that process. The major steps in the design process are:

1. Draw schematics for X1 and X2 FPGAs.

2. Draw schematics for R1 and R2 FPGAs.

3. Create the unconstrained LCA �les using apr or ppr.

4. Create the alias �le for assign to match up nets with di�erent names or to force
nets to go to a speci�c routing chip.

5. Run assign on the X1 and X2 LCA �les.

6. Edit the R1 and R2 schematics so that nets which pass through these chips are
connected. These net names must match the incoming X1 or R1 net name, with
the X1 or X2 pre�x attached, depending on the source of the net.

7. Rerun apr or ppr on each LCA �le using the incremental placement and routing

option. For apr, use the `-c [file.cst]' option so that the constraint �le
generated by assign will lock the pads to the proper places. If running ppr

[file.xnf], it will automatically read in a constraint �le named [file.cst].

8. Use makebits to create the bit �les.

9. Use makeprom to group together the bit �les into one .mcs �le for downloading.

IMPORTANT : The constraint �les generated for R1 and R2 prepend either
X1 or X2 to a net name depending on the source of the net. This is necessary because
if matched nets in X1 and X2 have the same name, that would cause a name clash on
the routing chip through which the net pass. Example: suppose nets neta on X1 and
bnet on X2 are to be forced through R1. The net adjacent to the pad in which neta

enters/leaves must be named X1 neta while the net adjacent to the pad in which bnet

leaves/enters must be named X2 bnet. This only applies if one uses the constraint

�les generated by assign. Of course, one may choose to not use these net names, and
directly set the pad locations in the schematic based on the information in Rx.info.

IMPORTANT : The user must exercise extreme care in making sure that nets
which are NOT to be matched have di�erent names. In particular, one needs to be
careful of such things as CLOCK nets. assign may inadvertently match the clock
signals on both user chips. See Section 7.2.4.

7.2. Assign as a Pin Assignment Program 49

7.2.2 Command Line Arguments

assign takes a number of command line arguments. Its usage is as follows:

assign [options ...]

Options (and their descriptions, which follow the ';' symbol) include:

-1 x1file.lca ; x1file.lca=name of the X1 lca file

-2 x2file.lca ; x2file.lca=name of the X2 lca file

-a aliasfile ; aliasfile= file that gives aliases to nets for matching

-u ; flag, use memory connections

-s num ; num=starting window size

-e num ; num=ending window size

-m num ; num=maximum solutions allowed outside the window

-x1 x1file.cst ; x1file.cst=name of the constraint file for chip X1

-x2 x2file.cst ; x2file.cst=name of the constraint file for chip X2

-r1 r1file.cst ; r1file.cst=name of the constraint file for chip R1

-r2 r2file.cst ; r2file.cst=name of the constraint file for chip R2

-i ; run single and pairwise swap improvement phase

-g ; run greedy graph reduction

-c ; Output a CLB Locking constraint file (for apr ver 3.3)

If none of the constraint �le output options (-x1 -x2 -r1 -r2) are speci�ed,
then by default, the program writes out constraint �les x1.cst, x2.cst, r1.cst,

and r2.cst. The constraint �le output format is chip-speci�c. That is, the constraint
�les for Xilinx XC3000 series FPGAs di�er from XC4000 series FPGAs. It is assumed
that XC3000 series designs will be placed and routed using apr while XC4000 series
designs will be placed and routed using ppr. The output constraint �les are generated
to be compatible with the corresponding place and route program.

The -u option allows assign to use special lines from R2 to the on-board memory.
Because of pin limitations of the FPGA packages used, and due to the large number
of memory address lines, these lines are selectively activated or not activated by some
switches on the BORG board. If the memory lines are not used, then extra connections
between the routing chips and user chips are available for general use. However, if the
memory lines are used, then these connections are unavailable for general-purpose use.
This option a�ects the use of all memory address lines for the 4K borg, but only the
upper address lines (bits 8-10) of the 3K BORG. *** BE SURE THAT THE BORG
DIP SWITCHES which a�ect the memory lines are set properly, or your design might
not work!!!! *****

Due to a change in the way apr ver 3.3 handles the locking of blocks, the `-c'
option of assign should be used to speed up the placement phase of apr. When
`-c' is used, two �les, x1clb.cst and x2clb.cst are created and the line `Include
x1clb.cst;' is included at the end of x1.cst and `Include x2clb.cst;' is included
at the end of x2.cst. The �les x1clb.cst and x2clb.cst lock all of the CLBs which
were found in the input LCA �les.

50 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

Previously, the recommended usage of constraint �les generated by assign was:

% assign -1 x1.lca -2 x2.lca -a file.ali

% apr -l -c x1.cst x1.lca x1new.lca

% apr -l -c x2.cst x2.lca x2new.lca

The -c option does not do anything when the chips are Xilinx XC4000 series FPGAs.

Now, for apr ver 3.3 (and later versions) we recommend:

% assign -1 x1.lca -2 x2.lca -a file.ali -c

% apr -q -c x1.cst x1.lca x1new.lca

% apr -q -c x2.cst x2.lca x2new.lca

By default, assign uses the augmentation algorithm. It has been experimentally
noted that using the default mode tends to produce better results for very large, dense
I/O designs, while the greedy graph reduction heuristic (-g option) tends to produce
better results for small, sparse designs.

In order to run assign, the user �rst needs to have at least one LCA �le which
he/she intends to download to X1 and X2 of the BORG prototyping board. Also,
an alias �le may be created so that nets having di�erent names in the two LCA �les
can be matched (or prohibited from being matched). These net names MUST BE
adjacent to I/O pads. Assign can not match nets which are not adjacent to I/O pads.
Assign is NOT case sensitive with respect to net names, however, the special alias
names which will be described below are case-sensitive.

7.2.3 An Environment Variable

You need to set an environment variable before assign can be run. In the UNIX
environment, the following line must be placed in the user's .cshrc �le.

setenv BORG_ASSIGN <Directory_Where_Assign_Resides>/

In the MS-DOS environment, the following lines must be added to the autoexec.bat
�le:

set BORG_ASSIGN=<Directory_Where_Assign_Resides>/

where <Directory Where Assign Resides> is the full path to the directory in which
the assign program has been installed and which also contains the three data �les:
xc3020.io, xc3042.io, alt3042.wir. Also, the directory contains several pin map-
ping �les used internally, which are: 3020.map, 3030.map, 3042.map, 3064.map,
3090.map, 4002.map, 4003.map, 4004.map, and 4005.map.

7.2.4 Alias Files

By default, assign matches ALL nets in X1 and X2 which have the same name
(insensitive to case). An alias �le is used to match nets which are to be connected
between two user FPGA chips which have di�erent names. In the ideal case, the user
has created their design for the two user FPGAs X1 and X2 such that all nets which
are to be interconnected have the same name.

7.2. Assign as a Pin Assignment Program 51

The alias �le itself contains pairs of net names that are to be matched. The �rst
column should be the X1 net name. The second column can contain the X2 net name,
or one of the special reserved names given above. If the �rst and second column are
X1 and X2 nets respectively, then the third column may contain one of the special
reserved names to force both other nets to go through a particular routing chip.

A special name is the - symbol. If the - symbol is the �rst name, then the next
string name signi�es a net that is not to be matched by assign. This may be useful
for example, when a net such as the CLOCK net appears in both user chips, but have
already been given �xed locations which should not be modi�ed by assign.

Another situation which requires the use of aliases is if for some reason, the user
gave di�erent names to the signals, for example Select on X1 and select data on X2,
an alias in the alias �le will still allow the signals to be matched. This is particularly
useful if the user wants to use the memory chip or PC-bus. The user MUST alias
those signals to the names given in the wiring �le. Those special signal names are
given below.

Forced Nets (nets forced to either R1 or R2):

&&R1, &&R2

PC Bus Data Lines:

&&BusData_0, &&BusData_1, &BusData_2, &&BusData_3,

&&BusData_4, &&BusData_5, &&BusData_6, &&BusData_7

PC Bus Address Lines:

&&BusAddress_0, &&BusAddress_1, &&BusAddress_2, &&BusAddress_3

PC Bus Control Lines:

&&BusControl_0, &&BusControl_1

Memory Data Lines:

&&MData_0, &&MData_1, &&MData_2, &&MData_3 &&MData_4,

&&MData_5, &&MData_6, &&MData_7

Memory Address Lines:

&&MAddress_0, &&MAddress_1, &&MAddress_2, &&MAddress_3,

&&MAddress_4, &&MAddress_5, &&MAddress_6, &&MAddress_7

Memory Control Lines:

&&M_WE, &&M_OE, &&M_CS

In practice, it is su�cient to force nets using just &&R1 and &&R2. The other
aliases are included for backward compatibility with previous versions of assign. For
example, using &&M WE is equivalent to &&R2. An example of an alias �le is given
below.

52 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

; some single forced nets

Dir0 &&BusData_0

Dir1 &&BusData_1

Dir2 &&BusData_2

ROTS &&BusData_3

finish &&BusData_4

Startin &&BusData_5

tile_0 &&BusAddress_0

tile_1 &&BusAddress_1

tile_2 &&BusAddress_2

; some alias matching plus forced nets

CEO clken0 &&R1

CE1 clken1 &&R1

CE2 clken2 &&R1

CE3 clken3 &&R1

CE4 clken4 &&R1

CE5 clken5 &&R1

CLK_in CLKin &&R2

FIT Fit_in &&R2

; some matching aliases

ROT_IN ROTS

T0 CS0

T1 CS1

T2 CS2

T3 CS3

T4 CS4

T5 CS5

clken0 CE0

; some nets with same name that SHOULD NOT be matched by assign

- GlobalClock

- GlobalReset

7.2.5 Rx.info

The Rx.info �le contains information necessary to generate the routing chips LCA
�les for downloading (see Fig. 7.1). The �rst column is the pad (net) name, the second
is the pad (net) alias name, the third column is the cost (distance in usable pads from
its original pad position), the fourth column is the source chip and pin, and the last
column is the destination chip and pin.

7.2. Assign as a Pin Assignment Program 53

NET NAME NET ALIAS COST SRC DEST

-------- --------- ---- --- ----

Fit_in &&R2 [1] X1.84 -> R2.2 ?_PAD

Fit_in &&R2 [1] X0 -> R2

CE5 &&R1 [0] X0 -> R1

CE5 &&R1 [0] X2.84 -> R1.84 O_PAD

CS4 T4 [0] X1.9 -> R2.8 I_PAD

CS4 T4 [0] X2.37 -> R2.51

CS0 T0 [1] X1.83 -> R1.2 I_PAD

CS0 T0 [1] X2.45 -> R1.40

ROT_IN &&BusData_3 [1] X1.47 -> R1.42 O_PAD

ROT_IN &&BusData_3 [1] X0 -> R1

Col COL [1] X1.70 -> R2.82 O_PAD

Col COL [1] X2.48 -> R2.59 I_PAD

clken1 &&R1 [3] X1.71 -> R1.77 I_PAD

clken1 &&R1 [3] X0 -> R1

clken5 &&R1 [2] X1.72 -> R1.73 I_PAD

clken5 &&R1 [2] X0 -> R1

tile_1 &&BusAddress_1 [0] X1.63 -> R1.63 O_PAD

tile_1 &&BusAddress_1 [0] X0 -> R1

Clkin &&R2 [3] X1.3 -> R2.4 O_PAD

Clkin &&R2 [3] X0 -> R2

CE3 &&R1 [0] X0 -> R1

CE3 &&R1 [0] X2.3 -> R1.3 O_PAD

CS2 T2 [2] X1.81 -> R1.83 I_PAD

CS2 T2 [2] X2.20 -> R1.18

CE2 &&R1 [0] X0 -> R1

CE2 &&R1 [0] X2.82 -> R1.82 O_PAD

decall DECALL [1] X1.16 -> R2.10 I_PAD

decall DECALL [1] X2.63 -> R2.68 O_PAD

CS1 T1 [0] X1.77 -> R2.84 I_PAD

CS1 T1 [0] X2.66 -> R2.70

FIT &&R2 [0] X2.83 -> R2.83 I_PAD

CE1 &&R1 [0] X0 -> R1

CE1 &&R1 [0] X2.78 -> R1.78 O_PAD

clken2 &&R1 [0] X1.66 -> R1.68 I_PAD

clken2 &&R1 [0] X0 -> R1

Figure 7.1: A sample Rx.info �le.

There may be some extraneous rows generated in Rx.info. These are output for

informative purposes and the user need not use the information in any way.

Assign infers the pad type based on the file1.lca and file2.lca pads. Cur-

rently, it only supports I PAD and O PAD types, and all other pads output in the

Rx.info �le are marked ? PAD. The user must determine the pad type in those cases.

54 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

Place Block clken4 P63;

Place Block Clkin P16;

Place Block Dir1 P2;

Place Block CS1 P17;

Place Block CS4 P3;

Place Block finish P71;

Place Block ROTS P39;

Place Block zero P44;

Place Block Dir0 P4;

Place Block CS2 P15;

Place Block clken5 P72;

Place Block Startin P21;

Place Block ROT_IN P30;

Place Block decall P60;

Place Block clken0 P56;

Place Block Dir2 P19;

Place Block Fit_in P84;

Place Block CS5 P77;

Place Block clken2 P66;

Place Block clken3 P61;

Place Block CS0 P9;

Place Block tile_2 P26;

Place Block CS3 P8;

Place Block tile_0 P28;

Place Block Col P18;

Place Block clken1 P68;

Place Block tile_1 P24;

;

; Comment out next line if CLB locking is not desired

Include x1clb.cst;

Figure 7.2: A Sample XC3000-series Constraint File.

all: chip.ali eval2.lca brains2.lca

brains2.cst, eval2.cst: brains2.xnf eval2.xnf chip.ali

run apr once without constraints to generate lca files for assign

- the next 2 lines may be unnecessary in subsequent design runs

apr brains2.lca

apr eval2.lca

assign -1 brains2.lca -2 eval2.lca -a chip.ali \\

-x1 brains2.cst -x2 eval2.cst -r1 r1.cst -r2 r2.cst -i -g

brains.lca: brains2.cst

apr -q -c brains2.cst brains2.lca brains.lca

makebits brains2

eval.lca: eval2.cst

apr -q -c eval2.cst eval2.lca eval.lca

makebits eval2

Figure 7.3: A Sample Make�le for XC3000 Series FPGAs.

7.3. I/O Speci�cation File 55

7.2.6 Examples of using assign

Assign tries to generate a consistent pad assignment that matches all pads of the
same name between the two LCA �les. Assign produces up to �ve output �les, (four
.cst constraint �les { one per chip) and a summary �le, Rx.info (on DOS machines
Rx.inf). The constraint �les are then used by apr (for XC3000 series FPGAs) or
ppr (for XC4000 series FPGAs) to force the pin assignments of the appropriate nets.
First, let us assume that the user already has generated the XNF �les for his/her
design. In order to complete the design, the user must create unconstrained LCA �les,
run assign and then create constrained LCA �les.

7.2.7 Xilinx XC3000 Series Design

The Makefile in Fig. 7.3 shows the process of generating a XC3000 series design
and Fig. 7.2 shows an example of a constraint �le. The constraint �le consists of two
parts. The �rst part locks all the IOBs, and the second part locks the CLBs, if the
-c option was used. In the rare event that apr can't complete the routing process,
unlocking the CLBs by commenting out the last line

Include x1clb.cst;

of the constraint �le should help. Note that you must also create the routing chips
and place and route them before the �nal design can be downloaded.

7.2.8 XC4000 Series Design

The design ow for XC4000 parts is very much like that of XC3000-series parts,
except you use ppr instead of apr; except that the current version (April 1994) of ppr
has no incremental placement and routing option. We shall update assign as soon
as the incremental place and route option is available with ppr.

The constraint �les generated thus conform to the syntax expected by ppr, and also
have the same pre-extension name as the XNF �le to be placed and routed. Figure 7.5
shows a Makefile for running assign. In Fig. 7.4, we have shown the constraint �le
generated for a routing chip. Notice that there are X1 and X2 pre�xes to the normal
net names, indicating which user chip the nets come from. The same pre�xes are used
in XC3000-series routing chip constraint �les.

7.3 I/O Speci�cation File

There are two special �les used by assign. These are xc3020.io and xc3042.io.
These �les contain information about the physical pin locations on the chip (which is
84 pin PLCC package) and the usable pins. You should not change these �les. The
commands contained in the �les include:

; a semicolon in the first column of a line denotes a comment MAP

<pin# start: pin# end> -> (start_x:start_y, end_x:end_y) IO

<startpin:endpin> <startpin:endpin> CIO <startpin:endpin>

<startpin:endpin> ...

56 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

Place instance X1_PSavcol<3>: P48;

Place instance X2_PLateral<2>: P46;

Place instance X2_Pnewtile<3>: P39;

Place instance X1_Pc<12>: P62;

Place instance X2_Pc<12>: P14;

Place instance X2_Pnewtile<2>: P47;

Place instance X2_Prot<1>: P37;

Place instance X1_Pc<17>: P36;

Place instance X2_Pc<17>: P35;

Place instance X1_PYourmove: P24;

Place instance X1_PMoveready: P57;

Place instance X1_Pc<3>: P79;

Place instance X2_Pc<3>: P26;

Place instance X1_PSavcol<2>: P18;

Place instance X2_Prot<2>: P29;

Place instance X2_Pnewtile<1>: P28;

Place instance X2_PLateral<1>: P4;

Place instance X1_Pcond<1>: P72;

Place instance X2_Pcond<1>: P25;

Figure 7.4: A Sample XC4000 Series Constraint File.

all: amazerg.lca r2newg.lca r1newg.lca

makeprom -o amazer4 -u 0 r1newg amazerg r2newg e4003a

amazerx.cst: amazerx.ali amazerx.xnf

run ppr once without constraints to generate amazerg.lca

- the next line may be unnecessary in subsequent design runs

ppr amazerx.xnf outfile=amazerg

assign -1 amazerg.lca -a amazerx.ali -s 1 -x1 amazerx.cst\\

-r1 r1.cst -r2 r2.cst -i -u

amazerg.lca: amazerx.cst

ppr amazerx outfile=amazerg logfile=amazerg

makebits amazerg

r2newg.lca: amazerx.cst

ppr r2 outfile=r2newg logfile=r2newg

makebits r2newg

r1newg.lca: amazerx.cst

ppr r1 outfile=r1newg logfile=r1newg

makebits r1newg

Figure 7.5: A Sample Make�le for XC4000 series FPGAs (non-incremental
place and route version).

7.4. BORG Wiring File 57

Use MAP to specify the relation between the actual pin number and the logical
coordinate of the pin, taking the upper left corner of the chip to be (x=0, y=0) and
the lower right to be (x=22,y=22).

IO speci�es the list of usable pins on the particular chip. Finally, CIO speci�es
the list of possibly usable pins (pins which are used in con�guration mode, but may
be used later).

