
Sprites Alive Manual - Basic Version

Submitted by Tommy Pereira on 24 September 2003
Kindly scanned and PDFed by Steve R Sopp

"Thank you Kevin Thacker for putting it online for everyone
on the - Unofficial Amstrad WWW Resource"

-=-

[//\ //\//\ | G O]

http://mondodizzy.members.easyspace.com/
Kiss My ARSEnal - Pixel Art Drawrings

http://dizzypetition.members.easyspace.com/
Bring Back that Loveable EGG!

1

2

MAIN MENU

THE SUPERVISOR

Supervisor Program Start 05

Supervisor Appendix I
Screen Dimensions

45

Supervisor Appendix II
Error Messages

46

Supervisor Appendix III
Advanced User Notes

48

Supervisor Command Index 52

THE DESIGNER

Supervisor Program Start 55

Designer Command Index 75

I would like to take this opportunity to thank Dawn, my long
suffering girlfriend. Without her patience this program would
never have been created.

3

4

THE SUPERVISOR

GLEN COOK

5

SPRITES SUPERVISOR PROGRAM

INTRODUCTION

The CPC range of Amstrad computers is supplied with an
excellent hardware specification. However the BASIC supplied
with the computer, good as it is, does not show off the
computer's full potential in the graphics and sound
departments.

This suite of programs will remedy this by extending the
BASIC with a number of extra commands. These extra commands
will allow the user to manipulate graphics to a far greater
extent than was ever possible using the BASIC supplied.
On the disc there are a number of demonstration programs
written entirely in BASIC to show you the type of program
that you will be able to create for yourself. You do not need
to have any knowledge of machine code.
Try the demonstrations for yourself.

RUN "DEMO1" and press ENTER

There are five demonstration programs on the disc. They are
called DEMO1, DEMO2, DEMO3, DEMO4 and DEMO5. After reading
through this manual and getting used to the extra commands
you will be able to write programs of the same sort of
quality as this.

The program has the following features:-

1) 64 User definable sprites

2) Animation sequencing

3) Smooth pixel movement

4) True collision detection

5) Use of mode 0 or mode 1

6) Joystick or Keyboard control

7) Comprehensive sprite designer

8) Automated commands

9) Simple to understand instructions

The program has been designed to eliminate large amounts of
BASIC, thereby making the programs easier to write and
understand. This is done by making the sprite program do most
of the decision making for you. It is quite possible to write
a game that only has three or four lines of BASIC for the
main loop. The rest of the program would set up the sprite
and music data.

If you take a look at the listings of the demonstration
programs you will be able to see just how simple they are.
You should be able to write. programs just like them in no
time at all.

6

SPRITES SUPERVISOR PROGRAM

AN OVERVIEW OF THE SPRITES AND DRAWINGS

It is very important that you understand this page before you
start to use the sprite program. Take your time to fully
familiarize yourself with the points made on this page.
Without understanding the basics of sprites and this program
you will find the program impossible to use to its full
extent.

It is important to familiarize yourself to the difference
between a drawing and a sprite. The drawing is the actual
shape of the character that will be stored in memory. The
sprite is not an actual drawing but it can be linked to a
drawing. That may sound a bit confusing but I will give you
an example to try and explain what I mean.

Please bear in mind that every individual character on the
screen is a separate sprite, be it a spaceship, a man or a
missile.

Take as an example the game of Breakout, the game where a
ball bounces around the screen knocking out blocks at the
top. You control a bat at the bottom of the screen and try to
keep the ball in play by bouncing the ball off your bat. To
simplify things all the blocks at the top of the screen are
the same shape, size and colour. Each of the blocks at the
top of the screen are individual sprites, the ball is a
sprite and the bat is a sprite.

We could have 40 blocks at the top of the screen, say four
rows of ten. Each of those 40 blocks is a sprite. in total we
have 42 sprites on the screen at the start of the game
(blocks,bat and ball). However we would only have to define 3
drawings, that of the block, the bat and the ball. Even
though we have forty blocks they are all identical so we
simply link all 40 sprites to the one drawing.

I hope that starts to make sense. There is no point in
storing all 40 blocks in memory because it is just a waste of
memory.

Taking the idea one step further. We have a man walking
across the screen in an animated sequence. That man is a
single sprite. However to get the animation effect we have to
swap the drawings of the man everytime that he is moved. This
is a case of 1 sprite being linked to a number of drawings.

As another example, consider a printing press. The press has
been set to produce a picture of a girl. From that one
drawing we can have a number of copies printed onto paper.
Your drawing stored in memory is the printing press and the
copies on paper are your sprites. We only need one drawing to
produce any number of sprites from it.

Please remember the difference between your drawings and your
actual sprites. Any confusion you have will clear once you
have used the program a number of times. Practice does make
perfect !!

7

SPRITES SUPERVISOR PROGRAM

IMPORTANT NOTES ON USING THIS PROGRAM

You may use the Sprites In either Mode 0 or Mode 1.

The screen PAPER should always be set to zero. You may choose
any colour you like for the paper colour by using the command
INK 0,n. If you use the PAPER command with a variable other
than zero the sprites will not operate correctly.

When using the sprites you MUST NOT scroll the screen. If you
want to print something on the bottom line of the screen you
should use a semi-colon after the information you want
printing. If the screen does scroll the sprites coordinate
system will not work correctly.

When you are linking the colours to the inks with the INK i,c
you can not use flashing colours. If you try to use flashing
colours an error message will be displayed.

The coordinate system used within the Supervisor program is
very similar to the graphics coordinate system the Amstrad
uses; 0,0 being the bottom left hand edge of the screen. The
differences between the two systems are as follows.

The Amstrad system has a number of coordinates on the screen
pointing to the same pixel.

ie Mode 0 : 0,0 : 1,0 : 2,0 and 3,0 are the same points on
 the screen.

he supervisor system has a different point on the screen for
each individual coordinate.

ie Mode 0 : 1,0 is a different point to 0,0.

This applies to both the X and Y coordinates. The maximum
screen coordinates for each screen and mode can be found in
Appendix 1.

Some of the commands described in the manual will pass values
back to BASIC. These commands will have the '@' character
before the variable name. It is VERY important that you
include this character when it is shown in a command. Failure
to do this could result in your program being corrupted and
the computer may crash.

It is important that you save your program before you 'RUN'
it. If you have made a mistake and you loose your program it
is very frustrating to have to type it back into the computer
again.

You MUST use either the |ERASE or the |RESET command as the
first instruction within your program.

If you are going to use a different size screen to the
standard Amstrad screen, the LOCATE command will not work
correctly. You should use trial and error to find the correct
value for the LOCATE command.

8

SPRITES SUPERVISOR PROGRAM

SCREEN AND DRAWING COMMANDS

|SCREEN,n

This command will allow the user to change the shape of the
screen. There are nine different screen sizes to choose from,
these range, from |SCREEN,0 to |SCREEN,7. To return to the
standard screen simply use the |SCREEN command with no number
after it. You should experiment with this command with the
border set to a different colour to the paper so you can see
the exact shape the screen will take. The sizes of the
different screens can be found in appendix 1.

NOTE The default setting is the standard Amstrad screen.

|DGET,d,x,y

This is a command that will get the drawing into the
computers memory. d is the drawing number, x and y are the
drawing dimensions. To get a drawing into memory the drawing
must be put into the top left hand corner of the screen. You
can do this by either defining characters and printing them
in the top left hand corner, or by using the PLOT command to
put the character into the top left hand side.

You should then use the |DGET command to store the drawing.
The x and y values should be the width and height of the
drawing in pixels. In order to conserve as much memory as
possible, the top of the drawing should be touching the top
of the screen and the left hand edge of the drawing should be
touching the left hand edge of the screen. The rest of the
screen should be completely clear of any graphics. It is very
important that there are no graphics to the right hand edge
of the drawing you are going to store.

If you are using the sprite designer program, which we
strongly recommend, you will not need to use this command.

NOTE : The correct mode must be set, ie MODE 0 or MODE 1.
Also the size of the screen must be set to its default size
ie |SCREEN.

You can define from drawing 0 up to drawing 63. The maximum
size of a drawing is 32 x 32 pixels.

Please remember that the x and y dimensions need to be
specified in pixels. DO NOT use the Amstrad coordinate
system.

Before you get any of the drawings into memory, you should
ensure that you have reserved enough memory with the MEMORY
command. It you do not reserve enough memory you may corrupt
your program.

To calculate the amount of memory you will need please, see
the equation on the next page.

9

SPRITES SUPERVISOR PROGRAM

MEMORY CALCULATION OF DRAWING SIZE

If you are going to get the drawings into memory by using the
|DGET command you will need to know how much memory the
drawings are going to take up. You will need to do this in
order to calculate the correct value for the MEMORY command.

There are two different methods of calculation, depending on
which screen mode you are going to use.

MODE 0 CALCULATION

1) DIVIDE X DIMENSION BY 2 DISCARDING ANY FRACTION (INT)

2) ADD 1 TO RESULT

3) MULTIPLY ANSWER BY Y DIMENSION

4) MULTIPLY RESULT OF 3 BY 2

ie MEM = INT (X DIMENSION / 2 + 1) * Y * 2

You must do this for all the drawings you are going to |DGET.

When you have a total for all the drawings subtract answer
from 23389 to find the result you should use for the MEMORY
command.

MODE 1 CALCULATION

1) DIVIDE X DIMENSION BY 4 DISCARDING ANY FRACTION (INT)

2) ADD 1 TO RESULT

3) MULTIPLY ANSWER BY Y DIMENSION

4) MULTIPLY RESULT OF 3 BY 4

ie MEM = INT (X DIMENSION / 4 + 1) * Y * 4

You must do this for all the drawings you are going to |DGET.

When you have a total for all the drawings subtract answer
from 23389 to find the result you should use for the MEMORY
command.

You can test your calculations once you have DGETed all of
your drawings into memory. Once all the drawings are stored
type in the following line

A%=0:|SMEM,@A%:PRINT A%-1

The value that is printed onto the screen should be the
roughly the same value used for the MEMORY command.

10

SPRITES SUPERVISOR PROGRAM

LOADING DRAWINGS FROM THE SPRITE DESIGNER PROGRAM

We strongly advise the user to design his/her drawings using
the sprites designer program. This has a number of distinct
advantages over manually getting the data from the top of the
screen. If however the user wants to use sprites in mode 1
he/she will have to use the manual method. This method is
described in detail on page 9 under the heading |DGET.

Users of the sprite designer program should follow the
instructions detailed below to avoid any problems that may
occur

1) Fully design your drawings and make sure they are ready to
be used by your main program.

2) Before you select option (8) CREATE SPRITE DATA in the
sprites designer program, find out how much memory the
drawings take up. To do this press option (6) SPRITE DATA
and then press Y. At the end of the list of drawings will
be the total memory used. Write down this number.

3) Now select option (8) CREATE SPRITE DATA. Insert the disc
you want the drawings stored to and enter a filename.

4) You are now ready to load the drawings into your program.
Before you do this you must insert a MEMORY command. To
calculate the memory command subtract the total memory used
from 23389. The answer to the sum should be used for the
MEMORY command.

5) You should now use the |DRAW command. This will load all of
the drawings into memory. If you would like the colours to
be altered to the colours used within the SPRITE DESIGN
program use the |COLOUR command.

We will now describe the |DRAW and |COLOUR commands in more
detail.

|DRAW,"filename"

This command can be used in either immediate mode or it can
be included within your program. This command will load in
the drawing information for the filename you supply. The
drawing data stored on the disc has the file name
xxxxxxxx.DRW. Do not include the DRW when you specify the
name.

You should not use this command until you have used the
MEMORY command as described above.

You may repeat the test shown on the previous page to ensure
that you have used the correct value for the MEMORY command.

11

SPRITES SUPERVISOR PROGRAM

GENERAL SCREEN COMMANDS

The colours you use within your program are stored in memory.
By doing this you can achieve professional results when
putting the sprites onto the screen. If you turn all the inks
to black, put the sprites onto the screen and then set the
inks to their correct colour it will look as if the sprites
have all been put onto the screen at the same time.

The memory block used to store the colours is 16 bytes long.

The memory block is updated when you load drawings into the
computer using the DRAW command. If you load any drawings
into the computer, the colours you selected using the
designer program will be transferred into this memory block.
You can access the colours by using the |COLOUR command as
described below.

The only limitation of using this method is that you may not
use flashing colours. If you try to use the Amstrad INK
command with more than two variables (ink and colour) an
error message will be displayed.

|COLOUR

This command will turn all the inks on the screen to their
normal colours (as defined by the Amstrad INK i,c command).
This command may be used in conjunction with either the
|INKBLACK command or the |DRAW command.

When using this command in conjunction with the |DRAW command
it will change the inks to the colours selected by the sprite
designer program.

|INKBLACK

This command will change all the colours on the screen,
including the border and paper, to black. The colours used
will be remembered, you will not need to define all the
colours again, you would simply use the |COLOUR command as
described above.

|WP

This command will clear the screen. The screen will change to
Mode 2, the screen will revert to its normal size and the pen
and paper colours will be changed to make them easier to
read.

|CLS

If you are going to use a different size screen to the normal
Amstrad screen when you issue the normal CLS command a small
section of the screen way not have been cleared correctly. To
clear the screen completely you should use this command.

12

SPRITES SUPERVISOR PROGRAM

SPECIAL SPRITES AND HOW TO USE THEM

I have spent quite some time trying to decide where this page
should appear in the manual. On first reading it may seem
totally confusing, however, if I didn't include it near the
beginning of the manual you may not understand why some
sprites behave differently to others. My suggestion is that
you should read this page now and then refer back to it when
you understand the program a bit more.

Sprite 0 and sprite 1 are controlled by the joystick and
keyboard, all other sprites (2 63) are controlled by your
program.

If you do not intend to use a sprite controlled by joystick
or keyboard you should not use sprite 0 or sprite 1.

The differences between these special sprites and the more
general purpose sprites are as follows :

� Sprite 0 and sprite 1 will not bounce at screen edge.

� Sprite 0 and sprite 1 will not bounce when they collide
with another sprite.

� Sprite 0 and sprite 1 will behave differently when they are
in collision with other sprites.

� Sprite 0 and sprite 1 have separate missile commands to all
other sprites.

It is very easy to forget when you are writing your programs
about these differences (I've done it a number of times). If
you find one of your sprites behaving differently check your
program to ensure you are not using sprite 0 or sprite 1 for
any purpose other than joystick/keyboard control.

Sprite 0 is the main character sprite. It will operate under
control of the joystick.

