
USENIX Association

Proceedings of the
10th USENIX Security

Symposium

Washington, D.C., USA
August 13–17, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Security Analysis of the Palm Operating System
and its Weaknesses Against Malicious Code Threats

Kingpin and Mudge

@stake, Inc.
196 Broadway

Cambridge, MA 02139
{kingpin,mudge}@atstake.com

Abstract

Portable devices, such as Personal Digital Assis-
tants (PDAs), are particularly vulnerable to mali-
cious code threats due to their widespread imple-
mentation and current lack of a security framework.
Although well known in the security industry to be
insecure, PDAs are ubiquitous in enterprise envi-
ronments and are being used for such applications
as one-time-password generation, storage of medi-
cal and company confidential information, and e-
commerce. It is not enough to assume all users are
conscious of computer security and it is crucial to
understand the risks of using portable devices in a
security infrastructure. Furthermore, it is not pos-
sible to employ a secure application on top of an
insecure foundation.

Palm operating system (OS) devices own nearly
80 percent of the global handheld computing mar-
ket [11]. It is because of this that the design of the
Palm OS and its supporting hardware platform were
analyzed. The presented research provides detail
into specific scenarios, weaknesses, and mitigation
recommendations related to data protection, ma-
licious code, virus storage, and virus propagation.
Additionally, this work can be used as a model by
users and developers to gain a deeper understanding
of the additional security risks that these and other
portable devices introduce.

∗Palm OS and HotSync are registered trademarks of Palm,
Inc. Other product and company names may be trademarks
of their respective owners.

1 Introduction

A new threat model exists for malicious code and
virus attacks on portable devices. These threats
are no longer contained to common desktop environ-
ments. Portable devices employing custom electri-
cal circuit design, product-specific capabilities, and
embedded operating systems are commonplace in
corporate infrastructure. It is increasingly common
for vendors to introduce these devices to an envi-
ronment before the security ramifications have been
examined. PDAs are now being deployed by cor-
porations for security-related applications. Added
functionality of wireless technologies, such as in-
frared (IR) and radio frequency (RF), increases risk
areas. New classes of malicious code attacks ex-
ist that cannot be detected or contained by current
methods long deployed in desktop environments. In
addition, the notion of cross-architecture pollination
very quickly becomes a mainstream concern. [5]
provides an overview of some malicious threats to
PDAs and can be read in parallel with this text.

Many users do not recognize that the information
stored on their PDA is open to compromise by unau-
thorized users, and hence do not treat the data
stored on their handhelds with the same care as
they do on their desktop. Our research discusses
the underlying problem that security is not prop-
erly designed into the Palm OS platform. Although
Palm OS is not presented as a secure operating sys-
tem, if the device is being used for security pur-
poses, which is becoming prevalent in corporate en-
vironments, there are a number of risk areas to be
concerned with.

For example, Palm OS offers a built-in Security ap-
plication which is used for the legitimate user to



protect and hide records from unauthorized users
by means of a password. In all basic built-in appli-
cations (Address, Date Book, Memo Pad, and To
Do List), individual records can be marked as “Pri-
vate” and should only be accessible if the correct
password is entered. Another example is the “Beam
Bit” flag contained in every application database,
which is used to prevent the information from being
transferred, or “beamed”, to another device via IR.
Honoring the state of the Beam Bit is purely volun-
tary by the executing application. These simplistic
mechanisms lull the user and perhaps some devel-
opers into a false sense of security. There should
be strong warnings by the vendor that these mech-
anisms are trivially bypassed (as in §4, §5, and
with [14]), so users and developers can plan for and
workaround the lack of security. Security-based ap-
plications exist on the Palm OS, such as software au-
thentication tokens, cryptographic key storage, and
encryption products, all that require a secure oper-
ating system in order to be properly implemented.
Without proper protection mechanisms in place, ap-
plications that rely on the secure storage of secret
components are severely at risk of compromise.

The properties of malicious code, particularly
viruses, can be distilled into four stages: Infection,
Storage, Triggers, and Actions. In this paper, the
design of Palm OS is analyzed with respect to each
of these stages. A number of weaknesses and attack
vectors have been identified from both classical and
new technology areas and we offer insight into ad-
dressing these problems in design and usage. In no
way is this text exhaustive in enumerating attacks.
Rather, an attempt is made to educate the reader
on the design flaws and new threats that exist on
portable devices.

In §2, we provide a summary of the various types of
malicious code: viruses, Trojan horses, and worms.
§3 describes the typical design and architecture of a
PDA, focusing on the Palm OS software and hard-
ware platform. §4 and §5 detail the risks of weak
system password storage and backdoor debug modes
inherent in Palm OS. §6 through §9 address the four
stages of the virus lifecycle with respect to Palm OS.

We conclude that current state-of-the-art portable
devices are not equipped for the threat of viruses or
other malicious code components. In addition, it be-
comes apparent that threat models and attack vec-
tors these devices introduce are not yet taken into
account by product designers and anti-virus ven-

dors1. Hopefully, the various sections of this paper
can act as a road map towards the future design
of these devices and aid in security awareness for
existing deployments.

2 Summary of Malicious Code Types

For the purposes of clarity, we will classify malicious
code into three areas [23]:

• A Virus is a self-replicating code segment
which must be attached to a host executable.
When the host is executed, the virus code may
also execute. If possible, the virus will repli-
cate by attaching a copy of itself to another ex-
ecutable. The virus may include an additional
“payload” that triggers when specific condi-
tions are met.

• A Trojan horse is malicious code masquerad-
ing as a legitimate application. The goal of the
code is to have the user believe they are con-
ducting standard operations or running an in-
nocuous application when in fact initiating its
ulterior activities. There are many ways this
attack manifests with the most frequent being
reliance upon user naivety. A Trojan horse is
similar to a virus, except a Trojan horse does
not replicate.

• A Worm is a self-replicating program. It is
self-contained and does not require a host pro-
gram. The program creates the copy and causes
it to execute; no user intervention is required.
Worms commonly utilize network services to
propagate to other computer systems [19].

3 Palm OS Device Architecture

At the highest level, the architecture of the Palm OS
device, and most other PDAs, can be broken down
into three layers (Figure 1): Application, Operating
System, and Hardware.

Use of the Palm OS Application Programming In-
terface (API) provides the application developer

1Anti-virus software for PDAs is available from a number
of vendors, including, but not limited to: Central Command,
F-Secure, McAfee.com, Symantec, and Trend Micro.



