
ML-Yacc User’s Manual

Version 2.4

David R. Tarditi1

Andrew W. Appel2

1Microsoft Research

2Department of Computer Science
Princeton University
Princeton, NJ 08544

April 24, 2000

(c) 1989, 1990, 1991,1994 Andrew W. Appel, David R. Tarditi

This software comes with ABSOLUTELY NO WARRANTY. It
is subject only to the terms of the ML-Yacc NOTICE, LICENSE,
and DISCLAIMER (in the file COPYRIGHT distributed with this
software).

New in this version: Improved error correction directive %change that allows
multi-token insertions, deletions, substitutions. Explanation of how to build a
parser (Section 5) and the Calc example (Section 7) revised for SML/NJ Version
110 and the use of CM.

1

Contents

2

1 Introduction

1.1 General

ML-Yacc is a parser generator for Standard ML modeled after the Yacc parser
generator. It generates parsers for LALR languages, like Yacc, and has a simi-
lar syntax. The generated parsers use a different algorithm for recovering from
syntax errors than parsers generated by Yacc. The algorithm is a partial im-
plementation of an algorithm described in [?]. A parser tries to recover from a
syntax error by making a single token insertion, deletion, or substitution near
the point in the input stream at which the error was detected. The parsers delay
the evaluation of semantic actions until parses are completed successfully. This
makes it possible for parsers to recover from syntax errors that occur before the
point of error detection, but it does prevent the parsers from affecting lexers in
any significant way. The parsers can insert tokens with values and substitute
tokens with values for other tokens. All symbols carry left and right position
values which are available to semantic actions and are used in syntactic error
messages.

ML-Yacc uses context-free grammars to specify the syntax of languages to be
parsed. See [?] for definitions and information on context-free grammars and LR
parsing. We briefly review some terminology here. A context-free grammar is
defined by a set of terminals T , a set of nonterminals NT , a set of productions
P , and a start nonterminal S. Terminals are interchangeably referred to as
tokens. The terminal and nonterminal sets are assumed to be disjoint. The set
of symbols is the union of the nonterminal and terminal sets. We use lower case
Greek letters to denote a string of symbols. We use upper case Roman letters
near the beginning of the alphabet to denote nonterminals. Each production
gives a derivation of a string of symbols from a nonterminal, which we will write
as A → α. We define a relation between strings of symbols α and β, written
α ` β and read as α derives β, if and only if α = δAγ, β = δφγ and there exists
some production A → φ. We write the transitive closure of this relation as `∗.
We say that a string of terminals α is a valid sentence of the language, i.e. it
is derivable, if the start symbol S `∗ α. The sequence of derivations is often
visualized as a parse tree.

ML-Yacc uses an attribute grammar scheme with synthesized attributes.
Each symbol in the grammar may have a value (i.e. attribute) associated with
it. Each production has a semantic action associated with it. A production
with a semantic action is called a rule. Parsers perform bottom-up, left-to-right
evaluations of parse trees using semantic actions to compute values as they do
so. Given a production P = A → α, the corresponding semantic action is used
to compute a value for A from the values of the symbols in α. If A has no
value, the semantic action is still evaluated but the value is ignored. Each parse
returns the value associated with the start symbol S of the grammar. A parse
returns a nullary value if the start symbol does not carry a value.

3

parsing structure −→ values for a particular parser
values for a particular parser −→ lexical analyzer

parsing structure, −→ particular parser
values for a particular parser,

lexical analyzer

Figure 1: Module Dependencies

The synthesized attribute scheme can be adapted easily to inherited at-
tributes. An inherited attribute is a value which propagates from a nonterminal
to the symbols produced by the nonterminal according to some rule. Since func-
tions are values in ML, the semantic actions for the derived symbols can return
functions which takes the inherited value as an argument.

1.2 Modules

ML-Yacc uses the ML modules facility to specify the interface between a parser
that it generates and a lexical analyzer that must be supplied by you. It also
uses the ML modules facility to factor out a set of modules that are common
to every generated parser. These common modules include a parsing structure,
which contains an error-correcting LR parser1, an LR table structure, and a
structure which defines the representation of terminals. ML-Yacc produces a
functor for a particular parser parameterized by the LR table structure and the
representation of terminals. This functor contains values specific to the parser,
such as the LR table for the parser2, the semantic actions for the parser, and a
structure containing the terminals for the parser. ML-Yacc produces a signature
for the structure produced by applying this functor and another signature for
the structure containing the terminals for the parser. You must supply a functor
for the lexing module parameterized this structure.

Figure 1 is a dependency diagram of the modules that summarizes this in-
formation. A module at the head of an arrow is dependent on the module at
the tail.

1.3 Error Recovery

The error recovery algorithm is able to accurately recover from many single
token syntax errors. It tries to make a single token correction at the token
in the input stream at which the syntax error was detected and any of the 15
tokens3 before that token. The algorithm checks corrections before the point of

1A plain LR parser is also available.
2The LR table is a value. The LR table structure defines an abstract LR table type.
3An arbitrary number chosen because numbers above this do not seem to improve error

correction much.

4

error detection because a syntax error is often not detected until several tokens
beyond the token which caused the error.4

The algorithm works by trying corrections at each of the 16 tokens up to
and including the token at which the error was detected. At each token in the
input stream, it will try deleting the token, substituting other tokens for the
token, or inserting some other token before the token.

The algorithm uses a parse check to evaluate corrections. A parse check is
a check of how far a correction allows a parser to parse without encountering
a syntax error. You pass an upper bound on how many tokens beyond the
error point a parser may read while doing a parse check as an argument to the
parser. This allows you to control the amount of lookahead that a parser reads
for different kinds of systems. For an interactive system, you should set the
lookahead to zero. Otherwise, a parser may hang waiting for input in the case
of a syntax error. If the lookahead is zero, no syntax errors will be corrected.
For a batch system, you should set the lookahead to 15.

