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Preface: 2014 Course Update 
This manual is for the 2014 update of ECE-395: Microprocessor Laboratory. 
The major change made in the 2014 update is the adoption of the ARM 
architecture as the course experiment platform.  This change follows the fall 
of 2013 change in ECE-252 to focusing on the ARM as the primary 
architecture studied in the lecture course.  

Prior to changing to the ARM, ECE-252 and ECE-395 dating back to the mid-
1990’s studied the Motorola 68k architecture. During this time, ECE-395 had 
several incarnations. At first students hand assembled (using wire-wrapping 
techniques) 68000 based single board computers (SBC’s) and wrote code for 
various experiments on the platform.  In the early 2000’s, the SBC design 
was re-implemented as a PCB design which eliminated the need for the 
students to wire-wrap.  In the later 2000’s, the lab evolved to use a Coldfire 
Microcontroller Evaluation board from Freescale (also a 68k core).  During 
this time, software for the laboratory assignments was done strictly in 
assembly language. 

The 2014 update leverages some of the experiments that date back to the 
original versions of this course but have been updated and modified where 
necessary due to the platform change or to enhance the educational value of 
the course.  Another change is the incorporation of higher level 
programming (i.e. C) for some of the experiments instead of solely using 
assembly language for the course.  This change is to more closely follow 
trends in industry and to allow for the execution of more complicated labs. 
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1 Introduction 
Microprocessors touch almost every aspect of modern life.  They can be 
found in vehicles, consumer electronics, communications devices, appliances, 
toys and of course computers.  With the exception of full computers (i.e. 
desktop or full laptops) which use full microprocessors with separate 
memory and peripherals, most applications today use system on chips 
(SoC’s) or microcontrollers (MCU’s) which integrate most of the processing 
and peripheral functions into a single integrated package. 

A wide variety of processor architectures are available to address many 
applications.  The selection of a particular architecture for a design might be 
done for a range of reasons including technical features (e.g. speed, 
peripherals, power consumption, etc), cost, compatibility with existing 
software or previous experience of the designers. 

One of the dominant architectures for SOC’s and MCU’s in the market today 
is the ARM family of processors.  ARM core devices are manufactured by 
dozens of IC vendors for a wide range of applications.  ARM’s command a 
huge market share in smart phones and appliances and are constantly 
growing in the embedded arena.  Because of ARM’s current and anticipated 
future market standing, it is an attractive architecture to use as a learning 
platform to explore microprocessors behaviors and their use. 

All processors fundamentally run architecture specific machine languages to 
operate.  Writing programs directly in machine language is rarely done so 
assembly languages are used to provide a more human friendly way to 
generate machine language.  When higher level languages are complied or 
interpreted, machine language is generated to runs on the processor.   

In industry, microprocessors are usually programmed in higher level 
languages for a variety of reasons including speeding development time, 
code portability, etc.  The language used varies depending on the application. 
C is commonly used for embedded systems, operating systems and device 
drivers.  Both C and C++ are used for applications along with languages 
such as Java, C#, Python where higher capability operating systems are 
used. 

In order to truly understand how microprocessors operate, observing and 
manipulating the behavior of the processor at the machine language level is 
necessary.  Because of this, a large part of this course focuses on 
development using assembly language.  Later labs do introduce the use of C 
to allow for more complicated programs and to see how higher level 
languages are translated into machine language.       
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1.1 Course Objectives 

1. Understand and apply the fundamentals of assembly level 
programming of microprocessors. 

2. Work with standard microprocessor interfaces including GPIO, serial 
ports, digital-to-analog converters and analog-to-digital converters. 

3. Troubleshoot interactions between software and hardware.   

4. Analyze abstract problems and apply a combination of hardware and 
software to address the problem. 

5. Use standard test and measurement equipment to evaluate digital 
interfaces.    

1.2 References 

FRDMKL25ZUM: FRDM-KL25Z User's Manual 
This document provides an overview of the hardware board used in the 
course. 
 
KL25P80M48SF0: KL25 Sub-Family - Data Sheet 
This document provides details on the microcontroller used on the FRDM-
KL25Z (specifically the electrical specifications for the part). 
 
KL25P80M48SF0RM: KL25 Sub-Family - Reference Manual 
This document provides details on the microcontroller control registers, IO 
assignments, etc. 
  
KLQRUG: KLQRUG, Kinetis L Peripheral Module Quick Reference - 
User Guide 
This document provides gives examples on how to operate the 
microcontroller for typical applications.  
 
OPENSDAUG: OpenSDA - User Guide 
This document describes the debug interface used on the FRDM-KL25Z. 
 
Cortex™-M0+ Devices Generic User Guide 
 
 
Cortex-M0+ Technical Reference Manual 
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2 Microprocessor Experiment Platform 
The microprocessor platform used for this course is the Freescale Freedom 
Development Platform for Kinetis KL14/15/24/25 MCUs (aka FRDM-KL25Z or 
KL25Z).  The KL25Z provides low cost (less than $15) platform to explore 
microprocessor principles.  

The KL25Z features:  

 Kinetis-L MCU (MKL25Z128VLK4) 

o ARM Cortex-M0+ core, up to48MHz CPU speed 

o 128kB FLASH 

o 16kB SRAM 

o DMA 

o UART / 2 SPI / 2 I2C 

o 12-bit DAC 

o 16-bit ADC (up to 24 inputs) 

o USB 2.0 OTG/Host/Device   

 Capacitive touch slider  

 MMA8451Q accelerometer (I2C) 

 Tri-color (RGB) LED  

 USB, coin cell battery, external source power supply options 

 I/O via Arduino compatible I/O connectors  (53 I/O’s available)  

 Programmable OpenSDA debug interface 

 

The FRDM-KL25Z does not come with headers installed for accessing the 
board IO.  Headers need to be solderd to the board to gain acces to the IO 
for some of the experiments in this course.  Recommended headers are 
available from Digikey are: 

  

Quantity Part  Description 

1  S6106-ND Female, thru-hole, 20 Pin, dual row, 0.1” pitch, 8.5mm high 

2  S7111-ND Female, thru-hole, 16 Pin, dual row, 0.1” pitch, 8.5mm high 

1  S7109-ND Female, thru-hole, 16 Pin, dual row, 0.1” pitch, 8.5mm high 
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Figure 1 - FRDM-KL25Z with headers installed 

Several software development tool sets support this processor and 
specifically the KL25Z including:  

 Codewarrior Development Studio  

 IAR Embedded Workbench 

 KEIL MDK uVision  

 mbed 

   

The KEIL toolset has been selected for this course.  A limited free version of 
is available, MDK-Lite, which is suitable to meet the development needs of 
this course.  

The KEIL MDK uVision toolset features: 

 Support for Cortex-M, Cortex-R4, ARM7, and ARM9 devices 

 Support for  C, C++ and assembly 

 µVision4 IDE, debugger, and simulation environment 

 CMSIS Cortex Microcontroller Software Interface Standard compliant 

2.1 Initial Tool Setup 

The following steps setup a Windows PC for developing and debugging 
programs on the FRDM-KL25Z. 
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Step 1:  From the KEIL website (registration required), download and 
install KEIL MDK-ARM uVision 5.  Note the free MDK-ARM Lite is sufficient 
for the lab. (https://www.keil.com/demo/eval/arm.htm) 

After installing uVision 5, run "C:\Keil\UV4\PackInstaller.exe" and install 
the option for Keil::Kinetis_KLxx_DFP.  This will install the appropriate 
libraries for the processor used on the board. 

Step 2:  From the KEIL website, download and install the Freescale 
Kinetis OSJTAG Drivers. (http://www.keil.com/download/docs/408.asp) 

Step 3:  From PE Micro website (registration required), download and 
install the OpenSDA Windows USB Drivers. 
(http://www.pemicro.com/opensda/) 

2.2 Board Setup 

The following steps must be executed to allow code to be loaded and 
debugged using the KEIL tools and software project used in the labs.  This 
process only needs to be done once initially on a new board or if there are 
problems connecting to the board.   

Step 1:  From PE Micro website (registration required), download and 
extract the OpenSDA Firmware. (http://www.pemicro.com/opensda/) 

Step 2:  Connect the “USB B” end  of a “USB B” to “USB Mini” cable to 
the development PC  

Step 3:  While holding the RST button on the KL25Z, connect the “USB 
Mini” connector of the USB cable to the connector labeled SDA on the 
KL25Z. 

Step 4:  Release the RST button. The D4 LED should flash green. 

Step 5:  In Windows Explorer, open the drive labeled BOOTLOADER.   
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Figure 2 - BOOTLOADER drive 

Step 6:  From the files extracted in Step 1:, copy the firmware file MSD-
DEBUG-FRDM-KL25Z_Pemicro_v114.SDA to the BOOTLOADER drive. 

Step 7: Disconnect and reconnect the USB cable from the KL25Z. 

Step 8: In Windows Explorer, the drive should now be labeled FRDM-
KL25Z.  Proper installation can be verified by opening the file 
SDA_INFO.HTM in the FRDM-KL25Z and verifying the application version 
matches that of the firmware file listed in Step 6:. 

 

Figure 3 - FRDM-KL25Z drive 
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2.3 Developing With the Course Project File 

This section describes how to use the customized course project file with the 
KEIL tools.  This project file allows for both ASM and C programs targeted 
towards the KL25Z.  The project only supports the PE Micro OpenSDA driver 
and only supports loading code into RAM.   

For each experiment, it is HIGLY RECOMMENDED that you start a new 
project in a new directory.   

Step 1: Download from the course website the latest version of 
ECE395_ML25Z_Project_#.zip (where # is the version number of the 
latest version) and extract it to your working directory.  

 

Figure 4 -  Files in default project 

Step 2: Start KEIL uVision4. 

Step 3:  Navigate to Project >> Open Project.  Then open the file called 
ece395.uvproj. 

Step 4:  In the project, open the file “main.c”. 
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Figure 5 - Default project file main.c 

 

 

Figure 6 - Default project file asm_main.s 
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Step 5:  If this is a program in assembly, in “main.c”, uncomment the 
beginning of the line asm_main(); and open the file “asm_main.s”.  

