o

Allen-Bradley

Logix5550 Controller | Jg@r Manual

(Cat. No. 1756-L1, -L1Mx)

Important User Information

Solid state equipment has operational characteristics differing from
those of electromechanical equipment. Safety Guidelines for the
Application, Installation, and Maintenance of Solid State Controls,
publication SGI-1.1 describes some important differences between
solid state equipment and hard-wired electromechanical devices.
Because of this difference, and also because of the wide variety of uses
for solid state equipment, all persons responsible for applying this
equipment must satisfy themselves that each intended application of
this equipment is acceptable.

In no event will the Allen-Bradley Company be responsible or liable
for indirect or consequential damages resulting from the use or
application of this equipment.

The examples and diagrams in this manual are included solely for
illustrative purposes. Because of the many variables and requirements
associated with any particular installation, the Allen-Bradley Company
cannot assume responsibility or liability for actual use based on the
examples and diagrams.

No patent liability is assumed by Allen-Bradley Company with respect
to use of information, circuits, equipment, or software described in
this manual.

Reproduction of the contents of this manual, in whole or in part,
without written permission of the Allen-Bradley Company is
prohibited.

Throughout this manual we use notes to make you aware of safety
considerations.

ATTENTION: Identifies information about practices
or circumstances that can lead to personal injury or
death, property damage, or economic loss.

Attentions help you:
* identify a hazard
* avoid the hazard
* recognize the consequences

Important: Identifies information that is especially important for
successful application and understanding of the product.

1756-6.5.12 March 1999

Summary of Changes

Introduction

Updated Information

This release of this document contains new and updated information.
To help you find the new and updated information, look for change
bars, as shown next to this paragraph.

This document has been updated throughout. The most significant
changes are:

For this new/updated information: See chapter:
Upload/download changes 2
Forcing 11

1756-6.5.12 March 1999

Notes:

1756-6.5.12 March 1999

Preface

Introduction

Task/Goal:

Using This Manual

This manual is one of several ControlLogix documents.

Documents:

Installing the controller and its components

Logix5550 Controller Quick Start, publication 1756-10.1
Logix5550 Memory Board Installation Instructions, publication 1756-5.33

Using the controller You are here I>

Logix5550 Controller User Manual, publication 1756-6.5.12

Programming the controller

Logix5550 Controller Instruction Set Reference Manual, publication 1756-6.4.1

Configuring and communicating with digital
1/0 modules

Digital Modules User Manual, publication 1756-6.5.8

Configuring and communicating with analog
1/0 modules

Analog Modules User Manual, publication 1756-6.5.9

Selecting and installing a chassis

ControlLogix Chassis Installation Instructions, publication 1756-5.69

Selecting and installing a power supply

ControlLogix Power Supply Installation Instructions, publication 1756-5.1

Who Should Use This Manual

This document provides a programmer with information about how
the Logix5550 controller:

stores and processes data

operates

communicates with other modules
processes and handles fault information

1756-6.5.12 March 1999

ii Using This Manual

Purpose of This Manual This manual is intended to help you design and operate a system
using a Logix5550 controller. The first chapter in this manual
provides the steps and information you need to get started.

Use the remainder of this manual to help you:

» work with controller projects

* configure I/0 modules

e organize data

* develop programs

+ configure produced and consumed data
* account for communication connections
* communication over a serial network

* communicate over other networks

* identify and process controller faults

Conventions and Related Terms This manual includes a glossary to define common terms.

1756-6.5.12 March 1999

Table of Contents

Getting Started Chapter 1
Using ThisChapter, 1-1
Installing the Controller. 1-2
Prepare the controller 1-3
Install the controller 1-3
Creating and Downloading a Project 1-4
Createaprojectcovviivinennnann 1-5
Changing project properties 1-6
Adding a local inputmodule 1-7
Adding a local output module 1-9
Changing module properties 1-11
Viewing 1/0tags 1-12
Creatingothertags..................ovvn... 1-13
Documenting I/O with aliastags 1-14
Enterlogic............co i, 1-16
Download aproject.............coovvninnnn.. 1-18
Viewing program scantime.................... 1-21
Viewing controller memoryusage 1-22
What ToDONext. 1-22

Working with Projects Chapter 2
Using ThisChaptert 2-1
CreatingaProject. ..., 2-1
Naming controllerst 2-2
Changing Project Properties 2-2
Working with the Controller Organizer. 2-3
Saving Your Project. 2-4
Uploading From the Controller. 2-4
Using Coordinated System Time 2-5

Configuring 1/0 Modules Chapter 3
Using ThisChapter viin... 3-1
Introduction 3-1
Logic Scanning.oov e 3-2
Defining I/OUpdates.oovvvin... 3-2
How an I/0 module usesCOS 3-2
How an I/O module usesRPI 3-3
When an analog module usesRTS. 3-3
How I/0O Modules Operate 3-3

1756-6.5.12 March1999

toc—ii Table of Contents

Organizing Data

1756-6.5.12 March1999

Configuring Local I/0. 3-4
Namingmodules. 3-5
Electronickeying............. L. 3-6
Configuring communication format 3-7
Selecting controller ownership 3-8
Inhibiting module operation..................... 3-9

Configuring I/0 in a Remote Chassis 3-11

Changing Configuration Information 3-15

Accessing /O ... 3-16
Example of local addressing 3-17
Example of remote addressing 3-18
Defining aliases. 3-19

Viewing Module Fault Information 3-19
Using the programming software to view I/0 faults . . 3-21
Using logic to monitor I/0 faults. 3-22

Chapter 4

Using ThisChapter 4-1

How the Controller StoresData 4-1

CreatingTags . ..o oo 4-2
Datatypes. 4-3
Namingtagscoveiei e 4-4
Enteringtags. ... 4-4

UsingBase TagsSoovviiiiniiiiannn. 4-6
Memory allocation for basetags 4-6
Data type CONVersions.oovevennenn.. 4-8
Specifying bits. 4-8

Using Structures 4-9
Predefined structures 4-10
Module-defined structure 4-10
User-defined structure. 4-10
Memory allocation for user-defined structures. 4-11
Referencing members within a structure. 4-12

Viewing an Array as a Collection of Elements 4-13
Indexing through arrays. 4-14
Specifying Bits Within Arrays. 4-15

Viewing an Array as a Block of Memory. 4-15
How the controller stores array data 4-16
Varyingadimension 4-17

Memory Allocation for Arrays 4-17

AliaSINg TagsS. . . oot 4-19

SCopiNg TagS .« oot 4-20
Scoping tags local toaprogram 4-21
Scoping tags global to a controller. 4-21

Table of Contents toc—iii

Developing Programs Chapter 5
Using ThisChapter oi... 5-1
Organizing Projects.t 5-1
Defining Tasks, 5-2
Using a continuoustask 5-3
Using a periodictask. 5-3
Creatingtasks. ..., 5-5
Namingtasks 5-6
Configuringtasks 5-6
Setting the task watchdog. 5-8
Avoiding periodic task overlap. 5-8
Defining Programs ..., 5-8
Creating programs.ovvii e, 5-9
Naming programsviienin i 5-9
Configuring programs, 5-10
DefiningRoutinescooviin. 5-11
Creatingroutines.covvvvnennn.. 5-11
Namingroutines ..., 5-12
Configuring routinescovvvienn.. 5-12
Entering Ladder Logic. 5-13
Enteringbranches........................... 5-14
Scheduling System Overhead 5-15
DownloadingaProject 5-16

Communicating with Other Chapter 6
Controllers Using This Chapteroeereneeaan.n, 6-1
Using MSG Instructions. 6-1
Communicating with another Logix5550 controller . . . 6-1
Communicating with other processors. 6-2
Mapping addresses. ... 6-4
Using Produced and Consumed Tags 6-6
Processing produced and consumedtags 6-7
Maximum number of produced and consumed tags .. 6-8
Planning to Support Produced and Consumed Tags. 6-9
Identifying another local controller. 6-10
Identifying a remote controller. 6-10
ProducingaTagcovviiiiiiiiannan. 6-12
ConsumingaTagoovvvvieieiii e, 6-14
Sending Large ArraysofData 6-17

1756-6.5.12 March1999

toc—iv Table of Contents

Allocating Communication
Connections

Communicating with Devices on
a Serial Link

Communicating with a
Workstation

1756-6.5.12 March1999

Chapter 7

Using ThisChaptercooiiion.. 7-1

How the ControlLogix System Uses Connections.. 7-1

Determining Connections for I/0 Modules 7-2
Direct connections for /O modules 7-2
Rack optimized connections for I/O modules. 7-4

Combining direct and rack optimized connections. . . . 7-5
Determining Connections for Produced/Consumed Tags . 7-6

Connections for producedtags 7-6
Optimizing producedtags 7-7
Connections for consumedtags. 7-7
Determining Connections for Messaging 7-7
Determining Total Connection Requirements. 7-8
Chapter 8
Using ThisChapter 8-1
USiNgRS-232 i 8-1
Connecting to the Serial Port. 8-2
Configuring the controller to use the serial port 8-3
Using the DF1 Serial Protocol 8-4
Master/slave communication methods 8-5
Configuring Serial Communications. 8-5
Configuring a DF1 point-to-point station 8-6
Configuring a DF1 slave station. 8-7
Configuring a DF1 master station 8-8
If you choose one of the standard polling modes. 8-9
Chapter 9
Using ThisChaptert 9-1
Configuring Communications to the Controller. 9-1
Defining Connection Paths 9-2
Connection pathexamples 9-4

Table of Contents toc-v

Integrating Motion Chapter 10
Using ThisChapter 10-1
Introduction. 10-1
Developing a Motion Control Application Program 10-2
Selecting the master controller 10-2
Adding a 1756-MO2AE module 10-3
NaminganaxiS............covvvvunnennnnnn.. 10-4
Configuringaservoaxisoovvun.. 10-5
Running hookup diagnostics and auto tuning. 10-11
Writing a Motion Application Program 10-12

Understanding the MOTION_INSTRUCTION tag 10-13
Using motion status and configuration parameters . 10-13

Modifying motion configuration parameters. 10-14
Handling motion faults. 10-14
Understanding errors. 10-14
Understanding minor/major faults 10-14
Understanding a programming example 10-15
Forcing Chapter 11
Using ThisChapter 11-1
FOrCING . .o 11-1
Entering FOrces. ... 11-2
Entering forces from the data monitor............ 11-2
Entering forces from the ladder editor 11-3
Enabling Forces. i 11-4
DisablingForces 11-5
Removing FOrces ..., 11-5
Monitoring FOrces. 11-6
Handling Controller Faults Chapter 12
Using ThisChapter 12-1
Understanding Controller Faults. 12-1
Viewing Controller Faults. 12-2
Monitoring /O Faults. 12-2
Handling Hardware Faults 12-3
ProcessingMinorFaults 12-3
Processing instruction-execution minor faults 12-4
Writing logic for instruction-execution minor faults . . 12-5
Processing other minor faults 12-6
Writing logic for other minor faults. 12-7
Minor Fault Typesand Codes 12-8
Processing Major Faults 12-9
Writing logic foramajorfault 12-12
Major Fault Typesand Codes 12-14
Creating a Program Fault Routine 12-16
Creating the Controller Fault Handler. 12-16

1756-6.5.12 March1999

toc—vi Table of Contents

Preparing a Power-Up Program

Troubleshooting

1756-6.5.12 March1999

Creating a program for the controller fault handler. . 12-17

Naming programso 12-17
Selecting an unscheduled program 12-17
Configuring programscoovnnn. 12-18
Creatingroutines.covvninn.. 12-19
Namingroutinescovvvninn.n. 12-19
Accessing the FAULTLOG 12-20
MajorFaultBits structure 12-20
MinorFaultBits structure 12-20
Chapter 13
Using ThisChapter 13-1
How the Controller Powers Up in Run Mode. 13-1
Processing the power-up handler 13-2
Creating the Power-Up Handler................... 13-3
Creating a program for the power-up handler 13-3
Naming programscovevieenenn.. 13-3
Selecting an unscheduled program 13-4
Configuring programscoovvviennn. .. 13-4
Creatingroutines., 13-5
Namingroutinescovivvnnnenn.. 13-6
Clearing the Major Fault 13-6
Appendix A
Using This Appendix, A-1
Identifying Controller Components. A-1
Monitoring Controller Status LEDS A-2
Determining which modules are not responding A-3
Monitoring Controller Status A-5
Viewing status through the programming software . . . A-5
Monitoring statusflags A-6
Using GSV/SSV instructions. A-6
Changing ControllerMode. A-8
Examining Controller Prescan Operations A-9
Instructions with unique prescan operations A-9
Recovering from prescan errors. A-10

Table of Contents toc—vii

IEC1131-3 Compliance Appendix B
Using This Appendix B-1
Introduction. B-1
Operating System, B-2
Data Definitions. B-2
Programming Languagescooioun. B-3
Instruction Set. B-3
IEC1131-3 Program Portability B-4
IEC Compliance Tables B-4

Specifications Appendix C
Logix5550 Controller. ot C-1
Logix5550 Memory Board C-2
1756-CP3 Serial Cable Pinouts C-3
1756-BAlBattery. ... C-3
1756-MOAZ2E Motion Module. C-4

Glossary

1756-6.5.12 March1999

toc—viii Table of Contents

Notes:

1756-6.5.12 March1999

Chapter 1

Using This Chapter

Getting Started

This chapter introduces the Logix5550 controller and provides a
quick overview on installing the controller and on creating and
downloading a project. The steps in this chapter introduce the basic
aspects of the Logix5550 controller and refer you to later chapters in
this manual for more details.

The Logix5550 controller suits a wide range of control applications
by supporting:

* multiple controllers in one ControlLogixIj chassis

controllers distributed across multiple chassis
* scheduled processor-to-processor communications

* multiple controllers that share the same I/O modules and
communications modules

ol _[O\
?Eﬂ]E:E Logix5550 Controller

Remote I/0

U

ControlLogix Chassis

|

PLC-5 Processor

FLEX I/0

13367 Drive
30169

1756-6.5.12 March 1999

1-2 Getting Started

Installing the Controller

1756-6.5.12 March 1999

The following directions summarize the procedure for installing a
Logix5550 controller. For details, see the Logix5550 Controller
Quick Start, publication 1756-10.1, which ships with the controller.

Take these precautions to guard against ESD damage:

ATTENTION: Electrostatic discharge can damage the
components. Follow these guidelines:

» touch a grounded object to discharge potential static

» wear an approved grounding wriststrap

* do not touch connectors or connector on component
boards

* do not touch circuit components inside the
controller

« ifavailable, use a static-safe work station

* when not in use, store each component in the
anti-static packaging in which it was shipped

You can install or remove ControlLogix system components while
chassis power is applied and the system is operating. If you remove
the controller, all the devices owned by the controller go to their
configured faulted state.

ATTENTION: When you insert or remove a module
while backplane power is on, an electrical arc may occur.
An electrical arc can cause personal injury or property
damage by:

» sending an erroneous signal to your system’s
actuators causing unintended machine motion or
loss of process control

* causing an explosion in a hazardous environment

Repeated electrical arcing causes excessive wear to
contacts on both the module and its mating connector.
Worn contacts may create electrical resistance that can
affect module operation.

Getting Started 1-3

Prepare the controller
1. Install the battery.

LOGIK 5000
(=1

L oo

g
z O
H

H

S

top Nno connection
middle black lead (-)
bottom red lead (+)

G-

-
0000
O(cocco a =
t

Store the lithium battery in a cool, dry environment,
typically 20° C to 25° C (68° F to 77° F) and 40% to

a7 60% relative humidity. Store the batteries in the
original container, away from flammable materials.

A Attention: Only install a 1756-BA1 battery.

For more information, see Guidelines for Handling Lithium

Batteries, publication 1756-5.68.

Install the memory expansion board, if any.

2.
b. Attach the memory board.

a. Remove the side plate.

40017

The Logix5550 controller can be purchased with a memory
expansion board already installed (catalog numbers 1756-L1M1,
-L1M2, or -L1M3).

For more information, see the Logix5550 Memory Board
Installation Instructions, publication 1756-5.33.

Install the controller

You can place the Logix5550 controller in any slot. You can use
multiple Logix5550 controllers in the same chassis. The total number

of modules in a chassis depends on power supply capacity.

1. Align the circuit board with the top and bottom guides in the chassis.

2. Slide the module into the chassis.
3. Make sure the module properly connects to the chassis backplane.

The controller is fully installed when it is flush with the power supply
or other fully-installed modules and the top and bottom latches

are engaged.

1756-6.5.12 March 1999

1-4 Getting Started

Creating and Downloading
a Project

1 Create a project

goto page 1-5

The following diagram illustrates the steps you follow to create and
download a project. The remainder of this quick start provides
examples of each step, with references to other chapters in this
manual for more details.

System setup for this quick start:

9 oo

W Bradiy

-q4— 1756-L1
slot 3

=,

QJ o ojlo o o

Configure
2 I/0 modules f ? T
goto page 1-7 empty

3

1756-6.5.12 March 1999

slot0 1756-1B16 1756-0B16E
slot 1 slot 2

You need:

« RSLogix5000 programming software

« RSLinx communication software

Create tags = DF1 point-to-point, serial connection from the workstation
goto page 1-13 to the controller (using 1756-CP3 cable)

If you don’t have this hardware, you can still follow the steps
in this quick start. Substitute the 1/0 modules you have for
the ones in the quick start and make the appropriate changes.

4 Enter logic
goto page 1-16

Download
5 a project

goto page 1-18

6 View status
goto page 1-21

Getting Started 1-5

Create a project
To follow the steps in this quick start, RSLogix5000 programming software must already be installed and running.

1. Select File — New to create a project.

SLogix 5000 see chapter 2

Edt View Search Logic

w 2
Open.. Chrl+D

[Elmze FaIeE
SavE [EtilS 3l
SEVE LS.,

2. Define the project. The software uses the project name you enter with an .ACD extension to store your project.

You must enter a name. > Marn Iq.:t_u.nl

Select the chassis type and specify Eham T |[175684% 4-5ka Chacm =]
—> n I
_ the slot number of the controller. St I_j
(You will have to change the default values.)

Describe the project (optional). ————

Duicspkarr [The o 0 sarpde conk o meter b b uech ol = |

El
Select where to store the project ———3 e |Nu°" - —IE
(typically use the default directory). I | = |

Click OK.

The software displays: B G e it L P i k. gk [

| Sl @ L]) T sl) sl
= -il | ol [0 R A

iy (T Tt), i]

controller organizer ———»

1756-6.5.12 March 1999

1-6 Getting Started

Changing project properties

1. View properties for Controller quick_start.

Ble G e Gwch Lope Gannmres
| B8] @) + ||]

feres IC| ! see chapter 2

Jri £ = |
Dvree AE_DFiA

A. Place the cursor over the Controller quick_start folder. g

B. Click the right mouse button and select Properties.

2. View the General tab.

The screen defaults to the General tab.

& Candinlls Propseies - guack ol

Saniad Pori Proioenl | BlagrFadly | Uincfede | ddveresd | Pl |
Gamd | paaTee | Cormunicson | SesdlFra
. . Vindar Allarvlusdiey Conpany, nc
Verify that the controller settings are — g o 1B
correct. Make changes if necessary. Lol e Frogrunmasia Loracla
(R -]
[merpion: |7 e a sanple coresl mshers ko ha :|l|d
d
Sthnter [T 3]
Chassis Tyge ﬁa:-{-.luun.». ™ =]
Favidorr 10
Click OK.
[Earcal Hakp
From this tab: You can:
General modify the controller name, description, and controller properties for the
current project
Date/Time online only
view and edit the controller’s wall clock time and the coordinated system time status.
Communications configure communication information that is stored with the project file
Serial Port view and configure the serial port on the controller
Serial Port Protocol configure the serial port for:
< DF1 point-to-point
= DF1slave
* DF1 master
Major Faults online only
view any major faults that have occurred on the controller
Minor Faults online only
view any minor faults that have occurred on the controller
Advanced some features are online only

view and edit advanced controller properties, which include the system fault program,
the power loss program, and system overhead time slice

File view information about the project file

1756-6.5.12 March 1999

Getting Started 1-7

Adding a local input module

1. Create a new module.
Fle Bl Yewa Bawch Logc Dok

| ﬂlﬁlul I-.'.I W I hlpl .-|.,-.I
e S

\Dvwee AE_DF1A
=1 5 Coordrole guch_stad
B Comtnodies Tagn
0 Conbrodied T mt Flsnlisn
5 Povem Up Harader
=10 Tl
= e HanTmk

see chapter 3

A. Place the cursor over the I/0 Configuration folder. g - -"_. .

B. Click the right mouse button and select New Module

2. Select an input module to add.

Tve I e Fpervrmony

[ImiEie B =]

Troa Dsscmpicn |
175 LG 1756 Cortrahiel Bridgs. Fiechrdrt Mk
170 HRID 117055 Db B B B
[ITSE-LHE 1 O o2 5 o

HFSEERET E el Coarerwrr twon | i s
IFEEAAE 115 Poird 73132 AL g

e 16 Podrd 7110 AL Lcisied lnped
Select a catalog number. 75 LAED A Poird 7561 3N AL D ingracric irput

For this quick start example, select 1756-IB16. » e 1 16 Poard 10K DT Cusgratc bngad

[IFSE-H 8 18 Poard #0200 DL I zalabed inpad. Sk /S cascn
1A 12 Poand BPCT12V D g
[IFEECTE 16 Peand XPEIN DT Ingar :I

Ghaw

vareke [= sgeuidd |

s x|

Click OK.

continued

1756-6.5.12 March 1999

1-8 Getting Started

Adding a local input module (continued)
3. Identify the input module. These screens are specific to the 1756-I1B16 input module.

m Hawr Bloadals - Locsl [1756-00008 21]

T VTREAETE 165 Pownt W1 2 DI g
Warda iU s Carspung, 1o
You should enter a name. [—_— Ll see chapter 3
Verify the slot number. g [psge [_wadie a3
1 1 it i e callibs b i E
Describe the module (optional). - [[Essergon: (75 = e e meads b b :II
Select the communication format, —pme- || e Eemt [1rs Ciats =l
Specify electronic keying. —gm- || Bessin Bl = Elecimess iy | Coargantie Hadids -]
[Cawd | | s | mome | e |
Click Next.
4. Use the Create wizard to configure the input module. Use default values for this quick start example.

If you do not want to page through each screen in the
Create wizard, click Finish to create the module using
default values.

Blnmemriacd Packat Inareal ARE [S0=] e (61 - P60 mad

Eracia
P O
(o F
N
Click Next. i E
[=
I | Conkoliue Sahe Ercs Coamdar:
=]
+ F Y
e F Bl OFC
Click Next. Bl ¥ e
4' B et 090 Ervn
Cimd ol Faarmsdas T ;
abrarl CRC Ence Treachesd e ORC
—————————— mrmmnit Pty it Iﬂ I T
Click Next.
Polmring Fisdraaking the rags rasies
ot il 1 ke s Dt |
E et | Fruns: | e |
Click Finish.

continued

1756-6.5.12 March 1999

Getting Started 1-9

Adding a local output module

1. Create a new module.

A. Place the cursor over the I/0 Configuration folder. g

B. Click the right mouse button and select New Module

2. Select an output module to add.

Select a catalog number.
For this quick start example, select 1756-OB16E.

see chapter 3

5] Cordrole quck_sed
[Cortded T
0 Corbaediag 1l el
L Popm U b arclier
== Tl
= Ty Menlak
= = HenFogam
| Puogpare Tagn
1] MsnFuaine

[

Srbpcd Bisiuls Taor
Tpe: i Epervrmnt
|76 Ca e [2 =]
rE |h$ |
17REL1 T pev i3] P p ok oo+ =]
1T 2 sy g E e Dl 3 B
hFsE- i 16 Poard B850 AL 0 urpui
1 FE- (L& B 16 Pond 102854 BT hoieted Quipa
1TEELes A Poard T 200 BT 1] iifpad
hrsg L 1 Poird T 1050 AL Dingraniic Dt
[F5E-(LaaE 3 Proand 7133 & Elncirorec sy Funed Dhtpei

| e EED 115 Foand T3 26 30 [Doty Dusdgd

HPEE0 B 16 Poard 98308 DI | zolabed Dratpas, Sk, curce
EIER 32 Posnd 3127 DT Doty
[17=5-0 F A Poind 108X [1C Thipar :I
Fhaa

Yarwke [en =] St 24 |
= oo @ F [owescsion T Moo 7 Pusesis ﬁl

[on] teea | ep |
Click OK.
continued

1756-6.5.12 March 1999

1-10 Getting Started

Adding a local output module (continued)
3. Identify the output module. These screens are specific to the 1756-0OB16E output module.

Configure
I/0 modules

2

m Haser Moslala - Local [1 756006 2 0)

Th I PEDEEE 16 Pokat 1M1 2 I E ksl Fussd
You should ent e
ou should enter a name. - Lasdl
. see chapter 3

Verify the slot number. _pg. [gy [iarai_rcehie w5 g

i i i i e il recackle v the E
Describe the module (optional). g || Essspsor: B eh :|
Select the communication format. —m || Comm Fomat [CET Tomomged Fase Doty - Dipen Custe =

Specify electronic keying. —pm- || Aessin i = Ebscionis sng | Torpuahis M roids =]

Cowed | | meiz | Fwens | e |
Click Next.
4. Use the Create wizard to configure the output module. Use default values for this quick start example.
Hiawe Mochals « Local 2 117560018 2.1 If you do not want to page through each screen in the
Create wizard, click Finish to create the module using
default values.
i mop v o H:lrnll,HHrI EIIE mr {11 -TS00m|
I bt Wl
™ Mgee F s 0 i Canbsollen I Cormeciion Fash

Hew Hobsle - Lecal 7 1V T5E-0B168E 34

Wmndar Isea it
Poochue® T pposr. o it
M kgl Progesties Loca € 1758 OEIEE 211
Ppakuce Flam -
Putel FrogramiBlods | Pl Heoos 1
BT il -
Click Next. Crmedrsaberd © =T Mgl Progeties Loca & 1756 OEVEE 2 1]
Tiran Hardest o
Tras S’] i
& i
& |on
B |on 5§
T i =1l
Click Next. [giucm i i | |~ Contaoier Stabar Znce Loursans
I'Fllﬂ'l' elach Flscare
Bt ORI
| Bue Tramst
Hubcurt AT Enc
. Cpemolilh Py
Click Next. —
Vultcast CAC Ewen T hasshokd: Bl CFA

Trarume Fiatn, Lang: | 3 I Bis Tiread:

. Mt wrany Fabpchang B pags chass
Click Next. e il b Dl s ounis |

T" < [fuck | I Firagh 55 I Halp |

Click Finish.

continued

1756-6.5.12 March 1999

Getting Started 1-11

Changing module properties

1. View properties for the module.
Ele E ea Bewch Loge Lewwricsiors I

TR | s

Drene: AE_DF1A see chapter 3

5 Conbroler quch_sul
B Comdied T g
0 Comriirodies Tl H aradsr
51 Poreae- Ui Hisrche
=12 Tarikid
= g Manlak
= = HenFrogan
G Pogaom Tage
LY iy
L1 Urectaddsd Pragar:
= Dia T
o L 0]
o g Pressivas
o gl W D]
= LT ol asdiods

A. Place the cursor over the 1756-IB16 module. g

. . . 3] 1TEEDEH EE
B. Click the right mouse button and select Properties g H §

2. View the General tab.

The screen defaults to the General tab.

Tiga P N 1 Pt 10070 34 065 gt
ereks llers iy Comrgarsy, e
Passrd: Lecal
. . H frei el 1
Verify that the module settings are — - i sl 2l
correct. Make changes if necessary. Dmmaghon: #7171 meutrmachin lortha :I
Lowan Pt | L =]

Bemn [[T 3 Echoric g [Lorcats Vodde %]

Click OK.
Sighus P [oe]| s | | wee |
The tabs that appear depend on the type of module.
From this tab: You can:
General modify the properties for the current module
Connection define controller to module behavior:

« select requested packet interval
= choose to inhibit the connection to the module
= configure the controller so loss of connection generates a major fault
= view module faults (online only)
Module Info online only
view module identification and status information
reset module to power-up state
Configuration configure the module
Backplane online only
view information about module’s communication over the backplane
clear module faults
set transmit retry limit

1756-6.5.12 March 1999

1-12 Getting Started

Viewing I/0 tags

1. View the module-defined tags.

FECL e

see chapter 3

Place the cursor on the Controller Tags folder ——
and double-click.

The 1756-I1B16 input
module is in slot 1.

The 1756-0B16E output
module is in slot 2.

}

Click the Edit Tags tab.

continued

1756-6.5.12 March 1999

Getting Started 1-13

Creating other tags

1. Create a tag.
3 Create tags

see chapter 4

Enter the name of the new tag. Tab to this column and
select the data type.

2. Select the data type.

Select TIMER. — g

Click OK.
Press Enter.

‘\

The software displays the tag.

Click + to display the members —#»
of the TIMER structure.

You might have to resize the column to see the tag extensions.

continued

1756-6.5.12 March 1999

1-14 Getting Started

Documenting /0 with alias tags

1. Create an alias tag input_1 for Local:1:l.Data.1.
3 Create tags

ontroller Tags - quick_start{controller]
Scope: Iquick_start[controlla 'I Filter: IShUW Al 'l Sork: ITag Mame 'l
F | Tag Hame + | Refers To Basze Tag Type Style Dezeription = see chapter 4
[+-Laocal1:.C AB:175E_DIC:O
[+-Local:1:l ABATEE_DLLD
[#-Local2:C ABATRE_DO:CO
[+-Lacal 2| AB:1756_DO_Fuse
#-Local2:0 ABATEE_DO:0O:0
[| El-timer_1 TIMER
T input_1 Local:1:l j INT Decimal
* f
Enter the nate of the tag. Tab here or click in the box.

Click here to select tag to reference.

2. Select an input data word.

‘Eml:ﬂd_?ﬂjm:ﬂ'l mf.mu 'l'l Bt |'ipha|

| T ag s)| i e Bazs Tag Tips
| | [Wiecsnc A1TG_OHCA
| | F s AF 1 TE_OHT
| | [FLeszn SETE_DDC
+ Luwad 21 481 TE_DD_R
| | [FlealzD 4B 175_D00:
A. Click on the input data structure. %; g 1 |BodL
B. Click + to display the members of the structure. — | PPy T
Laca i SiEr| Tl Dt
C.Clickthe inputdataword gy Locak 11wt T
Click here to select a bit.
oy Merr Dalm Tper
e - =Locm 10 AR TS DA
2. Select a specific bit. = Looad SF1PE8_Caid

Lo 1Pl [RAT

Click on the bit. >

|38 [ar s

Press Enter.

continued

1756-6.5.12 March 1999

Getting Started 1-15

Documenting 1/0 with alias tags (continued)

4. Repeat steps 1 and 2 above to create an alias tag output_1 for Local:2:0.Data.1
3 Createtags

The software displays the alias tags.
see chapter 4

I
—
—
I

I

I
—1
—
—
o

1756-6.5.12 March 1999

1-16 Getting Started

Enter logic
1. Use default task, program, and routine.
4 Enter logic

When you created the project, the software [i ol 5000 - ich_stam
automatically created a MainTask, MainProgram, and Be [Yew Sewch Logt [Cormwn

MainRoutine. Use these defaults for the quick start. Im E &] ol
fowes =l
|

D BH_DFi -
d Cordoley puch_tiet
M Coanols Tap
I Coriallea 1wl Flarsds
v Up Harelim
=5 Tasks
= " Manl ak
= T MarPgws
. . . i W T
Double-click MainRoutine.— - ﬂ “

& Urnnzhedulad Fregrane

see chapter 5

The software displays an empty routine.

2. Enter an XIO instruction.

| NS ngex AL - geick ke

B E# ew Fesch Logc [orwesicstony ook gindos Help

(0| & x[m@] o]] o w5 mie ala)

I— | =1 Bl 4 il | Q) sl weal] 4
It;:-.a_m-lﬂl ' d_qmma. T) T T

3 Cortrallen uck_riat " Hgnitropmas - MHan catere”
A Coonoks Tap
] Cormalla sk Flaraiia
| Frowerip Horele
= Tatks
= U Ml sk
= T Marfgen
@ Propes Tap
1] MsinRading
| Umnzhedulad Fregrare
3 Cuala Tumsi

= TR R}

Drag and drop the XIO instruction on an empty rung.

1756-6.5.12 March 1999

Getting Started 1-17

Entering logic (continued)

3. Assign a tag to the XIC instruction.

Double-click the tag area of the instruction. Iﬁ
— n.. -

4 Enter logic

n

CEEE]

see chapter 5

Use the drop-down menu to select the
alias tag /nput_1.
—

| Lo 5 poiend |

The software displays an incomplete rung.

4. Enter this logic.

4. Select File — Save to save the project.

1756-6.5.12 March 1999

1-18 Getting Started

Download a project

1. Make a serial connection from the workstation to the controller.

see chapter 5 and
chapter 8

Use the 1756-CP3 cable.

2. Configure the controller’s serial port for DF1 point-to-point.

A. Place the cursor over the Controller quick_start folder. gy
B. Click the right mouse button and select Properties.

A. View Serial Port Protocol.
B. Select DF1 Pt. to Pt.

_>

continued

1756-6.5.12 March 1999

Getting Started 1-19

Download a project (continued)

3. Turn the controller’s keyswitch to PROG and then back to REM.

RUN 10
- Rs232

BAT NN NN OK

Make sure the keyswitch is in the REM position. g

RUN REM PROG

This places the controller in Remote Program mode.

4. Select Communications - Configure.

Ble [Yhwa Banch Logc

I
o -

— | 0|=a 8
Fllnl- - | E;::: !
£ = | [omesoad 1
Deree AE_DF1A i
| Controlier quick_dard
2 Comdied Tim
Coribedian Tl W
P U p H s
1 T

5. Select the DF1 communication protocol.

Liieben 1] e | Ford Toks T g Dplon
Fdswasal Corirame ues” Lincidier Cinply
L [N - | 01 Bocw |
Select A-B DF1. > Pt =
Leave the connection -
path blank.
Click OK. Lo] comed | ew Hie |

see chapter 5 and
chapter 8

Important: The DF1 driver only shows as a
communication choice if you have already
configured a DF1 driver using RSLinx
communication software.

1756-6.5.12 March 1999

1-20 Getting Started

Download a project (continued)

6. Select Download.

see chapter 5 and
chapter 8

Click Download.

7. Put the controller in Run mode.

1756-6.5.12 March 1999

Getting Started 1-21

Viewing program scan time

1. View properties for the MainProgram. Lt

olsla) 8 - [wle| |

=

see chapter 5

A. Place the cursor over the MainProgram folder. g

B. Click the right mouse button and select Properties.

2. Select the Configuration tab.

This tab displays the maximum and last — g
scan times for the program.

1756-6.5.12 March 1999

1-22 Getting Started

Viewing controller memory usage

1. View properties for Controller quick_start.

o|elal & | |e
Sl

A. Place the cursor over the Controller quick_start folder.
B. Click the right mouse button and select Properties g

2. Select the Advanced tab.

In addition to other information, this tab
displays controller memory usage.

see chapter 5

What To Do Next Once your controller is installed and operating, you can begin
developing and testing your control application. Use RSLogix5000

programming software.

Use the remaining chapters in this manual as reference material for
developing and testing your control application. The remaining
chapters provide detailed information about how the

controller operates.

1756-6.5.12 March 1999

Chapter 2

Using This Chapter

Creating a Project

1. Select File — New.

Ewwns-mw;m

Working with Projects

For information about: See page:

Creating a project 2-1
Changing project properties 2-2
Working with the controller organizer 2-3
Saving your work 2-4
Uploading from the controller 2-4
Using coordinated system time (CST) 2-5

Before you can begin programming or configuring the controller, you
must create a project file. The project file is the file on the hard drive
of your workstation that stores logic and configuration information.
The project file has an .ACD extension.

To create a project, specify this information:

e fpavsci_1
1 P T e — j
joitaber [<
Darroapan Tho mn meanpl propect _l
El
Ciwste I |' WA FoL oo "SNP fwmea |
[0k] Cecw | e |

In this field: Enter:

Name Enter the name of the controller for this application. This
name is also used for the project file (with an .ACD
extension). The name is required.

Chassis Type Select the type of chassis that contains the controller. Use
the pull-down menu to select from the available types.

Slot Number Select the slot number where the controller is installed.

Description Enter a description of the controller (optional).

Create In Select where to store the project file on the hard drive of

your workstation. You can use the default (which was
configured when the software was installed) or specify a
different location.

1756-6.5.12 March 1999

2-2 Working with Projects

Changing Project Properties
1. Place the cursor over the Controller folder.

2. Click the right mouse button and
select Properties.

Fle Bl Yews Bemch Loge Comrmini
| Bl @) 0@ -]
= = |

s E i = |

Ciriver. 8E_DF1

From this tab:

Naming controllers

Controller names follow IEC 1131-3 identifier rules and:

* must begin with an alphabetic character or an underscore ()

* can contain only alphabetic characters, numeric characters,
and underscores

* can have as many as 40 characters

* must not have consecutive or trailing underscore characters ()

You can also add a description. Descriptions can have as many as 128

characters. You can use any printable character.

To change the properties of a project, such as name or controller type,

specify this information:

& Candinlls Propseies - guack ol

Saniad Pori Proioenl | BlagrFadly | Uincfede | ddveresd | Pl |

Gamd | paaTee | Cormunicson | SesdlFra
k- Alarvlindey Corpary Inc
T TRELY
Picgrarmacts Loraolar
[T]
Loy pion. 'M:::m-.w:l':.:lr-k-ll"-::!.r:l:l:lld
j
Sig ks |'| 3
Chasais Ty Fﬂ.ﬂ{nl'ﬂhl‘ln ™ j
[n
[] Carxal Hadps

You can:

General

modify the controller name, description, and controller properties for the
current project

Date/Time

online only
view and edit the controller’s wall clock time and the coordinated system time status.

Communications

configure communication information that is stored with the project file

Serial Port

view and configure the serial port on the controller

Serial Port Protocol

configure the serial port for:
< DF1 point-to-point

e DF1slave

* DF1 master

Major Faults

online only
view any major faults that have occurred on the controller

Minor Faults

online only
view any minor faults that have occurred on the controller

Advanced

some features are online only
view and edit advanced controller properties, which include the system fault program,
the power loss program, and system overhead time slice

File

view information about the project file

1756-6.5.12 March 1999

Working with Projects 2-3

Working with the

Controller Organizer

The controller organizer is a graphical representation of the contents
of'a project. The display uses folders and files to group information
about logic and configuration.

5L g SN - paapact_1

s Ed Yew Fesch Logo [Coraes
Bjoru| & | |e])<
Jouies ER
|

Dwver &B_DF1-1

!I:-.--ueﬂ-n.

I Cornalas [oalk Flarsdied
1 FrovesrLip Haredm
= 3 Tehis
= U Mol ok
= MarPogem
& Poyes Tap
Bl vsrRsire
~1 Urnzhedulad Prograne
3 Daba Towsri
R]
= L Fesdebrad
g o ootk [hfwd
2 1) Confinanion

In front of each folder, there is an icon with a + sign or a — sign. The
+ sign indicates that the folder is closed. Click on it to display the
files in the folder. The — sign indicates that the folder is already open
and its contents are visible.

Click the right mouse button on any item in the controller organizer to
display a context-sensitive menu for that item. These pop-up menus
are often shortcuts to using options from the menu bar. The examples
in this manual most often use right-click actions on items in the
controller organizer.

1756-6.5.12 March 1999

2-4 Working with Projects

Saving Your Project

Uploading From the Controller

1. Select Upload.

1756-6.5.12 March 1999

As you create logic and make configuration changes, save your work
to the project file.

If you: This is what happens:

Save The programming software saves programming and
configuration changes to the current project file. The title
bar of the programming software displays the name of the
current project file.

Save As The programming software creates a new project file
using the current project file and the name you specify.

The controller name is independent of the project file
name. If you save a current project file as another name,
the controller names is unchanged. Use controller
properties to change the controller name to match the
project name.

If you are programming online when you save your project, data
values are uploaded from the controller and saved as well.

Important: If you do not want the data values uploaded from the
controller, go offline before saving the project.

