

TECHNICAL JOURNAL

Number JGW 107
Author James G. Wheeler
Subject Fun with File Mapped and Appendable Arrays
Date 3/30/2004 9:59 AM Last Updated: 6/25/2004 10:05 AM

Fun with File Mapped and
Appendable Arrays

There are a number of exciting new features in SmartArrays release 3, but perhaps the most
interesting are important new techniques for working with large arrays.

� The file array facility allows a file to be used as the data portion of an array by mapping it to

memory.
� Pre-sizing and appending provide efficient ways to work with arrays that grow by repeatedly

adding new data.

Together these techniques let you use memory up to and even beyond the limits of what a machine
can hold. The file array facility also provides fast and powerful ways of maintaining array data in files
and sharing it between programs or even over a grid of separate computers.

File Mapped Arrays

Consider what information the SmartArrays engine needs to keep for an array. There are the
“metadata” values (the shape and datatype of the array), which are held in the array engine’s internal
array catalog structures, and there are the actual data values, which are stored in a chunk of
contiguous memory. SmartArrays data values are held in segments of memory that are allocated
from the operating system. For more details, see the Implementation Details appendix in the
SmartArrays User Manual.

Some Background on Virtual Memory and Memory-Mapped Files

All operating systems provide ways to allocate memory to a user program and this is how
SmartArrays normally obtains memory to hold array data. But modern virtual-memory operating
systems (like Windows NT/2000/XP or Linux or Unix) also provide for memory-mapped files, which
allow a disk-based file to be associated with a range of memory addresses. This allows a program to
read from or write to a file by referencing or modifying values in memory. The operating system
copies fixed-size chunks of storage called pages between memory and disk in order to keep the disk
image of the file consistent with its memory copy.

Paging between disk and memory forms not only the heart of the virtual-memory facility but also is
used beneath the covers for all regular file I/O. When you write code that reads from a file, the
operating system at its lowest level is mapping sections of the disk drive to memory and using that
memory for a file buffer. When you read one byte from a file, you actually cause a whole page of
memory, which typically has a size of 4096 bytes, to be filled with values from disk. If you then read

pj_jgw107 (Fun with Mapped and Appendable Arrays).doc 7/6/2004 page 1

the next byte in the file, chances are that the value is already in memory and the disk does not need
to be looked at again.

Paging also allows for the programs running on your computer to appear to use more memory than
you actually have installed by saving data to disk when it hasn’t been used recently and bringing it in
only when a program actually references it. The operating system usually can get away with this
beause many “running” programs are idle for much of the time, or aren’t actively using all the memory
they have allocated. Of course, if the amount of virtual memory in active use exceeds the physical
memory of the machine to a significant degree, a computer can get into a situation where it is
spending most of its time paging, frantically copying pages of data between memory and disk, with
dire performance degradation as a result.

Normally, though, virtual memory works very well. Because paging and virtual memory are among
the most essential things an operating system does, these features are very carefully crafted to be
both reliable and fast. Memory-mapped files make all this wonderful machinery available to user
programs – letting a user program request that a disk file be “mapped” into memory. Once this is
done, the program can use the file by reading or writing memory addresses. Since SmartArrays is
based on memory-resident arrays, it can easily work with memory addresses that happen to be
mapped to a file.

File Arrays: Using Memory-Mapping with SmartArrays

Four new array methods, new in Release 3, let you exploit memory-mapped files with SmartArrays.
They are:

� fileArray() - create an array whose data is mapped to a file. Changes to the array are saved

in the file.
� fileArrayRead() - create an array whose data is mapped read-only to a file and that does not

permit changes to values in the array.
� isFileArray() - Return true if the subject array is a file-based array.
� toFileArray() - create a new file and file-mapped array from the contents of an existing array.

Let’s look first at creating an array mapped to a file. Suppose we have a regular memory-resident
array containing the numbers from 0 to 999999:

SmArray v = SmArray.sequence(1000000);

We can write these values to a file by casting them to bytes and writing with the fileWriteBinary()
method:

v.cast(SmArray.dtByte).fileWriteBinary(“mydata.xxx”);

Now we have a file containing 1,000,000 values in 4,000,000 bytes, 4 bytes for each integer value.
Suppose that at some later time we want to create a new SmArray and populate it with these values.
The “old fashioned” way is to read it into a byte array with fileReadBinary() and then cast the values
to integer type:

 SmArray t = SmArray.fileReadBinary(“mydata.xxx”);
 t.castInto(SmArray.dtInt);

This works, but takes time because fileReadBinary will physically copy all of the file’s data into
memory and return an array of bytes. Then we use castInto(), another of the new features of
Release 3, to reinterpret the byte array as 4-byte integers.

