‘;’JILTIMMEDIA
Bl O T | C S

Pioneer 2

MOBILE ROBOTS

with Pioneer 2 Operating System Servers

SAPHIRA
MANUAL

PRELIMINARY

Copyright 1999 ActivMedia RoBoTICS, LLC. All rights reserved.

Under international copyright laws, this manual or any portion may not be copied or on any way
duplicated without the expressed written consent of ActivMedia ROBOTICS.

The Saphiralibraries and software on disk or available for network download are solely owned and
copyrighted by SRI International, Inc. Developers and users are authorized by revocable license to develop
and operate Saphira-based custom software for personal, research, and educational use only. Duplication,
distribution, reverse-engineering, or commercial application of the software without the expressed written

consent of SRI International, Inc. is explicitly forbidden.

The various names and logos for products used in this manual are registered trademarks or trademarks of
their respective companies. Mention of any third-party hardware or software constitutes neither an
endorsement nor a recommendation.

Saphira Operations and Programming Manual Version 6.2, August 1999.

cContents

1 SAPHIRA SOFTWARE & RESOURCES
1.1 Saphira Client/Server
1.11 Client Components
1.1.2 Behavior Compiler and Executive
1.1.3 Colbert Executive
1.1.4 SaphiraPlugins
1.2 Saphira Development
1.3 Robot Simulator
1.4 Required and Optional Components
1.5 Saphira Resour ces
151 Whereto Get Saphira
1.5.2 Saphira Newsgroup
15.3 Support
154 SRI Saphira Web Pages
1.6 Acknowledgments

2 INSTALLATION AND QUICK START
2.1 Ingtalling the Software
2.1.1 Locating the Saphira Distribution
2.1.2 Extracting the Saphira Distribution
2.1.3 Required Saphira Environment Variables
2.1.4 Locating the Saphira Libraries
2.2 Saphira Quick Start
2.2.1 Executethe Client
2.2.2 Connect with a Robot Server
2.2.3 Disconnecting and Shutdown

3 OPERATING THE SAPHIRA GUI CLIENT

4 GUIDE TO THE SAPHIRA API
4.1 Saphira OS Functions
411 Startup
4.1.2 Handlers and States
4.1.3 SaphiraOS State Variables
4.2 Predefined Saphira Micro-Tasks
4.3 State Reflection
4.3.1 Motor Stall Function
4.3.2 Sonar buckets
4.4 Direct Motion Control
4.5 Saphira Multitasking
451 Micro-task Definition
452 StateInquiries

&
Q
D

DADMNDWWWNNNRPRRRRERPE

WWWWNNRRRPRP

[—

453 Micro-Task Manipulation
45.4 Invoking Behaviors

455 Activity Schemalnstantiation
4.6 Local Perceptual Space

4.6.1 Sonar buffers

4.6.2 Occupancy functions

4.7 Artifacts

471 Pointsand Lines

4.7.2 Other Artifact Creation Functions
4.7.3 Geometry Functions

4.8 Sensor Interpretation

4.9 Drawing and Color Functions
4.10 Maps and Registration

4.10.1 Map File Format

4.10.2 Map Registration

4.10.3 Map Element Creation

4.11 File Loading Functions

4.12 Colbert Evaluator Functions

4.13 Packet Communication Functions

5 SAPHIRA VISION
5.1 Channel modes
5.2 Vision Packets
5.3 Sample Vision Application

6 PARAMETER FILES
6.1 Parameter File Types
6.2 Sample Parameter File

7 SAMPLE WORLD DESCRIPTION FILE

8 SAPHIRA APl REFERENCE

9 INDEX

10 WARRANTY & LIABILITIES

16
16
17
17
17
19
21
22
23
25
26
26
28
28
30
30
30
31
32

35
35
36
36

38
38
38

41

43

a7

50

1 Saphira Software & Resources

Saphirais a mobile robotics-client applications and development environment. It is a product of SRI
International’ s Artificial Intelligence Center. Saphira development and maintenance are under the direction
of itsorigina author, Dr. Kurt Konolige, who also designs Pioneer Mobile Robots. This Saphira Software
API Manual provides the general and technical details you will need to program and operate your intelligent
mobile robot with Saphira software.

1.1 Saphira Client/Server

Saphira software operates in a multitiered client/server environment. The foundation, of course, is arobot
server like the included Pioneer simulator or areal Pioneer Mobile Robot from ActivMedia ROBOTICS. The
robot server carries the basic components of real-world sensing and navigation for intelligent mobile robot
activities, including drive motors and wheels with position encoders, range-finding sensors, and so on, as
well as the electronics and embedded controllers to manage those resources—a Pioneer 2 DX with its
Siemens C166-based microcontroller running the Pioneer 2 Operating System, for example.

The robot server handles the low-level details of sensor and drive management, such as collecting range-
finding information from onboard sonars, maintaining individual wheel speeds, positioning, heading, and
so on. However, without a client to guide it, the mobile robot server is taskless; it is the machine in machine
intelligence.

The Saphira multitiered client provides the intelligence for intelligent mobile robotics; it performs the
work for taskfull operation of the robot server.

1.1.1 Client Components

In brief (the remainder of this manual is devoted to the details, of course), Saphira’s lowest level—its
interface with the robot—provides a coherent method and protocols for communication with and control of
arobot server, by retrieving real-time, real-world operating data from the robot and sending back
commands to control the robots activities.

Saphira’sintermediate layers support higher-level functions for navigation control and sensor
interpretation, and for the integration of robot accessories (plugins).

At its upper levels, Saphira provides state-of-the-art fuzzy-logic-based control behaviors and reactive
planning systems, features-recognition systems, and a map-based navigation and registration system (future
development to include localization).

Saphira aso provides a full-featured Graphical-User Interface (GUI) and command-level interface
(Colbert Executive; see below) for interactive monitoring and manual control of both the Saphira client and
its robot server and accessories.

1.1.2 Behavior Compiler and Executive

Saphira uses fuzzy control rules for implementing and integrating rudimentary robot control programs,
known as behaviors. Saphira comes with several pre-defined behaviors, including obstacle avoidance. And
Saphira provides the tools for you to define and develop your own behaviors, including a behavior compiler
that trandlates a simple fuzzy-control-rule syntax into C-language-based code that you include in your
Saphiraclient.

1.1.3 Colbert Executive

Saphira version 6 added support for a simple, C-like language for creating robot-control programs. With
Colbert, users quickly write and debug complex control procedures, called activities. Activities have a
finite-state semantics that makes them particularly suited to representing procedural knowledge of
seguences of action. Activities can start and stop direct robot actions, low-level behaviors, and other

activities. Activities are coordinated by Saphira’s Colbert executive, which supports concurrent processing
of activities.

Saphira comes with a Colbert runtime evaluation environment in which users can interactively view their
programs, edit and rerun them, and link in additional standard C code. Users may program interactively in
Colbert, which makes all of the Saphira API functions available in the runtime environment. Future
additions to Colbert will include a compiler for efficient execution of debugged programs, and multiple-
robot coordination.

Please consult the Colbert Programming Manual for complete Colbert programming details.

1.1.4 Saphira Plugins
The Colbert Executive also provides away to integrate and dynamically manage Saphira extensions,
particularly device managers such as for the Pioneer 2 Gripper or Fast-Track Vision System, through
shared-abject libraries. Once composed and compiled, Saphira plugins may be shared among many clients,
loaded, operated, and unloaded programmatically by the client or Colbert activity, or manually by the user.
Look into the ${ SAPHI RA} / devi ces directory for Saphiraplugin.dl | (Win32) or .so
(UNIX/Linux) dynamically loadable, shared-object examples.

1.2 Saphira Development

Saphira comes as complete set of ANSI C-language-based software libraries and utilities which you write
to and link with your C- or C++-based programs to create your own Saphira clients and shared-object
libraries. Saphira programs can be written in and run under many different computing environments,
including Microsoft Windowsa 32-bit operating systems (WindowsNTa , Windows95a , and
Windows984a), and with most UNIX& and like systems (SunOSa , Solarisa , IRIXa , OSF/1, FreeBSD, and
RedHat Linuxa).

Of course, details of Saphira’s Applications Programming Interface (API) are in the following chapters of
this manual. And we provide some guidance for preparing Saphira clients on the individual applications
development platforms; specifically Microsoft's Visual C++a , Linux’s GNU tools, and for common
UNIX& -based C-compilers and linkers. For operation of the C- development platform itself, however,
please consult its and its accessory documentation.

1.3 Robot Simulator

Saphira also comes with a software simulator of your physical robot and its environment. This feature
allows you to debug your applications conveniently on your computer.

The simulator has realistic error models for the sonar sensors and wheel encoders. Even its
communication interface is the same as for a physical robot, so you won’t need to reprogram or make any
special changes to the client to have it run with either the real robot or the simulator. But unlike the real
thing, the ssimulator has a single-step mode which lets you examine each and every step of your program in
detail.

The simulator also lets you construct 2-D models of real or imagined environments, called worlds. World
models are abstractions of the real world, with linear segments representing the vertical surfaces of
corridors, hallways, and the objects in them. Because the 2-D world models are only an abstraction of the
real world, we encourage you to refine your client software using the real robot in a real-world environment.

1.4 Required and Optional Components
The following isalist of components that you'll need, as well as some options you may desire, to operate
your robot with Saphira. Consult your mobile robot’s Operation Manual for component details.
Mobile robot with Saphira-enabled servers!
Radio modems or Ethernet radio bridge (optional)
Computer: Macintosh?; PC with Microsoft Windows 95/98 or NT, FreeBSD, or Linux operating
system; or UNIX workstation
Open communication port (TCP/IP or serial)
Four to five megabytes of hard-disk storage
PKUNZIP (PCs), GUNZIP (PCs and UNIX), Stufflt Lite, or compatible archive-decompression
software
Optional:
- C-program source-file editor and compiler. Note: The current Windows98/NT version of Saphira
supports only Microsoft’s Visual C/C++ development environment, not Borland’s Turbo-C/C++
products. Necessary for compiling new subroutines in standard C.
Motif GUI and libraries for FreeBSD/Linux/UNIX. Necessary only to compile new clients; with
Colbert, users may instead operate with a pre-compiled Saphira client.

1.5 Saphira Resources
Saphirais available in many ways, and comes with a plethora of development supports.

1.5.1 Where to Get Saphira

Saphira demonstration packages are available for electronic download and free use currently from two
Internet-based sources. Use your favorite browser and contact:

http://www .ai.sri.com/~konolige/saphira

or

http://robots.activmedia.com

The unlicensed Saphira demonstration package is the complete Saphira intelligent mobile robotics client-
development environment. Y ou just won't be able to connect with areal robot.

Licensed versions of Saphira are distributed through ActivMedia ROBOTICS. Pioneer Mobile Robot
customers automatically get afull Saphiralicense, and the Win32 version on a 3.5-inch diskette
accompanies each robot. Pioneer customers and others by special license also may download any and all of
the variety of Saphira platform versions and accessories from ActivMedia ROBOTICS' support website:

http://robots.activnedi a.com

To gain access to the license-restricted Saphira areas, enter the username and password that are written on
theRegi strati on & Account Sheet accompanying your Saphiradistribution and this manual.

The latest information for installing and running Saphira can be found in the r eadmre filein each
distribution. Please examine thisfile carefully before and during installation. An updat e file has
information about major changes in the latest releases of the Saphira system; you should consult it as a
general guide for updating older programs.

1 This may be the Pioneer Simulator or Pioneer Multi-agent Simulator.

2 We do not recommend using Macintosh for Saphira development at this time, because the native
operating system does not fully support preemptive multitasking, which is essential for Saphira operation.

1.5.2 Saphira Newsgroup
We maintain an email-based newsgroup through which Saphira users can share ideas, software, and
guestions about the software. To sign up, send an email message to our automated newsgroup server:

To: saphi ra-users-request @ctivnedi a.com
From <your return e-mail address goes here>
Subj ect: <choose one command:>
hel p (returns instructions)
subscri be
unsubscri be

Our SmartList-based listserver will respond automatically. After you subscribe, send your e-mail
comments, suggestions, and questions intended for the worldwide community of Saphira users:

To: saphira-users@ctivmedi a. com

From <your return email address goes here>

Subj ect : <something of interest to members of saphira-users>
Access to the Saphira-users newslist is limited to subscribers, so your address is safe from spam. However,

the list currently is unmoderated, so please confine your comments and inquiries to issues concerning the
operation and programming of Saphira.

1.5.3 Support
Have a problem? Can't find the answer in this or any of the accompanying manuals? Or know a way that
we might improve Saphira? Share your thoughts and questions directly with us:
saphi ra- support @cti viredi a. com
Y our message goes to our Saphira technical support team; a staff member will help you or point you to a
place where you may find help. Because thisis a support option, not a general-interest newsgroup like
saphira-users, we must reserve the option to reply only to questions about bugs or problems with Pioneer.

1.5.4 SRI Saphira Web Pages
Saphirais under continuing active development at SRI International. SRl maintains a set of web pages
with more information about Saphira, including

tutorials and other documentation on various parts of Saphira

class projects from Stanford CS327B, Real-World Autonomous Systems
information about SRI robots and projects that use Saphira, including the integration of Saphira with
SRI’s Open Agent Architecture

links to other sites using Pioneer robots and Saphira

The entry to the SRI Saphira web pages is http://www.ai.sri.com/~konolige/saphira.

1.6 Acknowledgments

The Saphira system reflects the work of many people at SRI, starting with Stan Rosenschein, Leslie
Kaelbling, and Stan Reifel, who built and programmed Flakey in the mid 1980’ s. Magjor contributions have
been made by Alessandro Saffiotti, Karen Myers, Enrique Ruspini, Didier Guzzoni, and many others.

2 Installation and Quick Start

The typical Saphira client has a GUI through which you may connect with and interactively control a
robot client, including the simulators. This chapter describes the installation and quick startup of the
Saphira client. Subsegquent chapters describe the many feautres of the GUI client and how to develop your
own Saphira clients.

2.1 Installing the Software

The Saphira distribution software, including the saphi r a demonstration client, Colbert Executive, the
Pioneer simulator, and accompanying C libraries, headers, and demonstration sources, come as a
compressed archive of directories and files either stored on a 3.5-inch diskette, or as download from the
ActivMedia RoBoTICs and SRI International websites.

Each Saphira archive is configured and compiled for a particular operating system, such as for
Windows95/98/NT (Win32), a particular UNIX, or Linux. Choose the version that matches your client
computer system. See Resources earlier in the previous chapter for details.

2.1.1 Locating the Saphira Distribution

When extracted, each Saphira distribution creates a single top-level directory named for its particular
version—in this case, for instance, ver 62. Beneath that main directory are several subdirectories
containing everything you need to program and operate Saphira clients.

We recommend that you create a Saphira master directory to keep the various Saphira distributions in
some publicly accessible partition, such as C: \ Saphi ra onaWin32 driveor / usr/ | ocal / Saphi ra
on a UNIX/Linux system. Be sure to give users the appropriate permissions for access.

2.1.2 Extracting the Saphira Distribution

Copy the Saphira distribution to the master directory, then extract it. The Win32 versions are self-
extracting WinZip archives; the UNIX and Linux versions come gzip'd and tar’ d. To decompress the
Win32 software, smply double-click its icon or otherwise execute the self-extracting (.EXE) program. For
UNIX/Linux systems, gunzi p and thent ar —xf orsimplytar —zxf the Saphiradistribution.
(Consult the man pages for details on these and other UNIX/Linux commands.)