Sprite 1 should only be used in two player games or in games
which use the keyboard instead of the joystick.

13

SPRITES SUPERVISOR PROGRAM

SPRITES, DRAWINGS AND PUTTING THEM ONTO SCREEN

|SGET,s,d

This command will allow you to link a sprite to a previously
defined drawing. s is the sprite number and d is the drawing
number. By now you should have your drawings stored in
memory. To make use of your drawings you must link it to a
sprite.

s may be any non defined sprite in the range 0 to 63. d must
be a defined drawing in the range 0 to 63.

Using the Breakout game as an example. You have defined 3
drawings. Drawing 0 is the bat, drawing 1 is the ball and
drawing 2 is the block. We will make sprite 0 the bat, sprite
2 the ball and sprites 3-42 the blocks. To do this we would
use the following commands.

|SGET,0,0:|SGET,2,1:FOR I%=3 TO 42:|SGET,I%,2:NEXT I%

We use the % symbol because this means we aye using integer
variables, this will be explained in detail later.

We would use sprite 0 as the bat as this is controlled by the
joystick. However if we wanted the bat to be controlled by
the keyboard we would need to use sprite 1.

The line above links the sprites to the correct drawing. If
we wanted to make the bat sprite 1 and the ball sprite 2,
then we would have used

|SGET,1,0:|SGET,2,1:FOR . . .

IMPORTANT : You must set the relevant |SCREEN before using
|SGET command. If you wish to to use a different screen size
to the standard Amstrad screen you must change the size of
the screen with the |SCREEN command before issuing an |SGET
command, failure to do this will result in the sprites
behaving incorrectly.

|SPUT,s,x,y

This command is used for putting the sprite onto the screen.
s is the sprite number, x and y are the coordinates for the
position of the sprite to go onto the screen. s must be a
sprite that you have defined, x and y must be within the
legal coordinates allowed by that screen. The coordinates
refer to where the top left hand edge of the sprite will go.

Also bear in mind that if you are putting a sprite onto the
screen near the bottom or right hand edge you must take into
account the height and width of the sprite. ie If a sprite
has a height of ten pixels then it would be no good trying to
put it at coordinate 100,8 simply because the sprite would go
off the bottom of the screen.

14

SPRITES SUPERVISOR PROGRAM

GETTING THE SPRITES ON AND OFF THE SCREEN

|SPUT,s

This command is used to take a sprite off the screen. s is
the sprite number. If you have taken a sprite off the screen
then by using another |SPUT,s command the sprite will come
back onto the screen at the same place that it was taken off.
In other words the |SPUT,s command will toggle the sprite off
and on the screen.

Example.
 |SPUT,0,100,100 - Put sprite 0 at location 100,100
 |SPUT,0 - Take sprite 0 off the screen
 |SPUT,0 - Put sprite 0 back onto the screen

NOTE In order to use the |SPUT,s command the sprite must have
been put onto the screen initially with a |SPUT,s,x,y

|SPUT,s1,s2

This command is identical to the |SPUT,s command except that
it will either remove or put onto the screen a number of
sprites. s1 being the first sprite and s2 being the last
sprite. It does not matter if you have not defined all of the
sprites in the range s1 - s2 as the program will ignore any
sprite that has not been defined.

|SPUTALL

This command will remove all the sprites off the screen. This
is useful at the end of a game when you need the screen
clearing.

IMPORTANT: If you have put a sprite onto the screen then you
should not try and put that same sprite onto a different part
of the screen without first removing the original sprite.

ie |SPUT,0,100,100:|SPUT,0,120,30 - This is incorrect
 |SPUT,0,100,100:|SPUT,0:|SPUT,0,120,30 - This Is correct

|RESET

This command will reset all of the settings within the
program back to their default values. The data that links the
sprites to the drawings will be erased. The drawing data will
be kept intact.

|ERASE

This command will do everything the RESET command does, but
it will also erase the drawing data as well. THIS COMMAND
SHOULD BE THE FIRST COMMAND USED AT THE START OF ANY OF YOUR
PROGRAMS.

15

SPRITES SUPERVISOR PROGRAM

SETTING THE ATTRIBUTES OF THE SPRITES

|XEDGE,s,n

This command will determine the property of the sprite when
it collides with the left or right hand screen edge. s is the
sprite number, n is the number that determines what the
sprite will do when it hits the screen edge. The table below
will show you how to set tip the correct attribute.

NUMBER ATTRIBUTE

1 Disappear
2 Stop
3 Bounce
4 Wrap

Disappear : The sprite will be taken off the screen when it
hits the screen edge.

Stop : The sprite will stop moving but stay on the
screen.

Bounce : The sprite will bounce off the screen edge as if
it had bit a wall.

Wrap : The sprite will be removed from the screen and
put back onto the screen on opposite screen
boundary.

|YEDGE,s,n

This command is identical to the |XEDGE command except that
it determines what the sprite will do if it hits the top or
bottom screen boundarys. It uses the same attribute number as
the |XEDGE command.

The |XEDGE and |YEDGE commands can be set to different
values. ie The |YEDGE could be set to bounce whilst the
|YEDGE could be set to wrap.

NOTE : The default settings are for the general sprites is
BOUNCE at all edges.

The default settings for sprite 0 and sprite 1 are
for the sprites to STOP at all edges.

You may not alter the edge attributes for any sprites you
define to be missiles. The missile sprites will be described
in more detail later in the manual.

Sprite 0 and sprite 1 may only be set to STOP or WRAP. If you
try to set them to bounce or disapear an error message will
be displayed.

16

SPRITES SUPERVISOR PROGRAM

GETTING THE SPRITES MOVING

|SDIR,s,xs,ys

This command determines the speed at which the sprite will
move. s is the sprite number, xs and ys are the sprite
speeds. The speed variable determines how many pixels at a
time the sprite will move. We do not recommend that this
value goes above 8. This should be fast enough for most
applications. To get the sprite to move to the left then you
should use a negative velocity for xs. To get the sprite to
move down the screen then you should use a negative velocity
for ys.

NOTE : Under normal circumstances the speed of sprite 0 and
sprite 1 will be set by the |STIXSPEED and |KEBSPEED
commands.

You may not set the speed of the missiles using this
command. The speed for missiles is set using the
|MISSILE command.

You have a number of commands which will allow you to control
the sprites either by the joystick, keyboard or both. They
range from simply reporting the position of the joystick to
actually moving the sprite under joystick or keyboard
control.

The commands in this section deal with moving the sprites in
the direction of either the joystick or keyboard.

As you will already know, sprite 0 and sprite 1 are
controlled by using the joystick and keyboard. The commands
below and on the next page will determine how sprite 0 and
sprite 1 are controlled.

|STIX,n

The |STIX command allows sprite 0 to move under the control
of the Joystick. The number after the command determines in
which direction that sprite will be allowed to move. This
allows for the sprite to be moved only left-right; or
left,right, up, down but not diagonally; or left, right, up,
down and diagonally. This number will also determine whether
or not the fire button will be activated. The sprite will
move under joystick control every time sprite 0 tries to
move. i.e |MOVEALL or |MOVE,0,20 etc.

|KEB,n

This command is identical to |STIX command except that it
will control sprite 1 and it will determine which way the
sprite will move under control of the keyboard. The sprite
will move under keyboard control every time sprite 1 tries to
move. i.e |MOVEALL or |MOVE,0,20 etc.

17

SPRITES SUPERVISOR PROGRAM

USING THE JOYSTICK AND KEYBOARD

In order to inform the program of the directions that sprite
0 and sprite 1 are allowed to move you should use the
following table.

NUMBER DIRECTION COMMENTS

0 NO DIRECTION JOYSTICK/KEYBOARD DISABLED
1 UP ALLOW SPRITE TO GO UP
2 DOWN ALLOW SPRITE TO GO DOWN
4 LEFT ALLOW SPRITE TO GO LEFT
8 RIGHT ALLOW SPRITE TO GO RIGHT
16 DIAGONAL ALLOW THE SPRITE TO MOVE

DIAGONALLY
32 FIRE FIRE BUTTON ON
64 CONTINUOUS SPRITE WILL NEVER STOP

To use this table simply decide which features you want
turned on and add up the numbers to get a value. This is the
number you put after the |STIX or |KEB command.

Example.

Sprite 0 to move Left-Right with fire button turned on.

4 + 8 + 32 = 44 |STIX,44

Sprite 1 to move Up, Down, Left and Right with no diagonal
movement and no fire button.

1 + 2 + 4 + 8 = 15 |KEB,15

if you wanted the fire button turned on as well as the
directions then you would use

1 + 2 + 4 + 8 + 32 = 47 |KEB,47

If you wanted diagonal movement as well.

1 + 2 + 4 + 8 + 16 + 32 = 63 |KEB,63

Continuous movement means the sprite will not stop, even if
you centre the joystick. The sprite will stop only when it
hits a screen edge.

If you are not going to use the joystick you should not put
sprite 0 onto the screen and you should not use the |STIX
command.

It you are not going to use the keyboard you should not put
sprite 1 onto the screen and you should not use the |KEB
command.

NOTE : The default settings for both the joystick and the
keyboard are for them both to be disabled.

18

SPRITES SUPERVISOR PROGRAM

USING THE JOYSTICK AND KEYBOARD

|STIXSPEED,u,d,l,r

The |STIXSPEED command informs the program of the speed that
sprite 0 will move whilst under joystick control. All the
variables must be used, ie use four values. This is the case
even though the joystick may only be programmed to move in
two directions. The values must all be positive numbers.

|KEBSPEED,u,d,l,r

This is identical to the STIXSPEED command except that it
will control the speed of sprite 1.

Example.

|STIXSPEED,1,1,2,2 This will move sprite 0 at a speed of
1 pixel at a time whilst moving up and
down and 2 pixels whilst moving left
or right.

|KEBSPEED,4,4,2,2 This will allow sprite 1 to move at a
speed of 2 pixels at a time whilst
moving left or right, and 4 pixels at
a time moving top and down.

NOTE : The default settings for both the |STIXSPEED and the
|KEBSPEED commands are all directions set to speed 1.

|KEBDEF,u,d,l,r,f

This command will allow the user to define which keys will
move sprite 1. The command accepts key numbers only. This
information can be found in chapter 7 page 23 of the Amstrad
6128 user manual. The information is also displayed on the
6128 disc drive case. You most define all the key numbers
even though you may not use them all. ie You may not want to
have a fire button defined, however you must use a key number
for it.

Example. |KEBDEF,58,63,60,61,18

The command on the previous page would define the keyboard as
follows

Up – E, Down - X Left – S, Right – D, Fire - RETURN

Default setting: arrow keys for direction, space to fire.

19

SPRITES SUPERVISOR PROGRAM

USING THE JOYSTICK AND KEYBOARD

Due to the way in which the computer tests for certain keys
it will sometimes return the wrong key number. This can
effect the way the sprites move if you are using both sprite
0 and sprite 1. If you find the sprites are not moving in the
direction you have selected or change direction of their own
accord, you should try altering the key numbers you selected
using the |KEBDEF command. This problem will also occur with
the |READKEB and |READJOY commands.

All the above commands deal with actually moving the sprite
under control of the joystick or keyboard. This type of
control is fine if you want the sprite to move in the
direction that you move the joystick (space invaders,
pacman). However there are games and situations when you will
need to know in which direction the joystick/keyboard is
pointing without actually moving the sprite in that
particular direction. Take as an example the game of
Asteroids. If you move the joystick to the left the ship
should rotate anticlockwise, instead of moving to the left.

The way to get around this problem is to establish the
position of the joystick/keyboard and then act upon this
information. The commands below will test if a certain
direction is being pressed.

|READSTIX,k,@v%

This command will test the joystick to see if is being moved
in a particular direction. k should contain a number between
0 and 9. This number will refer to the direction to test.

If you wish to test to see if the joystick
is pushed straight up the value of k
should be 1. To test for diagonally left
and down k should have the value of 4,
etc.

Number 9 tests for the fire button.

Number 0 tests for NO direction. If a
value of 0 is returned in your variable it means the joystick
is in the central position, if a value of 1 is returned it
means that the joystick is being pushed in a certain but
unknown direction.

The command will return a value in v%. This can either be 0
(not pressed) or 1 (pressed).

|READKEB,k,@v%

This command acts in exactly the same way as the |READJOY
command except it tests for the direction pressed on the
keyboard. The direction keys are defined by the |KEBDEF
command.

20

 1
 2 5

3 9 6

 4 7
 8

SPRITES SUPERVISOR PROGRAM

GETTING THE SPRITE MOVING

|MOVE,s

This command will move sprite s. The sprite must be on the
screen and either under joystick/keyboard control or have
been given a direction to move in with the |SDIR command. If
the sprite is not on the screen the command will be ignored.

|MOVE,s1,s2

This command will move all the sprites that are on the screen
that are within the s1 - s2 limits. s1 is the lowest sprite,
s2 is the highest sprite.

|MOVEALL

This command will move all the sprites on the screen.

Example.

10 MODE 0 ; SET MODE TO 0
20 ?”0”:|DGET,0,7,7:CLS ; GET DRAWING 0
30 |SGET,2,0:|SGET,3,0 ; SET UP SPRITE 2 AND 3
40 |SDIR,2,-1,-1:|SDIR,3,1,-1 ; SET THE DIRECTIONS
50 |SPUT,2,40,30:|SPUT,3,60,70 ; PUT SPRITES ON SCREEN
60 |MOVEALL:GOTO 60 ; MOVE THE SPRITES AND LOOP

This program does not set the |XEDGE and |YEDGE commands as
we will use the default values of bounce at screen edge. Try
experimenting with this program by altering screen mode or
sprite speeds. You could even try to alter the edge
attributes by putting in a line at 45

ie 45 |XEDGE,2,4:|YEDGE,2,4

See if you can make sprite 2 act under control of the
joystick in all four directions. As a hint you will need to
alter the sprite number to 0.

You may notice that when the sprites collide they bounce off
each other. This is covered on the next page.

|SWINDOW,s,xl,xh,yl,yh

This command will set up a window in which the sprite can
move. Each sprite can have an independent window. When the
|SGET command is used the window is automatically set to the
full size of the screen. You may alter the size of the window
by using this command. xl is the left hand edge, xh is the
right hand edge, yl is the bottom edge and yh is the top
edge. This command should be used after the SGET command.

The four values should be expressed in sprite coordinates.

21

SPRITES SUPERVISOR PROGRAM

COLLISION DETECTION

|COLLIDE,s,n

This command will determine what the sprite will do if it
hits anything other than the screen edge. s is the sprite
number, n is a value that will determine what the sprite will
do when in collision.