Step 6: Add your code to the appropriate file, main.c for a C project or 
“asm_main.s” for an assembly project.  Follow the comments in the 
templates to keep the code in the correct sections. 

Step 7: Navigate to Project >> Build Target (hotkey F7).  In the build 
output window, make sure there are no errors and that any warnings 
are understood.  

Step 8: Ensure the SDA connector on a FRDM-KL25Z running the PE 
Micro Firmware (see section 2.2 - Board Setup) is plugged into a USB 
cable connected to the PC. 

Step 9:  Navigate to Debug >> Start/Stop Debug Session (hotkey Ctrl + 
F5).  (Note a warning about a 32k size limit may appear if you are using 
the lite version of the tool, this is ok). 

Step 10: At this point, code can be ran, single stepped, etc.   

To edit the code, the debug session needs to be stopped, navigate to 
Debug >> Start/Stop Debug Session (hotkey Ctrl + F5) and Step 6: 
through Step 9: need to be repeated 
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3 Experiments 

3.1 Lab 1 – Microprocessor Operation 

Lab Objectives 

 To learn to create a uVision project then write, assemble and debug 
code 

 To observe and document operation of microprocessor core as it 
executes code 

Procedure 

From the course website, download and print the lab worksheet form for Lab 
1.   

Follow the steps outlined in section 2.3 which explain how to create a new 
project file.  Configure the project to be an assembly project by 
uncommenting the call to asm_main() in main.c  

Add the code for each part to the asm_main.s file.  

Build then debug the code as explained in section 2.3. Figure 7 shows the 
typical debug window display.   

Figure 7, Section A lists the program code.   

Figure 7, Section B lists the disassembly of the code.  For and assembly 
program, this window should match fairly closely the program code.  For a C 
program, both the C code and generated assembly code will be shown. Also 
shown in this window is the address and machine code for each. 

Figure 7, Section C shows the registers as the program is debugged. 

Figure 7, Section D show the contents of the processor memory.  This 
window can be displayed with the menu View >> Memory >> Memory 1-4.  
The address field sets the address of the memory that is to be displayed.    

Step though the code a single line at a time using the “step into” button . 

Observe the behavior of each instruction and log the results on the lab 
worksheet. 
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Figure 7 – Debug window 
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Part 1: This step demonstrates the basics of memory access and moving 
data within the processor.  

Add the code shown in Figure 8 to the asm_main.s file. 

The first load moves the 32-bit value (aka word length) from memory at the 
address const_val to register R1. 

Then the address assigned to const_val to register R0. Note the ‘=’ loads the 
address of the value, not the value its self.  Then several methods for 
loading the value assigned to const_val into a register are demonstrated.  
The first a 32-bit load, then a 16-bit load and finally an 8-bit load.  Note how 
the results are different. 

The next instruction puts the value associated with the equate equate_val 
into R0.  Note the difference from the constant value move done previously.  

The next pair of instructions loads the address for const_val into R1. Then 
the store instruction (STR) to puts the value in R0 (which is equate_val) into 
the memory location for const_val.  Note that because out program resides 
in RAM, the const_val can be changed.  If this program was in non-volatile 
FLASH memory, the value would not change. 

The last two move instructions show how to copy values between register 
and one way a register can be easily cleared. 

Variations of these methods are used throughout the course.  For example, a 
very common process is: 

 Load the address for a Special Function Register (SFR) to a data 

register (e.g. LDR R0,=SFR_ADDR) 

 Load the value to a second register (e.g. LDR R1,=0x12345678) 

 Store the value to the SFR (e.g. STR R1,[R0]) 
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equate_val  EQU 0x8BADF00D 
 
 AREA asm_area, CODE, READONLY 
 EXPORT  asm_main 
 
asm_main ; assembly entry point for C function, do not delete 
; Add program code here 
  
 LDR   R1,const_val  ;load word (32-bit) from memory  
  
 LDR  R0,=const_val  ;load address to R0  
 LDR  R1,[R0]   ;2nd load word (32-bit) from memory 
 LDRH  R1,[R0]   ;load half word (16-bit) from mem 
 LDRB  R1,[R0]   ;load byte (8-bit) from memory  
  
 LDR  R0,=equate_val ;load value to R0  
  
 LDR  R1,=const_val  ;load address to R1 
 STR  R0,[R1]    ;load value in R0 to memory at R1 
 
 MOV   R2,R0   ;copy R0 to R2 
 MOVS  R2,#0   ;clear R2 
  
 B  asm_main 
  
; Put constants here  
const_val DCD  0xDEADBEEF 
  
 AREA data_area, DATA, READWRITE 
; Put variables here 
  
 END  

Figure 8 – Code for Lab 1 Part 1 
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Part 2: This step demonstrates some of the basic arithmetic and logic 
operations.  Notice that instructions ending with an ‘S’ modify the application 
program status register (APSR) with the flags (Z,C,N,V). 

Modify the code as show in Figure 9. 

value1  EQU 50 
value2 EQU 123 
value3 EQU 0xFFFFFFF0 
 
 AREA asm_area, CODE, READONLY 
 EXPORT  asm_main 
 
asm_main ; assembly entry point for C function, do not delete 
; Add program code here 
 MOVS R0,#0   ;clear R0  
 LDR R1,=value1  ;put value1 in R1 
 LDR R2,=value2  ;put value2 in R2 
 LDR R3,=value3  ;put value3 in R3 
  
 MSR APSR,R0       ;clear flags 
 ADDS R2,R1   ;Add values, update APSR 
 SUBS R2,R1   ;Subtract values, update APSR  
 ADDS R3,R1   ;Add values, update APSR 
 SUBS R3,R1   ;Subtract values, update APSR 
 
 MSR APSR,R0       ;clear flags 
 ADD  R3,R1               ;Add values  
 
 CMP  R1,R2               ;compare 
 CMP  R2,R1               ;compare 
 CMP  R1,R1               ;compare 
 CMP  R1,#0x40            ;compare immediate 
 CMP  R2,#0x40            ;compare immediate 
 CMP R1,R3               ;compare negative 
 CMN R1,R3               ;compare negative  
  
 B asm_main 
  
; Put constants here  
 
 AREA data_area, DATA, READWRITE 
; Put variables here 
  
 END  

Figure 9 – Code for Lab 1 Part 2 
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Part 3: This step demonstrates program flow control operations using 
unconditional braches. 

Modify the code as show in Figure 10. 

Each label (i.e. spot1, spot2, spot 3 and spot4) has a memory address 
associated with the instruction following the label.  When the branch 
instruction (i.e. B spot3) executes occurs, the program counter (R15) is 
changed to reflect the address associated with the label. 

 AREA asm_area, CODE, READONLY 
 EXPORT  asm_main 
 
asm_main ; assembly entry point for C function, do not delete 
; Add program code here 
 
spot1 
 B   spot3 
 
spot2 
 B   spot4 
 
spot3 
 B   spot2 
 
spot4 
 B   spot1 
  
; Put constants here  
 
 AREA data_area, DATA, READWRITE 
; Put variables here 
  
 END  

Figure 10 - Code for Lab 1 Part 3 
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Part 4: This step demonstrates the use of conditional branches. 

Modify the code as show in Figure 11. 

Unlike the unconditional branch demonstrated in the previous step, the 
conditional branch uses the state of the processors flags to control the flow 
of the program.  The branch is only taken if the condition for the specific 
branch instruction is met.  For instance the BNE (branch not equal) will only 
branch if the Z flag is cleared. 

After running the code and recording the results using BNE, rerun the test 
but replace the BNE with BGE (branch greater than or equal) which branches 
when N == V. 

 AREA asm_area, CODE, READONLY 
 EXPORT  asm_main 
 
asm_main ; assembly entry point for C function, do not delete 
; Add program code here 
 
rst_cnt 
 MOVS R0,#3 
dec_cnt  
 SUBS R0,#1 
 BNE  dec_cnt 
 B  rst_cnt 
  
; Put constants here  
 
 AREA data_area, DATA, READWRITE 
; Put variables here 
  
 END  

Figure 11 - Code for Lab 1 Part 4 

Part 5: This step demonstrates using linked branches for calling 
subroutines. 

Modify the code as show in Figure 12. 

The branch and link instructions (BL) are uses to call a subroutine.  When 
the BL is executed, the program counter (PC = R15) is changed to reflect 
the new address and the address for the next instruction after the BL is put 
into the link register (LR = R14).  When the subroutine completes its 
execution, the branch and exchange (BX LR) instruction copies the link 
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register into the program counter, returning to the instruction after the 
original function a call. 

 

 AREA asm_area, CODE, READONLY 
 EXPORT  asm_main 
 
asm_main ; assembly entry point for C function, do not delete 
; Add program code here 
 
loop 
 LDR R0,=value1          ;call change_val for value1 
 BL change_value 
  
 LDR R0,=value2          ;call change_val for value2 
 BL change_value       
  
 B loop               ;do it again 
 
;change_val takes 32-bit value from memory pointed to by R0 
;and modifies it by incrementing, then XORing with the 
;address, then clearing all byte the lower byte. This is then 
;returned back to the address location in memory 
 
change_value 
 PUSH {R1,R2}             ;Save R1 and R2 to stack 
 LDR R1,[R0]              ;Get value from memory 
 ADDS R1,#1               ;Increment 
 EORS R1,R0               ;XOR with address  
 MOVS R2,#0xFF            ;Set mask  
 ANDS R1,R2               ;Mask 
 STR R1,[R0]              ;Save value back to memory     
 POP {R1,R2}           ;Restore R1 and R2 
 BX LR                  ;Return 
 
; Put constants here  
 
 AREA data_area, DATA, READWRITE 
; Put variables here 
value1 SPACE    4 
value2 SPACE    4 
 
 END  

Figure 12 - Code for Lab 1 Part 5  
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3.2 Lab 2 – General Purpose Inputs and Outputs 

Lab Objectives 

 To learn how to configure the MCU internal peripherals 

 To learn how to setup and operate the GPIO pins of the MCU 

Background 

When creating a design using a processor, it is common to need inputs or 
outputs that operate in a binary (on/off) fashion.  These signals are used for 
monitoring user inputs (switches or pushbuttons), driving indicators (lights 
or audible), controlling actuators, monitoring/driving discrete control lines 
from/to other circuits in the design, or for a variety of other purposes.  
Microcontrollers typical will have pins that can be configured as either 
outputs that can be driven by or inputs that can be monitored by the 
processor.  These signals are commonly refer to as general purpose inputs 
and outputs (GPIO’s).     

