
SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-1
Section 15

15. Special Options and Facilities
INTRODUCTION
This section contains a series of notes on special features of SATURN and is
intended to “explain” their use and/or interpretation rather than to describe the
nitty-gritty of how, for example, to set up input files.

15.1 Network Aggregation and Simplification within Intermediate Bands

N.B. This section, first created in September 2011, replaces a previous section on
“How Tutorials” which are no longer available.

15.1.1 General Principles of Network Simplification and/or Aggregation

SATURN networks are very often constructed in the shape of a “doughnut” (see
below) where the area of most interest in terms of scheme testing is at or near the
heart of the doughnut and the centre of the doughnut is coded as a simulation
network with the outside made up of a buffer network (see Section 2.3).

Typical Schematic Diagram of SATURN Network Types

The justification for using the less precise buffer network description is that, if one
is interested in analysing schemes at the centre of the network, the resulting
impacts within the distant buffer network will be minimal and the extra time and
effort required to code and run the full network as simulation cannot be justified.

A further advantage of a buffer network vis a vis a simulation network is that it has
better convergence properties due to the fact that it uses “separable” cost-flow
curves (see 7.1.3). Conversely simulation networks suffer potential problems of
non-convergence due to the fact that, by allowing for within junction interactions,
their cost-flow curves are non-separable. Very often this may introduce “noise”
into the solution which makes it difficult to accurately assess the impact of
relatively small schemes.

SATURN 11 has introduced the possibility of creating an intermediate network
band (referred to as the Peripheral Simulation Area in the diagram above) which

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-2
Section 15

would lie, geographically, between the central “pure” simulation network and the
outer buffer network and which would be modelled at a simpler and/or more
aggregate level than the normal simulation but not necessarily as coarse as the
buffer network.

Two options are available for the intermediate region:

1) Conversion into a Fixed Cost Curve network (FCF);

2) Simulation to Buffer Transformation (SBT)

Fixed Cost Curves are described in Sections 15.1.2 to 15.1.6 below and the
Simulation to Buffer Transformation in 15.1.7. They are compared in 15.1.8.

15.1.2 Network Simplification using Fixed Cost Curves (FCF)

The FCF transformation retains the essential geometry of the simulation network
in that it distinguishes between separate turning movements at nodes but with
fixed - and therefore separable - “cost-flow” or “flow-delay” curves (FCF) for each
turning movement which should improve convergence and reduce “noise”. FCF
may be thought of as another form of “perturbation assignment” (see 22.2.6) or
“diagonalisation” (see 9.1.2).

The essential idea is that, in the intermediate FCF network, the flow-delay curves
for the simulation turns are “fixed” after a certain number of simulation-assignment
loops (see Fig. 9.1), presumably once a reasonably “good” level of convergence
has been reached. Thus, given the general flow-delay equation of the form (see
Section 8.4.2):

Equation 8.1 (reproduced)

0
nt AV t V C= + < (a)

()0 /nt AC t B V C C V C= + + ∗ − ≥ (b)

The parameters t0, A, n and C are all treated as fixed for individual turns rather
than as variables calculated at the end of each new simulation.

A further property of an FCF (“Fixed Cost-Flow”) description is that the same
network properties may be applied to both a “do-minimum” and a “do-something”
network in order to minimise noise between the two.

Finally we note that the structure of the “assignment network” in which simulation
turns are represented by individual “links” is also unchanged under FCF; it is only
the nature of the cost-flow curves on these turn-links which has changed. This in
turn implies that a basic Frank-Wolfe assignment step will require roughly the
same CPU time with or without FCF – although we would expect a reduction in
overall CPU time with FCF due to a reduced number of assignment-simulation
loops.

15.1.3 Modelling FCF nodes within a Simulation Network

Those nodes which are designated as fixed cost-flow within a simulation network
are identified (and this is purely a technical detail) by an extra binary bit within an

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-3
Section 15

array containing node properties (DA code 254 to be more precise). The following
two sub-sections describe how this may be accomplished; here we describe the
modelling differences – and similarities – between a “normal” simulation and an
FCF simulation.

Both styles of node simulation start with IN profiles on all input arms (see Section
8.1) and create OUT profiles along with delays. The difference is that the FCF
method is based purely and simply on the parameters in equation 8.5 (above and
section 8.4.2), rather than by a full simulation of interacting flows over short time
unit.

Thus, under FCF, the maximum OUT flow is determined by the minimum of (a) the
IN flow and (b) the (fixed) turn capacity (C in equation 8.5 above). The delay is set
by use of equation 8.5 for the current flows V.

Note that the modelling of IN/OUT flows ensures that the assigned flows are
correctly modelled within the FCF network and that any flow metering (reduced
flows downstream of V>C movements) is correctly retained as is the distinction
between “demand” and “actual” flows on all intermediate band links.

Equally any blocking back effects are retained under FCF in that the capacities C
used in equation 8.5 are the capacities post blocking back. However any
reductions due to blocking back are fixed and will not change as a result of any
flow re-assignment within the intermediate band.

On the other hand a lot of the detailed information that is provided by the normal
simulation, for example the “saw-tooth” style queue profiles at signals, lane
choice, blocking back factors etc. etc., are either no longer available or else retain
their values input at the point of “fixing”. Equally the most essential information
which is being passed from the simulation to the assignment, the flow-delay
curves, is, by definition, fixed rather than variable by loop. For this reason FCF
networks should only be set up once a reasonably stable set of cost-flow curves
have been obtained; i.e., that the simulation-assignment convergence is “good”.

15.1.4 Creating a FCF Network using SATCH

The first step in creating a “master” FCF network is to use the standard network
cordoning program SATCH to “add” FCF nodes to an existing well converged
network old_base.ufs; e.g.:

SATCH old_base control

To do so a new logical control parameter DOFCF is set to .TRUE. within &PARAM
in control.dat. All other inputs in control.dat, including the definition of the cut links
etc. etc. which define the innermost network, retain the same formats.

With DOFCF = T an additional output binary network file old_base.ufa is created -
with the (arbitrary) file extension .UFA - which retains the same network topology
as old_base.ufs but with three components – simulation, FCF and buffer – as
opposed to the two original components – simulation and buffer – in old_base.ufs.
See 12.1.11.

Thus the cordoned network (which is normally created as a separate self-
contained network by SATCH) defines the innermost pure simulation component
of old_base.ufa, the remainder of the former simulation network becomes FCF

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-4
Section 15

and the buffer component (if any) is identical between old_base.ufs and
old_base.ufa.

Note that neither an output network data file control.kp which normally defines the
cordoned network nor a cordoned trip matrix are required in this operation; the
sole purpose of running SATCH in this fashion is to produce the new three-level
network .UFA file. (Therefore, to save unnecessary calculations and CPU, the
parameter DOMAT should always be set to .FALSE.)

To complete the first stage the file old_base.ufa should be renamed / copied as,
say, new_base.ufn and run through SATALL in order to create new_base.ufs.
(The reason for using the extension .ufn is that this is the extension required by
SATALL for an input network.) Provided that old_base,ufs was well converged in
the first place and the cost-flow curves for the fixed nodes are stable then the
differences between old_base.ufs and new_base.ufs should be minimal. And,
hopefully, new_base.ufs will converge much more rapidly.

15.1.5 Creating a FCF Scheme Network using SATNET

Having created a “master” network, e.g., new_base.ufs above, in which certain
simulation nodes have been designated as FCF, that information may be passed
to a new “do-something” network to be built by SATNET from a .dat file, say
scheme.dat, by making use of the UPDATE facilities.

Thus if UPFIL = ‘new_base.ufs’, UPDATE = T and also a new parameter UPFCF
= T under &OPTION then not only are all the normal network parameters in
scheme.ufn copied from new_base.ufs but equally any simulation nodes which
have been designated as FCF in new_base.ufs will also be so designated in
scheme.ufn. Plus the FCF flow-delay parameters in new_base.ufs (i.e., t0, A, n
and C) will also be passed as fixed parameters into scheme.ufn.

The expectation is therefore that the modified scheme network with its added FCF
nodes and, consequently, a reduced number of “proper” simulation nodes will
converge much better and therefore any comparisons between new_base.ufs and
scheme.ufs will have fewer problems with noise.

15.1.6 Viewing FCF Nodes within P1X

Nodes which have been converted to FCF operation may be viewed within P1X in
several different ways.

Firstly, they may be “selected” such that either only those nodes that have been
converted are displayed or vice-versa. See 11.6.5.3.

Secondly, they may be assigned a numerical “node data attribute”, 1 for converted
to FCF, 0 for not, and displayed as node data within P1X network plots and/or
processed as a node data column within SATDB. See 11.6.5.1 and/or 11.10.5.

Finally, the standard “print” listing of node properties includes a line to indicate
FCF operation for that node.

15.1.7 Simulation Buffer Transformation (SBT): Conversion to a Buffer Network

The second method to reduce simulation-based noise in an intermediate network
band is to convert that band from simulation into a pure buffer network format with

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-5
Section 15

the inner segment remaining as simulation. So in this case we will still have the
traditional simulation/buffer “doughnut” but with an extended buffer component.

We refer to this method as SBT – Simulation to Buffer Transformation.

The SBT transformation may be accomplished by a combination of applications of
SATCH, SATBUF and SATCCS (12.1, 15.8.2 and 15.8.3 respectively) plus some
text file editing to produce a suitably updated network .dat file. Thus, assuming
that we start from old_base.ufs, we proceed as follows:

1) SATBUF old_base: to create old_base.buf with all simulation links in
old_base.ufs converted to buffer format;

2) SATCCS old_base: to create old_base.map with all simulation centroid
connectors converted to buffer format;

3) SATCH old_base control: where control.dat includes INCLUD = T in order to
produce $INCLUDE files control_11111,dat, control_22222.dat and/or
control_44444.dat to represent simulation data within the central cordoned
area.

At this stage we now have all the necessary components to create a new
network data file new_base.dat as follows:

4) COPY old_base.dat new_base.dat

5) Edit new_base.dat using a standard text editor, e.g., NOTEPAD, in which we:

a) Delete the existing 11111, 22222 and 44444 (if it exists) data segments
and ...

b) ... replace them by $INCLUDE references to control_11111.dat,
control.22222.dat and control_44444.dat.

c) Add 2 extra records “$INCLUDE old_base.buf” and “$INCLUDE
old_base.map” within the 33333 data segment (but do not delete any of
the existing 33333 data records).

Thus, at the end of the edit, we have a network .dat file in which the 11111, 22222
and 44444 data segments refer specifically to the central (cordoned) network
while the 33333 data segment has had extra data added in the appropriate format
to represent the (former simulation) links and centroid connectors in the
intermediate band.

We note that the two 33333 $INCLUDE segments added in step c) above will also
include the central simulation links and centroid connectors converted to buffer
format but since the same links etc. also appear in the new 11111 and 22222 data
sets they will be ignored by SATNET under 33333.

15.1.8 FCF vrs SBT

The two methods described above, FCF and SBT, have common objectives, that
is to reduce simulation noise in areas far removed from a particular scheme where
major changes would not be anticipated and to improve overall convergence and
CPU. They differ in the levels of aggregation applied within the intermediate
region.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-6
Section 15

Thus FCF retains the same basic geometry in the intermediate region whereby
each turning movement is still represented by a single link within the assignment
network with a (fixed) cost-flow curve and therefore, in terms of route choice,
different turning movements from the same entry link influence route choice. By
contrast with BCF the distinction between different turns has been removed.

In addition the FCF formulation permits flow metering to be modelled whereas
with SBT, as with any buffer network, there is no distinction modelled between
demand and actual flows.

We may also note that, to a first approximation, a network with a FCF conversion
gives the same results as the original simulation network. (In fact the first
assignment after the FCF transformation should give identical results to the next
assignment from the pure simulation network since the cost-flow curves are
identical; they only diverge thereafter to the extent that the simulated cost-flow
curves change). By contrast SBT networks give quite different results immediately
since the buffer-link representation is based on a quite different (and arguably less
realistic) network representation than the simulated turns.

Therefore, in terms of “realism”, FCF is preferable to SBT.

On the other hand in terms of CPU and convergence SBT is the winner in that the
reduced network size (roughly speaking including turns doubles or more the size
of the assignment network) leads to faster run times plus, arguably, faster
convergence.

Note that the original trip matrix is still valid for the transformed networks, whether
under FCF or SBT, since the zone structure has not been changed at all in the
new networks.

15.2 Preferences files

All interactive programs require a “preferences” or “initialisation” control file in
order to set default values for various parameters. The files are assigned
standard names such as P1X0.DAT, MX0.DAT, etc. (i.e. ‘program name + 0’.dat).
They consist of a set of namelist-based definitions of purely internal program
variables which control, for example, the size of arrows in node graphics. These
therefore are the variables whose values are changed by users via the standard
menus.

Formal definitions of the valid variable names in each file are not provided nor are
they necessary for users. An updated version of any preferences file may be
produced by the program via the files sub-menu and these will contain both the
input values plus the new values of any parameters changed by the user in that
session.

Hence users can “customise” a preferences file to their own individual
specifications and any subsequent program runs will use these specifications.

Preferences files exist for the following programs: P1X, SATED, SATDB, MX and
SATLOOK.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-7
Section 15

By default preferences files are stored in a specific sub-directory set by
SAT10KEY.DAT (see Appendix Y) but it is possible to select alternative
preference files using the “PREF” keyword in standard .bat files. For example:

PIX network PREF C:\DVV\PREFS\JIMBO

selects the preferences file JIMBO.DAT in subdirectory DVV\PREFS rather than
the default P1X0.DAT.

In certain cases variables which can be namelist-set in SAT10KEY.DAT may be
over-written by individual Preferences Files; e.g., GO4IT and KPEXT. In general
the values set in SAT10KEY.DAT might be thought to refer to values for an
“organisation” as a whole while values set in Preferences Files might be more
appropriate to individual users or jobs.

If, however, a program cannot locate a preferences file it is not the end of the
earth - or the program. In that case a standard set of default parameter values
are adopted.

Note that a slightly different way to customise the set up of an interactive program
is to use the “break” option in a key file (see 14.5.5) whereby the necessary
commands are contained in the key file which initiates the run but terminates on
“break” allowing the user to carry on as per normal from that point.

15.3 Network Updates (The Update Option)

It is very often the case in calibrating a network that successive test networks
differ only marginally from previous tests. It is possible to take advantage of this
fact by using the output from former runs to provide a realistic starting point for the
subsequent run. More specifically, values of the previous flow-delay parameters
(including values of the ratios of actual to demand flows, QRF – see 17.2) are
extracted by SATNET from an “update network” to set initial values for input to the
first assignment rather than starting “cold” with not very realistic default values.
This has the great advantage of (potentially) significantly reducing the number of
simulation-assignment iterations on the second run by making the initial
assignment far more realistic.

In addition, post 10.8, selected data relating to the simulation is also extracted
from the “update network” rather than setting default values in order to make the
first simulation more realistic.

In order to invoke the UPDATE option two steps need to be taken:

♦ Set UPDATE to TRUE on &OPTION in the new network DAT file.

♦ Input the UFS file from the previous sequence on channel 2 to SATNET
(which may most easily be done using the parameter UPFILE (see section
6.1) to define the filename).

We note that this procedure is very similar to the PASSQ option (17.3.1) which
also (if UPDATE = F) extracts flow-delay data from a previous network file (in this
case, the PASSQ file from the previous time period) The difference under
UPDATE = T is that only flow-delay information is extracted from the update file,
not the queues and suppressed traffic as with PASSQ.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-8
Section 15

Note that both UPDATE and PASSQ may be used at the same time but, if so,
they must use two different input .ufs files (parametric filenames UPFILE/FILUP
and FILPQ respectively). If only PASSQ is used then there is no option to cancel
the flow-delay updates.