The table below will show you how to set the correct
attribute for sprite s when it is in collision.

NUMBER ATTRIBUTE

1 Disappear
2 Stop
3 Bounce

Disappear : The sprite will be remove from the screen when
it hits an object other than the screen edge.

Stop : The sprite will stop moving but stay on the
screen.

Bounce : The sprite will bounce off the object that it
has hit.

NOTE : The default settings for general purpose sprites is
to bounce when in collision.

The default setting for sprite 0 and sprite 1 is to
STOP when in collision.

You may not alter the collision attribute of any sprites
defined as missiles. The missile sprites will he described in
detail later in the manual.

Sprite 0 and sprite 1 can only STOP when in collision. You
may not alter the collision attribute for these two sprites.
If you do try to alter the attribute an error message will be
displayed.

|REPON,s

In order for you to write your program you will need to be
able to tell if certain sprites are in collision. There are a
number of commands to help you achieve this. You may not need
details about every collision on the screen, and this is why
we have included the |REPON and |REPOFF commands.

The |REPON command will turn on the collision reporting for
sprite s. This collision reporting has no say in what the
sprites will do when they collide. If the reporting is
switched on for a particular sprite and has its attributes
set to bounce and the sprite collides with something the
sprite will bounce and its sprite number will be remembered.

22

SPRITES SUPERVISOR PROGRAM

COLLISION DETECTION

If the same sprite has its reporting switched off and it was
in collision, it would still bounce but the sprite number
would not be remembered.

It is best if you keep the number of sprites with reporting
turned on to a minimum. Some of the collision detection
commands are relatively slow, therefore the less sprites that
they have to test the faster your program will be.

NOTE : The default setting for collision reporting for all
sprites is OFF. In order to use the collision
detection commands the collision reporting must be
turned on.

You cannot turn on the collision detection for missile
sprites. These sprites have their own detection routines. We
will deal with the missile commands further into the manual.

|REPOFF,s

This command is the opposite to the |REPON command. it will
turn the collision detection for sprite s off.

The following commands all test the collision reporting flag.
it the flag is turned off and a sprite is in collision the
sprite number will not be reported.

|COLLTEST,s,@v%

This command will tell the user whether a particular sprite
is in collision. s is the sprite number, v% is the variable
that you want the information stored in. Please be aware that
you must use the @ just before the variable. This is because
the sprite program is passing a variable back to basic.

After using this command the variable you have used will
contain a number. This number will be either 0, 64, 128 or
255.

0 - Sprite in collision
64 - Collision detection turned off
128 - Sprite not on screen
255 - Sprite not collided

SUGGESTION : When you are putting sprites onto the screen
randomly you can test to ensure a sprite has not
been put onto another sprite.

10 A%=0:FOR I%=2 TO 30:|SGET,I%,3: |REPON,I%
20 |SPUT,I%,RND(8)*140,RND(8)*160+30
30 |COLLTEST,I%,@A%:IF A%=0 THEN |SPUT,I%:GOTO 20
40 NEXT

If a sprite is in collision, it is removed and the program
tries again.

23

SPRITES SUPERVISOR PROGRAM

COLLISION DETECTION

|REPORT,@v%

This command is used to check all sprites that are on the
screen to see if they are in collision. By issuing this
command, every sprite on the screen that has collision
reporting turned on is checked for collision. All the sprites
that are in collision are stored in a table. The variable v%
tells you the amount of sprites that were in collision when
the command was issued. Therefore if v% returns a value of 0,
then none of the sprites with collision reporting turned on
were in collision.

By using this command together with the |NEXTREP command the
user will have a list of the sprites that were in collision.

|REPORT,s1,s2,@v%

This command is identical to the |REPORT,@v% command except
that it will check a range of sprites instead of all the
sprites. s1 is the starting sprite number whilst s2 is the
ending sprite number.

|NEXTREP,@v%

This command will get the next value from the table that was
set up by the |REPORT command. When using this command the
variable v% will contain the number of a sprite that was in
collision. When you have this number, that sprite number will
bc removed from the table. By doing another |NEXTREP,@v%
command the next sprite number will be taken from the table.
If the variable v% contains the value 255 then that means all
the sprite numbers in the table have been reported.

An important point to remember is that only the sprites that
were in collision at the time of the |REPORT command are
stored in the table. If you move any sprites after the
|REPORT command and some of the new movement causes a
collision that will not be reported.

You can issue another |REPORT command before you have removed
all of the sprite numbers from the table. The old sprite
numbers that were in the table will be erased to make way for
the new numbers.

An important point to remember is that this routine is quite
slow. You should not call it needlessly.

|CLEAREP

This command will clear the report table. If a |NEXTREP
command is issued after this command the variable will
contain 255. ie no more sprites in collision.

24

SPRITES SUPERVISOR PROGRAM

COLLISION DETECTION

|HIT,s,@v%

This command will allow the user to find out which sprite has
hit another sprite. ie You may know sprite 4 is in collision
but there is no way to find out which sprite that it has
collided with. By using this command you will be able to find
out.

s is the sprite number that you know is in collision, v% is
the variable that will hold the number of the sprite that has
hit sprite a. If v% contains 255 then the sprite must have
hit a piece of scenery or a sprite that does not have
collision reporting turned on.

|MOVEHIT,s,@b%

This command can be used after you have just moved a sprite.
s is the sprite number, b% is the variable that has the
result of the collision test in it. If b%=255 then the sprite
was not in collision, if b%=0 the sprite has collided with
something.

The advantage of using this command in preference to
|COLLTEST command is that this command is a great deal
faster. During the sprite movement routine the sprite is
tested for collision automatically. This routine simply
checks the flag within the movement routine to see if the
collision flag has been set.

It you move the sprite again then the collision flag will be
cleared. It is important that you fully understand how this
command works in order to use it to its full advantage.

Example.

You move sprites 0 to 10 with the |MOVE,0,10 command. When
sprite 0 is moved it does not hit anything therefore the
collision flag is not set. When sprite 1 is moved it hits
sprite 0 therefore the collision flag is set for sprite 1. If
you did a |MOVEHIT,0,@b% command, testing to see if sprite 0
is in collision, the routine would return a value of 255
(sprite not in collision). This is because when sprite 0 was
moved it did not hit anything. It you did a |MOVEHIT,1,@b%
command, testing to see if sprite 1 was in collision, the
routine would return a value of 0 (sprite in collision).

If instead of doing the |MOVEHIT command after the |MOVE
command you did a |COLLTEST,0,@b% command then the routine
would return a value of 0 (sprite in collision). This is
because the |COLLTEST command checks the sprite after
everything has moved.

Please note : The collision reporting must be turned on In
order for this routine to work.

25

SPRITES SUPERVISOR PROGRAM

IMPORTANT NOTES

Throughout the collision detection commands we have been
using a variable v%. There is a '@' character before this
command. We are using the '@' character because that tells
BASIC that we are going to pass a value from the sprites
program back to your own program. It is extremely important
to include this character before your variable name. Failure
to do this could result in your program being destroyed.

We have used v% as a variable name throughout the collision
detection commands. You may use any variable name.

We have used the '%' character after the variable name. This
is because the sprite program is passing integer variables.
You must always use integer variables whilst either passing
or receiving variables from the sprite program. Therefore it
is important that you understand fully how to use integer
variables.

An important point to remember about passing integer
variables back to BASIC is that the variable must be known to
the program. At the start of the program the variables must
contain a number, this can be zero. ie a%=0:v%=0:f%=10

It is always a good idea to save your program before you
'RUN' it. Whilst every effort has been made to ensure that
any errors that you make are reported by the error routine
there are a few instances were an error might be missed by
the program.

ERROR MESSAGES

If the program finds an error, then the command the error was
found in will be displayed along with the error number. The
program will then pause and the cursor will appear on the
screen. It is now up to you to break into the program by
pressing the 'BREAK' key once. If you press any key other
than the BREAK key the program will continue.

If you have missed pressing the BREAK key and the program has
continued you should stop the program by pressing the BREAK
key twice. You should now sort out the error.

The error numbers can be found in appendix II.

After you have pressed the BREAK key the computer will report
BREAK IN LINE xxxx. This may not be the line in which the
error occurred. The error may have occurred in the previous
line. If an error occurs in the last statement of a line when
the BREAK key is pressed the computer will display the line
number as the line following the erroneous line.

ie Your program starts at line 10 and ends at line 250 going
up in steps of 10. If the computer displays BREAK IN LINE 60
the error could be in line 60, or it could be the last
command on the previous line. ie 50.

26

SPRITES SUPERVISOR PROGRAM

MISCELLANEOUS COMMANDS

|SXPOS,s,@x%

This command will tell the user the X coordinate of a
particular sprite. s is the number of the sprite, @x% is the
variable that you want the sprite X coordinate to be stored
in.

|SYPOS,s,@y%

This command will tell the user the Y coordinate of a
particular sprite. s is the number of the sprite. @y% is the
variable that you want the sprite Y coordinate to be stored
in.

|SDRAW,s,@d%

This command will tell the user the drawing number that the
sprite currently is. s is the number of the sprite. @d% is
the variable that you want the drawing number to be stored
in.

|SMEM,@m%

This command will tell the user the amount of memory that the
drawings have taken up in memory. This value. should always
he higher than the HIMEM value. @m% is the variable that you
want the memory information stored in.

|XDIR,s,@x%

This command will tell the user the speed at which the sprite
is moving on the horizontal plane. s is the number of the
sprite, @x% is the variable that you want the sprite speed to
be stored in.

|YDIR,s,@y%

This command will tell the user the speed at which the sprite
is moving on the vertical plane. @y% is the number of the
sprite. @y% is the variable that you want the sprite speed to
be stored In.

|CSPRITE,s

This command will clear sprite s from memory. If the sprite
is on the screen when this command is issued, the sprite will
be removed. You may now, if you wish use the |SGET command to
link this sprite to another drawing.

|WAIT,n

This command will cause your program to pause. n is the
amount of time in 1/20th's of a second it will wait. If n was
100 the program would wait for 5 seconds.

27

SPRITES SUPERVISOR PROGRAM

ANIMATING THE DRAWINGS

The user can define 16 animation sequences. The animation
sequences consist of a list of drawing numbers in sequence
for the eight directions that the sprite can move in.

The drawings to be used in animation must all have the game x
and y dimensions. They must also be in sequence one after
another. You define the drawing sequences for the sprite for
the eight directions in which the sprite can move. You may
not want to use all directions, indeed you may only want the
sprite to he animated in one or two directions, however you
must define the sprite movement for all eight directions.

The sprites program will automatically select the correct
drawing sequence depending on which direction the sprite is
moving, once the drawing sequence has been defined.

A number of sprites may use the same sequence of drawings,
therefore you may have a great deal more than 16 sprites
animated on the screen at the same time.

The way you define your sequence is as
follows

These are the eight directions that your
sprite can move in.

You must define a drawing sequence for
each direction.

|SEQUENCE,sn,1l,1h,2l,2h,3l,3h,4l,4h,5l,5h,6l,6h,7l,7h,8l,8h

This is quite a long command, you only need do it once for
each sequence and not everytime you want to animate a sprite.
The l and h in the command example are for the low and high
numbers of a sequence.

sn is the sequence number. This should not he confused with
the sprite number. You will learn how to link a sequence to a
sprite shortly. The sequence number can be between 0 and 15.

When you define a sequence from low to high, every drawing
within that sequence must have the same x,y dimensions. Also
there should not be any drawings missing. The sequences can
be repeated for a number of different directions.

Example : You have designed a number of drawings of a man,
drawings 0 to 5 are. the man walking left, drawings 6 to 11
are the man walking right. The man can walk left and right.
The command should look something like this

|sequence,0,0,5,0,5,0,5,0,5,6,11,6,11,6,11,6,11

This command sets up sequence 0. If the man happened to start
moving at a diagonal the figure would still be animated.

28

 1
 2 5

3 9 6

 4 7
 8

SPRITES SUPERVISOR PROGRAM

ANIMATING THE DRAWINGS

Once you have set up your animation sequences you will then
need to link the sequences to a sprite. You should do this
after you have issued an |SGET command. When you do link a
sprite to a drawing, the drawing number you should use should
be lower than the highest drawing number defined in the
sequence.

Ie. 'You have linked drawing 10 to sprite number 0. The
sequence you are going to use must have a drawing number in
it which is greater than 10.

Once the sprite is animated the drawing number is incremented
until it is equal to the last sequence number, then it is
reset to the start sequence number. If you issued an |SGET
command with a drawing number higher than the highest
sequence number, an error would occur.

If you wish to use only one drawing for each different
direction, you should use the same drawing number for both
the high and the low values.

Example.

You have designed eight drawings of a spaceship, one drawing
for each direction the ship can move in. The sequence command
should look something like this.

|SEQUENCE,1,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7

|ANIMATE,s,sn

This is a command that links a sprite to an animation
sequence. s is the sprite number, sn is the sequence number.
The sprite should have already been linked to a drawing with
the |SGET command.

|ANIMOFF,s

This command turns the animation of sprite s off. The drawing
that the sprite was using at the time the command was issued
will now be frozen. ie not animated. If the sprite is now
moved the sprite will be linked to the last drawing.

NOTES ON ANIMATION

If a sprite hits another sprite whilst it is animated then it
is possible for the sprites to stick together. This is due to
the nature of the animation and the collision detection.
Under normal circumstances as soon as a sprite collides with
another by one pixel the sprite will bounce. However if at
the time of collision the drawing overlaps the other drawing
by more than one pixel due to the change in the shape of the
sprite through animation, a stick may occur. There are a
number of things you can do to get around this (if it
occurs). There are some notes towards the back of the manual
to help you.

29

SPRITES SUPERVISOR PROGRAM

USING MISSILES

There have been a number of commands incorporated within the
supervisor program to allow the sprites to fire missiles. The
commands may seem complicated at first, but with
experimentation the commands will soon become easy to use.

You must first design a missile drawing. You do this in the
same way as you would define any drawing, be it a small
circle or a more rectangular shaped missile.

The missile must then be linked to every DRAWING you wish to
fire missiles. The reason you link a missile to a drawing
rather than to a sprite is simple.

It you have defined a sprite to be a spaceship (as in the
animation example), the sprite can move in eight directions.
Each of these eight directions has a different drawing
associated with it. Because we have linked the missile to the
drawing rather than the sprite we know which direction to
fire the missile in, we also know the offset at which to
first put the missile onto the screen.

You are probably totally confused by that description. We
will now go through the commands associated with the missiles
and we will give you some examples after that. There is a
demonstration program on the disc called DEMO1 that you can
look through to give you a better idea of the commands.

