Honours Project

FPGA Implementation of a
Simple Microprocessor

Napier University Edinburgh

o 3.mx

BGEPB1 MlcroCtroIIer
for Spartan-3 PFGA

& ELEKTRINIK

* Hardware & Softw.

Title Page

NAME: Benjamin Grydehoej
MATRICULATION NO.: 04007714

UNIVERSITY: Napier University Edinburgh

EDUCATION: BEng (Honours) Electronic and Computer Engineering
MODULE TITLE: BEng Honours Project

MODULE NO.: SE42201

PROJECT TITLE: FPGA Implementation of a Simple Microprocessor
SUPERVISOR: Dr. Thomas David Binnie

SUBMISSION DATE: 5/5/2006

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-2

Abstract

This report covers implementation of a simple 8-bit microprocessor in a FPGA, the design
is made as an emulated standard 8051 microcontroller. It is build based on the free
PicoBlaze™ IP Core from Xilinx, containing a Special Function Register which is
specifically chosen for this microcontroller. BGEPB1 is short for (BG-Electronic PicoBlaze
version 1). The microcontroller is implemented with parallels input and output ports (1/O
ports), serial UART, timers and interrupts. The microcontroller interface is programmed in
VHDL and the test programs for the microcontroller are made in C-code language using
the PCCOMP compiler by Francesco Poderico. Tested in both ModelSim, a simulating
tool, and in practical on the development board named Spartan-3 starter kit from Xilinx
using the FPGA XC3S200. The second part of the report is regarding the design of a CAN
bus hardware interface for the development board and a CAN VHDL interface for
transmitting data through the CAN bus level converter out on to the CAN bus. The last part
of the report is a setup guide for the software used to implemented and design new VHDL

function.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-3

Acknowledgement

| thank the following individuals for their contribution of PicoBlaze

microcontroller Core and Development tool there are used for this project.

e Ken Chapman, Xilinx Ltd. Benchmark House
PicoBlaze™ core and Serial UART

e Xilinx Inc.
ISE Service Pack

e Model Technology, a Mentor Graphics Corporation
ModelSim XE II/Starter

¢ Francesco Poderico

PCCOMP PicoBlaze C Compiler

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-4 -

Table of Contents

TUHE PAZE........cceeeeeee ettt e e et e et e e e ntaa e e e nraeeennneas 2
ADSIFACT. ...ttt e ettt e e et a et e e enaaeeenes 3
ACKNOWIEAZGEMENL ...ttt ettt e e e e arae e 4
TADLE Of CONENLS...........oeeeeeeeeeee ettt e e e et e e e st e e et aeeenseeeenens 5
Chapter 1: Introduction
1.1, ADOUL the PIOJECL.....eiiiieiieeiieiie ettt ettt ettt et e et e et e st eebeeetbeenbeessaeensaesaseenseennns 7
1.2, ATM OF the PIOJECL ...uiiiiiiieeiie ettt ettt e st e e e s ae e e eaeeeaaeeesaeesssaeesnsseesnseeessseaenns 7
1.3, PrOjeCt A@SCTIPLION. ...ccutiiiieeitieeiie ettt ettt ettt e e et e et e st e e bt e sabeenseesaaeenbeessbeenseesssesnseenseennns 8
1.4. Requirement SPECITICATION.ccuiieiiieeiiieeciieeeteeeeieeeeteeesteeestee e eaeeeseseeesaseeesseeensseeenseesnseaenns 9
1.5. Problem SOTULIONocuiiiiiiiiiieiciiesiteee ettt et sttt s 10
1.6 TAME-PLAN. ...ttt ettt ettt e b e sttt e s bt e bt e e abeesaeeeneeas 11
Chapter 2: Implementation of PicoBlaze™ with 1/0 ports interface
2.1, INETOAUCTION ...t eiiie ettt et e et e e et e e e baeesataeesssaeessseeesaseeessseeessseeesseesnseeessseeas 12
2.2. Background of PICOBIAZE™............ oot 12
2.3. Implementation of core and Parallel I/O with interruptscoceeveeveriiineeneniieneeeeieneene 14
2.5. VHDL code for the I/O Ports interface.........cccuerueriiiieiiiiieniesieeieeesieeee e 15
Reset to standard VAIUE:oooviiioiii ettt et et e e sanee e 15
Write and Read t0 I/ POTLS:eecuiiiiieeiiieiieeieeeite ettt ettt et eseeseaeesseessaeeneees 16
INEEITUPT SYSTEIMI...cniiiiiiieiicee ettt sttt et e saeeseneenaneeas 17
2.6. Test SOftWare N € COUC.....coiuiiiiiiiiieiieieee ettt et st 20
2.7 SIMULALIONeieeiiie ettt et e et e et e e e teeesataeeeabeeesssaeesssaeessseeesseeesseeessseessseeessseens 21
2.8. TSt AN TESULL ...c..ieitiiiiiiiee ettt ettt b ettt ettt sae et et ne e 22
Chapter 3: Implementation of serial UART
3L INEEOAUCTION ...ttt ettt ettt ettt et a et et e e bt e bt ente s et et e e aeenbeennes 23
SPECTIICALION: ...ttt sttt et ettt et be b et sae e bt et sbeenbeeanes 23
3.2. Implementation of serial UARTc.cooiiiiiiiiiiiiieieceeeete ettt ens 24
Read and Write t0 UART:oiiiiii ettt e st e e s abe e e s nreeesnseeesnneeenes 25
BAUD Rate TIMINE: ..eeeciviiiiiiieiiieeiie et esitee et et e et e st e e s baeeseteeesseeesseeansseesnsneesnseeesseeenns 26
Serial Status REZISIET:ccueiiiiiiiiieiiiiee ettt 27
330 SIMULALION 1.ttt ettt a ettt e bt ettt e e bt e bt et e bt et e eneenbeenees 28
3.4, Test AN TESULLeeiiiiiiiiiece e ettt e et e e e te e e sabeeestseeeaseessseesasaeesnsaeenns 28
Chapter 4: Implementation of Timers
4.1 INEEOAUCTION ...ttt ettt et st b e et b e bt et st et e e est e e eatesaeenee 29
4.2. Implementation Of TIMETS.......cccuiiiiiiiiiieeeieeee et e e e e e e eaeeeaseesaaeeenneees 29
TIMET REGISEI: ...uviiiiieiiieeiie ettt ettt et et e et e e be e teeeabe e seeenbeensaeenseesssaenseessaensseans 31
Calculation of tIMET VAIUE:.......cc.eiiiiiiiiiiee ettt et e 32
4.3, STMULALION ...ttt et b ettt s bbb sh ettt et et sae e 33
4.4, Test and TESUIL ..ottt ettt et e st et st e s e eeeas 34
Chapter 5: Implementation of Serial Flash ROM interface
5.1. About Serial INEETTACEeeiueiiiiiiiieie ettt et e 35

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-5-

Chapter 6: Design of CAN-BUS Interface

6. 1. INETOAUCTION ...ttt et ettt et ae ettt e e bt e bt et e see et e saeenbeenees 36
6.2. Design of CAN-BUS Hardware Interfacecccoceevieriiniiiiniiniiicncccceeceeeceeee 38
6.3. Design of CAN-BUS VHDL interface for tranSmittingcccceeevveerveeiieenieenieeneeesieenenens 40
6.4, SIMUIALIONeieiviiiiiiecctie ettt e et e e et eeetaeeebaeesbaeesasseesssaeessseeessseeensseessseensseeenns 42
6.4, STMULALION ..ottt ettt ettt ettt e s bt et e et eebe e bt entesseeneeeseenbeenees 42
6.5. TSt ANA TESULLeeoiiiiiiiiece ettt e et e e et e e sibee e taeeeaseessseeensaeessseeenns 42
Chapter 7: Software Setup
2 O £ 115 (0T L Lo o) DU UUSRRURRt 43
7.2. Setup of C and ASM COMPILET......cccuieriiieiieiieeieeite ettt ettt e aeebeeeeaeebeeseseeseessneens 43
7.3. Simulation in MOA@ISTIMcoouiiiiiiiiiiie et e e e e e aaeeenaeeennaeenes 45
7.4. Download to FPGA via iMPACT t00L.....cccuiiiiiiiiiiieieeeeeeee e 46
Chapter 8: CONCIUSIONc.cccocoooiiiiiiiieiiiieeeeeeeeeee, 48
Related Materials and References
RETETEICES: ...ttt ettt ettt sttt et sbe e 49
L8 3 10) B0 a2 0] 1| 2P SRPSRPP 49
SOFEWATE! ...ttt ettt b et sb ettt sat e bt e st sbe e be et e sbeebeentes 49
Appendix A:
The VHDL code for I/O INteTface.........ccuevieriiiiiiieieeiecieieee e 50
Appendix B:
Special Function Register (BGEPBIL.h).......cooouiiiiiiiieeeeeeeeee e 55
Appendix C:
Pin Option for FPGA and Development board.............ccoeeuiiiiiiieiiiiieciie e 56

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-6 -

Chapter 1: Introduction Napier University Edinburgh

Chapter 1

Introduction

1.1. About the project
A microcontroller in a Field-Programmable Gate Array (FPGA) is not world news, but a

free 8051 emulate core in a FPGA is not available on the marked at the moment. There is
an embedded microcontroller core on the market at the moment which matches the
project, though without Control Area Network (CAN) bus Interface. It is the PB8051 Xilinx
AllianceCORE ™! o the price of $ 495.95.

The embedded microprocessor cores for FPGA is split up in Hard-core and Soft-core
processors, a Hard-core Processor is the IBM PowerPC™ 405 32-Bit RISC processor
which run on Xilinx Virtex-Il Pro and Virtex-4. The Soft-core processor is a MicroBlaze™
32-bit RISC core which runs up to 180MHz in a Virtex-4 with 166 MIPS build for complex
systems, networking, telecommunication, data communication and embedded systems. All
these microprocessor cores need a license to be used in a product. Another free soft-core
processor from Xilinx is the PicoBlaze™ core which is an 8-Bit RISC processor this can be
implemented on Virtex™ and Spartan™ series of FPGAs and CoolRunner™-|| CPLDs.
This microprocessor is the one chosen for this project because it is free and makes it
possible to run in a low cost Spartan 3 FPGA. The purpose of this project is to make a
cheap microcontroller core with peripherals like an 8051 standard microcontroller plus a

CAN bus interface that makes it possible to customize the core for special projects.

1.2. Aim of the project
The aim for this project is to get know-how about FPGA and Very High Spe/ed Integrated

Circuit Hardware Description Language (VHDL), and to integrated PicoBlaze™ processor
in the Spartan-3 FPGA with Input and Output for parallel and serial interfaces and finally

simulate and test the project in practical.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-7 -

Chapter 1: Introduction Napier University Edinburgh

1.3. Project description
The block diagram in figure 1.1 shows the upcoming design of an emulated 8051

microcontroller, consisting of the Xilinx PicoBlaze™ microprocessor, with a instruction
Read Only Memory (ROM) which makes it possible to run machine code from the ROM,
generate by assembly or C code compiler. The machine code for the Instruction ROM is
uploaded via the Xilinx program called Project navigator, using the iIMPACT tool. The
machine code is uploaded with the VHDL code for the project via Joint Test Action Group
(JTAG).

The size of the Instruction ROM is only 1K x 16 and very small and will only be used as a
Boot or Monitor ROM with all necessary information for communication to the peripherals,
for more external ROM space available in the serial Flash which communicates via serial
data control by the Serial Flash ROM interface Block.
FPGA

JTAG

Boot Rom
Instruction Code
1K x 16

PicoBlaze
Core

Watchdog
Timer
System
Clock

Serial UART

CAN Bus UART

Data[7:0]
ADDI[15:0]

8051 Emulation Peripherals

Internal Address/Data and Control Bus

Serial Flash Rom
Interface

ﬁ» Serial Flash Rom

Platform Flash

Figure 1.1 — Block diagram over BGEPB1 Emulated 8051 Microcontroller

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-8-

Chapter 1: Introduction

Napier University Edinburgh

1.4. Requirement specification
The specification for the project is described in this paragraph and all the special function

calls are made out from the list for Special Function Register (SFR) showed in table 1.1.

The project consists of building an embedded microcontroller in a FPGA with a CAN-Bus

interface shown in the block diagram at page 8 figure 1.1. The specification of the project

is listed in bullets point under this text.

e PicoBLAZE™ corE AND BooT ROM (Use the PicoBlaze™ features showed on page 13)

e SERIAL UART (RS232) (Standard configuration 1 start bit, 8 data bit, no parity and 1 stop bit)

e CAN BUS UART (Designed to ISO 11898-1, CAN 2.0A & B, support bit rates up to 1Mbit/s)

e TIMER (Timer 0 as 8-bit Timer and Timer 1 as 16-bit Timer)

e SERIAL FLASH ROM INTERFACE (Controller interface or extern serial program store up to 2Mbit)

e SPECIAL FUNCTION REGISTER (SFR) (The SFR control all the call to ports, serial UART, Timer etc.)

e WATCHDOG TIMER (Automatics reset of the microcontroller with problems in the code)

e SYSTEM CLOCK (Standard option is 50MHz, run up to 200MHz or 100MIPS in a Virtex-1l Pro FPGA)

e CONTROL (Control signal for external Rom and RAM or other peripherals components)

e ADDRESS DECODER (Address bus expander up to 16 bit wide)

e /O PORTS (Port 0, 1, 3, 4 and 4 with external interrupts and Serial RS232 and CAN interface)

Symbol: Name: Address:
PO Port (HEX 01
P1 Port 1 HEX 02

P2L Port 2 (Address Bus low byte “the lower 8-bit part of 16-bit”) HEX 03
P2H | Port 2 (Address Bus high byte “the higher 8-bit part of 16-bit”) HEX 04
P3 Port 3 HEX 05
P4 Port 4 HEX 06
P5 Port 5 HEX 07
SBUF | Serial channel buffer register HEX 08
TLBS | Timer Low BAUE Rate Serial (Low byte part of 16-bit) HEX 09
THBS | Timer High BAUE Rate Serial (High byte part of 16-bit) HEX 0A
SCON | Serial channel control register HEX 0B
IENO | Interrupt enable register 0 HEX 0C
IEN1 | Interrupt enable register 1 HEX 0D
ISCO | Interrupt service control register HEX OE
TCON | Timer service control register HEX OF
TCO | Timer Count 0 (8-bit) HEX 10
TCL1 | Timer Count Low 1 (part of 16-bit) HEX 11
TCH1 | Timer Count Low 1 (part of 16-bit) HEX 12

Table 1.1 — List over Special Function Register.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-9.

Chapter 1: Introduction Napier University Edinburgh

1.5. Problem solution
The task concerns the building an embedded microcontroller in a FPGA with a CAN bus

interface from the requirement specifications at page 9. The microprocessor used for this
project is the Xilinx PicoBlaze™ microprocessor core and the task is to implement parallel
Input/Output port interfaces with Interrupts, serial UART, Timer and a CAN BUS interface.
It can be necessary to implement the VHDL code giving access to the Serial Flash ROM
for more program space.

The PicoBlaze™ core, the Instruction ROM and the serial UART is VHDL code which will
be downloaded as free IP Core available from Xilinx.com homepage. The rest of the
blocks in the block diagram in figure 1.1 at page 8, are functions of VHDL code
constructed from scats.