The extended SATURN procedures may be used here - the command format is
illustrated in Section 14.4.2.

Further Notes:

1) The second network may in fact be structurally quite different from the first in
the sense that new nodes and new links or turns can be introduced. The
program is set up in such a way that only information on turns and links
common to both networks are carried over. For “new” turns default flow-
delay parameters are assumed. Clearly though, the more similar the two
networks are, the greater the savings in CPU time.

N.B. Both UPDATE and PASSQ (17.3.1) allow the “pre-network” to have a
different structure from the “main network” whereas – at the time of writing –
the pre-load option PLOD does not (see 15.5.1). This is likely to change in
the future.

2) Note that the UPDATE option as described here implies that only the
network is updated, although it is also permissible to introduce a different trip
matrix at the same time. If, however, one only wishes to change the trip
matrix then the appropriate steps are described under the Re-start Facility in
Section 15.4.

3) In order to ensure that the first assignment within the assignment-simulation
loop takes full advantage of the improved initial set of flow-delay curves the
maximum number of assignment iterations, normally set by the parameter
NITA, is set to the maximum of NITA, NITA_S and 25.

4) It is possible (post SATURN 10.6) for a file to, in effect, update itself in the
sense that an “old” UFS file, say net.ufs, may update a “new” network data
file net.dat. In other words it is not necessary to re-name the network every
time a minor change is made and the results from the previous incarnation
are used to the full.

Note as well that, if UPDATE is set to .TRUE., but the UFS file to be updated
has not been defined then it is assumed by default that the file to be updated
IS net.ufs (when the data file is net.dat).

This option is particularly useful when running multiple time periods using
SATTPX (17.4.3) since, in that case, each time period has a unique filename
(e.g., neta, netb, netc etc.) emanating from a single data filename (e.g.,
net.dat). The individual time-period filenames will be automatically and
correctly invoked if UPDATE = T in net.dat but no specific .ufs filename (e.g.,
net.ufs) is set.

5) The UPDATE option may be very usefully combined – under either path-
based or origin-based assignments - with the WSTART option which adds
additional information related to path flows and which improves the initial

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-9
Section 15

assignment even more than just having improved cost-flow curves. See 21.3
for further details.

15.4 Updating the Trip Matrix (The Re-start Facility)

The re-start facility allows a user to carry out a full set of SATALL simulation-
assignment loops when the only difference between the current and a former run
is in the trip matrix, for example when SATME2 is used to estimate successive trip
matrices or when the assignment is part of an external demand-supply procedure,
possibly using MX.

If there are any other differences at all apart from the trip matrix, e.g., changes in
PASSQ flows, etc. etc., then a re-start in SATALL is not appropriate.

Re-start is effectively equivalent to UPDATE (Section 15.3), the main distinction
being that it is applied directly within SATALL whereas UPDATE is applied in
SATNET. It is also, under path-based or OBA assignment (MET = 1 or 2),
equivalent to WSTART = T; i.e., the first assignment uses the paths from the
previous assignment as a “perturbation” assignment (see 21.3).

The distinction between a normal run and a re-start is that the former must start
with the network build program SATNET before commencing the
assignment/simulation loops (see Figure 3.1) whereas the latter uses a previous
network and starts with the assignment directly. Subsequent
assignment/simulation loops are the same thereafter.

The first assignment requires (in effect) as input:

♦ The final UFS file from the previous sequence (This file contains the
necessary network specifications and parameters.)

♦ The latest trip matrix UFM file.

The command
SATALL network tripod RESTART

carries out a full simulation-assignment loop but taking its input from the
previously converged file network.ufs as opposed to network.ufn which comes
direct from SATNET.

Note that it is the presence of “RESTART” on the command line which initiates the
re-start sequence; i.e. no parameters within a .dat or control file need to be set.
However an alternative DIY method to set up re-start would be to copy a .ufs file
into a .ufn file yourself and create a control file for SATALL with the parameter
REGO = T; see 7.13.2. Not recommended!

The output version of network.ufs will over-write the original input version and will
include the new flows etc. If you wish to retain separate .ufs files from each step it
will be necessary to take a copy of each output .ufs file with clearly, different
names.

The main advantage of using the re-start facility, apart from being able to skip one
execution of SATNET, is that the new sequence starts with the flow-delay curves
and simulation profiles from the previous run. In the former sense RESTART is

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-10
Section 15

therefore very similar to the use of UPDATE within SATNET, although the use of
old simulation profiles is exclusive to RESTART.

If the new trip matrix is not much different from the old then the final flow-delay
curves, etc. will not be much different either. Hence by starting with good
approximations the overall number of assignment/simulation loops can be sharply
reduced.

Section 22.2.2 contains further information on RESTART, including its relationship
with other similar “kick-start” techniques.

15.5 Pre-Loading Fixed Flows (The “Plod” Option)

The “pre-load” option was introduced at an early stage of SATURN development,
somewhat as a short-term measure, to deal with the problems of, say, assigning
heavy lorries separately from other vehicles. Indeed that particular application,
described in 15.5.1, has been largely superseded by the Multiple User Class
Assignment option which is more general and more flexible and generally
recommended in preference to PLOD (see 7.3). However, as discussed in 15.5.2
and beyond below, a number of other possible applications have emerged over
the years.

In simple terms pre-loaded flows are fixed flows introduced onto the network
before any assignment takes place but which contribute to the total flows used to
calculate costs (times) in the assignment. They are always defined in units of
pcus/hr and have no other properties such as being part of a particular user class
or vehicle class. However in terms of calculating their total pcu-hrs etc. it is
assumed that their travel times are as defined for user class 1.

Note that, in certain circumstances, pre-loaded flows may contribute to exit and/or
entry flows on simulation links (see 15.6.2). For example, if a flow of 100 pcus/hr
is preloaded on turn A-B-C but no flow is preloaded onto link A-B then a flow of
100 pcus/hr must be added as a downstream entry flow on A-B.

15.5.1 Pre-loading HGV’s

The procedure to be followed with heavies plus cars would be to:

♦ Set up a “heavies” network and carry out a full SATURN run assigning only a
matrix of heavy vehicles.

♦ Set up the “normal” network with the previous demand (i.e., not actual) flows
“pre-loaded” onto the network and treated as fixed flows in the same way that
buses are.

The second or “normal” network file would have PLOD = T in &OPTION (and,
preferably, the name of the pre-loaded file via PLDFIL) whereas the first would
have PLOD = F (the default).

In effect the PLOD option allows the heavy lorries to have the first choice of route
and implies that whereas lorries can affect the routes subsequently chosen by the
“normal” vehicles, the normal vehicles cannot in turn affect lorries. In some
circumstances this may not be a totally unrealistic assumption; however allowing

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-11
Section 15

for interaction in both directions would no doubt be preferable and is provided by
Multiple User Class Assignment (Section 7.3).

While the lorry network can have different network properties from the “normal”
network, e.g., different link speeds, etc., both networks MUST be structurally
identical, i.e., have the same nodes, links and turns (unless a text file is used’ see
15.5.4). (N.B. PLOD differs from PASSQ and/or UPDATE in this respect: the
PASSQ/UPDATE networks may have a different structure from the main network;
see notes 1) in section 17.3.1 and section 15.3 respectively.) Hence, strictly
speaking it is not (yet) possible to introduce lorry bans by banning turns or
removing links in the lorry network. However lorry bans can in fact be introduced
by certain relatively simple tricks.

For example, you can effectively ban lorries from a link by giving that link an
extremely high travel time in the lorry network (assuming of course that there are
alternative routes available). Banned turns may be introduced by coding them as
bus-only turns even if there are no buses; the model response to a bus-only turn
is to prevent any elements in the trip matrix - in this case lorries - from using those
turns.

Some caution must be exercised when using PLOD so that other forms of fixed
vehicles are not loaded twice. For example, bus routes should not be coded as
part of the lorry network, only as part of the normal network, since any bus flows in
the lorry network will be automatically added as fixed flows to the normal network.

Clearly the same basic procedure is carried out with any combination of assigned
vehicles, not necessarily just lorries and cars.

15.5.2 Pre-loading Distance Minimisers

Another useful application of the PLOD option is to carry out a separate
assignment of a trip matrix of “distance minimisers” whose route choice is, by
definition, independent of other trips. How of course one defines such a trip
matrix in the first place is entirely up to the user. Again distance minimisers may
be treated as a separate user class.

It is also quite feasible to do several stages of pre-loading. For example, you can
start with the distance ‘minimisers’, pre-load them onto a lorry network - in which
case the output flows would consist of both lorries and distance-minimisers - and
then pre-load that network onto a normal network. Clearly some care is called for
here to choose the best order and to avoid double counting, etc.

15.5.3 Pre-Load Statistics

The assignment network statistics include totals for any pre-loaded trips
separately from the over-all totals, but - as of yet - no comparable breakdown is
available within the simulation network.

15.5.4 Pre-Loading from a (Text) Data File

It is also possible to input pre-loaded flows from a text-based data file as opposed
to a SATURN .ufs file (post version 10.4). For example, if you have extensive bus
flows but do not wish to code them as individual routes, only to represent their
total flow across the network, then it may be done by setting up a text file wherein

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-12
Section 15

each record contains: (a) link identification (in standard or free (CSV) format; see
below) followed by (b) the corresponding flow in units of pcu/hr.

Alternatively if the pre-load file and the current file have a different network
structure and pre-loading from a .ufs file is not permitted (paragraph 4, 15.5.1),
then the relevant flows may be pre-loaded by first dumping flows from the pre-load
file into a text file; e.g., use SATDB (11.0.9).

SATURN differentiates between the two by looking it the extension of the input
file: if it is .ufs/ufa/etc. it assumes a SATURN file, if not it assumes a text data file.
See 14.4.4.

The format of the link identification may either follow standard SATURN input data
conventions, see, for example, 6.10, with node numbers in fixed columns followed
by a (single) link flow or both node numbers and flow may be input totally as “free
format” or CSV by setting a parameter PLODFF = T in the network &OPTION data
segment (see 6.1). By default PLODFF = F.

Note that pre-loaded “links” should normally include both “roads” and “turns” in a
simulation network. Including only “roads” will lead to discontinuities in flows at
simulation junctions.

Within free-format text files (PLODFF = T) a further &OPTION parameter PLFF3 =
T requires that each input record contains 4 fields – A, B , C and flow. Thus links
are distinguished from turns by always including an explicit third C-node field
which is equal to zero for a link and the turn C-node otherwise.; i.e., A,B,0,link-
flow(A,B) as opposed to A,B,C,turn-flow(A,B,C).

Alternatively, if PLFF3 = F, then link records require 3 fields (A and B followed by
the flow) whereas turn records require 4 fields in total (A, B, C and flow). By
default PLFF3 = F.

For fixed column input (PLODFF = F) PLFF3 does not apply since the fixed data
columns used for a C node will simply be blank (or zero) for a link and the flow
data is in the same (fixed) columns for both links and turns.

See Section 9.12.3 for suggestions as to how the pre-load facility may be used in
combination with the parameter ZILCH to carry out a 100% pre-load.

15.5.5 Pre-Loading Bus (PCU) Flows

As noted in Section 5.5.4 it may be possible / convenient to define bus flows as
pre-loaded flows or vice-versa. For example, if you have a very large number of
low-frequency bus routes it may be simpler to simply aggregate all their individual
flows by link/turn and input them as fixed pre-loaded flows rather than go through
the hassle of defining individual routes as per 6.9; the impact on the assignment
and (with some reservations) the simulation will be identical.

On the other hand, bus flows may have certain properties that distinguish them
from other flows, e.g., bus lanes. Equally coding buses as aggregate fixed flows
means that you cannot analyse individual route timings etc.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-13
Section 15

15.6 Comparing Assigned and Observed Flows: GEH Statistics

15.6.1 General Options

It is possible to obtain a number of goodness-of-fit statistics comparing the
modelled flows on both links and turns with observed counts in order to check the
performance of the model. This can be carried out in several ways:

The most comprehensive and flexible set of comparisons is available within P1X,
either under Validation (11.7.1) or SATLOOK (11.11.13). In these cases the
observed flows are taken from the input .ufs file as originally read as 77777
records in the network .dat file. The modelled flows may be defined in a number
of different ways in order to match the precise definition of the counts used; e.g.
demand or actual flows may be used (actual probably makes more sense in
general), bus flows may be included or excluded, a single user class flow may be
selected, etc. etc.

Note that Validation, being newer, provides more options than SATLOOK. On the
other hand SATLOOK is probably easier to run with a key file or as part of an
extended batch file.

Alternatively, both counts and flows may be read into SATDB and the standard
statistical options to compare two data columns invoked. Users may wish to
define their own difference measures based on the column- manipulation facilities
within SATDB. Within SATDB the user may select either actual or demand flows
as preferred.

Finally P1X can also display difference statistics graphically under link annotation.
Two standard items are “ABS ERRORS” which is the difference between counts
and actual flows and “REL ERRORS” which gives the relative differences as a
percentage.

15.6.2 GEH Statistics

With one exception the output comparison statistics are standard and
straightforward, the exception being what is referred to as “The GEH statistic”.
This is a statistic, first suggested to me by Geoff Havers of the Greater London
Council, which is useful in comparing two different values of flow on a link, V1 and
V2. It is defined by:

() ()()2
2 1 1 2/ 0.5GEH V V V V= − +

It may most easily be thought of as the square root of the product of the absolute
difference, V2-V1, and the relative difference, (V2-V1)/VBAR where the “average
flow” VBAR = 0.5*(V1 + V2).

The reason for introducing such a statistic is the inability of either the absolute
difference or the relative difference to cope over a wide range of flows. For
example an absolute difference of 100 pcu/h may be considered a big difference if
the flows are of the order of 100 pcu/h, but would be totally unimportant for flows
of the order of several thousand pcu/h. Equally a 10% error in 100 pcu/h would
not be important, whereas a 10% error in, say, 3000 pcu/h might mean the
difference between building an extra lane or not.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-14
Section 15

Generally speaking the GEH parameter is less sensitive to such problems since a
modeller would probably feel that an error of 20 in 100 would be roughly as bad as
an error of 90 in 2,000, and both would have a GEH statistic of, roughly, 2.

The following table gives an indication of various levels of GEH values, both
qualitatively and quantitatively:

Value Comment Examples

GEH = 1.0 “Excellent” +/- 65 in 4,000 +/- 25 in 500

GEH = 2.0 “Good” +/- 130 in 4,000 +/- 45 in 500

GEH = 5.0 “Acceptable” +/- 325 in 4,000 +/- 120 in 500

GEH =10.0 “Rubbish!” +/- 650 in 4,000 +/- 250 in 500

Thus, as a rule of thumb, in comparing assigned volumes with observed volumes
a GEH parameter of 5 or less would indicate an acceptable fit to a traffic modeller,
whether it was a difference of 325 to 4,000 or 120 in 500, while links with GEH
parameters greater than 10 would probably require closer attention.

It needs to be noted that the GEH statistic is an “intuitive” and “empirical
engineering” measure, not necessarily a measure that a professional statistician
would recognise or deign to use. However, it should also be noted that the square
of the GEH parameter is not unlike the well-used chi-square measure of fit, and
would be the same if either V1 or V2 (whichever was the ‘observed’ flow) were
used in the denominator. (One reason for taking the average is to avoid possible
problems when either V1 or V2 equals zero.)