The algorithm selects the set of corrections which allows the parse to pro-
ceed the farthest and parse through at least the error token. It then removes
those corrections involving keywords which do not meet a longer minimum parse
check. If there is more than one correction possible after this, it uses a simple
heuristic priority scheme to order the corrections, and then arbitrarily chooses
one of the corrections with the highest priority. You have some control over the
priority scheme by being able to name a set of preferred insertions and a set
of preferred substitutions. The priorities for corrections, ordered from highest
to lowest priority, are preferred insertions, preferred substitutions, insertions,
deletions, and substitutions.

The error recovery algorithm is guaranteed to terminate since it always se-
lects fixes which parse through the error token.

The error-correcting LR parser implements the algorithm by keeping a queue
of its state stacks before shifting tokens and using a lazy stream for the lexer.
This makes it possible to restart the parse from before an error point and try
various corrections. The error-correcting LR parser does not defer semantic ac-
tions. Instead, ML-Yacc creates semantic actions which are free of side-effects
and always terminate. ML-Yacc uses higher-order functions to defer the evalua-
tion of all user semantic actions until the parse is successfully completed without
constructing an explicit parse tree. You may declare whether your semantic ac-
tions are free of side-effects and always terminate, in which case ML-Yacc does
not need to defer the evaluation of your semantic actions.

1.4 Precedence

ML-Yacc uses the same precedence scheme as Yacc for resolving shift/reduce
conflicts. Each terminal may be assigned a precedence and associativity. Each

4An LR parser detects a syntax error as soon as possible, but this does not necessarily
mean that the token at which the error was detected caused the error.

5

rule is then assigned the precedence of its rightmost terminal. If a shift/reduce
conflict occurs, the conflict is resolved silently if the terminal and the rule in the
conflict have precedences. If the terminal has the higher precedence, the shift is
chosen. If the rule has the higher precedence, the reduction is chosen. If both
the terminal and the rule have the same precedence, then the associativity of
the terminal is used to resolve the conflict. If the terminal is left associative,
the reduction is chosen. If the terminal is right associative, the shift is chosen.
Terminals may be declared to be nonassociative, also, in which case an error
message is produced if the associativity is need to resolve the parsing conflict.

If a terminal or a rule in a shift/reduce conflict does not have a precedence,
then an error message is produced and the shift is chosen.

In reduce/reduce conflicts, an error message is always produced and the first
rule listed in the specification is chosen for reduction.

1.5 Notation

Text surrounded by brackets denotes meta-notation. If you see something like
{parser name}, you should substitute the actual name of your parser for the
meta-notation. Text in a bold-face typewriter font (like this) denotes text in
a specification or ML code.

2 ML-Yacc specifications

An ML-Yacc specification consists of three parts, each of which is separated
from the others by a %% delimiter. The general format is:

{user declarations}
%%
{ML-Yacc declarations}
%%
{rules}

You can define values available in the semantic actions of the rules in the user
declarations section. It is recommended that you keep the size of this section
as small as possible and place large blocks of code in other modules.

The ML-Yacc declarations section is used to make a set of required declara-
tions and a set of optional declarations. You must declare the nonterminals and
terminals and the types of the values associated with them there. You must also
name the parser and declare the type of position values. You should specify the
set of terminals which can follow the start symbol and the set of non-shiftable
terminals. You may optionally declare precedences for terminals, make decla-
rations that will improve error-recovery, and suppress the generation of default
reductions in the parser. You may declare whether the parser generator should

6

create a verbose description of the parser in a “.desc” file. This is useful for
finding the causes of shift/reduce errors and other parsing conflicts.

You may also declare whether the semantic actions are free of significant
side-effects and always terminate. Normally, ML-Yacc delays the evaluation
of semantic actions until the completion of a successful parse. This ensures
that there will be no semantic actions to “undo” if a syntactic error-correction
invalidates some semantic actions. If, however, the semantic actions are free of
significant side-effects and always terminate, the results of semantic actions that
are invalidated by a syntactic error-correction can always be safely ignored.

Parsers run faster and need less memory when it is not necessary to delay the
evaluation of semantic actions. You are encouraged to write semantic actions
that are free of side-effects and always terminate and to declare this information
to ML-Yacc.

A semantic action is free of significant side-effects if it can be reexecuted
a reasonably small number of times without affecting the result of a parse.
(The reexecution occurs when the error-correcting parser is testing possible
corrections to fix a syntax error, and the number of times reexecution occurs is
roughly bounded, for each syntax error, by the number of terminals times the
amount of lookahead permitted for the error-correcting parser).

The rules section contains the context-free grammar productions and their
associated semantic actions.

2.1 Lexical Definitions

Comments have the same lexical definition as they do in Standard ML and can
be placed anywhere in a specification.

All characters up to the first occurrence of a delimiting %% outside of a
comment are placed in the user declarations section. After that, the following
words and symbols are reserved:

of for = { } , * -> : | ()

The following classes of ML symbols are used:

identifiers: nonsymbolic ML identifiers, which consist of an alpha-
betic character followed by one or more alphabetic characters,
numeric characters, primes “’”, or underscores “ ”.

type variables: nonsymbolic ML identifier starting with a prime
“’”

integers: one or more decimal digits.
qualified identifiers: an identifer followed by a period.

The following classes of non-ML symbols are used:

% identifiers: a percent sign followed by one or more lowercase
alphabet letters. The valid % identifiers are:

7

%arg %eop %header %keyword %left %name
%nodefault %nonassoc %nonterm %noshift %pos
%prec %prefer %pure %right %start %subst
%term %value %verbose

code: This class is meant to hold ML code. The ML code is not
parsed for syntax errors. It consists of a left parenthesis fol-
lowed by all characters up to a balancing right parenthesis.
Parentheses in ML comments and ML strings are excluded from
the count of balancing parentheses.