The process for the project will be implementation of the PicoBlaze™ core with Boot ROM
and Serial UART and create and implemented an Input/output interface with Interrupt
control. Two different timers, a Timer 0 using an 8-bit counter and a Timer 1 which uses a
16-bit counter. The last unit there will be create and implemented is the CAN bus UART
which also will be build from nothing. All the functions will be controlled by the Special

Function Register showed in table 1.1 at page 9.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-10 -

Napier University Edinburgh

Chapter 1: Introduction
1.6 Time-Plan

oz eseprysmmrdiiy) uoisian [BU |EUOISSSJ0Id SAU0ISE|IW

SjuaAg / Juawubissy wiau|

SOU0)Sa|IN

pouad 108lgng

uoissiwgng yoday |eul4

uonejuasald [elQ

JISIA SJaulwex] |eula)x]

uoleuasald Jeysod

Hoday wuau|

|[aued 19alold jeuiau|

Hoday ajM

swexg

UN2JID @yl 1se |

welboud 153] e e

YOd4 U] uonejuswa|dw|

ubisap jo uonenwIg

TAHA ul ubiseq@ oD

Buiwwesbold X3 TAHA

Buipeay punoibyorg

mmi H _wmimm_mm_&_om_mr

?F_t_@;m:ﬁ_i_ﬂ_

H _N;:_E_mim_h_o__m_q__m_m_;

| Jo | abed

._Ommmoo._n_o._o_E m_o_:.__m JO :O_“—m“—:m—.—._@_n_—t_ VOdHd

uej

d-aui] j09loid sinouoH bu3gg

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-11 -

Chapter 2: Implementation of PicoBlazeTM with I/0 ports interface Napier University Edinburgh

Chapter 2

Implementation of PicoBlaze™ with 1/0 ports interface

2.1. Introduction
This chapter descripts the PicoBlaze core and its features for the processor and how to

implement the microcontroller core in a Spartan-3 FPGA with parallel Inputs and Outputs
and interrupt service controller for external interrupt at /O pins. This chapter will cover all
the steps from the design of I/O ports VHDL code and set the Xilinx project navigator up

and make a C language test program for the I/O ports to test the system in hardware.

2.2. Background of PicoBlaze™
The PicoBlaze microcontroller is a compact core, making it possible to download free

version without IP license from Xilinx.com after registration of user. The microcontroller is
an embedded 8-bit RISC core optimized for the Spartan-3, Virtex-ll, and Virtex-Il Pro
FPGA families. The PicoBlaze microcontroller is optimized for efficiency and low
development cost. It occupies just 96 FPGA slices, or 12,5% of an XC3S50 FPGA, and
performs a respectable 44 to 100 million instructions per second (MIPS). For development
on the PicoBlaze microcontroller the tool named Xilinx project navigator version 6.3.03 is
used. This is a free software from Xilinx ready to download at Xilinx.com and makes it
possible to add I/O ports, serial UART, timer, etc. To make C language test software for
the microprocessor there are used two compilers one from Francesco Poderico’s named
PCCOMP, a DOS version, which compile the C language code to ASM code written in
notepad. The second compiler is from Xilinx and nhamed KCPSM3 which compile the ASM
code to VHDL and making it ready to download to the FPGA after complete compiling of

the project in the Xilinx project navigator.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-12 -

Chapter 2: Implementation of PicoBlazeTM with 1/0 ports interface Napier University Edinburgh

Features:

The block diagram in figure 2.1 show the PicoBlaze microcontrollers supports the following

features.?

16 byte-wide general-purpose data registers

1K instructions of programmable on-chip program store, automatically loaded during
FPGA configuration

Byte-wide Arithmetic Logic Unit (ALU) with CARRY and ZERO indicator flags
64-byte internal scratchpad RAM

256 input and 256 output ports for easy expansion and enhancement

Automatic 31-location CALL/RETURN stack

Predictable performance, always two clock cycles per instruction, up to 200 MHz or
100 MIPS in a Virtex-1l Pro FPGA

Fast interrupt response; worst-case 5 clock cycles

Optimized for Xilinx Spartan-3, Virtex-Il, and Virtex-l1l Pro FPGA architectures just 96
slices and 0.5 to 1 block RAM

Assembler, instruction-set simulator support

e ~ - ~ - ~ r N
3 z
c g >
Kx18 | | § 5 25 % 64-Byte - FORI_ID
Instruction €a M2 & Scratchpad RAM
PROM S ©3% —:>
S = = OUT_PORT
o O
\ J A \ 3
T
' Flags
f_]f'll:)SUUC_\éion Constants o Zero
ecoder
|__vecoder J Carry
—\ 1
INTERRUPT . i i A
16 Byte-Wide Registers i o d1
Enable SO | st | s2 [s3 peran >M‘U
s4 sb s6 s7
IN_PORT N - s8 s9 sA sB -
e A sC | sD [sE [sF] o o

J
‘_' Operand 2

Figure 2.1 — PicoBlaze embedded microcontroller Block Diagram

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-13 -

Chapter 2: Implementation of PicoBlazeTM with I/0 ports interface Napier University Edinburgh

2.3. Implementation of core and Parallel I/O with interrupts
The block diagram in figure 2.2 show the PicoBlaze connected with instruction ROM and

the 1/O interface for read and writes 8-bit's values (HEX 00 - FF) to the ports PO, P1, P3,
P4 and P5 and write 16-bit’'s addressed (HEX 0000 - FFFF) out to port 2 compared with
the purple I/O ports block and blue address decoder block at the BGEPB1 emulation 8051
peripherals block respectively in the diagram in figure 1.1 page 8. The system is created
with three external interrupt pins at port 1 to receive external interrupts from hardware,
example a keyboard switch or some other hardware inputs.

The PicoBlaze processor core communicate to the Input/Output Ports block (I/0O block) via
OUT_PORT which is an 8-bit data transmit out of the microcontroller in an internal pipeline
to the 1/0O block. To receive data the internal pipeline IN_PORT is used which receive 8-bit
data value from the I/O block. The PORT_ID is the port identity to chose the right channel

for read or write via the internal pipeline, it is possible to control up to 256 1/O ports.

Instruction ROM

PicoBlaze Core 1Kx18 Block
INSTRUCTION [17:0] | OUT[17:0]
ADDRESS [9:0] P ADDRESS[9:0]
OUT_PORT [7:0]
IN_PORT [7:0] |-
PORT ID [7:0]
WRITE_STROBE
READ_STROBE
Reset Input/Output Ports
——@—— RESET INTERRUPT
INTERRUPT_ACK — L1 Data_in_io [7:0] DataBusPO0 [7:0] «g—p»
Data_out_jo [7:0 P1[7:0] —p»
CLK P ID_jo [7:0 AddBus P2 [15:0] «g—»
9 P3 [7:0] |-a—p»
WE_io P4 [7:0] |-
RE_io PS5 [7:0] |-t
Reset_jo
—
INTERRUPT P1.0 EX0 -—
INTERRUPT_ACK P1.1 EX1 ¢—
P1.2 EX2 -—

Figure 2.2 — Block diagram over 1/O interface

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-14 -

Chapter 2: Implementation of PicoBlazeTM with 1/0 ports interface Napier University Edinburgh

2.5. VHDL code for the I/O Ports interface
The VHDL code is program in Xilinx project navigator, made from the BGEPB1 Special

Function Register (SFR) shown in the requirement specifications in chapter 1.4 table 1.1 at
page 9. The complete code is shown in appendix A page 50, under this text there are a

cut-out of the reset routines from the 1/O interface code.

Reset to standard value:
This code show the value of the I/O ports after reset where all ports will be set to high

impedance level or synthesizable tri-state buffer. The Address bus is set to Hexadecimal
0000 this means the address bus will point on the memory at address 0, the maximum

size of addressable memory will be 2'® = 65336 or 64Kbyte.

113 begin

114 process
115 begin
116

117 wait until (CLK io'event and CLK
118 X0 int <= Port 3 io(0); -- Read
119 it
120
121
122
123
124
125
126
127
128
129 if (Reset io='l"') then
130 -- PORTS level
331 Port 0 io <= "ZZZZZZZZ"; == Set
132 Port 1 io <= "ZZZZZZZZ"; =
133 Port 2 io <= X"0000"; =
134 Port 3 io <= "ZZZZZZZZ"; =
135 Port 4 lo <= WZZZZZZZZ"; -
136 Port 5 io <= "ZZZZZ222"; -

io="1");

T

arter reset

Figure 2.3 — VHDL code for reset data value for I/O interface to default.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-15 -

Chapter 2: Implementation of PicoBlazeTM with 1/0 ports interface Napier University Edinburgh

Write and Read to I/O ports:
The I/O interface code looks at the Read- or Write-enable input and the ID input and uses

Data-in and Data-out for transmit and receive data from this unit. As an example for
transmit data to Port O also called DataBus, the programe uses the ID named (ID_io) HEX
01, the Write Enable named (WE_io) and the Data in named (Data_in_io) to write to Port
0. When the statement is true the processor will transmit the data value out on port 0. For
receive data from Port O it is necessary to send a Read Enable named (RE_io) and the
processor can read the value. The same in force for Port 1, Port 3, Port 4 and Port 5 but
Port 2 is different because this is a 16-bit Address bus for sending data to this port it is
necessary to send the data in two parts. First the low byte and second the high byte using

the ID HEX 3 and HEX 04. This port can only transmit data and not receive anyone.

T e S I AT S I
167 ——

168 == -

169 - d

170 -- i

171 -= co set the

1712 i S s, et e it B RS - iiain -4
173 o Port 0 I/0 - SFR PO, HEX 01 DataBus

174 elsif (WE io = 'l' and ID io = X"01") then

175 Port_0_io <= Data_in_io; -- Send data from Microcon ;

176 elsif (RE io = 'l' and ID io = X"01"} then

17T Data out io <= Port 0 ic;-- Send data from I

178 iy = Port 1 I/0 - SFR Pl, HEX 02

179 elsif (WE io = '1'" and ID io = X"02") then

180 Port 1 io <= Data_in_io; -- Send data from Micr 1 r
181 elsif (RE_ic = '1l' and ID io = X"02") t

182 Data_out_io <= Port_1 io;-- Send de

183 = Port 2 I/0 — SFR P2, HEX 03 Address B Low and HEX

184 elsif (WE io = '1l' and ID io = X"03") then

185 Port 2 io(7 DOWNTO 0) <= Data in io(7 DOWNTO 0); -- Send low byte to Por
186 elsif(WE io = '1l'" and ID io = X"04") then

187 Port 2 io(15 DOWNTO 8) <= Data_in _io(7 DOWNTO 0);-- Send high byte to Port
188 -- Port 3 I/0 - SFR P3, HEX 05

189 elsif (WE io = '1' and ID io = X"05") then

190 Port 3 io <= Data_in io; -- Send data from Mi

191 elsif (RE io = '"l' and ID io = X"05") then

182 Data out _io <= Port_3 io;-- Send data from Port 3 to Microcontroller
193 == Pcrt 4 I1/0 - SFR P4, HEX 06

194 olsif (WE_io = '1' and ID io = X"06") then

195 Port 4 io <= Data in io; -- Send data from Mi =

196 elsif (RE io = 'l' and ID io = X"06") then

197 Data_out_io <= Port_4 io;-- Send data fronm

198 - Pcrt 5 I/O - SFR PS5, HEX 07

199 elsif (WE io = '1' and ID io = X"07") then

200 Port 5 io <= Data in io; -- Send data from Microcontrc

201 elsif (RE io = 'l' and ID io = X"07"} then

202 Data out io <= Port 5 io;-- Send data fron ort 5 t

Figure 2.4 — VHDL code for Transmit and Receive data to I/O interface.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-16 -

Chapter 2: Implementation of PicoBlazeTM with 1/0 ports interface Napier University Edinburgh

Interrupt System:
The Interrupt system is used to control the external and internal interrupts build up after

the principle from the 8051 microcontroller standard. The register is modified and there are
used different Special Function Register (SFR) value compared with an 8051.

In figure 2.5 and 2.6 are the Interrupt Enable register IENO and IEN1 shown in this register
it is possibility to activate and deactivate interrupts only the Watch Dog Timer (WDT) is not
possible to disable after the enable. The Enable All (EA) enables all interrupts or disables

all interrupts.

IENO
EA WDT ET2 ET1 ETO EX2 EX1 EXO0

Figure 2.5 — Special Function Register IEN(0

Bit Function
EX0 Enables or disables external interrupt 0.

If EXO = 0, external interrupt 0 is disabled.
EX1 Enables or disables external interrupt 1.

If EX1 =0, external interrupt 1 is disabled.
EX2 Enables or disables external interrupt 2.

If EX2 = 0, external interrupt 2 is disabled.
ETO Enables or disables the timer 0 overflow interrupt.

If ETO = 0, the timer 0O interrupt is disabled.
ET1 Enables or disables the timer 1 overflow interrupt.

If ET1 = 0, the timer 1 interrupt is disabled.
ET2 Enables or disables the timer 2 overflow interrupt.

If ET2 = 0, the timer 2 interrupt is disabled. (This bit is not used in this version)
WDT Enables the Watch Dog Timer overflow interrupt.

If WDT = 1, the timer is activate and can not disables with out hardware reset.
EA Enables or disables all interrupts. If EA = 0, no interrupt will be acknowledged.

If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable

bit.

Table 2.1 — List over Special Function Register IEN0
IEN1
ECO ESO
Figure 2.6 — Special Function Register IEN1

Bit Function
ESO Enables or disables Serial interrupt 0.

If ESO = 0, Serial interrupt 0 is disabled.

ECO Enables or disables CAN-BUS interrupt O.
If ECO = 0, CAN-BUS interrupt 0 is disabled.

Table 2.2 — List over Special Function Register IEN1

Note: The hatch last six bits is reserve for next version.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-17 -

Chapter 2: Implementation of PicoBlazeTM with 1/0 ports interface Napier University Edinburgh

The Interrupt Service Control (ISCO) HEX OE sets a flag in this register. If an interrupt is
activate it will be controlled by hardware. The flag is read and cleared by software in the

Interrupt Service Routine it is cleared bitwise in the ISCO Special Function Register show

in figure 2.7.
ISCO
ICO IS0 IT2 IT1 ITO IX2 IX1 IX0
Figure 2.7 — Special Function Register ISC0
Bit Function

X0 Read FLAG for external Interrupt 0
If IXO = 1, external interrupt O is set.
Clear the FLAG in Interrupt service routine with set bit 1X0 to 0.

X1 Read FLAG for external Interrupt 1
If IX1 =1, external interrupt 1 is set.
Clear the FLAG in Interrupt Service Routine with set bit IX1 to 0.

IX2 Read FLAG for external Interrupt 2
If IX2 = 1, external interrupt 2 is set.
Clear the FLAG in Interrupt Service Routine with set bit IX2 to 0.

ITO Read FLAG for Timer 0 overflow Interrupt.
If ITO =1, Timer O overflow Interrupt is set.
Clear the FLAG in Interrupt Service Routine with set bit ITO to 0.

IT™ Read FLAG for Timer 1 overflow Interrupt.
If IT1 =1, Timer 1 overflow Interrupt is set.
Clear the FLAG in Interrupt Service Routine with set bit IT1 to 0.

IT2 Read FLAG for Timer 2 overflow Interrupt.

If IT2 =1, Timer 2 overflow Interrupt is set.

Clear the FLAG in Interrupt Service Routine with set bit IT2 to 0.
(This bit is not used in this version)

IS0 Read FLAG for external Interrupt 2
If IX2 = 1, external interrupt 2 is set.
Clear the FLAG in Interrupt Service Routine with set bit IX2 to 0.

ICO Read FLAG for external Interrupt 2
If IX2 = 1, external interrupt 2 is set.
Clear the FLAG in Interrupt Service Routine with set bit IX2 to 0.