The FRDM-KL25Z board provides 53 pins which can be used for assigned 
peripheral special functions (e.g. UART IO, DAC outputs, ADC inputs, etc.).  
If a specific peripheral which is tied to a given pin is not used in a design, 
the pin is available for use as a GPIO.  When selecting pins to use as a GPIO, 
it is important to avoid pins that are assigned to a special function that will 
also be used in the design.  For example, if the DAC was to be used in a 
design, pins associated with the DAC functions could not be used as GPIO.   

For the KL25Z128VLK4 processor used on the KL25Z, section 10.3.1 of the 
KL25 Sub-Family - Reference Manual lists a table showing how pins are 
mapped to functions.  The table lists up to 8 “ALT” options for any given pin.  
It can be seen that certain pins can have multiple functions mapped to it.  If  
the function is set to ALT1, it is configured to be a GPIO.   

Pins are grouped into 5 “ports” labeled A though E.  The architecture allows 
for ports to have up to 32-bits but some ports have less than 32-bits due to 
limitations on the number of pins available in the device package.  Pins are 
numbered 0 to 31. Figure 13 shows how the port pins are mapped to the 
headers on the FRDM-KL52Z.  For example PTA1 is Port A, Pin 1.   
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Figure 13 - Header Pin Assignments  
(from the FRDM-KL25Z User Manual) 

 

Once a GPIO is selected, several registers must be properly configured in the 
processor to allow it to be used as an input or output. 

1. Each Port has a separate clock gate that must be enabled if IO 
associated with the Port will be used.  The SIM_SCGC5 register 
contains the controls for the Port clock gates.  See section 12.2.9 of 
the KL25 Sub-Family - Reference Manual for details on how to enable 
the clock gates using the SIM_SCG5 register. 

2. Each pin has a pin control register, PORTx_PCRn where x is the the 
Port and n is the Pin, that is used to configure the pin behavior.  There 
are setting fields for the ALT option, interrupt operation, drive strength, 
slew rate and pull-up/down resistor configuration. See section 11.5.1 
of the KL25 Sub-Family - Reference Manual for details on how to set 
the PORTx_PCRn registers. 
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For this lab for the pins used as GPIO’s, the ALT option will be set to 
ALT1, interrupts will be disabled, the drive strengths should be set to 
normal, the slew rate should be set to slow and the passive filter 
should be disabled. For outputs, the pull resistors will be disabled. For 
inputs, the pull resistors should be enabled and set appropriately 
based on the geometry if the circuit driving the input.  See Figure 14. 

 

Figure 14 - Pull Resistor Configurations 

3. Each Port has a data direction register, GPIOx_PDDR where x it the 
port, which configures whether a pin will be an input or output. All 32 
bits for the port are grouped in the single register.  See section 41.2.6 
of the KL25 Sub-Family - Reference Manual for details on how to set 
the GPIOx_PDDR register. 

After configuration, if the GPIO has been configured as an input, the state of 
the pin can be read using the GPIOx_PDIR register.  All 32 bits for the port 
are grouped in the single register.  See section 41.2.5 of the KL25 Sub-
Family - Reference Manual for details on how to use the GPIOx_PDIR 
registers. 

Otherwise, if the GPIO has been configured as an output, the state of pin 
can be controlled with several registers.  All 32 bits for the port are grouped 
in each single register.  Writing a 1 or 0 to a given bit in GPIOx_PDOR sets 
or clears the output based on the value in each bit.  Note that using this 
register requires setting all the pins on the port simultaneously as each of 
the 32 bits must have a value of 1 or 0.  Using the GPIOx_PSOR and 
GPIOx_PCOR registers allows pins to be respectively set or cleared 
individually by writing a 1 to the desired bit locations.  Using the 
GPIOx_PTOR register toggles a given pin writing a 1 to the desired bit 
location.  See sections 41.2.1 thru 41.2.4 of the KL25 Sub-Family - 
Reference Manual for details on how to use these registers. 

VDD 
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Push 
Butt
on 
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VDD 
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There is an LED on the FRDM-KL25Z is a tri-color red/green/blue device.  
The common anode is tied to VDD. The three cathodes are tied through 
resistors to GPIO’s as listed in Table 1. Because the LED is wired with the 
common anode to VDD, the GPIO’s must be driven low to run on the LED 
color and driven high to turn off the LED. 

Table 1- KL25Z LED GPIO Assignments 

LED Color GPIO 

RED PTB18 

GREEN PTB19 

BLUE PTD1 
         

Required Equipment and Parts 

 Solderless breadboard 

 Pushbutton 

 Jumper wires 

Procedure 

The aim of this lab is to wire a pushbutton to a GPIO on the FRDM-KL25Z, 
then to write software to change the color of the on-board LED when the 
button is pushed. The LED colors for pressed vs not pressed may be chosen 
at the developers’ discretion. 

1. Select the GPIO to be used for the pushbutton.  Avoid the GPIO’s 
assigned to the LED.  On the solderless breadboard, wire the 
pushbutton in a pull-up resistor configuration with one side of the 
switch to the GPIO and the other to ground. 

2. Write code to initialize the registers to enable the GPIO’s for the LED 
outputs and switch inputs as follows:   

SIM_SCGC5  <<< Enable the clocks for the IO ports, to keep things 
simple all the clock can be enabled 

PORTB_PCR18,  PORTB_PCR19 and PORTD_PCR1  <<< Set to be 
outputs 

PORTx_PCRn  <<< Set to be input with pull-up for the GPIO selected 
for the pushbutton input 
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GPIOB_PDDR[bits 18 and 19] and GPIOD_PDDR[bit 1]  <<< Set 
to make pins be outputs 

GPIOx_PDDR[bits n]  <<< Set to make pin input for GPIO selected 
for pushbutton 

Figure 16 shows some example code on a way to initialize registers.  
There is sub-routine called init_gpio that is called from the asm_main 
routine.  In the example, two registers are initialized using slightly 
different methods.  

For both registers, there is an equate at the top of the file to assigned 
an address to a label matching the name of the register.  Note that the 
equate can contain math directives to produce the proper value as 
shown in the assignment for PORTB_PCR18. This was done to match 
the address + offset description used in the processor reference 
manual. 

In the first method for loading the value to SIM_SCGC5, the code 
reads the original value of the register, then OR’s the bits that need to 
be set with the original value, then writes the new value back to the 
register.  This is done to maintain any settings that were previously 
set.  Note that the value that is being written will turn on all the Port 
clocks.  This is not ideal for a design with an objective to minimize 
power consumption but it is fine for our needs. 

The second method used for loading the value into PORTB_PCR18, 
directly writes the new value into the register.  This is ok here because 
the whole register only impacts the behavior of the concerned pin. 

Follow these methods to set the remaining registers. 

3. Add code in the asm_main loop to: 

 Read status of push-button 

o Use the GPIOx_PDIR register for the input port to read the 
inputs 

o The appropriate bit can be masked then compared to test if it 
is pressed 

 If pressed, set LED to color 1, clear color 2 

o Use the GPIOx_PSOR register to set the appropriate pin to 
turn off the one LED color 
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o Use the GPIOx_PCOR register to clear the appropriate pin to 
turn on the other LED color 

 Else, set LED to color 2, clear color 1 

o Do the opposite of the previous step 

4. To test the program, build the code and start a debug session.  The 
system registers can be viewed by selecting Peripherals >> System 
Viewer >>> {Register Group}.  For this lab, register groups SIM, 
PORTB, PORTD, GPIOB and GPIOD should be selected.  The values of 
the registers should be observed as the program executes ash show in 
Figure 15. 

 

Figure 15 - Observing Registers with System Viewer 

5. After fully testing the program, demonstrate it to the course instructor 
for credit. 
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SIM_SCGC5   EQU  0x40048038    ;SIM_SCGC5 address  
PORTB_PCR18 EQU  0x4004A000 + 4 * 18 ;PORTB_PCR18 address 
 
 AREA asm_area, CODE, READONLY 
 EXPORT  asm_main 
 
asm_main  ;assembly entry point for C function, do not delete 
; Add program code here 
 
 BL init_gpio   
 
loop  
 B loop 
 
init_gpio 
 LDR R0,=SIM_SCGC5    ;Load address of SIM_SCGC5 to R0 
 LDR R1,[R0]     ;Put value of SIM_SCGC5 into R1 
 LDR R2,=0x00003E00    ;Load value to turn on all port  
        ;clocks into R2 
 ORRS R1,R2     ;OR R2 into R1 
 STR R1,[R0]     ;Put value back into SIM_SCGC5 
  
 LDR R0,=PORTB_PCR18   ;Load address of PORTB_PCR18 to R0 
 LDR R1,=0x00000100     ;Load value to R1 
 STR R1,[R0]     ;Put value into PORTB_PCR18 
  
 ;add other registers here 
 ;.... 
  
 BX LR 
 
; Put constants here 
 
 AREA data_area, DATA, READWRITE 
; Put variables here 
  
 END 

Figure 16  - Example Code to Initialize Registers 
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3.3 Lab 3 – Annunciator (GPIO Application) 

Lab Objectives 

 To apply knowledge on the use of GPIO’s gained in lab 2 to solve a 
design problem 

Problem 

A maple syrup factory in Vermont has a problem.  They have a holding tank 
that stores their product that overflows from time-to-time.  When this 
happens, an operator in a remote monitoring room is sent to clean up the 
mess.   They have asked you group to implement an “Annunciator” system 
to monitor the holding tank and report its status to the operator in the 
monitoring room.  The system has two objectives, to notify the operator 
when the tank is near full (so they can manually turn off the fill valve), then 
to notify the operator when the tank has over flown (so they can be sent to 
clean it up). 

 

Figure 17 - Annunciator System 

There are 4 input to the system. There are two level switches in the tank, 
full level alarm (FLA) and overflow level alarm (OLA).  On the Annunciator 
box in the control room, there are two momentary push buttons, 
acknowledge (ACK) and test (TST).  