It is however not particularly useful to take the comparison too far, particularly
when comparing modelled to observed flows, since the sum of the GEH2 values
interpreted as a chi-square statistic will almost certainly indicate that the two are
significantly, indeed very highly significantly, different and that therefore the model
is ‘wrong’. From a pure statistical point of view virtually all transport ‘models’ are
wrong in that they fail to reproduce observations. What a transport modeller
wants is a model which, although not strictly correct, is adequate for the uses to
which it is applied.

A further distinction between GEH and chi-square is that the latter gives a
relatively greater weight to larger differences between flows, for example, to
“outliers”. For example, errors of 63 and 126 in 1000 pcu/hr give GEH values of
(approximately) 2 and 4 but chi-squared values of 4 and 16. GEH effectively says
that an error of 126 is “twice as bad” as 63, not four times as bad. These
differences are reflected in aggregate measures such as the average of all GEH
statistics from a set of counts.

With version 10.1 the GEH statistic comparing two database columns in
SATDB/P1X may be calculated as an explicit function; see 11.10.8.

15.7 Use of SATURN Outside the U.K.

Although SATURN has clearly been set up in the U.K. and with U.K. applications
in mind it has been programmed in a perfectly general manner so that with
minimal changes it could be applied in other countries, e.g. in Australia and New

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-15
Section 15

Zealand using the NOTUK parameter and in countries where vehicles drive on the
right using LEFTDR.

15.7.1 The NOTUK Parameter

Setting NOTUK NE 0 in the &PARAM namelist input causes the model to make a
number of assumptions concerning priorities for turns coded with one of the
priority markers described in Section 6.4.2 which differ slightly from the
assumptions made in the U.K. They are as follows:

♦ Opposite right-turning vehicles, for example at traffic signals do not interfere
with one another, whereas in the U.K. it is assumed that they execute a
‘hooked’ movement.

♦ Right-turning vehicles at traffic signals (i.e. turns coded as X) have priority
over left-turning vehicles coming from the opposite direction.

The values allowed for NOTUK are:

♦ 0 - neither assumption (the default UK value);

♦ 1 - assumption (i) only (as in Australia apart from Victoria);

♦ 2 - assumption (ii) only;

♦ 3 - both (i) and (ii) (as for Victoria and New Zealand)

The “traditional” (i.e., dating back to the 1970’s) default value in SATURN is 0
implying that opposing right turns in the UK do hook and therefore interfere with
one another. However in the 21st Century UK the opposite is almost certainly the
norm and, paradoxically, a value of NOTUK = 1 would be recommended.

However, setting NOTUK = 1 on existing networks may not be a good idea if a
large number of individual turns have been given a Priority Modifier D which
reverses the definition of hooked/not hooked (see 6.4.2.7). I.e., if you set NOTUK
= 1 but do not change XD to X then all those turns will be assumed to hook.

15.7.2 Right-hand Drive: LEFTDR = F

Although clearly designed for British conditions with drive-on-the-left it is equally
easy to use SATURN for drive-on-the-right. To invoke drive-on-the-right set the
parameter LEFTDR to .FALSE either “universally by default” in SAT10KEY.DAT
(Appendix Y) or network-specific (6.3.1). Differences occur in the input in that
simulation links need to be input in strictly counter-clockwise order for right-hand
drive instead of clockwise.

More serious problems might arise with junction types and/or control strategies
which are radically different from those used in the U.K., or - more accurately -
cannot be represented properly by SATURN.

Output differences include writing “right hand” rather than “left hand” etc. in
messages and in annotating on the opposite (i.e. “correct”) side of the links in
graphical displays (where it is very important to have LEFTDR set correctly).

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-16
Section 15

15.8 Using SATURN as a Conventional Assignment Model

15.8.1 Buffer-only networks

As mentioned in Section 5.2 it is possible in the limit to use SATURN as a
conventional assignment model by defining a network which consists entirely of a
buffer network with no simulation nodes. In such a case one would use SATNET
to build a network file and SATEASY to carry out the assignment. Given that there
are no simulation nodes there is no necessity to use the simulation stage SATSIM
and the assignment obtained from one execution of SATEASY is a convergent
solution within the limit of the convergence parameters set. Note that one could
also use SATALL instead of SATEASY; it carries out the identical assignment
procedures and is recommended.

There are a number of reasons why one might wish to use SATURN in this way.
For example users might wish to model large-scale interurban networks for which
junction modelling is not essential. Another example would be the user who
wishes to use the matrix update facilities within SATURN without necessarily
wishing to define all or part of his network in the detail required by SATURN. A
third example is the use of SATURN purely as a network data base.

The ASCII .dat file necessary to define such a network must commence with the
three mandatory input records (OPTION namelist, title and PARAM namelist) as
described in Section 6, immediately followed by a buffer network “header” record
of a 3 in column 1 and the buffer network description terminated by a ‘99999 card’
as specified in Section 6.6. Node co-ordinates, route flows etc. (optionally)
follow. The final card in the file must be another 99999 card.

The use of default speed-flow curves within the 333 records (15.9.5) may be
extremely useful in buffer-only networks.

Thus a “typical” file might read:
 &OPTION
 &END
 THIS IS A PURE BUFFER NETWORK
 &PARAM
 BCRP=4.0,
 LIST=T,
 &END
 33333
 3 2 28 56 2500 1 100 3.1
 29 2 21 42 1250 2 90
 2 3 28 56 3750 1 100 3.1
 C 2 59 10 50
 C 3 60 10 25
 ...
 99999
 55555
 Co-ordinate data
 99999
 99999
 (End of file)

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-17
Section 15

15.8.2 Converting Simulation Networks to Buffer (SATBUF)

For various applications it is sometimes useful to convert a network with a
simulation component (either entirely or in part) into a pure buffer network, e.g. to
carry out very simple sensitivity testing or to convert it for use in another suite of
programs (so, SATURN not good enough for you, eh?) Essentially this requires
that link cruise times plus junction delays are converted into the best equivalent
buffer speed flow curves which, since they cannot distinguish between different
turning movements, must of necessity be suitably weighted averages.

The averaging of delays may be carried out using routines within SATDB and
data for each simulation link dumped to an ASCII file. A special purpose .bat plus
.key file is provided to do this. Type

SATBUF net

to produce an ASCII file net.buf which contains for each simulation link (A,B) a
single record containing:

♦ Its A-node

♦ Its B-node

♦ The average free-flow time (in seconds)

♦ The average time at link capacity (in seconds)

♦ The distance (in metres)

♦ The link capacity (in pcu/hr)

♦ The weighted flow-delay power n.

The times above include both cruise time along the link plus a flow-weighted
average of the delays to each individual exit turn:

/i i id V d V=∑ ∑

where:

di = delay for turn i

Vi = simulated (actual) flow for turn i

Thus if you have a simulated right turn with a very long delay but (consequently) a
very low flow this will have relatively little effect on the delays which would be
modelled in the buffer network (so that in a buffer network representation you
could expect to overestimate that particular turning movement).

The capacity is that already calculated for each simulation link (see 8.9.4 for
further details) while the flow-delay power n is a weighted sum of individual turns
as with delays above.

Both the order and the format of the output variables is the correct order required
by buffer network input to SATNET (section 6.5). Thus the times, capacity and
distance are all output as “integers” although they are calculated as “reals”.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-18
Section 15

Note that SATBUF deals only with simulation links, i.e. the 11111 data input, and
that users must decide for themselves how to deal with simulation centroid
connectors - the 22222 data inputs. One very simple solution, which implies using
an editor, is to edit the 22222 records by

♦ inserting a C in every column 1

♦ deleting all records from column 11 onwards.

This has the effect of producing a correctly formatted set of buffer link records with
the zone as A-node and the first simulation node entered as its B-node. Whether
this is a good way to re-code centroid connectors is another question.

N.B. If DUTCH = T in the network being “bufferised” then an alternative version of
the batch file may be run thus:

SATBUF net DUTCH

in which case the new link A-nodes and B-nodes will appear in column blocks of
10, not 5 in the output file net.buf. (Added in version 10.9.15)

15.8.3 SATCCS: Converting Simulation Centroid Connectors to Buffer

An extra batch file introduced in Release 11.1, code-named SATCCS, performs
essentially the same job as SATBUF but operates on simulation centroid
connectors instead of simulation links. Thus the command:

SATCCS net

creates an output text file net.map with link data in the 33333 format for simulation
centroid connectors only.

Thus if a zone Z is connected to simulation link A-B then there will be a record A-Z
and another from Z-B with appropriate distances, times, etc. etc.

The intention would normally be that the file map.dat would be included within the
33333 section of a buffer-only network .dat file (either verbatim within the 33333
data segment or, perhaps preferably, as a $INCLUDE file. See 15.1.5 for such an
application.

The procedure uses the “dump map links” option within P1X (see 11.4.2.3) but in
a purely off-line batch mode and with only simulation centroid connectors
selected. No special KEY file is required (unlike SATBUF).

15.9 Converting Conventional Speed-Flow Curves into SATURN Curves

15.9.1 General Principles

It is very often handy for users with existing networks coded in conventional detail
to convert their networks into a SATURN network by stages. Thus the first step
would be to code the existing network as a buffer-only network (presumably using
a computer program to carry out the necessary changes in format) with no
simulation network, as described in Section 15.8. Preliminary tests may now be
carried out with very little coding effort.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-19
Section 15

Certain problems may arise in converting existing speed-flow curves into the flow-
delay relationship as specified by SATURN for its buffer network, i.e., an nth order
power law for flows less than capacity and a linear relationship for flows above
capacity (see Section 5.4 and equation (5.1)). These problems may concern not
only the calculation of n – dealt with below – but also problems with the
interpretation of parameters such as capacity.

We consider first the range of flows less than capacity, V<C. Clearly if the existing
curves are already in the form of a power law then the problems here are minimal;
the user must simply ensure that the required value of n is set in BCRP if it is
constant for all links or is input for each individual link.

If however the existing curves are of a different form it will be necessary to define
power-law curves which, in some sense, give a “best fit” to the existing curves.
There are many ways in which this can be done, depending both on the definition
of “best fit” as well as on the shape of the existing curves.

Different countries may well have different recommended forms. We illustrate
here one method which may be used to convert curves of the form recommended
by the UK Department of Transport, currently referred to as DfT, but for historical
reasons also referred to as DTp.

15.9.2 DFT/DTp Advice Note 1A

DTp (“Advice Note 1A”) recommended curves have the following form:

() ()/t V d S V=

() ()() ()
()()

0

1 1 0

1 1

/

/ 1 / 8

S V F
S V S S S V F C F F V C

S S V C dC V C

 ≤
= + − − − < ≤


+ − >

Where:

t is the link time (in hours),
d is the link distance (in kilometres),
S is the link speed (in kph),
V is the link flow (in PCU per hour),
S0 is the “free flow” speed,
S1 is the speed at capacity,
F is the maximum flow at which free-flow conditions hold
C is the capacity

We wish to fit the above curve, in the range V < C, with a function:

0
nt t aV= +

The three unknowns, t0, a and n, are fitted from the following constraints:

1) Free flow times must be the same (hence t0 = d/S0);

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-20
Section 15

2) Capacity times must be identical, and

3) The “average” travel times must be the same.

Condition (3) is the critical one for determining n. We define the average travel
time to be:

()
0

/
C

t v dv C∫

Hence for SATURN the average time is given by:

()1
0 / 1nt t aC n C+= + +

0 / 1nt aC n= + +

()()0 0 / 1t t C t n= + − +

Integration of the DTp curve gives:

() () ()()0 0 1 0 01 / ln / / 1/ 1/ ct t F C S S t t t= + − − −

Hence:

() () ()()()1 / 1 / ln / 1 1 1n r F C r r r= − − ∗ − − −

where 0 1 0/ /cr S S t t= =

A section of FORTRAN code which does the above job is given below:
R = S0/S1
XN = 0.0
IF (R.GT.1.0) THEN
XBOT = (1.0 - F/C) * (R*ALOG(R)/(R - 1.0) - 1.0)
IF (XBOT.NE.0.0) XN = ((R - 1.0)/XBOT) - 1.0
END IF

and the following table gives values of n for ‘typical’ DTp parameters (where the
speeds are in kph and the flows/capacities in pcu/hr):

S0 S1 F C N

90 76 3600 5200 5.89

79 70 3200 4800 5.25

70 57 400 1800 1.76

63 55 400 1400 1.93

50 50 0 600 0.00

80 66 3400 4800 6.33

65 56 2800 4400 4.79

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-21
Section 15

S0 S1 F C N

50 30 1200 2200 4.29

45 25 500 1000 3.96

35 25 350 600 4.40

25 15 250 500 3.81

67 47 0 4000 1.27

61 27 0 3400 1.72

For the range of flows above capacity, DTp and SATURN curves both have a
linear relationship, although the slope of the curve in SATURN is determined from
the length of the time period simulated (parameter LTP) while that for the DTp
curve is set by the parameter ‘8’ in the above equation which has units of 1/hours.
To set up the same slope in SATURN it is therefore necessary to set LTP = 15,
i.e., 1/4 of an hour since the slope equals 0.5*LTP.

Having set up the buffer network the user may now begin to code parts of the
network in the format and detail required for a simulation network, starting with
those nodes where the extra detail is most required and working outward as far as
may be required. Since any node that appears in both the simulation and buffer
networks is ignored in the buffer network nodes may be coded as simulation
nodes without having to remove them from the coded buffer network. One
advantage of coding SATURN networks in this way is that the user gains coding
experience by degrees and thereby makes fewer mistakes overall.

Note that in following this procedure the nodes which lie on the boundary between
the simulation and buffer networks at any stage MUST be included as external
nodes in the simulation network unless one uses the AUTOX facility as described
in Section 15.12.

15.9.3 COBA 10 Speed-Flow Curves

The form of the DfT-recommended speed-flow curves was replaced in the late
1980’s by the so-called “COBA-10 curves” with two sloping linear segments as
opposed to Advice Note 1A above which had a flat segment followed by a linear
slope. Figure 15.1 below illustrates the new form for flow V less than capacity C.
They are still in use to the present day (2007) although the specific numerical
values for individual curves are out-of-date.

N.B. The “x-axis” or flow-axis in Fig. 15.1 is specified in units of vehs/hour
whereas SATURN (see 15.17.1) generally works in terms of PCUs/hr; some
conversion may therefore be required if one wishes to fully translate COBA
curves for use in SATURN. See 15.9.4 below.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-22
Section 15

Figure 15.1 - COBA 10 speed vrs flow curves

The following equation describes the relationship:

()
() ()
()() ()

()()

0 1 0

1 2 1

2 2

* /

/

/ 1 / 8

S S S V F V F

S V S S S V F C F F V C

S S V C dC V C

 + − ≤
= + − − − < ≤


+ − >

Where:

S0 is the free flow speed

S1 is the “intermediate” break point speed

S2 is the speed at capacity C

A “best-fit” value of the power n may then be determined by the equation:

() ()1 2 1 21 / 1 1n R R B B= ∗ − + − −

where:

()

()
1 1

1
1

/ log
1

F C R R
B

R
=

−

()
()

1 2 2
2

2

1 / log
1

F C R R R
B

R
− ∗

=
−

1 0 1/R S S=

2 1 2/R S S=

N.B () ()
1

lim log / 1 1
R

R R R
→

− =

 and “log” above refers to the “natural log”

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-23
Section 15

Our thanks are due to Yazid Arezki for working out the above formula, thus
confirming earlier numerical values calculated by Devon County Council.

In previous versions of the manual, a set of calculated values of n for “standard”
UK road classifications were provided in a Table (often referred to as ‘Table 15.9’)
with a shorthand description of each road type.

