
Gaigen: a Geometric Algebra
Implementation Generator

Daniël Fontijne, Tim Bouma, Leo Dorst
University of Amsterdam

July 28, 2002

Abstract

This paper describes an approach to implementing geometric algebra.
The goal of the implementation was to create an efficient, general imple-
mentation of geometric algebras of relatively low dimension, based on an
orthogonal basis of any signature, for use in applications like computer
graphics, computer vision, physics and robotics.

The approach taken is to let the user specify the properties of the geo-
metric algebra required, and to automatically generate source code accord-
ingly. The resulting source code consist of three layers, of which the lower
two are automatically generated. The top layer hides the implementation
and optimization details from the user and provides a dimension indepen-
dent, object oriented interface to using geometric algebra in software, while
the lower layers implement the algebra efficiently. Coordinates of multi-
vectors are stored in a compressed form, which does not store coordinates
of grade parts that are known to be equal to �. Optimized implementations
of products can be automatically generated according to a profile analysis
of the user application.

We present benchmarks that compare the performance of this approach
to other GA implementations available to us and demonstrate the impact
of various settings our code generator offers.

1 Introduction

Geometric algebra promises to provide a powerful computational framework
for geometric computations. It contains all geometric operators, primitives of
any dimension (not just vectors), and permits specification of geometric con-
structions in a totally coordinate free matter. We assume the reader has a mod-
erate knowledge of geometric algebra. Some introductions to the subject are
[2], [3], [5] and [14]. The reader may benefit from reading the making of GABLE
[1] before reading this paper, since Gaigen builds on the foundations laid by
GABLE. Some programming knowledge is also required to fully understand
some implementation and performance details.

To show that geometric algebra is not only a good way to think and rea-
son about geometric problems as they appear in computer science, but also
a viable way to implement solutions to these problems on computers, an im-
plementation that is efficient with respect to both computational and memory

1

resources is required. It may be true that using geometric algebra helps you
to solve and implement your problems faster and more easily, while making
fewer mistakes, but if this advantage comes at a significant speed or memory
penalty, people working on hard real-world applications will quickly, perhaps
rightly, turn away and stick with their current solutions.

An example of inefficient use of memory and computational resources oc-
curs when one treats 5 dimensional multivectors (such as used in the conformal
model of 3D geometry [4]) in a naive way. The representation of a 5 dimen-
sional multivector requires �� � �� coordinates. When two of these multi-
vectors are multiplied naively (using the approach in [1]), ����� floating point
operations (i.e. ��� are required. In most applications however, many of these
coordinates will be 0 (typically at least half of them). By not storing these coor-
dinates, memory usage is reduced. Moreover, fewer floating point operations
are required if it is known which coordinates are 0, since we don’t have to mul-
tiply and sum terms that we know will be 0 anyway. Our approach exploits
this insight by not storing the coordinates of grade parts that are known to be
�, thus reducing memory usage and increasing processing efficiency.

We also wanted Gaigen to be portable between platforms, without losing
performance. Naturally, the C++ code generated by Gaigen is fully portable to
all platforms for which a C++ compiler is available, but many mainstream plat-
forms support SIMD (Single Instruction Multiple Data) floating point instruc-
tions (such as SSE [8], 3DNow! [7] and AltiVec [9]) aimed at doing floating
point computations faster. To allow individual users to optimize Gaigen for
their particular platform, the lowest layer of source code generated by Gaigen,
that performs basic operations such as multiplication, addition and copying,
was designed to be easily replaced by a version optimized for a particular plat-
form.

At the same time we desired a sufficiently general package for computing
with geometric algebra and a successor to GABLE [1][2]. However optimized
or efficient the new package may be, it should be straightforward to use, sup-
port any dimension and basis vector signature and be extensible.

This paper describes how we combined these desires into our geometric
algebra package called Gaigen. Gaigen generates C++ source code for a specific
geometric algebra, according to the user’s needs. Here are some properties of
the algebra that the user can specify:

� dimension,

� signature of the orthogonal basis vectors (+1, 0, -1),

� reciprocal null vectors

� what products to implement (geometric product, (modified) Hestenes in-
ner product, left and right contraction, outer product, scalar product)

� how to optimize the implementation of these products,

� the storage order of the coordinates,

� what extra functions to implement (e.g. reverse, addition, inverse, pro-
jection, rejection, outermorphism) and

� what coordinate memory (re-)allocation method should be used.

2

Figure 1: Screenshots of the Gaigen user interface, showing how the user can
select name, dimension, basis vector signature, products and functions of the
desired geometric algebra.

Usage of Gaigen is described in a separate user manual [6]. Some screenshots
of Gaigen’s user interface are shown in figure 1.

The rest of this paper explains how Gaigen represents and stores multivec-
tors (section 2), how multiplication tables for products of multivectors from
arbitrary geometric algebras are constructed using the binary representation of
basis elements (section 3) and how the optimized products are implemented
(section 4). These are all problems that Gaigen handles in a specific, perfor-
mance minded way. Furthermore the paper describes algorithms that Gaigen
uses to efficiently compute inversions, outer morphisms, duals, factorizations
of blades and versors and the meet and join. These subjects might be of interest
to anybody implementing a GA package. The paper ends with a benchmarks
of the performance of Gaigen (section 11) and discussion of Gaigen in general
(section 12).

A short note on notation: we will use ���� font for multivector quantities,
and ���� font for scalars. The variable � will be the dimension of the geometric
algebra at hand throughout the whole paper. We will use �, �, � and 	 as
general multivector variables and
, �, � and
 as basis element variables.
When we say that grade � of a multivector is empty, we mean that the grade �
part of the multivector is equal to �.

3

2 Representation of multivectors

Gaigen represents a multivector as an array of coordinates relative to an or-
thogonal basis of the required geometric algebra. Suppose we want to imple-
ment a 2D geometric algebra on the basis ��� ��� ��� �� � ���, then a multivector
� could be represent as an array of four coordinates �	�� 	�� 	�� 	���, that re-
late to the multivector � as follows:

� � ��� ��� ��� �� � ���

�
���

	�

	�

	�

	��

�
��� � (1)

If we define ��� � �	�� 	�� 	�� 	���
� , then we can we denote this representation

in shorthand as:
�� ��� (2)

2.1 Coordinate Order and Basis Element Orientation

Gaigen allows the user to specify in which order the coordinates of the column
matrix on the right hand side of equation 1 are stored. The only restriction
is that the coordinates are ordered by grade: coordinates for grade
 always
precede coordinates for grade
 	 � in the coordinate array. This restriction
simplifies the compression of coordinates as described in section 2.2.

The coordinates of one specific grade however, can be stored in any order.
The reason for this is the lack of a natural order for the coordinates beyond
dimension 3. This can be shown with a short example. We could store the
coordinates of a 3D geometric algebra as follows:

	��

	�� 	�� 	��

	��� 	��� 	���

	����

with the motivation that all coordinates are ordered according to grade, that
the vectors coordinates are ordered according to their index, that for each vec-
tor coordinate it’s dual bivector coordinate is beneath it and the bivectors are
in a cyclic order. However, we have not found such strong motivations for
geometric algebras of higher dimension.

We can conclude there is no reason for us to enforce a specific order. The user
however, may have a preference for the order of the coordinates. The source
of the coordinates (e.g., real world measurements) may have a specific order.
When the user enters these coordinates into multivector variables, it would be
efficient if the user does not have to reorder them. Thus Gaigen allows for
arbitrary ordering of the basis elements.

The user can also specify the orientation of the basis elements, e.g., decide
whether �� � �� or �� � �� is the orientation to which the bivector coordinate
	�� (or 	��) refers. Again, this option is provided because there is no reason
for Gaigen to enforce a specific orientation of basis elements upon the user, and
some users may have their data in a specific format.

4

2.2 Compressed coordinate storage

Gaigen does not always store all coordinates of a multivector. For every mul-
tivector that is created, Gaigen keeps track of the grade parts that are empty.
Every multivector coordinate array is accompanied by a bit field that specifies
the grade part usage. When bit
 of the bit field is on, this indicates that the
grade part � coordinates are stored in the coordinate array of �; when bit � is
off, it indicates that the grade part � coordinates are omitted from the array.

This storage scheme can significantly reduce the amount of memory re-
quired to store a multivector. When only even or odd multivectors (e.g., ver-
sors) are used, already only half the amount of memory is required. For blade
storage, the scheme is even more efficient.

