PMAC Panel

25000.0- o 22 Joy Vel [1/05 —
200000 3 qug\re!ilJ_n_LQJ

15000.0- y 5T Qriset (1716 C1
10000.0- F ’j, ; -.&“.E’.'M 1715 C
4 . ® 0 w2y MAC Dites [DAT Bils)

40000.0-,
35000.0-
30000.0-

Motor 5
Motor b
Motor 7
Motor &

PMAC Panel
3A0-9PLPRO-xUxx

July 2003

\ DELTA TAU

\‘J/ Data Systems, Inc.

21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Copyright Information
© 2003 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are
unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained
in this manual may be updated from time-to-time due to product improvements, etc., and may not
conform in every respect to former issues.

To report errors or inconsistencies, call or email:
Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656

Fax: (818) 998-7807

Email: support@deltatau.com

Website: http://www.deltatau.com

Operating Conditions

All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain
static sensitive components that can be damaged by incorrect handling. When installing or
handling Delta Tau Data Systems, Inc. products, avoid contact with highly insulated materials.
Only qualified personnel should be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or
conductive materials and/or environments that could cause harm to the controller by damaging
components or causing electrical shorts. When our products are used in an industrial
environment, install them into an industrial electrical cabinet or industrial PC to protect them
from excessive or corrosive moisture, abnormal ambient temperatures, and conductive
materials. If Delta Tau Data Systems, Inc. products are exposed to hazardous or conductive
materials and/or environments, we cannot guarantee their operation.

Contents

Chapter 1 - Overview 1
INEEOAUCTION ..ttt ettt b et be bt e st et e e et e besbeeeeeneeneenee 1
MANUAL LAYOUL. ...ttt ettt ettt be bt e bt e st ene et e beebesaeeneeneenes 1

OFZANIZALION ..c.vevvievieiiete e eeeeeteesteeteebeesbeesaessaesteeseesseessesssesseessseseesseessenssenssesseensens 1
Conventions Used in This Manualccccceoieriiininininiieecee e 3
Use Caution When Running the EXamples..........ccoovverieriiiiiiciiiieiicice e 3
SATELY SUMIMATYccuiitieiieieeieeieseee et te sttt e et e st e s seesseesseenseessessaeseenseensesnnesanesseessnenns 4
MoOtion COMMANGSeoveruiriirierieeiteteente ettt ettt sttt ettt sae st b e enees 4
Keep Away From Live CirCUILS.......cccieiieierieiieieeie et 4
Live Circuit Contact Procedures............cccecuieieeierieiieiieieeie e 4
Electrostatic Sensitive DEVICES......c.eeiuieiiieieriieiieieeie ettt 5
HW INEEITACES. ...ttt sttt e 5
MaAGNELIC MEAIA. ...ttt ettt ettt be et neas 5
TECRNICAL SUPPOTT....eovviiiiieeiietiecte ettt ettt et eb e et e e b e staesaeesbeenseerseereesseeseenseesseas 5
BY TIEPRONE ...ttt et e e b e ebeesae e e saeesseeseenseensans 5
By FAX and E-Malilccoooiiiiiiicicictceee ettt 5
World Wide Web (WWW) ..ottt ettt esv e sneens 5
Bulletin Board Service (BBS)cooieiieiieieieieeee ettt 5

Chapter 2 - Getting Started 7
Unpacking and INSPECHIONcevuiiriiiiiiiiiiieiieete ettt 7
PMAC COMPAIDIIILY ...ttt ettt b ettt e e aeseeeaeeneenes 7
Customer-Furnished Hardwarecocooiiiiiiiiiiiiieeeeee e 7
Customer-Furnished SOftWarecccooeiiiiiiiiieeeee e 8

Delta Tau SOFEWATE.......oouiitiiiieiieieee ettt s 8
National Instruments SOtWArecccoecveriiieieiiierieriee e 8
MICTOSOTt SOTIWATE ...c..eviiieiieiicicee ettt 9
PMAC Options for PMACPANEL..........cccooiiiiiiieieeieeeteeeie ettt 9
Technical DOCUMENTALIONocuiiiiieieiie ettt sttt ettt et este e e eneeeneens 9
PMACPanel and Your Computer’s DiSplayccceceerieiiieiiieiieiiesieeeie e 10
InStalling PMACPANELccuoiiiiiiieiieeee ettt ettt 10
PMACPANEL SOFIWATEc.eeeuieiieieiesieeie ettt 10
Configuring the Device DIIVETcceiiiuiiiiieieee ettt 11
Testing the DeVICe DIIVETc.ccciiiieiiiiieie ettt eebessaesbaesseesaeessesneesneenns 13
Configuring LADVIEWcviiiiiiiiiiieeee ettt ssae s aeesaeesseenaesnne e 15
Installing the Release VIEWcc.eevieruieriieiiieiieieeiieie ettt sttt 15
Creating Your OWN VIBW.......coocierieriieiieieeieetesteeieeteseesaesseesseesseensessnesneesseenseenns 16
MasS COMPIIATION.ccuieieieiieiieeeeieeteit ettt ettt aeseesseesseenseensesneesneenseenes 16
(05 533 T30 = (| o J RSP 16
Configuring PMACPanel CommMUNICationeerueeruieieeientieniieie et 17
Testing PMACPanel COmMMUNICATION.ccueeuieieeiiieiieriieie e eiee sttt eee e eee e seeeseeeeeeneeene 18
PMAC Communication [-Variablescccceeiiriiiieiiinieieeeeeeeee e 19
PComm32 Communication Buffersc..ccoccovveniiiiiiiiiieeeeeceee e 20
Trouble Shooting PMACPanel CommuNIiCation............ccveueruerierereeiieiceieieie e eieeeeeneas 20

Table of Contents

Chapter 3 - PMACPanel Basics 22

PMACPanel and PMAC as Client and SErVer..........ccecveoueeierienieieeie et 22
Application Development COMPONENLS........ccvierieeriierieeitieerieeetieeieeereesreeeveesseessreessseensnes 23
Pewin32 - PMAC EXCCULIVE.ecuuiiiiiitieiiiieeie sttt 24

PTalk - ActiveX Controls for Visual C++ and Visual BasiC..........cccccvevverueeneennnnne. 24
PMACPanel - PMAC for LabVIEW 5.0ccooiiiiiiiiiiieieieeeesesese e 24
PMACPanel Interface to PCOMM32ccooiiiiiiiiiieiicieeeeeeeeicee e es 25
Device ManagemeNL.........cccveruieruieriieieniiesieeieeseseeseeesseesseesseessesseesseessesssesssessaesseenses 26
Query/Response COMMUNICALIONeeuvereiereieiieieeeeseeseeesieeeeesesseesseeseessesssesnnenns 26
LabVIEW and PMAC NUmeric Data.........cccccevveriieniieiieieeieeeieeie e 27
Download Management.c..eceeueeieriienieesierieseeseenseeseseesseesseeseensesssessnesseenses 27

DPR Binary Data BUffers..........ccoooeiiiiiiiiie e 28
PMACPaNel OrganizZationcceeieeriereeiieeieeiestesie et eeestees e teeeeestesseesaeeseeenseeeeeneenne 28
Device Management and ComMmUNICAtION.cevueerereeirieriieieeieeienieeie e 29
Query/Response INEITACEcc.eeiiirieieiee e 29
Indicators, Controls, and VIS - ICVS ..cocuviiiiiiiiieiee e 29

IMOLOT ICV S ettt ettt ettt et et e b e 30
Coordinate SYStEM ICVSoiviiciieiieiieieeie sttt ettt b e e st saeesaeenae e 30

GLODAL ICV S, bbbttt st be st ebe et eens 30
ACCESSOTY IOV S ittt ettt et ettt st e et e e e e s baeenseesanes 30

Position Capture and Triggering ICVSccveviiiciirierieieeee et 30
Program Development and Encapsulation ToOIS..........cccecereerieniiecienienierieeee e 31

Data Gathering and Graphical TOOIScoooieiiiiiiiiii e 32

Code Interface Nodes and Dual Ported RAMccccoooiiiiiniiiieiceeeeee e 32

SaMPIe APPLICALIONS. ...c.ueeeieeieiieeieeiiete ettt ettt et e sttt eneeeseesseenneas 32
MiSCEIIANEOUS ULIIIHIESeeieeieieieiie ettt 33
DOCUMENEATION ...ttt sttt ettt sb e e sae 33
Chapter 4 - Application Basics 34
BaSICS ..ttt ettt b e b bbbt a ettt besae bt eaees 34
LabVIEW Techniques for PMACPANEL...........cccoiiiiiiiiieeeeeeeee e 34
PMACPanel Indicator and Control CIUSters.........cceeoeriirienieiieiieieceeeee e 37
Accessing PMACPANel VIS......cooiiiiiiiiii ittt 38

Clusters With an Associated Function VIcoocoiviiiiiiniiiiiiceceeeee 39
PMACPanel VI Terminal CONVENtIONSccerueririeieieieniesiese e eieeieeseeeeneenieseens 40
PMACPANE] TULOTIALS ..ottt ettt b et st s e i 41
PMACPanel Communication Tutorial..........c..ccieiieiiiiierieiieiieieeieseese e eee e see e see s e 41
PmacTutor1- Accessing PCOmMM32........c.cccoeviiiiiiiiieiieneeie et eve e 42
PmacTutor2 - Sending Commands and Getting Responsescccecvevvereerueennnne. 44
PmacTutor2a - Communication LOZZINGcceevveriieriieiiieienieieeieeie et 47
PmacTutor3 - Sending Commands Using Buttons............ccccveveeeereienieneereniesnene. 50
PmacTutor4 - Button and Response VISccccovveviieiiinienienieeeeee e 52
PmacTutor5 - Accessing PMAC Status........cceoeereiieiienieeeeeeeeeeee e 55
PmacTutor6 - Accessing PMAC [-Variablesccccoooieiiiiinieiieinieeeeeeee 57
PmacTutor6b - Accessing PMAC MemOTY.......ccooeeuiiiinienienieeieeienieenieeie e 61
PMACPANET ICVS.c..iiieeee ettt sttt ae ettt e s e aeabesaeeneenean 65
ON-1NE COMMEANAS.......eeuiiiiieite ettt ettt ettt see e b et e st eeeneenaeseeas 65
PMAacMOtOr ICVS ..uiiiiiiiiieieeee ettt ettt 68
PmacTutor7 - Position, Velocity, Error, and Jogging.............cccoeevvvienveriiecienvennnenne. 68
PmacTutor8 - Motor Control with Status Monitoringc.cceeverveecverceereerneenene 73
PmacTutor9 - Motor I-Variable Configurationccceceevvevieeceeeienieneeieeee e 78
PmAacMOotors ICVS ..co.uiiiiiiiiiiicitee ettt ettt e e s s s 81
PmacTutor10 - Requesting and Plotting Motor Motionc.ccecevevererenienceiennens 81
PmMAacGLODal ICVS ..ottt ettt ettt e e te e s e s neenneeae e e 86
PmacTutor11 - Configuring PMAC’s Global State...........cccceevieiiniinienieeeeceene. 86
PMACCO0TA TCVS ...ttt ettt et et e bt e st e aeeteeneesnee e 90

Table of Contents

PmacTutor12 - Using Coordinate System Definitionsc..ccceevereriencnenienceiennns 91

PmacTutor13 - Configuring and Monitoring Coordinate Systems.........c..ccccceeeruennene 94
PIACACC TCVS.ciiiiiii ettt ettt et 97
PmacTutor14 — Machine Input and OUtPULccceevvieviieienieniieieeieceeeeie e 97
PmacTutor15 — ACC16D Control Panelccccoeiirinineninieiiiinenenenescsieeene 99
Chapter 5 - Development Tools 102
BaSICS -ttt bbbt b st n et e et e b e 102
TOOL IMBIIUS ...ttt bbbt bbbt bt et e e e e b e s be b ebe e 103
MoOdifying the MENUccieriieiiciiciieeeeeee ettt seesseenseenseas 104
Modifying PmacTerminalMenuccueeieriieniieiieeieeiesiesieenie e eee e enee e 104

Basic Tool VI REQUITEMENLScc.eecvieiiriieiieiieieeie e stesiee e eee e eeeseeeseeeneeeneeas 105

Basic Tool VI Configurationcoceeeeeruieieeieeiesiesieesieeee e eee et 106
PmacTerminal........c.coviiiiiiiieie ettt ettt ettt et e st e b e b e ne e enees 107
Basic Terminal TOTococooiiiiieiie ettt 108

Basic Command Editing..........ccoiiriiiiiiiiieiee et 109

Buffer Management.c.covieriiiiiiiiierieiceeee ettt 109
Terminal INAICALOTSccueeuieuieieieite ettt 110
Terminal CONIOIS. . ..cc.eeiiieiiiiieieet ettt 110
Implementation DIagrami............c.covvevvieciieiierienieieeie e see e se e see e reesseensens 111
PmMacTermMiNalJOccvieieeiieiieieete ettt ettt e sttt e e et eesaesre e seesbeesaessaesseesseenseensenseens 114
PmacTerminalEdit..........ccooiiiiiiiiiiiii ettt 115
Encapsulating Motion Programsccccceeierieeiienienieniene e eee s seee e 117
PmacTerminalEXECULEc.coouiiiriiririirieieetete ettt ettt 118
PmacTerminallMOTOLSccueeuieiuieriieieeie ettt et ettt e et e sttt eete e eee st e sbe e bt eneeeneesneesseeseeneeas 122
PmacTerminalMOtOrX-Yocuiiiieiieie ettt ettt et sttt et esne et eeeeneeas 124
PmacTerminalGathierooiiiiiiiiie ettt ettt 126
Specifying Gather AddresSes........ouiiieieriereieeeeeeeee e 131
Chapter 6 - Encapsulated Motion Programs and PQMs 136
BaSICS ettt ettt b e bbbttt ettt e e e 136
PmacProgSuD VIcei ettt ettt s neeneenneenae s 136
PMACPQMEXAIMP ...ooiiiiieiieie ettt ettt ettt ettt be e ne e 139
PMACPQM CIUSLETS ...eecuvieiiieeiieiiieeieesiteeeteesteesveesteeeseveeeaeesseeetaeessseenseeesaeenseeans 142
PMACPQM CONVEISIONS......eieriieririeriieitiiesieenieesreesseesaeessseesseessseesseessseessesssseess 143
PmacPQM Datalogging..........ccevueeruieiiiiiiieniieiieie et 144

Using Encapsulated Motion Programs............coccoiiiiiiiiieieieeee e 146
PMACTEStEXAMD ..eceviiiiieiieie ettt ettt et st e st e ebeeeabeeenbeeens 147
Chapter 7 - Homing, Encoders, and Position Capture 151
BaSICS .ttt ettt ettt a et et et e et e e bt en s e enteeaeeane e neeaeenees 151
POSIEION BASICS.....eitiitietieie ettt ettt ettt ettt ettt ettt ent e et e s ne e aeeaeenees 152
POSTHON=CAPLULE ..ot eee ettt e et e et e et e eteesbeeesbeessseessseesnseesnseesnseesnseesnsaennseeans 153
TrigEEr CONAITIONeentiiniieiiieiie ettt sttt et e be e b e 153

HOMINE .ttt ettt ettt sat e s bt e b et et eateemaeeaees 153
ACLION ON TIIZEET ...vvivieiieii ettt ettt et e sttt steebesaesaeesaeeseesseesseesseseenseensens 153

HOME COMPLELE.....cevieeiiieieiiieiieie ettt ettt ae e e sae e beesbe e s e essessaeseenseensens 154

Home Position OffSetccueriiiiriiiiiiieieeieeee e 154
Z10-MOVE HOMUNG.......oeiieeieiieiieieeie ettt ettt et e eaesse et aeseensesnaesnnes 155

Homing Into a Limit SWItCH......ceocuiiiiieiiieiieece e 155

Homing from PLC and Motion Programsccccceeverviercienienieiieieeieeeeieenns 155
PmacHOMEEXAMDcc..iiiiiiiiiiiie ettt ettt 155
Configuring the Position Capture Triggercceeouevuieiiriieiiie et 157
Monitoring the Home Position Capture..........cccceeeueeieiierieneeie e 160

Home Position Transformationsc.cceveereerieeienienienienieeneee et 162

Table of Contents iii

Encapsulated PLC PIrOZIamSccovieiierieiieieciesee sttt et eteesteesreesseessesssesseesseessesssesnnas 164

Chapter 8 - Encoder Capture and Compare Operation 166
2 1 (USSP 166
PmacENncoderPoSItIONEXAMPcccocvviiiiiiiiiiecieete ettt ereesre b esve s aeesveenneas 166

Encoder Position Transformationscceceeriererienienienieniteceee e 167
Position-Capture for Non-Homing PUrposesccccceveioiiiiinieniinieiicienieseeeeeese e 169
PLC Capture Flag ProCesSing........c..ccuveiivieriieriieieiieieeseenteeveeeeseesseeseessesssesseens 169
PmacEncoderCaptureEXampc.ccveciieiieieiieiieieeie ettt sttt aeeaaesnees 170
External Triggers for PoSition Capture............ccvveveeieiieseeneenieeee e e eeeeseeesveennens 172
PMAC Position Compare OPEIationcceecverreerueesueeiuesiesieesseessessesseesseessesssesssesseessesssens 172
Required M-Variablescccooiiiieiieierieieee et 173
Pre-loading the Compare POSItioncccoeiieiieiiiiieiieseee e 173
Triggering EXternal ACHON.cccivuiiiiieiiieieeieeieteee et 175
PLC Compare Handlingcccceeoueeiiieiieieniieeee ettt 175
PmacEncoderCompareEXAMDccvecvieiiiieiieiieeie ettt r st sreeveeseeenessaeseeas 176
Method 1 - PLC OPEIation.cceevveeiieiieeeeiteesieeieereeeeeeeesreesveeseeasesseesseesseesnens 179
Method 2 - One-Shot OPErationccueeeveeveiiereerieeie e e eee st ereereeee e ereesneas 180
Method 3 - PMACPanel Interval Generationccoceeeeeeeienienenenenenencncenene 180
PmacENCOder REZISLEIScccvieiieiiiiieiieiceie ettt ettt sttt b e eebestaesteesbeeseenseennas 180
ENcoder REGIStEr ACCESSuiviiriieiieiieieeiiesieeieetesaeseesseesseensesseesseesseesseessenssenseens 180

Chapter 9 - PMAC and NI-DAQ Interfacing 182
BaSICS 1ttt ettt h e bbbttt ea e bt e e bt e sb e e bt ebe s 182
External PMAC S1ZNALS.....cc.oiiiiiiitieieieeee sttt ettt ettt st eneene 182

Compare-Equals Outputs (JEQU) ..ccuviviiiiiiieeiieeieeeiieeeeeee ettt 183
Servo ClOCK (JRS232) ...oiiiiiiecieie ettt ettt sttt et se e ens 184
General Purpose Digital Inputs and OULPULScceevveeierieiierieniieie e 184
Synchronous M-VariablesS..........ccoecverierierieiieiieieeseesie ettt eeae e see e 185
Position Capture FLLAGScccveovieiieieeieieieete ettt enaesnaesneens 187
DAQ SIZNAIS... e iiiiiiieiieiieie ettt e e te st e st e st e st e st e s e eseeesee st e teenteenteesaesreenseeneenseennes 188
ANalog I/O ChanmnelSccueeieeieiieieeie ettt 188
Trigger and Scan Clock CONNECHIONSccuerueeriieriieriieieeie et 188
PMACDAQMOVEcvviiiiieiieeiie et ette et et e et e et e eteeesteeebaeesbeesssaeesseeansaaesseesnseeanseesnsaeasseeans 188
PMAC and AT-MIO0-16 Signal CONNECLIONSeeverueruieeieieieieniesie e 189
Single Trig@er DAQ ...ttt et st 192
Multi-TrigEer DAQ .cueiniieieeeeeee ettt ettt et ettt e b e e 192
Multi-Trigger DAQ with Servo Clock Samplingccceeveviieeiirienienieieeie e 193
Further Sampling OpPtionsS.........ccveiveriieriiiiieieeeerie et ete st esieesteeaeseesreesseesseesseessessaesseessens 194
Other INterface OPLIONSccveevieiieiieitieitieie e eee et e et eereeteesteesseebeesseessesssesseesseesseessesnsas 194

Chapter 10 - PComm32 Code Interface Nodes 195
BaSICS 1.ttt ettt ettt h e bbbt e a e ea e e bt e bt e sb e et eaeeaees 195
LabVIEW Code Interface Node BasiCscccevvuiiiiiienieiieiieiesieiceceeee e e 195

WHhat 18 @ CINT ..ottt ettt ae e e 195

Using a CIN with PCOmMM32.......c.oociiiiiiiiiiiiieneeee e 196

Setting up a PMACPanel CIN Configuration............c.coeereeieienienienenenesiesceceeeieie e 196

Adding PComm32 Include Path...........ccoociiiiiiiiiiiiiiieceeeen 196

Adding Pmac.lib t0 Project........ccceveiiririiiiiiicienicseerceeceteeeee e 197

Configuring the IDEcccoiiiiiiiiiiiceeeseee e 197

The Easy Way to Add NeW Projectscccveevieiieeiieiieiieneee et 197

Multiple CIN Projects in @ WOrkSpacec.eeveereeieiienienieceeeeseeeee e 198

Creating a CIN C-Stub for PComm32.........cccooiiiiiiiiieeee e 199

Chapter 11 - DPR - Dual Ported RAM 200

iv Table of Contents

Required Background Understanding............ccccceecveevenreennen.
General Architecture NOtescocevererereeienenieneneneeenn
PmacDPRREAITIMEc.coeviriniiiiiiiiiccre e
PmacDPRRealTimeExample..........cccccevvevieciinienieieieenene
PmacDPRRealTimeVectorExample...........ccccveieeieneeneenen.
PmacDPRFIXedBacKccooviiiiieiiiieeeeeee e
PmacDPRFixedBackExample...........ccooovviininnienieieees
PMacDPRNUMETIC. ...c.eeiiiiiiiiiiieniieicecee e
DPR Addresses and Data Organization.............cccceceeeeeenene.
PmacDPRNumericExamplecccocoevvievinienieiieieeieeenens
PmacDPRNumericClusterExample...........ccoceevvenieneenreennen.

PmacDPRNumericCINClusterExample

PmacDPRNumericSlaveExamplecccooeeriienienieieenen.
PmacDPRVArBackccccoceviriiiiiiiiiincnieccccee e
PmacDPRVarBackExample...........ccocevveniieriincienieeieeenenn
PmacDPRVarBackVectorExamplecccocoevvenieniencnnnen.

Chapter 12 - Interrupts

BaSICS ..ttt
PmacInterruptEXampoooviiieiiiiiiiiii e

Glossary of Terms

Index

Table of Contents

Chapter 1 - Overview

Introduction

Congratulations on your selection of PMAC and PMACPanel for National
Instruments LabVIEW, Delta Tau’s complete motion control and
instrumentation package. When you selected PMAC for the motion control
portion of your DAQ application you gained far more than a simple positioning
system. You get an integrated precision motion programming system with
incredible capabilities.

With PMACPanel an entirely new world of motion control applications and
capabilities opens. Motion that triggers acquisitions and responds to data
gathered by SCXI, VXI, and industrial automation networks such as Device Net
and Field Bus is now possible using LabVIEW’s very popular and powerful
graphical programming environment.

PMACPanel is an easily extensible set of more than 250 Virtual Instruments
(VIs), Indicators, and Controls that allow you to communicate with and control
PMAC from LabVIEW. It allows you to create a LabVIEW application that can
monitor and control everything PMAC is doing using LabVIEW while at the
same time preserving your understanding of the existing PMAC interface.

Manual Layout

This manual explains how to install and use PMACPanel to develop custom
applications. It assumes the system integrator and PMACPanel developer has a
basic understanding of the PMAC motion control board and LabVIEW. It does
not cover the hardware and electrical configuration of PMAC or the use of
Pewin32. If questions about a particular aspect of the installation arise, do not
attempt the task until a thorough understanding is gained. Feel free to contact
Delta Tau Data Systems, Inc., technical support at any time during installation.
Refer to the Technical Support paragraph below for information on contacting
our technical support department.

Organization

The manual is comprised of 13 chapters that take you through PMACPanel’s
many capabilities with installation instructions, architecture basic, tutorials,

Chapter 1 - Overview

terminal tools, motion program development, homing, capturing, triggering,
interfacing and DPR.

Many of the chapters contain figures of the VI panels and diagrams to illustrate
specific architectural approaches and VI implementations that you might need to
modify to suit your purposes. Not all VIs are covered in detail. Many of them
are complex and require in depth knowledge of PMAC’s internal memory map
that are way beyond a reasonable user manual. The last chapter contains detailed
descriptions of the every cluster and VI in PMACPanel — even those not detailed
in the previous chapters.

Chapter 1 — Overview

This chapter is an introduction to the PMACPanel features, manual layout,
important safety issues, and how to access technical support.

Chapter 2 — Getting Started

This chapter specifies HW and SW equipment requirements, installation of the
SW, configuration and testing of device drivers, and basic testing of
PMACPanel communication.

Chapter 3 - PMACPanel Basics

This chapter introduces the client/server architecture that PMACPanel is based
on and various issues involved in defining your application.

Chapter 4 — Application Basics

This chapter covers a number of LabVIEW techniques that are used in
PMACPanel and may be new to you. This is followed by a set of tutorial
exercises that start with opening communication with PMAC and start you down
the path of developing your own PMAC enabled applications.

Chapter 5 — Development Tools

PMACPanel has numerous tools for developing and testing applications. These
tools not only ease your development task; they are a great source for
components and ideas of your applications.

Chapter 6 — Motion Program Interfaces

This is where you really harness the motion computer powers of PMAC for your
applications. One of PMACPanel’s nicest features is that it can create a wrapper
VI around a native PMAC motion program that allows you to easily integrate
the program into your application.

Chapter 7 -Homing, Encoders, and Position Capture:

When you use PMAC in a test and measurement application, establishment of
an accurate home position is important. In this chapter we introduce VIs that
enable you to do this from your application and introduce PMAC’s HW position
capture capabilities.

Chapter 8 — Encoder Capture and Compare Operation

This chapter introduces PMAC’s ability to generate HW and SW triggers at
specific motor positions. This includes a suite of VIs to configure these
capabilities, and encapsulate PLC programs much like the wrappers introduced
in Chapter 6.

Chapter 9 —- PMAC and NI-DAQ Interfacing

Chapter 1- Overview

In this chapter we show you how to tightly couple PMAC with standard NI-
DAQ boards to establish, triggering conditions and if required, sample-by-
sample registration of acquired data with motor positions.

Chapter 10 — PComm32 Code Interface Nodes

Accessing PMAC’s DPR in an efficient way requires the use of LabVIEW Code
Interface Nodes — CINs. CINs are compiled C code that a CIN calls when
executing. In this chapter we discuss some basic issues associated with using
Pcomm32 in CINs and develop an architecture for adding new CIN rapidly.

Chapter 11 — DPR - Dual Ported RAM

DPR allows PMAC to communicate with the host computer using memory in a
way that significantly increases the speed of communication. In addition PMAC
firmware has facilities that automatically copy predefined and user defined data
into DPR for access by the host. In this chapter we introduce the VIs that
support this interface.

Chapter 12 — Interrupts

PMAC supports the generation of interrupts from various sources. This chapter
introduces one mechanism for handling PMAC interrupts from LabVIEW.

Chapter 13 — VI Reference

This is an exhaustive alphabetical reference defining the operation of every
PMACPanel VI, control, and data type.

Conventions Used in This Manual

The following conventions are used throughout the manual:

<ENTER> Italic text inside arrows is used to represent keyboard
<CTRL+F4> keys or key combinations.

Edit»Edit Control Dropdown menu selection or mouse operations.
OPEN PROGRAM Mono-spaced is used for code listings.
PmacDevOpen PMACPanel VI names

Bus Addresses Arial bold text is used for dialog-box items.
Dx7FA000 OCR text is used for dialog-box entries.
%Irijii);‘ymsilgga\tz;ll?lch, if not observed, may cause serious

Information which, if not observed, may cause damage
to equipment or software.

A note concerning special functions or information of
special interest.

CAUTION

Use Caution When Running the Examples

PMACPanel has many examples to introduce itself and verify things are
working properly. You need to be aware of a few issues before actually running
the examples.

e PMACPanel will cause your PMAC to execute motion. Please be
careful.

Chapter 1 - Overview 3

e PMACPanel may require some changes in your PMAC’s [-Variable
configuration. You may also inadvertently change an I-Variable during
the execution of some of the examples. If you have a currently
working system please use Pewin32 to save the configuration before
making changes to your PMAC.

PMACPanel will download programs and PLCs when some of its components
run. If you currently have motion programs and PLCs that you value please use
Pewin32 to save them before executing those examples that utilize encapsulated
motion programs and PLCs. Otherwise, they will be replaced.

Safety Summary

The following are general safety precautions not related to any specific
procedures and therefore may not appear elsewhere in this publication. These
are recommended precautions that all personnel using PMAC must understand
and apply during different phases of operation and maintenance.

Motion Commands

Until proper HW
safeties have been
installed,

CAUTION

configured, and tested extreme
caution must be exercised when
moving motors to prevent
damage and possible injury!

PMAC moves motors. Sometimes very powerful motors driving sensitive
equipment. PMACPanel developers are responsible for making certain they

are thoroughly familiar with their mechanical setup, its capabilities, and
performance and movement limitations. Furthermore that motion commands
sent to PMAC do not cause damage or injury.

Keep Away From Live Circuits

Do not replace components or make adjustments inside equipment with power
applied. Under certain conditions, dangerous potentials may exist when power
has been turned off due to charges retained by capacitors. To avoid casualties,
always remove power and discharge and ground a circuit before touching it.

Live Circuit Contact Procedures

Never attempt to remove a person from a live circuit with your bare hands. To
do so is to risk sure and sudden death. If a person is connected to a live circuit,
the following steps should be taken:

e Call for help immediately
e De-energize the circuit, if possible.
e Use a wood or fiberglass hot stick to pull the person free of the circuit.

e Apply cardiopulmonary resuscitation (CPR) if the person has stopped
breathing or is in cardiac arrest.

e (Obtain immediate medical assistance.

Chapter 1- Overview

Electrostatic Sensitive Devices

Various circuit card assemblies and electronic components may be classified as
Electrostatic Discharge (ESD) sensitive devices. Equipment manufacturers
recommend handling all such components in accordance with standard ESD
procedures. FAILURE TO DO SO MAY VOID YOUR WARRANTY.

HW Interfaces

When interfacing PMAC signals with any other data acquisition equipment be
extremely careful to avoid shorting signals to supply or ground potentials.
Furthermore, observe all signal load, voltage, and current limitations. FAILURE
TO DO SO MAY VOID YOUR WARRANTY.

Magnetic Media

Motors and amplifiers may generate strong magnetic fields. Do not place or
store magnetic media (tapes, discs, etc.) within ten feet of any magnetic field.

Technical Support

Delta Tau is happy to respond to any questions or concerns you have regarding
PMACPanel. You can contact the Delta Tau Technical Support Staff by the
following methods:

By Telephone

For immediate service, you can contact the Delta Tau Technical Support Staff
by telephone Monday through Friday. Our support line hours and telephone
numbers are listed below.

By FAX and E-Mail

You can FAX or E-Mail your request or problem to us overnight and we will
deal with it the following business day. Our FAX numbers and E-Mail
addresses are listed below. Please supply all pertinent equipment set-up
information.

World Wide Web (WWW)

Delta Tau maintains a complete website containing many manuals, product
updates, help files, application notes, and programming examples. We may be
contacted at www.deltatau.com

Bulletin Board Service (BBS)

You can also leave messages on one of our Bulletin Board Services (BBS). The
BBS is provided for our Customers, Distributors, Representatives, Integrators, et

Chapter 1 - Overview

World Headquarters

Delta Tau Data Systems, Inc.

21314 Lassen Street
Chatsworth CA, 91311

Support Hot Line
Monday through Friday
8:30am to 4:30pm PST
Voice: (818) 998-2095
FAX: (818)998-7807
BBS: (818)407-4859

E-Mail: support@deltatau.com

BBS Settings:

al. We invite you to use this service. You can download & upload files and
read posted bulletins and Delta Tau newsletters. Messages may be left for
anyone who is a member/user of the Bulletin Board System(s). All you need is
a modem and ProComm-Plus or similar communications program. Many

Download-Upload Protocols such as Z-Modem are supported.

Eastern U.S. Office

Delta Tau Data Systems, Inc.
10754 Decoursey Pike
Ryland Heights, KY 41015

Support Hot Line

Monday through Friday
8:30am to 4:30pm EST

Voice: (606) 356-0600

FAX: (606) 356-9910

BBS: (606) 356-6662
E-Mail: support@deltatau.com

Baud Rates: 1200 to 19.2
8 — data bits, 1 - stop bit, No Parity

European Office

Delta Tau Data Systems International

Industrieweg 175, Suite 7
3044 AS Rotterdam, Netherlands

Support Hot Line

Monday through Friday
8:00am to 4:00pm GMT

Voice:
FAX:
BBS:
E-Mail:

31-10-462-7405
31-10-245-0945

bradped@xs4all.nl

Chapter 1- Overview

Chapter 2 - Getting Started

Unpacking and Inspection

After receiving and opening the PMACPanel package, compare the contents to
the packing list to ensure everything has been received. If anything shown on
the packing list is missing, contact Delta Tau immediately. Carefully inspect all
components for signs of physical damage.

PMACPanel consists of

e PMACPanel CD containing Vs, on-line documentation, and Microsoft
Word 97’ version of documentation.

e PMACPanel Technical Documentation Package

PMAC Compatibility

PMACPanel works with the following motion control boards

e PMAC-PC 4 or 8 axis
e PMAC-LITE 4-axis
e PMAC2 -4 or 8 axis

e MiniPMAC

Installation and configuration of PMAC, amplifiers, and motors may have been
performed by your system integrator or must be performed by you. Refer to the
documentation provided by your integrator or with the purchase of your PMAC
for details.

PMACPanel supports PMAC-2 with the exception of certain encoder specific
capabilities such as encoder capture and compare.

Customer-Furnished Hardware

In order for the PMACPanel to operate, the following customer-furnished
hardware is required:

Chapter 2 — Getting Started 7

e IBM or 100% compatible 486/66 MHz personal computer (PC).
Pentium® or equivalent recommended.

e Minimum of 16MBof RAM. 32MB recommended
e A minimum of 100MB of free hard disk space.

e SVGA color monitor with minimum 1024x768 resolution.

In addition, the following optional National Instruments or third party data
acquisition equipment may exist:

e Multi-function data acquisition I/O cards

Signal conditioning equipment

Image Acquisition

GPIB Instrument Control

Industrial Communication

Customer-Furnished Software

PMACPanel requires Microsoft Windows 95 or Windows NT 4.0 to operate.

Delta Tau Software

PMACPanel requires the existence of Delta Tau’s PMAC device drivers. There
are several possible options you may either have already installed or purchased
with PMACPanel. The following information will help you determine where
you are in the installation process and the steps needed to successfully install
and configure PMACPanel

e You have PMAC Executive for Windows - Pewin32 installed and
tested. You can skip those installation steps involved with the
installation of the PComm32 device driver.

e You have PComm32 installed and tested. You can skip those
installation steps involved with the installation of the PComm32 device
driver.

® You have purchased and installed PTalk. You can skip those
installation steps involved with the installation of the PComm32 device
driver.

® You have purchased none of the above options. You will be directed to
install a limited edition of the driver, configure it, and test it. Certain
PMACPanel capabilities may not be supported without PComm32.

National Instruments Software

PMACPanel was developed for LabVIEW 5.0. Previous versions of LabVIEW
are not supported by Delta Tau’s PMACPanel motion package. LabVIEW must

8 Chapter 2— Getting Started

be installed prior to installing PMACPanel. LabVIEW patch 5.0fix2, available
from National Instruments via FTP is highly recommended

You may have other SW from National Instruments or Third Party sources such
as NI-DAQ. There are no known conflicts with PMACPanel when using these
packages.

Microsoft Software

Certain PMACPanel capabilities are implemented with compiled C code. These
operate perfectly as is. Should you desire to modify them to suit your
requirements or add other CINs for specific reasons you need Microsoft Visual
C++ 5.0 or Microsoft Visual C++ 6.0. PMACPanel does not directly support
other compilers. However, a talented SW engineer can make the required
project modifications for other compilers in short order.

PMAC Options for PMACPanel

PMACPanel supports a wide range of PMAC’s capabilities. Some of these
require the purchase of additional Delta Tau hardware and software accessories.
These options include:

e PMAC’s Dual Ported RAM — This is required to utilize the PmacDPR
collection of VlIs.

e PComm32 — Complete PMAC device driver. PMACPanel provides a
version of the complete driver with reduced capabilities. Tailoring of
some PMACPanel capabilities may require the complete Pcomm32
release.

e Various PMAC 1/O and accessory options

Technical Documentation

The PMACPanel User Manual included with this package is available in
electronic form on the CD. The Microsoft Word document is located in the
Documentation directory.

The PMAC User Manual and PMAC Software Reference Manual should have
been provided with your PMAC. These references are absolutely necessary for
any PMAC development effort.

If you will be modifying PMACPanel VIs that utilize DPR you need the
Pcomm32 Reference Manual.

In addition to the required SW manuals the following technical manuals are
required to successfully configure, installs and interface PMAC.

e Hardware manual specific to your PMAC model
e Manuals for PMAC options such as Dual Ported RAM

If any of these manuals are missing, please contact Delta Tau for a replacement
before attempting your development.

Chapter 2 — Getting Started

PMACPanel and Your Computer’s Display

PMACPanel’s indicators and controls are configured for display on a computer
with 1024x768 resolution or greater. You should set your display’s resolution to
at least this size to use them. PMACPanel VIs work at smaller display sizes but
the panels will not fit within your display area. You can choose to resize the
panel controls or change the size of your display.

Installing PMACPanel

Because of the number of SW drivers and steps in the communication process it
is extremely important that each step be done carefully and tested before
proceeding to the next. There are a few steps that must be taken prior to
installing PMACPanel.

o Install, configure, and test LabVIEW 5.0 or greater and any patches.
e Install, configure, and test any National Instruments boards

e Install, configure, and test your systems’ PMAC hardware

Install, configure, and test PComm32, Pewin32, and/or PTalk if purchased. If
these options were not purchased you will install a limited edition of the
PComm32 device driver included with PMACPanel.

PMACPanel Software

Before installing PMACPanel, read the license agreement included in this
manual (behind title page). You should also check the release notes included
with the manual and located in the Documentation directory on the CD for last
minute changes. Installation of PMACPanel is done in two steps. First, the
drivers must be installed. Next, the PMACPanel SW must be installed.

Installation of the Driver

Skip this step if you have already installed and tested PeWin32, PComm32, or
PTalk. If you have not purchased one of the tools locate the directory
PMACPanel Drivers on the CD and run Setup. The installation program will
suggest a directory path where the program files should be copied. The
suggested directory location is ¢:\Program Files\Delta Tau\PMACPanel. This
will install the drivers and two applications - MotionExe and PMACTest.

Installation of PMACPanel

To install PMACPanel, locate the directory PMACPanel on the CD and run
Setup. If you have properly installed LabVIEW the installation program will
add several components to your LabVIEW installation. If Setup cannot locate
LabVIEW specify its location or exit the installation and install LabVIEW. The
primary PMACPanel component is the directory PMACPanel.lib in your
LabVIEW installation directory. The library directory contains numerous sub-
directories to organize the Vs, utilities, and documentation.

10 Chapter 2— Getting Started

Configuring the Device Driver

Add... Bemove. . Setup... Dore

You must configure and test the driver installation before running PMACPanel
for the first time. If you have purchased and installed Pewin32 or PComm32
this step has already been completed. Proceed to Configuring LabVIEW.

PMAC communication configuration has been centralized in your operating
system, making the setup of PMAC much like other devices in your computer
(i.e. video card, sound card etc.). All setup is done through the "MOTION
CONTROLS" applet accessible through your operating systems CONTROL
PANEL or the included configuration program MotionExe. Before running this
application it is important that all applications that use Delta Tau’s 32-bit
communication driver PComm32 be shut down. This includes Pewin32, NC for
Windows, or any applications developed with PComm32 or PTalk.

To configure PMAC communication, click on the Motion Control gear icon

or execute the program MotionExe created during the installation. The
following dialog box will appear

Motion Controls |

tation control devices:
L0 b0 DPRARM: $DCO00

The Windows NT version of this dialog has extra buttons labeled “Unload”,
“Load”, and “Startup”. “Load” and “Unload” should only be used when trouble
shooting the PMAC installation. "Startup" may be used to tell Windows NT
how to load the PComm32 communication driver.

If this is your first time running the applet there will be no PMAC's listed in the
"Motion control devices" list box. This is because none have been "Added" to
your operating system yet. To add a PMAC press the "Add" button to get the
following dialog box:

Chapter 2 — Getting Started

11

Add Motion Device
Add Device Mumber:

X Cancel

0K

This dialog box prompts you for a device number to associate with the PMAC
you are adding. Always start with your first PMAC as Device 0, the second
PMAC in your system as Device 1 and so on. The applet will handle the
enumerating for you. Press OK, to get the configuration dialog

PMALC Device[0] Configuration |

— Device Location

PRALC WinaZ Communications Libram
Yerzion: 1.1.4.0
Copyright 2 1334-38 Delta Taw Data Spstems, Inc.

I InFC Bus WME Bus Serial Port |
Fort Address:] GSEEGTILAES: Flease use hevadecimeal SErial e
[oczi0 || MMICIE Waiks € 7 foimet [comz]
Intermupt Adr f il By Base T Ediress Mediier B Level || Baudiate:
[More [|/[7RER0D [ma2e] [=]||Jseo0 =]
DPRAR Adr: DEESH Base fdri [Nant [Eare Eits: IR Eatar 1 E it
[oocoon =] || fF0000n [+ 41 ‘ o Pariy]

Cancel | Advanced |

This is where you specify how PMAC is connected to your system and the
resources used by PMAC. The configuration you define here must match the
hardware jumper settings on the PMAC itself and not conflict with those already
assigned by Windows 95 or Windows NT to other system devices or National
Instruments accessories. Serial port communication requires the use of a serial

cable.

When the configuration is properly specified click OK. If PMAC is
communicating with the driver properly the following dialog appears.

PHMAC Motion Control Device Driv |

& The PMALC device was sucessfully lnaded.

12

Chapter 2— Getting Started

If there is a problem with PMAC, the assigned resources, or the driver the
following dialog will appear.

PMAC Motion Control Device Driv |

& The PMALC device could nat be detected at this address.

To remedy the situation, check for resource conflicts with other devices in
inconsistent hardware jumpers. If the problem persists contact Delta Tau
Technical support.

The "Advanced" button is used to configure DPR settings typically used with
the Delta Tau NC for Windows software.

Testing the Device Driver

Initial testing of PMAC and the device driver are done with the program
PMACTest included with PMACPanel or Pcomm32 drivers. When PMACTest
executes, the following dialog appears requesting the preferred operational
mode.

]|
File E citor Camcel |
_ teb |

Help

Click “OK” and a terminal window will appear

Chapter 2 — Getting Started

13

,ﬁf PmacTest - PMAC:0 ¥1.15G 01/12/95 HE=l
File Edt “iew Configure Temnal DPR Featurez Window Help

O|z(E| &=z & 7|8

EE'PMAC:0 V1.15G 01/12795

1] | v

For Help, press F1 M LIk o

Until proper HW PMACTest is now in terminal emulation mode, allowing you to interact directly

CAUTION
safeties have been with PMAC. Although it is tempting to move motors when communication is

installed, configured, AND tested first established in this step you should be thoroughly familiar with your

extreme caution must be mechanical setup and be certain that commands executed from PMACTest will

exercised when moving motors to not cause damage or injury.

prevent damage and possible

injury!
Check to see if you get a response by typing [10<Enter>. PMAC should
respond with a six or seven digit number. Now type lII<Enter> -- PMAC
should respond with a beep, signifying an unrecognized command. Next, satisfy
yourself that you can communicate with the PMAC card at a basic level. Type
P<Enter>. This requests a position. PMAC should respond with a number.

If your system contains a Now type <CONTROL-F>. You should get back eight numbers (one for each
PMAC-LITE, youwill axis) since <CONTROL-F> requests following errors from all eight motors;

still get back eight numbers when some or all may be zero. Please note that even with encoder counts as read-out
you type <CONTROL-F>. (no scaling), PMAC's position is displayed with fractional counts.

If error dialogs appear or the responses are not as specified check PMACTest’s
help capability. It might help to revisit the previous section Configuring the
Driver. If the problem persists contact Delta Tau Technical support.

Congratulations! You have successfully installed PMAC and the PComm32
communication drivers on your system.

14 Chapter 2— Getting Started

Configuring LabVIEW

During the installation of PMACPanel the directory PMACPanel.lib containing
the PMACPanel distribution VIs was created in your LabVIEW directory. There
are three things that need to be done to seamlessly integrate PMACPanel into
your LabVIEW development environment

o Create a view
e Mass compile the VIs

e Configure PMACPanel for your PMAC driver configuration

Installing the Release View

To facilitate your use of PMACPanel you should install the view contained in
the release or create your own view so that the PMACPanel VIs and controls are
easily accessible from the Controls and Functions palettes and do not clutter
your User.lib directory. The procedure for doing this is outlined here.

e Run LabVIEW

e Select Edit»Select Palette SetyPMACPanel. This view is a
modification of the default view. If no PMACPanel selection appears
check for a directory named PMACPanel in the directory
LabVIEW\Menus.

The Controls and Functions palettes will appear as

Instr Liky

L+

iE+! Functions |
M »
ol |
¥ B RE (4
. el [T [
t»! Controls | L - ’
s | o,
ME ’
Inimiaie
L
==
s

Access to the entire suite of PMACPanel controls and function VIs is now
available using the

Chapter 2 — Getting Started 15

icon and its sub-palettes. PMACPanel icons are text based and indicate the
PMACPanel.lib subdirectory they are located in and their specific function.

Creating Your Own View

If you did not install PMACPanel in PMACPanel.lib or you already have a
custom view to accommodate other LabVIEW packages refer to the LabVIEW
manuals or Online Reference under the topic Palettes Editor to add
PMACPanel to your palettes. This can be done by using Edit»Edit Control &
Function Palettes... option, creating a new view, inserting a Submenu, and
linking it to a directory - PMACPanel.lib (or your own name). The icon
\PmacDocument\PmacPanellcon.bmp can be added during the palette editing
process.

Mass Compilation

This step compiles the entire PMACPanel release so that there are fewer
searches when loading VIs and confirms that everything can be found. Select
Edit»Mass Compile to display the file selection dialog while you have a VI,
any VI, open. Browse your way to the directory PMACPanel.lib and click
“Select Cur Dir”. LabVIEW will then begin loading and compiling the entire
PMACPanel release. When this is complete click “Cancel”.
If you have purchased If the compilation process encounters problems note the error message. The
A the PComm32 package most common problem encountered will be its inability to locate the PComm32
you have the ability to develop driver extension Pmac.dll installed by the Pewin32, PComm32, PTalk, or
LabVIEW Code Interface Nodes ~ PMACPanel. This should be located in c:\Windows\System. If the file is not in
that may require re-compilation this directory try to locate it and determine where the file was placed. You can
copy the file into the correct directory and reattempt the compilation.

See Chapter 10 for details.

On-Line Help

PMACPanel has extensive on-line help in two forms. Extensive documentation
of every VI and its terminals is available using the standard LabVIEW
Help»Show Help option. There are also several standard Windows on-line help
files located in the LabVIEW\Help sub-directory. These include help versions
of the printed manuals and several PMAC manuals. This is useful when
examining the examples and tutorials. When LabVIEW starts the contents of
this directory are parsed and any help files located in the directory are added to
LabVIEW’s pull down help menu. The figure below shows both forms of help.
Note the entry in the pull down menu for On Line PMAC Reference. We will
add other on-line help files as called for. Many of these can be down loaded
from Delta Tau’s web site and copied into the LabVIEW\Help directory.

16 Chapter 2— Getting Started

B! PmacCommSendStrvi I =]

ERER

Send Command String to PMAC, If Co
nothing iz zent. The output Device My
Mumber to allow zequencing of comms

File Edit Dperate Project ‘Windows Send
@ i |13pt Dialog Fort | Show Help Chri+H Shring
Lock Help Ctrl+5hift+L _:,,l
J Simple Help
Device Mumber i32 (01 [0 1] Device Mumber i32 [0
i
[Mrline Help for EmacCammSendStn i
Device Humber 132 [0) —5a]
Command Shing S DAQ Example Mavigatar...
— Ewxplain Error...
PmacComm |ntemnet Links 2
On Line PMAC Reference. ..

Onlime Tutarial...

Search Examples...
Search Examples...
Technizal Support Form. ..

J

About Laby1EN...

Configuring PMACPanel Communication

PMACPanel communicates with PMAC using the PComm32 device driver
configured previously. To access the driver from PMACPanel the device
number and communication mode defined for the driver must be defined for
PMACPanel. PMACPanel’s primary device driver, PmacDevOpen, is
configured with the following procedure

Run LabVIEW

e Open the VI PmacDevOpen. Select File»Open and navigate to:

PMACPanel.lib\PmacDevice\PmacDevOpen.vi. The following panel

should appear

Chapter 2 — Getting Started

17

[PmacDevOpen. vi =]
File Edit Dperate Project Windows Help

Dew

{13pt Application Font B = EEE e Open

Communication Mode| Device Number|

Bus v ﬂglu

1] Device Mumber i32 (0]

Mﬂ’ﬂ Bom Date Hom Yerzion
[| | |

| o

Set the Device Number control - not the indicator in the white box - on the front
panel to the device number specified for your PMAC during the configuration of
the driver. The default Device Number in a new PMACPanel package is 0. If
this is your device no change is required. Otherwise, modify the control and
make the value permanent using the right mouse button and the Data
Operations»Make Current Value Default option then saving the VI.

The device driver manager allows you to select Serial Port or In PC Bus as the
desired communication mode. The same selection should appear in the
Communication Mode drop list on the front panel. The default mode specifies
the use of the Bus. If this is your mode no change is required. If the desired
communication mode is DPR the device driver control panel should specify In
PC Bus along with a valid DPR address. The Communication Mode in this panel
should display DPR. As with the device number this should be made permanent
by using the right mouse button and Data Operations»Make Current Value
Default option and saving the VI.

Testing PMACPanel Communication

The final step in the installation of PMACPanel is to test its ability to
communicate with the device driver. After configuring PmacDevOpen and
saving the default changes execute it using the run button on the menu bar. The
panel should change to reflect the Type, Rom Date, and Rom Version of your
PMAC as shown here.

Chapter 2— Getting Started

! PmacDevOpen.vi

=] E3

File Edit Dperate Project Windows Help

o2

{13pt Application Font

= 8a] e 29]

Dew
Open

Communication Mode|

Device Mumber|

Buz b4

= O

M Bom Date

Hom Yerzion

ec v

(0141295

| [5G

1] Device Mumber i32 (0]

| o

If you see something like this on your panel - Congratulations! You have
successfully installed PMAC and the PComm32 communication drivers on your
system. Proceed to Chapter 3.

PMAC Communication |-Variables

PComm32 supports communication with PMAC using UNICODE and standard
C/C++ ASCII strings. PMACPanel is configured to use C/C++ ASCII strings
not UNICODE due to the use of LabVIEW’s Call Library VI to interface
LabVIEW with PComm32.

PMAC uses [-Variables to define communication characteristics. These are
important to verify because the behavior of PMACPanel depends on their value.
If PMACPanel communication is not operating properly configure these values
using Pewin32 or the PMACTest application included with PMACPanel.

I1 - Serial Port Mode

This parameter specifies whether PMAC will use hardware flow control using
CS and whether a software card address is required with each command. At
present no software card address is required hence I1 should have a value of 0 or
1. If desired, a card address can be pre-pended to all communication with some
modifications to PmacCommSendStr, PmacCommGetStr, and
PmacCommRespStr.

I3 - 1/0 Handshake Control

This parameter determines what characters, if any, PMAC uses to delimit a
transmitted line, and whether PMAC issues an acknowledgment (handshake) in
response to a command. The preferred setting is I3 = 2.

14 - Communication Integrity Mode

This parameter allows PMAC to compute checksums for the communication
bytes sent between PComm32 and PMAC. This value should be 14 = 0 because
PMACPanel does not currently add or strip a checksum.

Chapter 2 — Getting Started

19

16 - Error Reporting Mode

This parameter specifies how PMAC reports command line errors. The
preferred setting is 16 = 1. In this mode PMAC errors are properly parsed by
PMACPanel and reported to the user with a pop-up dialog.

158 - DPRAM ASCII Communication Enable

This parameter enables or disables the DPRAM ASCII communications
function. When 158 = 1 PMACPanel sends and receives communication
through DPRAM. When [58 = 0 communication is done via the Bus or Serial
Port. Enabling ASCII communication is not required to access DPRAM
available using other PMACPanel capabilities. Using DPRAM ASCII
communication modifies I3 and will effectively disable PMACPanel’s ability to
properly parse error messages. The preferred value is [58 = 0. This implies that
Bus or Serial is the preferred Communication Mode to be specified for
PmacDevOpen. This has little impact on overall performance and does not
preclude the use of DPRAM for memory mapped purposes.

PComm32 Communication Buffers

PMAC handles commands and responses in a very simple manner. PMAC
commands that generate responses place the responses in an internal buffer that
is transferred into the caller’s buffer. If the entire response does not fit in the
caller’s buffer the data is held in PMAC until the remainder of the buffer is
fetched. New commands sent to PMAC flush the response buffer prior to
executing the new command. Hence, responses that are not fully retrieved are
lost.

Communication with PMAC via PComm32 requires empty buffers into which
responses are placed. THIS IS VERY IMPORTANT. The empty response
buffers for PmacCommGetStr and PmacCommRespStr are created as 128
byte buffers. If larger default buffers are desired the size of the buffer can be
increased to 256 - NO MORE. PComm32 internals cannot handle buffers larger
than this. PMACPanel handles larger response buffers internally using
PmacCommGetBuffer.

Trouble Shooting PMACPanel Communication

At this point it is assumed that the driver was successfully configured and tested
as outlined in Configuring the Device Driver and Testing the Device Driver. 1f
you skipped these steps revisit them. If you have Pewin32 or Pcomm32 and they
work the problem is with your configuration of PmacDevOpen or the
communication I-Variables.

e In the event that LabVIEW crashes when running PmacDevOpen
reboot the computer to eliminate any damage to the driver and memory
caused by the crash.

e Verify the correct operation of the device driver by checking the
configuration using MotionExe or the Control Panel Applet. When you
select “OK” from the setup dialog the driver attempts to contact PMAC
and reports the success or failure of the attempt.

e Check the driver operation communication with PMACTest or
Pewin32.

20 Chapter 2— Getting Started

e Revisit the driver configuration and make certain that the device
number and communication modes specified match those specified for
PmacDevOpen. Make changes to the VI and retest the communication
by running the VI again.

It is known that very early versions of Windows 95 do not work well with
LabVIEW and the PComm32 device driver. If the problem persists contact
Delta Tau Technical support. If the system continues to crash try to note any
error messages in detail.

Chapter 2 — Getting Started

21

Chapter 3 - PMACPanel Basics

PMACPanel and PMAC as Client and Server

PMACPanel is a powerful LabVIEW toolkit that allows you to develop GUI
based clients requiring precision multi-axis motion that integrate PMAC’s
unique capabilities with other LabVIEW devices.

PMACPanel is not intended to replace a thorough understanding of PMAC’s
powerful motion and PLC capabilities, its architecture, its command language,
or its programming language. PMACPanel is not a Graphical Motion Language
(GML) that allows you to write PMAC programs by stringing together a set of
motion description VIs.

The client/server architecture, illustrated below, works exceedingly well with
LabVIEW’s G-Code data flow execution model and matches the model used to
communicate with GPIB, Industrial Automation networks, etc. PMACPanel
applications place requests to PMAC to set motion characteristics, run motion
programs, and configure and monitor PMAC status. PMAC executes these
requests without the assistance of the client application as long as power is
applied. Using this model, PMACPanel applications can use data from other
LabVIEW devices to control the motion and coordinate control of those devices
with the execution of the motion.

PMACPanel Requests for Service
Indicators, Controls, and Vis _> PMAC
Other LabVIEW Status and Results Digital
Applications, Utilites, and Drivers] Triggers
- | | 21VIEW Cards [<€—
Client Application

The figure below illustrates a set of Query/Response exchanges between the
PMACPanel client application and PMAC. Commands for service are sent by
the application in response to

e button clicks

e cvents such as measurements made by other instruments

22

Chapter 3 — PMACPanel Basics

e polling requirements

In response to these requests PMAC responds with the requested operation or

data. Because of this architecture, everything PMAC can do can be done under
control of and in coordination with client applications.