The “modern” way is to map the file to an array:

pj_jgw107 (Fun with Mapped and Appendable Arrays).doc 7/6/2004 page 2

SmArray t = SmArray.fileArray(“mydata.xxx”, SmArray.dtInt);
t.showDebug();

I*[1000000] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...

This produces the apparently identical effect to reading the file, but now the data portion of the array
is in memory that is mapped to the file. Your code can treat it like any other array, but there are
important differences in how it uses machine resources:
� The data is not brought into memory until it is actually used. Mapping the file reserves a

range of addresses that are large enough to hold the entire array, but the data hasn’t yet
been read into memory. The appropriate pages are read from disk only when an SmArray
method uses them, so if you never reference large sections of an array, they are never
brought in to memory

� The memory is allocated to the operating system, so it does not count against memory limits
that apply to user processes.

� The data is inherently non-volatile because the array and its file are the same thing. If you
change a single value in the array, the change will be reflected in the file and the operating
system is obligated to write the change back to disk at some point.

� Separate programs can use the same array simultaneously with only one copy of the file data
physically occupying memory. For more on this, see Shared Arrays below.

Note by the way how the array t was displayed in the output of showDebug(). The ‘*’ indicates that
the array is a file array and not an ordinary memory array. You can also use the method
isFileArray() to determine whether or not an array is mapped to file or stored in volatile memory.

File Mapping Methods

The file mapping methods fileArray() and fileArrayRead() are static methods with the same syntax:

SmArray x = SmArray.fileArray(// or fileArrayRead for read-only
 “filename”, // the file name (string)
 type, // one of the SmArray.dtXXX values
 shape, // optional shape to apply to the data
 offset, // optional offset in file to start of data
 length); // optional segment length for calculated shape

These methods map the file to memory and return an SmArray with the requested characteristics that
uses the mapped memory. The file name and type must always be supplied, but the other
parameters are optional. Let’s look at each optional parameter in turn.

Type Parameter

Memory-mapped arrays are only suitable for simple numeric or character data. The allowable types
are:

� SmArray.dtByte – 1-byte character or arbitrary binary data
� SmArray.dtChar – 2-byte characters
� SmArray.dtBoolean – 1-bit numbers. Note that offset and length must be a multiple of 8.
� SmArray.dtInt – 4-byte integers
� SmArray.dtDouble – 8-byte IEEE double-precision
� SmArray.dtComplex – pairs of 8-byte doubles.

You cannot map a file as dtString, since the 4-byte string identifiers used in a string array refer to the
string table in your current instance of the SmartArrays engine, and there is no reason to expect them
to be valid for a different instance of the engine. Similarly, nested arrays refer to locations outside

pj_jgw107 (Fun with Mapped and Appendable Arrays).doc 7/6/2004 page 3

the array itself and therefore cannot be mapped to a file. Mixed-type arrays (SmArray.dtMixed) are
also not mappable because they may contain string or nested items.

Shape Parameter

shape specifies the shape of the resulting array. If omitted, the array’s shape will be inferred from the
size of the file (i.e. a 4 million byte file mapped as SmArray.dtInt would be returned as a vector of 1
million integers). You can use shape to cause the array to be shaped as a matrix or higher rank
array. Thus, specifying a shape of SmArray.vector(100,100,100) would produce an array of shape
100x100x100. You can also specify –1 as the first value of the shape vector, in which case the shape
will be calculated based on the size of the mapped memory segment. For example, if shape is
SmArray.vector(-1, 50), the result will have 50 columns and as many rows as fit in the file, or as will fit
within the optional length parameter.

Offset and Length Parameters

The optional offset and length parameters allow you to specify a part of the file to map to the array.
They specify the positions in the file as the number of data items, not the byte offset in the file. Thus,
for an array mapped as SmArray.dtByte, an offset of 1000 begins 1000 bytes into the file, but if the
file were mapped as SmArray.dtInt the offset of 1000 indicates data beginning 4000 bytes into the file.
If length is omitted, the mapped segment extends to the end of the file rounded down to the size of
an item of the indicated type. If the shape is to be calculated, as indicated by –1 in the shape
parameter, the length determines the size of the mapped segment and the shape will be calculated
based on this size.