There are three types of missiles type 0, 1 and 2. Type 0
missiles are fired from sprite 0, type 1 missiles are fired
form sprite 1 and type 2 missiles are fired from sprites 2 -
63.

|MISSTYPE,ty,d

You should have by now defined your drawing(s) for your
missile(s). You may have a separate drawing for each type of
missile or all types may use the same drawing. The above
command will inform the supervisor of which drawing to use
for the missile for each missile type.

ie |MISSTYPE,0,2:|MISSTYPE,2,2

This would define missile type 0 to drawing 2 and missile
type 2 to drawing 2. Remember type 0 missiles are fired from
sprite 0 and type 2 missiles are fired from sprites 2 - 63.
Both are using drawing 2 as the missile drawing.

 |MISSTYPE,0,3:|MISSTYPE,1,4

This would define missile type 0 to drawing 3 and type 1 to
drawing 4.

The drawings you design as missile drawings must be above
drawing 1.

30

SPRITES SUPERVISOR PROGRAM

USING MISSILES

|MISSILE,Dn,ty,Xo,Yo,Xs,Ys

This is the command that will link a missile type to a
drawing number. Dn is the drawing that will fire the missile.
ty is the missile type (0,1,2).

If you require sprite 0 to fire missiles and sprite 0 is
animated with drawings 0 to 7, we would need to use 8
|MISSILE commands starting |MISSILE,0,0,xo,yo,xs,ys and
ending |MISSILE,7,0,xo,yo,xs,ys. Remember the second variable
is the missile type and not the drawing number of the
missile.

The advantage of linking a missile to a drawing rather than
the sprite for use in different types of game is obvious. The
game of asteroids has a ship that can rotate through eight
directions. When you fire a missile, you fire it in the
direction the ship is pointing and moving. However the game
of space invaders has a ship moving to the left and right but
the missiles always fire upwards.

The |MISSTYPE command must be issued before you start to use
this command.

Xo and Yo are the X and Y offsets for the missile. To
calculate the offsets you should use a piece of graph paper
or a calculator.

CALCULATING MISSILE OFFSETS

There is a utility on the disc to help you to calculate the
offsets. This utility is called "OFFSETS". Full instructions
are included within the program.

To simplify things we shall call the drawing that is going to
fire the missile drawing 'A', and the missile itself drawing
'B'.

As you should know by now, all the sprites are put onto the
screen with the origin being the top left hand corner.

Using either graph paper or by calculating yourself you
should make a picture of drawing A. You should then picture
where you want drawing B to be. You should bear in mind that
drawing A should not be touching drawing B. You should then
calculate the distance between the top left hand corner of
drawing A to the top left hand corner of drawing B. This is
the offset, you should do this for both X and Y.

The offsets may be either positive or negative.

Xs and Ys are the speeds at which the missile will travel.
You should not try to set the speeds of a missile with the
|SDIR command.

31

SPRITES SUPERVISOR PROGRAM

USING MISSILES

The x speed and y speed of the missile need to he signed
numbers. If you want the missile to travel left along the x
axis you should use a negative number for the x speed. If you
want the missile to travel down the screen you should use a
negative number for the y speed.

By now you should have defined the drawings to be used as
missiles and also which drawings will actually fire missiles.
You should now have decided how far and how often a sprite
can fire missiles. The next two commands will determine these
factors.

|MISSDELAY,ty,de

This command will limit how fast the missiles can be fired.
ty is the missile type, as described on the previous page (
1,2). de is the delay between firing. de will contain a
number, this number will determine how many moves a missile
must move before the next missile can be put on the screen.

ie. If you set de to a value of 4, the missile that has most
recently been fired must move 4 times before the next missile
can be put on the screen.

This command has a number of advantages. It enables the
previously fired missile to move out of the way before the
next missile is fired, this will stop missiles from colliding
with each other. The other advantage is that you can alter
how frequently a sprite can fire missiles throughout the
game.

The minimum value for de is 2 and the maximum value is 63.

|MISSDIST,di

This command will determine how far all of the missiles will
travel before they are removed from the screen. di should
contain the number of moves a missile can make before it is
removed. ie. If the value of di was 5, then after the fifth
MOVE statement for that sprite, the sprite would be removed.
If you do not want the sprite to be removed then simply use a
value of 127.

The minimum value for di is 5 and the maximum value is 127.

The commands concerning missiles that have appeared so far in
this manual are in the same order as they should appear in
your program. If you fail to put them in this order the
missiles may not work correctly. The order they should appear
in your program is

|MISSTYPE, |MISSILE, |MISSDELAY, |MISSDIST, |BULLET

32

SPRITES SUPERVISOR PROGRAM

USING MISSILES

We are now ready to define a number of sprites to be used as
missiles.

|BULLET,ty,sp1,sp2

This command defines how many sprites are going to be used as
missiles. ty is the missile type. There are three separate
banks of missiles you may use, 0,1 and 2.

Sprite 0 has its own bank (0). Sprite 1 has its own bank (1).
Sprites 2-63 have their own bank (2).

sp1 is the lowest sprite that can be used as a missile, sp2
is the highest sprite that can be used as a missile.

A sprite can have more than one missile on the screen at the
same time.

EXAMPLE.

You wish for sprite 0 to have up to 10 missiles on the screen
at the same time. You way then simply use the command

|BULLET,0,20,29

This command will define sprites 20 to 29 to be missile
sprites.

To get the sprite to actually fire a missile is simple. For
sprites 0 and 1 you may simply turn on the fire button using
the |STIX or |KEB commands. Everytime the button is pressed a
missile will be fired.

The other way to fire a missile, this works with all sprites
from 0 to 63, is to use the |SHOOT command which will be
described a little later.

NOTE : When defining the lower and upper sprite numbers to be
used as missiles you should not use these sprites for any
other purpose. Also the lowest sprite number cannot be lower
than 2.

The three banks of missiles should not overlap.

When your program is working and you start to fire the
missiles you may get an error 'MISSILE TYPE MISMATCH'. This
occurs when you try to fire a missile of the wrong type.

eg

You have defined drawings 0 to 4 to fire missiles of type 0
with the |MISSILE command. If you issue a |SHOOT,2 command
and sprite 2 is using drawing 1 an error will occur because
|SHOOT,2 is trying to fire a type 2 missile and drawing 1 is
only allowed to fire type 0 missiles. BE CAREFUL !!

33

SPRITES SUPERVISOR PROGRAM

USING MISSILES

|SHOOT,sp

This command will allow a sprite to fire a missile whenever
this command is issued, sp being the sprite that will fire
the missile.

If you have defined only a small number of sprites to be used
as missiles and you have only used a small number for the
delay you will find that the sprite will fire missiles in
bursts. This is due to the fact that only the number of
missiles you have defined can be on screen at the same time.
If you continue to press the fire button or use the |SHOOT
command the action will be ignored until a missile has been
removed from the screen and so freeing this missile to be
used again.

When the missiles collide with the screen edge they disappear
and can be used again. If a missile collides with a piece of
scenery, or a sprite that does not have collision reporting
turned on, the missile will also disappear and can be used
again.

If the missile hits a sprite with collision reporting turned
on (|REPON,s) the missile will stop moving and it will stay
on the screen. The sprite it has collided with will also stop
moving (if it was moving).

We now have two commands that deal with missiles once they
have collided with a sprite, that had collision reporting
turned on.

|MISSHIT,@v%

This command store in variable v% the number of missiles that
are currently in collision and are still on the screen. It
does not take into account the type of missile. If v%
contains 0, no missiles that are currently on the screen are
in collision. If v% contained the value 3 then 3 missiles on
the screen are in collision with a sprite.

|MISSHIT,ty,@v%

ty is the type of missile (0,1,2). When this command is
issued, if a missile of the type you specified in ty was in
collision, the missile will be removed from the screen and v%
will contain the number of the sprite that the missile had
collided with. The sprite that the missile had hit will now
be able to move again. It is up to you to decide what to do
with the sprite that the missile hit. You have the sprite
number in v%, therefore if you wished to remove that sprite
you could use the command |SPUT,v%.

34

SPRITES SUPERVISOR PROGRAM

USING MISSILES

It is important that you check regularly to ensure if any
missiles have collided with sprites. If you do not your game
may become cluttered with sprites that are not moving. Also
if you have only specified to use only a small number of
bullets with the |BULLET command you may not use the missile
sprite again until it is removed from the screen.

NOTES ON USING THE MISSILES

If you should find that when firing your missiles they do not
work correctly, there may be a number of reasons for this.

1) The offset you have chosen is to close to the main
drawing. When the missile is put onto the screen it
collides with the sprite that is firing it. You should
increase the offset between the sprite and the missile.

2) You are not moving the missile fast enough. If the missile
has not been moved completely away from the main firing
sprite and you press the fire button again, the next
missile will collide with the old missile. You should
either increase the delay between firing missiles with the
|MISSDEL command, or include more |MOVE routines to move
the missile faster, or increase the speed the missile moves
from within the |MISSILE command.

3) You are not checking for the missiles colliding often
enough. As soon as you find a missile in collision you
should act upon it. You should check for missile collisions
REGULARLY. Remember the missiles do not remove themselves
when they hit something, its up to YOU to remove the
missile with the |MISSHIT command.

4) If you find the missile does not fire correctly when you
are moving the sprite in the direction you are firing, you
should increase the offset distance between the main firing
drawing and the missile.

|MERGE,s,d

This command may be used once a sprite is on the screen. It
will swap the drawing that is currently linked to the sprite
with another drawing. s is the sprite that should be on the
screen, d is the new drawing number to use. The old drawing
and the new drawing should have the same X and Y dimensions.

This command could be used if you do not wish to use the
movements that the |STIX command allows. The |STIX command is
fine if you want to program a game like Space Invaders, if
you move the joystick to the left the sprite will move to the
left. If however you wish to program a game like Asteroids,
where moving the stick to the left will rotate the spaceship
without actually moving it, then this command should be used
in your program in conjunction with the |READSTIX command.

You should use sprite 0 in this instance, even though the
sprite is not directly controlled by the joystick.

35

SPRITES SUPERVISOR PROGRAM

MORE MISCELLANEOUS COMMANDS

|SCENERY,dn,x,y

This command allows the user to put drawings onto the screen
to act as scenery. dn is the drawing number, the x and y
numbers are the coordinates where you are going to place the
scenery. You may use this command to put borders around games
or to put scenery onto the screen. The position a drawing is
put onto the screen is not remembered and so to remove it you
must clear the screen. You may use a drawing any number of
times. You may use a drawing that is linked to a sprite, this
does not matter. This command has nothing at all to do with
the actual sprites.

The coordinate system used for the scenery is the game system
as used by the sprites. REMEMBER, you cannot go over the edge
of a screen.

|EXPLODE,spr,spot,inc,lim,del

This command will make a sprite explode on the screen. Whilst
the explosion is taking place everything on the screen will
stop moving until the explosion dies down.

spr is the sprite that is to explode, it must be on the
screen. spot is the number of pixels that are put on the
screen before the explosion expands. inc is the size of the
increase of the explosion in pixels. lim is the maximum size
of the explosion in pixels. del is a delay to slow the
explosion down.

The only way of getting used to this command is to try it
with different values to see the effect it has on the screen.

spots : range 0 - 32767 , average 100 - 400
inc : range 1 -32 , average 2 -- 10
lim : range.10 - 128 , average 20 - 100
del : range 1 - 255 , average 10 - 100

A program to test the explode command may look like this

 10 MODE 0:LOCATE 1,1:PRINT "0":|DGET,0,7,7
 20 |SGET,2,0:A%=0:B%=0:C%=0:D%=0
 30 CLS
 40 INPUT "SPOTS ",A%
 50 INPUT "INC ",B%
 60 INPUT "LIM ",C%
 70 INPUT "DEL ",D%
 80 WHILE INKEY$=""
 90 |SPUT,2,75,95:|EXPLODE,2,A%,B%,C%,D%
100 WEND:|SPUTALL:GOTO 30

36

SPRITES SUPERVISOR PROGRAM

MORE MISCELLANEOUS COMMANDS

|FRAME

This command will wait until the frame flyback interrupt
occurs before allowing the propram to continue. It is useful
for slowing down graphics if they are moving too fast. It can
also make the graphics in certain circumstances appear to
move more smoothly, although I find it doesn't really make
all that much difference.

|STUCK,s,@v%

This command will tell the user if a particular sprite has
become stuck to another sprite or a piece of scenery. This
can occur during animation, and is described in the animation
section. If a sprite has become stuck you should |SPUT it off
the screen, alter the coordinates and |SPUT it back onto the
screen. s is the sprite number to test. v% will then contain
a number 0 (not stuck) or 1 (stuck).

NOTE: This routine is not foolproof. It will only return a
value of stuck if it cannot move in a certain direction. If
you are using a joystick to control a sprite and you try to
move the sprite into some scenery the stuck flag may be
turned on for that sprite even though it can still move in
other directions.

A none joystick/keyboard controlled sprite will try to free
itself by moving in all directions. Only when it cannot move
in any direction will the stuck flag be set. A sprite may
look stuck to you, however it may be bouncing backwards and
forwards a matter of pixels and therefore the stuck flag will
not be set (the sprite is moving).

|SPEEK,x,y,@v%

This command will test a pixel on the screen. The x and y are
the screen coordinates to test. v% will contain the ink
number of that particular pixel. This command will only work
in Mode 0 or Mode 1.

|SPOKE,x,y,i

This command will plot a pixel onto the screen. The x and y
are the screen coordinates, i is the ink. You should use the
sprites coordinate system (Not Amstrad).

37

SPRITES SUPERVISOR PROGRAM

USING AUTOMATIC SOUNDS

The supervisor allows for the sprites to automatically
generate sounds when certain conditions apply. Whenever this
condition is met the supervisor will generate a sound. There
are two commands that deal with automatically generating
sounds.

|SOUND,nn,ch,ae,te,tp,np,ia,du

This command is identical to the standard Amstrad sound
command, with two exceptions. The first variable (sn) is the
sound number. You can define up to 16 different sound effects
(0 - 15). The only other difference between this command and
the Amstrad version, is that you must use all the variables.

sn - Sound number (0 - 15)
ch - Channels to use and rendezvous requirements (0 - 255)
ae - Amplitude envelope to use (0 - 15)
te - Tone envelope to use (0 - 15)
tp - Tone period (1 - 4095)
np - Noise period (0 - 31)
ia - Initial amplitude (0 - 15)
du - Duration of sound (-32768 - +32767)

Please see your Amstrad user manual for a full description of
this command.