Display Position

Cycle Start
Button Clicked

Update Status

Update Program
Window

If Input = 00110101110010
Start GPIB Acquisition

Client Application

“Get Position Motor #1”

- —

“138645”

“Run Program 32 in
Coordinate System &3”

—

“Get Coordinate System

&3 Status”

- —

“Running, In Position, ...”

“Get Program 34
Program Counter”

“P34:23:X5Y30"

“Get Machine
Input $X:0034”

_—

“00110101110011”

PMAC

Application Development Components

Depending on your motion requirements, system integration requirements, and

performance needs there are three methods for developing your PMACPanel
applications. The following figure shows the three primary components

available from Delta Tau for your system development.

Chapter 3 — PMACPanel Basics

23

Developer/User

yad .

LabView

GUI

Data Analysis
Graphical Tools
Data Acquisition

PMACPanel

Industrial Communication

Visual C++
Visual Basic

Custom devices
Custom drivers
Application packages

| PTalk I

\ /

Pcomm32

PMAC

PMAC

Executive

Pewin32 - PMAC Executive

PMAC system setup and configuration operations such as motion program
development, motor tuning, limit and safety configuration, etc. are best
accomplished using the executive. Once a set of sample motion programs is
available a PMACPanel application can be developed. PMAC can still operate
as a standalone controller. When you wish to interact with PMAC your
PMACPanel applications are available to change the operation of PMAC.

PTalk - ActiveX Controls for Visual C++ and Visual

Basic

Applications with demanding computational needs can written in C++ and their
needs can be communicated to PMAC using PTalk. As an ActiveX control
PTalk can be used from within PMACPanel. It is also possible to compile this
code into a dynamic link library or as a LabVIEW Code Interface Node and use
it from your own custom VIs in a PMACPanel application.

PMACPanel - PMAC for LabVIEW 5.0

PMACPanel provides a complete suite of VIs to simplify and standardize your
application’s access to PMAC from LabVIEW. It is divided into 4 basic levels
or categories. At the very lowest level are VIs that provide an interface to
PComm32. Above this are two levels that provide collections of indicators,
controls, and VIs that you can use in your LabVIEW applications to control
PMAC and monitor its status. Finally, there is a level that provides program
development utilities that can be used to encapsulate PMAC motion and PLC

24

Chapter 3 — PMACPanel Basics

programs as VIs that are controlled by the application. In general, you will use
the top three levels for application development.

Your Logic ——J- Development
& Encapsulation

Indicators
Your GUI —J» g Controls

Command
Generators v
PComm32/LabView
Interface Vls

PMACPanel

Client Application

PMACPanel Interface to PComm32

PMACPanel’s lowest level provides a flexible set of capabilities through which
all command interactions with PMAC is conducted. To do this PMACPanel
wraps selected PComm32 functions with appropriate logic to provide a
transparent interface between your LabVIEW application and PMAC. It
provides three primary categories of access to PMAC. These are:

e Device Management
e Query/Response ASCII and Binary Communication

e Download Management

Chapter 3 — PMACPanel Basics 25

Query/Response
Conversion To/From
LabView Datatypes

Manage Programs

Highspeed Binary
Buffer Status/Data

PMACPanel

Open/Close/Configure

Device
Management

ASCIlI Commands
and Responses

Binary
Variable Access

Download
Management

DPR Binary
Data Buffers

Pcomm32

MS Visual C++
Code Interface Nodes

Device Management

DPR is primarily
intended to pass real-
time

data gathering buffers and binary
data for operations like inverse-
kinematics between PMAC and
the client. It is not required for
general Query/Response
interaction.

Access to the device driver is handled with the PmacDevOpen VI configured
earlier. It defines whether Query/ Response communication uses the Serial Port,

Bus, or DPR. Pcomm32 hides all details associated with a given mode from the
user. If your PMAC is inserted into your host computer Bus communication is a
sure bet. DPR, while slightly faster, is not required. If your PMAC is located
remotely, then you need to communicate with it using the serial port. If your
application does a lot of polling for status data you will see a marked decrease in
application execution performance.

Query/Response Communication

Query/Response communication is the most basic form of communication with
PMAC. This mechanism allows your application to use the entire set of
PMAC’s on-line Commands to interact with PMAC. The quickest way to build
a PMACPanel application to control and monitor PMAC is to locate the
functionality you desire in the PMAC User Manual and PMAC Software
Reference Manual. You can then test it with Pewin32 or the PmacTerminal
contained in PMACPanel. When you are certain you know what you want you,
build a LabVIEW VI and select an appropriate PMACPanel VI to send that
command and/or data to PMAC.

26

Chapter 3 — PMACPanel Basics

LabVIEW and PMAC Numeric Data

LabVIEW supports a wide range of native data types that need to be
communicated to PMAC. This data must be formatted for transmission to
PMAC and converted from PMAC responses into LabVIEW types. PMAC
returns numeric data as decimal or hexadecimal ASCII strings. The
query/response VIs convert this ASCII data into native LabVIEW numbers for
manipulation and display.

PMAC uses the Motorola 56K series of Digital Signal Processors for its
computational engine. The memory architecture is based on a 48-bit long word
comprised of two 24-bit words. This organization allows one to access the
entire 48-bit long word, or either of its two 24-bit words using the same address.

The long word at memory location $23F8 is accessed using D:$23F8 or
L:$23F8. The upper word is designated X:$23F8 and the lower word is
designated Y:$23F8.

PMAC’s firmware uses several data types depending on the quantity being
represented: 1 bit booleans, 8, 16, 24, 32, and 48 bit integers, and 24, 32, and 48
bit floating point numbers. Of these most integers are 24 or 48 bits. This
presents an immediate issue that must be understood when developing your
PMACPanel application. LabVIEW’s short integers are 16-bits - too short for
PMAC’s 24-bit integers. Its long integers are 32-bits - too short for PMAC’s
48-bit integers and too long for PMAC’s 24 bit integers. Furthermore,
LabVIEW does not support a 48-bit integer or 48-bit floating-point number.
Fortunately, because Query/Response communication is conducted with ASCII
strings the size of PMAC’s data is somewhat hidden.

To simplify the interface between LabVIEW and PMAC, PMACPanel supports
the conversion of PMAC data into one of six LabVIEW data types. Conversion
into unsigned representations is easily done using LabVIEW’s many conversion
VIs. The following table enumerates the representations and names supported in
each domain. The PMACPanel names Short, Ushort, Long, and ULong are used
in the names of many Query Interface VIs.

PMAC LabVIEW PMACPanel

1 bit binary Boolean Boolean or Bool

1, 8, 16 bit integers 16 bit integer (116/ul6) Short (i16)/UShort (ul6)
16, 24, 32 bit integers 32 bit integer (i32/u32) Long (i32)/ULong (u32)
24 bit floating point, 48 bit 64 bit floating point doubles Double or Dbl

integers, 48 bit floating point

doubles

There are some situations, depending on the value of 19, where PMAC’s ASCII
response strings are hexadecimal not decimal. The conversion of these ASCII
responses into equivalent native LabVIEW binary representations are handled
by classes of VIs that use PComm32’s binary variable access capabilities.

Download Management

Maintenance of PMAC programs is provided by a collection of VIs that directly
access PComm32’s download functions. These compile ASCII PMAC
programs and download them to PMAC for execution.

Chapter 3 — PMACPanel Basics 27

DPR Binary Data Buffers

PR represents a unique PMAC capability that rapidly transfers binary numerical
data between the host and PMAC. This communication mode eliminates the
string formatting and parsing required with ASCII communication. It is
however, not the best solution for all problems. Chapter 11 covers the use of
these mechanisms fully.

PMACPanel Organization

This brief explanation of PMACPanel’s organization will help you to get the
information you need quickly and painlessly as well as help you plan your
application’s architecture.

The PMACPanel library, contained in the directory PMACPanel.lib, is divided
into five basic categories as illustrated in the following figure. These categories
provide an increasing level of capability as you progress from the lower levels to
the higher levels.

PMACPanel Directory

Organization DPR and tﬁmaCC'N
macDPR
Sample Applications \PmacTest Other Tools \Pmacinterrupt
\PmacTutor \PmacSetup
\PmacDAQ \PmacSubVI

Program Development \PmacProgram Data Gathering \PmacGather
Encapsulation Tools \PmacPLC Graphical Tools \PmacAddress
\PmacPQM \PmacPlot
\PmacFile
\PmacTerminal

Global ICVs \PmacGlobal Motor ICVs \PmacMotor

Accessory \PmacAcc \PmacMotors

Position Capture- \PmacEncoder

Coordinate \PmacCoord Triggering ICVs \PmacHome

System ICVs
Miscellaneous Query \PmacResponse
Utilities Interfaces \PmacButton _
ICVs =
Indicators
\PmacSetup Device Management \PmacDevice Controls
\PmacUtility and Communication \PmacComm Vis

\PmacDocument \PmaclVar
\PmacMemory

PComm32
PMAC

28 Chapter 3 — PMACPanel Basics

Within each category are several sub-directories containing collections of
indicators, controls, and VIs (ICVs) that provide capabilities to make your
application development task easier. The VIs in each sub-directory follow a
naming convention that makes them easier to locate. For example, in the
directory \PmacCoord all VIs are named PmacCoord The names of VIs in
a given sub-directory may have shortened names to make them a little easier to
fit on screens and such. For example, VIs in \PmacResponse are shortened to
PmacResp.... The collections of VIs in each category implement most
commonly used capabilities and generally have examples to demonstrate their
use. The examples will have the word Examp or Example at the end of their
name. The remaining chapters cover numerous tutorial exercises and examples
to demonstrate their use.

Device Management and Communication

At the lowest level of the architecture are VIs that configure and manage
PMACPanel communication with PMAC using PComm32.

\PmacDevice - Configure and manage access to PMAC using PComm32.
Configuration of this access must match the driver configuration set using the
control panel applet or MotionExe application.

\PmacComm - Provide the ability to send on-line ASCII command strings and
data to PMAC and receive ASCII responses from PMAC. Error handling and
the ability to buffer communication for analysis and future reference are
provided at this level.

\PmacIVar - Provide direct binary access to PMAC I-Variables. This collection
of VIs provides an easy to use architecture for accessing I-Variables and avoids
formatting problems that can arise when querying PMAC I-Variables that might
be returned as hexadecimal values.

\PmacMemory- Access to PMAC’s memory mapped variables and registers are
simplified with this group of VIs.

Query/Response Interface

PMACs client/server interaction model works by sending requests to PMAC
and awaiting responses. Interaction with PMAC at this level removes much of
the tedium involved in sending commands and formatting responses.

\PmacResponse - Send formatted command strings to PMAC and convert
ASCII response strings into numerical values for use in you PMACPanel
application.

\PmacButton - In most user interfaces queries are sent to PMAC as the result of
Boolean user actions and conditions. This group of VIs send command strings
to request responses when an associated LabVIEW Boolean condition is TRUE.

Indicators, Controls, and Vls - ICVs

This collection of directories and VIs provide an extensive set of indicators,
controls and VIs that will tremendously speed the development of PMACPanel
applications. Each of the 5 groups in this category provide prepackaged
indicators and controls to manipulate PMAC’s I-Variable setup, monitor
execution status, and send commands to PMAC using appealing clusters of
LabVIEW controls. Capabilities not implemented by these VIs can easily be

Chapter 3 — PMACPanel Basics

29

added by modifying the provided VIs. Numerous examples are provided to
demonstrate the capabilities of the collection and can used as is.

Motor ICVs

Interaction with individual and sets of motors is provided by these collections of
VIs. The collections contain VIs to request PMAC status and motor states and
display their data on pre-defined cluster indicators. In addition, controls to Jog
and control motors are provided to simplify testing and development of
programs.

\PmacMotor - Monitor and control individual motors. There are numerous
ICVs to get motor position, velocity, and following error, modify motor I-
Variables, process motor status, and jog motors.

\PmacMotors - Monitor and plot the motion of collections of motors in defined
coordinate systems. Plotting tools for selecting which motors and motion
variables to plot are available. Samples of real-time strip charts and XY charts
are provided.

Coordinate System ICVs

\PmacCoord - Monitor the execution of programs and definition of motor
coordinate systems. This information is required for the development of user
interfaces in which information is entered and displayed in coordinate system
units rather than encoder units.

Global ICVs

\PmacGlobal - General PMAC setup and configuration are provided by this
collection for VIs. These capabilities are used for the development of
supervisory Vls.

Accessory ICVs

\PmacAcc - PMAC has numerous accessories that are used to provide digital
/0, analog 1/0, and control capabilities. This includes the ACC16D front panel
and the alphanumeric display. This collection provides basic ICVs that access
the memory mapped data used by these accessories.

Position Capture and Triggering ICVs

PMAC has the ability to capture exact motion positions in response to external
triggers and generate triggers when specified positions are reached. This
capability can, in conjunction with National Instruments DAQ boards, be used
to capture a position or trigger instrument control in response to specified
positions.

\PmacHome — This collection of VIs provides access to the [-Variables and
memory variables required for defining homing criteria and determining home
position offset.

\PmacEncoder — This collection provides VIs to access and control the encoder
gate array for position capture and compare. There are also tools for developing
background PLC programs for generating Compare-Equal outputs.

30

Chapter 3 — PMACPanel Basics

Program Development and Encapsulation Tools

Developing PLC and motion programs that work seamlessly with PMACPanel
requires four major components.

e Tools to edit and create programs
e Tools to monitor the execution and debugging of programs

e Tools to develop PMACPanel panels to communicate program
specific data between the program and user

e Tools to encapsulate programs, their execution, and monitoring
into a single easy to use VI

The purpose of these collections is to allow the integration of motion programs
into a PMACPanel application. Either Pewin32 or the PMACPanel application
tools documented in Chapter 5 can be used for the development of the raw
motion programs.

\PmacTerminal - Terminal application tools for interactively creating,
controlling, and monitoring PMAC and your programs.

\PmacFile - Tools for maintaining ASCII program files, LabVIEW datalog files,
and downloading files to PMAC.

\PmacPQM - PMAC program execution is parametrically specified using P, Q,
and M variables. For example, the number of times a move is executed, the
increment of a move, or the radius of a circular move can all be specified using
Ps and Qs. Specific machine inputs and outputs, and internal registers are
accessible using M-variables. Mapping of these quantities to LabVIEW controls
is facilitated by the ICVs in this collection. In addition, the ability to log this
information to a LabVIEW datalog file and re-execute the motion at a later time
is provided.

\PmacPLC - PLC programs and their execution status can be edited and
controlled using the VIs in this collection.

\PmacProgram - This collection provides tools at a variety of levels to edit,
download, debug, monitor, and encapsulate motion programs. Encapsulated
programs

e Load themselves when executed

e Know their coordinate system and program number
e Can be executed by the click of a button

e Indicate the state of their execution

e Can be modified, monitored, and debugged from a powerful front
panel

e Accept P, Q, and M variant data types from the \PmacPQM tools.

\PmacSubVI — This directory contains the actual encapsulated program and
PLC wrapper template VIs.

Chapter 3 — PMACPanel Basics

31

Data Gathering and Graphical Tools

One of PMAC’s most intriguing capabilities is its ability to synchronously
gather a variety of motion data during the execution of a program or move. An
example is the gathering of actual and desired position in response to step
inputs. This data can be used to analyze the performance of a specific move or
machine configuration using LabVIEW’s powerful analysis suite.

\PmacGather - This collection of VI’s allow the user to select motion variables
to control the collection and conversion of data into standard LabVIEW analysis
formats. Collected data can be output to files in tab delimited format for export

to programs such as Matlab or Excel.

\PmacAdadress - A collection of tools for specifying addresses, scale factors,
and descriptions for gathering. Variables not already accessible from
PMACPanel can easily be added to the tables.

\PmacPlot - A few generally useful plotting VIs for setting plot colors and
legends. An XY Chart buffer is available to make an XY plot into an XY strip
chart.

Code Interface Nodes and Dual Ported RAM

PMAC Dual Ported RAM (DPR) provides a high-speed binary data transfer
mechanism that greatly speeds access to certain types of motion data. To
facilitate this capability PMACPanel utilizes LabVIEW Code Interface Nodes
(CINs). This collection of VIs demonstrates how to use this capability.

\PmacCIN — A detailed description of the process required for configuring your
environment to use CINs with PMACPanel.

\PmacDPR — A large collection of VIs for configuring and operating the many
modes of DPR supported by PMAC. There are numerous examples
demonstrating the use of DPR and how to modify the supplied collection to suit
your purposes.

\PmaclInc — A directory of include files required to use CINs or modify
PmacDPR. This directory will be empty if you did not purchase the PComm32
package.

Sample Applications

This collection of VIs demonstrates a general PMACPanel application and a set
of tutorials to walk you through the correct use of PMACPanel capabilities.

\PmacTest - An all encompassing demonstration of program encapsulation and
monitoring with 4 different motion programs, their PQM configuration, and
real-time strip chart monitoring.

\PmacTutorial - A sequence of exercises covered in Chapter 4. These exercises
introduce you to the basic architecture and proper use of PMACPanel in your
own applications. All first time users of PMACPanel should read this chapter
and examine the tutorial VIs.

\PmacDAQ — This collection of VIs utilize standard LabVIEW analog input
DAQ example VIs and a PMACPanel motion VI to demonstrate a few of the
techniques you can use to integrate PMAC and NI-DAQ boards to develop
precision motion based data acquisition applications.

Chapter 3 — PMACPanel Basics

Miscellaneous Utilities

This collection provides many VIs used to implement PMACPanel without
regard to a specific category.

\PmacSetup — True maintenance of a deployable PMAC application requires
Pewin32. This collection of VlIs is the start of set of VIs to download and
maintain the configuration of PMAC’s numerous P, Q, M, and I variables. For
the purpose of speed, the VIs are implemented using CINS.

\PmacUltility - This collection provide controls and VIs to modify file paths,
handle radio buttons, etc.

Documentation

PMACPanel has an extensive suite of documentation and help that can answer
most of your questions. This manual along with the various PMAC User and
Reference manuals contains thousands of pages of information on every aspect
of PMAC and PMACPanel. There a numerous help files available and more

being written all the time. Check the Delta Tau web site for documents and help

files for your system.

\PmacDocument - contains electronic copies of this document, miscellaneous
help items, and a few useful bitmaps.

Chapter 3 — PMACPanel Basics

33

Chapter 4 - Application Basics

Basics

This chapter contains several systematic exercises that guide you through the
hierarchy of PMACPanel to introduce the various concepts required to develop
your own applications. For detailed explanations of the individual VIs used in
each tutorial, consult the VI Reference. If you have not used PMACPanel
before this chapter must be read.

Although most PMACPanel VIs can be used as is, the developer is encouraged
to use them as templates that can be extended and customized to meet the
requirements of your own application. PMACPanel required over 1000 hours of
development time — time that you don’t have to expend to achieve rapid and
surprising results.

LabVIEW Techniques for PMACPanel

The following are general LabVIEW programming techniques not related to a
specific PMACPanel VI and therefore may not appear elsewhere in this manual.
PMACPanel assumes that you have had a basic course in the use of LabVIEW
or equivalent experience.

PMACPanel’s architecture was designed to hierarchically encapsulate common
operations into VIs that you can use to develop your own applications without
doing a lot of basic communication parsing and wiring. Depending on your
application’s requirements and your experience with LabVIEW, you will have
your own design patterns. The tutorial exercises that follow and the examples
contained in the release reflect different ways to architect your applications to
maximize the utility of PMACPanel. These techniques are used throughout
PMACPanel and can be applied in your own application. For an excellent
reference on LabVIEW techniques and application design issues see LabVIEW
Graphical Programming by Gary Johnson (McGraw Hill ISBN 0-07-032915-X).

Dataflow and Sequencing

In LabVIEW the order of VI, execution is not guaranteed. Some PMAC
operations require sequenced command execution. For example, a command to
start a motion program should be sent before you go waiting for it to complete!
In other situations, M-Variables must be defined before they can be used. Some
PMACPanel VIs anticipate the need for sequencing and provide an output to
enable this without using a LabVIEW sequence structure. In some instances,
you must use a sequence structure.

34

Chapter 4 — Application Basics

Dataflow and Recurring Execution

LabVIEW loves to use while loops to execute VIs - again, and again, and again.
If you want to continually send a "Jog+" command to PMAC, use the following
example. It will send the command again, and again. This wastes PMAC's time
and slows your PMACPanel application. To prevent this you, as the developer,
must develop your program logic so that the commands are not repeatedly sent
to PMAC. Most of PMACPanel’s architecture is designed to simplify this for
you by encapsulating this logic at the lowest levels possible.

D

Open

Giving Up Control

Make sure that your PMAC VTI's using concurrent execution loops use a wait
timer to give the user interface and other VIs a fair shot at executing.
Otherwise, you just may lock up the user interface while your PMACPanel
program is waiting for a motion program to finish. Worse yet, other VI's that
use double buffering to acquire data can overflow with nasty results

Execution Speed

LabVIEW is pretty fast at doing certain types of things and a little slower at
others. Writing complex VI's such as the terminal is tough on LabVIEW
execution and the developer. Don't expect the response time of visual C++ or
Pewin32.

You should realize that applications that repeatedly poll PMAC can slow your
application. This is especially true of systems that use serial communication at
low baud rates. On the other extreme are busy applications that use the DPR
capabilities of PMACPanel for high-speed data transfers.

VI Reentrancy

In general, most VIs are reentrant. In LabVIEW terminology, this means that a
VI can be used simultaneously in multiple PMACPanel and application VIs with
its own separate copy of data. This has some benefits and some drawbacks. It
allows independent simultaneous execution of the reentrant VI. The drawback
is that it prevents each use of the VI from having a user accessible copy of the
panel. In the case of low level PMACPanel VIs this is not really an issue
because the VIs have no user interface value. It becomes more of an issue with
the ICV Vls.

Issues can also arise when sending commands to PMAC. If multiple VIs are
busy sending commands it is not only possible but also probable that expected
responses will not line up with the commands. We will cover this later in the
chapter.

Chapter 4 — Application Basics

35

Initialization State|f------

1T

Untitled 2 =
ile Edit Operate Project 'Windows Help

Persistent VI State

LabVIEW VIs maintain their state from execution to execution within a loop as
long as they are loaded in memory. Sometimes this is desirable, and in many
instances is used by PMACPanel VIs. Particularly those that are used to build
configuration tables or attempt to minimize repetitive queries for data that will
not change often. The following diagram demonstrates the use of this technique.

[0a your initilization - Once]

In this example the default value for Initialization State is FALSE. It is set to
this value every time the VI is loaded into memory. When executed the first
time, Initialization State is set to TRUE and will remain that way until it is reset
by an operation in this VI or the calling VI is closed thereby unloading this from
memory. Be aware that LabVIEW 5.0 has a bug handling this. National
Instruments plans to release a fix for this problem with 5.0.1. Until then,
PMACPanel 1.0 has added a few wires and local variables to fix this.

Mechanical Action

Most PMACPanel VIs requiring Boolean inputs or buttons have their
mechanical action set to “Latch When Pressed”. You can configure your
buttons as shown in the figure below. Using this configuration, the button is
read once when pressed and reset to FALSE. This is useful for preventing
commands from being repeatedly sent to PMAC.

@I{gﬂ E@i | [13pt Application Font =] [$ =]

E

Change to Indicatar
Synchronoug Digplay
Find Terminal

S hows 2
D ata Operationz 3
Create 2
k.ey M avigation...
Replace 2
Drata Range 3

tMechanical Action »

Latch When Preszed

Release Text

[+

36

Chapter 4 — Application Basics

PMACPanel Indicator and Control Clusters

PMACPanel makes extensive use of predefined indicator and control clusters to
make your development task easier. These clusters are easy to drop into your
application. You should understand what clusters are, how to edit them, and
how to access the individual controls and indicators they contain. An example
of a Motor Status Jog Cluster PmacMotorStatJog is shown here.

Azzsigned
to C5
Running Bunning
Move Dwell
W arning thal
Following Error| Following Error
- Amp Amplifier
Fault Emror

Motor Status Jog Cluster|

A lot of work went into developing indicator clusters with proper names and
item descriptions. You will find that when you have Help»Show Help enabled
extensive descriptions of PMACPanel cluster items can help you understand
what is displayed and what operations are performed by controls and indicators.

Cluster Item Access

The individual items of each PMACPanel cluster are named and given a Tab
Order. Within PMACPanel, they are generally unbundled without the name so
that the diagrams are a little easier to fit on a single page. The diagram below
demonstrates the two different techniques for accessing the individual items of a
cluster.

Standard Unbundle: Tab Order
determines which item iz connected

ko wihich terminal. You've gaot to provide
access bo all of the items - even thoze

ou don't want,
b abar Activated Unbundle by name:
Open L,"T":'p au can select which item
In Position iz acceszed by which terminal.
T hiz iz ugeful if you want only a
few items

Chapter 4 — Application Basics

37

Using the mouse on function VI terminals, you can easily create cluster
constants if you require them. These can then be filled with the appropriate
data.

Clusters Contain Controls or Indicators but not
Both

Clusters are wonderful for grouping commonly used items together to make
your life easier. A major limitation should be understood. In general, a cluster
should not contain both indicators and controls. This doesn’t work well with
LabVIEW’s data flow execution model - what happens if it sets an indicator
item before it reads it as a control value? This is especially true of PMACPanel
clusters that use Booleans configured with latched mechanical action.
LabVIEW will not let this possible race condition go and generate an error.

PMACPanel has made some concessions for this. The PmacMotorJogControl
control cluster shown below can be used to jog a motor. One would love to
have a motor position indicator in the cluster! Sorry, but we created a separate
position cluster.

Motor Jog Control Cluster|

~]

FPre .Jog Jog Relative

+
BIlp T Jog To Make Pre Jog

i
4/

0.0 10 20 30 40 50 60 7.0 80 90 100

F

Encoder Counts | [

Cluster Type Definitions

LabVIEW allows you to define cluster controls and indicators as strict types that
are linked to the root control definition. PMACPanel has chosen not to use this
capability. Clusters can be used and modified independent of the base
definition. This means that if you change cluster definitions the changes are not
propagated to the VIs using it. You must replace all instances of the control by
hand. You can always choose to define the *.ctl controls as strict types before
you use them. Then every new instance of the control in your application will
be linked to the raw control.

Accessing PMACPanel Vis

To use PMACPanel VIs select the PMACPanel control sub-palette attached to
the PMACPanel.lib directory. Depending on the view you installed something
like the following will appear.

38

Chapter 4 — Application Basics

il Lintitled 1

ile Edit Operate Project ‘Windows Help

|E{>|{§2| E@i] I |13pt.ﬁ.pplicatiun Fant -] HJ:_*I |T|:|:_v| |!,'§'l_v|

i Controls

Pmac¥iew Controls

]|

: '. -—1HIPmac¥iew Controls

3 2 4 2
Ao | Add0) Camml Eoord

[» -
O'PR: | Files, |G athen Globall

3 [2 F
fedaint § b okor (kokord PLC
»—IH)PmacMotor
ng} ng' PmacMotorog.ctl
b ator b atar] | dotor
Flagslf Jog [{I-ov||I-PID

Moator| [k obar | (b atar ||k otor
-5 afe||gLimit| |5 elech |Limits

totar |k ator || Mator| kst
Move|[pavel||PYE ||Limits

bl b [[k cbar | (B kS E
Stat] |[Stat2 [|Mat'n

PMACPanel sub-palettes uses words rather than graphical icons to define their
functionality just as their naming in the directory structure does. To place a
PMACPanel Control on your panel the icon is selected from the palette and
placed on your VIs panel.

Clusters With an Associated Function VI

PMACPanel controls exist on VI Panels. To get the data for indicators or
generate commands from controls they need a PMACPanel function VI. To
make it easier to link the two together the name of the associated function VI is
the same as that of the control. We will say more about using these in the next
section.

The figure shown below shows the terminal for PmacMotorJogControl.ctl and
the function VI PmacMotorJogControl.vi. The similar names indicate that

Chapter 4 — Application Basics

39

they are paired together and the panel cluster is wired somewhere on the
function VI icon.

IE Untitled 1 Diagram * [_ (O] x|

FEile Edit Operate Project Windows Help

|:§D=|{§}| E@i] I @ %ﬁ,;;??iﬁ; |13|:|t Application Font =] I:m_'l |’|j:_v| w=J] I
T Pnacvon ranore £5 N

= bl ator

¥ ¥ ¥ ¥ == Jog
A | Addr |Eitton| CaPt
TTig

M 3 » M
Comrn| Coord | Ctev [PR

“HF 3 3 3
File 1|z athen Glaball Home

Y B 3 3
|-far | baint] bdemm A b okor

- - - ; ~—IFIPmacMotor
atard PLCT| FEIR|| Prog

b b | bl b | [Pl cabior [{ bl it
Curr ||Flags |[Emé | |Flags

M otor||Matar || 4 atar | [atar

Y)
Lt [%_ [Esrripf { ghd e || shd o [| gPID

w

M » I
Fezp | Toolz | Test | Titar

W

bl cibcar | (B cibize | | P ok | bd cbar
sPID ||g5 afef|=5ate||gLimit

bt | [P otor ||k ator| Motor
koA s || Lirnitz || rdwCe| {Mlnd)

b atar || MEF] | otar| St
FPYE ||E=mp||Stat | [Limits

b ator | b4 atar | Matar| oo
Stat] [[Stat? ||StaE=)| Erar

kA abor | [k obar | |k obar [b ator
[t || -PID]|I-Safelf Jog

P abor| [bSE (R ator
Poz ||Mat'n]] Vel —

PMACPanel VI Terminal Conventions

PMACPanel has carefully chosen terminal names that are used consistently
throughout the library. Extensive terminal descriptions and their behavior are
available with LabVIEW’s Help»Show Help facility and in the VI Reference
chapter of the manual. To help you utilize the on-line help associated with
PMACPanel VIs there are terminal naming conventions to identify the name,
type, default value, and range of inputs and outputs. Most input terminals have
a default value. Those that have a range coerce inputs to the range. Most inputs
are required. A few are recommended. Their default action is fully defined.

Chapter 4 — Application Basics

Cluster inputs and outputs are typically named for the wire type expected. The
following VI icon demonstrates these standards.

Range if any inserted here e.g. (1-8)

Required Terminal Default Value

\ /

Device Number 132 [0 — S Mew Output Boal [F)

Input PLC Exec Cluster ==
First Time Baal [F] " E mec === Qutput PLC Exec Cluster

Recommended Terminal PMACPanel Datatype

LabVIEW Datatype

PMACPanel Tutorials

If you understand the basic ideas covered in the previous section you can start
developing PMACPanel applications. The remainder of this chapter contains
exercises that start with opening communication with PMAC and work up to the
development of some very sophisticated capabilities. The contents of these
tutorials are necessary for all PMACPanel developers. The on-line Windows
Help version of this document is a great way to display the contents of the
tutorials and examples from within LabVIEW.

Tutorial VIs are located in the \PmacTutor directory. In this directory there are
two base Vs that are used as a starting place for developing all the examples
and PMACPanel VIs. These are

e PmacTutorApp - Opens PMAC, has an execution while loop, and
a Stop button

e PmacTutorSub - Has a predefined Device Number terminal

The tutorial VIs are named PmacTutor1, PmacTutor2, etc. These should be
opened, examined, and executed while working through the exercises. You can
save new copies of these and modify them as desired.

Depending on the exercise goals, various panels, diagrams, and sub-VI
descriptions are used to illustrate PMACPanel concepts. Numerous descriptions
are provided on the panels and in the diagrams.

Good wiring!

PMACPanel Communication Tutorial

The following exercises introduce those VIs used to send commands to PMAC
and access its data. This includes special collections of VIs for:

e PComm32 access

¢ Sending commands

Chapter 4 — Application Basics 41

e Querying PMAC and processing responses
e Accessing PMAC memory-mapped data and variables

e Querying and Setting [-Variables

PmacTutor1- Accessing PComm32

PmacTutor] covers the basic requirements for accessing PComm32. All
PMACPanel applications must open access to PComm32 using PmacDevOpen.
This exercise demonstrates three steps for all PMACPanel applications. Open
the device, do something, close the device. These VIs are

e PmacDevOpen - Open communication to PMAC using the PComm32
device driver. Check type, ROM date, and ROM Version. Provide Device
Number for other VI's. You can select the mode of communication using
the Communication Mode drop down menu. To make the selection
permanent make your selection the default use the right mouse button and
Data Operations»Make Current Value Default option. This MUST be
done in conjunction with the options available on the PMAC control panel.

SE““ Device Mumber i32 (0]
pEn

e PmacDevClose - Close the PComm32 device driver. PMAC will continue
running as programmed as long as power is applied.

D
Cloze

Device Humber 132 [0] —

All basic PMACPanel application diagram will open PMAC and pass the device
number into a your application’s main loop where your primary logic is
executed. Structuring the main loop this way establishes a dependency between
the opening of the device and the execution of the rest of your application.

42

Chapter 4 — Application Basics

Open the Device:

as default and resave

IF dezired the default configuration of
PmacDevOpen needs modification - set

Dew Dew
Open Cloze
Double click PmacDevOpen on the left and execute it. If you want to be careful

The ¥l fetches the Pmac Type, Rom Date, and
Rom Version thereby verifying the correct operation This is not required and PmacYiew
operation of PComm32

cloze the device after you are done.

doeszn't really care. Reopening the

device without closing it is not a problem.

If you don't cloze the device it

ction iz Latched

Here iz a stop button to remains open as long as the ¥l that opened
gracefully halt application the device remains in memory. Thiz means
execution. Note the Mechanical vou can open the device and simply use

the device number - typically "0° without

reopening. Itz a useful tnick
when you understand this.

outzide of any execution loop.

PmacDevOpen should be executed
OMCE in your applciation - prefereably

Once PMAC iz opened the device number should be wired to all
¥lz that need it - this iz most of them.

If you have more than
one PMAC or wish to

access your PMAC in more than
one way it is easy to do.

Several techniques to ease the development process noted in the diagram
descriptions. These should not be relied upon in your final application.

PMACPanel was designed to be easy to use. To avoid having to provide
PmacDevOpen with a Device Number, Communication Mode, etc. every time

it is used the VI was configured with defaults for the Device Number and
Communication Mode in Chapter 3. If you have more than one PMAC or wish

to access the device using more than one mode you can use one of two equally
simple methods.

e Make copies of PmacDevOpen and rename the copies something
like PmacDevOpenSerial or PmacDev0Open and
PmacDev1Open. Set the defaults for the Device Number and
Communication Mode as desired. Use these exactly as you would
PmacDevOpen.

e Make a copy of PmacDevOpen and add input terminals for
Device Number and/or Communication Mode. When using this VI
provide the inputs and use the outputs exactly as you would
PmacDevOpen.

Multi-threading and PmacDevOpen

PMACPanel and PComm32 readily make use of LabVIEW’s multi-threaded
programming model. You can have multiple PMACPanel application VIs open
PMAC and execute simultaneously without problems.

Chapter 4 — Application Basics

43

PmacTutor2 - Sending Commands and Getting
Responses

The most basic interaction with PMAC is done using one of three PmacComm
Vs

e PmacCommGetStr - Check if PMAC has data available. When Response
Available is TRUE Response String contains all available data. When
Response Available is FALSE Response String is the empty string.
Responses are parsed for PMAC ERR codes and flagged with a modal
dialog.

Get [Rezponze dyvallable Boal [F]

Device Humber 132 [0] —— String Response Sting

¢ PmacCommSendStr - Send Command String to PMAC. If Command
String is the empty string, nothing is sent. The output Device Number is a
copy of input Device Number to allow sequencing of commands to PMAC.

Device Humber 132 [0] — 5end
Command String String

Device Mumber (32 [0]

e PmacCommRespStr - Send Command String to PMAC and wait for a
response. If Command String is the empty string, nothing is sent.
Response Available is TRUE when Response String contains response data.
When Response Available is FALSE Response String is the empty string.
Responses are parsed for PMAC ERR codes and flagged with a modal
dialog.

Device Humber 132 [0] Fesp Fezponze dyvailable Eoal [F]
Command String String Fezponze Sting ['™']

All the PMAC on-line commands described in the PMAC User Manual and
PMAC Software Reference Manual are valid commands. See the appropriate
manual for detailed command usage and syntax. PMAC will accept multiple
commands in a command string. Those commands that generate a response will
put the data into PMAC’s output buffer whether or not you retrieve it. Ifa
command generates a response, you should use PmacCommRespStr.

PMAC responses are generally single lines. The exceptions to this are
commands like

LIST PROG n
LIST GATHER

LabVIEW string which will generate long multi-line responses. LabVIEW strings are happy to
controls do not treat a handle these. Depending on the size of the string indicator or control on your
<CR> as panel these may not wrap correctly. This is a LabVIEW issue. If you execute

anything other than a <CR>. It PmacTerminal and list a long gather buffer you will see this. There is also an
is possible to tie this keystroke to issue when entering strings using a control. The natural temptation is to expect
a control on the panel. Check that hitting <CR> will cause the string to be sent. LabVIEW doesn't work this

the LabVIEW documentation on ~ way. Panel values are input using the <Enter> key.

44 Chapter 4 — Application Basics

Ié?;}gggl‘; igation Option for The panel and diagram for this exercise demonstrate the use of these three

communication VIs. Execute the operations specified in step 1 through 4 on the
panel.

When you execute step 1 in this exercise, the following error dialog will appear
informing you of a problem with your command. If the dialog does not appear,
see the section PMAC Communication I[-Variables in Chapter 2 to modify your
PMAC’s communication configuration as specified.

Chapter 4 — Application Basics 45

=]|

Prnac Errar:
Last Command: #1}4

ERROOZ:
Data errar or unrecoghized command.

Solutiarn;
Cormect guntax of command.

Abhort Continue
CAUTION Until proper HW The error dialog appears because the command string “#1j\” is unrecognizable
safeties have been to PMAC. The correct syntax for the command is “#1j/”. When error dialogs
installed,
configured, and tested extreme appear you have the choice of aborting your application or continuing.
caution must be exercised when ~ Commands that generate errors are not executed by PMAC and cause no harm.
moving motors to prevent However, if your application logic continually attempts to send a bad command

damage and possible injury! Do to PMAC you may have no choice but to abort the application. Otherwise, you
not send a Jog command unless ~ may continue to get this dialog repeatedly. Your chances of halting the program
you are certain your actions will using the standard LabVIEW STOP button before your application attempts to
not damage your system or you! send the offending command again is unlikely. A

complete listing of PMAC error codes can be found in the PMAC User Manual
and PMAC Software Reference Manual.

The diagram for this tutorial demonstrates two basic things you must consider
when designing you application.

If you send commands to PMAC in response to an interface button click the
mechanical action of the button should be latched and the PMACPanel VI that
sends the command should be in a Case structure. Otherwise, the command will
be sent every iteration of the loop.

PmacCommRespStr and PmacCommGetStr indicate whether they received a
response using Response Available. Response String will be the Empty String if
nothing was received. It is generally good programming practice to test
Response Available before using Response String.

46 Chapter 4 — Application Basics

Dev
Open

Almu_st all Pma-::'_'lur'iew Yis R
require the Device Number 1 Send the string - Mo responze expected.

If there iz a response and it iz not fetched
by you the next time a command

i1z sent any waiting response is

dumped BEFORE executing the

new command

&

Resp d
[Command Sting 2| String ¥-~5bc]| [Response Sting
* [Send commands |

and fetch responsge| ||t there iz a response
dizplay it in the indicator

You can uge PmacCommGetStr to

retrieve unsolicted data or simply check

for more data in a responge. Thizs VI

first checks with PMAL to zee if it has
anything at all. Thiz iz not usually required.

[Unzolicited Stiing

Using these three basic VIs you could generate an entire, albeit complex,
PMACPanel application. The purpose of most of PMACPanel is to prevent you
from having to do this!

PMAC and PComm32 limit basic responses to 256 characters.
PmacCommRespStr and PmacCommGetStr handle this internally using the
VI PmacCommGetBuffer to retrieve longer responses. Your applications will
generally not make use of this VI.

e PmacCommGetBuffer - Check if PMAC has data available. When
Response Available is TRUE Response String contains all available data.
When Response Available is FALSE Response String is the empty string.
Responses are not parsed for PMAC ERR codes.

Get [~ Responze &vailable Bool [F)

Device Number i32 (0] " |eutier Fezponze Sting ['™']

Exercise PmacTutor3 shows how PMACPanel simplifies the sending of
commands in response to panel buttons and Boolean conditions.

PmacTutor2a - Communication Logging

This is a rather advanced topic, but one that we include here for completeness.
PMACPanel has the ability to log all communication between your application
and PMAC. You might use this to monitor what your users are doing or want to
log interesting sessions for later play back. PMACPanel maintains all
communication using the following VIs. Future versions of PMACPanel may
use this capability to implement a Graphical Motion Language.

Chapter 4 — Application Basics 47

e PmacCommGlobal - This VI is a global copy of the PmacCommGlobal
cluster used by several PmacComm VIs for error reporting and logging

purposes.

®

Comm

Pmac Communication Cluster This cluster maintains a
log of communication between PMACPanel and PMAC.

PMAC

PMAC

Command String Last on-line command sent to

Response String Last response received from

Communication Log String A multi-line buffer

of commands sent to PMAC and received from

PMAC.

Num Commands i32 The number of commands

sent to PMAC and logged in the Communication

Buffer.

TE]| Buffer Log Bool (F) When TRUE all
communication is appended and logged to the
Communication Log.

e PmacCommBuffer - When Log Enable is TRUE communication logging
is enabled. Log Enabled Bool, Log String, and Num Commands reflect the
state of the log buffer when logging is enabled. Log String is the empty
string, Num Commands = -1, and Log Enabled is FALSE when logging is
disabled. When Log Empty is TRUE the log buffer is emptied.

Lﬂg Enahlﬂ EDDI |:I:||T|IT|
Lug Empu' Bool -] B uffer

----------------- Log Enabled Bool [F]
% Log String [

T Mum Commands i32 [-1]

e PmacCommAppend - Copy Command String and Response String to the

Last Communication items in
TRUE they are also appended

PmacCommGlobal. If Logging Enabled is
to the Communication Log.

Command 5tring
Responsze String

Carnm
A pp'd

The panel for this exercise demonstrates how communication is logged. The VI

queries PMAC for the value of 112

3. When Good/Bad is clicked the incorrect

command -j is sent resulting in an error. You will see the log of this bad
command in the Command String and Response String items in the

PMAComunication Cluster on the

right. You will also see the error dialog pop-

up allowing you to continue or abort the application - click Continue.

48

Chapter 4 — Application Basics

333200

If you click the button Buffer Enable all communication is appended to
Communication Log Buffer in the cluster. You can stop logging by clicking
Buffer Disable. This only stops the logging of communications. If you click the
Buffer Empty box and click Buffer Enable, the buffer is cleared before logging
is enabled.

The diagram for this exercise is shown here.

Chapter 4 — Application Basics 49

Dew
Open

PmacTutor3

Get
String

Fesponze String

Good/Bad

FRezp
String

|H (=23

ponse 5trim_:||

[Proceszed Emor Stiing|

Comm

E rror

[Pmac Communication|

([®Fmac Comm Glabal Cluster =

omm

B Liffer

Comm
Buiffer

Buffer Empty

If you desire to use logging in your application you need to develop logic to
save the Log Buffer to a file. You should also realize that the size of this buffer
could grow VERY large if your application uses status-monitoring ICVs and
you don’t save and empty the contents of the log buffer at reasonable intervals.

- Sending Commands Using Buttons

PMACPanel contains the PmacButton collection of VIs that send a command
string to PMAC when an input button state is TRUE. Your applications panels
will make constant use of these capabilities.

e PmacButtGetStr - Send Command String to PMAC and wait for a
response when Button State is TRUE. When Response Available is TRUE
Response String contains the response. If Response Available is FALSE
Response String defaults to the empty string.

Device Humber 132 [0] —
Command 5tring ~

Button State Bool -

Bt
35t

----------------- Rezponze Available Bool [F]
Reponze String

e PmacButtSendStr - Send Command String to PMAC when Button State is
TRUE. Response Available is TRUE when PMAC has processed the
command.

Command String ~*

Device Humber 132 [0] —

Butt

Button State Bool

S5k

Reszponze Available Baoaol [F]

50

Chapter 4 — Application Basics

You should use PmacButtGetStr for commands that expect responses and
PmacButtSendStr for commands that do not expect responses.
PmacButtSendStr doesn’t return a response so the input Button State is passed
through to facilitate execution sequence dependencies.

The panel shown here demonstrates the use of these VIs, the conversion of
PMAC responses into numeric data for use in LabVIEW, and the use of non-
latched mechanical action to enable polled status for real-time.

You will note in the diagram for this VI that the sending of the command to
PMAC is simplified by the use of the PmacButtGetStr. The button is directly
supplied to the VI rather than wrapping the PmacCommRespStr VI in your
own case structure. Sending commands in response to buttons is so common
that this added capability makes application development significantly simpler.

Chapter 4 — Application Basics

51

Dew
Open

Command String is sent when the button is TRUE. It is important that
the Mechanical Action iz set to Latch When Pressed or some other
action that resets the state when read.

Butt

[Command String 1][be |

Send Pressed

% |kl [Position Response String|

The mechanical action of Send Latched requests Motor 1's position ["#1p"] az long as the switch iz
active. The response is fetched as a string and converted to a double for computation or display
by reading the numeric value from the response string.

PmacTutor4

See LabVIEW and
PMAC Numeric Data
Types in Chapter 3.

The second step in the diagram sends the command “#1p” to PMAC requesting
the position for motor #1 as long as the button is TRUE. The response string is
displayed both as a string and converted into a numerical value for display.
When sending any motor or coordinate system specific command to PMAC you
should include the motor or coordinate system number with the command to
prevent LabVIEW’s execution order from sending addresses and commands in
whatever order it desires.

The next exercise demonstrates how PMACPanel simplifies these operations
further.

- Button and Response Vis

The PmacResponse VIs send commands to PMAC and convert the ASCII
response string into LabVIEW numeric data types. This relieves you of having
to scatter string conversion VIs all over your application. There are more
members in the PmacButton collection introduced in PmacTutor3 that use the
PmacResponse VIs to convert ASCII string responses into numeric data.

PmacResponse

PmacResponse consists of 6 Vs - one for each type of numeric response
conversion supported. If you have a data type you truly want to support, you can
easily add it by copying and modifying one of these.

When using these Vls, refer to the PMAC Software Reference Manual,
determine the size of the response, whether it will be signed or unsigned, and
whether you will be manipulating the bits of the response. PmacRespGetDbl is
used to introduce the collection.

e PmacRespGetDbl - If Command String is not the empty string send it to
PMAC and wait for a response. If Response Available is TRUE Response
contains a valid response. Otherwise, Response is 0.0.

52

Chapter 4 — Application Basics

Device Humber 132 [0] Resp

Fezponze dyvailable Eoal [F]

Command 5tring Db

Rezponze Double [0.0]

The remaining five VIs operate the same and simply provide responses of the

appropriate type.

e PmacRespGetBool
e PmacRespGetShort

e PmacRespGetUShort

PmacRespGetLong

e PmacRespGetULong

PmacButton

PmacButton consists of six additional VIs beyond PmacButtGetStr and
PmacButtSendStr introduced in PmacTutor3. These six additional VIs
provide numerical responses. PmacButtGetDbl is used to introduce the

collection.

e PmacButtGetDbl - Send Command String to PMAC and wait for a
response when Button State is TRUE. When Response Available is TRUE
Response Double contains the response. If Response Available is FALSE

Response Double defaults to 0.0.

Device Number i32 [0 — g1
Command String ~*"""|50H|

----------------- Reszponze Available Baoaol [F]
Reszponze Daouble [0.00]

Button State Bool

The remaining five VIs operate the same and simply provide responses of the

appropriate type.

e PmacButtGetBool

PmacButtGetShort

PmacButtGetUShort

PmacButtGetLong

PmacButtGetULong

Step 1 of the exercise demonstrates that some response data is a little more than
a numerical value. Step 2 demonstrates how a single PmacResponse VI can be
used to provide a useful piece of data for your panel. When coupled with the
button concept, PMAC data can be requested and converted using a single VI.

Chapter 4 — Application Basics

53

Although the operations are more complex, the diagram is simpler. As we
progress through more exercises, the real power of PMACPanel will become
apparent.

[Status responses are not simple numeric values|

Dew
Open

Send Latched

Butt

[zbc]| [Response String 1]

[Motor #1 Realtime Position|

FRezp
Dbl

...... ‘{_'}

Thiz configuration places a request for
Motor 1°s position ["#1p”] every iteration of the loop. Mo button

iz used. Mo caze statement iz required to limit the update

of the indicator because a response iz fetched every iteration.
PmacRespDbl does the converion

from the ASCI rezponsze string into the LabY¥iew numeric.

M erging PmacBesponse and PmacButtons

together makesz your life even easier.

54

Chapter 4 — Application Basics

PmacTutor5 - Accessing PMAC Status

PmacTutor4 demonstrated the conversion of PMAC responses into numerical
LabVIEW data types. Several responses require conversions that are more
sophisticated. PMAC status is returned as 12 hexadecimal characters for a total
of two 24-bit status words. Because status is critical to successful integration of
PMAC with your LabVIEW application there are three VIs that request status
and convert it into two unsigned integers and two 24 element Boolean arrays.
The Boolean array representations allow you to select individual status bits for
your own use using LabVIEW index VIs. The unsigned integers can be used for
your own bit manipulation and testing using logical operators. These VIs are

e \PmacMotor\PmacMotorStat - Query PMAC for the status of Motor
Number. Report the two status words as arrays of Booleans and unsigned
32 bit integers.

Device Humber i32 [0) —{Motar|~"""" First “word 24 Element Boal ...

. L First “Word Binary Status u32
Motor Number 32 (1-8) (1) Stat Second Ward 24 Element Boal...

Second "Word Binary Status w32

e \PmacCoord\PmacCoordStat - Query PMAC for the status of the CS
specified by Coord Number. Report the two status words as arrays of
Booleans and unsigned 32 bit integers.

Device Humber i32 [0] —— I:u:u-:urd_l_ First Wiord 2{1 Element Baal ...
Coord Number 32 (1-8) (1] Chat Firzt "Word Binary Status udz

Second Word 24 Element Bool. .
Second *Word Binary Statuz w3z

¢ \PmacGlobal\PmacGlobalStat - Query PMAC for PMAC's global status.
Report the two status words as arrays of Booleans and unsigned 32 bit
integers.

)) Global Firzt Word 24 Elernent Baal ...
Device Number i32 [0] — Shat L First “Word Binary Status u32

a Second W ord 24 Element Baoal...
Second YWWord Binary Status w32

PMAC supports up to 8 Global status does not require a motor number or coordinate system number.
motors and coordinate The Motor Number and Coord Number inputs coerce the range to protect you

systems. If your PMAC has from mistakes. Status bit definitions can be found in the PMAC Software
fewer motors PMAC ignores Reference Manual. More status processing Vls are introduced in later exercises.
commands to them.

PMACPanel does not supply button versions of these VIs that fetch status when
the button input is TRUE. Status monitoring is generally not a user driven
operation.

The panel for this exercise demonstrates the use of PmacMotorStat. Use of the
coordinate system and global status Vs is identical. At the bottom of the panel
are the raw status Boolean arrays. You cannot specify Boolean text for
individual array elements hence they are left unlabeled. The contents of these
arrays can be indexed using standard LabVIEW array function Vs to select
specific bits for your needs. In this example, several common status bits are
used to drive indicators.

Chapter 4 — Application Basics 55

Depending on your needs the extraction of individual status bits is a tedious
task. Later exercises introduce PMACPanel ICVs that extract and display the
most common status bits for you thereby eliminating the tedium. The diagram
for the example is shown here.

56

Chapter 4 — Application Basics

| OE]| [Bit 23 - Mator Activated

-[CITE]| [Bit 22 - Meg End Limit S5l

Dev |CTE]|[Bit 21 - Pos End Limit Set]
Open -

-CTE]| [Bit 18 - Open Loop]

- Bit 17 - Running D efinite
Time Move

" [Eit 15 - Dwell In Progress|

»«w««{ [TF] ||First wWord 24 Element Bool Amray|

|—| [[EF | [First Word Binary Status i32]
Request Motor #1 b ator
Status Stat

[Bit 27 - Azsigned to C5)

~|=ZE1|[Bit 14 - Amp Enabled|

Bit 11 - Stopped on
Posz Limit

ILI' [Eit 10 - Home Complete]

-{CTE1| [Bit 3 - Amnp Fault Errai]

ILI' [Eiit 2 Fatal Fallowing Ermor]

Bit 1 - wamning
Fallowing Error

PmacTutor6 - Accessing PMAC I-Variables

On PMAC, I-variables (Initialization, or Set-up, Variables) determine the
personality of the controller for a given application. In general, this is a
supervisory task. They are at fixed locations in memory and have pre-defined
meanings. Most are integer values, and their range varies depending on the
particular variable. There are 1024 I-Variables, from 10 to 11023, and they are
organized as follows:

I-Variable Range Functional Group

10 -- 175 General card setup (global)
176 -- 199 Reserved for future use

Chapter 4 — Application Basics 57

1100 -- 1186 Motor #1 setup

1187 --1199 Coordinate System 1 setup

1200 -- 1286 Motor #2 setup

1287 -- 1299 Coordinate System 2 setup

3xx, 14xx, ... Motor #3, Coordinate System 3, ...
1800 -- 1886 Motor #8 setup

1887 -- 1899 Coordinate System 8 setup

1900 -- 1979 Encoder 1 - 16 setup (in groups of 5)
1980 -- 11023 Reserved for future use

To support this organization and facilitate access PMACPanel provides a special

collection of VIs to manipulate and access them. Each type of [-Variable,
Boolean, Short, Long, etc. has three VIs. The VIs for accessing Long (i32) I-
Variables are used to illustrate the interface.

e PmaclVarSetLong - Set the Long [-Variable specified by IVar Set Number

and I-Variable Number. The variable address is calculated as IVar Set
Number * 100 + I-Variable Number. [Var Set Number = 0 addresses global
I-Variables. IVar Set Numbers from 1 - 8 address motors and coordinate
system [-Variables.

Device Number 132 [0]) — |
IVar Set Humber 132 [0-9] [0) _I_—' Slng
I-'¥anable Humber 132 [0-99... _I_
Input ¥alue 132 [0]

e PmaclVarGetLong - Get the Long I-Variable specified by [Var Set

Number and I-Variable Number. The variable address is calculated as IVar

Set Number * 100 + I-Variable Number. [Var Set Number = 0 addresses
global [-Variables. IVar Set Numbers from 1 - 8 address motors and
coordinate system I-Variables.

Device Number i32 [0] —.; _
I'Var Set Humber 132 [0-9] [0] _I_—' Glng Rezponse 132
I'¥anable Humber 132 [0-99... _I_
Default i32 [0

PmacIVarLong - If Set\Get is FALSE or not wired get the Long I-Variable
specified by IVar Set Number and I-Variable Number. Response Available
will be TRUE to indicate Response contains the new value. If Set\Get is
TRUE set the Long I[-Variable using Input Value. Response Available will
be FALSE and Response defaults to Input Value.

The variable address is calculated as [Var Set Number * 100 + [-Variable
Number. [Var Set Number = 0 addresses global I-Variables. [Var Set
Numbers from 1 - 8 address motors and coordinate system I-Variables.

Device Number 132 [0])
SetsGet Boal [F] i o R tovailable Baal [F
Var Set Number 32 (0-9) [0) - —] Eﬂg H:ng:zz G;E'['DE; & Bool F]
I-Variable Number i32 (0-99... - R
Input Yalue 132 [0]

58

Chapter 4 — Application Basics

The first two [-Variable operations are obvious. The Get/Set VIs exists because
when developing GUISs to configure I-Variables you want to get them for display
and set them for modification. Grouping these operations together in a single VI
simplifies your diagrams. Note that the Set\Get terminal is not required. Ifit is
not wired the default operation for the VI is to Get the I-Variable. This type of
Set/Get VI architecture is very common in PMACPanel.

Identical sets of VIs are provided for

e PmaclVarDbl, PmacIVarGetDbl, PmaclIVarSetDbl
e PmaclVarBool, PmaclVarGetBool, PmacIVarSetBool

e PmacIVarShort, PmacIVarGetShort, PmacIVarSetShort

There are no string I-Variables. Many of the [-Variables are bit-mapped. ICVs
for collecting I-Variables into functional groups and manipulating the bit-
mapped I-Variables are introduced as required later.

To access an I-Variable the I-Variable Set Number and I-Variable Number are
used to compute the number of the requested I-Variable as shown.

100
=
[Iar Set Number i32 [0-9) (0] } IT1E] - -
I ariable Mumber i32 [0-93] (0]

Using this approach, development of ICVs that manipulate collections of I-
Variables for a particular motor or coordinate system is easy. PMACPanel does
not check to see whether the I-Variable being addressed exists, its type, or its
range. You can find this information in the PMAC Software Reference Manual.
The I-Variable clusters introduced later perform this type of range checking
where appropriate.

