
1 Introduction
The purpose of this application note is to help the users to
integrate the Enhanced Time Processing Unit (eTPU) libraries
published on the Freescale website into a stationary-based
CodeWarrior 10.x (CW10.x) project for PX family of devices;
a pulse width modulation (PWM) example will be used to
describe this integration. This procedure can be used on any
device that includes an eTPU module.

Sample code written for the PXR40 device can be downloaded
from AN4572SW available at http://www.freescale.com.

This application note must be read with application note
AN2849: Using the eTPU Pulse Width Modulation (PWM)
Function, available at http://www.freescale.com.

The eTPU is a programmable I/O controller with its own core
and memory system, allowing it to perform complex timing
and I/O management independently of the CPU. The eTPU is
essentially an independent microcontroller designed for timing
control, I/O handling, serial communications, motor control,
and engine control applications.

The eTPU is the new generation of a Time Processing Unit
(TPU) by Freescale. Besides the hardware enhancement,
significant improvements over TPU have been made to the
accompanying software development tools; these tools make
the eTPU easy to use. A high-level (C) language compiler has
been developed, so the eTPU can be programmed using C
language instead of microcode.

Freescale Semiconductor Document Number:AN4572

Application Note Rev. 0, 8/2012

eTPU Libraries Integration to
CodeWarrior (CW) 10.x
by: Antonio Pintor

Automotive and Industrial Solutions Group

© 2012 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 eTPU function library and application
interface (API)...2

3 Generating the eTPU code..3

4 Integrating the etpu files to CW10.x.........................4

5 Building the example code..5

6 Using the eTPU Graphical Configuration
Tool...7

7 Summary...11

8 Conclusion...13

9 References...13

http://www.freescale.com
http://www.freescale.com

To program the eTPU effectively, the user must have a clear understanding of how the eTPU hardware works. By using the
code in C-language, the programmer can leave the mechanics of the eTPU programming like parameter packing, micro-
instruction packing, etc., to the compiler and focus more on the application logic.

With the help of the compiler, the same symbol can be referenced by the eTPU and host software. The host software can
interface with eTPU functions via application programming interface (API) functions, instead of accessing physical memory
locations and registers. The host application can call these API functions to interface with the eTPU. The references to these
API functions and symbols for parameters are resolved at compile time. The implementation details of the eTPU functions
are hidden from the host application. This design improves the flexibility of the eTPU functions’ implementation and the
portability of the host application code.

2 eTPU function library and application interface (API)
The eTPU function APIs enable the use of eTPU functions in applications. The eTPU function APIs include CPU methods
that demonstrate how to initialize, control, and monitor the eTPU function. The CPU application does not need to access
eTPU channel registers and/or function parameters directly. Rather, the CPU application can use the eTPU function APIs
instead. These functions can be used on any product that has an eTPU module.

Freescale provides an eTPU functions library that is a superset of the standard TPU library functions. These, along with an
available C compiler, make it relatively easy to port older applications to the eTPU. By providing source code of the eTPU
library, developers are able to create customized functions for specific applications.

2.1 eTPU API functions
The following sections present a list of the API functions available on the Freescale website, http://www.freescale.com

2.1.1 General timing functions
• Full-featured and synchronized PWM
• Input capture/output compare (Protected Output Compare)
• Frequency and period measurement
• Pulse/Period accumulate
• Queued output match for complex outputs
• GPIO

2.1.2 Communication functions
• SPI
• UART
• UART with Flow Control
• Proprietary Protocols

2.1.3 Motor control functions
• Stepper motor
• Hall decoder
• Quadrature decoder
• PWM–Master for DC motors

eTPU function library and application interface (API)

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

2 Freescale Semiconductor, Inc.

http://www.freescale.com

• Analog sensing for DC motors
• Current controller
• Speed controller
• DC-bus brake controller
• PMSM vector control
• ACIM V/Hz control
• Resolver interface

2.1.4 Automotive functions
• Position (CRANK)
• Engine position (CAM)
• Fuel injection
• Spark ignition
• Knock window
• Tooth generator

Each of the function above is described in detail by an application note, which has a corresponding number and is available
on the Freescale website, http://www.freescale.com. See References.

