
AB-BDI Software Section
Documents

CERN
CH-1211 Geneva 23

Project Name.

ROSALI

EDMS No.

-

Date: 2005-07-29

the

A & B
Department

Switzerland

Technical Description

ROSALI Maintenance guide

Abstract

This document tries to put in place all ROSALI infrastructures to help new developers and
system administrators in the tasks of maintenance, upgrade and new deployments.

Edited By:

Monica Moles

Checked By:

Xx

Approved By:

Xx

 Page 2 of 17 7/29/2005

History of Change

Version

1.0

1.0

1.0

1.0

Date

4/21/2005

6/14/2005

6/29/2005

7/29/2005

Pages

All

5

10

5,6

Change Description

Initial Submission

Deployment diagram changed

Section “Change action sequence structure” added.

Changed location of the executables.

 Page 3 of 17 7/29/2005

Table of Contents

1. INTRODUCTION..5

2. ROSALI INFRASTRUCTURE AND LOCATION5

3. MODIFYING THE SOURCE CODE..................................6

3.1. PRELIMINARY STEPS...6

3.2. CHECKING OUT A PROJECT..8

3.3. MODIFY THE CODE ...9

3.4. DEPLOYMENT OF THE NEW CODE 10

3.5. CHANGE THE ACTION SEQUENCE STRUCTURE.................. 10

4. CHANGE ROSALI CONFIGURATION PARAMETERS10

5. ROSALI ACTIONS..11

5.1. THE ANT FILE... 11

5.2. ACTION TEMPLATE FILES... 12

5.3. MKACTION APPLICATION... 14

5.4. DELACTION APPLICATION.. 16

6. CONFIGURE THE APPLICATION LAUNCHER16

7. CHANGING THE DEPLOYMENT DIRECTORY17

 Page 4 of 17 7/29/2005

Table of Figures

Figure 1 – Deployment diagram ..5
Figure 2 – View of the ROSALI module in CVS ...7
Figure 3 – Configure CVS repository under Eclipse ...8
Figure 4 – Import project from CVS step 1..9
Figure 5 – XML Sequence schema..10
Figure 6 – RosaliProperties file ..11
Figure 7 – Targets in the build.xml for creating a new ROSALI action................................11
Figure 8 – Action template file ..14
Figure 9 – Activity diagram for mkAction ..15
Figure 10 – mkActionProperties file..16
Figure 11 – Application launcher for ROSALIGUI ..17

 Page 5 of 17 7/29/2005

1. INTRODUCTION
The purpose of this document is to help new ROSALI developers and application
administrators in the tasks of maintenance, upgrade and new developments. This document
shall be used in conjunction with the following documents:

• ROSALI Coding guidelines.

• ROSALI Software Requirements Specification.

• ROSALI Design documentation.

2. ROSALI INFRASTRUCTURE AND LOCATION
The component diagram in Figure 1 represents the implementation perspective of the system.
It gives developers a general view about the location of the software such as libraries,
configuration files, etc.

Figure 1 – Deployment diagram

The green box at Figure 1 represents the C library used by FESA instruments to generate
their output in the ROSALI format. It is placed in /user/fesa/config/FESA/deploy/V2. To
see in more detail its design and implementation, refer to “Savelib package decomposition

 Page 6 of 17 7/29/2005

description” in the ROSALI design documentation. The user’s manual can be found in the
ROSALI web page under Documentation Developer’s corner ROSALI Front-End library.

The pink box at Figure 1 contains all the libraries needed to run the ROSALI application. They
are under /user/bdisoft/operational/java/bdi_jars containing the following modules:

• cern.fesa.rosali.Action.jar is a library that provides access to the Rosali action
common features. It contains the implementation of the Action package defined in the
Rosali Design Documentation.

• cern.fesa.rosali.Action.UserAction.jar contains all the .class files for the
implementation of the users’ actions.

• cern.fesa.rosali.communication.jar is a library that provides methods for creating
and accessing files in Rosali format. It can be used by the users’ defined actions or as
a stand-alone jar file.