Table 2.3 — List over Special Function Register ISC0

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-18 -

Chapter 2: Implementation of PicoBlazeTM with 1I/0 ports interface Napier University Edinburgh

The VHDL code for the Interrupt System and handling of external interrupts is show in
figure 2.8 under this text, to enable interrupts it is necessary at write to SFR HEX 0C
named IENO where EA (Enable All) activates the MSB and the interrupts which are
needed, example EXO and the value to the register will be HEX 81 to set MSB and LSB.
When there receives a interrupt on EXO the function in line 318 set a flag in the Interrupt

service control register the PicoBlaze read the flag and clear the afterwards.

273

274

275

276

2717

278

279

280

281

282

283

284

285 elsif(WE ic = '1'" and ID io = X"0C") then

286 EA_int <= Data_in io(?}, -— Activate or

287 == WDT int D i 2 OX

288 — ETZ int <= D 10

289 ET1 mt <= Data in io(4);

290 ET0 int <= Data in io(3):

291 EX2_int <= Data_in_io(2); 2

292 EX1 int <= Data in io({l): E or ¢ t n pt 1

293 EX0_int <= Data_in_io(0); Act ate or c ivate Lx:urja_ Interrupt 0

294 o INTERRUPT BLES - SFR IEN1,)

295 e

296 o | X | X X X X - | ECO ESO

297 == e e e e e

298 elsif (WE io = 'l' and ID io = X"(0D") then

299 - ECO int <= Data in io(1): —-— Bctix

300 ES0_int <= Data_ln_lo(O) -- Act

301

302 ==

303 =

304 --

305 =

306 elsif(WE ioc = '1l' and ID ic = X"QE"

307 ICO_int <= Data_in_io(7}; -- CI

308 ISO_int <= Data_in_io(6); -- CI

309 IT2 int <= Data in 10{5) 8

310 IT1 int <= Data in “io(4);

311 ITO int <= Data_in io(3);

312 IX2 int <= Data_in io(2);

313 I¥1 int <= Data in io(l);

314 IX0_int <= Data_in_io(0); Inte

315 elsif(RE_ic = 'l' and ID_io = X"OE")} then

316 Data_out_io <= (ICO_int & ISO_int & IT2 int & ITl_int & ITO_int & IX2 int & IX
1 int & IX0 int);

317 s External Interrupt Service Routine

318 elsif (EXO_int='l' and IX0_int='0' and X0_int='l' and EA_int='l"') then

319 IX0 int <= '1"'; -- Set Interrupt FLAG

320 Interrupt ic <= '1'; -- 5 1terrupt to PicoBlaze

321 elsif (EX1 int='l' and IX1_ 1nt—'0' and Xl_int='1' and EA_int='1l") then

322 IX1 int <= '1'; = o) 3

323 Interrupt ioc <= '1"'; Senc te PicoBlaze

324 elsif (EX2 int='l' and IXZ_in‘-'O' and X2 1nt-'1' and EA_int='l"') then

325 IX2 int <= '1'; FLAG

326 Interrupt_ioc <= 'l'; t to PicoBlaze

Figure 2.8 — VHDL code for Interrupt System and external interrupts.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-19-

Chapter 2: Implementation of PicoBlazeTM with 1/0 ports interface Napier University Edinburgh

2.6. Test software in C code
This part describes and gives an example on a C code test program which is to test the

communication between the C code language software and the Hardware description
language. This is to test the ports for receiving and transmitting data and the interrupt
request system. The C test program is written in Notepad and named prog_rom.c. The
code is compiled by the PicoBlaze C Compiler PCCOMP alpha version 1.7.3 which is
running in a DOS shell. The Program starts including the Spartan3.h file there is a part of
the C compilers advanced function as read and write to I/O ports to use this function
named OUTCHAR and INCHAR. The second file Included is the file named BGEPB1.h
and this is the option file for the VHDL interface for the microcontroller (Special Function

Register) for 1/0 ports and interrupts service shown in appendix B page 55.

[P 10_Ports - Notepad Y] [
File Edit Format Misw Help
/ AR TR TR TR TR TR TR TR TR TR R T TR T TR T TR T T T TR R PR T T T R TR R TR R T TR R R R R T R R R R TR TR TR R R TR R R R TR T TR ‘I

SAHCOPYRIGHT : BEMIAMIN GRYDEHOE] — www.BG-ELEKTROMIK.DK - 2006 - TEST PROGRAM ¥

/ L T T R L R Rl R R T ol

S author: Benjamin Grydehoe]

S Create the: 4th Fehruary, 2006

S/ Last update the: ld4th april, 2008

S File: prom_rom. C

S Target Hardware: x11inx Spartan3 - ®C35200

s Tool chain: Motepad - microsoft version 5.1

S/ Compiler: PCCOMP alpha 1.7.3 by Francesco Poderico
S wersion: 1.0.4

S

S Test program for PicoBlaze (BGEPEL) MicroController.

S The program test the I 0 ports and the Interrupt register.
/‘/urwwwwuwwwwuwwwwu\erwwwuwwwwuwwwwu\erwwwuwwwwuwwwwunerwwwuwwwwuwwwwuwwwwuwwwwuwwwwuww
#include "1ib\spartan3.h" A4 Include PicoBlaze C compiler PCCOMP functions
#include "BGEPEL.hR" A4 Include BGEPS1 controller options (SFR)

S add new wariables for test program
unsigned char port_testl;

unsigned char port_testZ;

unsigned char Interrupt_wvalue;

wioid mainCwoid

outchar (IEND, 0OxB81); A4 Set Enable A1l and external interrupt O

outchar(IsC0, Ox00); A4 Clear the Interrupt Service Control Register

port_testl = 0; A4 set variable port_test 1 to zero

port_testZ = 0; A4 set wariable port_test 2 to zero
¥h11e(1)

port_test? = port_test2 + 1; /4 add one to the variable port_test 2

port_testl = inchar(pP3); A4 Read HEx walue on port 3 (s1ide switch 0 - 7 on Board) to wariable.
outcharfp2L, Ox017; S send HEx walue 01 to the Tow byte of the addressBus
outchar(P2H, 0x02); A4 send HEx walue 02 to the high byte of the AddressBus

outchar (PO, port_testl); A4 write wvariable port_testl walue there are the input from port O
outchar(pl, oxff; S5 write HEX walue FF To Port 1

outchar(Ps, port_testz]; A4 write wariable port_test2 walue to port 5§

Interrupt_value = inchar{Isco); // Read the interrupt value from ISCO register and save it din the
SS wariable interrupt walue.

if(Interrupt_wvalue == 0x01) If the Interrupt value is egual to HEX 01 (External interrupt 0)

outchar (P4, port_testl); SAwrdte the sTide switch walue to Port 4 for test.

4] A
Figure 2.9 — C code for Test of I/O ports and Interrupt System.

The Interrupt service control flag is just test with an IF statement which looks on the flag
and send the value to port 5 if the flag is set. The reason that there is not used interrupt
service routine in the test program is due to some problems with this function giving

compiler errors when using the example from Francesco Poderico.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-20 -

Chapter 2: Implementation of PicoBlazeTM with 1/0 ports interface Napier University Edinburgh

2.7. Simulation
The VHDL code for the BGEPB1 system and the C-code test program at page 20 is

simulated in ModelSim with a view on Inputs and outputs which are accessed via the
FPGA connections. Read more about this option for the test bench simulation in chapter
7.3 at page 45.

After reset of the FPGA the system will be initialized and will read and write to the ports as
shown in figure 2.10, It is not possible to see the clock cycle in the simulation because one
clock cycle is only 20nS and the simulation is shown from 0 to 25uS. after 4uS are the first
data write out to the 16-bit address bus and afterwards the other ports will be written out
after the structure in the code. Port 5 counts up, shown in the bottom of the simulation, and

it will take only 6uS for each addition to the port.

Figure 2.10 — Simulation of the program in ModelSim

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-21 -

Chapter 2: Implementation of PicoBlazeTM with 1/0 ports interface Napier University Edinburgh

2.8. Test and result
The practical test is done with a logic analyzer as in this example it is connected to port 4

and 5. Port 4 is the values send in from port 3 in this case the slide switch on the
development board is set to HEX 55 and port 5 is run as a counter, counting up. Figure
2.11 shows the screenshot from the data analyzer program which has been used to check

the output from the FPGA measurement on the development board. The port connection

of the FPGA is shown in appendix C page 56.

i3 Antl6 - 16-bit Logic Analyzer
File Analyzer Yiew Help

s HE aaa | gd ? B
1 Module Sample Clock Speed Trigger Position (50%) Trigger Type Threshald

|RLEUE":“:)1 ﬂ | EHE=2(1u8)j (" Fattern i Edge @ Advanced 1.5 j

todule Select:
This selection box shows all the modules detected on the PC. Itis updated every 10 seconds.
lfthere is mare than one module you can selectthe module to use

; 1.024 960 896 832 768 704 640 570 512 445 384 320
P-1 P Wire Name C”'Cm{" |m|8{|u|8|{lusl{lusl(|US|{|US|{|U|S|{|US|{|US|(|US|{|US|{|U|S|

Port 4.0
Part 4.1
Part4.2
Paort 4.3
Part 4.4
Part 4.5
Part 4.6
Part 4.7
Paort5.0
Part5.1
Paortb.2
Paortb.3
Paort5.4
Paortb.5
Paort5.6

1
Por67 I | t

C0=-1.0011ms C1 =-346us Difference = Bi5us (= 1,50376 KHz)

Waveforms | Advanced Triggering

FL2UBRDT is an Ant1 Module |done Fins: 153IIE 3T 77 2770 X

1 et

o|lo|lo|lo|lo|lo|lo|lo|leo|=|la|=|lo|=|o|—

-

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-22 -

Chapter 3: Implementation of serial UART Napier University Edinburgh

Chapter 3:

Implementation of serial UART

3.1. Introduction
This chapter describes the option for the serial UART transmitter and Receiver Macros

development by the company Ken Chapman, Xilinx Ltd. The macros package is created to
run on following FPGA’S, Virtex, Virtex-E, Virtex-1l, Spartan-Il and Spartan-3. The macros
provide the functionality of a simple UART transmitter and simple UART received each
with the fixed characteristics of 1 start bit, 8 data bits (serially transmitted and received
least significant bit first), No Parity and 1 stop bit.®! This option makes it possible to
communicate with a PC using a standard configuration the only thing needed setup for
running the communication successfully is the Baud Rate timing which has been made

adjustable in the SFR Register for the BGEPB1 microcontroller option.

Specification:
The standard baud rate the UART runs with is from 9600 and can support up to 115200.

The serial UART operates after the standard with asynchronous receiver and transmitter
that means the transmitter and receiver is not synchronised. The Serial UART contains an
embedded 16 byte FIFO (First In First Out) buffer which just looks at the total size of data
received or transmitted. The serial UART block diagrams for RX and TX is show in figure
3.1

UART_TX UART_RX
8-bit . i 8-bit
Serial Serial
16 Byte . , 16 Byte
) T > pt | RX puf 0B
FIFO Buffer [| ™| FIFO Buffer
18 Slices 22 Slices

Figure 3.1 — Serial UART block diagrams.
The data is transmitted serially, LSB first, and given a bit rate from the BAUD rate. Since
the transmitter can start sending this data at any time, the receiver needs a method of
identifying when the first (LSB) is being sent. This is done with sending a Start bit as an

active low start signal for the duration of one bit.

| sart| a0 a1 [a2 a3 [a4 |as [d6 | a7 | Swop Start

The receiver uses the falling edge from the Start bit to indicate that a new byte is ready to
be received. After the last data bit MSB is received check to see if the transmitted stop bit

is high as expected in the confirmation for the UART.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-23-

Chapter 3: Implementation of serial UART Napier University Edinburgh

3.2. Implementation of serial UART
The block diagram in figure 3.2 show the implementation of the serial UART connected via

the 1/O interface block controlling the option of Special Function Register for serial data
speed “BAUD rate” using the register named TLBS and THBS. The serial interrupt for

receiving data plus the serial status register flag (SCON) which looks on the buffer status.

Instruction ROM
PicoBlaze Core 1Kx18 Block
INSTRUCTION [17:0] |t OUT[17:0]
ADDRESS [9:0] ADDRESS[9:0]
OUT_PORT [7:0]
IN_PORT [7:0] |-
PORT_ID [7:0]
WRITE_STROBE
READ_STROBE
Reset Input/Output Ports
——@—— RESET INTERRUPT
INTERRUPT_ACK —— Data_in_io [7:0] DataBusPO [7:0] |«af—»
Data_out_io [7:0] P1[7:0] —p»
ID_io [7:0] AddBus P2 [15:0] «g—p»
CLK
P3 [7:0] |—p
P4 [7:0] wt—P»-
P5 [7:0] -g—>
WE_io
RE_io
Reset_io
P1.0 EX0 ¢—
INTERRUPT P1.1 EX1 @—
INTERRUPT_ACK P1.2 EX2 @—
UART TX
Reset_buffer Data_in [7:0] |« Data_to_uart [7:0]
write_buffer Write_to_uart
. tx_buffer_full TBF_uart
_Serial
< tx_buffer_half_full TBH_uart
TX
UART RX
Reset_buffer Data_out [7:0] Data_from_uart [7:0]
. read_buffer Read_from_uart
Serial
T» buffer_data_present Rx_data_present
rx_buffer_full RBF_uart
rx_buffer_half_full RBH_uart

Figure 3.2 — Block diagram with TX and RX UART.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-4 -

Chapter 3: Implementation of serial UART Napier University Edinburgh

Read and write to UART:
The Serial UART communicates via the serial buffer for transmitting and receiving data

named Serial Buffer “SBUF” and this is control by the SFR value HEX 08. For transmitting
data via TX UART and receiving data via RX UART will the SFR value 08 be activated via
the C-language program that writes or reads via SBUF. The VHDL code there interface

this are showed in line 216 to 222 in figure 3.3.

207
208
209

211
212

SBEUF Read and write to Comport - SFR: S r H
elsif(WE io = '1l' and ID io = X"08") then
write to uart <= WE io; -- E
218 data_to uart <= Data_in_io; e
219 -='the R
220 elsif(RE io = '1' and ID io = X"08") then
221 read from uart <= RE io; -— E
222 Data out_io <= data_ from uart; -- R

224 - Timer Baud rate serial, low byte - SFR TL

225 elsif(WE_io = '1' and ID_io = X"09") then --
226 TBS_uart (7 DOWNTO 0) <= Data_in_io; -- ¢
227 --
228 - Timer Baud rate serial, high byte - SFR TH
229 elsif(RE_ioc = '1' and ID_io = X"OA") then
230 TBS_uart (15 DOWNTO 8) <= Data_in_io;--
231

-— C 2] C >1 jister
239 Data out io <= ("000" & BDP uart & RBH uart & RBF uart & TBH uart & TBF uart});

241 -- Serial Interrupt h g
242 elsif (ES0 int='1l'" and IS0 int='0' and rx data_present='l' and EA_int='l"') then
243 IS0 int <= '1'; -- Set Serial Interrupt FLAG

Figure 3.3 — VHDL code for Serial interface of UART

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-25-

Chapter 3: Implementation of serial UART Napier University Edinburgh

BAUD Rate Timing:
The baud rate timer is a 16-bit timer that is controlled by a low and high byte send to the

SFR register, via the Timer Low byte Baud rate Serial “TLBS” and Timer High byte Baud
rate Serial “THBS”. The baud rate is calculate out from the clock frequency on the FPGA

board in this example the board is running with 50MHz and the baud rate is set to 9600Hz.