7.4 BORG Wiring File

The alt3042.wir �le contains a net list of physical wires on the XC3000 BORG
board. The 4k.wir �le contains a net list of physical wires on the XC4000 BORG
board. The �le speci�es how your X1 and X2 FPGAs are connected to the routing
(R1, R2) chips. The BORG wiring con�guration is hardwired, so this �le should NOT
be changed by the user.

The connections are speci�ed by:

<source>.<pin#> -> <dest>.<pin#> [&&alias_name]

where source � X1, X2, X0, M1 and dest � R1, R2. A comment is denoted by a ';'
semicolon at the start of a line. The X0 chip is an on-board chip of BORG which
contains logic to interface to the PC bus. The M1 chip is the memory chip. The
optional

[&&alias_name]

parameter is ONLY used with X0 and M1 mapping in order to specify the alias name
for these forced nets. The actual wiring con�guration is listed in Section 7.11.

7.5 Theory of ASSIGN

The pin assignment problem is formulated as a graph problem, which we call the
two-color assignment problem. The goal of the two-color assignment problem is to
�nd a consistent, minimum weight node assignment. I describe my solution to the
problem, which uses two methods, called graph reduction and augmentation 2.

7.6 Problem Description

The problem is formally de�ned as follows: Graph G(V, E) consists of three sets
of vertices, P, Q, and N, which are connected by a set of edges such that every edge
has one endpoint in P [Q, and the other endpoint in N. The N vertices represent
the nets which need to be matched on the user-programmable chips. The P vertices
represent the X1 pads to which the nets may be assigned, and the Q vertices represent
the X2 pads to which the nets may be assigned.

2The augmentation algorithm was created and implemented �rst by Professor Martine Schlag

58 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

(P [Q, N) is a bipartition of G. Each vertex v � P [Q, has a color, c(v)=red or
green. These colors correspond to choosing a routing path through a routing chip R1
or R2, so the color of the vertex in P and the color of the vertex in Q of a matched
pair must be the same. It is because of these colors that a standard graph matching
algorithm cannot be used. A valid assignment consists of two one to one functions,
fp and fq, which map a vertex from N to either P or Q.
fp: N ! P, fq: N ! Q

The weight of an assignment is the sum of all of the edge weights in the assignment.
Ideally, one would like to �nd the graph assignment of minimum weight. Edge weights
in the graph represent the distance of the chosen pad from the original pad assigned by
apr. It is bene�cial to perturb the pad positions as little as possible so that apr may
be able to re-route the design WITHOUT re-placing the design, saving a substantial
amount of time.

In general, j N j � j P j and j N j � j Q j . There is one further constraint where
certain nets (such as those which go to the memory or PC bus) must be assigned to
a speci�c color (routing chip). These nets are called forced nets. The corresponding
pads associated with these forced nets are called forced-net-pads.

7.7 Graph Reduction

The �rst method for generating consistent pin assignments is called graph reduc-
tion. The graph reduction heuristic works as follows:

1. Remove edges from the graph that are impossible to match.

These are the pads of some color c in set P which have no corresponding pads
of the same color in set Q, or vice versa. Repeat this step until there are no
more impossible edges to remove.

2. Find and remove forced pads.

A forced pad is one which some net MUST choose because it has no other
unmarked pads to choose from. These forced pads are NOT ONLY forced-net-
pads (de�ned above), but also pads which are forced due to vertex removal done
in the next step. The pad is marked as part of the solution set. Repeat this
step until no more forced pads remain.

3. Remove one vertex from the graph.

The edge removed depends on the current operating mode of the algorithm.
In GLOBALLY GREEDY mode, the edge chosen for removal is the largest
weight edge remaining in the graph. In LOCALLY GREEDY mode, the vertex
removed is the largest weight edge of the net at the head of the queue containing
unassigned nets. In RANDOM mode, the vertex removed is the vertex being
considered when a random number exceeds a threshold value (varied from 50%
to 90%). Vertices are considered based on their order in the list of vertices
connected to a particular net in N.

4. While there are still edges in G, loop back to the �rst step.

7.8. Augmentation 59

This algorithm is fairly fast (polynomial time), and, if it �nds a solution, it is
likely to be very close to the ideal solution since high weight edges are removed. The
main problem with this heuristic is that incomplete solutions may be generated since
a greedy vertex removal might cause some nets to become unassignable. Thus, after
the entire algorithm has completed, two more solution-searching phases are used:
Find Last, and Augment2() (described in the next section).

The Find Last phase looks at every unassigned net and searches for any vertex
(pad) which is unused and which the net can use. These are vertices that may have
been discarded in the greedy graph reduction. If one is found, the assignment is made.

7.8 Augmentation

There are two augmentation algorithms used: Augment1() and Augment2(). Both
algorithms search for alternating paths in the N, P and N, Q subgraphs. A breadth
�rst search is done on the graph starting with an incompletely assigned net vertex.
The algorithm recursively searches for a net which can choose some other pad for its
solution. In the Augment1() algorithm, the net looks only at pads of the same color
as its current solution for possible swapping. This is a standard augmenting path
algorithm consisting of only N and pads in P of the same color. In the Augment2()

algorithm the net also checks to see if a net can swap its solution with pads of the
opposite color.

The simplest way to describe the algorithm is with an example. Figure 7.6
illustrates how the Augment1() procedure works. In the �gure, the dashed lines
show pads which a net may choose, provided that no other net has chosen to use that
pad. Solid lines represent a pad that a net has chosen as part of its matching. The
O's inside the vertices represent routing chip R1, the X's represent routing chip R2.
Net a is currently incompletely assigned. So, net a looks at all of the other nets which
have a solution that it can use. In this case, net b is the only one. Now, net b checks
to see if it can pick some other pad so that it can give its solution to net a. It cannot,
so it looks at all nets which have a solution that it could possibly use. In this case, it
looks at net c. Net c cannot choose any other pads for its solution, so we recur once
again, and check if net d can choose some other pad for its solution. It can. So, net
d takes the unassigned pad, and then returns the pad it gave up, so net c can take
that pad and return its previous solution to net b, which �nally gives up its previous
solution to net a.

The Augment2() procedure is nearly the same as that of Augment1(). In fact,
Augment1() is called as a subroutine from Augment2(), and if no solution is found
by Augment1(), then the algorithm searches for pads of the opposite color which a
net can take as its solution. Note that forced nets cannot be considered because they
can not change colors (routing chips). Figure 7.7 illustrates how the Augment2()

procedure works. Starting at net a, we consider all nets that have a solution net
a could use. Nets b and d are the only ones. Net b cannot pick solutions of the
opposite color, so we recursively check all nets which could give up its solution to net
b. Net c is such a net. Now, net c can pick a solution pair of the opposite color, so it
does. Net b can then pick a pair of solutions of the opposite color. Finally, net a can

60 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

dcbadcba

Unassigned

AFTERBEFORE

Nets

Pads
Pad

Figure 7.6: Example of the Augment1() Algorithm

Pad
Unassigned

edcbaedcba

Pad
Unassigned

Pads

Nets

BEFORE AFTER

Figure 7.7: Example of the Augment2() Algorithm

be assigned a new solution pair. The algorithm is then executed from the beginning
again, starting at net e, since it does not have a complete assignment, and a solution
is eventually found for it.

The pseudocode for each of the two algorithms is nearly identical, so we shall only
provide the code for Augment2() in Fig. 7.8. Many of the details of the algorithm
have been left out so that the general idea of the algorithm would not be overwhelmed
by the particular implementation details.

7.9 Main Program Loop

The augmentation and graph reduction algorithms are the major components of
assign, but it is also useful to see how they are used in the overall scheme of the

7.10. Performance 61

Augment2(NetNodes,SOLUTION DESIRED) f

=* Recursive Breadth�First�Search *=

for each unassigned node 'cnn' f

mark cnn;

=* check if net cnn can pick a pad of opposite color for

its solution which some other net wants *=
pad = swap if available2(cnn,SOLUTION DESIRED);
if (!pad) pad = Augment1(NetNodes,SOLUTION DESIRED);

if (pad) return(pad);

for each unmarked pad 'p' connected to cnn f
for each unmarked node 'nn' connected to p f
if ('nn' has a solution that cnn is looking for using pad p) f
mark p;
put nn onto NextQ;

g
g

g
g
== recursive call

pad = Augment2(NextQ,SOLUTION DESIRED);

if (pad) f
�nd the node 'cnn' which wants to use pad for its solution;
rpad = swap(pad, cnn);
return(rpad);

g
g

Figure 7.8: The Augment2() Algorithm.

program. Figure 7.9 shows the pseudocode for the main program loop, and for the
Solve() procedure called by the main loop.

7.10 Performance

Let n be the number of nets to be pairwise assigned, p be the maximum number
of pads each net can be assigned to, and w be the number of window sizes spanned.

The default Augment2() algorithm runs in O(n2p2) time. This is because of the
particular implementation of the breadth �rst search algorithm, which looks at every
node, and every pad connected to every node. One would expect that the algorithm

62 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

Solve(mode, parameter) f

=* �� *=
=* �rst run graph reduction if the command line switch was set *=
=* �� *=
if (switch option '-g') f

graph reduction(mode,parameter);
g

=* �� *=
=* run improvement step, if the command line switch was set *=
=* �� *=
if (switch option '-i') f

Singular Improvements();
Pair Wise Swap Improvements();

g

=* �� *=
=* Run the Augment2() and Find Last() procedures *=
=* �� *=
do f
foundsolution=0;
for each remaining unmatched net f
foundsolution += Find Last();
founsolution += Augment2();

g
g while (foundsolution);

=* �� *=
=* run improvement step, if the command line switch was set *=
=* �� *=
if (switch option '-i') f

Singular Improvements();
Pair Wise Swap Improvements();

g

Save Solution If Better();
g

main() f

=* try as many window sizes as is necessary *=
for (windowsize=start; windowsize<=end; windowsize++) f
if (the option '-g' was used) f
Solve(option,GLOBALLY GREEDY,NULL);
Solve(option,LOCALLY GREEDY,NULL);
for (i=50; i<=90; i+=10) f
Solve(option,RANDOM,i);

g
g
=* check for exit condition *=
if (Complete And Consistent Solution Found) exit and output solution;

g
g

Figure 7.9: The Main Program of Assign.

7.10. Performance 63

Design Blocks Nets Pads Assigned Switch Options Total Weight Runtime

Rb 71+125 77+92 29+19 | 18 7.2s

Rb 71+125 77+92 29+19 -i 17 13.9s

Rb 71+125 77+92 29+19 -g 25 13.1s

Rb 71+125 77+92 29+19 -g -i 25 18.3s

Mcl 71+132 72+118 26+21 | 21 7.2s

Mcl 71+132 72+118 26+21 -i 21 12.9s

Mcl 71+132 72+118 26+21 -g 23 12.1s

Mcl 71+132 72+118 26+21 -g -i 21 18.2s

Mtn 205+99 230+107 51+39 | 175 93.6s

Mtn 205+99 230+107 51+39 -i 158 282.7s

Mtn 205+99 230+107 51+39 -g 245 546.2s

Mtn 205+99 230+107 51+39 -g -i 185 933.6s

Table 7.1: Assign Performance

takes O(np) time, but because of the call to Augment1() within Augment2(), the total

execution time is O(n2p2).

The greedy reduction algorithm runs in O(np2) time. This comes from the fact

that at most p edges must be removed before the algorithm terminates, and for every

edge removed, it takes O(np) to �nd all of the forced pads and all of the pads which

are unmatchable.

Running the improvement phase takes O(n2) time. So, the overall program

performance is O(wn2e2).

Table 7.1 shows the actual performance of the program on three designs. All tests

were run with an initial window size of one, and were executed on a Sun Sparcstation

1+.

64 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

7.11 BORG wiring connections

7.11.1 XC3000-series BORG wiring connections

; Jan 29, 1992 (Pak K. Chan)

;

; X1

;

X1.83 -> R1.2

X1.84 -> R2.2

X1.2 -> R1.4

X1.3 -> R2.4

X1.4 -> R1.8

X1.5 -> R2.6

; X1.6 -> R1.6

; X1.7 -> R2.6

X1.8 -> R1.10

X1.9 -> R2.8

; X1.10 -> R1.10

; X1.11 -> R2.8

; pin 13 is for GCLK input

; X1.14 -> R1.14 R1.14 is connected to X0

X1.15 -> R1.15

X1.16 -> R2.10

X1.17 -> R1.17

X1.18 -> R2.36

X1.19 -> R1.19

X1.20 -> R2.41

X1.21 -> R1.21

X1.23 -> R2.18

X1.24 -> R1.24

X1.25 -> R2.20

X1.26 -> R1.26

X1.27 -> R2.48

X1.28 -> R1.28

X1.29 -> R2.50

X1.30 -> R1.30

; pin 33 is M2

;

X1.37 -> R2.52

X1.39 -> R1.34

X1.40 -> R2.56

X1.42 -> R1.36

X1.44 -> R2.58

;

;X1.38 -> R1.41

;

X1.45 -> R1.39

X1 46 -> R2.60

; X1.41 -> R1.41

X1.47 -> R1.42

X1.48 -> R2.62

X1.49 -> R1.45

7.11. BORG wiring connections 65

X1.52 -> R2.65

X1.53 -> R1.47

X1.56 -> R2.67

X1.57 -> R1.49

; X1.50 ->

; X1.51 -> R2.50

X1.58 -> R2.69

X1.59 -> R1.53

X1.60 -> R2.71

X1.61 -> R1.59

X1.62 -> R2.76

X1.63 -> R1.63

X1.65 -> R2.78

X1.66 -> R1.68

X1.67 -> R2.80

X1.68 -> R1.75

X1.70 -> R2.82

X1.71 -> R1.77

X1.72 -> R1.73

; X1.72 and X1.73 can also be used as user I/O pins

; X1.73 -> R2.72

;

X1.77 -> R2.84

;

; end of 25 pins

; extra pins

X1.78 -> R1.81

X1.81 -> R1.83

; X1 extra pins for XC3030s

;

;X1.38 -> R1.38

;X1.41 -> R1.41

;X1.50 -> R1.50

;X1.51 -> R1.51

; one X2 pin for XC3030s

;X2.6 -> R2.7

;

X2.71 -> R2.79

;

; X2

; X2 north east face

;

X2.2 -> R2.3

X2.4 -> R2.5

;

X2.8 -> R2.9

X2.15 -> R2.11

; X2 north west face

X2.83 -> R2.83

X2.81 -> R2.81

X2.77 -> R2.77

X2.75 -> R2.75

; west face

; special addresses - BORG jumpers affect which lines are usable

; *** *REF1* The following 3 nets are not allowed when the memory

66 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

; is used, otherwise, if the -u option is used in assign, then

; these lines are unavailable. See *REF2*

; X2.68 -> R2.15

; X2.70 -> R2.16

; X2.17 -> R2.17

;

;

X2.19 -> R2.42

X2.24 -> R2.19

X2.27 -> R2.21

X2.29 -> R2.49

; south face of X2

X2.37 -> R2.51

X2.40 -> R2.53

; extra from memory address A_11

X2.44 -> R2.14

;

X2.46 -> R2.57

X2.48 -> R2.59

; east face of X2

X2.57 -> R2.61

X2.59 -> R2.63

X2.61 -> R2.66

X2.63 -> R2.68

X2.66 -> R2.70

; end of 24 pins

;

; connection to R1

X2.3 -> R1.3

X2.5 -> R1.5

X2.9 -> R1.9

X2.16 -> R1.11

; west face

X2.18 -> R1.16

X2.20 -> R1.18

X2.23 -> R1.23

X2.25 -> R1.20

X2.26 -> R1.25

X2.28 -> R1.27

X2.30 -> R1.29

; south face

X2.35 -> R1.33

X2.39 -> R1.35

X2.42 -> R1.37

X2.45 -> R1.40

X2.47 -> R1.46

X2.49 -> R1.44

X2.52 -> R1.48

; east face

X2.58 -> R1.52

X2.60 -> R1.57

X2.62 -> R1.61

X2.65 -> R1.66

X2.67 -> R1.71

7.11. BORG wiring connections 67

; east north face

X2.72 -> R2.73

X2.76 -> R1.76

X2.78 -> R1.78

X2.82 -> R1.82

X2.84 -> R1.84

; end

; force nets

; R1 force nets

; data bits

X0.1 -> R1.72 &&BusData_0

X0.1 -> R1.70 &&BusData_1

X0.1 -> R1.67 &&BusData_2

X0.1 -> R1.65 &&BusData_3

X0.1 -> R1.62 &&BusData_4

X0.1 -> R1.60 &&BusData_5

X0.1 -> R1.58 &&BusData_6

X0.1 -> R1.56 &&BusData_7

; address bits

X0.8 -> R1.79 &&BusAddress_0

X0.9 -> R1.80 &&BusAddress_1

X0.10 -> R1.69 &&BusAddress_2

X0.11 -> R1.14 &&BusAddress_3

; io control bits

X0.12 -> R1.6 &&BusControl_0

X0.13 -> R1.7 &&BusControl_1

; R2 forced nets

; memory data pins D0-D7

M1.9 -> R2.23 &&MData_0

M1.10 -> R2.24 &&MData_1

M1.11 -> R2.25 &&MData_2

M1.13 -> R2.26 &&MData_3

M1.14 -> R2.27 &&MData_4

M1.15 -> R2.28 &&MData_5

M1.16 -> R2.29 &&MData_6

M1.17 -> R2.30 &&MData_7

; memory address pins A0-A7

M1.8 -> R2.37 &&MAddress_0

M1.7 -> R2.38 &&MAddress_1

M1.6 -> R2.39 &&MAddress_2

M1.5 -> R2.40 &&MAddress_3

M1.4 -> R2.44 &&MAddress_4

M1.3 -> R2.45 &&MAddress_5

M1.2 -> R2.46 &&MAddress_6

M1.1 -> R2.47 &&MAddress_7

; special addresses - BORG jumpers affect which lines are usable

68 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

; *** *REF2*

; The following 4 nets are usable when the -u option of assign is

; used. Otherwise, the *REF1* lines will be allowed.

M1.23 -> R2.17 &&MAddress_8

M1.22 -> R2.16 &&MAddress_9

M1.19 -> R2.15 &&MAddress_10

M1.19 -> R2.14 &&MAddress_11

; memory control pins WE OE CS

M1.21 -> R2.35 &&M_WE

M1.20 -> R2.34 &&M_OE

M1.18 -> R2.33 &&M_CS

; Dummy pins used by assign to generate forced nets for R1 and R2

X0.1 -> R1.1 &&R1

X0.1 -> R2.1 &&R2

; end

7.11. BORG wiring connections 69

7.11.2 XC4000-series BORG wiring connections

;

;

; Oct 26, 1993 (Pak K. Chan)

; Jan 20, 1994 (Jason Y. Zien) Added memory address, data, control lines

;

; BORG II XC4000-PC84 wiring file

; wiring file for BORG II

;

; Dummy pins used by assign to generate forced nets for R1 and R2

X0.1 -> R1.1 &&R1

X0.1 -> R2.1 &&R2

; ---

; **** Memory lines ***

; These are not present in 4knomem.wir

; these lines are allowed when the -u command-line option

; of assign is used, otherwise, 4knomem.wir is used if the

; -u option is not used.