For all systems, a hierarchy of folders and files get put inside the version-related Saphira top-level
directory, possibly replacing earlier file versions. For example, the distribution subdirectories for the Win32
Saphira version 6.2 look like the ones (among others) shown in the Figure 1-1.

ver 62\

readme Expl anation text file

updat e Conpari son of versions

clients\ Client application source files
saphira.c Saphira denonstration source file
saphi r a. mak MSVC++ nmakefil e

bi n\
saphi ra. exe Saphiral/ Col bert runtine application
pi oneer . exe Si nul at or
bgr am exe Behavi or granmmar conpil er
sf.dll Saphira executable libraries
msvcrt40. dl | Requi red M5 W ndows DLL

col bert\ Col bert activities and sanpl es
init.act Executive startup activity

devi ces\ Saphira support for robot accessories

handl er\ Native libraries and resources
basi c\

behavi or. beh Behavi or exanpl es

i ncl ude\ Devel opnent header files

obj \ Library files
sf.lib Saphira link |ibrary
\ maps\ Saphira maps
\ parans\ Robot description files
P2DX. p Pi oneer 2 DX robot, for exanple
\worlds\ Sinulator world files

Figure 1-1. Distribution directory for Win32 Saphira version 6.2.

2.1.3 Required Saphira Environment Variables

Saphira requires that you set at least one Win32 and two UNIX/Linux system environment variables.
Other Saphira environment variables which may effect operations are optional; we describe them in context
within later chapters.

IMPORTANT!

You must set a SAPHIRA environment variable before you can successfully operate any
Saphiraclient.

For Windows95/98 systems, edit the aut oexec. bat filefound in the boot directory (usually C: \) with
any simple text processor, such asnot epad or Wor dPad. Assuming the top-level Saphira directory is
C:\ Saphi ra\ ver 62, add the following line to the file:

SET SAPHI RA=C: \ Saphi ra\ver 62

t hen reboot.

With Windows NT 4.0, navigateto St art / Set t i ngs/ Syst emand click on the Envi r onnent tab.
Add the variable SAPHI RA in either the user or system-wide settings.

With UNIX/Linux systems, use one of the following methods to set the SAPHI RA environment variable,
preferably inthe user's.cshr c or evenintheglobal / et ¢/ profi | e script parameter file:

export SAPHI RA=/usr /| ocal / Saphiral/ver62 (bash shel)
setenv SAPHI RA /usr /| ocal / Saphira/ver62 (csh shell)

2.1.4 Locating the Saphira Libraries

The Saphiralibrary is dynamically loadable and sharable on all UNIX,Linux, and Win32 systems. This
means that one or more Saphira applications each can link into the library at runtime, rather than each have
acopy attached at compile time. Therefore, clients take up less space and are quicker to compile. They
simply need to find the Saphiralibrary at runtime.

With Win32 systems, we locate the sf . dl | Saphira dynamically loadable library in the same directory
where you find the Saphira client executables (ver 62\ bi n). Consequently, the system automatically
associates the Saphira client with the library. If you plan to relocate your Saphira clients, you might either
copy sf . dl | into the same directory as the client executable, or locate it in the system folder of your boot
drive (normally C: \) for general access: W ndows/ Syst emfor Windows95/98 or W nnt \ Syst en82
with Windows NT.

With UNIX/Linux systems, the Saphira shared library isin ver 62/ handl er/ obj . You can make the
library accessible to applications in two ways. We recommend leaving the Saphira shared library in this
directory and putting the directory name into the load-library list using the shel I command:

export LD LI BRARY_PATH=$SAPHI RA/ handl er/ obj (bash)
or
SETENV LD LI BRARY_PATH=${ SAPHI RA}/ handl er/obj (csh)

Alternatively, copy the Saphira shared object (.so) library file from the ${ SAPHI RA} / handl er/ obj
directory into the standard library directory, / usr/ 1 i b.

2.2 Saphira Quick Start

Have areal robot server or the Simulator readied for a Saphira connection. For example, execute the
${ sAPHIRA} / bi n/ pi oneer (. exe) robot Simulator on the same computer, or simply connect (tether or
radio modems) the “host” port on your Pioneer 2 Mobile Robot to a serial port on your basestation computer
running the Saphira demonstration program. (See the Pioneer 2 Operations Manual for details.)

2.2.1 Execute the Client

Start the Saphira client demonstration program by navigating to the ${ sapHIRA} /bi n directory and
executing the program named saphi r a(. exe) . For instance, use the mouse to double-click the
saphi r a. exe iconinside the C: \ Saphi r a\ bi n\ folder on your Windows98 desktop.

With UNIX/Linux, you must be running the X-Window system to execute the Saphira demonstration
client software. The ${ sapHIRA} / bi n/ saphi r a program is a shell script which automatically sets the
Saphira environment variables for you and then launches the saphi r a executable. If the script fails, edit it
for the correct environment variable assignments and the proper saphi r a executable:

The UNIX/Linux Saphira executable comesin two forms: statically linked or not with the Motif GUI
library. If you do not have the Motif GUI shared library (I i bXm so) installed, you need to use the
ssaphi r a program. Otherwise, execute the smaller xsaphi r a program.

When successfully launched, the Saphira client window appears with a graphical display of the robot
internals, a textual information window, and a command-line interaction window. Type hel p in the
interaction window for alist of command classes that you can query for further information.

2.2.2 Connect with a Robot Server

Saphira establishes contact and control with a Pioneer robot server through a serial port, either COML
through COM4 on aWin32 system, / dev/ttysO0 through/ dev/ttys3 onaUNIX system, or
/ dev/ cuaO through / dev/ cua3 under Linux. If you're accessing the Pioneer simulator on the same
machine, connect | ocal , which opensalocal port to the ssmulator and starts things up.

Find and choose one of these connection options from the Connect menu in the Saphira main window.
After you initiate the connection, the Saphira client and robot server perform a synchronization routine and,
if successful, will establish a connection. We provide a number of clues on both the client and server so that
you can follow the synchronization process. Success is distinct: The Saphira main window becomes
distinctively alive with robot readings.

We detail Saphira client operation in the next chapter. For now, we leave it to you to find the manual
drive keys and take your robot for ajoyride. (Hints: keyboard arrows move and the spacebar stops the drive
motors; be sure to enable the motors on the real robot.)

Also, the Saphira demo automatically 1oads the demonstration Colbert program
${sapHIRA}/col bert/ denp. act ; it and has more activities you can try out by starting them from the
Functi on/ Acti vi ti es menu from the main Saphira window.

2.2.3 Disconnecting and Shutdown

The graceful way to shut down a Saphira client/robot server connection isto choose Di sconnect from
the main window pulldown Connect menu. Or you can a so type the command sf Robot Di sconnect
in the Colbert interaction window. Either way, the client stays active and ready to establish another
connection to same or another robot.

Close the Saphira main window or choose Exi t from the Connect menu to shut down the Saphira
client. A connected server automatically gets disconnected when you shut down the client.

3 Operating the Saphira GUI Client

Saphira comes in two flavors: one with a Graphical User Interface (GUI) and one without. The window-
less client is for autonomous robot operation. On the other hand, the GUI Saphira client gives you visual
and textual representation of both your Saphira client’s and your robot server’s operations and states, and
gives you the ability to manually interact with each to effect changesin their activities.

This Chapter describes operation of the Saphira GUI client and its many features.

4 Guide to the Saphira API

This chapter details the current library of functions for development of a Saphira client. Additional
information about prototypes, structures, and variables can be found in the various header filesin the
handl er /i ncl ude/ directory of your Saphiradistribution. Also study the sample source filesin the
apps/ directory of working Saphira applications.

Most of these functions and variables are available in the Colbert evaluator and associated plugin object
libraries. Those that are not are indicated in the text.

4.1 Saphira OS Functions

The Saphira OS functions perform initialization and setup of the Saphira client. One class of functions
provides for automatic actions when Saphira connects to or disconnects from arobot. For example, you
could place the robot at a certain global position within a map whenever Saphira connects.

Another class of Saphira OS functions let you initialized and run the Saphiraclient in parallel with
threads from other routines, thereby creating more complex Saphira clients than the default one and useful
for linking the Saphira libraries with other applications. These functions provide for the Saphira client
thread to be, for example, vision processing or planning routines written by the user.

A final class of Saphira OS functions invokes standard microtasks for communication, perceptual
processing, and robot action.

4.1.1 Startup

void sfStartup (int async) [UNI X]

void sfStartup (HANDLE hlnst, int cnmdShow, int async) [M5 W ndows]
voi d sfPause(int mns)

char *sfVersion

Usethesf St ar t up function exactly once to initialize and execute a Saphira client thread. Use
sf Pause to pause the client. The sf Ver si on string reports the current Saphira version number.

Description

Thesf St art up function may be called at any time by your program, but it should be called only once
(there is no explicit Saphira OS shutdown). The first form of sf St ar t up isfor UNIX/Linux systems. The
form isfor Win32 environments, and include the Windows OS required application instance handle
(hl nst) and the visibility parameters (c mdShow), which you typically just pass through from the
WinMain parameters.

When invoked, sf St ar t up initializes and executes the Saphira OS. With UNIX/Linux versions, if the
client has been linked with the window libraries, Saphira opensits main GUI interface window (see also
Chapter 3, “Operating the Saphira GUI”). With Win32 systems, the Saphira OS always includes a GUI
window.

Set the async argument to 0 to give Saphira sole control of the client. In this mode, associated functions
must be integrated with the Saphira multitasking OS.

Set async to 1 to have Saphirarun as one of other threads in your client program. In this mode,
sfStartUp initializes the Saphira OS, but control returns immediately to the calling program.

If another user program is running asynchronously, in parallel with the Saphira OS, then it may be useful
to insert timing breaks in the user code. The appropriate method is with sf Pause, which waits a specified
number of milliseconds before continuing. The sf Pause function allows the Saphira OS to keep running
during the break.

The Saphira OS startup functions are not available in Colbert, since Colbert is a feature of, and thereby
reguires a running Saphira OS. Moreover, there is a native method (“wait”) for pausing in Colbert
activities.

The Saphiravariable sf Ver si on isashort string containing the current version number and revision
letter of Saphira; “6.2a", for example.

The provided example is the simplest Saphira client. It starts the Saphira OS, complete with GUI, and
shuts down when you quit the Saphira main window.

Example

#ifdef I'S_UNIX
void main(int argc, char **argv)

#endi f
#i f def MS_W NDONB
i nt PASCAL
W nMai n (HANDLE hl nst, HANDLE hPrevl nstance, LPSTR | pszCndLine, int
nCrrd Show)
#endi f
/* ...lnitialize and prepare client here...*/
#ifdef I'S_UNI X
sfStartup(0); /* Gve Saphira full control */
#endi f

#i f def MS_W NDOWS

sf Startup(hl nst, nCndShow, O0);

return O; /* Returns here after Saphira OS shutdown */
#endi f

}

4.1.2 Handlers and States

voi d sf AddSt art upHandl er(void (*fn)(),int which)
voi d sf AddConnect Handl er (void (*fn)(),int which)
voi d sf AddDi sconnect Handl er (void (*fn)(),int which)
voi d sf AddExi t Handl er (void (*fn)(),int which)

void sfOnStartupFn (void (*fn)())

voi d sf OnConnect Fn (void (*fn)())

voi d sfOnDi sconnectFn (void (*fn)())

void sfOnExitFn (void (*fn)())

int sflsConnected

int sflsExited

#define sfFirst 1
#define sfLast O

Several Saphira functions register system callbacks to code in your client and Colbert/plugin programs
that get executed when key OS events occur: When the Saphira OS first starts up, when it connects with a
robot server, when it disconnects from a robot server, and when it exits. Associated variables keep track of
these various OS states.

Handler Installation and I nvocation

Handlers are functions that Saphira invokes when a particular event takes place. Currently, there are four
Saphira OS events that invoke handlers: St ar t up, Connect (to robot server), Di sconnect (from robot
server), and Exi t . Saphiramaintains alist of up to 10 separate handlers for each of these OS event. Each
getsinvoked in order from sf Fi r st tosf Last inthelist.

Register your event handlers with the related sf AddHandl er Saphirafunction. The whi ch parameter
value adds the referenced handler to the top (sf Fi r st) or bottom (sf Last) of thelist, or removes
(sf Renmove) apreviously added handler from thelist so it is no longer invoked by an event.

The functionssf OnSt ar t upFn, sf OnConnect Fn, sf OnDi sconnect Fn, and sf OnExi t Fn are
convenience functions provided for compatibility with previous releases of Saphira. If you include a
function-pointer (non-NULL) argument, it gets added to the top of the event handler list, asif you had used
sf AddHandl er with sf Fi r st asthewhi ch argument value. With a NULL argument, each of the
convenience functions removes the last handler from their list. (Yes, thisis abit confusing since the NULL
argument adds a handler to the end of the list with the sf AddHandl er command.)

None of the OS event-handlers are required. Your St ar t Up handlers should include any relevant
initialization code, such as menu or directory settings. The Connect handlers should start micro-tasks,
behaviors, and other Saphira control routines. Your Di sconnect handler can be used to clean up after the
Saphira client disconnects from arobot server. And usethe Exi t callback to do some system housekeeping
when the Saphira OS exits.

All of the Saphira OS handlers may be included in your Saphira client code, but only Connect and
Di sconnect handlers may appear in Colbert and related plugins. This is because Colbert requires a
running Saphira OS.

4.1.3 Saphira OS State Variables

Thevariablessf | sExi t ed and sf | sConnect ed reflect the states of the Saphira OS and its
connection with arobot server, respectively. The user should not change their values.

Thesf | sExi t ed variableis particularly useful with an asynchronous Saphira client, which retains
execution control after starting the Saphira OS (sf St ar t up(1) ;). Thisway, code outside of the Saphira
OS can check the sf | sExi t ed flag and act if the user has requested to exit Saphira, such as with the
Saphiramain window Connect / Exi t menu option.

Examples

The Saphira client consists of what happens before and after invoking the Saphira OS, adjusted for the
different native operating environments. There are several sample clientsin the { SAPHIRA}/ apps
directory, including the GUI-based, synchronous demonstration Saphira client, saphi r a. ¢, described in
the previous chapter, Quick Sart, and an asynchronous GUI Saphiraclient, async. c.

void main(int argc, char **argv)

{ I* set up user button and key processing /
sf AddBut t onHandl er (nyBut t onFn, sfFI RST);
sf AddKeyHandl| er (nyKeyFn, sfFI RST);
sf AddConnect Handl er (nyConnect Fn, sf FI RST) ;
sf AddSt ar t upHandl er (ny St ar t upFn, sf FI RST) ;
| start up, don't return */
printf("starting...\n");
sfStartup(0);

Here afew handler callbacks are posted for various Saphira client actions, and then the Saphira OS
initialization isinvoked. In thiscase, since async is 0, the Saphira OS thread is started, and the main
program waits until it finishes execution before going on from the sfStartup function.

A more complicated invocation of the Saphiralibrariesis in handler/src/apps/async.c. Here, the Saphira
OSisinvoked, and the user program continues to execute a sequence of commands to connect to and move
the robot. These commands are executed asynchronously with the Saphira OS, which is handling al the
basic communication with the robot necessary to make the user commands work. Here is the code from

async.c:

void main(int argc, char **argv)
{ int i = 0;
sfStartup(l); /* start up Saphira w ndow, and keep going /
sf Message(" Connect to robot to start this dem");
while (!sflsConnected) sfPause(100); / wait until connected /
sf Set Di spl aySt at e(sf GLOBAL, TRUE); / use the global view/
sf Message("Rotate left");
sf Set RVel oci t y(100); / in mm sec on each wheel ... */
sf Pause(4000) ;
sf Set RVel oci ty(0);
sf Pause(4000) ;

for (i=0; i<280; i+=60)

{ sf SMessage(" Turn %l degrees", i);
sf Set DHeadi ng(i); /* turn i degrees cc /
whil e (!sfDoneHeadi ng(10)) sfPause(100);
/ wait till we're within 10 degrees /
sf Set DHeadi ng(-i); / turn i degrees c /
whil e (!sfDoneHeadi ng(10)) sfPause(100);
/ wait till we're within 10 degrees */
}
sf Message("Move forward and turn");
sf Set Vel oci t y(300); /* move forward at 300 nmisec /
for (i=0; i<10; i++)
{
sf SMessage("X: % Y: %", (int)(sfRobot.ax), (int)(sfRobot.ay));
sf Pause(1000) ; / DON' T USE SLEEP!'!I!! [
sf Set DHeadi ng(10) ;
}
sf Set Vel ocity(0); / stop /
sf Pause(4000);
sf Di sconnect FromRobot ();/ we're gone... */

Sf Start Thread, sfSuspendThread, sfResuneThread,
sf Del et eThr ead

sf SuspendMrl, sfResuneMl, sfSetPriority

int sfStartThread(void *fn, void *arg)
int sfSuspendThread(int id)
int sfResumeThread(int id)

voi d sfDel eteThread(int id)
voi d sf SuspendMr(voi d)

voi d sf ResunmeMI(voi d)

void sfSetPriority(int pri)

These functions provide an interface to threads that run in parallel with the Saphira OS. Threads are a
handy way to implement functions that take along time to complete, and so cannot be written as Saphira
microtasks. For example, a planner might be invoked using a thread, allowing the Saphira OS to continue
while it computes its result.