Calculation of value for BAUD Rate Timer:

Clock _ frequency ~ 50,000,000Hz
(16-BAUD RATE) (16-9600Hz)

Timer value = =325.52 =326

The nearest integer is 326 this will in excess of the required tolerance equivalent baud rate
of 9586Hz which is just 0.15%. Anything within 1% is really going to work as it allows for
inaccurate clock rates and really poor switching in the serial lines. The HEX value for the
baud rate timer will be HEX 0146 the low byte 0x46 and the high byte 0x01. This value is
also the standard settings with reset of the system until there is reloaded a new value to

the system via the special function register.

Calculation of the most common used baud rates with PC communication used on a FPGA

with a clock frequency at 50MHz:

BAUD Rate: Value in Integer: \ Value in HEX: Tolerance:
9600 325.52 326 0146 0.147%
19200 162.76 163 00A3 0.147%
38400 81.38 81 0051 0.469%
57600 54.25 54 0036 0.469%
115200 27.12 27 001B 0.469%

Table 3.1 — List over standard BAUD Rate used in a FPGA there run with a frequency at SOMHz.

The HEX value for the baud rate timer is loaded via SFR value HEX 09 for the Low byte
and OA for the high byte. The value is loaded to the TBS_uart variable in the VHDL code
show in figure 3.3 from line 224 to line 230 at Page 25. The baud rate timer counter code

in VHDL is showed in figure 3.4 at page 27.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-26 -

Chapter 3: Implementation of serial UART Napier University Edinburgh

289 it i -t < i - e
290 o e

291 —
292 -— a i é
293 - 9600 baud (bit per sec.)

295 baud timer: process(clk)

296 begin

297 if clk'event and clk='1"' then -- Wait
298 if baud count = TBS uart then--
299 baud count <= 0; -= If] s true wil e baud count b
300 en 16 x baud <= '1'; -- to zero and enable en 16 x baud with a
301 else

302 baud count <= baud count + 1; It
303 en 16 x baud <= '0'; -- ad
304 end if; -- di
305 -
306 en

A

- .
na 1Ii;

process baud_timer;

oo

Figure 3.4 — VHDL code for Serial UART timer

Serial Status Register:
The serial status register sets flag for the TX/RT buffer and for the BDP flag for new

receive data in the RX buffer. The explanation of the flag function is shoved in table 3.2.

SCON
X X X BDP RBH RBF TBH TBF
Figure 3.5 — Special Function Register SCON.
Bit Function

TBF Read FLAG Transmission Buffer Full there is set by hardware in TX UART.

If TBF = 1, Flag Transmission Buffer Full is set.

When the 16-byte FIFO buffer is full, this output becomes active HIGH. The host system should
not attempt to write any new data until the serial transmission has been able to create a space.
Any attempt to write data will mean that the new data is ignored.

TBH Read FLAG Transmission Buffer Half full there is set by hardware in TX UART.

If TBH = 1, Flag Transmission Buffer Half full is set.

When the 16-byte FIFO buffer holds eight or more bytes of data waiting to be transmitted, this
output becomes active HIGH. This is a useful indication to the host system that the FIFO buffer is
approaching a full condition, and that it would be wise to reduce the rate at which new data is
being written to the macro.

RBF Read FLAG Receiving Buffer Full there is set by hardware in RX UART.

If RBF = 1, Flag Receiving Buffer Full is set.

When the 16-byte FIFO buffer is full, this output becomes active HIGH. The host system should
rapidly respond to this condition by reading some data from the buffer so that further serial data is
not lost.

RBH Read FLAG Receiving Buffer Half full there is set by hardware in TX UART.

If RBH = 1, Flag Receiving Buffer Half full is set.

When the 16-byte FIFO buffer holds eight or more bytes of data waiting to be read, this output
becomes active HIGH. This is a useful indication to the host system that the FIFO buffer is
approaching a full condition, and that it would be wise to read some data in the very near future.

BDP Read FLAG for Receiving Buffer Data Present.

If BDP = 1, Receiving Buffer Data Present is set.

When the internal buffer contains one or more bytes of received data this signal will become active
HIGH and valid data will be available to read

Table 3.2 — List over Special Function Register SCON

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-27 -

Chapter 3: Implementation of serial UART Napier University Edinburgh

3.3. Simulation
The simulation is made out form the test program in figure 3.6 which sends serial data out

onto the comport with a baud rate at 115200 after having received a ASCI value ‘s’ from
e.g. a computer using the HyperTerminal. The value ‘s’ starts the transmission and the
program sends the value “HEY” to the computer via serial communication. With help from
P4 and P5 it is possible to watch the Interrupt status and the buffer status. The program is
tested in ModelSim but it is not easy to show on paper because the transmission occurs

over a lot of clock cycles and will not give much sense.
1ol

File Edit Format VYiew Help

V}‘W\h"\h’V-(V-l"\h’1-4'V-('\h'WV-(\h"\h’V-(V-l"\h’1-4'V-('\h'WV-(\h"\h’V-(V-l"\h’1-4'V-('\h'WV-(\h"\h’V-(V-l"\h’1-4'V-('\h'WV-(\h"\h’V-(V-l"\h’1-4'V-('\h'WV-(\h"\h’V-(WHWWHWWWHWWHWWHWWWHWWHWW ‘I

L/ /UCOPYRIGHT : BENJIAMIN GRYDEHOE] - Www.BG-ELEKTRONIK.DK - 2006 - TEST PROGRAM ¥

}ffw\h"\h’V-(V-l"\h’1-4'V-('\h'WV-(\h"\h’V-(V-l"\h’1-4'V-('\h'WV-(\h"\h’V-(V-l"\h’1-4'V-('\h'WV-(\h"\h’V-(V-l"\h’1-4'V-('\h'WV-(\h"\h’V-(V-l"\h’1-4'V-('\h'WV-(\h"\h’V-(WHWWHWWWHWWHWWHWWWHWWHWW

A author: Benjamin Grydehoe]

S/ Create the: 4th February, 2006

7 Last update the: 14th april, 20086

S File: prom_ram. C

7 Target Hardware: xilinx Spartan3 - XC335200

S/ TooTl chain: Notepad - Microsoft version 5.1

A4 Compiler: poCcomMP alpha 1.7.3 by Francesco Poderico
§§ varsion: 1.0.4

S Test program Tor PicoBlaze (BGEPELl) MicrocController.
The program test the Serial port with receive and transmit.

R Rl R T R Tl R T O T R R T R O Tl R R T R T R T T R R R R R TR R TR R R T TR R T
#include “Tib%wspartan3.h" A4 Include PicoBlaze C compiler PCCoMP functions
#include "BGEPEL.h" A4 Include BGEPSL controller options (SFR)

S/ add new variables for test program
unsigned char serial_value;
unsigned char Interrupt_status;
unsigned char buffer_status;
woid mainOwoid)
A4 set baud rate to 115200Hz

outchar(THES, 0x00); /f/ Set High byte for timer baud rate

outchar(TLES, 0x1B); /7 Set Low byte for timer baud rate

outchar (IEND, Ox80); // set Enable ATl Interrupt

outchar (IEM1, Ox01l); // activate serial Interrupt

while(l)

serial_wvalue = inchar{sBUF);// Read wvalue from sSerial buffer
ifizerial_wvalue == 0x73) A4 I serial walue equal to 's' {start)

outchar (SEUF,
outchar {sBUF,

' A7 Print "HEY" to the serial port
outchar{sBUF, ¥

H'D
E'D)

J
g =

Interrupt_statu inchar IsC0); A4 Rread Interrupt Tlag
buffer_status inchar CSCoM); A4 read Buffer status
outchar(P4, Interrupt_status); A4 wWrite Interrupt Flag to P4
outchar(Ps, buffer_status); A4 write buffer status to PS
T
} -
< A

Figure 3.6 — Test program for serial UART

3.4. Test and result

In practical the HyperTerminal is used, as shown in EREETarar ol %]
File Edit Wiew Call Transfer Hel

figure 3.7, to transmit and receive the test data. For SRR P

watching the Interrupt flag and the buffer status the 3

HEY_
data analyzer is connected to port 4 and port 5. =
. . . —I-_" '
The Serial UART is tested with success. |Comnected 0:00:46 [outo detect [115z00E M1

Figure 3.7 — HyperTerminal

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-28 -

Chapter 4: Implementation of Timers Napier University Edinburgh

Chapter 4:

Implementation of Timers

4.1. Introduction
This chapter describes the two implemented timers in the BGEPB1 the Timer 0 which is an

8-bit timer and Timer 1 which is a 16-bit timer. Both timers work as the count up with the
clock frequency, the timer interval depend on the clock frequency. It is possible to start and
stop the timer from the SFR named TCON and read the timer status in the same register
with look on timer flag to check the timer is running. The interrupt service routine can be
active with the register IENO shown in chapter 2, I/0O ports interface at page 17 with use of
the interrupt enable ETO and ET1. The register ISCO from same chapter page 18 uses
Interrupt Service Control to clear the Interrupt in the C code program and when the timer is
equal to the set timer value it will activate the Interrupt and the C code program will be
enable to response to the interrupt and after end reading the C code program will be
enable to clear the interrupt and continue. The timer value is set by a timer register and will

be reloaded every time there sends a new value to this register.

4.2. Implementation of Timers
The Timers is implemented in the block named Input/Output ports in the block diagram

shown in chapter 3 at page 14 in figure 3.2 for communicate with the SFR to set timer
value, start/stop timer and the Interrupt service control register. After system reset on the
FPGA the timers will default be set to maximum value this will say the 8-bit timer is set to
HEX FF or integer 255 and the 16-bit timer is set to HEX FFFF or integer 65535. Both

timer will be stop after reset and shall starts via the TCON register.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-29 .

Chapter 4: Implementation of Timers Napier University Edinburgh

The VHDL code in figure 4.1 show the option of the timer service control register made
after the same method in chapter 2 for the interrupt control. Where the looks on the

incoming register value and do option out from that.

299

300

301

302

303

304

305

306

307

308 elsif (WE io = '1' and ID io = X"OF") then =

309

310 TRO timer <= Data in io(0); th 1 L 1
3. TR1_timer <= Data_in_io(2); ith oy
312 elsif(RE ioc = 'l1l' and ID io = X"QOF") then 1 tim
313 B on !

314 Data out_io <= ("0000" & TFl timer & TRl timer & TFO_timer & TRO_timer);
315

316 ot Timer Count 0 - TCO

317 elsif (WE _io = = X"10") then -- Relcad new wvalue to timer 0
318 TCO timer <=

319 e Timer Count 1 - TCI 11 and TCH1 HEX 12

320 elsif(WE io = 'l1l' and ID io = X"11") then -- Re ne Timer 2
321 TC1l timer (7 DOWNTC 0) <= Data in io; -- Set

322 elsif(WE io = '1l' and ID io = X"12") then

323 TCl timer (15 DOWNTO 8) <= Data_in_ io; -— Set the high byte

324

325 i Timer Interrupt Service Routine

326 elsif (ETO int='1l' and TFO0 timer='l' and ITO0 int='0' and EA int='l') then
327 ITO int <= '1'; -— Set T r 0 Interru G

328 Interrupt io <= 'l1'; -- d errupt to z

329 elsif (ET1 int='1l' and TFl timer='1l' and IT1 int='0' and EA int='l') then
330 ITL int <= V]T; -- Set Timer 1 Interrupt FLAG

331 Interrupt_ioc <= 'l'; -- Send Interrupt to PicoBlaze

Figure 4.1 — VHDL code for Timer control.

The VHDL code in figure 4.2 shows the code for the counter used for timer 0. The code for
timer 1 is exactly the same code the only difference between them is the use other
variable names and the variable TCO there is a 8 bit value for timer O and the variable TC1

is a 16 bit value for Timer 1.

307

308

309

310

311

312 Timer0_control: process (clk)

313 begin

314 if (clk'event and clk='l' and TRO0='1l') then -- Wai
315 if Timer0 = TCO then -—
316 Timer0 <= 0;

317 TFO <= '1';

318 else

319 Timer0 <= Timer0 + 1;

320 TFO <= '0';

321 end if;

322 end if;

323 end process Timer0 control;

Figure 4.2 — VHDL code for the Timer 0 Counter

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-30 -

Chapter 4: Implementation of Timers Napier University Edinburgh

Timer Register:
The timer register is built for controlling the Timer 0, Timer 1 and Timer 2. The timer 2 is

not activated in version BGEPB1 but there is reserved space in the register for timer 2 to
later version update. The register TR0, TR1 and TR2 Is for start timer to run with an active
one and the TFO, TF1 and TF2 is timer flag which will be set when the timer is running out,
this is equal to the set timer value and uses the flag for activate the interrupt too. In figure

4.3 is the Timer Service Control Register TCON shown.

TCON
X X TF2 TR2 TF1 TR1 TFO TRO
Figure 4.3 — Timer Service Control Register TCON.
Bit Function

TRO Enable Timer Run 0 to start counting
If TRO = 1, The Timer O will Rune.

TFO Read FLAG for Timer O
If TFO = 1, The Timer 0 is just count out.
The FLAG will be set and clear by Hardware.

TR1 Enable Timer Run 1 to start counting
If TR1 =1, The Timer 1 will Rune.

TF1 Read FLAG for Timer 1
If TF1 =1, The Timer 1 is just count out.
The FLAG will be set and clear by Hardware.

TR2 Enable Timer Run 2 to start counting
If TR2 = 1, The Timer 2 will Rune. (This bit is not used in this version)

TF2 Read FLAG for Timer 2
If TF2 =1, The Timer 2 is just count out.
The FLAG will be set and clear by Hardware. (This bit is not used in this version)

Table 4.1 — List over Special Function Register TCON.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-31-

Chapter 4: Implementation of Timers Napier University Edinburgh

Calculation of timer value:
The timing depends on the clock frequency and in this case the FPGA runs with 50MHz

and the maximum timer value created for the Timer 0 and Timer 1 is calculate to 5.1uS for
Timer 0 and 1.3107mS for Timer1 showed in the equation under this text.

1 1
=
(Clock _ frequency j (50,000,000Hz

Timer0 _value in _Sec.=

=5.1u8
255]

(Timer0 _value in dec)

1 1

=3
Clock _ frequency 50,000,000z
65535

Timerl value in _Sec.= =1.3107mS

(Timerl _value in _dec)

This is an example to make a calculation of the timer value there is to be uploaded to the
timer out from the expected time at 500uS. The value will be 25000 as shown in the
equation under this text and therefore it is necessary to use the timer 1, a 16-bit timer, for
this operation because of the high number.

Timerl _value _in _dec = Clock _ frequency - Timerl _value _in _Sec. = 50,000,000 - 50045 = 25000

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-32 -

Chapter 4: Implementation of Timers Napier University Edinburgh

4.3. Simulation
A simulation is made on timer 0 and timer 1 out from the C program in figure 4.4. The

program set timer 0 with the loaded HEX value 19, which is 500nS, and timer 1 is loaded
to HEX value 32, being 1uS. Afterwards the timers are started and the timer flag and

interrupt flag is shown on port 4 and 5. The timer will run until the program is stopped.

-I0/x]

File Edit Format Wiew Help

R e e e e, ;I
SAHCOPYRIGHT @ BEMIAMIN GRYDEHOE] - ‘wWww. BG-ELEKTRONIK.DEK - 2006 — TEST PROGRAM %

,("I T YR R T YR T R T R R T T T R A T R R T T R R T T R R O R T R R T

S author: Benjamin Grydehoe]j

s/ Create the: 4th February, 2008

A4 Last update the: l4th april, 2006

S5 File: arom_rom. C

A4 Target Hardware: ®ilinx Spartan3 - =C35200

S Tool chain: Motepad - Microsoft version 5.1

A4 Compiler: PCCOMP alpha 1.7.3 by Francesco Poderico
;ﬁ version: 1.0.4

AF Test program for PicoBlaze (BGEPEL) MicroController.