2.2 Grammar

This is the grammar for specifications:

spec ::= user-declarations %% cmd-list %% rule-list
ML-type ::= nonpolymorphic ML types (see the Standard ML manual)

symbol ::= identifier
symbol-list ::= symbol-list symbol

| ε

symbol-type-list ::= symbol-type-list | symbol of ML-type
| symbol-type list | symbol
| symbol of ML-type
| symbol

subst-list ::= subst-list | symbol for symbol
| ε

cmd ::= %arg (Any-ML-pattern) : ML-type
| %eop symbol-list
| %header code
| %keyword symbol-list
| %left symbol-list
| %name identifier
| %nodefault

| %nonassoc symbol-list
| %nonterm symbol-type list
| %noshift symbol-list
| %pos ML-type
| %prefer symbol-list
| %pure

8

| %right symbol-list
| %start symbol
| %subst subst-list
| %term symbol-type-list
| %value symbol code
| %verbose

cmd-list ::= cmd-list cmd
| cmd

rule-prec ::= %prec symbol
| ε

clause-list ::= symbol-list rule-prec code
| clause-list | symbol-list rule-prec code

rule ::= symbol : clause-list
rule-list ::= rule-list rule

| rule

2.3 Required ML-Yacc Declarations

%name You must specify the name of the parser with %name {name}.

%nonterm and %term You must define the terminal and nonterminal sets using
the %term and %nonterm declarations, respectively. These declarations
are like an ML datatype definition. The type of the value that a symbol
may carry is defined at the same time that the symbol is defined. Each
declarations consists of the keyword (%term or %nonterm) followed by a
list of symbol entries separated by a bar (“|”). Each symbol entry is
a symbol name followed by an optional “of <ML-type>”. The types
cannot be polymorphic. Those symbol entries without a type carry no
value. Nonterminal and terminal names must be disjoint and no name
may be declared more than once in either declaration.

The symbol names and types are used to construct a datatype union
for the values on the semantic stack in the LR parser and to name the
values associated with subcomponents of a rule. The names and types of
terminals are also used to construct a signature for a structure that may
be passed to the lexer functor.

Because the types and names are used in these manners, do not use ML
keywords as symbol names. The programs produced by ML-Yacc will not
compile if ML keywords are used as symbol names. Make sure that the
types specified in the %term declaration are fully qualified types or are
available in the background environment when the signatures produced

9

by ML-Yacc are loaded. Do not use any locally defined types from the
user declarations section of the specification.

These requirements on the types in the %term declaration are not a burden.
They force the types to be defined in another module, which is a good idea
since these types will be used in the lexer module.

%pos You must declare the type of position values using the %pos declaration.
The syntax is %pos <ML-type>. This type MUST be the same type as
that which is actually found in the lexer. It cannot be polymorphic.

2.4 Optional ML-Yacc Declarations

%arg You may want each invocation of the entire parser to be parameterized
by a particular argument, such as the file-name of the input being parsed
in an invocation of the parser. The %arg declaration allows you to specify
such an argument. (This is often cleaner than using “global” reference
variables.) The declaration

%arg (Any-ML-pattern) : <ML-type>

specifies the argument to the parser, as well as its type. For example:

%arg (filename) : string

If %arg is not specified, it defaults to () : unit.

%eop and %noshift You should specify the set of terminals that may follow the
start symbol, also called end-of-parse symbols, using the %eop declaration.
The %eop keyword should be followed by the list of terminals. This is
useful, for example, in an interactive system where you want to force the
evaluation of a statement before an end-of-file (remember, a parser delays
the execution of semantic actions until a parse is successful).

ML-Yacc has no concept of an end-of-file. You must define an end-of-
file terminal (EOF, perhaps) in the %term declaration. You must declare
terminals which cannot be shifted, such as end-of-file, in the %noshift
declaration. The %noshift keyword should be followed by the list of non-
shiftable terminals. An error message will be printed if a non-shiftable
terminal is found on the right hand side of any rule, but ML-Yacc will not
prevent you from using such grammars.

It is important to emphasize that non-shiftable terminals must be declared.
The error-correcting parser may attempt to read past such terminals while
evaluating a correction to a syntax error otherwise. This may confuse the
lexer.

10

%header You may define code to head the functor {parser name}LrValsFun
here. This may be useful for adding additonal parameter structures to the
functor. The functor must be parameterized by the Token structure, so
the declaration should always have the form:

%header (functor {parser name}LrValsFun(
structure Token : TOKEN

...)
)

%left,%right,%nonassoc You should list the precedence declarations in order
of increasing (tighter-binding) precedence. Each precedence declaration
consists of % keyword specifying associativity followed by a list of termi-
nals. The keywords are %left, %right, and %nonassoc, standing for their
respective associativities.

%nodefault The %nodefault declaration suppresses the generation of default
reductions. If only one production can be reduced in a given state in an
LR table, it may be made the default action for the state. An incorrect
reduction will be caught later when the parser attempts to shift the looka-
head terminal which caused the reduction. ML-Yacc usually produces
programs and verbose files with default reductions. This saves a great
deal of space in representing the LR tables,but sometimes it is useful for
debugging and advanced uses of the parser to suppress the generation of
default reductions.

%pure Include the %pure declaration if the semantic actions are free of signifi-
cant side-effects and always terminate.

%start You may define the start symbol using the %start declaration. Other-
wise the nonterminal for the first rule will be used as the start nonterminal.
The keyword %start should be followed by the name of the starting non-
terminal. This nonterminal should not be used on the right hand side
of any rules, to avoid conflicts between reducing to the start symbol and
shifting a terminal. ML-Yacc will not prevent you from using such gram-
mars, but it will print a warning message.

%verbose Include the %verbose declaration to produce a verbose description
of the LALR parser. The name of this file is the name of the specification
file with a “.desc” appended to it.

This file has the following format:

1. A summary of errors found while generating the LALR tables.
2. A detailed description of all errors.
3. A description of the states of the parser. Each state is preceded by

a list of conflicts in the state.