2.3 Tracking compressed coordinate storage

Assume that when a multivector is created, Gaigen always knows its grade
part usage. Now we would like to track that grade part usage through any
function � (e.g. a geometric product, or a dualization) that we want to perform
on multivectors: when some function � is applied to one or two multivectors,
like:

� � ���� (3)

or
� � ����	� (4)

we want to know (preferably beforehand) what the grade part usage of the
result � will be. So, whenever possible, Gaigen first computes the expected
grade part usage of �. Gaigen then allocates enough memory to store the
coordinates of those grades, computes the result, stores it in the compressed
coordinate array, and sets the grade usage bit field of �.

It may not always be possible for Gaigen to compute efficiently what the
grade part usage of � will be. Then Gaigen assumes all grades will be non-
zero, computes the result and then compresses the result, leaving out all grades
which are empty. Note however that this will be less efficient than knowing
beforehand which grade parts in � will be empty.

Functions (especially linear transformations) such as �� � ����where� is a
vector and � a rotor, present a significant problem to this storage method. The
product ��� is an odd multivector: it may have odd grade parts larger than 1
that are not equal to �. The product ������ however, is supposed to be of grade
1, because the grade parts higher than 1 cancel out when ��� is multiplied by
�. Due to floating point round off errors however, this is not necessarily true
in Gaigen. The product ������ may have odd grade parts larger than 1 that
are not empty, though they are very small. Gaigen lacks the ability to predict
that a product such as ���� will be of grade 1.

We have implemented two solutions to this problem. First of all, Gaigen has
an outermorphism operator built into it (section 6). Any linear transformation

 can be stored in a matrix form
. The product
� is guaranteed to be grade
preserving, so all grades that are empty in � are known to be empty in
�.
Secondly Gaigen supports a grade selection mechanism that can be used to get

5

rid of unwanted grade parts (i.e., � ������, to extract only the vector part from����).

2.4 Memory (re-)allocation schemes

Because Gaigen tracks what multivector grade parts are empty, it can reduce
memory usage. However, there is a trade-off between memory (re-)allocation
and computational efficiency. Suppose a C++ program uses a 3D multivector
variable A, which is assigned a vector quantity (grade 1, requiring 3 coordi-
nates). When this same variable is later assigned a rotor quantity (grade 0
+ grade 2, requiring 4 coordinates), more memory must be allocated to store
the extra coordinate. To preserve memory resources, we always want to al-
locate only the smallest amount of memory required to store the coordinates.
However, reallocating memory costs time. Allocating the maximum amount
of memory required to store all possible coordinates (��, where � is the dimen-
sion of the algebra), ensuring that we would never have to reallocate memory,
wastes memory resources

To allow the user to make this trade-off between memory usage and compu-
tation time, Gaigen currently has four memory allocation schemes. All schemes
operate transparently to the user and can be replaced with each other. memory
allocation schemes can be changed by selecting another scheme and regenerat-
ing the algebra implementation. The allocation schemes are:

Tight: Exactly the right amount of memory is allocated to store the coordinates
of the non-zero grades of a multivector. This implies frequent memory
reallocation, which is done via a simple and efficient memory heap.

Balanced: To prevent abundant memory reallocation, the balanced allocation
scheme does not always free memory that is no longer required for stor-
age, up to a certain waste factor which the user can specify. Suppose a
variable holds a 3D rotor (4 coordinates), and is assigned a vector (3 co-
ordinates); the memory waste would be ����
 if 4 coordinates memory
locations would be used to store 3 coordinates. If the waste factor were
larger or equal to �

� , the balanced allocation scheme would decide not to
reallocate the memory.

Maximum: The maximum number of memory locations to store all �� coordi-
nates is allocated when a multivector variable is created. Gaigen never
has to reallocate memory.

Maximum parity pure: We call a multivector parity pure if it is either odd or
even. If the dimension of the algebra is larger than 0, only half of the ��

coordinates have to be allocated to store the coordinates of a parity pure
multivector variable. The user must guarantee that he will never create
multivectors which are not parity pure, or weird things can happen (a
crash or incorrect results). Non-parity pure multivectors never arise if all
multivectors are constructed as products of blades.

6

product condition(s)
outer product grade ��� � grade �
� 	 grade ���
scalar product grade ��� � �
left contraction grade ��� � grade ���� grade �
�

right contraction grade ��� � grade �
�� grade ���
Hestenes inner product grade ��� � �grade �� �� grade �
� �

modified Hestenes inner product grade ��� � �grade ���� grade �
� �,
grade �
� �� �, grade ��� �� �

Figure 2: Conditions for deriving products from the geometric product. If the
result of a geometric product � �
� (both
 and � must be basis elements)
agrees with all conditions for one of the products � listed in this table, then the
product � of
 and � is equal to the geometric product of
 and �. Otherwise,
it is �. The conditions in the table are only valid for multiplying orthogonal
basis elements.

3 Implementing the GA products

After the coordinate storage problem has been solved efficiently, the next log-
ical step in implementing a geometric algebra is probably computing the var-
ious products. Gaigen currently supports 7 products: the geometric product,
the outer product, the scalar product and four variations of the inner product.

3.1 Deriving products from the geometric product

The geometric product is the fundamental product of geometric algebra. All
other products can be derived from it. This is not only true in theory, but is
also applied in practice by Gaigen. As explained below, during the source
code generation phase, Gaigen only needs to be able to compute the geometric
products of arbitrary basis elements ��. The conditions in figure 2 are used to
derive the other products from the geometric product.

3.2 Computing the geometric product

A geometric product of two multivectors � and � is essentially a linear trans-
formation of ��� by some matrix ����. The matrix ���� lineary depends on �.
Once we have the appropriate matrix ����, we can state that

��� ������� (5)

Thus we see that a � dimensional geometric algebra is actually a �� dimensional
linear algebra. However, in geometric algebra we assign geometric meaning to
the elements of the algebra, while a general �� dimensional linear algebra does
not have such an interpretation. The geometric interpretation of the elements
of the algebra also suggests that there is a lot more structure in a � dimensional
geometric algebra than in a �� dimensional linear algebra, which Gaigen tries
to exploit for efficiency.

Gaigen is able to compute matrices ���� automatically. During the exten-
sion of 3D GABLE [1] to 4D and 5D it proved tedious and error-prone to con-

7

struct these �� � �� matrices by hand. Here is an example of a matrix expan-
sion of a multivector � into a matrix ���� for a 3D geometric algebra with a
Euclidean signature:

���� �

�
�����������

		� 		� 		� 		� �	�� �	�� �	�� �	���

		� 		� 		�� 		�� �	� �	� �	��� �	��

		� �	�� 		� 		�� 		� 		��� �	� 		��

		� �	�� �	�� 		� �	��� 		� 		� �	��

		�� �	� 		� 		��� 		� 		�� �	�� 		�

		�� �	� �	��� 		� �	�� 		� 		�� �	�

		�� 		��� �	� 		� 		�� �	�� 		� 		�

		��� 		�� �	�� 		�� 		� �	� 		� 		�

�
�����������

3.3 Computing matrix expansions

To compute matrix expansions ���� we use the following rule. If the geometric
product of two orthogonal basis elements �� and ��

�� �� � ��� (6)

(where � 	
��� �� ��), then

������� � �	�� (7)

For if we had stored the basis elements ��, �� , �� as general multivectors ���,
���, ���, then the coordinate 	�, that refers to �� must have been in column �
and row � of ����: it must be in column � such that 	� gets multiplied with
coordinate �� ; it must be in row � such that the result get added to coordinate
�� . This is illustrated in figure 3.

The signature of the basis vectors and the orientation of the basis elements
are responsible for the sign �, as discussed below in section 3.4.5.

By computing the geometric product of every combination of basis ele-
ments, Gaigen is able to build up a symbolic matrix expansion for the geo-
metric product, which is then used during code generation.

3.4 Computing the geometric product of basis elements

The last step that remains in automatically compution symbolic matrix expan-
sion for the products is to compute the geometric product of arbitrary orthog-
onal basis elements.