On the Annunciator box, there are 3 outputs from the system, a green ok 
indicator, a yellow full indicator and a red overflow indicator. 

The system has 6 states as shown in Figure 18. 

Tank

Syrup

TST ACK

OLA

FLA

Annunciator
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Figure 18 - Annunciator State Diagram 

   

Required Equipment and Parts 

 Solderless breadboard 

 2 Pushbuttons 

 1 DIP switch 

 1 Red LED 

 1 Yellow LED 

 1 Green LED 

 3 220 ohm resistors 

 Jumper wires 

Procedure 

Use the knowledge gained in lab 2 to configure the GPIO’s to monitor the 
four inputs and control the three outputs. Write software to implement the 
state machine for the annunciator system. 

1. Select the GPIO’s to be used for the inputs.  Avoid the GPIO’s assigned 
to the on-board LED.  On the solderless breadboard, wire the 2 
pushbuttons and 2 of the DIP stitches to the 4 GPIO’s selected as the 
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inputs in a pull-up resistor configuration with one side of the switch to 
the GPIO and the other side to ground. 

2. Select the GPIO’s to be used as the outputs.  Avoid the GPIO’s 
assigned to the on-board LED.  On the solderless breadboard, wire the 
3 outputs to the anode’s of the red yellow and green LED’s.  Tie the 
cathodes of the LED to ground though 200 ohm resistors. 

3. Modify the gpio_init routine from lab 2 to setup the GPIO inputs and 
outputs appropriately. 

4. Add code to handle the states of the Annunciator state machine. 

5. Test and debug the code. 

6. After fully testing the program, demonstrate it to the course instructor 
for credit. 

3.4 Lab 4 – UART Serial Port 

Lab Objectives 

 To learn how to setup and operate the MCU serial ports 

 To create portable functions for serial port initialization and write and 
read operations 

 To learn how to use an oscilloscope to observe a serial waveform 

 One lab report is required from group 

Background 

Serial communications is a fundamental principal for microprocessor systems.  
In serial communications, data is transferred sequentially bit-by-bit along a 
channel in contrast to parallel communications where multiple bits are sent 
simultaneously over multiple channels.  In modern digital systems, there are 
various protocols which employ serial transmission techniques that are 
aimed at a variety of applications.  Some common examples are: USB 
(Universal Serial Bus) which is commonly used to interface peripherals to 
computers; SATA (Serial ATA), which is used to interface storage devices in 
computers; and Ethernet, which is used for computer networks.  Other 
examples of serial buses are I2C and SPI (Serial Peripheral Interface) buses 
which are commonly found in embedded processor systems as interfaces 
busses for memories, DAC’s and ADC, etc  and CAN Bus (Controller Area 
Network) which is used to interface various systems in vehicles. 
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One of the simplest implementations of serial communications is the 
asynchronous serial port.  Historically these were common on personal 
computers for uses such as interfacing to external modems, peripherals such 
as mice and computer terminals.  On PC’s, these serial ports used RS-232 
complaint signaling and DB-25 or DE-9 connectors.  RS-232 specifies the 
electrical characteristics of the signals.  In the last decade, serial ports on 
PC’s have become rarer features as USB has replaced most of the consumer 
applications that were previously handled by serial ports. 

In embedded systems and industrial controls, asynchronous serial 
communications is still very common and useful.  In one common embedded 
application, asynchronous serial ports are used for debug console interfaces.  
Most microcontrollers feature UART (Universal Asynchronous Receiver 
Transmitters) peripherals internal to the microcontroller.  A common 
implementation would be to connect the microcontroller UART to an RS-232 
converter IC (integrated circuit) on the embedded system which would then 
interface to the RS-232 serial port on a PC.   

In newer PC’s which do not have built in RS-232 serial ports, a USB-to-RS-
232 converter would be used.  These converters usually have a DE-9 
connector, RS-232 converter IC and a serial-to-USB converter IC with a USB 
cable to interface to the PC.  These serial-to-USB converter IC’s are available 
from a variety of manufactures (Prolific and FTDI are very common).  The 
use of these IC’s required a driver to be installed on the PC but typically do 
not required any custom firmware to use the IC. 

In newer embedded systems (in the Arduino for instance), the RS-232 
interface is completely removed and the serial-to-USB IC is directly put on 
the embedded board.  This allows the embedded system to directly connect 
to a PC without the use of a USB-to-RS-232 converter. 

The KL25Z uses a similar approach but uses a secondary ARM processor as 
the serial-to-USB interface instead of the serial-to-USB IC.  This secondary 
ARM processor also serves as the programming and debug interface that is 
used to load and test code on the main ARM processor.  The functions 
performed by the secondary ARM processor are called OpenSDA.   
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Figure 19 - KL25Z OpenSDA Interface 

Then using serial communications, both the transmitter and receiver must 
use a similar clock rate that are synchronized in some fashion so the 
receiver can sample and decide if a bit is high or low.  In some serial 
communications schemes, a clock is sent in parallel with the data to align 
the transmitter and receiver.  In other schemes, the receiver does clock 
recovery, where it generates a local clock that is aligned to the transitions in 
the data pattern to provide a sampling clock.  The UART uses asynchronous 
sampling to align the receiver to the transmit stream.   

For asynchronous sampling to work, both the transmitter and receiver must 
be pre-configured to share the same data rate and format.  When no data is 
being sent, the transmitter idles at a fixed level, high in the case of 
traditional UART’s .  When a data byte is to be transmitted, the transmitter 
starts will a “start” bit, which is always a low.  The transmitter then follows 
with the data bits, which are usually sent LSB (least significant bit) first, high 
is a “1” and low is a “0”.  The transmitter closes the transmission with a 
“stop” bit which is always a high. 
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When the receiver sees the transition from high (idle) to low (start bit), it 
knows a data byte is coming.  It starts sampling the subsequent bits roughly 
1.5 bit periods after the beginning of the start bit.  It samples at the bit 
period for the number of data bits it has been configured for.  The presence 
of the stop bit forces the line to go high so the receiver can observe the next 
high to low transition.  Because the receiver re-synchronizes its sampling 
after each transmitted byte, differences of up to about +/-5% are possible in 
the transmit and receive clocks.   

 

Figure 20 - Asynchronous Serial Transmission 

The processor on the KL25Z has 3 UART’s.  UART0 is wired on KL25Z to the 
Open SDA interface hence it will be used in this lab.  The OpenSDA serial 
connection is wired to pins PTA1 (RX) and PTA2 (TX).  To use a UART0, 
several parts of the processor must configured.  Code is provided that does 
the following. 

1. The UART0 clock source select bits (UART0SRC) must be set in the 

SIM_SOPT2 register.  In the code provided, these bits are set to 01b = 

MCGFLLCLK clock or MCGPLLCLK/2 clock.  This means either the 

MCGFLLCLK (96MHz on the KL25Z) or MCGPLLCLK/2  (48MHz) will be 

the clock that drives UART0.  The next setting selects which one is 

used. 

2. The PLL/FLL clock select (PLLFLLSEL) must be set in the SIM_SOPT2 

register.  In the code provided, this bit is set to 1b = MCGPLLCLK clock 

with fixed divide by two.  This means the UART0 clock will be 48MHz. 

3. The UART0 Clock Gate Control (UART0) in the SIM_SCGC4 register 

must be enabled (set to 1). 

4. The Port A Clock Gate Control (PORTA) in the SIM_SCGC5 must be 

enabled (set to 1).  This is because the UART0 will use IO on port A. 

5. The Pin Mux Control (MUX) bits of PORTA_PCR1 and PORTA_PCR2 

must be set to 010b = Alternative 2.  Alternate 2 on these pins is 

UART0_RXfor PTA1  and UART0_TX  for PTA2. 

High

Idle Start Bit 0
(LSB)

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
(MSB)

Stop Idle
or

next byte

Low
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6. The Over Sampling Ratio (OSR) size must be set in UART0_C4.  In the 

code provided, it has been set to x8.  This factors into the baud rate 

calculations. 

7. The Baud Rate Modulo Divisor (SBR) must be set in the UART0_BDH 

and UART0_BDL registers based on the desired baud rate and the 

clock settings.  The SBR is a 13 bit long field split between 

UART0_BDH and UART0_BDL.  The lower 8 bits (SBR[7:0]) are in 

UART0_BDL and the upper 5 bits (SBR[12:9]) are the lowest bits in 

UART0_BDH.  

 

SBR = clock_rate/(OSR * baud_rate) 

clock_rate  =  48MHz (based on the settings for UART0SRC and 

PLLFLLSEL) 

OSR = 8 

 

For baud_rate = 9600 bps 

SBR = 48000000/(8 * 9600) = 625 = 0x271 

UART0_BDH = 0x02 

UART0_BDL = 0x71 

 

8. The Transmitter Enable (TE) and receiver Enable (RE) bits in 

UART0_C2 must be set to 1 to enable the transmitter and receiver. 

After the UART is configured, the UART can transmit and receive. 

Data can be transmitted by writing to the UART Data Register (UART0_D).  
Data should only be written to the UART if the transmitter is not busy (e.g. 
still sending a byte).  The status of the transmitter can be monitored with 
the Transmit Data Register Empty Flag (TDRE) in UART Status Register 1 
(UART0_S1).  When TDRE is 1, the transmitter can be written to. 

Received data can be read from the UART Data Register (UART0_D).  Data is 
available when the Receive Data Register Full Flag (RDRF) in UART0_S1 is 1.  
Data should only be read from UART0_D after verifying RDRF is 1. 

The UART can experience errors which will lock up the receiver until they are 
cleared.  They are indicated by the OR (Receiver Overrun Flag), NF (Noise 
Flag), FE (framing Error Flag) and PE (Parity Error Flag) in the UART0_S1 
register.  If these bits are set, they must be cleared by writing a 1 to the 
corresponding bit field before a character can be successfully read from the 
UART.  
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Data transmitted and received on serial ports is often formatted as ASCII 
(American Standard Code for Information Interchange) characters.  ASCII 
provides a standard way to translate hex bytes to characters (letters, digits, 
punctuation, etc).  When using a terminal emulator to send text, the data is 
usually ASCII.     

Figure 21 shows a summary of the registers for UART0.  Note that the fields 
that are described are in bold.  Also note all fields are 8 bits and length and 
should be accessed with 8 bit instructions (LDRB and STRB). 