3 Generating the eTPU code
This section describes the procedure to generate and download the etpu code for the PWM example. Go to http://
www.freescale.com/etpu, click eTPU Function Selector and perform the following three steps:

1. Select device PXR40 and choose Pulse Width Modulation.
2. Describe the application. In this case, write "Evaluating the etpu."
3. Click the Compile button, log-in, and choose a folder to save the Zip file to download, then unzip it in a known folder.

Table 1 shows the files included on this package which they will be used to integrate to CW10.x.

Table 1. Library files

File Description

etpu_etpu_set\etpu_set.h Image of eTPU functions code

etpu_etpu_set\cpu\ etpu_pwm_auto.h Provides an interface between eTPU code and CPU code

etpu_utils\etpu_util.c C code file for utility functions

etpu_utils\etpu_util.h Header file for utility functions

etpu\pwm\ etpu_pwm.c The C code file for the PWM API

etpu\pwm\ etpu_pwm.h The header file for the PWM API

include\typedefs.h Defines all for data types

include\etpu_struc.h Register and bit field definitions for the eTPU

include\mpc5674f_vars.h Variables that define some features of the MPC5674F.
PXR40 is a derivative of this MCU.

Generating the eTPU code

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 3

http://www.freescale.com
http://www.freescale.com/etpu
http://www.freescale.com/etpu

3.1 Function header files
The API includes several header files that contain the function prototypes and define symbolic values for the initialization
and return functions. The following sections describe these header files briefly.

3.1.1 etpu_pwm_auto.h
This header file is automatically generated by the eTPU compiler and defines symbols and their associated values needed to
initialize the PWM function and the offset addresses (in bytes) for each PWM parameter. It is recommended that the content
of this header file should not be modified, because some of the symbol values depend on other functions integrated into the
function set, and these may change depending on the function set used. The standard names of these interfaces files are
etpu_<func>_auto.h, where <func> is the eTPU function abbreviation in lower-case.

3.1.2 etpu_pwm.h
This header file contains the function prototypes of the PWM API C source code contained in etpu_pwm.c. The standard
names of eTPU function API files are etpu_<func>.c/.h, where <func> is the eTPU function abbreviation in lower-case.

3.1.2.1 etpu_util.h
This header file contains the function prototypes to initialize and configure the behavior of the eTPU engine. This header file
also contains symbols used by the eTPU function API. The C source code for configuring and loading the eTPU engine is
contained in etpu_util.c. This header file and the source file are common to use for any etpu API function.

3.1.2.2 etpu_set.h
This file contains the microcode of the eTPU functions that will be loaded into eTPU Code Memory. Only the eTPU
functions from this set will be available for assignment to eTPU channels. The eTPU function set binary images are
distributed as C-header files etpu_setX.h, where X is the function set ID.

Each eTPU function set header file contains:
• the function set binary image
• the global constants
• Entry Table Base (ETB) address
• Multiple Input Signature Calculator (MISC) compare value

For detailed information, see ETPURM : Enhanced Time Processing Unit (eTPU) Reference Manual, available on http://
www.freescale.com.

4 Integrating the etpu files to CW10.x
This section helps the users to create the CW10.x project for the PWM example and integrate the etpu files.

This procedure is specific to PXR40, but the steps may apply to any device that includes an eTPU module.
1. Open the CW10.x.
2. Choose File > New > Bareboard Project to create New Project, and write the project name.
3. Choose PX > PXR Family > PXR4040 to select the device and follow the instructions to create the new project.