3.4.1 The binary represention of basis elements

We show how to compute the product of any two basis elements making use of
what we call the binary representation of basis elements. The binary represen-
tation is a mapping between basis elements such as ��, �� � �� and �� � �� � ��
and binary numbers
	 	 �. Every digit (or bit) in a binary number represents
the presence or absence of a basis vector in a basis element. We use the least
significant bit �� for ��, the next bit �� for �� and bit ���� for ��. A separate
scalar value � 	
��� ��	�� represents the sign of the basis element (we use

8

β-
column

γ-row eα

. =

eβ

β-row

eγ

γ-row

[AG].[B] = [C]

Figure 3: How to build a matrix expansion for the geometric product given
���� � ��� .

lowercase greek letters for these scalar variables). Here are some examples of
basis elements and their binary representations:

�� � 	� � �	 (8)
�� � �� � �� � 	� � ���	 (9)

�� � �� � 	� � ����	 (10)
�� � �� � �� � ����	 (11)

� � 	� � �	 (12)
� � � � �	� �	 	 � (13)

We use a subscript ’b’ to indicate binary numbers. The expression ��
	 is short-
hand for the binary representation of a basis element
; this notation implicitly
defines the multivector
 to be a basis element, since the binary representation
only works for basis elements. Notice equations 12 and 13. In the binary repre-
sentation we use the binary number �	 to represent the unit scalar valued basis
element �. The value � can be represented by any binary number, as long as
it is combined with a zero sign. Also notice equations 10 and 11. Although
the binary numbers representing the basis elements are identical (because both
�� � �� and �� � �� contain the same basis vectors), they have a different sign,
because their orientation is opposite.

As can be seen in figure 4 the binary representation scales nicely with the
dimension of the algebra; each time the dimension of the algebra increases,
an extra bit is required to represent the new basis vector. The basis elements
of a 1D algebra can be represented by a 1 digit binary number. A 2D algebra
requires 2 bits, a � dimensional algebra requires � bits.

9

basis element bin. rep.
� �	
�� �	
�� ��	

�� � �� ��	
�� ���	

�� � �� ���	
�� � �� ���	

�� � �� � �� ���	
�� ����	

Figure 4: The scaling of the binary representation with the dimension of the
algebra.

3.4.2 Computing the geometric product of basis vectors using the binary
representation

The geometric product of two basis elements
 � �� is computed as a binary
exclusive or (
) of the binary representations ����	� and ����	�:

 � ��� ���
	� � �� � � � � � ���	
�	� (14)

Here �, � and � � � � � � � � � are the signs of �, � and
 respectively. The
hard part is computing the values of � and �. The value of � is equal to the
product of the signatures of all basis vectors that were annihilated during the
product. � accounts for the reordering of basis vectors that is required before
any basis vectors can be annihilated. How to compute � and � is explained
below. But first we show why we can compute which basis vectors are present
in the result of a geometric product of basis elements using a simple exclusive
or.

We start by noting that � and � can be written as

� � �
� �
� � � � �
�

� � ��� ��� � � � ���

where the �� are all orthogonal basis vectors (the special case of reciprocal null
vectors is treated in section 3.4.5). Due to orthogonality of the basis vectors, the
geometric product for each �� can be computed independently of the others.
For each basis vector ��, there are four possible cases:

� �� is present in both� and�. In this case the basis vector gets annihilated
(it will not be present in the result) and only contributes it signature �� �
�
�
� to the sign of the result. The respective bit ���� is � in both �	 and �	,

and since �
� � �, this is handled correctly by the exclusive or operation.

� �� is present in either � or �, so �� will be present in the result. Bit ����

is � in either �	 or �	 and � in the other, and since �
 � � �
 � � �, this
case is also handled correctly by the exclusive or operation.

� �� is present in neither � nor �. Then �� will also not be present in the
result. Bit ���� is � in both �	 and �	, and since �
 � � �, this case is
again handled correctly by the exclusive or operation.

10

3.4.3 Computing the value of �

As said above, � is equal to the product of the signatures of all basis vectors
that were annihilated during the product. Thus computing the value of � can
be done as follows:

� �
�

��� for all basis vectors �� annihilated in the product. (15)

We note that � 	
�� �����, since the signatures �� of the basis vectors are also
element of
�� �����. If no basis vectors are annihilated, then we set � � �.

3.4.4 The basis vector reordering sign �

When we compute the geometric product of two basis elements � and �, the
basis vectors from � and � have to into a specific order such that identical
basis vectors from � and � are next to each other. For example, suppose that
� � �� �� �� and � � �� ��. Then

�� � �� �� �� �� �� (16)
� ��� �� �� �� �� (17)

The basis vectors are in the specific order we want in equation 17. Note the
sign has flipped in equation 17. The sign changes every time we ’flip’ the order
of two neighboring basis vectors. In this example, an odd number of flips is
required, so the sign is negative. This sign change is exactly the sign � that we
still have to compute in order to complete the computation of the geometric
product of basis elements.

Given the binary representations �	��	 of arbitrary basis elements ���, �,
can be computed using the following equations:

���	��	� �
���	
���

��	��

�

��

�
����	

��

�	��

�

�
�
�

 (18)

���	��	� � ���������	 (19)

where � is the binary and operator.
The motivation for the function � (count) is as follows. We want to count

how many basis vector flips are required to get the basis vectors of � and �

into the correct order. For every bit � that is � in �	 we want to count how many
bits �� � � � are � in �	. We count how many bits �� � � � are � in �	 with this

subexpression:
�����

��
��
�

�

��

�
. Then we use the subexpression ��
�

�

�� to either
in- or exclude the count depending on whether the bit � is � in �	.

If the number of flips is even, the � � �, otherwise � � ��. In practice, the
function � is more easily implemented using binary ’bit shift’ and binary ’and’
operations, than by directly implementing equation 18.

3.4.5 Reciprocal Null Vectors

Besides basis vectors of any signature, Gaigen also supports pairs of reciprocal
null vectors, which are two null vectors which act as the inverse of the other.

11

We now show how to extend the binary representation and the rules for com-
puting the products of basis elements given above to incorporate reciprocal
null vectors.

In Gaigen, a pair of reciprocal null vectors is a pair of basis vectors �� and
�
 for which the following is true:

�
�
� � �

�

 � � (20)

���
 � ��
 	 �� � �
 (21)
� � �	 � (22)

where ��
 	
��� ��. The requirement that �� and �
 are ’neighbours’ (equation
22) will simplify matters below. The following table is a multiplication table for
the geometric product in a 2D geometric algebra with reciprocal null vectors
�� and ��:

1 �� �� ���

1 +1 +� +�� +���
�� +�� 0 ���+��� -��
�� +�� ���-��� 0 +��
��� +��� +�� -�� +1

We mentioned above that we can treat each basis vector independently of
the others while computing a geometric product of basis elements because all
basis vectors are orthogonal. Of course, this isn’t true anymore when pairs of
reciprocal null vectors must be implemented, since they are not orthogonal.
However, pairs of reciprocal null vectors are always orthogonal to all other
basis vectors. So we can handle all each pair of reciprocal null vectors and each
ordinary basis vector independently of all others.

To handle reciprocal null vectors, we have to adapt the three sub problems
of computing the geometric product of basis elements as treated above: com-
puting which basis vectors will be present in the result, computing the contri-
bution sign � and computing the reordering sign �.

To compute which basis vectors are present in the result of a geometric
product of basis elements, we use a lookup table very much like the multipli-
cation table above. The lookup table states for each possible input what basis
vectors will be present in the result, and what the sign is contributed to �.
Note that in some cases, the lookup table can contain a sum of two the basis
elements. This is due to the fact that the geometric product of two reciprocal
null vectors can result in the sum of a scalar and a bivector. E.g. in the table
above ���� � ��� 	 ���. Thus in general, the geometric product of two basis
elements results in a sum of basis elements. Gaigen implements this by stor-
ing a seperate binary representation of each term in the sum. The maximum
number of basis elements in this sum is ��, where
 is the number of pairs of
reciprocal null vectors in the algebra.

Computation of the reordering sign � changes slightly due to the introduc-
tion of reciprocal null vectors. Reciprocal null vectors always have to remain
neighbours, hence they always are reordered together. Flipping the order of
an ordinary basis vector and a pair of reciprocal null vectors can be simplified
to flipping the order of two ordinary basis vectors. A pair of reciprocal null
vectors is then represented by a single bit in the binary representation. This bit

12

Basis element
ordering and
orientation

Basis vector
signature

Symbolic geometric
product multiplication
matrix

Product code

Derived
product
conditions

Symbolic derived
product multiplication
matrices

Output

Geometric product of
basis elements

Code generator

Requested
optimizations

Figure 5: Summary of implementing the GA products.

is 0 if an even number of reciprocal null vectors from the pair is present in the
basis elements, and the bit is 1 if an odd number of reciprocal null vectors is
present. The binary representation can then be fed to equations 18 and 19 to
give the correct reordering sign �.