Operating System

Hardware Drivers

Application

Software API

Hardware

Using the
Palm OS API

Direct access
to the processor

Figure 1: Typical layered architecture of a PDA

with a notion of hardware independence and pro-
vides a layer of abstraction. If the API is used
properly, recompiling of the application is all that is
necessary in order to run on Palm OS devices based
on different hardware. Therefore, it is important to
examine weaknesses and attack vectors that can be
found at the programming interface to the operating
system.

Directly accessing the processor by avoiding the in-
terface put forward by the operating system allows
the developer to have more control of the proces-
sor and its functionality. A risk of legitimate use
of direct processor access is the loss of compati-
bility for future models. For example, older Palm
OS devices did not support a grayscale LCD palette
through the Palm OS API, even though the under-
lying hardware possessed this capability. Bypassing
this interface and tapping into the functionality of
the processor directly will remedy this [13]. Ideally,
to provide some semblance of access control and se-
curity, only the operating system should have access
to the underlying hardware. Allowing applications
to directly access hardware provides an avenue for
malicious attack (as discussed in §9.2).

3.1 Operating System

Palm OS was designed to be open and modular to
support application development by third-parties.
The notion of layer- or file-based access control is
notably absent. It is not surprising that all pro-
gram code and data can be accessed and modified
by any user or other application. In such uniform
memory access scenarios, it is difficult to differen-
tiate between legitimate and malicious applications
solely from memory read/writes and system calls.

[20] offers the following overview on file system and
application structure:

• Palm OS does not use a traditional flat file sys-
tem. Data is stored in memory chunks called
“records”, which are grouped into “databases”.
A database is analogous to a file. The differ-
ence is that data is broken down into multiple
records instead of being stored in one contigu-
ous chunk.

• Palm OS applications are generally single-
threaded, event-driven programs. Only one
program runs at a time. Each application has a
PilotMain function that is equivalent to main
in C programs. To launch an application, Palm
OS calls PilotMain and sends it a launch code.
The launch code may specify that the applica-
tion is to become active and display its user
interface (called a “normal launch”), or it may
specify that the application should simply per-
form a small task and exit without display-
ing its user interface. The sole purpose of the
PilotMain function is to receive launch codes
and respond to them. Future versions of the
Palm OS may allow third-party applications to
be multi-threaded.

• Applications can send launch codes to each
other, so an application might be launched from
another application or it might be launched
from the system. An application can use a
launch code to request that another application
perform an action or modify its data.

3.2 Hardware

All Palm OS devices, including those by Hand-
spring, Sony, IBM, Kyocera, QUALCOMM,



Franklin Covey, TRG and Symbol Technologies,
currently use the Motorola DragonBall MC68328-
family of microprocessors which are based on the
Motorola MC68EC000 core2. The DragonBall
processors are inherently low-speed, ranging from
16MHz to 33MHz depending on the type (MC68328,
’EZ328, or ’VZ328). ARM Limited’s microprocessor
architecture, employed in many consumer, wireless,
and security products, will be used as the core of
future DragonBall processors [2] and is planned to
be implemented in Palm OS devices in 2002.

Palm OS and other handheld embedded devices use
battery-backed Random Access Memory (RAM) to
store application and user data. The operating
system and other non-transient components are of-
ten stored in Read-Only Memory (ROM). However,
newer devices are moving towards Flash memory
for static components such as the operating system.
Flash memory is non-volatile and the data stored in
it will remain intact even with loss of battery power
or a hard reset. The Palm OS is restarted from its
ROM or Flash storage area upon system reset.

4 Retrieval of Passwords

It is possible, via a number of methods, to extract
data from portable devices by reading raw memory
or from the host system after such data has been
backed up. These attacks can retrieve files contain-
ing potentially valuable data such as passwords, fi-
nancial, medical, or other company or personal in-
formation. In officially sanctioned scans, the au-
thors found that the passwords chosen by users to
protect data on their PDAs were the same as those
being used for critical corporate assets.

One example of a high-security application is med-
ical data, which is increasingly being stored on
portable devices by doctors in order to have im-
mediate access to patient information. Recent sit-
uations have occurred in which hospital intruders
have beamed extensive amounts of unprotected pa-
tient data off of Palm OS devices. This could have
been avoided with the proper use of passwords, en-
cryption, and access-control on the device.

2Motorola’s MC68328 DragonBall Integrated Processor
User’s Manual describes the programming, capabilities, and
operation of the MC68328; the M68000 Microprocessor
User’s Manual provides instruction details for the ’EC000
core.

History has shown the weaknesses of poorly chosen
or stored passwords, as in [17] and with the Mor-
ris Worm [19]. Users of portable devices, especially
those that have no keyboard and require character
input with a pen, oftentimes choose short, easily
guessable passwords, placing convenience over se-
curity. Leveraging this, the scenario presents itself
where malicious code determines the user’s pass-
word on the local device and, upon connection to a
network or other system, attempts to gain access to
other systems using the user name and now-known
password. This type of attack ends up being dis-
concertingly successful.

As it happens, an encoded block is stored on
the Palm OS device in the Unsaved Preferences
database that contains a reversible obfuscation of
the user’s system password [15]. The block is not
only readable by any application on the actual de-
vice, but is also transmitted over the serial cable,
airwaves, and networks during a HotSync operation.
This problem is verified to concern Palm OS ver-
sions 3.5.2 and earlier.

4.1 Password Decoding Details

The password is set by the legitimate user with
the Security application. The maximum length of
the ASCII password is 31 characters. Regardless
of the length of the ASCII password, the resultant
encoded block is always 32 bytes. Two methods
are used to encode the ASCII password, depending
on its length. For passwords of four characters or
fewer, an index is calculated based on the length
of the password and the string is XORed against a
32-byte constant block. For passwords of more than
four characters, the string is padded to 32 bytes and
run through four rounds of a function that XORs
against a 64-byte constant block. By understanding
the encoding schema, it is possible to essentially run
the routines in reverse to decode the password.

The Palm desktop software makes use of the Se-
rial Link Protocol (SLP) to transfer information be-
tween itself and the Palm device. Each SLP packet
consists of a packet header, client data of variable
size, and a packet footer [20]. During the HotSync
negotiation process, one particular SLP packet’s
client data consists of a structure which contains
the encoded password block (Figure 2).



struct {

UInt8 header[4];

UInt8 exec_buf[6];

Int32 userID;

Int32 viewerID;

Int32 lastSyncPC;

time_t successfulSyncDate;

time_t lastSyncDate;

UInt8 userLen;

UInt8 passwordLen;

UInt8 username[userLen+1];

UInt8 password[passwordLen+1];

};

Figure 2: Structure sent during the HotSync process
containing encoded password block

Passwords of 4 Characters or Less: By com-
paring the encoded password blocks of various short
passwords (example in Figure 3), it was determined
that a 32-byte constant (Figure 4) was simply being
XORed against the ASCII password block.