Integrating the etpu files to CW10.x

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

4 Freescale Semiconductor, Inc.

http://www.freescale.com
http://www.freescale.com

4. Go to the include folder that was downloaded from the web site http://www.freescale.com/etpu (see Generating the
eTPU code). Select the etpu_struc.h and mpc5674f_vars.h files, and select Copy through right-click. Then go to the
CW project, select Project_Headers, right-click it and select Paste; the typedefs.h file was already included when the
project was created.

5. Select the etpu folder that was downloaded from the web site http://www.freescale.com/etpu (see Generating the eTPU
code), and select Copy through right-click. Then go to the CW project, select Sources, right-click it and select Paste.

6. Add directories where etpu header files can be found. Choose Project > Properties > C/C++ Build > Settings >
PowerPC Compiler > Input, and add all next locations of the etpu folder:

• "${workspace_loc:/${ProjName}/Sources/etpu}"
• "${workspace_loc:/${ProjName}/Sources/etpu/_utils}"
• "${workspace_loc:/${ProjName}/Sources/etpu/pwm}"
• "${workspace_loc:/${ProjName}/Sources/etpu/_etpu_set/cpu}"

For example, for the first one: Click the 'Add...' icon and then choose Workspace-> <project name> > Sources >
etpu > OK. See Figure 1.

Figure 1. Include directories

5 Building the example code
This section describes the procedure to build the example code. There are two options:

• Reusing the examples code from the eTPU Application notes. See References.
• Using the eTPU Graphical Configuration Tool.

The first option is recommended for eTPU beginner users and the second option helps to build a particular application using
the APIs.

This section uses the example code available from the application note, AN2849: Using the eTPU Pulse Width Modulation
(PWM) Function, on http://www.freescale.com.

• Go to http://www.freescale.com then, on search section, look for AN2849 and on the results, the link
AN2849SW_PWM, appears along with the application note. Click the link and follow the instructions to download,
unzip it and the files for two example codes can be seen.

Table 2. AN2849 files

File Description

pwm_example1.c Rev : 2.3 - Example C code file for MPC5500 products.

Table continues on the next page...

Building the example code

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 5

http://www.freescale.com/etpu
http://www.freescale.com/etpu
http://www.freescale.com
http://www.freescale.com

Table 2. AN2849 files (continued)

File Description

pwm_example1.h Rev : 2.2 - Example header file for MPC5500 products.

pwm_example2.c Rev : 2.3 - More complex example C code file for MPC5500
products.

pwm_example2.h Rev : 2.2 - More complex example header file for MPC5500
products.

The etpu_pwm.c and etpu_pwm.h files are already included in the etpu/pwm folder that were downloaded from http://
www.freescale.com/etpu. (See Generating the eTPU code)

For the first example in Table 2, copy the pwm_example1.h file and paste it on the Project_Headers folder of the CW10.x
project.

The code for the main.c file of the CW10.x, will be taken from the pwm_example1.c file, so open it, select all the text, copy
and replace it on the main.c file.

The pwm_example1.c file is using the GPIO drivers from the application note, AN2855: Pad Configuration and GPIO Driver
for MPC5500, available on http://www.freescale.com.

• Go to http://www.freescale.com, then, on search section, look for the AN2855 and on the results, the link AN2855SW,
appears. Click this link and follow the instructions to download, unzip it and the files listed in Table 3 will be seen.

Table 3. GPIO files

File Description

fs_gpio.h Contains definitions of various macros and functions used by
the fs_gpio API

siu_struct.h Contains a structure definition for the SIU which is used by
the API.

fs_gpio.c Contains C code for the fs_gpio API

Copy the fs_gpio.h and siu_struct.h files and paste in the Project_Headers folder of the CW10.x project.

Do the same for the fs_gpio.c file, copy and paste in the Sources folder of the CW10.x project.

Now, on the main.c file, some lines need to be updated to migrate from MPC5554 to PXR4040. See Table 4.
1. Update the headers files.