; BORG dip-switch settings affect which set is physically active.

; mem. address lines

M1.1 -> R2.47 &&MAddress_0

M1.2 -> R2.48 &&MAddress_1

M1.3 -> R2.49 &&MAddress_2

M1.4 -> R2.50 &&MAddress_3

M1.5 -> R2.51 &&MAddress_4

M1.6 -> R2.56 &&MAddress_5

M1.7 -> R2.57 &&MAddress_6

M1.8 -> R2.58 &&MAddress_7

M1.9 -> R2.61 &&MAddress_8

M1.10 -> R2.62 &&MAddress_9

M1.11 -> R2.67 &&MAddress_10

M1.12 -> R2.66 &&MAddress_11

; mem. data lines

M1.12 -> R2.46 &&MData_0

M1.13 -> R2.45 &&MData_1

M1.14 -> R2.44 &&MData_2

M1.15 -> R2.40 &&MData_3

M1.16 -> R2.39 &&MData_4

M1.17 -> R2.38 &&MData_5

M1.18 -> R2.37 &&MData_6

M1.19 -> R2.36 &&MData_7

; mem. control lines

M1.20 -> R2.65 &&M_OE

M1.21 -> R2.60 &&M_WE

M1.22 -> R2.30 &&M_CS

70 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

; *** end of Memory lines ***

; ---

; The following lines are not usable when the memory is used

; (not usable when -u option of assign is set).

; They are used by default.

; BORG dip-switch settings affect which set is physically active.

;

; A0

; X2.27 -> R2.47

; A1

; X2.35 -> R2.48

; A2

; X2.39 -> R2.49

; A3

; X2.40 -> R2.50

; A4

; X2.45 -> R2.51

; A5

; X2.50 -> R2.56

; A6

; X2.51 -> R2.57

; A7

; X2.47 -> R2.58

; A12

; X2.46 -> R2.59

; A8

; X2.37 -> R2.61

; A9

; X2.70 -> R2.62

; A11 and A10

; X1.56 -> R2.66

; X1.58 -> R2.67

; end

; ---------------------------

;

; R1

;

; R1 force nets to PC

;

X0.0 -> R1.71 &&BusData_0

X0.1 -> R1.69 &&BusData_1

X0.2 -> R1.67 &&BusData_2

X0.3 -> R1.65 &&BusData_3

X0.4 -> R1.61 &&BusData_4

X0.5 -> R1.59 &&BusData_5

X0.6 -> R1.58 &&BusData_6

X0.7 -> R1.56 &&BusData_7

; 4 address lines

X0.8 -> R1.83 &&BusAddress_0

X0.9 -> R1.81 &&BusAddress_1

7.11. BORG wiring connections 71

X0.10 -> R1.82 &&BusAddress_2

X0.11 -> R1.80 &&BusAddress_3

; 3 io control lines

; xior

X0.12 -> R1.51 &&BusControl_0

; xiow

X0.13 -> R1.50 &&BusControl_1

; interrupt

X0.14 -> R1.70 &&BusControl_3

;

X2.44 -> R1.14

X1.67 -> R1.18

X1.65 -> R1.19

X1.61 -> R1.20

X2.38 -> R1.23

X1.59 -> R1.24

X2.36 -> R1.25

X2.26 -> R1.26

X2.24 -> R1.27

X2.20 -> R1.28

X2.18 -> R1.29

X1.81 -> R1.3

X2.14 -> R1.35

X1.36 -> R1.36

X2.7 -> R1.37

X2.69 -> R1.4

X1.46 -> R1.40

X1.40 -> R1.44

X2.3 -> R1.45

X2.83 -> R1.46

X2.81 -> R1.47

X2.79 -> R1.49

X2.67 -> R1.5

X1.28 -> R1.57

X2.65 -> R1.6

X1.26 -> R1.60

X1.20 -> R1.66

X1.18 -> R1.68

X2.61 -> R1.7

X1.71 -> R1.72

X1.5 -> R1.79

X2.59 -> R1.8

X1.83 -> R1.84

X2.48 -> R1.9

;

; TDO

;R1.75 -> X1.15

X1.24 -> R1.62

X1.3 -> R1.78

X1.38 -> R1.48

;

X1.48 -> R1.38

72 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

X2.5 -> R1.39

;

; R2

;

X1.27 -> R2.14

; X1.75 is TDO

; R2.15 -> X1.75

X2.68 -> R2.18

X2.66 -> R2.20

X2.62 -> R2.24

X1.14 -> R2.7

X1.62 -> R2.70

X2.84 -> R2.25

X2.4 -> R2.26

X2.60 -> R2.27

X2.25 -> R2.29

X2.49 -> R2.35

X2.41 -> R2.41

X1.72 -> R2.71

X2.71 -> R2.72

X1.60 -> R2.77

;

X2.19 -> R2.79

X1.80 -> R2.80

X1.19 -> R2.8

X1.23 -> R2.9

X1.37 -> R2.5

X1.39 -> R2.3

X1.4 -> R2.4

X1.45 -> R2.83

X1.47 -> R2.81

X1.6 -> R2.6

X1.66 -> R2.78

X1.68 -> R2.69

X1.82 -> R2.82

X1.84 -> R2.84

;R2.75 -> X2.15 TDO cannot be used okay ???

X2.6 -> R2.28

X2.80 -> R2.19

X2.82 -> R2.23

;

X2.23 -> R2.68

73

8. Using the Protoboard and Schematic Drawings

8.1 Proto-area, Common Anode LEDs

The proto-area is on the left-hand-side of the protoboard. Each I/O pad of the
XC4000 FPGAs can only supply 3 mA of current, which is not su�cient to drive
most LEDs. The author is certainly aware of the availability of the miniature HP
2 mA LEDs, unfortunately, they are not available as 7-segment displays. Therefore,
the 7-segment LEDs are common ANODE LEDs, with headers J48 and J49 providing
the access to the segments.

None of the LEDs are connected to the FPGAs, so you need to use jumpers/wires
(with sockets on both end) to display your signals. Each segment (in general each
LED in the proto-area) can source roughly 4mA to a maximum of 10mA. Header J45
provides the connections to the 4-bar LED4 and LED5 which are also common anode
LEDs. SW6 and SW7 are connected to header J46 and J47 respectively; each position
is pulled high with a 10K resistor. The header supplies a `1' when the switch is open,
and a `0' otherwise.

TDI

TCK

TMS

D7

D6

D5

CS0

D4

52 5351504948474645444342414039383736353433

58

59

28

27

77 76 75

15

16

17

18

19

20

21

22

23

24

25

26

78798081828384

14

13

12
9 8 7 6 5 4 3 2 11011

72

73

74

71

70

69

68

67

66

65

64

63

62

61

60

29

30

31

32

57

56

55

54

D3

RS

D2

D1

D0, DIN

VCC

VCC

GND

LDC

M1

M0

DONE

GNDHDC

GND

VCC

M2

SGCK2

PGCK2

VCC

GND

VCC

GND

PGCK3

ERR, INIT

PROG

SGCK3

RCLK-BUSY/RDY

XC4003A-PC84

VCC

PGCK1

GND

CCLK

SGCK4, DOUT

CS1VCCVCC

SGCK1 GND

TD0

PGCK4 GND

WS

Figure 8.1: XC400?A-PC84 package footprint.

74 8. Using the Protoboard and Schematic Drawings

54 55

56

58

60

62

64

66

68

70

72

74

54

56

58

60

62

64

66

70

74

68

72

1

2

3

4

5

6

7

8

9

10

11

12 13

14 15

16 17

18 19

20

22

24 25

26 27

28 29

30 31

32

33 35

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

21

23

34 36

37 53

55

57

59

61

63

65

67

69

71

73

75

76

77

78

79

80

81

82

83

84

10 8 6 4 84 82 80 78 762

9 7 5 3 1 81 7711 83 7579

1213

1415

1617

1819

2021

2223

2425

2627

2829

3031

32

57

59

61

63

65

67

69

71

73

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

TOP VIEW

Side

Component

Figure 8.2: 84-pin PLCC Package Footprint and headers, Component Side.

For debugging purposes all the user FPGA pins are connected to the headers for
easy signal access. Figures 8.1 and 8.2 provide the 84-pin PLCC footprints and its
headers for the \component" side. The assembly drawing of the BORG board with
all the reference designators are given in Fig. 8.3. Finally, two sheets of the schematic
drawings (drawn with PADs LOGIC) of the BORG board are given in Fig. 8.4 and
8.5 for documentation and debugging purposes.

8.1. Proto-area, Common Anode LEDs 75

Figure 8.3: The BORG board's assembly drawing with reference designators.

76 8. Using the Protoboard and Schematic Drawings

Figure 8.4: Schematic Drawing of the BORG Board (Sheet 1/2).

8.1. Proto-area, Common Anode LEDs 77

Figure 8.5: Schematic Drawing of the BORG Board (Sheet 2/2).

78 9. Guide to Some Laboratory Experiments

9. Guide to Some Laboratory Experiments

This chapter serves as a simple guide to use the BORG board. Suggestions for
some possible digital design experiments are provided but not elaborated.

9.1 Creating user I/O ports in R1

Two sheets of schematic drawings portest given in Fig. 9.1 and 9.2 provide the
basic idea of implementing I/O ports in R1 to communicate with the PC. We are
creating four user I/O ports. We use a 74139-like part from the Xilinx library for port
address decoding. Notice that the outputs of the decoder are active LOW, and the
selected output is used to clock the 74374-like (positive edge-triggered) octal registers.
The outputs of the octal registers share an 8-bit bus which is tri-stated. The signal
XIOR is used to control the direction of data on the bus. Note that the I/O pad
assignments are provided directly in the schematic in Fig. 9.1.

A simple program portest.c which writes and then reads from the I/O ports
created in R1 FPGA is given on the next page.

Given that the schematic drawing's �le name is portasy, you can download this
port test demo by taking the following steps:

c:> wir2xnf portasy

c:> ppr portasy

c:> makebits portasy

c:> makeprom -o portest.mcs -u 0 portasy.bit em4003a em4002a em4003a

c:> bd portest.mcs

c:> portest

9
.1.

C
reatin

g
u
ser

I/O
p
orts

in
R
1

79

sheet 1 of 2

BORG
UC SANTA CRUZ

I

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Pak K. Chan

I

tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN

I/O Ports Realizers by 374s

DIN6

XIORXIOR

DIN1

A0

EN139

A1

DIN0

D4>

OBUFT IBUF

IBUFOBUFT

D5>

LOC=P59

PAD

LOC=P56

PAD
D7>

OBUFT IBUF

IBUFOBUFT

D6>

LOC=P58

PAD

LOC=P67

PAD
D2>

OBUFT IBUF

IBUFOBUFT

LOC=P65

PAD

LOC=P69

PAD
D1>

OBUFT IBUF

IBUFOBUFT

AND2

NAND2B1

IBUF

XIOR>

IBUF

A3>

IBUF

A2>

IBUF

IBUF

IBUF

UC Santa Cruz/Computer Engineering

Port I/O Test

A0>

A1>

A2

A3

XIOR

XIOW NAND2B2

D0>

LOC=P71

PAD

LOC=P81

PAD

LOC=P82

PAD

LOC=P80

PAD

LOC=P83

PAD

LOC=P51

XIOW>

LOC=P50

PAD

D3>

LOC=P61

PAD

DOUT4

DOUT5

DOUT6

DOUT7 DIN7

DIN6

DIN5

DIN4
DOUT0

DOUT1

DOUT2

DOUT3

DIN1

DIN2

DIN3

XIOR
XIOR

PORT7
PORT6
PORT5
PORT4

DOUT3

DIN3

XIOR

PORT7
PORT6
PORT5
PORT4

DOUT2

DIN2

PORT7
PORT6
PORT5
PORT4

DOUT1

DIN0

DOUT0
PORT4
PORT5
PORT6
PORT7

XIOR

PORT4
PORT5
PORT6
PORT7

A0

A1

ENB

O0B

O1B

O2B

O3B

X74-139

XIOR

PORT7
PORT6
PORT5
PORT4

DOUT4

DIN4

DOUT5
PORT4
PORT5
PORT6
PORT7

DOUT6
PORT4
PORT5
PORT6
PORT7

XIOR

DIN7

DOUT7
PORT4
PORT5
PORT6
PORT7

XIOR

DIN5

tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN

tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN

tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN
tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN

tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN

tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN

Asynchronous I/O

PORT DECODER

0 1 X X
A3 A2 A1 A0

MAP to addresses

Four 8-bit read/write ports

PAD

tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN

PART=4002APC84-6

F
igu

re
9
.1
:
B
u
ild
in
g
I/O

p
orts

in
th
e
R
1
F
P
G
A
.

8
0

9.
G
u
id
e
to

S
om

e
L
ab
oratory

E
x
p
erim

en
ts

PORTEST sheet 2

sheet 2 of 2

Drawn By: Pak K. Chan

Tri-State 74374

XIOR

NAND2B2

XIOR

NAND2B2

XIOR

NAND2B2

PORTA

C

D Q

FD
I O

T

TBUF

I O

T

TBUF

C

D Q

FD
I O

T

TBUF

NAND2B2

I O

T

TBUFC

D Q

FD

DATAIN
XIOR

C

D Q

FD

DATAOUT

PORTB

PORTC

PORTD

PORTD

PORTA

PORTB

PORTC

A

B

C

D

A

B

C

D

BORG
UC SANTA CRUZ

I

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Pak K. Chan

I

F
igu

re
9.2:

T
ristate

74374-lik
e
d
ev
ice

in
th
e
P
O
R
T
E
S
T
sch

em
atic.

9.1. Creating user I/O ports in R1 81

/* portest: write and then read four PORTs in R1*/

#include <stdio.h>

#include <dos.h>

#include <stdlib.h>

main ()

{

unsigned int PORT1, PORT2, PORT3, PORT4;

unsigned int PortA;

int i, j;

float error;

unsigned char x;

char * portenv;

error=0;

setcbrk(1);

portenv=getenv("BORG");

/* Control Port in X0 */

if(!strcmp(portenv,"0x300"))

PortA = 0x300;

else if(!strcmp(portenv,"0x200"))

PortA = 0x200;

else if(!strcmp(portenv,"0x210"))

PortA = 0x210;

else if(!strcmp(portenv,"0x310"))

PortA = 0x310;

else {

printf(" \n Wrong PORT address\n");

printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");

exit(1);

}

printf(" BORG PORT address is %s\n",portenv);

PORT1=PortA+4;

PORT2=PortA+5;

PORT3=PortA+6;

PORT4=PortA+7;

for (i =0; i < 15; i++)

{outportb (PORT1,i);

outportb (PORT2,i+1);

outportb (PORT3,i+2);

outportb (PORT4,i+3);

printf ("Sent to port Data Read Data\n");

printf (" PORT1: %d %d \n",i,inportb (PORT1));

printf (" PORT2: %d %d \n",i+1,inportb (PORT2));

printf (" PORT3: %d %d \n",i+2,inportb (PORT3));

printf (" PORT4: %d %d \n",i+3,inportb (PORT4));

printf ("(hit return to continue ..)");

getchar ();

}

printf ("Starting automatic check (read after write)....\n");

printf ("This will take a minute or so\n");

for (j =0; j < 10000; j++)

for (i =0; i < 127; i++)

{outportb (PORT1,i);

x=inportb (PORT1);

if(x != i) ++error;

outportb (PORT2,i+1);

x=inportb (PORT2);

if(x != i+1) ++error;

82 9. Guide to Some Laboratory Experiments

outportb (PORT3,i+2);

x=inportb (PORT3);

if(x != i+2) ++error;

outportb (PORT4,i+3);

x=inportb (PORT4);

if(x != i+3) ++error;

}

printf ("Total errors %6.0f\n",error);

}

9.2 Hardware Interrupt and Interrupt Service Routine

This experiment will illustrate the hardware interrupt feature supported by the
BORG board.

The interrupt service routine is called isr.c. It indicates that it is serving a
hardware interrupt by beeping the PC's speaker. This interrupt service routine counts
the number of times that it has been interrupted. It services 10 interrupts and then
removes itself. This interrupt service routine is loaded as a memory-resident program,
as documented in the code.

The schematic drawing that generates the hardware interrupt (from the BORG
board) is intpc.1, which is essentially an I/O address decoder connected to a toggle
ip-op. The ip-op toggles the interrupt request line every time that a prede�ned
I/O address is selected. Now, enable IRQ9 on your board for this demo.

To load the interrupt generator intpc, you do:

c:> wir2xnf intpc

c:> ppr intpc

c:> makebits intpc

c:> makeprom -o intpc.mcs -u 0 intpc.bit em4003a em4002a em4003a

c:> bd intpc.mcs

c:> isr

We use a small program intpc.c which activates the toggle ip-op to demon-
strate the hardware interrupt generation and service processes.

c:> intpc

BORG PORT address is 0x300

Make sure that you load ISR isr.com first.

Board Board interrupts PC.

ISR will ring the speaker 10 times.

1 (hit return to continue ..)

2 (hit return to continue ..)

3 (hit return to continue ..)

9.2. Hardware Interrupt and Interrupt Service Routine 83

#include <stdio.h>

#include <dos.h>

#include <stdlib.h>

main () /* Interrupt PC demo requires schematic drawing INTPC */

{

unsigned int PORT1, PortA;

int i, j;

unsigned char x;

char * portenv;

setcbrk(1);

portenv=getenv("BORG");

/* Control Port in X0 */

if(!strcmp(portenv,"0x300"))

PortA = 0x300;

else if(!strcmp(portenv,"0x200"))

PortA = 0x200;

else if(!strcmp(portenv,"0x210"))

PortA = 0x210;

else if(!strcmp(portenv,"0x310"))

PortA = 0x310;

else {

printf(" \n Wrong PORT address\n");

printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");

exit(1);

}

printf(" BORG PORT address is %s\n",portenv);

PORT1=PortA+4;

printf ("\n Make sure that you load ISR isr.com first.\n");

printf ("\n Board Board interrupts PC.\n ISR will ring the speaker 10 times.\n");

for (i = 1; i < 15; i++)

{

outportb (PORT1,i); /* toggle the flip-flop inside R1 */

delay(1);

outportb (PORT1,i);

printf (" %2d (hit return to continue ..)", i);

getchar ();

}

}

84 9. Guide to Some Laboratory Experiments

/* Interrupt Service Routine isr.c

Modified from and credit to the Protozone User's manual

A simple interrupt handler example using C without assembly language.