Threads as Asynchronous Tasks

Multiple user threads can run in parallel with the Saphira OS, sharing its address space and having access
to al of the standard Saphira functions and variables. The Saphira OS itself runs as a thread, usually at a
higher priority than the asynchronous user threads, so that microtasks can execute in their standard 100 ms
cycletime.

Thread services are provided by the underlying system OS, either UNIX or MS Windows. There are
differences in thread implementations, but for the most part the Saphira functions abstract away from them
to provide a simple, common interface.

Description

A thread function is started with sf St ar t Thr ead. The thread function should be a function of one
argument, apointer. Thear g parameter of sf St art Thr ead is passed to the thread function asits
argument when it starts up.

Threads are identified by a unique nonnegative integer, returned by sf St art Thr ead. If for some
reason the thread can’t be started, e.g., if there aren’t enough system resources, then sf St art Thr ead
returns - 1.

A thread terminates when the thread function exits, either by calling r et ur n or by faling through the
last statement. Alternatively, athread can be terminated by another thread or the Saphira OS by calling
sf Del et eThr ead usingitsthread id. If the thread has already terminated or doesn’t exist, then no
action is taken.

A thread can be paused from within the thread function by using the sf Pause function. This function
causes the thread to yield all processor cycles for a specified period of time.

Threads can be paused and resumed from outside the thread by calling the sf SuspendThr ead and
sf ResuneThr ead functions with the thread id. These two functions are only available under MS
Windows; the POSIX specification of threads doesn’t include this feature.

Because thread functions execute asynchronously with the Saphira OS, there can be a problem in
simultaneous invocation of Saphirafunctions. For example, athread executing the sf Message function
may be interrupted by the Saphira OS, which then executes its own sf Message functions. Theresultisa
scrambling of the output in the Colbert text window. To prevent simultaneous access, the functions
sfSuspendMT and sfResumeMT provide alocking function. When sf SuspendM is called by a user
thread, it waits until the OS cycle is complete before continuing. Until the sf ResuneMT function is
called, the Saphira OS is prevented from executing. Obviously, user threads should execute very quickly
between sf SuspendMr and sf ResuneMT calls, so as not to lock out the Saphira OS excessively.
Generally, calsto functions that access common Saphira data structures are placed between the locking
functions.

The locking functions can also be used for synchronization between user threads. At any given time, only
one thread can be executing between sf SuspendMrl and sf ResuneMT calls. The locking functions are
implemented as mutex locks.

Examples
A simple example of a user thread and the locking functionsisin denos/ t | ock.

Usethesf Set Di spl aySt at e function to change the state of a display mode in the Saphira window
interface:

voi d sfSetDisplayState (int nmenu, int state)

If you call this function before connecting to the robot (in the start-up callback), it will set the default state
for the display function. Thereafter, the preset display values are sticky—Saphira automatically resets them
to the preset values, perhaps different from the defaults given in Table 4-1), whenever a new connection is
made with the robot.

Table 4-1. Optional statesfor various Saphira display functions.

Menu State (int)* Description

sf DI SPLAY | 0-10; 2 Controls display update rate. State is the number of 100
ms cycles between updates. Value 10 is once per
second, for example. Value of 0 turns the display off.

sf GLOBAL TRUE, FALSE | Controlsloca/global viewpoint of display window.

st WAKE TRUE, FALSE | Controls drawing of breadcrumb wake behind robot.

sf STEP TRUE, FALSE | Controls single-step mode when connected to the
Pioneer ssimulator.

sf OCCGRID | TRUE, FALSE | Controls display of occupancy grid results. If enabled,
enables global viewpoint.

Default state values are in bold typeface.

sf Message writes the null-terminated string st r into the message section of the information areain the
Saphira main window, followed by a carriage-return:

voi d sfMessage (char *str)

Usesf SMessage to format the string much as you would C's standard pr i nt f function, which
accepts optional arguments that are to be inserted into the string. :

voi d sfsMessage (char *str, .)

A problem in the Colbert evaluator prevents floating-point numbers from being printed using
sf SMessage. Asaworkaround, convert them to integers before calling sf SMessage. (The
sf KeyPr ocFn registers an optional user key process callback, with the prototype of myKeyFn:

voi d sfKeyProcFn (int (*fn)())
int nyKeyFn(int ch)

It is called by Saphirawhenever the user presses a key when the main Saphirawindow is active. The
argument ch isthe character representing the key that was pressed and is operating-system-dependent.
Return 0 if you don’'t handle the keypress; return 1 if you do, particularly to override any of Saphira’s built-
in key processing routines (see Table 4-1).

Not available in Colbert. The sf But t onPr ocFn registers an optional user button process callback, with
the prototype of nyBut t onFn:

void sfButtonProcFn (int (*fn)())

i nt myButtonFn (int x, int y, int b, int m

i nt sfLeftButton, sfM ddl eButton, sfRightButton
i nt sf Shi ft Mask, sfControl Mask, sfAltMask

float sfScreenToWwrldX (int x, int y)

float sfScreenToWwsrldY(int x, int y)

It is called by Saphirawhenever the user clicks the mouse when the main Saphira window is active. The x
and y arguments are the screen position of the cursor; b is the mouse button, with the values
sf Butt onLeft, sf ButtonRi ght, and sf Butt onM ddl e. The shift mask argument mis an integer
that has bits set indicating which modifier keys were pressed. Return O if you don’t handle the mouse click;
return 1 if you do, to override any of Saphira’s built-in mouse processing routines.

To convert from screen to global robot coordinates, usethe sf Scr eenToWdr | d functions, which return
their answersin mm.

Not available in Colbert.

4.2 Predefined Saphira Micro-Tasks

WEe' ve provided a variety of predefined Saphira micro-tasks for control of the robot. Y ou may initiate
these micro-task sets using the API functions described here, or invoke them individually using the
sfilnitProcess API cal (see Section 4.5)

Both the micro-task function and the instantiation name given by thei ni t function are described here.
The instantiation name is used to refer to the running micro-task, and is shown in the Function/Processes
window. To remove a micro-task with instantiation name i nane, you can typer enove i nane inthe
interaction window or an activity, or use sf RenoveTask(" i nanme”) from C code.

voi d sflnitBasicProcs(void)

Starts up a set of basic communication, display, motor, and sensor control processes. Among other
activities, these processes implement the client statereflector. The processesinvoked are shown in
Table 8-2.

Table 8-2. Basic communication, display, motor, and sensor control processes

Function Name Description

pul se_proc pul se Sends communication pulse every 1 second

not or _pr oc not or Coordinates keyboard and behavior motor commands
cl anp_proc cl anp Rotates the world around the robot

sonar _proc sonar Adds new sonar readings to the sonar buffer
wake_proc wake Draws a wake of the robot’s motion

draw_proc dr aw Updates Saphira display window

process_waiti ng_packets packets | Parsesinformation packets from robot server

Drawing, wake, and clamping processes are affected by variables that users can set from the Display menu
in Saphira’ s mai n window.

sf 1 ni t Basi cProcs isinvoked by sf St ar t up, so the user should not have to call this function. Not
available in Colbert.

voi d sflnitControl Procs(void)

Starts up a process for evaluating al active behaviors. If you want to run without using the fuzzy behavior
controller, by using the direct motion functions, then don’t initiate this process.

Table 8-3.

Function Name Description

execut e_current_behavi ors | execute | Evauatesbehaviorsand outputsamotor control

void sflnitlnterpretati onProcs (void)

Starts up processes for interpretation of sonar results.

Table 8-4.

Function Name Description

occgrid_proc occupancy grid Computes an occupancy grid

si de_segnent _proc si de segs Forms linear artifacts robot motion
test_wall _proc test wall Performs wall recognition
test_wal |l _break_proc |test wall break [doorandjunctionrecognition

These processes must be started to have results deposited in sf Lef t Val | Hyp and
sf Ri ght Val | Hyp.

void sflnitRegistrationProcs (void)

Starts up position registration processes useful for navigation in an office environment.
Table 8-5.

Function Name Description
test _match_proc test matching | matching of linear and point artifacts
test_environnment_proc |test where identification of current situation

voi d sfRunEval uator (void)

This micro-task starts up the Colbert evaluator, which is the executive for activities. The evaluator also
accepts input from the interaction window. The basic client bi n/ saphi r a. ¢ startsthis process. If you
define a stand-alone client, and want to run Colbert, then start this micro-task (using sf | ni t Process) in
your start-up callback.

4.3 State Reflection

State reflection is away of isolating client programs from the work involved in send control commands
and gathering sensory information from the robot. The state reflector is a set of data structuresin the client
that reflects the sensor and motor state of the robot. The client can examine sensor information by looking
at the reflector data, and can control the robot by setting reflector control values. It is the responsibility of
the Saphira OS to maintain the state reflector by communicating with the robot server, receiving
information packets and parsing them into the state reflector, and sending command packets to implement
the state reflector control values. The micro-tasks started by sf | ni t Basi cPr ocs are the relevant ones:
Y ou must invoke this function for the state reflector to function.

The state reflector has three important data structures.
The sf Robot structure holds motion and position integration information, as well as some sensor
readings (motor stall sensors, digital 1/0 ports).
The sonar buffers hold information about current and past sonar returns.
The control structures command robot motions.

This section describes the robot and sonar information structures; the next one, the direct motion
commands that affect the control structures.

struct robot sfRobot

The variable sf Robot holds basic information reflected from the robot server. Table 8-6, below, shows
the values of the various fields in this structure; the definitionisin handl er /i ncl ude/ st ruct . h.

All of thevaluesinthe sf Robot structure are reflected from the robot server back to the client,
providing information about the robot’ s state. In thisway, it is possible to tell if acommand has been
executed. For example, the di gout put field reflects the actual value of the digital output bits set on the

robot.

The interpretation of some of the values in the structure is robot-dependent, e.g., the bunper s field
reflects motor stall information for the Pioneer robots. The Saphiralibrary provides some convenience

functions for interpreting these fields; see the following subsections.

Thisvariable is defined in Colbert, as well as the robot structure, and most of the fields are available; type

Table 4-6. Definition of the sf Robot structure.

hel p robot for alist of fields.

sf Robot field Units Description
X, y, th mm, mm, degrees Robot’ s location in robot
coordinates;
always (0, 0, 0)

ax, ay, ath

mm, mm, degrees

Robot’ s global location

tv, ntv mm/sec Current and max velocity
rv, nrv deg/sec Current and max rotational velocity
leftv, rightv mm/sec Left and right whee! velocities
status int Robot status:
STATUS_STOPPED Robot stopped
STATUS MOVING Rabot moving
STATUS NOT_CONNECTED Client not connected
STATUS NO _HIGH_POWER Robot motors stalled
battery 1/10 volt Battery power
bunpers int Bumper state
ptu USecs Pan/tilt unit (servo) heading
di gi nput int Digital input state
di gout put int Digital output state
anal og 0-255 [OV-5V] Analog input voltage

not or _packet _count
sonar _packet _count
Vi si on_packet _count

counts per second

Packet communication information

4.3.1 Motor Stall Function
On Pioneer-class robots, the motors stall if the robot encounters an obstacle. Each motor can stall

independently, and this can yield information about where the obstacleis, e.g., if the right motor stalls, then
the right wheel or right side of the robot is affected. However, you can't rely absolutely on this behavior, as
sometimes both motors will stall even when the obstacle is on one side or the other. Motor stall information
isreturned in the bunper s field.

10

int sfStalledMotor (int which)

Return 1 if the motor is stalled and O if it isn’t. The argument whi ch issf LEFT or sf Rl GHT.

4.3.2 Sonar buckets

The current range reading of sonar sensorsis held in an sdat a structure, defined below. The structures
for al the sonars arein an array called sbucket , e.g., sbucket [2] isthe sdat a structure for sonar
number 2. Sonars start at number 0. This variable is not defined in Colbert, which doesn’t have arrays;
instead use the convenience function sf Sonar Bucket .

Fieldsin the sdat a structure indicate the robot’ s position when the sonar was fired, the range of the
sonar reading, and the position in robot coordinates of the point on the sonar axis at the range of the
reading. Thefield snewis set to OXFFFF when a new reading is received; the client program can poll this
field to ascertain if the reading is new, and set it to O to indicate that it has been read.

A value of 5000 for the sonar range indicates that no echo was received after the sonar fired and waited
for areturn. Several convenience functions for accessing current sonar readings are described below.

Sonar readings are accumulated over short periods of time into a set of buffersin the LPS; see the section

t
{

float fx, fy, fth; /* robot position when sonar read */

float afx, afy, afth; /* absol ute position when sonar read */

float x, vy; /* sonar reading in flakey RWcoords */

int range; /* sonar range reading in nm*/

int snew /* whether it's a new reading */

} sdat a;

| MPORT extern sdata sbucket[]; /* hol ds one sdata per sonar, indexed by sonar
nunber */

ypedef struct /* sonar data collection buffer */

on the LPS, below.
Listing 8-1.

sdat a *sf Sonar Bucket (i nt nun
i nt sf Sonar Range(i nt nun)
fl oat sfSonar XCoord(int num
float sfSonarYCoord(int num
i nt sf Sonar New(i nt nunj

The first function returns a pointer to the data structure of the nunith sonar, or NULL if no such sonar
exists.

The next three functions return the range and x,y coordinates of the sonar reading. The last function
returns 1 if it'sanew reading, O if not; it also resets the new flag to 0 so that the same reading isn’t
returned twice.

4.4 Direct Motion Control

Direct motion control uses the state reflector capability of the Saphira OS to implement a useful client-
side motion control system. Instead of sending motor commands to the server, a client sets motion setpoints
in the state reflector. The OS takes care of transmitting appropriate motor commands to the robot.

Direct motion control offers three advantages over sending motor control packets
directly.

11

It checks that the setpoints are actually sent to the robot server, given the unreliability of the
communication channel.

It implements a set of checking functions for determining when the motion
commands are finished.

It has a position control mode which moves the robot a specified distance forward
or backward.

Direct control of the two control channels (translation and rotation) is independent, and commands to
control them can be issued and will execute concurrently.

The direct motion functions require the state reflector to be operational; that is, the function
sf 1 ni t Basi cProcs must be called. Thisis done automatically by sf St ar t up, so the user need not
call it explicitly.

voi d sfSetVelocity(int vel)
voi d sfSetRVelocity(int rvel)

Set the translational and rotational setpointsin the state reflector. If the state reflector is active, these
setpoints are transferred to the robot. VValues for translational velocity are in mm/sec; for rotational velocity,
degrees/sec.

voi d sf Set Headi ng(i nt head)
voi d sf Set DHeadi ng(i nt dhead)

The first function sets the absolute heading setpoint in the state reflector. The argument is in degrees,
from 0O to 359.