As stated above you must use all 8 variables. If you do not
require a certain function, you should use a value of zero.

To define the amplitude and tone envelopes, you should use
the standard Amstrad commands ENV and ENT.

Once you have defined the sounds with the above commands you
will need to link them to the sprites and their actions.

|SATTR,sp,ac,sn

You can get the sprites to issue a sound whenever one of the
following situations occur

1 Fire a missile
2 Explode
3 Bounce at window edge
4 Bounce with anything else

sp is the number of an already defined sprite, ac is the
action (1-4 above) when the sprite will issue a sound. sn is
the number of a sound you have created with the |SOUND
command.

eg |SATTR,0,1,2 : Issue sound 2 when sprite 0 fires a
missile.

38

SPRITES SUPERVISOR PROGRAM

USING NODES

In certain games (Pacman etc) the sprites are only allowed to
move within the confines of a maze. There are a number of
commands built into the supervisor that will allow the user
to simulate this type of game.

To create a maze for the sprites, we have to define a number
of nodes. A node is the point within a maze which will allow
the sprites to change direction.

To demonstrate this, consider a large square on the screen.
The square has four corners, therefore there will need to he
four nodes. (top left, top right, bottom left and bottom
right).

To inform the supervisor of the shape of your maze we need to
specify three variables. The first two variables are the x
and y coordinates of the position that the sprites are
allowed to change direction. The third variable is a value
which informs the sprites the directions they are allowed to
leave from that particular node.

To make things a little easier for you, we have written a
program that will help you to define your nodes. The program
has its own instructions. You will find the program on side
one of your system disc. In order to use this program to its
full advantage I will now try and explain nodes in a little
more detail.

A node is an invisible point on the screen. You cannot see a
node, however you can see the actions of a node. The
demonstration program DEMO5, shows you the nodes in action.
In this demonstration the sprites move around the screen and
seem to change direction at fixed, but invisible, points.
These points are nodes. To make the game playable you will
need to show the paths the sprites can take. If you now look
at DEMO6 we have included these paths. The paths are put
there to make the game playable. Imagine trying to play
Pacman without being able to see where you can change
direction. It is up to you to make these paths visible. It is
a very tedious job, but the results are worth it.

As stated above you will need to specify the x and y
coordinates for every node. You will also need to specify the
direction a sprite is allowed to leave the node. Whilst the
node designer program will be of great use to you, we suggest
you sit down with a piece of graph paper and VERY carefully
plan your maze. You will need to take into account the width
and height of the sprites that will be used within the maze.

ie If you have a sprite with a width of 12 pixels and you are
designing a maze in mode 0 with the standard size Amstrad
screen and the sprites are set to bounce at screen edge it
would be no use putting a node at point 154,40 simply because
the sprite would never reach that point. It would have
bounced when it reached 147,40.

39

SPRITES SUPERVISOR PROGRAM

USING NODES

You will also need to take into account the height and width
of the sprites when you are designing the paths the sprites
will take. If the path is too narrow or low the sprite will
collide with the path and get itself stuck.

The sprites change direction whenever the top left hand
corner of the sprite has the same coordinates as the node. If
you have put a node at 120,40 and you have put the sprite
onto the screen at 111,40 moving right with a speed of two
the sprite will bypass the node moving from 119,40 to 121,40.
You will need to be careful to ensure that the speed of the
sprite does not allow the sprite to pass over the node. This
can be used to your advantage, allowing certain sprites to
ignore specific nodes whilst other sprites do not.

When you are using the node designer program and you come to
view your nodes, the sprites will only change direction when
they hit a node. When the paths the sprites are allowed to
take are drawn onto the screen and the paths cross each other
and there is no node at that point where they cross, the
sprites will not change direction. When all the paths are
drawn the directions the sprites can leave the nodes are
shown by a light coloured line leaving the node.

The nodes (when designed) use up a certain amount of memory.
The amount of memory they use is displayed after you have
saved the nodes (for use with the supervisor) to disc. You
will need to make a note of this number. When you are
calculating the value for your memory command, once you have
an answer you should then subtract from the answer the amount
of memory the nodes will use. You should then use the new
figure for your memory command.

We will now go through the supervisor commands associated
with the nodes.

|NODE,"filename"

This command will load the nodes you have defined with the
node designer program into memory. You should have already
taken into account the extra memory the nodes will use and
altered the MEMORY command.

You can only load the nodes into memory AFTER ALL the
drawings have been stored in memory. If after executing this
command you try to load drawings or DGET drawings into memory
an error message will he displayed.

The |RESET command will not clear the nodes from memory. The
|ERASE command will clear the nodes as well as the drawings.

When you specify the filename you should not use an
extension. ie GAME1.nde. The extension will be added
automatically. This command will load files with the
extension .NDE .

40

SPRITES SUPERVISOR PROGRAM

USING NODES

|NODESPEED,sp,xs,ys

This command sets the speeds the sprites will travel around
the maze, sp is the number of an already defined sprite. xs
and ys are the sprite speeds. The speeds you specify must
both be positive numbers between 1 and 10.

The node speeds will not be used until a sprite hits its
first node. Therefore if you are not going to initially SPUT
a sprite directly onto a node you will also need to define
the speed of the sprite with the |SDIR command. Once a sprite
has hit a node the values used in the |SDIR command will be
overwritten.

You do not need to specify the speeds for sprite 0 and sprite
1. The speeds for these two sprites is taken from the
|STIXSPEED and |KEBSPEED commands.

Please remember the point made earlier about the speeds of
the sprites, make sure the speeds defined will not allow the
sprites to skip over nodes (unless you specifically want them
to).

|NODEATTR,sp,at

This command will determine how the sprites you have defined
will move around the maze. Sprite 0 and sprite 1 move around
the maze under control of the joystick/keyboard. However the
rest of the sprites (2 - 63) need to be told how to move.
This command does just that. sp is the number of an already
defined sprite (2 - 63), at is the attribute number that
determines how the sprite will move.

The normal sprites (2 - 63) can either move randomly around
the maze, chase after sprite 0/1, or flee away from sprite
0/1.

To determine which of these actions the sprite will take,
please use the following table.

1 - Random move
2 - Chase after sprite 0/1
3 - Flee from sprite 0/1

You should use one of the numbers above for the at variable.

NOTE : If you are going to use option 2 or option 3 the nodes
can chase/flee from either sprite 0 or sprite 1, they cannot
chase/flee from both sprites. The sprite that they are going
to chase or flee from is defined with the command on the next
page. If the sprite that they are going to chase/flee is not
on the screen then the sprites will assume option 1 until
sprite 0 or sprite 1 is put back onto the screen.

41

SPRITES SUPERVISOR PROGRAM

USING NODES

|NODESPRITE,sp

This command will determine which sprite all other sprites
will chase/flee. sp is the sprite number 0 or 1. If sp is 0
the sprites will chase/flee sprite 0, which is controlled by
the joystick. If sp is 1 the sprites will chase/flee sprite
1, which is controlled by the keyboard.

|NODEON,sp

This command will turn on the maze function for a specific
sprite. All of the sprites do not need to follow the
directions the nodes dictate. Some of the sprites may ignore
the nodes totally. Sprites that have been defined as missiles
will also ignore the nodes. If you try to use this command on
a missile sprite an error message will be displayed.

Before using this command you should have defined the
NODESPEED and the NODEATTR for the sprite.

sp is the number of the sprite that will travel the maze. You
can not use this command on sprite 0 and sprite 1 as they are
automatically turned on when a maze is defined.

|NODEOFF,sp

This command will turn the maze feature off for sprite sp. sp
can be any sprite number between 2 and 63.

|NODEALTER,x,y,nd

This command will alter the directions a sprite is allowed to
leave a node. You cannot add extra nodes with this command,
only alter existing nodes.

x and y are the coordinates of an already defined node. nd is
the variable that will hold the new directions that a sprite
can move on leaving the node. To calculate the new directions
use the following table.

1 - Up
2 - Down
4 - Left
8 - Right

Decide which directions the sprites can now leave the node
and add up the values to the left of the direction. The total
should be the value used for the nd variable. You can not use
a value of 0.

eg New direction left,right,up : 1 + 4 + 8 Therefore nd = 13

42

SPRITES SUPERVISOR PROGRAM

USING NODES

|MAZEON

This command will turn on the maze for all the sprites. After
you have set up the nodes and defined all their attributes
and speeds and turned them on with the |NODEON command, they
will not follow the maze until this command has been issued.

|MAZEOFF

This command will turn the maze off. If you wish to turn the
maze back on again you will not need to turn all the sprites
back on individually, simply use this command. All the
sprites that were turned on when this command is issued will
be remembered.

These two commands are the master switches for file maze
facility.

MORE NOTES ON SPRITES AND NODES

Sprites can not move diagonally through the maze. If a sprite
has been defined to use the maze but has not hit its first
node it can move diagonally. Even though a sprite has been
turned on with the |NODEON command it will not follow the
rules of the maze until it hits its first node.

In order for the sprites to use the maze straight away, they
need to he SPUTed onto a node or they should he SPUTed onto
the screen with a direction set with the SDIR command so that
they hit a node.

It sprite 0 or sprite 1 is SPUT onto the screen and they are
not on a node they can move around the screen freely until
they do hit a node.

Whenever a sprite enters a node, the sprite will not leave by
the direction it has entered unless there is only one exit
from the node. ie the sprites will not reverse direction.

You can create one way systems within the maze. Please see
the example. below.

Consider a T junction, the node path runs up and down the
screen and another node path connects from the left. At the
connection point if the node only allowed the sprite to leave
either up or down, you have created a one way system. A
sprite travelling up the path reaches the node and can only
continue to travel upwards. Another sprite travelling from
the left reaches the node and can then travel up or down. By
constructing a number of junctions, a very complex maze can
be set up.

43

SPRITES SUPERVISOR PROGRAM

SPEED OF YOUR PROGRAM

Every effort has been made to make the supervisor machine
code routines as fast as possible. The problem that occurs
with this sort of program is that the more general purpose
you make the routines the slower they become.

We have tried to speed up the program execution as much as
possible by automating many of the commands. There comes a
time when we have to draw a line.

The problem with writing games in BASIC is speed. You will
need to use BASIC to link all the commands within the
supervisor together. This will slow your programs down. It is
up to you to write your games as efficiently as possible.

Try to use the supervisor to do your work for you.
Incorporate as many of the automated commands as possible
(MISSILE, SOUND EFFECTS, MOVEHIT etc). kiln

Some of the commands used within the supervisor are
relatively slow compared to others. As an example the REPORT
command has to check every sprite on the screen. Plan your
game so that only a certain group of sprites could be in
collision and limit the REPORT command to this section of
sprites.

Try to keep the sprites as small as possible.

When defining sprites keep them in a block. Keep the sprite
numbers as low as possible. If you define sprite 0 and sprite
63 and you issue a command that operates on all the sprites
ie MOVEALL all the sprites need to be checked (even though
they may not have been defined).

If after all this your program runs at a snails pace there
are a number of alternatives.

1) We will be selling a compiler to convert your BASIC program
in to machine code. This will dramatically improve the
speed of your program.

2) If you have knowledge of machine code, we will be selling a
cutdown version of the supervisor with documentation of all
the entry points and variable information.

Please contact us about any of the above options for
availability.

If you do have problems with the supervisor program please
write to us and we will try to resolve the problem as quickly
as possible.

It you have any comments or useful ideas for improvements to
the program please contact us. if we like the idea you will
receive a revised and updated copy of the program free of
charge.

44

SPRITES SUPERVISOR PROGRAM

APPENDIX I

SCREEN DIMENSIONS

MODE 0

SCREEN CHARACTERS DIMENSIONS

N 20 x 25 160 x 200

0 19 x 16 152 x 208

1 18 x 28 144 x 224

2 17 x 30 136 x 240

3 16 x 31 128 x 248

4 21 x 24 168 x 192

5 22 x 23 176 x 184

6 23 x 22 184 x 176

7 24 x 21 192 x 168

MODE 1

SCREEN CHARACTERS DIMENSIONS

N 40 x 25 320 x 200

0 38 x 16 304 x 208

1 36 x 28 288 x 224

2 34 x 30 272 x 240

3 32 x 31 256 x 248

4 42 x 24 336 x 192

5 44 x 23 352 x 184

6 46 x 22 368 x 176

7 48 x 21 384 x 168

45

SPRITES SUPERVISOR PROGRAM

APPENDIX II

ERROR MESSAGES

01 incorrect number of variables used in command.
02 The drawing number is greater than 63.
03 The sprite number is greater than 63.
04 The drawing has not been defined.
05 The sprite has not been defined.
06 The starting number is greater than finish number.
07 The sprite has not been on the screen.
08 The sprite is already on the screen.
09 The drawing has been defined already.
10 The sprite has already been defined.
11 The sprite is outside window coordinates.
12 The X coordinate equals zero.
13 The Y coordinate equals zero.
14 The X coordinate is greater than 32.
15 The Y coordinate is greater than 32.
16 The variable used is greater than 7.
17 The X speed is greater than 10.
18 The Y speed is greater than 10.
19 The screen mode is greater than 1.
20 The edge variable equals zero.
21 The edge variable is greater than 4.
22 The collision attribute equals zero.
23 The collision attribute is greater than 3.
24 The collision switch is greater than 1.
25 The variable used is greater than 63.
26 The left speed is greater than 10.
27 The right speed is greater than 10.
28 The up speed is greater than 10.
29 The down speed is greater than 10.
30 The window is to wide.
31 The window is to narrow (X).
32 The window is to low.
33 The window is to narrow (Y).
34 The window is to tall.
35 The colours have not been defined.
36 The sequence is greater than 15.
37 The animation sequence is greater than 10 drawings.
38 The drawing within sequence has not been defined.
39 The X dimension within sequence is different.
40 The Y dimension within sequence is different.
41 The sequence has not been defined.
42 The current sprite drawing number is greater than

the highest number within sequence.
43 The current X coordinate is different to X

coordinate within sequence.
44 The current Y coordinate is different to Y

coordinate within sequence.
45 The missile type has not been defined
46 The missile type is greater than 2.
47 The missile type is already defined.
48 The missile drawing has not been defined.
49 The missile X offset is greater than 40.
50 The missile Y offset is greater than 40.