In addition to the organizational architecture I-Variables are accessed differently
by PComm32. You can use the PmacResponse VIs introduced in PmacTutor4
to access them. The problem is that depending on value of 19 I-Variable queries
may be returned as decimal or hexadecimal values. PMACPanel VIs in the
PmacResponse collection do not support the conversion of hexadecimal
responses into numerical data types. If you use PmacRespGetLong to request
an [-Variable like Ix25 you will get a response of zero if [9 =2 or 3 - not what
you want. If you use PmacIVarGetLong you get the proper binary
representation and you get the ability to organize your access into groups.

The panel for this exercise allows you to modify a few Motor PID loop I-
Variables. When creating your application’s VI panels you should limit the
range of controls to prevent potentially damaging data from being entered by the
user.

Chapter 4 — Application Basics 59

The diagram for this VI demonstrates two ways of implementing I-Variable
access. As a general principle, [-Variables should be read when your application
begins and anytime you access a different group. In this example, when the user
changes the Motor Number the application logic generates a Boolean condition
indicating this and re-initializes the panel controls. When the user clicks an
update button, the values contained in the controls are sent to PMAC.

60

Chapter 4 — Application Basics

Initiahize the |-¥ars when S et the 1-'Yarz when the
Hutur Mumber changes button iz hit

ix30: Prop Gain D

ix30: Prop Gain = £

|
ix31: Deny Gain]
ind1: Deriv Gain | (132] I._

|
ix33: Integ Gain E]

in33: Integ Gain

Generate an initialization condition when changing Motor Humber

Initial walue of -1 guarantees generation when starting ¥l
I

Dev
Open

cel/Get = TRUE when Pmacl¥ar... passes input value

P . thru when zetting. Mo need to
selting - FALSE otherwise test for Responze Available

[ix30: Prop Gain - Easy| :ier'_lrg ||i:-:3l:l: Prop Gain - Eas_l,l||

lix31: Deriv Gain - Eas_l,!| _“i:-:E'I: Dreriv Gain - Eas_l,l”
152
ix33: Integ Gain - Easy| _“ 3% Inteq Gair - Easy”

[d =]

The use of PmaclIVar... as opposed to the PmacIVarSet... and
PmaclIVarGet... VIs groups the controls into sub-units that are a little more
manageable. They are used extensively in the ICVs introduced later.

PmacTutor6b - Accessing PMAC Memory

PMAC makes extensive use of the Motorola S6K memory mapped architecture.
This includes various encoder registers, DAC and ADC values, digital I/O ports,
etc. Details of PMAC’s memory organization can be found in the PMAC
Software Reference Manual and should be consulted when accessing memory.

The PmacMemory collection of VIs simplifies your access and manipulation of
this architecture and its binary representation. LabVIEW numerical controls and
indicators can be configured to display this information as either hex or decimal
data independent of the integer representation of the data. Data is actually
received from PMAC and sent to PMAC in this collection using ASCII
hexadecimal strings.

Chapter 4 — Application Basics 61

When defining a PMAC address to access the Address Spec String input to the
following VIs can be in either hexadecimal or decimal form. Both strings below
access the same address

Y:$C000
Y:49152

Reading Memory Data

There are two VIs to read and manipulate memory data in various forms.
Remember that PMAC’s integers are 24-bit words.

e PmacMemoryRead - Read a 24-bit quantity from the memory location
specified by Address Spec String. For example, X:$002B. The result is
output as both an 132 and a Boolean array.

Device Number 132 [0]) Mem Output % alue 132
Address Spec String Read Output Boalean Aray

e PmacMemoryGet - Output Value is the value of the bit field defined by
Start Bit and Number of Bits at the specified memory address. Output the
field as both Output Value and Output Boolean Array.

Device Humber 132 [0] ——Mem
Addrezs Spec String -"f_l_ Get

Start Bit 132
Mumber of Bits 132 —I_

Output % alue 132
Output Boolean Array

The data retrieved from PMAC can be manipulated using the following VlIs.

e PmacMemoryGetBit - Bit Value is the bit at Bit Number in Input Value..

Input ¥alue i32 — Get

Bit Number i32 — Bit | Bit Value Bool

e PmacMemoryGetBits - Fetch the field defined by Start Bit and Number of
Bits from Input Value. Return the field as Output Value 132, Output
Boolean Array, and Bit Number (same as Output Value). Bit Boolean Array
can be used with sets of radio buttons. If Output Value = 3 then Bit
Boolean Array is 0, 0, 0, 1.

Input ¥alue i32 Get Output Y alue 132
Start Bit 132 — Bits % Output Boolean Array
Mumber of Bits i32 — | Bit Mumber i32
Bit Boaolean Array

Writing Memory Data

There are two VlIs to directly manipulate memory data in various forms. The
data is first read from PMAC, modified, then rewritten.

e PmacMemoryWrite - Write a 24 bit quantity (Input Value) to the memory
location specified by Address Spec String. For example, X:$002B. Pass
Input Value to Output Value and Output Boolean Array.

62

Chapter 4 — Application Basics

Device Humber 132 [0] — b
Addresz Spec String ~7 Write
Input ¥alue i32 —

Output % alue 132
Output Boolean Array

e PmacMemorySet - Write Input Value to a bit field defined by Start Bit and
Number of Bits at the specified memory address. Output Value and Output
Boolean Array are the value of the entire memory location with the new
field.

Device Humber i32 [0]) ———
Addressz Spec Stning Mem
Input Value 132 -
Start Bit 132 — 22

Mumber of Bits 132 —I_

Output % alue 132
Output Boolean Array

To implement these VIs the following two VIs are used to manipulate the data.

e PmacMemorySetBit - Set Bit Number in Input Value using Bit Value.
The new word is Output Value.

Input Yalue 532 — ot |
Bit Number i32 — " Bit Olutput ' alue 132
Bit Yalue Bool

e PmacMemorySetBits - Insert Field Value into Input Value at the field
defined by Start Bit and Number of Bits. Output Value is Input Value with
Field Value inserted. Output Boolean Array is the Boolean representation of
Output Value.

Input ¥alue 132 — Cat
Field Value i32 /| 2%

- - Bits
Start Bit 132 -
Mumber of Bits i32 —l_

Output % alue 132
Output Boalean Aray

Reading and Writing 48 Bit Memory Data

Double word (48-bit) memory data is handled differently than single word (24-
bit) data. PmacMemoryReadDbl and PmacMemoryWriteDbl provide two
representations of the data - native LabVIEW double and two 132 integers one
for the Hi X word and one for the Lo Y word. You should not attempt to access
bits using logical bitwise operations such as Value & 32 on the double
representation. You can test them using logical comparison operations such as
Value == 32. Bitwise operations on the Lo and Hi word are OK. Specifying
addresses for double words must be done using the following notation

L:$002b

Specifying the address as
D:$002b
is not recognized by PMAC.

e PmacMemoryReadDbl - Read a 48-bit quantity from the memory location
specified by Address Spec String. For example, L:$002B. The result is
output as both a double and a hi-word and lo-word.

Chapter 4 — Application Basics

63

Dew

Device Number i32 [0) — piem
Addresz Spec String

Output Y alue 132

[Output Hi'word 132
RADb—__ 5 int Lo word 132

e PmacMemoryWriteDbl - Write a 48 bit quantity (Input Value) to the

memory location specified by Address
Input Value is copied to Output Value.

Device Number 132 [0] ——

Spec String. For example, L:$002B.

Addresz Spec String Mem

Output % alue Dbl

Input Yalue Dbl T —— Output Hi'word i22
Input Hi wWord 132 f OB— _ f it Lo word (32

[nput Lo 'wiord (32

The panel for the exercise demonstrates the reading of a memory location
containing the standard Machine Input at Y:$FFC2 to the standard Machine
Output at Y:$FFC2. It also demonstrates accessing the 48-bit long word
L:$002B that is the Present Actual Position for motor 1.

The diagram for this exercise demonstrates how the lower 8 bits of Y:$FFC2 are
written to the same memory location 8 bits higher.

[Read lower & bits| |1.J:$FF|€2| fwfrite them 8 bits higher]

Open

kem

FFFC2
m @—-El:tm [TF] SEt 1[TF]

p-$ffc? contains

a variety of info that
iz found on PMAL J5

B

[r:$FFC2 Machine Input| fr:$FFC2

M achineDutput]

——[06L| [Dutput Yalue i32]

Mem | e - -
30000 FI-:IDI:_|-| [Dutput Hi Word i32]

[

= [15Z]| |Dutput Lo Word i32|

L-$002b iz the scaled present actual
pozition for motor #1. Get the double value
and itz lo/hi integer representation

64

Chapter 4 — Application Basics

PMACPanel ICVs

The previous set of exercises introduced you to PMACPanel’s Device,
Communication, and Query/Response interfaces to PMAC. They handle the
details of sending commands and requests to PMAC and converting basic
responses into LabVIEW data formats. The exercises in this section introduce
another level of PMACPanel capabilities that provide indicators, controls, and
VIs for many of PMAC’s most common on-line commands. These VIs

e Handle queries for motor, coordinate system, and global
commands

e Define common indicator and control clusters for use on your
panels

e Implement function VIs for the indicators and controls

Using these as is, and modifying those that you desire, allows you to create great
looking panels for your applications quickly. PMACPanel’s ICV collections are
organized into five categories.

e PmacAcc

PmacMotor

PmacMotors

PmacCoord

e PmacGlobal

Each of these categories has several exercises to introduce its capabilities. You
will also find similar examples in their respective sub-directories.

Each tutorial introduces an example and then selectively drills its way into
supporting VIs. In doing so you, as the developer, will get a deeper
understanding of PMACPanel internals so that you can address potential
limitations in your design and enhance its capabilities to suit your specific
requirements.

On-line Commands

PMAC provides a very large selection of on-line commands for monitoring and
control. Any of these commands can be sent to PMAC using the VIs already
introduced. Not every command is supported or used by the ICVs introduced
here. Some are rarely used. Some should really be used from Pewn32. Others
are potentially dangerous (O100 turns a motor on 100%!). Many would and
some should never be used in a user application. A complete listing of available
commands and their use can be found in the PMAC Software Reference Manual.
The PMAC on-line commands used by PMACPanel Vls are listed here.

Global Commands

Addressing mode commands

Report currently addressed CS

Chapter 4 — Application Basics

65

Buffer control commands
CLOSE

DELETE GATHER

LIST PLC

LIST PROG

SIZE

Control-character commands
<CONTROL A>
<CONTROL D>
<CONTROL F>
<CONTROL K>
<CONTROL P>
<CONTROL Q>
<CONTROL R>

<CONTROL S>

<CONTROL V>

General global commands
333

$$$***

222

SAVE

Global variable commands
L P,Q,and M

PLC control commands
DISABLE PLC
ENABLE PLC

Register access commands
R[H]{address}
W{address}

Close an open program buffer
Return gather buffer space
List a PLC in memory

List a program in memory

Return available buffer space

Abort all programs and moves
Disable all PLC programs

Report following errors for all motors
Kill all motors

Report position of all motors

Quit all executing motion programs

Begin execution of motion programs
in all coordinate systems

Step working motion programs in all
coordinate systems

Report velocity of all motors

Full card reset
Reinitialize PMAC to factory default
Report global status words

Save current configuration to
NOVRAM

Variable access in numerous ways.

Disable a PLC program
Enable a PLC program

Read data from memory

Write data to memory

66

Chapter 4 — Application Basics

Coordinate System
Commands

Axis definition commands

#{constant}->

Buffer control commands
LIST PC, PE

General CS commands

2?

Program control commands

©w RO E & >

Motor Commands

General motor commands
$

HOME

HOMEZ

Jogging commands
J+

J*{constant}

J

J-

J={constant}

Query PMAC for motor definition in
CS

List program at Program Execution

Report coordinate system status
words

Abort program
Begin program
Hold program
Quit program
Run program

Step program

Reset motor
Home
Zero move home

Kill output

Jog positive

Jog relative to actual position
Jog stop

Jog negative

Jog to position

Chapter 4 — Application Basics

67

Return to pre-jog

Reporting commands

P
\%
F

Report addressed motor position
Report addressed motor velocity

Report addressed motor following
error

Report addressed motor status

PmacMotor ICVs

PmacTutor7

Jogging

This series of exercises introduce the contents of the PmacMotor collection of
ICVs. These allow your applications to add configuration, control, and
monitoring for individual motors to your applications.

- Position, Velocity, Error, and

The most basic motion operations involve controlling or jogging motors under
manual control and monitoring the position, velocity, and following error during
the move.

Requesting and Formatting P, V, and E

PmacMotor has three VIs that request and format motor position, velocity, and
following error for your use. These require a Coordinate Specify Cluster input.
This cluster is more of a data type than a cluster associated with a specific
control. It is often assembled from controls in your own application. It is
defined as

Coord Specify Cluster Cluster defining the motor, CS, and
conversion state to be applied

Coord Number i32 (1-8) (1) Coordinate number to
use

Motor Number i32 (1-8) (1) Motor Number to use

Convert Bool Apply a conversion for the specified
motor in the specified CS

The Vs are:

e PmacMotorPosition - Query PMAC for Motor Number's position. PMAC
reports the value of the actual position register plus the position bias register
plus the compensation correction register, and if bit 16 of Ix05 is 1
(handwheel offset mode), minus the master position register.

68

Chapter 4 — Application Basics

Coord Specify Cluster specifies a motor within a CS and an attempt to
convert motor position from encoder counts to CS units. If the motor is not
defined in the CS no conversion is applied. If the motor is defined and
Convert is TRUE Coord Defined is TRUE and position is scaled from
encoder counts to CS units. Coord Definition is a string specifying position
units as "Encoder" or the CS definition of the motor.

Device Number i32 [0] — ot ™" Coord Defined Bool

Coord Specify Cluster === Pog oy EE;’:&DBS;ﬂ?ﬁ Shring

PmacMotorVelocity - Query PMAC for Motor Number's present actual
motor velocity, scaled in counts/servo cycle, rounded to the nearest tenth.
The raw response reports the contents of the motor actual velocity register
(divided by [Ix09*32]). This is converted to counts/msec by multiplying by
8,388,608 and dividing by the 110 default 3,713,707. If 110 is changed,
modify this value in the diagram.

Device Humber 132 [0] —tatar] ™" Coord Defined Bool

Coord Spocty Chstr ——L Vel |~ {ebciybose |

PmacMotorError - Query PMAC for Motor Number's following error.
Following error is the difference between motor desired and measured
position at any instant. When the motor is open-loop (killed or enabled),
following error does not exist and PMAC reports a value of zero.

Device Number i32 (0] — ot Coord Defined Bool

Coord Specify Cluster Errof g EDDLDEB%EJESHDE?;&'S

The implementations of these VIs rely on the PmacCoord collection to convert

values reported in motor encoder counts

to coordinate system units. This

capability is a fundamental component of PMACPanel. You will get tired of
seeing the description of this process. The diagram for PmacMotorPosition

shows that these VIs format a command

string to request the desired motor

position and let PmacCoordMotor2Coord process the response. The details of
this implementation are left until later and gets involved.

| Coord Defined Bool|

[Device Number i32 [D)] I@I |

[Coord Specify Cluster|

Resp

|

Dbl 2o Position Double

[Coord Definition Sting|

e PmacCoordMotor2Coord - Coord

Specify Cluster specifies a motor

within a CS and an attempt to convert Input Value from encoder counts to
CS units. If the motor is not defined in the CS, no conversion is applied. If
the motor is defined and Convert is TRUE Coord Defined is TRUE and
Output Value is scaled from encoder counts to CS units. Coord Definition
is a string specifying Output Value units as "Encoder" or the CS definition

of the motor.

Chapter 4 — Application Basics

69

Device HNumber 132 (0] Coond Coord Defined Boal
Coord Specify Cluster == S Caor "‘"""L: Cutput "-.-"a!u,al Du:uul:u!e
Input Value Double — Coord Definition S tring

PmacMotorPVE is an extension of the position, velocity, and following error
VIs that combine them into a single VI that can be used to drive the
PmacMotorPVE indicator. The use of these VIs is shown in the diagram
below.

e PmacMotorPVE - Query PMAC for the position, velocity, and following
error for Motor Number operating in Coord Number. Assemble the
measurements into Motor PVE Cluster. If Convert is TRUE convert the
measurements to CS units. Otherwise, leave them in encoder counts. See
the documentation for PmacMotorPosition, PmacMotorVelocity, and
PmacMotorError for details on how these individual values are produced.

Device Humber 132 [0] ——Motor
Coord 5pecify Cluster PYE Motor FVE Clster

The indicator color 15 set using
Dev an attribute node created from

Open the terminal
Coord
T52) i | Color| |*Text Color

_I 132
I32 T 37 Wiy
— TF

[Motor Humber - Position
TE
Caord|)

Motor PYE bundles all

d : Coord| [.
three ¥lz on the right into Color Following Error

one.

Motor Jog | Motor —[06L]| [Following Error|

aszembles and A otar

sends PMAC the Jog PVE ['You can fetch any on-line motor state

iat . .
:Eﬁ:;g::g Fm : lpou wish with theze three ¥ls.PmacCoordColor
each button in Sao outputz a color constant of orange or blue

the Jog cluster Motor N Jog [d:espe:::ltlr?cuur:l:l:;tiltl:r the response state is in

Errior

Clustering C5, Motor, and Converison
together into Coordinate Specify type
m eliminates two terminals. "E}

A Coordinate Specify Cluster is assembled from three controls on the panel.
Each of the individual Position, Velocity, and Error VIs receives the cluster.
The P, V, and E VI outputs are used to drive three individual numeric indicators.
In this example, the indicators have an attribute node to set their color. The
color for the text is provided by PmacCoordColor. The indicator color is
Orange if the reported value is in CS units and Blue if it is in encoder counts.

70 Chapter 4 — Application Basics

Theze controlzs have
bounded ranges and
define which motor to
Jog.

If the motor iz defined
in a coordinate system
the motor definition can
be used to convert
commands and
measurements between
C.5. umtz and

encoder counts

Motor N Jog

The panel for this exercise shows the indicators and the Boolean used to specify
the units for P, V, and E displays.

Thiz decoration containg individual indicators for the dizplay of common
motion states. Each component iz requested individually.

4
3

1

5 Motion N Motion|

° N Postior
24 | ’?
ra

I V< locity

C.5. Units ﬁ

o ‘_ Following Error

Coord System Motor N PVE

4

1

Motor Humber

5

cluster displays a motor's

pozition. velocity, and fFollowing error.

36 | p | T
s) 7 v _ It's azzociated ¥l requestz and
-

g E _ packagesz all three for dizsplay in

E d thiz cluzster. The bottom LED iz orange
-::J D when the digplay i in C.5_ units

\—} Stop

:_,f

Fre Jog Jog Relative
Jog To Make Fre Jog

Pmac¥IEW dizplayz motion
states in two colors:

Blue -* Encoder Counts
Orange -» C.5_ Units

L
47

k

0.0 10 20 20 40 50 60 70 80 90 10.0

Encoder Counts | [D

Thiz cluster groups the most common motor Jog commands into an easy to use control.

You should not - we did not - mix indicators and controls in clusters. The numeric control is

uzed tied to the zhder control and specifies where to Jog To or how much to Jog Relative.

“Encoder Counts™ tellz the control’s ¥l whether to interpret this value in encoder counts or C.5_ units.

Generating On-Line Jog Commands

The front panel contains a cluster of controls defined by

PmacMotorJogControl to group the most

commonly used jog operations into a

single panel item. This cluster must be used with its associated function VI to

generate jog commands for PMAC.

e PmacMotorJogControl - Generate PMAC on-line commands for
controlling jogging Motor Number. Command Executed Bool is TRUE
when any button is clicked in Motor Jog Cluster. The value in the numeric
control specifies the position Jog To and Jog Relative jog the motor to.
This value is interpreted as either Encoder Counts (Default) or Coordinate
Units in Coord Number as specified on the button. The button state is
provided as the output Convert To Coordinate. This VI builds a Coord
Specify Cluster using the various inputs to simplify the interface to
PmacMotorPVE and other PMACPanel ICVs.

Device Humber 132 [0])
Coordinate System i32 [1-8])._. -

b abar Convert To Coordinate Bool
"""""" - Command Executed Bool [F]
F e Coord S pecify Cluster

Jog

Motor Mumber 132 [1-8] [1] f

Motor Jog Control Cluster

Chapter 4 — Application Basics

71

When buttons in the cluster are clicked the appropriate on-line command is
assembled and sent to PMAC. The diagram for this VI illustrates the general
architecture PMACPanel uses to generate on-line commands from control
clusters.

[Uszer

Vlz might want to know when a command was executed|

......... |75]| [Command Executed Bool [F]]

[TTTTT
=

[Aszemble the appropriate command based on which button was hit]

[tator Jog Control Cluster]

Device Mumber i32 (0]

==
= I | T
g E;tt Butt | [Butt
| 455k
L E: 2 S5k S.Str
d | EE
DT - Fttz:dic]
]
]

[Coord Humber i32 [1-8] (1]
152

132

T32kme Coord

ZEnc

[k ator Numl:uer_ i32 [1-81 (11

hssehhle a Coord Specify Cluster] Jog commands are always in encoder counts
H H

If the control value iz in C.5_ Units convert them

|[::uurd 5pecify Cluster]

|| [Convert To Coordinate Bool|

If you generate Motor
or C.S. specific
commands always send

the

Motor or C.S. number along with
the command.

There are a few things to note about the organization of this VI. Unbundled
command buttons are used in conjunction with a string format VI and
PmacButtSendStr to create and send an appropriate command to PMAC. The

position parameter required by some commands is converted into encoder units
if the actual control value is in C.S. units. Using this architecture eliminates
many case structures and allows you to add or delete commands as required.

Using PmacMotorJogControl and its cluster with PmacMotorPVE and its
cluster you can quickly add motor jogging and position monitoring on any
panel.

Control Clusters and Local Variables

It has already been noted that clusters should contain either indicators or
controls but not both. This is a generally bad idea in LabVIEW and because
PMACPanel uses latched Boolean controls in most of its control clusters an
extremely bad idea. When a VI reads the state of a latched Boolean control the
control is reset. Hence, if there were two users of the Boolean state the second
one to read the state would get the wrong answer. A corollary to this rule is that
you cannot use local variable copies of control clusters that contain latched
Boolean controls.

72

Chapter 4 — Application Basics

PmacTutor8 - Motor Control with Status
Monitoring

This exercise introduces another PmacMotor control and several indicator
clusters for displaying motor status. As with the PmacMotorJogControl, status
clusters require an associated VI to query PMAC for the required information
and assemble it into a useful form.

This is the first exercise to actually generate an application you can really use to
exercise PMAC. The panel contains PmacMotorJogControl and
PmacMotorPVE already introduced. In addition, there is a
PmacMotorLimitControl and two new status clusters. The VIs for the new
panel are

e PmacMotorLimitControl - Generate PMAC on-line commands for
controlling move limits and operation for Motor Number. Command
Executed Bool is TRUE when any button is clicked in Motor Limit Cluster.

Device Humber 132 [0] b atar
Motor Humber 132 [1-8] [1] —
Motor Limit Cluster =

Limi Command E xecuted Boal [F]
ks

e PmacMotorStatJog - Create a status indicator cluster for the
PmacMotorStatJog indicator containing the status for Motor Number.

Device Mumber 132 [0) —{rotaor
Motor Number i32 (1-8) (1) —JDgSthDtm Status Jog Cluster

e PmacMotorStatLimit - Create a status indicator cluster for the
PmacMotorStatLimit indicator containing the status for Motor Number.

Device Number i32 (0] —{piatar

Motor Number i32 [1-8) (1] LimGt e W] abar Lirnit Status Cluster

Chapter 4 — Application Basics 73

This panel, captured while actually running, demonstrates how useful these new
capabilities are. The jog control indicates a move to a position of 23.4 defined in
Coordinate Units not motor encoder counts. The PVE indicator has an Orange
LED indicating that the displayed position, velocity, and following errors are in
CS units. Furthermore, because the Coord System dial is set to 1, that motor 1 is
defined as #1->1000X in CS 1. The status indicators show that Motor 1 is
Assigned to a CS, Enabled, and in Closed Loop mode. Furthermore, that it is
Not In Position and there is a Warning Following Error. You will note that the
position in the Jog Control is specified as 23.4 CS Units and the PVE indicator
shows an actual position of 24.6 CS Units. If you are actually running this
exercise turn on Help by selecting Help»Show Help. As your cursor moves
over the various indicator and control items in the clusters detailed help for each
panel item is displayed.

The diagram for this panel is very simple because PMACPanel handles all the
details for you. There are two control clusters, one PVE cluster, and two status
clusters each with its associated function VI. Add two dials and you've created
Jog application. You will note that the Coord Specify Cluster requires by
PmacMotorPVE is constructed by PmacMotorJog.

Chapter 4 — Application Basics

Diew
Open

o [F== | [Motor PYE]

[Motor Jog Control]

[

=[5]| [Motor Jog Stat]

F=[===]| [Motor Limit Stat]

[Motor Limit Euntml| ------ \:{—}

Hierarchical Encapsulation

PMACPanel attempts to break panel clusters and function VIs into manageable
chunks that group functionality. Using this approach, you can piece together
those items you need to build your application. Each VI builds on top of the
capabilities provided by still lower levels until almost everything funnels
through PmacCommSendStr and PmacCommRespStr. In using proper
program design, the result is easier to maintain and modify for your own
purposes. The VI Hierarchy for this exercise is shown here to illustrate this
point.

Dew
Serial

Butt
ooy [F

Coord
2Enc .

Chapter 4 — Application Basics 75

Accessing Status Bits

To illustrate how PMACPanel handles status information the diagram for
PmacMotorStatJog is shown here. The VI calls the PmacMotorStat VI
covered in PmacTutor5 and the Boolean array for each status word is indexed
to get the desired bit. The individual bits are assembled into a cluster for use by
the indicator. Notice that a string is created indicating the associated motor in
the status cluster. It automatically updates the indicator cluster so that you don’t
have to. If you don’t want this simply eliminate it from the cluster and modify

the panel cluster.

[Mator Stabus Jog Cluster]

) o
-t
) o
-t
| —
D evice Mumber i32 0] — E o 3
o)== [TF]
hdotor |
Ifill Stat
[ctar Mumber i32 (1-8] [11] = TF]
) ol
.1
Motor Status Vs

For completeness, PMACPanel provides indicator/VI pairs to monitor all bits in
both motor status words. You can copy the individual cluster items into your
own clusters to avoid creating them from scratch. Each cluster LED has been
carefully constructed to include detailed help, labeling, and Boolean text. The

icons along with the panel clusters are

e PmacMotorStatl - Create a status indicator cluster for the
PmacMotorStatl indicator containing the status for Motor Number.

Device Number 132 (0] —{Mataor
Motor Humber i32 [1-8) [1] —5tat

e by obr Status Ward 1 Cluster

76

Chapter 4 — Application Basics

e PmacMotorStat2 - Create a status indicator cluster for the
PmacMotorStat2 indicator containing the status for Motor Number.

Device Humber 132 [0] —Mator

Motor Number i32 [1-8) (1] ——15tat2 Motor Status Word 2

These clusters are organized to reflect the 4-bit organization of the status words.
The first column is for the first four bits (23-20), the second column for the
second four (19-16), etc. You should note that some bits are not defined hence
they are Reserved or For Internal Use. Also, note that for motor status word 2
three bits are interpreted as the coordinate system to which the motor is
assigned.

A Word on Status Indicator Colors

Human factor considerations play a major role in how you assign colors to your
application’s status indicators. Is Green good? Is it TRUE? If Green is TRUE
and Red is FALSE then an Amplifier Fault is Green although it is probably not
good. Setting up your definitions can be very confusing.

In PMACPanel status indicators attempt to convey a generally useful meaning
by the LED’s color and text. To clarify this a few examples are covered in more
detail. You should feel free to change colors and text to reflect the intent within
your application.

e Following Errors: These are Red when there is an error. For these status
bits that means the bit is TRUE. When the bit is FALSE the indicators are
Gray - there is no error. Gray can generally be interpreted as NOT TRUE

Chapter 4 — Application Basics

77

or not dangerous. The text in the indicator says what the indicator is -
“Warning Following Error” either way.

e In Position: This indicator is Red when the motor is Not In Position - the
bit is FALSE. Its text says - “Not In Position”. The indicator is Green and
says “In Position” when the motor is in position - the bit is TRUE. Imagine
a situation where motor Not In Position means its moving, therefore your
program is running, and that is good. Do you now make the indicator
Green?

e Home in Progress: This is Gray when there is no Home in Progress. This
doesn’t mean that the motor has been homed. When the motor is homing,
the indicator is Green. It may well be that you want this to be Red when the
motor is homing. The choice is yours.

PmacTutor9 - Motor I-Variable Configuration

In PmacTutor6, the general architecture for developing supervisory VIs for
modifying individual I-Variables was introduced. In this exercise four VIs to
encapsulate the most common motor I-Variables are introduced. This type of
hierarchical I-Variable architecture is used throughout PMACPanel.

e PmacMotorIVarPID - Follow PMACPanel's standard I-Variable VI
architecture. When Set/Get is TRUE the PID I-Variables for the specified
Motor Number are set. Otherwise they are fetched from PMAC and
provided by Output Motor I-PID Cluster with New Output TRUE. Set/Get
is not required and defaults to a Get operation.

Device Number 132 [0] —

- MDtD[................ NEW Dutput EDI:I' [F]
Motor Humber 132 [1] - .- I PID | Cltput Motor |-PID Cluster

SetvGet Boal [F]
Input Motor |-PID Cluster mr

e PmacMotorIVarMove - Follow PMACPanel's standard [-Variable VI
architecture. When Set/Get is TRUE the movement I-Variables for the
specified Motor Number are set. Otherwise they are fetched from PMAC
and provided by Output Motor I-Move Cluster with New Output TRUE.
Set/Get is not required and defaults to a Get operation.

Dﬁvice :umger |§§ [1I.'I] —motar New Dutput Boal [F)
otor Number i32 [1] Moy e Qutput Motor [-Move Cluster
Set\Get Boal [F] mﬂ“‘

Input Motor |-Move Cluster

e PmacMotorIVarSafety - Follow PMACPanel's standard I-Variable VI
architecture. When Set/Get is TRUE the safety I-Variables for the specified
Motor Number are set. Otherwise they are fetched from PMAC and
provided by Output Motor I-Safety Cluster with New Output TRUE.
Set/Get is not required and defaults to a Get operation.

Ogice Rumber 52 (8 ——fro— New OB)

SetyGet Bool [F) mr |-5 afe Cutput Motor |-5 afety Cluster
Input Motor |-5afety Cluster

Chapter 4 — Application Basics

e PmacMotorIVarFlag - Follow PMACPanel's standard I-Variable VI
architecture. When Set/Get is TRUE the encoder flag I-Variable Ix25 for
the specified Coord Number are set. Otherwise they are fetched from
PMAC and provided by Output Coord I-Flag Cluster with New Output
TRUE. Set/Get is not required and defaults to a Get operation.

Device Humber 132 [0] — Matar |- Mew Output Boal [F]

Motor Humber 132 [1-8] [1] - .- Flags jeseee=s Outpust M atar |-Flag Cluster

Set/Get Boal [F]
Input Motor I-Flag Cluster m:r

The panel for this exercise shows the three main PmacMotorIVar clusters.
PmacMotorIVarFlag is actually a sub-cluster in PmacMotorIVarSafety.

To change the I-Variables click the Change I-Vars button. Each item in the
cluster has a full description that is accessible using Help»Show Help. Because
we have defined each item in the clusters as referencing a specific [-Variable,
we have specified the item units and appropriate data ranges for each item

Chapter 4 — Application Basics 79

The diagram for the exercise demonstrates why using these ICVs makes life
easier. The Boolean criteria for executing the case are the same as in
PmacTutor6. It is executed whenever Motor Number is changed or the button
is clicked. When the case is executed because of a change in Motor Number,
the VIs perform a get operation and refresh the cluster contents with the
configuration of the new motor.

M otor Humber o True b
b okor

Drew

m Change |-ar : u[_:.:;,

e |-FID p=| PID | ars
PID 1-¥ars

b akar

-ty @
o] (e |

[

Open

The observant reader will note that the VI makes use of local copies of the panel
control/indicator clusters. Those clusters that contain Boolean controls like
PmacMotorIVarPID and PmacMotorIVarFlag have their Booleans set for
Pressed mechanical action not latched action. They are not used to initiate a
command or action. This doesn’t violate the basic caution on using local copies
of control clusters noted in this document in several places.

Grouping Multiple I-Variables

It should now be obvious why the PmaclIVar... VIs require an [-Var Set
Number. It allows them to be grouped by motor and/or coordinate system. To
accomplish this it is only necessary to extend the concept to a slightly higher
level. The diagram for PmacMotorIVarSafety is shown here. You should note
that when one I-Variable is set they are all set whether or not they have changed.
Therefore, the contents of the cluster should be refreshed by a Get operation
prior to changing individual items and performing a Set operation. Controls and
indicators for your panels should have the appropriate type and range defined to
prevent inadvertent user inputs.

80

Chapter 4 — Application Basics

[5etsGet Bool [F]]
=

[Device Humber i32 [0]]

1
I ar OE}'
.: Lang
[
[ar
s |
- Bf'jr [New Dutput Bool [F]]
13]
[1
T2 I"»-"ar 13t
[Input Motor |-Safety | [5] Dbl b [Input Motor 1-5afety Cluster|
e, [n NP |
e [\ ar CE
DEL] OE|
= Db De
[ar
ER
|
[ar
Dbl
I
[ar
[E}{ Dbl
b cibior
Flags
T5Z |

[Motor Humber i32 [1]]

PmacMotors ICVs

This series of exercises introduce the PmacMotors collection of ICVs. These
allow your applications to monitor and plot the motion of multiple motors.

PmacTutor10 - Requesting and Plotting Motor
Motion

This exercise introduces a number of indicators, controls, and VIs for requesting
the motion of all motors. The data can be displayed on a PMACPanel cluster
indicator, plotted in a strip chart, or analyzed using LabVIEW’s extensive
analysis capabilities. VIs for setting plot legends and selecting which motors to
plot can be used to create flexible interfaces.

The primary query Vls in the collection request PMAC position, velocity, and
following errors for all motors. They are not based on their counterparts in
PmacMotor. These are

e PmacMotorsPositions - Query PMAC for the positions for all motors.
PMAC reports the value of the actual position register plus the position bias
register plus the compensation correction register, and if bit 16 of Ix05 is 1
(handwheel offset mode), minus the master position register.

Chapter 4 — Application Basics 81

Assemble the measurements into PmacMotorsPVE Cluster. If Convert To
Coord is TRUE convert the measurements to CS units for those motors
defined in the CS. Otherwise, leave them in encoder counts.

Device Humber 132 [0] —

Coord Humber i32 [1-8] (1] - Motrs Matars Position Cluzsher

Convert To Coord Bool 7 Pos

PmacMotorsVelocities - Query PMAC for all motor's present actual motor
velocity, scaled in counts/servo cycle, rounded to the nearest tenth. The raw
response reports the contents of the motor actual velocity register (divided
by [Ix09*32]). This is converted to counts/msec by multiplying by
8,388,608 and dividing by the I10 default 3,713,707. If 110 is changed,
modify this value in the diagram.

Device Humber 132 [0] —

Coord Humber i32 [1-8] [1] = Motrs Fatars Welocity Cluster

Convert To Coord Bool ¥ el

PmacMotorsErrors - Query PMAC for the following errors for all motors.
Following error is the difference between a motor's desired and measured
position at any instant. When a motor is open-loop (killed or enabled),
following error does not exist and PMAC reports a value of 0.

Device Humber i32 [0] b aibrs
Coord Humber 132 [1-8] [1] — E rrar
Convert To Coord Bool "

kdabar Error Cluster

The diagram for PmacMotorsPositions shows that a command string is sent
requesting the position. This command is a control code and requires the proper
option be set for the string constant. The response will have as many positions
as there are motors in PMAC. The responses are converted into an array and
processed by PmacCoordMotors2Coord. Which assembles the results into a
cluster for display on a PmacMotorsPVE cluster. This is different from a
PmacMotorPVE cluster

Device Number 32 (0] kA4 %0 %0 1 1 2t %

132 ||

—|

Resp |

105 tring -

This stning has the
option for

"' Codes Dizplay
zelected

t Convert the
response into
an amray

of positions

o e T

[Motors Position Cluster|

Coordl__ =77
L M2C

[Coord Mumber i32 [1-8] [1]]

Convert positions to

C.5. units if enabled

[Convert To Coord Bool|

The PmacMotorsPVE cluster is comprised of an array of values, a Boolean
array to indicate which motors have been converted to C.S. units, and a text

82

Chapter 4 — Application Basics

label for the cluster indicating which C.S. the display is using for those motors
displayed in C.S. units.

Motors PVE Cluster The indicator cluster displays an array
of values for all PMAC motors. The array may be positions,
velocities, or following errors. The array of Boolean
indicators indicate which values are in CS units. The caption
specifies the displayed values as being in encoder counts or a
specific CS.

See the documentation for PmacMotor (s)Position,
PmacMotor(s)Velocity, and PmacMotor(s)Error for details on
how these individual values are produced.

[bEL]| Motor Value Array Array of numerics for
positions, velocities, or following errors for each
motor. See the documentation for PmacMotor(s)
Position, PmacMotor(s)Velocity, and
PmacMotor(s)Error for details on how these
individual values are produced.

[TF]] C.S. Defined Array of Booleans indicating which
motors are displayed in CS Units.

C.S. Applied Caption indicating the currently
addressed coordinate system or that the displayed
values are in Encode Counts.

The conversion of motor states from encoder counts to CS Units operates similar
to PmacCoordMotorToCoord introduced in PmacTutor7. It is

e PmacCoordMotorsToCoord - Generate an indicator cluster for
PmacMotorsPVE. Input Value Double is an array of positions, velocities,
or following errors from VIs in the PmacMotors collection. If Convert To
Coord is TRUE fetch the CS definitions for the motors specified in Coord
Number and scale them to CS units. Motors not defined in Coord Number
are not scaled.

Device Number 132 (0] —Coord
Input ¥alue Double Array ' MDEDIr: o= b ator s PYE Cluster
Coord Humber 132 [1-8] [1] o
Convert To Coord Bool -~

The panel for the exercise uses the familiar jog control with LabVIEW menu
rings for selecting the motor number and coordinate system number. The
PmacMotorsPVE cluster and a C.S. definition cluster display the motor
positions and motor definitions in the addressed CS. The plot is a standard strip
chart with Auto Scaling on the Y-Axis. To plot one or more motors click the
appropriate radio button. The colors for the plots and the legend are
automatically updated.

Chapter 4 — Application Basics

83

Theze predefined
clusters display motor
states using

the zame standards as
PmacMotorPYE.

Position C.5 Defs

Motor 1
Motor 2
Motor 3

The legend and plot
colors are configured by
PmacMotorzPlotSelect

Motor 4
Motor b
Motor &
Motor 7
Motor &

Tur Tar vms Ttas Vg Rar vmg :‘.k::>|

Pmac Motors Chart

Encoder

-80.0-}

1209 1300

M atar 1 Plot Select
otar 2 Motor 1
bokor 3 Motor 2
batar 4 Motor 3

Motor 4
Motor 5
Motor 6
Motor 7
Motor 8

1220 1340 1360 1378 UFT seylam|

Motor 2 VI

Fre Jog Jog Relative

- +
\} Stop - Jog To Make Pre Jog CoordSys 2 v|

Menu rings instead of

W
00 10 20 30

F

numeric controls

40 50 60 70 80 90 100 _
Encoder Counts | [N

You can use the motor and CS menu rings to select motors to jog and coordinate
system to convert positions to CS units. If there are motion programs running
on PMAC while this VI is executing the position data plotted and displayed by
this example will be from those motion programs. In either case, motor
positions are displayed in real-time in the PmacMotorsPVE cluster and the
strip chart.

To implement this exercise we use PmacMotorJogControl and
PmacMotorsPositions. The CS definitions are retrieved using PmacCoordDef
covered in a later exercise. The PmacMotorsPVE cluster generated by
PmacMotorsPositions is unbundled and the array of values is passed to the
PmacMotorsPlotSelect VI

e PmacMotorsPlotSelect - Motors Array contains positions, velocities, or
following errors for all motors on your PMAC. Select Bool Array defines
which motors are copied into Selected Motors Cluster for plotting on
LabVIEW strip charts. XY Point Cluster contains two values for X-Y
plotting. New Selection is TRUE when Select Bool changes and indicates

84

Chapter 4 — Application Basics

D
Open

kb
Cloze

Close all
motors

the Plot Attributes Array of Clusters and X-Y Plot Attribute Cluster contain
new information for updating plot legend attributes.

=== 5 glected Motors Cluster
bt = Point I:IL_Jster
S = Mew Selection Bool [F]
F5 e Plat Attributes Array of Cl...
=7 Plat dttribute Cluster

Motors Amray
Select Bool Amrray

Setting the plot attributes is done in the case structure in the lower right of the
diagram below. Plot Attributes Array of Clusters contains an Active Plot index,
Plot Color, and Plot Name as supplied by PmacMotorsPlotSelect. When New
Selection is TRUE the case is executed and the array is auto-indexed. The
cluster of attributes is unbundled and used to set the three attributes for the plot.

One important thing to note is that Motor Number and Coord System are
specified using LabVIEW rings. These controls start their indexing from 0 not
1. Hence, to use them to specify legitimate motors and coordinate systems they
must be incremented by one. You can change the range on the ring from 0-7 to
1-8. However, this leaves item zero in the ring empty!

all pozitions

Request and convert

Unbundle
Pos Array

[Pmac Motors Chart|

Flot

EH

Selech ™ True

0

[TF] [Pmac Motors Chart]

Motor Humber

Gt en

[—
o ctive Plot
¥ Plat Calar

Plot Select|

=mo P

*Plat Mame

[

Add 1 to get the m
and C.5.

Ringz start their indexing from 0

Set plot attnbutez baszed on szelections
Uze autoindexing to process array of
clusters

otor number

[

As you begin to develop your own applications, you will create your own simple
VIs to do common things for you. PmacMotorsClose is an example of this.
The VI and its diagram are shown here. If you find yourself repeatedly sending
PMAC simple commands in your application you should begin creating your
own set of useful VlIs.

e PmacMotorsClose - Close all PMAC motor loops.

ktrz
Cloze

Device Mumber (32 [0]

Device Number 132 [0])

The important thing to note about this VI is that eight commands are executed
by PMAC. A <CR> separates the individual commands in the command string.

Chapter 4 — Application Basics

85

[Device Number i32 [0]]

Dutput Device Mumber i32 [0]]

Send| |
Pa—— String A

i/
H2j/
13/
Hdj/
HE/
HE/
H7|
13/

PmacGlobal ICVs

This series of exercises introduce the PmacGlobal collection of ICVs. These
allow you to control, monitor, and configure PMAC’s global characteristics.

PmacTutor11

- Configuring PMAC’s Global State

This exercise introduces a number of indicators, controls, and VIs for
controlling and monitoring PMAC’s general operational characteristics. This is
done using status indicators, a simple control cluster for sending PMAC
commands, and a few clusters for configuring I-Variables. In general these
capabilities are used for supervisory purposes and not exposed to general users.

The architecture for PmacGlobal ICVs follows those already introduced. The
basics are introduced with these six VIs and their cousins.

PmacGlobalBufferSize - Monitor and control PMAC buffer space during
system development. Buffers Open is TRUE if an open prog, open rotary,
or open PLC command has been executed and the corresponding buffer has
not been closed yet. Available Buffer Memory specifies how much buffer
space PMAC has left for gathering and programs. A define gather
command reserves all available buffer space. If Close Buffers is TRUE the
gather buffer is deleted and a close command is sent to PMAC.

Device Humber 132 [0] Globe Buffers Open Boal
Cloze Buffers Boal [F) Buffer Aailable Buffer Memany 32

PmacGlobalControl - Generate PMAC on-line commands for controlling
PMAC program execution and save state. Command Executed Bool is
TRUE when any button is clicked in Global Control Cluster.

Device Number 132 [0) —Globe

Global Control Cluster =] Ctl |~ Command Executed Bool [F]

PmacGloballVarComm - Follow PMACPanel's standard I-Variable VI
architecture. When Set/Get is TRUE the global communication I-Variables
are set. Otherwise they are fetched from PMAC and provided by Output
Global I-Comm Cluster with New Output TRUE. Set/Get is not required
and defaults to a Get operation.

86

Chapter 4 — Application Basics

Device Humber 132 [0]

Set\Get Bool

Input Global I-Comm Cluster =

[F] [R—

[5lobe
|-Com

................ Mew Output Bool [F

Output Global [-Comm Cluster

e PmacGloballVarMove - Follow PMACPanel's standard I-Variable VI
architecture. When Set/Get is TRUE the global movement I-Variables are
set. Otherwise they are fetched from PMAC and provided by Output
Global I-Move Cluster with New Output TRUE. Set/Get is not required
and defaults to a Get operation.

Device Humber 132 [0]
Set\Get Bool [F] -
Input Global I-Move Cluster

Glabe
[-pd oy

- Mew Output Boal [F]

=== [tput Gilobal |-k ovve Cluster

o PmacGlobalStatBuffer - Create a status indicator cluster for the
PmacGlobalStatBuffer indicator containing PMAC's global buffer status.

[Globe

Device Humber 132 [0]

B uiffer

[zlobal Buffer Status Cluster

e PmacGlobalStatGather - Create a status indicator cluster for the
PmacGlobalStatGather indicator containing PMAC's global gather status.

Globe

Device Humber 132 [0]

[Fath

Global Gather Status Claster

The panel for this exercise is the basis for one of PMACPanel’s terminal tools.
At the top is the PmacGlobalControl cluster. It enables you to generate global
commands for PLC and program control. During your development, you might
want to Abort All Motion. The Save, Reset, and Reinitialize buttons allow you
to save PMAC’s configuration to its onboard battery backed RAM or flash
memory. This way PMAC will always boot with the proper program and
configuration information for your application. The two status indicator clusters
might be useful during development as will the ability to monitor PMAC’s
available buffer space. The two I-Variable clusters are useful when you are
configuring communication or require specific program execution
characteristics. For example, later exercises execute multi-axis motion using
circular interpolation. This requires 113 > 0.

Chapter 4 — Application Basics

87

The diagram for this exercise should begin looking familiar. Most of the work
is contained in the provided PMACPanel ICVs. The control cluster provides the
input for PmacGlobalControl. Status VIs process requests for PMAC global
status and create appropriate clusters. The architecture for configuring the I-
Variables is slightly different from that used to configure motors. There is no
Motor Number equivalent that can change. Instead, a shift register is initially
set to TRUE to force an I-Variable read and set FALSE for every other iteration.

88 Chapter 4 — Application Basics

o
Cloze Buffers Gl T || [Buffers Dpen| "'E'>
Diey — Bluffer—hﬂl [Available Buffer Space|

Open Global Control Glhjbe

== [l

I
[3lobe
B uiffer

Globe
[3ath

Buffer Status

Change [-Vars| gFssmsisamssiais

, Globe i

= kT Global C ication |4

5 om obal Communication |- ars

Lo - II

Force Initial [Global Communication |-V ars|
Read l

Globe

@_|-MDV ==||I3||:|I:ua| M ove I-"-.-"ar$||

PmacGlobalBufferSize provides two capabilities. The VI queries PMAC for
available buffer size and parses the state of the buffers and their size. When
Close Buffers is TRUE PMAC executes a command to close the open buffers
and delete the gather buffer. Generally, an open gather buffer prevents the
download of any new program or modification of any existing program.

[Device Humber 132 [0]]
T5z ||

Rezp
Long

ISi.*_I:I T
Iu:lu:use] Egu
delete gather| |2 tr

[Close Buffers Bool (F)]

Buffers Dpen Bool|

Available Buffer Memory 32|

Global Status ICVs

In typical fashion, the PMACPanel global collection of ICVs provides a pair of
indicator clusters and associated VIs to monitor all global status bits. The
icons for the VIs and the indicator clusters are shown below. Unlike the
PmacMotor status word clusters these clusters have many status bits that are
reserved and for internal use.

e PmacGlobalStatWordl1 - Create a status indicator cluster for the
PmacGlobalStat1 indicator containing PMAC's global status.

Chapter 4 — Application Basics 89

Device Number i32 [0) gt'gﬁe Global Status ‘Word 1 Cluster

ﬁﬁﬁﬁﬁﬁ

e PmacGlobalStatWord2 - Create a status indicator cluster for the
PmacGlobalStat2 indicator containing PMAC's global status.

Device Number i32 [0) gt'g't:'; Global Status Word 2 Cluster

PmacCoord ICVs

This series of exercises introduce the PmacCoord collection of ICVs.
Coordinate systems organize motors into familiar engineering measurement
systems in which motion programs execute. They define the scaling between
motor encoder counts and engineering units such as inches, centimeters,
degrees, or radians. They can also define coupling between multiple motors and
a single coordinate axis. You will not use these ICVs to configure your
coordinate systems. But you can use them to query the coordinate system
configuration so that motor motion can be specified in coordinate system units
rather than encoder counts. Generally, you will not work with these Vs at this
level. Their capabilities are integrated into other collections of Vls.

90 Chapter 4 — Application Basics

PmacTutor12 - Using Coordinate System

Definitions

This exercise introduces ICVs for determining coordinate system definitions and
parsing these definitions into LabVIEW data types that can be used to convert
between encoder counts and coordinate system units and determining which
motors, if any, are defined in a given coordinate system.

The architecture for the following PmacCoord ICVs is a little different from
that used for status and other fundamental queries. A few of these VIs make use
of local state variables to keep track of queries for coordinate system definitions
so that these queries are not placed every time the VI is executed within your VI.
This reduces communication traffic and relieves the developer from having to
check for a new query. The fundamental assumption in this approach is that
after you create your application you will not constantly redefine the specified
coordinate system. When you've requested a coordinate system definition from
PMAC and change it, the new definition will not be reflected in your
application. To refresh the definition, temporarily request the definition for
another coordinate number or close your VI and reopen it.

The architecture for determining coordinate system definitions relies on the
following three VIs. They perform similar operations but return coordinate
system definitions for different purposes.

e PmacCoordMotorDef - Query PMAC for the definition of Motor Number
in Coord Number. If the motor is not defined in the specified CS Coord
Definition is "Encoder", Coord Scale = 1.0, and Coord Defined is FALSE.
If the motor is defined in the specified CS Coord Defined is TRUE, Coord
Scale is the encoder to CS unit scale factor, and Coord Definition is the
definition (e.g. "#1->16000X").

Device Humber 132 [0] Caard Coord Definition String
Coord Mumber i32 [1-8]1[1] — b abar — Coord Scale Dbl [1.0]
Motor Humber i32 181111 —/ ——— - Coord Defined Bool [F)

e PmacCoordScale - Query PMAC for the motors defined in Coord Number.
The Coordinate System Scale Cluster (PmacCoordScale.ctl) contains three
arrays with the motor definition, scale factor, and whether or not the motor
is defined in Coord Number. The actual query is only placed if Coord
Number changes from a previous call.

Device Number i32 [0] —Cqard

Coord Number i32 [1-8] (1) Sl e Coordinate Systern Scale Cha...

e PmacCoordDef - Fetch the motor scaling definitions for the specified
coordinate system and provide a cluster for the PmacCoordDef indicator.

Device Number i32 (0] —Caard

Coord Number i32 [1-8] (1) Def == Cpordiniate Systern Definitio...

There are a few limitations you should be aware of when querying coordinate
system definitions from PMACPanel. A motor is generally assigned to a single
coordinate axis as in the following definition

Chapter 4 — Application Basics

91

&1
#1->1000X

This specifies motor #1 as belonging to coordinate system &1 and that 1 X unit
is 1000 encoder counts. The scale factor would thus be 1000.

The limitation arises when coordinate system axes are linear combinations of
several motors as in this example that rotates the coordinate system 30 degrees
from the mechanical axes of the motor

&1
#1->8660.25X-5000Y
#2->5000X+8660.25Y

There is no easy way to parse this information when returned by PMAC and
present it to you for use because there are so many possible ways of defining
coupled motor systems. Furthermore, the individual items in the PmacMotors
indicator clusters as defined would change definition every time you switch
from encoder counts to CS units. If your axes are coupled like this you should
study the VIs presented here and modify them for your own use or you can hard
code the scaling and motor state conversions into your application.

There are three VIs that use the scale factors provided by the previous VIs to
convert numerical inputs from encoder counts to coordinate units and back.
This can be done for individual motors or all motors in a coordinate system.

e PmacCoordMotorToEncoder - Coord Specify Cluster specifies a motor
within a CS and an attempt to convert Input Value from CS units to encoder
counts. If the motor is not defined in the CS no conversions is applied. If
the motor is defined and Convert is TRUE Coord Defined is TRUE and
Output Value is scaled from CS units to encoder counts.

D[?vicg é«luml?fer[i:?z Eu] — ook Coord Defined Boal
DI':llnut E"E:I:l:: Dl:l.fh?; —2Ene Output ¥ alue Double

e PmacCoordMotorToCoord - Coord Specify Cluster specifies a motor
within a CS and an attempt to convert Input Value from encoder counts to
CS units. If the motor is not defined in the CS no conversion is applied. If
the motor is defined and Convert is TRUE Coord Defined is TRUE and
Output Value is scaled from encoder counts to CS units. Coord Definition
is a string specifying Output Value units as "Encoder" or the CS definition
of the motor.

Device HNumber 132 (0] Coond Coord Defined Boal
Coord Specify Cluster == S Caor "‘"""L: Cutput "-.-"a!u,al Du:uul:u!e
— Coord Definition String

Input ¥alue Double

e PmacCoordMotorsToCoord - Generate an indicator cluster for
PmacMotorsPVE.ctl. Input Value Double is an array of positions,
velocities, or following errors from VIs in the PmacMotors collection. If
Convert To Coord is TRUE fetch the CS definitions for the motors
specified in Coord Number and scale them to CS units. Motors not defined
in Coord Number are not scaled.

92

Chapter 4 — Application Basics

Device Humber 132 [0] —
Input ¥alue Double Armrray
Coord Humber 132 [1-8] [1] o
Convert To Coord Bool

Coord

M0 oo b gbars FYE Cluster

The panel shows two indicator clusters. The CS Scale Cluster contains the
definition of all motors in the specified coordinate system as a displayable
string, a numeric scale factor, and a Boolean indicating whether that motor is
defined in the coordinate system. In the example, motor #1 is defined in
coordinate system 1. The orange text color indicates that the CS defined in CS
Scale Cluster’s caption is being addressed. The CS Definition Cluster is a
derivative of the larger cluster and can be used in conjunction with
PmacMotorsPVE on your application panels.

The lower portion of the panel is a modified PmacCoordSpecify cluster used to
specify a motor, coordinate system, and conversion from encoder counts to
coordinate system units. The modifications were made by replacing individual
control items in the stock cluster with types that are more appropriate. The
Orange numeric position indicator and its caption indicate the motor definition
within the specified Coord Number.

CS Definition Cluster| CS Scale Cluster|

4 5§
E
F

Dehnition String Scale Factor Dehned

3
X)
17 2

Coord Humber

Corveersion between encoder countz and coordinate system unitz are supported faor
individual matars and arrays of motors.

(S s

Coordinate System 1

Coordinate 5 pecify Cluster|

Coord Sypz 1

v| Motor 1 w|| Motor Position|

Convert Bool| [

28.49 | #1->1000X

kenu rings are great for selecting motors and coordinate system numbers.
However, they start at zero - g0 remember to add 1 before uzing the walue.

The diagram for the query of coordinate system definitions is simple. The lower
portion of the diagram demonstrates how to use the conversion VIs to convert
and display the motor position data. The Coordinate Specify Cluster in this
example is made from Menu Rings whose index always starts at zero. Because
PMAC motors and coordinate systems start their number at one you must add
one to the selection index. This is not necessary if you use numeric controls in
your Coordinate Specify Cluster.

Chapter 4 — Application Basics

93

The motor position is processed by PmacCoordMotorToCoord to produce
three outputs that can be used to enhance the display of the data.
PmacCoordColor sets the color of the numeric indicators. The Coordinate
Definition String is used to set the indicator’s caption after stripping the
terminating <CR>. The example shows the use of both named and unnamed
unbundles to get the data required for the operation. Again, you will most likely
not work with these VIs at this level.