11

2.5 Declarations for improving error-recovery

These optional declarations improve error-recovery:

%keyword Specify all keywords in a grammar here. The %keyword should be fol-
lowed by a list of terminal names. Fixes involving keywords are generally
dangerous; they are prone to substantially altering the syntactic meaning
of the program. They are subject to a more rigorous parse check than
other fixes.

%prefer List terminals to prefer for insertion after the %prefer. Corrections
which insert a terminal on this list will be chosen over other corrections,
all other things being equal.

%subst This declaration should be followed by a list of clauses of the form
{terminal} for {terminal}, where items on the list are separated using
a |. Substitution corrections on this list will be chosen over all other
corrections except preferred insertion corrections (listed above), all other
things being equal.

%change This is a generalization of %prefer and %subst. It takes a the following
syntax:

tokens1a -> tokens1b | tokens2a -> tokens2b etc.

where each tokens is a (possibly empty) seqence of tokens. The idea is
that any instance of tokens1a can be “corrected” to tokens1b, and so on.
For example, to suggest that a good error correction to try is IN ID END
(which is useful for the ML parser), write,

%change -> IN ID END

%value The error-correction algorithm may also insert terminals with values.
You must supply a value for such a terminal. The keyword should be
followed by a terminal and a piece of code (enclosed in parentheses) that
when evaluated supplies the value. There must be a separate %value
declaration for each terminal with a value that you wish may be inserted or
substituted in an error correction. The code for the value is not evaluated
until the parse is successful.

Do not specify a %value for terminals without values. This will result in
a type error in the program produced by ML-Yacc.

2.6 Rules

All rules are declared in the final section, after the last %% delimiter. A rule
consists of a left hand side nonterminal, followed by a colon, followed by a list
of right hand side clauses.

12

The right hand side clauses should be separated by bars (“|”). Each clause
consists of a list of nonterminal and terminal symbols, followed by an optional
%prec declaration, and then followed by the code to be evaluated when the rule
is reduced.

The optional %prec consists of the keyword %prec followed by a terminal
whose precedence should be used as the precedence of the rule.

The values of those symbols on the right hand side which have values are
available inside the code. Positions for all the symbols are also available. Each
value has the general form {symbol name}{n+1}, where {n} is the number
of occurrences of the symbol to the left of the symbol. If the symbol occurs
only once in the rule, {symbol name} may also be used. The positions are
given by {symbol name}{n+1}left and {symbol name}{n+1}right. where {n}
is defined as before. The position for a null rhs of a production is assumed to be
the leftmost position of the lookahead terminal which is causing the reduction.
This position value is available in defaultPos.

The value to which the code evaluates is used as the value of the nonterminal.
The type of the value and the nonterminal must match. The value is ignored if
the nonterminal has no value, but is still evaluated for side-effects.

3 Producing files with ML-Yacc

ML-Yacc may be used from the interactive system or built as a stand-alone pro-
gram which may be run from the Unix command line. See the file README
in the mlyacc directory for directions on installing ML-Yacc. We recommend
thaat ML-Yacc be installed as a stand-alone program.

If you are using the stand-alone version of ML-Yacc, invoke the program
“sml-yacc” with the name of the specifcation file. If you are using ML-Yacc in
the interactive system, load the file “smlyacc.sml”. The end result is a structure
ParseGen, with one value parseGen in it. Apply parseGen to a string containing
the name of the specification file.

Two files will be created, one named by attaching “.sig” to the name of the
specification, the other named by attaching “.sml” to the name of the specifi-
cation.

4 The lexical analyzer

Let the name for the parser given in the %name declaration be denoted by {n}
and the specification file name be denoted by {spec name} The parser genera-
tor creates a functor named {n}LrValsFun for the values needed for a particular
parser. This functor is placed in {spec name}.sml. This functor contains a
structure Tokens which allows you to construct terminals from the appropriate
values. The structure has a function for each terminal that takes a tuple con-

13

sisting of the value for the terminal (if there is any), a leftmost position for the
terminal, and a rightmost position for the terminal and constructs the terminal
from these values.

A signature for the structure Tokens is created and placed in the “.sig” file
created by ML-Yacc. This signature is {n} TOKENS, where {n} is the name
given in the parser specification. A signature {n} LRVALS is created for the
structure produced by applying {n}LrValsFun.

Use the signature {n} TOKENS to create a functor for the lexical analyzer
which takes the structure Tokens as an argument. The signature {n} TOKENS
will not change unless the %term declaration in a specification is altered by
adding terminals or changing the types of terminals. You do not need to re-
compile the lexical analyzer functor each time the specification for the parser is
changed if the signature {n} TOKENS does not change.

If you are using ML-Lex to create the lexical analyzer, you can turn the lexer
structure into a functor using the %header declaration. %header allows the user
to define the header for a structure body.

If the name of the parser in the specification were Calc, you would add this
declaration to the specification for the lexical analyzer:

%header (functor CalcLexFun(structure Tokens : Calc_TOKENS))

You must define the following in the user definitions section:

type pos

This is the type of position values for terminals. This type must be the same
as the one declared in the specification for the grammar. Note, however, that
this type is not available in the Tokens structure that parameterizes the lexer
functor.

You must include the following code in the user definitions section of the
ML-Lex specification:

type svalue = Tokens.svalue
type (’a,’b) token = (’a,’b) Tokens.token
type lexresult = (svalue,pos) token

These types are used to give lexers signatures.
You may use a lexer constructed using ML-Lex with the %arg declaration,

but you must follow special instructions for tying the parser and lexer together.

5 Creating the parser

Let the name of the grammar specification file be denoted by {grammar} and
the name of the lexer specification file be denoted by {lexer} (e.g. in our cal-
culator example these would stand for calc.grm and calc.lex, respectively). Let

14

the parser name in the specification be represented by {n} (e.g. Calc in our
calculator example).