3.5 Summary of implementing the GA products

Figure 5 summarizes the process in which Gaigen generates code that imple-
ments the geometric algebra products. The input to the pipeline is the basis
vector signature and the ordering and orientation of the basis elements (sec-
tion 2). Using this information, we are able to compute the geometric product
of basis elements as described in section 3.4. By applying the rules from fig-
ure 2, we are also able to derive the other products of basis elements. We use
equation 7 to fill up the symbolic product multiplication matrices. The code
generator takes these symbolic matrices and the requested optimizations (to
be discussed in section 4) and outputs the C++ source code that implements
the products.

4 Optimized product implementation

When Gaigen computes the product � � ������, where � can be any product
Gaigen supports, it only multiplies and sums terms which are known not to
be equal to �. The straightforward way to implement this is for each group
of terms which involve grade � coordinates from ��� and grade � coordinates
from ���, to check whether either of these grade parts is �. However, a general
product involves ����� combinations of grades from � and �, and thus �����
checks are required. This results in a lot of conditional jumps, which causes a
performance hit for modern pipelined processors.

Gaigen works around this problem by allowing the user to specify a set
of product/multivector combinations for which optimized implementations
should be generated. For instance, the user can tell Gaigen to optimize the
geometric product of a vector and a rotor. Gaigen will then generate a piece
of code which can only perform the product of that specific combination of
multivectors, which does not contain any conditional jumps.

In general it is not feasible to implement an optimized version of every
product/multivector combination. This would result in a very large amount

13

Profile information for dim3:
grade 0123 x 0123

Left Contraction .*.. x .*.. : 17.79% (797066 times)
Outer Product *... x .*.. : 17.40% (779678 times)

Geometric Product .*.* x *.*. : 12.48% (559085 times)
Geometric Product *.*. x .*.. : 12.48% (559085 times)

Outer Product *... x *.*. : 12.38% (554603 times)
Outer Product *... x *... : 5.64% (252763 times)

Scalar Product .*.. x .*.. : 5.15% (230618 times)
Scalar Product *... x *... : 5.06% (226563 times)

Geometric Product *... x *... : 4.49% (201000 times)
Scalar Product *.*. x *.*. : 4.34% (194594 times)

Figure 6: Profile of a camera calibration algorithm [11], which uses a 3D ge-
ometric algebra. The profile shows which and how often specific combina-
tions of multivectors and products were used in the program. Each line con-
sists of the name of the product, which grades were not empty for each of the
operands (below the ’0123’), and how often the product/multivector combina-
tion was used, both in percentage and absolute. Product/multivector combi-
nations with a usage less than 2% were omited.

of code, wasting compilation time and disk space and memory. So the user has
to select a specific set of product/multivector combinations which are used
most often (the theoretical set of 5% of the combinations which is used 95% of
the time).

The major problem with this approach is that the user has to specify which
product/multivector combinations to optimize. The user would have to search
through the program code and find out which product/multivector combina-
tions are used most often. This is practically impossible and best choice might
even on the input data of the program. That’s why Gaigen can generate a
profile of a program at runtime. By letting Gaigen generate code with the ’pro-
file’ option turned on, it will include profiling code. The user can then com-
pile and run the application program using a representative set of input data
and dump the profiling information at the end of the run. This information
will state which product/multivector combinations have been used most of-
ten, and can be used to specify which product/multivector combinations to
optimize. When optimization of program is finished, the profile option is of
course turned off and the Gaigen code regenerated.

Figure 6 shows a profile of a motion capture camera calibration algorithm
[11]. From the profile one can read that the left contraction of two vectors is
used most often (17.79%), followed by the outer product of a scalar and a vector
(17.40%), and the geometric product of a ’grade 1 and 3 spinor’ and a rotor
(12.48%). By optimizing all product/multivector combinations which are used
more than 2% of the time, the computation time of the program decreased by a
factor of 2.5 compared to non-optimized products. This profiling information
can be used to add optimizations by hand or Gaigen can add optimizations to
an algebra specification automatically from a profiling file.

14

4.1 Dispatching

When a product of two multivectors is computed, Gaigen has to check if there
is an optimized function available for that specific combination of product /
multivectors. If there is no optimized function available, a general function is
called that can compute the product for any pair of multivectors. If there is an
optimized function available, that function must be called.

The problem of finding the the right function and executing it is called dis-
patching. We implemented three dispatching methods in Gaigen:

� if else: the grade part usage of one or both of the multivector arguments is
compared to the grade part usage required for some optimized product.
If there is a match, the function is called, or second test might be required
for the grade part usage of the other multivector argument. If no opti-
mized function is found for the arguments, the general function is called.
In C++ this is implemented as a if
� else
� tree.

� switch: a C++ switch is used to jump the appropriate (general or opti-
mized) function. The value on which the switch is made is constructed
from the grade part usage of the arguments.

� lookup table: The grade part usage of both multivector arguments is trans-
formed into an index into a lookup table. This table contains a pointer to
the appropriate (general or optimized) function.

Both the if else and switch dispatching method can take the relative importance
of the product/multivector combinations into account: a product/multivector
combination that is used more often will be identified with less instructions
than one that is used less often. Benchmarks (see section 11) show that the if
else method is the most efficient.

5 Inversion

The computation of the inverse��� of a multivector� is a problem that can be
handled in a number of different ways. That’s why Gaigen supports a number
of different inversion algorithms so the user can pick the algorithm best suited
to the application.

First of all Gaigen provides a matrix inversion approach to multivector in-
version. Gaigen constructs a ����� matrix ���� and reduces it to identity using
partial pivoting. At the same time it applies all operations it applies to ���� to
a �� � � column vector. If the column vector is initialized to �� � � � � � ��� , it
will end up containing the coordinates of ���. This inversion method works

for all invertible multivectors, but is inefficient since it requires�
�
��

�
�

floating
point operations.

If only versors have to be inverted, a much faster method is possible. Ver-
sors are multivectors which can be written as a geometric product of vectors, so
� � � � � � � �. A blade is a homogeneous versor, so this method also works
for blades. A nice property of versors is that � �� � � where � is scalar and ��

15

is the reverse of �. Thus if � �� �

���
�

�
���
��� � � �� �

�� �
��
��� � (23)

This inversion approach, though limited to versors, requires only ����� float-
ing point operations and is thus favorable to the matrix inversion method if
only versors are used.

A third inversion method, called the Lounesto inverse, is described in more
detail in [10] (pg. 57) and [1]. It only works in three dimensional algebras. It is
based on the observation that in three dimensions the geometric product of a
multivector � and its Clifford conjugate �� only has two grades, a scalar and a
pseudoscalar (the Clifford conjugate is the grade involution of the reverse of a
multivector). From this it follows (see the references) that

�
�� �

��
��
���

�
�
�
�
���

�
�

�
�
���

��
�
�
�
���

��
�

(24)

A simple test shows that, in Gaigen, using 3D versors, the versor inverse is
approximately 1.5 times faster than the lounesto inverse, so the versor inverse
should be preferred over the lounesto inverse when only versors are used. In
the same benchmark, the general inverse is more than 10 times slower than
both the versor and the Lounsesto inverse.

6 Outermorphism

Gaigen has an outermorphism operator built in to support efficient linear trans-
formations of multivectors. The outermorphism can be used to

� implement linear transformations which can not easily be represented in
term of other geometric algebra operations.

� to ensure linear transformations such as �� � ���� are grade preserving
(the problem that was described in section 2.2).

� to enhance the performance of linear transformations.

An outermorphism is any function � for which the following is true for any
pair of input blades � and �.

��� � �� � ���� � ���� (25)

For this to be true, � must be a linear transformation, and thus it can be rep-
resented by a �� � �� matrix ��� �. We can then apply the outermorphism to a
blade � like this:

��� � ��� ���� (26)

Since outermorphisms are always grade preserving, we are doing too much
work in the above equation. As shown in figure 7 for the 3D case, matrix entries
of a limited diagonal band are all 0. Thus Gaigen stores the outermorphism as
a set of matrices, one for each grade part. To apply the outermorphism to a
blade then requires ����� operations, instead of ������ operations.