 

Figure 21 - UART0 Registers  

(see section 39 of KL25 Sub-Family Reference Manual for details) 

Required Equipment and Parts 

 Tektronix DPO2012B Oscilloscope (in lab) 

 Oscilloscope Probe (from stockroom) 

 Tektronix DPO2COMP Computer Serial Module (from stockroom)  

 Jumper wires 

Procedure 

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

UART0_C1 LOOPS DOZEEN RSRC M WAKE ILT PE PT

UART0_C2 TIE TCIE RIE ILIE TE RE RWU SBK

UART0_C3 R8T9 R9T8 TXDIR TXINV ORIE NEIE FEIE PEIE

UART0_C4 MAEN1 MAEN2 M10 OSR

UART0_C5 TDMAE 0 RDMAE 0 0 0 BOTHEDGE RESYNCDIS

UART0_S1 TDRE TC RDRF IDLE OR NF FE PF

UART0_S2 LBKDIF RXEDGIF MSBF RXINV RWUID BRK13 LBKDE RAF

UART0_BDH LBKDIE RXEDGIE SBNS SBR[12:8]

UART0_BDL SBR[7:0]

UART0_D Data[7:0]
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3.4.1 Lab 4, Part 1: Reading and writing characters for the UART 

The objective of this part is to develop a program to initialize the UART and 
enter a loop that reads a character from the UART and then writes it back to 
the UART.  This is known as “echoing” back.  A terminal emulator running on 
the PC will be used to send characters to the board and display what the 
board sends back.   

A starting point for the code for this program is given in Figure 22.  This 
code needs to have the char_out and char_in functions completed.   



Page | 37  

SIM_SOPT2  EQU  0x40048004 
SIM_SCGC4  EQU  0x40048034 
SIM_SCGC5  EQU  0x40048038 
 
PORTA_PCR1 EQU  0x40049000 + 4 * 1 
PORTA_PCR2 EQU  0x40049000 + 4 * 2 
 
PORTE_PCR20 EQU  0x4004D000 + 4 * 20 
PORTE_PCR21 EQU  0x4004D000 + 4 * 21 
 
UART0_BDH  EQU  0x4006A000 
UART0_BDL  EQU  0x4006A001  
UART0_C1  EQU  0x4006A002  
UART0_C2  EQU  0x4006A003  
UART0_S1  EQU  0x4006A004  
UART0_S2  EQU  0x4006A005  
UART0_C3  EQU  0x4006A006  
UART0_D  EQU  0x4006A007  
UART0_MA1  EQU  0x4006A008  
UART0_MA2  EQU  0x4006A009  
UART0_C4  EQU  0x4006A00A  
UART0_C5  EQU  0x4006A00B 
  
 AREA  asm_area, CODE, READONLY 
 EXPORT    asm_main 
 EXPORT  UART0Init 
 EXPORT  char_in 
 EXPORT  char_out   
   
asm_main  ;assembly entry point for C function, do not delete 
; Add program code here 
 
 BL UART0Init   
loop 
 BL char_in ; read char from UART, char in R0 
 BL char_out  ; send char in R0 to UART 
 b loop 
  
; When char_out is called, R0 contains  
; the char to be sent out the UART 
char_out FUNCTION 
  
 BX LR 
 ENDFUNC 
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; When char_in returns, R0 contains  
; the char that was received 
char_in FUNCTION 
  
 BX LR 
 ENDFUNC 
 
UART0Init FUNCTION 
; SIM_SOPT2[UART0SRC] = 01b (MCGFLLCLK or MCGPLLCLK/2 clock) 
; and SIM_SOPT2[PLLFLLSEL] = 1b for MGCPLLCLK/2 
 LDR R0,=SIM_SOPT2 ;Load address of SIM_SOPT2 to R0 
 LDR R1,[R0]  ;Put present value of SIM_SOPT2 into R1 
 LDR R2,=0xF3FEFFFF ;Load bits to clear 
 ANDS R1,R2  ;AND values to clear bits 
 LDR R2,=0x04010000 ;Load bits to set 
 ORRS R1,R2  ;OR values to set bits 
 STR R1,[R0]  ;Put value back into SIM_SOPT2 
  
; SIM_SCGC4[UART0] = 1  
 LDR R0,=SIM_SCGC4  
 LDR R1,[R0]    
 LDR R2,=0x00000400  
 ORRS R1,R2    
 STR R1,[R0]    
 
; SIM_SCGC5[PORTE thru A] = 1, turn on clock for all ports 
 LDR R0,=SIM_SCGC5   ;Load address of SIM_SCGC5 to R0  
 LDR R1,[R0]      ;Put value of SIM_SCGC5 into R1  
 LDR R2,=0x00003E00  ;Load value to turn on all port   
     ;clocks into R2  
 ORRS R1,R2      ;OR R2 into R1  
 STR R1,[R0]      ;Put value back into SIM_SCGC5  
 
; PORTA_PCR1 , Clear ISF and set MUX = 2 
 LDR R0,=PORTA_PCR1  
 LDR R1,[R0]    
 LDR R2,=0x01000200  
 ORRS R1,R2    
 STR R1,[R0] 
 
; PORTA_PCR2 , Clear ISF and set MUX = 2 
 LDR R0,=PORTA_PCR2  
 LDR R1,[R0]    
 LDR R2,=0x01000200  
 ORRS R1,R2    
 STR R1,[R0]  
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; UART0_C4[OSR]= 0x07 (for osr = x8) 
 LDR R0,=UART0_C4 
 MOVS R1,#0x07 
 STRB R1,[R0] 
 
; 9600 baud 
; uart0_baud_clk = MGCPLLCLK/2 = 96MHz/2 = 48MHz 
; SBR = uart0_baud_clk/(baud*osr) 
; SBR = 48MHz/(9600 * 8) 
; SBR = 625 = (0x0271) 
 
; UART0_BDH = 0x02 
 LDR R0,=UART0_BDH 
 MOVS R1,#0x02 
 STRB R1,[R0] 
  
; UART0_BDL = 0x71 
 LDR R0,=UART0_BDL 
 MOVS R1,#0x71 
 STRB R1,[R0] 
  
; UART0_C2 = 0x02 (TE and RE = 1) 
 LDR R0,=UART0_C2 
 MOVS R1,#0x0C 
 STRB R1,[R0]  
 
 BX LR 
 ENDFUNC 
 
; Put constants here 
 
 AREA data_area, DATA, READWRITE 
; Put variables here 
  
 END 

Figure 22  - Starting Code to Serial Programs 

The aim is for the char_out, char_in and UART0Init functions to be callable 
from the main C program for use in subsequent experiments.  The EXPORT 
and FUCNCTION, and ENDFUN statements make these runtimes appear as 
functions in C.  

When C calls a function, the first four parameters are passed to the function 
in R0, R1, R2 and R3. So if the template for char_out in C is:  

extern void char_out(unsigned char); 
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Then the character to be sent out the UART will be the first parameter in R0. 

Likewise, when a function return a value, the value that will be returned is in 
R0. So if the template for char_in in C is: 

extern unsigned char char_in(void); 

Then the character that the UART received should be returned in R0.   

Note that char_in and char_out are defined as “unsigned char”, this means 
that they will be only 8 bits in length which is the length the UART uses. 

When writing the char_out and char_in routines, only use registers R0 to R3 
and R12 as using any other registers requires the values to be saved and 
restored in the function.  

The char_out and char_in routines should implement the logic shown in 
Figure 23.  Note that the char_in routine needs to verify that the OR, NF, FE 
and PF bits are not set.  If they are set, they can be cleared by writing a one 
to the specific bit location or by simply writing 0x0F to clear any that are set. 
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Figure 23 - char_out and char_in diagrams 

The UART0Init subroutine should be completely functional as provided.  By 
default, it configures UART0 to use 8 data bits, no parity, 1 stop bit and a 
baud rate of 9600 bps.  The clock source is configured to be MGCPLLCLK/2 
which operates at 48MHz. 

The asm_main routine is complexly functional as provided.  asm_main calls 
the UART0Init subroutine then enters a loop that calls char_in followed by 
char_out.  char_in should wait for the user to enter a character into the 
terminal.  When a character is entered, char_in should return the character 
in R0.  char_out is then called which should be echoed back to the user.  
This process will then repeat indefinitely.  

After completing the char_in and char_out routines connect the KL25Z to the 
PC.  Build, debug and then run the code onto the board a usual.  Open Tera 
Term on the PC that is connected to the board (other terminal programs can 
be used but Tera Term is recommended).   
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When Tera Term starts, select New Connection, Serial, then the COM port 
labeled OpenSDA in the port pull-down. The hit the OK button. (Figure 24) 

    

Figure 24 - Tera Term New Connection 

Next select Setup >>> Serial port.  In the Serial port setup dialog, set the 
baud rate, data, parity, stop and flow control to match the KL25Z settings.  
In the default case use: Baud: 9600, Data: 8 bit, Parity: none, Stop: 1 bit 
and Flow control: none.  Then click the OK button. (Figure 25)  

With the code running on the KL25Z and Tera Term setup properly, anything 
typed on the Tera Term console will be echoed back and displayed in the 
console window. (Figure 26).   

Next stop the code running on the KL25Z then type characters in Tera Term.  
Lab report: What happens and why? 

Next add a second “BL char_out” line to the program after the first but 

before the “b loop” statement.  Build and run the code.  Lab report: What 

happens and why?  
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Figure 25 - Tera Term Serial Port Setup 

 

Figure 26 - Tera Term Displaying Echoed Characters 
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3.4.2 Lab 4, Part 2: Observing the Serial Port on the Oscilloscope 

The objective of this part of the lab is to observe the serial port output on 
the oscilloscope.  The code will be modified to continuously stream a single 
character.  Then the oscilloscope will be used to view the output waveform. 
Oscilloscope traces will be captured for multiple UART configurations and 
analyzed both manually and with the serial decode utility on the scope.       

Modify the code from the first part as follows: 

In asm_main before the loop but after the call to UART0Init, load R0 with 
the ASCII code for the group (bench) number. 

In the loop in asm_main, remove the call to char_in and add a call to a delay 
routine.  The delay is to add some time between sending so it is easy to 
observe individual characters on the oscilloscope. 