If an expicit shape (one with no leading –1) is passed, then this shape determines the size of the
mapped file segment and the length parameter is ignored.

Processing a Large File in Chunks

One of the interesting tricks you can perform with memory mapped files is to process a very large
array in chunks. Suppose you have a flat file of binary data containing 100 million floating point
numbers and you want to calculate the total of those values. You could try to map the entire file to
memory, but the operating system probably will refuse to let you allocate 800 megabytes of virtual
address space. The solution: process the file by mapping successive chunks. Here’s a function in
C# that calculates the total without ever allocating more than a specified maximum number of items.

public SmArray totalDoubleFile(
 string filename,
 int chunksize, // maximum number of doubles to process in each chunk
 int filesize // total number of doubles to process in the file
)
{
 int offset = 0;
 bool running = true;
 SmArray total = SmArray.scalar(0.0);
 while(running)
 {
 // Map the next chunk of the file
 if (offset + chunksize > filesize)
 {
 running = false;
 chunksize = filesize - offset;
 }

pj_jgw107 (Fun with Mapped and Appendable Arrays).doc 7/6/2004 page 4

 SmArray chunk = SmArray.fileArrayRead(
 filename,
 SmArray.dtDouble,
 SmArray.vector(-1),
 offset,
 chunksize);

 offset += chunksize;

 // Add to the cumulative total
 total = total.plus(chunk.reduce(Sm.plus));

 // Explicitly release the array, rather than wait for the
 // garbage collector, so we are certain the memory segment
 // has been deleted. This is necessary in .NET or Java, but
 // not in C++, where the destructor runs immediately once
 // chunk goes out of scope.
 chunk.release();
 }

 return total;
}

This code is simple, fast, and uses memory in a predictable way no matter how large the file is.
Execution time is about as optimal as humanly possible – the bulk of the time used is that required to
copy the data from disk to memory – which would have to be done no matter what.

Read-Only versus Read-Write Mappings

fileArrayRead() maps a file read-only. This means that the array’s contents cannot be modified. For
example:

 SmArray t1 = SmArray.fileArrayRead("mydata.xxx", SmArray.dtInt);
 t1.setInt(-1, 0); // produces an error

Any of the setType methods or the “into” methods like indexInto() that try to change the data in an
array will fail. However, there is nothing stopping you from assigning a complete new array to the
SmArray object -- it’s just the original array’s values that are unmodifiable.

A file mapped with fileArray() produces a modifiable array. You can write new values into the array.
These new values affect all other SmArrays that are mapped to the same file because they all refer to
the same file. Modifications to the data in the array are reflected in the file, because the file and the
array are one and the same. Any changes made will be permanently reflected in the file.

Determining if an Array is Memory Mapped

The method array.isFileArray() returns true if the array is mapped to a file, and false if it is an ordinary
memory array.

Creating a File Array from Another Array

The method array.toFileArray(filename) writes the data in a suitable array to file and returns a new
file array that is mapped to that file. It provides a simple and efficient way to turn the data of an array
into a binary file and to make that data non-volatile. Only simple numeric or character arrays can be
converted to file arrays; string, nested, or mixed arrays are not mappable.

pj_jgw107 (Fun with Mapped and Appendable Arrays).doc 7/6/2004 page 5

toFileArray() is a handy way to write data to file, even if you’re not going to use the file array it
returns. In the first example above, instead of

v.cast(SmArray.dtByte).fileWriteBinary(“mydata.xxx”);

we could have written:

v.toFileArray(“mydata.xxx”);

Because the result of toFileArray() isn’t assigned to a variable, it is discarded and the memory
mapping is dissolved.

Sharing Arrays

Because an array can now be based on a file, arrays can be shared just like files can be shared. This
has a number of tantalizing implications:

� Within a single program, multiple SmArray objects can be created that refer to the same file.

These file arrays may map the same, or different, or overalapping segments of the file.
� Read-write file arrays can be created and modified and all arrays that refer to the file will

immediately see the changes.
� Other processes can map the same file and operate on it. File arrays therefore supply a

means for interprocess sharing of arrays.
� The other processes do not even need to be running on the same machine. Multiple

programs running on separate computers can map the same file to arrays, which means that
it’s possible to perform grid computing with SmartArrays.

Shared arrays thus open the door to new approaches to using the full power of multi-processor and
grid machines in array-based computing. When a task can be partitioned in a way that allows it to be
performed in “chunks”, you can set tasks to spread that task over multiple CPUs in the same
machine, or even separate machines.