The yellow box at Figure 1 contains all the specific executables for the Rosali application
located under /user/bdisoft/operational/java/rosali, like:

• cern.fesa.rosali.GUI.jar is the executable JAR file for the ROSALI GUI application.
It contains the .class files for the implementation of the GUI and XmlParser packages
defined in the Rosali Design Documentation.

• cern.fesa.rosali.ActionBuilder.jar is the executable JAR file for the ActionBuilder
application. It contains the implementation of the ActionBuilder package defined in the
Rosali Design Documentation.

• cern.fesa.rosali.mkAction.jar contains the application for creating a new Rosali
action. This application checks if the action already exists, if not, it creates the action
template in the working directory and the HTML page to write the action’s user
manual.

• cern.fesa.rosali.delAction.jar contains the application for deleting a Rosali
action. It only deletes the action from the list of available Rosali actions, not deleting
the source code from the user’s working directory.

It also contains the configuration files under the configData directory:

• RosaliActions.xml XML file with all the available Rosali actions.

• RosaliActions.xsd XML schema defining the structure of the RosaliActions.xml file.

• The sequence of actions created by the user is saved in an XML file.
actionSequence.xsd is the XML schema defining this structure.

• RosaliProperties.prop is used by the GUI application and sets the location of the
XML files, the list of super-users and some other properties used by the application.

• build.xml Ant file used to create a new user action, compile it and deploy it.

• .classpath Eclipse project’s classpath file defining the location of the external JAR
files needed to compile the project.

The standAlone directory contains the executable for setting up the application. It also
contains the script used to generate this setup file. The program used for that is Inno Setup 5
and can be downloaded from http://www.jrsoftware.org/isinfo.php .

3. MODIFYING THE SOURCE CODE

3.1. PRELIMINARY STEPS
All source code is under CVS on bdidev1 under the module ROSALI. At Figure 2 you can see a
snapshot of the modules under the ROSALI module.

http://project-rosali.web.cern.ch/project-rosali/default.htm
http://www.jrsoftware.org/isinfo.php

 Page 7 of 17 7/29/2005

Figure 2 – View of the ROSALI module in CVS

The tool recommended to modify the code is Eclipse. First of all you have to configure your
CVS Repository under Eclipse to check out the code. If you haven’t done it yet, please follow
the steps:

1. Click on Window Show view Other... and then select "CVS Repositories".
2. Right-click in the new panel and select New Repository Location. Window showed in

Figure 3 will appear. Enter the info like in the figure, then press Finish:

 Page 8 of 17 7/29/2005

Figure 3 – Configure CVS repository under Eclipse

3.2. CHECKING OUT A PROJECT
Then, you should check out the module you want to modify from the CVS server. To do so:

1. Right-click on the Package Explorer tab located on the left side of the window.

2. Select “Import” from the pop-up menu. Figure 4 will appear.

 Page 9 of 17 7/29/2005

Figure 4 – Import project from CVS step 1

3. Select “Checkout Projects from CVS” and press “Next”.

4. In the next window, select the option “Use existing repository location” and press
“Next”.

5. In the next window titled “Select module”, select the option “Use an existing module”.
Then Eclipse will connect to the CVS server (maybe you need to enter your password)
and it will list the modules existing on the server. All the ROSALI packages are under
the ROSALI module. Select the module you want to check out and press “Next”.

6. Select extract from HEAD and press Finish. It will create a new project on the left
window.

3.3. MODIFY THE CODE
After checking out the project from CVS, you should set the environment for compiling and
testing it. All modules come with an Ant file with a target called “setup_project”. Click on it
and then refresh the project (select project, right-click and then “Refresh”).

Now, your project is ready for any change!!

 Page 10 of 17 7/29/2005

3.4. DEPLOYMENT OF THE NEW CODE
After changing the code and testing it in the Eclipse framework, it’s time to deploy the JAR file
in either the test or production environment. As said before, all modules come with an Ant file
with a target called “deploy_development” and another one called “deploy_operational”.
Select the one you need. It will create the Jar file and move it to the right place.