A = ASCII password
B = 32-byte constant block
C = encoded password block

The starting index, j, into the constant block where
the XOR operation should begin is calculated by:

j = (A[0] + strlen(A)) % 32;

The encoded password block is then created:

for (i = 0; i < 32; ++i, ++j)
{

// wrap around to beginning
if (j == 32) j = 0;

C[i] = A[i] XOR B[j];
}

56 8C D2 3E 99 4B 0F 88 09 02 13 45 07 04 13 44

0C 08 13 5A 32 15 13 5D D2 17 EA D3 B5 DF 55 63

Figure 3: Encoded password block of ASCII pass-
word ‘test’

Passwords Greater Than 4 Characters: The
encoding scheme for long length passwords (up to

09 02 13 45 07 04 13 44 0C 08 13 5A 32 15 13 5D

D2 17 EA D3 B5 DF 55 63 22 E9 A1 4A 99 4B 0F 88

Figure 4: 32-byte constant block for use with pass-
words of length 4 characters or less

31 characters in length) is more complicated than
for short length passwords, although it, too, is re-
versible.

A = ASCII password
B = 64-byte constant block
C = encoded password block

First, A is padded to 32 bytes in the following fash-
ion:

j = strlen(A);

while (j < 32)
{

for (i = j; i < j * 2; ++i)
// increment each ASCII value by j
A[i] = A[i - j] + j;

j = j * 2;
}

The resultant 32-byte array, A, is then passed
through four rounds of a function which XORs
against a 64-byte constant (Figure 5). k is an in-
dex that begins at {2,16,24,8} for each of the four
rounds.

j = (A[k] + A[k+1]) & 0x3F; // 6 LSB
shift = (A[k+2] + A[k+3]) & 0x07; // 3 LSB

for (i = 0; i < 32; ++i, ++j, ++k)
{

// wrap around to beginning
if (j == 64) j = 0;
if (k == 32) k = 0;

temp = B[j]; // xy
temp <<= 8;
temp |= B[j]; // xyxy

temp >>= shift;

C[k] XOR= (unsigned char) temp;
}



The resultant 32-byte encoded password block (ex-
ample in Figure 6) does not have any immediately
visible remnants of the constant block as the short
length encoding method does. However, it is still
reversible with minimal computing resources.

B1 56 35 1A 9C 98 80 84 37 A7 3D 61 7F 2E E8 76

2A F2 A5 84 07 C7 EC 27 6F 7D 04 CD 52 1E CD 5B

B3 29 76 66 D9 5E 4B CA 63 72 6F D2 FD 25 E6 7B

C5 66 B3 D3 45 9A AF DA 29 86 22 6E B8 03 62 BC

Figure 5: 64-byte constant block for use with pass-
words greater than 4 characters

18 0A 43 3A 17 7D A3 CA D7 9D 75 D2 D3 C8 A5 CF

F1 71 07 03 5A 52 4B B9 70 2D B2 D1 DF A5 54 07

Figure 6: Encoded password block of ASCII pass-
word ‘testa’

4.2 Recommendations

Palm OS 4.0, due to be released at the end of 2001,
appears to have resolved the issue of weak password
obfuscation. However, it is highly recommended
that a thorough analysis of OS 4.0 takes place before
a security-critical application is deployed.

In the current state, it is recommended that Palm
OS devices should not be trusted to store any criti-
cal or confidential information. In lieu of this, users
and vendors are encouraged to adhere to the follow-
ing guidelines for increased password security:

• Engage a challenge/response mechanism.
These mechanisms will minimize the potential
for adversaries to glean passwords through pas-
sive monitoring of the transport medium. The
transfer of a secret component, even if it is en-
coded or obfuscated, over accessible buses (e.g.,
serial, IR, wireless, or network) is a risky design
decision. Unfortunately, it’s common practice
that applications choose to simply obfuscate
passwords instead of using encryption.

• Encrypt and salt credentials stored on
systems. Simple obfuscation and reversible
transforms lull the user into a false sense of se-
curity and simultaneously show a lack of con-

cern about security from the vendor. The use
of a salt, such as the Palm user name, user
ID, or unique serial number of the Palm de-
vice, minimizes the possibilities of a password
being represented on multiple systems with the
same hash.

• Implement policy to lock and encrypt
data on the device. The Palm OS Se-
curity application provides “system lockout”
functionality in which the Palm device will not
be operational until the correct password is en-
tered. This is meant to prevent an unautho-
rized user from reading data or running appli-
cations on the device. Although this protec-
tion can be bypassed as discussed in §5, it pro-
vides an additional layer of security for partic-
ular deployments. The encryption of data can
be achieved with a number of third-party appli-
cations, though care should be taken to verify
secure storage of the encryption components.

• Implement an alternative password
scheme. Third-party solutions exist which
provide power-on and data protection by
requiring a handwritten signature, physical
button taps, or other form of password be-
fore allowing access to the device. Ths use
of graphical passwords on PDAs is studied
in [12].

5 Backdoor Debug Modes

Designed into the Palm OS is an RS232-based
“Palm Debugger”, which provides source- and
assembly-level debugging of Palm OS executables
and the administration of databases existing on the
physical device [21].

Entering a short keystroke combination [21], the
Palm OS device enters one of two interfaces pro-
vided by the Palm Debugger and monitors the serial
port for communication. “Console mode” interacts
with a high-level debugger and is used mostly for
the manipulation of databases. “Debug mode” is
typically used for assembly- and register-level de-
bugging. A soft-reset of the Palm device will exit
debug mode, leaving no proof of prior use.

The Palm Debugger can be activated even if the
Palm OS lockout functionality is enabled (which is
currently assumed by most users to be a sufficient



protection feature, because a password is required
before the device becomes operational). This prob-
lem is verified to concern Palm OS versions 3.5.2
and earlier.

Aside from the specific attack of retrieving the ob-
fuscated system password block by using export
0 "Unsaved Preferences" and decoding as de-
tailed in §4.1, it is possible to access all database
and record information on the entire Palm OS de-
vice [16]. For example, using the import console
command, one can load a Palm OS application into
the device, therefore side-stepping any HotSync or
beaming operations and logging mechanisms. A
complete listing of console and debug commands can
be found in [21].

Because the debug modes communicate with the
host via the serial port, it would be possible to cre-
ate a Palm OS-based application to emulate the re-
quired commands and, with a modified HotSync ca-
ble, be used for the retrieval of passwords or other
data in a mobile fashion. When the possibility ex-
ists to retrieve data from a portable device while
“in the field” and not requiring the use of a desktop
computer, the threat of physical attacks increases
greatly.