Dew
Open

Coord Number [C5 Scale Cluster]

I:E— PmacCoordScale checks only fetches
| the coordinate zystem definitionz when
coordinate number is changed

[C5 Definition Cluster|

Motor Position
[Coordinate Specify Cluster] | Calar Text Colar
I

i ;_;!—I:I il {[DEL]| M otor Position

[TFl |
£ : fzdr]

[Menu Ring items start W ;
I-D |MDtDrNumber id2 (0-7110] ﬁb T3]

PmacMotorPosition does the
querying and the conversion for you

Set text color and caption
based on CS Defimtion

...... {53

PmacTutor13 - Configuring and Monitoring
Coordinate Systems

This exercise introduces ICVs for monitoring and configuring coordinate
systems and program execution within coordinate systems. These VIs follow
the same [-Variable and status architectures already introduced. The VI’s are

e PmacCoordIVar - Follow PMACPanel's standard I-Variable VI
architecture. When Set/Get is TRUE the I-Variables for the specified
Coord Number are set. Otherwise they are fetched from PMAC and
provided by Output Coord I-Var Cluster with New Output TRUE. Set/Get
is not required and defaults to a Get operation.

Device Number 132 (0) ——~—_ Jo Mew Outout Boal F
Coord Number i32 (1] =] 'f?ﬂrd e Output Bool [F)

SetyGet Boal [F] mr == [ytput Cioard | ar Cluster
Input Coord |-¥ar Cluster

94

Chapter 4 — Application Basics

e PmacCoordStat - Query PMAC for the status of the CS specified by Coord
Number. Report the two status words as arrays of Booleans and unsigned

32 bit integers.
Device Number 132 [0] —— posoeensene Fipgt WWéhord 24 Element Boal ..
e e (1 o gtmtrd First ‘Ward Binary Status u32
Coord Number i32 [1-8) (1) 3 SecondWord 24 Element Boal..

Second W ord Binary Status w32

e PmacCoordStatProg - Create a status indicator cluster for the
PmacCoordStatProg indicator containing the status for Coord Number.

Device Number i32 [0] —Cqard
Coord Humber 132 [1] —5tatPr

e Coordinate System Status Pro..

Monitoring the coordinate system status is a very common operation because
programs run in coordinate systems. If your coordinate system has Cartesian X-
Y-Z axes and rotary U-V-W axes then your program executes its moves using
the motors assigned to those axes. The coordinate system status reflects the
state of the executing program and the combined state of all motors in the
system. If all motors are in-position then the coordinate system is in position. If
any motor has a warning following error then the coordinate system has a

warning error.

The diagram also has a familiar architecture.

Chapter 4 — Application Basics

95

le—ll:uurd Humber

_ If?ﬂ?‘“' Coard |- ar Cluster

[Coord 1¥ar Cluster|

[Coord Status Cluster| .
Coord|___ o
StatPr

Coordinate System Status ICVs

There are, as expected, indicators for both coordinate system status words and a
few miscellaneous VIs that will be introduced in later exercises.

e PmacCoordStatl - Create a status indicator cluster for the
PmacCoordStatl indicator containing the status for Coord Number.

Device Humber 132 [0) —{Coord

Coord Number i32 (1] C Lot === Cpordinate Systemn Status W ..

e PmacCoordStat2 - Create a status indicator cluster for the
PmacCoordStat2 indicator containing the status for Coord Number.

Device Number 132 [0) ——{Coord

Coord Number 32 (1) Stat? oo Coordinate System Status Wo.

96 Chapter 4 — Application Basics

PmacAcc ICVs

This series of exercises introduce the PmacAce collection of ICVs. These form
templates that combine PmacMemory’s direct access of memory with
PmaclIVar’s Set/Get architecture that access PMAC’s memory mapped devices.
Using this approach, you can hide the bit field and address specifications in your
VIs.

This collection of VIs will grow as Delta Tau adds support for its numerous
accessories. At present, we will demonstrate the Machine Input/Output VIs and
a simple example of the ACC16D control panel.

PmacTutor14 — Machine Input and Output

This tutorial demonstrates two VIs. One that allows you to access the general-
purpose machine input port and one that accesses the output port. On the
demonstration box used for the development of PMACPanel, switches drive the
inputs and the outputs drive a set of LEDs. When running the example, the GP
Machine Input indicator directly reflects the operation of the physical switches.

The physical inputs are copied into the output port located in a different bit field
to drive the GP Machine Output array and the LEDs on the physical device. If
you check the Counter box a bit is rotated through a number and written the
physical port thereby driving the LEDs. This is shown on the diagram below.

Chapter 4 — Application Basics

97

D

Open

I 0,

Ano
Inp8

[TF]

[GP Machine Input|

[GP Machineutput|

The two VIs that implement the example require a little discussion so that you
can comfortably develop or modify your own PmacAcc VIs.

PmacAccMachinelnput8 - If Set\Get is FALSE or not wired get the
Machine Input Port contents. Response Available will be TRUE to indicate
the Outputs contain the value. If Set\Get is TRUE set the Machine Input
Port using Input Value. Response Available will be FALSE and the outputs

default to Input Value.

Device HNumber 132 [0])

Fi¥alsd

Rezponze Available Bool [F]

Set/Get Boal [F] -

|hpE

— Output Walue ug [0]

Input Walue ug 0] —

Qutput Boal Array 3

PmacAccMachineOQutput8 - If Set\Get is FALSE or not wired get the
Machine Output Port contents. Response Available will be TRUE to
indicate the Outputs contain the value. If Set\Get is TRUE set the Machine
Output Port using Input Value. Response Available will be FALSE and the

outputs default to Input Value.

Device Number 132 [0])

F¥elsd

Reszponze Available Bool [F]

Set/Get Boal [F] -

Input Yalue 132 —

Qi3

— Output Walue ua (0]

Output Boal Array 8

The diagram for PmacAccMachineInput8 is shown here to make a point about
the PmacMemory VIs. The VI fetches the machine input port data located at
Y:$FFC2 bits 0-8 using PmacMemoryGet — simple enough. The issue you
need to watch involves the Set case using PmacMemorySet.

[Device Number i32 [0]]

Eet/Gel Bool (F)]

[Input Value ug [0]]

.--:-n:-:--:--:--:--: HE

- Wﬂ [Response Available Bool [F]|

¢ (75| [Dutput Value u8 (0)]

[TF]| [Dutput Bool Array 8]

98

Chapter 4 — Application Basics

This case illustrates an important behavior associated with PmacMemorySet.
This VI sets the contents of the bit field and provides as its output the entire 24-
bit word. This was done so that multiple copies of the VI can be chained
together to handle multiple bit fields. If you take the output of
PmacMemorySet and wire this to Output Value for PmacAccMachinelnput8
Output Value will not be what you expect. This is obvious when running
PmacAccMachineOQutput8. To remedy this you need to use the Input Value
that is used to set the field as Output Value.

PmacTutor15 — ACC16D Control Panel

This example fetches the contents of the several memory locations for the
Control Panel port at Y:$FFCO0, Y:$FFC1, and Y:$FFC2. These registers allow
the ACC16D accessory to control the operation of motors and programs from an
operator control panel. The panel for the example responds to the physical panel
by mimicking the switch operation. If you have an ACC16D and run this
example you will see the various switches on this panel respond in kind.

Chapter 4 — Application Basics

929

The diagram shows that PMAC is queried for the contents of the three locations
and the converted into appropriate types for processing. The selector field is
extracted, as are the individual control/status bits. If you want to make this
panel control PMAC you can use the same control layout and generate the
appropriate commands by borrowing portions of PmacMotorJog, etc. We have
not done this here.

100 Chapter 4 — Application Basics

Ao

Disp

[

D

Open | T -Ej-r
—5end c
i2=0f-~{ Stritig

SELECTOR

o] E

Ir_l,l:$ffu:2l~ : : 51 Pwrl [OE

[DiE]
e [Fog) fuw/D]
IPOS -
- ﬁ
m |Unuse anel indicators]|

Chapter 4 — Application Basics 101

Chapter 5 - Development Tools

Basics

Serious PMAC configuration, tuning, and setup requires the use of Pewin32.
Once this step is completed, development of your PMACPanel application can
begin. PMACPanel supplies a number of tools and application VIs to aid in this
process and provides an architecture for adding more.

There are 10 standalone development tools covered in this chapter. They make
extensive use of the ICVs introduced in Chapter 4 and form an excellent
introduction to the PMACPanel integration ICVs introduced later in Chapter 6.

e PmacTerminal - A basic ASCII terminal with useful ICVs for
monitoring coordinate system and motor status. In addition, several
new ICVs for controlling programs and PLCs are introduced.

e PmacTerminalEdit - A simple editor for program development
and downloading. The tool also supports the creation of
encapsulated motion and PLC program VI wrappers that hide the
details involved in controlling and monitoring PMAC motion and
PLC programs.

e PmacTerminalExecute - An interactive debugger for monitoring
and controlling the execution of PMAC programs.

e PmacTerminalJog - A simple tool for jogging and controlling
motors

e PmacTerminalMotors - A graphical tool for monitoring and
plotting the motion of multiple motors in a real-time strip chart.

e PmacTerminalMotorsX-Y - A tool for monitoring and plotting
the motion of motors in a real-time X-Y chart.

e PmacTerminalGather - A tool for specifying and gathering
PMAC motion data and exporting it to Microsoft Excel.

e PmacTerminalMotorIVars - A tool for configuring individual
motor [-Variables.

e PmacTerminalCoordIVars - A tool for configuring coordinate
system [-Variables and monitoring coordinate systems

102 Chapter 5 — Development Tools

e PmacTerminalGlobal - A tool for monitoring PMAC’s state,
saving configurations, and configuring important global I-

Variables.

Tool Menus

The tools distributed with PMACPanel can be integrated into your own
application using LabVIEW 5.0’s new ability to edit and process menubar
selections. This allows your applications easy access to the development tools
and an easy way to add your own custom tools. The figure below shows the
panel for the PmacTerminalJog tool. The menu bar for the tool shows an entry
for PMACPanel that contains the menu items for the development tools.

EE PmacT erminall og._vi

4 5

4 5 T erminal

E dit Mation Program
E xecute Motion Program
[3lobal Configuration

=l

Plat b abors i
Flot Matar =y
[Gather Data Dnel
|- ars Matar Fatal
rdl'lﬁwm'g'l:'rruﬂ]_fulluwing Error
- Amp Amplifier
Fault Error
Encod
*) neeaer Motor 1
ot Fre Jog Jog Relative
P e Jog To Make Pre Jog
Va ¥
I 1 1 I I I I I 1 1 I
00 10 20 30 40 50 60 70 80 90 100

Encoder Counts

Hegalive
Limit Exceeded

Pozitive
Limit Exceeded

Home Zero I Reszet

Kill ‘

Chapter 5 — Development

Tools

103

Modifying the menu

This is a custom menu named PmacTerminalMenu.rtm that is set as the
default for your application VIs run-time menu. To modify your application
VI’s menu or modify the existing one use the Edit»Edit Menu option from your
VIs panel to display to following dialog.

IE Menu Editor - D:ALabYiew\PMACPanel libh\PmacT erminal\PmacT erminalMenu.rtm
Fil= Edit Help

m I Custon ;I

Presview ; |Eile Edit Operate ‘Windows PkACPanel Help

B+ File | [tern Properties
- Edit || lkem Type:
b Operate I Uzer ltem j
[Windows
= PMALC_Panel [tern M amme
> Jog | Terminal

ltem Tag :

* Edit bMotion Program

* Execute Mation Program | |PMACPanel_Terminal
* [Global Configuration

* Plat Motors [Enabled

* Plaot Motar = [~ Checked

* [Gather Data

Shaortcut [Press key combination] :
* |4 ars Motor [i)

= Help e I

Select File»Open to display the selection box then double click on
\PmacTerminal\PmacTerminalMenu.rtm or click OK. This will change your
VIs run-time menu from the default or minimal options to custom. You will
note that the panel shows an Item Name as it appears in the menu and an Item
Tag that is used by PmacTerminalMenu.vi to decode your selection and
execute the desired tool. To add your own tools to the menu highlight an
existing menu item entry and select Edit»Insert User Item. Give the new entry
aname and a tag. Save the modifications. All existing PMACPanel tools using
the menu capabilities will now reflect your changes. If you’ve added a new tool,
you must make some additions for your new VI.

Modifying PmacTerminalMenu

To actually implement the new selection you need to add it to
PmacTerminalMenu. The diagram for the VI is shown here. The instructions
direct you to add a case for the Item Tag specified in the Edit Menu panel and to
copy the VIs to execute your VI into the new case. Once completed all tools can
access each other without needing any new configuration.

104 Chapter 5 — Development Tools

[Enable Menu Track Bool [T]]

i |2PmacT erminal. vi

&
L B i Yirtall nstiument W

Fiun I
Wait until done

To add new tool zelections click the
right mouse button on the caze zelector
and zelect Add Casze. Enter the ltem Tag
uszed when adding the item to the menu.

Copy the items from the case above and
and pazte them into your new case. Change
the name of the ¥l to run when the item

iz selected and you are do

Checking for menu selections consumes alot of LabYIEW's time. The counter
and conditional limit the checking to once every 32 calls. You can change this
in your own application if desired.

There are a few limitations associated with using LabVIEW’s menubar
capabilities. The main one is that it noticeably slows applications that are doing
highspeed query/response updates of status and position indicators. To remedy
this the PmacTerminalMenu VI is configured to execute the actual checking of
the menu selection once every 32 calls. You can change this logic or add timers
to suit your own needs.

Basic Tool VI Requirements

D
Open

PMACPanel’s use of the menubar selection VIs spawns the VI specified by the
selection as a separate concurrently executing task. This means the VI should be
organized much like the exercises. Open PMAC, run a while loop, use s Stop
button. The diagram for PmacTerminalJog is show here to illustrate this.

Tem
kdenu

Coord Number | [z]| [Motor 5ta|te|

iz |
—]

[X]
"l i
L

Motor Control

(5] Motor Number] [

|
:4 [Motor Limits|
t

Chapter 5 — Development Tools 105

The only modification is the addition of the PmacTerminalMenu VI that
actually spawns the new VI in response to a menu selection and the Current VIs
Menu function selected for the function palette.

e PmacTerminalMenu - This VI uses the Current VI Menu supplied to it to
check for selections. Because you may have time critical operations where
you don’t want to check for selections, you can set Enable Menu Track
FALSE using a switch to disable the testing. This is done in the
PmacTerminalMotors tool because the delay causes a noticeable blip in

plotted position data.
Cumrent ¥l menu Tem
Enable Menu Track Boal [T] -~ b eriu

Basic Tool VI Configuration

When a tool is spawned the Execution and Window options you define for the
VI Setup are important. The following panel shows the Execution Options used
for a PMACPanel tool. The panel should be shown when loaded otherwise
selecting the tool runs it without a panel - not very useful. If you call the VI
instead of spawn it then you want the Show Front Panel When Called and then
closed afterward. The problem with calling the VI rather than spawning it is
that it must complete before the caller’s panel becomes active again. Not a
flexible system but it maybe what you want.

il

WVl Setup |

1

| E xecution Options =]

[vw Show Front Panel When Loaded [Frint Fanel When %l Completes Execution
[+ Shaow Front Panel When Called [Print Header [name, date, page #]

¥ Cloze Aftenwards if Originally Closed [Scale ta Fit When Printing
[~ Bun¥hen Opened [+ Surround Panel with Border "hen Printing
[~ Suzpend When Called [T Page Marginz

[~ Reentrant Execution £k

;w' FECT o
Fricrity Freferred Execution Syztem
| rorral pricrity =] | zame as caller =l

k. Cancel |

Generally, the panel window should prevent users from doing too many things.
PMACPanel tools have a title bar, and auto-center. When in edit mode the
menu bar, run button, and abort button are shown. When running these
disappear and the user must use the menubar of the window you just installed.

106 Chapter 5 — Development Tools

i

f

¥l Setup |

i whindow Options _:j

[Dialog Box [~ Show Scroll Bars

v ‘wfindaws has Title Bar [v Show Menu Bar

[Allow User ta Cloge Window [~ Show Toolbar

[~ Allow User to Resize ‘wWindow [+ Show Fun Buttan

[Allows Bur-Time Pop-up Meru v Show Continuous Bun Buttan

[~ Hilite <FReturn Boolean [vw Show Abort Buttan

[Size to Screen [Allow Debugging [Compile in debugging code)

v Auto-Center [~ Enable Log/Frint at Cornpletion
[Auto handling of menus at launch

Wikdow Title
|7>== font e [# Same a3 | Mame

] Cancel |

PmacTerminal

PmacTerminal is a poor-man’s command-line terminal tool like Pewin32. The
panel says a lot about its operation. As the tool is explained, we will cover
many tricks that you can use to build better PMACPanel applications.

Chapter 5 — Development Tools 107

9 IC:ALY95AU ser. ibAPMAC.PRGAD emogat]. prg

Megative
Limit Exceeded _
o Program Encoder |
Running | _Encoder |
Program | _Encoder_|
Hold
Single
Step
Pie-Jog
Move CS 1
End OFf Block =
Stop CS Defs
Continuous —
Motion Req J
Continuous J
Motion Mode J
Run-Time]
Error o
Amplifier o
: Warning g
Running Following Error C5.1
Dwell Fatal
ata .
Warning Following Eror Motor Positions
Following E rror CS 1 [v | C.S. Units
Fatal
Following Error Program 1 'l
P
- | PLC 01 Enabled w [Disable |‘
Amplifier
[rp—
Motor 1
3 Load | 5 5 A Clear Down Show No g Close
_ oad | Save | Save As | wyindow | Load | Log Open Buffs | Byff Space | Buffers

Basic Terminal 101

The black “screen” is a multi-line string with a scrollbar configured for normal
operation. Typed commands are sent to PMAC when you hit the <RET> key.
LabVIEW doesn’t do this automatically. To accomplish this there is a Boolean
button named OK hidden behind the string control that has its Key Navigation
set to capture the <RET> key. If you select Project»Find and locate “OK”
you’ll see it hidden there. Setting the Key Navigation this way means that when
you hit <RET> anytime your cursor is in the window the OK button is activated.
There is a lot of spaghetti diagram to keep track of the current line, character
position, and other book keeping that fetches the line just entered from the
multi-line string and sends it to PMAC using PmacCommRespStr. The
terminal indicates it is expecting a command with a “->" prompt on the screen.

This process puts the Key Focus on the OK button thereby removing your cursor
from the screen indicator. Focus is returned to the screen indicator by creating
an attribute node for the screen indicator, selecting Key Focus, and setting it
TRUE every time the OK case is executed.

108 Chapter 5 — Development Tools

Another issue that arises in a terminal-like string control is LabVIEW’s use of
<TAB> to give Key Focus to other panel controls according to the Panel Order.
This can’t be disabled so understand that hitting <74B> throws your cursor out
of the screen and onto the OK button, then the Stop button, etc. as defined by the
Panel Order. Control character sequences work but don’t display as you might
expect. If you type <Ctrl + A> only the “a” appears on the screen. Hitting
return does indeed send the “*a” command to PMAC and all program motion
will abort as expected.

Basic Command Editing

You can use the standard cut, copy, and paste control sequences to manipulate
text in the screen buffer. You can copy a previous command and paste it at the
end of the buffer and execute the command with a <RET>. You can also copy
PMAC responses to other applications or other LabVIEW string controls. You
cannot insert text into the middle of previously executed commands. The
spaghetti diagram doesn’t know where the insert took place and would require a
lot of work to track this type of operation.

If you enter lines that wrap to the next line on the screen, list programs with
lines that wrap, or list the gather buffer (guaranteed to wrap) the screen may
start to act a little strange. You can solve this by clearing the window using the
button below the screen.

Buffer Management

PMACPanel applications, especially their development, requires the
management of ASCII buffers containing command sequences, I-Variable
configuration information, and motion/PLC programs. To simplify this
PMACPanel has a simple VI and associated cluster control to handle ASCII text
buffers. The control is located below the screen. It is a copy of the
\PmacProgram\PmacProgEdit control shown below. The actual control on the
PmacTerminal panel doesn’t look like the raw control. We’ve moved things
around to look better. In fact, most of the packaged PMACPanel clusters have
been rearranged. Be very careful when moving items in a cluster: do NOT pull
them out of the cluster boundaries by mistake. This causes the remaining
controls in the cluster to reorder their Panel Order. The associated VI will not
work as you expect because what was control 4 is now control 5 etc.

Program Edit Control|

Load | | Save| | Save As

Clear Down Show
Window Load Log

The cluster and VI implement six operations using the screen buffer.

e Load - Load an ASCII file into the screen buffer.

e Save - Save the contents of the screen buffer to the file specified in
the path control above the screen.

e Save As - Save the buffer by selecting a new file.

Chapter 5 — Development Tools 109

e Clear Window - Dump the buffer and reset the display
bookkeeping.

e Down Load - Save the screen to a temporary file, compile the file,
and down load it to PMAC. This means that the entire buffer must
contain legitimate on-line commands and/or a program. Buffers
with previous PMAC responses are not downloadable.

e Show Log - When compiling the buffer PComm32 generates a log
file with standard compiler messages. If the download generates
an error, a dialog with the log file is displayed. You can use this
button to review the log file whether or not an error was generated.

Terminal Indicators

There are several indicators introduced in Chapter 4 on the panel that display the
status of the motor, coordinate system, and motor motions. These are simple
rearrangements of the stock clusters. The interesting thing about these clusters
is that they track the commands entered by you on the terminal. When you
address motor 3 by typing

#3

in the terminal screen, the motor clusters display the status for motor 3. When
you address coordinate system 2 by typing

&2

in the terminal screen, the coordinate system status clusters display the status for
coordinate system 2. We will discuss the simple implementation of this
capability a little later.

Terminal Controls

The PmacGlobalBufferSize VI is used to monitor and control PMAC’s buffer
status. Sometimes when using a terminal program its not obvious that a
download can’t succeed because you left a buffer open or forgot to delete the
gather buffer. The size indicator and the Close Buffer button make it easier to
monitor and deal with this problem.

There are three new control clusters and capabilities used to develop this tool.
We will cover their use in PmacTerminal a little. Operationally these Vls are

e PmacProgram\PmacProgSelect - This menu ring control with its VI query
PMAC for a list of currently loaded motion programs and display the data
in the ring. Using it, you can easily determine what programs are currently
loaded in PMAC.

e PmacPLC\PmacPLCSelect - This cluster contains a menu ring control that
works with its VI to query PMAC for a list of currently loaded PLC
programs and their execution status: Enabled/Disabled. There is also a
button that toggles the Execution State of the selected PLC. If the menu
ring shows PLC 01 as Enabled the button allows you to disable it thereby
changing the text displayed in the menu ring.

e PmacPLC\PmacPLCExecute - 15 controls the general execution of PMAC
PLCs. Bit 0 controls the execution state of PLC 0 (the foreground PLC)
and Bit 1 controls the execution state of PLCs 1 - 31 (the background

110

Chapter 5 — Development Tools

PLCs). This control and its VI maintain I5. When the button says
Background OFF the background PLCs are off. Clicking on the button
toggles them on and will now indicate Background On.

Implementation Diagram

The diagram for this tool illustrates some important concepts in the development
of tools and your own applications. We will not cover the spaghetti diagram in
the sequence frame at the top that handles the bookkeeping for the terminal

screen. The diagram is shown here

|Terminal Winduw|HmH|-HEharF'us|| ..

foooooooooooooo Eoooooooooooon
CNCD W[010 1]M]
[Get the command string and zend it]
Dew : T
Dpen M True b
Terminal Window
s
: I:|E|I:ID.DDI:|I:IDDDDEII:IDDDDEIEIDDDDII&DDDDDDD
| e T ——— T eeeees | E@l-- [|
C.5. Unitzs hotrs m Prog -
| g LI e
| R -
I:, - TS Defs Program Sele!::t
Coord]_| DD;; ===
Cur i
Coord|,_
I i A =
b cbor
Current W'z Menu Mot _J,:,ggt
— otor
[Terrmn Curr I
I e i T S
I
Close Buffers| |z,pql || [Buffer Open|
"""" Buffer—{I321|Buff Space
|| T erminal window ||

Status ¥z execute AFTER the terminal loop
iz processed. Query PMAC for currently addressed
motor and C5. If they execute concurrently with the
loop terminal commands addessing motors and C5z
will get out of sync and the indicators will not reflect

[

0

the new addreszes from the terminal. Frog
File Path] [.=J}-E4t

Chapter 5 — Development Tools

111

The general framework should look familiar. There is an execution loop, a
PmacDevOpen, a Stop button, and the PmacTerminalMenu items. Several
bookkeeping local variables are initialized outside the loop.

Most of the status indicator Vs are located in the lower left. The currently
addressed motor and coordinate system are fetched by the VIs

e PmacMotorCurrent - Query PMAC for the currently addressed motor. It
is most generally used in interactive development environments rather than
a custom VI where you want to address a specific motor.

b akiar

Device Number 132 [0]) Cuit

kator Mumber i32 [1-8] (1]

e PmacCoordCurrent - Query PMAC for the currently addressed coordinate
system. It is most generally used in interactive development environments
rather than a custom VI where you want to address a specific CS.

Coord
Curr

Device Humber 132 [0] Coord Humber i32 [(1-81 1]

and provided to the six status VIs covered in Chapter 4. The Device Number
they require is passed through the terminal bookkeeping sequence frame thereby
causing these VIs to execute after terminal commands are processed. If this isn't
done, addressing commands from the terminal get uncoordinated with the
queries placed by the status VIs and the status displayed in the indicators might
not be for the motor or coordinate system expected.

The VIs and spaghetti diagrams on the lower right implement the
PmacProgEdit, PmacProgSelect, PmacPLCSelect, and PmacPLCExecute
operations. These utilize the update architecture used in many of the earlier
exercises. The VIs accept control clusters containing Booleans and generate
new output data for the controls when an output Boolean indicates it has new
data. Several of the clusters function as both controls and indicators using their
color and Boolean text. This manual does not cover the internal operation or
implementation of these VIs or members of these collections in detail. They are
involved and way beyond what most developers will want to know about
PMACPanel. Feel free to examine their contents and make changes as desired.

e PmacProgSelect - Query PMAC for a description of all loaded motion
programs by reading PMAC's internal buffers. If First Time is TRUE Menu
String Array contains a sorted list of all loaded programs by program
number. The VI maintains New Selection Index as a state from execution to
execution. Translation of Program Selection Index into Program Number
occurs when First Time Strings is TRUE or Program Selection Index is not
equal to New Selection Index. New Output TRUE indicates that Program
Number, New Selection Index, and Menu String Array contain new data.

Device Number 132 [0] Pro e Output Eh:u:uI.[F]
Program SFf_zlec:t_inn Index o SE|EEII:t_|_I— Frogram Nu_ml:uer i3 _
irzt Time Bool [F] - ’““L Mew Selection [ndex i32

kenu String Aray

e PmacPLCSelect - Query PMAC for a description of all loaded PLC
programs by reading PMAC's internal buffers. If First Time is TRUE Menu
String Array contains a sorted list of all loaded PLC programs and their

112 Chapter 5 — Development Tools

execution state by PLC number for the menu ring in PLC Select Cluster.
Button String Array contains information to change the description of the
button in PLC Select Cluster so that it toggles the selected PLC's execution
state when clicked. The VI maintains New Selection Index as a state from
execution to execution. Translation of menu ring selections in PLC Select
Cluster into PLC Selected Cluster occurs when First Time Strings is TRUE
or either control in PLC Select Cluster changes. New Output TRUE
indicates that PLC Selected Cluster, Menu String Array, and Button String
Array contain new data.

Device HNumber 132 [0] PLC Mew Output Bool [F]
PLC Select Cluster ﬂTSelect"’“ﬁt FLC Selected Cluster
First Time Boal [F) - ’ME.,.,..« benu String Armray
Buttan Skring Array

PmacPLCExec - This VI controls the execution of foreground and
background PLC programs by modifying i5 using a PmacPLCExec control
as both an indicator and a control. When First Time is TRUE New Output
is TRUE and Output PLC Exec Cluster indicates the state of foreground and
background PLC program execution. When either button in Input PLC
Exec Cluster doesn't match the last Output PLC Exec Cluster contents the
execution state of the foreground or background PLC programs is toggled.

Device Number 132 [I]] e— = — Mew Dutput Baoal [F]

Input PLC Exec Cluster ==
First Time Bool [F] " Enec === 0utput PLC Exec Cluster

PmacProgEdit - Manage common editing operations on Input Buffer
String as specified by Program Edit Cluster. Input File Path is the default
file path to use for Load, Save, or Save As operations. New Output Buffer
is TRUE when a Load or Clear Window operation puts new data in Output
Buffer. New Path is TRUE when a Load, Save, or Save As operation
modifies the file path.

Load - Load a file into Output Buffer.

Save - Save Input Buffer to Input File Path.

Save As - Query the user for a new file to save Input Buffer.
Clear Window - Put an empty string in Output Buffer.

Down Load - Compile and down load Input Buffer to PMAC.
Show Log - Display the contents of the compile log.

Device Number 132 [0]) Frog Mew Buffer Bool [F]
Input Buffer String -~ Edit |- . o~ Qutput Buffer String

Input File Path ﬁ =1 - New Paih Bool F)

Proaram Edit Control Output File Path

Using these descriptions, it is straightforward to use these VI’s powerful
capabilities. Place the appropriate control or controls on the panel. Where
required create a writeable local variable copy of the control or the required
items attribute node. If the menu ring requires an attribute node to display the
programs, or the button requires an attribute node to change its Boolean text,
create the node, and select the proper attribute. For the PLC Select cluster, you
need to go to the panel and create the attribute node for each item in the cluster -
not the cluster itself.

Chapter 5 — Development Tools

113

PmacTerminalJog

This tool is a modified version of PmacMotorMoveExamp and PmacTutor?7.
Its details won’t be covered here. Instead, it is an excellent example for
demonstrating the behavior of multiply executing tools and application Vls.
One note of importance is the limits on the numeric slider in the
PmacMotorJogControl cluster. You should change these to reflect the limits
of your mechanical setup.

Start by opening and executing PmacTerminal. As you address motors and
coordinate systems, the captions in the terminal tool indicators change. If you
execute PmacTerminalJog by opening and running it or by selecting
PMACPanel»Jog from the VI menu, things start to behave strangely. Lets say
your last few PmacTerminal commands addressed motor #3 and coordinate
system &2. Everything looks fine on the indicator bars. When you run
PmacTerminalJog, the indicator bars suddenly reflect the status of motor #1
and coordinate system &1. Why? You never sent a terminal command to do
this - did you? The truth is you did. There is only one PMAC and any
commands that require a motor or coordinate system address change the
addressed item. Because PmacTerminal queries PMAC for the currently
addressed motor and coordinate system, it will use these values for its status
queries. If you replace these VIs with numeric controls, this will no longer be a

114

Chapter 5 — Development Tools

problem for PmacTerminal. However, it will not be possible to automatically
have the indicators track the commands PmacTerminal sends to PMAC.

PmacTerminalEdit

If you strip out all the fancy stuff from PmacTerminal and leave a screen, edit
control, and program menu ring you get a program editor tool. The terminal like
interface is different in that there is no “OK” button to capture and process the
line just entered. Instead, hitting <RET> in the screen puts a <CR> in the
buffer. The <TAB> will still rotate you through the controls.

This tool should be used to develop programs rather than PmacTerminal.
Program development is detailed in the PMAC User Manual and PMAC
Software Reference Manual. There are some added features to PMACPanel’s
processing of motion and PLC programs developed using this tool. PMACPanel
parses the motion program buffer for the PLC or motion program number and
coordinate system prior to down loading. This allows you to write a PLC or
motion program and have PMACPanel keep track of this information without
you having to do it. It greatly simplifies your PMACPanel diagrams. The
program shown in the panel demonstrates what is required to do this.

open prog 10 clear

him..4

f2000

21

dwell 100

Program 1 VI

Clear Down Show
Log

Load I Savel Save As Window Load

coe | BB I | Croate Prog ¥
ik Buffer Space | Create PLC VI —

The motion program coordinate system is specified by the comment line

Chapter 5 — Development Tools

115

; USE CS &3

The down load compilation process ignores comments so this does not affect
normal PMAC operation. The comment can be any mix of upper and lower
case. For safety always use caps. The program number is parsed from the line

open prog 10

Again, this can be a mix of upper and lower case. When the program is down
loaded a cluster indicating the coordinate system to use, program number, and
Load State is created

Frogram %1 State Cluster|

Program Loaded

0 Program Mumber i32|
1]

Coord Number i32|

This cluster is used by a number of PmacProgram VIs to do useful things for
you.

The diagram for the tool has a standard organization. Note the use of
PmacProgParse to parse the program window and generate the Program State
cluster. This cluster is hidden on the panel and not used in the tool.

116 Chapter 5 — Development Tools

Buffers Open

Cloze Buffers Globe TF

Dew
Open

~|Buffer —|

Get Buffer Space

Program Select| & T True b

*Strings []

String

DoopDoooDCeeDo:

[Program Window|

Frogram File Path

Program Select

o True b

[Program File Path]

File Program File Path [1{E dit

Load

Oooooooooooooo:

Prompt the user for
a file when starting

Program Edit Euntmi
-

Create Prog ¥l

S bt
Creaty

Ei

| Program “Wwindow l‘“SUbw

Creats

Save program/PLC
and create wrapper
¥l with the proper name

The next section discusses one of the most powerful features of PMACPanel -
the encapsulation of PMAC motion and PLC programs into a single easy to use

wrapper VI.

Encapsulating Motion Programs

The Create Prog VI and Create PLC VI case structures at the bottom pass the

program buffer to a very special VI that creates a VI wrapper for the program
being edited. The detailed use of your new motion or PLC program VIs will be

covered in Chapter 7, 8, and 9.

e PmacProgSubVICreate - Prompt the user for a file to save Program Buffer
to. Make a copy of PmacProgSubVI VI changing the name to the same
base as the saved program. For example, if Program Buffer is saved to
PmacTestl.pmc a new VI named PmacTestl1.vi is created from

PmacProgSubVI.

Subtl

Program Buffer String

Creats

Program State Cluster

Using the example names above there are now two items with the same base
name. An ASCII program file PmacTestl.pmc and a VI

Chapter 5 — Development Tools

117

PmacTestl.vi. The icon for the new VI based on PmacProgSubVI shown here

e PmacProgSubVI - PmacProgSubVICreate makes a copy of this VI with a
new name that matches the name of a motion program. Because the motion
program has the same name (with a different extension) this VI knows how
to open, parse, load, and run a motion program without intervention or extra
inputs. It allows you to edit the associated program and interactively
execute the program. Details of its implementation are contained in the
manual.

The VI downloads the associated program when first loaded unless this
option is disabled in the diagram and defaults for Program Number and
Coord Number are provided for the Program VI State Cluster.

The interactive panel can be opened and used by setting Panel Show
(latched) TRUE. See the documentation for PmacTerminal Edit and
PmacTerminalExecute for details on interactive execution. The panel is
closed by clicking the Stop button on the panel

When the latched input Program Run is TRUE Input PQM Variant Array is
sent to PMAC to initialize a program's P, Q, or M variables. The program
is then started as long as there is no program executing in the associated CS.
When Program Running is TRUE this or another program is executing in
the associated CS.

DeviceMumber 132 [0] Pragram Running Baal [F]

Program Run Bool [F] - 15ubYI %= Pragram ' State Cluster
Panel Show Bool [F] - mE;;New Qutput Boal [F)
[nput POM Wariant Array Cutput POM Wariant drray

PmacTerminalExecute

This tool is an interactive motion program debugger that queries PMAC for the
actual program and allows you to step through it in a variety of ways. Querying
PMAC for the program allows you to see whether your program is actually what
you think it is. If you down load a program without clearing the program buffer
first the down load contents are appended to the existing buffer. This is
probably not what you want. The indicators and their operation should be
obvious. Extensive on-line help is available for the panel controls using
LabVIEW’s Help»Show Help facility.

118 Chapter 5 — Development Tools

Program 32

v| Listing

Mo Program
Running

Program
Hold

Pre-Jog
Move

End OF Block _————
Stop CS Defs

Continuous
Motion Req

C.5.1

Continuous
Motion Mode

Bun-Time
Error

‘Warming
Following Error

EEEEEELe]

Fatal
Following Error C5 1

Amplifi ...
"F‘EJ,{‘"' Motor Positions

C5 1 v C.5. Unitz

H Begin

Run

Step

Prog Hold I Jog 3 5 ;
Feed Hold I Ahmtl Halt "0 | Halt /" 2 /\‘) g

Coord Syztem

To operate the tool, select a program using the menu ring and a coordinate
system to execute the program in using the knob. Only loaded programs are
shown in the ring. Clicking Begin and the Program Execute cluster loads the
program into the list buffer from PMAC. If you click Run, the program will
begin executing. You can watch the execution by clicking the cursor in the
screen. The currently executing program line will highlight and track the
program through its steps. This dynamic display only works when the cursor is
in the screen.

You should understand a few issues about PMAC program execution. PMAC
pre-computes moves several lines ahead of the currently executing motion to
allow motion blending. Because of this, the hi-lighted line may not reflect the
moves your machine is currently executing. For a detailed discussion of this, see
the PMAC User Manual.

The implementation of the tool uses two VIs to generate program execution
commands and monitor the currently executing program line. These Vs are,

Chapter 5 — Development Tools

119

e PmacProgExec - Interactively execute the program specified in Program
VI State Cluster in response to button clicks in Program Execute Control
Cluster. New Program is TRUE when Begin is clicked and Program List
Cluster contains a new listing. Command Executed is TRUE when any
button in Program Execute Control Cluster is clicked.

Device Humber 132 (0] Frog Mew Program Boaol [F)
Frogram | State Cluster ===, _° "= Pragram Lizt Cluzter
Program Execute Contral Clu,.. == % Command Exegcuted Bool

e PmacProgDebug - Query PMAC for currently executing line in Coord
Number and output the response in Current Command. Determine the
scroll position and characters that delimit this line in List Buffer and create
Debug Location Cluster for setting selection attributes in a multi-line string
control for real-time display of Program Number's execution. This
information is obtained from PMAC using the LIST PE command.

Device Number 132 [0]) Frag Debug Location Cluster
Program List Cluster Dbug Current Command String

The specification of the currently executing line in the program-listing buffer is
given by

Debug Location Cluster Cluster of information for string
control attributes. The items define the Scroll Position of the
string in the buffer, and the Start and End Character of the line
currently executing.

Selection Start and End character in List Buffer for
currently executing program line.

Character Start
Character End

Scroll Position Number of currently executing line
in List Buffer.

This information in this cluster is used in the diagram to set the selection and
scroll position attributes for the string control used to display the listing. You
can see this at the top of the diagram.

120 Chapter 5 — Development Tools

Dev
Open

btz

i Selection
Scroll Position

- CS Defs

Cloze

M otor Positions

A uuuuuuuuuuu-n::Juuuuuuuuuuu
% |Program

Lizting

Listing

The program controls implemented by the Program Exec cluster send on-line
program execution commands to PMAC. A brief description of the button
operations is given here. For detailed descriptions of PMAC’s implementation
of the command see the associated documentation in the PMAC Software
Reference Manual or the online help available through Help»Show Help.

Begin - Point PMAC to the coordinate system and program
number specified. Load the actual program from PMAC. The
command sent to PMAC is &*CS*b*PROG* where *CS* is the
specified coordinate system number and *PROG* is the current
program number.

Run - Execute the program from where it is. If you pointed to the
beginning with Begin then start there. If you abort or halt motion
using the associate buttons you can restart the program from its
current location. The command sent to PMAC is R.

Step - Execute a step to the next move or dwell in the program
performing all the intervening computations. The command sent to
PMAC s R.

Prog Hold - Bring the coordinate system velocity to zero thereby
holding moves where they are but allowing jogs. You can restart
the program with Run or Step. The command sent to PMAC is \.

Chapter 5 — Development Tools

121

e Jog - Pop a jog panel up to allow motor jogging after a Prog Hold.
The jog panel must be closed before the panel before you can
return to this panel to restart the program with Run or Step.
Closing the panel returns all jogged motors to their pre-jog position
with j=. Commands sent to PMAC are generated from the panel.

e Feed Hold - Bring the coordinate system velocity to zero thereby
holding moves where they are. You cannot jog from this mode.
You can restart the program with Run or Step. The command sent
to PMAC is H.

e Abort - Decelerate all motors immediately. You can restart the
program with Run or Step. The command sent to PMAC is A. See
the safety notes for the command in the PMAC Software Reference
Manual.

e Halt “Q” - Quit the program at the end of the current move or any
already calculated moves. You can restart the program with Run
or Step. The command sent to PMAC is Q.

e Halt “/” - Quit the program at the end of the currently executing
move. You can restart the program with Run or Step. The
command sent to PMAC is /.

PmacTerminalMotors

This tool is based on PmacTutor10 that introduced the PmacMotors ICVs. Its
purpose is to allow you to monitor selected motor motions from the terminal.
The arrays of indicators function as introduced in the earlier tutorial. You can
select a coordinate system and enable C.S. conversion for motors defined in the
specified coordinate system. Motors selected in Plot Select are displayed in the
real-time chart. The sampling rate is not uniform. It is a best-effort attempt to
query as fast as possible. For uniform sampling use PmacTerminalGather.

You can choose to display motor positions, velocities, or following errors. The
chart control palette allows you to pan and zoom the display. The Free
Run/Pause button allows you to pause the chart update. Clear will clear the
chart and restart the chart history buffer. The Save button will prompt you for a
file to save the chart data as a tab-delimited spreadsheet file. You can also select
File»Print Window from the menu bar to print the panel to the printer or a file
at any time. Servicing PmacTerminalMenu may cause noticeable glitches in
the plot data. It can be disabled by clicking the Disable Menu Track button.

122 Chapter 5 — Development Tools

b ctor 3
M otor 4

s) R+
J[|EEERT @J
Save
I:I'I:I_I 1 1 1 1 1 1 1 1 1 1 1 1 | [} [} | 1 [} | 11
4245 B0 55 GBD RS V0 V5 B0 85 A0 595 100 105 110 115 120 125 130 135 14 Clear
Position Yelocity Following Error C.5. Defs PlotSelect
Motor 1 | —— | | — Motor 1
Motor 2 || —— | | - Motor 2
Motor 3 o | | T ® | Motor 3
Motor 4 o | | ® Motor 4
Motor 5 | | | T Motor 5
Motor 6 Bl sl |I= Motor 6
Motor 7 Sl oo WS 0 oo :“‘“';
Motor 8 S oo NSO oo JiS] | Y-
C5 3 C5 3
“ Position vl Coord Sps 3 Vl v C.5. Units

Depending on your requirements, you should alter chart operation using the
attributes available with the right mouse button. These include the length of the
history axis, auto scaling of the Y-axis (P, V, or E), plot style, and many other
items. If you want to change the range on the Y-Axis click the minimum or
maximum value on the axis, enter a new value, and disable the auto scaling.
Don’t forget to save these changes if you want them to be permanent.

The diagram has a case structure to allow selection of positions, velocities, and
following errors. If you wish to plot a mix of these, you should modify the
diagram. Pause is implemented with a case structure that prevents the update of
the chart. If you desire, the VIs for querying position, etc. and the
PmacMotorsPVE clusters can be moved into the pause case. This way the
indicator update will also pause. Save and Clear use the chart attribute nodes to
access the History data required to implement their operations. You will find
these pieces of the diagram useful in many other applications because their use
is not obvious in the LabVIEW documentation.

Chapter 5 — Development Tools

123

Dy
Open

Coord Sﬁstem.

-

Plot Select

Poz

-

Term
- Menu

hatrs
Wil

hdotrz
Errar

Following Errorf;

Def

Coard]

=[Z5:]| |Plot Pause

Enable Menu Track

Eed T 43>

feclee n : Faas

|F"ma-:: Motors Ehalt|

True

[Pmac Motors Chart|

[——]
A chive Plot
* Plaot Color
*Flot Mame

Pmac Motors Chart|

]

Hiztary D atatps o] =14 SFI'Ed
pred) &

Active Plotr

[—
r={*History D ata

[Pmac Motors Chart]|

[Pmac Motors Chart|

PmacTerminalMotorX-Y

This tool is based on PmacTerminalMotors. Its purpose is to allow you to
monitor and plot selected motor motions executing in a 2-Axis Cartesian
coordinate system. Ninety-five percent of this tool functions as introduced in
PmacTerminalMotors. See the documentation for this tool. The difference is
that motors selected in Plot Select are displayed in the pseudo real-time X-Y
chart. To display 2-Axis data you must select two motors.

124

Chapter 5 — Development Tools

EEIO
I) 221 B
TRETEET Y
100-T
?5—’7
50 -
25-
o- ||[IESEEN
g G4 Save
| 1 [} | 1 1 | 1
A000 10000 15000 20000 25000 30000 35000 40000 Wy Buffer Elkesr
Position Yelocity Following Error C.5. Defs Plot Select
Motor 1 | | | (T—E— Motor 1
Motor 2 @l oo WS 0 oo Motor 2
Motor 3 Ll os WO 0 27 e ® | Motor 3
Motor 4 2| | || @ Motor 4
Motor 5 ||/ || T Motor 5
Motor 6 Bl oo WSH 0 oo S Motor 6
Motor 7 Bl oo WS 0 oo :0:0';
Motor 8 S oo WS oo IS otor
C.5 3 C5 3 _
= Position vl Coord Sys 3 Vl V¥ |C.5. Units

The charting of 2-Axis motion uses a special chart buffer
PmacMotorsPlotXYChartBuffer to fool the standard LabVIEW X-Y plot
control into behaving like a real-time chart. This is required because
LabVIEW’s X-Y plot does not maintain a history buffer - it plots sets of points.
The slider on the right of the plot specifies the length of the history buffer for
PmacMotorsPlotXYChartBuffer. Like a standard real-time chart, 2-Axis
position history is displayed like a snake moving around the coordinate space.
The head is current position and the tail is the last position in the buffer. This
tool will definitely aid you in understanding what moves you are executing in a
2-Axis system.

The implementation of the X-Y charting is very similar to that used to
implement the standard chart in PmacTerminalMotors and PmacTutor10.
The main difference is that the chart has no history buffer. Hence, we have
created a hidden control for the data provided to the chart named XY Chart
Data.

Chapter 5 — Development Tools

125

[C.5. Units|[TE]] Plot Select
Moatrs |

e - Plot [Tewl] |
Pos =0 ! [=0:]] 2
[152] h’ i Motrs Bt K Char
Dev Wit g Select| | (XY Bulfer RY Chart
Open el |

hatrs |

Term Elrn:r TEE ¥ Plot Mame

[KY Chart Datal [[=::]

- Menu - C.5. Defs

Enable Menu Track| | Def

Plot Pause

Clear| # [True ! :
Tt 24 Chart B [+ Chart Data]f
L] i

PmacPlotXYChartBuffer takes the two point X-Y cluster terminal from
PmacMotorsPlotSelect VI and buffers them to generate an array of clusters for
the X-Y Chart. To update the plot legend create an attribute node for the chart,
select the two items shown, and set them from the cluster provided by
PmacMotorsPlotSelect.

PmacTerminalGather

This tool is a general purpose tool for synchronously gathering and plotting
PMAC data and outputting the data to TAB delimited spreadsheet files for use
by Microsoft Excel, LabVIEW, Matlab, or other analysis and plotting
applications. It allows you to execute a step or an encapsulated motion program.
Encapsulated motion programs created by PmacTerminalEdit can easily be
installed in the tool by replacing the existing PmacProgSubVI with one of your
own.

The LabVIEW chart controls enable you to pan and zoom the plot. You can
select File»Print Window from the menu bar to print the panel to the printer or
a file at any time.

As with the PmacTerminalMotors and PmacTerminalMotorsXY tools you
can modify the plot attributes prior to running the tool to accommodate your
expected scale. PMACPanel has utilities to set the legend and plot colors to
reflect your gather selections. One issue you should consider when gathering
data is that the gathered variables can and will, as in the sample panel, have
widely varying ranges. You can choose to stack the plots if you desire.

126 Chapter 5 — Development Tools

1000.0+

00—

-200.0-] : :

#1 - Present Actual Positi
#1 - Present Desired Pos
#1 - Actual Welozity

ks ﬂﬂll?@ + -
1 | 1 | | 1 | | 1 | |
D 50 100 150 200 250 300 350 400 450 500 S50 g0 eso| APE radldm) >

DAC Command ¥alue Vl

Motor/CS 1 | > |

PVariable ;| 0 | > |
Q-Variable 3 0 | > |

Custom Gather Specification

#1 - Prezent Actual Position ﬂ .
#1 - Present Desired Position Select Mew File | 7 Write Spreadsheat
#1 - Actual Velocity
q |
Program E=E Buffer Space
| 131 | Samples
- Step J Gathering

Cusztom Gather #1

|
‘v $CO03 |1 .0000 |

&
Aemove ju

Servo Cycles

To select Address Items use the controls contained in the PmacGatherSelect
cluster on the bottom left. PMAC lets you select up to 24 Address Items. The
following section covers methods for extending the PmacAddress selection
VIs. The PmacGatherSelect VI builds an array of Address Items containing a
string description, an address, and a scale factor using the interactive commands
from the panel cluster.

e PmacGatherSelect - Maintains a PmacGatherSelect Cluster and builds a
PmacGatherSpec cluster to define gather operations. You can build a list in
four ways. Select an item and Motor/CS number, P-Variable, Q-Variable,
or define a Custom Gather Specification. Click the associated -> button to
add the item to the list on the right. The gather sample rate is defined as a
number of Servo Cycles. All items are gathered at the same sample rate.
Items selected in the list can be deleted using the Remove button.

New Output is TRUE when an item is added to the list with a -> button or
removed from the list with Remove. New selection identifies the selected
item in the gather list. Gather Selection Items String Array define the
contents of the gather list. Gather Spec Cluster is an internal data type used
by other PmacGather VIs to setup PMAC and collect the gathered data.

Device Number i32 (0) —| Gat [~ HEE g;tggttinﬂnniglz[F]

Gather Select Cluster SE"ECL% (3 ather Selection ltems Stri...
Father Spec Cluster

There are four methods for specifying Address Items provided by this VI and its
control/indicator cluster.

e The top group of two Menu rings allows you to select one of 29
standard motor or CS variables and a motor or CS. Using the ->
button in this group you can add the selection to the Text ring on
the right.

Chapter 5 — Development Tools

127

e Ifyou specify a P-Variable or Q-Variable number and click the
appropriate -> button the specified variable is added to the
selection list.

e On the bottom is a Custom Gather Specification cluster that allows
you to enter a description, address, and scale factor. Clicking its
associated -> button adds this item to the selection list. Be aware
that the PComm32 library requires you to specify addresses as:

X:$****
Y:$****
DP:$****

If you want to write the gathered data to a spreadsheet file click the Write
Spreadsheet radio button before executing the gather. To actually gather the
data click Step or Program. Step executes a 250 mS step to 1000 counts and
back to 0 counts using the motor specified in the menu ring used to setup the
gather. Program executes the encapsulated motion program wired into the
diagram. During the gather, the Gathering indicator is green. After the gather,
the data is plotted and the indicator turns gray. If you selected Write
Spreadsheet, you will be prompted for a file name.

The diagram for implementing this tool is a great source of ideas for building
gathering into your own applications. Being a full application tool it requires a
bit more work — but it is not as bad as it looks — it fits on one page!

Outside the execution loop, all motor servo loops are closed by
PmacMotorsCloseLoop. To exit the loop the Stop button first sends a delete
gather command to PMAC to free the buffer space. Buffer space is monitored
using PmacGlobalBuffers and an indicator. We will discuss how a Gather
Selection list is built in the next section.

128 Chapter 5 — Development Tools

Dew
Open E1!| 5
obel Tem
| Buifer|
Mirs Buffer Space| [z
Cloze

Addr
b cbior

[—
o Gather Variable

Send
String

G ather Selection

Gat

S elec

Select New File

Spreadsheet File

Tiue
=

Gat Gat

Start

[Set Panel Gathering flag|

Gat

S et]
g

Called]

Setup gathering registers
from G ather Spec array
and start gather. IF your
program starts the gather
exclude PmacGatherStart. [.

Step to 1000 for 250 mS| - [Asssemble plot cluster]
then back to O 2 0]

Halt gather and

E xecute step or
motion program
in_gequence

Prag |~
S ubi|

|

collect data az 2D

amay of doubles. 1f your
program halts gather you
don’t need PmacGatherStop
Gathered data can be
FFT'd. linear fit, etc.

ait while
execulin

o Spreadsheet]

[True I
Spreadsheet File||| Spreadshest File

Gat
Spred

(Output gather data to
Tab delimited file

[—
ractive Plak
FH Plat Color
*Plat Mame

Data is actually gathered in this tool when either the Gather Program or the
Gather Step buttons are clicked. They require the Gather Spec Cluster created
by your program or generated by PmacGatherSelect. The gather process
begins by executing in sequence the following five VIs. In the diagram, the
sequence of operations is located in a case structure.

PmacGatherSetup - Use the information in Input Gather Spec Cluster to
setup a gather operation on PMAC. Output Gather Spec Cluster should be
wired to PmacGatherStart, PmacGatherStop, and PmacGatherCollect to
sequence operations and so that they can get the information they require
for their operation.

Use the information in Input Gather Spec Cluster to setup a gather operation
on PMAC. Output Gather Spec Cluster should be wired to
PmacGatherStart, PmacGatherStop, and PmacGatherCollect to sequence
operations and so that they can get the information they require for their
operation.

The actual setup can also be done using Pewin32, PmacTerminal, or your
motion/PLC programs. This is not recommended if you intend to use
PmacGatherCollect to retrieve the gathered data. These methods require

Chapter 5 — Development Tools

129

intimate knowledge of PMAC's internal architecture and are automatically
handled by this VI.

Device Number i32 [0) — Gat
Input Gather Spec Cluster =—=5etup

Cutput Gather Spec Cluster

o PmacGatherStart - Start a previously defined gather operation. You
should immediately start the desired motion after this VI executes. You can
eliminate this VI if you start gathering by using the PMAC program
command "define gather" in your program.

Device Number i32 [0) —Gat
Input Gather Spec Cluster === Start

peeeema (tput Gather Spec Cluster

e PmacGatherStep - This is only one of any possible motion or encapsulated
motion program.

Device Number i32 (0] ———

Step Boal -] Outout Device Mumber i32 10
Mator Mumber i32 [1-8) [”_,—"E:;Q Du puE IE!|W:E e 5200
Step To [one Bee

it Time [mS]

o PmacGatherStop - Stop an executing gather operation. You can eliminate
this VI if you stop gathering by using the PMAC program command "end
gather" in your program.

Device Number i32 (0] — 4
Input Gather Spec Cluster Stop

=== (ytput Gather Spec Cluster

e PmacGatherCollect - Collect the gather buffer and scale the data using
each items scale factor. The data in Gather Data Array is a two dimensional
array of doubles with Number of Items columns and Number of Samples
rows. In this format the data can be written to a spreadsheet or processed
by many different LabVIEW data analysis Vls.

Mumber Of ltems (32
L Mumber Of Samples 32
i Servo Cycles (32
Gather Data Array Double

Device Number i32 (0] — G
Input Gather Spec Cluster == Callzd

The sequence frame in the middle of the case executes the step or an
encapsulated motion program. You can replace the motion program with your
own or modify the entire sequence to suit your needs.

There are two other operations performed within the main case structure. The
Gather Spec cluster is unbundled and used with PmacPlotColor to setup the
legend. Finally, after the data is collected it can be written to a spreadsheet if
the operation was enabled prior to the gather. This is done using

e PmacGatherSpreadsheet - Output a tab delimited spread sheet file for
import into other plotting and analysis applications. If Input Spreadsheet
File Path is empty of Not A Path a dialog prompts for a file name. The file
name used is provided to Output Spreadsheet File Path.

130

Chapter 5 — Development Tools

Input Spreadzheet File Path Gat]
Gather Data Amray Double == g g 4 Qutput Spread:zheet File Path
Gather Spec Cluster = 12EE

Specifying Gather Addresses

With PMAC you can gather data from any address. This requires an address to
gather from and a scale factor to apply to the data. The PmacGather tools use a
small collection of PmacAddress VIs to simplify the specification of PMAC
addresses for gathering. When you understand these tools, you can modify them
to suit your particular needs.

The purpose of the PmacAddress collection is to build arrays of Address Item
Clusters as shown here to define an Address Item’s text description, address,
scale factor, and type

Address Item Cluster Specify a description, address, and

scale factor for a Address Item

Address Item Description Text description of
Address Item

Address Item Address Address of Address Item

Address Item Scale Scale factor for Address Item

HEE B

Address Item Type Enumerated type defining type
of raw data

The PmacAddress collection consists three VIs

PmacAddressMotors - This VI maintains a table defining 29 of the most
common Address Items. If Input Select String is the empty string the VI
produces Menu String Array describing the defined Address Items. This
should be used to set the items in a Menu or Text ring control. Selection
Index and Motor Number are provided by rings and define the desired item
and the motor number used to compute an address for the specified item.
The computed item is contained in Address Item Cluster. For a description
of this computation see the reference section and the memory map
contained in the PMAC Sofiware Reference Manual.

Device Humber 132 [0] Add Selection Found Boal
Input Select String - Mot M= & dedrees Ibemn Cluister
Selection Index i32 f e bt Sirirug Atry

Motor Mumber 132

PmacAddressAdd - Check to see if the item specified by Address Item
Cluster already exists in Input Address Item Array. If it already exists do
not add it. If it does not exist add the cluster to Output Address Item Array.

