Keyboard Music

Operation Manual

Gary Shigemoto
Brandon Stark

Music 147 / CompSci 190 / EECS195 Ace 277
Computer Audio and Music Programming
Final Project Documentation



Keyboard Music: Operating Manual 2/5

Overview Description of Patch

The purpose of Keyboard Music is to allow the user to use a regular computer keyboard
to create small simple musical rhythms and melodies. Keyboard Music is more than just a
direct mapping between the keys on a computer keyboard and a musical keyboard.

A keyboard is primarily used to type words and sentences, but in this patch, it allows it
to create small simple musical melodies based on the typical use of typing. One of the
advantages of this patch is that the user is not expected to have any prior knowledge of
composing or playing music. It allows non-music users to play a short melody on a
keyboard that they are more familiar with using and takes into consideration the most
frequent typing patterns such as starting sentences with upper case letters and frequent
use of the space bar.

Creating a more complex sound is simple with the addition of a second lower octave
instrument. Typing upper case letters by holding down the shift key selects the seconds
instrument as well as sets a key signature so that all other lower case notes fit within the
major scale of the upper case letter. The attack and length of the notes played are directly
related to the speed of the typist. The faster the notes are typed, the shorter the duration
and the higher the velocity.

Keyboard Music features six preset instrument sets:

1. Tribal
Taiko Drums and FX7 (echoes) with Synth Drum.
2. Techno

Agogo and Lead 1 (square) with Synth Drum.
3. Orchestral
String Ensemble 1 and Tremolo Strings with Timpani.
4. Piano
Piano and Piano with Timpani.
5. Music Box
Music Box and Glockenspiel with Tubular Bells.
6. Guitar
Electric Guitar (Jazz) and Electric Bass (pick) with
Slap Bass 1.

Some of the presets such as Music Box encourage the user to type slower while others
presets such as Techno encourage the user to type faster.



Keyboard Music: Operating Manual 3/5

Examples

The user is free to explore the various possibilities of creating various little melodies
on Keyboard Music but a good place to start might be with:

Sentences:
Hello

My Name is
Alligator

Cat in the Hat

Typing

Major Scale:
Aacefhjln

Simple Songs:
Mary Had A Little Lamb:
Akhghkkkhhhgkkkhghkkkkhhkhg

Explanation of Programming

Keyboard Music
The Keyboard Music patch starts with the keyDifferentialTimer sub-patch which outputs
an ASCII integer value and the time in between key strokes. The integer value is divided
by 1.0625 to represent a full 4 octave range. There are a total of 52 different letter keys
that can be pressed, but only 48 pitches. The next step is to determine whether or not the
shift key was held down while the key was pressed. Uppercase ASCII characters have an
ASCII integer value of less than 91 after being scaled. If the note was lowercase, it is
sent directly to the keySig patcher. If the note was not lower case, and was not the space
bar, indicated by the ASCII integer value 30, then the note is shifted up by 6 to account
for the characters in between Z and a and then inputted into the keySig sub-patch as well
as simultaneously being converted into a note.

The makenote object takes in the integer value for the note, note duration and note
velocity. The time in between keystrokes is used to calculate the note duration and the
note velocity. Since frequently a user will type in short bursts and then pause for several
seconds, the time in between strokes is evaluated in a logarithmic function. This ensures
that a pause of 3 seconds will be only slightly different from a pause of 10 seconds, while
still maintaining a significant difference between a pause of half a second and a pause of
1 second. For the note duration, the result of the logarithmic function is multiplied by
300 for lower case letters and multiplied by 1200 for upper case letters. This allows the
user to use the upper case notes as a way of creating a simple chord. The note velocity
calculation is more complex. The faster the user types, the faster the velocity should be.



Keyboard Music: Operating Manual 4/5

So the inverse of the logarithmic function is taken by scaling down the result to be
between 0 and 1 and then multiplying it by the range of the note velocity which is 255.
The max value, 255 then has the resulting value subtracted from it. To prevent this result
from going out of the range of the note velocity, a combination of an if statement and a
switching gate is used. In this set up, the note velocity cannot exceed 255 and will not be
below 100. At below approximately 100, the note velocity has a detrimental affect on the
note played, especially with certain MIDI instruments.

The instruments that will be playing the notes are selected by a bang. Each condition,
upper case letter, lower case letter and space bar have their own instrument that are
selected and sent to the pgmout object each time they are pressed. There is also a
different channel for each note, to allow that multiple notes can be played at the same
time on different instruments.

For visual effects and user interface, a preset object containing six different instrument
sets was included. This allows the user to easily choose a different sound without
needing to know the MIDI instrument numbers. The instrument selector number boxes
are preset to allow a more experienced user to select any MIDI instrument available. A
keyboard is also included so that the user can see which note corresponds to letter.

KeyDifferentialTimer Sub-Patch
This subpatch is responsible for getting information on the keys typed. It captures what
key was pressed on the computer keyboard and outputs the ASCII integer value and an
ASCII character along with the delay between the current key types and the previous key
types. When a key is pressed, one of two timers start. The next key pressed will stop that
timer and simultaneously start the second timer. This alternating of timers accurately
times milleseconds in between keystrokes. The sub-patch also has an inlet that takes a
bang to stop both timers.

keySig Sub-Patch
The keySig Sub-Patch is responsible for adjusting the pitch of the regularly typed key to
match the major scale of the key that was pressed while holding down the shift key. This
prevents a lot of the dissonance that would be caused by typing two letters close together
alphabetically. The sub-patch takes in the last key that was pressed while the shift key
was held down and the current key that has been pressed. The shifted note is subtracted
from the current note to set the octave. The result is then divided by 12 and the
remainder is sent to a select object. If the remainder corresponds to a note that is not on
the major scale, such as one half step above the root, the sub-patch adjusts it by adding an
additional half step to the note, which makes it so it is on the major scale. The adjusted
note is sent out through one outlet and a bang is sent out through the other. If no
adjustment is needed, the note is still sent out through the outlet.



Keyboard Music: Operating Manual 5/5

Possible Expansion

There is much that can be added to this patch to improve the functionality. Currently
only two instruments and a single percussion sound is available, however that can be
expanded to even more by including notes pressed while the Alt or Ctrl key is held down.
This would allow a particularly skilled typist to control four different instruments at once.
Another expansion on this project would to include better harmonic intelligence. While
limiting notes to only major scale notes is useful for simple melodies, it is very limiting.
Possible improvements might include ways of selecting a different mode of a major scale,
or using minor or jazz scales. Including a way of creating more complex chord structures
such as a dominant 5 or flat 7 would also beneficial. Currently, the only notes that are
played are the notes that the user presses, however, by adding in a more complex chord
intelligence system, chords or even perhaps a walking base-line could be added. The
percussion sound also could be improved by including more special characters such as a
period, comma or the enter key to allow for a more complex melody.

Bugs and Errors

There is occasionally a bug in which the switching gate in the KeyDifferential Timer
becomes out of synch with the timer that is currently running. This is solved by restarting
the patch.

A significant problem that was encountered was the inability to use MIDI channel 10 to
access the specialized percussion sounds.

It was very unfortunate that this patch did not work during the presentation. A couple
adjustments have been made; however, none of the other computers this patch was tested
on displayed any problems. The patch was originally developed on the computers in the
Arts Media Center and also tested on our personal computers as well.

Tested Platforms and Versions:

Windows XP Professional Sp2a
Max/MSP 4.5.7
Max/MSP 4.6.2 Demo

Apple OSX 10.4
Max/MSP 4.3