5.1 Recommendations

Solutions for this class of attack can be remedied
with minimal changes to the Palm OS. If the de-
vice has been placed in the system lockout mode,
the Palm Debugger functionality should be disabled.
Palm OS 4.0 appears to have removed the activation
of debug functionality during the “system lockout”
mode. In an ideal situation, although a disadvan-
tage to application developers, all debugging func-
tionality should be removed in production devices.

Additionally, logging all Palm Debugger actions, es-
pecially with time stamping, aims towards forensics
readiness and will aid in post-attack analysis.

If access control features are implemented in future
Palm OS versions, as they should be, it should be
noted that the permissions remain intact during de-
bug sessions and that global memory accessibility is
not allowed.

6 Infection Techniques

Common to most virus applications, and intrinsic
to worms, is the notion of self-replication. Through
self-replication and propagation, the malignant code
can infect programs, devices, users, or combinations
thereof. Hence, it is important to look at avenues
available to such programs to better understand the
risks at hand and determine areas to analyze for
solutions.

Generic applications can be loaded in a number of
different fashions. They can even execute without
user knowledge or interaction. Any method of load-
ing data onto the Palm OS device can act as an en-
try point for virus or malicious code infection. Four
major entry points for the Palm OS devices are:
HotSync operations, serial ports, infrared beaming,
and wireless radio. Additionally, applications can
be loaded using the Palm Debugger as described in
§5.

Possibly more threatening and intriguing is the po-
tential for cross-architecture pollination and infec-
tion. As with biology, the life cycle of a pathogen
may involve more than one species of host. A virus
could easily be designed to infect a desktop PC and
contain a secondary payload for the Palm OS device.
Alternatively, a virus on a Palm OS device could
contain a payload aimed to compromise a desktop
PC.

6.1 Application Installation Procedure

The current installation procedure for loading third-
party applications onto a Palm OS device is sim-
plistic in nature and was not designed with secu-
rity in mind. The Install Tool, provided with the
Palm Desktop software, copies the desired applica-
tion into the /Palm/<user>/Install directory on
the desktop PC. Upon the next HotSync opera-
tion, the contents in this directory are automatically
loaded onto the Palm OS device. This is one ex-
ample of cross-architecture pollination as the virus
effectively transfers itself to the new platform.

No confirmation or authentication mechanisms ex-
ist during the HotSync operation. This shows the
integrity and security of the host PC as an integral
component in this chain of actions. If the host PC
is compromised, the PDA can be considered com-



promised, as well.

6.1.1 Recommendations

Since the user places each individual program in the
directory or otherwise intentionally labels the appli-
cations to be uploaded, user verification at synchro-
nization to confirm the applications should be a triv-
ial solution. This could be achieved by automated
prompting on the host PC or by manually inspect-
ing the contents of the /Palm/<user>/Install di-
rectory. However, many users have a learned behav-
ior to simply accept system prompts without careful
examination.

Cryptographic signing of applications by the vendor
then verified by the user or Palm device will also
reduce the chances of illegitimate code being loaded
or executed on the device.

6.2 Desktop Conduits

“Conduits”, in the form of Dynamic Link Libraries
(DLLs), interface with the HotSync Manager pro-
gram on the desktop PC. They enable the transfer
of data between the Palm OS device and a specific
desktop application during the HotSync process.

The standard conduits for Palm OS transfer Ad-
dress, Date Book, Memo Pad, and To Do List data
to the Palm Desktop software. Palm Expense data
interfaces directly with Microsoft Excel. Third-
party conduits exist which replace the standard con-
duits and will route data to Microsoft Outlook or
Exchange, Lotus Notes, Novell GroupWise, or other
Personal Information Manager (PIM).

Conduits are an extremely likely entry point for the
cross-architecture transfer of malicious code. Aside
from virus infection (such as a macro virus through
the use of Microsoft Word or Excel macro function-
ality), malicious code transferred from the Palm de-
vice to the desktop through a conduit could exploit
a known security problem in the destination desk-
top application. This could lead to compromise of
the desktop machine (such as the execution of arbi-
trary code, theft or erasure of data, or elevation of
privilege).

6.2.1 Recommendations

Cross-architecture infection risks exist for any
portable device that employs data transfer or syn-
chronization capabilities to other devices. Proper
security practices should exist in the desktop envi-
ronment consisting of, but not limited to, disabling
macros, scripting, and the unprompted execution
of code. Anti-virus software running on the desk-
top should scan the incoming data before passing it
to the destination application. Once the malicious
code has successfully been transferred to the desti-
nation application, it poses the same threats as if a
user executed such a file directly.

6.3 Creator ID Replacement

Applications running on the Palm OS make use of
a 4-byte Creator ID for identification purposes. If
the Creator ID of a malicious application is defined
to be the same as one of the built-in applications, it
will be executed in place of the built-in application.
Launching a Trojan program in this manner will
appear transparent to the user until it is too late and
the malicious action has occurred. Creator IDs of
the basic built-in applications are listed in Table 1.

This behavior has characteristics of a list created in
a Last In First Out (LIFO) fashion. Upon addition
of a new piece of software to the system, its Cre-
ator ID is pushed onto the list. When a program is
launched, a traversal of the list occurs to find the
entry point to the program. When the first match
on the Creator ID is found, the list traversal exits.

Application Name Creator ID
Address addr
Calculator calc
Date Book date
Expense exps
HotSync sync
Mail mail
Memo Pad memo
Preferences pref
Security secr
To Do List todo

Table 1: Creator IDs of the basic Palm OS built-in
applications



6.3.1 Recommendations

Vendors can prevent this problem by monitoring the
Creator IDs at the operating system layer and disal-
lowing duplicates. Furthermore, a complete traver-
sal of the list could take place upon each application
launch and if duplicate Creator IDs are found, nei-
ther application is executed and user intervention
would be required. While this opens a window for
denial-of-service-style attacks, it closes an obvious
Trojan horse attack which is potentially much more
damaging.

6.4 Wireless Communications

6.4.1 Infrared

For point-to-point, close quarters communications,
infrared is typically the model of choice. In a stan-
dard IR beaming session, the Palm OS will send
a sysAppLaunchCmdExgAskUser launch code to the
receiving application. Typically, applications do not
have custom handlers for this launch code, in which
case the default response is to present the user with
a dialog box prompting for acceptance or rejection
of the request. If, however, the application handles
the launch code, as detailed in §8.1, and sets the
result flag to exgAskOk, the application will send a
sysAppLaunchCmdExgReceiveData launch code and
always receive the incoming data without displaying
a dialog box or requiring user intervention.