Then you should commit the changes in the CVS server.

3.5. CHANGE THE ACTION SEQUENCE STRUCTURE
If the developer needs to add a new field to the action, meaning to change the
ActionTemplate.java file, this change should be also reflected in the action sequence
schema.

When parsing a file with a sequence of actions, the SequenceParser class reads the structure
the sequence should have. This structure is defined in the actionSequenceSchemaLoc
property (see Figure 6 – RosaliProperties file). Once the structure of the sequence is loaded,
the SequenceParser class reads the XML file containing the sequence. If it doesn’t follow the
structure of the schema, the file is not well-formed. So, if the developer adds a new field to
the action, he/she should add it also to the sequence schema to read/create the file properly.
For instance, if the developer needs to add a new type of field to the action namely checkbox,
he/she should add it in the ActionTemplate.java file and in the actionSequence.xsd file.
Currently, it has the following structure:

Figure 5 – XML Sequence schema

4. CHANGE ROSALI CONFIGURATION PARAMETERS
The configuration parameters for the ROSALI application are defined in the
RosaliProperties.prop file under /user/fesa/rosali/configData. This is the current
content of the file:

#Rosali Properties

defaultSettingFile=RosaliDefault.prop

actionSequenceSchemaLoc=rosali/configData/actionSequence.xsd

RosaliActionsSchemaLoc=rosali/configData/RosaliActions.xsd

RosaliActionsXML=rosali/configData/RosaliActions.xml

 Page 11 of 17 7/29/2005

RosaliWebPage=http://project-rosali.web.cern.ch/project-rosali/ActionsDoc

RosaliSuperUsers=mmoles,sjackson,sbartped,sam,anag,ljensen,karlsson,alokhovi

Figure 6 – RosaliProperties file

The user’s preferences such as the working and input directories are saved in a file whose
name is defined in the property defaultSettingFile. If the user is working under the
Windows environment, the file will be created in c:/Documents and Settings/username;
otherwise under /user/username.

The actionSequenceSchemaLoc property sets the location of the XML schema file defining the
structure of the sequences of actions.

The RosaliActionsSchemaLoc property sets the locations of the XML schema file defining the
structure of the file with the Rosali actions.

The RosaliActionsXML property sets the location of the XML file with the list of available
actions.

The RosaliWebPage property sets the URL where the actions’ documentation can be found.

The users listed in the RosaliSuperUsers property have special permissions and can see
every Rosali action.

5. ROSALI ACTIONS
The procedure to create a new action to use it in the ROSALI GUI is defined in the ROSALI
web page under the section Documentation Action’s developers’ corner How to build a
new action.

5.1. THE ANT FILE
For this guide, it requires a special attention the Ant file for creating new actions, compile and
deploy them. When the user creates a ROSALI action for the first time, he creates a new
project in Eclipse importing a ZIP file which contains a build.xml file and the .classpath.
The build.xml has the following targets:

Figure 7 – Targets in the build.xml for creating a new ROSALI action

The setup_eclipse target should be executed each time the user starts a project or when an
external jar file has changed. First of all, it copies the latest version of the build.xml and
.classpath in your project directory. These files are taken from
/user/fesa/rosali/configData like shows Figure 1. It also copies the external jar files
needed to compile your project in the ‘lib’ directory.

http://project-rosali.web.cern.ch/project-rosali/default.htm
http://project-rosali.web.cern.ch/project-rosali/default.htm

 Page 12 of 17 7/29/2005

The new_general_action target creates the Java code source file for the new action based on
the general action template. It calls the mkAction application (refer section 5.3 "mkAction
application”). The name of the action to create is set in the build.xml file. Change the name
there.

The create_jar target compiles your project and creates the jar file that can be used to test
your new action inside Eclipse. Once you are ready to deploy it, use the target deploy for it.

5.2. ACTION TEMPLATE FILES
The targets that create a new action make a copy of a template file changing the action’s
name and the file’s name. At this moment, there are four templates files placed on
/user/fesa/rosali:

• ActionAnonymous.java Template file for a general action.