The second function increments or decrements the heading setpoint. The argument isin degrees, from
-180 to +180.

If the state reflector is active, the heading setpoint is transferred to the robot.

voi d sfSetPosition(int dist)
voi d sf Set MaxVel ocity(int vel)

The first function sets the distance setpoint in the state reflector. The argument isin mm, either positive
(forward) or negative (backward). If the state reflector is active, it sends motion commands to the robot to
move the required distance. The maximum velocity attained during motion is given by
sf Set MaxVel oci ty, in mm/sec.

i nt sfDonePosition(int dist)
i nt sfDoneHeadi ng(int ang)

Checks whether a previously-issued direct motion command has completed. The argument indicates how
close the robot has to get to the commanded position or heading before it is considered completed.
Arguments are in mm for position and in degrees for heading. On a Pioneer robot, you should use at least
100 mm for the distance completion, and 10 degrees for angle. Otherwise, the robot may not move enough
to trigger the completion function. Note that, even though the robot may not achieve a given heading very
precisaly if itisjust turning in acircle, asit moves forward or backward it will track the heading better.

12

fl oat sfTarget Vel (voi d)
fl oat sfTarget Head(voi d)

These functions return the current reflected values for the velocity and heading setpoints, respectively.
Values are in mm/sec and degrees.

13

4.5 Saphira Multitasking

One problem facing any high-level robotics controller is developing an adequate real-time base for the
many concurrent processes that must be run. Rather than depend on the machine OS for this capability, we
have implemented a simple “round robin” cooperative scheme that places responsibility on each individual
process to complete itstask in atimely and reasonable manner. Each processiis called a micro-task, because
it accomplishes alimited amount of work.

Compute-intensive processes that take a long time to complete, but that can execute asynchronously with
the Saphira system, can be implemented as concurrently executing threads. Accordingly, use the Saphira
sf St ar t up function with an async argument of 1 and prepare your processes so that they execute as a
concurrent thread, as we describe below.

Colbert activities and behaviors are also micro-tasks and are defined using the Colbert language or
behavior compiler (see Chapters 1 and 4). Some of the micro-task control functions described below are
useful for these tasks, as well. To distinguish behaviors and activities from other micro-tasks, we call the
latter simple micro-tasks.

4.5.1 Micro-task Definition

Simple micro-tasks are functions with no arguments together with state information. Micro-tasks access
their state through a global integer variable, pr ocess_st at e. Processes are initiated by an API call,
sf 1 ni t Process, which places the function onto the process stack. After they are initialized, Saphirawill
call them with an initial state of sf I NI T. The micro-task can change its state by setting the value of
process_st at e. User-defined state values are integers greater than 10; values less than 10 are reserved
for special states (see Table 8-7).

Table 4.7. Saphira multiprocessing reserved process state values.

State Explanation
sfINT Initial state

sf SUSPEND Suspended state
sf RESUVE Resumed state

sf 1 NTERRUPT |Interrupted state

sf REMOVE Requests the scheduler to remove this micro-task
sf SUCCESS Micro-task succeeded (default ending)

sf FAI LURE Micro-task failed

sf TI MEQUT Micro-task timed out

-n Suspend this micro-task for n cycles

Process cycletime is 100 ms. On every cycle, Saphira calls each micro-task, withitspr ocess_st at e
set to the current value for that micro-task. The micro-task may change its state by resetting
process_st at e. A micro-task may suspend itself by setting the state to sf SUSPEND. Another micro-
task or your program must resume a suspended micro-task (see below for relevant functions). A micro-task
may also suspend itself for n cycles by setting pr ocess_st at e to -n, in which case it will use
sf Resune to resume after the allotted time expires.

14

The sf | NTERRUPT state indicates an interrupt request from another micro-task or the user. Micro-tasks
should be written to respond to interrupts by saving needed information, then suspending until receipt of a
resume request. Many of Saphira’ s predefined micro-tasks are written in this way.

The sf SUCCESS and sf FAI LURE states are used to indicate the successful or unsuccessful completion
of amicro-task. The micro-task may set these as appropriate, or signal other micro-tasks to set them. No
further processing takes place unless the micro-task is resumed.

Simple micro-tasks do not have timeouts, but activities and behaviors do. In these cases, a state of
sf TI MEQUT means that the micro-task has timed out before completing its job.

The fixed cycle time of a micro-task invocation means that micro-tasks can have guaranteed response time
for critical tasks; a controller can issue acommand every 100 ms, for example. Of course, response time
depends on the conformity of all micro-tasks: The combined execution time of al micro-tasks must never
exceed 100 ms. If it does, the cycle time will exceed 100 ms for all micro-tasks. Hence, alow around 2-5
ms of compute time per micro-task, and divide large micro-tasks into smaller pieces, each able to execute
within the 2-5 mstime frame, or run them as concurrent threads.

Listing 8-2 provides an example of atypical interpretation micro-task function. It starts by setting up

housekeeping variables, then proceeds to alternate door recognition with display of its results every second
or so.

#define FD_FI ND 20
#defi ne FD_DI SPLAY 21
voi d find_doors(void)
{
int found_one;
swit ch(process_st at e)

case sfINT: /* Come here on startup /
found_one = O0;
{ ...}
process_state = FD_FI ND;
br eak;
case sf RESUVE: /| Cone here after suspend /
process_state = FD_FI ND;
br eak;
case sfl NTERRUPT: / Interrupt request /
found_one = O0;
process_state = sf SUSPEND;
br eak;
case FD_FI ND: / Looking for doors /
{ call recognition function }
process_state = FD_DI SPLAY;
br eak;
case FD_DI SPLAY: / Now we display it */
if (found_one)
{ call display function }
process_state = -8; /* suspend for 8 ticks */
br eak;
}
}

Listing 8-2. Example of a typical inter pretation micro-task function.

4.5.2 State Inquiries
The state of a micro-task can be queried with the following functions.

i nt sfCGetProcessState(sfprocess *p)
i nt sfCGet TaskSt ate(char *i nane)

15

i nt sfSuspended(sfprocess *p)

i nt sfTaskSuspended(char *i namne)
i nt sfFinished(sfprocess *p)

i nt sfTaskFi ni shed(char *i nane)

These functions come in two varieties: those that take a micro-task pointer as an argument, and those that
take an instantiation name. The latter first look up the micro-task in the task list, using the instantiation
name.

sf Get ProcessSt at e returns the state of the process as an integer, if it exists;
otherwise, it returns O.

sf Suspended is1if the micro-task is suspended and O if it is active.

sf Fi ni shed is1if the task has completed successfully, failed, or timed out; it is 2 if the micro-task is
not on the scheduler’slist; and it is O if the micro-task is still active.

4.5.3 Micro-Task Manipulation
When instantiating a micro-task, give it a unique string name and later refer to it by name or pointer. The
following Saphira functions initiate, suspend, and resume micro-tasks:

sfprocess *sflnitProcess (void *fn(void), char *nane)

Thesf I ni t Process function starts up a micro-task with the name name and function f n, and returns
the micro-task instance pointer, which can be used in micro-task-manipulation functions. No corresponding
function for deleting micro-tasks exists—suspend it if it is no longer needed.

sf process *sfFi ndProcess (char *nane)

The sf Fi ndPr ocess function searches for and returns the first micro-task instance it finds with the
name namne. A micro-task instance pointer is returned if successful; else NULL.

voi d sfSetProcessState (sfprocess *p, int state)
voi d sf SuspendProcess (sfprocess *p, int n)
voi d sf SuspendTask (char *inane, int n)
voi d sfSuspendSel f (int n)

voi d sflnterruptProcess (sfprocess *p)

voi d sflnterruptTask (char *inane)

void sflnterruptSelf (void)

voi d sf ResuneProcess (sfprocess *p)

voi d sfResuneTask (char *inane)

voi d sf RenmoveProcess (sfprocess *p)

voi d sfRenmoveSel f (void)

voi d sfRemoveTask (char *inane)

The sf Set Pr ocessSt at e function sets the state of micro-task instance p to st at e. The argument p
must be a valid micro-task instance pointer, returned from sf Fi ndPr ocess or sf | ni t Process. The
other functions are particular callsto sf Set Pr ocessSt at e. The other functions are convenience
functions for signaling micro-tasks to set certain states.

4.5.4 Invoking Behaviors
Behavior activities can be invoked from Colbert with the st art command, or from C code with the
following function.

16

sf process sf StartBehavi or (behavior *b, char *in, int tout,
int pri, int suspend, ...)

The sf St ar t Behavi or function instantiates a behavior activity, using behavior schemab. The
instantiation nameisi n, and the priority of the behavior ispri . A timeout (t out) must be specified; a
timeout of 0 means the behavior will execute indefinitely. The suspend argument is O if the behavior isto
be active immediately, and 1 if it isto be started in a suspended state, to be activated by ar esune signal.

The remainder of the argumentsto sf St ar t Behavi or are the arguments to the behavior. There must
be exactly the same number and types of arguments as are specified by the behavior parameters.

This function is equivalent to the following:

start b(...) inane in tinmeout tout priority pri [suspend]
where b is the name of the behavior schema.

4.5.5 Activity Schema Instantiation

An activity schema can be instantiated from another Colbert activity or the user interaction area, with the
start command (see Section Error! Reference source not found.). Alternatively, activities can be started
from C codewiththesf St art Acti vity function.

int sfStartActivity(char *schema, char *in, int tout,
i nt suspend, ...)

Thesf St art Acti vi ty function instantiates an activity whose library nameisschena. The
instantiation nameisi n. A timeout (t out) must be specified; atimeout of 0 means the activity executes
indefinitely. The suspend argument is O if the behavior is to be active immediately, and 1 if it isto be
started in a suspended state, to be activated by ar esune signal.

The remainder of the argumentsto sf St art Acti vi ty arethe argumentsto the activity. The number
and types of arguments must equal the number specified by the behavior parameters.

This function is equivalent to this one:

start schema(...) iname in tinmeout tout [suspend]

where schema isthe name of the activity schema.
The function returns O if it instantiated the activity successfully, and -1 if it did not.

4.6 Local Perceptual Space

Local Perceptual Space (LPS) is a geometric representation of the robot and its immediate environment.
Unlike the internal coordinate system we described in Chapter 4 (a system that represents the dead-
reckoned position of the robot server), the LPS is an egocentric coordinate space that remains clamped to
the robot center (see Figure 4-1).

Unitsin the LPS are millimeters and degrees. For example, the position of a point artifact in the LPSis
represented by an x and y coordinate in mm, and as an angle relative to the x axis, in degrees. Note:
Sarting with version 6.1, all internal and user angles are specified in degrees, rather than radians.

4.6.1 Sonar buffers

The current range readings of all the sonars can be found in the sonar bucket structures (see the section on
the state reflector ,above). As the robot moves, these readings are accumulated in the LPS in three internal
buffers. These buffers are available to user programs and are also used by the obstacle-finding functionsin
the next subsection.

17

The reading values are placed on the centerline of the sonar at the range that the sonar indicates.
Saphira s display routines draw sonar readings as small open rectangles, and if the robot moves about
enough, they give agood picture of the world.

The three buffers are the front and two side buffers (left and right). Each buffer isacbuf structure,
defined below. Client programs, unless they are interested in the temporal sequence of sonar readings, can
treat these buffers as linear structureswith sizel i m t . The buffer size can be changed using the functions
defined below.

The reason for having different buffersis that they satisfy different needs of the robot control software.
The front sonars, pointed in the direction of the robot’s travel, warn when obstacles are approaching. But
the spatial definition of these sonarsisn’t very good, and it’s amost impossible to distinguish the shape of
the obstacle. A wall in front of the robot, for example, will look only alittle bit like a straight line (see the
excellent book by Leonard and Durant-Whyte).

i

O0
(1320,-350)
+X
O
. O
Heading oo
control T— I:l (m}
o o
Front Forward and
rotational
0 — iti
+90° +Y — velocities _900
|/
0
+180

Figure 4-1. Saphira’s L PS coordinate system.

The side-pointing sonars are somewhat useful for obstacle avoidance, because they signal when it isn’t
useful to turn to one side or the other. But their main purpose is to delineate features for the recognition
algorithms. They are good for this purpose because the robot often is moving paralel to wall surfaces. As
side sonar readings are accumulated, it’s possible to pick out a nice straight feature.

The buffers differ dightly in how they accumulate sonar readings and therefore serve different purposes.
They are all circular buffers; that is, a new reading replaces the oldest one. The front buffer, sr aw_buf ,

18

accumulates one reading each time a sonar is fired, regardless of whether it sees anything. If nothing is
found, theval i d flag at that buffer position is set to O; otherwise, it is set to 1, and the xbuf and ybuf
dots are set to the position of the sonar reading, in the robot’ s local coordinate system. This strategy
guarantees that the front buffer can be cleared out after nothing has been in the robot’ s way for a short
time. For example, if the robot is getting 20 front sonar readings a second, and the front buffer is 30
elementslong, it will be completely clear in 1.5 seconds if nothing isin front of the robot.

The two side buffers, sr _buf and sl _buf , accumulate sonar readings only when a side sonar actually
sees a surface; hence, their val i d flag is always set. Thus, readings stay in the side buffers for longer
periods of time, and Saphira has a chance to figure out what the features are.

As the robot moves, all the entriesin the circular buffers are updated to reflect the robot’s motion; i.e., the

#defi ne CBUF_LEN 200

typedef struct /* Circular buffers. */

int start; /* internal buffer pointer */
int end; /* internal buffer pointer */

int limt; /* current buffer size */

fl oat xbuf[CBUF_LEN] ;

fl oat ybuf[CBUF_LEN] ;

int valid[CBUF_LEN]; /* set to 1 for valid entry */
} cbuf;

cbuf *sraw buf, *sr_buf, *sl| _buf;

sonar readings stay registered with respect to the robot’ s movements.
Li sting 8-3.

void sfSetFrontBuffer (int n)
voi d sfSetSideBuffer (int n)
fl oat sfFront MaxRange

These buffers are not currently available in Colbert. The first two functions, when given an argument
greater than zero, set the front and side buffer limits to that argument, respectively. If given an argument of
0, they clear their buffers, that is, set theval i d flagsto 0. These buffer limits can also be set from the
parameter file; they are initialized for a particular robot on connection.

sf Fr ont MaxRange is the maximum range at which a front sonar reading is considered valid. It is
initially set to 2500 (2.5 meters). Setting this range higher will make the obstacle-avoidance routines more
sensitive and subject to false readings; setting it lower will make them less sensitive.

4.6.2 Occupancy functions

The following functions look at the raw sonar readings to determine if an obstacle is near the robot. Other
Saphirainterpretation micro-tasks use the sonar readings to extract line segments representing walls and
corridors.

Saphira has several functions for testing whether sonar readings exist in areas around the robot. The
different functions are useful in different types of obstacle-detection routines; for example, when avoiding
obstacles in front of the robot, it’s often useful to disregard readings taken from the side sonars.

The detection functions come in two basic flavors: box functions and plane functions. Box functions ook
at arectangular region in the vicinity of the robot, while plane functions ook at a portion of a half-plane.

19

int sfCccBox (int xy, int cx, int cy, int h, int w)
int sfCccBoxRet (int xy, int cx, int cy, int h, int w,
float *x, float *y)

When using these functions, it helps to keep in mind the coordinate system of the LPS. They look at a
rectangle centered on cy,cy with height h and width w. sf CccBox returns the distance in millimeters to
the nearest point to the center of the robot in the x direction (xy = sf FRONT) or y direction (xy =
sf SI DES). The returned value will always be a positive number, even when looking on the right side of the
robot (negative y values). If no sonar reading is made within the rectangle, it returns 5,000 (5 meters).

For example, in the case of an LPS shown in Figure 4-2,
sf CccBox(sf SI DES, 1000, 600, 900, 800, 1) returns 300; sf CccBox(sf FRONT, 1000, -

600, 900, 600, 0) returns 600.

sf CccBoxRet returnsthe same result as sf CccBox, but also sets the arguments * x and *y to the

closest reading in the rectangle, if one exists.