Using the Exchange Manager functionality in this
manner, it is trivial to transmit and receive appli-
cations and data over the infrared communications
channel. With collusion on the receiving end, as
would be possible with an infected system, IR func-
tionality creates a viable conduit for propagation of
virus and other malicious applications.

The scenario of beaming business cards at conven-
tions comes quickly to mind as a potential hostile
environment that previously might not have been
considered as such. Consider a scenario where an
adversary, posing as a conference attendee, beams
malicious code or other payload, in the form of a
business card object, to another individual. The
malicious code could then spread from this individ-
ual to trusted parties during seemingly innocuous
business card transfers.

6.4.2 RF

While infrared beaming is workable in close quar-
ters, other mechanisms must be engaged for wide
distance communications. The wireless technol-
ogy space, particularly RF, has become a primary
driver for portable devices. Internet and e-mail
connectivity can be obtained through numerous
providers, including Novatel Wireless, SkyTel, and
Sprint PCS. Wireless Application Protocol (WAP)-
capable PDAs and phones are becoming common-
place. Symbol Technologies’ family of Palm OS
devices integrate a Spectrum24 wireless local-area-
network module for enterprise connectivity. The
Palm VII employs a radio modem to communicate
with the “Palm.Net” service on the Bell South Wire-
less Data network.

6.4.3 Recommendations

As with any other ingress or egress point on PDAs,
wireless technologies create a new vector for possible
infection through such means as application trans-
fer or the transmission of intentionally faulty data
packets. The design of properly secured wireless
networks is beyond the scope of this paper, but it
should be noted that if the portable devices are not
sufficiently protected, they become a weak link in
the transaction process. Consideration should par-
ticularly be placed on the storage of secret compo-
nents (e.g., encryption keys), user authentication,
and data transfer mechanisms.

Care should be taken when running server applica-
tions on a portable device, particularly when using
RF technology (which has a wide operating range).
These applications allow other devices to connect
inbound to the server device thereby increasing the
potential for malicious code to be transferred or for
other malicious action (e.g., theft of data) to take
place.

Global system functionality that would always
prompt for user input and display the applications
requested for data reception or transmission would
diminish wireless infection. The addition of logging
mechanisms for post-mortem analysis would also as-
sist. As these are two suggestions that require ven-
dor intervention, it behooves the user of the device
to be cognizant of their surroundings and assess the
threat before accepting beamed information from
unknown people.



7 Storage and Payload Hiding

A key trait of virus code is the ability to remain in-
visible to casual scrutiny. This is often accomplished
by storing program contents in non-standard areas.
While the various methods of encrypting or other-
wise obfuscating the payload of a virus program to
avoid detection from anti-virus software is beyond
the scope of this paper, areas in which code may be
attached or stored in Palm OS devices is addressed.

7.1 Preferences and Databases

In the Palm OS API, Preferences and Data
Manager functions offer several avenues for data
storage. System and application preferences
are accessible via the Pref{Get,Set}Preferences
and Pref{Get,Set}AppPreferences function calls.
Similarly, any system or application database can
be attached to and used to store malicious content.
DmOpenDatabase, DmWrite, DmResizeRecord, and
DmSetDatabaseInfo are all common database ma-
nipulation functions that, due to the lack of protec-
tion and ownership of individual records, become
conduits for attachment.

Unused fields in records are commonly used as
covert channels. Databases on the Palm OS device
are no exception. For example, the Application and
Sort Info Blocks are optional fields in each database
that can be used to store application-specific infor-
mation. Common data stored in this block includes
category names or database version numbers. How-
ever, it is not necessary for this field to be popu-
lated and often times it is not. Traversing the ex-
isting database records on the device and checking
the appInfoID or sortInfoID parameter for a null
pointer will yield a location for the attacker to store
the handle (pointer to a location) of their payload.
This would not affect the legitimate application’s
usage in any way.

7.2 Flash Memory

Palm OS devices incorporating non-volatile Flash
memory currently use it solely for the storage of the
operating system code. Depending on the family of
Palm OS device, there remains between 440kB and
824kB of unused memory space.

Utilities exist, such as [27], which make use of
the unused memory areas to backup applications
and databases. These utilities are OS- and device-
specific and use functionality outside of the Palm
OS API. This is a perfect example of payload stor-
age and is identical to how a malicious application
would utilize Flash memory for such a purpose.

Data could also be stored on the Flash memory out-
side of the address space that is used by Palm OS,
but within the valid memory map as specified in the
DragonBall Group-Base Address registers. In do-
ing so, applications running on Palm OS using only
API functions will not be able to access nor see the
data stored in this region.

Recommendations to minimize the risks of improper
Flash memory usage are discussed in §9.3.1.

8 Execution Triggers

Viruses do not always execute immediately after in-
fecting a target device. There is often an “incuba-
tion period” in which the virus sits dormant, wait-
ing for a specific time, key sequence, or other pre-
ordained initiator. The inclusion of an incubation
period increases the difficulty of determining exactly
how or when the system was infected. As more sys-
tem activity takes place over time, the ability to
backtrack to the point of infection becomes difficult
if not impossible.

8.1 Launch Codes

Particular launch codes sent by Palm OS are re-
ceived by all applications on the Palm device. This
becomes a prime candidate for incubation or virus
execution, since code segments defined in handling
routines are executed without the user’s knowledge
or intervention. Full details of the launch codes can
be found in [22]. A casual perusal of the documenta-
tion for launch codes uncovers several obvious events
that will likely be used for incubation of malicious
code. Our speculations on these are listed in Ta-
ble 2.

Launch codes are handled in switch-style con-
structs within the PilotMain function. An applica-
tion checks each code that it receives to determine
if a handler exists. If one does exist, execution is



Launch Code Potential Incubation Method
sysAppLaunchCmdSystemReset This launch code signifies that a system reset has just occurred.

No user input is allowed during this launch code. As Palm OS
devices are not reset at regular intervals, this provides a random
timing for the launch of malicious code.

sysAppLaunchCmdSyncNotify When a HotSync operation has been completed or an application
has been successfully beamed and received by the device, this
launch code is sent to application. This could signify that the
malicious code has successfully propagated to the target device
and can perform its payload hiding or destructive actions.

sysAppLaunchCmdAlarmTriggered A most probable launch code for malicious use. Malicious code
could set an alarm for a future time. Upon receipt of the alarm,
the desired code would be executed.

Table 2: Selected application launch codes and theorized incubation methods

handed off to the appropriate functions. The launch
code of sysAppLaunchCmdNormalLaunch, sent when
an application is normally executed, would most
often vector to legitimate code. This provides an
appearance of normalcy while malicious payloads
remain dormant until their specific launch code is
seen.