46

SPRITES SUPERVISOR PROGRAM

ERROR MESSAGES (CONT)

51 The distance is less than 2.
52 The colour is greater than 26.
53 The ink is greater than 15.
54 The number of spots equals zero.
55 The explosion increase is greater than 32.
56 The explosion limit is greater than 128.
57 The variable cannot be zero.
58 The variable is greater than 9.
59 The missile X speed -is greater than 10.
60 The missile Y speed is greater than 10.
61 The missile drawing is greater than 63.
62 The missile drawing equals 0.
63 Sprite 0 and Sprite 1 cannot be missiles.
64 There are more than 10 missiles defined.
65 The sprite used for a missile is already defined.
66 The missile type has been mismatched.
67 The missile delay is greater than 63.
68 The missile distance is greater than 127.
69 The missile delay equals 0.
70 You cannot do that to a missile sprite.
71 You cannot alter that on sprite 0 or sprite 1.
72 Missile overflow. Type 0.
73 Missile overflow. Type 1.
74 Missile overflow. Type 2.
75 You cannot use flashing colours.
76 The coordinate is outside window (x).
77 The coordinate is outside window (y).
78 The drawings must be defined before the nodes.
79 The speed cannot equal zero.
80 The nodes have not been loaded onto the supervisor.
81 The sprites node speeds have not been defined.
82 The sprites node attribute has not been defined.
83 The node attribute cannot equal zero.
84 The node attribute is greater than 31.
85 The sound number can not be greater than 15.
86 The amplitude envelope can not be greater than 15.
87 The tone envelope can not be greater than 15.
88 The tone period can not be greater than 4095.
89 The tone period can not be greater than 31.
90 The initial amplitude can not be greater than 15.
91 The sprite sound action can not equal zero.
92 The sprite sound action can not be greater than 4.
93 The sound has not been defined.
94 The sprite number is greater than 1.
95 The x coordinate has not been defined.
96 The node direction is not correct.
97 The y coordinate has not been defined.
98 The x coordinate is greater than 383.
99 The y coordinate is greater than 247.

47

SPRITES SUPERVISOR PROGRAM

APPENDIX III

ADVANCED USER NOTES

Due to the technique used by the supervisor program to detect
for collisions, collisions between certain inks will not be
ignored. This can be used to your advantage. The following
table shows which inks when collided will not register a
collision. Find the two inks used along the top and the left
hand side of the table, follow the paths to where the two
inks intercept. If there is a cross character at the
intersection the supervisor will not register a collision. We
have used Hex notation around the boundrys of the table, if
you do not understand Hexadecimal then substitute A=10, B=11,
C=12, D=13, E=14, F=15.

0 1 2 3 4 5 6 7 8 9 A B C D E F
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

0 : X X X X X X X X X X X X X X X X
1 : X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0
2 : X X 0 0 X X 0 0 X X 0 0 X X 0 0
3 : X 0 0 0 X 0 0 0 X 0 0 0 X 0 0 0
4 : X X X X 0 0 0 0 X X X X 0 0 0 0
5 : X 0 X 0 0 0 0 0 X 0 X 0 0 0 0 0
6 : X X 0 0 0 0 0 0 X X 0 0 0 0 0 0
7 : X 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0
8 : X X X X X X X X 0 0 0 0 0 0 0 0
9 : X 0 X 0 X 0 X 0 0 0 0 0 0 0 0 0
A : X X 0 0 X X 0 0 0 0 0 0 0 0 0 0
B : X 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0
C : X X X X 0 0 0 0 0 0 0 0 0 0 0 0
D : X 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0
E : X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F : X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

When the sprites overlap each other their colour will change.
The following table will show the colour the sprite will
change to. We will describe on the next page the advantages
of using these tables.

0 1 2 3 4 5 6 7 8 9 A B C D E F
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

0 : 0 1 2 3 4 5 6 7 8 9 A B C D E F
1 : 1 0 3 2 5 4 7 6 9 8 B A D C F E
2 : 2 3 0 1 6 7 4 5 A B 8 9 E F C D
3 : 3 2 1 0 7 6 5 6 B A 9 8 F E D C
4 : 4 5 6 7 0 1 2 4 C D E F 8 9 A B
5 : 5 4 7 6 1 0 3 2 D C F E 9 8 B A
6 : 6 7 4 5 2 3 0 1 E F C D A B 8 9
7 : 7 6 5 4 3 2 1 0 F E D C B A 9 8
8 : 8 9 A B C D E F 0 1 2 3 4 5 6 7
9 : 9 8 B A D C F E 1 0 3 2 5 4 7 6
A : A B 8 9 E F C D 2 3 0 1 6 7 4 5
B : B A 9 8 F E D C 3 2 1 0 7 6 5 4
C : C D E F 8 9 A B 4 5 6 7 0 1 2 3
D : D C F E 9 8 B A 5 4 7 6 1 0 3 2
E : E F C D A B 8 9 6 7 4 5 2 3 0 1
F : F E D C B A 9 8 7 6 5 4 3 2 1 0

48

SPRITES SUPERVISOR PROGRAM

APPENDIX III

ADVANCED USER NOTES

We have stated throughout that once a sprite collides with
another sprite they both change direction. This is not
strictly true, there are ways to get around this.

Consider a platform game. The character will probably need to
climb up a ladder. The ladder cannot be the same ink as the
background colour because you would not see it. It you look
at the tables on the previous page you will notice that
collisions between certain ink combinations can not be
detected. If the main character was one off these inks and
the ladder was another, the character could move up the
ladder without the collision detection routine knowing about
it. However there is still one problem. When two inks are
merge together they form a new ink. This is were the second
table comes in. If we set the new ink to the same colour as
the main character nobody will be able to tell when the
character moves over the ladder. I am using a ladder as an
example, you can apply this technique to many games.

Example.

The main character sprite is defined in ink 1 and the ladder
is defined in ink 10 (A). We can see from the first table
that a collision cannot be detected between these two inks.
Looking at the second table we find that a collision between
ink 1 and ink 10 (A) results in a change of ink the ink 11
(B). If we now make ink 11 the same colour as ink 1, you will
not be able to detect the change in colour.

Taking this process one step further, if you study the first
table you will notice that ink 8 will not have collisions
detected if it collides with inks 0 to 7. Looking at the
second table when inks 0 to 7 collide with ink 8 they all
produce an ink greater than 7. Therefore we can have two
colours for background colours, however we have limited the
amount of foreground colours to 7.

If you find it acceptable to only have seven foreground
colours and you want two background colours, follow these
simple instructions.

The two background inks must be 0 and 8. When you have
decided which colours you need for your foreground colours,
these colours should also be copied into inks 9 to 15.

ie
ink 1 = ink 9, ink 2 = ink 10, ink 3 = ink 11,
ink 4 = ink 12, ink 5 = ink 13, ink 6 = ink 14,

ink 7 = ink 15

49

Sprite Supervisor Program

If you find your animated sprites are sticking to each
other or to scenery, the following instructions should
eleviate the problem.

You have a tank which is animated to move up and down
the screen pictured above. If you find the tank sticks
with another object the best method to avoid the
problem is to make the area around the sprite larger.

50

Under normal circumstances
your drawings should look
like this, no space around
the outside of the sprite.
The problem of sticking
occurs when the sprite
changes direction. If the
first sprite was going up
the screen and hits an
object, it would reverse
(shown in drawing B).

When the tank reverses by
swapping drawings the new
drawing may cover more of
the hit object than the
last drawing did.

To get around this problem
you should leave a space
behind the drawing that is
liable to stick. If a stick
still occurs try increasing
the space to 3 or 4 pixels.
If this does not solve the
problem you will need to
redesign your drawing.

SPRITES SUPERVISOR PROGRAM

APPENDIX III

ADVANCED USER NOTES

The previous page has suggested a way of avoiding collisions
by making the drawing size larger than the actual drawing.
There is another method you may use to prevent animated
drawings from sticking together.

If you draw a box around your drawing in an ink that will
nearly always detect collisions ie ink 7 and then set this
ink to the same colour as the background colour. The user
will never see the box, however the supervisor will detect
whenever that box is in collision and allow the sprite to
change direction without becoming stuck.

We have used this principle in the nodes demonstrations
(DEMO5 and DEMO6).

In case you were wondering how we managed to get the scenery
looking like it did in DEMO6, we used the Advanced Art Studio
program.
Its not a simple job and it would take many pages of
instructions if we told you how to do it in a step by step
manner. I will explain the basic principles to you and you
can then work it out for yourselves.
It you are going to load drawings into the supervisor with
the |DRAW command, you will need to make a note of the
colours you have selected. When you enter the Art Studio yo
will need to alter the palette colours to suit the colours
selected within the sprites designer program.
Next design your screen layout. We defined a pattern and
filled the screen with the pattern, then we went to town with
the spray can.
Next you will need to alter a pattern with the pattern editor
to be the same size as the sprites you are going to use. Once
you have a pattern the same size, you should clear the
pattern to ink 0 (the background colour). Select the Brush
option and using the cursor keys cut the tracks out of your
painted screen.
You will need to note the coordinates every time you change
direction (create a node). Once you have finished save th
screen without compression turned on.
You should now have a list of all the coordinates where the
nodes should be. The coordinates used are the Amstrad
coordinates and these will need to be converted to sprite
coordinates before entering them into the nodes program.
The Art studio gives you the coordinates for the centre of
the brush. You will need to convert these to the top left
hand corner. To do this divide the size of the brush by 2 for
both the x and the y. Subtract the x size from the converted
Art studio x coordinate. Add the y size to the converted Art
studio coordinate. The result of this should be the,
coordinates you should type into nodes program.

Sorry we have ran out of space.

51

SPRITES SUPERVISOR PROGRAM

SUPERVISOR INDEX

COMMAND PAGE BRIEF DESCRIPTION
ANIMATE 29 Link a sprite to a sequence number.
ANIMOFF 29 Turn animation of a sprite off.
BULLET 33 Define x number of sprites to be

bullets.
CLEAREP 24 Clear the Report table.
CLS 12 Clear the screen.
COLLIDE 22 Define attributes of sprite when

colliding with another object.
COLLTEST 23 Test for an individual sprite in

collision.
COLOUR 12 Turn on the screen colours.
CSPRITE 27 Erase a sprite from memory.
DGET 9 Define a new drawing.
DRAW 11 Load drawings from sprite designer.
ERASE 15 Clear all information (311 sprites,

including the drawings.
EXPLODE 36 Cause a sprite to explode.
FRAME 31 Wait for frame flyback.
HIT 25 Report which sprite has hit a

particular sprite.
INKBLACK 12 Change all colours to black.
KEB 17 Keyboard control for sprite 1.
KEBDEF 19 Define keys to operate sprite 1.
KEBSPEED 19 Define speed for sprite 1.
MAZEOFF 43 Turn off all nodes.
MAZEON 43 Turn on all nodes.
MERGE 35 Merge a new drawing onto existing

sprite.
MISSDELAY 32 Define how fast a missile is fired.
MISSDIST 32 Define how far a missile will travel.
MISSHIT 34 Report collided missiles.
MISSILE 31 Define a missile for a drawing.
MISSTYPE 30 link drawing to missile type.

52

SPRITES SUPERVISOR PROGRAM

COMMAND PAGE BRIEF DESCRIPTION

MOVE 21 Move a sprite.
MOVEALL 21 Move all the sprites.
MOVEHIT 25 Check for collision of the last sprite

that was moved.
NEXTREP 24 Report next sprite ill collision.
NODE 40 Load nodes into memory.
NODEALTER 42 Alter leaving directions of node,
NODEATTR 41 Set attributes fur sprite.
NODEOFF 42 Turn a sprite off to use nodes.
NODEON 42 Turn a sprite on to use nodes.
NODESPEED 41 Set speed of sprites in maze.
NODESPRITE 42 Determine chaselflee sprite.
READKEB 20 Test a direction from the keyboard.
READSTIX 20 Test a direction from the joystick.
REPOFF 23 Turn collision reporting off.
REPON 22 Turn collision reporting on.
REPORT 24 Cheek all sprites for collision and

store result in a list,
RESEF 15 Clear sprite variables.
SATTR 38 Set sound attributes for sprite,
SCENERY 36 Put a drawing onto the screen.
SCREEN 9 Alter the shape of the screen,
SDIR 17 Define the speed of a sprite.
SDRAW 27 Report the drawing a sprite is using.
SEQUENCE 28 Define an animation sequence.
SGET 14 Link a sprite to a drawing.
SHOOT 34 Fire a missile from a sprite.
SMEM 27 Report amount of memory free.
SOUND 38 Define a sound.
SPEEK 37 Report ink at coordinates.

53

SPRITES SUPERVISOR PROGRAM

COMMAND PAGE BRIEF DESCRIPTION

SPOKE 37 Set ink at coordinates.
SPUT 15 Put a sprite onto the screen.
SPUTALL 15 Remove all sprites off screen.
STIX 17 Joystick control for sprite. 0.
STIXSPEED 19 Define speed for sprite 0.
STUCK 37 Report if a sprite cannot move.
SWINDOW 21 Define a window for a sprite.
SXPOS 27 Report x position of sprite.
SYPOS 27 Report y position of sprite.
WAIT 27 Pause program.
WP 12 Change to Mode 2 and alter colours.
XDIR 27 Report X speed of sprite.
XEDGE 16 Define the attributes for the sprite

hitting the edge of its window.
YDIR 27 Report y speed of sprite.
YEDGE 16 Define the attributes for the sprite

hitting the edge of its window.

54

SPRITES DESIGNER

GLEN COOK

55

SPRITE DESIGNER PROGRAM

The Sprite Designer program on your system disk will enable
you to design 64 multicoloured sprites with ease. The program
will only run on an AMSTRAD 6128, as the program uses the
extra banks of memory.

To use the program, simply insert the correct side of the
disc into the drive and type

RUN “DESIGN”

You will then be asked to insert a disc, containing your
drawing data, into the drive. Don't panic if you do not have
any data saved yet. We have included a number of sample files
on the disc for you to use. Press any key on the keyboard.
After a short time you will be presented with a list of the
drawing files stored on the disc.

1) DATA1
2) GAME
3) CREATE NEW FILE

This is how a typical menu may look. This menu is telling you
that there are two drawing files stored on the disc called
'DATA1' and 'GAME'. The third option allows you to create
your own drawing file.

Select option 1 by pressing the '1' key

After a short delay, the MAIN menu will be displayed.

THE OPTIONS MENU

1) EDIT A DRAWING
2) VIEW THE DRAWINGS
3) ANIMATE THE DRAWINGS
4) DISC OPERATIONS
5) DRAWING EDITOR
6) SPRITE INFORMATION
7) ALTER THE COLOURS
8) CREATE SPRITE DATA
9) END THE PROGRAM

PLEASE MAKE YOUR SELECTION

We will look at each individual option shortly. To select an
option, press the relevant number. You must use the numbers
along the top of the keyboard as the function keys on the
right have been disabled.