16

. =

[FO].[A] = [B]

grade 0

grade 1

grade 2

grade 3

Figure 7: All elements in the outermorphism operator matrix ���� that are not
gray are always 0.

Gaigen initializes the set of outermorphism matrices using images of all
basis vectors ��. These images specify what each basis vector should be trans-
formed into, so we can immediatelly initialize the grade 1 matrix. Images of
grade � basis elements are obtained by computing outer products of the ap-
propriate basis elements of grade � � � � � � �. The coordinates of these grade �
basis elements can directly be copied into the appropriate column of the grade
� outermorphism matrix. By applying this procedure recursively, we can fill up
the matrices for grade � � � � �. Applying an outermorphism to a scalar (grade 0)
is not very useful, but if required the value of the scalar ’matrix’ can be set by
hand.

7 Fast dualization

Dualization with respect to pseudoscalar of the algebra can be implemented
using this equation:

�
� � � � ��� (27)

However, a much more efficient implementation is possible when orthogo-
nal basis vectors are used. In that case, dualization with respect to the pseu-
doscalar boils down to simply swapping and possibly negating coordinates.
Efficient code for doing so can automatically be generated.

In Gaigen this is implemented by computing the inner product of each basis
element
 with the inverse pseudoscalar ���:

� �
 � ��� (28)

The result of this product tells us to what basis element � the coordinate that
is currently referring to basis element
 should refer after dualization, and
whether it should be negated or not. Once this has been computed for all coor-
dinates, the source code for the fast dualization function can be generated.

17

8 Factoring Blades and Versors

The algorithm we use to compute the meet and join of blades, as described
in section 9, requires that we can factor a blade (a homogeneous versor) into
orthogonal vectors. That is, for an arbitrary
-dimensional blade �� find a set
of
 vectors �� � � ��� such that �� � ���� � � ���.

We factor a blade �� by repeatedly breaking it down until it is a scalar.
During each step, we lower the dimension of the current blade�� by removing
an the inverse of an appropriate vector �� from it:

���� � �� � �
��
� (29)

If we repeat this operation
 times we end up with
 vectors and a scalar ��.
So what we are doing is removing step by step dimensions from the subspace
which �� represents. The real problem is of course finding the appropriate
vectors �� to remove from the subspace.

The requirement for a vector �� which can be removed from the blade ��

is that it is contained in ��, that is �� � �� � �, and of course �� �� �. We
can find such vectors by projecting other vectors, of which we don’t know for
sure whether they are contained in ��, onto ��. A vector projected onto a
blade is guaranteed to be contained in that blade. If we project a vector onto a
blade and find that the result is not equal to �, we have a candidate vector for
the factorization. It is a candidate, because there are good candidates and bad
candidates.

Suppose we decide to project a vector � onto the blade which is nearly
orthogonal to it. Then the projected vector would be �� � �� � �����. The
inner product used in the projection will give a result which is not equal to �,
but very small compared to the orginal� and�. This is bad for computational
stability.

It happens [13] that there is simple and good method for selecting the basis
vectors which are not (nearly) orthogonal to the blade. In Gaigen, a blade�� of
grade
 is stored as coordinates referring to a
 basis elements of grade
. The
coordinates in the coordinate array (section 2) specify how much of each basis
element is present in the blade. [13] proves that the basis vectors contained in
the basis element that has the largest coordinate are not (nearly) orthogonal to
the blade. Thus they are all good candidates for factorization.

So suppose a blade � � ��� � �� � �� 	 ��� � �� � �� 	 ���� � �� � ��, we
see that the largest coordinate refers to �� � �� � ��. We subsequently use ��,
�� and �� in the algorithm described above to factor �: project the vector onto
the blade, remove the projected vector from the blade, and repeat this with the
next vector. We end up with a scalar, whose magnitude which can be equally
distributed acros all factors to make them of the same magnitude.

As a side note, the method described in this sectino can also be used to
factor invertible versors. The highest non-empty grade (which is also a blade)
is then used to pick the best basis vectors to project onto the versor. See [13] for
details.

18

9 Meet and Join

The meet and join are two (non linear) products which compute the union
(join) and intersection (meet) of subspaces represented by blades. An exam-
ple of their use is the computation the intersection of lines, planes, points and
volumes, all in a dimension independent way. What we mean by this is that
traditional algorithms for find the union or intersection of different geometric
primitives (lines, points, planes) into many cases. Such algorithms are error
prone because they contain many different cases and exceptions. The meet
and join provide a simple geometric operation for simplifying and unifying
such algorithms and removing their many different cases.

The downside of this is that the meet and join as described here are less ef-
ficient than other, more direct methods. This may limit their use in time critical
applications. Also, a sense of scaling is lost in the meet and join. Whereas the
result of direct methods might be scaled with something like original magni-
tude of the input primitives and the cosine of the angle between them, meet
and join have no sense of scale. The best one can do is make sure that the scale
of the meet and join are dependent on each other.

All products computed during the meet and join algorithms (including the
factorization described in the previous section) are performed using Euclidean
metric. One reason we have to use Euclidean metric is for removing a vector
from a blade using the inner product. Suppose the vector happens to be a
null vector: the result of the inner product would be �, while to vector would
be orthogonal in the blade if one would use a Euclidean metric. Turning a
non-Euclidean geometric algebra into a Euclidean one is called a LIFT and is
described in more detail in [12].

As we will see, the computation of the meet can by done by computing
the join (and the other way around). More specifically, Gaigen explicitly com-
putes the join and bases the meet on it. Gaigen computes the join in a different
way than GABLE [1]. GABLE contains rules that split the computation of the
join into several cases, very much like traditional algorithms for computing
intersections. This is feasable because GABLE implements the meet and join
only for 3 dimensional geometric algebras. Gaigen can implement any low
dimensional geometric algebra, and thus requires a more general algorithm.
The algorithm works by first determining the grade of the join (by using a new
product called the delta product [12]), and then constructing the join from the
factored input blades.

9.1 The Delta Product

A major subproblem in computing the meet and join of subspaces (blades) is
determining the grade of the result. If we are handed a grade 3 blade and a
grade 2 blade in a 5 dimensional space, the outcome of the join can be a blade
of grade 3, 4 or 5; the outcome of the meet can be a grade 0, 1 or 2 blade. The
grade of the outcome depends on how (in)dependent the input blades are; i.e.
how many dimensions are shared between the input blades. Once the grade
of output blade is known, we can compute it using the algorithm described in
the next section.

We compute the required grade of the meet and join of two blades � and
� by computing the delta product �
� [12]. The delta product computes the

19

� � �� � �� � ��

� � �� � ��

�
� � �� � �� � ��

Figure 8: Illustration of the delta product. The delta product computes the
symmetric difference of those blades. (todo: proportional sign for ’=’ in last
line)

symmetric difference of two subscapes represented by blades, hence the name.
Figure 8 shows an example: two blades � and �, factored in vectors ��

and ��. The blades are factored such that shared dimensions are represented
by equal vectors. In this example the blades share 1 dimension, �� � ��. The
delta product is proportional to the outer product of all vectors that � and �
do not share in such a factorization. In this example: �
� � �������� (todo:
proportional sign for ’=’).

The grade of the delta product can be used to compute the grade of the
meet and join: the grade of the join of � and � is

grade �join������ �
grade��� 	 grade��� 	 grade�	�

�
(30)

The motivation for this equation is that the sum of the grades of � and �

counts the shared dimensions twice. By adding the grade of the delta product,
we also count the non-shared dimensions twice. Thus dividing by two gives
us the grade of the join.

The grade of the meet of � and � is

grade �meet������ �
grade��� 	 grade���� grade�	�

�
(31)

This equation has a similar motivation. The sum of the grade of � and �

counts the shared dimensions twice. By subtracting the grade of the delta prod-
uct, we don’t count the non-shared dimensions any more. Dividing this sum
by 2 gives us the grade of the meet.