8.1.1 Application Transfer

Through the use of launch codes sent by the Palm
OS during the loading of an application (via the
HotSync process or IR beaming), it is possible to
have an application self-execute after it has been
transferred to the target device. Using an infection
technique such as described in §6.1, it would be triv-
ial for malicious code to be loaded and executed on
a Palm device with the legitimate user having no
knowledge of the event.

A typical sequence to execute an application by
transfer is as follows:

The newly transferred application will first receive
a sysAppLaunchCmdSyncNotify launch code from
the OS to specify that the device has success-
fully received the application. If the handling of
this launch code sets an alarm for an immedi-
ate or future time, the application will be started
again with a sysAppLaunchCmdAlarmTriggered
launch code when that time is reached. The
AppLaunchWithCommand API function can be called
with a sysAppLaunchCmdNormalLaunch launch code
in order for the application to begin normal execu-
tion.

8.1.2 Recommendations

While it is difficult to determine if programs being
introduced to the system are malicious in nature, it
is possible to sweep existing applications to deter-
mine if new launch code handlers have been inserted
since the application’s original introduction. The
modification of an existing program to execute new
code at launch would be endemic of viral activity
and noticeable through these scans.

8.2 Trap Patching

Well-known to the virus writing community is the
notion of “trap patching”. When a system function
is called, the operating system performs a look-up
on the trap dispatch table to determine where in
memory the desired function is located. In patch-
ing a system function, this address is replaced in the
table with an address pointing to new code. Often-
times, the new code will hand execution off to the
original routine after it has served its purpose. In
such a scenario, the patch appears invisible to the
end user, as the original functionality still succeeds.

Trap patching has many uses beyond that of virus
design. For Palm OS devices, trap patching has
been made popular with HackMaster [13]. Any na-
tive functions in the Palm OS are potential vectors
that can be trapped and exploited. This is not only
the case for exported user programming interfaces,
but includes those that are defined for system-use
only.



To help in understanding trap patching as a vulner-
ability, consider a trivial denial-of-service event:

When a penUpEvent event is detected in the
writing area, SysHandleEvent hands control
over to the GrfProcessStroke API function.
GrfProcessStroke is located in the trap dispatch
table and the Program Counter starts execution at
the address returned. If the GrfProcessStroke rou-
tine were replaced with a stub that returned imme-
diately after entry, which is to say that the routine
does nothing, the attack would result in characters
being prevented from entering into the key queue.

Obviously, this constitutes a much more benign
attack than ones that might be introduced with
greater functionality.

8.2.1 Recommendations

Solutions for this class of problem have been histori-
cally difficult [7, 25]. Rollback, in particular, makes
the tracking of potentially legitimate patching prob-
lematic. For example, take a natural scenario as
shown in Figure 7.

1
2
3

A
B
C

Figure 7: Functions {1,2,3} with corresponding Ad-
dresses {A,B,C}

Assuming that the structure in the trap dispatch
table for Function 1 is modified to point to a new
Address, D (Figure 8), it would be up to the pro-
gram that introduced the modification to keep track
of the original value.

If yet another patching program is introduced, it
would note the native location of Function 1 as Ad-
dress D. In this case, the second program has no way
of knowing that it did not store the original address
of Function 1. Upon the first program returning
Function 1 to Address A, the second program can
still rollback, pushing the return location back to
that of Address D.

1
2
3

A
B
C

D

Figure 8: Function 1 patched to point to Address
D. Address D hands off to the original location, Ad-
dress A, upon completion.

Potential exists for periodic checks against vendor-
published hash tables to avoid the rollback scenario.
It is envisioned that vendors would publish and
cryptographically sign a list of the entry points to
the various functions. Checks could be made on the
portable devices themselves. The Palm OS could
also create a list of entry points of newly installed
applications and, upon execution, check the stored
values against the live values noting discrepancies.
A message box or other user alert would be shown
should the necessity arise. A cryptographic copro-
cessor, such as [8, 26], could assist in the secure
storage of these entry points.

9 Malicious Actions

9.1 Application Deletion

Without memory protection, it is trivial to create
applications capable of deleting program code or
database information. The Palm.Liberty.A Tro-
jan horse, detected in August 2000 and claimed to
be the first known Trojan for the Palm OS platform,
did just this in erasing all databases on the device.
With complete and unrestricted memory access, the
malicious application simply iterates through the
linked list of databases and unlinks each one as it
proceeds.

9.1.1 Recommendations

There are several preventive approaches for this
type of attack. Trapping operating system calls at
the API level has been employed in certain scenar-
ios [18]. The calls are often patched to alert the user
of a particular action or to disallow an action alto-



Register(s) Potential Effects
Phase-Locked Loop (PLL) Control System can be halted.
Power Control
Group-Base Address Corrupted memory maps making code and data
Group-Base Address Mask fetches impossible.
Chip-Select
LCD Controller Module Affect LCD functionality. It may be possible to

cause LCD hardware damage by modifying the
refresh frequency or by improper power cycling.

Table 3: Selected registers and theorized effects of improper modification

gether. Placing the onus of allowing or disallowing
certain functions on the user can be problematic
as, more often than not, the user is not security-
conscious and will improperly configure, circum-
vent, or completely ignore the protection mecha-
nisms due to their complexity. Security processes
need to be in place at the operating system level
that are undetectable and inescapable.

While this technique of trapping operating system
calls has enjoyed some amount of success, it has
the drawback that applications legitimately creat-
ing and erasing their own databases are often hin-
dered. One remedy to this situation is to have the
operating system enforce rules that only allow mod-
ification to databases with the same Creator ID as
the application performing the actions. In this case,
the Creator ID would need to be non-modifiable by
the user.

9.2 Register Manipulation

While attacks using the Palm OS API are a major
threat, lack of compartmentalization in the operat-
ing system allows the user to target the underlying
hardware controlling the device. The DragonBall
allows direct control of its registers via memory-
mapping. Direct control of these registers allows
an attacker to control many low-level aspects of de-
vice operation. An application simply has to define
a pointer to the specific memory location represent-
ing the target register.

By examining the DragonBall registers, we have de-
termined particular registers that, when improperly
modified, can lead to disruptive events or physical
damage to the Palm OS device. Our theorized ef-
fects are listed in Table 3. It should be noted that
while these examples focus on the DragonBall pro-

cessor, other embedded microprocessors exhibit sim-
ilar vulnerabilities. These attacks are comparable
to the desktop computer environment in which ma-
licious programs would change the synchronization
rate of a monitor or over-drive and manipulate hard
drive heads.