Code in Borland C.

This program assumes IRQ9 is used and shows how to handle

the slave and master Programmable Interrupt Controllers 8259As (PICs)

We need to take care of both the PICs because IRQ9 is cascaded thru IRQ2.

The interrupt vector for IRQ2 is 0x0A as defined by the PC

Note: You need to pull IRQ9 low inorder to run this program properly

*/

/*

Compile and execute isr.com with

tcc -mt -M isr.c

exe2bin isr.exe isr.com

*/

#include <dos.h>

#include <conio.h>

#include <stdio.h>

#define PIC_master 0x20 /* Programmable Interrupt Controller PIC master */

#define PIC_slave 0xA0 /* Programmable Interrupt Controller PIC slave */

#define EOI 0x20 /* end of interrupt code to send to PICs */

#define IRQ2_mask 0xFB /* interrupt mask to enable interrupt request 2

bit 2 is reset */

#define IRQ9_mask 0xFD /* interrupt mask to enable interrupt request 9

bit `9' is reset */

#define IRQ9 0x0A /* interrupt number */

#define TIMES 10

void IntRemove();

void interrupt (*oldVector)();

unsigned char oldMask1, oldMask2;

void Install();

void interrupt mybeep(unsigned bp, unsigned di, unsigned si,

unsigned ds, unsigned es, unsigned dx,

unsigned cx, unsigned bx, unsigned ax)

{

int i,j;

static count=0;

char originalbits, bits;

unsigned char bcount;

/* get the current control port of the PIC setting */

disable();

/* port for speaker */

bits = originalbits = inportb(0x61);

bcount=500;

for(i=0;i<=bcount; i++){

outportb(0x61, bits & 0xfc);

for(j=0;j<=300; j++);

outportb(0x61, bits | 2);

for(j=0;j<=200; j++);

}

outportb(0x61, originalbits);

outport(PIC_master, EOI);

9.2. Hardware Interrupt and Interrupt Service Routine 85

outport(PIC_slave, EOI);

if((++count) >= TIMES) IntRemove();

enable();

}

void Install(faddr, inum)

void interrupt (* faddr)();

int inum;

{

disable();

oldVector = getvect(inum);

setvect(inum, faddr);

oldMask1 = inportb(PIC_master +1);

oldMask2 = inportb(PIC_slave +1);

outportb(PIC_master+1, IRQ2_mask & oldMask1);

outportb(PIC_slave +1, IRQ9_mask & oldMask2);

printf("Interrupt Handler installed.\n\n");

printf("This interrupt handler intercepts 10 interrupts\nand then remove itself.\n");

enable();

}

void IntRemove()

{

disable();

setvect(IRQ9, oldVector);

outportb(PIC_master+1, oldMask1);

outportb(PIC_slave +1, oldMask2);

enable();

oldVector();

}

main()

{

char ch;

Install(mybeep,IRQ9);

/* check with isr.map

when compile with

tcc -mt -M isr.c

to generate a memory map

Start Stop Length Name Class

00000H 01594H 01595H _TEXT CODE

015A0H 019BBH 0041CH _DATA DATA

019BCH 019BFH 00004H _EMUSEG DATA

019C0H 019C1H 00002H _CRTSEG DATA

019C2H 019C3H 00002H _CVTSEG DATA

019C4H 019C9H 00006H _SCNSEG DATA

019CAH 01A15H 0004CH _BSS BSS

01A16H 01A16H 00000H _BSSEND STACK

*/

keep(0, 0x01C0); /* make the interrupt handler resident */

}

8
6

9.
G
u
id
e
to

S
om

e
L
ab
oratory

E
x
p
erim

en
ts

Interrupt PC Demo

LOC=P70

PAD

EN139

INTPC>
A0>

LOC=P82

PAD

A3>

PART=4002APC84-6

BORG
UC SANTA CRUZ

I

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Pak K. Chan

I

A0

A1

AND2

NAND2B1

IBUF

IBUF

IBUF

A2>

IBUF

IBUF

IBUF

UC Santa Cruz/Computer Engineering

Port I/O Test

A1>

A2

A3

XIOR

XIOW

NAND2B2

LOC=P81

PAD

LOC=P80

PAD

LOC=P51

PAD

XIOW>

LOC=P50

PAD

A0

A1

ENB

O0B

O1B

O2B

O3B

X74-139

OBUF

activate INTPC every time
PORT4 is selected

LOC=P83

PAD

XIOR>

C

D Q

FD

INV

Also need interrupt service routine and driver

F
igu

re
9
.3:

H
a
rd
w
are

In
terru

p
t
D
em

o.
In
terru

p
t
G
en
erated

b
y
logic

in
th
e

R
1
F
P
G
A
.

9.3. Synchronization Problem 87

9.3 Synchronization Problem

The PC and the BORG board are driven by di�erent clocks. You need to syn-
chronize any information transfer between them to avoid any timing problems. Par-
ticularly when you have sequential logic (such as a �nite state machine) inside the R1
FPGA, the data transfer from the PC to your sequential logic must be synchronized
by synchronization registers using the (not the PC) system clock.

Lab: The schematic drawing as shown in Fig. 9.4 has an I/O port located at
address PORT4. The output of this port feeds two D ip-ops, ffone and fftwo.
These two D ip-ops are clocked by the system clock, and these D ip-ops are
constrained to be mapped into di�erent CLBs (just to exaggerate the failure rate,
you can put them together in the same CLB if you want). The counter registers the
number of times that the output of the ip-ops are di�erent.

Questions : What causes the outputs of the D ip-ops to be di�erent? How
would you �x the problem?

To load this lab asylab, you do:

c:> wir2xnf asylab

c:> ppr asylab

c:> makebits asylab

c:> makeprom -o asylab.mcs -u 0 asylab.bit em4003a em4002a em4003a

c:> bd asylab.mcs

c:> asylab

A sample driver for this lab is included on the next page.

88 9. Guide to Some Laboratory Experiments

/***/

/* asylab v1.0 April 5,1994*/

/***/

#include<stdio.h>

#include<dos.h>

#include<stdlib.h>

int main(int argc,char *argv[])

{

unsigned char loc, oldloc;

int wait;

char * portenv;

unsigned int PORTRESET, PORT4;

unsigned PortA;

setcbrk(1);

portenv = getenv("BORG");

/* Control Port in X0 */

if(!strcmp(portenv,"0x300"))

PortA = 0x300;

else if(!strcmp(portenv,"0x200"))

PortA = 0x200;

else if(!strcmp(portenv,"0x210"))

PortA = 0x210;

else if(!strcmp(portenv,"0x310"))

PortA = 0x310;

else {

printf(" Wrong PORT address\n");

printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");

exit(1);

}

PORTRESET = PortA + 3;

PORT4 = PortA + 4;

/* reset the machine */

outportb(PORTRESET, 0x00);

outportb(PORTRESET, 0x01);

delay(1);

/* read Port 4 until all zeroes */

wait = 10;

while((loc=inportb(PORT4)) != 0 && wait !=0)

{wait--; delay(1);

printf("Waiting for counter to reset.\n"); }

/* stop reading */

if(loc!=0) {printf("Counter in R1 never reset.\n");

}

else

{printf("Counter in R1 set to 0.\n"); oldloc = -1;

while(1){

outportb(PORT4, 0x01);

delay(1);

loc=inportb(PORT4);

if(loc != oldloc) {

printf("Counter --> %d \n",loc); oldloc=loc;

}

outportb(PORT4, 0x00);

delay(1);

loc=inportb(PORT4);

if(loc != oldloc) {

printf("Counter --> %d \n",loc); oldloc=loc;

}

}

}

}

9
.3.

S
y
n
ch
ro
n
iza

tion
P
rob

lem
89

counter
PORT4

DIFFERENT

PART=4002APC84-6

LOC=P10

PAD

IBUF INV

RESETRESET>
GSR

GTS

CLK

Q2

Q3

Q1Q4

DONEIN

STARTUP

XIOR

XIOW

DOUT0

DOUT5

A0

A1

ENB

O0B

O1B

O2B

O3B

X74-139

DOUT1

DOUT2

DOUT3

DOUT4

DOUT6

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

D[7:0]

D[7]

D[6]

D[5]

D[4]

D[3]

D[2]

D[1]

D[0]

GND

NAND2B2

DIN0

LOC=P50

PAD

DIN3

DIN2

DIN1

DOUT3

DOUT2

DOUT1

DOUT0
DIN4

DIN5

DIN6

DIN7DOUT7

DOUT6

DOUT5

DOUT4
LOC=P61

PAD

D3>

XIOW>
LOC=P51

PAD

LOC=P83

PAD

LOC=P80

PAD

LOC=P82

PAD

LOC=P81

PAD

LOC=P71

PAD
D0>

XIOW

XIOR

A3

A2

A1>

A0>

UC Santa Cruz/Computer Engineering

IBUF

IBUF

IBUF

A2>

IBUF

A3>

IBUF

XIOR>

IBUF

NAND2B1

AND2

OBUFT IBUF

IBUFOBUFT

D1>

LOC=P69

PAD

LOC=P65

PAD

OBUFT IBUF

IBUFOBUFT

D2>

LOC=P67

PAD

LOC=P58

PAD
D6>

OBUFT IBUF

IBUFOBUFT

D7>

LOC=P56

PAD

LOC=P59

PAD
D5>

OBUFT IBUF

IBUFOBUFT

D4>

A1

EN139

A0

BORG
UC SANTA CRUZ

I

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Pak K. Chan

I

LOC=P13

PAD

BUFGS

XOR2

AND2

DOUT7

LOC=CLB_R1C1

C

D Q

FD

LOC=CLB_R8C8

C

D Q

FD

PORT4

CLK

PORT4
FFTWO

FFONE

C

D Q

FD

Synchronization failure lab

C

CE

Q[7:0]

R TC

C256BCR

F
ig
u
re

9.4:
S
y
n
ch
ron

ization
failu

re
lab

.
D
esign

in
R
1
F
P
G
A
.

90 9. Guide to Some Laboratory Experiments

9.4 Music Lab

This frequency synthesizer lab demonstrates the use of XC4000 CLBs as Read-
Only-Memories (ROMs). You will also need the following additional components to
appreciate this lab.1

1. one digital-to-analog converter part # TI TLC5602CN

2. one 2N2219A NPN transistor, one 2N2222 NPN transistor

3. some resistors

4. three 10�F capacitors

5. one potentiometer

6. an 8
 speaker

The DAC yields only one volt dynamic range, so we use some discrete components
to build a simple two-stage transistor ampli�er with a voltage gain of 2, as shown in
Fig. 9.5. You can replace this part with a higher qualify ampli�er.

TLC5602CN

DAC

From R1 FPGA

Vref

NC

10uF

820

1K

2N2219A

8 Ohm
Speaker

10uF

47

2.2K

2N2222

10uF

47

1K

Stage 1 Stage 2

+5V

D0D1D2D3D4D5D6D7

CLK

Voltage Gain =2 Voltage Gain =1

+5V

adjust Vref to approx. 3.96V

potentiometer

Figure 9.5: Digital-to-Analog Converter and a two-stage transistor ampli�er
for the \music" lab.

As illustrated in Fig. 9.5, the DAC is used to convert the digital output of the
R1 FPGA to an analog (sine-wave like) signal. The transistors and the rest of the
discrete components form a simple two-stage ampli�er to drive a small 8
 speaker.

1Credit to Tom W. Geocaris.

9.4. Music Lab 91

Referring to the schematic drawings as shown in Figs. 9.6 and 9.7, the module
rom64w stores a (low �delity) discretized \sine" wave. The content of the module is
initialized by using the Xilinx memgen utility on the data �le rom64w.mem.
; ==

; rom64w.mem: A 64-word deep by 8-bit wide ROM memory.

; ==

;

TYPE ROM ; The memory is a ROM

DEPTH 64 ; The memory is 64 words deep

WIDTH 8 ; Each memory word is 8 bits wide

SYMBOL VIEWLOGIC PINS ; Build a VIEWLOGIC symbol with pin inputs

DATA 10#128#,

10#140#,

10#153#,

10#165#,

10#177#,

10#188#,

10#199#,

10#209#,

10#218#,

10#226#,

10#234#,

10#240#,

10#245#,

10#250#,

10#253#,

10#254#,

10#255#,

10#254#,

10#253#,

10#250#,

10#245#,

10#240#,

10#234#,

10#226#,

10#218#,

10#209#,

10#199#,

10#188#,

10#177#,

10#165#,

10#153#,

10#140#,

10#128#,

10#116#,

10#103#,

10#91#,

10#79#,

10#68#,

10#57#,

10#47#,

10#38#,

10#30#,

10#22#,

10#16#,

10#11#,

92 9. Guide to Some Laboratory Experiments

10#6#,

10#3#,

10#2#,

10#1#,

10#2#,

10#3#,

10#6#,

10#11#,

10#16#,

10#22#,

10#30#,

10#38#,

10#47#,

10#57#,

10#68#,

10#79#,

10#91#,

10#103#,

10#116#

A 16-bit binary counter cnt16 is used to scan the rom64w module at di�erent
rates to produce sine waves of di�erent frequencies. The scan rate is loadable from
the PC's keyboard via two I/O ports located at the R1 FPGA.

To load this lab synth, you do:

c:> wir2xnf synth

c:> xnfmerge synth music

c:> ppr music

c:> makebits music

c:> makeprom -o music.mcs -u 0 music.bit em4003a em4002a em4003a

c:> bd music.mcs

c:> music

Use the PC's keyboard to change the frequency of the sound! A very primitive
driver is included for the purpose of illustration.

#include <stdio.h>

#include <math.h>

#define PORT1 0x304

#define PORT2 0x305

#define CLK 8000000

#define BUF_SIZE 64

#define CTRL_C 0x3

main(int argc, char **argv)

{

unsigned int n;

int i;

char buf[128];

while (1) {

switch (getch())

{

9.4. Music Lab 93

case 'q':

i = 0;

break;

case 'w':

i = 1;

break;

case 'e':

i = 2;

break;

case 'r':

i = 3;

break;

case 't':

i = 4;

break;

case 'y':

i = 5;

break;

case 'u':

i = 6;

break;

case 'i':

i = 7;

break;

case 'o':

i = 8;

break;

case 'p':

i = 9;

break;

case '[':

i = 10;

break;

case ']':

i = 11;

break;

case CTRL_C:

exit(1);

default:

continue;

}

n=floor(CLK/BUF_SIZE/(440.0*pow(1.0594631,i))+0.5);

outportb(PORT1, n & 0xff);

outportb(PORT2, (n & 0xff00) >> 8);

}

}

9
4

9.
G
u
id
e
to

S
om

e
L
ab
oratory

E
x
p
erim

en
ts

A frequency is generated by writing a

16bit integer to the frequency register.

The following equation is used to determine

the desired frequency. (N = Frequency register)

freq = clk/(buffer_size*N) = 8Mhz/(64*N)

ROM 64B

O7
O6
O5
O4
O3
O2
O1
O0

A5
A4
A3
A2
A1
A0

DIN[7:0]

DIN7

DIN6

DIN5

DIN4

DIN2

DIN3

DIN1

DIN0

RESET

UC Santa Cruz/Computer Engineering

PART=4002APC84-6

Synthesizer Lab

+5

VCC

+5

VCC

C

CE

Q0

Q1

Q2

Q3

Q4

Q5

RD
TC

UD

C64BUDRD

CLK

CTN[15:0]

XIOR

A0

LOC=P56

PAD

OBUF

OBUF

OBUF

OBUF

OBUF

PORT4

NAND2B2

A0

A1

ENB

O0B

O1B

O2B

O3B

X74-139

LOC=P50

PAD

DOUT3

DOUT2

DOUT1

DOUT0

DOUT7

DOUT6

DOUT5

DOUT4
LOC=P61

PAD

D3>

XIOW>
LOC=P51

PAD

LOC=P83

PAD

LOC=P80

PAD

LOC=P82

PAD

LOC=P81

PAD

LOC=P71

PAD
D0>

XIOW

XIOR

A2

A1>

A0>

IBUF

IBUF

IBUF

A2>

IBUF

A3>

IBUF

XIOR>

IBUF

NAND2B1

AND2

OBUFT IBUF

IBUFOBUFT

D1>

LOC=P69

PAD

LOC=P65

PAD

OBUFT IBUF

IBUFOBUFT

D2>

LOC=P67

PAD

LOC=P58

PAD
D6>

OBUFT IBUF

IBUFOBUFT

D7>

LOC=P59

PAD
D5>

OBUFT IBUF

IBUFOBUFT

D4>

A1

EN139

GSR

GTS

CLK

Q2

Q3

Q1Q4

DONEIN

STARTUP

INV

OBUF

OBUF

DAC0>

DAC1>

DAC2>

DAC3>

DAC4>

DAC5>

DAC6>

OBUF

DAC7>

LOC=P19

PAD

LOC=P23

PAD

LOC=P24

PAD

LOC=P25

PAD

LOC=P26

PAD

LOC=P27

PAD

LOC=P18

PAD

LOC=P20

PAD

PORT5

A3

BUS=A[15:0];B[15:0]

EQ

COMP16H

B[15:0]

A[15:0]

FREQREG[15:0]

DACCLK>

OBUF LOC=P28

PAD

CLK

UC SANTA CRUZ

IBORG I

DRAWN BY:

B
A

B
A

1 2 3 4 5

1 2 3 4 5

Tom Geocaris

LOC=P10

PAD

RESET>

IBUF

XIOW

+
5

V
C
C

PORT5
NAND2B2

C

CE

D[7:0]

Q[7:0]

RD

RD8
DIN[7:0]

+
5

V
C
C

NAND2B2

PORT4

XIOW

C

CE

D[7:0]

Q[7:0]

RD

RD8

FREQREG[7:0]
DIN[7:0]

FREQREG[15:8]

FREQUENCY REGISTER - PORT 2 (HIGH BYTE)

FREQUENCY REGISTER - PORT 1 (LOW BYTE)

LOC=P13

PAD

BUFGS

CLK

WAVE BUFFER

R

C

CE

CNT16

TC

Q[15:0]

F
igu

re
9
.6
:
F
req

u
en
cy

S
y
n
th
esizer

L
ab
.
D
esign

in
R
1
F
P
G
A
(S
h
eet

1/2).

9
.4.

M
u
sic

L
a
b

95

UC Santa Cruz / Computer Engineering

Tom Geocaris

C

CE

Q[7:0]

R TC

C256BCR

R

CE

C

L2

L1

L[7:0]

L0

L3

L4

L5

L6

L7

BUF

BUF

BUF

BUF

TC

C

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

H5

H0

H[7:0]

H1

H2

H3

H4

H6

H7

C

CE

Q[7:0]

R TC

C256BCR

Q9

Q8

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q10

Q11

Q12

Q13

Q14

Q15

Q[15:0]

I

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

I
UC SANTA CRUZ

BORG

16 Bit Counter

F
igu

re
9
.7
:
F
req

u
en
cy

S
y
n
th
esizer

L
ab
.
D
esign

in
R
1
F
P
G
A
(S
h
eet

2/2).