If you do not have the project file for a controller, you can upload
from the controller and create a project file. However, not everything
that is stored in a project file is available from the controller. If you
upload from a controller, the new project file will not contain:

* rung comments

» descriptions for tags, tasks, programs, routines, modules, or
user-defined structures

» chains of aliases (aliases pointing to other aliases)

Alias chains are not completely reconstructed from the controller.
If there are several possible names for a data item, the firmware
and software choose a best-fit alias that may not reflect how the
alias was specified in the original project.

If you upload a project from a controller and there is not a matching
project on the workstation with the same name, use Select File to
enter a name. This process saves the project to the workstation using
the name you enter. The project will not have any comments and
descriptions, because this information is not stored in the controller.

If you upload a project from a controller and a matching project file
with the same name already exists on the hard drive of the
workstation, the upload process offers two choices. If you use Select
File and enter a new name, the process saves the project to the
workstation under a different name. If you select Upload Merge, the
process merges the project image in the controller with the comments
and descriptions in the project file on the workstation.

Working with Projects 2-5

Using Coordinated System Time
1. Place the cursor over the Controller folder.

2. Click the right mouse button and
select Properties.

Pl N Yea Bewch Loge [Cowmaic

| Bl @) 0@ -]
= = |
s E i = |

Ciriver. 8E_DF1

Only one controller in a chassis
can be the CST master.

The coordinated system time (CST) property specifies a synchronized
time value for all the modules within a single ControlLogix chassis.
The CST timestamp is a 64-bit value that represents the number of
microseconds since the CST master started counting. CST data from
modules within a single ControlLogix chassis can be compared to
determine the relative time between data samples.

When there is a CST master in the chassis, all the I/O modules and
controllers in that chassis keep their CST clocks synchronized. You

must have a CST master if you use the 1756-M02AE servo module.

To define a controller as the master, select the check box.

=i Comiealiey Propeior sl

Ceisl PoaPookocel | MsiFads | MeoiFels | adeswed | R
] gt T Cordrime-stonl. I aisl Frod

U
e |
Caordnates Syt Tora

™ iahn Bar conirolr ta puchs

- 16 i i

o Sahiraed wlth & e
- Erphec st ressie Sataciad
J Tiona huschasas Liiad

[& | oo | o]

The CST value is stored as an array of two DINT elements. The
TIMESTAMP[0] element stores the lower 32 bits; the
TIMESTAMPJ[1] elements stores the upper 32 bits.

You can compare the CST clocks of different modules in the same
chassis for timekeeping purposes. For example, knowing when an
input bit changed by checking the CST timestamp from the input
module, you can schedule an output bit to change 4.736 seconds later
according to the CST clock in the output module. For an example of
using timestamped inputs to schedule outputs, see the ControlLogix
Digital I/O Modules User Manual, publication 1756-6.5.

1756-6.5.12 March 1999

2-6 Working with Projects

Not all I/O modules support the CST communication format. You
select CST when you specify the communication format as you add
the 1/0 module to the controller organizer.

Typa: PSS TE 1E Pk PRI AL Irgad
Wk e Svrbey
Pasar Ligs

SHrammn rar Ciala

Lizisri Ol - OS50 | erssasmpad Depesd Diads
i Crs - il [g
Caresl | + [fack | [” P 55 I Halp:

The controller also has a WALLCLOCKTIME object that is similar
to the CST timestamp. The WALLCLOCKTIME object has a
DateTime attribute that provides the time that has elapsed since
12:00 am 1 January 1972.

Use a GSV instruction to capture the DateTime attribute of the
WALLCLOCKTIME object into a DINT[7] array.

This element: Contains:

DINT[O] year

DINT[1] integer representation of month (1-12)
DINT[2] integer representation of day (1-31)
DINT[3] hour (0-23)

DINT[4] minutes (0-59)

DINT[5] seconds (0-59)

DINT[6] microseconds (0-999,999)

You could also use a GSV instruction to capture the
CurrentValue attribute of the WALCLOCKTIME object into a
DINT]J2]. This provides the number of microseconds that have
elapsed since 12:00 am 1 January 1972.

This element: Contains:
DINT[O] lower 32 bits of value
DINT[1] upper 32 bits of value

1756-6.5.12 March 1999

Chapter 3

Using This Chapter

Introduction

2. make decisions via a control program
(ladder logic based on the status of devices)

1 « read the status of various input devices

Configuring 1/0 Modules

For information about: See page:

How the controller scans 1/0 3-1
Defining 1/0 updates 3-2
How I/0 modules operate 3-3
Configuring local 1/0 3-4
Configuring remote /0 3-11
Accessing 1/0 3-16
Viewing module fault records 3-19

The configuration information for the module depends on the module
you selected. For more information, see the user documentation for
the specific module.

This document: Has this publication number:
Digital Modules User Manual 1756-6.5.8
Analog Modules User Manual 1756-6.5.9

The basic function of a programmable controller is to:

3 . Set the status of output devices (such
as lights, motors, and heating coils)

(such as pushbuttons and limit switches) —\—\ —\ — DI
00 0000000000
[
ooooog ‘ \
oooodg
40015

The controller performs two primary functions:

* executes logic
* reads input data and sends output data

1756-6.5.12 March 1999

3-2 Configuring /0 Modules

Logic Scanning

Defining I/0 Updates

If the I/0 module is:

The controller continually scans the control logic. One scan is the
time it takes the controller to execute the logic once. Input data
transfers to the controller asynchronous to the logic scan. The
controller transfers output data at the end of each and every
program scan.

If you want input data to remain constant throughout one scan, make
a copy of the input data at the beginning of the scan and use the copy
throughout the scan.

The ControlLogix system follows a producer/consumer model. Input
modules produce data for the system. Output modules, controllers,
and intelligent modules produce and consume data.

The producer/consumer model multicasts messages. This means that
multiple nodes can consume the same data at the same time from a
single device. Where you place I/O modules in the control system
determines how the modules exchange data.

And you place the module here: The data exchange method is based on:

digital

local chassis change of state
and
requested packet interval

remote chassis requested packet interval

analog

local chassis real time sample
and
requested packet interval

remote chassis real time sample
and
requested packet interval

1756-6.5.12 March 1999

How an I/0 module uses change-of-state (COS)

Digital input modules in the local chassis use the change-of-state
method to transfer data. This method transfers data whenever an
input point changes from ON to OFF or OFF to ON.

Use change-of-state data exchange in projects where:

» data changes rapidly, such as counting, timing, and position
referencing applications

+ data is digitally-intensive, such as packaging and
material-handling applications

Configuring /0 Modules 3-3

How 1/0 Modules Operate

Module Type: Placement:

You must specify an RPI regardless of whether you enable COS. If a
change does not occur within the RPI timeframe, the module
multicasts data at the rate specified by the RPI.

How an I/0 module uses the requested packet interval (RPI)

The requested packet interval is a cyclic data exchange that specifies
the rate at which a module multicasts its data. Data is updated at a
rate that is appropriate to the module and your project. You can
reserve bandwidth for rapidly-changing modules. Data updated at
precise intervals provides for better determinism.

Use cyclic data exchange in projects where:

» data changes slowly, such as measuring temperature or flow
» data exchange must be predictable and repeatable

* you need precision sampling for closed-loop control (PID)

+ data is needed for trending, data logging, etc.

When an analog module uses real-time sampling (RTS)

Analog input modules use real-time sampling (RTS). The analog
module scans all the input channels but multicasts only the channel
data that changed.

The type of module and where you place the module determines how
the module operates:

Operation:

digital input local chassis

The RPI specifies the rate at which a module multicasts its data. The time ranges
from 200 microseconds to 750 milliseconds. When the specified time frame elapses,
the module will multicast data.

If a change of state (COS) does not occur within the RPI timeframe, the module
multicasts data at the rate specified by the RPI.

Because the RPI and COS functions are asynchronous to the logic scan, it is possible
for an input to change state during program scan execution. Buffer input data so your
logic has a stable copy of data during its scan. Copy the input data from your input
tags to another structure and use the data from there.

remote chassis

The RPI and COS values still define when the module multicasts data within its own
chassis, but only the value of the RPI determines when the owner controller receives
the data over the network.

When an RPI value is specified for an input module in a remote chassis, in addition to
instructing the module to multicast data within its own chassis, the RPI also
“reserves” a spot in the stream of data flowing across the ControlNet network. The
timing of this “reserved” spot may or may not coincide with the exact value of the RPI,
but the owner-controller will receive data at least as often as the specified RPI.

digital output local chassis

If the module resides in the same chassis as the owner-controller, the module
receives the data almost immediately after the owner-controller sends it.

remote chassis

If an output module resides in a chassis other than that of the owner-controller (i.e. a
remote chassis connected via ControlNet), the owner-controller sends data to the
output module only at the RPI rate.

The RPI also “reserves” a spot in the stream of data flowing across the ControlNet
network. The timing of this “reserved” spot may or may not coincide with the exact
value of the RPI, but the output module receives data at least as often as the
specified RPI.

1756-6.5.12 March 1999

3-4 Configuring /0 Modules

Module Type: Placement: Operation:

analog input local chassis The RTS value specifies when to multicast updated channel data. The RPI value
specifies when to multicast all its current channel data.

The module resets the RPI timer each time an RTS transfer occurs. If the RTS value is
less than or equal to the RPI value, each multicast of data from the module has newly
updated channel data. The module only multicasts at the RTS rate.

If the RTS value is greater than the RPI, the module multicasts at both the RTS rate
and the RPI rate.

remote chassis The RPI and RTS rates still define when the module multicasts data within its own
chassis, but only the RPI value determines when the owner-controller receives the
data over the network.

The RPI also “reserves” a spot in the stream of data flowing across the ControlNet
network. The timing of this “reserved” spot may or may not coincide with the exact
value of the RPI, but the controller receives data at least as often as the specified
RPI.
analog output local chassis The RPI value specifies when the owner-controller broadcasts output data to the

module. If the module resides in the same chassis as the owner-controller, the
module receives the data almost immediately after the owner-controller sends it.

remote chassis If an output module resides in a chassis other than that of the owner-controller (i.e. a
remote chassis connected via ControlNet), the owner-controller sends data to the
output module only at the RPI rate.

The RPI also “reserves” a spot in the stream of data flowing across the ControlNet
network. The timing of this “reserved” spot may or may not coincide with the exact
value of the RPI, but the output module receives data at least as often as the
specified RPI.

Configuring Local 1/0 You use your programming software to configure the I/O modules for
the controller.

When you configure an I/O module, you specify characteristics
specific to that module. The programming software automatically
adds the module-defined tags for the module as

controller-scoped tags.

1756-6.5.12 March 1999

Configuring /0 Modules 3-5

1. Select I/0 Configuration.
2. Click the right mouse button and select

New Module.

[le ES Yo Goamch Logc [ommnics

| Blaglel] cof x| =<

fren = |

TE—

Dewee: AE_DF1

| Condroder quick,_dard
2 Cominoled Tagn
Coarieedias 1wt Hasralier
P Ui p: Haraher
= - Tt
= T Tk
3 HenFogen
A P Toge
B WsnFiadng
U recteckisd Progrem:
1 Dt T e
SRR |
U Frecehres
11 O Wbl Dobresd

! [1FREE
[N TR0

To configure an I/O module, select which module to install. Then
specify this information:

[hom Mol Localtirsemiezn @

Ths TTREAETE 16 ol W1 2V I frgad

wErdor Jlim Ua e Corspsng Inc

Farerd Lacal

Plages: |-'b,'u Wik s = 3 F j

B . it in et el wsibe bod e = |

Ll _;l
Coorm Frat 1t Dty |
Aemaaa I_ | 3 oo s | Doanguntis o b -
[Tcawa | | bsar | memn | e |

In this field: Enter:
Name Enter a name for the module (optional).
Description Enter a description for the module (optional).
Slot Number Enter the slot number where the module is installed.

Communication Format

Select one of the communication formats supported by the
module. Some formats specify controller ownership of the
module. The communication format can also define the
data structure the module uses.

Electronic Keying

Select an electronic keying method.

After you identify the I/O module, the programming software
displays additional configuration screens, which depend on the type
of module. Once you finish the configuration, the I/O module
appears in the controller organizer.

Naming modules
Module names follow IEC 1331-3 identifier rules and:

must begin with an alphabetic character or an underscore ()
can contain only alphabetic characters, numeric characters,
and underscores

can have as many as 40 characters

must not have consecutive or trailing underscore characters ()

You can also add descriptions to modules. Descriptions can have as
many as 128 characters. You can use any printable character.

1756-6.5.12 March 1999

3-6 Configuring /0 Modules

1756-6.5.12 March 1999

Electronic keying

ATTENTION: Becarefulwhenyoudisable electronic
keying. If used incorrectly, this option can lead to
personal injury or death, property damage, or
economic loss.

Specify electronic keying to ensure that a module being inserted or
configured is the proper revision.

Topa TSR 1E Port P15 SE Inpai
Vol ilbon vy
Pypar L
Hage: | el 5
[escrglee | =
)

ey Pt Il'pul [l

i I 3 Elr b [Coreii Hatie B
-

Laracsl

=

it | gty | P | ek

Keying:

Description:

compatible module

The module must be compatible with the software
configuration. These characteristics must match:

< module type

= catalog number

* major revision

The minor revision must be equal to or greater than the
one specified in the software.

disable keying

No attributes of the software or hardware are required
to match.

exact match

The module must match the software configuration
exactly. These characteristics must match:

« module type

= catalog number
* major revision
* minor revision

ATTENTION: Changing the RPI and electronic
keying selections may cause the connection to the
module to be broken and may result in loss of data.

ATTENTION: Be extremely cautious when using the
disable keying option. Ifused incorrectly, this option
can lead to personal injury, death, property damage, or
economic loss.

Configuring /0 Modules 3-7

communication format: input data

Configuring communication format

The communication format determines the data structure the 1/0
module uses, as well as the type of connection made to the module
and the controller ownership of the module. Many I/O modules
support different formats. Each format supports a different

data structure.

Use the documentation for the I/O module to determine what data
format to use. The larger data formats use more controller memory
and use more bandwidth on the communication network.

For example, the following structures are available for a 1756-1B16
module. The communication format determines the predefined tags.

[=Local1.C fo..0 ARATRE_DILC:O
—Local1:C.DiagC05Dizable 0 | Decimal BOOL
—Local 1:C.FilkerDf0n_0_7 1 (Decimal SIMNT
—Local1:C FiterOnOff_0_7 1 |Decimal SIMT
—Local 1:C.FilkerQf0n_8 15 1 (Decimal SIMNT
—Local1:C.FiterOnOff_8 15 1 |Decimal SIMT
—Local 1:C.FilkerDf0n_16_23 0 |Decimal SIMNT
—Local1:C.FiterOnOff_16_23 0 | Decimal SIMT
—Local 1:C.FilkerDf0n_24 3 0 |Decimal SIMNT
—Local1:C.FiterOnOff_24 31 0 | Decimal SIMT
—Local1:C.CO50n0MER Z#0000_0000_0000_0000 1111 1111 1111 1111 |Binary DINT
" Local1:C.COS0RORER Z#0000_0000_0000_0000_1111_1111_1111_1111 |Binary DINT
[=l-Local:1:1 fo..0 AB1TRE_DLLO
- Local1:LFaul Z#0000_0000_0000_0000_0000_0000_0000_0000 | Binany DINT
"L ocal1:l.Data Z#0000_0000_0000_0000_0000_0000_0000_0000 |Binary DINT
communication format: listen only
[=-Local 7l Io.a] ABTTRE_DILO
- Local 7.1 Faul 2#0000_0000_0000_0000_0000_0000_0000_0000 | Binary DINT
" ocal 7:1.Data 2#0000_0000_0000_0000_0000_0000_0000_0000 | Binary DIMT

1756-6.5.12 March 1999

3-8 Configuring /0 Modules

Selecting controller ownership

The ControlLogix architecture makes it possible for more than one
controller to communicate with (own) one I/O module. Multiple
controllers can own an input module; only one controller can own an
output module.

There is a noted difference in controlling input modules versus
controlling output modules.

Controlling: This ownership: Description:

input modules owner An input module is configured by a controller that establishes a connection as an
owner. This configuring controller is the first controller to establish an
owner connection.

Once an input module has been configured (and owned by a controller), other
controllers can establish owner connections to that module. This allows
additional owners to continue to receive multicast data if the original owner
controller breaks its connection to the module. All other additional owners must
have the identical configuration data and identical communications format that
the original owner controller has, otherwise the connection attempt is rejected.
listen-only Once an input module has been configured (and owned by a controller), other
controllers can establish a listen-only connection to that module. These
controllers can receive multicast data while another controller owns the module.
If all owner controllers break their connections to the input module, all
controllers with listen-only connections no longer receive multicast data.
output modules owner An output module is configured by a controller that establishes a connection as
an owner. Only one owner connection is allowed for an output module. If
another controller attempts to establish an owner connection, the connection
attempt is rejected.
listen-only Once an output module has been configured (and owned by one controller),
other controllers can establish listen-only connections to that module. These
controllers can receive multicast data while another controller owns the module.
If the owner controller breaks its connection to the output module, all controllers
with listen-only connections no longer receive multicast data.

You specify ownership by selecting the communications format when
you configure the I/O module.

M byl Propetiey - Loca 8756 1696 2.0
Tupa PR E 1 Pont TR-1 3% AL Inpa
Warekii o dvrdey
Paear Liwas

Linieri Ol - 5T | srssdsmpad Depeat sl
I kb ok - il [gy
sl 1 fact bty || P | Ik

1756-6.5.12 March 1999

Configuring /0 Modules 3-9

— e [e

Inhibiting module operation

In some situations, such as when initially commissioning a system, it
is useful to disable portions of a control system and enable them as
you wire up the control system. The controller lets you inhibit
individual modules or groups of modules, which prevents the
controller from trying to communicate with the modules.

When you configure an I/O module, it defaults to being not inhibited.
You can change an individual module’s properties to inhibit
a module.

ATTENTION: Inhibiting a module causes the
connection to the module to be broken and prevents
communication of I/O data.

On the Connection tab of the module properties in the programming
software, you can select to inhibit that specific module.

Mgl Progodiey Loca 4 [1756 416 211

Brscpmctes Packai s P01 [F U] e (13- F580 s

™ oo o O Coondrilien || Corarascion Fiasks 'l s Fun M cos
Wiuchde: Fomdl

[[k oty | oo il

1756-6.5.12 March 1999

3-10 Configuring /0 Modules

When you inhibit a communication bridge module, such as a
1756-CNB or 1756-DHRIO module, the controller shuts down the
connections to the bridge module and to all the modules that depend
on that bridge module. Inhibiting a communication bridge module
lets you disable an entire branch of the I/O network.

When you select to inhibit the module, the controller organizer
displays a yellow attention symbol (/\) over the module.

If you are: Inhibit a module to:

offline put a place holder for a module you are configuring
The inhibit status is stored in the project. When you download the project, the module
is still inhibited.

online stop communication to a module

If you inhibit a module while you are connected to the module, the connection to the
module is closed. The modules’ outputs go to the last configured program mode.

If you inhibit a module but a connection to the module was not established (perhaps
due to an error condition or fault), the module is inhibited. The module status
information changes to indicate that the module is inhibited and not faulted.

If you uninhibit a module (clear the checkbox), and no fault condition occurs, a
connection is made to the module and the module is dynamically reconfigured (if the
controller is the owner controller) with the configuration you created for that module.
If the controller is configured for listen-only, it cannot reconfigure the module.

If you uninhibit the module and a fault condition occurs, a connection is not made to
the module. The module status information changes to indicate the fault condition.

1756-6.5.12 March 1999

Configuring /0 Modules 3-11

[Jze the G5V instruction bo get the current statug of the module named input_module”
[Jze the S5% instruction o set the state of “input_module’ as either inhibited ar uninhibited

To inhibit a module from logic, you must first read the Mode attribute
for the module using a GSV instruction. Set bit 2 to the inhibit status
(1 to inhibit or 0 to uninhibit). Use a SSV instruction to write the
Mode attribute back to the module. For example:

G5

Configuring I/0in a
Remote Chassis

For a:

et system value
CIP Object clasz MODILE
CIP Object name input_module

Attribute name b ode
Dzt input_rmod_mode
0

|Jze thiz walue to zet

input_mod_mode. 2
to 1 ta inhibit the
miodule or ko O to

uninhibit the module

55 _state input_mod_mode. 2
TE o

S5
Set system value —
CIP Object clasz MODILE
CIP Object name input_module

Attribute name b ode
Source input_rmod_mode
0

Configuring I/O in a remote chassis is similar to configuring local
I/0. The difference is that you must also configure the
communication module in the local chassis and the communication
module or adapter in the remote chassis.

The following example shows how to add the remote chassis and 1/O
to the controller organizer. How you configure the communication
and 1/0 modules depend on the network. For details, see:

Use this module: See this publication:

DH+ or remote I/0 network

1756-DHRIO Data Highway Plus and Remote 1/0 Communication

Interface Moaule User Manual
publication 1756-6.5.2

ControlNet network

1756-CNB ControlNet Communication Interface User Manual

publication 1756-6.5.3

Device Net network

1756-DNB DeviceNet Scanner Configuration User Manual

publication 1756-6.5.15

Ethernet network

1756-ENET Ethernet Communication Interface Module Manual,

publication 1756-6.5.1

1756-6.5.12 March 1999

3-12 Configuring /0 Modules

1. Configure a communication module for the local chassis. This

1. Se_lect I/0 _Configuration- module handles communications between the controller chassis
2. Click the right mouse button and select and the remote chassis. Then specify this information:
New Module.
M pabgle Propesties Loca [§75E CHE .11
EESETT
T R T .
T 1756-CHE 1758 Consoblet Bidge
| Sloui) =] 2 1w -] il i
—] 1 . -
Foia Al ol Mg | gk |2
T M- Bk | :]

Lo | 1 ik I [k - || Firdah >> I el I

In this field: Enter:
Name Enter a name for the module (required).
Description Enter a description for the module (optional).
Slot Number Enter the slot number where the module
is installed.
Electronic Keying Select an electronic keying method.
1. Select the local communication module. 2. Configure a communication module or adapter for the remote

2. Click the right mouse button and select

New Module. chassis to communicate with the module you just configured.

This module handles communication for the remote chassis.

i G Wn e lade femmelasion o Then specify this information:

|!|!!—"Ii|!£l—l—“ Prospasivey crils mpahgles 1755 CMB 7,4
= E)] Z
a1
[A -1
ok sl

A il T

1756-6.5.12 March 1999

Configuring /0 Modules 3-13

In this field: Enter:

Name Enter a name for the module. The name of a
communication module is required. The
programming software uses the name to create
tag names for I/0 in the chassis.

Description Enter a description for the module (optional).
Slot Number Enter the slot number where the module

is installed.
Communication Format Select one of the communication formats

supported by the module. The format
determines the I/0 communication method.
For more information on /O communications,
see chapter 7.

Node Enter the node number of the module.

Chassis Size Enter the chassis size (number of slots) of the
remote chassis.

Electronic Keying Select an electronic keying method.

When you click on a local communication module and add a remote
communication module, the local module becomes the “parent
module” to the remote module. The controller organizer shows this
parent/child relationship between local and remote modules.

If you are configuring a 1756-CNB module for the remote chassis:

A. Add /O to the chassis.
B. Run RSNetworx software to configure the connections.

C. Download the project to the Logix5550 controller.

1756-6.5.12 March 1999

3-14 Configuring /0 Modules

1. Select the remote communication module. 3. Now you can configure the I/O modules for the remote chassis by
2. Click the right mouse button and select adding them to the remote communication module. Follow the
New Module. same procedure as you do for configuring local I/O modules.
T I — [Mechube Propesties - semste_ceb (1756080620 B

[o [e ey pe Deirs [a g
| mlora o 3] - | T Tops 1PBEH1E 16 Ponk 10451 3 B Irget
= |} B, E arnka o By
ZET— el = Paer erwls_orb
— o | e [o
A Coiechn T - =
ot] | =
.':II;;:l':_l Cowrum Ptz I“’" Lk :I
'.!:',:;:-...: Eprveman r |' E ElchmricEapng | Lompantin Hadie =]
i P
- g e
il:-?\:'.-mmr-u- Coresl | clect | g || eme | mee |
T

In this field: Enter:
Name Enter a name for the module (optional).
Description Enter a description for the module (optional).
Slot Number Enter the slot number where the module

is installed.
Communication Format Select one of the communication formats

supported by the module. Some formats
specify controller ownership of the module. A
format can also define the data structure the
module uses.

Electronic Keying Select an electronic keying method.

1756-6.5.12 March 1999

Configuring /0 Modules 3-15

Changing Configuration
Information
1. Select a module (“1756-I1B16” in this example).

2. Click the right mouse button and
select Properties.

Once you configure an I/0 module, you can change configuration
information. The configuration tabs that are available depend on the
type of module. To change the configuration of an existing module
(this example is for a 1756-1B16 module):

Ty TSI TE Paand 1081125 DL g
Bl [Vs Gawch Logo (Coacsion raie Bl i amlie
| D@] &]%le] T Pt Loca
riee S F El S A S 3
TET— B il -
Drivee AE_DF1 A0 s 5|
i Contoler udh,_thal e -
Carduded 1 2 - [—erTET—
L’f I:.l'\-'\l-lI::IIn‘lll i |_ T || ekt
P Ul p Harchies
1 Tads
- A EenT b
3 HenF g
A P Tan Sl Ol T Hew
B Wi
Uredrachiss Fregrars
i Digta T
i, Ve ediresd
B Frads d . . .
i : H:L:ﬂw On this tab: In this field: Enter:
23 LT Condgiarakon - -
; General Name The programming software displays the current name
1] 175608 of the program. Edit the name, if necessary.
= [mEcH S — . .
[R R T Description The programming software displays the current
description. Edit the description, if necessary.
i Slot Number The programming software automatically displays the
Creea Rsferirecn current slot number. Edit the slot number, if necessary.

Communication The programming software displays the current

Format communication format. You cannot change the
selection from here - you must delete the module and
re-create it with a different selection.

Electronic Keying The programming software displays the current
electronic keying method. Change this method, if
necessary.

Connection Requested The programming software displays the current RPI

Packet Interval setting. Edit the RPI, if necessary. You can select from
0.1-750.0 msec.

Inhibit Module ~ The programming software displays whether or not the
module is inhibited. Change this selection,
if necessary.

Major Fault The programming software displays whether or not the
controller generates a major fault if the connection to
this module fails. Change this selection, if necessary.

Module Info The programming software displays product and status information about
the module. You can reset the module. There are no fields to select or
enter data.

Configuration Enable Change of The programming software displays the current COS

State setting for each 1/0 point. Change these selections,
if necessary.

Input Filter Time The programming software displays the current input
filter time settings for the /0 module. Change these
selections, if necessary.

Backplane The programming software displays backplane status information. There

are no fields to select or enter data. You can clear faults and reset the
status counters.

1756-6.5.12 March 1999

3-16 Configuring /0 Modules

Accessing I/0

1756-6.5.12 March 1999

I/0O information is presented as a structure of multiple fields, which
depend on the specific features of the I/O module. The name of the
structure information is based on the location of the I/O module in the
system. Each I/O tag is automatically created when you configure the
I/0 module through the programming software. Each tag name
follows this format:

Location:SlotNumber: Type. MemberName.SubMemberName. Bit

where:
This address variable: Is:
Location Identifies network location
LOCAL = local chassis
ADAPTER_NAME = identifies remote chassis
communication adapter or bridge module
SlotNumber Slot number of I/0 module in its chassis
Type Type of data
| = input
0 = output
C = configuration
S = status
MemberName Specific data from the I/0 module; depends on what type
of data the module can store
For example, Data and Fault are possible fields of data for
an 1/0 module. Data is the common name for values the
are sent to or received from I/0 points.
SubMemberName Specific data related to a MemberName.
Bit (optional) Specific point on the 1/0 module; depends on the size of

the 1/0 module (0-31 for a 32-point module)

For more information on tags, see chapter 4.

Configuring /0 Modules 3-17

Example of local addressing

This example addresses a bit in an I/O module that resides in the
local chassis.

| ==

‘OJ a ajo [i] %‘ED
Tags for the input module: Tags for the output module:
Local:1:l.Data.0 Local:2:1.Data.0
Local:1:I.Fault.0 Local:2:I.Fault.0

Local:2:0.Data.0

40049

The name Local indicates that these tags reference modules that are in
the same chassis as the controller.

1756-6.5.12 March 1999

3-18 Configuring /0 Modules

Example of remote addressing

This example addresses an I/O module in a remote chassis.
0123
ol O

-

=
c
—— "9 —1| SwitchesRack
——F——| (name assigned to the
U =====—-) 1756-C\B module)
s s
© me—t=lE | SensorRack
—————F@—]| (name assigned to the
1| 1756-CNB module)
p=gE===

40050
TTags for the output module:

SensorRack:1:l.Data.0
SensorRack:1:l.Fault.0
SensorRack:1:0.Data.0

1756-6.5.12 March 1999

Configuring /0 Modules 3-19

Example:

Defining aliases

A tag alias lets you create one tag that represents another tag. This is
useful for defining simplified tag names for I/O values. For example:

Description:

/O structure

Local:0:0.Data.0
Local:0:l.Fault.0

This example uses simpler tags to refer to
specific I/0 points.

alias light_on= Local:0:0.Data.0
light_off= Local.0:l.Fault.0

Viewing Module Fault Information

In this location:

Each I/0 module provides indication when a fault occurs. The
programming software displays this fault information:

The software displays:

Controller organizer

The 1/0 configuration portion displays the modules configured for the controller. If the
controller detects a fault with one of these modules, the controller organizer displays
a yellow attention symbol (/1\) over the device and over the 1/0 Configuration folder.

If the module is inhibited, the controller organizer displays an attention symbol (/!\)
only over the device.

Connection tab from
module properties

The module fault field displays the fault code returned to the controller (related to the
module) and the text detailing the fault.

Common categories for module errors are:

Connection request error The controller is attempting to make a connection to
the module and has received an error. The
connection was not made.

Service request error The controller is attempting to request a service from
the module and has received an error. The service
was not performed successfully.

Module configuration The configuration in the module is invalid. This is

rejected commonly caused by two unmatched owners.

Module key mismatch Electronic keying is enabled and some part of the
keying information differs between the software and
the module.

1756-6.5.12 March 1999

3-20 Configuring /0 Modules

1756-6.5.12 March 1999

—P T b e il O ool I Corraciion: IFols ‘vl in Plun Mo

Each I/O module has status bits that indicate when a fault occurs.
Your logic should monitor these status bits. If any faults exist, your
application should take appropriate action, such as shutting down the
system in a controlled manner.

You can configure modules to generate a major fault in the controller
if they lose their connection with the controller.

= Hoduls Miopeiriae - Lecst 2 [1758-40006 2

Oanarsl Comnschon ||-|u-|r|n| Conguastion| Cisgnosicr | Sacksias |

Raquesstnc Packad ntsevd PTE [F 0= rax 103 TS00m
T ekt ke

ke Fandl

Sas s [Cawed | | b |

If you do not configure the major fault to occur, you should monitor
the module status. If a module faults, outputs go to their configured
faulted state. The controller and other I/O modules continue to
operate based on old data from the faulted module.

ATTENTION: Outputs respond to the “last,
non-faulted” state of the controlling inputs. To avoid
potential injury and damage to machinery, make sure
this does not create unsafe operation. Configure critical
1/0 modules to generate a controller major fault when
they lose their connections to the controller. Or monitor
the status of 1/0 modules.

Configuring I/0 Modules 3-21

Using the programming software to view 1/0 faults

From the programming software, you can monitor the status of an /O
module. The programming software has a module information tab
that displays module fault status and other information. You must be
online to get actual data. This information is read from the actual
module, so it’s only available if the connection to the module is open
You can also reset the module from this tab.

1. Select a module (“1756-1B16” in this example).
2. Click the right mouse button and select Properties.

You can also view I/O information from the connection tab. This
information is read from the controller. Use this tab if the connection
to the module is shut down.

1756-6.5.12 March 1999

3-22 Configuring /0 Modules

You can also monitor the status of the module 1/O tags in the tag
monitor. Most modules have status bits to indicate if data is being

updated or if the module is inhibited.

Fie
il

i e Semch Lo L
||| 8] | =]

|

Ja

[T = |

Ewives AF_DF11

Double-click on controller tags g ‘

Lonsalal 1age

= Comdrodles ek aro

A
Corplei Falt Harelled
Popoatd] [il

sk dbasdc erdnallad|

Scege | osch_ssticornsien 2] Slgmefthil m] ey [TapHove 3
| [TapHare [V [[T [=
=yl] A ATEE 10
[|F it N1 | B T5E_BiC0
F | = Lacatt:1] |-..;|: :mq:r!q_mn
| Locat 11 Faak ZAD0A0 B0 3003 0500_0300 (000 D00 S000 | By omT
: CLacat 11 Data 2B 000 BONI D D03 (B0 000 _ (B0 _DOe 0 S00 5 | iy nwT |
| |=uscazc [each |&R 1786 DO CA
[= Lacaz [ened| |48 175,00 Fise
S iecd 2D Lendd | (89T OO0
[| revete_cotri Teeed] | &8T5 CHEAIE |
| |5 oo el Tesel | 881756, CHE_1EE |
Using logic to monitor I/0 faults
You can also use logic to monitor 1/O faults.
example 1
E5 £ alarm_1
et system value Equal L
CIP Object clazz MODULE Source & led_state
CIP Object name ne
Attribute name LedStatuz Source B 2
Dzt led_state
] L

This example uses the MODULE object to determine whether any /0 module has lost its connection with the controller.

flashing green, LedStatus = 2. The EQU example determines whether the /0 LED is flashing green.

1756-6.5.12 March 1999

If the controller I/0 LED is

Configuring /0 Modules 3-23

example 2

G5

et system value

CIP Object clasz PROGRAM

CIP Object name THIS

Attribute name MAJORFAILTRECORD

Dzt fault_reu:u:urd.TimeStampLDl.-i
1]

This example uses the PROGRAM object to determine whether an I/0 fault has occurred and was logged to the FAULTLOG. The fault_record structure

is of this user-defined data type:

Member:
TimeStampLow
TimeStampHigh
Type

Code
ModulePort
Modulelnstance
ErrorCode
Errorinfo
sparel

spare2

spare3

spare4

Data Type:
DINT
DINT
INT
INT
DINT
DINT
DINT
DINT
DINT
DINT
DINT
DINT

Style:

Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal;
Decimal
Decimal

Decimal

Value:
XXXXXXXX
X000
0003
0016
00000001
X000
XXXXXXXX
X000
00000000
00000000
00000000
00000000

Description:

time of fault (lower 32 bits)
time of fault (upper 32 bits)
I/0 fault

I/0 connection fault

port 1, backplane

module instance number
depends on module
depends on module
unused

unused

unused

unused

This would tell you the module that faulted. You can determine the Modulelnstance for a module by using a GSV: MODULE object name, module
name, INSTANCE attribute.

example 3

G54 G54

et system value et system value
Object clazs MODILE Object clazs MODILE
Object name input_module Object name input_module
Aftribute name FaultCode Attribute narme Faultinfa
Dzt fauled Dzt specific_info
ne ne

This example uses the MODULE object to get a specific fault code and fault information from a specified module. In this case, you would already
know which module to check.

For more information one handling faults, see chapter 11.

For more information on using the GSV instruction, see the
Logix5550 Instruction Set Reference Manual, publication 1756-6.4.1.

1756-6.5.12 March 1999

3-24 Configuring /0 Modules

Notes:

1756-6.5.12 March 1999

Chapter 4

Organizing Data
Using This Chapter

For information about: See page:

How the controller stores data 4-1
Creating tags 4-2
Using base tags 4-6
Using structures 4-9
Viewing an array as a collection of elements 4-13
Viewing an array as a block of memory 4-15
Aliasing tags 4-19
Scoping tags 4-20

How the Controller Stores Data The Logix5550 controller memory stores both data and logic. There

are 160 Kbytes of memory in the base controller.

Base controller
(1756-L1)

160 Kbytes | processes I/0

’ processes produced/consumed tags
stores tags
stores program logic

To increase memory capacity, you can add one 1756-Mx memory
board. You can install a:

e 1756-M1 (512 Kbytes memory expansion board) or
e 1756-M2 (1 Mbytes memory expansion board) or
e 1756-M3 (2 Mbytes memory expansion board)

1756-6.5.12 March 1999

4-2 Organizing Data

The memory expansion board changes how the controller stores data
and logic. Once installed, the 160 Kbytes of memory of the base
controller are dedicated to handling I/O and produced/consumed tags.
The added memory is dedicated to logic and tag storage.

Controller with memory expansion board
(1756-L1Mx)

«—— processes I/0
160 Kbytes processes produced/consumed tags

added
memory stores tags
‘ stores program logic
Creating Tags The Logix5550 controller uses tags for storing and accessing data. A

tag is similar to a variable, as used by programming languages. A tag
has a name (that describes the data the tag stores) and a data type (that
identifies the size and layout of data the tag can store).

The controller stores tags as you create them and as they fit into the
controller memory. There are no pre-defined data tables, such as in
PLC controllers. The Logix5550 controller uses its memory more
efficiently by storing tags as needed and where they best fit in
memory. Tags of similar data types are not necessarily grouped
together in memory. If you want to group data, use an array.

There are three types of tags.

Tag Type: Description:

base Abase tag is a tag that actually defines the memory
where a data element is stored.

alias An alias tag is a tag that references memory defined by

another tag. An alias tag can refer to a base tag or
another alias tag.

Alias tags are useful for creating standardized programs
that can be duplicated without having to readdress
instructions. By using alias tags, each copy of the
program can reference different base tags.

consumed A consumed tag is a tag whose data value comes from
another controller.

1756-6.5.12 March 1999

Organizing Data 4-3

Data types

When you develop a project, the controller provides a set of
predefined data types.

predefined data types ——P

Fle El Yo Gesch Lopc Coarmmica
= 5
fre- EN: I

Ecti - [
Crwme 8B _DIF141

| Controlier quick,_dart
28 Cominodied T agn
Coribredias Tk Mo
Popesmy-Li p Hiaradr
1 Tkt
= bl sk
3 2 HenFopem
A Puipsn Tage
1 MsnPiuins
Urectwddisd Progar:
1 Dt T
IR]
- o Frecaivas
s
= ponu
=) CONTROL
=i DOUWTER
= owr
=) wir
el HEESAGE
B MOTIOH_RROUF
3 HOTDH_RSTHUCTII
= RO
= FEAL
B an
= TIHER
v o Mol elined

The controller data types follow the IEC 1131-3 defined data types.
The predefined, atomic data types are:

Data type: Description: Range:
BOOL 1-bit boolean 0 = off
l=on
SINT 1-byte integer -128 to 127
INT 2-byte integer -32,768 t0 32,767
DINT 4-byte integer -2,147,483,648 to 2,147,483,647
REAL 4-byte floating-point number -3.402823E%8 to -1.1754944E 38 (negative values)

and
0
and

1.1754944E38 t0 3.402823E%8 (positive values)

The REAL data type also stores £infinity and =N AN, but the software
display differs based on the display format.

Display Format:

Equivalent:

Real

+infinite
- infinite
+NAN
-NAN

1$

-1.$
1.#QNAN
-1HQNAN

Exponential

+infinite
- infinite
+NAN
-NAN

1.#INFO00e+000
-1.#INFO00e+000
1.#QNANOOe+000
-1.#QNANOOe+000

1756-6.5.12 March 1999

4-4 Organizing Data

1756-6.5.12 March 1999

The predefined structures are:

Data type: Description:

AX|St control structure for an axis

CONTROL control structure for array (file) instructions
COUNTER control structure for counter instructions
MESSAGEL control structure for the MSG instruction
MOTION_GROUP! control structure for a motion group
MOTION_INSTRUCTION control structure for motion instructions
PID control structure for the PID instruction
TIMER control structure for timer instructions

1. These structures do not support arrays, cannot be nested in user-defined structures, and
cannot be passed to other routines via a JSR instruction. These are controller-only tags.

Naming tags

Tag names follow IEC 1131-3 identifier rules and:

e must begin with an alphabetic character (A-Z or a-z) or an
underscore ()

* can contain only alphabetic characters, numeric characters,
and underscores

* can have as many as 40 characters

* must not have consecutive or trailing underscore characters ()

Tag names are not case sensitive
You can also add descriptions to tags. Descriptions can have as many
as 120 characters. You can use any printable character.