9.2.1 Recommendations

Direct register access is not detected by existing
anti-virus software. Current software in this field
only watches for improper usage of the Palm OS
API function calls (such as the DmEraseDatabase
function).

Discerning a legitimate application from a malicious
application is challenging when direct register access
is involved. One solution is to prevent any third-
party application from direct register access. While
this would hinder legacy applications that did not
adhere to the published API, the minor loss in back-
wards compatibility would most likely be deemed
acceptable for the increase in security.

9.3 Memory Corruption

Devices using Flash memory supporting field-
upgradeable operating systems have inflection
points that ROM-based devices do not. Malicious
code is capable of taking advantage of the field-
upgradeable capabilities of the Flash device to mod-
ify or destroy data. Through this, they can patch
the operating system with custom code or com-
pletely overwrite it. [9, 10] provides details of per-
forming operating system upgrades in the Flash
memory of Palm OS devices.



uP MMU

ROM
Boot Loader

RAM
Applications

Flash
Operating
System

A/D

Figure 9: Possible design configuration for a secure PDA

Successful attacks on Flash can be crippling for the
Palm OS device. The critical boot loader function-
ality for controlling field-upgrades is often stored in
Flash. If this area is not properly protected using
the Software Protection and Boot-Block locking fea-
tures provided by the Flash memory device, it can
be altered. Complete erasure of the boot loader pre-
vents field-reprogramming of the operating system
and will require the device to be returned to the fac-
tory for replacement. Any data not stored in pro-
tected areas of Flash memory is subject to erasure
or modification, often without detection.

9.3.1 Recommendations

Current implementations of Palm OS devices do not
use any Flash memory for application data stor-
age and is used solely to store the operating sys-
tem itself. All applications and data reside on
battery-backed RAM. Therefore, a trivial solution
for security-critical deployments would be to use de-
vices that store the OS in ROM (such as the PalmPi-
lot family) or guarantee that the entire Flash device
is read-only. A similar scenario (Figure 9) would be
to use a ROM device for all boot loading and Flash
memory upgrade routines, still leaving the actual
operating system in Flash. This would allow the
critical routines to be protected and still allow the
OS to be upgraded. It is apparent that the current
PDA model places convenience of OS upgrades of
greater importance than security.

A disadvantage to using Flash memory for the stor-
age of applications and other often-modified data is
the low amount of write-cycles (typically ≈10,000)
guaranteed during the memory’s lifetime. Given
that RAM has no such limitation, it is still a natural
choice for this type of data storage.

The Boot-Block areas of Flash memory could be

used to implement a secure boot process similar
to [1], which will guarantee the integrity of the sys-
tem.

Implementing a hardware-based memory manage-
ment unit (MMU) will aid in supplying memory
isolation and preventing applications from unau-
thorized access to external memory. The MMU,
commonly designed into embedded microprocessors,
is not available in the DragonBall core. For pur-
poses of Palm OS devices, this unit could be im-
plemented in an application-specific IC (ASIC) or
programmable logic device. It is hoped that an
MMU is designed into the ARM core for future
DragonBall processors. The MMU is located on the
address and data buses between the microproces-
sor and the external memory. If the address re-
quested for read/write access is outside of a legal,
pre-defined range, the MMU can either prevent the
operation outright or respond back to the processor
in some manner.

It should be noted that solely implementing an
MMU is not enough for proper memory protection.
If the Palm OS is modified by an adversary, it may
still be possible to access “restricted” areas of Flash.
Using [1] in conjunction with an MMU implementa-
tion will work nicely, as there is integrity to guaran-
tee that the operating system and underlying com-
ponents are trusted and there is hardware-based
memory protection for fault isolation. Figure 9 is
one possible design configuration. The ROM and
the MMU could be internal to the CPU, depend-
ing on its type. The MMU will monitor the address
and data buses as described previously. The en-
tire configuration could be designed as an ASIC or
as a secure cryptographic coprocessor, along with
the proper tamper-response and physical protection
systems as recommended in [4, 6].

Another solution to the problem of accessible Flash



memory and risks of intentional corruption would
be to introduce hardware jumper protection. This
would physically allow or prevent writing to the
Flash device. In order to accomplish this, a user
would typically have to place a jumper or depress a
button to enable or disable writing to Flash mem-
ory areas. Such a jumper could be connected to the
Chip Enable, Write Enable, or Output Enable line
of the memory device. Alternatively, it could en-
able circuitry that would connect the required ad-
dress lines between the processor and memory de-
vice. When enabling field-upgradeable functional-
ity, some modicum of due diligence must be taken
to ensure integrity and authorization for such ac-
tions. Even if the hardware jumper was only active
for the regions storing the base operating system,
this would increase the security of the system. If
applications are stored in Flash in future devices,
the same scenario would exist and the user would
have to physically “approve” each application as it
is loaded into their device. This, however, is tedious
for the user and could easily be bypassed with sim-
ple modifications to the hardware.

Secure coprocessors, such as [8, 26], enable secure
distributed applications by providing safe havens
where an application program can execute, free of
observation and interference by an adversary with
direct physical access to the device [26]. Designing
such a configuration into the underlying Palm OS
hardware will greatly enhance the security of the de-
vice and may minimize enough risk to be a suitable
platform for security-based applications. It is pos-
sible that smartcards can serve as interim crypto-
graphic coprocessors for portable devices [28]. Ad-
ditionally, [3] proposes a software-based solution of
using PDAs as cryptographic tokens.

Currently, Palm OS devices are extremely vulner-
able to Flash memory attacks and have no protec-
tion mechanisms as described in this section. This is
quite possibly the case for other PDAs and portable
devices, as well.

10 Conclusions

In this paper, we analyzed the design of the Palm OS
and hardware platform with respect to data storage
issues, improper security design, and malicious code
threats. Vulnerable and at-risk areas were identified
that could be taken advantage of for such attacks. It

has been pointed out that a variety of problems exist
that can be exploited at both the operating system
and hardware levels. Specific changes to Palm OS
and its associated hardware were recommended and
would be required to begin to properly implement
preventive measures.

For solutions, it becomes apparent that implement-
ing layer-based access control may be necessary to
allow the application level to communicate only
with the operating system. Conjunctively, these
access control mechanisms would allow the oper-
ating system only to communicate with the hard-
ware. The current design of the Palm OS soft-
ware and hardware is not laid out in this fashion.
As a result, many of the attacks discussed in this
paper remain extremely difficult to defend against
with third-party software running at the application
layer. If future versions of Palm OS allow third-
party applications to run as multi-threaded, anti-
virus applications could essentially run in the “back-
ground” and use monitoring techniques as proven
useful in desktop environments. Additionally, it
may be possible to emulate a virtual machine that
provides integrity and memory protection. Virtual
memory areas of RAM used during cryptographic
operations can be encrypted similar to [24] to pro-
tect temporarily stored plaintext.