96 9. Guide to Some Laboratory Experiments

9.5 DMA Lab

This lab demonstrates transferring data from the BORG board to the PC's mem-
ory using DMA. This lab illustrates the steps involved in

� programming the Intel 8237A-5 DMA controller on the PC,

� initiating the DMA request and transfer with the X0 controller of the BORG
board

The data to be transferred are generated by a counter in the R1 FPGA on the BORG
board. The �rst data byte has the value 1, the second byte is 2, and the last byte is
256.

You need:
1. a Protozone adapter card, set dip switch positions 6 and 5 of SW1 to ON to enable

DMA channel 3,

2. make sure that the 74LS367A TTL on the protozone board is not excessively noisy, use
an oscilloscope to observe the terminal count signal (TC) on the BORG board. I have
to hand-pick a good 74LS367A bu�er for this lab,

3. set the BORG board to host mode, use position 4 of dip switch SW1 of the BORG
board,

4. change the BORG board controller X0 by programming X0 in the slave mode using the
Xilinx xchecker cable via J9. To set X0 to this mode:
(a) shunt jumper J24 on the right side with a plastic jumper,

(b) set position m0x0 of dip switch SW1 to open, and

(c) set position m1x0 of dip switch SW2 to open.

You can download the supplied bit �les x0dma.bit and dmaio.mcs by using the
xchecker cable.

c:> xchecker x0dma /* download the X0 controller */

c:> bd dmaio.mcs /* program the R1 FPGA to

generate the data for the transfer */

c:> tst /* program the 8237A-5 DMA controller */

/* initiate the DMA transfer */

9.5. DMA Lab 97

Figure 9.8: DMA transfer timing of four consecutive bytes from the BORG
board to PC's memory. Channel 1 is the DMA request DMAREQ signal.
Channel 2 is the IO read IOR signal. Channel 3 is the terminal count TC
signal on the ISA bus. Channel 4 is the DMA ACK DACK signal.

You should see the output:
Initialize DMA controller.

Used first half of data area.

Load counters values.

Trigger DMA transfer.

Terminal count now 80.

. Terminal count pending 80.

Terminal count has expired 8.

DMA transfers of 256 bytes completed. Hit to continue.

Used first half of data area.

0 : 1

16 : 11

32 : 21

48 : 31

64 : 41

80 : 51

96 : 61

112 : 71

128 : 81

144 : 91

160 : a1

176 : b1

192 : c1

208 : d1

98 9. Guide to Some Laboratory Experiments

224 : e1

240 : f1

It means 256 bytes have been transferred from the R1 FPGA to the PC's main memory
using DMA.

Figure 9.8 depicts the DMA transfer timing of four consecutive bytes from the
BORG board to PC's memory. Two sheets of schematic drawings x0dma and r1dma

are provided in Figs. 9.9 and 9.10, respectively to illustrate the supporting hardware
for this DMA lab.

#include <stdio.h>

#include <dos.h>

/*

DMATST.C: DMA transfer from R1 Xilinx FPGA to PC memory

Mostly from the protozone manual Prof El Gamal Stanford University

Modified by Pak K. Chan for the BORG II protoboard 7/15/94

** Supporting hardware in the Protozone board: DMA channel 3

make sure that your PC is not using this channel,

otherwise this demo may crash your system

use an oscilloscope to probe the DACK on the borg board

to be sure

Supporting hardware in the BORG board:

X0 with DMA x0dma.bit

R1 with DMA r1.bit

all four chips with DMA dmaio.mcs

Port 0x304 a write triggers DMA transfer from R1's counter to PC's memory

compile with: tcc -etst dmatst.c dmaini.asm

*/

#define DSIZE 256 /* data set size for DMA transfer */

#define INC 16

/* public variables defined in assembly code dmaini.asm */

extern unsigned char dbeg[DSIZE];

extern unsigned char dmid[DSIZE];

extern unsigned int usebeg;

#define RESETPORT 0x303

#define DMAPORT 0x304

extern int dmainit();

main()

{

unsigned int i;

unsigned char tc;

9
.5.

D
M
A
L
a
b

99

RDY-DMA DRQ

TC

DACK

OBUF
DACKX

+5

VCC

NOR2B1

IBUF

IBUF

PAD

PAD

OR2B1

condition the DACK signal with TC

DACK> C

D Q

FD

CONFI

PROG
WS

BA9
BA8
BA7
BA6

IOA1

IOA0
GND

BD2

PORTA

BAEN

HOST

RESET

COMPARE4

EQU

B3
B2
B1
B0

A5
A4

A3
A2
A1
A0

memory

mapping

PAD

WPORTD

TDO>

TDO

TMS>

PAD

TMS

NAND2

INTPC is

edge sensitive BD7

PB>

IBUF

July 17, 1994 REV2
AUG 28, 1993 REV1
April 17, 1993

BD0

ADDRESS_PAD
ADDRPAD

RAMSEL
A6
A5
A4
A3
A2
A1
A0

+5

VCC

PULLDOWN

PWRDWN>

PAD

OBUF PAD

IBUFclock

CLKGEN

CLKSW1

CLK

CK

CLKSW0

divider

M

CMUX

TDO_PC
RAMSEL

RAM7
RAM6
RAM5
RAM4
RAM3
RAM2
RAM1
RAM0

R1
R0 O7

O6
O5
O4
O3
O2
O1
O0

DIR

D7
D6
D5
D4
D3
D2
D1
D0

bidirectional

U

X

RAM
data

PAD

RAMPADS

OE
BP7
BP6
BP5
BP4
BP3
BP2
BP1
BP0

BD7
BD6
BD5
BD4
BD3
BD2
BD1
BD0

after configuration: INTPC
during configuration: RDY

shared pin

IBUF

PULLDOWN

PAD

BD2

default

PC has
control
SRAM
dual-port

OBUF
FAST

PAD

S
E
T
_
C
L
K

P
R
O
G

A
R
B
I
T

S
E
T
_
A
R
B

C
L
K
S
W
0

C
L
K
S
W
1

B
S
C
A
N

I
N
I
T

BD4

CLKSW1

C

CE

D Q

SD

FDSD

CLKSW0

IBUF BD7
BD6

INIT=S

C

CE

D Q

SD

FDSD

OBUF

AND2

OR2B1
AND2

GSR

GTS

CLK

Q2

Q3

Q1Q4

DONEIN

STARTUP

OR2

IBUF FAST

PAD

PAD

OBUFT FAST

PADBMEMW

SEL

BMEMR

BIOW
IBUF

BIOR

RAMSEL
XMEMR

XMEMW

OR2

PB

PAD

OBUF

PULLUP

IBUF

BIOW

INTPC>

PORTC

PORTC

PAD

PORTB

BD1
BIOW PAD

INIT

BIOR
BIOW
BA3
BA2
BA1
BA0
EQUAL

FAST

PAD

RAMSEL2>

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

BD0>

OBUFT

IBUF

IBUF

FAST

PAD

IBUF

BD1

BD3

DIR>

IBUF

B2>

B1>

B3>

B4>

B5>

B6>

B7>

PULLUP

PULLUP

PULLUP

PULLUP

PULLUP

PULLUP

B0>

BD2

BD1

RESET>

PAD

OBUFAND2

IBUF

BA8IBUF

BA7

BA6

BA4

BA0

BUF

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

BA0

IBUF

IBUF

IBUF

IBUF

IBUF

BA16

IBUF BA17

IBUF

BA17>

BA18

IBUF

DONE>
B7

DONE
DONE

IBUF

BORG
UC SANTA CRUZ

I

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Pak K. Chan

I

XIOW

BIOW

INIT

IBUF

BP0

RAMD7
RAMD6
RAMD5
RAMD4
RAMD3
RAMD2
RAMD1
RAMD0

RAMD0

RAMD7
BD6
BD5
BD4
BD3
BD2

BD0

B0

BA18>

BA16>

OBUF

IBUF

BD1
BP1

BD1>

B2

IBUF

XIOR>

PAD

PAD

BD0
B0

B1
BD1

BD3
B3

IBUF

BD4
B4

BD5
B5

IBUF

BD6
B6

B7

IBUF

BD6
BP6

BD6>
IBUF

BD5
BP5

BD5>
IBUF

BD4
BD4>

IBUF

BD3
BP3

BD3>
IBUF

BD2
BP2

BD2>

BP4

BA19>

SW16>

SW17>

SW18>

IBUF

BA5

IBUF

IBUF

BA19

Top-Level Diagram

BP0
BP1
BP2
BP3
BP4
BP5
BP6
BP7

B1
B2
B3
B4
B5
B6

RAMD5

RAMD1
RAMD2
RAMD3
RAMD4

RAMD6

CLKOUT>

XIOW>

XIOR

PORTIO

OR2

Sheet 1/8PART=4003APG120-6

BORG II 4K BOARD CONTROLLERX0

BA5
BA4

BUFGP

IBUF

IBUF

IBUF

I
/
O

P
a
d
s

T
o
/
F
r
o
m

R
A
M

BIOW

IBUF

SW18

PAD

BA9

OBUFT

IBUF

PAD

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

XMEMR

RAMSEL

From Xilinx R1

IBUF

IBUF

OBUFT

FAST

PAD

OBUFT

FAST

PAD

OBUFT

FAST

PAD

OBUFT

FAST

PAD

OBUFT

FAST

PAD

FAST

PAD

IBUF

OBUFT

FAST

PAD

IBUF

PULLUP

OBUFT

FAST

PAD

PULLUP

EN245>

OBUF BD7
XMEMW

BIOW
BIOR
BA19
BA18
BA17
BA16
SW19
SW18
SW17
SW16

OR2B1HOST

HIGH_EQU
SEL

TDO of others
access thru PORTC

RDY

PAD

PAD

TDO_PC>

TDO_PC

PAD

MEMACCESS
RAM_CS>

FAST

PAD

RAMSEL2

IBUF

INV

C

CE

D Q

SD

FDSD

C

CE

D Q

SD

FDSD

BD5

WPORTA

PORTD

PORTD

BD7

INV

BD3

ASIC

AND2

INV

From PC ISA Bus

CLK

IBUF

PAD

BA2
BA3

BA1

BA6
RAMSEL

BA5

the same pin
are sharing
RDY and INTPCD6D5D4D3D2D1D0

WPORTA
BIOW

OR2

Peripheral Mode

D7

PAD

IBUF

HOST

RAMSEL2

SW17

SW16

PORTA

BSCAN
INIT

BD7

WS
PROGPORTB

PORTA

CONF
BIOW
BD1

CONFIG

BD6

X0 Controller with DMA

A = B ?

I/O Mapping
COMPARE8

B7
B6
B5
B4
B3
B2
B1
B0
A7
A6
A5
A4
A3
A2
A1
A0

EQUAL

DECODE

XW

XR

WRITE

READ

EQUAL EQ

INTPC

PAD

OBUFT

TDO

C

D Q

FD

C

D Q

FD

BSCAN

BSCAN

TCK>TCK

OBUFT

DMA>

disable

RDY>
CONFI

RDY-DMA

AND2

BMEMW>

BMEMR>

BIOW>

BIOR>

CLK_PAD>

BIOR

BIOR

PORTIO

MEMACCESS

SW19

BA9>

BA8>

BA7>

BA6>

BA5>

BA4>

BA3>

BA2>

BA1> BA1

BA2

BA3

BA4

BA0>

BD7>

BP7

IOA0> IOA0

IOA1> IOA1

WPORTA

PULLUP

control by
ASIC>

OBUFT

OBUFT

PROG>

WS>

HOST>

BAEN> BAEN

TC>

INT

RDY-DMA

+5

VCC

OBUFT

EQUAL

PORTDEC

PORTA
BIOR

BA3

BA0
EQUAL

PORTB
PORTC
PORTDBA1

BA2

BIOW

DECODE

XW

XR

WRITE

READ

EQUAL EQ

BD0

FAST

PAD

FAST

PAD

DACK

EQUAL

FDR

C

D Q

RD

OBUFT

C

FAST

PAD

OBUFAND2
AND2

C

DIR245

PAD

AND2B2

OR2

BMEMW

DACK

BIOR
C

C

OR2B1

CONFI

F
igu

re
9.9:

D
M
A
L
ab
.
D
esign

in
X
0
con

troller
F
P
G
A
.

1
00

9.
G
u
id
e
to

S
om

e
L
ab
oratory

E
x
p
erim

en
ts

IOR-IOR

GIOR-

BUFGS

PORT4

PORT6

PORT5

C

CE

Q[7:0]

R TC

C256BCR

A0

A1

ENB

O0B

O1B

O2B

O3B

X74-139

A0

A1

A3

A2

A3>

LOC=P80

IBUF

IBUF

IBUF

IBUF

C

CE

D Q

RD

FDRD

Increment counter every

DMA I/O read

Transfer content of counter

to PC’s memory data segment

DOUT0

OR2

for DMA Lab

R1 in BORG board

PART=4002APC84-6

DOUT3

DOUT5

DOUT7

BUF

PAD

OBUFT

OBUFT

DOUT5

PAD

IBUFOBUFT

D6> LOC=P58DOUT6

PAD

IBUF

LOC=P56D7>DOUT7

PADPAD

DOUT3 D3> LOC=P65

OBUFT IBUF

PAD

DOUT2 D2LOC=P67D2>

OBUFT IBUF

PAD

DOUT1 D1> LOC=P69

OBUFT IBUF

IBUF

PAD

IBUF

July 28, 1994

BORG
UC SANTA CRUZ

I

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Pak K. Chan

I

IOR>

LOC=P51

OBUFT

D0> LOC=P71DOUT0

PAD

DOUT1

BUF
DOUT2

BUF

BUF
DOUT4

BUF

BUF

BUF
IBUF

IBUF

D5> LOC=P59

D4> LOC=P61

D5

D6

D7

OBUFT

D1

D3

DOUT4

INV

+5

VCC

RDY-DMA

LOC=P70

RDY-DMA>

AND2

IBUF

PAD

IOW>

LOC=P50

OBUF

PAD

RESET>

LOC=P10 INV

GSR

GTS

CLK

Q2

Q3

Q1Q4

DONEIN

STARTUP

IBUF

PAD

D0 D4

PAD

PAD

PAD

PAD

A2>

LOC=P82

LOC=P81

A1>

LOC=P83

A0>

NAND2B1

NAND2B2

IOW

+5

VCC

GND

DOUT6

BUF

Q[7:0]
Q0

Q1

Q3

Q2

Q7

Q4

Q5

Q6

F
ig
u
re

9
.1
0:

D
M
A
L
ab
.
D
esign

in
R
1
F
P
G
A
.

9.5. DMA Lab 101

/* initialize the DMA controller - dmainit() in assembly language */

setcbrk(1);

printf("Initialize DMA controller.\n");

i = dmainit();

if(usebeg) {

printf("Used first half of data area.\n");

} else

printf("Used second half of data area.\n");

printf("Load counters values.\n");

outportb(RESETPORT, 0);

outportb(RESETPORT, 0xff);

printf("Trigger DMA transfer.\n");

outportb(DMAPORT, 0xff); /* send a 1 to request for DMA */

/* check terminal count of DMAC bit 3 of status register */

/* note: status register is destructive read */

tc = inportb(8);

printf(" Terminal count now %3x.\n", tc);

while(((tc=inportb(8)) & 0x08) != 0x08){

printf(" . Terminal count pending %3x.\n", tc);

/* if you see this, it means trouble */

}

printf(" Terminal count has expired %3x.\n", tc);

outportb(0x0a, 0x07); /* mask (disable) DMA Channel 3 */

putchar('\n');

printf("DMA transfers of %d bytes completed. Hit to continue.\n",DSIZE);

getchar();

if(usebeg) {

printf("Used first half of data area.\n");

for(i = 0; i < DSIZE; i+= INC)

printf(" %3d : %2x\n", i, dbeg[i]);

} else {

printf("Used second half of data area.\n");

for(i = 0; i < DSIZE; i+= INC)

printf(" %3d : %2x\n", i, dmid[i]);

}

}

102 9. Guide to Some Laboratory Experiments

; DMAINI.ASM

; Module to initalize DMA controller and make sure

; that the segment register and offset are corrected

; such that only a single DMA transfer is needed even

; if the data area cross the 64K segment boundary

;

; Originated from the Protozone manual,

; Professor El Gamal, Stanford University

;

; use Turbo Assembler Version 1.0

; and link to turbo C main module dmatst.c

;

.MODEL small, c

.STACK

dmactl EQU 0 ; Base of DMA controller 1 port space

dmapage EQU 80h ; Base of DMA page register space

dhalf EQU 255 ; Size of desired data area is half

; the size of the allocated block

; one less than the number of bytes

; transfer ?

dval EQU 65535 - dhalf ; 64K - Base count

tcl EQU dhalf AND 255 ;

tch EQU dhalf / 256

.DATA ; Data Segment

dbeg DB 256 DUP (0) ; beginning of reserved data area

dmid DB 256 DUP (0) ; midway thru reserved data area

usebeg DW 1

PUBLIC dbeg ; external variable accessible from C program

PUBLIC dmid ; external variable

PUBLIC usebeg ; external variable

PUBLIC dmainit ;

.CODE

dmainit PROC

mov ax, @data ; get the value of the data segment register

mov cl, 4

rol ax, cl ; rotate by 4 bits

mov dx, ax ; save it

and dl, 0Fh ; keep the lower nibble in dx

sub al, dl ; kill the lower nibble in ax

add ax, OFFSET dbeg; add offset of the data area

jnc nocarry

inc dx ; add one to dx if carry

nocarry:

cmp ax, dval ; compare ax with 64K - Base count

jle destok ; go ahead if it is smaller

mov usebeg, 0 ; else set dok = 0

mov bx, @data ; get the value of the data segment register

mov cl, 4

rol bx, cl ; rotate the bits so that the 4 highest

; bits are now the 4 lowest bits

9.6. Boundary Scan Lab 103

mov dx, bx ; copy the value into dx

and dx, 000Fh ; keep only the lower 4 bits in dx

inc dx ; increment

and bx, 0FFF0h ; kill the low 4 bits in bx

mov ax, OFFSET dmid; get the offset of the data area

add ax, bx ; add offset and bx

destok:

out dmactl+6, al ; AX contains the base address - send

mov cl, 8 ; the low half followed by the high half

shr ax, cl ; to the appropriate port

out dmactl+6, al

mov al, 57h ; set the desired mode of the DMA controller

out dmactl+11, al

out dmactl+12, al ; clear the byte pointer bit

mov al, tcl ; set the terminal count

out dmactl+7, al ; According to TCL and TCH

mov al, tch ; will be transferred

out dmactl+7, al ; ??? bytes

mov al, dl ; set DMA page register

out dmapage+2, al ;

mov al, 3

out dmactl+10, al ; unmask the channel

ret

ENDP

END

9.6 Boundary Scan Lab

I'll �ll in this part in the second revision of this user's guide.