Entering tags

You use the programming software to create tags. You can either
create a tag individually, or through the Edit Tags tab of the
data monitor.

Organizing Data 4-5

Whichever method you choose to create a tag, you define:

In this field: Enter:
Name Enter the name of the tag.
Description Enter the description of the tag (optional).
Tag Type Select one of these:
Base normal tag
Alias tag that references another tag or part of another tag
Consumed tag whose value is produced by another controller
Data Type Select the data type. The programming software displays a list of the available data
types. The list consists of the predefined data types and any user-defined
data types.

If the tag is to be an array, specify the number of elements in each dimension. There
can be as many as 3 dimensions. If the tag is not an array, or you do not want all 3
dimensions, set the dimension fields to zero (0).

Scope Select the scope in which to create the tag. You can select controller scope or one of
the existing program scopes.
Display Style Select the display style of the tag. The programming software displays a list of the

available styles, which depends on the data type. The style you select becomes the
default display type when monitoring that tag with the programming software.

Produce this tag Select whether to make this tag available to other controllers. Specify how many
controllers can consume the tag.

To create a tag individually:

Select File — New Component — Tag. o MGLogo SHAL - Lampls_piogran
g L# Yew Gesch Loge Corwaceons [ods wv
[T skl 2
e et | d 13 ||
Cleam
F—_ :
| EETTTE
1 prpd
Euni
Pind Dpiora
1 eanpls_progran &l
Define the tag. Hovw | = |
[szcrption = Carecsl |
4 . |
Taa T F Bowm 7 Aln T Comuesd
Dois I | B |
foop [1mmie_immpmeorindal =]
gl | =l
pll=rs] | j

1756-6.5.12 March 1999

4-6 Organizing Data

1. Select controller tags or
program tags.

2. Select Edit Tags.

3. Define the tag.

1. Select the tag name in tag editor.
2. Right-click on the tag name.

4. Define the tag.

Using Base Tags

1756-6.5.12 March 1999

To create a tag from the Edit Tags tab of the data monitor:

o Lonls

ey Teayy nomple prvapam|p orsloglis |

5pags | vargss_peogruricor ¥ 5|-n-|:h-\.-.'d -|-| Sal ||Ir:l'|h'-‘- :‘.,

II'Irqu— L] .-|.uur.: Iﬂlu.rlq |r;p|. IE‘h ID-:qIn I I"

| I

You can create tags before entering program logic or you can enter
tag names as you enter logic and define the tags later using the New
Tag dialog box.

Conholls [aga - gueck_ gl] comd ol

scuun-lu-\.-_.l:ﬂ -u-iq.lq.-"l ‘;m|=lq.---'-l = & |T

[¥oke

T
il Wi - ka1 !

[l mzcypimn

= 1
_ Gl |
__ o |
i

Dy Tpps |F|'I1I

E
E
THTE # Bos ™ S ¢ Do
|
=

e I-ul-\.l_'l:ll' ol ol |
G I': L] 3
I Breducataugiomi [j-:m-mm

A base tag stores one value at a time. The type of value depends on
the data type. Use these atomic data types to define base tags:

« BOOL
* SINT
« INT

* DINT
« REAL

Memory allocation for base tags

The amount of memory that a tag uses depends on the data type. The
minimum allocation within the controller is four bytes.

Some of the data types are smaller than four bytes (BOOL, SINT, and
INT). When you create a tag using one of these data types, the
controller allocates four bytes, but the data only fills the part it needs.
To use memory more efficiently, create arrays or structures to hold
these smaller data types. (See the following examples.)

Organizing Data 4-7

bool_value as BOOL

Bit

Most instructions do not operate on BOOL arrays. For BOOL data, it
might be more efficient to create a structure instead of an array.

The following examples show memory allocation for base tags using
the atomic data types:

This example uses one bit of the data allocation.

31 1 0

allocation

not used

bool_value

small_value as SINT

This example uses 8 bits of the data allocation.

Bit: 31 8 |7 0
allocation not used small_value
value as INT This example uses 16 bits of the data allocation.

Bit: 31 16 |15 0
allocation not used value

big_value as DINT

Bit:

This example uses all 32 bits of the data allocation.

31 0

allocation

big_value

float_value as REAL

Bit:

This example uses all 32 bits of the data allocation.

31 0

allocation

float_value

1756-6.5.12 March 1999

4-8 Organizing Data

1756-6.5.12 March 1999

Conversion:

Data type conversions

If you mix data types for parameters within an instruction, some
instructions automatically convert data to an optimal data type for
that instruction. In some cases, the controller converts data to fit a
new data type; in some cases the controller just fits the data as best
it can.

Result:

large integer to small integer

The controller truncates the upper portion of the larger integer and
generates an overflow.

For example:

Decimal Binary
DINT 65,665 0000_0000_0000_0001_0000_0000_1000_0001
INT 129 0000_0000_1000_0001
SINT -127 1000_0001

SINT or INT to REAL

No data precision is lost

DINT to REAL

Data precision could be lost. Both data types store data in 32 bits, but the
REAL type uses some of its 32 bits to store the exponent value. If precision
is lost, the controller takes it from the least-significant portion of the DINT.

REAL to SINT, INT, or DINT

The controller rounds the fractional part and truncates the upper portion of
the non-fractional part. If data is lost, the controller sets the overflow

status flag.
Rounding is to the nearest even number:
less than .5 round down
equalto .5 round to nearest even integer
greater than.5 round up
For example:
REAL (source) DINT (result)
25 2
-2.5 -2
1.6 2
-1.6 -2
15 2
-15 -2
14 1
-1.4 -1

The controller cannot convert data to or from the BOOL data type.

Specifying bits

In addition to using BOOL-type tags to specify a bit, you can use bit
specifiers within integer-type tags (SINT, INT, and DINT). The bit
specifier identifies a bit within the tag. The bit-specifier range
depends on the data type:

Data Type: Bit Specifier Range:
SINT 0-7

INT 0-15

DINT 0-31

Using Structures

Organizing Data 4-9
To specify a bit within an integer, specify:
x.[y]
where:
This Is:
X integer tag name
specifies that a bit reference follows
[] encloses a bit reference
only needed for a non-numeric bit reference

y bit reference
The bit reference can be an immediate number, a tag, or an
expression. You can use these operators to specify a bit:

Operator: Description:

+ add

- subtract/negate

* multiply

/ divide

AND AND

FRD BCD to integer

NOT complement

OR OR

TOD integer to BCD

SQR square root

XOR exclusive OR
For example:
Example: Description:
value.5 Both of these examples reference the 6™ bit in
value.[5] the integer value. When you use an immediate

number you do not need the brackets.
value.[another_value] This example references the bit identified by
another_value within the integer value.

value.[control.pos] This example references a bit identified by

control.pos within the integer value.

value.[control.pos - number + 5] This example uses an expression to identify a

bit within the integer value.

A structure stores a group of data. Each member of the structure can
be a different data type. The controller has its own predefined
structures. Each I/O module has its own predefined structures.

You can also create specialized user-defined structures, using any
combination of predefined, atomic data types and most

other structures.

For information about copying data to a structure, see the COP
instruction in the Logix5550 Controller Instruction Set Reference

Manual, publication 1756-6.4.1.

1756-6.5.12 March 1999

4-10

Organizing Data

1.

2. Click the right mouse button and select

1756-

Select Data Types.

New Data Type.

Ele [Yfen Fesvh Logio [Corwasicy

| || & || -

o—]

TET—|

iver AB_DF1A

i Cordolies pack_riet
Y Contnodes Ty
1 Cantsolls Faaik Flarsds
Foaa Up Harele
i Tau
- A HnT i
= =i Hanf g
| Prxpee Ty
Bl Marfiniins
| Urectashiss| Fregrars
1 Digts T e
w IETEE
pe Frad
il Had
1 LTI Canii
[Ts
1315
= 13177 Prind
1T

6.5.12 March 1999

Predefined structures

The controller supports these predefined structures, each of which
stores related information for specific instructions:

« AXiIS!

« CONTROL
« COUNTER
« MESSAGE!

« MOTION _GROUP!

« MOTION_INSTRUCTION
- PID

« TIMER

1. These structures do not support arrays and cannot be nested in user-defined structures.

For more information about the instructions that use these structures,
see the Logix5550 Controller Instruction Set Reference Manual,
publication 1756-6.4.1.

Module-defined structure

The Logix5550 controller automatically creates the 1/O structures
needed for each I/O module you configure for the system (see the
previous chapter). These structures usually contain members for data,
status information, and fault information.

User-defined structure

A user-defined structure groups different types of data into a single
named entity. A user-defined structure contains one or more data
definitions called members. Creating a member in a user-defined
structure is just like creating an individual tag. The data type for each
member determines the amount of memory allocated for the member.
The data type for each member can be a/an:

* atomic data type

o predefined structure

* user-defined structure

» single dimension array of an atomic data type

+ single dimension array of a predefined structure

» single dimension array of a user-defined structure

Organizing Data 4-11

User-Defined

Use the programming software to create your own structures.

B Dt Topr. Mess LIDTZ

Frara | Do Tpee | Bl Et—oﬁr\-c-‘- |

. | b |

For: In this field: Enter:
user-defined structure ~ Name Enter the name of the structure.
Description Enter the description of the structure (optional).
each member of the Name Enter the name of the member.
structure Data Type Select the data type. The programming software displays a list of the

available data types. The list consists of the predefined data types
and any user-defined data types.

Style Select the display style of the member. The programming software

displays a list of the available styles, which depends on the data type.

Description Enter the description of the member (optional).

You can create, edit, and delete user-defined structures only when
programming offline.

If you modify a user-defined structure and change its size, the
existing values of any tags that use the structure are set to zero (0).

Memory allocation for user-defined structures

The memory allocated for a user-defined structure depends on the
data types for each member within the structure. Each member is
allocated memory to start on an appropriate byte, INT, or DINT
boundary. This is different than tags, which are always allocated as
DINT. You can optimize memory by combining data as members
within a structure.

For example:

Structure Name: Member: Data Type: Style: Description:
Load_Info Height SINT Decimal load Height in feet
Width SINT Decimal load Width in feet
Weight REAL Float load Weight in pounds
W_Flag BOOL Decimal set true if load is stretch wrapped
L_Flag BOOL Decimal set true if load is labeled
Location Source INT Decimal system source location
Destination INT Decimal system destination location
Info Load_Info none load information structure

1756-6.5.12 March 1999

4-12 Organizing Data

1756-6.5.12 March 1999

Memory is allocated in the order of the members.

Bit; 31 24 ‘ 23 16 |15 8 ‘ 7 0
data allocation 1 Destination Source
data allocation 2 [unused | unused Width | Height
data allocation 3 Weight
data allocation 4 unused unused unused bit 0 W_Flag

bit 1 L_Flag

Referencing members within a structure

You reference members in a structure by using the tag name and then
the member name: fag name.member name

For example:

Example: Description:

timer_1.pre This example references the .PRE value of
the timer_1 structure.

input_load as data type load_info This examples references the Height
member of the user-defined input_load

input_load.height
put g structure

If the structure is embedded in another structure, use the tag name of
the structure at the highest level followed by a substructure tag name
and member name: tag name.substructure_name.member_name

For example:

Example: Description:

input_location as data type location ~ This example references the height member
of the load_info structure in the

input_location.load_info.height . .
puL - 9 input_location structure.

If the structure defines an array, use the array tag, followed by the
position in the array and any substructure and member names.
array_tag[position].member

or

array_tag[position].substructure_name.member _name

For example:

Example: Description:

conveyor as array location[100] This specifies a 100 word array. Each
element in the array is data type location (a
structure).

conveyor([10].source This example references the source member

of the 111 element in the array (array
elements are zero based).

conveyor([10].info.height This example references the height member

of the info structure in the 11™ element of
the array (array elements are zero based).

Organizing Data 4-13

Viewing an Array as a Collection
of Elements

Arrays let you group a set of data (of the same data type) by the same
name and to use subscripts to identify individual elements. An
element in an array can be an atomic data type or a structure.

You specify an element in an array by its subscript(s). Enter the array
tag name followed by the subscript(s) in square brackets. The
subscript(s) must specify a value for each dimension of the array.
Dimensions are zero-based.

For this array: Specify:

one dimension array_name[subscript_0]

two dimension array_name[subscript_0, subscript_1]

three dimension array_name[subscript_0, subscript_1, subscript_2]

An array can have as many as three dimensions. The total number of
elements in an array is the product of each dimension’s size.

This array: Stores data like: For example:
one dimension Tag name: Type Dimension 0 Dimension1 Dimension 2
one_d_array DINT[7] 7 -- --

total number of elements = 7

valid subscript range DINT[x] where x=0-6

two dimension

Tag name: Type Dimension 0 Dimension1 Dimension 2
two_d_array DINT[4,5] 4 5 --
total number of elements =4 05 = 20

valid subscript range DINT[x,y] where x=0-3; y=0-4

three dimension

Tag name: Type Dimension 0 Dimension1 Dimension 2
three_d _array DINT[2,3,4] 2 3 4

total number of elements =2 03 (04 = 24

valid subscript range DINT[x,y,z] where x=0-1; y=0-2, z=0-3

1756-6.5.12 March 1999

4-14

Organizing Data

Indexing through arrays

To dynamically change the array element that your logic references,
use tag or expression as the subscript to point to the element. This is
similar to indirect addressing in PLC-5 logic. You can use these
operators in an expression to specify an array subscript:

Operator: Description:
+ add

- subtract/negate
* multiply

/ divide

AND AND

FRD BCD to integer
NOT complement
OR OR

TOD integer to BCD
SQR square root
XOR exclusive OR

For example:

Definitions: Example: Description:
my_list defined as DINT[10] my_list[5] This example references element 5 in the array.
The reference is static because the subscript
value remains constant.
my_list defined as DINT[10] MOV the value 5 into position This example references element 5 in the array.
oy ' . » The reference is dynamic because the logic can
osition defined as DINT my_listposition 4 .
posit I y_listlposition] change the subscript by changing the value
of position.
my_list defined as DINT[10] MOV the value 2 into position This example references element 7 (2+5) in the
. ' MOV the value 5 into offset array. The reference is dynamic because the
posttion defined as DINT logic can change the subscript by changing the
. 1 jtion+
offset defined as DINT my_listfposition+offset] value of position or offset.

1756-6.5.12 March 1999

Make sure any array subscript you enter is within the boundaries of
the specified array. Instructions that view arrays as a collection of
elements generate a major fault (type 4, code 20) if a subscript
exceeds its corresponding dimension.

Organizing Data 4-15

Specifying Bits Within Arrays

You can address bits within elements of arrays. For example:

Definitions: Example: Description:
arrayl defined as DINT[5] array1[1].2 This example references the bit 2 in element 1
of the array.
array2 defined as INT[17,36] array2[3,4].15 This example references the bit 15 of the
1st dimension has 17 elements element array2[3,4]
2nd dimension has 36 elements
array3 defined as SINT[2,4,6] array3[1,3,2].4 This example references bit 4 of the element
1st dimension holds 2 elements arays[1,32].
2nd dimension holds 4 elements
3rd dimension holds 6 elements
MyArray defined as SINT[100] MyArray[(Myindex AND NOT 7)/ This example references a bit within an
Myindex defined as SINT 8].[Myindex AND 7] SINT array.
MyArray defined as INT[100] MyArray[(Myindex AND NOT 15)/ This example references a bit within an
Mylndex defined as INT 16].[Myindex AND 15] INT array.
MyArray defined as DINT[100] MyArray[(Myindex AND NOT 31) / This example references a bit within an
Myindex defined as DINT 32].[Myindex AND 31] DINT array.

Viewing an Array as a Block

of Memory

You can also use the operators shown in the table on page 4-14 to
specify bits.

The data in an array is stored contiguously in memory. The file
(array) instructions typically require a starting address within an array
and a length, which determines which elements and how many
elements the instruction reads or writes.

These instructions manipulate array data as a contiguous block
of memory (the remaining instructions manipulate array data as
individual elements):

BSL FLL
BSR LFL
CoP LFU
DDT SQI
FBC SoL
FFL Q0
FFU

Important: If an instruction attempts to read data beyond the end of
an array, the instruction reads whatever data happens to
be there and processes it as if it were valid data (no error
occurs). If an instruction attempts to write data beyond
the end of an array, a major fault occurs (type 4,
code 20).

1756-6.5.12 March 1999

4-16 Organizing Data

How the controller stores array data

The following table shows the sequential order of the elements in the
examples on page 4-13.

One-Dimensional Array Elements Two-Dimensional Array Elements Three-Dimensional Array Elements

(ascending order):

(ascending order):

(ascending order):

one_d_array[0]
one_d_array[1]
one_d_array[2]
one_d_array[3]
one_d_array[4]
one_d_array[5]
one_d_array[6]

For an array with only one dimension,
tag_name[subscript_0], subscript_0

increments to its maximum value.

two_d_array|[0,0]
two_d_array[0,1]
two_d_array[0,2]
two_d_array|[0,3]
two_d_array[0,4]
two_d_array[1,0]
two_d_array[1,1]
two_d_array[1,2]
two_d_array[1,3]
two_d_array[1,4]
two_d_array[2,0]
two_d_array[2,1]
two_d_array[2,2]
two_d_array|[2,3]
two_d_array[2,4]
two_d_array/[3,0]
two_d_array[3,1]
two_d_array|[3,2]
two_d_array/3,3]

three_d_array/0,0,0]
three_d_array[0,0,1]
three_d_array[0,0,2]
three_d_array/0,0,3]
three_d_array/0,1,0]
three_d_array[0,1,1]
three_d_array[0,1,2]
three_d_array/0,1,3]
three_d_array/0,2,0]
three_d_array[0,2,1]
three_d_array[0,2,2]
three_d_array/0,2,3]
three_d_array[1,0,0]
three_d_array[1,0,2]
three_d_array[1,0,3]
three_d_array[1,1,0]
three_d_array[1,1,1]
three_d_array[1,1,2]
three_d_array[1,1,3]

two_d_array[3,4] three_d_array[1,2,0]
three_d_array[1,2,1]
three_d_array[1,2,2]

three_d_array[1,2,3]

For an array with two dimensions,

tag_name[subscript_0,subscript_1],

subscript_0 is held fixed at 0 while

subscript_1 increments from 0 to its maximum

value. Subscript 0 then increments by 1 (if ~ For an array with three dimensions,

dimension 0 is greater than 1) and is held fixed tag_name[subscript_0, subscript_1,

while subscript 1 increments through its subscript_2], subscript_0 is held fixed at 0

range again. This pattern continues until both ~ while subscript_1 and subscript 2 increment

subscripts reach their maximum values. just like a two- dimensional array. Subscript_0
then increments by 1 (if dimension 0 is greater
than 1) and is held fixed until subscript_1 and
subscript_2 reach their maximum values. This
pattern continues until all three subscripts
reach their maximum values.

1756-6.5.12 March 1999

Organizing Data 4-17

Memory Allocation for Arrays

bit_values as BOOL[32]

Bit:

Varying a dimension

The AVE, SRT, and STD instructions have a Dimension to vary
operand. The instruction uses this operand to calculate an offset that
the instruction uses to determine which elements of the Array to read
or write.

Array: \I?;r:;t:ansion to Offset:

one dimension 0 1

two dimension 0 dimension_1
1 1

three dimension 0 (dimension_1) O(dimension_2)

1 dimension_2

2 1

The amount of memory that an array uses depends on the data type
used to create the array. The minimum allocation within the
controller is four bytes, which is the same as 32 BOOLs, 4 SINTs,
2 INTs, or 1 DINT.

The following examples show memory allocation for various arrays:

This example is an array with 32 bit elements, each of data type
BOOL (1 bit per element).

31 |30 |29 |28 |27 |26 |25 |24 |23 |22 |21 |20 (19 |18 |17 |16

data allocation 1

[31] {[301|[29] {[28]|[27] |[26] | [25] |[24] | [23] | [22] | [21] | [20] | [19] | [18] {[17]|[16]

Bit:

15 |14 |13 |12 |11 |10 |9 (8 |7 |6 |5 |4 |3 |2 |1 |O

data allocation 1
continued

(15]|[14] | [13] | [12]| [11] | [10] (O] |[8] |[7] |[6] |[] ([4] |[3] |[2] ([1] |[O]

small_values as SINT[8]

Bit:

This example is an array with 8 elements, each of data type SINT
(1 byte per element).

31 24 |23 16 (15 8 |7 0

data allocation 1

small_values[3] small_values[2] small_values[1] small_values[0]

data allocation 2

small_values[7] small_values[6] small_values[5] small_values[4]

small_values as SINT[3]

Bit:

This example is an array with 3 elements, each of data type SINT
(1 byte per element). Because the minimum data allocation is 4
bytes, the last byte is zero.

31 24 123 16 |15 8 |7 0

data allocation 1

0 small_values[2] small_values[1] small_values[0]

1756-6.5.12 March 1999

4-18

Organizing Data

values as INT[4]

This example is an array with 4 elements, each of data type INT
(2 bytes per element).

Bit: 31 16 |15 0
data allocation 1 values[1] values[0]
data allocation 2 values[3] values[2]

big_values as DINT[2]

Bit:

This example is an array with 2 elements, each of type DINT
(4 bytes per element).

31 0

data allocation 1

big_values[0]

data allocation 2

big_values[1]

timer_list as TIMER[2]

Bit:

This example is an array with 2 elements, each element is a
TIMER structure (12 bytes per structure).

31 0

data allocation 1

timer_list[0] status bits

data allocation 2

timer_list[0].pre

data allocation 3

timer_list[0].acc

data allocation 4

timer_list[1] status bits

data allocation 5

timer_list[1].pre

data allocation 6

timer_list[1].acc

small_values as SINT[2,2,2]

1756-6.5.12 March 1999

Bit:

This example is a three-dimensional array with 8 elements, each of
data type SINT.

31 24 |23 16 (15 8 |7 0

data allocation 1

small_values[0,1,1] |small_values[0,1,0] |small_values[0,0,1] |small_values[0,0,0]

data allocation 2

small_values[1,1,1] |small_values[1,1,0] |small_values[1,0,1] |small_values[1,0,0]

big_values as DINT[2,2,2]

Bit:

This example is a three-dimensional array with 8 elements, each of
type DINT.

31 0

data allocation 1

big_values[0,0,0]

data allocation 2

big_values[0,0,1]

data allocation 3

big_values[0,1,0]

data allocation 4

big_values[0,1,1]

data allocation 5

big_values[1,0,0]

data allocation 6

big_values[1,0,1]

data allocation 7

big_values[1,1,0]

data allocation 8

big_values[1,1,1]

You can modify array dimensions when programming offline without
loss of tag data. You cannot modify array dimensions when
programming online.

Organizing Data 4-19

Aliasing Tags A tag alias lets you create one tag that represents another tag. This is
useful for defining simplified tag names for elements of structures or
arrays. For example:

Definitions: Alias Example: Description:

mylist[10] array of 10 DINT elements half= my_list[5] This example uses the tag halfas an alias to

my_list[5].
cookies[5] array of 5 recipe elements oatmeal =cookies[1] This example uses tags referring to oatmeal as
oatmeal_flour = cookies[1].flour aliases for different elements of the structure in

data type recipe flour as data type REAL
sugar as data type REAL
timer as array timer[5]

oatmeal_preset = cookies[1].timer[2].pre the first element of array cookies.

I/0 structures
input point local:0:1.Data.0
output point local:1:0.Data.0

light_1 = local:0:1.Data.0 This example uses simpler tags to refer to
motor_1 = local:1:0.Data.0 specific 1/0 points.

1. Select the tag name in tag editor.
2. Right-click on the tag name.

3. Define the tag.
4. Click Alias.

You can use the Tag Editor to create an alias or you can enter the alias
tag as you enter logic and define the alias later using the New Tag
dialog box.

P e E—— T e = s [T
[T Hiwma [Wahe

" i J
= o, £l Tag)- sl _|
lraind

Hawre: = [o |

[imzcrption =] Ll |
= e |

TETPE F fBom ™ flm ¢ Comumd

Dks [|:rn| J |

fope: [psch_phanpataoter) =]

S ||:] 3

I Preducsteugiomn | jmr

1756-6.5.12 March 1999

4-20 Organizing Data

In this field:

To create an alias using the New Tag dialog box, you define the tag
and select the alias tag type:

Enter:

Name

Enter the name of the tag. This is the alias name.

Description

Enter the description of the tag (optional).

Tag Type

Select:

Alias tag that references another tag with the same characteristics

Refers To

Enter the name of the tag that you are representing by the alias name. The
programming software displays a list of the available tags you can reference.

Data Type

This field is automatically selected. Displays the data type of the resulting alias tag.
This is based on the tag you select for the Refers To field (described above).

You cannot specify array dimensions for an alias tag.

Scope

This field is automatically selected. Select the scope in which to create the tag. You
can select controller scope or one of the existing programs.

Display Style

This field is automatically selected. Select the display style of the tag. The
programming software displays a list of the available styles, which depends on the
data type.

Produce this tag

Select whether to make this tag available to other controllers through
controller-to-controller messaging. Specify how many controllers can consume
the tag.

The tag must be a controller-scoped tag. You can only choose to produce a tag when
programming offline.

Scoping Tags

Action;

You can group (scope) tags within an individual program or make
them available to instructions anywhere in the controller. When you
define tags, you specify them as either program tags (local) or
controller tags (global).

You can have multiple tags with the same name, as long as each tag
has a different scope (one as a controller tag and the others as
program tags; or all as program tags). Certain limitations apply to
data in both scopes.

Controller Scope Tags Program Scope Tags

referencing the tag

any routine routines within the same program

naming a tag

within the current program, a controller defaults to the program scope tag
scope tag is not available if a program scope
tag of the same name exists

you cannot reference both a controller scope
tag and a program scope tag with the same
name in a routine

messaging

no limitation tag cannot be program scope

tag must be controller scope

producer/consumer

no limitation tag cannot be program scope

tag must be controller scope

1756-6.5.12 March 1999

Organizing Data 4-21

Scoping tags local to a program

Program tags consist of data that is used exclusively by the routines
within a program. These tags are local to a program. The routines in
other programs cannot access the program tags of another program.

Tag scope: Description:
program

Program tags are data that is used exclusively by the routines
within a program. Other programs cannot access this data.

B Gl Ve feech loge Cowenm

EE] J_|: | =fe=
ek L iy 3 I

Priver 4B_0F11

1 Comirodiss cpich, siwi
2 Contolies [uge
Dol F.p il H ol
Prrensd 1] 1 H s
== Taser
program data & ManTar
= i HanProgeen
2 Pooguars [Nage
1 et
L e P

Scoping tags global to a controller

Controller tags consist of data that is available to all the routines
within a controller, regardless of what tasks or programs contain the
routines. These tags are global to the controller.

Tag scope: Description:

controller Controller tags are data that is available to all the tasks,
programs, and routines within a controller project.

55 FSLegin SO000 - guch_siant |
Fle i Yow Sowch Loge Conewrin

| [[I
o

fpia i = |

ke AB_NFT-1

controller tags

== Comdmdiss pich, dwi
P Corioles [g
Corrolies F.oil Hardder
Prresd 115 H ik
i o

Ml ar
- HanFroguen
2 Pooguars Nage
T .
U basiclabes] Py

All /0 tags are created as controller-scoped tags when you create the
module for the controller.

1756-6.5.12 March 1999

4-22 Organizing Data

Notes:

1756-6.5.12 March 1999

Chapter 5

Using This Chapter

Organizing Projects

Developing Programs

For information about: See page

Organizing projects 5-1
Defining tasks 5-2
Defining programs 5-8
Defining routines 5-11
Entering ladder logic 5-13
Scheduling system overhead 5-15
Downloading a program 5-16

The controller operating system is a preemptive multitasking system
that is IEC 1131-3 compliant. This environment provides:

+ tasks to configure controller execution

e programs to group data and logic
* routines to encapsulate executable code written in a single

programming language

control application
‘ controller fault handler

power up handler ‘

[task32

task 1

program 32

‘ program

program 1

main routine program (local) tags

il

fault routine

other routines II

configuration

status

watchdog

controller (global) tags 1/0 data

system-shared data

40012

The operating system is preemptive in that it provides the ability to
interrupt an executing task, switch control to a different task, and then
return control back to the original task, once the interrupting tasks
completes its execution. The controller is single-threaded in that only
one task can be executing at one time. In any given task, only one

program is executing at one time.

1756-6.5.12 March 1999

5-2 Developing Programs

Defining Tasks

1756-6.5.12 March 1999

A task provides scheduling and priority information for a set of one or
more programs that execute based on specific criteria. You can
configure tasks as either continuous or periodic.

Number Supported by the

Task Type: Logix5550 Controller:
continuous 1
periodic 31 if there is a continuous task

32 if there is no continuous task

Each task in the controller has a priority level. The operating system
uses the priority level to determine which task to execute when
multiple tasks are triggered. There are 15 configurable priority levels
for periodic tasks that range from 1-15, with 1 being the highest
priority and 15 being the lowest priority. A higher priority task will
interrupt any lower priority task. The continuous task has the lowest
priority and is always interrupted by a periodic task.

A task can have as many as 32 separate programs, each with its own
executable routines and program-scoped tags. Once a task is
triggered (activated), all the programs assigned to the task execute in
the order in which they are grouped. Programs can only appear once
in the controller organizer and cannot be shared by multiple tasks.

Each task has a watchdog timer that monitors the execution of a task.
The watchdog timer begins to time when the task is initiated and
stops when all the programs within the task have executed.

ATTENTION: Ifthe watchdog timer reaches a
configurable preset, a major fault occurs. Depending
on the controller fault handler, the controller might
shut down.

Programs within a task access input and output data directly from
controller-scoped memory. Logic within any task can modify
controller-scoped data. Data and 1/O values are asynchronous and
can change during the course of a task’s execution. An input value
referenced at the beginning of a task’s execution can be different
when referenced later.

ATTENTION: Take care to ensure that data memory
contains the appropriate values throughout a task’s
execution. You can duplicate or buffer data at the
beginning of the scan to provide reference values for
your logic.

Developing Programs 5-3

Using a continuous task

A continuous task operates in a self-triggered mode. It restarts itself
after each completion. You can create one continuous task for the
controller. The continuous task operates as the lowest priority task in
the controller (one priority level lower than the lowest periodic task).
This means that all periodic tasks will interrupt the continuous task.

The continuous task is a background task because any CPU time not
allocated to other operations (such as motion, communications, and
periodic tasks) is used to execute the programs within the
continuous task.

When you create a project, the default MainTask is a continuous task.
You can leave this task as it is, or you can change its characteristics

Using a periodic task

A periodic task, also known as a selectable timed interrupt (STI), is
triggered by the operating system at a repetitive period of time. This
type of task is useful for projects that require accurate or deterministic
execution. Periodic tasks always interrupt the continuous task.
Depending on the priority level, a periodic task may interrupt other
periodic tasks in the controller.

Use the programming software to configure the time period from
1 msec to 2000 seconds. The default is 10 msecs.

ATTENTION: Ensure that the time period is longer
than the sum of the execution times of all the programs
assigned to the task. If the controller detects that a
periodic task trigger occurs for a task that is already
operating, a major fault occurs.

When working with multiple periodic tasks, make sure that sufficient
CPU time is made available to handle task interruption.

Periodic tasks at the same priority execute on a time-slice basis at
Ims intervals.

1756-6.5.12 March 1999

5-4 Developing Programs

The following example shows the task execution order for an
application with multiple periodic tasks and one continuous task.

Example:
Actual Worst Case

Task: Priority Level: Task Type: Execution Time: Execution Time:

1 5 20ms periodic 2ms 2ms

2 10 5 ms periodic 1ms 3ms

3 15 10ms periodic 4ms 8ms

4 none (lowest) continuous 24ms 80ms
Task 1 “ L L
Task 2 DD B DR Z BN BN BN DR 7O BN) DR D B 2|

= TN = i lee B

Task 4 H1 -------- 1 ------------ 1 -------- 1 ------------- [.‘7@ ---------
e b=t 0 5 10 15 20 25 30 35 40 45 50 55 60 65
[7 Task triggered ‘ Task end mmm Task execution ---. Task suspended
Notes:

A. The continuous task runs at the lowest priority and is interrupted
by all other tasks.

B. The highest priority task interrupts all lower priority tasks.

C. A lower priority task can be interrupted multiple times by a
higher priority task.

D. When the continuous task completes a full scan it restarts
immediately, unless a higher priority task is running.

ATTENTION: The rate that a periodic task is
triggered determines the period by which the logic is
executed and the data is manipulated within the task.
Data and outputs established by the programs in a task
retain their values until the next execution of the task or
they are manipulated by another task.

1756-6.5.12 March 1999

Developing Programs 5-5

1. Select Tasks.

2. Click the right mouse button and select New Task.

Fle Ed Yew Fesch Logc Lomn
T
|'||.,.. _lrl l‘
|'|.IE-Jl: ﬂl
Derme AR_DF1

#5 Cantoliey promed_1
B Connabs Tag
1 Caniwlla [saik Flarediss
1 Pows Lip Handim
=

i D, Pk
M1 Dt
H-opg. Prackirad

Creating tasks

When you open a new controller project in your programming
software, the MainTask is already defined as a continuous task. You
can change this default task to fit your project.

Fle £l Wewo Smach loge Lo
|| S - ||
—
fra oy ER
Eviver AR _DFI-1
= Condmdsr pach piwd
B Coniroler T age
Cemrolies Fpll Hiaridia
Preeet11 Heefls
= = ladka

The default task is MainTask. — 4

B HPrigruan
2 Proguun Tag
1] HanFors

To create a new task:

Hawe) =]
e A _om |
H
Ty I"lw-t :l
Walckdog, fard [500 000
Pk deirbaies e |
Pty |||:| ﬂ A rq||1l:n:l:l:|
e s

In this field: Enter:

Name Enter the name of the task.

Description Enter a description of the task (optional).

Type Select Continuous or Periodic.

The controller supports only 1 continuous task. The
remaining tasks must be periodic.

Watchdog Enter the time in msec for the watchdog timer.

If any program scheduled for a task takes too long to scan,
or is interrupted by a higher-priority task, causing the total
time to execute the task to exceed the watchdog timer
value, the controller generates a major fault. The default
watchdog timer is 500 msecs.

Priority If you defined a periodic task, specify the priority of the
task by entering a number from 1 to 15. The lower the
number, the higher the priority. The number 1 is the
highest priority; the number 15 is the lowest priority.

Rate (ms) If you defined a periodic task, enter the rate (in msec) at

which the controller executes the task. The valid range is
1 msec to 2,000,000 msec (2000 seconds).

1756-6.5.12 March 1999

5-6 Developing Programs

Naming tasks

Task names follow IEC 1131-3 identifier rules and:

* must begin with an alphabetic character (A-Z or a-z) or an
underscore ()

* can contain only alphabetic characters, numeric characters,
and underscores

* can have as many as 40 characters

* must not have consecutive or trailing underscore characters ()

Task names are not case sensitive.

You can also add descriptions to tasks. Descriptions can have as
many as 128 characters. You can use any printable character.

Configuring tasks

Once you create a task, there are other properties that you need to

configure, such as how the programs within the task execute. You

can prioritize the tasks up to 15 levels.

* The higher the number, the lower the priority (15 is the lowest
priority you can select for a periodic task).

* The continuous task has a non-selectable priority that is one
lower than the lowest, configured periodic-task priority.

* A task at a higher priority (such as 1) preempts one at a lower
priority (such as 15).
Tasks at the same priority execute on a time-slice basis at
Ims intervals.

* Periodic tasks always interrupt the continuous task.

1. Select a task (“MainTask” in this example).
2. Click the right mouse button and select Properties.

Ele [Ywa Bemch Loge [ewmnk

| o] = L T Y e To configure an existing task:

Flﬁi- j | = Dask Miopeerieme - Banl bk
TE—

Dvwee AE_DFIA

i Lo b g o " ‘ ‘

2 Comirolied T aip
Cooariredias W gl Waradar
Pepams Lip Hardler

1 Taikt

- o e
2 “hHm MesPops
.

Li|
U richs Coey
1 D Tpen
o lesdls
Hip Fressn ey Faleeres
| Mok
LTl Comdg

L | b |

On this tab: In this field: Enter:

General Name The programming software displays the current name
of the task. Edit the name, if necessary.

Description The programming software displays the current
description. Edit the description, if necessary.

1756-6.5.12 March 1999

Developing Programs 5-7

Tawh Properteny Banlak

Gy Confgurabin | Pragrom Sohebi |

Tope: [EETERENN =] ‘Waichdog i [0 00

= |
Wl Lt
SeanTrsssfe] [2 [Femibie
fe et |
[ox] cuen | |_we |

Onthistab: In this field: Enter:

Configuration ~ Type The programming software displays the current type. Select another type, if
necessary. The controller supports only 1 continuous task. The remaining tasks
must be periodic.

Watchdog (ms) Specify a watchdog timeout for the task. The valid range is 1 msec to 2,000,000
msec (2000 seconds). The default is 500 msecs.

Priority If you defined a periodic task, specify the priority of the task by entering a number
from 1 to 15. The lower the number, the higher the priority. The number 1 is the
highest priority; the number 15 is the lowest priority.

Rate (ms) If you defined a periodic task, enter the rate (in msec) at which the controller
executes the task. The valid range is 1 msec to 2,000,000 msec (2000 seconds).
The default is 10 msecs.

Scan Time (us) ~ While online, the programming software displays the maximum scan time and the
last scan time in psec for the current task. These values are elapsed time, which
includes any time spent waiting for higher-priority tasks. These values are display
only.
= Tawh Prgpeiteny Banl ark

[T [A qu'.u&-a-dn.kl
Urchadubsd £ charidind
1
L]
4
A | 1 Epmrmeyw I
[o | caxm | | ree

Onthistab: In this field: Enter:

Program Unscheduled The programming software displays the programs that have not been scheduled by

Schedule a task.

Scheduled

Add or remove programs from this list to create a list of programs associated with
the current task. The task executes programs to completion, in order from the top
of the list to the bottom of the list.

1756-6.5.12 March 1999

5-8 Developing Programs

1. Select a task (“MainTask” in this example).
2. Click the right mouse button and select Properties.

[Fle S Yes Feach Logc [orean
| BoFv| & *m|e] |
fre- =]l

T ||

Dhww- BH_DF1-1

Cprivaley pegect_1

A Consels Tap
crdcks sl Hends
Foree-Lip Handim

Defining Programs

1756-6.5.12 March 1999

Setting the task watchdog

Each task has its own watchdog timer. If all the programs scheduled
for a task take too long to scan, or are interrupted by higher-priority
tasks, and exceed the watchdog timer value, the controller executes
the fault routine, if one exists, for the program that was executing
when the watchdog expired. You can change the watchdog timer by
using the programming software via the configuration tab of the
task properties.

To change the task watchdog timer:

= T sk Propseied - Hein1sak

Gerans Corkgusee | Fogman Schadus |

—> T [Cormen =] wischiog ol EEDE

LI I

omtonepit [[P

[l]

T | cwed | |H|n|.

Avoiding periodic task overlap

Make sure the watchdog timer is greater than the time it takes to
execute all the programs in the task. A watchdog timeout fault (major
fault) occurs if a task is executing and it is triggered again. This can
happen if a lower-priority task is interrupted by a higher-priority task,
delaying completion of the lower-priority task.

Each program contains program tags, a main executable routine, other
routines, and an optional fault routine. Each task can schedule as
many as 32 programs.

The scheduled programs within a task execute to completion from
first to last. Programs that aren’t attached to any task show up as
unscheduled programs. You must specify (schedule) a program
within a task before the controller can scan the program.

Developing Programs 5-9

1. Select a task (“MainTask” in this example).
2. Click the right mouse button and select New Program.

Pl EN Yea feuch Logs [ewmnk

| Bl=|al @ |w]e] |-
|

IET = |

e AE_DFiA

i Lionirolier proaect,_

2 Comlied T e
Ceribrodies Pl 1 oo
Popesgy-Lig: H e

1 Tk

-
= Hu

A
n Copw

3 pansic

LLEL S]

= Dimea T g
B Uzmdls

1] Ll Predeis
i bkl

L1 Canligu

Creating programs

When you open a new controller project in your programming
software, the MainProgram is already defined for the MainTask. You
can modify this program, as well as add other programs.