With the release of 10.9.24, the table was withdrawn as its inclusion was only
intended to illustrate a range of ‘typical’ values of ’N’ which may result, using the
formulae above, from piece-wise linear curves. The values used in the table were
originally taken from COBA data sets of circa. 1990 and were not, in any sense,
recommended as up-to-date values for different road types In practice however,
users were applying the Table 15.9 curves without undertaking the necessary
critical review required for their specific application.

To assist users, an illustrative comparison of a ‘typical’ COBA piece-wise curve
and the equivalent SATURN Power curve is provided overleaf in Figure 15.2; The
data parameters used (listed below) and the best-fit value of N are for a (nominal)
dual 3-lane motorway with 15% HGVs. Figure 15.3 re-plots the same data as
delays versus flows (which is the form in which it is applied in assignment
models).

Further advice is provided to assist in converting curves into a form suitable for
SATURN in the following section.

The equivalent SATURN parameters for the curves illustrated above (with
various assumptions on the other COBA parameters required) are shown below.

S0 S1 S2 F C N Description

111.8 104.6 81.4 4410 6990 2.80 D3M

Note: speeds S0, S1 and S2 in km/h whilst breakpoint F and capacity flow C are in pcus/h

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-24
Section 15

Figure 15.2 –COBA11 Piece-Wise v SATURN Power-Based Speed-Flow Curve (15% HGV)

Figure 15.3 – SATURN Dual 3-Lane Motorway Flow-Delay Curve

15.9.4 Conversion of existing speed-flow curves into SATURN

Extreme care should be exercised when speed-flow curves which have been
developed in a different context are “translated” into SATURN speed-flow curves.
We note, in particular, problems which have arisen in using COBA-10 curves,

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-25
Section 15

whose basic application is within an economic evaluation package, not within an
assignment model.

Certain of these problems apply more to the use of link capacity-restraint curves
within the simulation network (6.4.12 and 8.4.4); most apply to both simulation and
buffer networks equally.

The first concerns the question as to whether or not the recommended “capacity”
for a link A-B takes into account the existence of (a) intermediate junctions
between A and B or (b) the junction at B. In a buffer network both (a) and (b)
should be included in the capacity used by SATURN; in a simulation network (a)
should be included but not (b) which is otherwise considered by the simulation of
junction B. The problem is therefore one of either double-counting or “zero-
counting”. See also 6.4.12.1.

The second problem is one of units. If, as in COBA-10, capacities are normally
specified in units of vehicles per hour there may be an assumed percentage of
HGV (or other) vehicles within the “vehicles”. Thus, given a link with a flow of
1,000 vehicles/hr of which 15% are HGVs (150 /hr) for which one would wish to
attribute a PCU factor of 2.0 PCUs/HGV, the equivalent flow in terms of PCUs/hr
would be 1,150.

The third question is what happens to speeds in excess of “capacity”. COBA
curves, for example, may assume that speeds above capacity do not reduce but
continue to be fixed at their capacity speed. SATURN assumes that flows in
excess of capacity lead to linearly increasing queues with a consequent linear
increase in travel time (/reduction in effective speed) as given in equation (5.1b).
Users need to bear this in mind in specifying link capacities (for both simulation
and buffer links).

In all three cases it is the responsibility of the user to decide how and by how
much to compensate for these effects before using these curves within SATURN.

15.9.5 Default Speed-Flow Curves

It is possible to define the speed-flow relationships on buffer links by defining
“default” speed flow curve parameters which apply to all buffer links which have
the same capacity index. To use this option within a network data file input to
SATNET you must:

♦ Define a set of default speed flow records within the ‘33333’ data records,
identified by a ‘D’ in column 1 and with entries for free-flow speed, speed at
capacity, capacity, the power ‘n’ and a (non-zero) capacity index in the
“normal” fixed columns; see 6.6 for the detailed format;

♦ For each buffer link to which the above parameters apply leave blank (or code
as zero) the free-flow speed/time, capacity speed/time, capacity and power
but include the distance and capacity index. The program then substitutes
the default speeds, etc. for the missing records. (In fact it is not even
necessary to code the distance if the SHANDY option is in effect; see 15.10.)
N.B. It is necessary to leave all four of the above entry fields blank/zero; if
one of them is included then it assumed that the other entries of zero are all
valid entries and the default option is not applied.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-26
Section 15

Thus all links with the same capacity index will have an identical speed-flow curve
plus capacity. Note that the actual times need not be identical since these will
depend as well on the distance which is coded separately for each link.

One advantage of this option is that you can make “universal” changes to the
speed-flow parameters for a set of links by simply changing a single record rather
than several. The option should also be extremely useful for networks which are
defined by graphical input in some form; here link distances can be calculated
from node co-ordinates so that the only input information required from the user
(apart from whether a link is one-way or two-way) is an index which determines
the remaining parameters.

An example of an input data file using these conventions is illustrated below
where “default” indices 1 to 14 are equivalent to the “typical” DfT parameters
defined above. Thus link 6-7 has a length of 90 metres but a capacity of 1400, a
free-flow speed of 63 kph, etc. as taken from the previous “D” record for capacity
index 4.
 33333
 D 90 76 5200 5.9 1
 D 79 70 4800 5.2 2
 D 70 57 1800 1.7 3
 D 63 55 1400 1.9 4
 D 50 50 600 0.0 5
 D 80 66 4800 6.3 6
 D 65 56 4400 4.7 7
 D 50 30 2200 4.2 8
 D 45 25 1000 3.9 9
 D 35 25 600 4.4 10
 D 25 15 500 3.8 11
 D 67 47 4000 1.2 12
 D 61 27 3400 1.7 13
 D 56 20 1800 1.9 14

 6 7 90 4

Further Notes:

1) The “D” records can appear anywhere within the 33333 records and can be
applied to buffer links that precede them.

2) By default (see note 4) below) the five required input data fields (free-flow
speed, speed at capacity, capacity, the power ‘n’ and capacity index) must
appear within the same fixed columns as “normal” buffer links; e.g., the free-
flow speed in columns 11-15. But, N.B., note that the required columns differ
under DUTCH = T; see 15.20.

3) Note that unlike standard buffer records where either speeds or times may be
used, the default speed-flow curves are only based on speeds. It is assumed
therefore that buffer records which make use of speed-flow curves have an ‘S’
in column 29 (39 under DUTCH = T).

4) Problems associated with fixed columns and differences between DUTCH = T
or F may be eliminated by setting a parameter DCSV = T under &PARAM in
the network .dat file, in which case the 5 necessary fields may appear in free
format following the D in column 1. I.e., they must appear in the correct order
and be separated by either spaces and/or commas.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-27
Section 15

3) It is quite possible that users would wish to set up curves with characteristics
identical except for the link capacity to represent say, dual 2 and dual 3 roads
with identical speeds, in which case distinct capacity indices should be used
for different lanes. The requirement for link rather than lane capacities should
be noted.

4) D records are good candidates for inclusion under $INCLUDE, see 15.30,
such that a standard set of default speed flow curves may be recorded in a
single file and applied to a wide range of networks.

5) Default speed-flow curves may also be applied to simulation links where
record 2B (see 6.4.1) excludes any time/speed and capacity data but refers
instead to a capacity index which, as with buffer links, defines the link speed-
flow curve.

15.9.6 Default Speed-Flow Curves: COBA-10 Formats

An option added in release 10.7 permits default speed-flow curves to be defined
directly in terms of COBA-10 speeds and flows such that the best-fit value of the
power n is calculated by SATNET rather than being input directly by the user.

To invoke this option the default speed-flow records must be altered as follows:

a) Write ‘ COBA’ in cols. 36-40 (in place of N) (46-50 under DUTCH = T)

b) Write the speed at the “breakpoint” S1 in cols. 46-50 (56-60 under DUTCH =
T)

c) Write the breakpoint flow F in cols. 51-55 (61-65 under DUTCH = T)

The calculation of n then follows the equations as given in 15.9.3 where the
additional parameters S0, S2 and C as given within the “normal” 33333 fields; see
6.6.

For the time being the option to directly calculate n from COBA-10 curves only
applies to Default speed-flow curves within the 33333 data records, not to
individual link records. However, there is no reason why it should not be extended
to individual records and, if no problems arise with the above method, it will no
doubt be included in the next release.

15.10 The use of Crow-Fly Distances (The SHANDY Option)

15.10.1 General Principles

The SHANDY option (set SHANDY = .TRUE. in the input network .dat file) carries
out the following two steps for every input distance for either a simulation or a
buffer link:

♦ If a positive value has been input it checks this against the crow-fly distance
calculated from the input XY co-ordinates and prints a warning message
(WARNING 35) if they differ by more than 10 metres in absolute terms AND
by more than 5% in relative terms.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-28
Section 15

♦ If a zero (or blank) value has been input it substitutes the crow-fly distance
calculated from the input XY co-ordinates and prints a warning message
(WARNING 25).

Clearly these steps are only carried out for links where both the A-node and the B-
node have been correctly assigned X,Y co-ordinates.

The option works by “pre-reading” the co-ordinate data under the 55555 cards
before returning to read the simulation and/or buffer link records. Thus no
“interpolated” co-ordinates are available at this stage. If there are no co-ordinates
input then the option is cancelled.

In addition, if a GIS file is defined in the network data file (via FILGIS) and that file
contains curved link data under 77777 then the crow-fly distances as used to
compare against input link distances (SHANDY = T) are calculated point-by-point
along the curved links rather than end-to-end directly. See Appendix Z.

Note that this option may be usefully combined with the default speed-flow curve
facility described in Section 15.9.5 since the new distance is set BEFORE the
speeds are substituted. Thus the free-flow time is obtained from a crow-fly
distance divided by the free-flow speed. At a minimum therefore a buffer link
record need only contain an A-node, B-node and a capacity index.

It is also an integral part of the PMAKE network building options (see section 17)
when new links are created.

A summary table comparing actual and crow-fly distances is included near the
end of the line printer output file from SATNET.

15.10.2 Correcting XYUNIT

In addition an estimate is made of the “correct” value of XYUNIT by comparing
crow-fly distances as calculated from the node co-ordinates with the input
distances on the .dat file and printed near the end of the .lpn file. If, for example,
the crow-fly distances are consistently around 10 times shorter than the coded
distances then it is presumed that XYUNIT should be 10 times greater.

15.10.3 CROWCC: Zero Distance Buffer Centroid Connectors

The above rule for replacing an input buffer distance of zero by the crow-fly value
traditionally applied to both real buffer links and buffer centroid connectors.
However, while it may make sense to have a positive distance for “real” links, it
may be quite legitimate to have centroid connectors which are purely nominal and
therefore have zero distance (plus, presumably, zero time).

An option introduced in version 10.7 allows users the choice as to whether or not
buffer centroid connectors may be assigned a distance of zero. Thus, if CROWCC
= T (set in &PARAM of a network .dat file) and SHANDY = T a crow-fly distance
replaces buffer centroid connectors with an input value of zero. If CROWCC = F
an input distance of zero is accepted.

For most users CROWCC = F is likely to be the preferred option. However, the
default option prior to 10.7 was effectively T so, for upwards compatibility, the

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-29
Section 15

default value of CROWCC was set to T at that point in time. Subsequently,
release 10.9, the default was changed to F.

We further note that setting CROWCC = T may have certain potentially negative
consequences for running SATTUBA; see 15.41.5.

15.11 Coding Combined Buffer and Simulation Networks

Problems may arise in coding a network which includes both a simulation and a
buffer network, in particular at the interface between the two. The following points
may help.

1) The simulation network is coded in the normal way with external nodes
defined at the edge of the network - either “explicitly” within the 11111 data
records or “implicitly” via AUTOX. If the external nodes represent “cordon” or
“stub” nodes where the network terminates then they would normally be
connected to “cordon” zones, i.e., zones representing all trips entering or
leaving the network at these points. These zones should then be included
within the 22222 data records (or implicitly via AUTOZ). The precise points of
zonal connection will be at the external nodes as described in 16.6.2.

(Alternatively the external connection to the zone may be made via an
external simulation link plus an isolated buffer node which is coded under the
33333 data records as described in 16.6.3. However this method is generally
not recommended as it leads, inter alia, to the same problems with U-turns as
described in Section 16.6.4 and 18.9.2.)

However, external simulation nodes may also represent points where the
simulation network connects continuously into the buffer network and, in this
situation, origin/destination zones at the boundary may be connected either
via the buffer or the simulation network. However, in the latter case, the effect
may not be what was desired.

For example, consider the following schematic network where E represents
both an external simulation node and a node which is part of the buffer
network, S is an internal simulation node and B represents one or more nodes
in the buffer network connected to E.

B -------------- E -------------- S

Let Z be a zone that is connected only via a 22222 record to the (two-way)
simulation link E-S and not at all via a 33333 buffer record. In this case trips
from the (origin) zone Z can only enter the network at E in the direction E-S
and, similarly, exit to the (destination) zone Z at E having come from S. They
cannot go directly to / come directly from B.

By contrast, if Z were connected to E as a 33333 buffer centroid connector,
then the origin trips would enter at E and have an immediate choice between
both B and S. Equally, the destination trips to Z would exit from E having
come from either B or S In general terms the latter is probably what the
user would prefer, in which case it is therefore better to define the centroid
connector from Z as a buffer connection to E rather than as a simulation
connection to E-S; i.e., it should be included within the ‘33333’ cards rather
than the ‘22222’ cards described in 6.5 and 6.6.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-30
Section 15

2) The external simulation nodes must also be included in the buffer network
with their “buffer-only” connections - i.e., those links to or from other nodes in
the buffer network. Thus links such as E-B above would be included under
33333.

3) In constructing the joint buffer/simulation network SATNET ignores an input
buffer link if either of the nodes has already been defined in the simulation
network unless both are external simulation nodes. This means that a user
progressively re-defining a section of a large network as a simulation network
does not need to remove simulation links from the buffer network input.
However some care needs to be exercised here that all “inner” nodes have
indeed be defined as simulation nodes since otherwise spurious buffer links
may creep into the middle of the simulation network.

4) On the other hand the “data” on an ignored buffer link, e.g., the time and
distance, is not totally ignored in that it is compared to the comparable
simulation data in order to check for self-consistency. In addition the buffer
link data may be used to supplement the simulation data as explained further
in Sections 6.6, 15.13 and 15.14.

5) We also note that problems may occur due to U-turns from the simulation
network at the simulation/buffer boundary as described in detail in Section
18.9.

15.12 Automatic Network Coding (The AUTOX and AUTOZ Options)

The AUTOX and AUTOZ options are essentially labour-saving devices which
remove the necessity for the user to code external simulation nodes explicitly or to
code zones at external simulation nodes which are cordon points.

Under AUTOX all nodes defined as simulation A-nodes (i.e., in cols. 5-10 of Card
Type 2 (see Section 6.4) but not explicitly defined as simulation nodes themselves
are automatically assumed to be external simulation nodes. Thus if node 99 were
defined as an A-node as part of the definition of node 22 and not defined
elsewhere then node 99 would be added as an external node with node 22 as an
A-node (as well as being connected to any other nodes where it was included as
an A-node).

The properties of the link from 22 to 99 are inferred from data coded for 22; thus
the travel time and distance are the same as those coded for link 99 - 22 (but with
default values of 100 metres and 7 seconds if 99-22 had zero capacity), while if
none of the turning movements coded at node 22 were into link 22-99 it is
assumed that the direction 22-99 does not exist. If however link 22-99 were
included as part of the buffer network definition (Section 6-6) then its time and
distance as coded there will be used in preference to any default values as
described above.

Alternatively, since release 11.3.2, if default values are required (i.e., the 100
metres and 7 seconds, as above) and SHANDY = T then the default distance is
calculated as the crow-fly distance and the time is calculated assuming a default
cruise speed of 51.42 KPH (32 mph).