Select option 2.

You will he told the number of drawings defined and the
drawing range. The program is asking you if you would like to
see all the drawings. Press 'Y'.
You are now shown the drawings that are stored in memory at
the moment. You can use these drawings to experiment with the
various options within the program.

56

SPRITE DESIGNER PROGRAM

If at any time throughout the program you make a mistake, ie
select the wrong option, you can press the 'ESC' key to
return to the MAIN menu.

We will now go through each individual option.

OPTION 1 : EDIT THE DRAWINGS

After selecting this option you will be asked

PLEASE ENTER DRAWING NUMBER

You may type any number between 0 and 63. After you have
typed this number press 'RETURN'.

If the drawing number you have typed is a drawing that has
already been defined the program will display the design grid
with the drawing displayed in it, however if it is a new
undefined drawing number you will be asked

PLEASE ENTER DRAWING COORDINATES

You then have to enter the drawings x and y coordinates. You
may use any coordinate between 1 and 32. the maximum size of
drawing you may use is 32 x 32.

PLEASE ENTER DRAWING DESCRIPTION

You may enter a description upto 10 characters in length. You
must enter at least one character for the description or you
will not be able to continue with the program.

After entering a description you will be presented with the
design grid. This is the screen with which you will design
all your drawings.

Along the top of the screen are the 16 colours that you may
use to design your drawings. Below these colours are the
numbers 0 to 9 and the letters A to F. To select a colour you
simply press the relevant number or letter.

In the middle of the screen is the main grid, this consists
of a number of squares, the number of squares there are
depends on the size of the coordinates you selected. The
squares will also vary in size depending on the drawing
dimensions you have chosen. The grid will always be to a
scale size. ie a larger version of the actual drawing.

The area to the right hand side of the design grid is where
the drawing will be placed. This drawing is normal size.

At the bottom of the screen is the information area. This
area informs the user of a number of things.

DRAWING NO. : 05 DESCRIPTION : BIRD LEFT
DIMENSIONS : 16 x 20 SPRITE SIZE : 00360 X=01 Y=01
SPRITE SPACE : 12324 SPACE LEFT : 25776

57

SPRITE DESIGNER PROGRAM

The DRAWING NUMBER and DESCRIPTIONS are self explanatory.

The DIMENSIONS are the x and y dimensions of the grid on the
screen.

The SPRITE SIZE is the amount of memory it will take to store
the drawing that you will design on the screen. It is
important to use as little memory as possible. This can be
achieved by making sure there are no spaces left around the
outside of your drawing. If there are spaces left after you
have finished your drawing, you may alter the dimensions as
described later on in the manual.

The SPRITE SPACE is the amount of memory that all the
drawings, you have so far designed, take up.

The SPACE LEFT is the amount of memory you have left with
which to design your drawings. You originally have 38100
Bytes. Please bear in mind that you also have to write a
program to control the sprites in memory as well. Once again
try to use as little memory as possible.

The X=01, Y=01 are the coordinates of the cursors within the
grid.

You can move the cursors around the outside of the grid by
pressing the arrow keys. As you move the cursors around the
grid you will note that the X and Y coordinates change.

To design a drawing you should move the cursors to the square
you want a colour on and press the relevant colour key. If
you make a mistake you may clear it by pressing '0' (the
background colour) on the square you made the mistake on.

You way notice that when you select a colour, the colour you
selected appears at the top right hand side of the screen.
This shows the user the selected colour. You may now fill in
squares within the grid with that colour by pressing the
SPACEBAR. To change the selected colour, simply press a
different colour number or letter.

You may now try the options menu. To do this press the 'ESC'
key once. The bottom of the screen will clear and the options
menu will appear.

f1 RENAME f4 DELETE f7 MOVEMENT
f2 COPY f5 CLEAR f8 COLOUR SEARCH
f3 COLOUR LATCH ON f6 DIMENSIONS f9 MAIN MENU

To select an option press the appropriate function key.

To return to the design grid press the 'ESC' key again.

This is the only screen where pressing 'ESC' does not return
you to the MAIN menu. To return to the MAIN menu when using
the design screen you should press ESC, to get the above menu
and then select function key 9.

58

SPRITE DESIGNER PROGRAM

f1 RENAME

Pressing f1 will allow the user to alter the description of
the current drawing.

After pressing f1 the old description is displayed on the
screen. The user may now enter a new description. If you do
not wish to do this, press 'ESC' to return to the menu.

After entering a new description press 'RETURN' to return to
the design grid.

f2 COPY

Pressing f2 will allow the user to copy the current drawing
to another drawing area. This is important for animation as
the user can then alter just a small section of the drawing
instead of having to do the whole drawing from the start.

After pressing f2 the user will be prompted to enter

COPY THIS DRAWING TO DRAWING NUMBER :

If you do not want to copy to another drawing press 'ESC'.

You should now type in the drawing number you want to copy
this drawing to and press 'RETURN'. If the drawing number you
entered already has a drawing stored there, you will be shown
the drawing you would overwrite at the bottom right of the
screen and asked

YOU WILL OVERWRITE THE DRAWING ON THE BOTTOM RIGHT,
CONTINUE Y/N

If you select N then you will return to the design screen.

If you select Y the drawing will be overwritten by the
current drawing.

PLEASE NOTE : WHEN YOU COPY A DRAWING AND RETURN TO THE MAIN
DESIGN GRID, THE CURRENT DRAWING IS NOW THE DRAWING THAT HAS
JUST BEEN COPIED. LOOK AT THE DRAWING NUMBER. BE WARNED !!

f3 COLOUR LATCH

Pressing f3 will toggle the colour latch between on and off.

The colour latch option is the function that allows the
spacebar to remember the colour that was last typed in. When
the colour latch is on every time you press the spacebar in
the design screen the colour that is at the top right hand
side of the screen is placed at the X,Y cursor position. If
you turn the colour latch off, the spacebar will not remember
the last colour pressed, it will instead act as an eraser. It
will clear the colour at the X,Y cursor position to the
background colour.

Press 'ESC' to return to design grid.

59

SPRITE DESIGNER PROGRAM

f4 DELETE

Pressing f4 will allow the user to delete the current drawing
from memory.

After pressing f4 the user will be asked

ARE YOU SURE YOU WANT TO DELETE THIS DRAWING Y/N

If you select 'N' you will return to the design grid with
your drawing still intact.

If you select 'Y' the drawing will be erased and you will
return to the MAIN menu.

f5 CLEAR

Pressing f5 will allow the user to clear the current grid but
keep the grid in memory.

After pressing f5 the user will be asked

ARE YOU SURE YOU WANT TO CLEAR THIS DRAWING Y/N

If you press 'N' you will return to the design grid with your
drawing still intact.

If you press 'Y' the drawing grid will clear and you will
return to the design grid.

PLEASE NOTE : You should not clear the grid and then return
to the MAIN menu. Even though there is no drawing stored in
the grid it will still count as a drawing. If you intend to
return to the MAIN menu without a drawing stored, you should
use the f4 option and delete the grid from memory.

f6 DIMENSIONS

Pressing f6 will allow the user to alter the dimensions of
the current grid. You may increase or decrease the size of
the grid.

After pressing f6 the user will be asked

OLD DIMENSIONS : 16 x 20
NEW DIMENSIONS : x

You should now enter the dimensions that you would like the
grid to be.

If you are enlarging the grid then the design grid will be
redrawn with the larger dimensions.

If you are reducing the grid, the area that will be cut off
will be shaded. This will enable the user to see if they will
lose any of the drawing.

60

SPRITE DESIGNER PROGRAM

After the area to be cut off is shaded the user will be asked

WITH DRAWING DIMENSIONS OF 10 x 10 YOU WILL LOSE THE DRAWING
DATA IN THE SHADED AREA. DO YOU WISH TO CONTINUE Y/N

If you select 'N' the full grid will be redrawn and you will
return to the design grid.

It you select 'Y' the grid will be redrawn with the new
coordinates and you will return to the design screen.

USEFUL TIP: When you are going to reduce the size of the
grid, if you move the x,y cursors to the squares you want to
reduce the drawing to, by noting the x,y coordinates at the
bottom of the screen you should save yourself counting the
squares by hand.

f7 MOVEMENT

Pressing f7 will allow the user to manipulate the drawings.
You may make a mirror image of the drawing or invert the
drawing.

After pressing f7 the user will be asked

PLEASE MAKE YOUR SELECTION : M - MIRROR IMAGE
: I – INVERT THE DRAWING

If you do not wish to do either of these options, pressing
'ESC' will return you to the design grid.

Pressing 'M' will produce a mirror image of the drawing. This
is useful if used along with the copy command. You only need
to design a drawing for one direction. If you then copy the
drawing to a free area and press f7 the drawing will be
produced to move the sprite in the opposite direction.

Pressing 'I' will invert the current drawing.

f8 COLOUR SEARCH

Pressing f8 will allow the user to replace any colour on the
grid with another colour.

After pressing f8 the user will be told to

PLACE X,Y CURSORS OVER THE COLOUR YOU WISH TO CHANCE AND
PRESS THE COPY KEY.

You can now move the cursors around the grid until they
intersect on the colour you want to change. Press the COPY
key to select the desired colour. You will then be asked to
confirm the colour.

PLEASE CONFIRM YOU WANT TO CHANGE COLOUR : 5 Y/N

61

SPRITE DESIGNER PROGRAM

If you press 'N' then uou will return to the design grid
without out any alterations being made.

If you press 'Y' you will then be asked

CHANGE COLOUR : 5 TO NEW COLOUR :

You must now enter the colour number or letter that you want
the old colour changed to.

After entering this number/letter the message will read

YOU CANNOT ALTER ANY MISTAKES AFTERWARDS. ARE YOU SURE Y/N

If you press 'N' you will return to the design screen without
any alterations being made.

If you press 'Y' the old colour will be replaced with the new
colour and you will return to the design grid.

WARNING : If you alter a colour to a colour that is already
being used on the design grid, and you try to change it back
you will alter all of the colour and not just the colour you
originally changed. Be careful !!

f9 MAIN MENU

Pressing f9 will allow the user to return to the MAIN menu.
The drawing that is currently in the design grid will be
saved to memory.

NOTES on option 1:

If you are storing a large number of drawings in memory keep
a careful eye on space left. If instead of displaying a
number it shows 'OUT OF MEMORY' you do not have enough memory
left to use option 8 on the MAIN menu.

SHIFTING THE DRAWINGS

The user may move the drawings around inside the design grid
by pressing the SHIFT key and then the appropriate arrow key.
If you shift part of the drawing over the edge of the grid it
will be lost and you will not be able to recover it.

OPTION 2 : VIEW THE DRAWINGS

After selecting this option you will be shown

DRAWINGS DEFINED : 20
DRAWING RANGE : 00 - 31

DO YOU WISH TO SEE ALL THE DRAWINGS Y/N

62

SPRITE DESIGNER PROGRAM

This is giving the user certain information about the
drawings that have been stored in memory so far.

DRAWINGS DEFINED : Tells the user the number of drawings that
have so far been designed.

DRAWING RANGE : Tells the user the lowest and highest
drawings that have so far been designed.

If you press “Y” to the question the screen will show upto 16
drawings. If more than 16 drawings have been designed you
will see the rest of the drawings after pressing any key.

If you press 'ESC' whilst the drawings are being displayed
you will return to the above option menu. Likewise if you
press 'ESC' at this menu you will return to the MAIN menu.

If you press 'N' to the question you will then be asked

PLEASE ENTER DRAWING RANGE: x

You should now enter the lowest drawing number you wish to
see, followed by the highest drawing number. After entering
these two values the drawings will be displayed.

OPTION 3 : ANIMATING THE DRAWINGS

After selecting this option you will be presented with a grid
of 64 numbers ranging from 0 to 63. These numbers represent
the drawings stored in memory. Underneath drawing 0 there is
an arrow.

If any drawings have been defined the numbers of that
particular drawing will be a different colour. If the colours
have not been changed with option 7, the undefined drawing
numbers will be blue and the defined drawing numbers will be
red.

At the bottom of the screen there will be the description of
the drawing that the arrow is pointing to. If the arrow is
pointing to an undefined drawing the bottom of the screen
will display 'NOT DEFINED'.

If the drawing is described the x,y dimensions of the drawing
will be displayed at the bottom left of the screen.

IMPORTANT NOTE : All drawings that are to be animated must
have the same x and y coordinates.

You may move the arrow around the screen by using the arrow
keys. To select a drawing to be animated press the SPACEBAR.
The drawing numbers you have selected will be listed along
the bottom of the screen. If you make a mistake press the
'DEL' key and the drawing number will be removed.

You may select up to 8 drawings to be animated.

63

SPRITE DESIGNER PROGRAM

After selecting all the drawings you want animating press the
RETURN key.

If you have made a mistake (drawings having different x,y
dimensions) the error screen will be displayed.

The error screen lists all the drawings you have selected and
it will highlight any drawing with different x,y.
coordinates. After pressing a key you will be returned to the
selection menu to try again.

Once you have selected the drawings and there are no errors
you will be presented with the animation options screen.

The screen looks like this :

SPEED OF SPRITE :

SELECT DIRECTION (U,D,L,R) :

DELAY BETWEEN MOVES :

The speed of sprite option will determine how many pixels the
sprite will move at a time. To get the smoothest movement you
should select '1' and press RETURN. You may use any number
up to a maximum of 9. If you want the sprite to be animated
but not to move you should select '0'.

The select direction option will allow the user to determine
the direction in which the sprite is to move, Up , Down ,
Left or Right. If you have selected the sprite to be
stationary by selecting '0' at the last option you may type
any direction, the sprite will be stationary. There is no
need to press RETURN on this option.

The delay between moves option allows the user to select the
speed between sprite movements. You may use any number
between 0 and 99. An average number is between 30 – 40.

It you select '0' the sprite will move everytime you press a
key. This feature is useful to check the slow motion of a
sprite to ensure the animation is correct.

After pressing RETURN on this option the screen will clear
and you will then see the sprite being animated. To return to
the MAIN menu press the 'ESC' key.

OPTION 4 : DISC OPERATIONS

It is important for you to know how the information is stored
on the disc. This should prevent any mishaps and possible
heartache.

On the disk there is a file called 'DISKDATA.SPR'. This file
holds information about the sprite files that are stored on
the disk. If you decide to erase any of the files off the
disc please use the erase function within this option.