To create a new program:

T |

Hie ! I

[tercepten =] Cocd |

=

Echprki e [blwnlac =
In this field: Enter:
Name Enter the name of the program.
Description Enter a description of the program (optional).
Schedule In Select the task in which you plan to schedule the program.

The programming software displays a list of
available tasks

Type The programming software automatically selects Normal.
Other valid program types are Fault Handler and
Power-Up Handler.

Naming programs

Program names follow IEC 1131-3 identifier rules and:

* must begin with an alphabetic character (A-Z or a-z) or an
underscore ()

* can contain only alphabetic characters, numeric characters,
and underscores

* can have as many as 40 characters

* must not have consecutive or trailing underscore characters ()

Program names are not case sensitive.

You can also add descriptions to programs. Descriptions can have as
many as 128 characters. You can use any printable character.

1756-6.5.12 March 1999

5-10 Developing Programs

Configuring programs

1. Select a program (“MainProgram” in this example). Once you create a program, there are other properties that you need to
2. Click the right mouse button and select Properties. ¢onfigure. You must have a main routine. The fault and power-up
routines are optional.

Y T =X

lr_—‘;_l;!!!l :I_FEI — .'II To configure an existing program:
ik 3 I 3 E _I = e Piopeiee - B and™ g s
Do A_1- 0

Onthis tab: In this field: Enter:

General Name The programming software displays the current
name of the program. Edit the name, if necessary.
Description The programming software displays the current

description. Edit the description, if necessary.

Geemal Confgpaston |

ol it

v T R - |
Pl I-'-'r.il- j

[T] cwww | | we |

Onthis tab: In this field: Enter:

Configuration ~ Assigned Routine The programming software displays the name of the
Main Routine and the Fault Routine, if any. Change
the selections, if necessary.

Scan Time (us) ~ While online, the programming software displays the
maximum scan time and the last scan time in psec
for the current program. These values are execution
times for the program and do not include any time
spent waiting for other programs or higher-priority
tasks. These values are display only.

1756-6.5.12 March 1999

Developing Programs 5-11

Defining Routines

1. Select a program (“MainProgram” in this example).
2. Click the right mouse button and select New Routine

[(8 fem jeas

| el & o]]]

A routine is a set of logic instructions in a single programming
language, such as ladder logic. Routines provide the executable code
for the project in a controller. A routine is similar to a program file or
subroutine in a PLC or SLC processor.

Each program has a main routine. This is the first routine to execute
when the controller triggers the associated task and calls the
associated program. Use logic, such as the JSR instruction, to call
other routines.

You can also specify an optional program fault routine. The
controller executes this routine if it encounters an
instruction-execution fault within any of the routines in the
associated program.

Creating routines

When you open a new controller project in your programming
software, the MainRoutine is already defined for the MainProgram.
You can modify this routine, as well as add other routines.

To create a new routine:

Lne | Lo = |

i Piogaln [Mantuam = B |

In this field: Enter:

Name Enter the name of the routine.

Description Enter a description of the routine (optional).

Type Select the programming language used to create the
routine. Ladder is the default.

In Program Select the program in which you plan to run the routine.

The programming software displays a list of the
available programs.

1756-6.5.12 March 1999

5-12 Developing Programs

Naming routines

Routine names follow IEC 1131-3 identifier rules and:

* must begin with an alphabetic character (A-Z or a-z) or an
underscore ()

* can contain only alphabetic characters, numeric characters,
and underscores

* can have as many as 40 characters

* must not have consecutive or trailing underscore characters ()

Routine names are not case sensitive.

You can also add descriptions to routines. Descriptions can have as
many as 128 characters. You can use any printable character.

Configuring routines

1. Select a routine (“MainRoutine” in this example). . L
2. Click the right mouse button and select Properties. ~ Once you create a routine, you can change the name or the description

of the routine.

[o Pl et
([T Ty ey p—'

| 2ol = Ll R I | To configure an existing routine:
I o Naidime Miopaiime - B anlloubnes
Limraral I
ez _
[esipliarn ‘ =1
=
Plusbes O Fuge [
Comsrad v BanProgun
o | _ ol | | e |
In this field: Enter:
Name The programming software displays the current name of
the routine. Edit the name, if necessary.
Description The programming software displays the current
description. Edit the description, if necessary.
Number of rungs display only
Contained in display only

1756-6.5.12 March 1999

Developing Programs 5-13

Entering Ladder Logic

= = ()

The Logix5550 controller supports multiple output instructions per
rung of logic. The output instructions can be in sequence on the rung
(serial) or input and output instructions can be mixed, as long as the
last instruction on the rung is an output instruction.

The controller evaluates ladder instructions based on the rung
condition preceding the instruction (rung-condition-in). Based on the
rung-condition-in and the instruction, the controller sets the rung
condition following the instruction (rung-condition-out), which in
turn, affects any subsequent instruction.

input instruction output instruction

rung-in rung-out
condition condition

If the rung-condition-in to an input instruction is true, the controller
evaluates the instruction and sets the rung-condition-out based on the
results of the instruction. Ifthe instruction evaluates to true, the
rung-condition-out is true; if the instruction evaluates to false, the
rung-condition-out is false.

An output instruction does not change the rung-condition-out. If the
rung-condition-in to an output instruction is true, the
rung-condition-out is set to true. If the rung-condition-in to an output
instruction is false, the rung-condition-out is set to false.

1756-6.5.12 March 1999

5-14 Developing Programs

Entering branches

There is no limit to the number of parallel branch levels the controller
supports. The following figure shows a parallel branch with

five levels. The main rung is the first branch level, followed by four
additional branches.

input instruction output instruction

|| (
[\

(
\

N\

LT TTT

B

You can nest branches to as many as 6 levels. The following figure
shows a nested branch. The bottom output instruction is on a nested
branch that is three levels deep.

input instruction output instruction
||)
[N/
| | (
[\
| | (
[AN

1756-6.5.12 March 1999

Developing Programs 5-15

Scheduling System Overhead

The controller has a system overhead time slice that determines the

percentage of controller time that is available for background

functions, such as:

e communications with programming and MMI devices (such as
the programming software)

* messaging, including block-transfers

» re-establishing and monitoring I/O connections (such as RIUP
conditions); this does not include normal I/O communications
that occur during program execution

* bridging communications from the controller’s serial port to other
ControlLogix devices via the ControlLogix backplane

The percentage you select is taken from the time available to execute
the continuous task. The percentage you select does not take time
away from executing periodic tasks.

total controller execution time

time for periodic tasks

time for the continuous task-

ir

This time is available for communication functions. If there are no
communication functions, this time is used by the continuous task.

Motion planning runs at the coarse iteration rate set for the motion
group and will preempt all user tasks. Worst case task-execution time
increases by the time needed for motion planning.

1756-6.5.12 March 1999

5-16 Developing Programs

1. Select the controller (“quick_start” in this example).
2. Click the right mouse button and select Properties.

Ble Ed Yea Festh Logo [Coraseicsion

D@ 8 0 ||e]]
o | B
TET— 3

Drwee AE_KTCA

Downloading a Project

1756-6.5.12 March 1999

Select a percentage of the execution time for the continuous task to
use for background functions and system overhead.

o Lonisaller IMiepsime - ok bk

Limraral I CuntnTmes I Loararare siony I Sansl Frd I
Eesal Fost Fotatd | Mg Faun | Wlircs Fauitn bdeareed | il

Hesay Ut

U fmaend

Toiw
Foies Pk Horcie [T R - |
Erwei i Hanaiar | s |

Onthis tab: In this field: Enter:

Advanced SystemOverhead Select the percentage number (10-90%).
Time Slice

Use the default percentage (10%) unless your application is
communication-intensive or communications aren’t being completed.
As you increase the percentage, you reduce the time available to
execute the continuous task, which may impact its overall

execution time.

Increase the percentage if your application has all periodic tasks. In
this case, there is no continuous task to execute.

To download a project to the controller:

1. Make sure the communication driver you need for the controller
is properly configured through RSLinx. A communication driver
makes sure the controller can communicate over a network.
There is a different driver for each supported network.

The default communication driver for the controller is the DF1
driver, which you would use if the programming terminal is
connected directly to the controller through the serial port.

If the programming terminal is connected to the controller
through some other network path, configure the necessary
communication driver.

For more information about configuring a connection path, see
chapter 9.

Developing Programs 5-17

1. From the Communications menu item 2. Select the communication driver to use.

select Configure. e - |

2. Select the Communications tab L s | Fei/Tken [T o Disples
Pisdasracia Commpucabrn | Lacder Dissisy

(o R < e |
Bt 3
H

| K. I Carmnl Hesdgs

In this field: Enter:

Driver Use the drop-down menu to select the driver. These
selections are only available if they have already
been configured through RSLinx communication
software:
= ControlNet (AB_KTC)

e DF1 (AB_DF1)

e DH+ (AB_KT)

< Ethernet (TCP)

The communication protocol is displayed next to
selected driver.

Path Specify the communication path to the controller
from the device that is downloading the project.

For more information about connection paths, see
chapter 9.

If the programming terminal is directly connected to the serial
port of the controller (DF1 protocol), leave the connection path
field empty.

1. From the Communications menu item, 3. The controller must be in Program or Remote Program mode to

lect Download.
select oo download a project.
P B e e L If the controller is in Remote Run or Remote Test, you will be
|%|;!ﬁ!|—¥ :; prompted for the software to change the mode to Remote
m = , . Program for the download. When the download is complete, you

will be prompted again for the software to change back to the
previous mode.

ik |
s i
L il

1756-6.5.12 March 1999

5-18 Developing Programs

Notes:

1756-6.5.12 March 1999

Chapter 6

Using This Chapter

Using MSG Instructions

Type of MSG Instruction:

Communicating with Other Controllers

For information about: See page:
Using MSG instructions 6-1
Using produced and consumed tags 6-6
Planning your system to support produced and 6-9
consumed tags

Producing a tag 6-12
Consuming a tag 6-14
Sending large arrays of data 6-17

You can use MSG instructions to communicate between a Logix5550
controller and another controller.
Communicating with another Logix5550 controller

Logix5550 controllers can use MSG instructions to communicate
with each other. The following examples show how to use tags in
MSG instructions between Logix5550 controllers.

Example Source and Destination:

Logix5550 writes to Logix5550 source tag array 1
(CIP Data Table Write) destination tag array 2
Logix5550 reads from Logix5550 source tag array 1
(CIP Data Table Read) destination tag array 2

When you enter source and destination tags for a MSG instruction
between two Logix5550 controllers:

* Both the source tag and the destination tag must be
controller-scoped tags.

* Both the source tag and the destination tag can be of any data
type, except for AXIS, MESSAGE, or MOTION_ GROUP.

* You cannot specify array dimensions or structure members.

Use an alias instead. For example, instead of array 1/3], specify
mytimer.acc, which is an alias for that array element.

* You cannot transfer a portion of an array.

Either specify the entire array (by entering the array name) or one
element of an array (by entering an alias).

1756-6.5.12 March 1999

6-2

Communicating with Other Controllers

Femdpri | Lematuue |
Selee |

Communicating with other processors

The Logix5550 controller also uses MSG instructions to

e — communicate with PLC and SLC processors. The MSG instructions
T — . . . e
differ depending on which controller initiates the instruction.
<t gyl i i et
P e LU For MSG instructions originating from a Logix5550 controller to a
PLC or SLC processor:
Type of MSG Instruction: Example Source and Destination: Supported File Types:
Logix5550 writes to PLC-5 source element array_1 for PLC-5: SINT, INT, DINT, or REAL
Logix5550 writes to SLC or for SLC: INT
MicroLogix1000 destination tag N7:10 for PLC-5 typed write: S, B, N, or F
for PLC-5 word-range write: S, B, N, F, I, 0, A, or D
for SLC: Bor N
You can use an alias tag for the source tag. If you want to
start at an offset within an array, use an alias to point to
the offset.
Logix5550 writes to PLC-2 array 1 SINT, INT, DINT, or REAL
Logix5550 reads from PLC-5 source element N7:10 for PLC-5 typed read: S, B, N, or F
Logix5550 reads from SLC or]Eor EIEEI-SBWO;\(]j-range read: S, B,N,F I, 0,A orD
MicroLogix1000 or SLL. B or
I for PLC-5: SINT, INT, DINT, or REAL
destination tag array 1 for SLO: INT
You can use an alias tag for the destination tag. If you
want to start at an offset within an array, use an alias to
point to the offset.
Logix5550 reads from PLC-2 source element 010 SINT, INT, DINT, or REAL
destination tag array 1

1756-6.5.12 March 1999

Communicating with Other Controllers

6-3

Typed read command

16-bit words in
PLC-5 processor

o

The typed commands maintain data structure and value.

32-bit words in
Logix5550 controller

The Logix5550 controller can send typed or word-range commands
to PLC-5 controllers. These commands read and write data
differently. The following diagrams show how the typed and

word-range commands differ.

Word-range read command

16-bit words in
PLC-5 processor

o

32-bit words in
Logix5550 controller

The word-range commands fill the destination tag contiguously. Data

structure and value change depending on the destination data type.

The Logix5550 controller can process messages initiated from PLC
or SLC processors. These messages use data table addresses. In
order for these processors to access tags within the Logix5550

controller, you map tags to data table addresses.

The programming software includes a PLC/SLC mapping tool which
allows you to make an existing controller array tag in the local
controller available to PLC-2, PLC-3, PLC-5, or SLC processors.

1756-6.5.12 March 1999

6-4 Communicating with Other Controllers

Mapping addresses

To map addresses, specify this information.

o N5Laga HIN - gusck_gisl n srofber_ssampls AU m
File £ ‘Yems Eesuch WEGOE Commimcsmns Jook sl

| ﬂlﬁlul!l_l fipn PLEJ L8 E Mapping | g I
—— | f;:;:ﬁﬂ il Bk i P Mol Concel I
Ed =] | Evuced Tage nee |
[abata Mg |
FLL I Mapprg
TogHuoma: | =l
For: In this field: Specify: For example:
PLC-3, PLC-5, and File Number Enter the file number of the data table in the 10
SLC processors PLC/SLC controller.
Tag Name Enter the array tag name the local controller uses to array 1
refer to the PLC/SLC data table address.
PLC-2 processors ~ Tag Name Enter the tag name to be the PLC-2 compatibility file. 200

The tag in the local controller must be an integer array (SINT, INT, or
DINT) that is large enough to support the message data.

You can map as many tags as you want to a PLC-3, PLC-5, or SLC
processor. You can map only one tag to a PLC-2 processor.

1756-6.5.12 March 1999

Communicating with Other Controllers 6-5

The following examples show example source and destination tags
and elements for different controller combinations.

Type of MSG Instruction: Example Source and Destination:
PLC-5 writes to Logix5550 source element N7:10

SLC writes to Logix5550 destination tag “array 1”
SLC 5/05

The PLC-5, PLC-3, and SLC processors support logical ASCIl addressing so you do not

:::g 2;8431 82;8; Z:g Zggvg have to map a compatibility file for MSG instructions initiated by a PLC-5, PLC-3, or
v SLC processor. Place the Logix5550 tag name in double quotes ().
You could optionally map a compatibility file. For example, if you enter 10 for the
compatibility file, you enter N10:0 for the destination tag.
PLC-2 writes to Logix5550 source element 010
destination tag 200
The destination tag is the three-digit PLC-2 address you specified for PLC-2 mapping.
PLC-5 reads from Logix5550 source tag “array 1”
SLC reads from Logix5550 destination element N7:10
gtg Zgi 05402 and above The PLC-5, PLC-3, and SLC processors support logical ASCIl addressing so you do not
SLC 5/03 0S303 and ab v have to map a compatibility file for MSG instructions initiated by a PLC-5, PLC-3, or
and ahove SLC processor. Place the Logix5550 tag name in double quotes ().
You could optionally map a compatibility file. For example, if you enter 10 for the
compatibility file, you enter N10:0 for the source tag.
PLC-2 reads from Logix5550 source tag 200

destination element 010

The source tag is the three-digit PLC-2 address you specified for PLC-2 mapping.

When the Logix5550 controller initiates messages to PLC or SLC
controllers, you do not have to map compatibility files. You enter the
data table address of the target device just as you would a tag name.

SL.C 5/05 processors, SLC 5/04 processors (OS402 and above), and
SLC 5/03 processors (OS303 and above) support logical ASCII
addressing and support PLC/SLC mapping (see the examples above).
For all other SLC or MicroLogix1000 processors, you must map a
PLC-2 compatibility file (see the PLC-2 examples above).

1756-6.5.12 March 1999

6-6 Communicating with Other Controllers

Using Produced and
Consumed Tags

Tag type: Description:

The Logix5550 controller supports the ability to produce (broadcast)
and consume (receive) system-shared tags. Produced and consumed
data is accessible by multiple controllers over the ControlBus
backplane or over a ControlNet network.

ControlBus backplane

0
o] ControlLogix chassis
two Logix5550 controllers
ControlNet network
p G
%8
E; EHEHE
=== 3 T
ControlLogix chassis 1771 chassis
one Logix5550 controller one PLC-5C controller

41029

Produced and consumed tags must be controller-scoped tags of DINT
or REAL data type, or in an array or structure.

Specify:

produced These are tags that the controller produced for <

other controllers to consume.

Enabled for producing
How many consumers allowed

consumed These are tags whose values are produced by <

another controller.

Controller name that owns the tag that the local controller wants
to consume

Tag name or instance that the controller wants to consume

Data type of the tag to consume

Update interval of how often the local controller consumes the tag

1756-6.5.12 March 1999

Communicating with Other Controllers 6-7

producer

Processing produced and consumed tags

The producer and consumer must be configured correctly for the
specified data to be shared. A produced tag in the producer must be
specified exactly the same as a consumed tag in the consumer. In the
following example, consumer 2 does not have the correct tags.

consumer 1] Consumed tag names

» A
Produced tag names B

D

consumer_2| Consumed tag names

O(O|wm|>

OOl

consumer 3| Consumed tag names

L B
c
D

When consumer 2 tries to access the shared tags, the connections
fail. Even though three of the tags are specified correctly (B, C,
and D), the connections fail for all the consumed tags because one
was incorrect (E).

The other consumers (consumer 1 and consumer_3) can still access
the shared tags, as long as their tags are specified correctly. One
consumer failing to access shared data does not affect other
consumers accessing the same data.

1756-6.5.12 March 1999

6-8 Communicating with Other Controllers

1756-6.5.12 March 1999

Maximum number of produced and consumed tags

The following table shows the total number of produced and
consumed tags a controller supports:

As a: The controller supports:

consumer (number of consumed tags) < 250

If your controller consumes 250 tags, these tags must come
from more than one controller. A controller can only produce as
many as 127 tags. See the producer numbers in this table.

producer (number of produced tags) < 127

Each produced tag uses one unidirectional connection for the tag and
one unidirectional connection for each controller that consumes the
tag. With these maximum numbers in mind, the total combined
consumed and produced tags that a controller supports is (this is also
the maximum number of unidirectional connections; see chapter 7):

(number of produced tags) + (number of consumed tags) < 255

As the number of consumed tags increases, the number of available
produced tags decreases. You increase the number of consumed tags
either by creating consumed tags or by adding additional consumers
to a produced tag.

Communicating with Other Controllers 6-9

Planning Your System to Support Before the Logix5550 controller can share produced or consumed

Produced and Consumed Tags tags, the other controllers must be configured in the controller
organizer of the consuming controller. You can produce and

consume data between these controllers:

You can share data between: Over this network:

Logix5550 controller and local Logix5550 controller ControlBus backplane

ControlBus backplane

[8) __[5)
o ——=lg 8 % |
=g —=g| @'l| ControlLogix chassis with
two Logix5550 controllers

Logix5550 controller and remote Logix5550 controller ControlNet network

ControlLogix chassis with ControlLogix chassis with
one Logix5550 controller one Logix5550 controller
O\ _[O [B\ __[O
v—=—"lg [@[. |= o=z @] =
— K3 =

ControlNet network

Logix5550 controller and PLC-5 ControlNet processor ControlNet network

1771 chassis with ControlLogix chassis with
one PLC-5C controller one Logix5550 controller
[6\ [

e==—="l1 [@ ||

ControlNet network

1756-6.5.12 March 1999

6-10 Communicating with Other Controllers

Identifying another local controller

1. Select I/0 Configuration Identifying another Logix5550 controller in the same chassis is
2. Click the right mouse button and select New Module similar to adding local I/0 modules to the controller organizer.
To identify another Logix5550 controller, select the 1756-L.1

controller. Specify:
Fla B Yew Jrach Loge Lawmnic

| Blalid] o 2 Loie] |
T |
TE— |

Diwem AH_ETCA

i Cprfrlle quack_riml
A Cooke Tege
T sy sl e
Fosvm lLar Handie
-5 Tk
= U M sk
= anProgran
B Progren Teg
B W cadines
| Urmcradubed Fiep am
3 Cuptn Topes
CREE R
= [Fradained
Moo [eber)

In this field: Enter:

Name Enter a name for the controller (required).

Description Enter a description for the controller (optional).

Slot Number Enter the slot number where the controller is installed.
Electronic Keying Electronic keying is disabled, but you can still select a

minor revision of the controller.

Identifying a remote controller

Identifying a remote controller is similar to adding I/O modules to the
controller organizer. You can follows these steps for either a remote
Logix5550 controller or a remote ControlNet PLC-5 controller. You
must use a 1756-CNB or 1756-CNBR module.

1756-6.5.12 March 1999

Communicating with Other Controllers 6-11

1. Select I/0 Configuration

2. Click the right mouse button and select

New M

odule

e B e feach lage Lomeuricsl

| dlawt] o)] -]

| T

[.

"".-E:"

Diwrea 58_ETCA

=1 3

3 C

i Crrirlie quack_riart

i Torapds Tap

55 Tesks

<= L Fedeined

Cordche Mol Hwds
Fopvm Larz Handin

3 .hll:_'vld.lqu'l-o-pnl
taln Tupei
B haeDsesd

§ Mohin Diofwed

| 1M
F 170

1. Select the 1756-CNB module

2. Click the right mouse button and select

New M

b [

odule

B R e e

B) Ao - ol

B

el QE:

b
Eers &8 K151

A

wrirde aar e
- .

1 Furws Loy Harwde
pal

i P o oy

g d b
B Mg
B Friagem 1o

O i

i s gl P g

N

1.

Configure a 1756-CNB module for the local chassis. This
module handles communications between the local controller’s
chassis and the remote chassis. Specify:

Trpsc 1758-CRE 175 ConiroBiet B adge

Wender, tlerBusiiey

Mg |

T

i T

-

Cocel | amser | g | [e ve |
In this field: Enter:
Name Enter a name for the module (required).
Description Enter a description for the module (optional).
Slot Number Enter the slot number where the module is installed.

Electronic Keying

Select an electronic keying method.

Configure another 1756-CNB communication module, this time
for the communication module you just configured. This module
handles communication for the remote chassis. Specify:

Mgkl Propesien on® mpchyls 1755 CHE 901

Higgs | [
Descrgle: | :l ':‘l'—'rﬁml'] 3
Gorem Fosmaiz [Finch. ptrmuraior, =] S -

Cocet | cmat | s |[Fume] vew |
In this field: Enter:
Name Enter a name for the module (required).
Node Enter a ControINet node number for the module.
Description Enter a description for the module (optional).
Chassis Size Enter the number of slots in the chassis that contains

the module.

Slot Number Enter the slot number where the module is installed.

Communication Format

Select controller ownership of the module by selecting the
communication format.

Electronic Keying

Select an electronic keying method.

1756-6.5.12 March 1999

6-12 Communicating with Other Controllers

1. Select the remote communication module

2. Click the right mouse button and select
New Module

P B e]
[[0 fon jesd pen Descoios (o 5

(EE L LT | —
= =] B
sl e i
[T e 2]

Producing a Tag

1. In the Tag Editor, select the tag.
2. Click the right mouse button and select
Tag Properties

#F Condinll Tage - o5 ampla oo orirals |

1756-6.5.12 March 1999

3. Identify a Logix5550 controller processor for the remote

1756-CNB module. This controller can share system data with
the local Logix5550 controller. Specify:

T ppc 15811 Canteoll pgeSS50 Prograsrarabla Conirclar

Mg | ag i

O - T

Cocel | cpsr | g | [Femes | e |

In this field: Enter:

Name Enter a name for the controller (required).
Description Enter a description for the module (optional).

Slot Number Select the slot number where the module is installed.
Electronic Keying Electronic keying is disabled, but you can still select

a minor revision of the controller.

If you want to add a PLC-5 ControlNet processor, add it to the local
1756-CNB communication bridge module.

Produced data must be of DINT or REAL data type or an array or
structure. You can use a user-defined structure to group BOOL,
SINT, and INT data to be produced.

A produced tag is a tag that is configured for periodic transmission
from the controller via the ControlBus backplane. To create a
produced tag, create a tag (base, alias, or consumed) and specify to
produce the tag.

Gesaral |
Bbara: I-\.,.e-_l
[mrcaphon: :]
=

TagTwps F Baiw [dke ¢ Corousd
RS [|
g [pnch_ist
1. [Ceca -
F Brofma e g fosp] [25 dorkanesn

[Ecel | ek g

Communicating with Other Controllers 6-13

In this field:

To specify a produced tag:
Enter:

Name

Enter a name for the tag.

Description

Enter a description for the tag (optional).

Tag Type

Select one of these:

Base normal tag

Alias tag that represents another tag with the same characteristics

Consumed tag that is produced by another controller whose data you want
to use in this controller

Data Type

Select the data type. The programming software displays a list of the available data
types. The list consists of the predefined data types and any user-defined data types.

If the tag is to be an array, specify the number of elements in each dimension. There
can be as many as 3 dimensions. If the tag is not an array, or you do not want all 3
dimensions, set the dimension fields to zero (0).

Scope

All produced tags must have controller scope.

Style

Select the display style of the tag. The programming software displays a list of the
available styles, which depends on the data type. The style you select becomes the
default display type when monitoring that tag with the programming software.

Produce this tag

Select whether to make this tag available to other controllers. Specify the maximum
number of other controllers that can consume the tag.

You can only choose to create a produced tag when programming offline.

A produced or consumed tag cannot be larger than 500 bytes. You
can produce a base, alias, or consumed tag.

The consumed tag in a Logix5550 controller must have the same data
type as the produced tag in the originating Logix5550 controller. The
Logix5550 controller performs type checking to ensure proper data is
being received.

You can display a list of produced tags in the tag editor of the
current project.

Select Produced Tags.
- =

o
Sonpac [ipmi iyl omi i ™ ?ﬂu.lm'\-'ﬂ'-lhl- =] o |1.,.'.-;;...r -i
P [Tag s I] ry En | Cemreus | |=
% rond_{ Lxcal] [Frociecs Tagz] tD
& Lacal il Conviaresd T oge Ch
| ELacat] ik Tage t0
. Dwla Tppn
|5 LacazE s =1
o Lacst 2 jlanl _Fae
st 20 OomTROL 8
St COLWTER e | Ta
< Lol | | Tt
| Lacdl S AR 7 _DOCD |
[a5 \AE:1756_00_Ferm |
& Lacad &0 AE1756_D0_Sche
| swwrate_cril 1R |
[s _crill ARTTE MW |
e T I pascinead
| Fagips 051 HHTE]]

1756-6.5.12 March 1999

6-14 Communicating with Other Controllers

Consuming a Tag

1. In the Tag Editor, select the tag.
2. Click the right mouse button and select
Tag Properties

Ymopa |l|.'-:ll|.ll:'l i wlies 'l &wﬁ

1756-6.5.12 March 1999

Produced tags require connections. The number of connections
depend on the amount of data and how many controllers are
producing and consuming tags. For more information, see chapter 7.

Producing a tag from a Logix5550 controller to a ControlNet
PLC-5 processor

To produce a tag that a ControlNet PLC-5 processor can consume,
follow these steps:

1. Create a produced tag in the Logix5550 controller.

2. In RSNetworx communication software, in the ControlNet
configuration for the target PLC-5 controller, create a Receive
Scheduled Message.

The input size of the scheduled message must match the number
of bytes in the Logix5550 tag. A produced tag in the Logix5550
controller is always a multiple of 32 bits (DINT, REAL,

or structure).

3. Schedule the link using RSNetworx software.

The ControlNet PLC-5 controller does not perform type checking.
Make sure the PLC-5 data type can correctly receive the Logix5550
produced tag to ensure proper data is being received.

A consumed tag represents data that is produced (broadcasted) by one
controller and received and stored by the consuming controller.

|

Hawe: |.u..-_. | [|

[lszcrption =l Cancal |
A e |

THTSE T Bom ke F Do

Goboder |] p——

e s _3

[y Fpossc |'.-||| _l |

i [e =l

™ Paducathatsgion o [:jlmi

Communicating with Other Controllers 6-15

To create a consumed tag, create a tag and select the consumed
tag type:

In this field: Enter:
Name Enter a name for the tag.
Description Enter a description for the tag (optional).
Tag Type Select:
Consumed tag that receives data from a producing tag in another controller
Controller Select the name of the other controller. You must have already created the controller

in the controller organizer for the controller name to be available.

Remote Tag Name
Remote Instance

Enter a name for the tag in the other controller you want to consume.

Important: The name must match the name in the remote controller exactly, or the
connection faults.

If the remote controller is a ControlNet PLC-5, this field is Remote Instance. Select
the instance number (1-128) of the data on the remote controller.

RPI
(requested packet interval)

Enter the amount of time in msec between updates of the data from the remote
controller. The local controller will receive data at least this fast.

Data Type

Select the data type. The programming software displays a list of the available data
types. The list consists of the predefined data types and any user-defined data types.

If the tag is an array, specify the number of elements in each dimension. There can
be as many as 3 dimensions. If the tag is not an array, or you do not want all 3
dimensions, set the dimension fields to zero (0).

Display Style

If you are creating a consumed tag that refers to a tag whose data type is BOOL, SINT,
INT, DINT, or REAL, you can select a display style. This display style defines how the
tag value will be displayed in the data monitor and ladder editor. The display style
does not have to match the display style of the tag in the remote controller.

Produce this tag

Select whether to make this tag available to other controllers. Specify how many
controllers can consume the tag.

You can only create a produced tag when programming offline.

Important: All consumed tags are automatically controller-scope.

A produced or consumed tag cannot be larger than 500 bytes. You
can only create a consumed tag when programming offline.

If a consumed tag is configured over a ControlNet network, you must
use RSNetworx to schedule its connection over the network.

The produced tag in the originating Logix5550 controller must have
the same data type as the consumed tag in the other Logix5550
controller. The Logix5550 controller performs type checking to
ensure proper data is being received.

Important: If a consumed-tag connection fails, all of the other tags
being consumed from that remote controller stop
receiving data as well.

1756-6.5.12 March 1999

6-16 Communicating with Other Controllers

Select Consumed Tags.

—

1756-6.5.12 March 1999

You can display a list of consumed tags in the tag editor of the
current project.

iml:\.’l .u'rrn-rml-l-'l'l 5|‘F|I""n e [ag: | SEL |I|r;|||.n-- |
% aig Hara 1| ek ihesa # | Gl | Tma =
[| s Prxhend Tagn Do AnoL
- in F e I | [GANT 1Y
=1 s Fage L
| | Tose_m@osi Frromabin T agr [AN
HEET Dista Toge 1.1 AE.|756_D1AA
|| led_state AR | Do iHT
|| % LacaliL 'EI:'-": [AE: TSE_DECA
|| Locatta] COMTADL = i-.-1] [BT Dl |
[Loaiit B E— t.-1] AR P DO ED
+ Lot H fenel leenl A E_DO_Fus

Produced tags require connections. The number of connections
depend on the amount of data and how many controllers are
producing and consuming tags. For more information, see chapter 7.

Consuming a tag from a ControlNet PLC-5 processor to a
Logix5550 controller

To consume a tag from a ControlNet PLC-5 processor, follow
these steps:

1.

In RSNetworx communication software in the ControlNet
configuration for the PLC-5 controller, create a Send
Scheduled Message.

Use an output size of at least 2 (for 32 bits).

In RSLogix5000 programming software, create a user-defined
structure. The first member is a DINT. The second member is an
INT array. The size of the INT array should match the output
size entered in RSNetworx.

Create a consumed tag of this user-defined type.

When you specify the tag as consumed, specify the instance of
the Send Scheduled Data entry as the Remote Instance of the tag.

The requested packet interval (RPI) can be as low as the network
update time (NUT).

In RSNetworx communication software, schedule the link.

Communicating with Other Controllers 6-17

Sending Large Arrays of Data

The Logix5550 controller can send as many as 500 bytes of data over
a single scheduled connection. This corresponds to 125 DINT or
REAL elements of an array. To transfer a larger amount of data, you
could break that data into multiple arrays, each with a length of 125
elements. The problem with this approach is that the controller only
supports 250 connections. An array with 5000 elements would take
40 connections (5000/125=40) using this approach.

Another way to transfer a large array is to use one PLC-5 type
message to send the data as one large array. The problem with this
approach is that messages are unscheduled and are executed only
during the “system overhead” portion of the Logix5550 execution.
Therefore, messages can take a fairly long time to complete the data
transfer. You can improve the transfer time by increasing the amount
of system time available to overhead, but this also diminishes the
performance of the continuous task.

A better approach to transferring a large array is to use a one
produced/consumed tag of 125 elements to “packetize” the array in
one controller and send it piecemeal to another controller. The
following example transfers big_array from a primary controller and
creates a backup version on a second controller.

Primary Controller Backup Controller
big_array big_array
- . packet packet -
0
. 123|packet_ID packet_ID
\124 acknowledge acknowledge| . -
backup_ack backup_ack
packet_ID packet_ID
acknowledge ‘ acknowledge

In this example, the primary controller moves 123 elements from
big_array into a packet and appends two words to the end. The first
word added (element 123) contains the packet ID. The packet ID is
the starting offset of big_array from which the first element of the
packet is obtained. The packet ID will have values of 0, 123, 246,
etc. The second word added (element 124) is as acknowledge word.

1756-6.5.12 March 1999

6-18 Communicating with Other Controllers

1756-6.5.12 March 1999

The primary controller creates a packet by determining what section
of big_array to copy into the packet and setting the packet ID equal
to the first element location of that data section in the big_array. The
primary controller then waits for the acknowledge word of the
backup_ack array to be set equal to —999 by the backup controller,
which indicates that the backup controller has received a new packet.

The backup controller waits until it sees a value of the packet ID
element of the packet that is not equal to the previous value of the
packet ID. This signals the backup controller that a new packet has
started to be received. The backup controller then sets the
acknowledge word of backup_ack array equal to —999 and waits to
see this —999 value returned by the primary controller in the
acknowledge word of the packet.

When the primary controller sees that the backup controller has set
the acknowledge word of backup_ack to —999, the primary controller
moves the value of —999 into the acknowledge word of the packet.

Once the backup controller sees that the primary controller has set the
acknowledge word of the packet to —999, the backup controller
knows that it has received a complete copy of the packet and can copy
that data into the appropriate location in it’s own big_array. After the
backup controller finishes copying the packet, the backup controller
sets the acknowledge word of backup_ack array equal to zero and sets
the packet ID element of backup ack array equal to the packet ID of
the packet. This signals the primary controller that the backup
controller has finished copying the packet.

When the primary controller sees that the packet ID of backup ack is
equal to the current value of the packet ID, the primary controller
then resets the acknowledge word of the packet equal to zero. The
primary controller can now build the next packet.

This cycle of building and producing packets continues until the
packet ID value returned in backup ack added to 123 is greater than
or equal to the size of big_array. When this is true, the packet ID in
the packet is set equal to zero to start rebuilding packets starting at the
beginning of big_array. Because the final packet might be right at the
end of big_array, be sure that you create big_array to be at least 122
elements larger than the largest amount of data you will ever want to
transfer. This ensures that you will never end up trying to copy more
elements from or into big_array than really exist.

Produced data over the ControlBus backplane gets sent in 50 byte
segments. This is asynchronous to the program scan in the controller.
You need the acknowledge words to make sure that each controller is
complete with it’s copying before either controller attempts its next
copy. Otherwise, the primary controller could be building a new
packet while the backup controller is still copying the previous
packet, resulting in inaccurate data.

Communicating with Other Controllers 6-19

BT T

Example programming for the primary controller

prema g Lol |

The following ladder logic uses T ——— [e [perr—— |

these tags:

|iP | 1 P | s P | nie g | Tpe | e | Eemcrgaon | | =
I Fasdan s TAMT[T] Timciasl
+] N [IH TN |
T m_oe_wit [HT [escanal
) i v KT [iwnal
i skt DiH T[ES [ipcrnal
I | eackad D i] [iecarmal
I+ amnris_tewa 1 Limornsl
I | b mndes_berar TRLT

Uze a timer to determine the total time required to transfer the entire big_array [up to big_array_zize] ta the backup contraller.

Source B packet[123]
4551 €

MED EQU
Mot Equal Equal
Source & backup_ack[0] Source & backup_ack[1]
954 € 0+
Source B 993

TOM
Tirner On Delay BN T——
Tirner transfer_timer DM —
Prezet 10000000 &
Accum 143 €

I the backup contraller haz not wet copied the current packet [backup_ack[0] does not equal packet[123]], but haz started to receive the cunent packet (backup_ack[1] iz
equal to -333), then move -399 into packet]124] ta acknowledge to the backup contraller that it can now start to copy the packet into its big_array. The backup contraller
only sees thiz acknowledgement after receipt of a complete second transfer of the packet, o you are guaranteed that all of the data in the packet iz comect,

00
t e

EQU

the acknowledgement from the backup controller.

Equal
Source & backup_ack[0]
924 €

Source B packet[123]
4551 €

GRT
Greater Than [&>B)
Source & tranzfer_time
302 e
Source B mar_tranzfer_time
26

Compare

[f the backup contraller haz finished copring the curent packet [backup_ack[0] equals packet[123]], then build the next packet, 1f backup_ack[0] + 123 iz lezz than
big_array_zize, then you need to add 123 ta the curent value of packet[123] to paint at the start of the nest packet area of big_array. If backup_ack[0] + 123 iz areater
than or equal to big_array_size, then all of the required big_anay has been transferred and you start over with the first packet, You can then store transfer_timer ACC and
rezet the timer. Once you have the carect packet_|ID, build the nest packet using the instructions on the last branch of this rung. Then reset packet{124] to zero to rezet

Source 955

Dest packet[124]
0&

Cormpare

ChF: ADD
Add
Expression [backup_ack[0] + 123] < big_amay_size Source &4 packet[123]
4551 €
Source B 123
Dzt packet_ID
jslaciag o
ChP: LR
Clear
Expreszion [backup_ack[0] + 123) »= big_anap_szize Dest packet_ID
ST
A0
Move
Source transfer_timer ACC
143+
Dest transfer_time
302«
transfer_timer
RES ™3
COF A0 LR
Copy File Move Clear —
Source big_aray[packet_ID] Source packet_|D Dest packet_ID
Dest packet[d] BR36 & BR30 &
Length 123 Dest packet[123]
FLIINY
Thiz rung gathers the mawsimum transker time that iz seen by the controller.
kA0
hove
Source tranzfer_time
302+
Dest maw_transfer_time
J26 €

1756-6.5.12 March 1999

6-20

Communicating with Other Controllers

The following ladder logic uses

these tags:

Example programming for the backup controller

o |'.--'I--|\|-'-'\-m.r\l-| '-'I Srwl'h‘*'-"' 'rl i |IJ._;IIM4- 'rl
[P T g Hisema o s P s T | T | S | B s |
[-backan ok DTS Decinsd
R g DRTIICE] Do
M 4 pds DRITIEE [
1] eI DT Do
op_] Bl Deceral
& |

1756-6.5.12 March 1999

This rung firzt checks o zee if packet[123] received from the primary contraller iz different than backup_ack[0], which was et equal to the packet_ID far the
previous packet that was copied into big_amay on the backup controller. If thesze walues are different, you know that a new packet hag started to be received.
Then the rung checks to zee if packet[124] iz equal to -933. If o, then the backup contraller has received the entire packet and can begin copying it into the

backup controller's big_armay, set backup_ack[0] equal to packet[123]. and reset backup_ack[1]. If packet[123] iz different than backup_ack[0], move -393 into
backup_ack[1] to indicate to the primany controller that the backup contraller has started to receive thiz new packet.
MEL) EQL A0
MHat Equal Equal b o
Source & packet[123] Source &4 packet[124] Source packet[123]
ZhE3 € 999 & 25B3 €
Source B backup_ack[0] Source B 5585 Drest packet_|D
h2E9 VB0 ®
COP
Copy File
Saurce packet[0]
Dest big_arrap[packet_|D]
Length 123
A0
Move
Source packet[123]
la=ich o
Dest backup_ack[0]
hZ2B5 €
CLR:
Clear —
Dest backup_ack[1]
999 &
HED hA Y
Mot Equal Move
Source & packet[124] Saurce -939
333 €
Source B -339 Dest backup_ack[1]
999 &

Chapter 7

Using This Chapter

How the ControlLogix System

Uses Connections

Allocating Communication Connections

For information about: See page:
How the ControlLogix system uses connections 7-1
Determining I/0 connection requirements 7-2
Determining connections for produced and 7-6
consumed tags

Determining connections for messaging 7-7
Determining total connection requirements 7-8

The ControlLogix system uses a connection to establish a
communication link between two devices. This includes controllers,
communication modules, input/output modules, produced/consumed
tags, and messages. Connections take many forms:

« controller direct to local I/O or local communication module

e controller direct to remote 1/O or remote communication module
» controller to remote chassis (rack optimized)

e produced and consumed tags

* messaging, including block-transfers

You indirectly determine the number of connections that the
Logix5550 controller requires by configuring the controller to
communicate with other devices in the system.