It should be stressed that the AUTOX option can be somewhat dangerous to use
in that punching errors may go undetected and lead to extra external nodes being

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-31
Section 15

erroneously added. Its use is recommended for very simple networks, for
example a network consisting of a single simulation node connected to ‘n’ un-
coded external nodes, set up to simulate an n-way junction in isolation, an
example of which is given below, or for networks set up from recoding existing
buffer networks or when coding using PMAKE (Section 18).

The AUTOZ option removes the need to explicitly define simulation centroid
connectors (6.5) to external simulation nodes by automatically attaching centroid
connectors to every link terminating at an external simulation node and assuming
that the zone has the same number as the external node. Thus, in the above
example where node 99 is an external node connected to internal simulation node
22, a zone numbered 99 would be created, attached to link 99-22 at node 99 in
exactly the same way as if a record ‘99 99 22’ were included in the ‘22222 data’
as described under Section 6.5. When using AUTOZ all connections as defined
under 22222 should be internal connections, otherwise there will be duplication,
and AUTOZ should only be invoked when ALL external nodes are pure cordon
points, not when they are links between the simulation and buffer networks. In
effect this restricts the AUTOZ option to pure simulation networks without a buffer
network.

AUTOX and AUTOZ can both be selected at the same time - and in fact the most
useful case for applying both is the case of coding a single simulation junction as
they remove the need to code ANY external simulation nodes or zones. An
example of coding a 4-way junction, node 44 (as illustrated in Section 16.1), is
given in full below. The coding implies that nodes 43, 55, 45 and 16 are external
nodes, each one of which is connected to an external zone, also numbered 43,
55, 45 and 16.

Note that the AUTOX option infers that the link 44-43 does not exist (i.e., is one-
way from 43 to 44) since there are no turns coded as entering it, and that the time
and distance on link 44-45 will be 7 seconds and 100 metres. Equally under
AUTOZ zone 43 is entry (or origin) only while zone 45 is exit (or destination) only.
 &OPTION
 &END
 NODE 44 CODED ALL ITS OWN
 &PARAM
 AUTOX=T,
 AUTOZ=T,
 &END
 11111
 44 4 3 4 61 85 0 45
 45 0 0 0
 16 2 25 200 0 1700 1 1 1600X 2 2

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-32
Section 15

 43 2 40 300 1400 1 1 3000 1 2 1200 2 2
 55 2 25 220 1400 1 1 2800 1 2
 19 4 6 43 55 43 45 43 16
 10 7 4 43 55 16 45
 25 0 4 16 55 55 0
 15 5 4 16 55 55 45
 99999
 99999

15.13 Supplementary Data for Simulation Links Using Buffer Network Inputs

In general all the necessary data for links in the simulation network is defined
within the ‘11111 data cards’ described in 6.4; e.g., the link travel time, link
distance and number of lanes. It is however possible to use the ‘33333 data
cards’ to define extra simulation link data which is not required by the simulation
proper but which might be useful under other circumstances. One example of this
is the link capacity index which is used to distinguish certain “classes” of links in
summary statistics. If a link A-B is included in the buffer network data with a
capacity index of, say, 5 but was previously defined as a simulation link, the
capacity index of 5 is assumed to apply as well to the simulation link A-B. Using
the BEAKER option - see 6.3.1 - the index may also be associated with turns out
of A-B; setting BEAKER to .TRUE. is highly recommended.

Similarly any extra “KNOBS” data defined for duplicates of simulation links are
also assumed to apply to those links. See Section 15.14.

A further important application concerns “external simulation links”, i.e., the
simulation link from an internal simulation node A to an external simulation node
B. By definition the travel time on the “in-bound” link B-A is fixed, being a
simulation link, with - in effect - infinite capacity; any additional delays or capacity
restraint on that link are associated with turning movements at A. On the other
hand assuming a fixed travel time and infinite capacity on the “out-bound”
direction A-B would not be entirely realistic since turning movements at B are not
included in the simulation.

It is thus possible to define flow-delay/capacity-restraint relationships on out-
bound external simulation links such as A-B above using exactly the same form of
link flow-delay curve as is applied to buffer links - see Section 5.4. In order to do
so the user must include A-B within the “33333 data cards”.

Note that for external links connected directly to cordon zones there is perhaps
not much point in worrying about flow-delay since all trips go to the external zone
regardless of conditions on the link. However the effect can be important on
external links between the simulation and buffer networks, as otherwise it could
lead to a situation where there is (effective) capacity restraint in the simulation
network and in the buffer network but not at their interface.

In addition if the AUTOX option is used to define external simulation nodes and
links - see 15.12 - and the link in question is 1-way outbound (A to B in the above
example) so that times and distances are given default values then these default
values are over-ridden by any data defined under the 33333 records.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-33
Section 15

15.14 Extra Link Data (Knobs)

15.14.1 Introduction to Knobs

SATURN allows a variable number of additional data items - referred to as
“knobs” - to be input for each link (buffer or simulation) using the ‘33333’ data
records (Section 6.6) and/or separate input files to SATNET. The data is then
stored on the SATURN UF files and may, for example, be later displayed using
SATDB for alpha-numeric output or P1X for graphical output.

Knobs, particularly post SATURN 10.3, have a number of possible applications.
Thus they may be used as components of generalised costs, in particular as tolls,
or they may be used to define extra travel times or delays to bus services (15.44).
These applications are described below.

Alternatively they may be used to store network data which has no direct impact
on traffic assignment, in which case SATURN is being used primarily as a network
data base - described next.

15.14.2 Data-Base Applications

There are many possible applications of such a data-base. For example one
might store the date at which a link was last re-surfaced and thereby produce
plots of all links re-surfaced in a given year or range of years using the SELECT
facility in P1X; equally one might store accident statistics for links. Indeed it is now
quite feasible to use SATURN purely as a network data-base by simply building a
network in which all the “standard” link variables such as time, etc. are ignored
and concentrating only on the “extra” data items. From the network build program
SATNET one could go directly to the display programs SATDB and P1X.

Once input certain basic algebraic manipulations may also be performed on the
data using SATDB. For example, if you input accident statistics and calculate link
flows you could then calculate and analyse accidents per vehicle.

It is hoped that this facility will encourage other types of SATURN users apart
from traffic engineers. For example it might allow identical networks to be used
for traffic analysis and the analysis of accidents rather, as often seems to be the
case with Local Authorities, for two different groups to set up different networks for
the same area.

15.14.3 Using Knobs within Generalised Costs

Section 7.11.2 and equation (7.43) describe how the generalised cost of travel as
used for traffic assignment may be defined as a linear combination of time,
distance and one or more knob data sets. The relative weights are set by PPM,
PPK and knob-specific weights specified within the 88888 record set (6.11)

As noted in 7.11.2 SATURN makes no further assumption as to what these extra
costs are really representing. They might, for example, represent nominal time
penalties in units of seconds associated with following a non-signposted route.
However the nominal charges will not be included in network statistics of total pcu-
hrs.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-34
Section 15

Note that it is possible to have negative values for Knobs data which contribute to
generalised cost but only if the total link fixed cost does not go negative. See
7.11.2. Negative Knobs values should be used with caution although they may
sometimes be useful, for example, to make certain links more attractive to traffic.
The weighting coefficient for KNOBS data defined within the 88888 data set (6.11)
is defined in the “normal” way as a positive number; i.e., it is not possible to create
a negative cost by having positive data with a negative weight.

Note that items of Knobs data which do not contribute to link generalised costs
(e,g., for applications as described in 15.14.2) should have their 88888 weights
input as zero (or blank) to avoid being confused with, e.g., tolls.

15.14.4 Using Knobs to Set Tolls (Road Charges)

A particular example of a knob field used to define generalised cost is when the
field directly represents monetary charges - tolls. As noted in section 6.11 tolls
are indicated by including either a $ or & symbol in the relevant columns of the
88888 records for that field. If the remaining columns are blank then the
assumption is that the knob entry is the “true” charge per link in units of pence but
if a numerical factor (apart from 1.0) is also included then the knob entry is
factored by that amount. This allows the user to define tolls in purely nominal
units, say 1.0 for all links, and then let the 88888 records define the specific toll.

In addition knobs which are explicitly defined as tolls, as opposed to the less well
specified effects under 15.14.12, are included in the output network statistics from
the assignment which report the total revenue generated by tolls in the same way
that total pcu-hrs and total pcu-kms are reported.

For further details as to how tolls are handled within SATURN please see Section
20.3.

15.14.5 Creating Knobs Data

In order to use this facility the user must first define the number of data items to be
input, the &PARAM namelist parameter KNOBS. Secondly, the link data itself
must be input to SATNET and that in turn may be in one of three forms:

1) as an additional second record for each buffer link with the required number of
data fields up to a maximum of 8; see Section 6.6.

2) as added data items at the end of the first (and only) buffer link data records;

3) as a separate free-standing input file (FILKNB).

Option 3), an external ascii file, is highly recommended for ease of use and for
avoiding possible errors.

The parameter KONAL (Knobs ON A Line) distinguishes between (i) and (ii):
KONAL = F and T respectively. Option (iii) is only used if a file is nominated by the
character variable FILKNB (or KNBFIL). If FILKNB is set it is assumed that no
Knobs data appears in the network .dat file itself (and KONAL is irrelevant).

Note that under (i) the extra record may be entirely blank, in which case it is read
as a string of zeros. See 15.29. Equally blank inputs under (ii) are also interpreted
as zero’s.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-35
Section 15

15.14.5.1 External KNOBS data files (FILKNB)

The designated file FILKNB (normally) has a standard SATURN format (e.g., as
for input counts, section 6.10) where each record contains the link/turn
identification in fixed column formats in columns 1-15 (1-30 under DUTCH)
followed by the knobs data for that link in, essentially, free format, e.g., comma
separated.

However, post release 11.2.4, the data records in a KNOBS file may be entirely
free format (e.g., CSV) by setting an &PARAM parameter FREEKN = T in the
network .dat file. In this case the link/turn numbers A, B and/or C do not need to
be in fixed columns but free format. Note that a third node C must always be
explicitly included for links either as 0 or, in the case of CSV by “’,,’”

15.14.5.2 KNOBS Data on Centroid Connectors

There is an important distinction between data input “internally” under options (i)
and (ii) above and “externally” under (iii). That is that the internal 33333 data may
only be defined for road links (whether in the simulation or buffer networks) plus
buffer simulation connectors whereas data input in an external file may also be
defined for all components within the SATURN assignment networks, e.g., turns
(by including 3 nodes) and simulation centroid connectors as well (defined by
including a ‘C’ in columns 1, 6 or 11 to identify the zone (columns 1, 11 or 21
under DUTCH)).

Thus to define an outbound centroid connector from a zone Z to node A – where
A is either a buffer node or an external simulation node – enter Z in columns 2-5
with a C in column 1 and A in columns 6-10. Reverse the two fields for an inbound
centroid connector.

Note that, post 11.1, the requirement to identify zones by a C in an appropriate
column may be relaxed by the use of NO333C = T whereby any input node
number which is less than or equal MAXZN is assumed to be a zone whether or
not a C has been included. This should make it easier to create KNOB files using
external packages – but clearly may create problems if zone and node numbers
overlap.

Centroid connectors to/from internal simulation links are more complicated and
users are advised to consider using Wildcard entries as described below which
only require the zone name (plus C) in an appropriate field. Otherwise, to define
an outbound centroid connector from Z to link (A,B), enter C+Z in columns 1-5, A
in columns 6-10 and B in columns 11-15. For an inbound centroid connector from
(A,B) to Z enter A in columns 1-5, B in columns 6-10 and C+Z in columns 11-15.

Post 10.9.5 the above rule has been relaxed so that an outbound centroid
connector from zone Z to link (A,B) may be defined by entering Z in columns 1-5
and B only in columns 6-10. This, after all, is how the centroid connector appears
on the network plots: a dashed line from Z to B. If there is then only one possible
link A,B which is so connected the value of A is inferred. However if there are
multiple centroid connectors between Z and B the method fails.

Similarly a two field entry A Z will correctly identify a (single) simulation centroid
connector from A to Z with the extra node B inferred.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-36
Section 15

Sound complicated? Stick to wildcard definitions!

15.14.5.3 Wildcard Inputs

In addition KNOBS data read from an external KNOBS file (FILKNB) may (post
10.8) define links using a “wildcard” principle whereby, if an A-node/zone is
defined but the B-node columns are left blank (or zero), then the program
assumes that the KNOBS data applies to all links out of the A-node/zone.
Similarly, if the A-node entry is blank (or zero) but the B-node is defined it applies
the data to all entry links.

In particular this facility is designed to enable users to set entry/exit tolls on zones
without having to precisely specify each individual centroid connector to or from a
zone. The wildcard principle applies to all forms of zones and centroid connectors,
i.e., not only zones connected to buffer nodes but also zones which are connected
to internal simulation links for which more explicit data inputs (see above) are
easy to get wrong.

Note the wildcard principle may also be used to define all entries/exits from a
buffer node although not from a simulation node.

In all three cases if data is not set for a particular assignment link that value
defaults to zero. Thus, in the case of a separate file, not all links need to be
included; missing links default to zero.

Note that if a link A-B is included in the 33333 buffer records but has already been
coded as part of the simulation network it will be ignored as a buffer link but the
‘KNOBS’ pieces of extra data will be associated with the simulation link. In this
respect the capacity index input in columns 43-45 is equivalent to extra data since
it too is associated with simulation links.

15.14.6 Storing Knobs: Dirck Access Codes

Once processed by SATNET (via whichever format) each “Knob” is stored on the
output .ufn file with Dirck Access Codes (Section 15.21): 2303 for the first data
field, 2313 for the second, etc. The data thus created may then be displayed using
either P1X or SATDB by referring to those DA codes

15.14.7 Transferring Internal Knobs Data to an External File

As noted earlier (15.14.5) we strongly recommend that KNOBS data be input via
an external ascii file “KNBFIL” rather than internally under the 33333 data. In order
to assist users who have data stored internally to transfer the data to an external
file two useful facilities are provided post 10.8.16.

Firstly, a procedure knobdump.bat, based on SATDB, has been created in order
to dump existing KNOBS data within a .UFS file (independent of how that data
was originally input) into an output ascii file with the correct format for re-input as a
KNBFIL.

Secondly, an option has been included within P1X Network Editing to delete all
existing “second line” KNOBS data from the 33333 data segment.

Thus, by following both the above processes and adding a reference to KNBFIL
within &PARAM, the KNOBS data is effectively transferred into a new format.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-37
Section 15

Note that if the data was originally stored at the end of every buffer record
(KONAL= T, method 2) in 15.14.5) it is not strictly necessary to delete it from the
33333 data since, if KNBFIL is set, the “end of line” buffer data will never be
processed.

15.15 Node-Dependent Parameters: GAP, GAPM, NUC and LCY

As explained in Section 6.4.1 there are four parameters - GAP, GAPM, NUC and
LCY - which can be set individually for nodes as opposed to using global default
values using data values input on the node record.

15.15.1 GAP and GAPM

GAP and GAPM require little further explanation; they should be used when it is
felt that due to the specific physical lay-out of an intersection, gap acceptance is
either easier or more difficult than at an “average” intersection. (Node graphics
editing within P1X may be used to help determine appropriate values.) See also
Section 15.22.

We also repeat the warning in Section 15.22 that the default values of both GAP
and GAPM are probably highly unrealistic and should be changed, if not on a
global basis than certainly on a node-by-node basis.

15.15.2 NUC

Different values of NUC should be used if it is desired to have greater or less
resolution of cyclical flow profiles at a particular junction. For example, if the entry
profiles to a roundabout are virtually flat there is no particular reason to divide the
cycle period into a large number of small time units which will be virtually identical
to each other. Here a small value of NUC gives the same results at less
computing cost. On the other hand traffic signals with a large number of relatively
short stages benefit from the extra resolution of short time units, i.e., a large value
of NUC.