OO
cx:1000, cy:-600
+X 7
O
<0]
h:900
Front
0 w: 800 o
+90 +Y \ 4 -90

N/

+180O

Figure 4-2. Sensitivity rectangle for thesf GccBox functions.

20

int sfCccPlane (int xy, int source, int d, int s1, int s2)
int sfCccPlaneRet (int xy, int source, int d, int sl1, int s2,
float *x, float *y)

The plane functions are slightly different. Instead of looking at a centered rectangle, they consider an
infinite rectangle defined by three sides: a line perpendicular to the direction in question, and two side
boundaries.

Figure 4-3 shows the relevant areas for sf OccPl ane(sf FRONT, sf FRONT, 600, 400, 1200) . The
first parameter indicates positive x direction for the placement of the rectangle. The second parameter
indicates the source of the sonar information: the front sonar buffer (sf FRONT), the side sonar buffer
(sf SI DES), or both (sf ALL).

The rectangle is formed in the positive x direction, with the line X = 600 forming the bottom of the

rectangle. Theleft sideisat Y =400, theright at Y =-1200. The nearest sonar reading within these bounds
is at an x distance of 650, and that is returned.

i

OO

+X s2=-1200
sl =400 (]

(]
oo
(]
m
Front return = 650
0 0
+90 +Y -90

Figure 4-3 Sensitivity rectanglefor sf OccPl ane functions.

Note that the baseline of sf OccPl ane isaways a positive number. To look to the rear, use an xy
argument of sf BACK; the left sideisxy = sf LEFT; and theright sideisxy = sf Rl GHT.

Aswith sf OccBox, avalue of 5000 is returned if no sonar reading is made. And, to return the
coordinates of the nearest point in the rectangle, use the sf CccPl aneRet function.

4.7 Artifacts

Through Saphira, you can place a variety of artificial constructs within the geometry of the LPS and have
them registered automatically with respect to the robot’ s movement. Generally, these artifacts are the result
of sensor interpretation routines and represent points and surfaces in the real world. But they can also be
purely imaginary objects—for example, agoal point to achieve or the middle of a corridor.

Artifacts, like the robot, exist in both the LPS and the global map space. Their robot-relative coordinates
inthe LPS (x, vy, th) canbeused to guidethe robot locally; e.g.., to face towards a goa point. Their

21

global coordinates (ax, ay, at h) represent position and orientation in the global space. As the robot
moves, Saphira continuously updates the LPS coordinates of all artifacts, to keep them in their relative
positions with respect to the robot. The global positions of artifacts don’t change, of course. But the dead-
reckoning used to update the robot’ s global position as it moves contains errors, and the robot’ s global
position gradually decays in accuracy. To bring it back into alignment with stationary artifacts, registration
routines use sensor information to align the robot with recognized objects. These functions are described in
a subsequent section.

You may add and delete artifacts in the LPS. User may add two types of artifacts. Map artifacts are
permanent artifacts representing walls, doorways, and so on in the office environment. Goal artifacts are
temporary artifacts placed in the LPS when a behavior isinvoked. The artifact functions as an input to the
behavior— for example, a behavior to reach a goal position exists, and the goal is represented as a point
artifact in the LPS. Usually, these artifacts are deleted when the behavior is completed.

The system also maintains artifacts of different types: An artifact represents the origin of the global
coordinate system, for instance, and various hypothesis artifacts represent hypothesized objects extracted by
the perceptual routines and used by the registration routines.

4.7.1 Points and Lines

All artifacts are defined as C structures. Each has atype and a category. The type defines what the artifact
represents; the simplest artifacts are points and lines, while corridors are a more complex type. Y ou may
define your own artifact types.

The category of an artifact relates to its use by the LPS. Currently, Saphira supports three categories:
system for artifacts with an internal function, percept for artifacts representing hypothesized objects
extracted from sensor input, and artifact for user-created artifacts such as map information and goal
artifacts..

typedef enum

{
SYSTEM PERCEPT, ARTI FACT
} cat_type

typedef enum

I N\VALI D, POS, WALL, CORRI DOR, LANE, DOOR, JUNCTI ON, OFFI CE, BREAK, OBJECT
} pt_type;

Listing 8-4.

The poi nt type consists of adirected point (position and direction), with an identifier, atype, a category,
and other parameters used by the system. All x,y coordinates are in millimeters, and direction isin degrees
from -180 to 180. The type POS is used for goal positionsin behaviors. Other types may add additional
fieldsto the basic poi nt type-for example, length and width for corridors.

typedef struct

float x, y, th; /* x, y, th position of point relative to robot /
pt _type type; /| type of point /
cat _type cat; | category /
bool ean snew; /| whether we just found it /
bool ean vi ewabl e; /| whether it's valid /
int id; / unique nuneric id /
float ax, ay, ath; / gl obal coords /
unsi gned i nt mat ched; / last time we matched /
unsi gned int announced; / last tine we announced */
} point;
Listing 8-5.

22

The orientation of a point is useful when defining various behaviors. For example, a doorway is
represented by a point at its center, awidth, and a direction indicating which way is into the corridor.

poi nt *sf CreatelLocal Point (float x, float y, float th)
poi nt *sf Created obal Point (float x, float y, float th)
voi d sf Set Local Coords (point *p)
voi d sf Set d obal Coords (poi nt *p)

The first two functions use the supplied coordinates to create new ARTI FACT points of type PCS, which
is very useful for behavir goal positions. For example, sf Cr eat eLocal Poi nt (1000. 0, 0.0,
0. 0) creates a point 1 meter in front of the robot.

The second two functions reset the local or global coordinates from the other set, based on the robots
current position. These functions are useful after making a change in one set of coordinates.

To keep apoint’slocal coordinates updated within the LPS, it must be added to the pointlist after it is
created. The pointlist isalist of artifacts that Saphira updates when the robot moves.

voi d sf AddPoi nt (point *p)
voi d sf AddPoi nt Check (point *p)
voi d sfRenPoi nt (point *p)
poi nt *sfFindArtifact (int id)
void sfRemArtifact (int id)
ist *sfPointList

These functions add and delete members of the pointlist. Ordinarily, to add a point to the pointlist, you
use sf AddPoi nt Check, which first checks to make sure point p isnot in the list already before adding it.
It is not a good idea to have two copies of a pointer to a point in the pointlist, because its position will get
updated twice. The sf RenPoi nt function removes a point from the list, of course. sf Fi ndArti f act
returns the artifact on the pointlist with identifier i d, if it exists; otherwise, it returns NULL. Finally,
sf RemArti fact removes an artifact from the list, giveniitsi d.

The pointlist is available as the value of the variable sf Poi nt Li st . The definition of alist isgivenin

handl er /i ncl ude/ struct. h. If it is necessary to check current artifacts, a function can iterate
through this list.

poi nt *sfd obal Origin
poi nt *sfRobot Ori gin

These are SYSTEMpoints representing the global origin (0,0,0) and the robot’ s current position.

4.7.2 Other Artifact Creation Functions
Walls, corridors, doors, junctions, and lanes can all be created with the following help functions. These
artifacts are important in defining maps for the robot.

poi nt *sfCreatelLocal Artifact(int type, int id, float x, float vy,
float th, float width, float |ength)

poi nt *sfCreated obal Artifact(int type, int id, float x, float vy,
float th, float width, float |ength)

Type Return Value |

Table 4-7. Artifact creation types.

23

sf CORRI DO corridor *

R

sf LANE | ane *

sf DOOR door *

st JUNCTI O junction *
N

sf WALL wal | *

sf PO NT poi nt *

These two functions create and return artifacts of the specified type, using either local or global
coordinates. Table 8.7 shows the allowed types:

Although these functions are declared as returning type poi nt *, in fact they return a pointer to the
appropriate structure, and the result should be cast as such. All these structures are similar in their first
several arguments (i.e., local and global coordinates), so all can be used in the geometry manipulation
functions.

Unlike the sf Cr eat eXPoi nt functions, these functions automatically add the artifact to the pointlist.
So, if you want to create a point and add it to the pointlist, use the sf PO NT type here, instead of the
sf Cr eat eXPoi nt functions.

Not all types use all of the parameters: length and width are ignored for sf PO NT, length isignored for
sf DOOR and sf JUNCTI ON,, and width isignored for sf WALL. In general, the x, y , t h coordinates
are for apoint in the middle of the artifact. Figure 8-4 hows the geometry of the constructed artifacts.

length length
dth . idth .
Wi Wi

X,y,th X,y,th

Corridor Lane

length

> width width
x,y,th
y.th y.th
wall d d
Door Junction

Figure 4-4 Geometry of artifact types. The defining point for the artifact is shown as a vector with a
circleat theorigin.

Artifacts are most often used in constructing maps for the robot and registering it based on sensor
readings (see Section 4.10).

24

4.7.3 Geometry Functions

Saphira provides a set of functions to manipulate the geometric parameters of artifacts. These functions
typically work on the local coordinates of the artifact. To update an artifact properly after changing itslocal
coordinates, you should call the sf Set G obal Coor ds function.

float sfNornmAngl e(fl oat ang)
float sfNornRAngl e(fl oat ang)
float sfNornBAngl e(fl oat ang)
float sfAddAngle(float al, float a2)
float sfSubAngle(float al, float a2)
float sfAdd2Angl e(float al, float a2)
float sfSub2Angl e(float al, float a2)

These functions compute angles in the LPS. Normally, angles in the L PS are represented in degrees, using
floating-point numbers. Artifact angles are always normalized to the interval [0,360] . sf Nor mAngl e will
put its argument into this range. The corresponding functions sf AddAngl e and sf SubAngl e also
normalize their resultsin this way.

It is often convenient to give headings in terms of positive (counterclockwise) and negative (clockwise)
angles. The second normalization function, sf Nor nRAngl e, converts its argument to the range

[- 180,180] , S0 that the discontinuity in angle is directly behind the robot. The corresponding functions
sf Add2Angl e and sf Sub2Angl e also normalize their results this way.
Finally, it is sometimes useful to reflect all angles into the upper half-plane [- 90,90] . The function

sf Nor mBAngl e will do thisto its argument, by reflecting any anglesin the lower half-plane around the
X-axis; e.qg., +100 degrees is reflected to +80 degrees.

float sfPointPhi (point *p)
float sfPointDist (point *p)
float sfPointNormal Di st (point *p)
fl oat sfPointDistPoint(point *pl, point *p2)
float sfPointNormal D st Point (point *p, point *q)
void sfPointBaricenter (point *pl, point *p2, point *p3)

The first three functions compute properties of points relative to the robot. The function sf Poi nt Phi
returns the angle of the vector between the robot and point p, in degrees from -180 to 180. sf Poi nt Di st
returns the distance from the point to the robot. sf Poi nt Nor mal Di st returns the distance from the robot
to the line represented by the artifact point; it will be positive if the normal segment is to the left of the
robot’s x axis, and negative if to the right.

The second three functions compute properties of points. sf Poi nt Di st Poi nt returns the distance
between its arguments. sf Poi nt Nor mal Di st Poi nt returns the distance from point q to the line
represented by artifact point p. The distance will be positive if the normal segment is to the left of g’s x
axis, and negative if to theright. sf Poi nt Bar i cent er setspoint p3 to be the point midway between
point p1 and p2.

void sfChangeVP (point *pl, point *p2, point *p3)
void sfUnchangeVP (point *pl, point *p2, point *p3);
float sfPointXo (point *p)

float sfPointYo (point *p)

fl oat sfPoint XoPoint (point *p, point *q)

25

fl oat sfPointYoPoint (point *p, point *q)
void sfPointMve (point *pl, float dx, float dy, point *p2)
void sfMveRobot (float dx, float dy, float dth)

These functions transform between coordinate systems. Because each point artifact represents a coordinate
system, often it is convenient to know the coordinates of one point in another’s system. All functions that
transform points operate on the local coordinates; if you want to update the global coordinates as well, use
sf Set d obal Coords.

sf ChangeVP takes a point p2 defined in the LPS and sets the local coordinates of p3 to bep2’'s
position in the coordinate system of p1. sf UnchangeVP does the inverse, that is, takes a point p2 defined
in the coordinate system of p1, and sets the local coordinates of p3 to be p2’s position in the LPS.

In some behaviorsit’s useful to know the robot’s position in the coordinate system of a point.
sf Poi nt Xo and sf Poi nt Yo give the robot’s x and y coordinates relative to their argument’ s coordinate
system. sf Poi nt XoPoi nt and sf Poi nt YoPoi nt do the same for an arbitrary point q.
sf Poi nt Move setsp2 to the coordinates of p1 moved a distance dx and dy in its own coordinate
system.

sf MoveRobot moves the robot in the global coordinate system by the given amount. Thisis atrickier
operation than one might suspect, because the local coordinates of all artifacts must be updated to keep
them in proper correspondence with the robot. Note that the values dx and dy are in the robot’ s coordinate
system; e.g., sf MoveRobot (1000, 0, 0) moves the robot forward 1 meter along the direction it is
currently pointing.

Line artifacts are called walls. A wall consists of a straight line segment defined by its directed
centerpoint, plus length. Any linear surface feature may be modeled using the wall structure. The only type
currently defined isWALL.

Like points, walls may be added or removed from the pointlist so that Saphira registers them in the LPS
with the robot’ s movements. Cast each to type poi nt before manipulating them with the pointlist functions
described above.

Drawing artifacts on the LPS display screen is useful for debugging behaviors and interpretation routines.
Saphira currently draws most types of artifactsif their vi ewabl e slot is greater than 0.

4.8 Sensor Interpretation

Besides the occupancy functions, the Saphira library includes functions for analyzing a sequence of sonar
readings and constructing artifacts that correspond to objects in the robot’ s environment. We are gradually
making these internal functions available to users, as we work on tutorial materiasillustrating their utility.
Currently, the only interpretation routines are for wall hypotheses.

wal | sflLeftWall Hyp
wal | sfRi ght Wal | Hyp

These wall structures contain the current wall hypothesis on the left and right sides of the robot, using the
side sonar buffers. If awall structure is found, then the vi ewabl e flag is set non-zero in the structure, and
the wall dimensions are updated to reflect the sensor readings. For wall hypotheses to be found, the wall-
finding routines must be invoked with sf 1 ni t I nt er pr et ati onPr ocs.

4.9 Drawing and Color Functions
Use the following commands function to display custom lines and rectangles on the screen and to control
the screen colors. All arguments are in millimeters in the global LPS coordinate system.

26

void sfDrawector (float x1, float yl, float x2, float y2)
void sfDrawRect (float x, float y, float dx, float dy)
voi d sfDrawCent eredRect (float x, float y, float w, float h)

sf DrawMect or drawsalinefromx1, yltox2, y2.Thislineisinglobal
coordinates.

To draw arectangle, use the function sf Dr awCent er edRect or sf Dr awRect . The centered version
takes a center point of the rectangle, and awidth and height. The non-centered version takes the lower-left
corner position, awidth, and a height.

Saphira’s graphics routines now use a state machine model, in which color, line thickness, and other
graphics properties are set by a function, and remain for all subsequent graphics calls until they are set to
new values. Note that because you cannot depend on the state of the graphics context when you make a
graphics call, you should set it appropriately.

void sfSetLineWdth (int w)
voi d sfSetLineType (int w)
voi d sfSetLineColor (int color)
voi d sf Set Pat chCol or (int col or)
i nt sfRobot Col or
nt sf Sonar Col or
nt sfWakeCol or
nt sfArtifactCol or
nt sfStat uscCol or

i
i
i
i
i
i nt sf Segnent Col or

For lines, set the width w to the desired pixel width. This width affects all lines drawn in rectangles and
vectors. You may select one of two line types: Set thew function parameter to SFLINESOLID for a solid
line, and sSFLINEDASHED for a dashed line. The patch and line colors accept a color value as shown in
Table 4.8.