Each module in the ControlLogix system supports a limited number
of active connections. Take these connection limits into account
when designing your system. These modules support these number
of connections:

Device: Description: Connections:

1756-L1 Logix5550 Controller 250 bidirectional (500 unidirectional)

1756 1/0 modules ControlLogix I/0 modules 16 bidirectional

1756-CNB ControlLogix ControlNet Bridge 64 bidirectional

1756-CNBR

1756-ENET ControlLogix Ethernet Bridge 16 bidirectional

1756-DHRIO ControlLogix DH+ Bridge and 32 bidirectional per DH+ channel

Remote /0 Scanner 32 bidirectional rack connections and

16 bidirectional block-transfer connections per
remote /0 channel

1756-DNB ControlLogix DeviceNet Bridge 2 bidirectional

1756-6.5.12 March 1999

7-2 Allocating Communication Connections

Determining Connections for
I/0 Modules

1756-6.5.12 March 1999

All I/O modules can have a direct, bidirectional connection to the
controller. A 1756-CNB ControlNet bridge module supports the
ability to organize a chassis of digital I/O modules into one
bidirectional connection (rack connection), rather than requiring a
direct bidirectional connection for each individual I/O module.

You can configure these types of connections to these modules:

A Logix5550 connection to: Can use this connection type:
local I/0 direct connection only
remote 1/0 direct connection

or
rack optimized connection

Direct connections for 1/0 modules

A direct connection is a real-time, data transfer link between the
controller and an I/O module. The controller maintains and monitors
the connection between the controller and the I/O module. Any break
in the connection, such as a module fault or the removal of a module
from the chassis while under power, causes the controller to set fault
status bits in the data area associated with the module.

If a controller has a module configuration that references a slot in the
control system, the controller periodically checks for the presence of
a device in that slot. When a device’s presence is detected there, the
controller automatically sends the module configuration.

If the module configuration is appropriate for the I/O module found in
the slot, a connection is made and operation begins. If the module
configuration is not appropriate, the connection is rejected. You can
view the fault message on the Connection tab of the module’s
properties. Module configuration can be inappropriate for any of a
number of reasons. For example, a mismatch in electronic keying
that prevents normal operation.

Allocating Communication Connections

7-3

In this example, the owner controller has three direct connections
with I/O modules in the remote chassis.

Using Direct Connections with I/0 in a Remote Chassis

Local chassis

[8\ [8)

Remote chassis

ik

[8)

|
=] A B B
— 1 ——0—1—
o Ve g Vi
® P TP
5 UA4—P—— U
s T T U T[]
T
[
@] O]

\
S =
© | | 0
E:: $ D Slot 2 RPI = 50mS
® T
o u_p
3 T U :;
T Slot 3 RPI = 25mS
[
@] O]
T T ControlNet

Owner controller ControlNet bridge module

T

ControlNet bridge module

41020

The local controller in this example uses these bidirectional

connections:
Bidirectional
Connection Type: Module Quantity: |Connections Total Connections:
per Module:
controller to local I/0 module 1 2
controller to remote /0 module 1 3
controller to remote 1756-CNB module 1 1
total 6

When you select the communication format for the I/0 module, the
owner and listen-only formats are direct connections.

1756-6.5.12 March 1999

7-4 Allocating Communication Connections

Rack optimized connections for I/0 modules

When a digital /O module is located in a remote chassis (with respect
to its owner), you can select rack optimized communication. A rack
optimized connection consolidates connection usage between the
owner and the digital I/O in the remote chassis. Rather than having
individual, direct connections for each I/O module, there is one
connection for the entire chassis.

In this example, the owner controller communicates with all the
digital I/O in the remote chassis but uses only one connection. The
data from all three modules is sent together simultaneously at a rate
specified by the 1756-CNB connection. This option eliminates the
need for the three separate connections shown in the

previous example.

Using a Rack Optimized Connection with I/0 in a Remote Chassis

Local chassis

[8\ [8)

Remote chassis

[—

© |1 |o 1o —

N I U D Rack optimized :fo N - U I N —

9 PCT connection for all /0 ® P T— P

o Uu——~P ol U—+—P—4—U—
3 T U s T U T

J T o T
N u
(=] [S] ©] [S]
T T ControlNet T
41021
Owner controller ControlNet bridge module ControlNet bridge module

The local controller in this example uses these bidirectional
connections:

Bidirectional
Connection Type: Module Quantity: |Connections Total Connections:
per Module:
controller to local I/0 module 1
controller to remote 1756-CNB module 1 1
total

1756-6.5.12 March 1999

The rack optimized connection conserves ControlNet connections
and bandwidth, but it limits the status and diagnostic information that
is available from the I/O modules.

Allocating Communication Connections

7-5

To configure an I/O module for a rack optimized connection, you
select the Rack Optimization communication format. Most of the
discrete I/0O modules support a rack optimized connection. If this
option does not appear when you are selecting communication format
for an I/0 module, the module does not support the rack optimized
connection.

I Hew Mogide nb momlgls 7 (1755080 2

Topa: TFEELAIE 1E Pant TRU1EN AL Inpai

Wharnchisl Elerv iadey Compae, I

Pl end rachile T

Hugps | P 5

mesas | 3

oy Fraiviht |l'l:-l.l Uss :l
CET Twmeeiliiinsn opaid [1g0a

Firersn gk (sl

Select Rack Optimized for a
rack connection

Ligdenri Undy - LS50 | eeaniarpadd lapest Uads
iipiesn Ty - i [ises

|t

Firish 55

Hap |

Combining direct and rack optimized connections

A remote chassis can have both a rack optimized connection and
direct connections. In this example, the owner controller uses a rack
optimized connection to communicate with two digital /O modules.
The owner controller also uses a direct connection to communicate
with an analog module in the same chassis.

Using a Rack Optimized Connection and a Direct Connection with 1/0 in a Remote Chassis

Local chassis

Remote chassis

\ ‘ [&)
-2 B HEL Rack optimized L B B8 §
© | | 1 0 connection 1 0-f—A-
W e N EETEIE
P T P-TIAC
2 U——P U—P— L
LB T LB T—VU-—o0-
B T Slot 3 RPI = 25mS B Tl G-
T @ : @ @

T

Owner controller

ContfolNet

ControlNet bridge module

T

ControlNet bridge module

41030

1756-6.5.12 March 1999

7-6 Allocating Communication Connections

The local controller in this example uses these bidirectional

connections:
Bidirectional
Connection Type: Module Quantity: |Connections Total Connections:
per Module:
controller to local I/0 module 2 1 2
controller to remote analog 1/0 module 1 1 1
controller to remote 1756-CNB module 1 1 1
total 5
Determining Connections for The Logix5550 controller supports the ability to produce (broadcast)
Produced and Consumed Tags and consume (receive) system-shared tags. System-shared data is

accessible by multiple controllers over the ControlBus backplane or
over a ControlNet network. Produced and consumed tags each
require connections.

Connections for produced tags

By default, a produced tag allows two other controllers to consume
the tag, which means that as many as two controllers can
simultaneously receive the tag data. The local controller (producing)
must have one unidirectional connection for each consumer and one
more unidirectional connection for the produced tag. The default
produced tag requires three unidirectional connections.

You define the number of consumers through the Tag Properties.

"o, Do Propetien -« waleo_1

El
Tt & T dgmr O Cprosned
Dwsfromc [H7 -] |
specify the maximum number of g bamch_stan
consumers for this produced tag e [T =

4> F Eroducs b bag bar up o Fﬂm

CF | I'.I\Llll | Hﬂ:l

As you increase the number of controllers that can consume a
produced tag, you also reduce the number of connections the
controller has available for other operations, like communications
and /0.

1756-6.5.12 March 1999

Allocating Communication Connections 7-7

Optimizing produced tags

Each produced tag requires connections that can be used for other
controller operations. To minimize the of produced tags, and the
number of required connections, consider grouping data into an array
or a user-defined structure and producing only that array or structure,
as long as the array or structure is not larger than 500 bytes.

For example:

Unidirectional Connections

Definitions: Produced Tags: (default number of 2 consumers):
height DINT data type height 3
width DINT data type width 3
weight REAL data type weight 3
W_flag DINT data type W_flag 3
L flag DINT data type L flag 3
total: 15 unidirectional connections
Load_Info structure of: Load_Info 3
height DINT data type total: 3 unidirectional connections
width DINT data type
weight REAL data type
W_flag DINT data type
L flag DINT data type

Determining Connections
for Messaging

Connections for consumed tags

Each consumed tag requires one unidirectional connection for the
controller that is consuming the tag.

The Logix5550 controller uses connections to perform messaging,
including block-transfers. When your logic uses a message
instruction to read or write information to or from another module,
that instruction requires one bidirectional connection for the duration
of the transmission. Depending on how you configure the message
instruction using the .EN_CC enable caching bit, the connection
remains open until the controller stops executing the logic or the
connection is closed after the message transmission.

Message instructions that execute repeatedly should keep the
connection open (set the .EN_CC bit) to optimize execution time.
Opening a connection each time to execute an instruction would
increase execution time. Message instructions that operate
infrequently can close connections upon completion to free up

connections for other uses.

1756-6.5.12 March 1999

7-8 Allocating Communication Connections

Determining Total The Logix5550 controller supports 250 bidirectional connections.
Connection Requirements Use the following table to tally connection requirements for a
controller. This table calculates bidirectional connections:
Bidirectional
Connection Type: Module Quantity: |Connections Total Connections:
per Module:

I/0 modules (direct connections) 1
to 1756-MO2AE servo module 3
to local 1756-CNB module 0
to remote 1756-CNB module 2
to 1756-DHRIO module 1
to 1756-ENET module 0
to 1756-DNB module 2
to Universal Remote 1/0 adapter module 1
produced tags

produced tag g

number of consumers '
consumed tags 5
block-transfer messages 1
other messages 1

total

1756-6.5.12 March 1999

Chapter 8

Communicating with Devices on a
Serial Link

Using This Chapter
For information about: See page:
Using RS-232 8-1
Connecting to the serial port 8-2
Using the DF1 serial protocol 8-3
Configuring serial communications 8-5
Using RS-232 The controller supports RS-232 on the serial port. Use RS-232 when
you have:

* adata transmission range of up to 50 ft. (15.2m).
* an application that requires modems or line drivers.

The maximum cable length for RS-232 communications is
15.2m (50 ft.).

1756-6.5.12 March 1999

8-2 Communicating with Devices on a Serial Link

Connecting to the Serial Port

1756-CP3 cable

workstation end
9-pin, female D-shell
straight cable end

controller end
9-pin, female D-shell
right-angle cable end

40043

Note: You can also use a 1747-CP3 cable (from the SLC product
family), but once the cable is connected, you cannot close the
controller door.

1756-6.5.12 March 1999

20884

1756-CP3 cable pinouts

The controller has a 9-pin serial port on the front panel.

1CD 1CD

2 RDX 2 RDX

3 TXD 3TXD
4DTR 4DTR

5 COMMON 5 COMMON
6 DSR 6 DSR
7RTS 7RTS
8CTS 8CTS
9RI 9RI
straight right-angle
cable end cable end

40046

Communicating with Devices on a Serial Link 8-3

¥

kDL

I‘ Figpaim: 2B <E rim
or

Fle Ed Yew Festh Lage L
| i) & 2|1
o

I'I.IE-Jl: d
Dirwvwe BE_KTCA

EWEH""'LM-W"‘-"

Configuring the controller to use the serial port

To configure the serial port, specify these characteristics (default

values are shown in bold):

o Candinlls Propahisa - ek ol

SwiedPori Proicenl | MascPalr | Mroifmde | dchercsd | Fis |
Gwmd | DewTew | Cormcsm el L
Essirioe | ERDI -
Puaty DataBir - Sep b
 Hea| | 7 e
T fwn| | FE -
il Lint. I'I:Ihr\d:u.-« ﬂ
EiTS Dol b2 el [u
(11§ ﬂ'llhlq.-lﬂllnlrll:l
o | Cacnl Haip
Characteristic: Description (default is shown in bold):
Baud rate Specifies the communication rate for the serial port. Select a baud

rate that all devices in your system support.
Select 110, 300 600, 1200, 2400, 4800, 9600, or 19200 Kbps.

Parity Specifies the parity setting for the serial port. Parity provides
additional message-packet error detection.

Select None or Even.

Data bits Specifies the number of bits per message packet.
Select 8.

Stop bits Specifies the number of stop bits to the device with which the
controller is communicating.
Select 1 or 2.

Control line Specifies the mode in which the serial driver operates.

Select No Handshake, Full-Duplex, Half-Duplex with Continuous
Carrier, or Half-Duplex without Continuous Carrier.

If you are not using a modem, select No Handshake

If both modems in a point-to-point link are full-duplex, select
Full-Duplex for both controllers.

If the master modem is full duplex and the slave modem is
half-duplex, select Full-Duplex for the master controller and select
Half-Duplex with Continuous Carrier for the slave controller.

If all the modems in the system are half-duplex, select Half-Duplex
without Continuous Carrier for the controller.

1756-6.5.12 March 1999

8-4 Communicating with Devices on a Serial Link

Characteristic: Description (default is shown in bold):

RTS send delay Enter a count that represents the number of 20msec periods of
time that elapse between the assertion of the RTS signal and the
beginning of a message transmission. This time delay lets the
modem prepare to transmit a message. The CTS signal must be
high for the transmission to occur.

The range is 0-32767 periods.

RTS off delay Enter a count that represents the number of 20msec periods of
time that elapse between the end of a message transmission and
the de-assertion of the RTS signal. This time delay is a buffer to
make sure the modem successfully transmits the entire message.

The range is 0-32767 periods. Normally leave at zero.

Using the DF1 Serial Protocol All data is encapsulated inside a DF1 protocol packet. The controller

Use this mode:

can communicate only with peripheral devices that support the DF1
protocol. Examples of DF1 peripheral devices are:

e programming terminals
* communication modules
* display terminals

The available system modes are:

For: See this page:

DF1 point-to-point

communication between the controller and one other DF1-protocol-compatible device. 8-6
This is the default system mode.

This mode is typically used to program the controller through its serial port.

DF1 master mode

control of polling and message transmission between the master and each remote node. 8-7

The master/slave network includes one controller configured as the master node and as
many as 254 slave nodes. You link slave nodes using modems or line drivers.

A master/slave network can have node numbers from 0-254. Each node must have a
unigue node address. Also, at least 2 nodes must exist to define your link as a network
(1 master and 1 slave station are the two nodes).

DF1 slave mode

using a controller as a slave station in a master/slave serial communication network. ~ 8-8

When there are multiple slave stations on the network, you link slave stations using
modems or line drivers. When you have a single slave station on the network, you do
not need a modem to connect the slave station to the master; you can configure the
control parameters for no handshaking. You can connect 2-255 nodes to a single link.
In DF1 slave mode, a controller uses DF1 half-duplex protocol.

One node is designated as the master and it controls who has access to the link. All the
other nodes are slave stations and must wait for permission from the master before
transmitting.

1756-6.5.12 March 1999

Communicating with Devices on a Serial Link 8-5

Master/slave communication methods

A master station can communicate with a slave station in two ways:

Name: This method: Benefits:
standard Initiates polling packets to slave stations according This communication method is most often used for point-to-multipoint
communication mode to their position in the polling array(s). configurations.

Polling packets are formed based on the contents This method provides these capabilities:
of the normal poll array and the priority poll array. = slave stations can send messages to the master station (polled
report-by-exception)
= slave stations can send messages to each other via the master
= master maintains an active station array

The poll array resides in a user-designated data file. You can configure

the master:

= to send messages during its turn in the poll array

or

« for between-station polls (master transmits any message that it
needs to send before polling the next slave station)

In either case, configure the master to receive multiple messages or a
single message per scan from each slave station.

message-based initiates communication to slave stations using only If your application uses satellite transmission or public

communication mode user-programmed message (MSG) instructions. switched-telephone-network transmission, consider choosing
message-based communication. Communication to a slave station can
be initiated on an as-needed basis.

Each request for data from a slave station must be
programmed via a MSG instruction.
Also choose this method if you need to communicate with

The master polls the slave station for a reply to the A 4 .
P Py non-intelligent remote terminal units (RTUS).

message after waiting a user-configured period of
time. The waiting period gives the slave station
time to formulate a reply and prepare the reply for
transmission. After all of the messages in the
master’s message-out queue are transmitted, the
slave-to-slave queue is checked for messages

to send.
Configuring Serial You configure the controller for the DF1 protocol on the Serial Port
Communications Protocol tab of the Controller Properties. Select one of these modes:

* DF1 point-to-point
¢« DFI1 master
« DFI slave

1756-6.5.12 March 1999

8-6 Communicating with Devices on a Serial Link

]] [ST [

et Pt | MgmFmh | MssFmh | sdesced | Fe

.
RESEFEE

HEY, Formee L d
BN o Lot
AP P ol i
[e

;_ ﬂﬂ!

iy D
[l
F i sk e [ty

Configuring a DF1 point-to-point station

This field:

Description:

Station address

The station address for the serial port on the DF1 point-to-point
network. Enter a valid DF1 address (0-254). Address 255 is
reserved for broadcast messages. The default is 0.

NAK receive limit

Specifies the number of NAKs the controller can receive in
response to a message transmission.

Enter a value 0-127. The default is 3.

1756-6.5.12 March 1999

ENQ transmit limit

Specifies the number of inquiries (ENQs) you want the controller
to send after an ACK timeout.

Enter a value 0-127. The default is 3.

ACK timeout

Specifies the amount of time you want the controller to wait for
an acknowledgment to its message transmission.

Enter a value 0-32767. Limits are defined in 20ms intervals.
The default is 50 (1000ms).

Embedded response

Specifies how to enable embedded responses.

Select Autodetect (enabled only after receiving one embedded
response) or Enabled. The default is Autodetect.

Error detection

Select BCC or CRC error detection.
Configure both stations to use the same type of error checking.

BCC: the controller sends and accepts messages that end with
a BCC hyte for error checking. BCC is quicker and easier to
implement in a computer driver. This is the default.

CRC: the controller sends and accepts messages with a 2-byte
CRC for error checking. CRC is a more complete method.

Enable duplicate
detection

Select whether or not the controller should detect duplicate
messages. The default is duplicate detection enabled.

Communicating with Devices on a Serial Link 8-7

Configuring a DF1 slave station

T ———] S field: Description:
L L B R, i U, Station address The station address for the serial port on the DF1 slave.
i T Enter a valid DF1 address (0-254). Address 255 is reserved for
[B P gt ks D broadcast messages. The default is 0.
i I Transmit retries The number of times the remote station retries a message after

e ol 1 st . [11

I T St the first attempt before the station declares the message

undeliverable.
Enter a value 0-127. The default is 3.
Slave poll timeout Specifies the amount of time the slave station waits to be polled
by a master before indicating a fault.
[= | sow | swe | = | Enter a value 0-32767. Limits are defined in 20ms intervals.
The default is 3000 (60,000ms).

EOT suppression Select whether or not to suppress sending EOT packets in
response to a poll. The default is not to suppress sending
EOT packets.

Error detection Select BCC or CRC error detection.

Configure both stations to use the same type of error checking.

BCC: the controller sends and accepts messages that end with
a BCC hyte for error checking. BCC is quicker and easier to
implement in a computer driver. This is the default.

CRC: the controller sends and accepts messages with a 2-byte
CRC for error checking. CRC is a more complete method.

Enable duplicate Select whether or not the controller should detect duplicate
detection messages. The default is duplicate detection enabled.

1756-6.5.12 March 1999

8-8 Communicating with Devices on a Serial Link

Bemd | Destes | Cowresmow | L P
BraPwi Pl | Mmefeds | Hes el | dwwed | R
e
Lot e Iy =
e A | | F rpaae 3 qhesee Feecerr
[E—

A, P o e |._

Pl Mavsacs Wk bk mak [

Eole] g |t Farrd | e - mrer g |
Vg Pl Hiocle " [=] Sositdbeates
Pt Wi T I

[T —— |

[] cmd | e | we

Configuring a DF1 master station

This field:

Description:

1756-6.5.12 March 1999

Station address

The station address for the serial port on the DF1 master.

Enter a valid DF1 address (0-254). Address 255 is reserved for
broadcast messages. The default is 0.

Transmit retries

Specifies the number of times a message is retried after the
first attempt before being declared undeliverable.

Enter a value 0-127. The default is 3.

ACK timeout

Specifies the amount of time you want the controller to wait for
an acknowledgment to its message transmission.

Enter a value 0-32767. Limits are defined in 20ms intervals.
The default is 50 (1000ms).

Reply message wait

Message-based polling mode only

Specifies the amount of time the master station waits after
receiving an ACK to a master-initiated message before polling
the slave station for a reply.

Enter a value 0-65535. Limits are defined in 20ms intervals.
The default is 5 (100ms).

Polling mode

Select one of these:

« Message Based (slave cannot initiate messages)

* Message Based (slave can initiate messages) - default
« Standard (multiple message transfer per node scan)

« Standard (single message transfer per node scan)

Master transmit

Standard polling modes only

Select when the master station sends messages:
« between station polls (default)
< in polling sequence

Normal poll node tag

Standard polling modes only

An integer array that contains the station addresses of the slave
stations (in the order in which to poll the stations).

Create a single-dimension array of data type INT that is large
enough to hold all the normal station addresses. The minimum
size is three elements.

This tag must be controller-scoped. The format is:
list[0] contains total number of stations to poll

list[1] contains address of station currently being polled
list[2] contains address of first slave station to poll
list[3] contains address of second slave station to poll
list[n] contains address of last slave station to poll

Normal poll group size

Standard polling modes only

The number of stations the master station polls after polling all
the stations in the priority poll array. Enter 0 (default) to poll the
entire array.

Communicating with Devices on a Serial Link 8-9

This field:

Description:

Priority poll node tag

Standard polling modes only

An integer array that contains the station addresses of the slave
stations you need to poll more frequently (in the order in which
to poll the stations).

Create a single-dimension array of data type INT that is large
enough to hold all the priority station addresses. The minimum
size is three elements.

This tag must be controller-scoped. The format is:
list{0] contains total number of stations to be polled
list[1] contains address of station currently being polled
list[2] contains address of first slave station to poll
list[3] contains address of second slave station to poll
list[n] contains address of last slave station to poll

Active station tag

Standard polling modes only

An array that stores a flag for each of the active stations on the
DF1 link.

Both the normal poll array and the priority poll array can have
active and inactive stations. A station becomes inactive when it
does not respond to the master’s poll.

Create a single-dimension array of data type SINT that has
32 elements (256 bits). This tag must be controller-scoped.

Error detection

Select BCC or CRC error detection.
Configure both stations to use the same type of error checking.

BCC: the controller sends and accepts messages that end with
a BCC byte for error checking. BCC is quicker and easier to
implement in a computer driver. This is the default.

CRC: the controller sends and accepts messages with a 2-byte
CRC for error checking. CRC is a more complete method.

Enable duplicate
detection

Select whether or not the controller should detect
duplicate messages. The default is duplicate detection
enabled.

If you choose one of the standard polling modes

The master station polls the slave stations in this order:

1. all stations that are active in the priority poll array

2. one station that is inactive in the priority poll array

3. the specified number (normal poll group size) of active stations in
the normal poll array

4. one inactive station, after all the active stations in the normal poll
array have been polled

Use the programming software to change the display style of the
active station array to binary so you can view which stations

are active.

1756-6.5.12 March 1999

8-10 Communicating with Devices on a Serial Link

Notes:

1756-6.5.12 March 1999

Chapter 9

Using This Chapter

Configuring Communications to
the Controller from a Workstation

1. From the Communications menu item,
select Configure.
2. Select the Communications tab.

fle o wa fosch Logs

|n||s||.||_.| [
[[# F

1
Tuiver 4F_NIFT11

]
2 Comirolied T i

i Tamkc

Communicating with a Workstation

For information about: See page:
Configuring communications to the controller from 9-1

a workstation

Defining connection paths 9-2

This chapter discusses configuring connection paths so the controller
can communicate over networks. For information about configuring
serial parameters, see the previous chapter, “Communicating with
Devices on a Serial Link.”

To communicate from a workstation to a controller, you must
configure the appropriate communication driver for the network that
links the workstation and the controller. The communication driver
enables the controller to communicate over the network. You must
configure communication drivers with RSLinx software and then
select the appropriate driver in the programming software.

Liseben e | Ford Toks | Tog Displas
Pistitire i Loy T | auchsier Dol
e | MR- |
Ewehe =
H
[T] cews oy

1756-6.5.12 March 1999

9-2 Communicating with a Workstation

In this field: Enter:

Driver This is a display-only field that describes the
communication protocol of the selected driver.

Use the drop-down menu to select the driver. Only drivers
that have been configured using RSLinx software appear.
The type of driver is reflected in the name of the driver:

= ControINet (AB_KTC)

e DF1 (AB_DF1)

e DH+ (AB_KT)

< Ethernet (TCP)

Path This is the connection path to the controller you wish to
communicate with from the communications card you are
connected to. The path consists of a sequence of decimal
numbers separated by commas.

The field displays up to three lines for a long path, and a
scroll-bar appears if the entire field cannot be displayed.

Recent This button navigates to the Recent Configurations dialog
where you can choose from the recent configurations
stored on the workstation.

Only those drivers that have been configured in RSLinx software can
be used to communicate to the controller.

Defining Connection Paths For ControlNet and DH+ communications, the connection path starts
with the controller or the communications card in the workstation.
For Ethernet and DF1 communications, the connection path starts
with the communication module in the chassis.

The following steps construct a communication path. Separate the
number or address entered in each step with a comma. All numbers
are in decimal by default. You can enter any number, other than an
Ethernet IP address, in another base by using the IEC-1131 prefix
(8# for octal, 16# for hexadecimal). Ethernet IP addresses are always
decimal numbers separated by periods.

If you are using a DF1 point-to-point connection directly from the
workstation to the serial port of the controller, leave the path blank.

To construct the path, you enter one or more path segments that lead
to the controller. Each path segment takes you from one module to
another module over the ControlBus backplane or over a DH+,
ControlNet, or Ethernet network.

1756-6.5.12 March 1999

Communicating with a Workstation 9-3

Each path segment contains two numbers:

X,y
Where:
This Is:
X number of the type of port you use to exit from the module you are at:
0 DH+ port from a KT, KTx, or KTxD card
1 ControlBus backplane from any 1756 module
2 DF1 port from a 1756-L1 controller
2 ControlNet port from a KTC card or a 1756-CNB module
2 Ethernet port from a 1756-ENET module
2 DH+ port over channel A from a 1756-DHRIO module
3 DH+ port over channel B from a 1756-DHRIO module
, separates the starting point and ending point of the path segment
y address of the module you are going to

For Address means:

ControlBus backplane slot number

DF1 network serial port station address (0-254)
ControlNet network node number (1-99 decimal)

DH+ network node number (0-77 octal)
Ethernet network |P address (four decimal numbers

separated by periods)

If you have multiple path segments, you must also separate each path
segment with a comma (,).

1756-6.5.12 March 1999

9-4 Communicating with a Workstation

Connection path examples

The following examples are based on this system:

Example:

Description:

serial Use DF1 to connect directly to the controller in the

local chassis.)

RS-232 link
(DF1)

Select a DF1 driver.

Leave the connection path blank.

Use DF1 to connect to the controller in the
remote chassis.

serial

local chassis T remote chassis

ControlNet link

Select a DF1 driver.

Enter connection path: 1,0,2,42,1,3

1 = backplane port of the Logix5550 controller in slot 3 of the local chassis

0 = slot number of the 1756-CNB module in the local chassis

2 = ControlNet port of the 1756-CNB module in slot 0 of the local chassis

42 = ControINet node of the 1756-CNB module in slot 0 of the remote chassis
1 = backplane port of the 1756-CNB module in slot 0 of the remote chassis

3 = slot number of the controller in the remote chassis

Use ControlNet to connect to the controller in the
remote chassis.

ControlNet

contains 1784-KTC card
port 2 = ControlNet

remote chassis
ControlNet node 42
inslot 0

local chassis
ControlNet node 49
inslot 1

ControlNet link

Select a ControlNet driver.

Enter connection path: 2, 49, 1,0, 2,42, 1,3

2 = ControlNet port of the KTC communications card in the workstation

49 = ControINet node of the 1756-CNB module in slot 1 of the local chassis

1 = backplane port of the 1756-CNB module in slot 1 of the local chassis

0 = slot number of the 1756-CNB module in the local chassis

2 = ControlNet port of the 1756-CNB module in slot 0 of the local chassis

42 = ControlNet node of the 1756-CNB module in slot 0 of the remote chassis
1 = backplane port of the 1756-CNB module in slot 0 of the remote chassis

3 = slot number of the controller in the remote chassis

Ethernet Use Ethernet to connect to the controller in the

remote chassis.

remote chassis
Ethernet module in slot 1
IP address 127.127.127.12

local chassis 2
Ethernet module in slot 1
Ethernet module in slot 2

Ethernet link

Select an Ethernet driver.

Enter connection path: 1, 1, 2, 127.127.127.12, 1, 3

1 = backplane port of the 1756-ENET module in slot 2 of the local chassis

1 = slot number of the other 1756-ENET module in the local chassis

2 = Ethernet port of the 1756-ENET module in slot 1 of the local chassis
127.127.127.12 = IP address of the 1756-ENET module in the remote chassis
1 = backplane port of the 1756-ENET module in slot 1 of the remote chassis

3 = slot number of the controller in the remote chassis

1756-6.5.12 March 1999

Communicating with a Workstation 9-5

Description:

Enter connection path: 0, 8#37,1, 0, 2,42, 1, 3

0 = DH+ port of the KT communications card in the workstation

8#37 = octal DH+ node of the 1756-DHRIO module in slot 2 of the local chassis
1 = backplane port of the 1756-DHRIO module in slot 2 of the local chassis

0 = slot number of the 1756-CNB module in the local chassis

2 = ControlNet port of the 1756-CNB module in slot 0 of the local chassis

Example:
DH+ Connect to the local chassis through a DH+ link. Go out Select a DH+ driver.
through a ControlNet link to connect to the controller
in the remote chassis.
contains 1784-KT card
port 0 = DH+
local chassis remote chassis
DH+ = node 37 ControlNet node 42

ControlNet module in slot 0

port 1 = backplane

ControlNet link

42 = ControINet node of the 1756-CNB module in slot 0 of the remote chassis
1 = backplane port of the 1756-CNB module in slot 0 of the remote chassis

3 = slot number of the controller in the remote chassis

DH+ Use DH+ to connect to the controller in the
remote chassis.

contains 1784-KT card
port 0 = DH+

local chassis remote chassis

Select a DH+ driver.

Enter connection path: 0, 8#37, 1, 2, 3, 8424, 1,3

0 = DH+ port of the KT communications card in the workstation

8#37 = octal DH+ node of the 1756-DHRIO module in slot 2 of the local chassis
1 = backplane port of the 1756-DHRIO module in slot 2 of the local chassis

2 = slot number of the other 1756-DHRIO module in the local chassis

3 = Channel B of the 1756-DHRIO module in slot 1 of the local chassis,

DH+ = node 37 DH+ = node 24 .
configured for DH+
D+ link 8#24 = DH+ node of the 1756-DHRIO module in slot 2 of the remote chassis
1 = backplane port of the 1756-DHRIO module in slot 2 of the remote chassis
3 = slot number of the controller in the remote chassis
ControINet Use several network connections across Select a DF1 driver (to handle worst case performance)
Ethernet different network bridges.

DH+
« ControlNet to the remote chassis
» Ethernet back to the local chassis
* DH+ back to the remote chassis
remote chassis
ControlNet node 42

port 1 = backplane
port 2 = ControlNet

local chassis

ControlNet node 49

Ethernet IP address 34.34.34.34
DH+ = node 37

Ethernet IP address 127.127.127.12

port 1 = backplane
port 2 = Ethernet

DH+ node 24

port 1 = backplane
port 2 = channel A
port 3 = channel B

"3 [=

u féj

ControlNet link

Ethernet link

DH+ link

Enter connection path: 1,0, 2,42, 1,1, 2,34.34.34.34, 1, 2, 2, 8#24, 1, 3

1 = backplane port of the Logix5550 controller in slot 3 of the local chassis

0 = slot number of the 1756-CNB module in the local chassis

2 = ControlNet port of the 1756-CNB module in slot 0 of the local chassis

42 = ControlNet node of the 1756-CNB module in slot 0 of the remote chassis
1 = backplane port of the 1756-CNB module in slot 0 of the remote chassis

1 = slot number of the 1756-ENET module in the remote chassis

2 = Ethernet port of the 1756-ENET module in slot 1 of the remote chassis
34.34.34.34 = |P address of the 1756-ENET module in slot 1 of the local chassis
1 = backplane port of the 1756-ENET module in slot 1 of the local chassis

2 = slot number of the 1756-DHRIO module in the local chassis

2 = Channel A of the 1756-DHRIO module in slot 2 of the local chassis,
configured for DH+

8#24 = DH+ node of the 1756-DHRIO module in slot 2 of the remote chassis
1 = backplane port of the 1756DHRIO in slot 2 of the remote chassis

3 = slot number of the controller in the remote chassis

1756-6.5.12 March 1999

9-6 Communicating with a Workstation

Notes:

1756-6.5.12 March 1999

Chapter 1 0

Using This Chapter

Introduction

Integrating Motion

For information about: See page:
Developing a Motion Control Application Program 10-2
Writing a Motion Application Program 10-12

The Logix5550 controller, 1756-M02AE servo module, and
RSLogix5000 programming software provide integrated motion
control support.

* The Logix5550 controller contains a high-speed motion task,
which executes the ladder motion commands and generates
position and velocity profile information. This profile
information is sent to one or more 1756-M02AE servo modules.
Several Logix5550 controllers can be used in each chassis. Each
controller and chassis can control up to 16 1756-M02AE servo
modules.

* The 1756-M02AE servo module connects to a servo drive and
closes a high-speed position and velocity loop. Each Logix5550
controller can support up to 16 1756-M02AE servo modules.
Each 1756-M02AE module can control up to two axes.

* RSLogix 5000 programming software provides complete axis
configuration and motion programming support.

RSLogix5000 Software Logix5550 Controller 1756-M02AE Servo Module
Drive
Integrated Program Execution Position Velocity
Axis Motion. . ™ :I_Q Motor
Configuration ~ Programming il (O Feedback
e — | | Motion Trajectory Planner | Drive

Position Velocity Position Velocity
I'/\l, Motor
(O Feedback

41383

1756-6.5.12 March 1999

10-2 Integrating Motion

Developing a Motion Control
Application Program

To open the controller properties window:

1. Place the cursor over the Controller folder.
2. Click the right mouse button and select Properties.

Fle £l Yews Gevuich Logs [omrmr
| D] @ o]
= = |

o £t -
Drwee AR DF1A1

1756-6.5.12 March 1999

Developing a motion control application program involves:

Step: Description: See page:
Select the master Set one controller as the master controller. 10-2
controller for coordinated Once you complete this step, you can
system time synchronize all the motion modules and
Logix5550 controllers in your chassis.
Add a servo module Add a motion module to your application 10-3
program.
Name an axis Add an axis to your application program. 10-4
Configure an axis Configure each axis for motion control. 10-5

Run hookup diagnostics

Complete hookup diagnostics and auto tuning ~ 10-11

and auto tuning for each axis.
Develop a motion Create a program for your motion control 10-12
application program application.

The following sections provide an overview of each of these steps.
For more information about completing these steps, see the
ControlLogix Motion Module User Manual, publication 1756-6.5.16.

Selecting the master controller for coordinated system time

Important: Only one controller in a chassis can be the CST master.

To select the master controller for coordinated system time, open the
controller properties window and select the Date/Time tab.

o Conealer Pioperiey gpeeci 1l

Ceisl PoaProdocol | MasaFas | ieood Foulls |

Garssl

LE
Tira:

DustesTirws] Craraname dang

Lazdnstss e Tra
—} ™ Mskw Br coniroler e pacier

- i e

o Sprahirized with & reaie
- Coupl ste ruisn cetwcisd
o Trnwr hispchasss Lnlisd

sdewwed | Fie
| Seddroa

]| M)

| hee]

If:

And:

Then:

Your controller
uses a motion axis

No other controllers in your chassis
are configured as the master
controller

* Select Make this
controller the master

* Select OK

Your controller
uses a motion axis

Another controller in your chassis is
configured as the master controller

Select OK

Integrating Motion

10-3

To open the new module window:

1. Select I/0 Configuration.
2. Click the right mouse button and select
New Module.

Fle B Yiea Fawch Lops Cowmnics
T S T S
= | HEE L
Eli :I 1
{vwme BB DFA A

B Conirolies quch,_dtwl
| Comddies T
1 Corsioclies Pl Hisraler
P L g H e
-2 Tkl
= T Tk
= 2 HenFoga
) Puogpor Tige
B Wi
L1 Uroctadusd Progar:
1 Dista Ts
i 1 s 1]
& L Freceiras
o) Weonch e D]

= |
! 1 1S
|21 TEEOE

Adding a 1756-M02AE module

To add a servo module, open the new module window and select a

1756-M02AE module.

In the module properties window, specify this information:

Hphple Propoicy Loca [§75E HOZAE | 1]

Tuvpa ATSEINAE 2 Boay vl reoder 5 ervs

Werdd. ey B oy Compury, b
Papsic Lol

Hame | ek N
e | 3

Arisossd fear

B STg
Chsrrad 1 I-\.rﬂr :I_J

B [[2] Eecomiopesng [foomteraie =)

Coeel | gk | metr |[Fonn]

ke |

In this field: Enter:

Name Enter the name of the servo module.

Description Enter a description of the servo module (optional).

Slot Enter the slot number where the module is installed.
Revision Enter the revision number for this module. Depending on

the electronic keying option you choose, the module
checks the revision number to ensure that the physical
module matches the configured module.

Electronic Keying

Select an electronic keying method.

1756-6.5.12 March 1999

10-4 Integrating Motion

Naming an axis

To name an axis, click New Axis in the module properties window.

Make sure you have entered ——)
a servo module name.

In this field: Enter:
Name Enter the name of the axis.
Description Enter a description of the axis (optional).

1756-6.5.12 March 1999

Integrating Mation 10-5

Configuring a servo axis

To configure your new axis:

1. Click Configure in the new tag window.

Make sure you have ——})
entered an axis name.

In this field: Enter:
Type Select the type of axis you want
Positioning Mode Select the type of axis positioning you want to use

Click Next.
Go to step 3.