The program test the Timer 0 and Timer 1.
R TR R R R TR TR TR R T T Rl T T R R R R Rl T R Rl Tl TR R T R R e e R R R TR R R R U TR
#incTude "1ib%Nspartans.h" A Include PicoBlaze C compiler pCComMp functions
#include "BSEPEL. h" A4 Include BEEPSL controller options (SFR)
S4oadd new wariables for test program
unsigned char Timer_Flag;
unsigned char Interrupt_status;
wiodd mainQwoid)

outchar{TC0, 0x193; /¢ Set Count wvalue for Timer O (500n5S)
outchar{TCLl, 0x32); A/ set Count walue Low for Timer 1 (lus)
outchar{TCHL, 0x00); // set Count walue High for Timer 1
outchar CIEND, 0x88); [/ set Enable A1l Interrupt and Timer 0
outchar (TCOM, 0x05%3; ¢ start Timer 0 and Timer 1

whilef{l)

1
Timer_Flag = inchar{TCon); // Read value from Timer Flag
Interrupt_status = incharf{Isco); / read walue from Interrupt Flag
outcharcPd, Timer_Flagl; A4 write Timer Flag to P4
outchar(Pi, INTerrupt_status); A4 write Interrupt status to PS5

T

A =

4] 2

Figure 4.4 — Test program for timer 0 and 1.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-33 -

Chapter 4: Implementation of Timers Napier University Edinburgh

The simulation shows the timing. Timer O sets a flag after 25 clock cycles which has a
duration of 500nS, this is shown as TFO. Timer 1 set the first flag after 50 clock cycles on
the timer 1 count shown in TF1. The timers raises one clock cycle every time the flag is set
because there goes one clock cycle to clear the counter again. This is not useful and it is
necessary to change this in the VHDL code or take care of that in the C program. The
Interrupt goes high after the first Timer flag as is should, but because there are problems
with the Interrupt Service Routine in the C compiler. It is not possible to auto clear the
interrupt as expected with the Interrupt acknowledge. If it worked as expected there should
be calculates with a response up to 6 clock cycle before the flag would be clear in worst
case and these 6 clock cycles are also necessary to be taken care of in the C- or ASM-

code timer programming.

4.4. Test and result
The program is tested on hardware by downloading the code to the development board

and with help of the data analyzer it is possible to watch the timer flag and the status for
the Interrupt Service Routine on port 4 and 5. But the timing is not exactly what is shown in
the simulation because it takes a few extra clock cycles to write out on Port 4 and 5. But it

gives an idea of how it should work correctly.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-34 -

Chapter 5: Implementation of Serial Flash ROM interface Napier University Edinburgh

Chapter 5:

Implementation of Serial Flash ROM interface

5.1. About serial interface
The serial Flash PROM interface can be accessed through serial data communication from

the FPGA via three data connections. Serial Data from Flash, Enable Serial Flash from
FPGA and Clock signal from the FPGA. The Flash PROM can only be used as Program
ROM or for fixed data as Ethernet MAC ID, ASCII data for display, encryption codes etc.
All types are fixed values which are programmed into the flash via JTAG standard
communication using the IMPACT tool from Xilinx Project Navigator, which is programmed
with the file formats named Object (.mcs) or HEX (.hex). The JATG is a serial bus made
for in-circuit test and programming using the four communications lines named Test Clock
(TCK), Test Mode Select (TMS), Test Data In (TDI) and Test Data Out (TDO) connected to

a external programming unit at the connector shown in the left side of figure 5.1.

Vee
CLK | CCLK
OE/RESET | INIT / USERIO %
CE — Mo
CF »| PROG M1
DIN/DO DIN/DO M2
XILINX €L
CONFIGURATION - XILINX FPGA
PROM »| USERIO
TCK | ¥ =| TCK TCK
™S | O | TMS ™S
TOI| O =| TDI TDO = TDI TDO
TDO (}—‘

Figure 5.1 — Serial hardware interface

The VHDL code for accessing the PROM information via the FPGA is available from
Xilinx's homepage as free code. The Serial Flash PROM is not used in this program
because there is sufficient PROM for the code in the FPGA.

e XAPP694 Reading User Data from Configuration PROMs

http://lwww.xilinx.com/xInx/xweb/xil_publications_display.jsp?sGlobalNavPick=&sSecondaryNav
Pick=&category=-1209899&iLanguagelD=1 or from the library Serial_Flash on the CD-ROM

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-35-

Chapter 6: Design of CAN-BUS Interface Napier University Edinburgh

Chapter 6:
Design of CAN-BUS Interface

6.1. Introduction
The Control Area Network (CAN) Bus interface is a serial asynchronous transmission

scheme that uses a communication protocol which efficiently supports distribution of real
time control with a very high level of security. The specification is defined with the 1ISO
11898 “OSI| Model”. The CAN 2.0A is an extended message format defined in CAN 1.2
and CAN 2.0B describing both standard and extended message formats.

The Layer structure of the CAN BUS is W %

compared with the seven OSI model layer

| 6: Presentation Layer |

showed in figure 6.1. The OSI layer is _
compress to four main layers for the CAN _

Transfer Layer |4: Transport Layer |
because some of the layer overlaps each - Fault Confinement

- Error Detection and Signalling

. . - M Validati

other, the four CAN layer is Physical Layer, " Acknowledgment
Transfer Layer, Object Layer and Application _ [3: Network Layer |
Layer these layer is describe in the four Physical Layer |2: Data Link Layer |

- Signal Level and Bit Representation
subjects under this text _ Transmission fiedium [#: Physical Layer |

Figure 6.1 — CAN layer & OSI layer.
Physical Layer:

The physical layer is the hardware specifications for the CAN standard and use connector
type as standard male 9-PINs SUB-D connector and the cable is typical Shielded Twisted
Pair (STP) or Un-shielded (UTP) cables the characteristic for the line impedance is 120
Ohm, common mode voltage ranges from -2 Volts on CAN_L to +7 Volts on CAN_H. The
balanced differential 2-wire CAN bus can transmitted signal up to 40 meters with a speed
of 1Mbps and less at 1km up to 20Kbps. The CAN standard bit encoding use the system
called Non Return to Zero (NRZ). The CAN transmits data through a binary model of
dominant bits and recessive bits where dominant is logic 0 and recessive is logic 1. The
maximum bits there most been send subsequent is five dominant or recessive, if more

there will be set an extra bit there is reversed from the other bits.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-36 -

Chapter 6: Design of CAN-BUS Interface Napier University Edinburgh

Transfer Layer:

The Transfer layer handles the protocol for transmitting and receiving data via message
transfer is manifested and controlled by four different frame types, the specification for
CAN protocol 2.0A is shown in figure 6.1 and stated in bullets point.
e Start of frame
e The Arbitration field identifier the ID.
e The Control field consists of four bits Data length Code that identify how many
Bytes there are in the data packet
e The Data field consists of the data to be transferred
e The Cyclic Redundancy Check (CRC) sequence is calculate from the Start Of
Frame (SOF) field to and with the Data field, with the polynomial
X15+X14+X10+X8+X7+X4+X3+1
e The ACK field acknowledgment a valid message received correctly

e End of frame
CAN Protocol Specification 2.0A

SOF | Arbitration | Control CRC | ACK [EOF
1 Bit 12 Bits 6 Bits 9 Bits | 2 Bits | 1 Bit

(lmo\ D9 \ D8 \ ID7 \ D6 \ ID5 \ D4 \ ID3 \ ID2 \ ID1 \ DO Blﬂ
Identifier’s length RTR J

(| ro [DLC3|DLC2|DLC1|DLCO)
L Reserved Data Length Code J

(Bit7 \ Bit 6 \ Bit5 \ Bit4\ Bit 3 \ Bit 2 \ Bit 1 \ Bit 0 BIT)
CRC Sequence poRe |

BIT | BIT

ACK ACK
Slot |Delimitep

Figure 6.2 — CAN protocol Specification 2.0A
Object Layer:

The object layer handles the message filtering and the messages, the message filtering
checks that the data packets are valid; there is a different between this function for either
the transmitter or the receivers of the messenger. The status handling 5 different error

types named Bit Error, Stuff Error, CRC Error, Form Error and Acknowledgment Error.

Application Layer:

The application layer handle the communication to the program code read and write to

register, in this project are the SFR used.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-37 -

Chapter 6: Design of CAN-BUS Interface Napier University Edinburgh

6.2. Design of CAN-BUS Hardware Interface
The Hardware interface is build up on a Printed Circuit Board (PCB) and made out from

the block diagram in figure 6.3. The interface board will be connected to the development
board via an IDC header being the standard connector on the development board. The
Interface board will be supplied with 3.3 volt power from the development board and there
will be transmitted and received data via this header. The connection out to the world is a

male 9-PINs SUB-D connector there is mounted with UTP cable.

Power | .=

FPGA
X AN_H CAN_H|
Developmentboard ™ caN-BUS A B

Interface |
(Spartan-3 Starter kit Board) & CAN_L CAN L

GND |

Z>0

-—-ZC

Figure 6.3 — Block diagram over CAN-BUS Interface.

Interface:

The design use a MAX3053 for interfaces between the CAN protocol from the FPGA and
the physical wires of the bus lines in a CAN. The MAX3053 has three different modes of
operation high-speed, slope control, and shutdown. High-speed mode allows data rates up
to 2Mbps. In slope control mode, data rates are between 40kbps and 500kbps so the
effects of EMI are reduced and unshielded twisted or parallel cable may be used. In
shutdown mode, the transmitter is switched off, and the receiver is switched to a low-

current mode.

P02 o2
JUMPER 2
JPOI 5 O o
4
1P —— J—(‘(:ﬁ I{ill_ 8 0
E %) 100nF 1C01 ,]‘L. ﬁl N 3 1o o
2 3 I . 7] 7
4 [C . VOC CANH s - O
5 Pp— | 6 ;:1 O
6L TXD CANL T O
! ﬂ)_ _4 . 5 o

8 RXD #SHDN
e RPOI =
=] " ' pl _—
§ HEADER Ll 8 | rs GND —2 | o =
IS{II\T MAIX3053 LT roonr

RO1
22K

Figure 6.4 — Interface Circuit Diagram

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-38 -

Chapter 6: Design of CAN-BUS Interface Napier University Edinburgh

Peripherals components:

The circuit in figure 6.4 at page 38 is made out from an application note in the data sheet
page 1 for the device named MAX3053"! the peripherals components is the CO2 there is a
ceramic decouple capacitor removing noise from the power supply lines.

Potentiometer PR0O1 and resister R0O1 is place to adjust the value from 22KQ to 172KQ the
reason for making this adjustment is to get the line drivers to switch on and off as quickly
as possible optimizing the limit of rise and fall slope of the data signal. Example with a
speed at 500Kbps the resistor value will be 24KQ shown in the data sheet page 4.

The capacitor C01 is mounted for hold the shutdown input pin high impended and the
device will always be turned on to run. If the shutdown pin is set to low the device will go in
the shutdown mode. The last features in the circuit is the jumper JP0O1 and the impedance
resistor R02 at 120Q, it the jumper is set the circuit will make an impedance termination for
the CAN bus.

Design:

The circuit is made on a single side PCB using Surface-Mount Devices (SMD) and
designed in Protel Design Explore 99 SE there are a full functional 30 days trial version of
a professional PCB layout tool. The layout result is showed in figure 6.5 for the bottom

layer to the left, the top over layer in the middle and the bottom over layer to the right.

JPO2 e
POL JUMPER N

J
8 HEADER [

oo T U T

9002 d2fo4d yodd

jo2 | 8
Honours Project DBS o

Figure 6.5 — Bottom layer, top over layer and bottom over layer.

Honour s

P

Figure 6.6 — Pictures of the CAN bus interface.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-39 .

Chapter 6: Design of CAN-BUS Interface Napier University Edinburgh

6.3. Design of CAN-BUS VHDL interface for transmitting
The CAN transmitter interface is designed as the VHDL part which has not been

implemented in the BGEPB1 core at the moment because there is still missing some

development. But the corner stones have been built to be able to send data test packets
from the VHDL interface. The data packet is generated from the protocol; the ID address
set to HEX 200 and four data byte set to HEX AA, FF, 00 and 55. The CRC calculation is
done manually and gives the HEX value 69, this is all fixt value for the data packet. In this

VHDL code the serial sequence is automatically generates as shown in figure 6.7.

"] -&— Recessive
"~] -&— Recessive
[-4— Dominant
| -4— Recessive

AT ULy

Res!

P D R _Control (i Byte0 i Bytel
- HEX 200 7 THEX47 T HEXAA T T HEXFF

I I B

ACK
EOF

_RIR
.GRCD

_ Byte3 i CRC _
“THEX55 > € HEX69

Byte 2
HEX 00

'"é'é'F'"!_|
.

Y.

»'d
P

Figure 6.7 — Test Data packet for transmission via CAN.

The data value will be added together in a vector chosen as the worst case value of 95 bit
according to the CAN specification 2.0A. When the data is “received”, in this code example
the values are set to fixed values, the data would be added together chosen out after the
value of bytes as shown in code line 138 to 155 in figure 6.8 at page 41. The unused bit in
the vector is set to high and will be sending as high output to the CAN interface. The loop
from line 160 to 183 in the VHDL code is a loop that inserts the recessive and the
dominant bit after every five identically bit. The function in line 188 send data serial out to
the CAN bus interface named TX_CAN at the output on FPGA.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

- 40 -

Chapter 6: Design of CAN-BUS Interface Napier University Edinburgh

137 —-- Chose the packet format between 0 to 8 byte data transmitting

138 IF (Data_Length = 0} THEN

138 Frame (94 downto (95 - Frame Length)) <= ("0" & id & RTR & "00" & control & CRC
& CRC del & ACK slot & ACK del & "0");

140 ELSIF (Data_ Length = 1) THEN

141 Frame (94 downto (95 - Frame Length)) <= ("0" & id & RTR & "00" & control & DATA
0 & CRC & CRC del & ACK slot & ACK_del & "0");

142 ELSIF (Data Length = 2) THEN

143 Frame (94 downto (95 - Frame Length)) <= ("0" & id & RTR & "00" & control & DATA
0 & DATAl & CRC & CRC_del & ACK slot & ACK del & "0");

144 ELSIF (Data Length = 3) THEN

145 Frame (94 downto (95 - Frame Length)) <= ("0" & id & RTR & "00" & control & DATA
0 & DATAl & DATAZ & CRC & CRC_del & ACK slot & ACK del & "0");

146 ELSIF (Data_ Length = 4) THEN

147 Frame (94 downto (95 - Frame Length)) <= ("0" & id & RTR & "00" & control & DATA
0 & DATAl & DATAZ & CRC & CRC_del & ACK slot & ACK del & "0");

148 ELSIF (Data_ Length = 5) THEN

149 Frame (94 downto (95 - Frame Length)) <= ("0" & id & RTR & "00" & control & DATA
0 & DATAl & DATAZ & DATA3 & DATA4 & CRC & CRC_del & ACK_slot & ACK_del & "O0" });

150 ELSIF (Data_ Length = 6) THEN

151 Frame (94 downto (95 - Frame_ Length)) <= ("0" & id & RTR & "00" & control & DATA
0 & DATAl & DATAZ & DATA3 & DATA4 & DATAS & CRC & CRC_del & ACK slot & ACK del & "O0");

152 ELSIF (Data_ Length = 7) THEN

153 Frame (94 downto (95 - Frame Length)) <= ("0" & id & RTR & "00" & control & DATA
0 & DATAl & DATAZ & DATA3 & DATA4 & DATAS & DATA6 & CRC & CRC del & ACK slot & ACK del
& IFDIF)'.