9.7 Possible Term Project Description

A little bit of history, I have given this Dr. Mario design as a term project in
Advanced Logic Design in Spring 1993. Four out of six groups (two per group) of
students �nished their projects using the older XC3000 BORG board. A project
description is given on the next page.

104 9. Guide to Some Laboratory Experiments

University of California, Santa Cruz, Fall `97 CMPE 126 P.K.Chan, Oct, 1997

Project Description Part II
CMPE 126: Advanced Logic Design

DRX. MARIO 2 Digital Machine (due Dec 4, 1997)
This is part two of the project description.

9.8 Initialization of the Bottle

The host program (PC) writes 8-bit words one at a time to an output port at I/O
address 0x0304. There is a one-bit RDY' ag (the least-signi�cant bit) at the outport
port of I/O address location 0x0305. You can use a simple FSM in the R1 FPGA to
capture TWO successive words from the PC:

word1 = DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

word0 = DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0

which represent the encoding of the initial viruses. There will be no more than 8
viruses at any levels, and the viruses are always located at the bottom of the bottle.
Here is the virus encoding:

Bit1 bit0 virus

0 0 S

0 1 A

1 0 L

1 1 (no virus)

For example, an initial bottle status such as:

SSA LLSS

from left to right (column 0 to 7), they will be encoded as:

Position 0 1 2 3 4 5 6 7

word1 = 0 0 0 1 1 1 0 0 (bit 1)

word0 = 0 0 1 1 0 0 0 0 (bit 0)

The PC writes the �rst word word0 and then asserts RDY low, the FSM machine
reads the outport port and saves the word in a bank of 8-bit registers. The PC waits
for roughly 1ms, then deasserts RDY to high. It then sends out the second word
word1 and then asserts RDY low. The PC waits for roughly 1ms, then deasserts
RDY to high. The FSM machine reads the outport port and saves the second word in
another bank of 8-bit registers. The RDY signal then becomes the YourMove' signal
in the game.

2
DR
X
. MARIO is a trademark of Nintendo of America Inc.

9.9. Initialization of the Dr. Mario Machine 105

9.8.1 Pill encodings

There are six distinct pills, and their encodings are:

Bit Bit Bit

2 1 0

AA 0 0 0

LL 0 0 1

SS 0 1 0

AL 0 1 1

AS 1 0 0

LS 1 0 1

9.9 Initialization of the Dr. Mario Machine

The host (driver) provides a global reset signal that resets all the ip-ops before
each round of the game.

9.10 Handshake and Timing

After initialization and sending the viruses to the ports, the PC communicates
with the DRX. MARIO Machine using the following protocol.

PS: your machine is required to register the laterals (column location) and pill
rotation (0, 1, 2, or 3 clockwise increment).

The port assignments in the R1 FPGA are:

I/O Address: 0x300 Function: used by X0

I/O Address: 0x301 Function: used by X0

I/O Address: 0x302 Function: used by X0

I/O Address: 0x303 Function: Global Reset- used by X0

I/O Address: 0x304 (from PC to Mario machine)

Bit 7 6 5 4 3 2 1 0

| D7 D6 D5 D4 D3 D2 D1 D0 |

I/O Address: 0x305 (from PC to Mario machine)

Bit 7 6 5 4 3 2 1 0

| Pill Type| RDY'/ |

| Bit | |

| 2 1 0 | YourMove|

106 9. Guide to Some Laboratory Experiments

I/O Address: 0x306 (from Dr. Mario machine to PC)

Bit 7 6 5 4 3 2 1 0

| Rot | Lateral | |

| ation| | |

| 1 0 | 2 1 0 | MoveReady|

^

|

|

|

|

|

|

|

| bdsyn/verify viewdraw/viewsim

|

| evaluation function

| FSM

|

| Design debug report

+--------------------------------+------------------------------>

11/18 11/20 11/25 11/27 12/2 12/4 12/11

This is part one of the project description. There will be one more handout which
will specify the interface and hardware protocols.

9.11 Project

You will devise strategies to play DRX. MARIO and implement one of the
strategy with two Xilinx XC4003A-PC84s, and an 8K-byte SRAM. Your design will
interface with a \host" computer that will be responsible for keeping track of the Dr.
Mario screen and your machine's score. The only information provided by the host
computer will be the next pill.

DRX. MARIO is a 2-dimensional color matching game in which the doctor
(player) must consume the pills (and possibly viruses) before the pills destroy the
patient. Figure 9.11 shows the DRX.MARIO \pill bottle". There are nine di�erent
pills, as shown in Figure 9.12, which are presented one at a time at the top of the
bottle. The two halves of the capsules are colored Scarlet,Aquamarine, or Lemon.3
(Actually, there are only six di�erent pills but we are counting the mirror images of
the multi-colored pills as di�erent pills.) The doctor must choose how to place the
pill within the rectangular 8�16 bottle. The pill can be rotated in units of 90 degrees

3To avoid poisoning color-blind patients the pills are also labeled with S's,A's and L's.

9.12. Design of a Dr. Mario player 107

and the pill can be moved left or right to the desired position. The pill then drops
to the bottom of the bottle or until it is stopped by other pills already in the bottle.
Figure 9.13 shows the bottle after several pills have been placed and the next pill at

the top of the bottle is A S .

If the doctor succeeds in placing the pill so that there is a rectangular grid region
of size 1� n where n � 4 of the same color, then this region vanishes. Note that this
may cause the other remaining halves of the pills to fall further down in the bottle,
and when they fall, other regions may vanish, and so on. The game continues until
no more pills can be placed because the two grid squares in the center columns and
the top row are occupied.

Figure 9.14 illustrates an example. Suppose the doctor decides to place the A S
pill in the sixth column (from the left) after rotating it so that the A is at the
bottom. The two regions which vanish are the one in row 8 �lls with S's and the

one in column 6 �lled withA's. But causes the L S pill in row 9 to fall down one

row creating a vertical region �lled with L's in column 3. After removing these 4
L's, their other halves fall down in columns 2 and 4 as illustrated in the third bottle.
Nothing interesting happens in column 2, but in column 4 there is now a vertical
region of S's. There is also a horizontal region of S's in row 2. This brings out the
point that one side of a capsule may create both horizontal and vertical regions. After
removing these two regions we end up with the fourth bottle in Figure 9.14.

One last detail that need to be mentioned is that the bottle might not be empty
to begin with. There may be some viruses clinging around at di�erent points. These
viral beats look exactly like half-pills and will vanish in the same manner as the pills.

9.12 Design of a Dr. Mario player

As your term project in cmpe126, design and debug a digital-DRX. MARIO -
player machine using two Xilinx XC4003A-PC84 and an 8K-byte RAM.

To know and understand the game, a copy of the game is in the Athena cmpe126

directory called Mario. The program is called bugs and all the source codes are there.
The controls are: h for left, l for right, s for clockwise rotate, a for counter-clockwise
rotate, j for dropping the pill down, and q for quitting the game.

9.13 The game environment

Your machine will interface to a host PC that present the pills one at a time. I
shall write (provide) the host PC driver. You are also allowed to an 8K-byte RAM as
part of your machine. The host maintains the screen, informs the player on the next
pill type, processes the player's decision, keeps track of the state of the bucket and
the score.

9.14 What will be �nalized later?

I reserve the right to modify:

108 9. Guide to Some Laboratory Experiments

Viruses: whether or not there will be viruses and how they will be given.

Scoring: how the player will be scored.

Interface: protocol with the host PC.

System clock rate: of your machine. The host and your machine may be driven by
separate clocks.

I'll be responsible for building the host. When the host is completed in the sixth or
seventh week, all the above items will be �nalized.

9.15 Evaluation

There will be a (single elimination?) tournament on Dec 4, 1997 in AS 240 (2:00-
4:00pm). Also, the quality of your design will be evaluated based on

a. Your score.

b. the number of XC4000 LCAs used, and the number of CLBs and IOBs used.

c. the propagation delay along the critical path(s), in other words, the maximum
clock rate of your design.

d. estimate your machine's scores at di�erent clock rates (8 MHz, 16 MHz, and 20
MHz).

e. the documentation of your design.

9.16 Your responsibilities

a. Devise and test at least two basic strategies with a (behavioral) high-level
simulation. To examine how good your strategy is: code your strategy in C

and integrated into the DRX. MARIO source code that is supplied to you.

DUE BY Nov 4, 1997 .

Be prepared to present your strategy(ies) to the class.

There is always the danger that the high-level language constructs in C are too
powerful and may not be implemented e�ciently or directly in hardware. Just
keep in mind that your strategy has to be realized in Xilinx FGPA, eventually.
Estimate the number of CLBs that is required by your strategy(ies).

b. Work individually. You MUST have a complete hardware prototype of the project
by Dec 4, 1997.

c. Submit a good quality �nal report documenting you strategy, design, schematic
diagrams, timing diagrams, test plans, simulation results, design �les (.lca and
viewlogic), and your (logic synthesis) .eqn and .bds �les on Athena. DUE BY
Dec 11, 1997, 5:00pm. Please place and submit the design �les on a oppy disk.

d. Realize your design either with the borg prototyping board.

9.17. Suggestion 109

9.17 Suggestion

When devising your strategy to solve this problem, keep the implementation con-
straints in mind. Students have a tendency to come up with \interesting" strategies
which are not easily implementable in hardware. Please start with a VERY simple
strategy �rst, and estimate the hardware resources needed to realize it. You can
improve the game strategy later on when you have a better understandings of the
constraints and the game.

A successful project requires good planning, step by step documentation, and
innovation. Procrastination leads to disaster. Start working on it now.

9.18 Initialization of the Bottle

Like your midterm, an XT/PC writes 8-bit words one at a time to an output
port at address 0x0304. There is a one-bit RDY ag (the least-signi�cant bit) at
the outport port at address 0x0305. Your FSM in the R1 FPGA captures TWO
successive words from the PC.

wordB = DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

wordA = DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0

which represent the encoding of 8 initial viruses. Here is the virus encoding:

Bit

10

00 S

01 A

10 L

For example, an initial bottle status such as:

SSAALLSS

from left to right (column 0 to 7), they will be encoded as:

Position 0 1 2 3 4 5 6 7

wordB = 0 0 0 0 1 1 0 0

wordA = 0 0 1 1 0 0 0 0

The PC writes the �rst word wordA and then asserts RDY low, the FSM machine
reads the outport port and saves the word in a bank of 8-bit registers. The PC waits
for roughly 1ms, then deasserts RDY to high. It then sends out the second word
wordB and then asserts RDY low. The PC waits for roughly 1ms, then deasserts
RDY to high. The FSM machine reads the outport port and saves the second word in
another bank of 8-bit registers. The RDY signal then becomes the YourMove' signal
in the game.

110 9. Guide to Some Laboratory Experiments

9.18.1 Pill encodings

There are six distinct pills, so their encodings are:

Bit Bit Bit

2 1 0

AA 0 0 0

LL 0 0 1

SS 0 1 0

AL 0 1 1

AS 1 0 0

LS 1 0 1

9.19 Initialization of the Dr. Mario Machine

The host (driver) provides a global reset signal that resets all the ip-ops before
each round of the game.

9.20 Handshake and Timing

After initialization and sending the viruses to the ports, the PC communicates
with the DRX. MARIO Machine using the following protocol.

PS. your machine is required to register the laterals and pill rotation.

The port assignments in the R1 FPGA are:

I/O Address: 0x300 Function: used by X0

I/O Address: 0x301 Function: used by X0

I/O Address: 0x302 Function: used by X0

I/O Address: 0x303 Function: Global Reset- used by X0

I/O Address: 0x304 (from PC to Mario machine)

Bit 7 6 5 4 3 2 1 0

| D7 D6 D5 D4 D3 D2 D1 D0 |

I/O Address: 0x305 (from PC to Mario machine)

Bit 7 6 5 4 3 2 1 0

| Pill Type| RDY/ |

| Bit | |

| 2 1 0 | YourMove|

9.20. Handshake and Timing 111

I/O Address: 0x306 (from machine to PC)

Bit 7 6 5 4 3 2 1 0

| Rot | Lateral | |

| ation| | |

| 1 0 | 2 1 0 | MoveReady|

112 9. Guide to Some Laboratory Experiments

Figure 9.11: DRX. MARIO (8 � 16) bottle.

AA LL S S

LS

S LSALA

ASAL

Figure 9.12: DRX. MARIO pills.

9.20. Handshake and Timing 113

LS
AL

SL

AS

LS
SS SA

A
A

AL
AA

LS

S
L

AL
SSS

LAS

LS
LA

S
L

S
L

L
A

Figure 9.13: A typical game state in DRX. MARIO .

LS
AL

SL

LS
SS

A
A

AL
AA

LS

AL
SSS

LAS

LS
L A

S
L

S
L

L
A

SA
A
S

S
L

LS
AL

SL

LS

AA

AL
SSS

LAS

LS
LA

S
L

S
L

LS A

L

S
L

L
A

SL

AA

AL
S
LAS

LS
L A

S
L

S
L

L
A

A

LA

SSS
S
S

S
L

SL

AA

ALAS

LS
LA

S
L

L
A

A

LA

L

S
L S

L

Figure 9.14: A typical game state in DRX. MARIO

114 9. Guide to Some Laboratory Experiments

Move ready'

Your move'

CLOCK
Host PC Dr.Mario Machine

8Mhz

Pill Lateral

Pill Rotation

RESET'

Pill Type

Pill Rotation

Pill Lateral

Think Time (5ms)

Pill Type

Your move'

Move ready'

Figure 9.15: Host/DRX.MARIO Machine Handshake, after initialization
(Tentative !!) .

115

10. Maze Runner project report

CMPE126 { Advanced Logic Design
Maze Runner

Spring 1995 UC Santa Cruz
Instructor: Pak K. Chan

Prepared by: Ali Ersheid (ersheido@cats)
Hernan Saab (saab@cats)
Due Date: June 15, 1995

Abstract The Maze Runner is an FPGA-based design that solves mazes running
on a PC and interacting with the XC4000 BORG board. This report documents
the algorithm used to solve the mazes, the implementation, and the complete design
speci�cations.

10.1 Maze Runner Speci�cations

The Maze Runner machine is implemented using the XC4000 BORG board. It
solves simply connected and multi-connected mazes created randomly by a PC-based
host program. After the Maze Runner solves each maze the �rst time and �nds its
exit, it asks to be teleported in order to solve the maze one more time. As a rule,
solving the maze the second times takes less steps than the �rst time.

10.2 Hardware Requirement

The Maze Runner Machine was implemented using three of the chips on the
XC4000 BORG board. The following table shows the chips used:

Position Type* Purpose

R1 4002A Port Controller.

X1 4003A State Machine.

R2 4002A Memory Controller.

X2 4003A Not used.

* The Xilinx 4002A can been used for all chips.

In addition, an 8K-byte SRAM was also used to keep track of the back pointers
and for solving the maze again after discovering it.

10.3 Host Program

The host program is written by Professor Pak Chan in C. It interacts with the
BORG board and provides the Maze Runner with the following signals: Eight signals
that inform that Maze Runner of the status of its surroundings:

116 10. Maze Runner project report

0 1 2

3 @ 5

6 7 8

A 1 indicates that the position is a wall and a 0 indicates that it is a oor or the exit.
The Maze Runner uses four of these signals only (North, South, East, and West).
A signal to indicate that the program is ready for your next move. A signal that
indicates that you are on the exit. A global reset signal.

The Maze Runner provides the following signals to the host program: Two signals
to indicate the direction of the movement (North: 00, South: 01, West: 10, East: 11).
A signal indicating that the move signals are ready. A signal asking to be teleported.

10.4 Design and Implementation

The Maze Runner was designed using a variation of a depth-�rst search algorithm
to �nd the exit. While discovering it, an image of the maze is mapped into the �rst
2K bytes of the SRAM.

10.4.1 Algorithm

The algorithm used to solve the maze is a depth-�rst search. The search algorithm
works as follows: Three bits of memory are used for each cell to indicate whether the
cell is visited, blocked, or is a backpointer to another cell. When the hero lands on
the �rst cell, that cell is initialized to 100 to indicate that it has been visited. The
hero checks its surrounding cells and moves into the �rst unvisited cell it �nds. In
doing the checking, the wall signals from the host program are checked �rst. If there
are now walls, the memory is checked. This minimizes unnecessary memory access.
When the hero moves into a new cell, that cell is marked depending on what position
the hero came from according to the following code:

100 - North

101 - South

110 - West

111 - East

The hero continues as in steps 2 and 3 until it �nds the exit or it reaches a dead-
end. If a dead-end is reached, the �rst two bits of the cell value are used as back
pointers after inverting the �rst bit. Once a cell belongs to a dead-end, it is marked
with the code 011 indicating that it is blocked. If the hero �nds the exit, it asks to
be teleported. At this point, the Maze Runner runs in a di�erent mode in which it
reads the pointers to the exit directly from memory. This algorithm does not �nd the
shortest path, but one that is short.

10.4.2 Implementation

The design for the Maze Runner was implemented using two XC4002A and one
XC4003A FPGAs. The same design could have been implement using three 4002A
FPGAs or one 4003A and one 4002A FPGAs. The next three sections describe the
details of the design for each FPGA.

10.4. Design and Implementation 117

10.4.3 R1: The I/O Port

Since R1 is the only FPGA on the BORG board that is directly connected to the
PC data bus, it had to be used for communicating with the PC. The I/O Port design
is very simple and does not require much work. As can be seen in the MAZEPORT
diagram on the following page, only the necessary signals are read o� of the PC
data bus. The I/O port reads from two di�erent addresses from the PC. The �rst
is labeled PORTJ and it reads the two signals Your Move and On Exit, which are
indications from the PC that it is the Maze Runner's turn to move and the hero is
on the exit, respectively. The second address is labeled PORTK and it reads the
eight signals corresponding to the surrounding cells' status. Note that even though
the PC host program provides eight signals, the Maze Runner only reads four signals
corresponding to North, South, East, and West. As for writing data to the PC host
program, the Maze Runner sends four bits which are Move Ready, Move0, Move1,
and Teleport. These signals communicate to the host program that the data for the
next move is ready, the �rst bit of the move , the second bit of the move, and the
teleport request, respectively. The I/O Port schematic diagram is shown in Fig. 10.1.