1756-6.5.12 March 1999

10-6 Integrating Motion

3. Assign a motion group.

If: Then:
You want to create a new motion group Go to step 4
You want to use an existing motion group Go to step 6

1756-6.5.12 March 1999

Integrating Motion 10-7

4. Create a new motion group, click New Group.

Important: During configuration, you must name and configure
a motion group, which results in a MOTION_GROUP tag. After
configuring the motion group, you can assign your axes to your
motion group. (For more information on the MOTION_GROUP
tag, see appendix C Structures in the Logix5550 Controller
Instruction Set Reference Manual, publication 1756-6.4.1.)

seponeenionss) [l

A g drsgrad |7

Coarsn Alate I— :lrn
B i

EI'-HFI!.TM

v | cewe | <I#IL‘-H~>

5. Specify this information:

Make sure you enter a group name. —J Hane | == =1
[m=crptoe =] Lzl |
= e |
TRURE F Bow [AR ¢ Comsmd
Dala e [WOTIDN_EROUF J Cordgan |
= I-ul-\.l_'l:ll'. ol il | 3
gl | El
I Breducataugiomi [j-:-cmnm

In this field: Enter:
Name Enter the name of the motion group.
Description Enter a description of the motion group (optional).

Click OK.
Go to step 6.

1756-6.5.12 March 1999

10-8 Integrating Motion

6. Assign the axis to a motion group and specify this information:

Select the motion group. ——}

In this field:

Enter:

Assigned Motion Group

Select the motion group.

Coarse Rate

Select the update rate for your axis

Servo Update Period

Select the closure time interval for your axis

General Fault Type

Select the fault type for your axis

Click Next.
Go to step 7.

1756-6.5.12 March 1999

Integrating Motion 10-9

7. Define units.

Fodil Lt i _
I e————

Hei Cowoel | ege [pmar | meen |

Click Next.

8. To continue configuring your axis, complete the entries in each
Axis Wizard window. To move to the next window, click Next.

Important: The Axis Wizard will gray-out the online diagnostic
testing and auto tuning options until your controller is online.
Before going online, complete the configuration of all your servo
modules and download your application program.

Important: There are several Axis Wizard windows. When you
are finished configuring the axis, click Finish.

1756-6.5.12 March 1999

10-10 Integrating Motion

9. Assign the axis to a channel.

Himiwle Pegpeestory Local B 1756 MOEAE B4

ot | Cormnton | Mockse b | Bactats |

T TEEMORE 28 By E nbadks Savi

“Warador Alarllinclay Coarpary, Inc

- Lecs

Hags r“'m-l H:IR E

e -

didbed ger

Caredt [iremn = _| [t]

Charrai 1. [iree: = |

Hramn I_ || 3 Elmchonc: Esang |l.n1'.:i|:|-ll-'h-cl.i 'l'l
Fige Ofne o | cawd | | me |
If: Then:

You want to assign your axis to channel 0 In the Channel 0 field, select your axis
from the drop-down menu

You want to assign your axis to channel 1 In the Channel 1 field, select your axis
from the drop-down menu

You want to add another axis Click New Axis. See page 10-4.

You do not want to add another axis Select Finish.

Important: You can also name and configure axes and motion
groups using the controller tag editor. The tag editor supports copy

and paste operations, which can make axis naming and configuration
easier and faster.

1756-6.5.12 March 1999

Integrating Motion 10-11

Running hookup diagnostics and auto tuning

Once you have added and configured your modules and axes, you can
download your program. After going online, you can complete
hookup diagnostics and auto tuning.

1. Download your project.

E'I-I.F‘#F'iﬂﬂ'lnﬂl-lﬂ'l

forae = [=
TR) T

e AE_DFYA

5 Conoler quick_d! i Mo
[Comioies T e IR B
0 Comndrediss Pl Hands
Pepemy-Liz Hardle
=R E
= e bln ok

Your program can be a blank program, but it must include
complete configuration information for all your modules
and axes.

2. In the module properties window, select the channel that you
assigned to the axis.
To open the module properties window:
1. Select the servo module.

2. Click the right mouse button and select Properties. Gimarsl | Commpotion | Mook | Baukplone |
[Pl it i Tepe Dt E L L e
M E T Vendar e Dyaces; Coraprg. | re.
— X g [sl o
r;-:m1 =l = Dserghere | :l
B fm.
Dawrwed it | e 1] J P A |
Chearwred 1 I e :] J
Eavean Il_ 1 Ecirome Faang | Larpaibds Moo -
. 3 Coecdl | | e |
If: Then:
You assigned your axis to channel 0 Select the ... button next to Channel 0
You assigned your axis to channel 1 Select the ... button next to Channel 1
3. Select the Hookup tab and run the hookup diagnostics.
4. Select the Tune Servo tab and run auto tuning.

5. When diagnostic testing and auto tuning are complete, click OK.

For more information about hookup diagnostics, see the
ControlLogix Motion Module User Manual, publication 1756-6.5.16.

1756-6.5.12 March 1999

10-12 Integrating Motion

Writing a Motion Application
Program

1756-6.5.12 March 1999

To write a motion application program, you can insert motion
instructions directly into your ladder logic program. The motion

instruction set consists of:

Group:

Instructions:

Motion state instructions

Motion Servo On (MSO)

Motion Servo Off (MSF)

Motion Axis Shutdown (MASD)
Motion Axis Shutdown Reset (MASR)
Motion Direct Drive On (MDO)
Motion Direct Drive Off (MDF)
Motion Axis Fault Reset (MAFR)

Motion move instructions

Motion Axis Stop (MAS)

Motion Axis Home (MAH)

Motion Axis Jog (MAJ)

Motion Axis Move (MAM)

Motion Axis Gearing (MAG)
Motion Change Dynamics (MCD)
Motion Redefine Position (MRP)

Motion group instructions

Motion Group Stop (MGS)

Motion Group Program Stop (MGPS)
Motion Group Shutdown (MGSD)
Motion Group Shutdown Reset (MGSR)
Motion Group Strobe Position (MGSP)

Motion event instructions

Motion Arm Watch (MAW)

Motion Disarm Watch (MDW)
Motion Arm Registration (MAR)
Motion Disarm Registration (MDR)

Motion configuration instructions

Motion Apply Axis Tuning (MAAT)
Motion Run Axis Tuning (MRAT)

Motion Apply Hookup Diagnostics
(MAHD)

Motion Run Hookup Diagnostics (MRHD)

These instructions operate on one or more axes. You must identify
and configure axes before you can use them. For more information
about configuring axes, see the ControlLogix Motion Module User

Manual, publication 1756-6.5.16.

For more information on individual motion instructions, see the
Logix5550 Controller Instruction Set Reference Manual, publication

1756-6.4.1.

Integrating Motion 10-13

Understanding the MOTION_INSTRUCTION tag

Each motion instruction has an operand named Motion control. This
field uses a MOTION_INSTRUCTION tag to store status
information during the execution of motion instructions. This status
information can include instruction status, errors, etc.

M50
— Mation Serva On L EMT——
The Bz 7 [FCDNS—
Motion control ———~| hiation control ki —ER—

operand

ATTENTION: Tags used for the motion control
operand of motion instruction should only be used once.
Re-use of the motion control operand in other
instructions can cause unintended operation of the
control variables.

For more information about the MOTION_INSTRUCTION tag, see
appendix C Structures in the Logix5550 Controller Instruction Set
Reference Manual, publication 1756-6.4.1.

Using motion status and configuration parameters

You can read motion status and configuration parameters in your
logic using two methods.

Method: Example:

Directly accessing the MOTION_GROUP and AXIS structures * Axis faults
= Motion status
= Servo status

Using the GSV instruction « Actual position
< Command position
< Actual velocity

For more information on these methods, see the Logix5550
Controller Instruction Set Reference Manual, publication 1756-6.4.1.

1756-6.5.12 March 1999

10-14 Integrating Motion

1756-6.5.12 March 1999

Modifying motion configuration parameters

In your ladder logic program, you can modify motion configuration
parameters using the SSV instruction. For example, you can change
position loop gain, velocity loop gain, and current limits within your
program.

For more information on the SSV instruction, see the Logix5550
Controller Instruction Set Reference Manual, publication 1756-6.4.1.

Handling motion faults

Two types of motion faults exist.

Type Description Example
Errors < Do not impact controller operation A Motion Axis Move
- Should be correct to optimize execution ~ (MAM) instruction with
time and ensure program accuracy parameter out of range

Minor/Major = Caused by a problem with the servo loop The application

= Can shutdown the controller if you donot ~ exceeded the

correct the fault condition PolsmonErrorToIerance
value.

You can configure a fault as either minor or major by using the Axis
Wizard-Group window.

Understanding errors

Executing a motion instruction within an application program can
generate errors. The MOTION _INSTRUCTION tag has a field that
contains the error code. For more information about error codes for
individual instructions, see the Logix5550 Controller Instruction Set
Reference Manual, publication 1756-6.4.1.

Understanding minor/major faults

Several faults can occur that are not caused by motion instructions.
For example, a loss of encoder feedback or an actual position
exceeding an overtravel limit will cause faults. The motion faults are
considered type 2 faults with error codes from 1 to 32. For more
information about handling error codes, see chapter 11.

Integrating Motion 10-15

Understanding a programming example

The following figure shows several rungs of a motion control
application program.

Rung 0: i
E arva Or EH— | pkodirs S EH
Enables the Feed and Cut axes when you press the : e K xn Pty
servo on button youp '\:l-a-l-u-'\--:-\:-'\-l:l I-ll""I-:l‘f‘Fr A :w-:m Ii!l:l;_PI- —(Eﬁ':-—

Rung L 1 | ﬁ_l'“. m]'::m J Mo Bom dog ; | FH™
Jogs the Feed axis in the positive direction when you ryea— e B e
press the jog_plus button. e eFRn

e " LaiF
T T ol
'I-:d

Rung 2: , i o i, o e i 1 -
Jogs the Feed axis in the reverse direction when you [L':‘_"_!r:r' o
press the jog_minus button. et R T

e p.1} |
e e o o e

st i Ll e

] "nln.u-z.r-

Dol rdin iwﬂ_lrl- .
Decduris Solbsamn

Fir i [T
e s

[

Rung 3: . - . FRmn Eipm [M I
Stops the Feed axis when you release with the e o [|
jog_plus button or the jog_minus button. il {,-g e

Upeei g !mr'_l!r .
Lipewd riie L lrlrl-!-'--r-
=

Erd

1756-6.5.12 March 1999

10-16 Integrating Motion

Notes:

1756-6.5.12 March 1999

Chapter 11

Using This Chapter

Forcing

Forcing 1/0

For information about: See page:
Forcing 11-1
Entering forces 11-2
Enabling forces 11-4
Disabling forces

Removing forces 11-5
Monitoring forces 11-6

Forcing lets you override an I/0 module’s values in the controller.
You can force:

e astructure member of an 1/0 tag

Since an /O tag is a structured tag, the force is applied to its
structure members (of type BOOL, SINT, INT, DINT, or REAL).
You can force all I/O data, except for configuration data.

« an alias to an I/O structure member (of type BOOL, SINT, INT,
DINT, or REAL)

Forcing an input value overrides the actual input value being received
from the controller, but will not affect the value received by other
controllers monitoring that physical input module. Forcing an input
value overrides the value regardless of the state of the physical

input module.

Forcing an output value overrides the logic for the physical output
module. Other controllers monitoring that output module in a
listen-only capacity will also see the forced value.

Forces are applied to the actual modules at the end of every program
scan when data arrives at the module.

Important: Forcing increases logic execution time. The more values
you force, the longer it takes to execute the logic.

Important: Forces are held by the controller and not by the
programming workstation. Forces remain even if the programming
workstation is disconnected.

ATTENTION: If forces are enabled and anything is
forced, keep personnel away from the machine area.
Forcing can cause unexpected machine motion that
could injure personnel.

1756-6.5.12 March 1999

11-2 Forcing I/0

Entering Forces

Enter force values in this column.

1756-6.5.12 March 1999

If the data value is a SINT, INT, or DINT, you can force the entire
value or you can force individual bits within the value. Individual
bits can have a force status of:

e no force
* force on

* force off

An alias tag shares the same data value as its base tag, so forcing an
alias tag also forces the associated base tag. Removing a force from
an alias tag removes the force from the associated base tag.

Use the data monitor or ladder editor of the programming software to
enter forces.
Entering forces from the data monitor

From the data monitor, you can force a value in two ways. You can:
» force a whole data value.

For SINT, INT, DINT, and REAL values, you can force all the
bits as one entity (the entire value)

» force the individual bits within a SINT, INT, or DINT value.

= bl el ool
- [ER

Forcing 1/0 11-3

If you want to: Do this:

force a whole SINT, INT, DINT, or REAL value To force a whole value, type a force value in the Force Mask column,
using a decimal, octal, hexadecimal, or float/exponential format. For a
REAL value, you must use a float/exponential format.

To remove a force for a whole value, type a space.

force bits within a value To force an individual bit in a SINT, INT, or DINT value, expand the value
and edit the Force Mask column. The force value is displayed in binary
style, where:

* “0”indicates force off

* “1”indicates force on

e “”indicates no force

You can also use the bit pallet to select a hit to force.
force a BOOL To force a BOOL, enter the force value, where:

* “0” indicates force off
e “1”indicates force on

To remove a force, type a space.

Entering forces from the ladder editor

From the ladder editor, you can set forces only for BOOL tags or
integer bit values used in bit instructions.

e o | e s e venep mahee =
Right-click on the BOOL tag or bitvatue—®» | F ™ i o l — i
g g S el - so# Lociid DI Tmamwmcd |
Select Force On, Force Off, or Remove Force. : ’ s
[wietm b e ("] L "
B Lgore Plamar, Va
L3 aras =z
[L e R h e el o e e
e B (=" e ||
EET el
L % —— LT
) 0 e
Em T Cern Fisborwnws For " sl o | Dl 17 S ' .1.- - s
Tl Lol 6 Pt L—_ —
i 8 Lo 1~ ™ el
e Sy g g Boryed g 1 N Y ol | i g g i
. L maal e
Dwmi LamafhE L "l-rr'!-"..:- - aal "-r'\.l-l:'-
RN e WL 4 | I‘TI

1756-6.5.12 March 1999

11-4 Forcing 1/0

Right-click on the forced value. ————

Select Remove Force.

Enabling Forces

1756-6.5.12 March 1999

For forced values in the more complex instructions, you can only
remove forces. You must use the data monitor to set force values for
these values.

e, o Ly iy (=1
Famw L]
[L [
il L Kl [
[T [T ol |
B S | i v s i o i
i T 1 (<2
Fin T Fimms Flsfrermes ¥ ™ s 1 Swn™ i
E Lol 1 Fonpesirs e
ol 8 Poyow Wi IF g T DLp™

_Ll\: ol '.lr_ll-ﬂr-) '|| I

Once you set which values or bits to force, you enable forces for the
force values to take affect. You can only enable and disable forces at
the controller level. You cannot enable or disable forces for a specific
module, tag collection, or tag element.

ATTENTION: Enabling forces causes input and
output values to change. Keep personnel away from the
machine area. Forcing can cause unexpected machine
motion that could injure personnel.

You enable forces from the Online Bar.

Forces Installed indicates that N e) G NS WU
force values have been entered. O 3= (I)l
— [Faceciraisiei =] .
ks et :l |-'.~-.-:-:~:-w.-ru j B

i
Select Enable all forces. I_g%
i Cordrolies gch_ot

Important: If you download a project that has forces enabled, the
programming software prompts you to enable or disable forces after
the download completes.

Forcing 1/0 11-5

When forces are enabled, a > appears next to the forced value in the
ladder editor.

When forces are enabled, the ladder editor
indicates which forcesareon. — g

Disabling Forces

Removing Forces

-I-nmﬁmﬂ_—-ﬁll IIL

You can disable forces without removing forces from individual
values or from the controller. By disabling forces, the project can
execute as programmed. Forces are still entered, but they are not
executed.

e B Yo feaech Lage [omeusicias Jook g
T TR TR R ST | —
Illlnl- ﬂrmulmulﬂl j o
ks =] Fomtnaied =] R50d
Dl 56_DF1 1

e
| I Cprivolln et _1iy
L WP TR VY

Select Disable all forces.

You can remove forces from individual values or from the
entire controller.

You can remove individual forces from the data monitor.

If you want to remove a force from a: Do this:

whole SINT, INT, DINT, or REAL value

Right-click on the value in the data monitor and select Remove Force.

bits within a value

Expand the value and edit the Force Mask column. Change the bit value
to “.” to indicate no force.

BOOL value

Type a space.

If the force is on a BOOL tag or bit value, you can also remove forces
from the ladder editor. Right-click on the value and select
Remove Force.

1756-6.5.12 March 1999

11-6 Forcing 1/0

Monitoring Forces

1756-6.5.12 March 1999

If you remove each force individually, forces can still be enabled.

ATTENTION: Ifyouhave removed forces, but forces
are still enabled and you set a force value, it takes affect
immediately. Keep personnel away from the machine
area. Forcing can cause unexpected machine motion
that could injure personnel.

Removing a force on an alias tag also removes the force on the
base tag.

At the controller level, you can remove all forces. Removing all
forces disables forces and clears all force mask values.

Tbs [Yew GHemchk Lope Creroescsbora [zai s

| Bl & %%(e] o]

=)

—

Select Remove all forces. —— F*““' =]

Important: The only way to monitor force status is through the
programming software or from logic. The Logix5550 controller does
not have a LED to indicate force status.

The following example shows how to check whether forces are
present and enabled and set your own LED indicator.

Thiy GSY et
g e ol e
Face rkralee o
cloms §m LRI
Bl

1 kg b cepl ey

Thux kel ek Bant [b bk sdendime dhad vilhear Foaces s
g s inlee] By Ao sruble]

e | L L]

ot

Chapter 12

Using This Chapter

Understanding Controller Faults

If the controller detects a:

It means:

Handling Controller Faults

For information about: See page:

Understanding controller faults 12-1
Viewing controller faults 12-2
Monitoring I/0 faults 12-2
Handling hardware faults 12-3
Processing minor faults 12-3
Minor fault types and codes 12-8
Processing major faults 12-9
Major fault types and codes 12-14
Creating a program fault routine 12-16
Creating a controller fault handler 12-16
Accessing the FAULTLOG 12-20

The controller detects three main categories of faults. In general:

The controller:

major fault A fault condition, either hardware or instruction, occurred. 1. Sets a major fault bit
The fault condition is severe enough for the controller to 2. Runs user-supplied fault logic, if it exists
shut down, unless the condition is cleared. 3. If the user-supplied fault logic cannot clear the
fault, the controller goes to faulted mode
4. Sets outputs according to their output state
during program mode
5. OKLED flashes red
minor fault A fault condition, either hardware or instruction occurred. 1. Sets a minor fault bit
The fault condition is not severe enough for the controller 2. Continues with the program scan
to shut down. 3. no LEDs change state
hardware fault A fault occurred with the controller hardware. The Sets outputs according to their output state during
controller shuts down. You must repair or replace fault mode

the controller.

The controller OK LED is solid red.

1756-6.5.12 March 1999

12-2 Handling Controller Faults

Viewing Controller Faults The programming software displays fault information.

B @ |8 |
| o

A. Place the cursor over the Controller quick_start folder.
B. Click the right mouse button and select Properties g

Select the Major Faults tab or the Minor Faults tab to view
current fault information. —

Monitoring I/0 Faults Each I/0 module has status bits that indicate when a fault occurs.
Your control application should monitor these status bits. If any
faults exist, your application should take appropriate action, such as
shutting down the system in a controlled manner.

If the controller detects a fault with one of its I/O modules, the
programming software displays a yellow attention symbol (/) over
the device and the 1/0O Configuration folder in the controller
organizer. You can also view I/O faults on the connection tab of the
module properties.

For more information, see Viewing Module Fault Information on
page 3-19.

1756-6.5.12 March 1999

Handling Controller Faults 12-3

Handling Hardware Faults

Processing Minor Faults

You can configure the controller so that the controller generates a
major fault if it loses its connection with an 1/O rack or module. If
you do not configure the controller for this possibility, you should
monitor the device status within your logic. If the connection
between a rack or module and the controller is lost and the controller
is not configured to generate a major fault, all outputs dependent on
inputs from the failed connection continue to be controlled based on
the now static input. The control application continues to make
control decisions on data that may or may not be correct.

g

‘n
TGS

= e o m—

The connection between chassis A and B failed, so data in chassis B remains at its last values.
Any outputs in chassis C that are controlled by inputs from chassis B are based on stale data.

If you encounter a hardware fault:

1. Power down then power up the controller.
2. Reload the program.
3. Run the program again.

If you continue to encounter a hardware fault, call your Allen-Bradley
representative.

Minor faults do not impact controller operation. The controller
continues to execute. However, to optimize execution time and
ensure program accuracy, you should identify and correct
minor faults.

There are two main categories of minor faults:

Category: Description:
instruction execution problem occurs when executing logic
other minor problem occurs with the:

= serial port

* battery

1756-6.5.12 March 1999

12-4 Handling Controller Faults

Processing instruction-execution minor faults

minor fault occurs

'

controller sets
S:MINOR

'

controller logs minor,
fault to PROGRAM
MinorFaultRecord

R

controller logs minor
fault to FAULTLOG

#

controller sets minor
fault bit in
FAULTLOG

#

continue logic
execution

When an instruction-execution minor fault occurs, the controller logs
the minor fault information to the current PROGRAM object. Then
the controller logs the minor fault information to the FAULTLOG
object, but this fault information is mainly historical. Use the
PROGRAM fault information for accurate, current fault information.

1756-6.5.12 March 1999

Handling Controller Faults 12-5

Writing logic for instruction-execution minor faults

To check for an instruction-execution minor fault, follow these steps:

1. Create a user-defined structure to store the fault information.
This can be the same structure you use for major fault
information. The format must be as follows (you can change the
structure and member names, but the data types and sizes must be
the same as shown below):
M amne: IFauItHecu:urd Size: |44 byte(z]
e M zer Defined Type created to zimplify access to faulk ;I
DIGEE T record information obtained from GSY of Program fault
record information, ¥
b embers:
I ame [rata Type Style Drezcription
TirneLow DIMNT Decimal Lo 32 bitz of fault timestamp value
TimeHigh DIMNT Decimal |Ipper 32 bitz of fault timestamp value
Type IMNT Decimal Fault Type [Program, [/0, etc)
Code IMNT Decimal [Inique [by type] Code for the Fault
Ifo DIMT[E] Hex Fault Specific information - content waries by type and code
*

Monitor S:MINOR to determine when a minor fault occurs.

The S:MINOR flag is a status bit that is set if at least one minor
fault has been generated. The controller sets this bit when a
minor fault occurs due to program execution. The controller does
not set this bit for minor faults that are not related to program
execution, such as battery low.

Use a GSV instruction to get the MINORFAULTRECORD of the
current program (THIS). The destination should be a tag of the
user-defined structure type you specified above.

In the GSV instruction, MINORFAULTRECORD is an attribute
of the PROGRAM object class. The object name is the name of
the PROGRAM. Or you can enter THIS, which specifies the
PROGRAM that contains the GSV instruction.

Take appropriate action to respond to the minor fault (typically,
correct the logic error).

You do not need to clear an instruction-execution minor fault.
However, the S:MINOR bit remains set until the end of the logic
scan. If you need to detect multiple minor faults in a single scan,
reset S:]MINOR with an OTU instruction.

1756-6.5.12 March 1999

12-6 Handling Controller Faults

The following logic shows one way to check for an
instruction-execution minor fault. Place this logic within a routine in
a program (not in the fault routine).

checking for an instruction-execution minor fault

S:minor o
Set system value
Object clazs OF1
Object name
Attribute name PendingPollingkd ode
Source Badyalue
0%
S:minor F5N S:minor
1 E et system value

Object clazs PROGRAM

Object name THIS

Attribute name MINORFALULTRECORD

Dzt b yF aultR eu:u:urd.TimeLu:u.-i

1]

This example monitors S:MINOR to determine if a minor fault occurs with the execution of the SSV instruction. You could replace this SSV
instruction with any instruction or operation that you want to check to see whether it generates a minor fault (like checking for an overflow
condition with a math instruction). The GSV instruction then retrieves the fault information and stores it in a tag that uses the structure type
you defined. The Destination tag must point to the first DINT of the structure (MyFaultRecord.TimeLow in this example).

Processing other minor faults

minor fault occurs

R

controller logs minor
fault to FAULTLOG

#

controller sets minor
fault bit in
FAULTLOG

#

continue logic
execution

When a minor fault occurs, the controller logs the minor fault
information directly to the FAULTLOG object.

1756-6.5.12 March 1999

Handling Controller Faults 12-7

Writing logic for other minor faults

To check for other minor faults, follow these steps:

1. Create a DINT to hold the MinorFaultBits record from the
FAULTLOG object.

MinorFaultBits record in the FAULTLOG object

|31/30[20| 28| 27 26| 25 24| 23] 22| 21| 20 19|18 17]16 15 |14]13]12 [11|20[0| 8] 7] 6| 5] 4] 3 [2|1 |0]]

instruction execution
(program)

watchdog

v serial port

battery

2. Use a GSV instruction to get the MinorFaultBits record of the
FAULTLOG object. The Destination should be the DINT tag
you created.

3. Examine the fault bits to determine the type of fault and take
appropriate action.

You do not need to clear a minor fault.
The following logic shows one way to check for minor faults, other
than instruction-execution faults. Place this logic within a routine

within the program (not the fault routine).

checking for other minor faults

35
et system value
Object clazs FAULTLOG
Object name
Attribute name MinorF aultBitz
Dzt iriorF aultBits
0%
kiriarF aultBits. 10 B attemlLowlndicator
TE o
L
biriorF aultBits. 9 SeralPortF ault
T1E o
L
biriorF aultBits. 4 ki netructionF ault
] [™

This example uses a GSV instruction to get a copy of the MinorFaultBits record of the FAULTLOG and store it in a DINT tag MinorFaultBits.
Then this example examines some of the bits in MinorFaultBits to see what type of fault occurred.

1756-6.5.12 March 1999

12-8

Handling Controller Faults

Minor Fault Types and Codes

The minor fault list includes:

Type: Code: Cause: Recovery Method:
4 4 An arithmetic overflow occurred in an instruction. Fix program by examining arithmetic operations
(order) or adjusting values.
4 7 The GSV/SSV destination tag was too small to hold Fix the destination so it has enough space.
all of the data.
4 35 PID delta time < 0. Adjust the PID delta time so that it is > 0.
4 36 PID setpoint out of range Adjust the setpoint so that it is within range.
6 2 Periodic task overlap. Simplify program(s), or lengthen period, or raise
Periodic task has not completed before it is time to relative priority, etc.
execute again.
9 Unknown error while servicing the serial port. Contact GTS personnel.
9 The CTS line is not correct for the current Disconnect and reconnect the serial port cable to
configuration. the controller.
Make sure the cable is wired correctly
9 2 Poll list error. Check for the following errors in the poll list:
A problem was detected with the DF1 master’s poll total number of stations is greater than the space
list, such as specifying more stations than the size of in the poll list tag
the file, specifying more then 255 stations, tryingto = total number of stations is greater than 255
index past the end of the list, or polling the broadcast = current station pointer is greater than the end of
address (STN #255). the poll list tag
= astation number greater than 254 was
encountered
9 5 DF1 slave poll timeout. Determine and correct delay for polling.
The poll watchdog has timed out for slave. The
master has not polled this controller in the specified
amount of time.
9 9 Modem contact was lost. Correct modem connection to the controller.
DCD and/or DSR control lines are not being received
in proper sequence and/or state.
10 10 Battery not detected or needs to be replaced. Install new battery.

1756-6.5.12 March 1999

Handling Controller Faults 12-9

Processing Major Faults The controller supports two levels for handling major faults:
e program fault routine
» controller fault handler

control icati
‘ controller fault handler ‘ ‘ power up handler ‘

[task32

task 1 N
configuration

status

watchdog
program 32

‘ program

program 1

program (local) tags

fault routine

other routines II —

controller (global) tags 1/0 data system-shared data

40012

Each program can have its own fault routine. The controller executes
the program’s fault routine when an instruction fault occurs. If the
programs’ fault routine does not clear the fault, or a program fault
routine does not exist, the controller proceeds to execute the
controller fault handler (if defined). If the controller fault handler
does not exist or cannot clear the major fault, the controller enters
faulted mode and shuts down. At this point, the FAULTLOG is
updated. (See the next page.)

All non-instruction faults (I/O, task watchdog, etc.) execute the
controller fault handler directly (no program fault routine is called).

1756-6.5.12 March 1999

12-10 Handling Controller Faults

major fault occurs

¢

instruction fault?

no

yes

controller logs major,
fault to current
PROGRAM
MajorFaultRecord

no

program fault
routine exists?

execute current
program’s
fault routine

¢

fault cleared?

yes

no
continue logic

1756-6.5.12 March 1999

no

| execution

controller logs major

fault to controller fault
handler PROGRAM
MajorFaultRecord

¢

controller fault
handler exists

execute controller
fault handler

¢

yes
fault cleared?

no

> continue logic

execution

enter faulted mode

record FAULTLOG
shut down

Handling Controller Faults 12-11

There are two main categories of major faults:

Category: Description:
instruction execution problem occurs when executing logic
other major problem occurs with the:

* power loss

- 1/0

« task watchdog
« mode change
* motion axis

The multitasking capability of the controller makes it possible for
multiple major faults to be reported. For example, multiple task
watchdog timeouts can occur at the same time or 1/O faults can be
reported at the same time as an instruction execution fault occurs. In
these cases, major faults are processed in the order that they occurred.

You can use the controller fault handler to clear a watchdog fault. If
the same watchdog fault occurs a second time during the same logic
scan, the controller enters faulted mode, regardless of whether the
controller fault handler clears the watchdog fault.

If any of the multiple reported major faults are not cleared by the
controller fault handler, the controller goes to faulted mode. The fault
that was not cleared, and up to two additional faults that have not
been cleared, are logged in the controller fault log. You can view this
fault information via the programming software by using the major
fault tab in the controller properties.

The controller can handle as many as 32 simultaneous major faults. If
more than 32 major faults occur at the same time, the controller goes
to faulted mode and the first three major faults are logged to the
controller fault log

1756-6.5.12 March 1999

12-12 Handling Controller Faults

Writing logic for a major fault
To check and clear a major fault, follow these steps:

1. Depending on the type of major fault, do one of the following:

If you are writing logic for

this type of major fault: Do this:

instruction execution Create a routine within the current program and specify
this routine as the fault routine for the program. See
page 12-16.

any other Create a new program and select this program as the

controller fault handler program. See page 12-16.

2. Create a user-defined structure to store the fault information.
This can be the same structure you use for minor fault
information. The format must be as follows (you can change the
structure and member names, but the data types and sizes must be
the same as shown below):

M amne: IFauItH ecard Size: |44 byte(z]

e M zer Defined Type created to zimplify access to faulk ;I
DIGEE T record information obtained from GSY of Program fault
record information, LI
b embers:
I ame [rata Type Style Drezcription
TirneLow DIMNT Decimal Lo 32 bitz of fault timestamp value
TimeHigh DIMNT Decimal |Ipper 32 bitz of fault timestamp value
Type IMNT Decimal Fault Type [Program, [/0, etc)
Code IMNT Decimal [Inique [by type] Code for the Fault
Ifo DIMT[E] Hex Fault Specific information - content waries by type and code
*

3. Usea GSV instruction to get the MAJORFAULTRECORD of
the current program (THIS). The destination should be a tag of

the user-defined structure type you created.
G54

et system value

Object clazs PROGRAM
Object name THIS
Attribute name MAJORFAILTRECORD
Dzt MyFauItHecDrd.TimeLmi

1]

The Destination tag must point to the first member of the structure
(MyFaultRecord.TimeLow). This tag is of the structure type you define to hold
fault information.

1756-6.5.12 March 1999

Handling Controller Faults

12-13

4. Examine the fault type and code to determine which fault
occurred and take appropriate action.

MajorFaultBits record in the FAULTLOG object

|31)30]29| 28 27| 26| 25 24|23 22] 21| 20]19] 18| 17|16 15 |14 | 13]12 [12]10] 0| 8] 7] 6| 5[4] 3| 2|1 |0]

y

110

watchdog
\/

stack
\J

mode change

v fault handler

¢

power loss

instruction execution (program)

motion axis
EQu EQU
Equal Equal —
Source & MyFaultRecord. Tepe Source & MyFaultRecord. Code
ne ne
Source B 4 Source B Kt

Examine the MyFaultRecord. Type and MyFaultRecord.Code members to determine the type of
major fault. This example looks for specific fault types and codes.

5. Take appropriate action. Develop your own logic to respond to

the major fault.

1756-6.5.12 March 1999

12-14 Handling Controller Faults

6. If you decide to clear the fault:

A. Clear the type and code members of the tag
(MyFaultRecord. Type and MyFaultRecord.Code

shown above).

— Move
Source

Dest MyFaultRecord. Type

O
0

D(‘

—1 Move
Source

Dest MyFaultRecord. Code

O
0

D(‘

Use MOV instructions to clear the type and code values.

B. Use an SSV instruction to clear the fault by copying the tag
(MyFaultRecord. TimeLow) to the MajorFaultRecord of the

PROGRAM object.
S5
— Set system value
Object clazs PROGRAM
Object name THIS

Source

Attribute name MAJORFAULTRECORD

byF aultR ecord. Timelow
0%

The Source tag must point to the first member of the structure
(MyFaultRecord. TimeLow). This tag is of the structure type you define to hold

fault information.

You can also clear a major fault by using the keyswitch on the
controller. Turn the keyswitch to Prog, then to Run, and then back

to Prog.
Major Fault Types and Codes The major fault list includes:

Type: Code: Cause: Recovery Method:

1 1 The controller powered on in Run mode. Execute the power-loss handler.

3 16 A required 1/0 module connection failed. Check that the I/0 module is in the chassis. Check
electronic keying requirements.
View the controller properties Major Fault tab and the
module properties Connection tab for more
information about the fault.

3 20 Possible problem with the ControlBus chassis. Not recoverable - replace the chassis.

3 23 At least one required connection was not established Wait for the controller I/0 light to turn green before

before going to Run mode.

changing to Run mode.

1756-6.5.12 March 1999

Handling Controller Faults 12-15

Type: Code: Cause: Recovery Method:

4 16 Unknown instruction encountered. Remove the unknown instruction. This probably
happened due to a program conversion process.

4 20 Array subscript too big, control structure .POS or Adjust the value to be within the valid range. Don’t

.LEN is invalid. exceed the array size or go beyond dimensions
defined.

4 21 Control structure .LEN or .POS < 0. Adjust the value so it is > 0.

4 31 The parameters of the JSR instruction do not match Pass the appropriate number of parameters. If too
those of the associated SBR or RET instruction. many parameters are passed, the extra ones are

ignored without any error.

4 34 A timer instruction has a negative preset or Fix the program to not load a negative value into
accumulated value. timer preset or accumulated value.

4 42 JMP to a label that did not exist or was deleted. Correct the JMP target or add the missing label.

4 83 The data tested was not inside the required limits. ~ Modify value to be within limits.

4 84 Stack overflow. Reduce the subroutine nesting levels or the number

of parameters passed.

6 1 Task watchdog expired. Increase the task watchdog, shorten the execution
User task has not completed in specified period of t|_me, ma|_<e _the priority of this task “higher,” simplify
time. A program error caused an infinite loop, or the higher priority tasks, or move some code to another
program is too complex to execute as quickly as controller.
specified, or a higher priority task is keeping this
task from finishing.

8 1 Attempted to place controller in Run mode with Wait for the download to complete and clear fault.
keyswitch during download.

11 1 Actual position has exceeded positive overtravel Move axis in negative direction until position is
limit. within overtravel limit and then execute Motion Axis

Fault Reset.

11 2 Actual position has exceeded negative overtravel Move axis in positive direction until position is within

limit. overtravel limit and then execute Motion Axis Fault
Reset.

11 3 Actual position has exceeded position error Move the position within tolerance and then execute
tolerance. Motion Axis Fault Reset.

11 4 Encoder channel A, B, or Z connection is broken. Reconnect the encoder channel then execute Motion

Axis Fault Reset.

11 5 Encoder noise event detected or the encoder signals Fix encoder cabling then execute Motion Axis Fault
are not in quadrature. Reset.

11 6 Drive Fault input was activated. Clear Drive Fault then execute Motion Axis Fault

Reset.

11 7 Synchronous connection incurred a failure. First execute Motion Axis Fault Reset. If that doesn’t
work, pull servo module out and plug back in. If all
else fails replace servo module.

11 8 Servo module has detected a serious hardware fault. Replace the module.

11 9 Asynchronous Connection has incurred a failure. First execute Motion Axis Fault Reset. If that doesn’t
work, pull servo module out and plug back in. If all
else fails replace servo module.

11 32 The motion task has experienced an overlap. The group’s course update rate is too high to

maintain correct operation. Clear the group fault tag,
raise the group’s update rate, and then clear the
major fault.

1756-6.5.12 March 1999

12-16 Handling Controller Faults

Creating a Program Fault Routine Each program can have one fault routine. You specify the fault
routine when you configure the program. You can only change the
fault routine by using the programming software to change the
program configuration.

1. Select a program (“MainProgram” in this example). 10 specify a fault routine:

2. Click the right mouse button and select Properties.

Fiopas Py B o ogeem

[e]
(B bl B e i [ewswsis Jak B

| lole &)]
o = || =) i
| | E i
Tiene. 11 i
Aot Select the fault routine.), M
F-k -'r=ln1'nl=|:|-:|| I_ Heii M
2 -1;_‘_. e b gt tewa)
T B e
ekl
Creating the Controller The controller fault handler is an optional task that executes when the
Fault Handler major fault is not an instruction-execution fault or the program

fault routine:

* could not clear the major fault.
* faulted.
* does not exist.

The controller fault handler can have only one program. That one
program can have multiple routines.

To configure a controller fault program, either create a program for
the controller fault handler or select an unscheduled program. For
more information about creating programs and routines, see
chapter 5.

1756-6.5.12 March 1999

Handling Controller Faults 12-17

Creating a program for the controller fault handler

1. Select the ControllerFaultHandler. To create a program as the controller fault program:

2. Click the right mouse button and select [HewPregras = R
New Program.
Hawe I\.-i_l-wl | oF. I
Diercipten: & Cancel
Fle (8 Y Fawch Logh [Corwaricsions [© = 4'
T T il .
= Gl = |
e cadl =grudiey - Hes
TR || 0| - =R 2
Drrvee AB_DF1 1
i Condroles sromed_1
[Conuoden 1
In this field: Enter:
Name Enter the name of the program.
Description Enter a description of the program (optional).
Type The type defaults to System Fault.

Naming programs

Program names follow IEC 1131-3 identifier rules and:

* must begin with an alphabetic character (A-Z or a-z) or an
underscore ()

* can contain only alphabetic characters, numeric characters,
and underscores

* can have as many as 40 characters

* must not have consecutive or trailing underscore characters ()

Program names are not case sensitive.

Selecting an unscheduled program for the controller
fault handler

1. Select the program (“unscheduled_1 in this example). To select an unscheduled program, drag and drop the unscheduled
2. Drag and drop the program to the controller program into the controller fault handler folder. Ifa controller fault
fault handler. program already exists, the unscheduled program takes its place. The
previous controller fault program moves to the unscheduled
B E& Y Feuch Lops [programs folder.
| Bl @ x|m|e|
- =
m—
D 48_0F1-1

| Crréche promd
fl Comirolies T
Lo Wit Hisrclisn
Prosem Lz H arcler
=8 Tk
= L M s
- 2 HenProgean
i) Progew Tage
M HmnFicadng
= parcoie
1 U lende] Prog ore

Frogmam lage
| Ciats Topes
¥ s iadrad
<+ L hedewes
B Mo [edrnad
A Conlga s

1756-6.5.12 March 1999

12-18 Handling Controller Faults

1. Select a program (“cntr_fault” in this example). Conﬁguring programs

2. Click the right mouse button and select Properties.) .o you create a controller fault program, there are other properties

that you need to configure. You must have a main routine.
Fle Edl Yees Gawoh Lopn Coreemcstions [o

1 e el e The controller fault program does not execute a fault routine. If you
= =p =l E specify a fault routine for the controller fault program, the controller
i Ec: = = never executes that routine.