Address ltem Cluster Addr

Input Address ltem Amray === Add Output Address ltem Array

Chapter 5 — Development Tools

131

6|

e PmacAddressDelete Locate and remove the Address Item Cluster specified
by Selection Index to Delete from the Input Address Item Array.

Selection Index to Delete 132 ——
Input Address ltem Array ===

Addr

D eletd

femmmme=a [ytput Addres s Ibemn Array

The PmacAddressMotors panel contains an array of clusters that define a
translation table. You can manually add items to this table and set them as the
defaults for the control transparently adding them to the menu ring in the
PmacGatherSelect control. A portion of the table provided with PMACPanel

is shown here.

Translation T able Private|

[4:ctual Velocity [<¢ oo Jac Jooz |
[Irtegrated Errar Residual <% EE EE [1oo |
[Integrated Eror [oFs |oox7 [oo |
|Frevious Phase Fosition [vs JoosF |3c [roo |
[Slip Frequency ¢ [ood0 Jac oo |
[Present Phase Position [oPs o4 Jao oo |
[Fhase dvance < [oo4z J3c oo |
{Phased DAC Ampliude s o4z |3c [roo |
{DAC Command Yalue ¢ |oo4s Jac oo |
| Compenstation Conection | CEEI I EE [o0z |
{Encoder Status Bits < |cooo |4 [1o0 |
|Encoder Time Between Counts v |cooo |4 [1oo |
Encader Time Since Last Count v [com]4 [1oo |
{Encader Phase Fosition < [coo |4 [1oo |

Each cluster item in the array consists of five items. In order from left to right

these are:

Name Textual description of the item to be gathered. Used in
conjunction with a motor or CS number to build a unique
description for plot legends and spreadsheet files.

132

Chapter 5 — Development Tools

Address A string defining the size and interpretation of the
data to be gathered. Legitimate designators are X:$, Y:$, and
DP:$.

Address Offset A hexadecimal string defining the offset
address of the data to be gathered.

Address Stride A hexadecimal numerical value that defines a
stride to be used in computing the final gather address. The
actual address is computed as (Motor Number - 1) * Address
Stride + Address Offset.

g

Scale Factor A scale factor to apply to the collected data.
Some entries in this table compute this value depending on the
item being gathered.

You should refer to the PMAC I/0O and Memory Map in the PMAC Software
Reference Manual prior to modifying this table. You will note in the table that
Encoder Time Between Counts has an Address Stride of $4 and an Address
Offset of $C000, whereas most Address Strides are $3C. Using the values the
address for Motor 3 Encoder Time Between Counts is computed to be:

Y:$(C000 + (Motor Number - 1) * 4) = Y:3C008

As another example, the DAC Commanded Output for motor 2 is

X:$(0045 + (Motor Number - 1) * 3C = X:350072

Scale Factors are a little more complex. Many Address Items in memory are
scaled by one and already have the proper scaling. The most interesting ones are
scaled by some combination of factors and I-Variables from internal units to
encoder or coordinate system units. For example, Present Actual Position
(DP:$002B) is reported in units of

1 / (Ix08 * 32) counts

To make your life easier PmacAddressMotors computes this scale factor when
building the Address Item Cluster. If you add items to the table remember to
make them the default for the table and save the VI. When you add the item,
you must add a little wiring to the diagram for PmacAddressMotors shown
here.

Chapter 5 — Development Tools

133

Selection Found Bool

™ True t

Create gather description

I

|| Translation Table F'ri\-'ate"
o
-t

|[Create Menu Stiings if input is ™|

Item Cluster

Motor Number i32
[132]

Selection Index i32

[Device Number i32 [0]] [

[Compute scale factors for each table entry]

At the bottom of the diagram is a labeled case structure labeled “Compute Scale
Factors for each table entry”. It is reproduced here for clarity.

[Compute zcale Factors for each table entry]

Select the last case in the structure using your mouse and add another case. The
default last case is 29 so add case 30 or whatever you require. If the scale factor
is fixed and specified in the table, wire the orange scale factor input tunnel from
the unbundled cluster to the output select tunnel on the right. Click through a
few of the cases and you’ll see what we mean. This will copy the scale factor in
the translation table into the scale factor item for the Address Item Cluster being
built. The case shown here depicts the scale factor computation for item 16 -
“Actual Velocity” at Address Offset X:$0033 with stride $3C. The units of the
gathered data, as documented in the PMAC Software Reference Manual Chapter
8, are:

1 / (Ix09 * 32) counts / (Ix60 + 1) servo interrupts

134 Chapter 5 — Development Tools

The scale factor in the translation table is 1/32. Hence, this portion of the
diagram computes

ScaleFactor * (1 / Ix09) / (Ix60 + 1)

When modifying the tables make sure that you keep an original copy of the
PmacAddressMotors VI. If you happen to pull a control out of the cluster or
pull the cluster out of the array the table clears all entries.

Chapter 5 — Development Tools

135

Chapter 6 - Encapsulated Motion
Programs and PQMs

Basics

This chapter introduces a variety of VIs and tools to seamlessly integrate PMAC
motion programs into your PMACPanel application. In Chapter 5, we
introduced PmacTerminalEdit. This tool allows you to develop new motion or
PLC programs or modify existing programs and with the click of a button create
a VI wrapper for the program. In this chapter we cover the details of the
wrapper and introduce the PmacPQM collection of VIs. These provide an
interface to directly tie controls and indicators in your application panels to
motion program variables.

PmacProgSubVi

We introduced this VI in Chapter 5 but do so again because we’re going to
cover it in more detail.

e PmacProgSubVI - PmacProgSubVICreate makes a copy of this VI with a
new name that matches the name of a motion program. Because the motion
program has the same name (with a different extension) this VI knows how
to open, parse, load, and run a motion program without intervention or extra
inputs. It allows you to edit the associated program and interactively
execute the program. Details of its implementation are contained in the
manual.

The VI downloads the associated program when first loaded unless this
option is disabled in the diagram and defaults for Program Number and
Coord Number are provided for the Program VI State Cluster.

The interactive panel can be opened and used by setting Panel Show
(latched) TRUE. See the documentation for PmacTerminal Edit and
PmacTerminalExecute for details on interactive execution. The panel is
closed by clicking the Stop button on the panel

When the latched input Program Run is TRUE Input PQM Variant Array is
sent to PMAC to initialize a program's P, Q, or M variables. The program
is then started as long as there is no program executing in the associated CS.
When Program Running is TRUE this or another program is executing in
the associated CS.

136 Chapter 6 — Encapsulated Motion Programs and PQMs

DeviceMumber 132 [0] Pragram Running Baal [F]

Program Run Bool [F] - 15ubYI %= Pragram ' State Cluster
Panel Show Bool [F] - mE;;New Qutput Boal [F)
[nput POM Wariant Array Cutput POM Wariant drray

When PmacTerminalEdit saves your motion program to a file and makes a
copy of PmacProgSubVI with the same name as your motion program you
have encapsulated the program within a VI. You should edit the icon of your
new encapsulation or wrapper VI to represent your motion program. We will use
the terms encapsulation and wrapper interchangeably. Before we look at how to
use the encapsulation VI lets look at the new VIs panel and diagram.

If you open your new encapsulation VI you’ll note that the panel is a
combination of PmacTerminalEdit and PmacTerminalExecute with most of
their capabilities. The purpose of this panel is to allow you to edit the associated
motion program and monitor its execution. There is no need for buffer control
or for selecting a motion program or coordinate system because these are
already known by your encapsulation VI. Refer to their documentation in
Chapter 5 for details on using the capabilities of the two panel components.
Help»Show Help will also provide detailed descriptions of the buttons and
indicators.

Motion Program Sub VI

Motor Positions Coord Dets

whtain & motion program

|

| Encoder Counts I

" Nal Mo Program
Running
Program Single
Hold Step
Pre-Jog End OF Block
Move Stop
Continuous Continuous
Motion Req Motion Mode
Run-Time Amplifier
Clear Down Show Mot Runnil | Evtor Fault
- ot Running B 'IFl ISl IP HIdIJ I =
Load | Save | Save As Window Load Log egin | run Epj oo e o Wa_mlng F._alal
Feed Hold I Ahmll Halt "u"l Halt ;I i glEroiit 0 (e

The implementation of the VI is quite a bit different from most of those already
introduced. This VI is embedded in your application’s execution loop so that it
can continuously monitor the attached motion program. As such, it is not
wrapped in its own loop. It utilizes several VI control and server concepts found
in LabVIEW to control the display of the panel and selective execution of some
of its components so that it doesn’t consume a lot of execution time unless
required.

There are four major pieces of the diagram. On the far left is a case structure
that controls and monitors the actual execution of the attached motion program.
Below this is a small case structure that opens and displays the panel in response

Chapter 6 — Encapsulated Motion Programs and PQMs 137

There iz a bug in LY 5.0 regarding
local wariableg and persistencel

Program ¥l State Cluster
==

to the Boolean input Panel Show. The very large case structure on the right is
only executed when the program is not running. Within this case, there are two
major operations. The top case structure checks the Program VI State Cluster,
down loads the motion program the first time the VI is executed, and parses the
program for a program number and coordinate system. This is why you don’t
have to keep track of the program number of its CS. The large case structure
below executes only when the panel is "Open and Active" and enables status
monitoring, editing, and interactive execution from the panel.

FALSE case executes when the
program is NOT running

T False]
True
[T:]

Default Program #

. [Miake this TRUE to disable
: |automatic down-load

DeviceNumber i32 [0

¥
Fragram 'l State Cluster
Get i
! P
Sting| [Check for_errors ol s

Program Run Bool (F

TF
e T3]
[13]

|| Program “window

hen Program State Cluster indicates the program
is not loaded - down load the program.

T "Open and Active" #

I Program V1 State Cluster

Input PQM Variant Array [_=_--
[Output PQM Variant Array
Mew Output Bool [F

T True b
Jow| Pragram Window
R.ih:ltr:::eo' . Prograrm V1 State Cluster
arze
the ¥l panel

Program Running Bool [F

Panel Show Bool (F

Open the ¥l panel

Execute the ¥ls in the this case
OMLY when the panel iz open

[
[Fr-
»Scroll Position|

Pragram Listing

To hide many nasty details from the user the VI maintains a Program VI State
Cluster. When the VI executes the first time the Program Loaded item in the
cluster is FALSE. Hence the program execution case on the left can’t execute,
the large case does, and the program is downloaded thereby updating the
Program VI State Cluster indicating that the program is loaded, the program
number, and associated coordinate system. At this point, the VI is knows
everything it needs to run and monitor the program.

If your application does not need to be downloaded every time your system is
turned on, changing the labeled Boolean constant on the top to TRUE with the
mouse will disable automatic down load. This prevents the down load but
doesn’t provide the program number or coordinate system number. To provide
this information set the constants in the case containing the Default Program #
and Default CS # and save the VL.

138

Chapter 6 — Encapsulated Motion Programs and PQMs

After the down load is complete, repeated executions of this VI embedded in
your application loop allow you to display the interactive panel or control and
monitor the execution of your motion program. The VI provides its Program VI
State Cluster as an output so you have access to this information for building
tools that are more sophisticated.

If your application provides a latched TRUE input to Panel Show the panel is
opened and activated. The sub-case within the large case can now execute and
update the panel’s display. This approach eliminates a fair amount of execution
overhead in maintaining a panel when not displayed. The structure of this part
of the diagram is obvious if you’ve followed the documentation so far. The one
difference is that the Stop button has no loop to halt. Instead it closes the panel
and allows continued execution of the other operations in the VI.

Once the program is loaded, the case on the far left can execute. This structure
performs two sequential operations. First, the PmacPQMArray VI is executed.
This will set specified PMAC P, Q, or M variables using Input PQM Variant
Array when Program Run is TRUE. If Program Run is FALSE, the specified P,
Q, or M variables are retrieved from PMAC and output in Output PQM Variant
Array with New Output TRUE. The second operation is to monitor the
associated motion program using PmacProgRun. If Program Run is TRUE the
program is running and can use the newly loaded P, Q, or M variables. The
Program Running output will be TRUE indicating that the program is running.
If Program Run is FALSE no program is executing and Program Running will
indicate whether another motion program is running in the associated coordinate
system. PmacProgRun is covered in detail here.

e PmacProgRun - Control and monitor the execution of Program Number in
Coord Number. The specified program is started when Program Start is
TRUE and no program is currently running in Coord Number. Program
Running indicates that some program - maybe not Program Number - is
running in Coord Number. Output Program Start is a copy of Program Start
and can be used to sequence program execution with other operations.

Device Humber 132 [0] —

Program Start Bool [F] -] Prog

Program Humber i32 f Fiun

Coord Humber 132

Program Running Boal [F]
Qutput Program Start Boal [F]

PmacPQMExamp

The encapsulation of a motion program with a wrapper is a huge step toward
integrating PMAC with LabVIEW. The PmacPQM collection of VIs carry this
further by providing an architecture for tying controls and indicators to the P, Q,
and M variables used by your PMAC motion programs and PLCs. To illustrate
how to do this we’ll use PmacPQMExamp located in the directory
\PmacPQM.

To begin lets look at the sample motion program PmacPQMTest.pmc that we
want PMAC to run (.pme is used by Delta Tau SW tools to indicate a motion
program). You should note the associated encapsulation VI PmacPQMTest.vi
created by PmacTerminalEdit.

; PmacPQMTest.pmc

; USE CS &1 ; Parsed by PMACPanel during download

Chapter 6 — Encapsulated Motion Programs and PQMs 139

Close ; Always close any open buffers

&1 ; Define the CS
#1->1000x
ml->* ; Redefine M1 as standard output port

ml->y:$ffc2,8,8,u

open prog 32 ; Parsed during download
clear ; Otherwise appended to buffer!
linear ; Set move modes

abs

ta (P1) ; Set move - Accel time is P1
ts250

tml1500

ml == ; Show bit on port move X to P2
X (P2)

DELAY (P3) ; Delay for P3 mS

ml == ; Update the port

X (P4) ; Move X to position P4
DELAY1500

ta250 ; New move parameters

tsl25

tm750

ml == 4 ; Return home

x0

dwell 100

ml == 0

close

This program uses four P-Variables to define its execution and motion.

e P1 - Acceleration time for first few moves
e P2 - First X position
e P3 - Delay time after move

e P4 - Second X position

Because P, Q, and M variables are used to configure a motion or PLC program
PMACPanel provides a collection of VIs to take values from panel controls and
set associated P, Q, and M variables for use by your programs. You can then
start program execution. The panel for the example shows a familiar set of
indicators to monitor motor motions on the top left.

140

Chapter 6 — Encapsulated Motion Programs and PQMs

D-ALabYiewh\PmacYiew libAPmacPQMy
&
E
r
5 9

Below this are four PmacPQM Cluster controls associated with the four P-
Variables used by the program P1 - “Acceleration in mS”, P2 - “X Move 1 in
cm”, etc. Each cluster contains a control for the value of the variable and a string
control specifying which P, Q, or M variable. At the bottom of the panel is a
Cycle Read/Write button to begin execution of the encapsulated program and an
In Progress indicator to monitor the execution of the program. The Show
Program button will open the encapsulated program’s interactive panel thereby
allowing you to interactively modify the program and step through its execution.

PmacPQM provides the ability to log PQM variables to standard LabVIEW
datalog files. The logging process is controlled by the Datalog Control Cluster
and Datalog Display Cluster in the upper right and is sequenced with the Cycle
Read/Write button.

If you click the Create/Open button, you are prompted for the name of a datalog
file. You can select an existing file created using this example or provide the
name for a new file. There are two example files named datalog.dat and
datalogl.dat. New File closes an existing log file and allows you to select a
new one. This needs to be done prior to actually logging PQM data. The
Read/Append/Ignore radio buttons define what to do with the PQM data when
the Cycle Read/Write button is clicked.

Chapter 6 — Encapsulated Motion Programs and PQMs 141

e Read - It is assumed that you opened an existing data log file
created earlier. Use the record specified by Current Record to read
a PQM record, set the PQM variables in PMAC using the retrieved
record, then execute the encapsulated motion program. You will
see the values on the cluster controls change to those read from the
record when Cycle Read/Write is clicked. Using this you can
replay previously executed tests and configurations. The state of
the panel illustrates that a Read operation was performed during
the last cycle using record 1 (after the cycle Current Record was
incremented to 2). The note indicates that X1 = 12 and indeed P2
has a value of 12.

e Append - Read the PQM cluster controls, append them to the
datalog file, send them to PMAC, and start the execution of the
encapsulated motion program. You can add a note to the record
prior to clicking the Cycle Read/Write button.

e Ignore - Keep the datalog file but do not read or write anything.
Simply pass the PmacPQM clusters to PMAC.

PmacPQM Clusters

There are four standard PmacPQM clusters provided for use on your
applications panels. Defining these clusters binds the PQM variable’s name
with the actual numerical value to be used with the variable. These are based on
variations of the cluster definition for PmacPQMLong.

e PmacPQMLong - Cluster for tying PQM variable definition with an 132
control/indicator. After inserting on your panel specify a PQM variable
name for the Variable Item and make it the default using Right Mouse
Button»Data Operations»Make Current Value Default. Replace
Control to reflect your requirements.

PGM Long Cluster|

PQM Long Cluster Cluster for tying PQM variable definition
with an 132 control/indicator. After inserting on your panel
specify a PQM variable name for the Variable Item and make
it the default using RightMouseButton»Data
OperationsyMake Current Value Default. Replace Control
to reflect your requirements.

Variable String defining PQM Variable name. e.g.
”P34"

Control Control for associated PQM Variable

PQM Type

142 Chapter 6 — Encapsulated Motion Programs and PQMs

e PmacPQMBool

POM Bool Cluster|

P34 (0}

e PmacPQMShort

PQM Short Cluster|

| P34 | ;[0

e PmacPQMDDbl

PQM Double Cluster|

10.0-
80-
6.0-
40-
|
-/ 0.00 50
I].l]—:

When you insert these on your panel feel free to move the items around, replace
the actual control, change the format and range, color, Boolean text, etc.
Remember to keep the cluster order as indicated. When you define the name of
the Variable item in the cluster, it is a string (i.e. P34). You need to set this as
the default for each control in your panel and save the VI using the cluster — not
the original cluster itself!

PmacPQMVariant functions as a neutral or void type of PQM cluster.

e PmacPQMVariant - Cluster for tying PQM variable definition with a

PQM type-neutral string. This cluster is generally not used on application
panels.

PQM ¥ariant Cluster|

P34 | | ”

PmacPQM Conversions

There are three types of PQM VI for processing PQM clusters. The examples
given here are for the PmacPQMULong collection. Similar collections exist for
PmacPQMBool, PmacPQMShort, and PmacPQMDbl.

e PmacPQMLong - If Set\Get is FALSE or not wired get the Long PQM
Variable specified by PQM Variable String. Response Available will be
TRUE to indicate Response contains the new value. If Set\Get is TRUE set
the Long PQM Variable using Input Value. Response Available will be
FALSE and Response defaults to Input Value.

Chapter 6 — Encapsulated Motion Programs and PQMs 143

If you specify an M-Variable it must be defined using Pewin32,
PmacTerminal, or PmacCommSendString.

Device Number i32 (0] — PaM [Responze &vailable Boaol [F)

Set/Get Boal [F] - .
POM Variable String ﬁ Lang Respanse i32

Input ¥alue i32

e PmacPQMLong2Var - Convert the PQM Long Cluster to a type-neutral
PQM Variant Cluster.

POM Long Cluster T_thll PO W ariant Cluster

e PmacPQMVar2Long - Convert a type-neutral PQM Variant Cluster to a
PQM Long Cluster.

POM ¥Yanant Cluster TI%T PEM Long Cluster

The purpose of the 2Var and Var2 Vls is to convert clusters of specific types to
and from neutral PmacPQM Variant types for building arrays that bundle PQM
cluster controls into a single item.

e PmacPQMArray - Set or Get a collection PQM variables as defined by an
array of PmacPQM Variant clusters.

Device Humber 132 [0]
Ny —
Input Yarnant Amray

PDM NE'."'.' Dutput BEIEI'
Array e Qutput Y ariant Airay

The use of arrays greatly simplifies the development of PQM configuration
panels for your applications. PmacProgSubVI VIs created by
PmacTerminalEdit accepts the arrays as inputs and provide them as outputs.
This allows you to update program PQM variables prior to actually executing
the program and monitor any PQM variable used by the program as it executes.

PmacPQM Datalogging

PMACPanel supports data logging of PmacPQM clusters using the VIs in the
PmackFile collection. These can be modified to support record attributes such as
time stamps in support of your particular needs.

e PmacFileDatalog - Manage datalog operations for type-neutral
PmacPQMVariant Arrays.

Operations as specified by the radio buttons in Datalog Control Cluster are
performed when Append/Read is TRUE. A file must be selected prior to
executing the operation using the Create/Open button or New File button in
the cluster. The file is opened and closed on every transaction. After an
operation New Datalog Display is TRUE and Output Datalog Display
Cluster contains updated operation status for your application's cluster.

Append operations write Input PQM Variant Array to the end of the file
specified in Input Datalog Display Cluster and update Current Record and

144 Chapter 6 — Encapsulated Motion Programs and PQMs

Num Records in the output cluster. The contents of the Note window are
appended with the record.

Read operations read the record specified by Current Record in Input
Datalog Display Cluster from the specified file and generate a new Output
PQM Variant Array. The availability of new data is indicated by New
PQM Variant Array TRUE. Output Datalog Display Cluster increments
Current Record and displays the Note, if any, attached to the record. Read
operations cannot read past the end of the file and simply read the last
record in the file.

To change the data logged by this VI simply change Input and Output PQM
Variant Array to your own data type. Similar modifications to
PmacFileDatalogAppend, Create, and Read are also required.

D atalog Control Cluster File MHew Datalog Dizplay Bool [F]
Input Datalog Display Cluster =] 0 _ | , = Cutput D atalog Digplay Cluster

Append/Read Bool (F) = Dlog = -~ Hew PO Varint sy Bodl)
Input PAQM Yariant Array Output PO % ariant &rray

¢ PmacFileDatalogAppend - When Append Record is TRUE append Input
PQM Variant Array to the file specified in Input Datalog Display at the end
of the file. Update the Current Record and Num Records in Output Datalog
Display Cluster. Indicate the new data by setting new Datalog Display
TRUE.

Append_ Record Bool - Dlag |- Mew Datalog Display Bool [F]
Inpmlr[::l:tallglgh[l)I:I'I;Ir?:n?:lsrt:; fApnid fre======tput D atalog Dizplay Cluster

e PmacFileDatalogRead - When Read Record is TRUE read Output PQM
Variant Array from the file specified in Input Datalog Display using Current
Record. Update the increment Current Record in Output Datalog Display
Cluster and display the Note, if any, stored with the record. Indicate the
new data by setting new Datalog Display TRUE.

Read Becord Bool = pypan [Mew Record Bool [F]

Dlog feceey .
Input Datalog Display Cluster =R ead SEEEEE Eaﬁl?\ﬁaﬁ;ﬁlﬁriusmr

e PmacFileDatalogCreate - Create or Open an existing datalog file to store
data of type Input PQM Variant Array along with notes. When Create/Open
is TRUE use the path in Input Datalog Cluster. If this path is empty or Not
A Path display a file selection dialog. When a file name is entered or an
existing file is selected the number of records in the file is determined. All
updated information is available in Output Datalog Display Cluster and
indicated by New Datalog Display TRUE.

Create/Open Bool - Dlog | M ew Datalog Dizplay Bool [F)
I"p""tlr[:;l:talgag':I,I;II?:"?:'S::; - WEEE Output 0 atalog Dizplay Chaster

Chapter 6 — Encapsulated Motion Programs and PQMs 145

Using Encapsulated Motion Programs

We’ve already seen the panel for PmacPQMExamp. Lets look at how
PmacPQM ICVs can be combined with the custom PmacProgSubVI created
by PmacTerminalEdit to build great applications. The diagram for the
example is shown here.

Dev
Open
| C.5. Dels
btrz =
Cloge - 5
E i otor Position
[Handle Datalog of PQM array|
Datalog Control] [E=2]] ﬂ =
Datalog Display] [(E==
Read/white Cycle IIEI T °|>
[Convert PQM controls to array| : [MachineQutput]
Acceleration in m [TF]
PLIk
: L2V
fX Move 1in cm PO [Update PQM controls]
------- e T B — Ao B
Delay in mS — ! =l | Aucceleration in mS :
— | | Bl Move Tinem|| 2
POM | , - = : _
e . 5

[Fetch PQM data on startup| bexal[3¢ M ove 2 in o]

The application has the standard execution loop with menu processing and a
Stop button. In the middle is the PmacProgSubVI VI created for the motion
program PmacPQMTest.pmc already introduced. When the Cycle Read/Write
button is clicked a sequence of operations begins. The PmacPQM clusters on
the panel are translated into PmacPQMVariant clusters and bundled into an
array. The array is passed to PmacFileDatalog, which appends the array to the
datalog file, ignores data logging, or ignores the current input and reads a record
from the specified data log file. The array is passed to the encapsulated motion
program VI along with a TRUE Boolean. The wrapper VI will down load the
variables to PMAC and start the program.

If PmacFileDatalog has new PQM array data due to because it read the data
from a datalog file or simply passed the input array through, the PQM clusters
are updated with the PQM array. This is done by the two case structures in the
lower right of the diagram that convert the array items to appropriate types,
unbundle them, and set the local variables for the clusters on the panel. If this is
the first execution of the VI the shift register will query PMAC for the current
PQM variables, and update the clusters.

This example program indicates its location in the program by setting bits of a
standard memory mapped machine output. The output is monitored by
PmacAccMachineOQutput8 and used to drive an indicator on the panel. The
VIs and indicators in the upper right display the coordinate system definitions
and motor position. The coordinate system number for the VIs is obtained from
the encapsulated motion program V1.

146 Chapter 6 — Encapsulated Motion Programs and PQMs

PmacTestExamp

Development of your interactive application framework can get involved. If
you’ve followed everything up to this point, you understand how PMACPanel
cooperates with PMAC, how to use the various ICV’s in your applications, and
how to encapsulate motion programs using PMACPanel. This section discusses
one framework for controlling and configuring multiple motion programs.

The example PmacTestExamp, located in the \PmacTest directory, has four
encapsulated motion programs.

e PmacTestPQM1.pmc in CS 1
e PmacTestPQM2.pmc in CS 2
e PmacTestCircle.pmc in CS 3

e PmacTestCircles.pmc in CS 3

PmacProgSubVI's were created for each program by running
PmacTerminalEdit, loading the programs one at a time, and clicking the Create
Prog VI. This takes 2 minutes to do. PmacTestPQM1 and PmacTestPQM2
are similar to PmacPQMExamp and use P-Variables to configure their motion.

XY Chart Motor Position Chart

tatar 3

b ator 4 Motar 1

Motor 2
& | Motor 3
@ | Motor 4
Motor 5
Motor 6
Motor 7
Motor 8

mc'lnu 20000 20000 40000

30 40 B0 60 70 80 an 100 1io1zo| UFT e

+ + 0
j_,Jl_@lJ 1} 5I] 1I]I] j 32
QM 1

_ PQM 2 Run Circles Run Circle Run

The panel for PmacTestExamp is shown above. The panel shows four sets of
controls — one for each program.

e A button to start the program

e A button to show the encapsulated motion program’s execution
panel

e An LED to indicate the execution state of the program

Chapter 6 — Encapsulated Motion Programs and PQMs 147

PQM 1 has an extra button that, when clicked, allows modification of its
associated P-Variables with the control panel shown below. The VI architecture
for doing this isn’t really a PMACPanel design issue, but it demonstrates an
approach for PQM configuration using pop-up panels in a larger application.

This application specific PQM configuration VI doesn’t actually send the
variables to PMAC. It creates a PmacPQM Variant array from the panel
clusters that can be used by the encapsulated motion program VI in the main
application. Update reads the current P-Variable values from PMAC and
updates the controls on the panel. You can close the panel using Cancel and
discard the new control values. If you click OK, the VI indicates there is a new
PQM Variant Array available. The disposition of the new data is up to the main
application VI. The description for the VI is given here.

e PmacTestPQM1Panel - Group several PQM clusters together and
coordinate their operation with an encapsulated motion program VI. Panel
Show TRUE displays the panel. If you supply Input PQM Variant Array
and set Init w/ Input Variant Array TRUE the controls initialize themselves
using the array contents when the panel is displayed. If you do not use
these inputs you should first Update the controls from PMAC. Output PQM
Variant Array maintains any changes made using the controls from
execution to execution. If the user clicks OK New Output Bool reflects
this. Otherwise Output PQM Variant Array contains the current state of the
cluster controls.

Device Humber i32 (0] — PO |- Mew Dutput Bool
Panelz Qutput POM Variant dray

Iniit vt Input % ariant Bool [F] -
Input PEM Wariant Amray

The VI forms a basis for generating your own pop-up PQM panels. The
diagram is shown here and has pieces of PmacProgSubVI and
PmacPQMExamp in it.

148 Chapter 6 — Encapsulated Motion Programs and PQMs

Panel Show Bool [F

Open the ¥ panel

Indicate acceptance with OK.
The Output Wariant Cluster will
always reflect the state of the

o] "Open and Active” pf

=] EQ:; [Init w/ Input Yariant Bool [F]]

D—

STATE|

D etermine Fetch New Data IlEI

L=

[Device Humber 132 [0)| [[32]

==

the state of

the ¥l panel Ecceleratinn in mS

|L=<3] [Input PAM Variant Amay|

= | Acceleration in mS

TEF

Delay in mS

|Dul|:|ut PO Yartiant .&rra}l” n| % Mowe 2 in cm

[Convert POM controls to aray]

oy I POM
=y
= L
E Move 1 in cm
=] T_IJZ'T <l etch new PO ata
Delay in m5 PO EE im’“Dutput P Y ariant .&rra}l”
—
X Move 2 in cm
= POM |
===} Lo

Update POM controls and
Dutput ¥arniant Cluster

|| Dutput PEM Yariant .t’-‘n.lra_l,JlH [<:] | [Dutput PAM Variant Array|

Handle the bug in 5.0]

As with PmacProgSubV]I, there is no execution loop. If Panel Show is TRUE
the panel is opened by the case structure on the top left. If the panel is "Open
and Active" the large case structure is enabled and the controls on the panel are
active. The panel clusters are converted to variants and used to set Output PQM
Variant Array. Thus, Output PQM Variant Array always reflects the current
state of the controls. If Init w/Input Variant (latched) is TRUE or if the user
clicks Update the controls are updated using either the newly fetched data or the
Input PQM Variant Array. When Cancel or OK is clicked the panel is closed.
The state of the OK button is used to set New Output.

Incorporation of this pop-up VI into PmacTestExamp can be seen in the

example’s diagram.

Chapter 6 — Encapsulated Motion Programs and PQMs

149

SuI:MIJI_ITF | Program Running Circle]
Show Circle]

=1 [5ubvi
Show Circles

"|CTE]| [Program Running Circles|

|51/ [Program Running POM2|

. Show POM2Z _ [Motor Position Chart|
Open Lk atrs | L3

T Fns % I_J

btz
Cloze bl ity

[TF]}-{5elech

Plot Select

M
[Motor Position Chart|

[——]
P& ctivee Plot
5 bl " e+ Plat Calar
*Plot Mame

[Program Bunning PQM1]
I

P

Parel

[Uze a Panel to configure the move

[

The handling of the Run, Show Panel, and In-Progress indicators for the
individual motion programs is very simple because of the encapsulation VIs. At
the bottom, the Show PQM1 Panel button is supplied to PmacTestPQM1Panel
to allow configuration of the PQM Variant Array supplied to the appropriate
encapsulation VI.

The implementation of the plots, charts, and other indicators is identical to that
covered already.

150 Chapter 6 — Encapsulated Motion Programs and PQMs

Chapter 7 - Homing, Encoders,
and Position Capture

Basics

PMAC utilizes a custom gate array to interface motor encoders to PMAC and
perform a number of high-speed computations required to monitor motor
position. When writing PMAC programs you specify moves in coordinate
system units. Motor positions are specified in encoder counts. The gate array
uses another version of encoder counts to translate motor position into encoder
position.

In Chapter 4 we introduced the PmacMotor and PmacCoord collection of
ICVs that allow you to convert between motor position in encoder counts and
motor position in coordinate system units. In this chapter we complete the
picture by introducing the PmacEncoder and PmacHome collection of ICVs
that give you the ability to move freely between coordinate system, motor
position, and encoder position specifications. These are important if you want to
relate precise position information to actions in your system. Using the encoder
gate array, you can configure PMAC to

e Capture positions in response to external or internal triggers

o Generate triggers at pre-specified compare-equal encoder positions

The first operation required for precision position measurement of any sort is the
establishment of a zero or home position. On PMAC this is done using an
encoder capture operation that is triggered by a home position sensor. Homing
details are covered in detail in the PMAC User Manual. Some of this
information is repeated in this chapter.

In this Chapter we cover homing and position capture operations. In the next
chapter we will demonstrate how this same capability can be used to capture
motor positions in response to external events generated by another National
Instruments DAQ system or instrument. Compare operations will also be
covered in the next chapter and allow you to precisely synchronize data
acquisition with motion.

Chapter 7 — Homing, Encoders, and Position Capture 151

Position Basics

As shown below, PMAC takes position information from a 24-bit encoder
register pointed to by Ix03 and extends it in software to a 48-bit register for the
actual motor position. In the process of extension, it multiplies the encoder
value by the position scale factor [x08. Because the register in the encoder
conversion table is in units of 1/32 of a count, the actual motor position register
is in units of 1/(Ix08*32) of a count.

The extended motor position registers are set to zero on power-up and reset
(unless there is an absolute position sensor), and again at the end of a homing
search move. The encoder position registers are only set to zero on power-up
and reset. Therefore, after a motor is homed, there is an offset between a
motor’s zero position and its encoder’s zero position.

Y ou must understand this offset because you will be using the encoder registers
for position capture and compare not the motor registers. Depending on your
mechanical configuration, you may also have to handle the rollover of encoder
registers if they will be traveling more than the +/-8 million counts supported by
the 24-bit encoder register. The modulo (%) operator is useful for this. For
more details, refer to Synchronizing PMAC to External Events in the PMAC

User Manual.
Input Encoder Encoder Motor Axis
Signal Position Position Position Position
Quadrature, Capture Position (Mx03) Act. Pos. - Cmd., Target Pos. Move End Pos.
Parallel, Compare Polgition (Mx03) "P", (Mx62) . (Mx61),(Mx63) (Mx65)
Ar;at(l:c.)g, Phase Position (Mx01) Extended
Interpolated Count User
Integer Count (1(1x08 32)ct) Units
Count (/32 ct) (fixed point) (floating point)
i l l = (PMATCH) j
U Decoder/ |24 bits| Encoder |24bits| L .. o 48bits| . 48bits
> .
[i nversion i . % . ¢
11| Counter Conversio Extension Scaling
(e.g. 1/T)
32 ¢ |x08 Axis Coefficients
Done Always e
Done Always Done for Done for
Defined Axis

Activated Motor

Set to Zero on
Power-up/Reset

Can be Offset
(Axis offset, PSET,
{axis}=)
COMMAND
POSITION

Set to Zero on
Power-up/Reset
and Home

Set to Zero on
Power-up/Reset

ACTUAL POSITION

Motor position is always kept in terms of encoder counts. When a motor is
assigned to an axis through a Coordinate Definition statement as in

&1
#1->1000X

152 Chapter 7 — Homing, Encoders, and Position Capture

for use in a motion program, the scale factor in the statement determines the
units of the axis (usually inches, millimeters, degrees, etc.). As introduced in
Chapter 4, programmed moves for an axis are converted to motor positions
using the scale factors from the Coordinate Definition statements. It is
important to realize that this conversion is for commanded positions only, and
that the conversion normally goes only one way: from axis to motor. PMAC
never computes actual axis positions

Position-Capture

PMAC’s position-capture function latches the current encoder position into a
special register at the time of an external trigger. The operation is set up, and
later serviced, in software. The actual latching is executed in hardware, without
the need for software intervention. This means that the only delays in a position
capture are the hardware gate delays (less than 100 nsec) thereby providing a
very accurate capture function.

Trigger Condition

The position capture register can be used both "automatically", as in the
firmware homing routines that handle the register directly, and "manually",
where your program handles the register. Manual handling of the capture
register will be covered in Chapter 8.

During motor setup, Ix25 specifies which set of flags (associated with one of the
encoder counters) is used for that motor. It is important that the flag number
match the position encoder number for the motor. If you use ENC1 for position-
loop feedback, you should use Flags1 (HMFL1, +/-LIM1, FAULT1), and CHC1
as the encoder index channel.

The trigger event that causes the position capture is determined by Encoder I-
Variables 2 and 3 (1902 and 1903 for Encoder 1). Encoder I-Variable 2 defines
what combination of encoder third-channel (CHC Index channel) transition and
encoder flag transition trigger the capture. If Encoder I-Variable 2 specifies the
use of a flag, Encoder I-variable 3 determines which flag (usually the home flag
HMFLn). Once these have been configured, the on-line HOME command will
use the position-capture feature automatically.

Homing

Homing is a PMAC firmware function that automatically performs a number of
operations to establish a motor’s zero position. The homing search move can be
executed with the on-line HOME command, from a PLC program using
COMMAND"HOME", or a motion program HOME statement. However the
HOME command is issued, 1x23 specifies the move’s speed and direction. 1f
Ix23 is greater than zero, the homing search move will be positive. Ifit is less
than zero the move is negative. The acceleration for a homing search move is
controlled by the same parameters -- Ix19, Ix20, and [x21 -- as jogging moves

Action on Trigger

During the homing search move, PMAC firmware waits for the hardware
trigger. When the trigger occurs PMAC reads the position at the time of
capture, usually the hardware capture register, and uses it and the Ix26 home
offset parameter to compute the associated motor’s new encoder zero position.

Chapter 7 — Homing, Encoders, and Position Capture 153

Motor positions will now be referenced to a new encoder zero position plus or
minus any axis offset in the axis definition statement. If the axis definition is

#1->10000X+3000

the home position will be reported as 3000 counts.

If software over travel limits are used (Ix13, Ix14 not equal to zero), they are re-
enabled at this time after having been disabled during the search for the trigger.
The trajectory to the new zero position is calculated using deceleration and
reversal if necessary. Note that if a software limit is too close to zero, the motor
may not be able to stop and reverse before it hits the limit. The motor will stop
under position control with its commanded position equal to the home position.
If there is a following error, the actual position will be different by the amount
of the following error.

Home Complete

If you are monitoring the motor from a PLC program or PMACPanel to see if it
has finished the homing move, it is best to look at the "home complete" and
"desired velocity zero" motor status bits. The "home complete" bit is set to
FALSE on power-up and reset; it is also set to FALSE at the beginning of a
homing search move, even if a previous homing search move was completed
successfully. It is set to TRUE as soon as the trigger is found in a homing
search move, before the motor has come to a stop.

The "home search in progress" bit is simply the inverse of the "home complete"
bit during the move: it is TRUE until the trigger is found, then FALSE
immediately after. Therefore the monitoring should also look for the "desired
velocity zero" status bit to become TRUE, which will indicate the end of the
move.

Home Position Offset

‘é PMAC automatically stores the encoder position captured during the homing
Prior to V1.14 firmware, search move for the motor. This value is kept in the Motor Encoder Position

this value could be obtained by ~ Offset Register [Y:$0815 (Motor 1), Y:308D5 (Motor 2), etc.], which is set to

using the PLC program zero on power-up/reset for motors without absolute power-on positioning. If
HOMOFFST.PMC, shown in 1x10>0 to specify an absolute power-on position read from a resolver so no
the Examples section of the homing is necessary, this register holds the negative of the power-on resolver

PMAC User Manual. Starting in position. In either case, it contains the difference between the encoder-counter
V1.14, PMAC stores this value zero position (power-on position) and the motor zero (home) position, scaled

automatically. in counts.

There are two main uses for this register. First, it provides a reference for using
the encoder position-capture and position-compare registers. These registers are
referenced to the encoder zero position, which is the power-up position, not the
home (motor zero) position. This register holds the difference between the two
positions. This value should be subtracted from encoder position (usually from
position capture) to get motor position, or added to motor position to get encoder
position (usually for position compare).

To move an axis until a trigger is found, then convert the captured encoder
position to a motor position, you can use the following M-variable definitions:

154 Chapter 7 — Homing, Encoders, and Position Capture

M103->X:$C003,24,S ; ENC1l position-capture register
M117->X:$C000,17 ; ENC1 position-capture flag
M125->Y:$0815,24,S ; #1 encoder pos offset register

Zero-Move Homing

If you have following

error when you give the HOMEZ
command, the reported actual
position after the HOMEZ
command will not be exactly
zero; it will be equal to the
negative of the following error.

If you wish to declare your current position the home position without
commanding any movement, you can use the HOMEZ (on-line) or HOMEZn
(motion program) command. These are like the HOME command, except that
they immediately take the current commanded position as the home position.
The Ix26 offset is not used with the HOMEZ command. This is not a reliable
home and the PMACPanel Vls introduced in this chapter and the next do not
handle this phantom home offset. You can, if desired, fake this by modifying
PmacEncoderOffset.

Homing Into a Limit Switch

The polarity of the limit

switches is the opposite of what
many people would expect. The -
LIMn input should be connected
to the limit switch at the positive
end of travel; the +LIMn input
should be connected to the limit
switch at the negative end of
travel.

It is possible to use a limit switch as a home switch. However, you must first
disable the limit function of the limit switch if you want the move to finish
normally; if you do not do this, the limit function will abort the homing search
move. Even so, the home position has been set; a J=0 command can then be
used to move the motor to the home position.

To disable the limit function of the switch, you must set bit 17 of variable Ix25
for the motor to 1. For example if [125 is normally $C000 (the default),
specifying the use of +/-LIM1 for motor 1, setting 1125 to $2C000 disables the
limit function.

It is a good idea to use the home offset parameter 1x26 to bring your home
position out of the limit switch, so you can re-enable the limits immediately after
the homing search move, without being in the limit.

Homing from PLC and Motion Programs

The PMAC User Manual has an extensive section on homing techniques using
PLC and motion programs. These are not covered in this manual. However, the
programs for these are included in the PmacHome collection of ICVs.

PmacHomeExamp

Having covered the basics of position capture and homing from a purely PMAC
perspective we can now look at the ICVs available for use in your applications.
We’ll start by examining the panel for PmacHomeExamp shown below.

Many of the panel clusters should look familiar. There are three new indicator
clusters associated with homing and a few new ideas associated with PLC
program encapsulation. In the bottom left is a very large PmacHomelVar
cluster that borrows extensively from PmacMotorIVarSafety and
PmacMotorIVarMove. It adds a new cluster for Encoder I-Vars 2 and 3. On
the far right is an indicator bar that directly displays eight encoder status bits.
Next to the Motor Number and Coord System knobs is a Home State Cluster.
This contains data from several I-Variables and memory registers that define
how motor position is transformed to encoder position. The cluster is updated
any time the Capture Encoder button is clicked. In the top right is a button that

Chapter 7 — Homing, Encoders, and Position Capture 155

will toggle the Execution State of the encapsulated PLC program that sets up
and executes a homing operation.

Before going into the individual pieces of this example lets look at the diagram
below. As usual, the execution loop has several motor ICVs and a standard I-
Variable architecture. The PmacEncoderStat VI and cluster monitor the
encoder status bits and PmacHomeComplete monitors the execution of homing
moves and retrieves the Home State Cluster. At the very bottom is the
encapsulated PLC program Sub VI.

156 Chapter 7 — Homing, Encoders, and Position Capture

Dew
Open

M otor PYE
1] |Standard motor stulf_._|

[otor Statug Limit Cluster|

[Motor Limit Control Cluster]

(=== || Limits

T M onitor the encoder
Enc status flags

Stat |...[==t]| [Encoder Status Cluster|

Monitor for home operation o
and fetch Home State when complete| [True bf

Horme|& Home State Cluster|

[Capture Eﬁ-::uder| |comp e _
Configure 1-Vars J-EB

b ator
-5 afe m=|| Pl ator Home |4 ar Eluster”

[Motor Home 1-¥ar Cluster|

%

Typical 1-'¥ar
Architecture

[Home PLC 1 Toggle|

ooty [Home PLC 1 LED]
= | {5=-{&]

Usze of an encapsulated PLC program
for homing.

Configuring the Position Capture Trigger

Earlier we discussed position capture and homing. Homing is a firmware
operation that uses the encoder hardware position capture capabilities to
establish the relationship between a motor’s zero position and the encoder’s zero
position. To perform a homing operation three things are required

1. One of PMAC’s four HW trigger flags HOME, -LIM, +LIM, or
FAULT must be selected.

2. A trigger condition specifying the rising or falling edge of the flag
possibly combined with the encoder index channel C must be
selected.

3. IfaFAULT or +/-LIM flag is used the limit or amplifier disable
capabilities must be disabled. If you are using these PMACPanel
can perform the necessary steps, but you must consult the PMAC
User Manual for details so that you really understand what you are
doing.

The PmacHomelVar cluster on the example panel handles the configuration of
Ix25 and encoder I-Variables 2 and 3. PmacMotorIVarFlag controlling Ix25,
is detailed in Chapter 4. The PmacEncoderIVarCapture cluster and its two
sub controls are documented here.

Chapter 7 — Homing, Encoders, and Position Capture 157

PmacEncoderIVarCapture

Encoder |-Capture Cluster|

Software Control YI

"Encoder |-'¥ariable 2° (® Home Flag
Position Capture Control 3 -Limit Flag

"Encoder 1-¥ariable 3" () +Limit Flag
Capture Flag i) Amp Fault Flag

"Encoder I-Variable 2" Position Capture Control This parameter
determines which signal or combination of signals (and which polarity)
triggers a position capture of the counter for encoder n. If a flag input
(home, limit, or fault) is used, 1903 (etc.) determines which flag. Proper
setup of this variable is essential for a successful home search, which
depends on the position-capture function. The following settings may be
used:

Setting Meaning

Software Control

Rising edge of CHCn (third channel)

Rising edge of Flag n (as set by Flag Select)
Rising edge of [CHCn AND Flag n]
Software Control

Falling edge of CHCn (third channel)
Rising edge of Flag n (as set by Flag Select)
Rising edge of [CHCn/ AND Flag n]
Software Control

Rising edge of CHCn (third channel)

O 0 9 O »n b W N = O

—_
(=]

Falling edge of Flag n (as set by Flag Select)
Rising edge of [CHCn AND Flag n/]

—_ =
NS

Software Control

Falling edge of CHCn (third channel)

—_ =
AW

Falling edge of Flag n (as set by Flag Select)
15 Rising edge of [CHCn/ AND Flag n/]

Note that several of these values are redundant. To do a software-controlled
position capture, preset this parameter to 0 or 4; when the parameter is then
changed to 8 or 12, the capture is triggered (this is not of much practical
use).

Encoder I-Variable 3" Capture Flag This parameter determines which of
the "Flag" inputs will be used for position capture (if one is used -- see 1902
etc.):

Setting Meaning

0 HMFLn (Home Flag n)

1 -LIMn (Negative Limit Signal n)
2 +LIMn (Positive Limit Signal n)

158

Chapter 7 — Homing, Encoders, and Position Capture

3 FAULTn (Amplifier Fault Signal n)

This parameter is typically set to zero, because in actual use, the +/-LIMn
and FAULTn flags create other effects that usually interfere with what is
trying to be accomplished by the position capture. If you wish to capture on
the +/-LIMn or FAULTn flags, you must either disable their normal
functions with [x25, or use a channel n where none of the flags is used for
the normal axis functions.

The VI for the cluster is

e PmacEncoderIVarCapture - Follow PMACPanel's standard I-Variable VI
architecture. When Set/Get is TRUE the Encoder I-Variables for the
specified Encoder Number are set. Otherwise they are fetched from PMAC
and provided by Output Encoder I-Capture Cluster with New Output
TRUE. Set/Get is not required and defaults to a Get operation.

Device Number i32 [0) —

................ N |:| t t B I F
Encoder Number i32 (1-16] (1) . ENC DEW LI‘_:p” d°°| [c] o
Set/Get Bool (F) - |" g === [utput Encoder |-Capbure L.

Input Encoder I-Capture Chu. ..

As noted if you use the +/-LIM or FAULT flags steps must be taken to modify
their normal operation. These are safety limits that as a rule stop motion and
disable the amplifier — not useful when you are trying to home the motor or set
you limits. You can modify this behavior using the PmacMotorIVarFlag
cluster covered in Chapter 4.

e PmacMotorIVarFlag

Motor Flag I-Flag Cluster]|

) Kill All Motors
) Kill C5 Motors
i) Kill Thiz Motor

$ 0

Fault True Low

= i25: Flags [Hex)

By disabling the Position Limits and/or Amp Enable you can home into a +/-
LIM or FAULT flag. Make absolutely certain you have read the PMAC User
Manual section on these topics and understand what you are doing. As an
example of potential problems, consider this. When homing into a Limit switch
you must start the move on the proper side of the switch and move toward it.
Otherwise, you will move away from the switch and might hit a mechanical
stop.

Generally, we have assumed that your PMAC is configured so that Motor N
uses Encoder N and Flag N. If this is not the case you must create your own VIs
using the pieces provided with PMACPanel or craft your own. In either
situation, the architecture and examples presented here will make your life a lot
easier.

Chapter 7 — Homing, Encoders, and Position Capture 159

When you have configured your capture trigger conditions and move direction,
velocity, acceleration, etc. set these in PMAC using the “Configure I-Vars”
button on the example panel.

Monitoring the Home Position Capture

Homing is a firmware operation that uses the position capture and homing move
characteristics just configured. By clicking the Home button in the
PmacMotorLimitControl cluster, you actually start the movement and
monitoring of the encoder status bits. When the movement starts the Home
Complete flag for the motor is set to FALSE and the Home In Progress flag is
set TRUE. You can see this in the PmacMotorStatLimit cluster on the
example panel.

¢ PmacMotorStatLimit

Hegalive
Limit Exceeded

Pozitive
Limit Exceeded

Home In
Progress

“Hao

Motor Status Limit Cluster|

At a fundamental level, you can monitor the encoder’s operation using the
PmacEncoderStatFlags cluster and VI. The five indicators on the bottom of
the cluster simply reflect the state of their associated inputs. Position Captured
indicates that the configured trigger condition, whether used for homing or some
other purpose, has occurred. Count Error is used internally by PMAC.
Compare-Equal will be covered in the next chapter. A detailed description of
these status bits, along with their standard PMAC M-Variable definitions follow.

e PmacEncoderStatFlags

160 Chapter 7 — Homing, Encoders, and Position Capture

Encoder Status Flags Cluster|

Compare-Equal

Pos Captured

Mo Count Error

Mo C-Channel
Flag

Mo Home Flag

Mo -Limit Flag

Ho +Limit Flag

Mo Fault Flag

Compare-Equal
M116->X:$C000,16,1 ; Compare-equals flag for encoder 1

This compare-equal signal is always copied into the compare-equal flag
(M116 here) that is available for PMAC internal use. If you are using this
flag internally, make sure that the signal is latched (M111=1), or you will
probably miss it. For interrupting the host (edge-triggered), you will
probably want the signal transparent.

Position Captured
M103->X:$C003,0,24,S ; Encoder 1 24-bit position capture register
M117->X:$C000,17 ; Encoder 1 position-capture flag

This bit goes TRUE when the trigger condition has gone TRUE; it goes
FALSE when the capture register is read (when M103 is used in an
expression). As long as the bit is true, the capture function is disabled; you
must read the capture register to re-enable the capture function.

Count Error
M118->X:$C000,18,1 ; Count error flag for encoder 1

If an illegal encoder transition (both channels changing on the same SCLK
cycle) does get through -- or around, if bypassed -- the delay filter, and to
the decoder, a count-error flag (M 118 here) is set, noting a loss of position
information.

C Channel Status

Quadrature encoders provide an index channel to indicate revolutions of the
encoder. This flag is TRUE when the channel is TRUE.

Home Flag

A home switch may be normally open or normally closed; open is high (1 =
TRUE), and closed is low (0 = FALSE). The polarity of the edge that
causes the home position capture is programmable with Encoder I-Variables
2 and 3 (1902 and 1903 for HMFL1).

+/-Limit Flags

Chapter 7 — Homing, Encoders, and Position Capture 161

When assigned for the dedicated uses, these signals provide important
safety and accuracy functions. +LIMn and -LIMn are direction-sensitive
over-travel limits, that must be actively held low (sourcing current from the
pins to ground) to permit motion in their direction.

The direction sense of +LIMn and -LIMn is the opposite of what many
people would consider intuitive. That is, +LIMn should be placed at the
negative end of travel, and -LIMn should be placed at the positive end of
travel.

Fault Flag

This flag takes a signal from the amplifier so PMAC knows when the
amplifier is having problems, and can shut down action. The polarity is
programmable with I-variable Ix25 (I125 for motor #1) and the return signal
is analog ground (AGND). FAULT! is pin 49. With the default setup, this
signal must actively be pulled low for a fault condition. In this setup, if
nothing is wired into this input, PMAC will consider the motor not to be in
a fault condition.

As the homing move proceeds and triggers the physical switch, the encoder
will signal this using these status bits. When the configured position
capture trigger condition occurs the Position Capture bit will become
TRUE.

Home Position Transformations

Monitoring the homing operation is already done in PMAC firmware. When the
home move completes, the motor’s zero position and its corresponding
encoder’s zero position will most probably not match. PmacHomeComplete
monitors the home operation and reports a number of I-Variables and memory
registers that both demonstrate what is going on and are used for capture and
compare-equal operations in the next chapter.

e PmacHomeComplete - Create a PmacHomeStateCluster containing I-
Variables and memory registers for the specified Motor/Encoder number.
The VI monitors the Home In Progress, Home Complete, and Desired
Velocity Zero status bits for the motor to determine when to query PMAC
for the required data. A query can also be forced if Capture Home State is
TRUE.

This assumes Motor N uses Encoder N.

Device Mumber 132 [0) —— 00)- Home Complete Bool [F]
Motorf/Encoder Humber 32 [.. —] Home State Cluster

P
Capture Home State Bool [F] - omp

The contents of the Home State Cluster are discussed in detail here. Again, if
you are developing PMACPanel application that uses PMAC’s capture or
compare-equal capabilities you should understand these quantities.

e PmacHomeState

162 Chapter 7 — Homing, Encoders, and Position Capture

Home State Cluster|

| 1] Prezent Encoder Position 0zC002 132
[000 | Present Commanded Motor Position 0x0028 Dbl
[000 | Present Actual Motor Position 0x002B Dbl
[0 | Encoder Home Position Offset 0x0815 i32

[0 | Motor Pos Bias Dx0813 i32

[0 | Position Scaling Factor 1x08 i32

[0 | Motor Home Dffset 1x26 i32

Present Encoder Position 0xC002 i32

The encoder Servo position register is 2 * Encoder counts with the LSB the
direction bit. This output value is en actual encoder position referenced to a
power-up/reset position of zero.

Present Commanded Motor Position 0x0028 Dbl

This is the motor's present commanded position in units of 1 / (32 * Ix08)
encoder counts referenced to the motor's home position.

Present Actual Motor Position 0x002B Dbl

This is the motor's present actual position in units of 1 /(32 * Ix08) encoder
counts referenced to the motor's home position.

Encoder Home Position Offset 0x0815 i32

This is the encoder's home offset position in encoder counts. It represents
the difference between the encoder's power-up/reset zero position and the
position when a home operation completes.

Motor Pos Bias 0x0813 i32

This is the position bias of the motor and represents the coordinate system
translation in motor position encoder counts.

Position Scaling Factor Ix08 i32

This parameter controls how the position encoder counter is extended into
the full-length register. For most purposes, this is transparent to the user
and does not need to be changed from the default.

There are two reasons that the user might want to change this from the
default value. First, because it is involved in the "gear ratio" of the position
following function -- the ratio is Ix07/Ix08 -- this might be changed
(usually raised) to get a more precise ratio.

The second reason to change this parameter (usually lowering it) is to
prevent internal saturation at very high gains or count rates (velocity).
PMAC's filter will saturate when the velocity in counts/sec multiplied by
Ix08 exceeds 256M (268,435,456). This only happens in very rare
applications -- the count rate must exceed 2.8 million counts per second
before the default value of Ix08 gives a problem.

When changing this parameter, make sure the motor is killed (disabled).
Otherwise, a sudden jump will occur, because the internal position registers
will have changed. This means that this parameter should not be changed in
the middle of an application. If a real-time change in the position-following
"gear ratio" is desired, Ix07 should be changed.

In most practical cases, Ix08 should not be set above 1000 because higher
values can make the servo filter saturate too easily. If Ix08 is changed, Ix30

Chapter 7 — Homing, Encoders, and Position Capture 163

should be changed inversely to keep the same servo performance (e.g. if
1x08 is doubled, Ix30 should be halved).