Traditionally, and as a very general rule in SATURN, our advice has always been
to stick to the global values unless there is a very good reason for changing NUC
locally. However, post 2007, the benefits of increasing NUC under certain fairly
specific local circumstances have become better recognised and extra parameters
have been introduced in 10.8 to help deal with these issues.

In particular using larger values of NUC at complex signalised junctions may have
benefits for improved convergence.

Thus, for example, with X-turners at traffic signals which are partially blocked by
opposing traffic during a green phase, it is important for the simulation to be able
to accurately estimate the point during the phase at which gaps begin to appear in
the opposing traffic and the X-turns can begin to clear (albeit possibly very slowly).
This is particularly so if the green phase is relatively short compared to a time unit
and/or the lane is shared.

For example, if NUC is small and the basic time unit is, say, 15 seconds and the
duration of a blocked phase is only 10 seconds then the simulated results may
differ if the phase is entirely contained within a single 15-second time unit or if it
overlaps two time units. (N.B. The differences between the two may not look that

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-38
Section 15

large in some respects but they may not be negligible either. For example if the
calculated delays were 40 and 45 seconds the “error” of 5 seconds may be small
compared to the differences between modelled and observed times; on the other
hand a sudden jump of 5 seconds may be relatively very important in terms of
convergence between simulation and assignment.)

Thus, for signals with X-turns, we now recommend that NUC should be large
enough so that the minimum-length stage time is greater than three time units.
E.g., if LCY = 100 seconds and the shortest stage time is 7 seconds then NUC
should be at least 43 (i.e. the basic time unit should be 7 / 3 seconds or 2.33
seconds and with LCY of 100, the value of NUC set should be equal to 100 / 2.33
or 43 rounded to the nearest integer).

Indeed, there is a strong case for setting NUC = LCY at signalised junctions with
X-turns so that the time unit corresponds to 1 second in order to achieve
maximum “resolution” and every stage transition occurs at an “integer” time unit;
see point 3) below under AUTNUC.

In versions of SATURN prior to 10.8 there was an upper limit of 25 on the value of
NUC both globally and at individual junctions; in 10.8 this has been increased to
125 for individual junctions or for junction types (i.e., NUCJT()) but the maximum
of 25 is still retained as the global default value. Other relevant changes in 10.8
include:

1) Warning 94 and/or Serious Warning 153 have been introduced to detect
values of NUC per node which are judged to be too small / seriously too
small.

2) A subscripted parameter NUCJT(j), j = 1,5, has been added to set a default
value of NUC for all simulation junctions of type j. NUC continues to function
as a global default which may be over-ridden by NUCJT for specific node
types.

3) If AUTNUC = T then, in processing a network .dat file, SATNET will
automatically choose an “optimum” value of NUC per node if the default value
is judged to be too low (up to the above-mentioned maximum of 125). Thus,
in extremis, AUTNUC will set NUC equal to the cycle time for that junction so
that one time unit equals one second.

N.B. Increasing NUC for all nodes may lead to problems with array dimensions
being exceeded and, indeed, this is one reason why in the past users may have
been forced to reduce NUC from the (former) default value of 15 down to, say, 10.
Indeed, post 11.1, the default value has been decreased to 10. There may
therefore be a strong case for using NUCJT to selectively set relatively low values
of NUC for, say, roundabouts and priority junctions (NUCJT(1) = NUCJT(3) = 5)
where resolution is not an issue but larger values for signals (NUCJT(3) = 25)
such that the overall space requirements are not increased.

Equally increased NUC values also increases the CPU time required to carry out
a simulation although, generally, this does not lead to significant increases in
overall run times since, particularly in large networks, it is the assignment that
takes up almost all the CPU time.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-39
Section 15

We may further note – see also the final paragraph in 15.15.3 - that having
different values of NUC at two adjacent junctions has no real effect on the transfer
of cyclic flow profiles between them since CFP profiles will be suitably
transformed.

Final thought: Low NUC values do not necessarily lead to “errors” in the
simulation; what they do do though is to introduce a certain level of “clunkiness”
into the simulation which may be counter-productive in terms of convergence.
Increasing NUC values in an existing validated network is unlikely to change it into
a non-validated network but it may improve convergence and it may produce
noticeable changes at a small number of turns.

15.15.3 LCY – Cycle time

The choice of LCY can however be more important. If all signals in the network
operate on the same cycle length then life is simple - all junctions should be
simulated using that cycle time and there is no need for any changes from the
default LCY. If however different signals operate on different cycle times then,
generally speaking, LCY at signals should be set to the local cycle time. Before
considering non-signals let us consider the effect of different cycle times.

If A and B are adjacent junctions with equal values of LCY then the OUT cyclical
flow profiles at A become the IN profile for link A-B and any “structure” in the
profiles is carried forward from A to B. This enables the effect of signal co-
ordination between A and B to be modelled. If on the other hand A and B were
both signals but on different cycles it follows that at certain times they would be “in
phase” and at other times “out of phase”. Rather than trying to model the whole
range of possibilities SATURN tries to model the “average” behaviour by
assuming that if A and B have different values of LCY the A-B IN profile is
perfectly flat regardless of what the OUT profiles were like. Clearly this is not a
perfect modelling assumption but it has the definite advantage of being easy to
implement!

Thus for non-signalised junctions we recommend, as a very general rule of thumb,
that LCY should be set equal to the value of the cycle time at the signalised
junctions which “most” effects conditions at that junction. This may sound vague -
it is intended to be! However most of the time the choice of LCY at non-signalised
intersections is unlikely to significantly affect the results so that if there appear to
be two “important” controlling signals choose one or the other and don‘t worry
about it.

At certain points in the standard node/link output table warnings are given if a
particular link has different values of LCY at its upstream and downstream nodes.
In particular the SATLOOK table of simulation node properties (11.1.1) contains a
line in the link properties which indicates such links. The output is in the form of *’s
where the higher number of *s, the greater the potential impact. Thus blank
implies equal values, * implies unequal with signals at neither end, ** is signals
upstream but not downstream, *** is signals downstream and **** is signals at
both ends. The logic is that profiles and co-ordination are most important at
signals and the number of *s reflects this.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-40
Section 15

In addition release 11.2.4 introduced a new test to detect a simulation node with,
say, LCY = 60 while all its immediate neighbours had LCY = 70. Serious Warning
183.

Note that having different values of NUC at two adjacent junctions has no real
effect on the OUT-IN transformation since an OUT profile evaluated with, say, 10
time units would be suitably expanded into an IN profile with, say, 15 units
provided of course that both junctions have the same LCY.

15.16 Simulation Link Flows and Centroid Connectors

15.16.1 Simulation Zone Connectors

Because of the way in which zones in the simulation network are connected to
links, not nodes, certain ambiguities may arise with respect to the definition of “link
flows”. The various possible definitions are illustrated below for a zone Z which is
connected to an internal simulation link AB. X and Y mark the “imaginary” points
along AB where trips leave and enter Z.

The “flow” on AB may, in theory, be defined in five different ways; i.e., the flow
along:

AX - the entry flow onto the link,

XZ - the exit flow to the centroid,

XY - the “mid-link” flow,

ZY - the entry flow from the centroid, and

YB - the arrival flow at the stop line at B

For uniformity throughout SATURN we assume that the “link flow” is always taken
to be the mid-link flow, i.e. the flow on the link once all traffic destined for the zone
has been removed and before any new traffic has joined from the centroid. Thus
as defined the link flow is probably lower than the flow that might be observed on
the link in reality, although the fact that the link has been connected to a zone
implies that the flow level probably does vary along the link.

This therefore is the definition of link flow as used, e.g., in comparing modelled
and observed flows (see Section 15.6) and is the (default) link flow as annotated
by program P1X. By contrast the “ARRIVE FLOW” or “Downstream Flow” as
printed out by the FLOW-DELAY tables and illustrated in Table 17.1 corresponds
to the stop-line flow, YB above.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-41
Section 15

15.16.2 Simulation Link Exit/Entry and/or Upstream/Downstream Flows

The previous section has described how flow may exit the network at the
upstream end of a simulation link and equally enter the network at the
downstream end of a simulation link using centroid connectors.

It is also possible for flows to exit/enter at either the upstream or the downstream
end of simulation links even if they are not explicitly connected to zones. This
possibility arises with bus routes which may originate/terminate at either end of
simulation links (dependent on UPBUS; see 6.9.2). It may also arise, less
obviously, with either pre-loaded or PASSQ flows (see 15.5 and 17.3.1
respectively) where the rule “flow in equals flow out” may be violated. Thus, in
effect, all simulation links are potentially bridged by exit/entry links, although only
those with explicit centroid connectors are shown as such on, e.g., P1X plots.

Please note that this possible ambiguity ONLY arises with links in the simulation
network and not at all to links in the buffer network where there is only one
possible definition of link flow.

Note as well that the distinction between “demand” and “actual” flows as
described in Section 17.2 also applies to all the different definitions of flows along
a simulation link. Thus the “actual” upstream exit flow on a link may be less than
the “demand” upstream exit flow due to queuing upstream.

15.17 Pcu’s, Cars, Buses and Vehicles

15.17.1 General Principles

In theory the “units” used to describe traffic flow in SATURN can be anything the
user likes; e.g., the trip matrix can be units of cars, vehicles, pcu’s or whatever.
The only real restriction is that the link saturation flows and the trip matrix
elements must be defined in terms of the same units. In practice however it is
strongly recommended that trips and saturation flows be defined as pcu’s and
“most” printed text assumes this to be the case.

Strictly speaking, and for pure buffer networks, flows do not necessarily even
need to be defined per hour; they could be defined as, e.g., daily flows as long as
all appropriate commodities such as capacities are defined in the same units.
However moving away from hourly rates causes problems for the simulation
where the length of the simulated period LTP may only be defined in minutes and
the definite assumption is that the flows being simulated are hourly flows.

Note that the same rule also applies to all input counted flows (see 6.10 and
13.1.4); i.e., that they should always be in the same units as all other flows with
the presumption being that they are in pcus/hr. Equally it applies to all definitions
of capacities, e.g., as contained in buffer network speed-flow curves.

One partial exception to the above rule is buses where: (a) the network 66666
definitions of bus routes input frequencies (buses/hour) which are then factored by
BUSPCU to give bus flows as pcus/hr, and (b) output bus data is sometimes given
in terms of buses and sometimes, e.g., when giving total bus flows on links, in
terms of pcu’s. Hopefully the text should make it clear what is being printed.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-42
Section 15

In the case of Multiple User Classes – and stacked O-D trip matrices – it is further
assumed that all the various stacked matrix levels will be in the same units and
that their assigned flows may simply be added together.

Clearly it is vital for users, when importing data into SATURN from external
sources, to check the units of the external data and to adjust as necessary. For
example, this applies to the importing of trip matrices (which may be in vehicles/hr
as opposed to PCU/hr), speed-flow curves, etc. etc.

15.17.2 PCU Factors by Vehicle Class

SATURN 10.1 introduced an extra parameter VCPCU (disaggregated directly by
vehicle class and indirectly by user class if necessary; see 5.8) which is used to
convert pcu’s - on the recommended assumption that all trip matrices, capacities
etc. are defined in units of pcu/hr - into vehicles.

VCPCU is useful in circumstances such as vehicle emissions when it is more
natural to deal with parameters per vehicle rather than per pcu. It is also used in
the calculation of toll revenues (see 20.4.1) which are paid by vehicle rather than
by pcu.

Post 10.7 P1X has an option to annotate individual user class link flows in veh/hr
instead of pcus/hr (by factoring the assigned flows by 1/VCPCU). However it is
more difficult to apply the same option to, e.g., total flows where some of its
components, passq flows etc. may not be unambiguously identified with a single
user or vehicle class and hence pcu-factor.

Note that, by default, all VCPCU factors equal 1.0, in which case it has no direct
effect on any SATURN outputs.

15.18 Interpolating Routes

Several programs require that “routes” (e.g., bus routes, joy ride routes, etc.) be
defined as a sequence of consecutive nodes. For long routes this can be
laborious and therefore a simpler method is available if node co-ordinates have
been defined whereby the user defines the first and last nodes and the program
works out the sequence of nodes which most closely approximates to a straight-
line or crow-fly path between the two nodes. The principle can be extended to the
case where a route is defined by more than two nodes, the first and last plus any
intermediate nodes where there is a decided “kink” in the route.

More specifically if we wish to interpolate a path from node A to node Z we first
work out the angle from A to Z, then the angles from A to all its exit nodes B1,
B2…. and choose the B-node whose exit angle is nearest to the A-Z angle. The
procedure is then repeated by taking the angle from B to Z and choosing the
“nearest” exit C. Exits more than 90º from the desired direction are excluded; it is
therefore possible for the algorithm to become “stuck” if there are no exits within
90º. In these cases the user will need to define more nodes within the path.

Alternatively, post 10.9, an alternative interpolation algorithm has been introduced
which finds the minimum distance route between A and Z if the first method fails.
This requires that a &PARAM parameter MINDER is set TRUE.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-43
Section 15

Depending on the particular application the interpolated nodes may either only
use “real” links - in the sense that one-way links are only used in one direction - or
non-directional links.

This facility is particularly useful in defining bus routes, not only in terms of
reducing the amount of data to be coded, but also because the route definitions
do not need to be altered if the network is changed so that nodes are inserted
and/or removed from the original network.

Note, however, that in order to use this facility node co-ordinates MUST be
defined (although, strictly speaking, only for those nodes which lie on the
interpolated path).

WARNING: If two successive nodes to be interpolated are some distance from one
another and there are multiple possible routes, interpolation may not necessarily
find your desired route; the solution in this case is to define nodes which are much
nearer together and for which the route to be interpolated is unambiguous.

Currently interpolated routes may be defined within the following programs:

♦ SATNET to define bus routes; See note (5), 6.9.2.

♦ SATCH to define a “spline” of links along which flows are to be cordoned;

♦ P1X to define bus routes, joy rides and GIS alphanumeric link names.

15.19 Select Link Analysis (SLA)

“Select Link Analysis” is a general term which refers to the identification of specific
routes and/or trips assigned to selected links (where in this context “links” may
refer to either “roads” or “turns” or “centroid connectors” or even “nodes”) and the
calculation of various properties associated with those trips. Thus the analysis
may identify, for example:

♦ the O-D pairs which use a particular link;

♦ the fraction of trips from each O-D on a link;

♦ the flows on all other links from the selected trips.

Other forms of analysis are of course feasible. However the central element in
select link analysis is the ability to trace the routes generated during the
assignment process and to select those that satisfy a particular criterion for further
scrutiny. How this is done within SATURN is described in Section 15.23.

Select link analysis is a very powerful tool not only for the analysis of schemes but
also for the validation of a base year network. In many respects it is the converse
of building trees in order to check on an assignment; trees tell you which links are
used by specified O-D pairs; select link analysis tells you which O-D pairs use
selected links.

Within SATURN it is possible to perform select link analysis within several
different programs and with slightly different outputs (although very often the same
information may be obtained from two or more programs). We therefore first
identify the options available:

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-44
Section 15

1) SATPIJA may be used to undertake a “PIJA analysis” whereby the fraction of
trips “P” for each “I-J” movement assigned to link “A” is stored during an
assignment. The main purpose of this option is to provide the “PIJA or UFP
file” required by SATME2 and no print facilities are provided within this
program. More than one link or turn can be analysed within a single run.