D AB_DF1A
E5 Controlien srogeci_1 ..
) Cariscdes Ty H To configure an existing program:
§ Caniscliaa F sl Flsradia R
& '| = Mg Mopaiise - B and™ ng s
Pix,

= Task
-1 2% Ha

On this tab: In this field: Enter:

General Name The programming software displays the current
name of the program. Edit the name, if necessary.
Description The programming software displays the current

description. Edit the description, if necessary.

[Propam Prpeites Marfropen BRI |
Geemsl Conkguision |
Pkt Pk

v, T - |

w I-'-'r.il- j

:a-.t.-:[u]|_ |_ |

| rea |

[T] caww | | wee |

On this tab: In this field: Enter:

Configuration ~ Assigned Routine The programming software displays the name of the
Main Routine and the Fault Routine, if any. Change
the selections, if necessary.

Scan Time (us) ~ While online, the programming software displays the
maximum scan time and the last scan time in pisec
for the current program. These values are execution
times for the program and do not include any time
spent waiting for other programs or higher-priority
tasks. These values are display only.

1756-6.5.12 March 1999

Handling Controller Faults

12-19

1. Select a program (“cntr_fault” in this example).
2. Click the right mouse button and select New Routine.

Bl N Yea Besch Lopc [omenicsions [ods i

D|Ea & s o T
e = Y s -
o £ = | Ej -
Orrme AR_DFiA 1
S ”
..;i 1l

Creating routines

You can create multiple routines for the controller fault program.
One routine must be configured as the main routine for the program.

This routine can call other routines.

To create a controller fault routine:

[Hom floiee —__H|
LE I [
Dazcrpiien S [—
e [Lnices [|
I o [ore_tea = B |
In this field: Enter:
Name Enter the name of the routine.
Description Enter a description of the routine (optional).
Type Select the programming language used to create the
routine. Ladder is the default.
In Program Leave this selection alone. It automatically defaults to the

controller fault program.

Naming routines

Routine names follow IEC 1131-3 identifier rules and:
* must begin with an alphabetic character (A-Z or a-z) or an

underscore ()

* can contain only alphabetic characters, numeric characters,

and underscores
* can have as many as 40 characters

* must not have consecutive or trailing underscore characters ()

Routine names are not case sensitive.

1756-6.5.12 March 1999

12-20 Handling Controller Faults

Accessing the FAULTLOG You access controller status through the GSV/SSV instructions.
Status information is stored in objects. One such object is the
FAULTLOG. The FAULTLOG contains:
Attribute: Instruction: Description:
MajorEvents GSv How many major faults have occurred since the last time this
counter was reset.
SSv
MinorEvents GSv How many minor faults have occurred since the last time this
counter was reset.
SSv
MajorFaultBits GSv Individual bits indicate the type of major fault.
SSv
MinorFaultBits GSV Individual bits indicate the type of minor fault.
SSv

MajorFaultBits structure

The MajorFaultBits record in the FAULTLOG identifies the last
major fault by setting the bit that corresponds to the fault type.

|31]30[20 | 28| 27 26| 25| 24| 23] 22 21| 20| 19| 18] 17|16 |15 |14[13|12 [11|20[0| 8] 7|6 | 5] 4|3 [2|1 |0 |

power loss

110

instruction execution (program)

v fault handler

watchdog
\J

v stack

mode change

motion

MinorFaultBits structure

The MinorFaultBits record in the FAULTLOG identifies the last
minor fault by setting the bit that corresponds to the fault type.

|31/30| 20| 28| 27 26| 25 24| 23] 22| 21| 20 19|18 17]16 15 |14]13]12 [11|20[0| 8] 7] 6| 5] 4] 3 [2|1 |0]

1756-6.5.12 March 1999

instruction execution
(program)

watchdog

v serial port

battery

Chapter 13

Using This Chapter

How the Controller Powers Up in
Run Mode

Preparing a Power-Up Program

For information about: See page:

How the controller powers up in Run mode 13-1
Creating the power-up handler 13-3
Clearing the major fault 13-6

You can use the power-up handler to determine how the controller
powers up in Run mode.

If you use the power-up handler (a program is defined), and the
controller powers up in Run mode, the controller sets major fault
type 1, code 1. The power-up handler must clear the major fault for
the controller to operate normally. Otherwise, the controller enters its
faulted mode (shuts down).

If you do not use the power-up handler (no program is defined), the

controller stays in Run mode if it powers up in Run mode. The
controller begins executing logic.

1756-6.5.12 March 1999

13-2 Preparing a Power-Up Program

Processing the power-up handler

controller powers
up correctly

power up in
Run mode?

yes ¢

controller stays in
Run mode and
begins executing
logic

no
power-up handler
program?

yes ¢

major fault
type 1, code 1
occurs

¢

controller logs major
fault to power-up
program
MajorFaultRecord

¢

execute power-up
handler

¢

enter faulted mode
record FAULTLOG

fault cleared?

yes ¢

controller begins
executing

1756-6.5.12 March 1999

Preparing a Power-Up Program 13-3

Creating the Power-Up Handler The power-up handler is an optional task that executes when the
controller powers up in Run mode. The power-up handler can have
only one program. That one program can have multiple routines.

To configure a power-up program, either create a program for the
power-up handler or select an unscheduled program. For more
information about creating programs and routines, see chapter 4.

Creating a program for the power-up handler

1. Select the PowerUpHandler. TO create a program as the pOWCI‘-up program

2. Click the right mouse button and select T |

New Program.
Hasie e |_|':"“
Dmwcaper: 2] cwcd |
El
Copuekiein | L
Typs F‘-.wr- Lip Horwiies j Hew I
In this field: Enter:
Name Enter the name of the program.
Description Enter a description of the program (optional).
Type The type defaults to Power Up.

Naming programs

Program names follow IEC 1131-3 identifier rules and:
* must begin with an alphabetic character (A-Z or a-z) or an

underscore ()

* can contain only alphabetic characters, numeric characters,
and underscores

* can have as many as 40 characters

* must not have consecutive or trailing underscore characters ()

Program names are not case sensitive.

1756-6.5.12 March 1999

13-4 Preparing a Power-Up Program

1. Select the program (“unscheduled_1 in this
example).

2. Drag and drop the program to the power-up
handler.

Ee E® Jwe fawch Loge [
B|E|a| @ 2w e
L= =
pocs o
e #8_[F1-1

4 Cori ol o
fl Comirolies T
Lo Wit Hisrclisn
Prosem Lz H arcler
=i Tk
= L M s

1 U lende] Prog ore
=L |
Frogmam lage
3 (Dt Topen
g U fisdred
<+ L hedewes
B Mo [edrnad
A Coardiy i

1. Select a program (“power_1" in this example).
2. Click the right mouse button and select Properties.

Bl EN Y jewch Logc Commmiosion Lotk i

| Bls|E) &) - [Ble] |
Toa—] M-
TETR—C | | |

[Orwme BB D14
B Conrolie propt_1
A Contoled Tags
H L Condsoles I sl laralies
21 =5 Poesm Up b arcier
5 &4 |
ﬁ Ha Fiostna

= b5 Tanicr
o HanTak
e L Lot
Fix;
Viouill
U b Wiy
2 pamadc] (]
3l Urestwchie
4 R urnches
A Fux
| Digda T
. Lo Diadees
& . Fredsfrac
" Hedule Cict
1T Gondiguios

1756-6.5.12 March 1999

Selecting an unscheduled program for the power-up handler

To select an unscheduled program, drag and drop the unscheduled
program into the power-up handler folder. If a power-up program

already exists, the unscheduled program takes it place. The previous

power-up program moves to the unscheduled programs folder.

Configuring programs

Once you create a power-up program, there are other properties that

you need to configure. You must have a main routine.

The power-up program does not execute a fault routine. If you

specify a fault routine for the power-up program, the controller never

executes that routine or the controller fault handler.

To configure an existing program:

Lieraral Ih-u_ I
Hown _
Dstosphn ‘ =
E
o Cancal | | Hee |

Onthistab: In this field: Enter:

General Name The programming software displays the current
name of the program. Edit the name, if necessary.

Description The programming software displays the current

description. Edit the description, if necessary.

Preparing a Power-Up Program 13-5

Select a program (“power_1" in this example).
Click the right mouse button and select New

Bl E Yhma Bswch Lops [ewmrksions Look e

D|@|a & wle T
foraee || S EN : - |
i £ C| | -] Rl
e AE_DF1A E]
"B w0
: IIP::::-':I»H-M

Fiopas Fyopniber BoarF ogqem

LT e

== ==]

|

[]_comu |

| e |

Onthis tab: In this field:

Enter:

Configuration ~ Assigned Routine

The programming software displays the name of the
Main Routine and the Fault Routine, if any. Change
the selections, if necessary.

Scan Time (s)

While online, the programming software displays the
maximum scan time and the last scan time in pisec
for the current program. These values are execution
times for the program and do not include any time
spent waiting for other programs or higher-priority
tasks. These values are display only.

Creating routines

You can create multiple routines for the power-up program. One
routine must be configured as the main routine for the program. This
routine can call other routines.

To create a power-up routine:

Hewflogtioe H

nwe | e]

Lescrpeen 3 e

T Em 3

In this field: Enter:

Name Enter the name of the routine.

Description Enter a description of the routine (optional).

Type Select the programming language used to create the
routine. Ladder is the default.

In Program Leave this selection alone. It automatically defaults to the

power-up program.

1756-6.5.12 March 1999

13-6 Preparing a Power-Up Program

Clearing the Major Fault

Naming routines

Routine names follow IEC 1131-3 identifier rules and:

* must begin with an alphabetic character (A-Z or a-z) or an
underscore ()

* can contain only alphabetic characters, numeric characters,
and underscores

* can have as many as 40 characters

* must not have consecutive or trailing underscore characters ()

Routine names are not case sensitive.

To check and clear the major fault, follow these steps:

1. Create a user-defined structure to store the fault information. The
format must be as follows (you can change the structure and
member names, but the data types and sizes must be the same as
shown below):

M amne: IFauItHecu:urd Size: |44 byte(z]
e M zer Defined Type created to zimplify access to faulk ;I
DIGEE T record information obtained from GSY of Program fault
record information, ¥
b embers:
I ame [rata Type Style Drezcription
TirneLow DIMNT Decimal Lo 32 bitz of fault timestamp value
TimeHigh DIMNT Decimal |Ipper 32 bitz of fault timestamp value
Type IMNT Decimal Fault Type [Program, [/0, etc)
Code IMNT Decimal [Inique [by type] Code for the Fault
Ifo DIMT[E] Hex Fault Specific information - content waries by type and code
*

1756-6.5.12 March 1999

2. Use a GSV instruction to get the MAJORFAULTRECORD of
the power-up program (THIS). The destination should be a tag of
the user-defined structure type you created.

G54
et system value
Object clazs PROGRAM
Object name THIS
Attribute name MAJORFAILTRECORD
Dzt b yF aultR eu:u:urd.TimeLu:u.-i
1]

The Destination tag must point to the first member of the structure
(MyFaultRecord.TimeLow). This tag is of the structure type you define to hold
fault information.

Preparing a Power-Up Program

13-7

3. Examine the fault type and code to determine which fault
occurred and take appropriate action.

MajorFaultBits record in the FAULTLOG object

|31]30[20 | 28| 27 26| 25| 24|23 22 21| 20]19|18] 17|16 |15 |14[13|12 [11|20[0| 8] 7|6 | 5] 4] 3 [2 |1 |0 |

power up

Because you are executing the power-up handler, both the
MyFaultRecord. Type and MyFaultRecord.Code members are 1.

Eau
Equal
Source & MyFaultRecord. Tepe
0%
Source B 4

Equal

Source & MyFaultRecord. Code

Source B

EQu

D(‘
M

Examine the MyFaultRecord. Type and MyFaultRecord.Code members to determine the type of
major fault. This example looks for specific fault types and codes.

4.

Take appropriate action. Develop your own logic to respond to

the major fault.

If you decide to clear the fault:

A. Clear the type and code members of the tag (MyFault-
Record. Type and MyFaultRecord.Code shown above).

O

— Move

Source]

Dest MyFaultRecord. Type
0%

kA 014
—1 Move
Source]

Dest MyFaultRecord. Code
0%

Use MOV instructions to clear the type and code values.

1756-6.5.12 March 1999

13-8 Preparing a Power-Up Program

1756-6.5.12 March 1999

B. Use an SSV instruction to clear the fault by copying the tag
(MyFaultRecord. TimeLow) to the MajorFaultRecord of the

PROGRAM object.
S5
— Set system value
Object clazs PROGRAM
Object name THIS
Attribute name MAJORFALULTRECORD
Source MyFauItHecDrd.TimeLmi
1]

The Source tag must point to the first member of the structure (MyFaultRecord. TimeLow).
This tag is of the structure type you define to hold fault information.

Appendix A

Troubleshooting
Using This Appendix
For information about: See page:
Identifying controller components A-1
Monitoring controller status LEDs A-2
Monitoring controller status A-5
Changing controller mode A-8
Examining controller prescan operations A-9

Identifying Controller Components The controller has these components on the front panel:

LOGIX5550
The status LEDs help when v 1o
troubleshooting the controller. S
sar 1 Cd ok
Use the keyswitch to select RUN__REM PROG

controller mode.

Install battery here.)
Use a 1756-BA1.

The 9-pin D-shell serial port
supports standard EIA RS-232C.

[e]e]e]e)
-@ %
a

] gy S

40001

1756-6.5.12 March 1999

A-2 Troubleshooting

Monitoring Controller Status LEDs

1756-6.5.12 March 1999

The LEDs on the front panel show these states:

RUN HEE EEE I/0

I RS232

BAT HEN NN 0K

RUN REM PROG

40002

Indicator: Color: Description:
off = controller in Program or Test mode
RUN —
green = controller is in Run mode
offl = no I/0 or communications configured
green = communicating to all configured devices
.= one or more configured devices are
1/0 green flashing not responding
* not communicating to any devices
red flashing
= controller faulted
off no activity
RS232 greenflashing © data being received or transmitted
red = controller faulted
off = battery will support memory
= battery will not support memory
BAT
red = no bhattery present
replace the battery
off = no power applied
red flashing ~ © recoverable fault
oK = controller faulted
red
clear faults, clear memory, or replace the controller
green = controller OK

1. Ifthe controller does not contain a project (controller memory is empty), the I/0 indicator will

be off.

Troubleshooting A-3

In this location:

Determining which modules are not responding

If the I/O status indicator is flashing green or flashing red, you can
use the programming software to determine which I/O devices are not
responding.

Each I/0 module provides an indication when a fault occurs. The
programming software displays this fault information:

The software displays:

Controller organizer

The 1/0 configuration portion displays the modules configured for the controller. If the
controller detects an error condition or fault with one of these modules, the controller
organizer displays a yellow attention symbol (/!\) over the device.

Connection tab from
module properties

The module fault field displays the fault code returned to the controller (related to the
module) and the text detailing the fault.

Common categories for module errors are:

Connection request error The controller is attempting to make a connection to
the module and has received an error. The
connection was not made.

Service request error The controller is attempting to request a service from
the module and has received an error. The service
was not performed successfully.

Module configuration The configuration in the module is invalid. This

rejected commonly happens when a second controller tries
to share ownership of an input module, but the
module configuration does not match the
configuration already in the input module.

Module key mismatch Electronic keying is enabled and some part of the
keying information differs between the software and
the module.

Module Info tab from
module properties

This tab displays module and status information about the module. You can also reset
a module to its power-up state. You must be online to use this tab.

Backplane tab from
module properties

This tab displays diagnostic information about the module’s communications over the
backplane and the chassis in which it is located. You can also clear module faults and
reset the transmit retry limit.

1756-6.5.12 March 1999

A-4 Troubleshooting

From the Module Properties tabs you can view and edit:

1. Select a module (“1756-IB16” in this example)

2. Click the right mouse button and select Properties ~ On this tab:In this field: Enter:
General Name The programming software displays the current
name of the module.
Ble E W Fawch Logc [onaricslion Description The programming software displays the
| P 3 = 1 =l e current description.
foraes = [=] Slot Number The programming software automatically displays
TET = [=] the current slot number.
v AB_DF1 Communication The programming software displays the current
i Contoll suck_stae Format communication format.
A ool T - a - -
1 Cantuoles Fiak s Electronic Keying The programming software displays the current
= f"-'" LipHarclm electronic keying requirement.
5 & T Connection This tab provides module connection fault data. Use this tab to get more
=S NanPogen detailed information about why a particular module connection
il Frxpan Tam)
] M sflniin is faulted.
S bty Frogpe Requested The programming software displays the current
H, Unsr Dratiesd Packet Interval ~ RPI setting.
o e L) Inhibit Module The programming software displays whether or not
24 LT Configirsiion the module is inhibited.
; (31 7=08 Major Fault The programming software displays whether or not
= § [NTECHL Ry the controller generates a major fault if the
LREE connection to this module fails.
Diisie Module Info The programming software displays product and status information
T about the module. There are no fields to select or enter data.
The identification information and the match status are useful when
diagnosing electronic keying problems.
The configured and owned status is useful for diagnosing multiple
owner or multiple listener problems.
The error and status information provides information from the point of
view of the 1/0 modules.

Configuration Contains module-specific configuration information. The available fields
depend on the module. For example, this tab for the 1756-1B16 module
has fields for enable change of state and input filter time settings.

Backplane The programming software displays backplane status information.

There are no fields to select or enter data. You can clear faults and reset
the status counters.

1756-6.5.12 March 1999

Troubleshooting A-5

Monitoring Controller Status

1. Place the cursor over the controller folder

(Controller quick_start in this example).

2. Click the right mouse button and select Properties.

e NSLoom 3000 cpuct st
Fle £ Yew Gown Logc Conmascaton
| olw|a| & ||e] T
jorw =k =l
i £ = | =]
Dewme 8B DF11

2 Condmled T Vinely
Coniredlad Pk Pl
Pervem U p Harch

1 Tai

=1 PlsnTak

From this tab:

The Logix5550 controller offers different levels of status information
that you can view through the programming software and access
through logic.

Viewing status through the programming software

The controller properties dialog displays controller configuration
information for the open project, and when online, for the attached
controller.

o Lorviealles IMepsiisme - geickthani
Ui mranad I it Tirns I Corsmari swre | Sl Pt

Eed PotFdacd | Mg Fain | e Pl Adewcd | Fie
Herap sl T beies

[22W 3T Iphen

Tarwl LITITM bpies
Coginaler Faadk blarler [o0 = |
EresipHuwtes [=l
T Sl E i

gr | e | | ne |

From the controller properties, you can edit and view this
information:

You can:

General

modify the controller name, description, and controller properties for the
current project

Date/Time

view and edit the controller’s wall clock time and the coordinated system time status.

Communications

configure communication information that is stored with the project file

Serial Port

view and configure the serial port on the controller

Serial Port Protocol

configure the serial port for:
< DF1 point-to-point

« DF1 slave

« DF1 master

Major Faults

view any major faults that have occurred on the controller

Minor Faults

view any minor faults that have occurred on the controller

Advanced

view and edit advanced controller properties, which include the system fault program,
the power loss program, and system overhead time slice

File

view information about the project file

1756-6.5.12 March 1999

A-6 Troubleshooting

1756-6.5.12 March 1999

Keyword:

Status Flag:

Monitoring status flags

The controller supports status keywords you can use in your logic to
monitor specific events.

Description:

SV

overflow

Overflow is set if the value you are storing cannot fit into the destination.
Either the value is greater than the maximum value for the destination or
the value is less than the minimum value for the destination.

Important: Each time S:V goes from cleared to set, it generates a
minor fault (type 4, code 4)

Sz

Zero

Zero is set if the instruction’s destination value is 0.

SN

sign (result is negative) Sign is set if the instruction’s destination value is negative.

S:C

carry

The carry flag is not actually a part of the data type. The carry flag
represents the bit that would be in the data type if it were stored to a larger
data type.

S:FS

first scan

The first scan bit is set if this is the first, normal scan of the routines in the
current program.

S:MINOR

minor fault

The minor fault bit is set if at least one minor fault has been generated.
The controller sets this hit when a minor fault occurs due to program
execution. The controller does not set this bit for minor faults that are not
related to program execution, such as battery low.

THIS

current item

The THIS statement is only valid with the GSV and SSV instructions that
refer to a TASK, PROGRAM, or ROUTINE. Use THIS to specify the currently
executing TASK, PROGRAM, or ROUTINE.

The status keywords are not case sensitive.

Because the status flags can change so quickly, the status keywords
are not animated in the programming software to actual show status.

You cannot define a tag alias to a keyword.

Using GSV/SSV instructions

The GSV/SSV instructions get and set controller system data that is
stored in objects. The controller stores system data in objects. There
is no status file, as in the PLC-5 processor.

When enabled, the GSV instruction retrieves the specified
information and places it in the destination. When enabled, the SSV
instruction sets the specified attribute with data from the source.

Troubleshooting A-7

When you enter a GSV/SSV instruction, the programming software
displays the valid object classes, object names, and attribute names
for each instruction. For the GSV instruction, you can get values for
all the available attributes. For the SSV instruction, the software
displays only those attributes you can modify.

ATTENTION: Use the SSV instruction carefully.
Making changes to objects can cause unexpected
controller operation or injury to personnel.

You can access these objects:

This object Provides status information about:

AXIS a servo module axis

CONTROLLER a controller’s execution

CONTROLLERDEVICE the physical hardware of a controller

CST coordinated system time for the devices in one chassis
DF1 the DF1 communication driver for the serial port
FAULTLOG fault information for a controller

MESSAGE peer-to-peer communications

MODULE a module

MOTIONGROUP a group of axes for the servo module

PROGRAM a program

ROUTINE a routine

SERIALPORT the serial communication port

TASK a task

WALLCLOCKTIME a timestamp the controller can use for scheduling

For more information, see the Logix5550 Controller Instruction Set
Reference Manual, publication 1756-6.4.1.

1756-6.5.12 March 1999

A-8 Troubleshooting

Changing Controller Mode Use the keyswitch to change the mode in which the
controller operates:

If you want to: Turn the keyswitch to:

= Run your program RUN

Outputs are enabled. Equipment being controlled by the I/0 —
addressed in the program begins operating. [—

< Enable outputs

BAT NN NN OK

You cannot create or delete tasks, programs, or routines. You cannot RN REMPROG
create or delete tags or edit online while in Run mode. |_ | J
You cannot change the controller mode through the programming

software while the keyswitch is in the RUN position.

40003

= Disable outputs (outputs are set to their configured program states) PROG

< Create, modify, and delete tasks, programs, or routines

= Download projects [——

- 5232

The controller does not execute (scan) tasks. ——
You cannot change the controller mode through the programming Rr_ RT jm
software while the keyswitch is in the PROG position.

40004

Change between Remote Program, Remote Test, and Remote Run REM
modes through the programming software.

Remote Run U_ -0
< Enable outputs -
= Edit online (limited) o

RUN REM PROG

Remote Program |_ I J
= Disable outputs (outputs are set to their configured states)

< Create, modify, and delete tasks, programs, or routines

= Download projects
e Editonline

40002
The controller does not execute (scan) tasks.
Remote Test

« Execute tasks with outputs disabled
< Edit online (limited)

1756-6.5.12 March 1999

Troubleshooting A-9

Examining Controller
Prescan Operations

If unexpected operation occurs when the controller enters Run mode,
make sure to examine the prescan operation of the instructions. Some
instructions execute differently during prescan than they do during a
normal scan. For details on how each instruction operates during
prescan, see the Logix5550 Controller Instruction Set Reference
Manual, publication 1756-6.4.1.

The prescan operation is an intermediate scan between the transition
from Program mode to Run mode. The prescan examines all
programs and instructions and initializes data based on the results.

For example, a routine that is called infrequently might have a bad
indirect address that generates a major fault. It might take several
normal program scans before this fault occurs. Prescan provides the
opportunity for the controller to examine the program for errors such
as this before changing to Run mode.

Instructions with unique prescan operations

During prescan, the controller modifies data associated with some
instructions (see the following table). The following table describes
prescan operations that deviate from normal instruction operation.

Instruction: Executes these actions during prescan:
CTU The .CU/.CD bit is set to prevent a false count when the first
CTD Run-mode scan begins.
DTR The reference value is updated (regardless of the rung condition).
FFL The .EL bit is set to prevent a false load when the first Run-mode
LFL scan begins.
FFU The .EU bit is set to prevent a false unload when the first
LFU Run-mode scan begins.
FOR Ladder instructions within the loop are prescanned.
JSR The subroutine is invoked and prescanned. If recursive calls are

made to the subroutine, the subroutine is only prescanned the
first time it is called.

ONS The programmed bit address of the instruction is set to inhibit

OSR false triggering when the first Run-mode scan begins.

OSF The programmed bit address of the instructions is reset to inhibit
false triggering when the first Run-mode scan begins.

SQL The .EN bhit is set to prevent a false increment of the position

SQ0 when the first Run-mode scan begins.

TOF The .TT bit is reset and the .ACC is set to equal the .PRE.

See the Logix5550 Controller Instruction Set Reference, publication
1756-6.4.1 for specific details on how each instruction is prescanned.

1756-6.5.12 March 1999

A-10 Troubleshooting

1756-6.5.12 March 1999

Recovering from prescan errors

If an indirect reference is used by one of these instructions and the
pointer to this reference is initialized at run time, there is a chance that
an error might occur during prescan.

Use a program fault routine to trap the prescan error and reset the
error so the controller can continue with the prescan process. The
following example shows a sample program and fault handler. The
example logic uses this fault record structure:

il Data Type: FaultRecordType =] &3
Warning: Thiz structure iz being referenced. Modifications will rezult in lozs of data.

M armne: IFauItHecu:urdT_l,lpe Size: |44 bt]

Drezcription: ;I

[~

b embers:
M ame [rata Type Style Drezcription
TirmeLow DIMT Decimal
TimeHigh DIMNT Decimal
Type IMNT Decimal
Code IMT Decimal
Ifo DIMT[E] Decimal
*

The example logic also uses a DINT array named TABLE with 10
elements (TABLE[10]).

Troubleshooting A-11

Main Routine:

=STTENTION: THIS RUMG MUST BE PRESENT TO EMSURE THE FALULT ROUTIME OMLY TRAPS THE COMDITION DURIMNG PRESCAM*
Because this rung iz unconditional, the bit will always be set while the program is running, hen the CPU iz switched from program ta run, the
prezcan rezets all bits referenced by OTE inztructionz. The ztatuz fram thiz bit iz ueed by the fault routine to determine if the fault ocoured during
prescan of during the normal program scan (az long as the fadlt routine iz zet up propery). This iz usebul for recoverning from prescan ermors that can
accur when tags used as painters indirectly reference arrays that have not been inhialized pet.
EPU_EcEnning

Alfter the first scan pou can force this value he_l,lunld the amay limits and cause the controllsr ta major fault and shutdown,

S:FS b
] E bl o
Source il
Dzt pointer
2he

Thiz rung performs an indirect reference uzing the pointer above, Maote that thiz rung does not fault the controller during prescan because ingtructions
ke thiz da nat change tag walues during prescan. Once the controller has completed the prescan, this instruction will cause a fault [as lang as the
fault routing iz zet up properly].

A0
b o

Source a

Dest table[pointer]
e

Thiz rung will cauze the controller bo major fault during prescan if the pointer iz not within the zize of the aray.
Set up code in & program faulk handler to presvent thiz condition from occuring.
table[painter].0
oy

1756-6.5.12 March 1999

A-12 Troubleshooting

Thiz rung grabs the fault recaord for the program and stores it in a uzer defined structure.
G54

Program Fault Routine:

CPU_Scanning
/

1756-6.5.12 March 1999

et system value

CIP Object clasz
CIP Object name

Attribute name MAJORFAULTRECORD

Dzt

PROGRAM
THIS

faulk. Timelow
0

[f the fault code indicates a program error [Code=4] and the type indicates an aray subszcrnipt waz out of range [Tepe=20] then clear the fault
record and zend it back to the PROGRAM:MAJORFAULTRECORD object with the 554 instruction in order to clear the fault,

EQu EQu CLR
Equal Equal Clear
Source & fault. Type Source & fault. Code Dezt Faulk. Timelow
e e e
Source B 4 Source B 20
COP Sy
—| Copy File Set system value
Source fault Timelow CIP Object clasz PROGRAM
Dezt faulk. TimeHigh CIP Object name THIS
Length 10 Attribute name MAJORFAULTRECORD
Source fault. TimeLow
0

Appendix B

Using This Appendix

Introduction

|[EC1131-3 Compliance

For information about: See page:
Introduction B-1
Operating system B-2
Data definitions B-2
Programming languages B-3
Instruction set B-3
|[EC1131-3 program portability B-4
|EC compliance tables B-4

The International Electrotechnical Commission (IEC) has developed
a series of specifications for programmable controllers. These
specifications are intended to promote international unification of
equipment and programming languages for use in the controls
industry. These standards provide the foundation for the Logix5550
controller and RSLogix 5000 programming software.

The IEC programmable controller specification is broken down into
five separate parts each focusing on a different aspect of the

control system:

* Part 1: General Information

* Part 2: Equipment and Requirements Test

* Part 3: Programming Languages

* Part 4: User Guidelines

* Part 5: Messaging Service Specification

The controls industry as a whole has focused on part 3 (IEC1131-3),
Programming Languages, because it provides the cornerstone for
implementing the other standards and provides the most significant
end user benefit by reducing training cost. Because of this, only
IEC1131-3 is addressed here.

The IEC1131-3 programming language specification addresses
numerous aspects of programmable controller including the operating
system execution, data definitions, programming languages, and
instruction set. Components of the IEC113-3 specification are
categorized as required by the specification, optional or extensions.
By so doing, the IEC113-3 specification provides a minimum set of
functionality that can be extended to meet end user application needs.
The downside of this approach is that each programmable control
system vendor may implement different components of the
specification or provide different extensions.

1756-6.5.12 March 1999

B-2 |IEC1131-3 Compliance

Operating System

Data Definitions

1756-6.5.12 March 1999

The controller's preemptive multitasking operating system (OS) is
compliant with the IEC113-3 definition. In [IEC1131-3, the
programmable controllers OS can contain zero or more tasks, that can
execute one or more programs each containing one or more functions
or routines. According to IEC1131-3, the number of each of these
components is implementation dependent. The Logix5550 provides
32 task each containing 32 programs and an unlimited number of
functions or routines.

IEC1131-3 provides an option for creating different task execution
classifications. Task may be configured as continuous, periodic an
event based. A continuous task does not need to be scheduled in that
it will utilize any left over processing time when other tasks are
dormant. Periodic tasks are scheduled to operate based on a
reoccurring time period. The IEC1131-3 specification does not
specify a time base for periodic task configuration. An IEC1131-3
event based task is triggered upon detection of the rising edge of a
configured input. The Logix5550 provides supports for both
continuous and periodic task options. Additionally, the period for a
periodic task, is configurable starting as low as 1 millisecond (ms).

The IEC1131-3 specification provides access to memory through the
creation of named variables. IEC1131-2 names for variables consist
of a minimum of six characters (RSLogix5000 programming software
supports a minimum of 1 character) starting with an underscore " " or
an alpha character (A-Z), followed by one or more characters
consisting of an underscore " ", alpha character (A-Z) or a number
(0-9). Optionally, lower case alpha characters (a-z) can be supported
as long as they are case insensitive (A =a, B=b,C=c ...). The
controller provides full compliance with this definition, supports the
lower case option and extends the name to support up to 40
character names.

Data variables in IEC113-3 may be defined such that they are
accessible to all programs within a resource or controller, or limited
access is provided only to the functions or routines within a single
program. To pass data between multiple resources or controllers,
access paths may be configured to define the location of the data
within a system. The Logix5550 provides compliance by providing
program scoped, controller scoped data and permits the configuration
of access paths using produced/consumed data.

The memory interpretation of a variable within IEC1131-3 is defined
through the use of either an elementary data type or an optional
derived data type that is created from a group of multiple data types.
The Logix5550 supports the use of the BOOL (1 bit), SINT (8 bit
integer), INT (16 bit integer), DINT (32 bit integer) and REAL (IEEE
floating point number) elementary data types. Additionally, the
optional derived data types are supported through the creation of user
defined structures and arrays.

|[EC1131-3 Compliance B-3

Programming Languages

Instruction Set

The IEC113-3 specification defines five (5) different programming
languages and a set of common elements. All languages are defined
as optional but at least one must be supported in order to claim
compliance with the specification. The IEC1131-3 programming
language components are defined as follows:

¢ Common Language Elements

* Common Graphical Elements

* Instruction List (IL) Language Elements

* Structured Text Language (ST) Elements

* Ladder Diagram (LD) Language Elements

* Sequential Function Chart (SFC) Language Elements

* Function Block Diagram (FBD) Language Elements

The controller and RSLogix5000 provide support for the common
language elements and the Ladder Diagram language options.
Additionally, the environment utilizes an ASCII import/export format
based on the Structured Text language. The instruction set and
program file exchange features are discussed in detail in the sections
that follow.

The instruction set specified by IEC1131-3 is entirely optional. The
specification lists a limited set of instructions that if implemented
must conform to the stated execution and visual representation.
IEC1131-3 however, does not limit the instructions set to those listed
within the specification. Each PLC vendor is free to implement
additional functionality in the form of instructions over and above
those listed by the specification. Examples of such extended
instructions are those needed to perform diagnostics, PID loop
control, motion control and data file manipulation. Because extended
instructions are not defined by the IEC1131-3 specification, there is
no guarantee that the implementation between different PLC vendors
will be compatible. Thus utilization of these instructions may
preclude the movement of logic between vendors.

The controller and RSLogix5000 provide a suite of instructions that
execute as defined by the IEC1131-3 specification. The physical
representation of these instructions maintain their look and feel with
existing systems so as to reduce the training cost associated with
working with the environment. In addition to the IEC1131-3
compliant instructions, a full range of instructions from existing
products have been brought forward into the environment so that no
functionality is lost.

1756-6.5.12 March 1999

B-4 |IEC1131-3 Compliance

IEC1131-3 Program Portability

IEC Compliance Tables

Feature Number:

One of the goals of end-users creating programs in an [EC1131-3
compliant environment is the movement or portability of programs
between controllers developed by different vendors. This area is a
weakness of IEC113-3 because no file exchange format is defined by
the specification. This means that if any program created in one
vendor's environment will require manipulation to move it to another
vendor's system.

In order to minimize the effort involved in performing cross-vendor
portability, the RSLogix 5000 programming software for the
controller includes a full ASCII export and import utility.
Additionally, the file format that is utilized by this tool is based on a
hybrid of the IEC1131-3 Structured Text language definition.
Controller operating system and data definitions follow the
appropriate IEC1131-3 formats. Extensions were implemented in
order to convert Ladder Diagram logic into ASCII text since this is
not defined by IEC1131-3.

The controller and RSLogix5000 complies with the requirements of
IEC1131-3 for the following language features:

Table Number:! Feature Description:

Implementation Notes:

1 1 Required character set none

1 2 Lower case letters none

1 3a Number sign (#) Used for immediate value data type designation

1 4a Dollar sign ($) Used for description and string control character

1 6a Subscript delimiters ([]) Array subscripts

2 |dentifiers using upper case and numbers Task, program, routine, structure and tag names

2 Identifiers using upper case, numbers, and Task, program, routine, structure and tag names
embedded underlines

2 3 Identifiers using upper and lower case, numbers and Task, program, routine, structure and tag names
embedded underlines

4 1 Integer literal 12,0,-12

4 2 Real literal 125,-12.5

4 3 Real literal with exponents -1.34E712 1.234E6

4 4 Base 2 literal 2#0101_0101

4 5 Base 8 literal 8#377

4 6 Base 16 literal 16#FFEO

4 7 Boolean zero and one 0,1

5 1 Empty String Descriptions

5 2 String of length one containing a character 'A’ Descriptions

5 3 String of length one containing a space *’ Descriptions

5 4 String of length one containing a single quote Descriptions
character '$’

5 5 String of length two containing CR and LF 'RL’ Descriptions

6 2 String dollar sign '$$' Descriptions

6 3 String single quote '$" Descriptions

6 4 String Line Feed "$L" or '$I' Descriptions

6 5 String New-line "$N' or "$n' Descriptions

6 6 String From Feed (page) '$P" or "$p' Descriptions

6 7 String Carriage return '$R" or '$r' Descriptions

1756-6.5.12 March 1999

|[EC1131-3 Compliance B-5

Table Number:!

Feature Number:

Feature Description:

Implementation Notes:

6 8 String Tab $T" or "$t’ Descriptions

10 1 BOOL Data Type Tag variable definition

10 2 SINT Data Type Tag variable definition

10 3 INT Data Type Tag variable definition

10 4 DINT Data Type Tag variable definition

10 10 REAL Data Type Tag variable definition

10 12 Time Tag variable definition, TIMER Structure

11 1 Data type Hierarchy none

12 1 Direct Derivation from elementary types User Defined data type structures

12 4 Array data types Tag variable definition

12 5 Structured Data types User defined data type structures

13 1 BOOL, SINT, INT, DINT initial value of O Tag variable definition

13 4 REAL, LREAL initial value of 0.0 Tag variable definition

13 5 Time initial value of T#0s Tag variable definition, reset (RES) instruction

13 9 Empty String Descriptions

14 1 Initialization of directly derived types Import/export

14 4 Initialization of array data types Import/export

14 5 Initialization of structured type elements Import/export

14 6 Initialization of derived structured data types Import/export

20 1 Use of EN and ENO for LD Function present in ladder but not labeled

21 1 Overloaded functions ADD(INT, DINT) or ADD(DINT, Al instructions overloaded types that are supported
REAL) documented with each instruction

22 1 _TO_ conversion function RAD, DEG instructions Radians to/from Decimal.

Others not needed because of instruction
overloading

22 3 BCD to INT Convert FRD instruction

22 4 INT to BCD Convert TOD instruction

23 2 Square root SQR instruction

23 3 Natural log LN instruction

23 4 Log base 10 LOG instruction

23 6 Sine in radians SIN instruction

23 7 Cosine in radians COS instruction

23 8 Tangent in radians TAN instruction

23 9 Principal arc sine ASN instruction

23 10 Principal arc cosine ACS instruction

23 11 Principal arc tangent ATN instruction

24 12 Arithmetic add ADD instruction

24 13 Arithmetic multiplication MUL instruction

24 14 Arithmetic subtraction SUB instruction

24 15 Arithmetic divide DIV instruction

24 17 Exponentiation XPY instruction

24 18 Value move MOV instruction

26 5 Bitwise AND AND instruction

26 6 Bitwise OR OR instruction

26 7 Bitwise XOR XOR instruction

26 8 Bitwise NOT NOT instruction

28 5 Comparison greater-than GRT instruction

28 6 Comparison greater-than or equal GRE instruction

28 7 Comparison equal EQU instruction

28 8 Comparison less-than LES instruction

1756-6.5.12 March 1999

B-6

|IEC1131-3 Compliance

Table Number:!

Feature Number:

Feature Description:

Implementation Notes:

28 9 Comparison less-than or equal LEQ instruction
28 10 Comparison not equal NEQ instruction
57 1,2 Horizontal line for rung Ladder editor
57 3,4 Vertical line Ladder editor
57 5,6 Horizontal / Vertical connection Ladder editor
57 9,10 Connection and non-connection corners Ladder editor
57 11,12 Blocks with connections Ladder editor
58 2 Unconditional jump JMP instruction
58 3 Jump target LBL Instruction
58 4 Conditional jump JMP instruction
58 5 Conditional return RET instruction
58 8 Unconditional return RET instruction
59 1 Left hand power rail Ladder editor
59 2 Right hand power ralil Ladder editor
60 1 Horizontal link Ladder editor
60 2 Vertical link Ladder editor
61 1,2 Normally open contact --| |-- XIC instruction
61 3,4 Normally close contact --| / |-- XIO instruction
61 5,6 Positive transition sensing contact -| P |- ONS instruction
62 1 Coil --()-- OTE instruction
62 6 Set retentive memory coil -(SM)- OTL instruction
62 7 Reset retentive memory coil -(RM)- OTU instruction
62 8 Positive transition sensing coil OSR instruction
62 9 Negative transition sensing coil OSF instruction

1756-6.5.12 March 1999

1.Table associated with languages other than ladder diagram have been skipped.