Table 4. Headers to update for
PXR4040

Header file Updated header files for PXR4040

#include "..\mpc5500\mpc5554.h" #include "PXR4040.h"

#include "..\utils\etpu_util.h" #include "etpu_util.h"

#include "..\mpc5500\fs_gpio.h" #include "fs_gpio.h"

#include "..\etpu_set1\etpu_set1.h" #include "_etpu_set\etpu_set.h"

#include "mpc5554_vars.h" #include "mpc5674f_vars.h"

2. Update the system clock, so delete the line

FMPLL.SYNCR.R = 0x06000000; /* System Frequency set to 128 MHz */

Building the example code

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

6 Freescale Semiconductor, Inc.

http://www.freescale.com/etpu
http://www.freescale.com/etpu
http://www.freescale.com
http://www.freescale.com

None of the clocks setup for PXR40 will hold the default clock system equal to 60 MHz with 40 MHz Crystal.

3. Change the following line in the eTPU Clock.

const uint32_t etpu_a_tcr1_freq = 64000000; /* 64 MHz */
to
const uint32_t etpu_a_tcr1_freq = 15000000; /* 60 MHz/2=30 MHz(eTPU clock)/
2(prescaler) = 15 MHz */

4. Open the pwm_example1.h file and change the header #include "..\utils\etpu_util.h" to #include "etpu_util.h"
5. Finally, open the fs_gpio.h file, locate the definition of FS_GPIO_PRIMARY_FUNCTION and modify the value from

0x0C00 to 0x0400. This step is followed for compatibility with the PX family.

Now the program is ready to compile and run; connect the oscilloscope to ETPU_A Channel 0 and the user can see the PWM
signal running at 2 kHz and 60% of duty.

6 Using the eTPU Graphical Configuration Tool

6.1 Introduction
The eTPU Graphical Configuration Tool (GCT) is a Windows application created for Freescale eTPU users. The GCT offers
a user-friendly graphical environment to configure the eTPU and generate initialization routines coded in C-language.

Main features of the GCT are as follows:
• Graphical environment that guides a user through the configuration: descriptions, options, checking conflicts.
• Supports various Freescale processors with the eTPU. The graphical environment is adjusted to the actual eTPU

features of the selected processor.
• Offers a well-ordered table of channels and assigned eTPU functions.
• No eTPU feature is hidden. All configurable items are available.
• Primarily determined for Freescale provided eTPU function sets, but can be used with any user sets supplied in a proper

format.
• Automatic extraction of configuration information from eTPU function interface routines (API).
• Automatic generation and reading of a C-file containing my_system_etpu_init and my_system_etpu_start functions.

The functions configure the eTPU using standard Freescale eTPU utilities and eTPU functions’ API.

For detailed information, go to Help > User Manual of the eTPU Graphical Configuration Tool, which can be downloaded
from http://www.freescale.com\etpu.

6.2 Creating code to initialize and configure the etpu
This section describes how to use the eTPU GCT to generate code for the initialization and configuration of the eTPU-PWM
example.

1. Create a new project and repeat the steps given in Integrating the etpu files to CW10.x.
2. Choose Start > All programs > Freescale > eTPU Graphical Configuration Tool > eTPU Graphical Configuration Tool,

to open the eTPU GCT.
3. Choose eTPU > Options > Function Sets > <Path of the etpu libraries folder> > OK, to set the path where eTPU

libraries were downloaded, according to Generating the eTPU code. See Figure 2.

Using the eTPU Graphical Configuration Tool

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 7

http://www.freescale.com\etpu

Figure 2. Setting the path to eTPU Files
4. Close the eTPU Graphical Configuration Tool without saving and open it again; this will update the link that will point

to the path setting on step 3.
5. Click the Processor tab and choose MPC5674F to select the target CPU. Click Processor tab and choose System clock

> 128 MHz to set the Clock Settings to 128 MHz.
6. Click the Function Set tab and choose etpu_set.h to select the eTPU Function Set to be used.
7. Configure the Engine A, as depicted in Figure 3.