To construct a parser, do the following:

1. In the appropriate CM description file (e.g. for your main program or one
of its subgroups or libraries), include the lines:

ml-yacc-lib.cm
{lexer}
{grammar}

This will cause ML-Yacc to be run on {grammar}, producing source files
{grammar}.sig and {grammar}.sml, and ML-Lex to be run on {lexer},
producing a source file {lexer}.sml. Then these files will be compiled after
loading the necessary signatures and modules from the ML-Yacc library
as specified by ml-yacc-lib.cm.

2. Apply functors to create the parser:

structure {n}LrVals =
{n}LrValsFun(structure Token = LrParser.Token)

structure {n}Lex =
{n}LexFun(structure Tokens = {n}LrVals.Tokens)

structure {n}Parser=
Join(structure ParserData = {n}LrVals.ParserData

structure Lex={n}Lex
structure LrParser=LrParser)

If the lexer was created using the %arg declaration in ML-Lex, the defi-
nition of {n}Parser must be changed to use another functor called Join-
WithArg:

structure {n}Parser=
JoinWithArg
(structure ParserData={n}LrVals.ParserData
structure Lex={n}Lex
structure LrParser=LrParser)

The following outline summarizes this process:

(* available at top level *)

TOKEN
LR_TABLE
STREAM
LR_PARSER
PARSER_DATA

15

structure LrParser : LR_PARSER

(* printed out in .sig file created by parser generator: *)

signature {n}_TOKENS =
sig
structure Token : TOKEN
type svalue
val PLUS : ’pos * ’pos ->

(svalue,’pos) Token.token
val INTLIT : int * ’pos * ’pos ->

(svalue,’pos) Token.token
...

end

signature {n}_LRVALS =
sig
structure Tokens : {n}_TOKENS
structure ParserData : PARSER_DATA
sharing ParserData.Token = Tokens.Token
sharing type ParserData.svalue = Tokens.svalue

end

(* printed out by lexer generator: *)

functor {n}LexFun(structure Tokens : {n}_TOKENS)=
struct
...

end

(* printed out in .sml file created by parser generator: *)

functor {n}LrValsFun(structure Token : TOKENS) =
struct

structure ParserData =
struct
structure Token = Token

(* code in header section of specification *)

structure Header = ...
type svalue = ...
type result = ...

16

type pos = ...
structure Actions = ...
structure EC = ...
val table = ...

end

structure Tokens : {n}_TOKENS =
struct
structure Token = ParserData.Token
type svalue = ...
fun PLUS(p1,p2) = ...
fun INTLIT(i,p1,p2) = ...

end

end

(* to be done by the user: *)

structure {n}LrVals =
{n}LrValsFun(structure Token = LrParser.Token)

structure {n}Lex =
{n}LexFun(structure Tokens = {n}LrVals.Tokens)

structure {n}Parser =
Join(structure Lex = {n}Lex

structure ParserData = {n}ParserData
structure LrParser = LrParser)

6 Using the parser

6.1 Parser Structure Signatures

The final structure created will have the signature PARSER:

signature PARSER =
sig
structure Token : TOKEN
structure Stream : STREAM
exception ParseError

type pos (* pos is the type of line numbers *)
type result (* value returned by the parser *)
type arg (* type of the user-supplied argument *)

17

type svalue (* the types of semantic values *)

val makeLexer : (int -> string) ->
(svalue,pos) Token.token Stream.stream

val parse :
int * ((svalue,pos) Token.token Stream.stream) *
(string * pos * pos -> unit) * arg ->

result * (svalue,pos) Token.token Stream.stream
val sameToken :

(svalue,pos) Token.token * (svalue,pos) Token.token ->
bool
end

or the signature ARG PARSER if you used %arg to create the lexer. This
signature differs from ARG PARSER in that it which has an additional type
lexarg and a different type for makeLexer:

type lexarg
val makeLexer : (int -> string) -> lexarg ->

(svalue,pos) token stream

The signature STREAM (providing lazy streams) is:

signature STREAM =
sig
type ’a stream
val streamify : (unit -> ’a) -> ’a stream
val cons : ’a * ’a stream -> ’a stream
val get : ’a stream -> ’a * ’a stream

end

6.2 Using the parser structure

The parser structure converts the lexing function produced by ML-Lex into a
function which creates a lazy stream of tokens. The function makeLexer takes
the same values as the corresponding makeLexer created by ML-Lex, but returns
a stream of tokens instead of a function which yields tokens.

The function parse takes the token stream and some other arguments that
are described below and parses the token stream. It returns a pair composed
of the value associated with the start symbol and the rest of the token stream.
The rest of the token stream includes the end-of-parse symbol which caused
the reduction of some rule to the start symbol. The function parse raises the
exception ParseError if a syntax error occurs which it cannot fix.

The lazy stream is implemented by the Stream structure. The function
streamify converts a conventional implementation of a stream into a lazy

18

stream. In a conventional implementation of a stream, a stream consists of
a position in a list of values. Fetching a value from a stream returns the value
associated with the position and updates the position to the next element in
the list of values. The fetch is a side-effecting operation. In a lazy stream, a
fetch returns a value and a new stream, without a side-effect which updates
the position value. This means that a stream can be repeatedly re-evaluated
without affecting the values that it returns. If f is the function that is passed to
streamify, f is called only as many times as necessary to construct the portion
of the list of values that is actually used.

Parse also takes an integer giving the maximum amount of lookahead per-
mitted for the error-correcting parse, a function to print error messages, and a
value of type arg. The maximum amount of lookahead for interactive systems
should be zero. In this case, no attempt is made to correct any syntax errors.
For non-interactive systems, try 15. The function to print error messages takes
a tuple of values consisting of the left and right positions of the terminal which
caused the error and an error message. If the %arg declaration is not used, the
value of type arg should be a value of type unit.