154 ELSIF (Data Length = 8) THEN

155 Frame (94 downto (95 - Frame Length)) <= {"0" & id & RTR & "00" & control & DATA

0 & DATAl & DATA2 & DATA3 & DATA4 & DATAS & DATA6 & DATA7 & CRC & CRC_del & ACK_slot &
ACK del & "0");

156 END IF;

157 position := 0;

158 -- Insert the recessive and the dominant bit after every five identically

159 -- bit and transmit with bit encoding Non Return to Zero.

160 FOR i IN 0 TO 94 LOCP

161 position := position+l; -- Count the position up

162 IF (Frame(i)='l') THEN -— Compare the frame bit with bit wvalue one

163 countl := countl+l; -- Count the value countl up with one

164 count0 := 0; -— Set the countl to zero

165 IF (countl > 5) THEN -— If Count is 5 the dominant bit will be set

166 countl := 0; -—- Set the countl to zero

167 countl := 1; -— Set the count0 to one

168 rame ((95-position-1) downto (95-Frame_Length-position-1)) <= ((95-positiocn
) downto (95 - Frame Length-position)});

169 Frame (i) <= '0'; -— Set the dominant bit

170 position := position+l; -- Add one to position

171 END IF;

172 ELSIF (Frame({i}='0') THEN -- Compare the frame bit with bit value zero

173 count0 := count0+1; -- Count the wvalue count0 up with one

174 countl := 0; -- Set the countl to zero

175 IF (count0O > S) THEN -— If Count is 5 the recessive bit will be set

176 count0 := 0; -— Set the count0 to zero

g K i countl := 1; -— Set the countl to one

178 Frame ((95-position-1) downto (95-Frame Length-position-1)) <= ((95-position
) downto (95 - Frame Length-position)):

179 Frame (i) <= '1'; -— Set the recessive bit

180 position := position+l; -- Add one to position

181 END IF;

182 END IF;

183 END LOOP;

184 ELSE Frame <= Frame (93 DOWNTO 0) & '1';

185 END IF;

186 END IF;

187 END PROCESS;

188 dout <= Frame (94); -- Send data out on the CAN TX port

189 end CAN TX;

Figures 6.8 — VHDL code for transmit data via Data Link Layer.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-4] -

Chapter 6: Design of CAN-BUS Interface Napier University Edinburgh

6.4. Simulation
This simulation in figure 6.9 shows the data output from the CAN transmission VHDL code

there will be send out to the CAN hardware interface from the FPGA.

Figure 6.9 — Simulation of CAN TX in ModelSim

6.5. Test and result
The CAN transmission is tested by sending the data packet as described in chapter 6.3

the data packet is received with a CAN-USB unit from www.canusb.com. The CAN unit is

connected to the computer via USB and as a node at the network. For measurement the
right data packet in the development process is connected an Oscilloscope from the
company Tektronix type TDS 220 there are a digital real-time stores oscilloscope.

There is measurement differential on the CAN bus signal, between the CAN_L (pin2) and
the CAN_H (pin 7) at the SUB-D connector. The ground probe from the oscilloscope is

connected to pin 2, the signal is inverted compared with the signal shown in figure 6.7.

e 1"”"“T'*'"'I"*T;"I'""'""':""5;"':'_i*""'1

: L
_ . L U § u“ I

Figure 6.10 — Oscilloscope picture from transmission of CAN data packet.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-42 -

Chapter 7: Software Setup Napier University Edinburgh

Chapter 7:
Software Setup

7.1. Introduction
This chapter is a short guide to setup the software and give an overview of the step for

step development of a program in VHDL and C language for a PicoBlaze microcontroller
ready to run in a Spartan-3 FPGA from Xilinx.

Download the Xilinx Design tool, Project Navigator, ISE WebPACK Service Pack 6.3.03.i
and the Simulation tool, ModelSim XE Il 5.8C from xilinx.com. Install the software onto the
computer and copy the project library named BGEPB1 from the CD-ROM which has been
attached at the last page in this report to the rood of you computer or in a folder with less

at eight character.

7.2. Setup of C and ASM Compiler
cemenv. wimesaw we . e Sananis = Start the Xilinx Project Navigator and open

the project from the library named
BGEPB1.

Compile the project with left click on the

embedded-connectivity (embedded.vhd) as
it is marked with a blue line in the Sources
in Project window, and after-wards right

click at the Synthesize-XST and chose

Rerun All in the Process for Source

window.
Figure 7.1 — Xilinx Project Navigator

Minimize the Project Navigator and copy the PicoBlaze C compiler named PCCOMP from
the CD-ROM to the C:\ root of the computer. Open the Notepad document named
prog_rom.c and edit in the document from the CD if you wish to change something
otherwise just save it and minimize the document. Right click at the file named RUN.bat
and create a shortcut to the desktop. Right click at the icon and rename it to Compile C to
ASM code and afterwards chose Edit to change the location in the second line, where it is
described where the compiled file shall be copied to “copy c:\pccomp\prog rom.psm
c:\vhd\BGEPB1\prog_rom.psm” save and close the document and double-click on the
icon named “Compile C to ASM code”. The C code will be compiled to ASM code with the
PCCOMP compiler and copy to the BGEPB1 library. Show in figure 7.2 if there are errors

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-43 -

Chapter 7: Software Setup Napier University Edinburgh

in the code, they will be listed numbered line-codes it will be shown in the DOS shell along

with the syntax problem.

¢ Shorbcut ko run

C:SPCCOMP >c tS\pccompspccomp —Cc —s prog_rom.c
Picobhlaze C Compiler for PicoBlaze,. Uersion alpha 1.7.3

Mo errors

C:~PCCOMP>copy c:pccompprog_rom.psm c:»whdl~BGEPB1“prog_rom.psm
1 file<s?> copied.

C:~PCCOMP:PAUSE
Press any key to continue . . . o

Figure 7.2 — PCCOMP C compiler run from DOS shell.
Open the library named BGEPB1 and make a shortcut to the file named RUN.bat and

copy this shortcut to the desktop. Rename the ICON to “Compile ASM to VHDL Format”
Right click and chose Edit and change the location if it is different. Double-click on the icon
Compile ASM to VHDL Format the program compile the ASM code to machine code in
VHDL format with help of the PicoBlaze compiler named KCPSM3 showed in figure 7.3. If
there are any errors in the ASM code the errors be list in the DOS shell.

cv Compile ASM to YHDL Format
? — Writing coefficient file
Prog_rom.coe

8 — Writing UHDL memory definition file
prog_rom.vhd

? — lriting Uerilog memory definition file
ProOg_rom.u

18 — Writing System Generator memory definition file
prog_rom.mn

11 — UWriting memory definition files
prog_rom. hex
prog_rom.dec
Prog_rom.mnem

HCPSM3 successful.
KCPSM3 complete.

G :~UHDL~BGEPR1 >*PAUSE
Prezsz any k to continue . . .

Figure 7.3 - KCPSM3 ASM compiler run from DOS shell.

Recompile the project in Xilinx project Navigator and the project is ready to be tested in
ModelSim. Every time the c-code is changed it is necessary to Compile C to ASM code
afterwards Compile ASM to VHDL Format and recompile the project in Xilinx Project

Navigator.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-44 -

Chapter 7: Software Setup Napier University Edinburgh

7.3. Simulation in ModelSim
The easiest and most undemanding way to simulate in ModelSim is by adding a Test

Bench Waveform to the project showed in this part. The description of how to setup a Test

Bench mark and how to use it with ModelSim is explained in this section.
[ET] T0 add a Test Bench Waveform in Xilinx Project

Bt File

D mplomeistion ContoisFie Navigator, right click in the Sources in Project
[MEM File File Name

[8) Schematic = .

2 o D [Festiow window and chose New Source. Select Test

TestBench Wavefarm

[8) User Dacument Location

3:&1123?531‘;@ [Cmnacere .|| Bench Waveform in the menu to the left show in
WHDL Library

[¥) wHDL Module . . .

VoL Package figure 7.4 and enter a name for the file. Click next

and chose the VHDL file you would like to test In-

and Output on, in this example the embedded file

R

Annuller ‘ Hi=lp ‘

show in figure 7.5 Click next and chose create.

Figure 7.4 — Add New Test Bench Waveform Thgo project Navigator will open a window like the

Source File

one which is shown in figure 7.6 in the bottom of

e —— the page. And you will be asked about clock
ZE:;E frequency, in this case it is set to 20nS and a duty
t cycle at 50% because this is the speed the

Spartan-3 board runs at. The blue colour shows

output and yellow shows input. The reset is set

high in the beginning of the simulation and
<Tilbage ,m‘ Annuller ‘ His=lp ‘ g g g

afterwards it is low.
Figure 7.5 — Chose Source File for Test Bench) .] .]
For start simulation with ModelSim double-click

on the “Simulation Behavioral Model” and the

program will start and run afterwards simulation for the VHDL project.

Xilinx - Project Navigator - C:ywhdl\BGEPB1Y\BGEPB1 npl - [TEST thw]

File Edit “iew Project Source Process Options Window Help » -8 %
D@ | =5 A E BER K = & n¢_data - Q@
2
Sources in Project ‘A =& Tl 1610 2 #® &)
B BGEFB1 —| Time (ns)

Frocesses for Source; "TEST" ‘

= £3 xc3s200-4ft256 clle AL
¥ embeddec-connectivity (embedded vhd)
TEST (TEST ttw) freset —
[embedded.uct - I —
< \ v It <
S wodsie view | 108 Snarshot view | I Livrary view | IPCRT_2[15:0] <3
5 |PORT 0[7.0] =<
o
= |PORT_3[70] =B
<
<o
<=

[

[

[
|PORT _4[7.0]

[

[

O Add Existing Source
8 Create New Source IPORT_5 7:0] L Ly Ly | L ol Al i L A A
B1e? View Behavioral Testbench IPORT_1[7.0] AT At gy g g Ay g Attt

B W hodelSim Simulator
Simulate Behavioral Model
ﬁ Generate Expected Simulation Results
E Sirnulate Post-Translate YHDL Model

Figure 7.6 - Test Bench Waveform.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-45 -

Chapter 7: Software Setup Napier University Edinburgh

7.4. Download to FPGA via iMPACT tool
After complete compiling of the VHDL project without errors in Xilinx Project Navigator and

the pin assignment is done, the project ready to be downloaded to the FPGA. But if it is the

first time the project is downloaded to the FPGA there are some settings that needs to be

checked, but only once.

Top-Level Module Type HDOL

Synthesis Tool WST (VHOLMerilog)
Simulator Modelsim
Generated Simulation Language WHDL

General Opt\uns} Configuration Options Startup Options IREadbackOp\mnsl

Property Name
FPGA Start-Up Clock
Enable Internal Done Fipe
Done {Output Events)
Enable Outputs (Output Events)
Rielease Write Enable (Output Events)

Rielease DLL (Output Events)
Match Cycle
Drive Done Pin High

IMPACT Programming Tool Properties ‘
Property Name ‘ VYalue ‘

Configuration Mode
Configuration Filename

ak Annuller ‘

Defaut | ezl ‘

Figure 7.9 — Process Properties

2 untitled [Configuration Mode] -

Fle Edt Vew Mode Operations ©Qu

= B | &=

Boundary-5can | Slave SR I‘ Sel

Figure 7.10 — iMPACT

Right click on the project device in the Sources in
Project window and chose properties. In the
Project Properties check the right Device Family,
Device, Package and speed Grade is chosen as
the same as the FPGA device which is used on
the development board.

Left click with the mouse on the VHDL project
source file in the Sources in project window, and
chose in the Processes for Source window the
Generate Programming File and right click here
and chose properties in the menu. The Process
Properties window will appear, and then chose
the menu named Startup Option and select the
function named FPGA Start-Up Clock to JTAG
Clock press OK! As showed in figure 7.8.

Right click on the Configure Device (iMPACT)
and chose properties in the menu. Select the
Configuration Mode and chose this to Boundary
Scan. Press OK! For save the change, show in
figure 7.9.

Right click on the Generate Programming File
and select Rerun all in the menu. Make assured
that there are no warnings or errors in the
compiled code. Doublet click on the Configure
Device (iMPACT). After the new program is open
IMPACT chose the function named Boundary-

Scan in the menu-bar show in figure 7.10.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

- 46 -

Chapter 7: Software Setup Napier University Edinburgh

Cancel the automatic saving of files from the VHDL project, the program will automatically
ask when it starts up. The Boundary-Scan has found two devices the XC3S200 FPGA and
the XCF02S Flash mounted on the development Spartan-3 Starter Kit Board. If there is
used another board the Boundary-Scan will via the JTAG connection find these devices

there are mount on this development board.

S untitled [Configuration Mode] - IMPACT M[=]p-q] The search result for the Spartan-3 Starter
Fle Edit View Mode Operations Quput Help
=g NI EA; Kit Board is show in figure 7.11.
Boundary-Scan l Slave Serial] SelectMAP] Desktop Configuration . . : :
T R —1 Right click on the FPGA XC3S200 device in
the program and chose Assign New
TDI EoHILINE ERLINY .) . 3
Lo Q:EW Confirmation File. Select the embedded.bit
xc3s200 xcfl2s
o DG file in the library named BGEPB1 and
done rs
FROCRESS_END - End Operation Chose open
Elapszed time = 0 sec. i i i
Device #1 select=d Right click on the FPGA device XC3S200
Device #1 zelected 3
- 3 and chose Program and press OK for
For Help, press F1 Configuration Mode B

accepts programming of the device.
Figure 7.11 — iMPACT Boundary-Scan

Note. Make sure the Jumper JP1 is removed on the development Spartan-3 Starter Kit

Board for program the FPGA.

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-47 -

Chapter 8: Conclusion Napier University Edinburgh

Chapter 8

Conclusion

The project has more or less been successful in reaching the aim of this project. The
development of the PicoBlaze microprocessor core running in a new version of
microcontroller, named BGEPB1 created with a simplified Special Function Register whit
controlled parallels I/O ports, serial UART, timer and interrupts, is complete as seen in the
test results.

The project period compared with the time plan has not really been fulfilling. After project
week 16 where the development of the CAN bus started and the problem with
programming in VHDL started for real, a lot of data converting and manipulating of data
vector this have given a lot of synthesize problems In the Xilinx Project Navigator. This due
to the project not just having an Implementation of a microprocessor in a FPGA but also
there has been a new VHDL language to learn to be able to make the project.
Implementation of PicoBlaze Core:

The status for the Implementation of the PicoBlaze microprocessor in the microcontroller,
the BGEPBH1, is complete in regards to the requirement given. The microcontroller is ready
to be used and it is easy to implement new function in the VHDL code e.g. more timers
and extra interrupts. The only thing which has not been tested and made is a C- or ASM
code example for the Interrupt control which reads the Interrupt and automatically sends
an Interrupt acknowledge after end reading.

Design of CAN bus:

The CAN bus interface is made in hardware and tested in transmit- and receive-mode and
tested functional. The lower Data Link Layer is made In VHDL controlling the 8-bit data
packets which is send serial out with the encoding standard, known as Non Return to
Zero, and inset the recessive and the dominant bit after every five identically bit. The CAN
bus is not finished. The development is still missing functions as Cyclic Redundancy
Check calculation and Error bit control.