The cryptographic code signing of applications has
been used in many ActiveX scripts and Java applets
for a number of years. Portable devices should em-
ploy such methods to verify the integrity of trusted
applications. Ideally, the code signing routines and
resultant signatures would be stored in ROM along
with the Certificate Authority (CA) public key of
the product vendor. It may be possible to store
signatures in Secure Digital (SD) external memory
cards (which are planned to be designed into Palm
OS devices in late 2001) or Handspring’s Spring-
board modules.

In lieu of any operating system upgrades or hard-
ware re-designs, there are a number of simple and
immediate precautionary measures a user can ex-
ercise to reduce the risk of data theft or malicious
attacks:

• Be aware of what applications are being loaded
onto the portable device. If an application
comes from an untrusted source, extra care
must be taken. This may entail using an ex-
isting anti-virus package on the PC to scan the



file for known threats or testing the application
functionality on a spare device.

• Monitor the HotSync Log and Last HotSync
Operation date to verify that there were no
unauthorized HotSync operations performed.

• Disable the “Beam Receive” functionality in
the System Preferences panel. Enable this fea-
ture only when necessary. This prohibits any-
one from beaming information to the Palm OS
device.

• Be aware of the physical location of your Palm
device at all times. Attaching a belt clip or
lanyard will reduce loss, misplacement, or theft.

Because Palm OS devices account for the majority
of the PDA market, it is hoped that the research in
this paper is used to create a more secure computing
environment in the short term. It is also hoped that
the analyses and ideas provided in this paper will be
used in future work to design more secure products.

In the current state, caution should be taken when
employing portable devices for security purposes. In
a War College-style approach, it is believed by the
authors that oftentimes the simple knowledge of a
vulnerable area is enough to help steer the user to-
wards more security-conscious use.

Acknowledgments

The authors would like to thank @stake’s Research
Labs, especially Brian Carrier, for constructive crit-
icism and interesting discussions.

References

[1] W. Arbaugh, D. Farber, and J. Smith, “A
Secure and Reliable Bootstrap Architecture,”
IEEE Security and Privacy Conference, May
1997.

[2] ARM, Ltd., “Motorola’s DragonBall Proces-
sor Portfolio to Include ARM Architecture in
2001,” Press Release, December 11, 2000.

[3] D. Balfanz and E. Felten, “Hand-Held Comput-
ers Can Be Better Smart Cards,” 8th USENIX

Security Symposium, Washington, D.C., Au-
gust 1999.

[4] D. Chaum, “Design Concepts for Tamper Re-
sponding Systems,” Advances in Cryptology:
Proceedings of Crypto ’83, 1984.

[5] E. Chien, “Malicious Threats to PDAs & Pro-
totype Solutions,” Virus Bulletin Conference
2000, September 2000.

[6] A.J. Clark, “Physical Protection of Crypto-
graphic Devices,” Advances in Cryptology: EU-
ROCRYPT ’87, 1988.

[7] I. Goldberg, D. Wagner, R. Thomas, and E.
A. Brewer, “A Secure Environment for Un-
trusted Helper Applications,” 6th USENIX Se-
curity Symposium, San Jose, California, July
1996.

[8] P. Gutmann, “An Open-Source Cryptographic
Coprocessor,” 9th USENIX Security Sympo-
sium, Denver, Colorado, August 2000.

[9] T. Harbaum, “Flashlib,” April 1999,
http://bodotill.suburbia.com.au/
flashy/flashy.html.

[10] T. Harbaum, “OS Flash,” September 2000,
http://bodotill.suburbia.com.au/
osflash/osflash.html.

[11] IDC, “Market Mayhem: The Smart Handheld
Devices Market Forecast and Analysis, 1999-
2004,” Report 22430, June, 2000.

[12] I. Jermyn, A. Mayer, F. Monrose, M. Reiter, A.
Rubin, “The Design and Analysis of Graphical
Passwords,” 8th USENIX Security Symposium,
Washington, D.C., August 1999.

[13] E. Keyes, “Hacking the Pilot: Bypassing the
Palm OS,” PDA Developers 4.6, November
1996.

[14] Kingpin, “Palm OS Beam Bit
Modification Tool,” January 1999,
http://www.atstake.com/research/tools/
beamcrack.zip.

[15] Kingpin, “Palm OS Password Re-
trieval and Decoding,” @stake Secu-
rity Advisory, September 26, 2000,
http://www.atstake.com/research/
advisories/2000/a092600-1.txt.



[16] Kingpin, “Palm OS Password Lockout By-
pass,” @stake Security Advisory, March 1,
2001, http://www.atstake.com/research/
advisories/2001/a030101-1.txt.

[17] D. Klein, “Foiling the cracker: A survey of,
and improvements to, password security,” 2nd
USENIX Security Workshop, August 1990.

[18] McAfee.com, “Increased Protection for Wire-
less Users in Wake of Recent PDA Trojan Dis-
covery,” Press Release, September 5, 2001.

[19] United States General Accounting Office, Re-
port to the Chairman, Subcommittee on
Telecommunications and Finance, Committee
on Energy and Commerce – House of Rep-
resentatives, “Virus Highlights Need for Im-
proved Internet Management,” GAO/IMTEC-
89-57, June 1989.

[20] Palm, Inc., Palm OS Programmer’s Compan-
ion, DN 3004-003.

[21] Palm, Inc., Palm OS Programming Develop-
ment Tools Guide, DN 3011-002.

[22] Palm, Inc., Palm OS SDK Reference, DN 3003-
003.

[23] W. T. Polk and L. E. Bassham, “A Guide to the
Selection of Anti-Virus Tools and Techniques,”
National Institute of Standards and Technology
Computer Security Division, SP 800-5, Decem-
ber 1995.

[24] N. Provos, “Encrypting Virtual Memory,” 9th
USENIX Security Symposium, Denver, Col-
orado, August 2000.

[25] B. Schneier, “The Trojan Horse Race,” Com-
munications of the ACM, Volume 42, Number
9, September 1999.

[26] S.W. Smith and S.H. Weingart, “Building a
High-Performance, Programmable Secure Co-
processor,” Computer Networks (Special Issue
on Computer Network Security), 31: 831-860,
April 1999.

[27] TRG Products, Inc., “FlashPro,”
http://www.trgnet.com/cat-flashpro.htm

[28] University of Michigan, “Smart
Card Research At CITI,”
http://www.citi.umich.edu/projects/
smartcard.