2) Program SATU2 (13.7) can read a PIJA/UFP file and output a matrix of trips
(as a UFM file) using selected links. MX may then be used to print the trips
(with the option of aggregating zone-to-zone trips into sector-to-sector trips
and printing).

3) Both P1X (11.8.1) and SATDB (11.10.7.5) can repeat the assignments
carried out in the assignment and select trips which either:

a) pass through a selected node,

b) pass through a selected sequence of nodes in order, or

c) pass through one or more of a set of “screen line” links.

Option (b) includes the possibility of either identifying links - by specifying two
adjacent nodes - or turns - by identifying three nodes.

Option (c), further explained in (11.10.7.5), allows both conventional “screen
lines” in the sense of a closed set of links surrounding a town centre or, more
generally, any set of links. The screen lines may be defined either using the
link selection facility (11.6.1) or a set of 7777 input data records (6.10) in both
P1X and SATDB. P1X also offers two additional methods for defining screen
lines – interactively using the mouse or via an external data file (11.8.1.7).

Those trips which satisfy the selection rules are re-loaded and the total
assignment pattern of trips before and after they pass through the selected node
or nodes is displayed, graphically or as a data base table.

P1X and SATDB have further options which duplicate those in SATU2 to either:

♦ output a selected trip matrix UFM file (11.8.1.3);

♦ print a sector-to-sector trip matrix.

Generally speaking P1X is considerably easier to use than SATDB, firstly, through
the use of mouse-based link or node selection and, secondly, since the display of
the selected flows is MUCH easier to appreciate in a graphical format. On the
other hand SATDB may be easier to use in conjunction with key files.

SATU2 has effectively been superseded by P1X and/or SATDB and is less
convenient; its use is not recommended.

So the “best buy” recommendation is to use P1X in the first instance!

Finally we should note the caveat expressed in Section 15.23.2 that under certain
circumstances (e.g., elastic assignment) select link analysis (as with other similar
analyses) is based on an approximation and that the select link flows need not be
entirely consistent with the “true” flows. In these circumstances the select link
results should be viewed as “indicative” rather than exact. The difference statistics

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-45
Section 15

generated within SATALL (based on the errors from all links) may be used as a
rough guide to the errors to be expected on any single link analysed.

15.20 The Dutch Option (Long Node Numbers)

The DUTCH option has been introduced to allow nodes with up to 8-digit node
numbers to be defined in buffer networks - so-called because it is common
practice in The Netherlands. The major effect of this option is to change a number
of the input formats so that node numbers in certain circumstances occupy 10
columns of data input as opposed to 5.

Note that simulation nodes are still restricted to 5 digits (although it is
recommended that a maximum of 4 be used so as to keep the formats “neat”).
Equally zone numbers are still effectively limited to a maximum of 5 digits (see
5.1.6).

More specifically formats in the following programs are altered as indicated below:

(A) SATNET - SEE SECTION 6.

(A.1) THE BUFFER NETWORK DATA CARDS-- SEE 6.6

Col. 1 A ‘C’ if the following node refers to a zone.

Cols.2 - 10 The A-node for the link

Col. 11 A ‘C’ to indicate a zone number following.

Cols.12 - 20 The B-node for the link

Cols.21 – 25 The link time (in seconds) or speed (in kph) at free-flow conditions

Cols. 26 - 30 The link time (in seconds) or speed (in kph) at capacity.

Cols. 31 - 35 The one-way link capacity (in pcus per hour)

Col. 38 A one-way/two-way indicator

Col. 39 An ‘S’ if speeds were defined above; otherwise times are assumed.

Cols. 41 - 45 The link distance (in metres).

Cols. 46 - 50 The power to be used in the link flow-delay curve

Cols. 53 – 55 A “link index” in the range 0-999

Cols. 56 – 80 (Optionally) up to KNOBS extra data items

(A.2) The Restricted Turns or Links - See 6.7.

Cols. 11 - 20 The B-node, B

Cols. 21 - 30 The C-node, C (blank or 0 in the case of a link)

Cols. 31 - 35 The ban/penalty indicator for user class 1,

Cols. 36 - 40 Ditto, for user class 2,

Cols. 41 - 45 etc.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-46
Section 15

Cols. 11 - 20 The B-node, B

(A3) NODE AND CO-ORDINATES - SEE 6.8

Cols. 1 A ‘C’ if columns 2 to 10 contain a zone number.

Cols. 2 - 10 The node or zone number.

Cols.11 - 15 Its X co-ordinate

Cols.16 - 20 Its Y co-ordinate

(A4) BUS ROUTES - SEE 6.9

Cols. 2 – 5 The “name” of the route (which must be numeric)

Cols. 6 ‘T’ if the route is two-way and the node order is exactly reversed (in
which case the reverse route need not be coded) ; otherwise leave
blank

Cols. 7 – 10 The route frequency in buses per hour

Cols.11 – 15 The number of nodes through which the route passes (i.e. the
number of node entries following

Cols.16 – 25 The first node on the route

Cols. 26 -35 The second node on the route, etc. up to 6 nodes, column 75

If the route passes through more than 6 nodes the list of nodes is continued on a
second (or even third) record starting in cols. 16 - 25.

N.B. The strict column formats do not apply if EZBUS = T independent of the
value of DUTCH.

(A5) LINK AND/OR TURN COUNTS - SEE 6.10.

Identical changes to (A2) above.

(B) SATPIJA - SEE SECTION 13.2.1.

Link and/or turn counts are specified as under (A.5) and (A.2) above.

Essentially the changes are made anywhere that it is possible that 8-digit buffer
node numbers MIGHT be input, but NOT in those areas where only simulation
node numbers may be used.

15.21 Referencing Data Arrays Via Dirck Access Codes

15.21.1 General Principles

Certain programs, notably SATDB and P1X, allow the user to select data by
reference to a “Dirck Access Code” as opposed to referring to, say, free-flow
travel time by name (“Dirck Access” is a very egotistical pseudonym for “Direct
Access” which it tries to replicate). The precise details of Dirck Access files are
not important here - the most important point to appreciate is that each data field

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-47
Section 15

stored on a SATURN UF file has a code associated with it; free-flow travel time,
for example, is coded as 1803 so that asking for free-flow travel time to be
annotated in P1X causes the program to “read” and annotate record 1803. The
same effect can be obtained by referring to 1803 directly.

Note that the final digit in a DA code indicates what “type” of data is stored. Thus
all “integer” variables are stored in codes ending with a 4 whereas all “real”
numerical data (i.e., numbers which may include a decimal place such as free-
flow travel time above) end with a 3 (e.g., 1803). Post 10.7 real arrays may also
end with an 8 (and, eventually, integer arrays with a 9).

A second point to note is that the coded data arrays refer to either: (a), simulation
links; (b), simulation turns; or (c), assignment network links (which include both (a)
and (b) plus all buffer links) so certain DA codes will not be relevant under certain
circumstances.

The main reason for introducing code numbers is to increase flexibility without a
massive increase in programming effort, particularly since certain data arrays are
optional whereas others are mandatory. Thus free-flow travel times are always
defined whereas the link flows for user class 4 may not be.

A full list of the Dirck Access codes used within a particular network (*UFS etc.)
file may be listed interactively using the auxiliary program DALOOK or partial lists
generated by P1X etc. See also Appendix J for a full list. Each array has a short
title associated with it which specifies its contents; these titles are defined in
SATNET either as default text or as read from an (optional) supplementary file
SATTIT.DAT which also gives very useful general information about how DA
codes are used.

 Note that not all DA arrays will necessarily be useful to users, for example the
arrays containing “packed” data will be largely unintelligible (but see 11.10.6).

An explanation of the specific codes relevant to capacities is given in Section
8.9.5 and to times and delays in Section 17.10. See also Appendix J for a full list.

15.21.2 Creating your own DA codes in SATDB

Users may add their own data to .ufs files via SATDB referenced by a DA code of
their choosing (see 11.10.12) but care must be used not to over-write existing
essential DA codes.

This may sometimes lead to problems if the user selects a DA code for output
which is “available” in that particular network but which may be used either in
different “forms” of networks (e.g., simulation networks use arrays that do not
appear in buffer-only networks) or in future versions of SATURN. At the present
moment array codes in the range 3003 to 3293 are never used and will not
(barring acts of God, etc. etc.) be used in the future; they are therefore
recommended as being exclusively “reserved” for use by users.

15.21.3 Extended Dirck Access Codes

In SATURN versions 8.5 and beyond the coding conventions used to identify
Dirck Access arrays were “extended” to cope specifically with the problems
created by more than 10 user classes where, in effect, all available numerical

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-48
Section 15

codes were used up. Thus class- specific flows were stored in arrays 3803, 3813,
3823, etc. for user classes 1, 2, 3, etc. up to 3893 for user class 10. 3903
however was reserved for something else so that an 11th user class could not be
accommodated.

The solution adopted was to add class-specific digits BEFORE the basic code so
that with 11 classes the DA flow codes became 3803, 103803, 203803, etc. up to
1103803. The effect was similar to having decimal codes such as 3803.0,
3803.1,3803.2 but retained the basic principle of integer codes.

At the moment such codes are used in networks with more than 10 user classes,
in .UFT files to store data from multiple time periods and, in addition, to extend
header records (e.g. 100104 adds extra data to 104) so that old SATURN UF files
have the same array lengths as the latest one (to ensure upwards compatibility).

15.21.4 DA Codes for Actual User Class Flows

Whereas there are two explicit DA codes used for total demand and total actual
flows (4503 and 4513) flows by user class are only stored by demand. Thus (see
above) the demand flows for user class 1 are stored in DA code 3803, for user
class 2 in 3813, etc. etc. and there no arrays/DA codes within .ufs files which
directly store actual flows by user class.

However, it is possible, in certain circumstances, to use DA codes 3808, 3818,
etc. to obtain actual flows by user class 1, 2 etc. For example, SATDB will accept
such codes as a link data input definition (11.10.2) and they may also be used
with DBDUMP (15.46). What actually happens, however, if 3808 is requested is
that the actual array read in is 3803 (user class 1 demand flows) but the data is
immediately factored down by the global ratio of actual to demand flows. Thus, the
end effect is the same as though 3808 was explicitly stored in the .ufs file.

DA codes 3808, 3818, etc. etc. may also be used in P1X to create and annotate
data using a DA code but individual user class flows – both demand and actual -
may also be accessed using items in the “Flow” list. Note that, within this list, user
classes 1, 2 and 3 are always explicitly listed along with, if there are more than 3
user classes, a single “designated” user class for which the demand/actual flow
may be obtained. By changing the definition of the “designated” user class within
an Options sub-menu flows for any user class may be obtained, rather than
having to use, say, code 3858 to get UC 6 flows.

15.22 Choice of Gap Parameters

The choice of the parameters GAP, GAPR and GAPM can have a very strong
influence on the capacities and delays given by the SATURN simulation model
and some care should be exercised in their choice. In particular the user may
wish to set parameters such that the SATURN output is similar to that given by
other models, in particular models for isolated junctions such as the TRRL
programs ARCADY, PICADY and OSCADY. By a judicious choice of parameters
this can be achieved.

The role of the gap parameters in setting the capacity of a give-way movement is
explained in Section 8.2.2. In the simplest possible case of a minor arm opposed
by one major arm (e.g., at a T-junction or any arm at a roundabout) the capacity
Cm of the minor arm is given by the equation:

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-49
Section 15

Equation 15.2

()1 MGS
m m M MC S V S= −

where Sm is the saturation flow of the minor arm, VM and SM are the flow and
saturation flow of the major arm and G is the gap value.

Hence C goes from a maximum Sm equal to its saturation flow at zero opposing
flows down to zero at VM = SM (or, strictly speaking CAPMIN; see 8.2.3)with a
power defined by G.SMi. In general TRRL models predict a linear relationship
between C and VM so that in order to reproduce this same form in SATURN it is
necessary to set G = 1/VM, i.e., set the gap parameter GAP to the inverse of the
saturation flow of the controlling arm(s).

Very often the GAP values derived in this way seem small, particularly when
interpreted strictly as a gap in traffic that entry traffic would “accept”. For example
if the controlling saturation flow were 3,600 pcu/hr then GAP should be one
second.

It must however be appreciated that GAP is essentially a parameter fed into a
model. Such models are only approximations to reality and contain a number of
intrinsic errors (“specification errors”) which, to a certain extent, can be corrected
or counter-balanced by changes to the model parameters. For example, the gap
acceptance model in SATURN assumes random (Poisson) cross traffic (ignoring
for the moment cyclical effects) whereas in reality one knows that traffic tends to
come in surges, the effect of this being that the random model tends to under-
estimate capacity. Empirically, if we accept the TRRL relationships as “correct”,
then the best value to choose for GAP is 1/SM.

We may also note that the standard default value of GAP set by SATURN is 5.0
seconds which is almost certainly on the high side, causing the SATURN
simulation to under-estimate capacities. The reasons for choosing 5.0 as a
default in the first place are largely historical and arbitrary. The reasons for not
changing it since are (a) the fact that best values almost certainly vary from one to
another (hence it was made a junction-specific parameter in later versions of
SATURN); and (b) setting the default to a more reasonable value might
discourage users from deciding on more suitable values.

The same principles apply to the choice of GAPR and GAPM; i.e., that they are
first and foremost model parameters which should be interpreted only loosely as
acceptable gaps. However with priority junctions it is difficult to choose a single
value of GAP which makes the dependence on ALL major flows linear since each
major flow may have a different saturation flow.

15.23 Re-constructing Assignment Routes: The SAVEIT Option and UFC
Files

15.23.1 General Principles

While the most important function of assignment is to obtain estimates of flows on
links it is very often equally important to be able to analyse in detail the O-D
routes used to obtain those flows.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-50
Section 15

Examples of analysis options which make use of O-D routes include:

♦ Building minimum cost routes in SATLOOK, SATDB and P1X.

♦ Repeating full loadings of complete trip matrices in SATDB (11.10.7.4).

♦ Select link assignments in SATDB and/or PIX (15.19).

♦ Cordoning matrices within a sub-network (SATCH, 12.1).

♦ Producing a PIJA file using SATPIJA (13.1.2)

♦ Producing a file of route flows (SATPIG, 12.6)

♦ Turning flows at buffer nodes (15.36).

♦ Producing cost and/or skimmed matrices (15.27)

In order to obtain the route flows necessary to carry out such analyses a
parameter SAVEIT must be set to .TRUE. in the final assignment in SATALL (or
SATEASY), most easily done by declaring it to be .TRUE. (its default) under
&PARAM in the .DAT file input to SATNET.

There are then three different methods by which the O-D route information is
preserved under SAVEIT dependent (mainly) upon the assignment method (MET)
used:

(1) Remembering the costs used on each Frank-Wolfe iteration and their weights
in order to be able to re-construct each individual route by re-building trees
(MET = 0 only);

(2) Explicitly storing flows per individual O-D route (path) (path-based assignment,
MET = 1 only);

(3) Storing a “bush” of splitting factors per individual origin/user class from which
individual O-D route flows may be calculated by a single pass (OBA and/or
Frank-Wolfe with extra steps added).

Methods (2) and (3) are generally considerably faster than method (1) in
terms of route flow analyses but may require extra memory to store the
required data and/or extra CPU to create them in the first place. The following
4 sub-sections, 15.23.2 through 15.23.5, deal exclusively with method (1); the
equivalent information for methods (2) and (3) is given, briefly, in 15.23.6 and,
in more detail, in Sections 21.4 and 22.5.2.

Under method (1), for every assignment iteration within the Frank-Wolfe algorithm
the complete set of link “costs” used to construct minimum cost routes is
preserved in a separate “UFC” binary file. These costs may be used later in order
to re-construct the specific “trees” from each iteration and thereby re-construct the
specific O-D routes from that iteration for further analysis.