10.4.4 X1: The Brain

The choice for placing the brain of the Maze Runner in the X1 FPGA was made
because X1 had to be used to connect the I/O Port with the Memory Controller
FPGAs. Instead of just using it as a routing chip, it was used as the brain at the
same time. The BRAIN FPGA consists of the main FSM driving the Maze Runner
machine, I/O bu�ers and pads, and some logic that is used primarily as an edge
catcher which catches a 001 instead of 01. This logic ensures a true active signal
and avoids any noise signals. The FSM of the BRAIN is called the BIGONE and it
consists of the following parts:

1. Finder Box (FNDRBOX)

2. Mover

3. Memory Controller Signals (TOMEM)

4. Selector

5. Status

6. Direction Processing Logic
The BRAIN and BIGONE schematic diagrams are shown in Figures 10.2 and 10.3.

10.4.5 Finder Box

The Finder Box is simply the FSM that is used to �nd the exit and to control
the various instructions necessary to initialize the memory, move the hero, detect the
exit, and teleport. Inside the Finder Box, the Finder part is the combinational logic
for the state machine. The mustang description for the Finder is as follows:

.i 9

.o 14

.s 5

--1------ ADD ADD 00-10010001-10

1
18

10.
M
aze

R
u
n
n
er

p
ro
ject

rep
ort

LOC=P78

PAD

YOURMOVE

OBUF LOC=P62

PAD

OBUF

EAST

OBUF

OBUF

NORTH

OBUF

OBUF

INV

SOUTH

LOC=P68

PAD

FOUND

GSR

GTS

CLK

Q2

Q3

Q1Q4

DONEIN

STARTUP

LOC=P10

PAD

INV

LOC=P40

PAD

MOVEREADY

C

D Q

FD

C

D Q

FD

C

D Q

FD
WEST

A0

A1

ENB

O0B

O1B

O2B

O3B

X74-139

IBUFLOC=P61

PAD

IBUF

B6

LOC=P58

PAD

B2

B3

LOC=P44

PAD TELEPORT

MOVE1

MOVE0

LOC=P57

PAD

IBUF

IBUF

IBUF

LOC=P83

PAD

LOC=P81

PAD

LOC=P82

PAD

LOC=P80

PAD

LOC=P51

PAD

LOC=P50

PAD

LOC=P19

PAD

LOC=P18

PAD

OBUFT

Maze Runner
IO Port

IBUF

LOC=P65

PAD

LOC=P67

PAD

OR3B1

4

3

2

1

DCBA

A B C D

1

2

3

4

IBUF

IBUF

IBUF

IBUF

IBUF

A. Ersheid & H. Saab
DRAWN BY:

CE 126
For:

IBUF

OBUFT

OBUFT

OBUFT

[MAZEPORT]

A0

A1

XIOW

XIOR

A3

A2

LOC=P69

PAD

IBUF

LOC=P66

PAD

LOC=P60

PAD

LOC=P71

PAD

B0

B4

RESET_I

INVIBUF

B1

RESET

IBUF

IBUF

INVC

D Q

FD

C

D Q

FD

PORTJ

INV

C

D Q

FD

PORTK

F
igu

re
10.1:

I/O
p
ort.

1
0.4

.
D
esign

an
d
Im

p
lem

en
tatio

n
119

IBUF

IBUF

WEST_I

CLK_I

RESET_I

IBUF

BUFGP

OBUF

IBUF

IBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

INVC

D Q

FD

CLK

INVIBUF

YOURMOVE_I

LOC=P24

PAD

ON_EXIT

YOUR_MOVE

ON_EXIT_I

WEST

TELEPORT

INV

C

D Q

FD

C

D Q

FD

INV

LOC=P3

PAD

ANSER_READY

ANSWER_READY_O

MOVE1_O

MOVE1

OBUF

LOC=P65

PAD

MOVE0

OBUF

MOVE0_O

LOC=P67

PAD

FILE=BIGONE

WEST_I_PC

EAST_I_PC

ANSWER_READY_O_PC

BIGCTRE_O

CEX_O

CEY_O

CLK_I

CTR_MODE_O

D0_I

D1_I

D2_I

EMEM_O

MRDY_INORTH_I_PC

ON_EXIT_I_PC

Q0_OQ1_OQ2_O

RESETBIG

RW_O

SOUTH_I_PC TC_I

TELEPORT_O_PC

UDX_O

UDY_O

YOUR_MOVE_I_PC

fsm

PC1_O

PC0_O

IBUF

IBUF

IBUF

GSR

GTS

CLK

Q2

Q3

Q1Q4

DONEIN

STARTUP

EAST_I

SOUTH_I

TELEPORT_O

CEX

UDX

Q1

LOC=P6

PAD

LOC=P47

PAD

LOC=P45

PAD

LOC=P4

PAD

LOC=P39

PAD

LOC=P37

PAD

LOC=P23

PAD

LOC=P19

PAD

LOC=P80

PAD

LOC=P60

PAD

LOC=P72

PAD

LOC=P62

PAD

LOC=P14

PAD

LOC=P27

PAD

D1_O D0_O

[BRAIN]

A. Ersheid & H. Saab
DRAWN BY:

CE 126
For:

D2_O

OBUF

IBUF

IBUF

NORTH_I

IBUF

D0

RESET_O

/EMEM

D1

O
B
U
F

MRDY

TC

TC_I

CTR_MODE

CTR_MODE_O

BIGCTRE

INC_CTR_O

RW

R/W_O

/EN_O

CEX_O

UDX_O

UDY

CEY

CEY_O

UDY_O

D2

D2_I

D1_I

DO_I

RESTCTR_O

Q0

O
B
U
F

O
B
U
F

LOC=P66

P
A
D

LOC=P68

P
A
D

LOC=P82

P
A
D

4

3

2

1

DCBA

A B C D

1

2

3

4

INV

RESET

Maze Runner
Maze Brain Controller

BUSY_I

Q2

NORTH

SOUTH

EAST

LOC=P40

PAD

LOC=P26

PAD

LOC=P20

PAD

LOC=P18

PAD

LOC=P28

PAD

LOC=P13

PAD

LOC=P10

PAD

LOC=P46

PAD

OBUF

NAND3B2

F
ig
u
re

10.2:
B
rain

.

1
20

10.
M
aze

R
u
n
n
er

p
ro
ject

rep
ort

CHTOFOUND

BACKMEM

MOVMEM

CLK_I

2CTREN

D1_I

WRITE_O

TELEPORT_O_PC

TELEPORT_O_PC

CTR_MODE_O

BIGCTRE_O

RW_O

EMEM_O

ANSWER_READY_O_PC

WRITEBLKD

tomem

WRITE_0

WRITEBLKD

IN1

IN0

OUT2

OUT1

OUT0 Q0_O

Q2_O

Q1_O

RESETBIG

MRDY_I

TC_I

YOUR_MOVE_I_PC

ON_EXIT_I_PC

RST2CTR

2CTREN

ANSWER_READY

BACKMEMBACKPTS

BIGCTRE

CHTOFOUND

CLK CTR_MODE

EMEM

FOUND

MOVMEM

MRDY

MVSTD

ON_EXIT

RWTC

TC2

TELEPORT

WALL

FILE = FNDRBOX

WRITEBLKD

WRITE_0

YOUR_MOVE

RSTALL

PC1_O

PC0_O

UDY_O

CEY_O

UDX_O

CEX_O

D0_I

in0 from mem

in1 from mem

D2_I

NORTH_I_PC

RST

mover

PC1 PC0

UDY

CEY

UDX

CEX

X0

X1

BACKMOVE

MOVE

Q0

CLK
Q1

CE

O
R
2
B
1

[BIGONE]

CE 126 A. Ersheid & H. Saab
DRAWN BY:For:

P0

status
D2

D1

D0

BACKPOINTS

VISITED

X1 X0

to the countery

to the counterx

Q1

SELECTOR

C1

C0
D0

FILE = SELECTOR

D1

Q0

SOUTH_I_PC

WEST_I_PC

EAST_I_PC

D0

D1

D2

D3 O

S0

S1

M4-1

ON_EXIT COMES FROM PC

YOUR_MOVE SIGNAL COMS FROM PC

MRDY COMES FROM THE IO DEVICE

HERE GOES THE TC FROM THE TWO UD COUNTERS IN CTR MODE

CC
E

D
Q

RF
D
C
R

GND

in2 from mem

C

CE

Q0

Q1

Q2

R

TC

C8BCR

WALL

X1
X0

P1

F
ig
u
re

10.3:
B
igon

e.

10.4. Design and Implementation 121

--0------ ADD START 00-10010001-00

--------- START WAITST 10000010001100

1-------- WAITST WAITST 10010010001100

0-------- WAITST IN 11010010001000

--------- INWAIT IN 10000010101-00

00------- WAITIN IN 11110010101-00

1-------- WAITIN WAITIN 10010010101-00

01------- WAITIN A1 11-1001-001-00

---1---0- A1 INC1 00-10010001-00

---0---0- A1 R1 00-10010001-00

-------1- A1 R1 00-10010001-00

--------- INC1 A1 00-11010001-00

-------0- R1 WAITR1 00100110001-00

-------1- R1 WAITR1 00100010001-00

1-------- WAITR1 WAITR1 00110010001-00

0----1-00 WAITR1 INC1 00110111001-00

0----0-00 WAITR1 W1 00110010001-00

0-----1-1 WAITR1 WAITMV 00110010001-00

0-----0-1 WAITR1 INC1 00110111001-00

0------1- WAITR1 W1 00110010001000

-------0- W1 WAITW1 00000010001000

-------1- W1 WAITW1 00000010001100

1------0- WAITW1 WAITW1 00010010001000

1------1- WAITW1 WAITW1 00010010001100

0-------- WAITW1 WAITMV 00-10010001000

--1------ FOUND FOUND 00-10010010-11

--0------ FOUND A1 00-10010001-11

--1-1--0- WAITMV WAITMV 00-10000001-00

--1-1--1- WAITMV WAITMV 00-10001001-00

--0-1--0- WAITMV A1 00-10010001-01

--0-1--1- WAITMV A1 00-10111001-01

--1-0---- WAIT MVWAITMV 00-10010001-01

--0-0---0 WAITMV FOUND 00-10010001-01

--0-0---1 WAITMV A1 00-10010001-01

The state diagram is shown on the next page.

A PLA �le was created from the above description using the one-hot assignment
option in mustang as follows:

mustang -l finder > finder.pla

The PLA description �le was modi�ed to change the names of I/O signals and the
states. The resulting PLA description looks like this:

.i 22

.o 27

.ilb MRDY TC YOUR_MOVE WALL ON_EXIT MVSTD BACKPTS TC2 FOUND PS12

PS11 PS10 PS9 PS8 PS7 PS6 PS5 PS4 PS3 PS2 PS1 PS0

.ob NS12 NS11 NS10 NS9 NS8 NS7 NS6 NS5 NS4 NS3 NS2 NS1 NS0

CTR_MODE BIGCTRE RW EMEM 2CTREN MOVMEM ANSWER_READY BACKMEM

WRITE_0 CHTOFOUND TELEPORT WRITEBLKD RST ALL RST2CTR

--1------ 1------------ 1000000000000 00-10010001-10

--0------ 1------------ 0100000000000 00-10010001-00

122 10. Maze Runner project report

--------- -1----------- 0010000000000 10000010001100

1-------- --1---------- 0010000000000 10010010001100

0-------- --1---------- 0001000000000 11010010001000

--------- ---1--------- 0000100000000 10000010101-00

00------- ----1-------- 0001000000000 11110010101-00

1-------- ----1-------- 0000100000000 10010010101-00

01------- ----1-------- 0000010000000 11-1001-001-00

---1---0- -----1------- 0000001000000 00-10010001-00

---0---0- -----1------- 0000000100000 00-10010001-00

-------1- -----1------- 0000000100000 00-10010001-00

--------- ------1------ 0000010000000 00-11010001-00

-------0- -------1----- 0000000010000 00100110001-00

-------1- -------1----- 0000000010000 00100010001-00

1-------- --------1---- 0000000010000 00110010001-00

0----1-00 --------1---- 0000001000000 00110111001-00

0----0-00 --------1---- 0000000001000 00110010001-00

0-----1-1 --------1---- 0000000000100 00110010001-00

0-----0-1 --------1---- 0000001000000 00110111001-00

0------1- --------1---- 0000000001000 00110010001000

-------0- ---------1--- 0000000000010 00000010001000

-------1- ---------1--- 0000000000010 00000010001100

1------0- -----------1- 0000000000010 00010010001000

1------1- -----------1- 0000000000010 00010010001100

0-------- -----------1- 0000000000100 00-10010001000

--1------ ------------1 0000000000001 00-10010010-11

--0------ ------------1 0000010000000 00-10010001-11

--1-1--0- ----------1-- 0000000000100 00-10000001-00

--1-1--1- ----------1-- 0000000000100 00-10001001-00

--0-1--0- ----------1-- 0000010000000 00-10010001-01

--0-1--1- ----------1-- 0000010000000 00-10111001-01

--1-0---- ----------1-- 0000000000100 00-10010001-01

--0-0---0 ----------1-- 0000000000001 00-10010001-01

--0-0---1 ----------1-- 0000010000000 00-10010001-01

To create logic equations, the above �le was imported into misII. The entire �le was
collapsed using the clp command and an equation �le was exported to an eqn �le.
The eqn �le was then modi�ed manually to make some of the obvious logic reductions.
The eqn �le was brought into misII and the boolean script was run on it to produce
the following eqn description �le:

INORDER = MRDY TC YOUR_MOVE WALL ON_EXIT MVSTD BACKPTS TC2 FOUND PS12 PS11 PS10

PS9 PS8 PS7 PS6 PS5 PS4 PS3 PS2 PS1 PS0;

OUTORDER = NS12 NS11 NS10 NS9 NS8 NS7 NS6 NS5 NS4 NS3 NS2 NS1 NS0 CTR_MODE

BIGCTRE RW EMEM 2CTREN MOVMEM ANSWER_READY BACKMEM WRITE_0

CHTOFOUND TELEPORT WRITEBLKD RSTALL RST2CTR;

NS12 = YOUR_MOVE*PS12;

NS11 = !YOUR_MOVE*PS12;

NS10 = MRDY*PS10 + PS11;

NS9 = !MRDY*PS10 + [33];

NS8 = MRDY*PS8 + PS9;

NS7 = !YOUR_MOVE*FOUND*PS2 + !MRDY*TC*PS8 + !YOUR_MOVE*[35] + !YOUR_MOVE*PS0 +

PS6;

NS6 = WALL*!TC2*PS7 + [27];

10.4. Design and Implementation 123

NS5 = TC2*PS7 + !WALL*PS7;

NS4 = MRDY*PS4 + PS5;

NS3 = !MVSTD*!FOUND*[34] + TC2*[34];

NS2 = BACKPTS*FOUND*[34] + !MRDY*PS1 + YOUR_MOVE*PS2;

NS1 = MRDY*PS1 + PS3;

NS0 = !YOUR_MOVE*!ON_EXIT*!FOUND*PS2 + !TELEPORT;

CTR_MODE = PS8 + PS9 + PS10 + PS11;

BIGCTRE = !MRDY*PS8 + !MRDY*PS10;

RW = [33] + PS4 + PS5;

EMEM = !PS11*!PS9*!PS5*!PS3;

MOVMEM = !YOUR_MOVE*TC2*[35] + !TC2*PS5 + [27];

ANSWER_READY = !PS2 + !ON_EXIT + !YOUR_MOVE;

BACKMEM = TC2*[35] + [27];

WRITE_0 = !TC*PS8 + NS8;

CHTOFOUND = !TELEPORT;

TELEPORT = !PS0 + !YOUR_MOVE;

WRITEBLKD = TC2*NS1 + NS10;

RSTALL = NS12 + PS0;

RST2CTR = !ON_EXIT*PS2 + !YOUR_MOVE*PS2 + PS0;

2CTREN = PS6;

[27] = MVSTD*!TC2*!FOUND*[34] + !BACKPTS*FOUND*[34];

[33] = !MRDY*!TC*PS8;

[34] = !MRDY*PS4;

[35] = ON_EXIT*PS2;

The eqn �le was used to create an xnf �le using eqn2xnf:

eqn2xnf -4 finder.eqn

Finally, the following two programs were run on the xnf �le in order to create the
Viewdraw schematic:

xnf2wir finder

viewgen finder

The resulting schematic diagram is shown in 10.4.

10.4.6 Mover

Activates the signals necessary to move the hero in the host program and it's
pointer in memory according to the input signals generated from the Finder FSM.
Two of the output signals PC0 and PC1 are connected directly to the host program
as the necessary move bits (move0 and move1). The four other output signals are
connected to the 5-bit and 6-bit up/down counters in the Memory Controller. Two of
the four signals are for chip enable and the other two are for choosing the appropriate
up/down signals for the counter. The Mover schematic diagram is in 10.5.

10.4.7 Memory Controller Signals

This part is designed to control the three data bits that go directly to the memory.
If the FSM is in the initialization mode, the part deasserts the data lines; otherwise,
it generates the proper 3-bit code depending on the direction and the blocked status
of the cell. The TOMEM schematic diagram is shown in 10.6.

124 10. Maze Runner project report

10.4.8 Selector

This part consists of two muxes that choose between the pointer in memory and
the pointers in the FSM according the selector signal, which is an indication from
a counter that all the surrounding cells have been checked. The Selector Schematic
Diagram is shown in 10.7.

10.4.9 Status

This part decodes the 3-bit cell data and determines if the cell is visited or i f is
a backpointer to another cell. The status schematic diagram is in 10.8.

10.4.10 Direction Processing Logic

The 2-bit counter creates the selector signals for the 4-1 multiplexer. The purpose
of the mux is to select one surrounding cell status at a time. The 3-bit counter is
reset on every move. It's purpose is to create the circular movement of the hero. The
Q2 signal out of the this counter is high when all of the four surrounding cells have
been checked, indicating the hero should check the memory about their status.

10.5 R2: The Memory Controller

The R2 FPGA was chosen to control the memory because it is the only chip on
the BORG board that is directly connected to the 8KB SRAM chip. The function
of the memory controller is basically to read and write data to and from the SRAM
chip. It's design is simple. The only thing that is of concern in this design is the
timing problem. The Memory Controller is comprised of the following parts:

1. Memory I/O (MEMIO).

2. 5-bit up/down counter (C32BUDRD).

3. 6-bit up/down counter (C64BUDRD).