Run the code and verify output of the characters on Tera term.  

With the oscilloscope off, install the Tektronix Computer Serial Module 
(DPO2COMP) into the DPO2012B oscilloscope (Figure 27).  

 

Figure 27 - Installing the DPO2COMP Module 

Connect the oscilloscope to the KL25Z as shown in Figure 28.  The UART0 
transmit signal is output on pin PTA2.  Use a scope probe to view the signal.  
Connect the ground of the scope probe to one of the ground pins on the 
board. 

Turn on the oscilloscope. 
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Figure 28 - Oscilloscope Setup 

Verify the scope probe impedance is set to match the probe.  Verify the 
scope is set to DC coupling.  The vertical amplitude can be set to 1V/div.  
The time base can be set to 10uS/div.  Set the triggering to manual.  Adjust 
the trigger level to about 1.5V.  The waveform should be seen on the scope.  
Adjust the settings to optimize the view. Capture the waveform for the 
lab report. 

Next setup the serial decode tool on the oscilloscope.  Start by pressing the 
Bus – B1 button. Then do the steps in Figure 29 thru Figure 35. 
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Figure 29 - Select bus type , RS-232 

 

 

Figure 30 - Select the scope channel connected to the TX line 

Don’t 
forget 
this 
setting! 
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Figure 31 - Set the threshold using the TTL preset 

 

Figure 32 - Configure the serial settings to match the TX config 

 

Figure 33 - Apply a label 
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Figure 34 - Select how to view the characters 

  

Figure 35 - The end result, 0x65 = ASCII 'e' 

Store the waveform for the lab report. 

Capture the waveforms for the configurations listed in Figure 36 for 
the lab report. 
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ASCII Character Baud Rate Data Bits Parity Stop Bits 

Group number 9600 8 None 1 

Group number 19200 8 None 1 

Group number 115200 8 None 1 

Last name initial of 
report author  

115200 8 None 1 

Figure 36 - Capture Waveform Settings 

3.4.3 Lab 4, Lab report 

For the lab report on this lab, be sure to include: 

A description of how the lab was performed. 

For Part 1, observed results and answers to two highlighted questions 

For Part 2, four waveforms, (manual identification and serial decode of the 
four settings listed).  For the manual identification of the serial waveforms in 
the report, identify: 

 the voltage levels for high and low  

 bit time 

 start bit, data bits 0 thru 7, stop bit 

 data bit values (0/1) 

 match the data bits to the ASCII character value  

Also include the new code that was written (e.g. char_in and char_out 
routines) and any changes made for each of the different setting 
configurations.  

3.5 Lab 5 – Calculator (UART Application) 

Lab Objectives 

 To apply knowledge on the use of serial ports gained in lab 4 to solve a 
design problem 

Problem 
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Your group needs to develop a simple calculator program.  Unlike the 
previous labs, this lab will be done in C to provide some insight into how 
higher level languages operate on microprocessors.  The calculator will use 
the serial routines from lab 4 to handle the data input and output interface 
with the user.  All code for this program can only use base C instructions and 
the functions developed in lab 4.  Use of other libraries, for example 
string.h, stdlib.h and stdio.h, is prohibited in the solution of this 
problem. 

There are multiple tiers of functionally which can be implemented, the more 
functions that are implemented, the higher the grade on the lab (e.g. Tier 1 
=B, Tier 2 =B+, Tier 3 = A for the group grade for this lab).   

For tier 1, the calculator needs to take in 2 four-digit numbers separated by 
a plus sign and return the answer after an equals sign. 

Examples: User enters, Program returns  

0001+0001=00002 

0100+0020=00120 

1234+5678=06912 

9999+9999=19998 

Notice that the user is always entering four digits, even for values less than 
1000.  Also, notice the result is always five digits.  The four digit decimal 
values have a range of 0000 to 9999, giving the range of the sum to be 
0000 to 19998. 

For tier 2 functionality is removing the need to enter the leading zeros. 

Examples: 

1+1=00002 

100+20=00120 

For tier 3 of functionality is outputting the results without the leading zeros. 

Examples: 

1+1=2 

100+20=120 
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For ambitious students looking for a challenge, there is an extra tier of 
functionality, adding subtraction. 

Examples: 

10-1=9 

20-23=-3 

9999-9999=0 

0-9999=-9999 

Approach 

Start with the project from lab 4.  In the main.c file, add the external 
references to the assembly routines UART0Init, char_in and char_out and 
comment out the call to asm_main() as shown in Figure 37.  In the main() 
function, the UART0Init() call runs the initialization function from the 
assembly file.  The while(1) loop uses the char_in() function from the 
assembly file to read a character into myChar from the UART then outputs it 
back (aka ‘echoes’) to the UART using the char_out call.  This loop repeats 
forever.  Note the variable myChar has been defined as an single 8-bit byte 
to match the characters that are handled by the serial UART.    
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#include <MKL25Z4.H> 
 
extern void asm_main(void); 
 
extern void UART0Init(void); 
extern unsigned char char_in(void); 
extern void char_out(unsigned char); 
 
int main (void) { 
  
// asm_main();  // uncomment to use assembly  

  
 unsigned char myChar; 
 
 UART0Init(); 
 
 while(1){ 
  myChar = char_in(); 
  char_out(myChar);  
 } 
} 

Figure 37 - Serial IO C code Example 

To achieve the basic calculator functionality, individual characters need to be 
read from the UART.  These characters will be received in ASCII format.   
(Hint: Lookup at an ASCII table for reference!)  The individual ASCII 
characters need to be converted into a numeric value to support the math 
operations.  In ASCII formatting, digits are represented by the 
number+0x30.  

For example the decimal number 1976 will come in as 0x31, 0x39, 0x37, 
0x36.  To convert the separate ASCII characters to a single value, the ASCII 
offset (0x30) needs to be removed and the individual values need to be 
weighted by its decimal place and summed.   

The number 1976 can be thought of as: 

1 * 1000 + 9 * 100 + 7 * 10 + 6 = 1976 

This method can be coded directly but an alternative way to approach the 
solution is to use a loop like the one depicted in Figure 38.  In this method, 
the value is built up as digits are entered and the loop is terminated when an 
ASCII value that is not a digit is entered. 
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Figure 38 - GetNum Block Diagram 

The algorithm for the GetNum routine can be thought of as:  

((((0 * 10 + 1) * 10 + 9) * 10 + 7) * 10 + 6) = 1976 

GetNum can be called twice and the two returned numbers can be added.  
Then the result needs to be displayed. 

For display on the serial terminal, the result needs to be converter back to 
individual ASCII characters representing each digit.  For example, the value 
76543 would be displayed as ASCII characters 0x37, 0x36, 0x35, 0x34 0x33. 

Two similar approaches can be taken to generate this output.  For the first, 
the value is divided by subsequently smaller powers of ten (e.g. 10000, 
1000, 100, 10, 1).  The quotient from the division yields the digit to be 
converted to ASCII (add 0x30) for output and the remainder from the 
division yields the next value to be divided. 

myNum = 0

myChar = char_in()

Is myChar
between 
0x30 and 

0x39

myNum = myNum * 
10 + myChar- 0x30

No

Yes

GetNum

return myNum
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76543 / 10000 = Q: 7, R: 6543, Output Q + 0x30 = 0x37  

6543 / 1000 = Q: 6, R: 543, Output Q + 0x30 = 0x36 

543 / 100 = Q: 5, R: 43, Output Q + 0x30 = 0x35 

43 / 10 = Q: 4, R: 3, Output Q + 0x30 = 0x34 

3 / 1 = Q: 3, R: 0, Output Q + 0x30 = 0x33 

Note that this method requires setting the initial divisor equal to or larger 
than the power of largest value to be outputted.  If it is larger than the value, 
leading zeros will be outputted.  This can be avoided by either sizing the 
initial divisor appropriately for the value being outputted or by suppressing 
the leading zeros until a non-zero digit comes out. 

543 / 10000 = Q: 0, R: 543, Output Q + 0x30 = 0x30  

543 / 1000 = Q: 0, R: 543, Output Q + 0x30 = 0x30  

543 / 100 = Q: 5, R: 43, Output Q + 0x30 = 0x35 

43 / 10 = Q: 4, R: 3, Output Q + 0x30 = 0x34 

3 / 1 = Q: 3, R: 0, Output Q + 0x30 = 0x33 

An alternative way to output the result is to always divide by 10, the 
remainder yields the digit to be converted to ASCII for output and the 
quotient gives the next value to be divided.  The process stops once the 
quotient equals zero.  Note the values come out in reverse order and need to 
be stored until the division is complete and the results can be output in 
reverse order. 

76543 / 10 = Q: 7654, R: 3, Output R + 0x30 = 0x33 

7654 / 10 = Q: 765, R: 4, Output R + 0x30 = 0x34  

765 / 10 = Q: 76, R: 5, Output R + 0x30 = 0x35  

76 / 10 = Q: 7, R: 6, Output R + 0x30 = 0x36  

7 / 10 = Q: 0, R: 7, Output R + 0x30 = 0x37 

Note that this technique has the benefit of inherently suppressing any 
leading zeros. 
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Either of the methods requires the use of C instructions to get the quotient 
and remainder.  The quotient is returned by the division operator (/) and the 
remainder is returned by the modulus operator (%).   

quotient = dividend / divisor; 

remainder = dividend % divisor; 

3.6 Lab 6 – Digital-to-Analog Converter 

Lab Objectives 

 To learn how to setup and operate the MCU digital-to-analog converter 
(DAC) 

 To use the DAC to create a waveform generator 

Introduction 

Digital-to-Analog converters (DAC’s) convert digital data to analog signals.  
They are a common peripheral used with microprocessors for applications 
such as controlling analog circuitry, audio and video generation, radio signal 
generation, etc. 

The processor on the KL25Z board features an integrated, single-channel, 
12-bit general-purpose DAC. 

To use the DAC, the DAC0 clock enable bit must first be set in the 
SIM_SCGC6 register.  Then the DACEN bit must be set in the DAC0_C0 
register.   