The function sameToken can be used to see if two tokens denote the same
terminal, irregardless of any values that the tokens carry. It is useful if you have
multiple end-of-parse symbols and must check which end-of-parse symbol has
been left on the front of the token stream.

The types have the following meanings. The type arg is the type of the
additional argument to the parser, which is specified by the %arg declaration
in the ML-Yacc specification. The type lexarg is the optional argument to
lexers, and is specified by the %arg declaration in an ML-Lex specifcation. The
type pos is the type of line numbers, and is specified by the %pos declaration
in an ML-Yacc specification and defined in the user declarations section of the
ML-Lex specification. The type result is the type associated with the start
symbol in the ML-Yacc specification.

7 Examples

See the directory examples for examples of parsers constructed using ML-Yacc.
Here is a small sample parser and lexer for an interactive calculator, from the
directory examples/calc, along with code for creating a parsing function. The
calculator reads one or more expressions from the standard input, evaluates
the expressions, and prints their values. Expressions should be separated by
semicolons, and may also be ended by using an end-of-file. This shows how to
construct an interactive parser which reads a top-level declaration and processes
the declaration before reading the next top-level declaration.

19

7.1 Sample Grammar

(* Sample interactive calculator for ML-Yacc *)

fun lookup "bogus" = 10000
| lookup s = 0

%%

%eop EOF SEMI

(* %pos declares the type of positions for terminals.
Each symbol has an associated left and right position. *)

%pos int

%left SUB PLUS
%left TIMES DIV
%right CARAT

%term ID of string | NUM of int | PLUS | TIMES | PRINT |
SEMI | EOF | CARAT | DIV | SUB

%nonterm EXP of int | START of int option

%name Calc

%subst PRINT for ID
%prefer PLUS TIMES DIV SUB
%keyword PRINT SEMI

%noshift EOF
%value ID ("bogus")
%nodefault
%verbose
%%

(* the parser returns the value associated with the expression *)

START : PRINT EXP (print EXP;
print "\n";
flush_out std_out; SOME EXP)

| EXP (SOME EXP)
| (NONE)

EXP : NUM (NUM)

20

| ID (lookup ID)
| EXP PLUS EXP (EXP1+EXP2)
| EXP TIMES EXP (EXP1*EXP2)
| EXP DIV EXP (EXP1 div EXP2)
| EXP SUB EXP (EXP1-EXP2)
| EXP CARAT EXP (let fun e (m,0) = 1

| e (m,l) = m*e(m,l-1)
in e (EXP1,EXP2)
end)

7.2 Sample Lexer

structure Tokens = Tokens

type pos = int
type svalue = Tokens.svalue
type (’a,’b) token = (’a,’b) Tokens.token
type lexresult= (svalue,pos) token

val pos = ref 0
val eof = fn () => Tokens.EOF(!pos,!pos)
val error = fn (e,l : int,_) =>

output(std_out,"line " ^ (makestring l) ^
": " ^ e ^ "\n")

%%
%header (functor CalcLexFun(structure Tokens: Calc_TOKENS));
alpha=[A-Za-z];
digit=[0-9];
ws = [\ \t];
%%
\n => (pos := (!pos) + 1; lex());
{ws}+ => (lex());
{digit}+ => (Tokens.NUM

(revfold (fn (a,r) => ord(a)-ord("0")+10*r)
(explode yytext) 0,

!pos,!pos));
"+" => (Tokens.PLUS(!pos,!pos));
"*" => (Tokens.TIMES(!pos,!pos));
";" => (Tokens.SEMI(!pos,!pos));
{alpha}+ => (if yytext="print"

then Tokens.PRINT(!pos,!pos)
else Tokens.ID(yytext,!pos,!pos)

);
"-" => (Tokens.SUB(!pos,!pos));

21

"^" => (Tokens.CARAT(!pos,!pos));
"/" => (Tokens.DIV(!pos,!pos));
"." => (error ("ignoring bad character "^yytext,!pos,!pos);

lex());

7.3 Top-level code

You must follow the instructions in Section ?? to create the parser and lexer
functors and load them. After you have done this, you must then apply the
functors to produce the CalcParser structure. The code for doing this is shown
below.

structure CalcLrVals =
CalcLrValsFun(structure Token = LrParser.Token)

structure CalcLex =
CalcLexFun(structure Tokens = CalcLrVals.Tokens);

structure CalcParser =
Join(structure LrParser = LrParser

structure ParserData = CalcLrVals.ParserData
structure Lex = CalcLex)

Now we need a function which given a lexer invokes the parser. The function
invoke does this.

fun invoke lexstream =
let fun print_error (s,i:int,_) =
TextIO.output(TextIO.stdOut,

"Error, line " ^ (Int.toString i) ^ ", " ^ s ^ "\n")
in CalcParser.parse(0,lexstream,print_error,())
end

Finally, we need a function which can read one or more expressions from the
standard input. The function parse, shown below, does this. It runs the calcu-
lator on the standard input and terminates when an end-of-file is encountered.

fun parse () =
let val lexer = CalcParser.makeLexer

(fn _ => TextIO.inputLine TextIO.stdIn)
val dummyEOF = CalcLrVals.Tokens.EOF(0,0)
val dummySEMI = CalcLrVals.Tokens.SEMI(0,0)
fun loop lexer =

let val (result,lexer) = invoke lexer
val (nextToken,lexer) = CalcParser.Stream.get lexer

22

in case result
of SOME r =>

TextIO.output(TextIO.stdOut,
"result = " ^ (Int.toString r) ^ "\n")

| NONE => ();
if CalcParser.sameToken(nextToken,dummyEOF) then ()

else loop lexer
end
in loop lexer
end

8 Signatures

This section contains signatures used by ML-Yacc for structures in the file
base.sml, functors and structures that it generates, and for the signatures of
lexer structures supplied by you.