Shared Arrays Over a Network

File arrays make it possible for an array on one computer to mapped to a file on a different computer.
This works, but if the array is being modified you will need to take care in how you keep the array
states synchronized. There is no synchronization built into SmartArrays, so the behavior will be
much the same as a file shared over a network because a file array is, in essence, an open file.

If a remote machine maps a file to an array and modifies the array, these changes will modify the file.
However, the changes are usually buffered and may not be “flushed” to file’s host machine for some
time. One technique to hasten the delivery of updates over the network is to close the file mapping
by calling the array’s release() method, then re-map the file with a new call to fileArray(). It you are
developing applications where data is modified across a network, you will need to give careful thought
to synchronization, a topic that is beyond the scope of this paper.

Fortunately, for many grid-architecture solutions there is no need for different machines to change an
array but only to be able to read it. If a SmartArrays-based data cache resides in files on a one
machine and does not change, any number of other machines can map to those files read-only, and
safely compute with these arrays. This is a very powerful technique for long-running computations,
but it is also useful in large web applications, where a multiple web servers may need to provide
computations on the same data.

pj_jgw107 (Fun with Mapped and Appendable Arrays).doc 7/6/2004 page 6

Appending Data To Arrays

Often an application needs to use arrays that grow and whose ultimate size can’t be known in
advance. One way to grow an array is to use catenate():

 array = array.catenate(newdata);

But suppose this needs to be done many times. Each time catenate() is called it creates a new array,
copies the original array’s contents into it followed by the new data. This can be terribly slow because
all the data needs to be copied each time. Consider the following case (but don’t try it at home unless
you have a lot of time to wait):

 int initialsize = 0;
 int items_to_add = 1000000;
 SmArray v = SmArray.scalar(0).reshapeBy(initialsize);

 for (int i=0; i<items_to_add; i++)
 {
 v = v.catenate(i); // a dummy value
 }

The number of data items copied the first time around the loop is 1, since the array is initially empty.
But by the time the millionth item is being catenated, we are copying a million values. In total, the
above loop needs to copy 500,000 x 1,000,000 data values or about 500,000,000,000 items, and take
a completely unacceptable amount of time. Of course, experienced array developers would never do
this; up to now, the best practice has been to create the array and insert values into it with
indexInto() or setInt().

But now we have a still better way, and one that works well when the eventual size of the array is not
known in advance. The new method append() in SmartArrays release 3 provides an efficient way to
repeatedly add data at the end of an array. The full syntax is

 array.append(newdata, extra);

Where newdata is an array of new values to be appended to the array. If the new values will not fit in
the array’s current memory block, a new block will be allocated with room to hold the original data, the
new data, plus extra additional items (or units along its first dimension if it is a matrix or high-rank
array).

Suppose that the above example were written to use append() and grow the array by 200,000 items
each time it needs to be enlarged, like this:

 int initialsize = 0;
 int items_to_add = 1000000;
 int increment = 200000;
 SmArray v = SmArray.scalar(0).reshapeBy(initialsize);

 for (int i=0; i<items_to_add; i++)
 {
 v = v.append(i, increment);
 }

In this case, the complete array only gets copied when the block is full. So an extra 200,000 items
will be copied the first time the array fills up, then again when it reaches 400,000 items, etc. In total,
only 30,000,000 items get copied in the process, an improvement of more than 1000 over using
catenate.

pj_jgw107 (Fun with Mapped and Appendable Arrays).doc 7/6/2004 page 7

Choosing the increment of growth is a trade-off between tying up empty space that will not be used in
arrays versus having to allocate and copy new arrays each time they grow. If you have a pretty good
idea of how large an array will become, you can pre-allocate this amount of space once and then fill
the array with append(). See Pre-Allocating Array Space below.

Extra Space in Arrays

One of the reasons append() is effective is that most arrays have some extra space. The
SmartArrays array engine uses a two-level strategy for allocating memory:

� Arrays smaller than a certain size (currently 64K bytes) are allocated in a block whose size
is a power of 2. Thus, an array of 35,000 bytes is given a storage block large enough to hold
65536 bytes, and append() will use this space if the new data fits.

� Arrays larger than 64K are stored in blocks whose size is rounded up to the operating
system’s page size, typically 4K.

Caution: Be careful when writing code that depends on the SmartArrays storage manager’s internal
behavior because it may change in future releases.