• Select Engine A tab.
• Choose TCR1 > Clock Source, and select Internal: eTPU clock divided by 2.
• Set all other configuration by default.

Using the eTPU Graphical Configuration Tool

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

8 Freescale Semiconductor, Inc.

Figure 3. Configuring the Engine A
8. Configure the Engine A Channels, as shown in Figure 4.

• Click the Add Function button, and the Add eTPU Function windows dialog box appears.
• Go to Parameter Values section and change the priority value to Middle.
• Set the freq value to 2000 kHz and set the duty value to 5000; it represents 50%. (Resolution = 0.01%)
• Set all other values by default.

Using the eTPU Graphical Configuration Tool

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 9

Figure 4. Configuring the Engine A channels
• Save the eTPU configuration as pwm_etpu_gct.c in a known folder. Go to this folder and there will be two files,

pwm_etpu_gct.c and pwm_etpu_gct.h.
• Copy the first one (pwm_etpu_gct.c) and paste in the Sources folder of the CW10.x project.
• Copy the other file (pwm_etpu_gct.h) and paste in the Project Headers folder of the CW10.x project.

6.3 main.c file
The main.c file contains the main() routine. This routine initializes the PXR40 device for 256 MHz CPU operation and calls
the functions to initialize the eTPU according to the information in the my_etpu_config struct, stored in pwm_etpu_gct.c file.
The time bases are enabled by calling routine fs_timer_start(). This example uses the pin ETPUA0.

#include "PXR4040.h"
#include "pwm_etpu_gct.h"

void initSysclk_at_256_MHz (void) {
 FMPLL.ESYNCR2.R = 0x00000003; /* Change clk to PLL normal mode from crystal, initially
128 MHz with 40 MHz crystal */

Using the eTPU Graphical Configuration Tool

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

10 Freescale Semiconductor, Inc.

 FMPLL.ESYNCR1.R = 0xF0040030;/* EPREDIV = 4; EMFD = 48; CLKCFG = 7 */
 while (FMPLL.SYNSR.B.LOCK != 1) {};/* Wait for FMPLL to LOCK */
 FMPLL.ESYNCR2.R = 0x00000001; /* Change divider final value for 256 MHz sysclk */
}
int main(void) {
 volatile int i = 0;

 initSysclk_at_256_MHz(); /* Init system clock at 256 MHz*/

 SIU.PCR[114].R = 0x0600; /* Enable ETPU_A Channel 0 as output */

 my_system_etpu_init (); /* Init the eTPU engine and eTPU channels */
 my_system_etpu_start(); /* Start eTPU (and eMIOS) timers */

 /* Loop forever */
 for (;;) {
 i++;
 }
}

Compile and run the project, connect the oscilloscope to ETPU_A Channel 0 and the user will see the PWM signal running at
2 kHz and 50% of duty.

7 Summary
A set of eTPU functions configured to cooperate together is called eTPU application. An eTPU application API capsulizes
several eTPU function APIs. The eTPU application API includes CPU methods which show how to initialize, control, and
monitor an eTPU application, and to easily use the eTPU as a coprocessor. Figure 5 shows an example of the eTPU project
structure for motor control.

Summary

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 11

Figure 5. eTPU project structure

7.1 Sample CPU initialization
The following code lines show a typical example of the CPU and eTPU initialization.

main()
PXR40_init(…)
mySystem_init(…); /* Initialize sysclk frequency, etc. */

Summary

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

12 Freescale Semiconductor, Inc.

fs_etpu_init(…)/* Configure the eTPU engine, copy code and globals */
fs_etpu_api1_init(…); /* Assign one channel to run a function */
fs_etpu_api2_init(…); /* Assign one channel to run a function */
configure_SIU_pads();/* Assign pads for eTPU */
fs_timer_start(…); /* Start eTPU (and eMIOS) timers */

8 Conclusion
This application note describes how to integrate the eTPU libraries into a stationary-based CW10.x project to use the eTPU
function. It also describes how to use the eTPU GCT and illustrates its use with working PWM examples. The simple C
interface routines of the eTPU PWM function enable easy implementation of the PWM function in applications. The routines
are aimed at the PXR40 family of devices, but they can be used with any device that has an eTPU.