8.1 Parsing structure signatures

(* STREAM: signature for a lazy stream.*)

signature STREAM =
sig
type ’a stream
val streamify : (unit -> ’a) -> ’a stream
val cons : ’a * ’a stream -> ’a stream
val get : ’a stream -> ’a * ’a stream

end

(* LR_TABLE: signature for an LR Table.*)

signature LR_TABLE =
sig
datatype (’a,’b) pairlist
= EMPTY
| PAIR of ’a * ’b * (’a,’b) pairlist

datatype state = STATE of int
datatype term = T of int
datatype nonterm = NT of int
datatype action = SHIFT of state

| REDUCE of int
| ACCEPT
| ERROR

23

type table

val numStates : table -> int
val numRules : table -> int
val describeActions : table -> state ->

(term,action) pairlist * action
val describeGoto : table -> state ->

(nonterm,state) pairlist
val action : table -> state * term -> action
val goto : table -> state * nonterm -> state
val initialState : table -> state
exception Goto of state * nonterm

val mkLrTable :
{actions : ((term,action) pairlist * action) array,
gotos : (nonterm,state) pairlist array,
numStates : int, numRules : int,
initialState : state} -> table

end

(* TOKEN: signature for the internal structure of a token.*)

signature TOKEN =
sig
structure LrTable : LR_TABLE
datatype (’a,’b) token = TOKEN of LrTable.term *

(’a * ’b * ’b)
val sameToken : (’a,’b) token * (’a,’b) token -> bool

end

(* LR_PARSER: signature for a polymorphic LR parser *)

signature LR_PARSER =
sig
structure Stream: STREAM
structure LrTable : LR_TABLE
structure Token : TOKEN

sharing LrTable = Token.LrTable

exception ParseError

val parse:
{table : LrTable.table,

24

lexer : (’b,’c) Token.token Stream.stream,
arg: ’arg,
saction : int *

’c *
(LrTable.state * (’b * ’c * ’c)) list *
’arg ->
LrTable.nonterm *
(’b * ’c * ’c) *
((LrTable.state *(’b * ’c * ’c)) list),

void : ’b,
ec: {is_keyword : LrTable.term -> bool,

noShift : LrTable.term -> bool,
preferred_subst:LrTable.term -> LrTable.term list,
preferred_insert : LrTable.term -> bool,
errtermvalue : LrTable.term -> ’b,
showTerminal : LrTable.term -> string,
terms: LrTable.term list,
error : string * ’c * ’c -> unit

},
lookahead : int (* max amount of lookahead used in

* error correction *)
} -> ’b * ((’b,’c) Token.token Stream.stream)

end

8.2 Lexers

Lexers for use with ML-Yacc’s output must match one of these signatures.

signature LEXER =
sig
structure UserDeclarations :
sig
type (’a,’b) token
type pos
type svalue

end
val makeLexer : (int -> string) -> unit ->

(UserDeclarations.svalue, UserDeclarations.pos)
UserDeclarations.token

end

(* ARG_LEXER: the %arg option of ML-Lex allows users to
produce lexers which also take an argument before
yielding a function from unit to a token.

25

*)

signature ARG_LEXER =
sig
structure UserDeclarations :
sig
type (’a,’b) token
type pos
type svalue
type arg

end
val makeLexer :

(int -> string) ->
UserDeclarations.arg ->
unit ->
(UserDeclarations.svalue, UserDeclarations.pos)
UserDeclarations.token

end

8.3 Signatures for the functor produced by ML-Yacc

The following signature is used in signatures generated by ML-Yacc:

(* PARSER_DATA: the signature of ParserData structures in
{n}LrValsFun functor produced by ML-Yacc. All such
structures match this signature. *)

signature PARSER_DATA =
sig
type pos (* the type of line numbers *)
type svalue (* the type of semantic values *)
type arg (* the type of the user-supplied *)
(* argument to the parser *)
type result

structure LrTable : LR_TABLE
structure Token : TOKEN
sharing Token.LrTable = LrTable

structure Actions :
sig
val actions : int * pos *
(LrTable.state * (svalue * pos * pos)) list * arg ->
LrTable.nonterm * (svalue * pos * pos) *

26

((LrTable.state *(svalue * pos * pos)) list)
val void : svalue
val extract : svalue -> result

end

(* structure EC contains information used to improve
error recovery in an error-correcting parser *)

structure EC :
sig
val is_keyword : LrTable.term -> bool
val noShift : LrTable.term -> bool
val preferred_subst: LrTable.term -> LrTable.term list
val preferred_insert : LrTable.term -> bool
val errtermvalue : LrTable.term -> svalue
val showTerminal : LrTable.term -> string
val terms: LrTable.term list

end

(* table is the LR table for the parser *)

val table : LrTable.table
end

ML-Yacc generates these two signatures:

(* printed out in .sig file created by parser generator: *)

signature {n}_TOKENS =
sig
type (’a,’b) token
type svalue
...

end

signature {n}_LRVALS =
sig
structure Tokens : {n}_TOKENS
structure ParserData : PARSER_DATA
sharing type ParserData.Token.token = Tokens.token
sharing type ParserData.svalue = Tokens.svalue

end

27

8.4 User parser signatures

Parsers created by applying the Join functor will match this signature:

signature PARSER =
sig
structure Token : TOKEN
structure Stream : STREAM
exception ParseError

type pos (* pos is the type of line numbers *)
type result (* value returned by the parser *)
type arg (* type of the user-supplied argument *)
type svalue (* the types of semantic values *)

val makeLexer : (int -> string) ->
(svalue,pos) Token.token Stream.stream

val parse :
int * ((svalue,pos) Token.token Stream.stream) *
(string * pos * pos -> unit) * arg ->

result * (svalue,pos) Token.token Stream.stream
val sameToken :
(svalue,pos) Token.token * (svalue,pos) Token.token ->

bool
end

Parsers created by applying the JoinWithArg functor will match this signature:

signature ARG_PARSER =
sig
structure Token : TOKEN
structure Stream : STREAM
exception ParseError

type arg
type lexarg
type pos
type result
type svalue

val makeLexer : (int -> string) -> lexarg ->
(svalue,pos) Token.token Stream.stream

val parse : int *
((svalue,pos) Token.token Stream.stream) *

28

(string * pos * pos -> unit) *
arg ->
result * (svalue,pos) Token.token Stream.stream

val sameToken :
(svalue,pos) Token.token * (svalue,pos) Token.token ->

bool
end

9 Sharing constraints

Let the name of the parser be denoted by {n}. If you have not created a lexer
which takes an argument, and you have followed the directions given earlier for
creating the parser, you will have the following structures with the following
signatures:

(* always present *)

signature TOKEN
signature LR_TABLE
signature STREAM
signature LR_PARSER
signature PARSER_DATA
structure LrParser : LR_PARSER

(* signatures generated by ML-Yacc *)

signature {n}_TOKENS
signature {n}_LRVALS

(* structures created by you *)

structure {n}LrVals : {n}_LRVALS
structure Lex : LEXER
structure {n}Parser : PARSER

The following sharing constraints will exist:

sharing {n}Parser.Token = LrParser.Token =
{n}LrVals.ParserData.Token

sharing {n}Parser.Stream = LrParser.Stream

sharing type {n}Parser.arg = {n}LrVals.ParserData.arg
sharing type {n}Parser.result = {n}LrVals.ParserData.result
sharing type {n}Parser.pos = {n}LrVals.ParserData.pos =

29

Lex.UserDeclarations.pos
sharing type {n}Parser.svalue = {n}LrVals.ParserData.svalue =

{n}LrVals.Tokens.svalue = Lex.UserDeclarations.svalue
sharing type {n}Parser.Token.token =

{n}LrVals.ParserData.Token.token =
LrParser.Token.token =
Lex.UserDeclarations.token

sharing {n}LrVals.LrTable = LrParser.LrTable

If you used a lexer which takes an argument, then you will have:

structure ARG_LEXER
structure {n}Parser : PARSER

(* additional sharing constraint *)

sharing type {n}Parser.lexarg = Lex.UserDeclarations.arg

10 Hints

10.1 Multiple start symbols

To have multiple start symbols, define a dummy token for each start symbol.
Then define a start symbol which derives the multiple start symbols with dummy
tokens placed in front of them. When you start the parser you must place a
dummy token on the front of the lexer stream to select a start symbol from
which to begin parsing.

Assuming that you have followed the naming conventions used before, create
the lexer using the makeLexer function in the {n}Parser structure. Then, place
the dummy token on the front of the lexer:

val dummyLexer =
{n}Parser.Stream.cons

({n}LrVals.Tokens.{dummy token name}
({dummy lineno},{dummy lineno}),

lexer)

You have to pass a Tokens structure to the lexer. This Tokens structure contains
functions which construct tokens from values and line numbers. So to create
your dummy token just apply the appropriate token constructor function from
this Tokens structure to a value (if there is one) and the line numbers. This is
exactly what you do in the lexer to construct tokens.

30

Then you must place the dummy token on the front of your lex stream. The
structure {n}Parser contains a structure Stream which implements lazy streams.
So you just cons the dummy token on to stream returned by makeLexer.

10.2 Functorizing things further

You may wish to functorize things even further. Two possibilities are turning
the lexer and parser structures into closed functors, that is, functors which do
not refer to types or values defined outside their body or outside their parameter
structures (except for pervasive types and values), and creating a functor which
encapsulates the code necessary to invoke the parser.

Use the %header declarations in ML-Lex and ML-Yacc to create closed func-
tors. See section ?? of this manual and section 4 of the manual for ML-Lex for
complete descriptions of these declarations. If you do this, you should also pa-
rameterize these structures by the types of line numbers. The type will be an
abstract type, so you will also need to define all the valid operations on the
type. The signature INTERFACE, defined below, shows one possible signature
for a structure defining the line number type and associated operations.

If you wish to encapsulate the code necessary to invoke the parser, your
functor generally will have form:

functor Encapsulate(
structure Parser : PARSER
structure Interface : INTERFACE

sharing type Parser.arg = Interface.arg
sharing type Parser.pos = Interface.pos
sharing type Parser.result = ...

structure Tokens : {parser name}_TOKENS
sharing type Tokens.token = Parser.Token.token
sharing type Tokens.svalue = Parser.svalue) =

struct
...

end

The signature INTERFACE, defined below, is a possible signature for a
structure defining the types of line numbers and arguments (types pos and arg,
respectively) along with operations for them. You need this structure because
these types will be abstract types inside the body of your functor.

signature INTERFACE =
sig

type pos
val line : pos ref
val reset : unit -> unit
val next : unit -> unit

31

val error : string * pos * pos -> unit

type arg
val nothing : arg

end

The directory example/fol contains a sample parser in which the code for
tying together the lexer and parser has been encapsulated in a functor.

11 Acknowledgements

Nick Rothwell wrote an SLR table generator in 1988 which inspired the initial
work on an ML parser generator. Bruce Duba and David MacQueen made
useful suggestions about the design of the error-correcting parser. Thanks go to
all the users at Carnegie Mellon who beta-tested this version. Their comments
and questions led to the creation of this manual and helped improve it.

12 Bugs

There is a slight difference in syntax between ML-Lex and ML-Yacc. In ML-
Lex, semantic actions must be followed by a semicolon but in ML-Yacc semantic
actions cannot be followed by a semicolon. The syntax should be the same. ML-
Lex also produces structures with two different signatures, but it should produce
structures with just one signature. This would simplify some things.

References

[1] “A Practical Method for LR and LL Syntactic Error Diagnosis and Recov-
ery”, M. Burke and G. Fisher, ACM Transactions on Programming Lan-
guages and Systems, Vol. 9, No. 2, April 1987, pp. 164-167.

[2] A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, Reading, MA, 1986.

32