Pre-Allocating Array Space

The most effective use of append() is when you intentionally allocate extra space in arrays based on
the expected behavior of your data. There are two ways to obtain extra space – by specifying the
extra argument to append(), or by creating a large array and then reshaping it in-place using
reshapeByInto(). Here is an example of the latter technique.

 int initialsize = 0;
 int items_to_add = 1000000;

 // pre-allocate a larger array
 int reservedsize = 1000000;

 // may never be required unless we go over reserved size
 int extra_space = 200000;
 SmArray v = SmArray.scalar(0).reshapeBy(reservedsize);

 // set the shape smaller, but keep the storage block.
 v.reshapeByInto(initialsize);

 for (int i=0; i<items_to_add; i++)
 {
 v = v.append(i, extra_space);
 }

Append and Reference Counts

For append() to be used effectively, the array must have a reference count of 1, which means that
only one SmArray object can refer to the array. If there is more than one reference to array, then
append() must create a copy before appending to it. This is not unique to append(); the same is true
of any array method that modifies an array, such as indexInto() or setInt().

Multiple references can occur when the same array is assigned to separate SmArray objects, or when
the array is referenced in a nested array.

SmArray a = SmArray.scalar(“hello”); // reference count is 1
SmArray b = a; // reference count is now 2, so any modification requires a copy

pj_jgw107 (Fun with Mapped and Appendable Arrays).doc 7/6/2004 page 8

One case that deserves consideration is a nested array that holds a related set of arrays, such as
might be used to represent the set of data columns of a relational data table. Such arrays are often
very large, so appending to one of the items ought not to create an extra copy needlessly. If you
select an item out of the array with pick() in order to append to it, you create an extra reference to the
array.

 // Create a 3-item nested array of vectors
 SmArray columns = SmArray.sequence(100).enclose()
 .catenate(SmArray.sequence(100,1000).enclose())
 .catenate(SmArray.sequence(100,2000).enclose());

 // Pick one of the subarrays
 SmArray column1 = columns.pickBy(1);

The SmArray object column1 now shares a reference to the array at position 1 in columns. Thus,
appending to it will cause a copy to be created, even if we simply plan to store it back into columns.
The solution is to set columns[1] to an empty vector, which releases the extra reference. Now
column1 can be appended in-place, then stored back into the nested array.

 columns.pickByInto(SmArray.empty(), 1); // release the extra reference
 column1.append(3); // add the new data in-place
 columns.pickByInto(column1, 1); // plant it back in the nested array

Append and File Arrays

You can use append() with any array, whether it is a regular memory array or a file array. However,
one special consideration applies to file arrays, because append() will not expand the mapped
memory segment used in a file array. To make effective use of file arrays that may grow, the best
practice is to initialize the file to its expected ultimate size and then use reshapeByInto() to truncate
the array with space left for appends. Here is one example:

 SmArray a = SmArray.scalar(0).reshapeBy(1000000);
 a = a.toFileArray();
 a.reshapeByInto(0); // truncate the shape but keep the memory segment.

Now it is safe to append data to this array up to the initial limit of 1,000,000 items. If the code tries to
append more data to the file than the mapped memory segment can hold, append() will produce an
SA_FILE_ARRAY_LIMIT exception.

Note that you cannot use the length parameter of fileArray() to reserve extra space for appending.
The only way to reserve extra space is to create a large array and then truncate it with
reshapeByInto().

Caution: Be careful when using append() with file arrays that are shared between processes or
between computers. A separate instance of the SmartArrays engine will not see any changes to the
shape information of the array, since the shape is stored in the engine’s private data structures and
not in the file.

Conclusion

Using file arrays and append operations requires a bit of care, but the reward is being able to handle
much larger data objects and achieve greater performance than would otherwise be practical.

pj_jgw107 (Fun with Mapped and Appendable Arrays).doc 7/6/2004 page 9

	TECHNICAL JOURNAL
	Number

	Fun with File Mapped and
	Appendable Arrays
	File Mapped Arrays
	Some Background on Virtual Memory and Memory-Mapped Files
	File Arrays: Using Memory-Mapping with SmartArrays

	File Mapping Methods
	Shape Parameter
	Offset and Length Parameters

	Processing a Large File in Chunks
	Read-Only versus Read-Write Mappings
	Determining if an Array is Memory Mapped
	Creating a File Array from Another Array
	Sharing Arrays
	Shared Arrays Over a Network

	Appending Data To Arrays
	Extra Space in Arrays
	Pre-Allocating Array Space
	Append and Reference Counts
	Append and File Arrays
	Conclusion