Motor Home Offset Ix26 i32

This is the relative position of the end of the homing cycle to the position at
which the home trigger was made. That is, the motor will command a stop
at this distance from where it found the home flag(s), and call this
commanded location as motor position zero.

This register permits the motor zero position to be different from the home
trigger position. It is particularly useful when using over-travel limits for a
home flag (offsetting out of the limit before re-enabling the flag as a limit).
If large enough (greater than 1/2 times home speed times accel time) it
permits a homing move without any reversal of direction.

The units of this parameter are 1/16 of a count, so the value should be 16
times the number of counts between the trigger position and the home zero
position.

Example:

If you wish your motor zero position to be 500 counts in the negative
direction from the home trigger position, you would set Ix26 to -500 * 16 =
-8000.

Encapsulated PLC Programs

In Chapter 6 we introduced VI wrappers that encapsulated motion programs and
their operation into a single VI. PMACPanel also encapsulates PLC programs.
The discussion of this topic was deferred until here because we now have a good
example of their use — homing from a PLC program. The following PLC
program, PmacHomePLC1.pmc, taken from the PMAC User Manual and uses
the +LIM flag to establish a home position for motor 1.

; PLC Set-up Variables (to be saved)

CLOSE
M133->X:$003D,13,1 ; Desired Velocity Zero bit
M145->Y:50814,10,1 ; Home complete bit

; PLC program to execute routine

OPEN PLC 10 CLEAR
I1123=-10 ; Home speed 10 cts/msec negative

;1125=$C000 ; Use Flagsl for Motor 1 (limits enabled)
I126=32000 ; Home offset of +2000 counts
; (enough to take you out of the limit)

I1902=3 ; Capture on rising flag and rising index
I1903=2 ; Use +LIM1 as flag (negative end switch)
I125=$2C000 ; Disable +/-LIM as limits

CMD" #1HM" ; Home #1 into limit and offset out of it
WHILE (M145=1) ; Waits for Home Search to start
ENDWHILE

164 Chapter 7 — Homing, Encoders, and Position Capture

WHILE (M133=0) ; Waits for Home motion to complete
ENDWHILE

I125=$C000 ; Re-enable +/-LIM as limits
DIS PLC10 ; Disables PLC once Home is found
CLOSE ; End of PLC

Using PmacTerminalEdit you can load this program and click the “Create PLC
VI” to create an encapsulated PLC Sub VI for this PLC. This has already been
done for this homing PLC, PmacHomePLC1.vi, and the other PLC and motion
homing programs documented in the PMAC User Manual. The raw
encapsulated PLC Sub VI is shown here

e PmacPLCSubVI - PmacPLCSubVICreate makes a copy of this VI with a
new name that matches the name of a PLC program. Because the PLC
program has the same name (with a different extension) this VI knows how
to open, parse, load, and run a PLC program without intervention or extra
inputs. It allows you to interactively monitor and change the PLC
program's execution state. Details of its implementation are contained in
the manual.

The VI downloads the associated PLC program when first loaded unless
this option is disabled in the diagram and a default for PLC Number are
provided for the PLC VI State Cluster.

The VI queries PMAC for the PLC's execution state every execution. This
is done whether the program is executing or not. New Output is TRUE any

time PLC Enable is TRUE.
DeviceMumber i32 (0) —— PLC [Mew Jutput Bool [F]
FLE EnahIE BDDI [F] Sub'll'll'lm:::‘h’ PL': ll'u"ll State |:|LJS|:E[
e Ewecute State Boal

Using this new wrapper VI it is easy to create PLC programs and use them in
your PMACPanel applications. The indicator on the example panel displays the
Execute State of the properly loaded PLC program every iteration of the VI.

The button “Home PLC 1 Toggle” on the example panel changes the state of the
PLC when clicked. For the purposes of this example, if you click the button, the
PLC begins executing and the sequence of operations in PLC 10 begin executing
thereby configuring and executing the specified home operation.

There is one important point to note about this example. M133 and M145 are
defined outside the actual definition of the PLC. When the VI is first executed
the entire program buffer, including these statements, is compiled and down
loaded to PMAC. If you also happen to set certain I-Variable and memory
locations before the OPEN PLC statement these are executed when the program
is downloaded. Not every time the PLC is enabled.

We will see a few more examples of encapsulated PLC’s in the following
chapters.

Chapter 7 — Homing, Encoders, and Position Capture 165

Chapter 8 - Encoder Capture
and Compare Operation

Basics

PMAC provides sophisticated and precise motion capabilities that can be easily
accessed from PMACPanel applications. When coupled with National
Instruments data acquisition boards, PMAC and PMACPanel can be used to
build highly integrated and precise motion based data acquisition systems using
GPIB, SCXI, VXI, or DAQ boards. The degree of integration is directly related
to your particular system and performance requirements.

Loosely coupled systems with slow event or clock rates that can be handled by
LabVIEW can be integrated primarily with PMACPanel VIs and PMAC
PLC/motion programs. Tightly coupled systems with fast clock rates or tightly
synchronized motion and data acquisition requirements are easily handled using
a few terminal blocks and wires to couple the HW systems.

In this Chapter, we will introduce a set of VIs for converting between encoder
position and motor position. This is followed by an example extending the
position capture capabilities introduced in Chapter 7 demonstrating how you can
capture positions in response to NI-DAQ signals, mechanical HW triggers, and
clocks and use the captured positions in your application. Finally, we will
introduce PMAC’s compare-equal capabilities and demonstrate several
approaches for generating SW and HW triggers at specific positions while
PMAC is in motion. PMAC generated position triggers and clocks can then be
used by your NI-DAQ boards to control and synchronize acquisition. In all
cases, PMACPanel simplifies the required tasks by allowing you to work in CS
units, motor position, or raw encoder units.

In the Chapter 9 we show how to couple standard NI-DAQ boards to PMAC to
synchronously trigger data acquisition at specified positions, and even use
PMAC’s servo clock as your DAQ sampling clock.

PmacEncoderPositionExamp

This example demonstrates how PMACPanel handles encoder positions. This is
important for transforming captured positions into motor position and translating
compare positions specified in motor or CS units into encoder position.

The panel, shown below, Motor/Encoder and Coord System knobs, Motor PVE,
and a Jog cluster. At the top right of the panel are two indicators that display the

166 Chapter 8 — Encoder Capture and Compare Operation

encoder position as the raw encoder position and the encoder position converted
into motor position or CS units using VIs in the PmacEncoder collection.

Before you run this VI, you should home the motors you are working with. You
can do this with the example covered in Chapter 7 or execute a home command
from PmacTerminal.

Encoder Position Transformations

When you execute this example the position indicator in the PVE cluster will
display the current motor position. The current encoder position is displayed in
the indicator labeled Raw Encoder Pos. Expect these two values to be different
as they are in the panel.

The most basic requirement for converting between encoder position and motor
position and/or CS units is the determination of the offset between a motor’s
zero position and the encoder’s zero position. The homing operation will
generate the necessary data internally to PMAC. The following VI fetches this
data and computes an offset to transform between encoder position and motor
position.

e PmacEncoderOffset - Query PMAC for the encoder to motor offset
captured during a home operation for Encoder/Motor Number. This
assumes that encoder one is defined for motor 1, etc.

Encoder-Motor Offset provides a reference for using the encoder position-
capture and position-compare registers. These registers are referenced to
the encoder zero position, which is the power-up position, not the home
(motor zero) position. This value is the difference between the two
positions and the home offset 1x26.

This value should be subtracted from encoder position (usually from
position capture) to get motor position, or added to motor position to get
encoder position (usually for position compare).

Chapter 8 — Encoder Capture and Compare Operation 167

Device Humber 132 [0] Enc

Motor/Encoder Mumber 132 [1... — Oifset Encoder - Motor Offzet Double

Capture Offzet Bool [F] -7

The trick in using this VI is to know when to query PMAC for the Home offset
information. You need to do this after you home the motor.

If you click the Capture Home Offset button in the panel, the offsets and biases
for the specified motor/encoder number are retrieved. The indicator labeled
Xformed Encoder Pos now displays motor position as computed directly from
encoder position. There will be a very slight difference between the position in
the PVE cluster and the Xformed Encoder Pos value due to the sub-count
interpolation used internally by PMAC to compute motor position.

If you click the Encoder Counts button in the Jog cluster, the PVE cluster and
the Xformed Encoder Pos indicator will both display motor position in CS units.
Again, the accuracy is subject to the interpolation performed by PMAC for its
own internal use.

The transformation in both cases is implemented by combining
PmacEncoderOffset and PmacCoordMotorToCoord to build the following
VI that converts a raw encoder position (either Capture or Compare) to motor
position or CS units. This VI is most often used to convert a captured encoder
position into motor position or CS units.

e PmacEncoderToCoord - This VI converts Input Value (Servo Position or
Capture Position) from absolute encoder position to either CS units or
motor position in encoder counts.

Coord Specify Cluster specifies a motor within a CS and an attempt to
convert Input Value from encoder position to CS units. If the motor is not
defined in the CS Output Value is motor position in encoder counts. If the
motor is defined and Convert is TRUE Coord Defined is TRUE and Output
Value is in CS units. Coord Definition is a string specifying Output Value
units as "Encoder" or the CS definition of the motor.

Device Number i32 [0] Erc Coard Defined Baoal
Coord Specify Cluster = ICaar — Output W alue Double
Capture Offzet Bool [F] _l_ e Coord Definition String
Input ¥alue Double

To use this VI you must supply an optional Capture Offset that will fetch and
compute the proper offsets. Once the offset is captured and computed, it is
maintained by the VI’s internal state.

PmacEncoderToCoord has a companion that takes positions specified in CS
units or motor position and converts them to encoder position. This VI is most
often used to take a motor position in encoder counts or CS units to encoder
position for compare-equal operations.

e PmacEncoderToEncoder - This VI converts Input Value in either CS
units or motor position in encoder counts to an absolute encoder position for
compare-equal operations.

Coord Specify Cluster specifies a motor within a CS and an attempt to
convert Input Value from CS units to encoder position. If the motor is not
defined in the CS Input Value is assumed to be motor position in encoder
counts and Output Value is encoder position. If the motor is defined and
Convert is TRUE Coord Defined is TRUE and Output Value is scaled from
CS units to encoder position.

168

Chapter 8 — Encoder Capture and Compare Operation

Dev
Open

Device Number 132 [0] g— P

Coord Specify Cluster HETEEDW
Capture Offzet Bool [F] _I_ nc
Input ¥alue Double

---------------- Coord D efined Bool
Output alue Drouble

The diagram fetches and processes the encoder position two VIs that implement
the position transformations just discussed. PmacEncoderRegServo, covered
later, fetches the encoder position, not capture positions, directly from the
encoder, and displays it on the panel. PmacEncoderToCoord uses the
transformations discussed above to compute Xformed Encoder Pos directly from
this encoder position.

Enc
[Capture Home Dffset] [T5]] Imr—{w(fulmed Encoder Pos|

Enc
Servo—| (1321 [Raw Encoder Pos]

132 || —Moter ===z 1| [Motor PYE Cluster]
M otor/Encoder| [[132]|

) | s

J.;.g PvE

Position-Capture for Non-Homing Purposes

Chapter 7 introduced the encoder architecture and its use for homing operations.
Homing is a firmware command and therefore does not require you to monitor
the capture flags, access the capture register, or do anything with the value. To
use the position capture function for operations other than homing in your own
program you need to

e Configure the capture condition
e Monitor the capture flag
e Process the capture register

e You can do this using a PLC or using PMACPanel directly.

PLC Capture Flag Processing

If you use a PLC to handle the capture operation you need to monitor the
position-captured flag bit -- bit 17 of the encoder control/status register using

M117->X:$C000,17,1

and the captured position using the M-Variable

Chapter 8 — Encoder Capture and Compare Operation 169

M103->X:$C003,0,24,S

This status bit turns TRUE when the trigger condition turns TRUE. It returns to
a non-triggered FALSE state when the capture register (M103) is read. As long
as the status bit is TRUE, the capture function is disabled; you must read the
capture register to re-enable the capture function. The example program
MOVTRIG.PMC in the PMAC User Manual shows how this capability can be
used for precision registration.

In the example that follows, we will show precisely how PMACPanel can be
used to add capture capability to your application. We will not cover an
example of position capture handling using a PLC. This is only required if
multiple captures occur faster than PMACPanel can service them or your motion
program is using them directly.

PmacEncoderCaptureExamp

This example demonstrates how PMACPanel handles encoder capture
operations. This is important when you want to determine the position of a
motor when a trigger occurs in your system.

The panel, shown below, has Motor/Encoder and Coord System knobs, a Motor
PVE indicator, and a Jog cluster. At the top right of the panel is an LED that
turns Green when an externally triggered capture trigger occurs and a position
indicator whose value is the position captured when the trigger occurs.

Before you run this VI, you should home the motors you are working with. You
can do this with the example covered in Chapter 7 or execute a home command
from PmacTerminal.

170 Chapter 8 — Encoder Capture and Compare Operation

Dev
Open

As with homing position capture the trigger condition must be configured prior
to use. This is done using the already introduced PmacEncoderIVarCapture
cluster. The PmacHomelIVar cluster is not required because the motor has
been homed and the moves we will be executing are not homing moves.

After selecting the capture trigger condition, the Configure Capture button sets
the configuration in PMAC. Once this is done, the encoder is armed and waiting
for the specified capture trigger.

The simplicity of the diagram demonstrates how the application is organized.

At the top are the VIs to handle the jog and PVE clusters. At the bottom is the
logic to handle the configuration of the capture condition. The encoder capture
trigger condition is configured whenever the motor number changes or you click
the Configure Capture button.

={ 5=z || [Motor PYE Cluster|

Motor/Encoder .|[TE]| [Position Captured|

|| [OEL| [Capture Pozition|

Enc
| Far m“Enu:u:uder |-Caphure Eluster”

[Configure the Capture Condition]

...... {37

Once the capture condition is configured, PmacEncoderTrigger is used to
monitor the encoder flags. When a trigger occurs the VI reads the capture
register and transforms the captured position into motor position or CS units.

The VI does a lot of bookkeeping to make your job easier. To use it for capture
operations leave the Enable Compare and Input Compare Position terminals
unwired. In the next section on Compare operations, we will see how this VI
also handles compare triggers.

e PmacEncoderTrigger - This VI maintains Encoder Number's compare-
equal and capture operations and monitors the encoder's status register.
Home offsets are removed or added during the processing of compare-equal
and capture register data. Limitations associated with 24 bit rollover are not
handled by this VI.

When Enable Compare is TRUE Encoder Number's compare-equal function
is reset and the compare-equal register is set using Input Compare Position.
This value is interpreted as being in CS units if Covert is TRUE and Motor
Number is defined in Coord Number. Otherwise this value is interpreted as
being motor position in encoder counts. Output Compare Position is a
persistent copy of Input Compare Position when Enable Compare was
TRUE. The occurrence of the compare-equal condition is indicated by

Chapter 8 — Encoder Capture and Compare Operation 171

Compare-Equal Bool being TRUE. This does not reset the latched
condition.

When Encoder Number captures a position, Position Captured is TRUE,
and the encoder's capture register is queried and converted into Capture
Position in motor position encoder counts or Coord Number CS units. If
Motor Number is not defined in Coord Number or Convert Bool is FALSE
the Capture Position is motor position in encoder counts . If Convert Bool
is TRUE and Motor Number is defined in Coord Number the value is in CS
units.

Device Humber 132 [0]
Encoder Humber i32 [1-16] [1] Enc Paosition Captured Baoal [F)
Coord Specify Cluster = ... Trig [~ . = Capture Pozition Dbl

Enable Compare Bool [F] o Compare-Equal Boal [F]
Input Compare Position Dbl —l_ _I— Qutput Compare Pogition Dbl

External Triggers for Position Capture

Using the HOME, +/-LIM, or FAULT flags for other than their obvious purpose
is very common on PMAC. It requires you to build a simple interface circuit to
disconnect the physical limit or flag switches and connect the trigger signal of
your choice. For example, your system may have a proximity switch with TTL
output to define HOME. When you want to use the HMFL input for your own
position capture operations, a TTL MUX or other form of digital selector can be
used to connect the trigger signal you desire. Realize that you do not home the
motor using this new trigger signal. You will be using it for position capture for
registration or some other purpose.

In the system used to develop and demonstrate PMACPanel’s capture
capabilities a TTL signal generator was used to drive a reed relay at 5 Hz and
trigger the home flag. Using this configuration the Pos Captured LED flashes
on and off dutifully signaling the capture of the position. When the capture
condition occurs PMACPanel reads the capture register and converts it into
motor position or CS units depending on whether the Encoder Counts button in
the Jog cluster is activated. When the motor is jogging the numeric updates with
every tick of the HOME trigger signal.

PMAC Position Compare Operation

PMAC’s encoder position-compare function is essentially the opposite of the
position-capture function. Instead of capturing the encoder position when an
external signal changes, compare operations generate a signal when the encoder
reaches a specified position. In fact, the encoder register into which the captured
position is written is used to store the position for compare operation. Using
this capability, you can configure trigger events that occur at specified encoder
positions in your system. Because the triggering is implemented in hardware, it
is very fast and accurate. In Chapter 9, we show how to use external TTL level
signals to trigger data acquisition on NI-DAQ boards.

Compare operations require three steps

1. Enable and configure the operation using the encoder control
register

2. Load the compare position into the encoder register

172

Chapter 8 — Encoder Capture and Compare Operation

3. Monitor the compare-equal flag in the encoder status register and
repeat these steps as required

These steps may be performed in a PLC or a PMACPanel program.

Required M-Variables

To utilize this feature from a PLC, you must access the encoder control/status
register and the position compare-equal register. For Encoder 1, the standard M-
Variable declarations are

M103->X:$C003,0,24,5S ;24-bit pos compare register
M111->X:$C000,11,1 ; Compare flag latch control
M112->X:$C000,12,1 ; Compare output-enable bit
M113->X:$C000,13,1 ; Compare output invert bit
M116->X:$C000,16,1 ; Compare-equals flag

Similar sets of registers and M-Variables are defined for the other encoder
registers.

Pre-loading the Compare Position

To pre-load a compare position, assign an encoder position value to M103, such
as M103=1250. This value must be between -8,388,608 and +8,388,607. You
cannot read this value back; reading from the same address gives you the
position-capture register. The command can be given from a PMAC motion
program, a PMAC PLC program, from the host, or using the PMACPanel VIs
introduced in the following example. This is the encoder position; if you want
to reference it to motor zero position, you must know the homing offset. This
translation is handled transparently by the PMACPanel ICVs in the
PmacEncoder collection.

Encoder Control Bits

Three control bits configure the format of operation of the compare feature.
These are SW status bits and, if enabled, external HW signals available on
various PMAC cables. The flag-latch control bit (M111) controls whether the
compare-equal signal is

e Transparent -- TRUE only when the positions are actually equal

e Latched -- TRUE until actively reset by a handler

The signal is transparent if this control bit is zero, and latched if the control bit is
one. To clear a latched flag, take the control bit to zero then back to one.

The compare-equal signal is always copied into the compare-equal flag (M116).
If you are monitoring this flag from a PLC or PMACPanel application, make
sure that the signal is latched (M111=1), or you will probably miss it. To
interrupt the host (edge-triggered), you will probably want the signal
transparent. PMACPanel doesn’t currently support an interrupt driven interface.
Look for this in a future release.

The output-enable bit (M112) determines whether the compare-equal flag will
be output on the PMAC EQU line (1 enables). This must be set if you want to
use the signal to interrupt the host or to trigger an external event. The output-

Chapter 8 — Encoder Capture and Compare Operation 173

invert bit (M113) determines whether the EQU output is high-true or low-true (1
inverts -- low-true). For host-interrupt purposes, this must be configured high-
true.

174 Chapter 8 — Encoder Capture and Compare Operation

Triggering External Action

To trigger external actions from a PMAC-PC, you should put a connector on the
E-points (E53-E65) that normally jumper these signals to the interrupt
controller. An IDC 26-pin connector works nicely. These signals must be
buffered; the TTL drivers for these outputs on PMAC-PC are very weak. You
can obtain an application note on techniques for accessing these signals by
contacting Delta Tau technical support.

On the PMAC-Lite, PMAC-VME and PMAC-STD, a JEQU connector provides
direct access to the Compare-Equals signals. The outputs are open-collector
(sinking) outputs, rated to 24V and 100 mA. The user may replace the existing
driver IC with a sourcing driver IC (UDN2981A).

To use these HW signals, and several others, you must refer to the PMAC User
Manual. We will cover their use as far as NI-DAQ boards are concerned in
Chapter 9.

PLC Compare Handling

The PLC programs PmacPosCompSetup.pmc and PmacPosCompGen.pmce
located in \PmacEncoder demonstrate the use of a PLC to generate a very rapid
series of "equals" pulses at specified position intervals. PLC’s are an excellent
way to handle compare operations that require fast servicing. You will find
these documented in the PMAC User Manual, PMAC application notes, and in
the Introduction to PMAC tutorial notes. PmacPosCompSetup configures the
capability by fetching the current encoder position, adding the interval, and
initializing the encoder registers. This PLC is executed once to configure the
operation. After configuring the operation it starts PmacPosCompGen. This
PLC monitors the encoder’s compare-equal flag. When the specified position is
reached, it clears the flag, loads the next compare position, and calculates the
next position to be used.

PmacPosCompSetup.pme

close

; Define encoder registers
ml01->x:$c001,0,24,s ; Actual position
ml03->x:$c003,0,24,s ; Compare register

ml105->x:$07f0,0,24,s ; Scratch register for rollover

; Define encoder compare-equal register control bits

mlll->x:5c000,11,1 ; Compare equal latch/control
mll2->x:5c000,12,1 ; Compare equal output enable
mll13->x:$c000,13,1 ; Compare equal output invert
mll6->x:$c000,16,1 ; Compare equal flag

pl01 = 50 ; Count intecrement

; Configure the compare pulse

open plc 18
clear

Chapter 8 — Encoder Capture and Compare Operation 175

; —— Setup compare-equal

ml05 = m101+pl01 ; Save Increment + actual position

ml03 = ml05 ; Copy next pos into compare reg
ml05 = ml105 + pl01l ; Update next compare position
mll3 = 0 ; No invert on output bit

enable plc 19
disable plc 18

close

PmacPosCompGen.pmce
close
; — Service routine to service encoder register

open plc 19
clear

if (mllée = 1)

ml03 = ml05 ; Update next compare position
ml05 = ml105 + pl01l
mlll = 0 ; Reset control bit
mlll =1
endif
close

The PLCs can be downloaded and executed using PmacTerminalEdit and
PmacTerminal or, as we will show in a moment, encapsulated with a wrapper
VI and controlled from an application panel.

PmacEncoderCompareExamp

This example demonstrates three methods for using PMACPanel to handle
encoder compare operation. These are extremely useful for synchronizing data
acquisition operations with complex motion. The three methods are

e Using encapsulated versions of the PmacPosCompSetup and
PmacPosComGen PLC’s to generate position interval clocks.

e Directly setting an encoder compare position from your application
for a one-time position-compare trigger.

e By servicing the control, status, and position registers directly from
PMACPanel. This is a poor-man’s approach to using the PLCs.

The panel, shown below, has Motor/Encoder and Coord System knobs, a Motor
PVE indicator, and a Jog control cluster. At the top left of the panel is an LED
that flashes green when a compare-equal condition occurs. Below this is a
cluster of three buttons that allow you to configure the encoder control bits.
When these are properly set clicking the Configure Compare button sets the
encoder bits.

The remaining controls are divided into three groups. One for each method
demonstrated in the example.

176

Chapter 8 — Encoder Capture and Compare Operation

e On the bottom left are LEDs indicating the Execution State of the
two PLCs used to service the encoder and a button to disable the
PLC handler.

e To the right is a numeric control used to specify a compare
position and a button to configure the encoder for one-time
compare operation.

e To the right of this is a checkbox that enables encoder servicing
directly from PMACPanel — not the PLC. The LED indicates
when a new compare position is being loaded into the encoder
after a compare-equal trigger occurs.

On the very bottom is a slider that specifies the interval between generated
triggers. This interval is used by the PLCs and by the SW interval generation.

Before you run this VI, you should home the motors you are working with. You
can do this with the example covered in Chapter 7 or execute a home command
from PmacTerminal.

Detailed descriptions for operating the three encoder-handling methods are
covered later. At the top of the diagram are VIs to handle the Jog control and
PVE indicator. Below this, PmacEncoderCompareConfig configures the
encoder’s compare control bits when the Configure Compare button on the
panel is clicked. Configuration can be done by the PLC.

e PmacEncoderCompareConfig - Follow PMACPanel's standard I-Variable
VI architecture. When Set/Get is TRUE the Input Compare Control bits for

Chapter 8 — Encoder Capture and Compare Operation 177

Dev
Open

the specified Encoder Number are set. Otherwise they are fetched from
PMAC and provided by Output Compare Control Cluster with New Output
TRUE. Set/Get is not required and defaults to a Get operation.

Device Nl:.lmher 132000 —c — Joe New Dutput Eool [F]
Encoder Humber 132 [1-16] [1] | Comp freeeee== Dutput Compare Cortral Chuste
Set/Get Bool [F] mﬁ“‘
Input Compare Control Cluster

Enc

Matar b=l (=% || [Motor PYE Cluster]

Jog
Egr:llgt:tli.l';ﬁ the Compare-Equal

[Encoder Compare-E qual Control Eluster”

2

able Compare] E Enc
Sw Update| [LTE]]- Trig

[D5L]
Ej ™| True t[

Disable Comp Pulse[H FLC Wl 5w Update
Sub/| "E':} |F'1 01 - PLCASw Compare Inter.al| :

Comp Pulse PLC P Compare value)
[Comp Pulse || | Compare Valus } Compare Value

Update Compare position in PMACPanel when the
PLLC isn't doing itl!

Jo=

[Comp Setup PLC]

At the bottom of the diagram is logic to service the panel’s P101 slider when it
changes. Changes in the value update P101 and enable the encapsulated PLC
PmacPosCompSetup covered earlier. Above this is the wrapper VI for
PmacPosCompGen. The panel button Disable Comp Pulse can be used to turn
the PLC on and off as desired. When this PLC is not executing, a compare
trigger occurs, and SW increments is TRUE the case to the right executes and
computes the next Compare Value. The final piece of the example is
PmacEncoderTrigger also covered earlier. In this example the Enable
Compare input is TRUE whenever Enable Compare or SW Update are TRUE.
This updates the encoder registers thereby arming the compare operation.

178

Chapter 8 — Encoder Capture and Compare Operation

We’ve already noted that PmacEncoderTrigger handles the configuration of
compare operations and monitoring of capture and compare flags. The
implementation of the VI is complex so it is not covered here. However, one of
its pieces may be of use in your application. The following VI is used by
PmacEncoderTrigger to enable and configure compare operations.

e PmacEncoderCompare - This VI reset Encoder Number's compare-equal
function and set the position register using Input Compare Position when
Enable Compare is TRUE. This value is interpreted as being in CS units if
Covert is TRUE and Motor Number is defined in Coord Number.
Otherwise this value is interpreted as being motor position in encoder
counts. Home offsets are removed prior to setting the encoders actual
register value.

Limitations associated with 24 bit rollover are not handled by this VI
Output Compare Position is a persistent copy of Input Compare Position
when Enable Compare was TRUE.

Device Number 132 [0]
Encoder Humber i32 (1161 (1) —,._ | Mew Dutout Baal [F
Coord Specify Cluster = Enc ew Dutput Bool [F)
Enable Compare Bool [F) _l_
Input Compare Position Dbl

Comp

Cutput Compare Pozition Dbl

One last word on the use of PmacEncoderTrigger is needed. If your
application uses PLCs to handle the capture or compare triggers you should not
service them with your PMACPanel application. The chance of getting into
trouble having two sets of handlers for a capture or compare operation is pretty
large. This does not prevent you configuring the operations using PMACPanel
and servicing them with a PLC. You should simply be aware of who is
responsible for handling the encoder.

Method 1 - PLC Operation

The P101 slider specifies the interval the PLCs will use to generate compare-
equal triggers. Changing this value sets P101 in PMAC and enables
PmacPosCompSetup discussed earlier. This PLC captures the current encoder
position, adds the interval to the position, sets the compare-equal register, and
resets the compare-equal control bits. The PLC enables the PmacPosCompGen
PLC and disables itself. Thus, when you change P101 the Comp-Setup LED
briefly turns Green to indicate that the setup PLC is executing. When it enables
PmacPosCompGen the Comp-Pulse LED turns Green to indicate that it is
active, then the Comp-Setup LED turns Red to indicate that it has disabled itself.
This is all done using the encapsulated PLC Sub Vls.

If you now jog the motor, the PmacPosCompGen PLC will generate compare-
equal pulses every P101 encoder counts. It does this by monitoring the encoder
Compare-Equal flag for the TRUE condition, setting the next position, adding
the increment for the next position, and resetting the encoder’s compare-equal
control bits. Because the PLC handles the flags PMACPanel never (almost
never) sees the compare-equal condition because the PLC services the trigger so
quickly. Even if PmacEncoderTrigger sees the trigger condition, it does not
service it.

You can bring the trigger to the external world by clicking the Output on EQU
Line button and then clicking Configure Compare. You should do this before
starting the Jog or enabling PmacPosCompSetup so that you don’t interfere
with PmacPosCompGen’s handling of the encoder flags. If you configure the

Chapter 8 — Encoder Capture and Compare Operation 179

external EQU signal you can connect an oscilloscope to the appropriate pins on
JEQU or the E-Point jumpers documented in the PMAC Users Manual and see
the generation of the interval pulses. In Chapter 9, we will demonstrate how to
use these pulses to synchronize your DAQ systems with your system’s motion.
As you increase P101 the time between the pulses increases. When you stop the
jog, the pulse interval increases as the motor slows and eventually ceases
because the motor stops. When you begin a jog, the pulse interval decreases
until the motor reaches a steady state velocity.

Method 2 - One-Shot Operation

If you disable the PmacPosCompGen PLC by clicking the Disable Comp Pulse
PLC button, the corresponding indicator turns RED. You can now manually
configure compare-equal operations by entering a position in the numeric
control above the Enable/Reset Compare button. The value you enter, in motor
position or CS units as specified by the Encoder Counts button in the Jog
cluster, is used to configure a one-time compare-trigger.

Select the conditions for the operation using the buttons in the configuration
cluster. You will most probably want the operation latched. You can send the
trigger to the external world using Output on EQU Line and configure whether
the condition is TRUE High or TRUE-Low. When you’ve done this click
Configure Compare then Enable/Reset Compare. This will configure the flags
and the compare-equal value. When you jog the motor, the Compare-Equal
indicator will turn Green when the condition occurs. You cannot read the
compare-equal register so you need to keep track of the last value you set.
Fortunately, PmacEncoderTrigger does this for you.

Method 3 - PMACPanel Interval Generation

You can perform the same interval generation done by the PLC’s using
PMACPanel. This works only when the interval rate is long relative to
LabVIEW’s service rate. If you miss an interval and the motor is already
beyond the next interval position, the compare condition never occurs and you
stop generating pulses.

If you disable the PmacPosCompGen PLC and check the SW Compare Interval
box the trigger is handled by the 3-input AND case. Be careful that you don’t
enable the PLC’s by changing P101 before you get the SW version of the
interval generation running.

PmacEncoder Registers

Incorporating compare and capture capabilities into your own applications is
facilitated by the PmacEncoder collection of ICVs. These fall into three
categories. Basic encoder register access and control, conversion of encoder
positions into motor position or CS units and back, and ICVs to facilitate your
application. These are all documented here.

Encoder Register Access

VIs to access the encoder registers are provided but are generally not used in
your applications. They are, however, very useful when beginning to work with
the encoders. The most important of these are

180 Chapter 8 — Encoder Capture and Compare Operation

e PmacEncoderRegStat - Fetch the encoder control/status word for Encoder
Number and parse it into its pieces. Encoder Status/Control 132 is the
integer representation of the register. Position Capture Control can be used
with PmacEncoderCaptureControl. Capture Flag Control can be used with
PmacEncoderCaptureFlag. Encoder Status Control Cluster can used with
PmacEncoderStatControl. Encoder Status Flag Cluster can be used with

PmacEncoderStatFlags.
—— En-:_ut:!derESta:us.-"lztnnttrulliEE
Device Number i32 (0] —— ppe [CDEHON -aPlie womin
Encoder Number i32 [1-16) (1) —— Stat Capture Flag Lontrol

% Enicoder Status Cantral Claster

Encoder Status Flags Chaster

e PmacEncoderRegServo - Query PMAC for the two position registers
containing commutation phase and servo position. Servo Position is actual
encoder position in counts referenced to a power-up/reset position of zero.
Encoder Phase is used internally for commutation.

Device Number 132 [0] Enc Encoder Phasze i32
Encoder Humber 132 [1-16] (1] Serva Serva Pogition (32

e PmacEncoderRegisters - Query PMAC for all registers for Encoder
Number. Assemble the values into a PmacEncoderRegisters Cluster.

Device Mumber i32 [0 ——Enc

Encader Nurber i32 (1-15) (1] —— Regs e Fzader Beaisters Cluster

The remaining members of this collection will not generally be used in your
application but are provided for completeness. These are

e PmacEncoderRegTime
e PmacEncoderRegDAC
e PmacEncoderRegCapture

e PmacEncoderRegADC

Chapter 8 — Encoder Capture and Compare Operation 181

Chapter 9 - PMAC and NI-DAQ
Interfacing

Basics

In Chapters 7 and 8 we introduced PMAC’s position capture and compare
capabilities. PMACPanel provides a number of ICVs to configure, monitor, and
operate these capabilities. When coupled with National Instrument's data
acquisition boards, PMAC and PMACPanel can be used to build highly
integrated and precise motion based data acquisition systems using GPIB, SCXI,
VXI, or DAQ boards.

In this chapter we will demonstrate how to couple standard NI-DAQ boards to
PMAC to synchronously trigger data acquisition at specified positions, and even
use PMAC’s servo clock as your DAQ sampling clock. The examples presented
here in no way limit the wide array of possibilities or approaches you can use to
trigger, synchronize, and organize your motion based DAQ applications. Your
experience and requirements will define the approaches that best meet your
needs.

The examples of PMAC-DAQ interfacing assume that you have a basic
understanding of LabVIEW’s data acquisition capabilities and the acquisition
boards you will be using. Similarly, you must have some understanding of
PMAC’s external connectors and their configuration. You will be making
connections between these boards. If you are not certain of your abilities,
precisely which signals you need, where to locate them, or what to connect them
to do not attempt to connect them. You can easily damage the boards, the host
computers, and many other items. Make certain you have thoroughly studied
the information presented in this chapter and the HW manuals provided for your
model of PMAC and your DAQ boards. Contact Delta Tau or National
Instruments Technical Support if you have any questions prior to proceeding.

External PMAC Signals

PMAC provides a number of HW interfaces that can easily be used to
synchronize PMAC with most NI-DAQ boards and systems. Depending on
your needs PMAC also supports a number of /O accessories. PMACPanel
doesn’t support all of these with ICVs. It is way beyond the scope of this manual
to detail all possible approaches to accessing the interfaces on these boards.

You can easily create your own ICVs for these accessories using PmacAcc and
PmacMemory ICVs.

182 Chapter 9 — PMAC and NI-DAQ Interfacing

We will consider three primary PMAC signals here. Position Capture was
discussed in Chapter 7 and will not be repeated here. When interfacing these
signals to DAQ boards we will demonstrate how to use these signals to trigger
acquisitions and provide the sample scan clock. Before actually using these HW
signals you must consult the PMAC User Manual and the HW manual for your
particular PMAC model. The signals are:

e EQU signals
e Servo Clock
e General Purpose Machine I/O

e Position Capture Flags

We will not consider PMAC’s encoder clock or ADC clocks. If you wish to use
these consult the PMAC User Manual, the HW manual for your particular
PMAC model, or contact Delta-Tau technical support.

The following sections are reproduced from various portions of the PMAC User
Manual and describe the signals, how to access them, and potential limitations
in their use.

Compare-Equals Outputs (JEQU)

The compare-equals (EQU) outputs provide a signal edge when an encoder
position reaches a pre-loaded value.

PMAC-PC

PMAC-PC doesn’t have a dedicated connector for the EQU outputs. Instead,
the signals may be accessed using a 26-pin IDC connector over E-point pairs
E53-E65. The outputs are TTL-level with very low drive capability; they must
be buffered externally before they can drive any real devices. ACC-27,
normally used as an I/O buffer for the thumbwheel multiplexer port, can be used
to drive several of these EQU lines. The 26-pin cable provided with the ACC-
27 fits over the 13 jumper pairs ES3-E65. Contact Delta Tau technical support
for details.

PMAC-VME

On PMAC-VME, these signals are brought out on connector J7 (JEQU),
referenced to digital ground (GND). As shipped from the factory, they are
open-collector (sinking) outputs, with a ULN2803A driver IC, rated to 24V and
100mA each. They may be changed to open-emitter (sourcing) drivers by
replacing this chip in U28 with a UDN2981A driver IC and changing jumpers
E93 and E94.

PMAC-Lite

On PMAC-Lite, these signals are brought out on connector J§8 (JEQU), optically
isolated from the digital circuitry, referenced either to analog ground (AGND) or
an external flag supply ground. As shipped from the factory, they are open-
collector (sinking) outputs, with a ULN2803A driver IC, rated to 24V and
100mA each. They may be changed to open-emitter (sourcing) drivers by
replacing this chip in U54 with a UDN2981A driver IC and changing jumpers
E101 and E102.

Chapter 9 — PMAC and NI-DAQ Interfacing 183

PMAC-STD

On PMAC-STD, these signals are brought out on connector J6 (JEQU) on each
of the piggyback boards. They are open-collector (sinking) outputs with internal
1-kQ pull-up resistors, rated to 5V.

On PMAC-STDL1.5, these signals are brought out on connector J8 (JEQU),
optically isolated from the digital circuitry, referenced either to analog ground
(AGND) or an external flag supply ground. As shipped from the factory, they
are open-collector (sinking) outputs, with a ULN2803A driver IC, rated to 24V
and 100mA each. They may be changed to open-emitter (sourcing) drivers by
replacing this chip in U54 with a UDN2981A driver IC and changing jumpers
E101 and E102.

Servo Clock (JRS232)

PMAC’s servo clock defines the rate at which servo loops are updated and
background computations are performed. Using this clock for other timing is an
excellent way to synchronize PMAC’s movement with externally gathered data.

PMAC allows multiple cards to share a common servo clock over spare lines on
the serial connector J4. The servo clock on J4 (JRS232) is located on pin 8 and
is referenced to ground on pin 9. If multiple PMAC:s are being used the clock
signals can be shared simply by tying identical pins on the PMACs together.
Accessory 3D or 3L cables with extra PMAC connectors (one Accessory 3E for
each extra PMAC) can be used to share the clock signals in either bus or serial
communications applications (and of course, for actual serial communications).
In a standalone or bus-communications application, there is no need for a host
drop on the cable. As is the case for the communications lines, you cannot tie
the clock lines from the RS-422 port of a PMAC-PC to the RS-232 port of a
PMAC-Lite. With the RS-422 option on the PMAC-Lite (Opt. 9L), connection
to a PMAC-PC is possible, but the connector pinouts are different.

If serial communication is not being used, but the serial data lines are connected
with the clock signals, it may be desirable to deactivate the serial port to prevent
noise on the lines from creating input command characters to PMAC. On
PMAC-PC, PMAC-Lite, and PMAC-VME, this is done by setting jumpers E44-
E47 ON; on PMAC-STD, by making DIP switches SW1-5 to SW1-8 all OFF.

Be aware of the fact that J4 has +5 VDC on pin 10.

General Purpose Digital Inputs and Outputs

The PMAC JOPTO connector (J5 on PMAC-PC, -Lite, and -VME) provides
eight general-purpose digital inputs and eight general-purpose digital outputs.
Each input and each output has its own corresponding ground pin in the opposite
row. The 34-pin connector was designed for easy interface to OPTO-22 or
equivalent optically isolated I/O modules. Delta Tau's Accessory 21F is a six-
foot cable for this purpose.

The PMAC-STD has a different form of this connector from the other versions
of PMAC. Its JOPT connector (J4 on the baseboard) has 24 1/0O, individually
selectable in software as inputs or outputs. The rest of this discussion does not
pertain to the PMAC-STD port, unless specifically mentioned. Refer to the
PMAC-STD Hardware Reference for details on its JOPT port.

184

Chapter 9 — PMAC and NI-DAQ Interfacing

@ Having Jumpers El and

E2 set wrong can damage the IC.

CAUTION
L___J Do not connect these

outputs directly to the supply
voltage, or damage to the PMAC
will result from excessive current
draw.

cmmnl Having Jumpers E1 and

E2 set wrong can damage the IC.

Standard Sinking Outputs

PMAC is shipped standard with a ULN2803A sinking (open-collector) output
IC for the eight outputs. These outputs can sink up to 100 mA, but must have
a pull-up resistor to go high.

The user can provide a high-side voltage (+5 to +24V) into Pin 33 of the
JOPTO connector, and allow this to pull up the outputs by connecting pins 1
and 2 of Jumper E1. Jumper E2 must also connect pins 1 and 2 for a
ULN2803A sinking output.

Option for Sourcing Outputs

It is possible for these outputs to be sourcing drivers by substituting a
UDN2981A IC for the ULN2803A. This IC (U3 on the PMAC-PC, U26 on
the PMAC-Lite, U33 on the PMAC-VME) is socketed, and so may easily be
replaced. For this driver, pull-down resistors should be used. With a
UDN2981A driver IC, Jumper E1 must connect pins 2 and 3, and Jumper E2
must connect pins 2 and 3.

Input Source/Sink Control

Jumper E7 controls the configuration of the eight inputs. If it connects pins 1
and 2 (the default setting), the inputs are biased to +5V for the "OFF" state, and
they must be pulled low for the "ON" state. If E7 connects pins 2 and 3, the
inputs are biased to ground for the "OFF" state, and must be pulled high for the
"ON" state. In either case, a high voltage is interpreted as a '0' by the PMAC
software, and a low voltage is interpreted as a '1".

Memory Mapped Access to I/0

These inputs and outputs are typically accessed with M-variables. In the
suggested set of M-variable definitions, variables M1 through M8 are used to
access outputs 1 through 8, respectively, and M11 through M18 to access inputs
1 through 8, respectively. This port maps into PMAC memory space at Y
address $FFC2. You can also find a collection of VIs to access these in
PmacAcec.

Synchronous M-Variables

In a motion program, when PMAC is blending or splining moves together, it
must be calculating in the program ahead of the actual point of movement. This
is necessary in order to be able to blend moves together, and to be able to do
reasonable velocity and acceleration limiting. Depending on the mode of
movement, calculations can be one, two, or three moves ahead of the actual
movement.

Why Synchronous M-Variables are Needed

When assigning values to variables is part of the calculation, the variables will
get their new values ahead of their place in the program when looking at actual
move execution. For P and Q-variables, this is generally not a problem, because
they exist only to aid further motion calculations. However, for M-variables,
particularly outputs, this can be a problem, because with a normal variable value

Chapter 9 — PMAC and NI-DAQ Interfacing 185

assignment statement, the action will take place sooner than is expected, looking
at the statement's place in the program.

For example, in the program segment

X10 ; Move X-axis to 10
M1=1 ; Turn on Output 1
X20 ; Move X-axis to 20

you might expect that Output 1 would be turned on at the time the X-axis
reached position 10. Because PMAC is calculating ahead, at the beginning of
the move to X10, it will have already calculated through the program to the next
move, working through all program statements in between, including M1=1,
which turns on the output. Therefore, using this technique, the output will be
turned on sooner than desired.

186 Chapter 9 — PMAC and NI-DAQ Interfacing

With synchronous

assignment, the actual assignment
is performed where the blending
to the new move begins, which is
generally ahead of the
programmed point. In LINEAR
and CIRCLE mode moves, this
blending occurs V¥TA/2 distance
ahead of the specified
intermediate point, where V is the
commanded velocity of the axis,
and TA is the acceleration
(blending) time.

Synchronous M-variables

after the last move or DWELL in
the program do not execute when
the program ends or temporarily
stops. Use a DWELL as the last
statement of the program to
execute these statements.

How They Work

Synchronous M-variable assignment statements were implemented as a
solution to this problem. When one of these statements is encountered in the
program, it is not executed immediately; rather, the action is put on a stack for
execution at the start of the actual execution of the next move in the program.
This makes the output action properly synchronous with the motion action.

In the modified program segment

X10 ; Move X-axis to 10
Ml==1 ; Turn on Output 1 synchronously
X20 ; Move X-axis to 20

the statement M1==1 (the double-equals indicates synchronous assignment) is
encountered at the beginning of the move to X10, but the action is not actually
performed until the start of blending into the next move (X20).

Also, notice that the assignment is synchronous with the commanded position,
not necessarily the actual position. It is the responsibility of the servo loop to
make the commanded and actual positions match closely

In applications where PMAC is executing segmented moves (113>0), the
synchronous M-variables are executed at the start of the first 113 spline
segment after the start of blending into the programmed move.

Syntax

There are four forms of synchronous M-variable assignment statements:

M{constant}=={expr} ;Straight equals assignment
M{constant}é&={expr} ; AND-equals assignment
M{constant} |={expr} ; OR-equals assignment
M{constant}"={expr} ; XOR-equals assignment

In all of these forms, the expression on the right side of the statement is
evaluated when the line is encountered in the program, ahead of the execution of
the move. The value of the expression, the variable number, and the operator
are placed on a stack for execution at the proper time.

Position Capture FLAGs

Interfacing to the FLAG inputs required for position capture was covered in
detail in Chapter 7 and 8. Because these inputs are so closely associates with
HW limit switches you should refer to your PMAC HW and PMAC User
Manual as well as any manuals supplied by your system integrator. Many
PMAC based systems, for example X-Y tables, have already defined the
operation of the limit switches and FLAG inputs. Hence, your use of these
inputs must be coordinated with the system manufacturer’s usage.

Chapter 9 — PMAC and NI-DAQ Interfacing

187

DAQ Signals

This manual in can no way cover the wide selection of NI-DAQ boards or their
signal sets. For the purposes of this chapter we will consider a few general
signals found in some form on most National Instruments DAQ boards that can
be used to trigger acquisitions and define the DAQ sample rates. More detailed
information can be found in the LabVIEW DAQ examples and tutorials and the
manual for your DAQ board. All of the examples in this Chapter use the
standard LabVIEW examples.

Connections to the DAQ board are best done using one of National Instruments’
many terminal blocks or breadboards. The terminals are well labeled and the
chances for shorts are limited.

Analog I/O Channels

You may or may not wish to connect PMAC output signals to the analog input
channels on your DAQ board. In several of the examples that follow, we
connected the servo clock and JEQU signals to Channel 0 and 1 for the purposes
of demonstrating what the clocks look like. To configure, test, and operate these
inputs refer to the appropriate National Instruments manual.

Trigger and Scan Clock Connections

You can trigger acquisitions from PMAC in many ways. You can use the JEQU
signal to start or stop acquisition at a precise position, or you can use general-
purpose digital outputs and synchronous M-Variables. The servo clock and/or
the JEQU signal can also be used for the scan clock thereby synchronizing the
DAQ sample rate with PMAC’s primary timekeeper.

E series boards: Connect your start trigger to PFIO/TRIG1, your stop trigger to
PFI1/TRIG2, and your scan clock to PFI7/STARTSCAN.

Legacy MIO boards: Connect your start trigger to STARTRIG*, your stop
trigger to STOPTRIG, and your scan clock to OUT2. NOTE: You must scan
two or more channels when specifying an external scan clock.

Legacy MIO-16X, MIO-16F-5, and MIO-64F-5: The start and stop trigger pin
is EXTTRIG*. Connect your scan clock to OUT2. NOTE: You must scan two
or more channels when specifying an external scan clock.

Lab/1200 series boards: Connect your start or stop trigger to EXTTRIG.
Hardware pre-triggering (start & stop) is not supported. Connect your scan
clock to OUTBI.

For triggers and scan clocks on PC-LPM-16, DAQCard-500, and DAQCard-700
you should refer to the appropriate LabVIEW manual. To find the actual pin
numbers, refer to your hardware user manual.

PmacDAQMove

There are dozens of approaches to configuring your particular PMAC/DAQ
application. You might consider placing status and position monitoring VIs
inside your main DAQ polling loop. This requires you to properly organize the
configuration and maintenance of PMAC and DAQ device polling. For the
purposes of this Chapter, we selected a multi-threaded model consisting of a
main VI to control PMAC and self contained DAQ VIs found in the LabVIEW

188 Chapter 9 — PMAC and NI-DAQ Interfacing

examples. We made a few modifications to the DAQ examples such as defining
defaults for the sample rates and channel configuration to demonstrate the
sampling of the Compare-Equal output, Servo clock, and a simple analog signal.
This allowed us to create the examples quickly and validate the operation of
PMAC in a more demanding execution environment.

PMAC and AT-MI0-16 Signal Connections

The following examples were built using a PMAC-Lite and a National
Instruments’ AT-MIO-16. The MIO card signals were accessed using a SC-
2070 termination card. The various PMAC signals were accessed using various
terminal blocks of the proper sizes. See the Hardware Reference Manual for
your PMAC for a list of mating connectors.

In our examples, the DAQ triggers are driven by ENC1. There is no reason
other encoders or combinations of signals from multiple motors can’t be used
with simple modifications.

PMAC Signals

JRS232 (10 pin connector)
Pin 8 - Servo clock (SERVO)
Pin 9 - Common
JEQU (10 pin connector)
Pin 1 - ENC1 Compare Equal Output (EQU1)
Pin 10 - Common
JMACHI1 (60 pin connector)

Pin 55 - ENC1 Home Flag Input (HMFL1) — Connected to External
TTL Clock

Pin 58 — Common

ATMIO Signals

OUT2 — Scan clock — Wired to PMAC SERVO
EXT TRIG* - Start trigger — Wired to PMAC EQU1
CHO — Wired to signal generator

CH1 — Wired to PMAC EQU1

CH2 — Wired to PMAC SERVO

Commons/Grounds — ATMIO DGND, ATMIO AGND, JEQU and
JRS232 commons all wired together

The panel for PmacDAQMove is shown below. This VI is comprised of pieces
from several of the previous examples. It allows you to home motors, Jog them,
configure capture and compare operations, and initiate three different DAQ
operations. We will discuss these in a moment.

If you have connected your system in the manner described above or something
similar you can begin testing the system by connecting EQU1 to an oscilloscope
or by running the VI and using your DAQ board.

When you start the VI select the capture flag configuration and click Configure
Capture. Then home the motor. When this has been completed you can set

Chapter 9 — PMAC and NI-DAQ Interfacing 189

Compare configuration cluster booleans as shown below and click Configure
Compare.

This VI uses the encapsulated PLC covered in Chapter 8 to monitor and update
the compare-equal operation. The value 500 in the numeric control specifies the
pulse generation interval. You can change this if you desire and click
Enable/Reset Compare. The Green LED indicates the PLC is running. When
you Jog the motor using the jog controls you should see the PVE display update
and a pulse train on the scope. You should probably use level triggering on the
scope. If you are doing this, the pulse train will have stable intervals with jitter
in the actual pulse widths. This is because a background PLC services the
encoder. If you need a more stable pulse width, change PLC 19 to PLC 0 in
PmacPosCompGen.pmce and the reference to PLC 19 in
PmacPosCompSetup.pme to PLC 0. The foreground PLC will be serviced
more regularly thereby resetting the output in a more deterministic manner.

If you are not using an oscilloscope, you can use the DAQ card to do the same
thing. On the far right below the two selector knobs on the panel is a menu ring
that allows you to select three different DAQ VIs. Clicking the Run DAQ
button starts the selected VI as a separate application thread. These VIs are
slightly modified versions of standard LabView examples located in the
Examples\Daq\Anlogin library supplied with LabVIEW.

The diagram uses the expected pieces from previous examples. The
encapsulated PLC that generates the pulses is enabled by the setup PLC and can
be disabled by the Disable button. The Run DAQ button uses the Server VI to
start the selected PmacDAQ VI as a separate thread.

190 Chapter 9 — PMAC and NI-DAQ Interfacing

Ehanae I-¥ar Iﬂm

TTE] i Enc
] TF? — H I'"ar m“Enu:u:u:Ier |-Capture Eluster”
Moatar],,
Limn5t
I [Motor Status Limit Cluster|
kdatar
Lirnits Run DAQ
mlit Control Cluster] |5 ™ Vituallnstrument §
Dev Run Wl
Open | [Motor PYE Cluster| P

e B e [
Motor/Encoder Jog PVE [

| FLL Compare-E qual
SubVIL..JsubvI. JFE]

Pl Disable Compare

pl01 - Long

e j
[Configure Compare|
m [Encoder Compare-Equal Control Cluster| “l:;“

The three VIs, as named in \PmacDAQ, are described below. The name of the
original VI in the LabVIEW example library is included in parentheses. We will
discuss the DAQ VIs briefly in the following sections with a view to
understanding PMAC’s signals and their use by the DAQ board.

e PmacDAQTrigger — (Cont Acq&Graph (buffered) D-Trig.vi)

This VI continuously acquires data from one or more analog input channels
when a digital start trigger occurs. This is a timed acquisition, meaning that
a hardware clock is used to control the acquisition rate for fast and accurate
timing. It is a buffered acquisition, meaning that the data are stored in an
intermediate memory buffer after they are acquired from the DAQ board.
Data are retrieved from that buffer and displayed on the graph.

e PmacDAQSync — (Acquire N - Multi-Digital Trig.vi)

This VI retrieves the specified amount of data from one or more analog
input channels each time a digital start trigger, digital stop trigger, or digital
start and stop trigger, occur. It shows how to trigger an acquisition multiple
times while avoiding the overhead of configuration and buffer allocation
each time. This is a timed acquisition, meaning that a hardware clock is
used to control the acquisition rate for fast and accurate timing. It is a
buffered acquisition, meaning that the data are stored in an intermediate
memory buffer after they are acquired from the DAQ board.

e PmacDAQSyncServo — (Cont Acq&Graph ExtScanClk D-Trig.vi)

This VI retrieves the specified amount of data from one or more analog
input channels when a digital start trigger, digital stop trigger, or digital
start and stop trigger, occur. This VI uses an external scan clock to
continually retrieve data from one or more analog input channels. This VI

Chapter 9 — PMAC and NI-DAQ Interfacing 191

will only work on devices where you can externally connect a scan clock
signal. It is a buffered acquisition, meaning that the data are stored in an
intermediate memory buffer after they are acquired from the DAQ board.

Single Trigger DAQ

PmacDAQTrigger is a LabVIEW example that waits for the external trigger
supplied by EQUI1 to begin asynchronous acquisition at the specified sample
rate. In our version of the example, channels 0, 1, and 2 are sampled at 10KHz.
The waveform chart in the panel below shows a triangle signal, the EQU trigger
pulse, and the servo clock. You can run this VI by selecting Simple DAQ in the
menu ring, and clicking the Run DAQ button on PmacDAQMove AFTER the
PLC is configured and enabled AND the motor is jogging. If the motor is not
jogging, the VI will wait 5 seconds for the trigger and then time-out. Good luck
starting this VI then starting the motor.

The default servo clock has a 442uS (2262 Hz) update rate. As can be seen in
the chart the EQU signal is active LOW. If you check the PmacDAQMove
panel shown above, you will see that indeed the operation is configured for EQU
Low — TRUE. Hence, the initial trigger that started this acquisition started on
the falling edge or leading edge of this pulse.

For instructions select Show ¥l Info from the Windows

device
ghi transpozed wavetormn graph
10.0-
channels
W o1z [i
X A0~
gcan rate trigger edge 2k
+[10000.00 + [alling n.n
buffer size time limit [sec] 2.5
<4000 +/5.0000 -
A0
gcang to read
at a time [1000] scan backlog 7.8-
w100 [100k 136 136
input limits : : :

s) @
TREEE RO

E w liljul?

Multi-Trigger DAQ

PmacDAQSync is a LabVIEW example that performs repeated acquisitions
synchronized by the external trigger supplied by EQUI1 at the specified sample
rate. In our default version of the example, channels 0, 1, and 2 are sampled at
20KHz. The waveform chart in the panel below shows a triangle signal, the
EQU trigger pulse, and the servo clock. You can run the run this VI selecting
Trigger Only in the menu ring, and clicking the Run DAQ button on

192 Chapter 9 — PMAC and NI-DAQ Interfacing

PmacDAQMove AFTER the PLC is configured and enabled AND the motor is
jogging. If the motor is not jogging, the VI will wait 5 seconds for the trigger
and then time-out.