4. Counter control logic.

5. I/O pins, pads, bu�ers, and tri-state bu�ers.
The schematic diagram for the Memory controller is shown in 10.9.

10.5.1 Memory I/O

The Memory I/O part was designed using the conventional design tools mustang,
misII, and Viewdraw. The mustang description for the Memory I/O part is as follows:

.i 2

.o 5

.s 5

Inputs : /EN, R/W

Outputs: CS, WE, OE, OB, BS

1- S0 S0 11110

10.5. R2: The Memory Controller 125

WIR:C:\ALI\WIR\finder.1

SCH:C:\ALI\SCH\finder.1

finder

SHEET 1 OF 111Jun95 10:22

1

2

3

4

5

6

1

2

3

4

5

6

DCBA

DCBA

OR2B1

INV

OR2B2

AND2B1

AND2

OR2

OR3B3

AND4B3

AND2B1

OR3

AND2B1

AND2B1

BUF

OR2

OR2

AND2

AND2

AND3B1

OR3

AND2B1

OR3AND2B1

AND2

OR2

AND3B1

AND2
OR2AND3B1

OR2

AND2
OR3

AND2B1

AND2
OR2

AND4B4

AND2B1

AND2
OR2

AND3

AND3B1

OR2

AND4B2

OR2

OR2

AND2 OR3

OR4

AND3B2

AND2
OR2

AND3B2

OR2
AND2B1

AND2B1

AND2B1

AND2B1

OR2

OR2

AND3B1

AND2

AND2B1
OR2

YOUR_MOVE

WRITE_0

WRITEBLKD

WALL

TELEPORT

TC2

TC

RW

RSTALL

RST2CTR

PS9

PS8

PS7

PS6

PS5

PS4

PS3

PS2

PS12

PS11

PS10

PS1

PS0

ON_EXIT

NS9

NS8

NS7

NS6

NS5

NS4

NS3

NS2

NS12

NS11

NS10

NS1

NS0

MVSTD

MRDY

MOVMEM

FOUND

EMEM

CTR_MODE

CHTOFOUND

BIGCTRE

BACKPTS

BACKMEM

ANSWER_READY

2CTREN

Figure 10.4: Finder.

1
26

10.
M
aze

R
u
n
n
er

p
ro
ject

rep
ort

BUF

PC0

MOVE

X0

UDX

UDY

AND2B1

AND2B1

OR2

AND2
AND2

AND2
AND2B1

A B C D E F

A B C D E F

5

4

3

2

1

5

4

3

2

1

30May95 10:27 SHEET 1 OF 1

mover

XOR2

BACKMOVE

X1

PC1

F
igu

re
10.5:

M
over.

1
0.5

.
R
2:

T
h
e
M
em

o
ry

C
on
troller

127

WIR:C:\HERNAN\WIR\tomem.1

SCH:C:\HERNAN\SCH\tomem.1

tomem

SHEET 1 OF 130May95 11:51

1

2

3

4

5

1

2

3

4

5

FEDCBA

FEDCBA

AND2B1

AND2B1

OR2

AND2B1

OR2

AND2B1

AND2B2

WRITE_0

WRITEBLKD
OUT2

OUT1

OUT0

IN1

IN0

F
ig
u
re

10.6:
T
om

em
.

128 10. Maze Runner project report

SELECTOR

Q0

Q1
D1

D0

C1

C0

D0

D1
O

SE

M2-1

D0

D1
O

SE

M2-1

Figure 10.7: Selector.

10.5. R2: The Memory Controller 129

OR3

D0

D2

D1

WIR:C:\HERNAN\WIR\status.1

SCH:C:\HERNAN\SCH\status.1

status

SHEET 1 OF 130May95 10:28

1

2

3

4

5

6

1

2

3

4

5

6

EDCBA

EDCBA

AND3B1

AND2
AND3

AND2

OR4

AND3B1

AND2

AND3B2

AND2

AND2

AND2B1

AND2B2

AND2B1

X1

X0

VISITED

BACKPOINTS

Figure 10.8: Status.

1
30

10.
M
aze

R
u
n
n
er

p
ro
ject

rep
ort

C

CE

D Q

RD

FDRD

O2

TC

C

CE

D Q

RD

FDRD

CLK

WE

OB

OE

BUSY

CS

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

ADR10

ADR7

ADR6

C

CE

Q0

Q1

Q2

Q3

Q4

RD
TC

UD

C32BUDRD

S/N_CE_I

C

CE

Q0

Q1

Q2

Q3

Q4

Q5

RD
TC

UD

C64BUDRD

S/N_CE

S/N

INC

E/W_CE

ADR9

SUBTC

D0

D1
O

SE

M2-1

MEMIO

WE

R/W

OE

OB

CS

CLK
BS

/EN

R/W

/EN

RESET_CTR_I

IBUF

INC_I

S/N_UD_I

E/W_UD_I

E/W_CE_I

[MEMCTRL]

Maze Runner

OE_O

BUSY_O

TC_O

D2_I

D1_I

D0_I

D2_O

D1_O

D0_O

OR2

OBUFT

LOC=P46

PAD

OBUFT

OBUFT

LOC=P44

PAD

LOC=P4

PAD

LOC=P83

PAD

LOC=P81

PAD

IBUF

IBUF

LOC=P67

PAD

LOC=P62

PAD

LOC=P61

PAD

LOC=P57

PAD

LOC=P56

PAD

LOC=P51

PAD

LOC=P50

PAD

LOC=P49

PAD

LOC=P48

PAD

LOC=P47

PAD

CS_O

MD1

LOC=P60

PAD

WE_O

CLK_IN

BUFGS

GSR

GTS

CLK

Q2

Q3

Q1Q4

DONEIN

STARTUP

LOC=P10

PAD

INVIBUFIBUF

A. Ersheid & H. Saab
DRAWN BY:

CE 126
For:

RESET

LOC=P13

CLK_PAD

PAD

IBUF

LOC=P80

PAD

LOC=P77

PAD

IBUF

LOC=P78

PAD

LOC=P69

PAD

LOC=P82

PAD

IBUF

IBUF

IBUF

LOC=P7

PAD

IBUF

IBUF

IBUF OBUF

OBUF

OBUF

OBUF

IBUF

IBUF

D0

D1
O

SE

M2-1

OR2

IBUF

CM_I

IBUF

LOC=P5

PAD

LOC=P3

PAD

LOC=P8

PAD

LOC=P9

PAD

LOC=P70

PAD

LOC=P71

PAD

OBUF LOC=P14

PAD

/EN_I

R/W_I

A0

A1

A2

A3

A4

A5

A6

A8

A9

A10

Memory Controller

D2

D1

D0 O0

O1

LOC=P65

PAD

C

CE

D Q

RD

FDRD

CM

E/W

I1

LOC=P45

PAD

LOC=P58

PADA7

ADR0

ADR1

ADR2

ADR3

ADR4

ADR5

ADR8

LOC=P6

PAD

I0

INV

OBUFT

I2

C

D Q

FD

F
igu

re
10.9:

M
em

ory
C
on
trol.

10.5. R2: The Memory Controller 131

00 S0 S1 01101

01 S0 S3 01011

-- S1 S2 00101

-- S2 S0 11110

-- S3 S4 01011

-- S4 S0 11110

The above description allows for an two input signals that will directly come from
the BRAIN FSM. The two signals are enable and read/write. Once the enable signal
is asserted, the Memory I/O reads or writes, depending the R/W signal, until the
process is completed regards of the enable signal.

The �rst three outputs (CS, WE, OE) control the memory chip directly. The
output bu�er (OB) signal controls the tri-state bu�ers on the data lines. The busy
(BS) signal is asserted while the Memory I/O is reading or writing and is connected
to the BRAIN FSM. A PLA �le was created from the above description using the
one-hot assignment o ption in mustang as follows:

mustang -l memio > memio.pla

The PLA �le description was modi�ed to change the names of the input and output
signals. The resulting PLA description looks like this:

.i 7

.o 10

.ilb /EN R/W PS4 PS3 PS2 PS1 PS0

.ob NS4 NS3 NS2 NS1 NS0 CS WE OE OB BS

1- 1---- 1000011110

00 1---- 0100001101

01 1---- 0010001011

-- -1--- 0001000101

-- ---1- 1000011110

-- --1-- 0000101011

-- ---- 11000011110

To create logic equations, the above �le was imported into misII. The entire �le was
collapsed using the clp command and an equation �le was exported to look as follows:

INORDER = /EN R/W PS4 PS3 PS2 PS1 PS0;

OUTORDER = NS4 NS3 NS2 NS1 NS0 z4 z3 z2 z1 z0;

NS4 = /EN*PS4 + PS0 + PS1;

NS3 = !/EN*!R/W*PS4;

NS2 = !/EN*R/W*PS4;

NS1 = PS3;NS0 = PS2;

CS = /EN*PS4 + PS0 + PS1;

WE = PS0 + PS2 + PS1 + PS4;

OE = !R/W*PS4 + /EN*PS4 + PS0 + PS1 + PS3;

OB = R/W*PS4 + /EN*PS4 + PS0 + PS2 + PS1;

BS = !/EN*PS4 + PS2 + PS3;

Before implementing the above logic equations in Viewdraw, some of the output eq
uations were reduced manually to look like this:

132 10. Maze Runner project report

WE = !PS3;

OE = !R/W*PS4 + /EN*PS4 + !PS2*!PS4;

OB = R/W*PS4 + /EN*PS4 + !PS3*!PS4;

At this point, the logic equations for the Memory I/O were implement in Viewdraw
manually. The schematic for the Memory I/O is shown in 10.10 and the timing
diagram is shown on the page after that.

10.5.2 6-Bit Up/Down Counter (C64BUDRD)

This counter is from the Viewdraw 4000 library. This counter is connected to
the lower six bits (5-0) of the memory address lines to control the memory access
of the hero's East-West movement. This counter is also used for nitializing the
�rst 3 bits of the �rst 2KB of memory when cascaded with the 5-bit up/down
counter (C32BUDRD). The input signals to this counter are described below under
the Counter Control Logic section.

10.5.3 5-Bit Up/Down Counter (C32BUDRD).

This counter is from the Viewdraw 4000 library. This counter is connected to the
upper �ve bits (10-6) of the memory address lines to control the memory access of
the hero's North-South movement. This counter is also used for initializing the �rst
3 bits of the �rst 2KB of memory when cascaded with the 6-bit up/d own counter
(C64BUDRD) . The input signals to this counter are described below under the
Counter Control Logic section.

10.5.4 Counter Control Logic

Since the two up/down counters serve two purposes (initialize memory and ad-
dressing), their input signals must be controlled to determine their current purpose.
The operation mode of the counters is determined by a signal coming from the BRAIN
FSM. This signal is called counter mode (CM) and is asserted when the counters are
used to initialize the memory and deasserted otherwise. When in counter mode, the
two counters are cascaded together to create an 11-bit counter. In this case, the
counters operate as follows:

1. The CE input signal to the 5-bit counter is the TC output signal of the 6-bit
counter.

2. The CE input signal to the 6-bit counter is the increment (INC) signal from
the BRAIN FSM. The INC signal is used to increment the now 11-bit counter.
This signal is used only in the counter mode.

3. The U/D input signals to both counters is high, causing both of them to act as
up counters.

When not in counter mode, the two counters operate independently. In this case, the
two counters' inputs come directly from the BRAIN FSM.

1
0.5

.
R
2:

T
h
e
M
em

ory
C
on
tro

ller
133

[MEMIO]

CLK C

D Q

FD

C

D Q

FD

C

D Q

FD

C

D Q

FD

BS

OB

OE

WE

CS

/EN
PS4

NOR2

NOR2

OR3

AND2B1AND3B1

AND3B2

INV

AND2

OR3

PS0

INV

BUF

INV

AND2 OR3

4

3

2

1

DCBA

A B C D

1

2

3

4

A. Ersheid & H. Saab
DRAWN BY:

CE 126
For:

AND2B1 OR3

PS1

NS4

R/W

NS3

NS2

PS3

C

D Q

FD

PS2

Maze Runner
Memory I/O Control

F
igu

re
1
0.10:

M
em

ory
I/O

.

134 10. Maze Runner project report

10.5.5 I/O pads, bu�ers, and tri-state bu�ers

Only three data lines and 11 address lines are used in the Memory Controller. Two
of the data bits are used to store the back pointer and one for the visited/unvisited
ag. The use of only 2 KB of memory limits the maximum size of the maze to 64
columns by 32 rows. The address lines are tri-stated using the CS signal in order to
release them when not in use. The data lines are tri-stated using the OB signal in
order to control reading and writing using those lines. The use of the I/O pads and
bu�ers is self-explanatory.

10.6 Testing and Veri�cation

Testing and veri�cation for the Maze Runner consisted of downloading to the
BORG board and observing its action on the screen. On occasions, the digital
oscilloscope had to be used. Viewsim was also used to test the values of the address
bits, the data bits, and other functions of the Maze Runner. The only critical timing
problem was the timing of the Memory Controller, which was very simple and worked
from the �rst time it was designed. Most of the debugging had to be done in the
BRAIN FSM and its components. The design of the BRAIN FSM had a bug that
took several days to �nd. The bug was not marking the �rst position that the hero
lands on as visited. This bug caused the teleport action to do strange things. Since
the position was not marked properly, the hero kept visiting that position. After the
Maze Runner Machine was completed, it was run for over 1,600 levels. The average
for the �rst try was 417 and for second try is 142.

10.7 Timing and Chip Utilization

According to XDELAY, the maximum clock speed for the Maze Runner machine
is 12.2 Mhz. The utilization of the FPGA components is shown in the table below:

Component R1 X1 R2 Total

Occupied CLBs 5 40 29 74

Packed CLBs 3 32 20 55

Package Pins 23 29 35 87

FG Function Generators 4 64 41 109

H Function Generators 2 11 13 26

Flip Flops 6 22 20 48

Memory Write Controls 0 0 0 0

3-State Buffers 0 0 0 0

3-State Buffer Output Lines 0 0 0 0

Address Decoders 0 0 0 0

Address Decoder Output Lines 0 0 0 0

The Memory Controller has taken up more CLBs than necessary because of the use
of built-in parts such as the counters and the muxes.

10.8. Credits 135

10.8 Credits

The design, functionality, and algorithm used for this Maze Runner was originated
by the authors. However, the design of the strategy for solving the maze has changed
greatly since the beginning of the project. Both Hernan and Ali worked on the C
program that developed the algorithm. Hernan has designed the BRAIN of this Maze
Runner. He spent countless hours, day and night, on debugging it. Ali has helped
in the design of the FSM machine of the BRAIN. Ali has taken on the responsibility
of creating the Memory Controller, the Maze I/O Port, putting the entire project
together (chip layout and pin assignment, etc.), and preparing this report. Hernan
has also helped in the preparation of this report. Throughout the entire project
both Ali and Hernan have been aware of what the other was doing, from design and
implementation to debugging. Hernan spent a lot of time debugging the BRAIN FSM.

136 11. Troubleshooting

11. Troubleshooting

This section may help you isolate the problem and as a result, eliminate the need
to contact technical support and allow continued productivity (variations from SONY
TV guide).

Most the problems can be corrected with a better understanding of your com-
puter's PC/XT con�guration. Use diagnostic software such as QAPLUS to display
your PC's con�guration. You need to know the occupied port addresses, occupied IRQ
channels, occupied DMA channels, and occupied memory address. Do not con�gure
the BORG board in conict with the occupied resources.

Symptom Check these items

No LED1 slide switch SW5 to ON,
check the conductivity of the fuse with a ohmmeter,
an high impedance indicates that the fuse is blown.

computer crashed are you using a protozone adapter card?
If so, check IC 74HCT04 and connect (solder)
a 22K Ohm resistor between pin 1 and pin 7 of the IC.
This is a known manufacturing bug in the protozone
adapter card.

No LED2 This is an indication that X0 is not con�gured,
LED2 is tied to the DONE pin of X0 (xc4003APG120).
Check that a PROM is in U3.
Check plastic jumper is on the left side of J24
shunting positions 1 and 2.
check position 8 of SW1 and position 1 of SW2 are open.
This con�guration sets X0 in the master serial mode.

bd complains This may be an indication that X0 is not con�gured,
x0 is dead or the communication between the PC and the BORG board

is broken.
Check the TTLs one by one.

board fail Check that the plastic jumpers are on the left side
scan test of jumpers J11-J23.

If they all are, some of the I/O pins of the user FPGAs
are dead.

board fail Check that the plastic jumpers are on the left side
scan test of jumpers J11-J23.

If they all are, they might not be making very
good contacts with the metal headers,
push the plastic jumpers in
and see if that improves the situation.

Table 11.1: To be Continued.

137

board fail Check that position 3 of SW1 is closed. This enables
memory test the PC to access the dual-ported SRAM exclusively.

Check that the memory (base) address mapping
of the SRAM are matched on both the BORG board (hardware)
and the software mtest.exe
Consult Fig. 2.6 for the hardware mapping.

No LED3 All the DONE pins of the user FPGAs R1, X1, R2, and X2
are tied to LED3.
Check that when you make the mcs �le for download,
you had all the correct bit stream and the correct
part type for the FPGAs.

No LED3 If you are downloading using the bd program,
check positions 1 and 2 of SW1 to make sure that
R1 is con�gured to peripheral mode.

If you are downloading using the xchecker cable,
check positions 1 and 2 of SW1 to make sure that
R1 is con�gured to slave mode.

Can't interrupt If you are using the protozone host adapter card,
PC check the setting of the IRQ requests.

If you are using the BORG board in the add-in mode,
check positions 5 to 8 of SW2 to select the IRQ
channel.
Check that the IRQ channel selected has no
conict with other peripheral cards.

DMA not You must use the protozone host adapter card for DMA.
working Check the correct setting of the DMA channel selection.

Some DMA channels are only valid with a PC/XT
but not a PC/AT.
The standard X0 has no DMA mechanism built-in,
but you can easily build your own.

design doesn't Check the maximum clock speed of your design.
run properly The default system clock is 8MHz, this may be too

fast for some designs. Slow down the system clock
by using the CLOCK utility.

design can't Check the logic for the arbitration of the dual-ported SRAM
access SRAM is correct.

Check position 3 of SW1 for the favourtism of arbitration.
Use the utility arbit to change the default.

Table 11.2: Troubleshooting and diagnostics.

138 12. Acknowledgements

12. Acknowledgements

The development of the BORG board is supported in part by an National Sci-
ence Foundation Research Initiation Award supplement. The manufacturing of the
100 BORG boards is supported entirely by Xilinx, Inc. for educational purposes.
Therefore, I am grateful to Xilinx, Inc. for their support of the BORG project, in
particularly to David Lam for his magni�cent coordination of the BORG project, and
his wonderful ability to pull all the resources together to �nish this project. I am also
indebted to Xilinx engineering and technical sta�: Carol Henley who taught me PCB
layout using PADs, Ed Resler who was willing to share his wisdom in manufacturing
hardware, and Eric Wright who had given me his expert advice and read the initial
draft of this users' guide.

I can't thank Jason Y. Zien enough for �nding all sorts of way to improve assign
and taking the responsibility of coding and supporting two versions of it. I thank
Professor Abbas El Gamal of Stanford University for his pioneering work in FPGA
education and his inspiration. Finally, special thanks to Martine Schlag for the basic
algorithm of assign and insisting on designing an additional Tetris machine.