Appendix C

Logix5550 Controller

Specifications
Description: Value:
backplane current +5V dc +24V dc
1756-L1 0.65A 0.02A

1756-L1IM1 0.95A 0.02A
1756-L1M2 1.05A 0.02A
1756-L1M3 1.20A 0.02A

temperature
operating
storage

0°t060°C (32t0140° F)
-40°t085°C (-40 to 185° F)

relative humidity

5% to 95% noncondensing

vibration 10 to 500 Hz
2.0 G maximum peak acceleration
shock
operating 306G peak for 11ms
storage 50G peak for 11ms
weight 1756-L1 10.0 0z.
1756-L1M1 1250z
1756-L1M2 1250z
1756-L1IM3 12.7 oz.
battery 1756-BA1 (PROMARK Electronics 94194801)
0.59g lithium
programming cable 1756-CP3 serial cable
category 312

agency certification®
(when product or packaging
is marked)

@_ Class | Division 2 Hazardous

CE marked for all applicable directives

1. Use this conductor category information for planning conductor routing as described in the system

level documentation.

2. Refer to Programmable Controller Wiring and Grounding Guidelines, publication 1770-4.1
3. CSA certification - Class | Division 2, Group A, B, C, D or nonhazardous locations

1756-6.5.12 March 1999

C-2 Specifications

Logix5550 Memory Board

1756-6.5.12 March 1999

You can install one of these memory boards in the controller:

* 1756-M1 (512 Kbytes expansion memory)
e 1756-M2 (1 Mbytes expansion memory)
e 1756-M3 (2 Mbytes expansion memory)

The 1756-Mx memory boards are designed to work only with the
1756-L1 Logix5550 controller.

Description:

Value:

backplane current
Add this current demand to that of
the Logix5550 controller

+5V dc
1756-M1 0.30A
1756-M2 0.40A

(1756-L1). 1756-M3 0.55A
temperature

operating 0°to60°C (3210 140° F)

storage -40° to 85° C (-40to 185° F)
relative humidity 5% to 95% noncondensing
vibration 10 to 500 Hz

2.0 G maximum peak acceleration

shock

operating 30G peak for 11ms

storage 50G peak for 11ms
weight 1756-M1 2.5 0z

1756-M2 2.5 oz.
1756-M3 2.7 oz.

agency certification
(when product or packaging
is marked)®

w @&
@- Class | Division 2 Hazardous

€ marked for all applicable directives

1. CSA certification - Class | Division 2, Group A, B, C, D or nonhazardous locations

Specifications C-3

1756-CP3 Serial Cable Pinouts

1CD 1CD
2 RDX 2 RDX
3TXD DC 3TXD
4DTR — 4DTR
COMMON COMMON
6 DSR 6 DSR
7RTS DC 7RTS
8 CTS 8 CTS
9RI 9RI
straight right-angle
cable end cable end

40046

The cable is shielded and tied to the connector housing at both ends.

1756-BA1 Battery The Logix5550 controller uses the 1756-BA1 battery:
1756-BAl
Battery 059 lithium
— top no connection

ﬁ <——— middle black lead (-)
g bottom red lead (+)

T
|

30167

Store the lithium battery in a cool, dry environment, typically 20° C
to 25° C (68° F to 77° F) and 40% to 60% relative humidity. When
not installed in the controller, store the battery in the original
container, away from flammable materials.

1756-6.5.12 March 1999

C-4 Specifications

1756-MOA2E Motion Module

Description: Value:

number of axes per Logix5550 controller 32 axes maximum

maximum number of axes per coarse update rate coarse update rate: max. number of axes:
2ms 2

The coarse update rates assume that the servo is

on for each axis and that each axis has an active i 22 i
trapezoidal move. For more information, see the 5 ms 6
ControlLogix Motion Module User Manual, 6ms 7
publication 1756-6.5.16.
7ms 8
8 ms 10
9ms 11
10 ms 13
11ms 14
12 ms 15
13 ms 17
14 ms 18
15ms 20
16 ms 21
17 ms 22
18 ms 24
19 ms 25
20 ms 26
21'ms 28
22 ms 29
23 ms 30
24 ms 32
number of axes per module 2 axes maximum
module keying electronic
servo loop
type nested PI digital position and velocity servo
gain resolution 32-hit floating point
absolute position range +1,000,000,000 encoder counts
rate 5 kHz
power dissipation 5.5W maximum
backplane current 5V dc @ 700 mA
24Vdc @ 2.5 mA
encoder input
type incremental AB quadrature with marker
mode 4X quadrature
rate 4 MHz counts per second maximum
electrical interface optically isolated 5V differential
voltage range 3.4V to 5.0V differential
input impedance 531 Ohms differential

1756-6.5.12 March 1999

Specifications

C-5

Description:

Value:

registration inputs

type

24V input voltage
maximum
minimum on
maximum off

5V input voltage
maximum
minimum on
maximum off

input impedance
24V input
5V input

response time

optically isolated, current sourcing input
+24V dc nominal

26.4V

18.5V

35

+5V dc nominal

5.5V

3.V

1.5V

1.2 kOhms
9.5 kOhms
1us

all other inputs
type
input voltage
maximum
minimum on
maximum off
input impedance

optically isolated, current sinking input
+24V dc nominal

26.4V

17.0v

8.5V

7.5 kOhms

servo output
type
isolation
voltage range
voltage resolution
load
maximum offset
gain error

analog voltage

200 kOhms

+10V

16 bits

5.6 kOhms resistive minimum
25 mV

+4%

all other outputs
type
operating voltage
maximum
operating current

solid-state isolated relay contacts
+24V dc nominal (Class 2 source)
26.4V
75 mA

RTB screw torque (cage clamp)

5lb-in. (0.5 Nm) maximum

1756-6.5.12 March 1999

C-6 Specifications

Description: Value:

conductors

wire size 22 gauge (3.1mm?) minimum to copper*

3/64 inch (1.2 mm) insulation maximum
category

123
temperature
operating 0°to60°C (32°to 140° F)
storage -40°t0 85° C (-40° to 185° F)
relative humidity 5% to 95% noncondensing
agency certification
(when product or packaging is marked)* @“

@_ Class | Division 2 Hazardous

CE marked for all applicable directives

1 Maximum wire size will require the extended depth RTB housing (1756-TBE).

2 Use this conductor category information for planning conductor routing as described in the system level
installation manual.

3 Refer to Programmable Controller Wiring and Grounding Guidelines, publication number 1770-4.1.

4 CSA certification - Class | Division 2, Group A, B, C, D or nonhazardous locations.

1756-6.5.12 March 1999

Glossary

alias tag

atomic data type

array

application

base tag

bidirectional connection

binary

bit

This glossary is specific to ControlLogix terms. For a comprehensive
glossary, see the Industrial Automation Glossary, publication
AG-7.1.

A tag that references another tag. An alias tag can refer to another
alias tag or a base tag. An alias tag can also refer to a component of
another tag by referencing a member of a structure, an array element,
or a bit within a tag or member. See base fag.

The basic definition used to allocate bits, bytes or words of memory
and define their numeric interpretation, this includes BOOL, SINT,
INT, DINT, and REAL data types. See array, structure.

A numerically indexed sequence of elements, each of the same data
type. Inthe Logix5550 controller, an index starts at 0 and extends to
the number of elements minus 1 (zero based). An array can have as
many as three dimensions, unless it is a member of a structure where
it can have only one dimension. An array tag occupies a contiguous
block of memory in the controller, each element in sequence. See
atomic data type, structure.

The combination of routines, programs, tasks, and I/O configuration
used to define the operation of a single controller. See project.

A tag that actually defines the memory where a data element is stored.
See alias tag.

A connection in which data flows in both directions: from the
originator to the receiver and from the receiver to the originator. See
connection, unidirectional connection.

Integer values displayed and entered in base 2 (each digit represents a
single bit). Prefixed with 2#. Padded out to the length of the boolean
or integer (1, 8, 16, or 32 bits). When displayed, every group of four
digits is separated by an underscore for legibility. See decimal,
hexadecimal, octal.

Binary digit. The smallest unit of memory. Represented by the digits
0 (cleared) and 1 (set).

1756-6.4.1 March 1999

BOOL

byte

cached connection

change of state (COS)

CIP

communication format

compatible module

connection

consumed tag

continuous task

Control and Information Protocol

ControlBus

1756-6.4.1 March 1999

An atomic data type that stores the state of a single bit (0 or 1).

A unit of memory consisting of 8 bits.

With the MSG instruction, a cached connection instructs the
controller to maintain the connection even after the MSG instruction
completes. This is useful if you repeatedly execute the MSG
instruction because initiating the connection each time increases scan
time. See connection, uncached connection.

Any change in the status of a point or group of points on an
1/0 module.

See Control and Information Protocol.

Defines how an I/O module communicates with the controller.
Choosing a communication format defines:

* what configuration tabs are available through the
programming software
+ the tag structure and configuration method

An electronic keying protection mode that requires that the vendor,
catalog number, and major revision attributes of the physical module
and the module configured in the software match in order to establish
a connection to the module. See disable keying, exact match.

The communication mechanism from the controller to another
module in the control system. The number of connections that a
single controller can have is limited. Communications with I/O
modules, consumed tags, produced tags, and MSG instructions use
connections to transfer data.

A tag that receives its data from another controller. Consumed tags
are always at controller scope. See produced tag.

A task that runs continuously, restarting the execution of its programs
when the last one finishes. There can be only one continuous task,
although there does not have to be any. See periodic task.

Messaging protocol used by Allen-Bradley’s series ControlLogix line
of control equipment. Native communications protocol used on the
ControlNet network.

The backplane used by the 1756 chassis. Acts as a network.

3

controller scope

Coordinated System Time (CST)

COUNTER

data type

decimal

description

dimension

DINT

direct

disable keying

download

Data accessible anywhere in the controller. The controller contains a
collection of tags that can be referenced by the routines and alias tags
in any program, as well as other aliases in the controller scope. See
program scope.

A synchronized time value for all the modules within a single
ControlBus chassis. Data timestamped with CST data from modules
within a single ControlBus chassis can safely be compared to
determine the relative time between data samples.

Structure data type that contains status and control information for
counter instructions

A definition of the memory size and the layout of memory that will be
allocated when a tag of the data type is created. Data types can be
atomic, structures, or arrays.

Integer values displayed and entered in base 10. No prefix. Not
padded to the length of the integer. See binary, hexadecimal, octal.

Descriptions for tags are as many as 120 characters long; descriptions
for other objects are as many as 128 characters long. Any printable
character can be used, including carriage return, tab, and space.

Specification of the size of an array. Arrays can have as many as
three dimensions.

An atomic data type that stores a 32-bit signed integer value
(-2,147,483,648 to +2,147,483,647).

An I/0O connection where the controller establishes an individual
connections with an I/O module. See rack optimized.

An electronic keying protection mode that requires no attributes of
the physical module and the module configured in the software to
match and still establishes a connection to the module. See
compatible module, exact match.

The process of transferring the contents of a project on the
workstation into the controller. See upload.

1756-6.4.1 March 1999

elapsed time

electronic keying

element

exact match

execution time

exponential

faulted mode

float

1756-6.4.1 March 1999

The total time required for the execution of all operations configured
within a single task. Ifthe controller is configured to run multiple
tasks, elapsed time includes any time used/shared by other tasks
performing other operations. See execution time.

A feature of the 1756 1/0O line where modules can be requested to
perform an electronic check to insure that the physical module is
consistent with what was configured by the software. Enables the
user via the software to prevent incorrect modules or incorrect
revisions of modules from being inadvertently used. See compatible
module, disable keying, exact match.

An addressable unit of data that is a sub-unit of a larger unit of data.
A single unit of an array. See array.

An electronic keying protection mode that requires that all attributes
(vendor, catalog number, major revision, and minor revision) of the
physical module and the module configured in the software match in
order to establish a connection to the module.

The total time required for the execution of a single program.
Execution time includes only the time used by that single program,
and excludes any time shared/used by programs in other tasks
performing other operations. See elapsed time.

Real values displayed and entered in scientific or exponential format.
The number is always displayed with one digit to the left of the
decimal point, followed by the decimal portion, and then by an
exponent. See style.

The controller generated a major fault, could not clear the fault, and
has shut down.

Real values displayed and entered in floating point format. The
number of digits to the left of the decimal point varies according to
the magnitude of the number. See style.

hexadecimal

immediate value

index

INT

interface module (IFM)

listen-only connection

major fault

major revision

Integer values displayed and entered in base 16 (each digit represents
four bits). Prefixed with 16#. Padded out to length of the boolean or
integer (1, 8, 16, or 32 bits). When displayed, every group of four
digits is separated by an underscore for legibility. See binary,
decimal, octal.

An actual 32-bit signed real or integer value. Not a tag that stores
a value.

A reference used to specify an element within an array.

An atomic data type that stores a 16-bit integer value
(-32,768 to +32,767).

A prewired 1/O field wiring arm.

An I/O connection where another controller owns/provides the
configuration data for the I/O module. A controller using a
listen-only connection does not write configuration data and can only
maintain a connection to the /O module when the owner controller is
actively controlling the I/O module. See owner controller.

A malfunction, either hardware or instruction, that sets a major fault
bit and processes fault logic to try to clear the fault condition. If the
fault logic cannot clear the fault, logic execution stops, the controller
shuts down, and outputs go to their configured state. See faulted
state, minor fault.

The 1756 line of modules have major and minor revision indicators.
The major revision is updated any time there is a functional change to
the module. See electronic keying, minor revision.

1756-6.4.1 March 1999

master (CST)

member

memory

minor fault

minor revision

multicast

multiple owners

name

network update time (NUT)

1756-6.4.1 March 1999

Within a single chassis, one and only one, controller must be
designated as the Coordinated System Time (CST) master. All other
modules in the chassis synchronize their CST values to the

CST master.

An element of a structure that has its own data type and name.
Members can be structures as well, creating nested structure data
types. Each member within a structure can be a different data type.
See structure.

Electronic storage media built into a controller, used to hold programs
and data.

A malfunction, either hardware or instruction, that sets a minor fault
bit, but allows the logic scan to continue. See major fault.

The 1756 line of modules have major and minor revision indicators.
The minor revision is updated any time there is a change to a module
that does not affect its function or interface. See electronic keying,
major revision.

A mechanism where a module can send data on a network that is
simultaneously received by more that one listener. Describes the
feature of the ControlLogix I/O line which supports multiple
controllers receiving input data from the same 1/0 module at the
same time.

A configuration setup where more than one controller has exactly the
same configuration information to simultaneously own the same
input module.

Names identify tags and modules. The naming conventions are
IEC-1131-3 compliant. A name:

* must begin with an alphabetic character (A-Z or a-z) or an
underscore ()

* can contain only alphabetic characters, numeric characters,
and underscores

* can have as many as 40 characters

* must not have consecutive or trailing underscore characters ()

The repetitive time interval in which data can be sent on a
ControlNet network. The network update time ranges from
2ms-100ms.

object

octal

owner controller

path

periodic task

periodic task overlap

predefined structure

prescan

A structure of data that stores status information. When you enter a
GSV/SSV instruction, you specify the object and its attribute that you
want to access. In some cases, there are more than one instance of the
same type of object, so you might also have to specify the object
name. For example, there can be several tasks in your application.
Each task has its own TASK object that you access by the task name.

Integer values displayed and entered in base 8§ (each digit represents
three bits). Prefixed with 8#. Padded out to the length of the boolean
or integer (1, 8, 16, or 32 bits). When displayed, every group of three
digits is separated by an underscore for legibility. See binary,
decimal, hexadecimal.

The controller that creates the primary configuration and
communication connection to a module. The owner controller writes
configuration data and can establish a connection to the module. See
listen-only connection.

A description of the devices and networks between one device and
another. A connection from one device to another follows the
specified path. See connection.

A task that is triggered at a specific time interval. Whenever the time
interval expires, the task is triggered and its programs are executed.
There can be as many as 32 periodic tasks in the controller. See
continuous task.

A condition that occurs when an instance of one task is executing and
the same task is triggered again. The execution time of the task is
greater than the periodic rate configured for the task. See

periodic task.

A structure data type that stores related information for a specific
instruction, such as the TIMER structure for timer instructions.
Predefined structures are always available, regardless of the system
hardware configuration. See product defined structure.

A function of the controller where the logic is examined prior to
execution in order initialize instructions and data.

The controller performs prescan when you change the controller from
Program mode to Run mode.

1756-6.4.1 March 1999

priority

postscan

produced tag

product defined structure

program

program scope

project

rack optimized

REAL

removal and insertion under power
(RIUP)

1756-6.4.1 March 1999

Specified precedence of task execution. If two tasks are triggered at
the same time, the task with the higher priority executes first.
Priorities range from 1-15, with 1 being the highest priority. If two
tasks with the same priority are triggered at the same time, the
controller switches between the tasks every millisecond. A
continuous task runs at a fixed priority level that is lower than all the
other tasks in the controller.

A function of the controller where the logic within a program is
examined before disabling the program in order reset instructions
and data.

A tag that a controller is making available for use by other controllers.
Produced tags are always at controller scope. See consumed tag.

A structure data type that is automatically defined by the software and
controller. By configuring an I/O module you add the product
defined structure for that module.

A program contains a set of related routines and a collection of tags.
When a program is executed by a task, execution of logic starts at the
configured main routine. That routine can, in turn, execute
subroutines using the JSR instruction. If a program fault occurs,
execution jumps to a configured fault routine for the program. Any of
these routines can access the program tags, but routines in other
programs cannot access these program tags. See routine, task.

Data accessible only within the current program. Each program
contains a collection of tags that can only be referenced by the
routines and alias tags in that program. See controller scope.

The file that the programming software uses to store a controller’s
logic and configuration. See application.

An 1I/0 connection where the 1756-CNB module collects digital /O
words into a rack image (similar to 1771-ASB). A rack optimized
connection conserves ControlNet connections and bandwidth,
however, limited status and diagnostic information is available when
using this connection type. See direct.

An atomic data type that stores a 32-bit IEEE floating-point value.

A ControlLogix feature that allows a user to install or remove a
module while chassis power is applied.

requested packet interval (RPI)

routine

scan time

scope

SINT

structure

style

system overhead timeslice

tag

When communicating over a the network, this is the maximum
amount of time between subsequent production of input data.
Typically, this interval is configured in microseconds. The actual
production of data is constrained to the largest multiple of the
network update time that is smaller than the selected RPI. The
selected RPI must be greater than or equal to the network update time.

A routine is a set of logic instructions in a single programming
language, such as a ladder diagram. Routines provide the executable
code for the project in a controller. A routine is similar to a program
file in a PLC or SLC processor. See program, task.

See elapsed time, execution time.

Defines where you can access a particular set of tags. See controller
scope, program scope.

An atomic data type that stores an 8-bit signed integer value
(-128 to +127).

A structure stores a group of data, each of which can be a different
data type. The controller has its own predefined structures. Each I/0O
module you can configure for the controller has its own predefined
structures. And you can create specialized user-defined structures,
using any combination of individual tags and most other structures.
See member, user-defined structure.

The format that numeric values are displayed in. See binary, decimal,
hexadecimal, octal, float, exponential.

The percentage of time the controller allocates to perform
communication and background functions.

A named area of the controller’s memory where data is stored. Tags
are the basic mechanism for allocating memory, referencing data
from logic, and monitoring data. See alias tag, base tag, consumed

tag.

1756-6.4.1 March 1999

10

task

timestamp

uncached connection

unidirectional connection

upload

user defined structure

watchdog

1756-6.4.1 March 1999

A scheduling mechanism for executing a program. As many as 32
programs can be schedule to execute when a task is triggered. A task
can be configured to run as a continuous task or a periodic task. As
many as 32 tasks can be created to schedule programs. See
continuous task, periodic task.

A ControlLogix process that records a change in input data with a
relative time reference of when that change occurred.

With the MSG instruction, an uncached connection instructs the
controller to close the connection upon completion of the mSG
instruction. Clearing the connection leaves it available for other
controller uses. See connection, cached connection.

A connection in which data flows in only one direction: from the
originator to the receiver. See connection, bidirectional connection.

The process of transferring the contents of the controller into a project
file on the workstation. See download.

A user-defined structure groups different types of data into a single
named entity. A user-defined structure contains one or more data
definitions called members. Creating a member in a user-defined
structure is just like creating an individual tag. The data type for each
member determines the amount of memory allocated for the member.
The data type for each member can be a/an:

+ atomic data type

¢ product-defined structure

* user-defined structure

* single dimension array of an atomic data type

* single dimension array of a product-defined structure
» single dimension array of a user-defined structure

Specifies how long a task can run before triggering a major
controller fault.

Index

Numerics
1756-BA1 C-3
1756-CP3 cable C-3

1756-MO2AE servo module 10-1

A

accessing
data 4-2
FAULTLOG 12-20
/0 3-16

ACD file extension 2-1

alias
defining for I/0 data 3-19
getting started 1-14, 1-15
tag type 4-2

array
introduction 4-13
memory allocation 4-17

array concepts
indexing 4-14
specifying bits 4-15
atomic data type 4-3, 4-6
axis 10-4

B
background function 5-15
base tag 4-2
battery 1-3, C-3
bits within arrays 4-15
branch 5-14

C

change-of-state data exchange 3-2, 3-3
changing

controller mode A-8

/0 configuration 3-15

module properties 1-11

project properties 2-2
clearing a major fault 13-6

communicating
defining connection path 9-2
mapping addresses 6-4
other controllers 6-1
serial 8-1
using MSG instructions 6-1
with another Logix5550 controller 6-1
with PLC and SLC controllers 6-2
with workstation 9-1

communication connection 7-1
compliance tables B-4
components A-1

configuring
communication with workstation 9-1
controller fault handler program 12-18
controller fault handler routine 12-19
DF1 master 8-8
DF1 point-to-point 8-6
DF1 protocol 8-5
DF1 slave 8-7

1756-6.5.12 March 1999

-2 Index

I/0 modules
alias 3-19
changing configuration 3-15
controller ownership 3-7
COS 3-3
electronic keying 3-6
inhibit operation 3-9
local 3-4
logic scan 3-2
naming 3-5
operation 3-3
remote 3-11
RPI 3-3
update 3-2
power-up handler 13-4
power-up handler program 13-4
power-up handler routine 13-5
program 5-10
routine 5-12
serial port 8-3
task 5-6
watchdog 5-8

connecting to controller serial port 8-2

connection
allocating 7-1
consumed tag 7-7
direct connection 7-2
for 1/0 module 7-2
messaging 7-7
produced tag 7-6
rack-optimized 7-4
requirements 7-8

connection path 9-2

consumer
connection 7-7
maximum number of produced and
consumed tags 6-8
processing 6-7
system-shared tag 6-6

continuous task 5-2, 5-3

1756-6.5.12 March 1999

controller
fault handler 12-16
faults 12-1

controller fault handler 12-9
controller memory 4-1

controller mode A-8

controller organizer 2-3, 3-19
controller ownership 3-7

controller scope 4-20

converting data types 4-8
coordinated system time 2-5, 10-2
COS 3-3

creating
controller fault handler 12-16
controller fault handler program 12-17
power-up handler program 13-3
program 5-9
program fault routine 12-16
project 1-4, 2-1
routine 5-11
sample /0 module 1-7, 1-9
sample project 1-5
tags 1-13, 4-2
task 5-5

CST. See coordinated system time

data
accessing 4-2
array 4-13
atomic type 4-3, 4-6
definitions B-2
forcing 11-2
how stored 4-1
organizing 4-1
predefined structures 4-4
specifying bits 4-8

Index -3

structure
/0 3-16
introduction 4-9
member 4-12
module-defined 4-10
predefined 4-10
user-defined 4-10

type conversion 4-8

types 4-3

data exchange
change of state 3-2

devices not responding A-3

DF1 protocol
configuring 8-5
introduction 8-4
master 8-4, 8-8
master/slave methods 8-5
point-to-point 8-4, 8-6
slave 8-4, 8-7

direct connection 7-2

documenting 1/0 1-14, 1-15

downloading
project 1-4, 5-16
sample project 1-18

E
electronic keying 3-6

entering
branch 5-14
logic 5-13
sample logic 1-16
example
connection path 9-4
coordinated system time 2-6
getting started 1-16
major fault 12-12
minor fault 12-5
motion 10-2
power-up 13-6
viewing /0 module faults 3-22

fault

controller 12-1

controller fault handler 12-9, 12-16
1/0 module 3-19

logic for major 12-12

logic for minor 12-5, 12-7

major types and codes 12-14
minor types and codes 12-8
monitoring I/0 12-2

processing major 12-9
processing minor 12-3

program fault routine 12-9, 12-16
types 12-1

forcing

description 11-1
disabling 11-5
enabling 11-4
entering 11-2
/0 tags 11-1
monitoring 11-6
removing 11-5

front plate A-1

G

getting started

adding an input module 1-7
adding an output module 1-9
changing module properties 1-11
changing project properties 1-6
creating a project 1-5

creating other tags 1-13
documenting 1/0 with alias tags 1-14, 1-15
downloading a project 1-18

enter logic 1-16

installing 1-2

introduction 1-1

project 1-4

viewing controller memory usage 1-22
viewing I/0 tags 1-12

viewing program scan time 1-21

1756-6.5.12 March 1999

Index

H
hardware fault 12-1

I/0 module
alias 3-19

change-of-state data exchange 3-2, 3-3

changing configuration 3-15
configuring local 3-4
configuring remote 3-11
connection 7-2

controller ownership 3-7
creating sample 1-7, 1-9
data structure 4-10

determining if not responding A-3

direct connection 7-2
electronic keying 3-6

inhibit operation 3-9
monitoring fault 12-2

naming 3-5

operation 3-3

properties 1-11
rack-optimized connection 7-4
RPI 3-3

updates 3-2

viewing fault information 3-19

/0 tags
forcing 11-1

IEC 1131-3 compliance
data definitions B-2
instruction set B-3
introduction B-1
operating system B-2
program portability B-4
programming language B-3
tables B-4

indexing 4-14

individual tag 4-6

inhibit 1/0 operation 3-9

1756-6.5.12 March 1999

installing
controller module 1-3
ESD precautions 1-2
preparing the controller 1-3
instruction set B-3
integrating motion 10-1
introduction 1-1

K
keying, electronic 3-6
keyswitch A-8

L

LED states A-2

listen-only 3-7

local
example I/0 addressing 3-17
I/0 module 3-4

logic
branch 5-14
entering 1-16, 5-13
major fault 12-12
minor fault 12-5, 12-7
scan 3-2

M

major fault
clearing 13-6
controller

fault handler 12-9

controller fault handler 12-16
description 12-1
logic 12-12
power-up handler 13-1
processing 12-9
program fault routine 12-9, 12-16
types and codes 12-14

mapping an address 6-4
master/slave communication 8-5
member 4-12

Index

memory
controller 4-1
usage 1-22

memory allocation
array 4-17
base tag 4-6
structure 4-11

memory expansion board 1-3, 4-1, C-2
messaging connection 7-7

minor fault
description 12-1
logic 12-5, 12-7
processing 12-3
types and codes 12-8
mode A-8
module-defined structure 4-10

motion
adding a module 10-3
autotuning 10-11
configuring an axis 10-5
hookup diagnostics 10-11
integrating 10-1
naming an axis 10-4
selecting CST master 10-2

motion example 10-2
MSG instruction 6-1
multiple controllers 1-3, 3-7

N

naming
controller 2-2
I/0 module 3-5
program 5-9, 12-17, 13-3
routine 5-12, 12-19, 13-6
tag 4-4
task 5-6

0
operating system B-2
organizing data 4-1
organizing project 5-1
owner controller 3-7
ownership 3-7

P
periodic task 5-2, 5-3
pinouts C-3
power up in Run mode 13-1
power-up handler 13-1
predefined structure 4-4, 4-10
prescan operations A-9

producer
connection 7-6
maximum number of produced and
consumed tags 6-8
processing 6-7
system-shared tag 6-6
program 13-4
configuring 5-10

configuring controller fault handler 12-18

controller fault handler 12-17
creating 5-9

defining 5-8

developing 5-1

naming 5-9, 12-17, 13-3
portability B-4

power-up handler 13-1, 13-3
scan time 1-21

scope 4-20

unscheduled 12-17, 13-4

1756-6.5.12 March 1999

|-6 Index

programming example
coordinated system time 2-6
getting started 1-16
major fault 12-12
minor fault 12-5
monitoring forces 11-6
motion 10-2
power-up 13-6
viewing /0 module faults 3-22
programming language B-3
project
changing properties 2-2
controller organizer 2-3
creating 2-1
developing 5-1
downloading 1-18, 5-16
file extension 2-1
getting started 1-5
organizing 5-1
properties 1-6
saving 2-4
uploading 2-4

R
rack-optimized connection 7-4
referencing members 4-12

remote
example I/0 addressing 3-18
I/0 module 3-11

removal and insertion under power 1-2
requested packet interval 3-3
RIUP 1-2

routine
configuring 5-12
configuring controller fault handler 12-19
configuring power-up handler 13-5
creating 5-11
defining 5-11
naming 5-12, 12-19, 13-6
program fault 12-9, 12-16

RPI 3-3

1756-6.5.12 March 1999

saving

project 2-4

save vs. save as 2-4
scan time

program 1-21

scope 4-20

serial
1756-CP3 cable C-3
cable pinouts C-3
communicating 8-1
configuring DF1 protocol 8-5
configuring port 8-3
connecting to controller serial port 8-2
DF1 protocol 8-4
master 8-8
point-to-point 8-6
RS-232 8-1
slave 8-7

slave/master communication 8-5

specifications
1756-BA1 C-3
1756-CP3 cable C-3
battery C-3
controller C-1
memory expansion board C-2
serial cable pinouts C-3

specifying bits 4-8

storing data 4-1

structure
introduction 4-9
memory allocation 4-11
module-defined 4-10
predefined 4-10

referencing members 4-12
user-defined 4-10

system overhead 5-15

Index -7

system-shared tag
connection for consumed tag 7-7
connection for produced tag 7-6
introduction 6-6
maximum number of produced and
consumed tags 6-8
processing 6-7

tag
connection for consumed 7-7
connection for produced 7-6
consumed 6-6
individual 4-6
naming 4-4
predefined I/O structure 3-16
produced 6-6
sample alias 1-14, 1-15
scope 4-20
system shared 6-6
types 4-2
viewing I/0 1-12
tags
creating 4-2
task
configuring 5-6
continuous 5-3
controller fault handler 12-9, 12-16
creating 5-5
defining 5-2
naming 5-6
periodic 5-3
system overhead 5-15
watchdog 5-8

time 2-6
troubleshooting
controller components A-1

LED states A-2
prescan operations A-9

U
unscheduled program 12-17, 13-4
update 3-2
uploading 2-4
user-defined structure 4-10
using MSG instructions 6-1

%
viewing
controller memory usage 1-22
I/0 module fault information 3-19
/0 tags 1-12
program scan time 1-21

W
WALLCLOCKTIME 2-6
watchdog 5-8

1756-6.5.12 March 1999

-8 Index

Notes:

1756-6.5.12 March 1999

ControlLogix, Logix5550, PLC-5, PLC-3, PLC-2, SLC, DH+, Allen-Bradley, RSLinx, RSNetworx,
and Rockwell Software are trademarks of Rockwell Automation.

ControlNet is a trademark of ControlNet International, Ltd.
DeviceNet is a trademark of the Open DeviceNet Vendor Association.

Ethernet is a trademark of Digital Equipment Corporation, Intel, and Xerox Corporation.

1756-6.5.12 March 1999

Reach us now at www.rockwellautomation.com

Wherever you need us, Rockwell Automation brings together leading
brands in industrial automation including Allen-Bradley controls,

Reliance Electric power transmission products, Dodge mechanical power
transmission components, and Rockwell Software. Rockwell Automation’s
unique, flexible approach to helping customers achieve a competitive
advantage is supported by thousands of authorized partners, distributors
and system integrators around the world.

-

Americas Headquarters, 1201 South Second Street, Milwaukee, W1 53204, USA, Tel: (1) 414 382-2000, Fax: (1) 414 382-4444 Roc‘(well
European Headquarters SA/NV, avenue Herrmann Debroux, 46, 1160 Brussels, Belgium, Tel: (32) 2 663 06 00, Fax: (32) 2 663 06 40 -

Asia Pacific Headauarters, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bav, Hona Kona, Tel: (852) 2887 4788, Fax: (852) 2508 1846 Automation
Publication 1756-6.5.12 March 1999 PN 955135-85

Supersedes Publication 1756-6.5.12 October 1998 © (1999) Rockwell International Corporation. Printed in the U.S.A.

	Important User Information
	Introduction
	Updated Information
	Using This Manual
	Introduction
	Who Should Use This Manual
	Purpose of This Manual
	Conventions and Related Terms
	Getting Started
	Chapter 1

	Working with Projects
	Chapter 2

	Configuring I/O Modules
	Chapter 3

	Organizing Data
	Chapter 4

	Developing Programs
	Chapter 5

	Communicating with Other Controllers
	Chapter 6

	Allocating Communication Connections
	Chapter 7

	Communicating with Devices on a Serial�Link
	Chapter 8

	Communicating with a Workstation
	Chapter 9

	Integrating Motion
	Chapter 10

	Forcing
	Chapter 11

	Handling Controller Faults
	Chapter 12

	Preparing a Power-Up Program
	Chapter 13

	Troubleshooting
	Appendix A

	IEC1131-3 Compliance
	Appendix B

	Specifications
	Appendix C

	Glossary

	Getting Started
	Using This Chapter
	Installing the Controller
	Prepare the controller
	Install the controller

	Creating and Downloading a�Project
	Create a project
	Changing project properties
	Adding a local input module
	Adding a local input module (continued)
	Adding a local output module
	Adding a local output module (continued)
	Changing module properties
	Viewing I/O tags
	Creating other tags
	Documenting I/O with alias tags
	Documenting I/O with alias tags (continued)
	Enter logic
	Entering logic (continued)
	Download a project

	Download a project (continued)
	Download a project (continued)
	Viewing program scan time
	Viewing controller memory usage

	What To Do Next

	Working with Projects
	Using This Chapter
	Creating a Project
	Naming controllers

	Changing Project Properties
	Working with the Controller�Organizer
	Saving Your Project
	Uploading From the Controller
	Using Coordinated System Time

	Configuring I/O Modules
	Using This Chapter
	Introduction
	Logic Scanning
	Defining I/O Updates
	How an I/O module uses change-of-state (COS)
	How an I/O module uses the requested packet interval (RPI)
	When an analog module uses real-time sampling (RTS)

	How I/O Modules Operate
	Configuring Local I/O
	Naming modules
	Electronic keying
	Configuring communication format
	Selecting controller ownership

	Inhibiting module operation

	Configuring I/O in a Remote�Chassis
	Changing Configuration Information
	Accessing I/O
	Example of local addressing
	Example of remote addressing
	Defining aliases

	Viewing Module Fault Information
	Using the programming software to view I/O faults
	Using logic to monitor I/O faults

	Organizing Data
	Using This Chapter
	How the Controller Stores Data
	Creating Tags
	Data types
	Naming tags
	Entering tags

	Using Base Tags
	Memory allocation for base tags
	Data type conversions
	Specifying bits

	Using Structures
	Predefined structures
	Module-defined structure
	User-defined structure
	Memory allocation for user-defined structures
	Referencing members within a structure

	Viewing an Array as a Collection of�Elements
	Indexing through arrays
	Specifying Bits Within Arrays

	Viewing an Array as a Block of�Memory
	How the controller stores array data
	Varying a dimension

	Memory Allocation for Arrays
	Aliasing Tags
	Scoping Tags
	Scoping tags local to a program
	Scoping tags global to a controller

	Developing Programs
	Using This Chapter
	Organizing Projects
	Defining Tasks
	Using a continuous task
	Using a periodic task
	Creating tasks
	Naming tasks
	Configuring tasks
	Setting the task watchdog
	Avoiding periodic task overlap

	Defining Programs
	Creating programs
	Naming programs
	Configuring programs

	Defining Routines
	Creating routines
	Naming routines
	Configuring routines

	Entering Ladder Logic
	Entering branches

	Scheduling System Overhead
	Downloading a Project

	Communicating with Other Controllers
	Using This Chapter
	Using MSG Instructions
	Communicating with another Logix5550 controller
	Communicating with other processors
	Mapping addresses

	Using Produced and Consumed�Tags
	Processing produced and consumed tags
	Maximum number of produced and consumed tags

	Planning Your System to Support Produced and Consumed Tags
	Identifying another local controller
	Identifying a remote controller

	Producing a Tag
	Producing a tag from a Logix5550 controller to a ControlNet PLC-5 processor

	Consuming a Tag
	Consuming a tag from a ControlNet PLC-5 processor to a Logix5550�controller

	Sending Large Arrays of Data
	Example programming for the primary controller
	Example programming for the backup controller

	Allocating Communication Connections
	Using This Chapter
	How the ControlLogix System Uses�Connections
	Determining Connections for I/O�Modules
	Direct connections for I/O modules
	Rack optimized connections for I/O modules
	Combining direct and rack optimized connections

	Determining Connections for Produced and Consumed Tags
	Connections for produced tags
	Optimizing produced tags
	Connections for consumed tags

	Determining Connections for�Messaging
	Determining Total Connection�Requirements

	Communicating with Devices on a Serial�Link
	Using This Chapter
	Using RS-232
	Connecting to the Serial Port
	Configuring the controller to use the serial port

	Using the DF1 Serial Protocol
	Master/slave communication methods

	Configuring Serial Communications
	Configuring a DF1 point-to-point station
	Configuring a DF1 slave station
	Configuring a DF1 master station
	If you choose one of the standard polling modes

	Communicating with a Workstation
	Using This Chapter
	Configuring Communications to the Controller from a Workstation
	Defining Connection Paths
	Connection path examples

	Integrating Motion
	Using This Chapter
	Introduction
	Developing a Motion Control Application Program
	Selecting the master controller for coordinated system time
	Adding a 1756-M02AE module
	Naming an axis
	Configuring a servo axis
	Running hookup diagnostics and auto tuning

	Writing a Motion Application Program
	Understanding the MOTION_INSTRUCTION tag
	Using motion status and configuration parameters
	Modifying motion configuration parameters
	Handling motion faults
	Understanding errors
	Understanding minor/major faults

	Understanding a programming example

	Forcing I/O
	Using This Chapter
	Forcing
	Entering Forces
	Entering forces from the data monitor
	Entering forces from the ladder editor

	Enabling Forces
	Disabling Forces
	Removing Forces
	Monitoring Forces

	Handling Controller Faults
	Using This Chapter
	Understanding Controller Faults
	Viewing Controller Faults
	Monitoring I/O Faults
	Handling Hardware Faults
	Processing Minor Faults
	Processing instruction-execution minor faults
	Writing logic for instruction-execution minor faults
	Processing other minor faults
	Writing logic for other minor faults

	Minor Fault Types and Codes
	Processing Major Faults
	Writing logic for a major fault

	Major Fault Types and Codes
	Creating a Program Fault Routine
	Creating the Controller Fault�Handler
	Creating a program for the controller fault handler
	Naming programs
	Selecting an unscheduled program for the controller fault�handler
	Configuring programs
	Creating routines
	Naming routines

	Accessing the FAULTLOG
	MajorFaultBits structure
	MinorFaultBits structure

	Preparing a Power-Up Program
	Using This Chapter
	How the Controller Powers Up in Run Mode
	Processing the power-up handler

	Creating the Power-Up Handler
	Creating a program for the power-up handler
	Naming programs
	Selecting an unscheduled program for the power-up handler
	Configuring programs
	Creating routines
	Naming routines

	Clearing the Major Fault

	Troubleshooting
	Using This Appendix
	Identifying Controller Components
	Monitoring Controller Status LEDs
	Determining which modules are not responding

	Monitoring Controller Status
	Viewing status through the programming software
	Monitoring status flags
	Using GSV/SSV instructions

	Changing Controller Mode
	Examining Controller Prescan�Operations
	Instructions with unique prescan operations
	Recovering from prescan errors
	Main Routine:
	Program Fault Routine:

	IEC1131-3 Compliance
	Using This Appendix
	Introduction
	Operating System
	Data Definitions
	Programming Languages
	Instruction Set
	IEC1131-3 Program Portability
	IEC Compliance Tables

	Specifications
	Logix5550 Controller
	Logix5550 Memory Board
	1756-CP3 Serial Cable Pinouts
	1756-BA1 Battery
	1756-M0A2E Motion Module
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