The EQU signal is configured to be active LOW. Hence, the first EQU pulse on
the far-left starts with the falling edge of the signal. The default motor Jog rate
configured by Ix22 is 32 counts/mS. With a position interval of 500 counts as
configured by PmacDAQMove this results in a pulse every 15.625 mS. Sure
enough, the next pulse occurs right around 15 mS in the chart.

device choase tigger type For instructions select Show % Info fram the ‘Windows meru,
=i START OR STOP
w transpozed wavetorm graph

TRIGGER
channels

0 |z [

number of szans pretigger

ko acguire FCANS
& |
¥ 1000 0

zCan rate trigger edge
+ /2000000 + Falling

ifiput lirnits tirme limit [z2c]

5

+[5.00

FCan
chan

data

i

P2 || mrefssy

10.0-
0.000000

b o) A

0.020000 0.040000 0049950

tirme-oLtk?

"

Multi-Trigger DAQ with Servo Clock Sampling

PmacDAQSyncServo is a LabVIEW example that performs repeated
acquisitions synchronized by the external trigger supplied by EQU1 using
PMAC’s servo clock as the scan clock. In our default version of the example
channels 0, 1, and 2 will be sampled at PMAC’s default servo clock of 2262 Hz.
The waveform chart in the panel below shows a triangle signal, the EQU trigger
pulse, and the servo clock. You can run this VI by selecting Trigger/Servo in the
menu ring, and clicking the Run DAQ button on PmacDAQMove AFTER the
PLC is configured and enabled AND the motor is jogging. If the motor is not
jogging, the VI will wait 5 seconds for the trigger and then time-out.

The EQU signal is configured to be active LOW. You can see the jitter in the
EQU signal more clearly in this example. The analog signal is now sampled
synchronously with the servo clock. You will note that the servo clock trace in
the chart is even caught once on CH2.

Chapter 9 — PMAC and NI-DAQ Interfacing

193

Far inztructions select Shaw Y Infa fram the Windaows menu.

device choose trigger type tranzpozed wavetorm graph

ah START OR STOP
TRIGGER
channels

w0 |1z [
number of zcanz: pretrigger
ko acquire FCang
eI CIE—

timne limit [zec) trigger edge

SEo0 +Falling

[] 1

input limiks Sk IZI IZIIZIEIEIIJEI 100, 000000 24900000
=0 JIPEREEL time-out?

et e

|

Further Sampling Options

The three examples presented here demonstrate that you have many options for
triggering and controlling the sampling of your data.

e Ifyou sample the servo clock or the EQU signals along with your
data, you have in essence a time code synchronized with your data.

e If you perform a gather on one of PMAC’s position or velocity
registers while using position compare intervals you can relate
your sampled data with precise cycle by cycle motor positions or
other motion characteristic.

Using these approaches, you can achieve servo accurate positions for every
sample of your data. With LabVIEW’s analysis tools you can perform detailed
data reductions relating position, velocity, and physical measurements.

Other Interface Options

There is no reason you can’t use your DAQ boards DIO to control PMAC’s
MIO inputs and vice versa. Multipurpose DAQ boards having timers can be
used to generate position capture triggers as can the board’s D/A capabilities.

Other possibilities include the use of the timers to generate time-base control for
PMAC.

Although not covered here you can use the sample PMAC generated clocks and
signals to trigger and clock bench instruments that you communicate with using
GPIB.

194

Chapter 9 — PMAC and NI-DAQ Interfacing

Chapter 10 - PComm32 Code
Interface Nodes

Basics

This Chapter documents a basic framework for developing LabVIEW Code
Interface Nodes (CINs) using Microsoft Visual C++. This topic is important if
you

e Desire more sophisticated control over a VIs implementation

e Intend to understand and modify the PmacDPR collection of VIs
for accessing Dual Ported RAM

e Use PMAC’s interrupt capabilities

PMACPanel primarily interfaces to PComm32 using LabVIEW Call Library
VIs to access specific PComm32 functions. In some instances, your need for
increased speed, sophisticated manipulation of PMAC, or the number of calls to
PComm32 begins to create a nasty mess of Call Library VIs that becomes
unmanageable.

In this Chapter, we introduce a basic PmacCIN VI comprised of a VI, C/C++
source file, Microsoft Visual C++ workspace, and project file. We show how to
create the C file, modify the existing workspace and project file, compile the
source file, and load the object file into the VI’s Code Interface Node.
LabVIEW 5.0 makes the process very easy - IF - you follow some simple
procedures.

In the Chapter 11 we make extensive use of CINs to handle PMAC’s DPR. So
if you intend to really understand what can be done and how to do it then this
chapter is important to you.

LabVIEW Code Interface Node Basics

What is a CIN?

Code Interface Nodes are VIs that call code written in C, directly from a block
diagram. Many LabVIEW aficionados dislike CINs. However, there are
instances where the logic required to implement an operation is much simpler to

Chapter 10 — PComm32 Code Interface Nodes 195

specify in C than LabVIEW’s G. Furthermore, there are instances where the
need for efficiency and speed suggest the use of CINs. Accessing PMAC DPR
has both requirements. CINs can accept any LabVIEW data type including
clusters and arrays as an input or output. The following illustration shows a CIN
in a simple diagram.

T
| Enabled Bool | " (o True]
[E)' [Code Interface Node]

Enable Bool|[TE -5

[Device Number i32 [0]]

[Enable Motor Numbers 132 (1-8) [1)] [332]]
[Servo Period i32 [1]]

IR
s | 1

¥ FEH
TF|TF
¥ FEH
FEH EEH

{T=J|[Enabled Bool|

LabVIEW provides several routines that make working with G data types easier.
These routines support memory allocation, file manipulation, and data type
conversion. Detailed documentation on these topics can be found in the
LabVIEW Code Interface Reference Manual.

Using a CIN with PComm32

Appendix A contains an application note available from www.natinst.com fully
defining the process for creating a CIN and configuring Microsoft Visual C++ to
edit, compile, and link the source code. It’s a bit involved but important
information. The next section details the configuration information required to
add PComm32 support to the basic CIN described in the appendix.

Setting up a PMACPanel CIN Configuration

There are two ways to create a project file for the CIN source code created by
the LabVIEW. The information presented next is of general importance and
leads to a much easier way to develop CINs for PMACPanel.

Adding PComm32 Include Path

To access PComm32 you need to add the following directories to the Visual
C++ development environment by selecting Tools»Options to display a tab
dialog. Click the Directories tab and select Include files in the Select directories
for drop down menu. If you double click the outlined box in the directory list a
dialog box appears allowing you to select a directory for the include path. The
dialog shown below already includes the directory

D:LabView\PMACPanel.lib\PmaclInc

If you happen to have PComm32 installed you can use this directory. The result
should look something like the following.

196 Chapter 10 — PComm32 Code Interface Nodes

Options |

Editor I Tabs i Debug i Compatibility i Buld = Directones] { EE

Platform: Show directaries far:
[win32 =l inchude files =l

| Directories:
© C:\Program F i LUDE
C:%Program FileshDewStudiohyCuMF Chinclude
C:AProgram Files\DevStudiohCha T Lhinciude
O:LabtiewtPMACFanel ibPmacine

| k. I Cancel |

Adding Pmac.lib to Project

To link the CIN to produce the Isb code resource you need to include Pmac.lib
located in PMACPanel.lib\PmaclInc or your PComm32 installation directory.
You can do by selecting ‘Project>>Add To Project>>Files’ and selecting
Pmac.lib in the locations noted. You can also add the file and add the path to
the Library files selection in the Tool options the same way you added the
include path.

Configuring the IDE

Appendix A has detailed instructions one the steps required to configure a
project so that it will successfully compile a C file into a loadable code resource
for the CIN. This is a bothersome process if you do it a number of times. It
may be necessary for you to do this the first time you create and compile a CIN.
After that you can use the techniques detailed next to duplicate the project file.

The Easy Way to Add New Projects

The easy way to create new CIN projects is to create a copy of the
PmacCIN.dsp project file and workspace PmacCIN.dsw located in \PmacCIN
and modify them using notepad or Microsoft Word. Microsoft doesn’t
recommend this but it saves a lot of configuring when you create a new CIN. If
you have 10 or 12 CINs you will get very tired of configuring and managing all
the project files.

The project file has the keyword PmacCINBase used 21 times in it. The
workspace has the keyword PmacCINBase used once. Copy the files to a new
directory, give them new names such as PmacMyCustomCIN.dsp and
PmacMyCustomCIN.dsw, and replace all references to PmacCINBase with
PmacMyCustomCIN. You can then open the new workspace in Visual C++

Chapter 10 — PComm32 Code Interface Nodes 197

and compile your project using the LabVIEW created C source file named
PmacMyCustomCIN.c.

If your installation is different from that contained in PmacCIN, try to edit the
dsp or dsw files. If there are too many changes, create a Microsoft Visual C++
environment from scratch as outlined in Appendix A, add the paths and libraries
for PMAC, and get one project to work. From this point on you can copy your
dsp, edit it, and insert it into an existing workspace. It takes a little work the
first time, but adding new CINs is very easy after that.

Multiple CIN Projects in a Workspace

Managing multiple CIN projects gets troublesome quickly if each CIN has its
own project and workspace. If you navigate your way to the PmacDPR
directory and open the Microsoft Visual C++ workspace named PmacDPR.dsw,
you will see that the workspace, shown below, has 12 projects in it.
PmacDPRVarBack is the currently active project and will be compiled when
the Build command is selected. This figure is also instructive in that the project
PmacDPRFixedBackVectors is open. It shows that any LabVIEW CIN project
requires cin.obj, labview.lib, lvsb.lib, and lvsbmain.def. For PMACPanel
Pmac.lib is also required. The file PmacDPRFixedBackVectors.c is the C
source file created by LabVIEW for the CIN node and contains the actual code
to accomplish the desired task.

"-.-'-.-" ar l::_ Zpace

Wiorkzpace ‘PmacOPR: 12 project(z)
- (E8 PmacDPRFixedBack files
PracDPRFixedB ackConfig files
EI PrmacDPRFixedB ackiectors files
------ cir.aby

------ labrvigve. ib

------ lvzh.lib

------ lvvsbrnain, def

------ Prnac. lib
------ PmacDPRFixedB ack)ectars.

-7 External Dependencies
PrnacDPRGatheryectors files |
-- PriacDPRMumencCIMClazter files
-- PriacDPRRealTimeConfig files
PrmacDPRRealTimekd atar files
PrmacDPRRealTimetd otors files
-- PrnacDPRRealTimet ectors files

PmacDPRYarBack files
PrmacDPRY arB ackConfig files
PrmacDPRY arB ackWectors files

ClassView | [2] Fieiew | 7 Infoiiew |

B

|_'_=

198

Chapter 10 — PComm32 Code Interface Nodes

Creating a CIN C-Stub for PComm32

After placing the CIN VI in your diagram, wiring your inputs, and creating the
C-source file you get to edit the source. The following code was created for the
Code Interface Node in the VI PmacCIN.

/* CIN source file */
#include "extcode.h"

CIN MgErr CINRun(int32 *Device Number i32 0 ,
LVBoolean *Enable Bool,
int32 *Enable Motor Numbers i32 1 8 1 ,
int32 *Servo Period 132 1);

CIN MgErr CINRun(int32 *Device Number i32 0 ,
LVBoolean *Enable Bool,
int32 *Enable Motor Numbers i32 1 8 1 ,
int32 *Servo Period 132 1) {

/* ENTER YOUR CODE HERE */

return noErr;

}

To access PComm32 capabilities you need to add the line

#include <pmacu.h>

You can then utilize all of PComm32’s capabilities. In the Chapter that follows
we make extensive use of CINs for the implementation of VIs to access
PMAC’s DPR.

Chapter 10 — PComm32 Code Interface Nodes 199

Chapter 11 - DPR - Dual Ported
RAM

Basics

Every collection of VIs presented so far uses ASCII command strings to
communicate between PMAC and the host. This is independent of whether the
actual transfer between the host and PMAC takes place over a serial port, the
bus, or DPR. The parsing, formatting, handling, and interpretation of the
commands is responsible for most of the time required for communication —
even communication that takes place using Dual Ported RAM (DPR).

Dual Ported RAM provides seven other mechanisms for the transfer of limited
and specific sets of numeric data between the host and PMAC that requires far
less handling. This results in much faster transfers that may be advantageous in
your application.

These mechanisms are:

1. Fixed Real Time Data Buffer — Automatic copying of limited
servo data to the host at a specified servo rate

2. Fixed background Data Buffer — Automatic copying of limited
motion program data to the host on an as-requested basis

3. Variable Background Data Buffer — Automatic copying of user
specified data to the host

4. General Numeric Access — Bi-directional transfer of numeric data
between the host and PMAC using any DPR addresses not
dedicated to another operation

5. Control Panel — Emulation of PMAC’s HW control panel

6. Binary Rotary Buffer — Execution of motion programs loaded by
the host on an as-requested basis

7. Real Time Data Gathering — Automatic copying of user specified
data to the host

Of these seven mechanisms 1 through 4 are completely supported by the
PmacDPR collection of VIs. Mechanism 5 is not really required in that the

200 e Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

same capabilities, albeit slightly slower, are provided using the existing VIs.
Mechanism 6 is way beyond the requirements of anything a developer should
attempt with PMACPanel. PMAC users generally do not use mechanism 7.

In this Chapter we introduce four collections of VIs in PmacDPR that provide
the capabilities required for mechanisms 1-4. These are:

e PmacDPRFixedBack — Fixed Background data buffer

¢ PmacDPRNumeric — General numeric access to unallocated DPR
memory

¢ PmacDPRRealTime — Fixed Real Time data buffer

e PmacDPRVarBack — Variable Background data buffer

In each of the four collections contains

e A configuration VI to enable and configure the operation
e VIs to read or write the data using convenient clusters and types

e VIs to buffer multiple data samples into vectors for charting and
analysis.

e Examples of all capabilities

Several indicators and controls are provided to handle the data in easy to use
clusters. In many instances, previously introduced concepts and clusters are
used in ways that tightly integrate the new capabilities available through DPR
into PMACPanel’s familiar architecture.

We are not going to cover the CINs for all of the VIs in these collections. Once
the structure of a configuration, fetch, and vector VI are understood for one of
the collections the others will be readily duplicated. You may well find that
your applications require a slightly different architecture than that presented
here. If so, you can modify the existing CINs to suit your particular needs.

Required Background Understanding

Before reading this material, you must have some familiarity with PMAC’s DPR
capabilities. This can be found in the PMAC User Manual, PMAC Software
Reference Manual, and PMAC Dual Ported RAM manual. The architecture of
the CINs to support the VIs is heavily influenced by the PComm32 DPR API so
having that manual available is also necessary. In particular the Chapter
PComm32 DPR Features should be read before proceeding.

General Architecture Notes

PMACPanel’s DPR support is designed to be simple and extensible. There is
not a lot of error checking. The basic assumption is that you have a DPR card
with your PMAC. PmacDPR doesn’t automatically check for this nor does it
automatically enable or disable itself. As you inspect the examples, you will see
that each mechanism has a configuration VI. As you develop your applications
you might want to move these into your PmacDevOpen VI so that opening
PMAC also enables DPR the way you desire.

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 201

PmacDPRRealTime

PMAC’s Real Time data buffer mechanism automatically copies 27 selected
Motor Calculation Registers from their native PMAC locations to DPR locations
at a specified servo-cycle sample rate. PComm32 supplies a set of routines to
read these values from DPR and convert them into legitimate Intel formats. This
process requires some handshaking between PMAC and the host to avoid
collisions when accessing DPR from the host.

To minimize your work and simplify the interface, the PmacDPRRealTime
collection bundles the 23 most useful items them into clusters. This ensures that
all data items are gathered during the same servo cycle. It also prevents you
from having to wire 27 VlIs.

PmacDPRRealTimeExample

The following example demonstrates three PmacDPRRealTime VIs. One to
configure and enable the operation of Real Time data buffering and two to fetch
the data. PmacDPRRealTimeMotor collects the data for a single motor.
PmacDPRRealTimeMotors collects the data for a set of motors. Grouping the
fetch of data for multiple motors into a single VI ensures that the data for each
motor will be from the same servo cycle.

The panel for the example is shown below. The panel demonstrates the
operation for a single motor on the top and multiple motors on the bottom. On
the right are two clusters for displaying the data fetched from DPR. On the right
are controls for selecting which motor or motors and controlling the fetch from
DPR. On the left in between the two is a small block of controls to enable DPR
Real Time data buffering.

202 e Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

PmacRealTimeExample
DPR Real Time Motor Cluster

P I
:—
=\

4 5 4 5
3 E 3 5
7 ’? 7 ’?
17 8 17 8

Coord System Motor Number

J [] Convert to C5
Valid Dutput [] Wait For ¥alid

Single Motor

Servolimer 132

Comm'd Poz Dbl

Position Dbl

Yelocity Dbl

Follow Error Dbl

Master Pos Dbl

Comp Pos Dbl

DAC i32

Move Time 132

Motor Motion ulb

4 4 b Sample Penod

Megative
Limit Exceeded

U

g

Poszitive
Limit Exceeded

DPR Real Time S5ervo Cluster

Running Running
Dwell Move
Block Data Block

Hequest Error

Desired Home In

Yelocity Zero Progress
Megative Poszitive
Limit Exceeded | Limit Exceeded

Hand Wheel Ho Phaze
Enabled Commutation
Integration
Mode

E
=3
2\)?'1'
ra

1 g

Enable Motor Humbers

__|| Enabled

1] | Iteration Timer mS

Motor Array Motor Index

N 4 5
E;E 3 6
—
v 17 g

L] Enable Motors _ \“J)
[Wait For Valid ¥aiid Dutput

Multiple Motors

=
=
-
-
i
-
=
El
G
E
=2
g
)
=
=
]

Servolimer 132

Comm'd Pos Dbl

Position Dbl

Yelocity Dbl

Follow Error Dbl

Master Pos Dbl

Comp Pos Dbl

DAL i32

Move Time 132

Motor Motion ulb

Hegahive
Limit Exceeded

MR

=]

Positive
Limit Exceeded

DPR Real Time Servo Cluster

Running Running
Dwell Move
Block [Data Block

Request Error

Desired Home In

Yelocity Fero Progress
Hegative Positive
Limit Exceeded | Limit Exceeded
Hand Wheel Mo Phaze

Enabled Commutation

Integration
Mode

To execute the example you should select how many motors you want PMAC to
copy to DPR using the knob labeled Enable Motor Numbers. Sample Period is
the number of servo cycles between copies to DPR. The default value of five
indicates that PMAC will update the Real Time data buffer every five servo
cycles. With a default servo rate of 2.2 kHz, this corresponds to a 400 Hz
sample rate. If you click Enable, PMAC’s Real Time data buffer will be
enabled. You should immediately see updates taking place in the DPR Real
Time Motor Cluster and DPR Real Time Servo Cluster on top. Most noticeably,
you will see the Servo Timer increment rapidly reflecting the servo time the
sample was taken. If you enabled four motors, you can use the Motor Number
knob in the Single Motor box to fetch and display the data for the corresponding
motor.

You will note the familiar PmacMotorPVE cluster on the top left displays the
PVE as a subset of the data contained in the DPR Real Time Motor Cluster. If

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

Chapter 11 - DPR - Dual Ported RAM e 203

you check the Convert to CS box the same conversion to coordinate system
units covered in several earlier chapters is applied to the PVE data gathered
from DPR.

Below this collection of controls is an indicator labeled Iteration Timer that
display the time in mS for each loop iteration. On average the fetch and display
update of DPR Real Time data for a single motor takes 1-2mS.

You will notice the Green LED in the Single Motor box flickering on and off.
When PMAC copies data to DPR, it sets a ‘Busy Bit’ indicating that it is
accessing DPR. During this time, the host, running this VI, cannot access DPR.
To avoid possible problems the VI simply indicates that it did not perform a
successful fetch. If you check the box labeled ‘Wait For Valid', the VI will
continue placing calls to the associated CIN until it performs a successful read.

The demonstration on the bottom of the panel is for multiple motors. To fetch
the data for multiple motors you supply an array of motor numbers and enable
the fetch. The VI then fetches the data for the specified motors and returns an
array of clusters. The time required for this multiple motor fetch is on the order
of 1-2 mS. In this example, you can select a Motor Index for display. As shown
a Motor Index of 1 displays the data for Motor 2.

Bev
al=g]
| E nabled s

Enahle| [CTE]- OFF

[Sample Period RHCFg

[Enable Motor Humbers| W ait For Valid|

Walid Dutput -

__E;E)—.n. PR |Foed

[DPR Real Time Servo Cluster]

Enable Molors
ait For Yalid

H

Fithdtr

: Motor Index

= > | [lteration Timer m5] m

n Fod 55T {1

The diagram for the example requires three VIs. One to configure the operation,
one to fetch the data for a single motor and one to fetch the data for multiple
motors. Case statements are used to control the update of the display clusters.
The architecture of the PmacDPR Vs is a little different from most of those
already introduced. Whereas almost all other collections operate in a query
response mode that is always enabled these VIs require the enabling of specific
capabilities by a configuration VI. Hence, most PmacDPR VIs have an enable
input that prevents them from querying DPR until it is enabled.

204 o Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

On the top left the PmacDPRRealTimeConfig VI requires a Sample Period,
Enable Boolean, and an integer indicating how many motors to copy. The
enable input is not latched. When it is TRUE the Real Time data buffer is
enabled. When it is FALSE the operation is disabled.

e PmacDPRRealTimeConfig - DPR Real Time Fixed buffer is configured to
update motor information every Servo Period for all motor between 1 and
Enable Motor Numbers when Enable is TRUE. Operation is disabled when
Enable is FALSE. Output Enable is TRUE when operation is enabled. The
state is maintained by the VI. Operation of DPR Real Time buffers
overlaps with DPR Fixed Background operation in that the number of
motors enabled must be the same.

Device Humber 132 [0]) e

Enable Bool [T] -7 RiCrg| Cutput Enable Bool

Servo Period i32 [1) f

Enable Motor Humbers i32 1__.

PmacDPRRealTimeMotor fetches DPR data for a single motor. This has an
optional enable signal, in this case provided by the configuration VI. It also has
an optional Wait For Valid input and a Coord Specify Cluster that is used to
specify the Motor Number, and standard Coordinate System conversions for the
production of the PVE cluster.

e PmacDPRRealTimeMotor - Query PMAC DPR for the Real Time Fixed
buffer Motor and Servo data. When Enabled is TRUE (the Default state)
the data for Motor Number is fetched and used to build DPR Real Time
Motor Cluster and DPR Real Time Servo Cluster. Motor PVE Cluster
contains data in encoder counts or coordinate system units depending on the
state of Coord Specify Cluster. See PmacMotorPVE for details on how this
is done.

A successful query of PMAC's DPR depends on whether PMAC is
accessing the memory. If Wait For Valid is TRUE the VI places queries to
PMAC until a successful read at which time New Output is TRUE
indicating valid output data. If Wait For Valid is FALSE the query may or
may not succeed. If the query fails New Output is FALSE and the output
clusters contain the data fetched during the last read.

Device Mumber 132 [0] OFF M ew Output Bool
Enabled Bool [T) 220 Fithdtr :....E: LPR Real Time Servo Cluster
W ait For alid Baal [T] - “"Lm DPR Real Time Matar Clusker
Coord Specify Cluster b otor PYE Cluster

The fetching of multiple motor data by PmacDPRRealTimeMotors requires an
array of motors and produces an array of clusters. This VI differs from
PmacDPRRealTimeMotor in that it does not provide Coordinate System
conversions. This is not provided because it would require you to assemble an
array of Coord Specify Clusters. If you require the Coordinate System
conversion of Real Time data for multiple motors you can use the
PmacDPRRealTimePVE and apply the transformation to the individual cluster
elements in the output arrays.

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 205

e PmacDPRRealTimeMotors - Query PMAC DPR Real Time Fixed buffer
Motor and Servo data for the list of motors specified in Motor Number
Array. When Enabled is TRUE (the Default state) the data for the specified
motors is fetched and used to build an array of DPR Real Time Motor
Clusters and DPR Real Time Servo Clusters.

A successful query of PMAC's DPR depends on whether PMAC is
accessing the memory. If Wait For Valid is TRUE the VI places queries to
PMAC until a successful read at which time New Output is TRUE
indicating valid output data. If Wait For Valid is FALSE the query may or
may not succeed. If the query fails New Output is FALSE and the output
clusters contain the data fetched during the last read.

Device Humber 132 [0] TFR MNew Output Baal
Enabled Boal [T] - === PR Real Time Motor Cluster. .

‘wait For Walid Boal [T] --_|— %= DPR Real Time Servo Cluster. ..
Motor Mumber Arrav 132 [1-8._.

e PmacDPRRealTimePVE - Extract position, velocity, and following error
from DPR Real Time Motor Cluster assuming Motor Number operating in
Coord Number. Assemble the measurements into Motor PVE Cluster. If
Convert is TRUE convert the measurements to CS units. Otherwise leave
them in encoder counts.

Device Number 132 [0] — opR
Coord Specify Cluster == PVE Motor PYE Cluster
DFF Real Time Motor Cluster =8

PmacDPRRealTimeConfig CIN

We are not going to cover all PmacDPR CINs in the same detail we do here.
Once you understand the basics of these, your understanding of the other
collections will follow.

The very simple diagram for PmacDPRRealTimeConfig is shown below. You
will note that the Device Number, Enable Motor Numbers, and Servo Period are
all passed to the CIN. Even the Enable is passed. The CIN returns an Output
Enable signal that indicates whether the configuration and enable operation
succeeded. The only unique characteristic of this VI is the compare operation
between the Output Enable and Input Enable. When these values are not equal,
the TRUE case executes enabling or disabling the operation as defined by the
input Enable.

[l OutpLt Enable Bol |- "
Enable Bool [T
[Device Number i32 [I]]I i

[Enable Motor Numbers 132 (1-8) (1)] [332]
[Servo Period i32 [1]]

LI
e | oy |

] FEH
TF|TF
jEr] FEH
o]

~|CE]|[Dutput Enable Bool|

Many things can be done with a CIN. You should have a copy of the LabVIEW
CIN Reference Manual when working with these until you get familiar with how

206 o Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

LabVIEW passes parameters. This is especially true for clusters and arrays.
Things get more interesting when looking at the actual C code that implements
this CIN. This is shown below.

/* * CIN source file */

#include "extcode.h"
#include <pmacu.h>
#include <dprrealt.h>

/* stubs for advanced CIN functions */

UseDefaultCINInit
UseDefaultCINDispose
UseDefaultCINAbort
//UseDefaultCINLoad
UseDefaultCINUnload
UseDefaultCINSave

// —-- This a GLOBAL variable!
BOOLEAN Enabled = FALSE;

/==

CIN MgErr CINRun(int32 *Device Number i32 0 ,
LVBoolean *Enable Bool T ,
int32 *Enable Motor Numbers i32 1 8 1 ,
int32 *Servo Period i32 1);

CIN MgErr CINRun(int32 *Device Number i32 0 ,
LVBoolean *Enable Bool T ,
int32 *Enable Motor Numbers i32 1 8 1 ,
int32 *Servo Period 132 1) {

/* —-- When not currently enabled and Enable Bool T == LVTRUE
enable the Fixed buffer for the specified number of motors —-- */
if (!Enabled && *Enable Bool T == LVTRUE) ({

PmacDPRSetMotors (*Device Number i32 0 ,

*Enable Motor Numbers 132 1 8 1);
PmacDPRRealTime (*Device Number i32 0 ,

*Servo Period i32 1 ,

1)
Enabled = TRUE;
}
/* —-- When currently enabled and Enable Bool T == LVFALSE
disable ALL background operations. -- */
else if (Enabled && *Enable Bool T == LVFALSE) ({

PmacDPRRealTime (*Device Number i32 0 ,
*Servo Period i32 1 ,
0);

Enabled = FALSE;

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 207

*Enable Bool T = Enabled;
return nokErr;

}

// When first loaded make sure Enable flag is FALSE

CIN MgErr CINLoad (RsrcFile rf)

{
Enabled = FALSE; // Indicate DPR Fixed Real Time disabled

return noErr;

This particular CIN has two functions CINLoad and CINRun. LabVIEW
creates the function and data type declarations such as clusters and arrays
required by CINRun. The function CINRun is called when the VI containing
the CIN is executed. CINLoad is executed when the VI is first loaded.

In this sample, you will note that two functions from PComm32 are used.
PmacDPRRealTime enables and disables the DPR Real Time data buffer and
PmacDPRSetMotors sets the number of motors to copy. The logic of the if
statement uses the current enable state of the operation and the desired state
passed in by *Enable Bool T to turn the DPR Real Time data buffer on or off.
Notice the type of the Boolean and that most parameters are passed as pointers
to data.

PmacDPRRealTimeMotor CIN

The diagram for PmacDPRRealTimeMotor is shown below. You will note
that the Device Number, Motor Number, and a FALSE Boolean constant are
passed to the CIN. The CIN returns two clusters and a Boolean indicating
whether the fetch operation succeeded. The CIN is only executed when the
input Enabled is TRUE. If Wait For Valid is TRUE, the while loop will
execute the CIN until New Output is TRUE thereby waiting until the fetch from
DPR succeeds. Repeated requests for DPR data is done by the diagram rather
than the CIN code. If the C-code waited in a while loop that was never satisfied
you couldn't abort your application.

Enabled Bool [T

[TF
[Device Number 132 [0])| [o32
[Coord Specify Cluster|
= [

TF

[Code Interface Mode| Motor E Cluster|| 2

= " [Motor PYE Cluster|
[DPR Real Time Motor Cluster| Bi- DR

- | F'E

[DPB Real Time Servo Cluster| Mew Dot Bool

1 [g oo
£

208 e Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

This VI’s CIN code has a simple structure but places many calls to PComm32.
This is the reason we selected to implement this VI with a CIN rather than 20 or
30 Call Library Function VIs. To simplify the code we have removed several
lines from the actual source to demonstrate the basic ideas.

/* * CIN source file */

#include "extcode.h"
#include <pmacu.h>
#include <dprrealt.h>

// Types defined by LabVIEW when the stub was created

typedef struct {
int32 ServoTimer i32;
float64 Comm d Pos Dbl;
float64 Position Dbl;
float64 Velocity Dbl;
float64 Follow Error Dbl;
float64 Master Pos Dbl;
float64 Comp Pos Dbl;
int32 DAC 1i32;
int32 Move Time 1i32;
uIntl6 Motor Motion ulé6;
LVBoolean Motor Activated;
LVBoolean Open Loop;
LVBoolean Neg Limit Exceeded;
LVBoolean Pos Limit Exceeded;
} TD1;

typedef struct {
LVBoolean Home In Progress;
LVBoolean Block Request;
LVBoolean Desired Velocity Zero;
LVBoolean Data Block Error;
LVBoolean Dwell In Progress;
LVBoolean Integration Mode;
LVBoolean Running Move;
LVBoolean Open Loop;
LVBoolean Phased Motor;
LVBoolean Hand Wheel Enabled;
LVBoolean Neg Limit Exceeded;
LVBoolean Pos Limit Exceeded;
LVBoolean Motor Activated;

} TDZ2;

/==

CIN MgErr CINRun(int32 *Device Number i32 0 , int32
TD1 *DPR Real Time Motor Cluster,
TD2 *DPR Real Time Servo Cluster
LVBoolean *ValidData) {

*Motor Number i32 1 8 1 ,

int32 DevNum = *Device Number 132 0 ; // Shorter dereferenced name

int32 MNum = *Motor Number i32 1 8 1 - 1;
SERVOSTATUS ServoStatus;

// —-- Tell PMAC we're doing our thing

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

Chapter 11 - DPR - Dual Ported RAM e 209

PmacDPRSetHostBusyBit (DevNum, 1);
// —-- Check if PMAC is busy doing its thing
if (!PmacDPRGetPmacBusyBit (DevNum)) {

// —-- Fetch all of the available data

DPR Real Time Motor Cluster->ServoTimer i32 =
PmacDPRGetServoTimer (DevNum) ;

DPR Real Time Motor Cluster->Motor Activated =
PmacDPRMotorEnabled (DevNum, MNum) == 0 ? LVFALSE : LVTRUE;

// —-- ServoStatus - Fetch cluster and then individual items
ServoStatus = PmacDPRMotorServoStatus (DevNum, MNum) ;
DPR Real Time Servo Cluster->Home In Progress =

ServoStatus.home search == 0 ? LVFALSE : LVTRUE;

// B

*ValidData LVTRUE; // New data for caller
}

else {
*ValidData

LVFALSE; // Sorry - no new data
}

PmacDPRSetHostBusyBit (DevNum, 0);// PMAC can do its thing
return noErr;

If you check the PComm32 Reference Manual you will see that the checking
and setting of the DPR Busy Bit is required by PMAC. When the unfilled CIN
node stub was created LabVIEW generously declared the CINRun parameter
order, names, and data types. CINRun’s job is to fetch DPR data from PMAC
using the PComm32 functions and fill the LabVIEW data types passed by the
caller with the data. It is actually very simple. The parameters

DPR Real Time Servo Cluster and DPR Real Time Motor Cluster are
pointers to the data types provided by LabVIEW. Calls are placed to PComm32
and data of the proper type is assigned to the members of the data types. There
is one catch here. You will note that Booleans returned by PComm32 are
converted to LVTRUE and LVFALSE before being assigned to the members of
the clusters. This is precaution that avoids possible mismatches in data types.

PmacDPRRealTimeVectorExample

The following example demonstrates a very powerful PmacDPR technique that
takes multiple samples over time. This is done by placing repeated CIN that
build vectors for the desired items. This creates a simpler and faster VI diagram
because building the vector is done by the CIN and the data is returned by the
CIN only when a vector of a specified length is built.

The panel for the example is shown below. The panel demonstrates the fetching
of vectors for the purposes of driving a real-time chart. On the top left is a knob
for selecting a motor and specifying the number of samples to accumulate before
updating the chart. On the bottom the same operations are performed but motor

210 e Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

Motor Number

Enable [-]
Buff Length 5128

4 5
3 B
2 ’ 7
17 8
Enabled Motor Humbers

g 5 Sample Penod
@ Enabled

items such as Position, Velocity, and Following Error are converted to CS units

in the standard manner defined for PmacMotors. On the left

between the two

sets of controls is a small block of controls to enable DPR Real Time data

buffering.

Pmac DPR Real Time Vectors Example

= _

100.0-
&0.0-
0.0-
143.0-

DEI—

E‘I 44 EI—
0.0-
E‘I 44 EI—

D EI—
-143.0-
123727.0-
0.0-
-123727.0-

Serva Diff
Pozition
Welocity

Follow Error

ol g Al
% 2l @

\E)) Walid Output

Eunvert ToC5 4
3

[<] Enable

Eunn:l 5 ystem

Buff Length 3(—/}

Motor Number

n.o-
-B0.0-

EEIDEI EI-
2500.0-

n.a-
-2500.0-
-EEIDEI EI-

25 EI—
n.a-

82049
-25.0-
-50.0-

: _
-Fa.0- _
44289 45312

Puaszition

Welocity

Follows Error

& xR
s syl

\E)) W alid Output

i

Iteration Timer mS

To execute the example you should select how many motors you want PMAC to

copy to DPR using the knob labeled Enable Motor Numbers.

Sample Period

defines the servo-sampling interval. You can then click Enable to start the DPR
Real Time data buffer. As with PmacDPRRealTimeExamp, you can select a
motor to fetch and check the Enable box for the top or bottom chart.

The PmacDPRRealTimeVectors VI that actually processes the request for a
fetch does a little more book keeping and buffers the data in arrays prior to

passing it back to the caller. It returns a PmacDPRRealTimeVectors cluster
from which the desired items can be selected and plotted as shown here. This

cluster differs from PmacDPRRealTimeMotor and

PmacDPRRealTimeServo. Many of the items in the clusters would not
generally be of interest in a time-vector. If you desire these, you can modify

PmacDPRRealTimeVectors to support them.

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

Chapter 11 - DPR - Dual Ported RAM e 211

The demonstration on the bottom panel is different from that on top in that it has
a longer buffer (256 samples vs. 128 samples) and a CS transformation can be
applied.

e PmacDPRRealTimeVectors - Query PMAC DPR for the Real Time Fixed
buffer Motor and Servo data. When Enabled is TRUE (the Default state)
the data for Motor Number is fetched and used to build DPR Real Time
Motor Cluster and DPR Real Time Servo Cluster. Motor PVE Cluster
contains data in encoder counts or coordinate system units depending on the
state of Coord Specify Cluster. See PmacMotorPVE for details on how this
is done.

A successful query of PMAC's DPR depends on whether PMAC is
accessing the memory. If Wait For Valid is TRUE the VI places queries to
PMAC until a successful read at which time New Output is TRUE
indicating valid output data. If Wait For Valid is FALSE the query may or
may not succeed. If the query fails New Output is FALSE and the output
clusters contain the data fetched during the last read.

Device Number 132 (0] —npp oo Mew Dutput Boal

Enabled Boal [T] - .
Buffer Length (32 [128] _|_ Rt egeeeeeees PR Fleal Time Yectar Cluster

Motor Humber 132 1-81 (11

If you enable both portions of the example, you should insure that each requests
the data for a different motor. We will discuss the reasons for this in the next
section.

Servo Accurate Sampling

There is an important issue regarding the PmacDPR Vector VIs that must be
understood to avoid misconceptions. PMAC is a very fast real-time controller
that generates more data than could possibly be used in any given application.
In Chapter 5, we discussed the PmacGather collection of ICVs that utilized
PMAC’s data gathering capabilities. The gather facility gathers and buffers a
specified set of items at a specified servo rate using PMAC memory. The
gathered data can be transferred to the host later for decoding and use. The
PmacDPR Vector VI collects the data in host memory on an as-it-gets-there
basis. Samples will be missed when your application is busy with other
operations. This can be seen in the example’s Red chart strip of the Servo Timer
difference. This strip chart is the difference between successive Servo Timer
samples and reflects the jitter in the sampling. Most samples are taken every
five servo cycles in this example. When a complete buffer is accumulated,
passed back to the VI, and then used to update the chart the sampling interval
experiences a blip of approximately 75 mS. You will even notice 5 and 10 mS
blips in between the major buffer updates.

From a practical point of view, the Servo Timer vector definitively identifies the
time each sample was taken. This can be used to resample the other data
vectors, or handled however you choose. Until Delta Tau includes DPR data
gathering in PComm32 you should use regular data gathering if you absolutely
require servo accurate sampling. This form of gathering does not support strip
charting on a continuous basis.

As can be seen in this panel, the interval required to process both fetches is
between two and four mS without the update of the charts. When the vector(s)
have been accumulated the updating of the charts requires between 75 and 100
mS.

212 e Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

The diagram for the example is very similar to that of
PmacDPRRealTimeExamp. The configuration VI is the same. The Vector VI
PmacDPRRealTimeVectors is similar to PmacDPRRealTimeMotors in that
it takes an Enable input. It also has a Buffer Length input. Rather than a Coord
Specify Cluster, you simply provide a Motor Number. The decision to do this is
based on the view that whereas single Servo sample data for a motor might be
used to drive a PVE type of panel cluster this is not true for a Vector operation.
You should note that the update of the chart is wrapped in a case structure. DO
NOT use the cluster of arrays unless Valid Output is TRUE. The arrays should
have zero length but this may cause problems.

1] Unbundle the vectors of interest
2] Convert to cluster array

r.r.r:n:.‘r.r.r.u:.r.

Enable]
fiahd Outpu] [CTED Serva Timer (32
, .

B Pozitian Dbl
DPR ; Velacity Dl

Bu:ff Length Fallowing Errar Dbl
DaC 32

g Enabled Convert to
T52] : | |[Cood specific
i units

: i TF| & |
[Enabled Motor Nun?hers| f¥alid Dutput| |—J Fosron DB h

AR .AI DPH i lll‘lll | t Dl:ll

[Ensble] [TE]] "'F"""'E': Fu:ullnuii?gérmrtlbl)

Bulf Length I]
Coord System| [352]

M otor Numher|

Convert To C5
{Aszemble a Coord Specify Cluster|

(=2]|lteration TimermS] [Gtog [g ‘.{_}]

The vector fetch in the bottom half of the diagram unbundles the returned cluster
of vectors and performs a CS conversion on the elements of the selected vectors
using PmacDPRMotorVecToCoord. This is a vector version of the standard
PmacCoord VIs.

e PmacDPRMotorVecToCoord - Coord Specify Cluster specifies a motor
within a CS and an attempt to convert Input Array from encoder counts to
CS units. If the motor is not defined in the CS no conversion is applied. If
the motor is defined and Convert is TRUE Coord Defined is TRUE and
Output Array is scaled from encoder counts to CS units. Coord Definition
is a string specifying Output Value units as "Encoder" or the CS definition
of the motor.

Device Humber 132 [0] DFF Coord Defined Boal
Coord Specify Cluster == M = Qutput &rray Double
Input Array Double = " b Cinord Defivition String

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 213

PmacDPRRealTimeVectors CIN

The diagram for PmacDPRRealTimeVectors is shown below. You will note
that the Device Number, Motor Number, and Buffer Length are all passed to the
CIN when Enable is TRUE. The CIN fetches the DPR samples and builds the
vectors on every execution of the CIN. 99% of the time the CIN returns a
FALSE value for New Output because it still has more samples to accumulate.
When it has accumulated Buffer Length of samples it copies them to DPR Real
Time Vector Cluster and returns a TRUE for New Output.

o Pl True B i
Enabled Bool [T
. [Device Number i32 [u]|

W [0
LI
I3

DPR Real Time Yector Cluster]

[Motor Number i32 [1-8] (1)) [@E2]

=
ol o vl =

_J|DF'H Real Time Yectar Elusterl

I3

[Buffer Length i32 [128)] B i || Mew Output Bl

HF

/* * CIN source file */

The CIN code for this type of VI is a bit more complex than those presented
already. It requires a data buffer for storing the accumulated samples and it
requires some manipulation of the vectors in the returned cluster. As defined
the data buffers are global thereby making them accessible to any reentrant copy
of the VI. The topic of handling arrays in CINs is thoroughly covered in the
LabVIEW CIN Reference Manual. To simplify the code, several lines have been
removed from the source to demonstrate the basic ideas.

STANDARD INCLUDES and DEFINITIONS - See actual Source File

// —-- 132 vector

typedef struct {
int32 dimSize;
int32 Value[l];

} TD2;

typedef TD2 **TD2HdL;

// —-- float64 vector

typedef struct {
int32 dimSize;
floated Valuel[l];
} TD3;
typedef TD3 **TD3HdI1;

// —-- Cluster of arrays

typedef struct {

TD2Hd1 Servo Timer 1i32;
TD3Hd1 Position Dbl;
TD3Hd1l Velocity Dbl;
TD3Hd1 Commanded Pos Dbl;

214 e Chapter 11 - DPR - Dual Ported RAM

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

TD3Hd1 Following Error Dbl;
TD3Hd1 Master Position Dbl;
TD3Hd1 Comp Pos Dbl;
TD2Hd1 DAC i32;
TD2HdA1 Move Time 1i32;

} TD1;

// -- GLOBAL buffers for handling motor data

#define MOTOR MAX 8
#define BUFFER MAX 512

int32 BufferCount [MOTOR MAX];

int32 ServoTimer [MOTOR MAX] [BUFFER MAX];
int32 DAC[MOTOR_MAX}[BUFFER_MAX];

int32 Move Time[MOTOR MAX] [BUFFER MAX];

float64 Commanded Position[MOTOR MAX] [BUFFER MAX];
floato4 Position[MOTORﬁMAX}[BUFFERfMAX];

floato4 Velocity[MOTOR_MAX}[BUFFER_MAX];

float64 Following Error [MOTOR MAX] [BUFFER MAX];
float64 Master Position[MOTOR MAX] [BUFFER MAX];
float64 Compensation Position[MOTOR MAX] [BUFFER MAX];

/==

CIN MgErr CINRun(int32 *Device Number i32 0 ,
int32 *Motor Number i32 1 8 1 ,
int32 *Buffer Length i32 128 ,
TD1 *DPR Real Time Vector Cluster,

LVBoolean *ValidData) {

int32 DevNum = *Device Number i32 0 ;
int32 MNum = *Motor Number i32 1 8 1 - 1;

int BCount = BufferCount [MNum];
int Sizel, SizeD;

// —-- Tell PMAC we're doing our thing
PmacDPRSetHostBusyBit (DevNum, 1);
// —-- Check if PMAC is busy doing its thing

if (!PmacDPRGetPmacBusyBit (DevNum)) {

// —-- Get Servo timer
ServoTimer [MNum] [BCount] = PmacDPRGetServoTimer (DevNum) ;
/* —— If this is the first element of a new buffer - OR -

its not the first element of a buffer - AND -
the current servo timer value is not equal to last measurement

THEN - fetch the DPR data into the proper buffer elements. —-- */
if ((BCount == 0) || ((BCount > 0) &&
(ServoTimer [MNum] [BCount-1] != ServoTimer [MNum] [BCount]))) {

Commanded Position[MNum] [BCount] =
PmacDPRGetCommandedPos (DevNum, MNum, 1.0);

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 215

Position[MNum] [BCount] =
PmacDPRPosition (DevNum, MNum, 1.0);

BufferCount [MNum] ++;

}

// —-- Check for full buffer then copy to LabVIEW data structs
if (BufferCount [MNum] == *Buffer Length i32 128) {

BCount = BufferCount [MNum];

// —-- Resize the arrays in the structure

NumericArrayResize (iL, 1,
(UHandle *) &(DPR Real Time Vector Cluster-
>Servo Timer 1i32), BCount);

(*DPR_Real Time Vector Cluster->Servo Timer i32)->dimSize =
BCount;

/] ==

Sizel = BCount * sizeof (int32):;
SizeD = BCount * sizeof (float64d);

memcpy ((*DPR_Real Time Vector Cluster->Servo Timer i32)->Value,
ServoTimer [MNum], Sizel);

memcpy ((*DPR _Real Time Vector Cluster->Position Dbl)->Value,
Position[MNum], SizeD);

// —-- Indicate a valid buffer to caller and reset buffer counter

BufferCount [MNum] = 0;
*ValidData = LVTRUE;
}
else {
*ValidData = LVFALSE; // —-- No valid buffer

}

PmacDPRSetHostBusyBit (DevNum, 0); // PMAC can do its thing
return noErr;

}

CIN MgErr CINLoad (RsrcFile rf)
{
int i;
// —-- Reset the buffer counters
for (1 = 0; 1 < MOTOR MAX; i++) {
BufferCount[i] 0;

}

return noErr;

It’s a bit longer than PmacDPRRealTimeMotor but has much the same
structure. The PMAC Busy Bit is processed as before. Instead of assigning the

216 o Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

fetched data directly to the items of the cluster, it is stored in a set of global
arrays. The BufferCount array keeps track of the next array location to be
written when valid data is available for storage. There is a cryptic if clause
involving the ServoTimer data and BufferCount. The actual storage of fetched
data in the temporary arrays requires that the ServoTimer not be the same as that
of the last sample. Otherwise, the array would contain multiple samples of the
data.

After the temporary arrays are updated the CIN check the current buffer count
against the desired buffer size. If there are enough samples in the temporary
array, the data will be copied from the temporary arrays into the cluster of arrays
passed back to the VI. This requires you to resize each array in the cluster using
LabVIEW’s NumericArrayResize and then copy the data from the temporary
array into the data buffer that will be returned to the VI. Once you get the basics
of this requirement clusters and arrays are very easy to handle in your CIN.

There are some conditions associated with this approach. The temporary storage
arrays have a fixed size defined by MOTOR_MAX and BUFFER MAX. They
have a native 2 dimensional C organization. As compiled you cannot ask for a
Motor Number larger than MOTOR MAX or gather more samples than
BUFFER_MAX. The CIN does not check this condition. If you wish to resize
these because of memory limitations or you want larger buffers you need to
change these values, recompile the CIN, and reload it into the CIN in
PmacDPRRealTimeVectors.

It is possible to allocate these buffers dynamically using various CIN utilities.
However, this introduces more complexity to the process such as allocating the
buffers in the function CINLoad and deleting the buffers in CINUnLoad. For
this release of PMACPanel, this approach was not utilized.

A Note About Vector CINs

To avoid unnecessary complication we have not provided bullet proof
PmacDPR VIs with error diagnosis and such. You should be aware of the fact
PComm32 handles a lot of book keeping issues associated with DPR. As an
example, the order in which you configure and enable DPR operations is
important. If you enable a Variable Background buffer after you enable a Fixed
Background buffer then disable the Fixed Background buffer the Variable
Background buffer may move. Hence, those VIs accessing it will not return the
correct data.

A similar issue arises when using the Vector VIs. Once you have enabled a
particular Vector buffer for a specific number of samples DO NOT change the
length. If you do you should unload the VIs that use the Vector VIs and reload
them so that the buffer management can be reinitialized. Otherwise, it is highly
probable that buffer bookkeeping will become garbled and strange things will
happen.

A Note About Vector CIN Reentrancy

Many of the PmacDPR VIs that use CINs are reentrant. This is generally not a
problem unless you are not careful how you use them. If you have two Vector
VIs buffering servo data for the same motor you will get strange results.
Sometimes one of the VIs will update the BufferCount and sometimes the other
VI will update the count. Eventually, one of the two VIs completes the
acquisition and gets the vector data leaving the other one without an acquisition.
Generally this is a mistake in your application logic and can be remedied by
handling the distribution of the acquired vectors in your diagram. One should
use one Vector VI per motor thereby guaranteeing no need for mutexs to control
access to the temporary data buffers.

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 217

PmacDPRFixedBack

PMAC’s Fixed Background data buffer mechanism automatically copies 34
selected Motor Calculation Registers, Coordinate System Control Registers, and
Program Execution Registers from their native PMAC locations to DPR
locations when requested. Whereas the Fixed Real Time data buffer is motor
specific the Fixed Background data is Motor and CS specific, therefore, program
specific. PComm32 supplies a set of routines to read these from DPR and
convert them into legitimate Intel formats. This process hides the required
handshaking between PMAC and the host to avoid collisions when accessing
DPR. Update of a particular item is not synchronized with a specific servo
cycle.

To minimize your work as a developer and simplify the interface the
PmacDPRFixedBack collection of VIs has three VIs that collect the 28 most
useful items and bundle them into LabVIEW clusters. The gathering of Fixed
Background data is not controlled by the servo clock therefore the data items
might indeed be taken at slightly different servo times.

PmacDPRFixedBackExample

The following example demonstrates all three PmacDPRFixedBack VIs. One
to configure and enable the operation of Fixed Background data buffering, one
to fetch the data for a specific Motor/CS, and one to buffer a set of vectors.
PmacDPRFixedBack collects the data for a single motor operating in a CS.
PmacDPRFixedBackVectors buffers the data exactly as
PmacDPRRealTimeVectors does.

The panel for the example is shown below. The panel demonstrates the fetching
of Fixed Background data for a single Motor/CS on top and the fetching of
vectors for charting on the bottom. On the left are controls for selecting which
motor and CS to use for the fetch and enabling the fetch from DPR. The
example is different from PmacDPRRealTimeExample in that because the
Fixed Background data buffer handles motor, CS, and program information it
has an encapsulated motion program that can be configured and run using the
box of buttons in the middle.

218 e Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

Pmac DPR Fixed Background Example

4 5 1 5

3 B3 5
2 ’?2 ’?
17 5 17 8

Motor Humber Coord System

Coordinate Axis ><

) Valid Dutput
DPR Fixed Motor Cluster

DPR Fixed Coordinate Cluster

Target Fos Dbl
Biaz Pos Dbl
Yelocity Dbl

Comm'd Pos Dbl
Time Move 132
Time Accel i32
Prog Bemain i32
Prog Exec 132

Enable [] Motor Motion [Linear |
R TIET Prog Mode Motion Mode
4 5 Fault Ermmor ’ Amplifier
3 E Warning Fatal Fault Error
5 . Following Error| Following Error wWarning Fatal
% Mot St Home Following Error | Following Error
! 8 Mo Program Single
Enable Motor Humbers Running Step
@Enahled Program Continuous Continuous
Run Motion Mode Motion Req
13 | Iteration Timer mS _ Circle Radius Bun-Time
: Error Error
Chart
4 5 20000.0- Target Pos
3 & 10000.0- Welocity
8 J ¥ no- Cormm'd Pas
- 1000000.0-
1 8 EI.EI- Tirme ir Mo
I'-'Iuh::ir Nl&mher 10000000 ﬂﬂﬂﬂ _@l:
3l 5 | 2000000 sl
: ,,J ! 10.0 @ Vvalid Dutput
1 a 0.0-
Coord System 2000.0-)
Coord Axiz | = 1000.0- :
Buff Len 2[1z5 0.0- ¥
* 0 1023
Enable []

To execute the example select how many motors you want PMAC to copy to
DPR using the knob labeled Enable Motor Numbers and click the Enable button.
You can enable the operation of the display clusters by checking the box labeled
Enable on the top left. There are two clusters provided by
PmacDPRFixedBack. A DPR Fixed Motor Cluster for the specified motor and
a DPR Fixed Coordinate Cluster for the specified CS. If you click the Run
button, the data in the clusters will update.

e PmacDPRFixedBack - Once DPR Fixed Background buffer operation is
enabled this VI can be used to fetch the data for a specific Motor Number
and Coord Number. The input Enabled can be used to enable and disable
the actual fetch. The Default, un-wired, condition is TRUE. Coord Axis
Charis a string (X, Y, Z, A, B, C, U, V, W) indicating which axis in Coord
Number Comm'd Pos will represent. When New Output is TRUE DPR

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

Chapter 11 - DPR

- Dual Ported RAM e 219

Fixed Motor Cluster and DPR Fixed Coordinate Cluster contain the most
recent background data. When Enabled is FALSE the two output clusters
contain the last valid data even though New Output is FALSE.

Device Number 132 (0]
Enabled Bool [T] DFR Hew Output Bool
Maotor Humber 132 [1-8] 1] _I_—' Fived [== DFR Fixed Motor Cluster
Coord Mumber i32 [1-8] [1] mj""“ %= PR Fixed Coordinate Cluster
Coord Awiz Char

You will notice that there is a CS knob and a Coordinate Axis string. The
values in the Coordinate cluster are for all motors in the CS while the
Commanded Pos (Comm’d Pos) is for a specific Axis in the CS. In the example
the ‘X’ axis is specified. If you change the axis to Y’ and click Run again you
will notice that the Comm’d Pos does NOT update because the ‘Y’ axis is not
defined in CS 1.

The operation of the example is a little different when you enable the Vector
operation by checking its Enable box. Nothing happens until you run the
program. This is due to the organization of the example not the associated
Vector VI. When you enable the Vector portion of the example, and click Run
the chart will begin updating. You should disable the top portion so that it
doesn’t steal samples from the Vector operation. You will immediately notice
that the displayed data is more quantized because of the DPR data is updated in
the background. Fixed Background data is program related and therefore
computed at a slower rate and updated only when requested. The other thing
you should note is that the velocity for Fixed Background operation is in
encoder counts per minute whereas Real Time motor velocity is in scaled Ix09
counts per servo cycle.

The diagram for the example shows three VIs. One to configure the operation,
one to fetch the data for a single motor and one to fetch the vector data. In
addition, there is a small diagram to handle the encapsulated motion program. A
Case structure is used to control the update of the display clusters. The
PmacDPRFixedBackConfig and PmacDPRFixedBack VI operate similarly to
their PmacDPRRealTime versions in that the Enable terminals operate the
same way.

e PmacDPRFixedBackConfig - DPR Fixed Background buffer is configured
to update motor information for all motor between 1 and Enable Motor
Numbers when Enable is TRUE. Operation is disabled when Enable is
FALSE. Output Enable is TRUE when operation is enabled. The state is
maintained by the VI. Operation of DPR Fixed Background buffers
overlaps with DPR Real Time operation in that the number of motors
enabled must be the same.

Device Humber i32 [0) —npp
Enable Boal [T) - FxCfg Cutput Enable Bool
Enable Motor Numbers 132 [1... — !

You will note that the PmacDPRFixedBack vector VI is wrapped in a Case
structure that is only executed when the configuration VI is enabled, the
program is executing, and the proper Enable on the panel is checked. Hence,
when the program is started the gathering of the vectors can begin. The samples
are accumulated as fast as possible because the actual Vector VI is buried in a
While structure that executes until the entire vector is accumulated and then the
rest of the system gets a chance to run. This structure is not required but
demonstrates another way to organize a gather.

220 e Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

D

Enabled
Open nable:

Enable

==

e Motor Humbers DFR .. I — -

FxCfg [DPR Fixed Motor Cluster|
.

[Coord System| [52]]

Program Running POM1] %

)
Run POMTIEE] : =5
Tl Buff Len| alid Dutput

E xtract a few of the returned
PO Enable - vectors for display
JPanel [Motor Number 5 P T True B

*elocity Dbl
[Coord System| .