The output voltage of the DAC can then be set by writing the 12-bit DATA 
field which is split between the DAC0_DAT0L and DAC0_DAT0H registers.  
The DAC output voltage is based on the formula:  

Vout = Vref * (1 + DATA[11-0])/4096.   

Vref is set by wiring the Vref pin to a reference voltage.  For the KL25Z, Vref 
is 3.3V. 

When writing the DATA field, a 16-bit half-word store to the DAC0_DAT0L 
register can be used (STRH) to write both the lower 8-bits to DAC0_DAT0L 
and upper 4-bits to DAC0_DAT0H with one instruction. This is because the 
address of DAT0H is immediately after DAT0L and the processor is little-
endian so the lower bits will be written to the first byte pointed to by the 
address followed by the upper bits in the next byte.  



Page | 56  

The DAC output DAC0_OUT is available on pin PTE30. On boot, this pin 
defaults to DAC0_OUT as its output function so the pin control register does 
not need to be changed. 

   

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

DAC0 
_DAT0L 

DATA[7-0] 

DAC0 
_DAT0H 

Reserved DATA[11-8] 

DAC0_C0 DACEN DACRF
S 

DACTR
GSEL 

DACSW
TRG 

LPEN 0 DACBTI
EN 

DACBBI
EN 

Figure 39 - DAC Control Registers 

  

Procedure 

3.6.1 DAC Characterization 

The goal of the first step is to configure the DAC to output fixed voltages and 
observe the output on the oscilloscope. 

Connect the oscilloscope as shown Figure 41. 

Load the code shown in Figure 40.  The code starts by running the dac_init 
function which turns on the DAC clock and DAC enable.  Then the code loads 
the address of the DAC0_DAT0L to R0 and clears R1.  At the label dac_loop, 
the lower 16-bits of R1 are copied to [R0] which points to DAC0_DAT0L and 
DAC0_DAT0H, then loops around to repeat the copy. Note the use of STRH 
to do the 16-bit write. 

Insert a breakpoint at the line ‘B dac_loop’.  Run the code, when the break 
point is reached, note the voltage on the oscilloscope.  Now increase the 
value in R1 by about 150 to 250 by clicking on value in the Resisters debug 
window and entering the new value.  Run the code again until the breakpoint 
is reached.  Note the new voltage on the oscilloscope.  Repeat this process 
until the max value of 4095 (0xFFF) is reached on the DAC command.  Use 
different step sizes each time that R1 is changed. 
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SIM_SCGC6      EQU 0x4004803C 
DAC0_DAT0L  EQU  0x4003F000  
DAC0_C0       EQU  0x4003F021  
 
 AREA    asm_area, CODE, READONLY 
 EXPORT  asm_main 
 
asm_main  ;assembly entry point for C function, do not delete 
; Add program code here 
     BL  dac_init 
 LDR R0,=DAC0_DAT0L 
;    B   square_wave 
;    B   saw_tooth 
;    B   sine_wave 
 MOVS R1,#0 
dac_loop 
 STRH R1,[R0] 
 B dac_loop 
   
dac_init 
 ; SIM_SCGC6[DAC0] = 1  
 LDR R0,=SIM_SCGC6  
 LDR R1,[R0]    
 LDR R2,=0x80000000  
 ORRS R1,R2    
 STR R1,[R0]  
  
 ; Set DAC0_C0[DACEN] = 1 to enable DAC 
 LDR R0,=DAC0_C0      
 MOVS R1,#0x80   
 STRB R1,[R0] 
 BX LR 
 
square_wave 
 B square_wave 
 
saw_tooth 
 B saw_tooth  
 
sine_wave 
 B sine_wave 
 
 AREA data_area, DATA, READWRITE 
; Put variables here 
  
 END  

Figure 40 – DAC Code 
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Figure 41 - DAC Oscilloscope Connection 

 

3.6.2 Waveform Generator 

Edit the code from the first part of the experiment to add functions to 
generate square, saw tooth and sine waves as shown in Figure 43, Figure 44 
and Figure 45.  Each waveform should be 1 kHz in frequency and 0 to 3.3 V 
in amplitude as shown in the plots. 

For all three waveforms the timing can be achieved by inserting a delay loop 
and adjusting the delay count to set the desired interval between samples 
for the number of samples in the period of the given waveform.  Figure 42 
shows an example for how to calculate the delay for a 10 point waveform.  
This needs to be adjusted for the specific number of points in each waveform. 
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; clk is 48MHz, total of 3 clock cycles per delay_loop 
; 1ms delay = 48000 clk cycles 
; 1ms delay = 16000 delay loops 
; for 10 point waveform, delay should be 1/10th, 1600 loops 
; subtract 1 loop to compensate for fixed delay of 4 clks, 1599    
 
delay    
 LDR R2,=1599   ;2 clk cycles 
delay_loop    
 SUBS R2,#1  ;1 clk cycle 
 BNE delay_loop ;2 clk cycles when branch taken 
 BX LR   ;2 clk cycles 

Figure 42 – Delay Loop 

 
 

 

Figure 43 - DAC Square Wave 

The Square Wave can be generated by a loop that writes two 16-bit values 
(0 and 4095) out in a repeated fashion to the DAC0_DAT0L/DAC0_DAT0H 
registers. 
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Figure 44 - DAC Saw Tooth 

The Saw Tooth can be generated by incrementing a value by a fixed amount 
between 0 and 4095 and writing the value to the 
DAC0_DAT0L/DAC0_DAT0H registers. 

 

Figure 45 - DAC Sine Wave 

The easiest way to generate Sine Wave is to pre-calculate values for the sine 
wave then to loop through the list of values to generate the waveform.  The 
formula DAC0_DAT0 = 2047 + 2047 * sin(2 * pi * t / N) can be used to 
calculate a list of values. N is the number of values and t = 0 to N.  The code 
shown in Figure 46 provides an example of how to read values out of a list of 
values. 
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sine 
 LDR R0,=DAC0_DAT0L 
sine_restart  
 LDR R3,=sine_val     ;R3 is pointer address 
 LDR R4,=sine_val_end    ;R4 is end address 
sine_loop  
 LDRH R1,[R3]  ;read 16-bit val from pointer address 
 ADDS R3,#2  ;inc pointer 2 bytes (16-bits)  
 STRH R1,[R0]  ;write 16-bit val to dac 
 CMP R3,R4   ;check if at or past end of array 
 BGE sine_restart ;if at end restart 
 B sine_loop  ;else loop 
  
sine_val 
 DCW 2048,4095,2048,1 
sine_val_end 
 DCW 0    ;placeholder for addr of end of array 

Figure 46 - Example code for Sine Wave 

3.6.3 Lab 6, Lab report 

For the lab report on this lab, be sure to include: 

A description of how the lab was performed. 

For Part 1, include a table and plot of the command, expected (calculated) 
voltage and measured voltage for each step measured.      

For Part 2, include a description of all calculations for DAC settings and delay 
time counts and three oscilloscope waveforms (square, saw tooth, sine) with 
the following identified: 

 The signal amplitude 

 The signal frequency 

Also include the all code that was written. 

3.7 Lab 7 – Analog-to-Digital Converter 

Lab Objectives 

 To learn how to setup and operate the MCU analog-to-digital converter 
(ADC) 

 Characterize the ADC under different configurations 
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Introduction 

Analog-to-Digital Converters (ADC’s) convert analog signals to digital data.  
They are a common peripheral used with microprocessors for applications 
such as monitoring analog circuitry (voltages, temperature sensors, etc), 
digitizing audio and video signals, digitizing radio signal, etc. 

The KL25Z microprocessor features an integrated 16-bit, successive 
approximation, analog-to-digital converter.  The converter supports both 
single ended and differential inputs.  Up to 24 inputs are available in single 
ended mode and up to 4 input pairs are available in differential mode.  
Additionally an internal temperature sensor, internal 1V reference or the 
ADC high and low references voltages can uses to feed the input to the ADC. 

The ADC has multiple modes of operation and many features which are 
controlled by a set of 27 registers.  Fortunately for this course, basic 
functionally can be achieved by just using a small subset of these.  For this 
experiment, the ADC will be operated in “single conversion” mode.  This 
means that the ADC will need to be commanded by software to perform 
each conversion (a conversion is the processes the ADC does to sample the 
analog input and produce a corresponding digital value). 

Like all the other peripherals in the processor, the ADC has a clock that must 
be enabled with the ADC0 bit in the SIM_SCGC6 register.  

Bit 31 - 8 7 6 5 4 3 2 1 0 

ADC0_CFG1 Reserved ADLPC ADIV ADLSMP MODE ADICLK 

Value all bits 0 0 0 0 0 See Figure 
48 

0 0 

Figure 47 - ADC0_CFG1 Register 

Next the ADC resolution must be set using the MODE bits in the ADC0_CFG1 
register.  All the other configuration bits in this register can be left at their 
default values of zero. 
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MODE value ADC Input 

00b 8-bit Single Ended Conversion 

01b 12-bit Single Ended Conversion 

10b 10-bit Single Ended Conversion 

11b 16-bit Single Ended Conversion 

Figure 48- MODE Bit Definitions 

 

Bit 31 - 8 7 6 5 4 3 2 1 0 

ADC0_SC3 Reserved CAL CALF Reserved ADCO AVGE AVGS 

Value all bits 0 0 RO 0 0 0 See 

text 

See 

Figure 50 
- AVGS 
Register 

SettingsFig
ure 50 

Figure 49 - ADC0_SC3 Register 

AVGS value  ADC Input 

00b 4 samples averaged 

01b 8 samples averaged 

10b 16 samples averaged 

11b 32 samples averaged 

Figure 50 - AVGS Register Settings 
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The conversions are controlled with the ADC0_SC1A register. 

Bit 31 - 8 7 6 5 4 3 2 1 0 

ADC0_SC1A Reserved COCO AIEN DIFF ADCH 

Value all bits 0 RO 0 0 See Figure 52 

Figure 51 - ADC0_SC1A Register 

The COCO bit is a read only bit that indicates if the conversion is complete.  
Once this bit is set to a one (1), the result of the conversion can be read in 
the Data Results Register ADC0_RA. 

The AIEN bit should be set to 0 to disable interrupts. 

The DIFF bit should be set to 0 to set the ADC to operate in single ended 
mode. 

Finally the ADCH bits select which channel the ADC should do a conversion 
on. 