• ExpertAnonymous.java Template file for an expert action.

• MathLinkAnonymous.java Template file for an action that uses Mathematica.

• MonitorAnonymous.java Template file for an action with monitoring features.

The application administrator can add as many templates as he considers. The only thing
he/she needs to do is to create a template file following the remarks listed below and to add a
new target in to the Ant file.

All the templates files must include:

• the package name cern.fesa.rosali.Action.UserAction

• the class name MUST be ‘Anonymous’ and extend ActionTemplate.

• the value for the name attribute in the constructor MUST be “Anonymous”.

• The template should provide the methods verify, execute and restore, as well a
brief description about how to use them.

Example of an action template.

// package should always be this
package cern.fesa.rosali.Action.UserAction;

import cern.fesa.rosali.Action.*;
import cern.fesa.rosali.communication.RosaliObjException;

/**
 * All actions defined by a developer will be a copy of
 * ANONYMOUS. That class defines the basis methods
 * a developer needs to implement. All the common behavior
 * will be managed by the ActionTemplate class.
 * @author Monica Moles
 * @since August 20th, 2004
 */
public class Anonymous extends ActionTemplate {
 /**
 * Constructor. There the developer will specify
 * the attributes his class need to use.
 */
 public Anonymous() {

 Page 13 of 17 7/29/2005

 /**** PLEASE NOT REMOVE ****/

 this.name = "Anonymous";

 /**** END ATTRIBUTES ****/

 // Developer contact details for free!!

 this.developer = new DeveloperAnonymous();

 /**
 * Create viewer. You have 2 ways to create it:
 *
 * - new ActionViewer();
 * it creates a panel containing the 2D, 3D and ASCII viewer
 *
 * - new ActionViewer(CustomPanel p)
 * this constructor also adds a custom panel to the tab.
 * The custom panel will be implemented by the developer and MUST
 * extend 'CustomPanel'. By default it contains a single button.
 *
 * - You can always add the custom panel with
 * viewer.addCustomPanel(customPanel);
 **/
 this.viewer = new ActionViewer();
 }

 /**
 * This method is called when an argument is changed by the User in the
 * fields panel.
 * If the developer wants to check the values entered before applying
 * them, he/she has to provide the code here!!!
 * - 'userFieldName' is the name defined by the user for the field and
 * - 'value' is the new value the user is trying to set. That value is
 * not yet in this.argX or this.dataFileX.
 *
 * The user only has to verify the value, without setting it to the
 * attribute. If something goes wrong in the 'verify' method, the
 * developer must throw an exception (throw new Exception("message")) and
 * the application will show the message in a dialog. If there is no
 * exception, then the engine will apply the new value to the field.
 **/
 public void verify(String userFieldName, String value) throws Exception{

 }

 /**
 * This method is called when the action has to be executed.
 * You should provide your code here!!
 *
 * You can access to the viewers and preferences with:
 * - Add text in the Ascii viewer -->
 * this.viewer.addASCIIPanelText("Testing!!!!");
 * - Set text in the Ascii viewer -->
 * this.viewer.setASCIIPanelText("Testing!!!!");
 * - Access to the 2D viewer --> this.viewer.view2D
 * - Access to the 3D viewer --> this.viewer.view3D
 * - Access to the custom panel --> this.viewer.viewCustom
 * - Get the default input directory -->

 Page 14 of 17 7/29/2005

 * this.preferences.getInputDirectory();
 * - Get the default Mathematica dir -->
 * this.preferences.getMathematicaDirectory();
 * - Get the default working dir -->
 * this.preferences.getWorkingDirectory();
 * - Switch to a viewer tab -->
 * this.viewer.switchToPanel(ViewManager.ASCII_PANEL);
 * @throws RosaliObjException
 */
 public void execute() {

 this.viewer.addASCIIPanelText("Testing!!!!");
 }

 /**
 * This method is called when the user stops the action's execution
 * or when the tool gets an error during the execution. If the user
 * wants to restore some values in the action's arguments, his/her
 * code should come here!
 */
 public void restore() {

 }

}
Figure 8 – Action template file

5.3. MKACTION APPLICATION
The mkAction application is used in the Ant file for creating a new action. If you want to
modify the code, it is in CVS under the module Admin. Figure 9 shows you the activity
diagram with the tasks performed by the program.