The benefit of the eTPU host interface design is to isolate any hardware dependency from the application software by means
of the host interface API functions. In the eTPU host interface design, all the interactions between host and eTPU are
encapsulated in the interface API functions. With this interface design, the implementation of the low-level driver can be
hidden from the host application.

9 References
Numerous examples of documents are available in the general set and APIs available on http://www.freescale.com. The
following subsections categorically list these documents.

9.1 General documentation and utilities
Item Description Software

ETPURM Enhanced Time Processing Unit (eTPU)
Reference Manual

-

ETPURMAD eTPU Reference Manual Addendum -

AN2353 The Essentials of Enhanced Time
Processing Unit

-

AN2821 eTPU Host Interface -

AN2848 Programming the eTPU -

AN2864 General C Functions for the eTPU AN2864SW

AN2897 Using the eTPU Angle Clock -

AN2933 Understanding the eTPU Channel
Hardware

-

Conclusion

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 13

http://www.freescale.com

9.2 eTPU function library and API –General timing eTPU
functions

Item Description Software

AN2863 eTPU General Function Set (Set 1) AN2863SW_GENERALSET

AN2849 Using the eTPU Pulse Width Modulation
(PWM) Function

AN2849SW_PWM

AN2850 Using the General Purpose Input/Output
(GPIO) eTPU Function

AN2850SW_GPIO

AN2851 Using the Input Capture (IC) eTPU
Function

AN2851SW_IC_21

AN2852 Using the Output Compare (OC) eTPU
Function

AN2852SW_OC

AN2854 Using the Synchronized Pulse-Width
Modulation eTPU Function

AN2854SW

AN2857 Using the Queued Output Match (QOM)
eTPU Function

AN2857SW_QOM

AN2858 Using the Period and Pulse Accumulator
(PPA) eTPU Function

AN2858SW

9.3 eTPU function library and API –Communication eTPU
functions

Item Description Software

AN2863 eTPU General Function Set (Set 1) AN2863SW_GENERALSET

AN2847 Using the Serial Peripheral Interface
(SPI) eTPU Function

AN2847SW_SPI

AN2853 Using the Universal Asynchronous
Receiver Transmitter (UART) eTPU

Function

AN2853SW_UART

AN3379 Using the CEA709 eTPU Function AN3379SW_CEA709_SET

9.4 eTPU function library and API –Automotive eTPU functions
Item Description Software

AN3768 eTPU Automotive Function Set (Set 2) AN3768SW

AN3769 Using the Engine Position (CRANK and
CAM) eTPU Functions

AN3769SW

AN3770 Using the Fuel eTPU Function AN3770SW

AN3771 Using the Spark eTPU Function AN3771SW_SPARK

AN3772 Using the Knock Window eTPU Function AN3772SW_KNOCKWINDOW

References

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

14 Freescale Semiconductor, Inc.

9.5 eTPU function library and API –Motor control eTPU functions
Item Description Software

AN2958 Using the DC Motor Control eTPU
Function Set (set3)

AN2958SW_DCMOTORSET

AN2968 Using the AC Motor Control eTPU
Function Set (set4)