The future development at the project:

The future plans for the project is to continue the development of the CAN bus interface
and implementation this in the BGEPB1 microcontroller which will be available at the

homepage www.bg-elektronik/fpga

Benjamin Grydehoe;j

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

- 48 -

Related Materials and References Napier University Edinburgh

Related Materials and References

References:
1. Roman - Jones, Inc. — Emulate 8051 Microprocessor in PicoBlaze IP Core

- http://www.roman-jones.com/PB8051Microcontroller.htm

2. Xilinx.com - PicroBlaze 8-bit Embedded Microcontroller User Guide, Page 13-14

- http://www xilinx.com/bvdocs/userguides/ug129.pdf
3. Xilinx.com — UART Transmitter and Receiver Macros, Page 3

- http://www xilinx.com/bvdocs/appnotes/xapp223.pdf

4. Maxim-ic.com — Data sheet, Low Supply Current CAN Transceiver, page 1 & 4

- http://pdfserv.maxim-ic.com/en/ds/MAX3053.pdf

Bibliography:

Circuit Design with VHDL — Volnei A. Pedroni — ISBN 0-262-16224-5

Microcomputer Components - 8-Bit single-Chip Family — Siemens — User’'s Manual 8/95
PicoBlaze 8-bit Embedded Microcontroller User Guide — UG129 (v1.1) June 10, 2004
Xilinx’s homepage - http://www.xilinx.com/bvdocs/userguides/ug129.pdf

PicoBlaze C compiler User’'s Manual 1.1 July 2005 — Francesco Poderico

Francesco Poderico’s homepage - http://www.poderico.co.uk

Spartan-3 Starter Kit Board User Guide — UG130 (v1.1) May 13, 2005

Xilinx’s homepage - http://www.xilinx.com/bvdocs/userguides/ug130.pdf

Software:
Xilinx Design tool - Project Navigator - ISE Service Pack 6.3.03i (Windows)

Xilinx’s homepage - http://lwww.xilinx.com/xInx/xil_sw_updates_home.jsp

Simulation program - ModelSim XE [l/Starter 5.8C (Windows)

Xilinx’s homepage - http://www.xilinx.com/xInx/xil_sw_updates_home.jsp

PicoBlaze C compiler — PCCOMP (DOS)

Francesco Poderico’s homepage - http://www.poderico.co.uk/down.html

PicoBlaze Assembler compiler —- KCPSM3 (DOS)

Xilinx’s homepage -
http://www.xilinx.com/xInx/xebiz/designResources/ip_product_details.jsp?sGlobalNavPick=PRODUC

TS&sSecondaryNavPick=Design+Tools&key=picoblaze-S3-V2-Pro
PicoBlaze Debugger — pBlazIDE (Windows)

Xilinx’s homepage - Mediatronix’s homepage - http://www.mediatronix.com/pBlazelDE.htm

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-49 .

Appendix A: The VHDL code for 1/0 Interface

Napier University Edinburgh

The VHDL code for I/0O Interface

W~ oy U0 L RO

C:\vhdl\BGEPBI\IO Ports.vhd

——khkhhkkkkkkkhkh ko kkkkhhk kA hkhk bk kkkhh kb kkkkhhkdhhhhk bk khkhkkhdhdhhdr kb hhk kb hhhkhhkhd

--*COPYRIGHT: BENJAMIN GRYDEHOEJ - WWW.BG-ELEKTRONIK.DK - 2006 - FPGA SPARTAN-3*

B R R

-- Author:
-- Create the:
-- Last update the:

-- File:

-- Target Hardware:
-- Tool chain:
-- Version:

11th November,
11th April,

IO PORTS.VHD

-—= DESCRIPTION:

Benjamin Grydehoej

2005

2006

Xilinx Spartan3 - XC35200
¥ilinx - Project HNavicator 6.3.03i
1..0.8

-- This VHDL code controls the Input/Output Ports, Serial UART and the SFR

-- register with Interrupt controls and Timer function. The Sub-functions

-— is described in the code before the program. All commandos for

-- communication in this program are control by the Special Function Register
-- there is listed under this text.

SPECIAL FUNCTION REGISTER:

" Symbol: Name: Address
= BO Port 0 HEX 01
== P1 Port 1 HEX 02
e P2L Port 2 Address Bus low byte HEX 03
. P2H Port 2 Address Bus High byte HEX 04
== P3 Port 3 HEX 05
= P4 Port 4 HEX 06
=== PS5 Port 5 HEX 07
e SBUF Serial channel buffer register HEX 08
= TLBS Timer Low BAUE Rate Serial HEX 09
== THBS Timer HIGH BRUE Rate Serial HEX 0Aa
e SCON Serial channel contrcl register HEX OB
w TENO Interrupt enable register 0O HEX 0C
e IEN1 Interrupt enable register 1 HEX 0D
— 15C0O Interrupt service control register HEX (OE
—-— TCON Timer service control register HEX OF
= TCO Timer Count 0 HEX 10
— TCL1 Timer Count Low 1 HEX 11
i TCH1 Timer Count High 1 HEX 12
-- Standard IEEE libraries

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;

entity in_

out ports is

Port (CLK io in std
Reset io in std
WE io in std
RE io in std
ID io in std or (7 downto 0);
Data in io in std ctor (7 downto 0);
Data out io out std ector (7 downto 0);
Interrupt io out std
Interrupt ack ioc in std
rx _data present in std
Port 0 io inout std logic vector (7 downto 0);
Port_1 io inout std logic vector(7 downto 0);
Port 2 io out std logic ctor (15 downto Q) :
Port 3 io inout std_logic vector (7 downto 0);
Port 4 io inout std logic vector(7 downto 0);
Port_5 io inout std _logic_vector (7 downto 0);
TBS uart out std logic wvector(l5 downto 0);
BDP uart : in std logic
RBH:uart : in std:IDQLC;
Page: 1

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-50 -

Appendix A: The VHDL code for 1/0 Interface Napier University Edinburgh

C:\vhdl\BGEPBI\IO_Ports.vhd

69 RBF uart : in

70 TBH uart : in

71 TBF uart : in

72 write to uart : out

73 data to uart : out vector {7 downto 0);

74 read from uart : out

75 data from uart : in vector (7 downto 0):

16 TRO timer : inout std 1

77 TFO;timer : in std_log

78 TCO timer : out std lo vector (7 downto 0);

79 TR1_timer : inout std lo

80 TF1 timer : in std log

81 TCl_timer : out std_logic_wector (15 downto 0});

82

83 end in_out ports;

84

B e e e e e e e e e e e R e S e e e e e S e S e S e e

86 -- This program function is the handling of Input and Output control

87 -- after the Special Function Register (SFR)} for read and write to

88 -- ports and option of Interrupt Service Routines and Timer contrel etc.

e e T

a0 architecture in_out_ports of in_out ports is

91

Q2 e e e e e e e e e e

93 -- Signals for Interrupt connections

98 e

95 -- IENO - Interrupt Enables 0 Variables

96 signal EA int : std logic;

97 signal ET1 int T std logic:

98 signal ET0 int : std logic:

99 signal EX2 int : std logic;

100 signal EX1 int : std ie;

101 signal EX0 int : std

102 Signal ESO_int : std

103 signal ICO int : std 1

104 signal IS0 _int : std logic

105 signal IT2 int : std logic

106 signal IT1l_int : std_logic;

107 signal ITO int : std logi

108 signal IX2 int : std_log

109 signal IX1 int : std logi

110 signal IX0_int : std_logic;

111 -- Interrupt Variables

112 signal X0_int : std_logic;

113 signal X1l int : std logic;

114 signal ¥2 int : std_logic;

115

116 begin

117 process

118 begin

119

1z0 wait until (CLK io'event and CLK io='l');

121 X0 int <= Port 3 io(0); -- Read the Port 1 bit 0 value and save

122 -— it in the Internal signal.

123 ¥1 int <= Port 3 io(l); -- Read the Port 1 bit 1 value and save

124 -- it in the Internal signal.

125 X2 int <= Port 3 io(2); -- Read the Port 1 bit 2 value and save

126 -— it in the Internal signal.

L e e e S e

128 == RESET:

129 = This function set ports level after reset and

130 s define the walue for variables

s I e e e e

132 if (Reset io='1l') then

133 -- PORTS 1level after reset

134 Port 0 io <= "RZZZZZZZZ"; -- Set Port 0 to high impedance level

135 Port_1 io <= "ZZZZZZZZ"; -- Set Port 1 to high impedance level

136 Port 2 _io <= X"0000"; -—- Set Port 2 to Address 0 (Hexadecimal)
Page: 2

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-51 -

Appendix A: The VHDL code for 1/0 Interface

Napier University Edinburgh

175
176

197
198
199
200
201
202
203
204

C:\vhdl\BGEPBI\IO Ports.vhd

3 to high impedance level
4 to high impedance level
5 to high impedance level

Rate at 9600 (dec 326) HEX 0146
Value to 255

Set Timer Value to 65535
Clear Timer 0 Run (Timer stop)
Clear Timer 1 Run (Timer stop)

Set global Interrupt to zero

All Interrupts

WDT Interrupt

Timer 2 Interrupt
Timer 1 Interrupt
Timer 0 Interrupt
Extern 2 Interrupt
Extern 1 Interrupt
Extern 0 Interrupt

CAN Interrupt
Serial Interrupt

FLAG CAN-BUS Interrupt

FLAG Serial Interrupt

FLAG Timer Overflow 2 Interrupt
FLAG Timer Overflow 1 Interrupt
FLAG Timer Overflow 0 Interrupt
FLAG Extern 2 Interrupt

FLAG Extern 1 Interrupt

Port_3_io <= "2ZZZ2ZZZZZ"; -- Set Port
Port 4 io <= "ZZZZZZZZ"; -- Set Port
Port 5 io <= "ZZZZZZZZ"; -- Set Port
-- TIMER
TBS uart <= X"0l4e"; -— Set Baud
TCO_timer <= X"FF"; -- Set Timer
TCl_timer <= X"FFFF"; —
TRO_timer <= '0°'; e
TR1_timer <= '0’'; e
== INTERRUPT SY¥STEM
Interrupt io <= '0'; =
-- IENO - Interrupt Enables 0
EA int w= 0 -- Clear Enable
== WDT int <= '0'; -- Clear
= ET2 int <= '0'; -- Clear Enable
ET1 int <= '0'; -- Clear Enable
ET0_int <= '0'; -— Clear Enable
EX2 int = N0t -— Clear Enable
EX1 int = '0'; -- Clear Enable
EX0_int <= '0'; -=- Clear Enable
-- IENl1 - Interrupt Enables 1
—= ECO_int <= '0'; —-— Clear Enable
ESO_int <= ()7 == Clear Enable
-- 18C0 - Interrupt Service Contreol
ICO_int <= "'0'; -— Clear
IS0O_int <= '0'; -- Clear
IT2 int <= '0'; -= Clear
IT1 int <= "Q"'; -— Clear
ITO int <= '0'; -- Clear
IX2 int <= '0'; -= Clear
IX1 int = N0V -~ Clear
IX0_int <= 'Q°'; -— Clear

FLAG Extern 0 Interrupt

- Input & Output Interface:
- This program function locks at the incoming port address from the
—= PicoBlaze processor core and contrel via write enable (WE io) and

e the read enable (RE_io)

for Read or write to the Ports the ID is

s control from the processor and set the SFR value to the right port.

= Port 0 I/0 - SFR PO,
' and ID io
Port 0 io <= Data_in io; -
'l' and ID_io

Data out ic <= Port 0 io;-
- Port 1 I/0 - SFR P1,

elsif (WE io =

elsif (RE_io =

elsif (WE_io =

elsif (RE io =

pe

*1

HEX 02

' and ID io
Port_1 io <= Data_in io; -
'l' and ID io

Data out io <= Port 1 io;--

= Port 2 I/0 - SFR P2,

HEX 01 DataBus

X"Ol"}

then

Send data from Microcontroller to PFort 0O

®r'o1")

then

Send data from Port 0 to Microcontroller

}("02")

then

Send data from Microcontroller to Port 1

XI!OZII)

then

Send data from Port 1 to Microcontroller

HEX 03 Address Bus Low and HEX 04 Rddress Bus High

elsif (WE_io = '1' and ID io = X"03") then
Port_2 io(7 DOWNTO 0) <= Data_in_io(7 DOWNTO 0); -- Send low byte to Port 2
elsif(WE_io = 'l' and ID io = X"04") then

Port 2 io(1l5 DOWNTO 8} <=
- Port 3 I/0 - SFR P3,

elsif (WE _io =

elsif (RE_io =

elsif (WE_io =

elsif(RE_io =

elsif (WE_io =

L &

b &

L

HEX 05

' and ID io

Port_3 io <= Data_in io; -

'1' and ID_io
Data out io <= Port 3 io;-

= Port 4 I/0 - SFR P4, HEX 06

' and ID_io

Port 4 io <= Data in io; -

'l' and ID io
Data_out_ioc <= Port_4_io;-

i Port 5 I/0 - SFR P5, HEX 07

' and ID io

Data_in io(7 DOWNTO 0);-- Send high byte to Port 2

Port 5 io <= Data_in io; --

XI!OSII)

Send data from

X"05")

Send data from

X"06")

Send data from

xutOGll)

Send data from

XI!U’?II)

Send data from

then

then

then

then

then

Microcontroller to Port 3

Port 3 to Microcontroller

Microcontroller to PFort 4

Port 4 to Microcontroller

Microcontroller to Port 5

Page: 3

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-52.-

Appendix A: The VHDL code for 1/0 Interface Napier University Edinburgh

C:\vhdl\BGEPB1\IO_Ports.vhd

205 elsif (RE ic = 'l' and ID io = X"07") then

206 Data out io <= Port 5 io;-- Send data from Port 5 to Microcontroller

B e e e e e e e e e e e

208 --— SERIAL DATA CONTROL:

209 -- This function controls the Serial UART with write and read wvia SBUF and

210 -- the option for the BAUD rate timing there control the speed for the serial

211 -- communication. The Serial Channel Control register SCON do it possible to

212 -- read the status flag for the received and transmit buffer and lock after

213 -- the status flag BDP for receive data.

2 e e e e e e

215 -— SBUF Read and write to Comport - SFR SBUF, HEX 08

216 elsif (WE io = 'l' and ID io = X"08") then -- Write to Serial Buffer

217 write to_uart <= WE_io; -- Enable write to UART

218 data to uart <= Data in io; -— Send Data to the UART buffer from

219 -- the SFR register named SBUF

220 elsif(RE ioc = 'l' and ID io = X"08") then —- Read to Serial Buffer

221 read from _uart <= RE_io; -- Enable read to UART

222 Data out io <= data from uart; -- Read Data from the UART buffer to

223 -- the SFR register named SBUF

2214 -— Timer Baud rate serial, low byte - SFR TLBS, HEX 09

225 elsif (WE_io = 'l' and ID_ioc = X"09") then -- Write the low byte

226 TBS uart (7 DOWNTC 0) <= Data in io; -- Send the low data byte to the Timer

227 -- Baud rate Serial for BAUD rate timing

228 - Timer Baud rate serial, high byte - SFR THBS, HEX 0O&

229 elsif(WE io = 'l' and ID io = X"0A") then -- Write the high byte

230 TBS uart ({15 DOWNTO 8) <= Data in io;-- Send the high data byte to the Timer

231 -- Baud rate Serial for BAUD rate timing

232

233 - Serial Channel Control Register - SFR SCON, HEX 0B

234 S e e e e e e e e T e e T e A

235 == | X | X | X | BDP | REH | RBF | TBH | TEF |

236 e

237 elsif(RE io = 'l' and ID_io = X"0B") then -- Read the status flag from Serial

238 -- Channel Control Register SCON

239 Data out io <= ("000" & BDP _uart & RBH uart & RBF uart & TBH uart & TBF uart);

240

241 -- Serial Interrupt handling

242 elsif (ESO_int='l' and ISO_int='0' and rx data present='l' and EA_int='l') then

243 IS0 _int <= '1l'; -- Set Serial Interrupt FLAG

244

285, v ese e e e e e e i e e e et e e e o e e

246 —= INTERRUPT SYSTEM:

247 -- This program handle the Interrupt System there use the three register

248 -- named IENO - Interrupt Enable 0, IEN1 - Interrupt Enable 2 and ISCO -

249 -- Interrupt Service Control. Activate with help of the SFR, the IENO

250 -- and IENl1 enables the interrupt and the ISC0 show the status for the

251 -- interrupts.