Coord System Commd Fos DU

&==1 Time Move i32

Show POM1 Panel =z Target Pos Dbl

} (332]| Iteration Timer m5] "E':’

e PmacDPRFixedBackVectors - Once DPR Fixed Background buffer
operation is enabled this VI can be used to fetch the data for a specific
Motor Number and Coord Number. The input Enabled can be used to
enable and disable the actual fetch. The Default, un-wired, condition is
TRUE. Coord Axis Char is a string (X, Y, Z, A, B, C, U, V, W) indicating
which axis in Coord Number Comm'd Pos will represent. When New
Output is TRUE DPR Fixed Motor Cluster and DPR Fixed Coordinate
Cluster contain the most recent background data. When Enabled is FALSE
the two output clusters contain the last valid data even though New Output
is FALSE.

Device HNumber 132 (0]
Enabled Boal [T) DPR MHew Output Bool

Buffer Length i32 [32] _l__IF:':II‘-'IIECm::h DPR Fixed bator Yectar Cluster

Motor Number i32 [1-8] [1] _l_ F"*%= PR Fixed Coordinate Yector,..

Coord Mumber i32 [1-8] [1]

Coord Axiz Char

We will not discuss the details of the CINs associated with each VI. They are
very similar to those presented for their cousins in the PmacDPRRealTime
collection. Specific details are contained in source code comments.

PmacDPRNumeric

PMAC’s architecture permits access to any unused DPR memory for whatever
purposes you desire using M-Variables. These may be scratch registers or, in
the case of DPR, registers through which you can pass data between the host and

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 221

PMAC. By avoiding the translation involved in standard ACSII communication
you can move data between the host and PMAC much more quickly and it does
not utilize precious P or Q Variables. The process requires no explicit
handshaking between PMAC and the host to avoid collisions when accessing
DPR.

The PmacDPRNumeric collection consists of a number of VIs that use Call
Library Function VIs to access DPR. The simplicity of the interface doesn’t
require CINs. We show how to access individual memory locations as doubles,
long (i32) and short (i16) integers, bit fields, and booleans. The examples use
encapsulated PLCs and motion programs to generate and process the data
transferred between the example PMACPanel applications and PMAC. If you
use DPR for this purpose, the examples are very useful.

DPR Addresses and Data Organization

The mapping of memory addresses between the host computer on one side and
PMAC’s address space on the other side is simple. To PMAC, DPRAM appears
as standard memory in the range $D000 - SDFFF, which can be thought of as
4K of long (48-bit) words or 8K of single (24-bit) X/Y words. This memory is
accessed using M-Variables mapped to this address range. Depending on the
DPR mechanisms used (Real Time, Fixed Background, Variable Background,
etc.); the lower portions of this memory space are automatically allocated.
Hence, you can use anything above the end of this space up to $DFFF for any
purpose. There is no easy way to automatically allocate and addresses for DPR
Numeric access until you have allocated all other automatic features. In the next
section on DPR Variable Background buffers, we will tell you how to determine
the end of this allocated space. For now assume that we will be working with
DPR memory between &DEO00 and &DFFF

To the host computer DPR appears as 8K 16-bit words of memory. Each 24 bit
PMAC X or Y word thus takes two 16-bit memory addresses. A PMAC long or
float (48-bits) thus takes four memory addresses. Fortunately, PComm32
handles the host computer memory mapping and PMAC handles the required bit
and byte manipulations to map Motorola 56K data formats to Intel data formats.

PmacDPRNumericExample

The following example demonstrates the use of DPR for communicating
numeric data between the host and PMAC. PMAC executes a PLC that
generates and responds to the register data accessed using M-Variables that are
mapped to DPR. The data is also accessed using the PQM collection of VIs to
demonstrate the differences in access speed, and bypass the mechanisms that
field access introduces.

Unlike the previous PmacDPR examples that required a configuration step prior
to accessing the data, PmacDPRNumeric requires no configuration other than
assignment of memory addresses.

The panel for the example is shown below. On the left is a box containing
controls/indicators that access M444 — M448 using PmacDPRNumeric VIs. On
the right are several controls that access the same data using the ASCII PQM
collection of VIs. Each of the M-Variables can be accessed using either method.
From the top down are M444 an integer, M445 a double, M446 a bit fieldina Y
address, M447a single bit in an X address, and M448, another bit in a Y address.
Access to the M-Variable data using DPR requires an address, bit number, or
field specifier. These are also shown on the left portion of the panel.

222 e Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

At the very bottom are a few controls to enable and monitor an encapsulated
PLC that generates M-Variable data that is simultaneously available to the host
and PMAC because it exists in DPR. If you check the box labeled Enable then
click the button labeled PLC Enable, the PLC program will begin executing.
The indicators for each of the M-Variables will immediately begin updating
with the data being generated in PMAC’s PLC. If you check the box labeled
PQM Disabled on the right these indicators will also begin updating with a
noticeable increase in the interval timer. This is because of the large overhead
required to process the required ASCII commands.

M-Variables and VI Address Specification

Before getting into the example deeper lets look at the PLC M-Variable
definitions shown below. These specify the addresses where PMAC will place
the data during its writes to M-Variables and fetch the data when it reads an M-
Variable. The address modifier DP defines a 32 bit long integer in DPR handled
as the lower 16 bits of both X and Y addresses. The F modifier defines a 32 bit

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM o 223

floating point value in DPR also handled as the lower 16 bits of both X and Y
addresses. PMAC firmware and PComm32 handle the required bit and byte
manipulations to convert the raw representation into Intel and Motorola formats.
M447 and M448 are single bits defined in simple 24-bit X/Y words.

M444->DP:S$DE0O
M445->F:$DEOL
M446->DP:S$DE02
M447->X:$DE03, 8,1
M448->Y:$DE04, 8,1

To access these variables with the PmacDPRNumeric collection of VIs a
truncated version of the memory address is required. A PMAC M-Variable
defined at $DE45 become 0xE45 to PMACPanel. PComm32 handles the
absolute memory mapping while the PmacDPRNumeric VIs compute the
address offset required by PComm32. For M-Variables defined as F and DP,
nothing more is required. For M-Variables defined as X, Y, or specific bit
fields, a cluster defining the base address, modifier, and field or bit number is
required. When looking at the panel only the address is required for M444 and
M445. M446, M447, and M448 require the cluster. These are covered in detail
later.

The diagram for the example has a section at the bottom for handling the PQM
controls and a case statement at the top for handling the encapsulated PLC. The
PLC encapsulation VI is wrapped inside the case statement so that it can be
disabled and the impact of its execution on timing can be seen. The PQM
approach can be used to validate the results of bit field manipulation that are
masked by the DPR mechanism.

The five VIs in the middle handle the transfer of data between the host and
PMAC using the same read/write architecture used for PmacIVar,
PmacMemory, etc. All that is required is the address for DWord or Double
memory or a DPR Numeric Spec cluster for field and bit access.

224 e Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

FLC ||PLC Enabled

¥-PLC Enable
Subvl e

R/w| [[TE]

M444 Address —|Dwidl[[52]] [Dutput Value i32]
Input ¥alue 132 _—

..... DPR
M445 Address
D —{Dbl
Dnen Input Value i32] oo | {220 [Dutput Value Dbl

DPR Numeric Spec M446] |[L225 1F={r .0 | | Dutput Value 132
SET/CLEAR (£52]

[DPR Numeric Spec M447|[E5]l={DEi |..[7]|[Boolean Bit
SET/CLEAR| [} :
DFR | I8 [Boolean Bit|

[DPR Mumeric Spec M448] DEitT

........

= | [Iteration Timer m5 | %} S
[i]

PmacDPRNumeric VIs are discussed in two groups. The first group covers
word, double word, and floating point DPR M-Variables. The second group
covers the bit and bit-field VIs. In a later example, we will demonstrate an
approach for grouping collections of DPR M-Variables into a cluster that can be
handled using a CIN.

e PmacDPRNumericDWord - This VI is used to Set or Get PMAC long M-
Variable's defined in DPR as M447->DP:$DE03. PMAC handles the
translation of PMAC's representation into Intel format when the DP
specification is used.

When Set/Get is FALSE - default state - Response Available is TRUE and
Output Value is the value in DPR located at Offset. When Set/Get is TRUE
Output Value = Input Value, Response Available is FALSE and the
specified DPR location is set.

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 225

The mapping of PMAC addresses to PC addresses is involved and requires
a bit of work to understand. In general, each 24-bit PMAC word requires
one 32-bit PC word. For PMAC longs specified as.

M447->DP:$DE03
this offset should be $E03.

Device Humber i32 [0] — DR | Resporze Available Bool [F)

CetGet Bool [F) - ;
e ui?th]_l_DW'd Output % alue 132

Input ¥ alue 32 —l_

e PmacDPRNumericDbl - This VI is used to Set or Get PMAC double M-
Variable's defined in DPR as M447->F:$DE03. PMAC handles the
translation of PMAC's representation into Intel format when the F
specification is used.

Device N;T%ert iéiz I[H:]] o] DPR | Frespanse Available Bool [F)
[=] =] (uln
Offzet - Db Output % alue Dkl
[nput Y alue Dbl

e PmacDPRNumericWord - This VI is used to Set or Get PMAC long M-
Variable's defined in DPR as M447->DP:$DE03 where the equivalent intel
representation is 16 bits. PMAC handles the translation of PMAC's
representation into Intel format when the DP specification is used.

Device NSum"-,hGEl EJZ I[[II:] DR [Resporse dvailable Boal (F)
st ul:“?g[et] I —{wiord Output Walue 16
Input Walue 16 —l_

The implementation of these VIs closely follows that used by PmacMemory
and PmacIVar. The VI will Get the specified value unless the Set\Get input is
TRUE in which case it does a set operation. The diagram shown below
demonstrates how this is done using a Call Library VI using the
PmacDPRSetDWord function in PComm32. The FALSE case (Get operation)
uses the PmacDPRGetDWord function. Note that the offset supplied by your
diagram is multiplied by 4 to get the actual memory offset of the M-Variable in
DPR as seen from the host.

Set\Get Bool [F

| TE]| [Response Available Bool [F)|

[132]| [Dutput Yalue 32

[Device Number 32 (0] [352]]
U32)

Input Yalue i32 IIEI i

226 o Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

DPR Bits and Bit Fields

The three VIs presented above only require the offset to determine the address
of the desired data. When accessing bits and bit fields the information contained
in the PmacDPRNumericSpec cluster is required.

DPR Numeric Spec Cluster A cluster of items required to
describe a DPR mapped PMAC M-Variable for bit and field
access.

Address i32 Hexadecimal integer specifying DPR
address offset. For example, PMAC Addresses such
as:

M445->F:$DEO01

M446->DP:$DE02

M447->X:$DE03,8,1

Become

EO1, E02, and EO3 respectively.M446->DP:$DE(2

X/Y String A single character string (X or Y)
defining the type of data. Not for L or DP.

Mask/Bit i32 A hexadecimal value used to define a
bit number for single bit operations or a multi digit
hexadecimal number defining a mask for multi-bit
operations.

The VI PmacDPRNumericSpec is embedded in the bit and bit field VIs
covered next, and converts the address specification into an actual DPR memory
offset. You can look at the actual diagram for this VI if you wish to understand
how this is done. Generally, although these are named as DWord operators the
individual bits are defined in a 24-bit X/Y word. The bit VIs are

e PmacDPRNumericDWordBitTest - This VI queries the DPR DWord bit
specified by DPR Numeric Spec Cluster and returns the value in Bit Value.

Device Humber 132 [0 ——DFR

DPR Mumeric Spec Cluster DBitT| Bit Value Bool

e PmacDPRNumericDWordBit - This VI operates on the DPR DWord bit
specified by DPR Numeric Spec Cluster.

When Set/Get is FALSE - the default state - the value of the bit is queried
and returned by Bit Value with Response Available TRUE. When Set/Get
is TRUE the specified bit is set to the value of Bit State - either TRUE or
FALSE.

Device Humber i32 [0) —npp |-

_ Reszponze Available Baoaol [F]
(] =11 S — it Valuz Baal

DPR Humeric Spec Cluster = ;
Bit State Bool -

Bit field operations are a little more complex. The following VI allows you to
specify an entire X/Y word and set or clear multiple bits in a single operation
depending on the control input.

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 227

e PmacDPRNumericDWordSetMask - This VI operates on the DPR
DWord bit field specified by DPR Numeric Spec Cluster.

When Set/Get is FALSE - the default state - the Mask specified by DPR
Numeric Spec Cluster is AND'd with the specified address to produce the
output Bit Field Value. Response Available is TRUE.

When Set/Get is TRUE the Mask is either OR'd or XOR'd with the contents
of the field at the specified address. If XOR/OR is FALSE the mask is
OR'd with the contents of the field at the specified address thereby setting
bits specified by the mask. If XOR/OR is TRUE the mask is XOR'd with
the contents of the field at the specified address thereby clearing the bits
specified in the mask.

Device Humber i32 (0] — Rezponze dvailable Boal [F]
SethGet Bool [F] - — Bit Field % alue 132
DFPR Humeric Spec Cluster = ™ e Biit Field Bool drray
XOR/AND Bool [F]

PmacDPRNumericClusterExample

This example extends the previous example by defining a cluster containing a
set of DPR numeric data. The purpose of doing this is to hide the addresses
inside the VI and get ready for another example that will use a CIN to access the
DPR numeric data.

The example operates the same as the previous one except that a large number
of controls for defining the M-Variables have been reduced to a single cluster as
shown in the panel.

228 e Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

The handling of the five Vs in the earlier example diagram is reduced to a
single VI.

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 229

PLC Enable - -|[CE|[PLC Enabled

A < ==z]| [Dutput DPR Humeric Cluste

[Input DPR Humeric Cluster]

...... 5[]

The diagram for the DPR Numeric Cluster VI is shown below. You can copy
this and modify it to support your own requirements. Note that the addresses are
specified by cluster constants. These can be created using the right mouse
button and selecting Create Constant.

230 e Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

[5etsGet Bool [F]]

Device Number 32 (0)] =21} —
[Device Mumber i32 [0]] -_|DF'H l| [Response Available Bool [F]|

[Eook40iwid

IEEI'II—:D|:,|

] -
= -
T 'II [Dutput DPR Humeric Cluster|
(Input DPR Mumeric Cluster|

E04 DFR | ..
v DBitT
B

PmacDPRNumericCINClusterExample

This example takes the previous example a little further and implements the
actual handling of DPR data using a CIN. This can be useful if you have many
data being transferred or have trouble maintaining dozens of
PmacDPRNumeric VIs or have special data handling requirements that benefit
from a CIN.

The diagram handling the 5 M-Variables in the example above are reduced to a
single CIN VI that will handle the reading and writing of the data with direct
PComm32 calls. To simplify development of these CINs, PmacDPR defines a
set of macros that make life very easy.

[Device Humber 32 (0)] [IZ2]]

Set\Get Bool [F]| |CTE [TF[TF]
[Set\iet Bool (F] E TE $E| TF | [Response Available Bool [F]|

|I]utput DPR Mumeric Cluster]|

L=

[Input DPR Humeric Cluster]

The code for the CIN is shown here. To use the macros include the file
PmacDPRNumericCINCluster.h located in PmacDPR.

#include "extcode.h"

// —-- PmacDPRNumeric Macros --
#include “PmacDPRNumericCINCluster.h"
#include <pmacu.h>

#include <dprrealt.h>

/* typedefs */

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 231

typedef struct {
int32 M444 i32;
float64 M445 Dbl;
int32 M446 Mask 132;
LVBoolean M446 XOR OR;
LVBoolean M447 Bit;
LVBoolean M448 Bit;

} TD1;

typedef struct {
int32 M444 i32;
float64 M445 Dbl;
int32 M446 Bit Field;
LVBoolean M447 Bit;
LVBoolean M448 Bit;

} TDZ2;

CIN MgErr CINRun(int32 *Device Number i32 0 , LVBoolean
*Set Get Bool F ,
LVBoolean *Response Available Bool F ,
TD1 *Input DPR Numeric Cluster,
TD2 *Output DPR Numeric Cluster) ({

int32 DevNum = *Device Number i32 0 ;
// —-- Using the macros

PmacDPRNumericDWord (*Set Get Bool F ,
0xEOQ0O,
Input DPR Numeric Cluster->M444 132,
Output DPR Numeric Cluster->M444 i32);

PmacDPRNumericDouble (*Set Get Bool F ,
O0xEO1,
Input DPR Numeric Cluster->M445 Dbl,
Output DPR Numeric Cluster->M445 Dbl);

PmacDPRNumericDWordMask (*Set Get Bool F ,
0xEO02,
Input DPR Numeric Cluster->M446 Mask i32,
Input DPR Numeric Cluster->M446 XOR OR,
Output DPR Numeric Cluster->M446 Bit Field);

PmacDPRNumericDWordBit (*Set Get Bool F ,
0xE03, 'X', 8,
Input DPR Numeric Cluster->M447 Bift,
Output DPR Numeric Cluster->M447 Bit);

PmacDPRNumericDWordBitTest (0xEO4, 'Y', 8,
Output DPR Numeric Cluster->M448 Bit);
PmacDPRNumericResponse (*Response Available Bool F ,
*Set Get Bool F);
/] ==

return nokErr;

232 e Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

As with all CIN nodes, LabVIEW writes the function declaration and defines the
parameter types. The macros require the device number be defined DevNum
whatever it is in your parameter list. The macros perform a conditional test for
read/write operations, address calculations, and PComm32 operations.

Generally the macros require an address and a pointer to the input and output
elements of the cluster. Bit operations require the bit number and Mask or Bit
Field operations require the mask, field mask, and XOR/OR operator. The
actual C-code for the example contains the macros and their actual C-
counterparts to illustrate the operations performed. If you’ve followed the
examples so far, the operation of the macros will be obvious.

PmacDPRNumericSlaveExample

This example uses PmacDPRNumeric and PmacDPRRealTime capabilities to
build an application that allows the user to move a 2-axis X-Y table with the
mouse. To accomplish this the motion program shown below uses DPR mapped
M501 and M502 to define the target position for motors 3 and 4. M500 is a
Boolean used to control a loop that breaks the target position into a set of
smaller moves. The program is encapsulated in a VI for easy use.

; USE CS &3

&3

#3->10x

#4->10y

; —— These are DPRAM mapped target coordinates
M501->F:$DE0G6 ; X coordinate

M502->F:$DE07 ; Y coordinate

; —— RUN BOOL

M500->Y:$DEOS, 8,1

’

open prog 61 clear

;hml. .4

il3 = 100

P209 = 1000 ; Vector distance per increment
P211 = 10000 ; Starting positions

M501 = 10000

P212 = 10000

M502 = 10000

tml0

; —- Move tracking
while (M500=1)

pP221 = M501 - p211 ; Cartesian distance to go
pP222 M502 - P212

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 233

P200 = sqgrt(P221 * P221 + P222 * P222)
if (P200 > P209) ; If longer than increment
P200 = P209 / P200 ; Fraction of distance
P211 = P211 + P221 * P200
P212 = P212 + P222 * P200
else
P211 = M501
P212 = M502
endif
x (P211) y(P212)
endwhile
close

The panel for the example is shown below. When the VI is running, and Enable
Track is checked, the values in DPR Numeric Slave Cluster - M500, M501, and
M502 - are continuously written to memory for use by the motion program.
Checking Enable Poll sets M500 TRUE so that clicking the Program Run button
enables the program loop. If you don’t check the box prior to starting the
motion program, the loop in the motion program will not execute. The Close
Loop button is provided to close the servo loops if they are not closed or the
initial rapid move to home results in a fatal following error.

#-Posz E420.60
¥-Pos | 1330325

Iteration Timer m5 16

20000.0-
17500.0-
15000.0-
12500.0-
10000.0-
¥a00.0-
5000.0-
2500.0-

0.0-1

00 50000

100000 150000 20000,

DPR Numeric Slave Example

[<] Enable Track
DPR Humeric Slave Cluster

0.00 M501 Dbl
0.00 M502 Dbl

[<] Enable Poll

X Worm Plot

o

Program

(Frogram] i

=1 - Poz - .

s 228 RIF
ITREEET TS

The indicators on the middle left of the panel display the actual X/Y motor
positions as retrieved by PmacDPRRealTimeMotors. The Yellow cursor in
the plot is the target position for the move and determines the values of M501
and M502. When you click the Yellow cursor and drag it to a new position the

target position for the move is set and executed by the motion program. The
Green worm will begin moving toward the Yellow cursor with the Red cursor
bringing up the rear.

The diagram for the example is similar to those already discussed. The motion
program wrapper VI on top handles the program execution. Below this is the VI
handling the DPR Numeric cluster containing M500-M502.

234 e Chapter 11 - DPR - Dual Ported RAM

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

| |
[Close Loop] | piys “[CTE]|[Program Running]
{cese "

Enable Track
[—
E—P Active Curgar

Curgor Position

R? Surface

[DPR Humeric Slave Cluster|

W True
R-Fns

M50 Dbl
ME02 Dkl

...... ‘:E':} el

The query for motor positions used to update the plot is provided by
PmacDPRRealTimeMotors. The configuration of this capability is done
outside the execution loop. When the motor positions are fetched, array is
indexed, the position are unbundled, converted to CS units (multiplied by 0.1),
used to update the panel indicators, and bundled into and X-Y point for the X-Y
Chart buffer. Remember that PmacDPRRealTimeMotors does not perform CS
conversions. We can also use the PmacDPRFixedBack VIs to obtain the motor
position in CS units.

Target position generation for the move is handled by retrieving the position of
Cursor 0 from a chart attribute node, and updating the values in the DPR
Numeric Slave Cluster. These values will be written by
PmacDPRNumericSlaveCluster as long as Enable Track is TRUE.

PmacDPRVarBack

PMAC’s Variable Background data buffer mechanism allows you to specify 128
memory addresses to copy from their native PMAC locations to DPR locations
when requested. Whereas the Fixed Background data buffer allows access to
predefined registers and locations, the Variable Background mechanism allows
to you to access anything. PComm32 supplies a set of routines to read the
copied data from DPR and convert them into legitimate Intel formats. This
process hides the required handshaking between PMAC and the host to avoid
collisions when accessing DPR. PComm32 supports a limited ability to write to
DPR from the host and copy this data to its native location.
PmacDPRVarBack provides hooks for this interface but does not currently
implement this capability.

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 235

To minimize your work as a developer and simplify the interface the
PmacDPRVarBack collection of VIs provides three VIs. One to configure one
or more Variable Background buffers, one to fetch its contents, and one to
buffer the data into vectors. To aid you in specifying items the configuration VI
uses the PmacGatherSpec cluster that forms the heart of the PmacAddress and
PmacGather collections.

The gathering of Variable Background data is not controlled by the servo clock
therefore the data items might be taken at slightly different servo times.

PMAC’s Variable Background mechanism is very sophisticated and an integral
part of PMAC. We will cover some specific issues you will encounter and must
be aware of when using it.

PmacDPRVarBackExample

The following example demonstrates the configuration of two Variable
Background data buffers. This allows you to build buffers that support your
specific requirements. For instance, you can declare one buffer for each motor
and coordinate system in your system. You can then declare another one for
each I/O device, and one to monitor a collection of miscellaneous items. You
can gather some of them as vectors, some for indicator clusters, and some for
background computations. The only limitation is that you don’t declare more
than 128 items between all of them.

The panel for the example, shown below, allows you to define two independent
buffers. The support clusters and such are collected into boxes in the bottom left
quadrant. Each buffer has a VBGB Status Cluster containing information about
the individual buffer, it location in DPR, and the entire pool of buffers. To the
right of this are an Input Array and an Output Array. The Output Array contains
the data for the specified buffer. The Input Array is provided but, as noted, not
supported. Below these items is a Write check box (not supported), an Enabled
check box, and to indicators. On the far right are a few collections of buttons to
control the associated PLC and motion program. You have encountered these
several times.

236 o Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

#1 - DAC Command ¥alue "

#1 - Actual ¥elocit
#1 - Present Actual Position

To run the example you need to specify a set of items to gather. This is done
using the PmacGatherSelect cluster on the top left. The operation of this is
detailed in the section on PmacTerminalGather. As shown in the example,
there are three items defined. To create a Variable Background buffer, select the
items you want in the buffer and check an Enabled box. In the example, the
upper set was created to handle these three items. The lower set was created to
handle P44 and P45 that are generated by the PLC program.

The VBGB Status Cluster maintains information about the individual buffers
and the entire pool. Refer the VI Reference for details of each item. Here we
will discuss what these clusters show. The top status cluster item VBGDB
indicates that it is buffer 2 whereas the bottom cluster indicates it is buffer 1.
Buffers are assigned in the order created. Num Entries indicates that the top
buffer has three items (as defined by the Gather Spec) and the bottom buffer has
2 items. When the first buffer was created the Total number of entries was 2.
After the second buffer is created, the Total number of entries is 5. Start
Address indicates the start of the buffer in DPR. This is the last location

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 237

Dy
Open

Im

reserved by DPR. The Start Address of the first buffer created indicates the first
address you can use for DPR Numeric access.

Notes on the use of PmacDPRVarBack

Variable Background buffers should be created AFTER all other DPR
mechanisms have been enabled. PComm32 might and sometimes does moves
things around when you start reconfiguring DPR. If you create more than one
buffer DO NOT delete a previously created buffer. Again, PComm32 will shift
things around and it is very likely that your remaining buffers will contain
garbage. If you do delete a buffer you should delete and recreate the remaining
buffers. You are encouraged to try this using the example. If you un-check the
Enabled box that buffer is deleted. Chances are VERY HIGH that the remaining
buffer will give you garbage data. Un-check the remaining buffers and then re-
check them. Things will now behave as expected.

The diagram for this example demonstrates how easy it is to create and access a
buffer. At the top left is the VI to handle the Gather Select Cluster. Check the
section on PmacTerminalGather if you have questions. On the top right are the
PLC and motion program handlers.

1
PLC Enable| | FLC | [PLC Enabled
f5ubll =

[Program Bunning POM1]

Subi

" Show POMI

FLM E
Fanel

[Show POM1 Panel|

|

Enahle | W alid Output
JDPR
Disable All 1v-chg DPR [M True pf

. -1 War [061] | [Dutput Array|
ather Spec Elusterl [DEL]
WBGE Status Cluster| [Input Array|

Group 2

[Tr]l[Enabled

|
DFPR I DPR
V":fgmg RIW ar

i
|| Giather Spec Cluster || [(ZE]input Aray][Toe0
WBGE Status Cluster]|

132 ||Iteratiun Timer m5|

238 e Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

There are two almost identical configurations to handle the two buffers. Each
consists of a configuration VI PmacDPRVarBackConfig and
PmacDPRVarBack to actually fetch the data. The configuration VI requires a
Gather Spec Cluster and produces a VBGB Specification Cluster for the handler.
The VBGB Status Cluster is not required by other VIs but serves a useful
diagnostic purpose.

e PmacDPRVarBackConfig - This VI creates a set of Address Items
specified by Gather Spec Cluster using the DPR Variable Background when
Enable is TRUE. The VI produces a VBGB Status Cluster with relevant
information about this buffer and a VBGB Specification Cluster containing
information required to actually fetch the data using PmacDPRVarBack and
PmacDPRVarBackVectors.

Operation is disabled when Enable is FALSE. Output Enable is TRUE
when operation is enabled. The state is maintained by the VI. This VI can
be used multiple times to create sets of VBGB Address Items. See the
documentation for limitations on how many sets can be created and their
size.

Device Humber i32 (0] — DFR Output Enable Bool
Enable Boal [T] - ... W-Chg t='BGE Specification Cluster
Diable &1 Bool [F mr‘ e VB GE Status Cluster

Gather Spec Cluster

Variable Background buffers allow you to gather the contents of any memory
location, X, Y, DP, etc. To handle all data types the data fetched from DPR is
all treated as a double. This allows PmacDPRVarBack to treat the fetched
items as an array rather than have VIs to handle each type or implement a
complex typing mechanism. If you need to access bits from a particular item,
index the array, convert it to an integer, and use it as you wish. The Input Array
and R/W inputs are not supported yet.

e PmacDPRVarBack - DPR Variable Background buffer operation is
enabled this VI can be used to fetch the data specified during the
configuration. The input Enabled can be used to enable and disable the
actual fetch. The Default, un-wired, condition is TRUE. When New
Output is TRUE Output Value Array contains the most recent background
data. When Enabled is FALSE Output Value Array contains the last valid
data even though New Output is FALSE.

The Write/Read and Input Value Array inputs are not currently functional.
Future releases may implement this capability.

Device Humber 132 [0]

Enabled Bool [T] ~T mpm |- Mew Output Eool
VBGB Specification Cluster “5_ B:;H DE:\I tL:Iplu ,.r_-.'DD
wite{T)/Read]F] Boal HipUL Y alie Ariay

[hput Y alue Array

Note on Supporting PmacDPRVarBack CINs

The CINs to support this collection of VIs are significantly more involved than
the previous collections. We will not cover these in the manual. If you
understand those presented earlier and understand the information covered here,
you can examine the C-code for yourself. The comments provide enough
information if you desire to tackle changes yourself.

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 11 - DPR - Dual Ported RAM e 239

PmacDPRVarBackVectorExample

This example replaces PmacDPRVarBack with PmacDPRVarBackVectors.
It use is almost identical to PmacDPRVarBackExample. The only difference
is that the bottom buffer has a PmacGatherSpec cluster defined as constant
containing entries for P44 and P45. Therefore, you do not have to specify the
Address Items. Simply check its Enabled box. The diagram is not presented for
the same reasons.

Prezent Actual Position

Motor/C5 1 w|

#1 - Actual Velocity - 173 | Iteration Timer m5
¥ i1 - DAC Command Value =+ s
m #1 - Present Actual Position Background St“El

PVariable 3| 0 |

Q-Variable 5| 0 |

>] PLC Enabled
[] [_]PLC Enable

Cuszstom Gather Specification

:
|I]_I]l]l]l] |.1 Shit |‘ Aemove Servo Cycles _ 4

4 Program

[[_Show |

| 1 | VBGDB u32 10.0- Velocity

YEGE | Last Buffer Enum n.o- DAL

3 Hum entries i32 'IEI D_ Posit

ositicn

4] Total entries 2EIEIEI EI—
3564 | Add OFfzet u32 _@l_
DDA3 | Start Addrezs ud?2 Jgggg g: ll"'_+ _Jl

Enabled [<] (@) Enabled 0.0- _
00 EI— Yalid Output
Buffer Length 332 J
P44
[2 | VBGDB u32 e .

YBGE | Last Buffer Enum -200.0-

2 Num entries i32 4EIEI EI—

4] Total entries
3570 | Data Dffset u32 1317 0-
362 | Add OFffzet ud2 500.0- _@ I_
DDAZ | Start Address u32 00~ TEA _‘Jl

St R L 509.0- Valid Output @)
Buffer Length ;32 1376 1503

240 e Chapter 11 - DPR - Dual Ported RAM PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

Chapter 12 - Interrupts

Basics
This Chapter documents an emerging interface to PMAC’s interrupt system. The
information presented here is preliminary and not supported yet.
PmacinterruptExamp

To run this example check the Enable box. Interrupt Mask defines which sources are
enabled. The default value of zero enables all sources. The In Position flag
generates an interrupt and is a good test. When an interrupt occurs the Interrupt
Occurred LED is on and the count and source update.

PMAC Interrupts Interrupt Status

Configuration I Enabled

Enable [] J Interrupt Occured

n Interrupt Count :
Interrupt I'-'Iask.ilI] Q
0 | Interrupt Source y

ALWAYS disable interrupts when you application halts.

e PmaclnterruptConfig - When Enable is TRUE enable interrupts. Indicate the
availability of a handler by the output Enabled. When FALSE disable
interrupts. ALWAYS disable interrupts when you application is not executing.

Interrupt Occurred is TRUE whenever this VI checks the handler and
determines an interrupt has occurred. Interrupt Count indicates the number of
interrupts since the last service. Interrupt Source specifies which source. See
PMAC User Manuals for details.

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Chapter 12 - Interrupts ¢ 241

Device HNumber 132 [0] Intrpt |77 - Enabled Baal
Enable Bool -~ Hand = Intermupt Occured
Intermupt Mask — —l Interrupt Count

[nterupt Source

]

242 e Chapter 12 - Interrupts PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

Glossary of Terms

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Glossary of Terms o 243

Index

Special options for serial - 43
Digital Inputs and Outputs

Input Source/Sink Control - 185

Option for Sourcing Outputs - 185

Software Access - 185

Standard Sinking Outputs - 185
Display

Resolution - 10
DPR

Data Buffers - 28

Requirements - 9

VIs to access - 32

Position Capture Control "Encoder I-Variable 2" for Encoder
n (1902; 1907 - 153

Flag Select Control "Encoder I-Variable 3" for Encoder n
(1903; 1908 - 153

E

Encoder/Flag I-variables - 153
Encoders - 30
Error
Automatic handling - 46
Dialog box - 46

A

Addressing
Coordinate Systems - 52
Motors - 52
Applications
Sample - 32
Axis Definition Statements - 152, 153

B

Buffer length - 44
limitations - 47

C

Clusters
Limits and types - 59
Code Interface Nodes - 32
Communication Buffers
Maximum length - 20
Compare Control Bits - 173
Connecting PMAC
Digital Inputs and Outputs - 184
CONTROL-F Command - 14, 16, 26, 43, 44, 52, 55, 72

H

Help facilities
LabVIEW On-line help - 16
Home Command - 153
Home Flag - 153
Home Speed for Motor x (Ix23) - 153
Homing - 30
Homing from a PLC Program - 155
Homing Into a Limit Switch - 155
Homing Search Move - 152, 153
Action on Trigger - 153
Home Command - 153
Homing from a PLC Program - 155
Homing Into a Limit Switch - 155
Storing the Home Position - 154
Zero-Move Homing - 155
Homing Speed - 153

D

Data gathering - 32
Development Tools - 31
Device configuration

1

Input/Output
Compare-Equals Outputs - 183
Installation
Configuring PMACPanel - 17
Driver Configuration - 11
LabVIEW Configuration - 15
Required Steps - 10
I-Variable
Numeric types - 58
Organization - 57
I-Variables - 153
Communication configuration - 45
Required Communication Configuration - 19
Specific
Ix03 - 152
Ix05 - 68, 81

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

Index e 245

1x07 - 163
1x08 - 133, 152, 163
1x09 - 69, 82, 134, 135, 220
1x10 - 154
Ix13 - 154
Ix14 - 154
1x19 - 153
1x20 - 153
Ix21 - 153
1x22 - 193
1x23 - 153
1x25- 59, 79, 153, 155, 157, 159, 162
Ix26 - 153, 155, 164, 167
Ix30 - 163
1x60 - 134, 135
VIs to access - 29

VIs to support - 52
Numeric Data Types - 27, 29

P

P (Report Motor Position) - 14
PComm32 - 10, 32
PMACPanel Interfaces - See PMACPanel Organization
Pewin32 - 23
PLC
VIs to access - 31
Plotting
VIs to access - 32
PmacAcc - 30
PmacAccMachinelnput8 - 98, 99
PmacAccMachineOutput8 - 98, 99, 146

J

Jogging and Homing Acceleration Time for Motor x (Ix20) -

153

Jogging and Homing S-Curve Time for Motor x (Ix21) - 153

Jogging Moves - 153
JOPTO Port - 184

PmacAccMachinelnput8 - 98
PmacAddress - 32, 127, 131, 236
PmacAddressAdd - 131
PmacAddressDelete - 132
PmacAddressMotors - 131, 132, 133, 135
PmacButt
PmacButtGetBool - 53
PmacButtGetDbl - 53
PmacButtGetLong - 53
PmacButtGetShort - 53

L

LabVIEW
Clusters - 37
Dataflow - 34
General Techniques - 34
Installing PMACPanel View - 15
Persistent VI State - 36
Reentrancy - 35
Sequences - 34, 35
Supported versions - 24
Switch action - 36

PmacButtGetStr - 50, 51, 53
PmacButtGetULong - 53
PmacButtGetUShort - 53
PmacButtSendStr - 50, 51, 53, 72
PmacButton - 50, 53
PmacButtons - 29
PmacCIN - 32
PmacCINBase - 197
PmacComm - 29, 44
PmacCommAppend - 48
PmacCommBuffer - 48
PmacCommGetBuffer - 20, 47
PmacCommGetStr - 19, 20, 44, 47
PmacCommGlobal - 48

M

Manual Layout - 1

Maximum Permitted Motor Jog Acceleration for Motor x
(Ix19) - 153

Memory
VIs to access - 29

Microsoft
Visual C++ 5.0 - 9

Multi-threading - 43

M-Variable Definitions - 185

M-Variables - 173, 185

PmacCommRespStr - 19, 20, 44, 46, 47, 51, 75, 108
PmacCommSendStr - 19, 44, 75
PmacCommGetStr - 46
PmacCoord - 30
PmacCoordColor - 70, 94
PmacCoordCurrent - 112
PmacCoordDef - 84, 91
PmacCoordIVar - 94
PmacCoordMotor2Coord - 69
PmacCoordMotorDef - 91
PmacCoordMotorsToCoord - 83, 92
PmacCoordMotorToCoord - 83,92, 94, 168
PmacCoordMotorToEncoder - 92
PmacCoordScale - 91
PmacCoordSpecify - 93

N

Naming Conventions - 39
NI-DAQ - 32
Numeric conversions

PmacCoordStat - 55, 95
PmacCoordStatProg - 95

PmacDAQ - 32
PmacDAQMove - 188, 189, 192, 193
PmacDAQSync - 191, 192
PmacDAQSyncServo - 191, 193

246 e Index

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

PmacDAQTrigger - 191, 192
PmacPosCompGen - 190

PmacDevice - 29

PmacDevClose - 42
PmacDevOpen - 17, 18, 20, 21, 26, 42, 43, 112, 201

PmacDocument - 33
PmacDPR

PmacDPR - 32

PmacDPRVarBack - 198
PmacDPRFixedBack - 201, 218, 219, 220, 235
PmacDPRFixedBackConfig - 220
PmacDPRFixedBackVectors - 198, 218, 221
PmacDPRMotorVecToCoord - 213
PmacDPRNumericCINCluster - 231
PmacDPRNumericDbl - 226
PmacDPRNumericDWord - 225
PmacDPRNumericDWordBit - 227
PmacDPRNumericDWordBitTest - 227
PmacDPRNumericDWordSetMask - 228
PmacDPRNumericSlaveCluster - 235
PmacDPRNumericSpec - 227
PmacDPRNumericWord - 226
PmacDPRRealTimeConfig - 205, 206
PmacDPRRealTimeExamp - 211, 213
PmacDPRRealTimeMotor - 202, 205, 208, 211, 216
PmacDPRRealTimeMotors - 202, 205, 206, 213, 234, 235
PmacDPRRealTimePVE - 205, 206
PmacDPRRealTimeServo - 211
PmacDPRRealTimeVectors - 211, 212, 213, 214, 217, 218
PmacDPRVarBack - 201, 235, 236, 238, 239, 240
PmacDPRVarBackConfig - 239
PmacDPRVarBackVectors - 240

PmacEncode

PmacPosCompSetup - 175

PmacEncoder - 30

PmacEncoderCaptureExamp - 170
PmacEncoderCompare - 179
PmacEncoderCompareConfig - 177
PmacEncoderCompareExamp - 176
PmacEncoderIVarCapture - 157, 158, 159, 171
PmacEncoderOffset - 155, 167, 168
PmacEncoderPositionExamp - 166
PmacEncoderRegADC - 181
PmacEncoderRegCapture - 181
PmacEncoderRegDAC - 181
PmacEncoderRegisters - 181
PmacEncoderRegServo - 169, 181
PmacEncoderRegStat - 181
PmacEncoderRegTime - 181
PmacEncoderStatFlags - 160
PmacEncoderToCoord - 168, 169
PmacEncoderToEncoder - 168
PmacEncoderTrigger - 171, 178, 179, 180
PmacPosCompGen - 175, 176, 178, 179, 180
PmacPosCompSetup - 175, 176, 178, 179

PmacFile - 31

PmacFileDatalog - 144, 146
PmacFileDatalogAppend - 145
PmacFileDatalogCreate - 145
PmacFileDatalogRead - 145

PmacGather - 32

PmacGatherCollect - 130

PmacGatherSelect - 127, 129, 132, 237
PmacGatherSetup - 129
PmacGatherSpec - 236, 240
PmacGatherSpreadsheet - 130
PmacGatherStart - 130
PmacGatherStep - 130
PmacGatherStop - 130
PmacGlobal - 30
PmacGlobalBufferSize - 86, 89, 110
PmacGlobalControl - 86, 87, 88
PmacGloballVarComm - 86
PmacGloballVarMove - 87
PmacGlobalStat - 55
PmacGlobalStatBuffer - 87
PmacGlobalStatGather - 87
PmacGlobalStatWord1 - 89
PmacGlobalStatWord2 - 90
PmacHome - 30
PmacHomeComplete - 156, 162
PmacHomeExamp - 155
PmacHomelVar - 155, 157, 171
PmacHomePLCl1 - 164, 165
PmacHomeState - 162
Pmaclnc - 32
PmaclInterrupt
PmaclInterruptConfig - 241
PmacInterruptExamp - 241
PmaclVar - 29
PmaclVar
PmaclVarGetLong - 59
PmaclIVarBool - 59
PmaclIVarDbl - 59
PmaclIVarGetBool - 59
PmaclIVarGetDbl - 59
PmaclIVarGetLong - 58
PmaclIVarGetShort - 59
PmaclIVarLong - 58
PmaclIVarSetBool - 59
PmacIVarSetDbl - 59
PmaclVarSetLong - 58
PmaclIVarSetShort - 59
PmacIVarShort - 59
PmacMemory - 29
PmacMemoryGet - 62, 98
PmacMemoryGetBit - 62
PmacMemoryGetBits - 62
PmacMemoryRead - 62
PmacMemoryReadDbl - 63
PmacMemorySet - 63, 98, 99
PmacMemorySetBit - 63
PmacMemorySetBits - 63
PmacMemoryWrite - 62
PmacMemoryWriteDbl - 63, 64
PmacMotor - 30, 68, 73, 81, 89, 151
PmacMotorCurrent - 112
PmacMotorError - 69
PmacMotorIVarFlag - 79, 80, 157, 159
PmacMotorIVarMove - 78, 155
PmacMotorIVarPID - 78, 80
PmacMotorlVarSafety - 78, 79, 80, 155
PmacMotorJog - 74
PmacMotorJogControl - 38, 39, 71, 72, 73, 84, 114

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual Index e 247

PmacMotorLimitControl - 73, 160
PmacMotorPosition - 68
PmacMotorPVE - 70, 72, 73, 74, 82, 203
PmacMotorStat - 55, 76
PmacMotorStatJog - 37, 73, 76
PmacMotorStatLimit - 73, 160
PmacMotorVelocity - 69
PmacMotors - 30
PmacMotorPosition - 69
PmacMotorsCloseLoop - 128
PmacMotorsErrors - 82
PmacMotorsPlotSelect - 84, 85
PmacMotorsPositions - 81, 82, 84
PmacMotorsPVE - 82, 83, 84, 93
PmacMotorsVelocities - 82
PmacMotorsPlotSelect - 126
PMACPanel
Documentation - 33
Panel and VI pairs - 38
PMACPanel Organization - 28
Communication - 29
Device Management - 26, 29
Indicators, Controls, and VIs (ICVs) - 29
Program Compilation and Download - 27
Query/Response - 26, 29
PmacPLC - 31
PmacPLCExec - 113
PmacPLCSelect - 110, 112
PmacPlot - 32
PmacPlotXY ChartBuffer - 126
PmacPQM - 31
PmacPQMArray - 139, 144
PmacPQMBool - 143
PmacPQMDblI - 143
PmacPQMExamp - 139, 146, 147, 148
PmacPQMLong - 142, 143
PmacPQMLong2Var - 144
PmacPQMShort - 143
PmacPQMVar2Long - 144
PmacPQMVariant - 143, 144, 146, 148
PmacProg
PmacProgDebug - 120
PmacProgEdit - 109, 112, 113
PmacProgExec - 120
PmacProgParse - 116
PmacProgRun - 139
PmacProgSelect - 110, 112
PmacProgram - 31
PmacProgSubVI - 136
PmacResp - 52
PmacRespGetBool - 53
PmacRespGetDbl - 52
PmacRespGetLong - 53, 59
PmacRespGetShort - 53
PmacRespGetULong - 53
PmacRespGetUShort - 53
PmacResponse - 29, 53, 59
PmacSetup - 33
PmacSubVI - 31
PmacPLCSubVI - 165

PmacProgSubVI - 118, 126, 136, 137, 144, 146, 148, 149

PmacProgSubVICreate - 117

PmacTerminal

PmacTerminal - 26, 31, 44, 102, 107, 109, 110, 114, 115,

167,170, 176, 177
PmacTerminalCoordIVars - 102

PmacTerminalEdit - 102, 115, 118, 126, 136, 137, 139,

144, 146, 147, 165, 176
PmacTerminalExecute - 102, 118, 137

PmacTerminalGather - 102, 122, 126, 237, 238

PmacTerminalGlobal - 103
PmacTerminalJog - 102, 103, 105, 114

PmacTerminalMenu - 104, 105, 106, 112, 122

PmacTerminalMotorIVars - 102

PmacTerminalMotors - 102, 122, 124, 125, 126

PmacTerminalMotorsX-Y - 102
PmacTest - 32
PmacTestCircle - 147
PmacTestCircles - 147
PmacTestExamp - 147, 149
PmacTestPQMI1 - 147
PmacTestPQM1Panel - 148, 150
PmacTestPQM2 - 147
PmacTutor
PmacTutor
10- 125
6-78
7-83,114
PmacTutorl - 42
PmacTutor10 - 81, 122
PmacTutorl1 - 86
PmacTutorl2 - 91
PmacTutorl3 - 94
PmacTutor14 - 97
PmacTutorl5 - 99
PmacTutor2 - 44
PmacTutor2a - 47
PmacTutor3 - 47, 50, 52, 53
PmacTutor4 - 52, 55, 59
PmacTutor5 - 55, 76
PmacTutor6 - 57
PmacTutor6b - 61
PmacTutor7 - 68
PmacTutor8 - 73
PmacTutor9 - 78
PmacTutorl - 41
PmacTutor2 - 41
PmacTutorApp - 41
PmacTutorial - 32
PmacTutorSub - 41
PmacUtility - 33
Position
Querying - 52
Position Capture - 30
Position Extension in Software - 151

Position Loop Feedback Address for Motor x (Ix03) - 152

Position Processing
Software Position Extension - 151
Position Scale Factor for Motor x (Ix08) - 152
Position-Capture Function - 153, 155, 164, 169
Setting the Trigger Condition - 153
Using for Homing - 153
Using in User Program - 169
Position-Compare Function

248 e Index

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

Compare Control Bits - 173
Directly Triggering External Action - 175
Preloading the Compare Position - 173
Required M-Variables - 173
Position-Compare Outputs
PMAC-Lite - 183
PMAC-PC - 183
PMAC-STD - 184
PMAC-VME - 183
PQM Variables
VIs to access - 31
Preloading the Compare Position - 173
Programs
VIs to access - 31
PTalk - 23
PTalk Active X - 24

Querying - 53
VI Compilation - 16

VA

Homing - 155
Zero-Move Homing - 155

S

Safety
Electrical - 4
Motor Movement - 4
Program download - 3
Serial communication - 43
Servo Interrupt Time Variable (110) - 14
Sinking Inputs - 185
Sinking Outputs - 185
Sourcing Inputs - 185
Sourcing Outputs - 185
Status
Querying - 55
Storing the Home Position - 154
Supported PMAC Models - 7
Synchronizing To External Events
Position-Capture - 153
Position-Compare - 172
Synchronous M-Variable Assignment - 185

T

Technical Support - 5
Terminal Conventions - 40
Triggering - 30
Triggering External Action - 175
Trouble Shooting
Driver Communication - 20
Tutorials - 32, 41
Accessing PMAC - 42
Communicaiton logging - 47
[-Variable access - 57
Numeric responses - 52
Query/Response - 44
Sending Commands - 50, 52
Status - 55

V

Velocity

PMAC Motion Control for LabVIEW 5.0 PMACPanel User Manual

Index e 249

	Chapter 1 - Overview
	Introduction
	Manual Layout
	Organization
	Conventions Used in This Manual

	Use Caution When Running the Examples
	Safety Summary
	Motion Commands
	Keep Away From Live Circuits
	Live Circuit Contact Procedures
	Electrostatic Sensitive Devices
	HW Interfaces
	Magnetic Media

	Technical Support
	By Telephone
	By FAX and E-Mail
	World Wide Web (WWW)
	Bulletin Board Service (BBS)

	Chapter 2 - Getting Started
	Unpacking and Inspection
	PMAC Compatibility
	Customer-Furnished Hardware
	Customer-Furnished Software
	Delta Tau Software
	National Instruments Software
	Microsoft Software

	PMAC Options for PMACPanel
	Technical Documentation
	PMACPanel and Your Computer’s Display
	Installing PMACPanel
	PMACPanel Software
	Installation of the Driver
	Installation of PMACPanel

	Configuring the Device Driver
	Testing the Device Driver
	Configuring LabVIEW
	Installing the Release View
	Creating Your Own View
	Mass Compilation
	On-Line Help

	Configuring PMACPanel Communication
	Testing PMACPanel Communication
	PMAC Communication I-Variables
	I1 - Serial Port Mode
	I3 - I/O Handshake Control
	I4 - Communication Integrity Mode
	I6 - Error Reporting Mode
	I58 - DPRAM ASCII Communication Enable

	PComm32 Communication Buffers

	Trouble Shooting PMACPanel Communication

	Chapter 3 - PMACPanel Basics
	PMACPanel and PMAC as Client and Server
	Application Development Components
	Pewin32 - PMAC Executive
	PTalk - ActiveX Controls for Visual C++ and Visual Basic
	PMACPanel - PMAC for LabVIEW 5.0

	PMACPanel Interface to PComm32
	Device Management
	Query/Response Communication
	LabVIEW and PMAC Numeric Data
	Download Management
	DPR Binary Data Buffers

	PMACPanel Organization
	Device Management and Communication
	Query/Response Interface
	Indicators, Controls, and VIs - ICVs
	Motor ICVs
	Coordinate System ICVs
	Global ICVs
	Accessory ICVs
	Position Capture and Triggering ICVs
	Program Development and Encapsulation Tools
	Data Gathering and Graphical Tools
	Code Interface Nodes and Dual Ported RAM
	Sample Applications
	Miscellaneous Utilities
	Documentation

	Chapter 4 - Application Basics
	Basics
	LabVIEW Techniques for PMACPanel
	
	Dataflow and Sequencing
	Dataflow and Recurring Execution
	Giving Up Control
	Execution Speed
	VI Reentrancy
	Persistent VI State
	Mechanical Action

	PMACPanel Indicator and Control Clusters
	Cluster Item Access
	Clusters Contain Controls or Indicators but not Both
	Cluster Type Definitions

	Accessing PMACPanel VIs
	Clusters With an Associated Function VI
	PMACPanel VI Terminal Conventions

	PMACPanel Tutorials
	PMACPanel Communication Tutorial
	PmacTutor1- Accessing PComm32
	Multi-threading and PmacDevOpen

	PmacTutor2 - Sending Commands and Getting Responses
	PmacTutor2a - Communication Logging
	PmacTutor3 - Sending Commands Using Buttons
	PmacTutor4 - Button and Response VIs
	PmacResponse
	PmacButton

	PmacTutor5 - Accessing PMAC Status
	PmacTutor6 - Accessing PMAC I-Variables
	PmacTutor6b - Accessing PMAC Memory
	Reading Memory Data
	Writing Memory Data
	Reading and Writing 48 Bit Memory Data

	PMACPanel ICVs
	On-line Commands

	PmacMotor ICVs
	PmacTutor7 - Position, Velocity, Error, and Jogging
	Requesting and Formatting P, V, and E
	Generating On-Line Jog Commands
	Control Clusters and Local Variables

	PmacTutor8 - Motor Control with Status Monitoring
	Hierarchical Encapsulation
	Accessing Status Bits
	Motor Status VIs
	A Word on Status Indicator Colors

	PmacTutor9 - Motor I-Variable Configuration
	Grouping Multiple I-Variables

	PmacMotors ICVs
	PmacTutor10 - Requesting and Plotting Motor Motion

	PmacGlobal ICVs
	PmacTutor11 - Configuring PMAC’s Global State
	Global Status ICVs

	PmacCoord ICVs
	PmacTutor12 - Using Coordinate System Definitions
	PmacTutor13 - Configuring and Monitoring Coordinate Systems
	Coordinate System Status ICVs

	PmacAcc ICVs
	PmacTutor14 – Machine Input and Output
	PmacTutor15 – ACC16D Control Panel

	Chapter 5 - Development Tools
	Basics
	Tool Menus
	Modifying the menu
	Modifying PmacTerminalMenu
	Basic Tool VI Requirements
	Basic Tool VI Configuration

	PmacTerminal
	Basic Terminal 101
	Basic Command Editing
	Buffer Management
	Terminal Indicators
	Terminal Controls
	Implementation Diagram

	PmacTerminalJog
	PmacTerminalEdit
	Encapsulating Motion Programs

	PmacTerminalExecute
	PmacTerminalMotors
	PmacTerminalMotorX-Y
	PmacTerminalGather
	Specifying Gather Addresses

	Chapter 6 - Encapsulated Motion Programs and PQMs
	Basics
	PmacProgSubVI
	PmacPQMExamp
	PmacPQM Clusters
	PmacPQM Conversions
	PmacPQM Datalogging

	Using Encapsulated Motion Programs
	PmacTestExamp

	Chapter 7 - Homing, Encoders, and Position Capture
	Basics
	Position Basics
	Position-Capture
	Trigger Condition

	Homing
	Action on Trigger
	Home Complete
	Home Position Offset
	Zero-Move Homing
	Homing Into a Limit Switch
	Homing from PLC and Motion Programs

	PmacHomeExamp
	Configuring the Position Capture Trigger
	Monitoring the Home Position Capture
	Home Position Transformations

	Encapsulated PLC Programs

	Chapter 8 - Encoder Capture and Compare Operation
	Basics
	PmacEncoderPositionExamp
	Encoder Position Transformations

	Position-Capture for Non-Homing Purposes
	PLC Capture Flag Processing

	PmacEncoderCaptureExamp
	External Triggers for Position Capture

	PMAC Position Compare Operation
	Required M-Variables
	Pre-loading the Compare Position
	Encoder Control Bits

	Triggering External Action
	PLC Compare Handling

	PmacEncoderCompareExamp
	Method 1 - PLC Operation
	Method 2 - One-Shot Operation
	Method 3 - PMACPanel Interval Generation

	PmacEncoder Registers
	Encoder Register Access

	Chapter 9 - PMAC and NI-DAQ Interfacing
	Basics
	External PMAC Signals
	Compare-Equals Outputs (JEQU)
	PMAC-PC
	PMAC-VME
	PMAC-Lite
	PMAC-STD

	Servo Clock (JRS232)
	General Purpose Digital Inputs and Outputs
	Standard Sinking Outputs
	Option for Sourcing Outputs
	Input Source/Sink Control
	Memory Mapped Access to I/O

	Synchronous M-Variables
	Why Synchronous M-Variables are Needed
	How They Work
	Syntax

	Position Capture FLAGs

	DAQ Signals
	Analog I/O Channels
	Trigger and Scan Clock Connections

	PmacDAQMove
	PMAC and AT-MI0-16 Signal Connections
	PMAC Signals
	ATMIO Signals

	Single Trigger DAQ
	Multi-Trigger DAQ
	Multi-Trigger DAQ with Servo Clock Sampling
	Further Sampling Options
	Other Interface Options

	Chapter 10 - PComm32 Code Interface Nodes
	Basics
	LabVIEW Code Interface Node Basics
	What is a CIN?
	Using a CIN with PComm32

	Setting up a PMACPanel CIN Configuration
	Adding PComm32 Include Path
	Adding Pmac.lib to Project
	Configuring the IDE
	The Easy Way to Add New Projects
	Multiple CIN Projects in a Workspace
	Creating a CIN C-Stub for PComm32

	Chapter 11 - DPR - Dual Ported RAM
	Basics
	Required Background Understanding
	General Architecture Notes

	PmacDPRRealTime
	PmacDPRRealTimeExample
	PmacDPRRealTimeConfig CIN
	PmacDPRRealTimeMotor CIN

	PmacDPRRealTimeVectorExample
	Servo Accurate Sampling
	PmacDPRRealTimeVectors CIN
	A Note About Vector CINs
	A Note About Vector CIN Reentrancy

	PmacDPRFixedBack
	PmacDPRFixedBackExample

	PmacDPRNumeric
	DPR Addresses and Data Organization
	PmacDPRNumericExample
	M-Variables and VI Address Specification
	DPR Bits and Bit Fields

	PmacDPRNumericClusterExample
	PmacDPRNumericCINClusterExample
	PmacDPRNumericSlaveExample

	PmacDPRVarBack
	PmacDPRVarBackExample
	Notes on the use of PmacDPRVarBack
	Note on Supporting PmacDPRVarBack CINs

	PmacDPRVarBackVectorExample

	Chapter 12 - Interrupts
	Basics
	PmacInterruptExamp

	Glossary of Terms
	Index