 Page 15 of 17 7/29/2005

Replace 'Anonymous' by
actionName

action already defined

Error. Exi

Load properties file

Java file for action exis

Create directory structur

Copy Anonymous templat

create web page for
action's manual

Replace anonymous info by user
info

copy AnonymousDeveloper file to
username

Get developer info from XWH

Developer info file exist

yes

no

yes

yes

no

Figure 9 – Activity diagram for mkAction

The application reads the configuration parameters from the mkActionProperties.prop file
located at /user/fesa/rosali/configData. This file is listed below and defines:

 Page 16 of 17 7/29/2005

• The path of the package to be created (userPackage).

• The Java template file containing the developer’s personal information
(developerFile).

• The web server name for the Rosali web page (webServer).

• The project site name

• The directory where the actions’ user manuals will be placed on the Rosali web page
(documentationPath).

• The name of the web page used as template (templateWebPage).

#mkAction Properties
userPackage=/cern/fesa/rosali/Action/UserAction
developerFile=DeveloperAnonymous.java
webServer=webh04.cern.ch
projectWebSite=project-rosali
documentationPath=ActionsDoc
templateWebPage=Anonymous.htm

Figure 10 – mkActionProperties file

5.4. DELACTION APPLICATION
The delAction application is used in the Ant file to delete an action from the list of available
Rosali actions. It doesn’t delete the java source files from the user’s directory. If you want to
modify the code, it is in CVS under the module Admin.

6. CONFIGURE THE APPLICATION LAUNCHER
The ROSALI GUI and the ActionBuilder applications are launched from the Application
launcher. The resources needed to launch them are already configured, but if you need to
modify them.

1. Open the application launcher tool from the section web page.

2. Select the “Edit configuration” tab and open “BDI Generic applications”.

3. Select the application you want to modify, i.e. ROSALIGUI and open jnlp resources.
If the location of the JAR files has changed, you should modify them here.

http://project-beam-instr-sw.web.cern.ch/project-beam-instr-sw/

 Page 17 of 17 7/29/2005

Figure 11 – Application launcher for ROSALIGUI

Note that both applications extend ExpertGUI application inheriting all its resources. Due
to some version incompatibilities with the XML packages, the jar file xmlparserv2 must be
the first one on the list in order to work properly.

7. CHANGING THE DEPLOYMENT DIRECTORY
If for any reason, you need to change the location of the deployment directory, here there is a
list of things you should do. Note that you MUST keep the default directory structure where
the RosaliPoperties.prop and mkActionProperties.prop must be under
rosali/configData.

1. First of all, change the JAR files to the new directory.

2. Change the value of the property OPER_ROSALI_DIR to the new location in every
build.xml file.

3. Change the value of the property ROSALI_JARS_DIR to the new location in the
UserAction build.xml file.

4. Update the location of the resources in the application launcher (see section 6
“Configure the application launcher”).

	Abstract
	Edited By:
	Checked By:
	Approved By:
	Version
	INTRODUCTION
	ROSALI INFRASTRUCTURE AND LOCATION
	MODIFYING THE SOURCE CODE
	PRELIMINARY STEPS
	CHECKING OUT A PROJECT
	MODIFY THE CODE
	DEPLOYMENT OF THE NEW CODE
	CHANGE THE ACTION SEQUENCE STRUCTURE

	CHANGE ROSALI CONFIGURATION PARAMETERS
	ROSALI ACTIONS
	THE ANT FILE
	ACTION TEMPLATE FILES
	MKACTION APPLICATION
	DELACTION APPLICATION

	CONFIGURE THE APPLICATION LAUNCHER
	CHANGING THE DEPLOYMENT DIRECTORY