The delta product itself can be computed by taking the highest non empty
grade of the geometric product �� [12]. This may sound simple, but it is the
crucial step in computing the grade of the meet and join. What if the highest
grade part of a geometric product �� is not equal to �, but very small? Was
this very small grade part caused by two nearly collinear factors in � and � or
by floating point round off error? In the latter case, the very small grade part
should be discarded, and we should look for the next highest grade part, thus
changing the grade of the meet and join of� and�. This problem is the equiv-
alent of problems that occur all over the place in traditional algorithms for
computing the intersection of geometric primitives; that is, to decide whether
two objects (lines, planes, etc) are collinear or not. This is usually dealt with
by specifying some epsilon value !: if the measure for non-collinearity of two
objects falls below that !, the objects are considered collinear, otherwise they
are not.

20

9.2 Computing the Meet and Join

Once the required grade of the meet and join of subspace is known, our algo-
rithm can compute the meet and join. Since the meet and join can be related by
the equation

��
�� � join������� � meet����� (32)

we can suffice by computing the delta product and the join, from which we can
compute the meet using a simple inner product.

Note that the scale of the meet and join can not be determined. This can be
understood by looking at figure 8. We factored � and � and using this factor-
ization, we can compute the delta product, the meet and the join. The scale of
the individual factors however, is totally arbitrary. We may increase the scale
of one factor, as long as we decrease the scale of another factor proportionately.
This will change the scale of the delta product, meet and join. Or to look at it in
another way: we are using blades to represent subspaces. The same subspace
can be represented by an infinite number of blades, which are all related to
each other by a scale factor. The blades �, �� and �� all represent the same
subspace. So the best thing we can do is to make the meet and join proportional
to each other, e.g.:

���
�� � join�������� � meet������� � � (33)

Computing the meet and join in this way also has the advantage that comput-
ing either the meet or the join is enough to compute the other. Thus we need
only one algorithm. We choose to implement the join and base the meet on it.

To compute the join����� we can construct any blade which is non-zero,
and contains both the subspaces which blades � and � represent. This blade
could be factored as:

join����� � ��� �� ��� (34)

where � is any scalar not equal to 0, � is a blade which is contained in both
� and � (� � � � � � � � �), �� � � � ��� and �

� � �
�� � �. Because

� � �
�
� � ��

��
�, all we have to do is find a blade which is proportional to

�
�.

Let us assume � is the highest grade blade, and � is of lower or equal
grade (we swap the labels of the blades when this is not true). We could take
� and wedge a blade 	 to it such that it contains both blades � and �. So
join����� � � �	.

Since we already know from the delta product �
� what the grade of the
result join����� should be, we know that grade �	� � grade �join������ �
grade ���. We have divised two algorithms to find this blade 	.

The first algorithm factors the lower grade blade � and then tries to wedge
combinations of these factors to �. We require
 � grade �	� factors to get a
blade of the required grade. If we select the right factors ����
 � � ���, then the
result �� �� � �
 � � � �� �� should not be equal �. The problem is thus to find
the correct factors from � to wedge to �.

We currently solve this problem by trying all combinations of factors from
� and keeping the blade which has the largest euclidean norm. This requires
’take grade(B) out of grade (D)’ tries. (todo: combinatoriek).

The second algorithm projects basis elements �� of grade �	� onto �, thus
making sure that they are contained in �. It then wedges them to �. If the

21

Low level computational functions, generated
by a .opt-compiler in C or (SSE-, 3DNow!-,
AltiVec-) assembler. Implements
multiplication, addition, reverse, copy, etc.

Layer 0:
computational

Layer 1:
glue and
structure

Layer 2:
interface

C++, object oriented, memory management
glues together the layer 0 functions, lookup
tables, low level algorithms, profiling

C++, object oriented, operator overloading,
user extensible, high level algorithms.

Figure 9: The three layers of Gaigen.

result � � ���� � ���
��� is not equal to �, we have found a blade which is

representative for join�����. The problem is to find the correct basis element
�� to project onto �. We currently solve this problem by trying all possible
basis elements of grade �"����	� and using the one which resulted in the blade
with the largest euclidean norm. (todo: combinatoriek).

10 Implementation

Gaigen source code is divided into three layers, as can be seen in figure 9. Layer
0 is partly generated from a .opt file, which is in turn generated by Gaigen. A
.opt file describes at a very low level how to multiply the coordinates of mul-
tivectors for each product. It also specifies which specific product/multivector
combinations have to be optimized. The following is an excerpt from a .opt
file which specifies how to implement an optimized version of the geometric
product of a 3D vector and a 3D rotor:

optimize e3ga_opt_02_gp_05
c[0] = + a[0] * b[0] - a[1] * b[1] - a[2] * b[2]
c[1] = + a[1] * b[0] + a[0] * b[1] - a[2] * b[3]
c[2] = + a[2] * b[0] + a[0] * b[2] + a[1] * b[3]
c[3] = + a[2] * b[1] - a[1] * b[2] + a[0] * b[3]

The .opt file contains such specifications for every product and for every opti-
mized product/multivector combination. The .opt file should be compiled by
a separate program. Currently we have only implemented a .opt�.c compiler,
but we plan to implement a .opt�SSE assembler and a .opt�3DNow! com-
piler, to make use of the SIMD instructions the mainstream processors pro-
duced by Intel and AMD offer. Users can create their own .opt compiler to
optimize Gaigen to the specific capabilities of their platform. The other part of
layer 0 is a collection of low level functions which perform operations such as
addition, reversion, grade involution and copying of multivectors. These can
also be replaced with versions optimized for a specific platform.

22

The main tasks of layer 1, which is also generated by Gaigen, are to glue
the layer 0 functions together, to supply a structure or class in which to store
the coordinates and grade usage information, and to provide low level algo-
rithms or operations such as dualization, projection, meet and join, inverse,
and outermorphism.

Layer 2 is the interface between the user and the low level Gaigen source
code, and provides an abstraction from the implementation details. It defines
the operator symbols (such as �, �, 	, #, �, � and ��). For all these opera-
tions normal functions are also available (such as gp, substract, add, igp, meet,
dual and lcont). For operations for which there is no operator symbol, normal
functions are provided (such as hip() for ’Hestenes Inner Product’ or gradeIn-
volution()).

Gaigen was divided into three layers with the following motivations in
mind. First of all a layer was required to contain optimized code which would
be generated in platform specific (assembly) code (layer 0). Secondly, we wanted
a top layer which could be modified and adapted by the user (layer 2), because
we don’t want to enforce our preferences (e.g. which operator symbols are
used for what purpose) upon users. Also the user should be able to add often
used algorithms to the Gaigen source code. Because we did not want the user
to become involved with the implementation details of layer 0, layer 1 was
require to hide these.

Of course, layer 1 and layer 0 can be modified by the user too, but this is
not recommended unless the user has knowledge of the internal operation of
Gaigen. Layer 0 should only be edited or compiled by a compiler to optimize
it for a specific platform. Most of the layer 1 is generated from a template file.
This template file can be modified as well.

11 Performance

In this section we present measurements of the performance of Gaigen. The
goal is to show how Gaigen compares to other methods of implementing ge-
ometric algebras, to show the impact on performance of various options that
Gaigen offers, and to show how Gaigen compares to standard implementation
of linear algebra for an equivalent model.

Many of the benchmarks were done in a full application. We prefer a full
application over synthetic benchmarks because it is hard to pick a representa-
tive set of operations that the synthetic benchmark should cover. E.g. simply
computing the geometric product of two fully general multivector may be the
most expensive product to compute, but will rarely if ever be used in geom-
etry. We specifically wrote a simple recursive ray tracer with the purpose to
benchmark Gaigen and some geometric algebra models in general because a
ray tracer uses a wide selection of geometric operations.

11.1 Performance compared to GABLE

GABLE is an educational geometric algebra package implemented in Matlab.
It is described in [1]. In [15], GABLE was used to implement an algorithm
for finding singularities in a vector field, but performance was too low. Later,

23

the same algorithm was implemented using Gaigen instead of GABLE, and
performance went up by a factor of approximatelly 6000.

11.2 Ray tracer performance

We implemented a recursive ray tracer algorithm multiple times, each time us-
ing a different algebra to implement the geometry [16]. We did this to compare
the performance and elegance of various methods of doing 3D Euclidean ge-
ometry in a practical application, and to compare the performance of Gaigen
to other implementations of linear and geometric algebras.