2527 rmvemreemremssemrromenm s mrem e e e e e en se vt s e e s e ey e 2 o o e e e e e e e o e Sy e

253 co INTERRUPT ENABLES - SFR IENQ, HEX 0C

254 e e e e et s

255 —i | EA | WBT | ET2 | ET1 | ETO | EX2 | EX1 | EXO0 |

256 o B o o o e e e o ey e e

257 elsif (WE io = 'l' and ID io = X"0C") then

258 EA int <= Data in io(7); -- Activate or deactivate all Interrupts EA

259 - WDT int <= Data in io(6); -- Activate or deactivate WDT

260 == ET2 int <= Data in io(5); -- Activate or deactivate Interrupts Timer 2

261 ET1 int <= Data in io(4); -- Activate or deactivate Interrupts Timer 1

262 ETC int <= Data in io(3); -- Activate or deactivate Interrupts Timer 0

263 EX2_int <= Data in io(2); -- Activate or deactivate External Interrupt 2

264 EX1l int <= Data in io(l); -- Activate or deactivate External Interrupt 1

265 EX0_int <= Data_in_io(0); -- Activate or deactivate External Interrupt 0

266 == INTERRUPT ENAELES - SFR IEN1, HEX 0D

267 2o e e

2680 -— | X | X | = | % | ® || % | ECO | ES0 |

269 e e e e e e e e e e

270 elsif (WE io = 'l' and ID ioc = X"0D") then

271 -= ECO_int <= Data_in_io(l); -- Activate or deactivate CAN-BUS Interrupt

272 ESO_int <= Data_in_io(0); -- Activate or deactivate Serial Interrupt
Page: 4

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-53 -

Appendix A: The VHDL code for 1/0 Interface

Napier University Edinburgh

335
336
337
338
339

C:\vhdl\BEGEPBI\IO_ Po

rts.vhd

S INTERRUPT SERVICE CONTRCL - SFR ISCO,

== | ICO | IS0 |

elsif (WE io =
ICO int
IS0 int
IT2 int <=
IT1 int <=
ITO_int <=
I¥X2 int <=
IX1l_int <
IX0 int <
elsif (RE_ic =

1_int & IX0_int);

HEX OE

'l' and ID io = X"OE") then

= Data in io(7):

Data in io(6);
Data_in_io(5);
Data in io(4);
Data_in io(3):
Data in io(2);
Data_in_io(1);
Data in io(0);

Clear
Clear
Clear
Clear
Clear
Clear
Clear
Clear

Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt

'l' and ID_io = X"OQE") then
Data out_io <= (ICO_int & ISO_int & ITZ int &

aid External Interrupt Service Routine
elsif (EXO0_int='1l' and IX0_int="'0' and X0_int='l' and EA int='l') then
1*; -- Set Interrupt FLAG

IX0 int <= '
Interrupt_io

<= '"1l'; -- Send Interrupt to PicoBlaze

FLAG
FLAG
FLAG
FLAG
FLAG
FLAG
FLAG
FLAG

for
ftor
for
for
for
for
for
tor

CAN-BUS
Serial
Timer 2
Timer 1
Timer 0
External 2
External 1
External 0

IT1 int & ITO int & IX2 int & IX

elsif (EX1 int='l' and IX1l int='0' and X1 int='l' and EA_int='l') then
qs -- Set Interrupt FLAG

IX1l int <= '
Interrupt io

<= '1'; -- Send Interrupt to PicoBla:ze

elsif (EX2 int='l"' and IX2 int='0' and X2 int='l' and EA_int='l') then
13 -- Set Interrupt FLAG

I¥X2 int <= '
Interrupt io

<= 'l'; -- Send Interrupt to PicoBlaze

-- This program function support the Timer option wia the SFR TCON there
-- start/stop timer to run and the reading flag function for timer interrupt.
-- The supports also the reload value for Timer 0 and Timer 2.

HEX OF

= TIMER SERVICE CONTROL - SFR TCON,

elsif (WE io =

TRO timer <= Data in io(0};
TR1_timer <= Data_in_io(2);

elsif (RE io =
Data_out_io

-= Timer Count 0
elsif (WE_ie =

TCO timer <

e Timer Count 1
elsif (WE io =

TCl timer (7
elsif (WE io =

TCl_timer (15 DOWNTO 8) <= Data_in_io;

'l' and ID io

'l' and ID io
<= ("0000" &

- TCO, HEX 10

'1l' and ID_io = X"10") then

= Data in io;

X"OF"} then -- Write to TCON register

-- for Start/Stop

-- Start timer 0 with set a '1'

-- Start timer 1 with set a 'l!
X"0F") then -- Read status flag and which timer
-- there are on!

- TCL1, HEX 11 and TCH1 HEX 12

'1' and ID io = X"11"} then
DOWNTO 0) <= Data in io;

TF1 timer & TRl timer & TFO_timer & TRO_timer);

-- Reload new wvalue to timer 0

-- Reload new value to Timer 2

-- Set the low byte

'l' and ID io = X"12") then

a Timer Interrupt Service Routine
='1' and TFO timer='l' and ITO int='0' and EA_int='1l') then

elsif (ETO0 int

-- Set the high byte

ITO int <= '1"; -- Set Timer 0 Interrupt FLAG
Interrupt io <= 'l'; -- Send Interrupt to PicoBla:ze

elsif (ET1 int='l' and TFl timer='l' and IT1 int='0' and EA _int='l"') then
IT1l int <= '1"'; -- Set Timer 1 Interrupt FLAG
Interrupt_io <= 'l'; -- Send Interrupt to PicoBlaze

- Relase Interrupt

elsif (Interrupt ack io = 'l'} then -- When Interrupt ACK is active

Interrupt_io <= '0'; -- Set global Interrupt to zero

end if;
end process;
end in_out_ports;

Page: 5

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-54 -

Appendix B: Special Function Register (BGEPBI1.h) Napier University Edinburgh

Special Function Register (BGEPB1.h)

”***

/I*COPYRIGHT: BENJAMIN GRYDEHOEJ - WWW.BG-ELEKTRONIK.DK - 2006 - SFR for BGEPBI1 *

”***

/I Author: Benjamin Grydehoej
/I Create the: 4th February, 2006
/I Last update the: 14th April, 2006

/I File: BGEPBI1.h

/I Target Hardware:
/I Tool chain:

// Compiler:

/I Version:

1

/I Special Function Register for BGEPB1

”***

Xilinx Spartan3 - XC3S200

Notepad - Microsoft Version 5.1

PCCOMP alpha 1.7.3 by Francesco Poderico
1.0.A

// Parallel port ID:

#define PO 0x01 // Port 0 8-bit 1/O - SFR P0, HEX 01 DataBus

#define P1 0x02 // Port 1 8-bit 1/O - SFR P1, HEX 02 Data 1/0

#define P2L 0x03 // Port 2 8-bit O - SFR P2L, Low byte HEX 03 AddressBus
#define P2H 0x04 // Port 2 8-bit O - SFR P2H, high byte HEX 04 AddressBus
#define P3 0x05 // Port 3 8-bit 1/0 - SFR P3, HEX 04 Data 1/0

#define P4 0x06 // Port 4 8-bit 1/0 - SFR P4, HEX 05 Data 1/0

#define P5 0x07 // Port 5 8-bit 1/0 - SFR P5, HEX 06 Data 1/0

/I Serial Data:

#define SBUF 0x08 // Serial Buffer

#define TLBS 0x09 // Timer Baud rate serial, low byte - SFR TLBS, HEX 09
#define THBS 0x0A // Timer Baud rate serial, high byte - SFR TLBS, HEX 10
#define SCON 0x0B // Serial Channel Control Register - SFR SCON, HEX 0B

// Interrupt Service Rutine:

#define IENO 0x0C // INTERRUPT ENABLES - SFR IEN(, HEX 0C
#define IEN1 0x0D // INTERRUPT ENABLES - SFR IEN1, HEX 0C
#define ISCO 0x0E // INTERRUPT SERVICE CONTROL - SFR ISC0, HEX 0E

// Timer Service Rutine:

#define TCON 0x0F // TIMER SERVICE CONTROL - SFR TCON, HEX 0OF
#define TCO 0x10 // Timer Count 0 - TC0, HEX 10

#define TCL1 0x11 // Timer Count 1 - Low byte TCL1 HEX 11

#define TCH1 0x12 // Timer Count 1 - High byte TCH1 HEX 12

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-55-

Appendix C: Pin Option for FPGA and Development board

Napier University Edinburgh

Pin Option for FPGA and Development board

/0 Name: 1/0 Direction PIN: Bank: |Connector: SRAM:
tx Output R13 BANK4 [TXD

rx Input T13 BANK4 | RXD

reset Input L14 BANK3 [BTN3 (User Reset)

PORT 5<7> InOut A10 BANK1 [A2 Expansion Connector - 28

PORT 5<6> InOut B10 BANK1 | A2 Expansion Connector - 27

PORT 5<5> InOut A9 BANK1 | A2 Expansion Connector - 26

PORT 5<4> InOut A8 BANKO | A2 Expansion Connector - 25

PORT 5<3> InOut B8 BANKO | A2 Expansion Connector - 24

PORT 5<2> InOut A7 BANKO | A2 Expansion Connector - 23

PORT 5<1> InOut B7 BANKO [A2 Expansion Connector - 22

PORT 5<0> InOut B6 BANKO [A2 Expansion Connector - 21

PORT 4<7> InOut A5 BANKO | A2 Expansion Connector - 20

PORT 4<6> InOut B5 BANKO | A2 Expansion Connector - 19

PORT 4<5> InOut A4 BANKO | A2 Expansion Connector - 18

PORT 4<4> InOut B4 BANKO | A2 Expansion Connector - 17

PORT 4<3> InOut A3 BANKO [A2 Expansion Connector - 16

PORT 4<2> InOut D10 BANK1 | A2 Expansion Connector - 15

PORT 4<1> InOut D9 BANK1 | A2 Expansion Connector - 14

PORT 4<0> InOut D8 BANKO | A2 Expansion Connector - 13

PORT 3<7> InOut K13 BANK3 [Slider Switch (SW7)

PORT 3<6> InOut K14 BANK3 [Slider Switch (SW6)

PORT 3<5> InOut J13 BANKS3 | Slider Switch (SW5)

PORT_ 3<4> InOut J14 BANKS3 [Slider Switch (SW4)

PORT 3<3> InOut H13 BANK2 [Slider Switch (SW3)

PORT 3<2> InOut H14 BANK?2 [Slider Switch (SW2)

PORT 3<1> InOut G12 BANK?2 | Slider Switch (SW1)

PORT 3<0> InOut F12 BANK?2 [Slider Switch (SW0)

PORT 2<15> Qutput K3 BANKG6 | A1 Expansion Connector - 34 A15
PORT 2<14> Output J3 BANKG6 | A1 Expansion Connector - 31 A14
PORT 2<13> Output J4 BANKG6 | A1 Expansion Connector - 32 A13
PORT 2<12> Output H4 BANK7 | A1 Expansion Connector - 29 A12
PORT 2<11> Output H3 BANK7 | A1 Expansion Connector - 30 A1
PORT 2<10> Output G5 BANK7 | A1 Expansion Connector - 27 A10
PORT 2<9> Qutput E4 BANK7 | A1 Expansion Connector - 28 A9
PORT 2<8> Output E3 BANK7 | A1 Expansion Connector - 25 A8
PORT 2<7> Qutput F4 BANK7 | A1 Expansion Connector - 26 A7
PORT 2<6> Output F3 BANK7 | A1 Expansion Connector - 23 A6
PORT 2<5> Output G4 BANKY7 | A1 Expansion Connector - 24 A5
PORT 2<4> Output L4 BANKG6 | A1 Expansion Connector - 14 A4
PORT 2<3> Qutput M3 BANKG6 | A1 Expansion Connector - 12 A3
PORT 2<2> Output M4 BANKG6 | A1 Expansion Connector - 10 A2
PORT 2<1> Qutput N3 BANKG6 | A1 Expansion Connector - 8 A1
PORT 2<0> Output L5 BANK6 | A1 Expansion Connector - 6 A0

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-56 -

Appendix C: Pin Option for FPGA and Development board

Napier University Edinburgh

-4 U U Z Err A« IT @ TMmMmoooOm>X

12 3 45 6 7 8 9 101112 13 14 15 16

il

v,

77 v

2 A
L
Vs n /. ’/;/I)//l:/’/,/
b g
0,
. forrrd
VEET)
’
. O
e rd
Lo, SIS,
e r Va4
A Vol lri s
v
¥ ‘
’/-A’/;J
VAt
’
’l,A o s P
AN
y ‘
/trA.,I’ ’
ven] I
V y ’
',l/// _’IJA’/II/
ez, e
L7 .
Vo /. Yrrd

’ »
I)A',ll/ ’I,A
CE . Ty e
.
’
’11A’{1A‘/t:[
e
oy | O
’
G olend
757
Al
Vo /. .
/'l,'/-'l/ V'l,'
* '
Yo Ll rd ot
e e
b y
Zeid Zesd

WA I e
I-//://’/-/ it l’/l,JII’A

At

-

N.

[]

L1
O

V7

1 2 3 45 6 7 8 9 101112131415 16
FPGA Ball Grid Array connections.

4 0 D Z=2rrr A~ IT6GmTMMmOoOQ0OWF

1/0 Name: 1/0 Direction PIN: Bank: |Connector: SRAM:
PORT 1<7> InOut B1 BANK7 | A1 Expansion Connector - 19
PORT 1<6> InOut C1 BANK7 | A1 Expansion Connector - 17
PORT 1<5> InOut C2 BANK7 | A1 Expansion Connector - 15
PORT_1<4> InOut R5 BANKS5 [A1 Expansion Connector - 13
PORT_ 1<3> InOut T5 BANKS5 [A1 Expansion Connector - 11
PORT 1<2> InOut R6 BANKS5 [A1 Expansion Connector - 9
PORT 1<1> InOut T8 BANKS5 [A1 Expansion Connector - 7
PORT 1<0> InOut N7 BANKS5 [A1 Expansion Connector - 5
PORT 0<7> InOut D1 BANK7 D7
PORT 0<6> InOut E1 BANK7 D6
PORT 0<5> InOut G2 BANK7 D5
PORT 0<4> InOut J1 BANK6 D4
PORT 0<3> InOut K1 BANK6 D3
PORT 0<2> InOut M2 BANK6 D2
PORT 0<1> InOut N2 BANK6 D1
PORT 0<0> InOut P2 BANK6 DO
clk Input T9 BANK4 [50MHz (IC4)

Top View

Benjamin Grydehoej (04007714) — BEng (Honours) Electronic and Computer Engineering

-57 -