ADCH value 
(binary) 

ADCH value 
(hex) 

ADC Input 

00000b thru 
10111b 

0x00 thru 
0x17 

AD0 thru AD23 

11010b 0x1A Internal Temperature Sensor 

11011b 0x1B Internal 1V Bandgap Reference 

11101b 0x1D VREFSH 

11110b 0x1E VREFSL 

Figure 52- ADCH Bit Definitions 

The results of the conversion are returned in the ADC data results register 
ADC0_RA.  The number of bits used in this register depends on the 
resolution set in the ADCH field.  For single ended conversion the results are 
unsigned, right justified. 
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 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

16-bit Single ended D D D D D D D D D D D D D D D D 

12-bit Single ended 0 0 0 0 D D D D D D D D D D D D 

10-bit Single ended 0 0 0 0 0 0 D D D D D D D D D D 

8-bit Single ended 0 0 0 0 0 0 0 0 D D D D D D D D 

Figure 53 - ADC0_RA Data Register Format 

The results from the data register can be converted to the equivalent voltage 
with the following formula: 

VADC = DATA * (VREFSH – VREFSL) / 2N 

Where N is the resolution set with the ADCH field, VREFSH is 3.3V and VREFSL is 
0V. 

Procedure 

3.7.1 Part 1 – Bandgap Reference Measurement  

Load the code shown in Figure 40.  The code starts by running the adc_init 
function which turns on the ADC clock in the SIM_SCGC6 register and then 
setups up the ADC0_CFG1 and ADC0_SC3 registers for 16-bit conversions 
without averaging.  Adc_init also enables the bandgap reference by setting 
the BGBE bit in the PMC_REGSC register. 

Next the adc_read function is called.  This function expects R0 to contain the 
appropriate setting for the ADCH bits in the SC1A register that select which 
ADC channel to read.  In the code, three equates have been defined to 
select the AD0, TEMP, or BANDGAP sources which will be used in this lab.   

adc_read or’s the ADCH value contained in R0 with the default value for the 
other bits SC1A to then stores this value into the SC1A register.  This store 
starts the ADC conversion.  The ADC indicates that the conversion is 
complete when the COCO bit is set.  adc_read polls the AC1A, waiting for the 
COCO bit to be set then once this condition is met, reads the RA register 
which contains the result of the conversion.  adc_read returns the ADC 
conversion result in R0. 
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SIM_SCGC6  EQU  0x4004803C 
ADC0_SC1A  EQU   0x4003B000   
ADC0_CFG1  EQU   0x4003B008  
ADC0_RA   EQU   0x4003B010  
ADC0_SC3   EQU   0x4003B024 
PMC_REGSC      EQU       0x4007D002 
 
SC1A_DEFAULTS  EQU      0x00   
ADCH_AD0       EQU      0x00 
ADCH_TEMP      EQU      0x1A 
ADCH_BANDGAP   EQU      0x1B 
COCO_FLAG_MASK EQU      0x00000080 
 
    AREA    asm_area, CODE, READONLY 
    EXPORT  asm_main 
    EXPORT  adc_init 
    EXPORT  adc_read 
 
asm_main  ;assembly entry point for C function, do not delete 
; Add program code here 
 BL adc_init 
adc_loop 
 ;Load R0 with the channel to read  
     LDR  R0,= ADCH_BANDGAP 
 BL   adc_read 
 B adc_loop 
   
adc_init FUNCTION 
 ; SIM_SCGC6[ADC0] = 1  
 LDR R0,=SIM_SCGC6  
 LDR  R1,[R0]    
 LDR  R2,=0x08000000  
 ORRS R1,R2    
 STR  R1,[R0]  
  
 ; Set ADC0_CFG1[MODE] = 11b for 16-bit results 
 LDR R0,=ADC0_CFG1      
 LDR  R1,=0x0000000C   
 STR  R1,[R0] 
 BX LR 
 
 ; Set ADC0_SC3[AVGE] = 0b to disable averaging 
 ; Set ADC0_SC3[AVGS] = 00b for 4 sample averages 
 LDR R0,= ADC0_SC3 
 LDR  R1,=0x00000000   
 STR  R1,[R0] 
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 ; Set PMC_REGSC[BGBE] = 1b to enable 1V bandgap reference 
 LDR R0,=PMC_REGSC 
 LDR  R1,=0x01   
 STRB R1,[R0] 
 
 BX LR 
  ENDFUNC 
 
;When called, R0 contains SC1A_ADCH value 
;Returns ADC value in R0 
adc_read FUNCTION 
 LDR  R1,=SC1A_DEFAULTS 
     ORRS R0,R1 
     LDR R1,=ADC0_SC1A  
 STR  R0,[R1] 
 LDR  R2,=COCO_FLAG_MASK  
adc_read_wait 
     LDR  R0,[R1] 
     TST  R0,R2 
     BEQ  adc_read_wait  
     LDR  R1,=ADC0_RA 
     LDR  R0,[R1]  
     BX   LR 
     ENDFUNC 
 
 AREA data_area, DATA, READWRITE 
; Put variables here 
  
 END  

Figure 54 – ADC Code 

For the first part of this lab, run the code as shown with ADCH source set to 
the internal 1V bandgap.  Insert a breakpoint at the line “B adc_loop”.  Run 
the code, when the breakpoint is reached record the ADC result returned in 
R0.  Run 10 conversions and record the results. 

Enable averaging with the AGVE and AVGS fields in the ADC0_SC3 register. 

Next, in adc_init change enable averaging with 8 averages per conversion. 
Run 10 more conversions and record the results. 

Next, in adc_init change enable averaging with 32 averages per conversion. 
Run 10 more conversions and record the results. 

Disable averaging with the AGVE and AVGS fields in the ADC0_SC3 register. 
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Next, in adc_init change the conversion resolution to 12-bits. Run 10 more 
conversions and record the results. 

Next, in adc_init change the conversion resolution to 10-bits. Run 10 more 
conversions and record the results. 

Next, in adc_init change the conversion resolution to 8-bits. Run 10 more 
conversions and record the results. 

Table 2 summarizes the tests required for part 1. 

Table 2 - Lab7 Part 1 Test Summary 

Case Resolution Averaging Number or runs 

1 16-bits None 10 

2 16-bits 8 averages per conversion 10 

3 16-bits 32 averages per conversion 10 

4 12-bits None 10 

5 10-bits None 10 

6 8-bits None 10 

 

3.7.2     Part 2 – Temperature Sensor Measurement  

For the this part of the lab, run the code as shown with ADCH source set to 
the temperature sensor.  Setup adc_init to run the ADC in 16-bit mode with 
32 averages. 

Insert a breakpoint at the line “B adc_loop”.  Run the code, when the 
breakpoint is reached, record the ADC result returned in R0.  Run a single 
conversion and record the results. 

Calculate the internal temperature of the processor with the following 
equation: 

TEMP = 25 –((VTEMP-VTEMP25)/m)  

where VTEMP is the voltage reported by the ADC for the temperature sensor, 
VTEMP25 is 719 mV and m is 1.715 mV/C.  
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3.7.3     Part 3 – External Voltage Measurement  

For the this part of the lab, run the code as shown with ADCH source set to 
input AD0.  Setup adc_init to run the ADC in 16-bit mode with 32 averages. 

Connect a 5k or 10k potentiometer between 3.3V, PTE20 (note ADC input 
AD0 is on PTE20) and GND as shown in Figure 55.  Connect a voltmeter 
between AD0 and GND and setup the voltmeter to measure DC voltage. 

 

Figure 55 - Lab7, Part 3 setup 

Adjust the pot to one end of the range.  Insert a breakpoint at the line “B 
adc_loop”.  Run the code, when the breakpoint is reached, record the ADC 
result returned in R0 and the voltage on the voltmeter.  Turn the pot slightly. 
Run another conversion and record the results. Perform this process about 
10 times until the full range of the pot is covered.   

3.7.4 Lab 6, Lab report 

For the lab report on this lab, be sure to include: 

A description of how the lab was performed. 
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For Part 1, include a table of each of the sets of measured data and the 
corresponding voltages calculated from the data.        

For Part 2, include the measured data and the corresponding calculated 
temperature. 

For Part 2, include the measured data and the corresponding calculated 
voltage.  Plot the calculated voltage vs the voltmeter voltage. 

 

3.8 Lab 8 – Interrupts and Exceptions 

Lab Objectives 

 To learn how to setup and use interrupts and exceptions in the MCU 
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4 Troubleshooting 

Message: Error #5 Cannot open source input file “MKL25Z4.h” 

Cause: Kinetis KL25Z support pack not loaded after installing KEIL uVision 
5. 

Fix: Follow procedure in section 2.1 to install the Keil::Kinetis_KLxx_DFP 
support pack.  

Message: Error #A1163E Unknown opcode code XXXX, expected opcode or 
macro  

Cause: Label not in first character position in line of code.  

Fix: Make sure all labels are in the first column. 

Message: startup_MKL25Z4.s: error: A1023E: File "startup_MKL25Z4.s" 
could not be opened: No such file or directory 

Cause: Caused by opening the project directly from the project zip file.    

Fix: Extract the zip file, then open the project. 

 

 

 

5 Document Change History 
Version Date By Changes 

3.00 1/14/2014 DJH Initial release for comment on sections 1, 2 and 3.1. 

3.01 1/20/2014 DJH Completed lab 1 and added course objectives. 

3.02 1/29/2014 DJH Added lab 2 and modified initial install instructions for 
uVision 5. 

3.03 1/31/2014 DJH Minor corrections to code in lab 1 and additions to 
troubleshooting section. 

3.04 2/10/2014 DJH Added lab 3. 
3.05 3/26/2014 DJH Added lab 4. 

3.06 8/31/2014 DJH Added lab 5.  Added some discussion to lab 1 and added info 
on receiver error flags to lab 4. 

3.07 11/17/2014 DJH Added lab 6. Minor corrections to labs 4 and 5. 

3.08 11/17/2014 DJH Fixed errors in lab 6 Vout and time delay calculations. 

3.09 11/23/2014 DJH Added Lab 7. 

3.10 12/1/2014 DJH Corrections to Lab 7: enabled bandgap in code, fixed code 
typo.  
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