Table 4.8. Saphira colors.

Color Reference Valu
e

sf Col or Yel | ow

sf Col or Li ght Yel | ow
sf Col or Red

sf Col or Li ght Red

sf Col or Dar kTur quoi se 10
sf Col or Dar kA i veG ee 11

n
sf Col or Or angeRed 12
sf Col or Magent a 13
sf Col or St eel Bl ue 14
sf Col or Bri ckRed 15
sf Col or Bl ack 100
sfCol orWhite 101

27

Saphira drawing colorsfor the robot icon and various artifacts can be set using the variables shown
above.

4.10 Maps and Registration

Saphira has a set of routines for creating and using global maps of an indoor environment. This facility is
still under construction; this section gives an overview of current capabilities and some of the functions a
client program can access.

A map isacollection of artifacts with global position information. Typically, a map will consist of
corridors, doors, and walls—all artifacts of the offices where the robot is situated. Maps may be loaded and
deleted using the interface Files menu or by using function calls.

A map can either be created by the robot as it wanders around the environment, or you may create one as
afile. You can also save the map created by the robot to afile, for later recall.

4.10.1 Map File Format
A map file contains optional comments, designated with a semicolon (;) prefix, and lines specifying
artifacts in the map. All coordinates for artifacts are global coordinates. For example, Listing 8-6 shows a

portion of the map file for SRI’s Artificial Intelligence Center.

Map of a snmll portion of the SRI Artificial Intelligence Center
s X Y Th Length Wdth

CORRI DOR (1) 2000, 3000, 0, 3500, 800

CORRI DOR (2) 1000, 2000, 90, 6000, 1000

DOOR (3) 3000, 2600, 90, 1000
DOOR (4) 1500, 1000, 180, 1000
JUNCTI ON (5) 1500, 3000, O, 800

WALL (6) 1000, 4000, 0, 1000
WALL (8) 800, 3500, 90, 400
WALL 800, 4500, 90, 400

Listing 8-6.

The CORRI DOR lines define a series of corridor artifacts. The number in parentheses is the (optional)
artifact ID, and it must be a positive integer. The first three coordinates are the x, y, and q position of the
center of the corridor in millimeters and degrees. The fourth coordinate is the length of the corridor, and the
fifth is the width.

DOOR entries are defined in much the same way, except that the third coordinate is the direction of the
normal of the door, which is useful for going in an out. The fourth coordinate is the width of the door.

JUNCTI ON entries are like doors, but delimit where corridors meet. T-junctions should have three
junction artifacts, and X-junctions four. It s not necessary to put in any junctions, but they can be useful in
keeping the robot registered (see below).

The WALL entry does not have an ID. The first two coordinates are the x,y position of the center of the
wall; the third is the direction of the wall, and the fourth isits length. Wall segments are used where a
corridor is not appropriate-the walls of rooms or for large open areas, for example.

The map file, when loaded into a Saphira client using the Files/Load Map menu (or the function
sf LoadMapFi | e), creates the artifact structure shown in Figure 4-5-5. For illustration, the defining point
of the artifact is also shown as a small circle with a vector. These points will not appear in the Saphira
window.

28

— X
o —+ 30
<@ door 3

i C(éi’l‘ 1

0,0
Y 4.0 3.0 20 1.0

Figure 4-5. Sample map created from the map file above, as shown in a Saphira client. Corridor
artifacts display with double dotted lines; door s display with double solid lines; walls display as single
solid lines; junctions as pairs of solid lines. Numbers are the artifact 1D’s. For illustration, the defining
vector for each artifact is shown.

Note that a map represents artificial structures in the Saphira client, in the same way that latitude and
longitude lines are artifacts in global maps and are not found on the earth’ s surface. The robot or simulator
will not pay attention to these lines, because they are internal to the client. This can be a useful feature. For
example, a corridor is conceptually a straight path through an office environment; even where it has door
openings or junctions with other corridors, you can imagine the corridor walls as extended through these
areas. The rabot can still go “through” the artifact corridor sides at these points. The registration micro-
tasks (described below) use the map artifacts as registration markers, matching sensor data from the sonars
against this internal model to keep the robot registered on the map.

Obstacles within corridors, such as water coolers or boxes, can be represented using wall structures, such
asthe onein corridor 2.

i nt sfLoadMapFile (char *nane)
i nt sfSaveMapFil e(char *nane)
char *sf MapDir
i nt sfDel eteMapArtifacts(void)
i nt sfLoadWbrl dFil e(char *nane)

The sf LoadMapFi | e function loads a map file name into Saphira. It returns O if successful; -1 if the
file cannot be found. Any map file errors are reported in the message window, but note that only the last one
is displayed long enough to be read.

If the argument to the map file functions is arelative directory path (e.g., maps/ mymap), then Saphira
will use the map directory sf MapDi r as aprefix for this path. By default, sf MapDi r is set to the
directory maps in thetop level of the Saphira distribution.

29

L oaded artifacts are added to any map artifacts already in the system. To delete all map artifacts, use the
sf Del et eMapArti facts function. Anindividua artifact can be deleted using its ID number (see
Section 4.7).

The current client map can be saved to afile using sf SaveMapFi | e. The saved fileisin map file
format, so it can beread in using sf LoadMapFi | e.

When using the simulator with Saphira clients that have maps, it is useful to have the simulated world
correspond to the map. Unfortunately, the format of simulator world filesis different from map files, and
currently no utility exists to convert map filesinto simulator world files. They must be created by hand.

A simulator world file can be loaded into the simulator either by the menu commands in the simulator, or
by the sf LoadWor | dFi | e command issued from a client connected to the simulator.

4.10.2 Map Registration

As the robot moves, its dead-reckoned position will accumulate errors. To eliminate these errors, a
registration routine attempts to match linear segments and door openings against its map artifacts. This lets
you align the robot’ s global position with the global map. The micro-task that performs registration is called
t est mat chi ng. In the sample Saphira client, this micro-task is invoked by the function
sflnitRegistrati onProcs. Todisableregistration, either do not start thet est nmat chi ng micro-
task, or set its state to sf SUSPEND, using sf TaskSuspend.

The registration micro-tasks will preferentially match a complete doorway or corridor, if it has constructed
the corresponding hypothesis from sonar readings and a suitable map artifact is close by. Otherwise, it will
attempt to match single walls or sides of doorways. Matching corridors and walls helps keep the robot’s
angle aligned, and also its sideways distance. Finding doors helpsit to align in aforward/back direction.
Both of these are important to keeping the robot registered, but the angle registration is critical, because the
robot’ s dead-reckoned position quickly deterioratesiif its heading is off.

Corridor junctions can also be important landmarks for registration. Ideally, junctions should be
automatically generated from intersections of corridors. However, this capability does not currently exist,
and you have to put them in by hand. In Figure 8-5, Junction 5 is only one of three possible junction
artifacts for the corridor intersection. It will be used to register the robot as it moves down Corridor 2, just
as it would be to move through a doorway. To register the robot as it movesin Corridor 1, you would have
to put in the other two junctions at right angles to Junction 5.

4.10.3 Map Element Creation

A by-product of the registration micro-task is that sometimes a corridor or doorway is found that does not
match any map artifact. In this case, Saphirawill, by default, create a new artifact and add it to the map. To
turn off this feature, set the variableadd_new f eat ur es to FALSE.

In finding corridors, Saphira by default attempts to align them on 90 degree angles, which istypical for
office environments. To turn off this feature, set the variablesnap_t o_ri ght _angl e_gri d to FALSE.

Map elements can also be created by hand, using the artifact creation functions of
Section 4.7.

4.11 File Loading Functions
This section describes functions for loading Colbert files, shared object files, parameter files, and
simulator world files. Map file loading functions can be found in the previous section.

30

nt sflLoadEval Fil e(char *nane)
char *sflLoadDirectory

i nt sflLoadParantil e(char *nane)
char *sf ParanDir

i nt sfLoadWorl dFil e(char *nane)

sf LoadEval Fi | e loads a Colbert language file or loadable shared object file into Saphira. The load
directory, sf LoadDi r ect ory, is set by default to the value of the environment variable SAPHI RA_LQAD
if it exists, or to the working directory if it doesn’t. The load directory is used as a prefix on relative path
names; absolute path names are always loaded with no modification. All load functions return O if
successful, and -1 if not.

Parameter files for different robot servers can be loaded with the sf LoadPar anti | e function.
Bewcause Saphira clients autoload the correct parameter file when they connect to a robot server, the user
should call this function only in special circumstances. The load directory isin sf Par anDi r , which is set
by default to the directory par ans at the top level of the Saphira distribution.

A Saphiraclient, if it is connected to the simulator, can cause the simulator to load a world file through
the sf LoadWor | dFi | e command.

4.12 Colbert Evaluator Functions

Several library functions add functionality to the Colbert evaluator, by linking the evaluator to native C
functions, variables, and structures. For examples, see Section Error! Reference sour ce not found. on the
Colbert language.

i nt sfAddEval Fn (char *nane, void *fn, int rtype, int nargs, ...)
i nt sfAddEval Var (char *nane, int type, void *v)
i nt sfAddEval Const (char *nane, int type, ...)
i nt sfAddEval Struct (char *name, int size, char *ex, int nunslots, ...)

These functions all return the Colbert index of the defined Colbert object. Generally this index is not
useful in user programs, and can be ignored. The exception isthe sf AddEval St ruct function, which
returns the type index of the Colbert structure.

sf AddEval Fn makes the native C function f n available to Colbert as nane. The return type of the
functionisrt ype, and the number of parametersis nar gs. The additional arguments are the types of each
of the parameters. A Colbert function may have a maximum of seven parameters. Functions with a variable
number of parameters should set nar gs to the negative of the number of fixed parameters and give the
types of the fixed parameters.

sf AddEval Var makesanative C variable of typet ype availableto Colbert as name. A pointer to the
variable should be passed in v astype (f val ue *) . For example, if the variableis nyVar , use
(fval ue *) &myVar . The value of the C variable can be modified from Colbert.

sf AddEval Const defines a constant in Colbert with name nanme and typet ype. The function should
have one additional argument, which is the constant value, either an integer, floating-point number, or
pointer.

sf AddEval St ruct makesanative C structure available to Colbert with name nane. The size of the
structure, in bytes, should be givenin si ze. A pointer to an example structure should be passed in ex. The
number of structure elementsis given by nunsl ot s. The additional arguments are triplets describing the
elements, in any order. A sample element description follows:

“x", &ex.x, sfFLOAT,

31

Here x isthe Colbert name of the element, &ex. x isapointer to the example element, and sf FLOAT
is an integer describing the type of the element.

This function returns the Colbert index of the structure type, which should be saved for future reference by
the program.

int sfINT, sfFLOAT, sfSTRING sfVAD, sfPTR
i nt sfSrobot, sfSpoint

int sfTypeRef (int type)

i nt sfTypeDeref (int type)

These constants and functions refer to Colbert type indices, which are integers. The first set of constants
are the basic type indices for Colbert; the second set are predefined structures. sf TypeRef returns the
index of apointer to its argument, while sf TypeDer ef returns the index to the type referenced by its
argument, or O if its argument is not a pointer type index.

voi d sf AddHel p(char *nane, char *str)
char *sf Get Hel p(char *nane)

These functions are the C interface to Colbert’s help facility. Sf AddHel p addsthestring st r asahelp
string for the Colbert object named nane. It putsit in alphabetical order, so that searching for help entries
iseasier. The help string may have embedded formatting commands suchas“\ t ” and “\ n”.

sf Get Hel p returns the help string associated with name, or NULL if thereis
none.

voi d sflLoadlnit(void)
voi d sflLoadExit(void)

When a shared object file is loaded, the special function sf Loadl ni t, if it isdefined in thefile, is
evaluated at the end of the load. Colbert variables, functions, and structures are typically defined here.

When a shared object file is unloaded or rel oaded, the special function sfLoadExit, if it is defined in the
file, is executed. This function should disable activities that reference C functions and variables defined in
thefile.

Note that these functions can be defined in each loaded file. In MS Windows, they must be declared
EXPORT.

4.13 Packet Communication Functions

Saphira contains several functions that help you manage communications between your client application
and the Pioneer server directly (PSOS; see Chapter 4), rather than going through the Saphira OS. If you
start up the Saphira OS with sf St art up, do not use these functions to parse information packets or
send motor control commands.

nt sfConnect ToRobot (i nt port, char *nane)
char *sf Robot Narme

char *sf Robot d ass

char *sf Robot Subcl ass

(This Saphira function tries to open a communications channel to the robot server on port type port with
name nane. It returns 1 if it is successful; O if not. This function also is available asthe connect
command in Colbert.

32

Table 8-9. Port types and names for server connections.

Classification | Nanme Description
Port types sf LOCALPORT | Connects to simulator on the host machine
sf TTYPORT Connects to Pioneer on atty port
Port names sf COMLOCAL local pipe or mailslot name
sf COML tty port 1 (/ dev/ ttya or/ dev/ cuaO for UNIX;
COML for MSW; nodemfor Mac)
sf COVR2 tty port 2 (/ dev/ ttyb or/ dev/ cual for UNIX,
COWR for MSW, pri nt er for Mac)

This function also sets the global variables sf Robot Nane, sf Robot Cl ass, and sf Robot Subcl ass
according to the information returned from the robot; see Table 8-10, below. Assuming the environment
variable SAPHI RA is set correctly, it will autoload the correct parameter file from the par ans directory,
using first the subclassiif it exists, and then the class.

Table 8-10. Robot names and classes.

Structure Explanation
(char *)sf Robot Name See robot descriptions for information on how to set the name. The
simulator returns the name of the machine it is running on.
(char *)sfRobot O ass Robot classes are B14, B21, and Pi oneer .
(char Subclasses are subtypes, e.g., in Pioneer-class robots the subclass is
*) sf Robot Subcl ass either pi on1 (Pioneer 1) or pi onat (Pioneer AT).

voi d sfDi sconnect FronRobot (voi d)

This structure sends the server acl ose command, then shuts down the communications channel to the
server.

voi d sfReset Robot Vars (voi d)

Resets the values of al interna client variables to their defaults. Should be called after a successful
connection.

voi d sf Robot Com (i nt com
voi d sfRobot Com nt (int com int arg)
voi d sf Robot Com2Bytes(int com int bl, int b2)
voi d sfRobot Contr (int com char *str)
voi d sfRobotContStrn (int com char *str, int n)

These Saphira functions packetize and send a client command to the robot server. Use the command type
appropriate for the type of argument. See Section Error! Reference sour ce not found. for alist and
description of currently supported PSOS commands.

The string commands send stings in different formats: sf Robot ContSt r sends out a null-terminated
string (itsstr argument), and sf Robot Contt r n sends out a Pascal-type string, with an initial string
count; inthiscase st r can contain null characters.

33

The function sf Robot Con2Byt es sends an integer packed from two bytes, an upper byte, b1, and a
lower byte, b2.

int sfWaitCientPacket (int ns)
i nt sfHaved i ent Packet (void)

UsesfWai t O i ent Packet to have Saphiralisten to the client/server communication channel for up to
nms milliseconds, waiting for an information packet to arrive from the server. If Saphira receives a packet
within that time period, it returns 1 to your application. If it times out, Saphira returns 0. This function
always waits at least 100 msif no packet is present. To poll for a packet, use sf Haved i ent Packet .

voi d sfProcessC i entPacket (int type)

sf ProcessCl i ent Packet parsesaclient packet into the sf Robot structure and sonar buffers.
Typicaly, aclient will call sfWai t C i ent Packet or sf Haved i ent Packet to be sure apacket is
waiting to be parsed. The argument to sf ProcessC i ent Packet isabyte, the type of the packet. This
byte can beread using sf ReadCl i ent Byt e. By examining this byte, the client can determine if it wishes
to parse the packet itself, or send it onto sf Processd i ent Packet .

int sfdientBytes (void)
int sfReadCientByte (void)
int sfReaddientSint(void)
int sfReaddientUsint (void)
int sfReaddientWrd (void)
char *sfReaddientString (void)

These functions return the contents of packets, if you want to dissect them yourself rather than using
sf ProcessCl i ent Packet . sf Cl i ent Byt es returns the number of bytes remaining in the current
packet. The other functions return objects from the packet: bytes, small integers (2 bytes), unsigned small
integers (2 bytes), words (4 bytes), and null-terminated strings.