The algebras used are 3D linear algebra, 4D linear algebra (homogeneous
coordinates and Plücker coordinates), 3D geometric algebra, 4D geometric al-
gebra (homogeneous model), and 5D geometric algebra (conformal model).
The 3D LA and 3D GA models of geometry are each others equivalents, as are
the 4D LA and 4D GA models. In this context, by equivalent we mean that al-
most identical operations (at the computational level) are used to implement
geometric operations.

We wrote ’standard’ optimized implementions of linear algebra by hand.
To implement the geometric algebras we used both Gaigen and CLU [17]. This
was done to compare the performance of optimized Gaigen code to CLU. CLU
is a geometric algebra implementation with emphasisis on functionality rather
than performance. Of course, we enabled all speed optimizations we could in
Gaigen.

The results are in figure 10. The render times are for rendering one small
���� ��� pixel image, from a scene containing about 8000 triangles. There are
two columns with render times, each on for a different setting of the ray tracing
program (performance can be measured with of without time spent on line-
BSP intersections). There is also a column that lists the size of the executable
program and a column listing the amount of memory used at run time while
rendering the image.

We found that in this application Gaigen is �� to �� slower than our stan-
dard linear algebra implementation in equivalent models. The 5D GA confor-
mal model performs about �� slower than the 3D GA model. We also found
that Gaigen is about ��� to ��� faster than CLU.

11.3 Coordinate memory allocation and floating point type

To investigate the performance impact of the different coordinate memory (re-
) allocation schemes that were described in section 2.4, we benchmarked the
ray tracing application using different settings for these options. We used the
Gaigen 3D GA and Gaigen 5D GA versions of the ray tracer as basis. We varied
the setting of the floating point type (32 bit precision floats and 64 bit precision
doubles), and the memory (re-)allocation algorithm.

Results are shown in figure 11. We found the obvious result that floats are
faster than doubles, and require less memory. We also found that the maximum
parity pure (maxpp) memory allocation method is usually the most efficient
method, but that memory usage can be reduced by using the tight memory
allocation method. This reducation can be quite significant when higher di-
mensional (i.e. 5D) algebras and/or doubles are used. The balanced memory

24

model implementation full render time executable run time
render time w.o. BSP size memory usage

3D LA standard 1.00������s� 1.00������s� 52KB 6.2MB
4D LA standard 1.05� 1.22� 56KB 6.4MB
3D GA Gaigen 2.56� 1.86� 64KB 6.7MB
4D GA Gaigen 2.97� 2.62� 72KB 7.7MB
5D GA Gaigen 5.71� 4.58� 100KB 9.9MB
3D GA CLU 129� 72.0� 164KB 12.6MB
4D GA CLU 164� 97.1� 176KB 14.7MB
5D GA CLU 482� 178� 188KB 19.0MB

Figure 10: Performance benchmarks run on a Pentium III 700 MHz notebook,
with 256 MB memory, running Windows 2000. Programs were compiled using
Visual C++ 6.0. All support libraries, such as fltk, libpng and libz were linked
dynamically to get the executable size as small as possible. Run time memory
usage was measured using the task manager.

allocation algorithm is practically useless, at least in its current implementa-
tion. It is slower than the tight method, and in most cases uses more memory
that the maximum parity pure method. A surprising result was that in some
cases the tight method can be faster than the maximum parity pure method, i.e.
with the 5D GA with doubles as floating point type. This is probably related to
memory caching in the CPU.

11.4 Optimizations and dispatching methods

We also wanted to know what dispatching method (described in section 4.1)
performes best in practice. The dispatching method handles the task of getting
from the product function call to the actual (optimized) function that imple-
ments the product.

We took the Gaigen 3D GA and Gaigen 5D GA ray tracer implementations
and used different settings for the dispatching option of the algebra. We also
disabled optimizations entirely, to see what impact that would have on perfor-
mance.

The results are figure 12. The if else dispatching method is most efficient,
closely followed by the switch method. The lookup table method is not to be
recommended, although initially it was the only dispatching method available
in Gaigen. Specifying no (or useless) optimizations for the algebra results in
poor performance, more than �� lower than with optimizations.

11.5 Theoretical performance without dispatching

Dispatching and grade part usage checking currently form a major bottleneck
in the performance of Gaigen. It is required not only for the products, but to a
lesser extent also for much simpler functions like addition, reversion and fast
dualization: every time some operation has to be performed on a multivector,
Gaigen has to check what grade parts are in use.

25

model floating memory (re-) render run time
point type allocation method time memory usage

3D GA float tight 89.5s 6.7MB
3D GA float balanced 100.7s 7.0MB
3D GA float maxpp 59.4s 6.7MB
3D GA float max 61.9s 7.8MB
3D GA double tight 100.8s 8.2MB
3D GA double balanced 111.6s 8.5MB
3D GA double maxpp 85.3.s 8.7MB
3D GA double max 86.7s 10.7MB
5D GA float tight 150.0s 7.7MB
5D GA float balanced 162.1s 12.5MB
5D GA float maxpp 133.2s 9.9MB
5D GA float max 135.9s 14.0MB
5D GA double tight 176.2s 9.8MB
5D GA double balanced 189.8s 14.2MB
5D GA double maxpp 234.1s 14.7MB
5D GA double max 236.6s 23.0MB

Figure 11: Performance impact of the memory (re-)allocation methods. All
benchmarks were run under the same conditions as those in figure 10, with the
same optimizations and dispatching method; only the floating point type and
the allocation method were varied.

model dispatching method render time
3D GA if else 59.4s
3D GA switch 59.6s
3D GA lookup table 62.8s
3D GA no optimizations 215.7s
5D GA if else 132.6s
5D GA switch 135.0s
5D GA lookup table 137.0s
5D GA no optimizations 442.0s

Figure 12: Performance of various dispatching methods, and without product
optimizations. All benchmarks were run under the same conditions as those in
figure 10, with identical optimizations (unless optimizations were turned off)
and floating point type and memory allocation method; only the dispatching
method was varied.

26

model operation dispatching method time
3D GA �� � �� if else 0.82s
3D GA �� � �� hard coded 0.12s
3D GA � � �

�� if else 2.53s
3D GA � � �

�� hard coded 0.54s
5D GA �� � �� if else 1.03s
5D GA �� � �� hard coded 0.12s
5D GA � � �

�� if else 15.9s
5D GA � � �

�� hard coded 2.54s

Figure 13: Theoretical performance without dispatching. The times are for
executing the given operation 10,000,000 times.

The grade part usage checks are necessary because Gaigen uses a single
datatype to store all types of multivectors. This is nice for generality, but bad
for performance. The compiler can not decide at compile-time what type of
multivectors are passed to a function and can thus not make the dispatching
decision at compile-time. The processor has to do so at run time, which lowers
performance, especially compared to linear algebras (where people are used to
having only a few, hard datatypes).

If we would introduce datatypes for all types of multivectors we want to
use (e.g. 1-vectors, bivectors, rotors, versors) the compiler could make dis-
patching decisions at compile-time. To see what the performance increase
would be if we implemented this idea, we did some artificial benchmarks. We
implemented two operations in two algebras. The algebras are a 3D geometric
algebra, and the 5D geometric algebra that is used to implement the conformal
model in the ray tracer. The operations are a simple inner product of vectors
(�� ���) and a more complicated versor product (� � ���). In the 5D algebra, the
versor � is a product of a translator and a rotor and thus it occupies grade parts
0, 2 and 4; in the 3D algebra the versor is a rotor. In one set of benchmarks we
used the if else dispatching method as baseline, in the other we hard coded (by
hand) the function call to the required optimized function.

The results are in figure 13. we found that for the simple products (requir-
ing less multiplications/additions), the gain can be in the order of ���. The
more complicated products gain performance by a factor of about 5. Note that
these are raw performance benchmarks, and not full application benchmarks.
In full application benchmarks the contribution of the performance gain re-
lated to the GA implementation is blurred a little because time is also spent on
other computations.

11.6 Best settigns for performance

We conclude that Gaigen performs best with memory allocation method set
to maxpp, floats as floating point type, the if else dispatching method and opti-
mizations made for all product/multivector combinations in use. When using
doubles in high dimensional algebras, the tight memory allocation method may
perform better.

27

12 Discussion, conclusion

12.1 Discussion

The way Gaigen implements geometric algebras seems feasible. We have worked
with it in practice for over a year and found it usable. The process of optimiz-
ing your algebra for a specific application is slightly annoying but doesn’t take
much time in practice, especially with the option to directly read profiles back
into the Gaigen UI and letting Gaigen do the optimizations automatically.