64

SPRITE DESIGNER PROGRAM

If you erase any of the drawing files off the disc without
using this option, the load menu will still display the file
as being present. This is because the drawing file names are
stored in DISKDATA.SPR. Only the erase function within this
option will erase the relevant information from this file.

If you erase the DISKDATA.SPR file from the disc you will not
be able to recover any of the drawing data files that might
be stored on the disc. BE CAREFUL !

If you wish to copy some drawing files from one disc to
another, you should load the drawing data file you wish to
copy off the disc, insert the disc you want to copy it to and
then save the file.

A blank formatted disc can store 4 sets of drawing
information. Each file of drawing information takes 36k. Try
to ensure when you are going to save drawing data to disc you
have enough space left on the disc.. Don't lose sleep over it
though, the program does check to ensure there is enough
space. It just saves you a bit of time thats all !

The program does its own housework ie. it automatically
erases any backup copies it creates.

The drawings are stored in the format

filename.da1 : first bank of memory (17k)
filename.da2 : second bank of memory (17k)
filename.da3 : drawing colour info (2k)

If you want to store drawing data on a new disk, ensure that
it is formatted. It does not matter that there is no
DISKDATA.SPR file on the disc, the program will create one.

If you make a mistake and the disc drive has started, DO NOT
try to remove the disc. It's a had habit and you could lose
all the data on the disc. The DISKDATA.SPR file is erased
before it is updated.

Alter selecting option 4 you will be presented with the menu

1) LOAD DRAWINGS
2) SAVE DRAWINGS
3) ERASE DRAWINGS
4) RETURN TO MAIN MENU

LOAD THE DRAWINGS

After selecting this option the warning message will be
displayed

YOU WILL DESTROY INFORMATION IN MEMORY CONTINUE Y/N

If you select 'N' you will return to the above menu.

65

SPRITE DESIGNER PROGRAM

If you select 'Y' you will see displayed the message that is
shown when you first run the program.

PLEASE INSERT DISC WITH DRAWING DATA INFORMATION AND
PRESS ANY KEY

You should now insert the disc that you would like to load
and press any key.

If you have inserted a disc that does not have a DISKDATA.SPR
file on it you are given the following options

 DATA NOT FOUND

1) CREATE NEW DATA DISC
2) TRY ANOTHER DISC

It you select option 2 you are prompted to insert another
disc and try again.

Selecting option 1 will create a DISKDATA.SPR file on the
disc.

If the disc you inserted has no drawing files stored on it or
you have just created a new DISKDATA file you will get the
message

NO DRAWING FILES STORED AS YET
PRESS ANY KEY TO CONTINUE

Pressing any key will display the MAIN menu.

If the disc you inserted had an files on it, the files will
be displayed along with a number to the filenames lefthand
side. Typing this number will load the relevant file.

At the end of the filenames will be a CREATE NEW DATA option.
This option will allow the user to start a new file which he
can save with the save option that is documented next.

If there has been a mishap and the file you try to load is
missing or corrupt the program will check the complete disc
to see if any other files are missing. If any other files are
found to be missing their names will be reported and the
DISKDATA.SPR file will be updated. The user will then be
offered a choice of loading a file from the updated
catalogue.

SAVE THE DRAWINGS

If the file you are going to save is not a newly designed
file ie has been loaded off the disc, you will have the
following message displayed.

CURRENT FILENAME : DATA1

DO YOU WISH TO SAVE TO THIS FILE Y/N

66

SPRITE DESIGNER PROGRAM

If you select 'N' you will then be asked

ENTER NEW FILENAME :

You may now enter a filename of up to eight letters.

The file will now be saved to either the old filename if you
selected 'Y' as an option or, saved as the new filename if
you selected 'N' as the option.

If there is not enough room on the disc to store the file to,
you will he told to insert another disc and try again.

ERASING THE DRAWINGS

After selecting this option you will be prompted to

PLEASE INSERT DISC WITH DRAWING DATA FILE YOU WOULD LIKE
TO ERASE AND PRESS ANY KEY

After inserting the disc with the file(s) you want to erase
and pressing any key, you will be displayed a list of the
files on the disc. It will look like this

 ERASING THE DRAWINGS

 1) DATA1
 2) TEST
 3) TEST
 4) RETURN TO MENU

PLEASE MAKE YOUR SELECTION

You may now select one of the files by typing the relevant
number. If you select the option RETURN TO MENU you will be
returned to the MAIN sprite program menu.

After selecting the file to erase, the screen will clear and
you will be asked to confirm the file you want to erase.

PLEASE CONFIRM YOU WANT TO ERASE

 DATA 1 Yes or No

If you decide not to erase that particular file you should
Press the 'N' key, this will return you to the directory of
files screen.

If you select 'Y' the file will he erased from the disc and
you will be returned to the MAIN sprites menu.

RETURN TO MAIN MENU

This option will simply return you to the MAIN sprites menu.

67

SPRITE DESIGNER PROGRAM

OPTION 5 DRAWING EDITOR

After selecting this option you will be presented with a grid
of 64 numbers ranging from 0 to 63. These numbers represent
the drawings stored in memory. Underneath drawing 0 there is
an arrow.

If any drawings have been defined the numbers of that
particular drawing will be a different colour. If the colours
have not been altered using option 7. the undefined drawing
numbers will be blue and the defined drawings will be red.

At the bottom of the screen, in the middle, there will be the
description of the drawing that the arrow is pointing to. If
the arrow is pointing to an undefined drawing the screen will
display 'NOT DEFINED'.

Underneath the drawing description is a message

Delete , Rename , Copy , ESC to end

Pressing the relevant key (D,R,C,ESC) will enable that
function to act on the drawing number the arrow is pointing
to.

You can move the arrow key around the screen by using the
arrow keys on the right hand side of the keyboard.

If you select any of the options above (except ESC) when the
arrow is pointing at an undefined drawing, the computer will
emit a beep and nothing will happen.

We will now look at the functions in more detail.

DELETE

Pressing the 'D' key when the arrow is pointing at a defined
drawing will display the message

ARE YOU SURE YOU WANT TO DELETE Y/N

If you select 'N' this message will clear and the drawing
will stay intact.

If you select 'Y' the drawing will he erased from memory, the
colour of the particular number the arrow is pointing to will
change and the description will now display NOT DEFINED.

RENAME

Pressing the 'R' key when the arrow is pointing at a defined
drawing will display the message

OLD : old description NEW:

68

SPRITE DESIGNER PROGRAM

You are now prompted to enter a new description for that
particular drawing. If you decide you want to keep the
drawing description the same you may press the ESC key.

COPY

Pressing the 'C' key when the arrow is pointing at a defined
drawing will display the following message

COPY DRAWING : 03 TO DRAWING :

You are now prompted to enter a drawing number. The program
will now make a copy of the first drawing you selected and
copy it to the drawing number you have just entered.

If you have entered a drawing number that has already been
defined, an error message will be displayed.

YOU CANNOT OVERWRITE EXISTING DRAWINGS

This is self explanatory. If you do wish to overwrite a
drawing, you must use the copy command from within EDIT A
DRAWING.

If you did enter an undefined drawing number, the drawing
will be copied.

ESC

Pressing the ESC key will return the user to the sprites MAIN
Menu.

OPTION 6 SPRITE INFORMATION

After selecting this option the following screen will be
displayed

 DRAWINGS DEFINED : 30

 DRAWING RANGE : 00 - 43

DO YOU WANT INFORMATION ON ALL DRAWINGS Y/N

This screen tells you the user, information about the
drawings that are in memory at the moment. See option 2 VIEW
THE DRAWINGS for this information.

If you want information on all the drawings press 'Y'.

If you press 'N' you will then be asked

ENTER DRAWING RANGE : -

You must now enter the lowest drawing and the highest drawing
you want information on.

69

SPRITE DESIGNER PROGRAM

Then you will be asked

OUTPUT TO Screen OR Printer

You may select one by pressing 'S' or 'P'.

PRINTER SELECTED

It you selected printer the next question you will be asked

DO YOU REQUIRE CONTROL CODES SENDING TO PRINTER Y/N

If you want to send control codes to your printer. Press the
'Y' key. These control codes could be to change printer to a
different font, etc.

If you do require control codes sending you should now see
displayed

PLEASE TYPE EACH INDIVIDUAL CONTROL CODE AND PRESS RETURN

CONTROL CODE :

At this point you should enter each control code and press
RETURN. When you have finished entering the control codes you
should press the 'ESC' key. As you enter the control codes
they will be displayed along the bottom of the screen. If you
make a mistake press the 'DEL' key.

NOTE : You may enter a maximum of 6 control codes. They
cannot be greater than 63.

You will now be asked

DO YOU WANT THE LINE FEED CONTROL CODE SENDING TO PRINTER Y/N

You should answer 'Y' to this question. If you find your
printer is printing a blank line between each piece of
information then in future you should answer 'N'.

PLEASE ENSURE YOUR PRINTER IS ONLINE AND READY TO PRINT
PRESS ANY KEY WHEN YOU ARE READY

Will now be displayed. After checking your printer, press any
key. Your printer should print out the information on the
drawings you have selected.

SCREEN SELECTED

The information that will be printed is as below

DRAW DIMENSION DESCRIPTION MEMORY
00 32 x 32 MAN 1088
01 32 x 32 MAN 1088

TOTAL MEMORY 2176

70

SPRITE DESIGNER PROGRAM

This information is needed for reference when using the main
sprites program. The total memory value will be needed to
calculate which value to use for the basic MEMORY command.

OPTION 7 : ALTERING THE COLOURS

After selecting this option you will be asked

DO YOU WISH TO ALTER

 0) MODE 0 COLOURS
 1) MODE 1 COLOURS

MODE 0 COLOURS : These are the colours that you will design
your drawings with.

MODE 1 COLOURS : These are the colours for the menus and
messages.

To select the type of colours you want to change press either
'0' or '1'.

MODE 0 COLOURS

You will see displayed on the screen three bands of colours.
The top two bands of colours are the 27 colours available on
this computer. You may only count 26 colours, the background
colour is also there but you can not see it.

The third band of colours are the colours that are currently
selected for mode 0. Underneath this band of colours are the
numbers 1 - 9 and the letters A - F. You can only use 16
colours in mode 0.

At the top of the screen underneath the first colour is an
arrow. You can move this arrow from colour to colour by using
the arrow keys.

To alter a colour, move the arrow to the colour you want to
select and press the number/letter of the colour you want to
change. The new colour will now be displayed in the bottom
band.

You way also alter the background colour by moving the arrow
to the colour you would like the background to be and press
the SPACEBAR.

When you are using the design screen you will notice that the
information at the bottom of the screen is in mode 2. The
colour of the text is initially pink, colour 16. You may also
alter this colour. You do not have to use one of the sixteen
colours you have selected for mode 0. To change this colour,
move the arrow key to the colour you want and press the COPY
key. The information at the bottom of the selection screen
(also in mode 2) will change. This will enable you to decide
if this colour is readable against the background colour.

71

SPRITE DESIGNER PROGRAM

When you have made your final selection press the 'ESC' key.

NOTE : The colours for the background and the mode 2
foreground cannot be the same, if you try to do this the
command will be ignored.

The colours you have selected will be saved along with the
drawings, therefore you will not need to alter the colours
when you load the drawings back into the program.

The colours will also be saved with the drawing data when you
load the drawings into the main sprites program. To access
the colours in the sprites program use the |COLOUR command.

MODE 1 COLOURS

Altering these colours will alter all the menus and messages
that are displayed in mode 1. This information is saved when
you save drawing data to disc.

When you select this option you will see displayed

BACKGROUND 0 CURRENT : 00 CHANGE TO :
FOREGROUND 1 CURRENT : 16 CHANGE TO :
FOREGROUND 2 CURRENT : 06 CHANGE TO :
FOREGROUND 3 CURRENT : 02 CHANGE TO :

You may now type in the numbers of the colours you want (0 -
27). When you have entered the four numbers the colours will
change and the message

ARE THESE COLOURS OK Y/N

will be displayed If you press 'N' the colours will revert
back to the colours that were used before the command was
executed. You will then be asked to try again. If you do not
wish to alter the colours press 'ESC'.

If you press 'Y' in answer to the above question the colours
will be permanently changed and the MAIN menu will be
displayed.

OPTION 8 CREATE SPRITE DATA

This is the command that will convert your drawings into a
form that the main sprites program will understand.

When you have selected this option the following message will
be displayed.

WARNING

YOU WILL NOT BE ABLE TO RETURN TO
THE SPRITE DESIGNER PROGRAM AFTER
YOU HAVE CREATED THE SPRITE DATA

72

SPRITE DESIGNER PROGRAM

YOUR DRAWINGS MUST BE FULLY READY
TO BE USED BY THE MAIN SPRITES

PROGRAM

ARE YOU SURE YOU WANT TO CONTINUE Y/N

In order for the program to convert the drawings into a form
the main sprites program can understand the program has to
erase a large chunk of itself. If you answer 'Y' to this
question you will not be able to return to the designer
program without reseting the computer and 'running' the
program again.

IMPORTANT : SAVE YOUR DRAWINGS TO DISC BEFORE USING THIS
OPTION

It you do not want to continue with creating the sprite data,
pressing 'N' will return you to the MAIN sprite menu.

If you want to continue press 'Y'. You will now be prompted
for a filename.

SAVE AS FILENAME :

You may use any filename up to eight letters long. After
entering the filename press RETURN. The program will prompt
you to

PLEASE INSERT THE DISC YOU WANT THE
DRAWINGS SAVING TO AND PRESS ANY KEY

You should now insert the disc on which you want the drawings
storing. We advise against using the system disc.

After pressing any key the screen will change colours a few
times. This is not unusual, the program uses the screen as a
buffer for the drawings. Finally the screen will clear and
display.

THE FILE HAS BEEN SAVED
YOU MAY NOW RESET THE COMPUTER BY

PRESSING SHIFT-CONTROL-ESC

The program has now ended.

The drawing file that hag been created will have the format

username.DKW

OPTION 9 : END THE PROGRAM

This option is to end the program and return back to BASIC.

After selecting this option the following message will he
displayed.

73

SPRITE DESIGNER PROGRAM

PROGRAM TERMINATION

YOU WILL LOSE ALL THE INFORMATION IN

MEMORY IF YOU END THE PROGRAM I HOPE

YOU HAVE SAVED THE DRAWINGS TO DISK.

END THE PROGRAM Y/N

Pressing 'Y' will then reset the computer.

Pressing 'N' will return you to the MAIN menu with the data
still intact.

HAPPY DESIGNING

74

(This page was missing from the original PDFs I was sent)

75