AN2968SW

AN2840 Using the DC Motor Control PWM eTPU
Functions

AN2840SW

AN2841 Using the Hall Decoder (HD) eTPU
Function

AN2841SW_HD

AN2842 Using the Quadrature Decoder (QD)
eTPU Function

AN2842SW_QD

AN2843 Using the Speed Controller (SC) eTPU
Function

AN2843SW_SC

AN2844 Using the Current Controller (CC) eTPU
Function

AN2844SW_CC

AN2845 Using the Break Controller (BC) eTPU
Function

AN2845SW_BC

AN2846 Using the Analog Sensing for DC Motors
(ASDC) eTPU Function

AN2846_ASDC

AN2869 Using the Stepper Motor (SM) eTPU
Function

AN2869SW_SM

AN2969 Using the AC Motor Control PWM eTPU
Functions

AN2969_PWMMAC

AN2970 Using the Analog Sensing for AC Motors
(ASAC) eTPU Function

AN2970_ASAC

AN2971 Using the ACIM Volts per Hertz
(ACIMVHZ) eTPU Function

AN2971_ACIMVHZ

AN2972 Using the PMSM Vector Control eTPU
Function

AN2972SW

AN2973 Using the ACIM Vector Control eTPU
Function

AN2973_ACIMVC

AN3943 Using the ACIM Resolver Interface
eTPU Function

AN3943SW

9.6 Example motor control eTPU applications
Item Description Software

AN2892 3-Phase BLDC Motor with Speed Closed
Loop, driven by eTPU on MCF523x

AN2892SW

AN2948 Three 3-Phase BLDC Motors with Speed
Closed Loop, driven by eTPU on

MCF523x

AN2948SW

Table continues on the next page...

References

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 15

Item Description Software

AN2954 BLDC Motor with Speed Closed Loop
and DC-Bus Break Controller, driven by

eTPU on MCF523x

AN2954SW

AN2955 DC Motor with Speed and Current
Closed Loops, driven by eTPU on

MCF523x

AN2955SW

AN2957 BLDC Motor with Quadrature Encoder
and Speed Closed Loop, Driven by

eTPU on MCF523x

AN2957SW

AN3000 AC Induction Motor Volts per Hertz
Control, Driven by eTPU on MCF523x

AN3000SW

AN3001 AC Induction Motor Vector Control,
Driven by eTPU on MPC5500

AN3001SW

AN3002 Permanent Magnet Synchronous Motor
Vector Control, Driven by eTPU on

MCF523x

AN3002SW

AN3005 BLDC Motor with Quadrature Encoder
and Speed Closed Loop, driven by

eTPU on MPC5554

AN3005SW

AN3006 BLDC Motor with Hall Sensors and
Speed Closed Loop, driven by eTPU on

MPC5554

AN3006SW

AN3007 BLDC Motor with Speed Closed Loop
and DC-Bus Break Controller, driven by

eTPU on MPC5554

AN3007SW

AN3008 DC Motor with Speed and Current
Closed Loops, Driven by eTPU on

MPC5554

AN3008SW

AN3205 AC Induction Motor Volts per Hertz
Control with Speed Closed Loop, Driven

by eTPU on MPC5500

AN3205SW

AN3206 Permanent Magnet Synchronous Motor
Vector Control, Driven by eTPU on

MPC5500

AN3206SW

AN3769 Using the Engine Position eTPU
Functions

AN3769SW

References

eTPU Libraries Integration to CodeWarrior (CW) 10.x, Rev. 0, 8/2012

16 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4572
Rev. 0, 8/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

	Introduction
	eTPU function library and application interface (API)
	eTPU API functions
	General timing functions
	Communication functions
	Motor control functions
	Automotive functions

	Generating the eTPU code
	Function header files
	etpu_pwm_auto.h
	etpu_pwm.h
	etpu_util.h
	etpu_set.h

	Integrating the etpu files to CW10.x
	Building the example code
	Using the eTPU Graphical Configuration Tool
	Introduction
	Creating code to initialize and configure the etpu
	main.c file

	Summary
	Sample CPU initialization

	Conclusion
	References
	General documentation and utilities
	eTPU function library and API –General timing eTPU functions
	eTPU function library and API –Communication eTPU functions
	eTPU function library and API –Automotive eTPU functions
	eTPU function library and API –Motor control eTPU functions
	Example motor control eTPU applications