5 Saphira Vision

Current versions of Saphira have both generic vision support and explicit support of the Fast Track Vision
System (FTVS), which is available as an option for the Pioneer 1 Mobile Robot. The FTV S is a product
developed by Newton Labs, Inc. and adapted for Pioneer. The generic product name is the Coghachrome
Vision System. Details about the system, manuals, and development libraries can be found at Newton Labs’
Web site: http://www.newtonlabs.com.

With Saphira, the FTV S intercepts packet communication from the client to robot server, interprets
commands from the client, and sends new vision information packets back to the client. Saphiraincludes
support for setting some parameters of the vision system, but not for training the FTV S on new abjects, or
for viewing the output of the camera. For this, please see the FTV S user manual about operating modes. In
the future, we intend to migrate some of the training functions to the Saphira client. We also intend to have
Saphira display raw and processed video.

Saphira aso includes built-in support for interpreting vision packet results. If your robot has avision
system, Saphirawill automatically interpret vision packets and store the results as described below.

5.1 Channel modes

The FTV S supports three channels of color information: A, B, and C. Each channel can be trained to
recognize its own color space. Each channel also supports a processing mode, which determines how the
video information on that channel is processed and sent to Saphira. A channel isin one of three modes:

BLOB_MODE 0
BLOB BB_MODE 2
LINE_MODE 1

Note: these definitions, as well as other camera definitions, can be found in
handl er/i ncl ude/ chrona. h

To change the channel mode from a Saphira client, issue this command:
sf Robot ConStr (VI SI ON_COM " pi oneer _X node=N")
wherethe mode Nis O, 1, or 2, and the channel Xisa, b, or ¢ (small letters). On start-up, the vision
system channels are set to BLOB_MODE. (The processing performed in BLOB_MODE,
BLOB_BB_MODE, and LINE_MODE is explained in the FTVS manual.)
As Table 9-1 shows, several FTV S parameters affect the processing in line mode.
Table 9-1. FTVS parameters used to determine a line segment.

Parameter Description

l'i ne_bottomrow First row for line processing
['ine_numslices How many rows are processed
l'ine_slice_size How many pixels thick each row is
i ne_m n_mass Number of pixels needed to

These parameters can be set using a command such as the following:
sf Robot ContStr (VI SION_COM "l i ne_bottom row=0")

35

5.2 Vision Packets

If the FTVSisworking properly, it will send a vision packet every 100 msto the Saphira client. In the
information window, the VPac dot should read about 10, indicating that 10 packets/second are being
delivered. If it reads O, the vision system is not sending information.

Saphira parses these packets into a vision information structure (see Listing 9-1).

struct vinfo {

int type; /* BLOB, BLOB BB or LINE MODE */

int x, vy; /* center of mass */

int area; /* size */

int h, w /* height and wi dth of boundi ng box */
int first, num /* first and nunber of |ines */
};

Listing 9-1. Saphira vision information structure.

In BLOB_MODE, thex, vy, and ar ea slots are active. The X,y coordinates are the center of mass of the
blob in image coordinates, where the center of theimageis 0,0. For the lens shipped with the FTVS, each
pixel subtends approximately degree:

#define DEG TO PI XELS 3.0 /* approximately 3 pixels per degree */

This constant lets a client convert from image pixel coordinates to angles. The area is the approximate
size of the blob in pixels. If the areais 0, no blob was found.

In BLOB_BB_MODE, the bounding box of the blob is also returned, with h and w being the height and
width of the box in pixels.

InLINE_MODE, thedlotsx, fi r st, and numare active. The value x is the horizontal center of the line.
first isthefirst (bottom-most) row with aline segment, and numis the number of consecutive rows with
line segments. If no line was found, num is zero.

The following global variables hold information for each channel: ext ern struct vinfo
sf val nfo, sfVblnfo, sfVclnfo.

For example, to seeif channel A isin BLOB_MODE, use this command:
sfValnfo.type == 0

5.3 Sample Vision Application

The sample Saphira client which enables the FTV S can be found as the source file
handl er/ src/ apps/ bt ech. c and/ chr oma. c. The compiled executables are found in the bi n/
directory. These files define functions to put the channelsinto BLOB_BB_MODE, to turn the robot looking
for ablob on channel A, to draw the blob on the graphics window, and to approach the blob.

This sequence sets up parameters of the vision system, putting all channelsinto BLOB_BB_MODE and
initializing line parameters:

voi d setup_vision_systen(voi d)

This one returns the X-image-coordinate of a blob on channel (0=A, 1=B, 2=C), if the blob’s center is
within del t a pixels of the center of the image:

i nt found_bl ob(int channel, int delta)

If no blob is found with these parameters, it returns -1000.

36

voi d draw_bl obs(voi d)

This is the process for drawing any blobs found by the vision system. The blob is drawn as arectangle
centered at the correct angular position, and at a range at which a surface two feet on a side would produce
the perceived image size. The size of the rectangleis proportional to the image area of the blob.

voi d find_bl ob(voi d)

This command defines the activity for turning left until ablob isfound in the center of the image on
channel A, or until 20 seconds €l apses.

voi d search_and_go_bl ob(voi d)

This command defines the activity for finding ablob (using f i nd_bl ob) on channel A, then
approaching it. It uses sonars to detect when it is close to the blob.

37

6 Parameter Files

This section describes the parameter files used by the Pioneer simulator and Saphira client to describe the
physical robot and its characteristics.

6.1 Parameter File Types
Pioneer rabots have four parameter files:

pi oneer. p
psos41x. p
psos4lm p
psosat.p

The sequence 41 refersto PSOS versions equal to or greater than PSOS version 4.1. Early versions of the
Pioneer that have not been upgraded to at least version 4.1 should use the pi oneer . p parameter file.
These Pioneers do not send an autoconfiguration packet; therefore, Saphira clients by default are configured
for pre-PSOS 4.1 rabots and will correctly control these robots without explicitly loading a parameter file.

Pioneer robots with PSOS 4.1 or later send an autoconfiguration packet on connection that tells the
Saphira client which parameter file to load. Pioneers made before August 1996 use old-style motors, and
these load psos41x. p. Those made after this date use new-style motors, and load psos41m p. The only
differenceisin some of the conversion factors for distance and velocity.

The Pioneer AT hasits own parameter file, pi onat . p. The only change from psos41m p isthat the
robot is larger than the other Pioneers.

The B14 and B21 raobots from RWI also have parameter files, b14. p and b21. p.

6.2 Sample Parameter File
The sample parameter file in Listing 10-1 illustrates most of the parameters that can be set. Thisisthefile
psos4lm p. An explanation of the parametersis given in Table 10-1, below.

:: Par aneters for the Pioneer robot
;. New notors

Angl eConvFact or 0. 0061359 ; radi ans per encoder count diff (2Pl/1024)

Di st ConvFact or 0. 05066 ; Bin*Pl / 7875 counts (nm count)

Vel ConvFact or 2.5332 ; mmsec / count (DistConvFactor * 50)
Robot Radi us 220.0 : radius in mm

Robot Di agonal 90.0 ; half-height to diagonal of octagon
Hol onomi ¢ 1 ; turns in own radius

MaxRVel oci ty 2.0 ; radi ans per neter

MaxVel oci ty 400. 0 ; mm per second

:: Robot class, subcl ass

Cl ass Pi oneer
Subcl ass PS0S41m
Name FErratic

These are for seven sonars: five front, two sides

; Sonar paranmeters

: SonarNum N i s nunber of sonars

; SonarUnit | XY THis unit | (0 to N-1) description

; X, Y are position of sonar in nm TH is bearing in degrees

38

Listing 10-1. The example parameter file, psos41lm p, showshow to set most Saphira parameters.

RangeConvFact or 0.1734 ; sonar range nm per 2 usec tick
Sonar Num 7

D # X y th
SonarUnit O 100 100 90
SonarUnit 1 120 80 30
SonarUnit 2 130 40 15
SonarUnit 3 130 0 0
SonarUnit 4 130 -40 -15
SonarUnit 5 120 -80 -30
SonarUnit 6 100 -100 -90
SonarUnit 7 0 0 0

;; Nunber of readings to keep in circular buffers
Front Buf fer 20
Si deBuffer 40

Listing 10-2.

Floating-point parameters can be in any standard format and do not require a decimal point. Integer
parameters may not have a decimal point. Strings are any sequence of non-space characters.

Table 10-1. Functions of Saphira parameters.

Parameter Type Description

Angl eConvFactor | float Converts from robot angle units (4096 per revolution) to radians.
Vel ConvFact or float Converts from robot velocity units to mm/sec

D st ConvFact or float Converts from robot distance units to mm

D f f ConvFact or float Converts from robot angular velocity to rads/sec
RangeConvFactor | float Converts from robot sonar range units to mm

Hol onomi ¢ integer Value of 1 says the robot is holonomic (can turn in place); value of 0

saysit is nonholonomic (front-wheel steering). Holonomic robot icon
is octagonal; nonholonomic is rectangular.

Robot Radi us float Radius of holonomic robot in mm.

Robot Di agonal float Placement of the horizontal bar indicating the robot’ s front, in mm
from the front end. (Sorry about the name.)

Robot W dt h float Width of nonholonomic robot, in mm.

Robot Lengt h float Length of nonholonomic robot, in mm.

MaxVel oci ty float Maximum velocity of the robot, in mm/sec.

MaxRVel oci ty float Maximum rotational velocity of the robot in degrees/sec.

MaxAccel eration | float Maximum acceleration of the robot in mm/sec/sec

A ass string Raobot class: pi oneer, b14, b21. Not case-sensitive. Useful only for

the simulator, which will assume this robot personality. The client
gets thisinfo from the autoconfiguration packet.

Subcl ass string Robot subclass. For the Pioneer, indicates the type of controller and

39

body combination. Values are psos41m psos41x, or pi onat . Not
case-sensitive. Useful only for the smulator, asfor the C ass
parameter.

Name string Robot name. Useful only for the simulator, asfor the d ass
parameter.

Sonar Num integer Number of active sonars.

Sonar Uni t n,x,y,t h | Description sonar unit n. The x,y,t h arguments describe the pose of
the sonar on the robot body, relative to the robot center. Provide one
such entry for each active sonar unit. Used by both the ssmulator and
client.

Front Buf f er integer Number of front sonar readings to keep. Higher values mean the robot
will be more sensitive to obstacles but slower to get rid of moving
obstacle readings.

Si deBuf f er integer | Number of side sonar readings to keep. Higher values mean the

interpretation routines can find longer side segments.

40

7 Sample World Description File

Worlds for the simulator are defined as a set of line segments using absolute or relative coordinates.
Comment lines begin with a semicolon. All other non-blank lines are interpreted as directives.

The first two lines of the file describe the width and height of the world, in millimeters. The simulator
won't draw lines outside these boundaries. It s usually a good idea to include a“world boundary” rectangle,
asis done in the example below, to keep the robot from running outside the world.

Any entry in the world file that starts with a number is interpreted as creating a single line segment. The
first two numbers are the x,y coordinates of the beginning and the second two are the coordinates of the end
of the line segment. The coordinate system for the world starts in the lower left, with +Y pointing up and
+Xto theright (Figure 11-1).

+Y, 90 degrees
A

» +X, 0degrees

0,0

Figure 11-1. Coordinate system for world definition.

The position of segments may also be made relative to an embedded coordinate system. Thepush x y
t het a directive in the world file causes subsequent segments to use the coordinate system with origin at
X,y and whose x axis points in the direction. Thet het a. push directives may be nested, in which case
the new coordinate system is defined with respect to the previous one. A pop directive revertsto the
previous coordinate system.

Theposition x y theta directive positions the robot at the indicated
coordinates.

Listing 11-1 is afragment of the si npl e. W d world description file found in Saphira’ swor | ds
directory.

;; Fragment of asimple world

width 38000
height 30000

0 0030000 : World frontiers
00380000

38000 30000 0 30000

38000 30000 38000 0

41

push 10000 14000 O

;; upper corridor ; length = 14,600; width = 2,000
0 12000 3000 12000 ; EJ231-J. Lee
3900 12000 4200 12000 ; E1233 - D. Moran
5100 12000 8000 12000 ; E1235 - J. Bear
8900 12000 9200 12000 ; EJ237 - E. Ruspini
10000 12000 12000 12000 ; EJ239 - J. Dowding
12800 12000 14600 12000

;; Starting position

position 17500 14000 -90

Listing 11-1. Fragment of the si npl e. W d world description file found in Saphira’swor | ds
directory.

42

8 Saphira APl Reference

Artifacts

voi d sf AddAngl e

voi d sf Add2Angl e

voi d sf AddPoi nt (poi nt *p)

voi d sf AddPoi nt Check(poi nt *p)

voi d sf ChangeVP(point *pl, point *p2, point *p3)

poi nt *sf Creat ed obal Poi nt (fl oat x,
poi nt *sf CreateLocal Poi nt (fl oat x,
point *sfFindArtifact(int id)

point *sfd obal Origin

fl oat

float v,

voi d sf MoveRobot (fl oat dx, float dy, float

voi d sf Nor mAngl e
voi d sf Nor n2Angl e
voi d sf Nor n8Angl e

voi d sfPointBaricenter(point *pl, point

fl oat sfPointDist(point *p)

fl oat sfPointDistPoint(point *pl, point
voi d sf Poi nt Move(point *pl, float dx,

fl oat sf Poi nt Nor mal Di st (poi nt *p)
fl oat sf Poi nt Nor mal Di st Poi nt (poi nt
fl oat sf Poi ntPhi (point *p)

fl oat sf Point Xo(poi nt *p)

*p, poi

fl oat sf Poi nt XoPoi nt (point *p, point *q)

fl oat sf PointYo(point *p)

fl oat sf Poi nt YoPoi nt(point *p, point *q)

voi d sf RenmPoi nt (poi nt *p)

poi nt *sfRobotOrigin

voi d sf Set d obal Coords(poi nt *p)
voi d sf Set Local Coords(poi nt *p)
voi d sf SubAngl e

voi d sf Sub2Angl e

voi d sfUnchangeVP(poi nt *pl, point

Behavi or s

BEHCLOSURE sf Fi ndBehavi or (char *name) Error!

BEHCLOSURE sf | ni t Behavi or (behavi or
int running, ...)

BEHCLOSURE sf | ni t Behavi or Dup(behavi
int running, ...)

i nt sfBehavi or Contr ol

voi d sf Behavi or O f (BEHCLOSURE b)
voi d sf Behavi or On(BEHCLOSURE b)

voi d sfKill Behavi or (BEHCLOSURE b)
voi d sf Set Behavi or St at e(BEHCLOSURE

y, float th)
float th)

dt h)

*p2, point

“p2)
float dy, point

nt *q)

*p2, point *p3)

*b, int
Error!
or *b,
Error!
Error!
Error!
Error!
Error!
b, int

*p3)

priority,

Bookmar k

int priority,

Bookmar k
Bookmar k
Bookmar k
Bookmar k
Bookmar k

not

not
not
not
not
not

state)Error!

Behavi ors; Predefined Saphira

behavi or *sf AttendAt Pos
behavi or *sf Avoi dCol | i si on

Error!
Error!

Bookmar k
Bookmar k

not
not

Page
25
25
23
23
25
23
23
23
23
26
25
25
25
25
25
25

*p2) 26

25
25
23
25
25
25
26
23
23
23
23
25
25
25

Bookmar k not defi ned.

def i ned.

defi ned.
defi ned.
defi ned.
defi ned.
defi ned.
Bookmar k not

def i ned.
def i ned.

def i ned.