We see no other general way to implement low dimensional geometric al-
gebras as efficiently as current linear algebra implementations than to take at
least a partial code-generation approach. Implementing the whole algebra us-
ing C++ templates and the like (i.e. like CLU) causes too much overhead. Writ-
ing every algebra or even its product code by hand is too tedious. Of course,
Gaigen is quite extreme in that almost all code is generated , but the products
will always have to be generated and turned into code. However, this process
could be done at run-time (dynamic code generation), instead of at compile-
time like Gaigen currently does.

A lot of improvements are still possible before we reach the maximum per-
formance software-only implementations of geometric algebra could achieve.
Although Gaigen is a huge step forward compared to the performance of GABLE
($ ����� faster), and an order of magnitude step forward compared to CLU
($ ��� faster), we still have a factor of 3 (in full application benchmarks) to
10 (in raw benchmarks) to go before we obtain the performance of equivalent
linear algebra methods. We are looking at a number of improvements to reach
this goal.

As explained in section 11.5, getting rid of the dispatching and grade part
usage checks would be a big gain. As shown by the benchmark, the dispatch-
ing in products can lead to a raw performance drop up to a factor of 10. We
intend to remove the dispatching by introducing to option to generate data
types for specific multivector types such as blades and versors. The challenge
here will be maintain full generality (i.e. if you want to only program using
’general multivectors’, you should be able to), while going for maximum per-
formance. The introduction of the new data types should be as transparent to
the user as possible.

The new data types would also be more efficient with respect to memory
usage. Currently, even the tight memory allocation method wastes memory:
we have to keep track of grade part and memory usage and keep a pointer to
the array holding the coordinates. Depending on the processor architecture,
this wastes 6 to 12 bytes for each multivector (the three floats holding the co-
ordinates of an ordinary 3D vector require 12 bytes for storage, so in that case,
memory wastage could be as high as 100%).

Gaigen splits multivectors into grade parts and keeps track of what grade
parts are in use (not equal to �). This works well for low dimensional algebras.
But in the 5D conformal model, we already notice that some coordinates are al-
ways 0 for certain objects. E.g. lines and encoded by trivectors in the conformal
model, which leads to the usage of 10 coordinates. However, only 6 of those
coordinates are used, the others are always 0. A circle in the conformal model
is also encoded by a trivector, but does use all 10 coordinates of grade 3. This
suggests that it might be usefull to split the grade parts further into sub grade

28

parts. I.e. in the conformal model we might want to seperate the coordinates
having to do with ’infinity’ (��) from those that don’t have to done with ��.

An easy to implement optimization is the dual version of certain products.
We have noticed that we often need to computed products like �� � �. To
implement this, currently one first has to compute the dual of� and then com-
pute the inner product. It would be quite simple to do the dualization ’on the
fly’, i.e. to generate code for a dual inner product that performs the dualization
internally. Of course, this would only work for dualization with respect to the
full space, just like the fast dualization method described in section 7.

Although we make mention of the possibility to generate optimized code
for floating point SIMD instruction sets, we have had no success yet at im-
plementing this in practice for SSE (the Pentium 3 SIMD instruction set). The
SSE instruction set just seems too linear algebra/signal processing minded to
be of any use for this purpose. Most geometric algebra product (except the
outermorphism) require the ability to arbitrary swiffle and negate elements in
the coordinate array, and we weren’t able to implement this efficiently: or-
dinary floating point code generated by a standard compiler was faster. We
have not yet veryfied whether the same is true for other processors (AMD,
Motorola/Apple). Ironically, modern 3D graphics processing units do have ar-
bitrary and costless swiffle and negate option built in.

Something we have not yet considered but might be a usefull feature is the
interoperability between geometric algebras. Suppose someone want to use
both a 3D Euclidean and a 5D conformal geometric algebra in the same appli-
cation. Although this is entirely possible with Gaigen, there are no functions
provided to ’translate’ multivectors from one algebra to the other. One has to
go to the coordinate level to do this. It would be nice if Gaigen could gener-
ate such translation functions, but what these translation functions should do
exactly depends of course on the interpretation the user assigns to the multi-
vectors from the respective algebras.

The three layer design described in section 10 might be nice from a design
point of view, but we could do fine with a two layer approach. In practice we
never changed layer 2 (the high level C++ interface) after it was finished. The
idea was that one could easily insert new algorithms into this top layer, but we
always just put them in seperate functions. So a two layer design, in which one
layer with optimized functions and the other is generated from a template file
would be sufficient.

13 Conclusion

We have implemented low dimensional geometric algebras in C++ using a
code generator. To obtain an implementation of a specific geometric algebra,
the user only has to supply the specifications of the algebra. Gaigen then au-
tomatically generates the source code, including optimized product function.
We have successfully used this source code to implement a number of applica-
tions, including a recursive ray tracer.

We have reduced memory usage and increased performance by tracking
which grade parts of multivectors are in use. This grade part usage information
is also used to enable the usage of optimized product functions.

29

Extensive benchmarks show that this results in an geometric algebra im-
plementation that is less than an order of magnitude slower than equivalent a
standard linear algebra implementation. We have suggested and experimented
with methods to overcome this difference. We hope these improvements will
close the gap between GA and LA performance, which might lead to faster
adaption of GA by mainstream programmers.

We have shown how to implement a number of geometric algebra func-
tions such as meet and join, blade and versor factorization, fast dualization
and inversion.

References

[0] Todo: fix all references...

[1] S. Mann, L. Dorst, T Bouma, The Making of GABLE: A Geomet-
ric Algebra Learning Environment in Matlab, in Geometric Alge-
bra with Applications in Science and Engineering, E Corrochano
and G Sobczyk (eds), Birkhauser, 2001, pg 491-511. Also avail-
able at ftp://cs-archive.uwaterloo.ca/cs-archive/CS-99-27/ and
http://carol.science.uva.nl/�leo/clifford/gable.html, 1999

[2] L. Dorst, S. Mann, T. Bouma. GABLE: A matlab tutorial for geometric algebra.
http://carol.science.uva.nl/�leo/clifford/gable.html, 1999

[3] C. Doran and A. Lasenby. Physical applications of geometric algebra.
http://www.mrao.cam.ac.uk/�clifford/ptIIIcourse/, 1999

[4] H. Li, D. Hestenes, A. Rockwood. Generalized Homogeneous Coordinates for
Computational Geometry. ???.

[5] D. Hestenes. New Foundations for Classical Mechanics, Second Edition. Reidel,
1999.

[6] D. Fontijne. Gaigen user manual. Does not exist yet...

[7] Advanced Micro Devices. 3DNow!�� Technology Manual. Currently avail-
able at http://www.amd.com/K6/k6docs/pdf/21928.pdf

[8] Intel. Pentium 4 processor manuals. Currently available at
http://developer.intel.com/design/Pentium4/manuals/

[9] Apple. Apple’s AltiVec homepage Currently at
http://developer.apple.com/hardware/ve/index.html

[10] P. Lounesto. Clifford Algebras and Spinors London Mathemetical Society
Lecture Note Series 239, Cambridge University Press, 1997.

[11] J. Lasenby, A.X.S. Stevenson Using geometric algebra for optical motion cap-
ture to appear in in Applied Clifford Algebras in Computer Science and En-
gineering, Ed. E.Bayro-Corrochano and G. Sobcyzk. Birkhauser 2000.

[12] T. Bouma About the delta product Where: ask Tim.... / online

[13] T. Bouma About versors Where: ask Tim.... / online

30

[14] L. Dorst and S. Mann. Geometric algebra: a computation framework for geo-
metrical application, Part I and II. IEEE Computer Graphics and Applications,
Vol. 22, No. 3, May/June 2002, and Vol. 22, No. 4, July/August 2002.

[15] S. Mann and A. Rockwood. Computing Singularities of 3D Vector Fields with
Geometric Algebra. In: IEEE Visualisation 2002.

[16] D. Fontijne and L. Dorst. Performance and elegance of five models of 3D Eu-
clidean geometry in a ray tracing application 2002. Submitted to IEEE Computer
Graphics and Applications.

[17] C. Perwass. The CLU project 2002. Cookville conference.

31