43

behavi or *sf Constant Vel ocity Error! Bookmark not defined.

behavi or *sf Fol | ow Error! Bookmark not defi ned.
behavi or *sf Fol | owCorri dor Error! Bookmark not defi ned.
behavi or *sf Fol | owDoor Error! Bookmark not defi ned.
behavi or *sf GoToPos Error! Bookmark not defi ned.
behavi or *sf KeepOf f Error! Bookmark not defined.
behavi or *sf St op Error! Bookmark not defined.
behavi or *sf StopCol |i sion Error! Bookmark not defined.
behavi or *TurnTo Error! Bookmark not defi ned.

Direct Mdtion Control

i nt sfDoneHeadi ng 12
i nt sfDonePosition(int dist) 12
voi d sf Set DHeadi ng(i nt dhead) 12
voi d sf Set Headi ng(i nt head) 12
voi d sf Set MaxVel ocity(int vel) 12
voi d sfSetPosition(int dist) 12
voi d sfSetRVel ocity(int rvel) 12
voi d sfSetVelocity(int vel) 12
voi d sf Tar get Head(voi d) 13
voi d sf Tar get Vel (voi d) 13

Drawi ng and Col or

voi d sfDrawCent eredRect (float x, float y, float w, float h) 27

voi d sfDrawRect (float x,float y,float dx,float dy) 27
voi d sf SetLineCol or(int color) 27
voi d sfSetLineType(int w) 27
voi d sfSetLineWdth(int w) 27
voi d sf Set Pat chCol or (i nt col or) 27

voi d sf Set Text Col or (i nt col or)

Fuzzy Vari abl es

float down_straight(float x, float min, float max)Error! Bookmark not defined.

float f_and(float x, float y) Error! Bookmark not defined.

float f_eq(float x, float c, float delta)Error! Bookmark not defined.

float f_greater(float x, float c, float delta)Error! Bookmark not

float f_not(float x) Error! Bookmark not defined.
float f_or(float x, float y) Error! Bookmark not defined.

float f_smaller(float x, float c, float delta)Error! Bookmark not

def i ned.

def i ned.

float straight_up(float x, float mn, float max)Error! Bookmark not defined.

Activities

int finished(process *p) Error! Bookmark not defined.

process *intend_beh(behavior *b, char *nanme, int tineout,
beh_parans parans, int priority) Error! Bookmark not defined.
process *sflnitActivity(void (*fn)(void), char *nane,

int timeout, ...) Error! Bookmark not defi ned.
Map File
int sfLoadMapFil e(char *nane) <Unix; MSW 29

int sfLoadMapFil e(char *nane, int vref) <Mac> 29

Cccupancy
int sfQccBox(int xy, int cx, int cy, int h, int w) 20
int sfOccBoxRet(int xy, int ¢cx, int cy, int h, int w,

float *x, float *y) 20

int sfCccPlane(int xy, int source, int d, int sl, int s2) 21

int sfCccPlaneRet(int xy, int source, int d, int sl1, int s2,
float *x, float *y) 21

OS and W ndow Functi ons
int nyButtonFn(int x, int y, int b)
int nyKeyFn(int ch)

voi d sfButtonProcFn(int (*fn)())

voi d sfErrMessage(char *str)

voi d sfErrSMessage(char *str, ...) Error! Bookmark not defined.
voi d sfKeyProcFn(int (*fn)())

voi d sf OnConnect Fn(void (*fn)())

voi d sf OnDi sconnect Fn(void (*fn)())

void sfOnStartupFn(void (*fn)())

float sfScreenToWwsrldX(int x, int y)

float sfScreenToWwsrldY(int x, int y)

voi d sfSetDisplayState(int menu, int state)
voi d sf SMessage(char *str, ...) Error! Bookmark not defined.

voi d sfStartup(HANDLE hlnst, int cndShow, int async)Error! Bookmark not
defi ned.

ENEENIENIEN

NN NWwWww N

voi d sfStartup(int async) Error! Bookmark not defined.
voi d sfPause(in ns) Error! Bookmark not defined.
int sflsConnected 3

Packet Functi ons

char *sfReadC ientString(void) 34
int sfCientBytes(void) 34
i nt sfConnect ToRobot (i nt port, char *nane) 32
i nt sfHaved i ent Packet (voi d) 34
int sfReaddientByte(void) 34
int sfReaddientSint(void) 34
int sfReadd ientUsint(void) 34
int sfReaddientWrd(void) 34
int sfWaitdientPacket(int ns) 34
voi d sf Di sconnect Fr omRobot (voi d) 33
voi d sfProcessd i ent Packet (voi d) 34
voi d sf Reset Robot Var s(voi d) 33
voi d sf Robot Con{i nt con) 33
voi d sf Robot Com2Bytes(int bl, int b2) 33
voi d sf Robot Comint(int com int arg) 33
voi d sfRobot ConStr(int com char *str) 33
voi d sfRobot ConStrn(int com char *str, int n) 33
Processes

process *sfFi ndProcess(char *nane) 16

process *sflnitProcess(void *fn(void), char *nane)
voi d sflnterruptProcess(process *p)

voi d sflnterruptSel f(void)

voi d sf ResuneProcess(process *p

voi d sf SetProcessState(process *p, int state)

voi d sf SuspendProcess(process *p, int n)

voi d sf SuspendSel f(int n)

Processes; Predefined

voi d sflnitBasicProcs(void)

voi d sflnitControl Procs(void)

void sflnitlnterpretati onProcs(void)
voi d sflnitRegistrationProcs(void)

Sensor Interpretation

wal | sflLeftWall Hyp
wal | sfRi ght\Vall Hyp

Sonar s

fl oat sfFront MaxRange

voi d sfSetFrontBuffer(int n)
voi d sf Set Si deBuffer(int n)

i nt sfSonar Range(int num

i nt sfSonarNew(int num

fl oat sfSonar XCoord(int num
fl oat sfSonar YCoord(int num

State Reflection
struct robot sfRobot

int sfStalledMotor(int which)
voi d sf Tar get Head(voi d)

voi d sf Tar get Vel (voi d)

Vi si on

voi d draw_bl obs(voi d)

voi d find_bl ob(voi d)

int found_blob(int channel, int delta)

sf Robot Conttr (VI SI ON_COM "1 i ne_bot t om r ow=0")
sf Robot Cont r (VI SI ON_COM " pi oneer _X_node=N")
voi d search_and_go_bl ob(voi d)

voi d setup_vision_systen{void)

46

16
16
16
16
16
16
16

©O © o 0

26
26

19
19
19
11
11
11
11

10
11
13
13

37
37
36
35
35
37
36

9 Index

Activities
intend_beh, 16
invoking behaviors, 16
activity, 1
API
artifacts, 20
Drawing and Color, 25. See drawing and color
General. See AP
maps, 27. See maps
Motor stall, 10
OS functions, 2
window mode. See OS functions
Artifacts, 20
points and lines, 21. See points and lines
Channel modes, 34
chroma.h, 34
Client installation. See Installation
Components
Optional, 3
Direct motion control, 11
display
states, 7
display states, 7
draw_blobs, 36
drawing and color
set_vector_buffer, 26
sfDrawCenteredRect, 26
sfDrawRect, 26
sfSetLineColor, 26
sfSetLineType, 26
sfSetLineWidth, 26
sfSetPatchColor, 26
Email
pioneer-support, 4
pioneer-users, 4
saphira-users, 4
environment variable
LD_LIBRARY_PATH, 2
Fast Track Vision System, 34
find_blob, 36
found_blob, 35
Gzip. SeeInstallation
Installation, 1
intend_beh, 16
Konalige, Dr. Kurt, 1
LD_LIBRARY_PATH environment variable, 2
Loca Perceptual Space, 16, 17
LPS, 16. See Loca Perceptua Space
maps
file format, 27
registration and creation, 29
sfLoadMapFile, 28
micro-tasks, 9, 13

motion setpoint, 11

motor stall
sfStalledMotor, 10

Motor stall, 10

myButtonFn, 7

myKeyFn, 7

Newsgroups
pioneer-users, 4
saphira-users, 4

Newton Labs, Inc, 34

occupancy
sfOccBox, 19
sfOccBoxRet, 19
sfOccPlaneRet, 20

occupancy:, 20

Open Agent Architecture (OAA), 4

OS functions
sfIsConnected, 3
sfPause, 2

OS functions
display states, 7
myButtonFn, 7
myKeyFn, 7
sfButtonProcFn, 7
sfErrMessage, 7
sfErrSMessage, 7
sfKeyProcFn, 7
sfMessage, 7
sfOnConnectFn, 3
sfOnDisconnectFn, 3
sfOnStartupFn, 3
sfScreenToWorldX, 7
sfScreenToWorldY, 7
sfSetDisplayState, 6
sfSMessage, 7
sfStartup, 2

packet communication, 10, 34

packet functions
sfRobotCom2Bytes, 32

packet functions
port types and names, 32
sfClientBytes, 33
sfConnectToRobot, 31
sfDisconnectFromRobot, 32
sfHaveClientPacket, 33
sfProcessClientPacket, 33
sfReadClientByte, 33
sfReadClientSint, 33
sfReadClientString, 33
sfReadClientUsint, 33
sfReadClientWord, 33
sfResetRobotVars, 32
sfRobotCom, 32
sfRobotComint, 32

47

sfRobotComStr, 32
sfRobotComStrn, 32
sfWaitClientPacket, 33
Parameter File, 37
pioneer-support, 4
Pkzip. See Installation
points and lines
sfAdd2Angle, 24
sfAddAngle, 24
sfAddPoint, 22
sfAddPointCheck, 22
sfChangeVP, 25
sfCreateGlobal Point, 22
sfCreatelocal Point, 22
sfFindArtifact, 22
sfGlobalOrigin, 22
sfMoveRobot, 25
sfNorm2Angle, 24
sfNorm3Angle, 24
sfNormAngle, 24
sfPointBaricenter, 24
sfPointDist, 24
sfPointDistPoint, 24
sfPointMove, 25
sfPointNormal Dist, 24
sfPointNormal DistPoint, 24
sfPointPhi, 24
sfPointXo, 25
sfPointXoPoint, 25
sfPointY o, 25
sfPointY oPoint, 25
sfRemPoint, 22
sfRobotOrigin, 22
sfSetGlobal Coords, 22
sfSetl ocal Coords, 22
sfSub2Angle, 24
sfSubAngle, 24
sfUnchangeVP, 25
port types and names, 32
processes
sfFindProcess, 15
sfInitProcess, 15
sfinterruptProcess, 15
sfinterruptSelf, 15
sfResumeProcess, 15
sf SetProcessState, 15
sfSuspendProcess, 15
sfSuspendSelf, 15
state values, 13
registration, 9, 27
Saphira
API. See API
API, 2
colors, 27
General description, 1
maps, 27

48

multiprocessing, 13

Occupancy functions, 18. See occupancy

packet functions, 31. See packet functions

Path, 2

processes, 8, 13, 15. See Saphira processes

Quick start, 3

Robots, 1

vision, 34
Saphira colors, 27
SAPHIRA environment variable, 2, 32
Saphira maps, 27
Saphira processes, 8

,8

sfInitControl Procs, 8

sfInitInterpretationProcs, 8

sfInitRegistrationProcs, 9
Saphiravision, 34
search_and_go_blob, 36
sensor interpretation, 8, 25
set_vector_buffer, 26
setup_vision_system, 35
sfAdd2Angle, 24
sfAddAngle, 24
sfAddPoint, 22
sfAddPointCheck, 22
sfButtonProcFn, 7
sfChangeVP, 25
sfClientBytes, 33
sfConnectToRobot, 31
sfCreateGlobal Point, 22
sfCreatelocal Point, 22
sfDisconnectFromRobot, 32
sfDoneHeading, 12
sfDonePosition, 12
sfDrawCenteredRect, 26
sfDrawRect, 26
sfErrMessage, 7
sfErrSMessage, 7
sfFindArtifact, 22
sfFindProcess, 15
sfFrontMaxRange, 18
sfGlobalOrigin, 22
sfHaveClientPacket, 33
,8
sfInitControl Procs, 8
sfInitInterpretationProcs, 8
sfInitProcess, 15
sfinitRegistrationProcs, 9
sfinterruptProcess, 15
sfinterruptSelf, 15
sfIsConnected, 3
sfKeyProcFn, 7
sfLeftWallHyp, 25
sfLoadMapFile, 28
sfMessage, 7
sfMoveRobot, 25

sfNorm2Angle, 24
sfNorm3Angle, 24
sfNormAngle, 24
sfOccBox, 19
sfOccBoxRet, 19
sfOccPlane, 20
sfOccPlaneRet, 20
sfOnConnectFn, 3
sfOnDisconnectFn, 3
sfOnStartupFn, 3
sfPause, 2
sfPointBaricenter, 24
sfPointDist, 24
sfPointDistPoint, 24
sfPointMove, 25
sfPointNormal Dist, 24
sfPointNormal DistPoint, 24
sfPointPhi, 24
sfPointXo, 25
sfPointXoPoint, 25
sfPointY o, 25

sfPointY oPoint, 25
sfProcessClientPacket, 33
sfReadClientByte, 33
sfReadClientSint, 33
sfReadClientString, 33
sfReadClientUsint, 33
sfReadClientWord, 33
sfRemPoint, 22
sfResetRobotVars, 32
sfResumeProcess, 15
sfRightwWallHyp, 25
sfRobot, 9
sfRobotCom, 32
sfRobotCom2Bytes, 32
sfRobotComint, 32
sfRobotComStr, 32, 34
sfRobotComStrn, 32
sfRobotOrigin, 22
sfScreenToWorldX, 7
sfScreenToWorldY, 7
sfSetDHeading, 12
sfSetDisplayState, 6
sfSetFrontBuffer, 18
sfSetGlobal Coords, 22
sfSetHeading, 12
sfSetLineColor, 26
sfSetLineType, 26
sfSetLineWidth, 26

sfSetl ocal Coords, 22
sfSetMaxVelocity, 12
sfSetPatchColor, 26
sfSetPosition, 12
sf SetProcessState, 15
sfSetRVelocity, 12
sfSetSideBuffer, 18
sfSetVeocity, 12
sfSMessage, 7
sfStalledMotor, 10
sfStartup, 2
sfSub2Angle, 24
sfSubAngle, 24
sfSuspendProcess, 15
sfSuspendSelf, 15
sfTargetHead, 12
sfTargetVel, 12
sfUnchangeVP, 25
sfWaitClientPacket, 33
Simulator
General description, 2
sonar buffers
sfFrontMaxRange, 18
sfSetFrontBuffer, 18
sfSetSideBuffer, 18
Sonar buffers, 16
SRI Internationdl, ii, 1, 4, 27
State reflection, 9
state reflector, 8, 9, 11, 12, 16
sfRobot, 9
Support
pioneer-support, 4
ver53, 1. See also Instalation
Vision, 34
channel modes, 34. See Vision:
chroma.h, 34
draw_blobs, 36
find_blob, 36
found_blob, 35
packets, 35
sample application, 35
search_and_go_blob, 36
setup_vision_system, 35
sfRobotComStr, 34
Vision packets, 35
World Description File, 40
Zip. See Installation

49

10 Warranty & Liabilities

The developers and marketers of Saphira software shall bear no liabilities for operation and use with any
robot or any accompanying software except that covered by the warranty and period. The developers and
marketers shall not be held responsible for any injury to persons or property involving the Saphira software
in any way. They shall bear no responsibilities or liabilities for any operation or application of the software,
or for support of any of those activities. And under no circum stances will the developers, marketers, or
manufacturers of Saphira take responsibility for or support any special or custom modification to the
software.

Saphira Software Manual Version 6.2, August 1999

50