The filename convention is that if the main network file produced by SATALL is
net.ufs then the cost file will be net.ufc. In addition the .ufc files record the
“weights” as used by each iteration in the final solution (see 7.1.2)..

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-51
Section 15

Not creating a ufc file will not affect the normal analysis or use of the .ufs file,
except clearly, if .ufc does not exist, then none of the above mentioned analyses
may be invoked.

Note that .ufc files etc. are only used under the standard Frank-Wolfe link-based
algorithms (MET = 0; see Section 21).

Under method (3) the route information is stored within a “UFO” binary file; see
15.23.6.

15.23.2 SAVEIT/UFC as an Approximation: The SAVEIT Assignment

Under certain (fairly restricted) conditions the routes and costs stored in .ufc files
under SAVEIT will be identical to those used to carry out the actual assignment
within the assignment-simulation loops:

(1) a buffer network with a fixed trip matrix,

(2) post 10.9, a simulation network where MASL = 1 (i.e., SATALL has only been
through a single assignment and the routes/costs used on that assignment are
retained), or

(3) UFC109 = T and the total number of assignment iterations is relatively small
(see 15.23.3 below).

Otherwise – and very often the above conditions are not satisfied - an extra
“SAVEIT assignment” needs to be carried out by SATALL in order to re-create
route flows and to create the .UFC cost file.

Thus the SAVEIT assignment is a final complete Frank-Wolfe assignment stage
carried out at the end of the simulation-assignment loops using the final set of
speed-flow curves and starting, in effect, with a “blank sheet of paper”; e.g., the
initial all-or-nothing assignment uses free flow costs. The set of iterative costs and
weights stored in the .UFC file and used in the subsequent analyses will be those
derived from the “SAVEIT assignment” as opposed to those from the “true”
assignment. (Specifically under elastic assignment the final assignment uses the
fixed trip matrix generated by the final elastic assignment.)

Almost all options which may be used to “improve” the normal assignment within
the assignment-simulation loops may also be invoked by the SAVEIT assignment
– for example, an aggregated SPIDER network may be used under SAVEIT as
well as the normal assignments to reduce CPU – but there are also certain
“improvements” that are only feasible within SAVEIT. In particular, the “trick” to
eliminate zero-flow links within a SPIDER assignment (see 15.56.5.3) may be
used to great effect within a SAVEIT assignment.

In addition, post release 11.2, a SAVEIT assignment may use an Incremental
Assignment (7.11.12) to initialise Frank-Wolfe Assignment with the objective of
reducing the onset of residual paths. To invoke incremental assignment set the
parameter INKS_S in the network .dat file to, say, 4 to request 4 increments.
Empirical tests to determine whether or not the method is effective are under way
so it should be considered as an experimental option.

While, in principle, the SAVEIT assignment should converge to an identical
solution to the full assignment in practice, due to lack of convergence, etc. it is

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-52
Section 15

only an approximation and the flows and assigned routes etc. differ. Although the
higher the level of assignment convergence, the better the approximation will be.
See 15.23.4 for a discussion as to how the parameters NITA_S and UNCRTS
may be set to ensure optimum convergence.

The differences between “true” and SAVEIT assignments can have important
implications for, e.g., skimmed matrices as used for economic evaluation or
variable demand models (see 7.8.6 and 15.27.6), Select Link Analysis (see 15.19)
or PIJA analysis (13.3.12). For example, the total flows on a link generated by a
select link analysis may not exactly equal those generated by the original
assignment.

However, it also needs to be borne in mind, that the “errors” associated with
SAVEIT are just one extra source of “noise” to be added to the non-convergence
errors from SATALL proper (see 2.1 and 9.5). Essentially the SAVEIT assignment
is an approximation to an approximation. Therefore, a “perfect” SAVEIT
assignment is not a guarantee of an “error-free” economic evaluation although it
may help.

15.23.2.1 Comparison Statistics: SAVEIT vrs Original Assignment

In order to assess the consistency of the two different assignments a set of
difference statistics is generated and printed at the end of the SAVEIT assignment
comparing the SAVEIT link flows with the “true” assigned link flows. These
include:

♦ The average GEH difference statistic comparing the as-assigned flows and
the SAVEIT flows;

♦ The mean average absolute difference between the flows (expressed as a
percentage);

♦ The relative standard deviation (%);

♦ The average absolute difference in pcu/hr;

♦ The percentage difference between the total pcu-hrs calculated using the
assigned and SAVEIT flows;

♦ Ditto using distance instead of time;

♦ Ditto using assignment cost instead of time.

The last three statistics (new in 10.6) may be thought of as “weighted” differences
of the link flows, weighted by time, distance or cost.

If the two assignments are self-consistent all the above statistics will equal zero;
larger values imply that the various options listed in 15.23.1 will only generate
approximate answers and the statistics give a quantitative estimate of that
approximation.

The difference statistics are also held in the output .ufs files and may be examined
using the analysis option 8 within SATLOOK and/or under Analysis etc. in P1X
(11.8.4.7).

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-53
Section 15

15.23.3 UFC109/UFC111: Alternative UFC files

In order to remove some of the uncertainties associated with SAVEIT
assignments an option has been introduced in release 10.9 to create .UFC files
which reproduce exactly the iterative costs used by Frank-Wolfe and in a more
space-efficient format. It requires that a logical parameter UFC109 is set to
.TRUE. under namelist &PARAM in network .dat files. Thus if UFC109 = T (default
= T) two things happen:

(1) The costs stored are those from the “actual” assignment (see 15.23.3.1);

(2) Times, not costs, are stored under MUC (see 15.23.3.2).

In addition, post release 11.2, the second option is independently controlled by an
alternative parameter UFC111 such that, if UFC111 = T, then times are always
output, not costs, independent of the value of UFC109.

15.23.3.1 UFC109 = T: Storing “True” Frank-Wolfe Iteration Costs

The costs/times are stored as a “rolling summation” of all Frank-Wolfe iterations
over all simulation-assignment loops (up to certain limits – see below) instead of
re-creating the assigned route flows by an extra SAVEIT assignment. Similarly the
“weights” per iteration take into account not only the weights during the
assignment stage itself (see equation 7.2b) but also any averaging between
assignment simulation loops associated with DIDDLE, AUTOK, etc.

This has the benefit that any secondary analysis, e.g., skimming, SATME2 (see
13.3.13), etc. based on routes is exact, not an approximation, since it reproduces
the precise routes used in the full assignment. This therefore reduces (but not
entirely removes) some of the problems associated with, e.g., the uniqueness of
skimmed matrices (see note 6, 15.27.6).

The disbenefit is that there may be many more rolling iterations in total than there
would be in a SAVEIT assignment which means that: (a) the.UFC files are larger
and (b) any secondary analyses take proportionately longer.

However, if the total number of rolling FW iterations becomes too large (greater
than a &PARAM parameter NITA_C, default 256) then we revert to an extra
SAVEIT assignment in any case.

Note that the total number of Frank-Wolfe iterations aggregated over all
assignment-simulation loops depends on the rate of convergence as well as the
values set for MASL and NITA. Thus, if convergence is slow and the maximum
number of loops MASL is used and the maximum number of iterations per loop
are also used, then the total number of iterations equals MASL times NITA.
Therefore, reducing MASL and/or NITA will make it more likely that the option will
be used (although achieving an acceptable level of convergence is certainly a
more important objective). See Section 9.5 for advice on improving convergence
and 9.5.4 on the choice of NITA.

15.23.3.2 UFC109 or UFC111 = T: Storing UFC Link Times under MUC

Under multiple user classes if either UFC109 or UFC111 = T the output .UFC file
stores the sets of link times per iteration as opposed to link (generalised) costs by

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-54
Section 15

both iteration and user class. This is possible because the times per iteration are
constant between all user classes on the same Frank-Wolfe iteration; the costs
may differ but only because the fixed costs per user class differ and, since the
fixed costs are fixed throughout (by definition), it is straightforward to construct the
costs per iteration/UC by adding (.UFC stored) times per iteration to fixed costs by
user class.

This means that the .UFC files produced under UFC109/111 will be reduced in
size by a factor of 1/NOMADS with only a very small overhead in reconstructing
costs as required for secondary analysis. However, for a single user class we
continue to store cost and there is no reduction in size.

Note that the default value of UFC111 is T, meaning that, post 11.2, the option to
output times rather than costs is virtually always invoked for MUC UFC files and
indeed UFC111 should only be set to F for test purposes.

15.23.4 NITA_S and UNCRTS: Accuracy of SAVEIT/UFC Assignments

The final SAVEIT assignment which creates the .ufc file and the corresponding
route flows may use a different maximum number of Frank-Wolfe iterations via the
parameter NITA_S. Thus if NITA_S is non-zero it replaces the value of NITA (see
7.1.5) in the final assignment. This option is useful if you have been using a
relatively low value of NITA within the assignment-simulation loops (not a bad idea
with DIDDLE; see 9.5.2) but you want a more representative single final
assignment.

Increasing NITA_S leads to improved convergence of the SAVEIT assignment
and therefore should reduce (but not eliminate) the problems of approximation
referred to above, 15.23.2. Thus the default value of NITA_S is 99 whereas the
default value of NITA is only 20. Users frequently increase NITA_S to even larger
values, e.g., 256.

For similar reasons the value of UNCRTS which also controls the number of
iterations undertaken by a Frank-Wolfe assignment (see 7.1.5) may also need to
be reduced in order to prevent the SAVEIT assignment terminating prematurely.
Post release 11 it is set equal to the best GAP value (9.9.1.2) achieved by the
main simulation-assignment loops such that the convergence in the main and
SAVEIT assignments will be roughly comparable. (Prior to 11.1 UNCRTS was set
equal to the final value of UNCRTS set during the assignment proper under
AUTONA (note 4), 9.5.4) and which is generally a lower value than the GAP; this
could therefore lead to extremely long SAVEIT assignments for no appreciable
gain in overall accuracy.)

In addition, to improve convergence, SATURN also automatically sets PARTAN
assignment under SAVEIT (for single user classes) and allows PARTAN as an
option for MUC SAVEIT assignments via a parameter SPARTA. See 7.11.7 and
15.57.6. Note that a side benefit of using PARTAN/SPARTA is that, by reducing
the number of Frank-Wolfe iterations required to produce a SAVEIT solution, all
subsequent analysis steps that use UFC files (e.g., SATPIJA, SLA, etc.) will
become correspondingly faster.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-55
Section 15

15.23.5 SATUFC – Re-creating .UFC files

A .ufc file may also be created after the original run of SATALL using a procedure
SATUFC introduced in SATURN 10.6. Basically SATUFC reads a .ufs file and
extracts the necessary information to carry out a SAVEIT-style assignment – with
the added proviso that the value of NITA_S can be set as a purely numerical
value on the command line. E.g.:

SATUFC net 30

will produce an output file net.ufc based on NITA_S = 30 (independent of the
value in net.ufs). If a numerical parameter is not used NITA_S is simply taken
from net.ufs.

In fact SATUFC is not a separate program, it is simply a run of SATALL with,
effectively, zero assignment-simulation loops and only the SAVEIT step included.
As a consequence it therefore requires that the original trip matrix .ufm file is
available.

However, post 10.8, if the original network were based on an elastic assignment
the “SAVEIT assignment” uses a fixed trip matrix assignment algorithm, in which
case it uses the output trip matrix (i.e., ROADIJ) from the original run rather than
the original input trip matrix file (FILTIJ). These algorithms are generally faster and
do not suffer from problems of terminating early.

SATUFC has several advantages:

♦ If the original .ufc file did not converge sufficiently well a better level of
convergence may be achieved by increasing NITA_S.

♦ It may also be computationally efficient to set SAVEIT = F in the original
network and to only run SATUFC when a .ufc file is actually required. (If NITA
is very small and NITA_S large the SAVEIT step may take virtually as long as
the original assignment-simulation loops.)

♦ UFS files can be sent without their .ufc files as the latter can be easily re-
created.

♦ By adding an argument UFO to the command line a .UFO file may be created
at the same time as the .UFC file (see 15.23.6 below).

♦ Post 10.8 it also updates the .ufs file to correctly set SAVEIT and/or SAVUFO
to T so that subsequent analysis programs such as P1X will “know” that the
.UFC/.UFO files should exist.

♦ Post 11.1 if the original network were run using OBA then SATUFC will, in
effect, generate a set of O-D paths in a .UFC file which approximate the same
final set of link flows. Thus the (newly created) .UFC file and the (original)
.UFO file fulfil similar functions in terms of post-assignment analysis, e.g.,
select link analysis, but the .UFC file has the advantage that it may be used in
certain programs such as SATPIG where the .UFO file may not.

♦ Similarly a .UFC file may be generated from a path-based assignment where
the .UFQ files which store the paths may also not be suitable for all forms of
post-assignment analysis.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-56
Section 15

♦ Note that if using SATUFC with either a path-based or OBA original solution it
may make sense to copy and rename the original .ufs file so the two sets of
solutions may be used independently.

15.23.6 Alternative Formats for Saving O-D Routes: UFO and UFQ files

The .ufc files described above are relevant to assignments done using the Frank-
Wolfe link-based algorithms (MET = 0). Path-based and origin-based assignments
use their own particular techniques to preserve route flow information and, in
addition, link-based routes may also be converted into an “extended” UFO (OBA)
format.

Thus path-based assignment (see 21.4) stores the exact path data in .UFQ files
while OBA stores the equivalent “splitting factors” in .UFO files (see 22.5.2). In
both cases the information saved is “exact” unlike the link-based .UFC files which
(see 15.23.2 above) may be an approximation based on an extra SAVEIT
assignment.

We note that path-based UFQ files are restricted to single user class assignments
only so that, in terms of practical applications, they are not really relevant and they
are not considered further.

In principle the same forms of analyses (such as those listed in 15.23.1) may be
carried out under all 3 methods, although the precise algorithms used to do so
may differ. Thus .UFC-based algorithms based on a Frank-Wolfe assignment
recreate each individual O-D path used in the assignment in order to analyse
them as appropriate, path-based algorithms analyse explicitly saved paths in the
same way while UFO-based algorithms use “splitting factors” in a “single-pass”
per origin without explicitly re-creating O-D paths (see 22.5.2). Note that, in
practice, some of the necessary programming work may not have been done yet
for certain combinations of method and analysis.

15.23.6.1 UFO vrs UFC

If, say, both .UFO and .UFC files are available for a particular network the user
may have the choice as to which to use (for example carrying out a Select Link
Analysis in P1X, 15.19, PIJA calculations, 13.3.14, or SATCH matrix cordoning,
12.1.12). In such cases the use of .UFO files is generally strongly recommended
as they are considerably faster than using .UFC.

The choice of UFO vrs UFC is generally controlled by a namelist parameter
USEUFO = T or F respectively which may be set in either network .dat files (which
sets the general default; see 6.3.1), SATPIJA or SATCH control files (13.3.14 and
12.1.12).

In addition the UFO format used for OBA (22.5.2) may also be adapted for use
with link-based Frank-Wolfe assignments; essentially the path flows in the UFC
file are converted into the equivalent (or, strictly speaking, nearest equivalent)
acyclic flows which are then stored in a UFO format. See 22.5.3.

UFO files, as explained in Section 22.5, have (at least) one major advantage over
UFC files in that they enable “warm start assignments” to be used under all
possible conditions. In addition the same analysis application may run much faster
with UFO than UFC files (since any analysis of all O-D routes with UFC contains a

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-57
Section 15

loop over the number of iterations N which UFO avoids so that, in principle, it may
be N-times faster).

The downside of creating a .UFO file is that, if the Frank-Wolfe solution is not
particularly well converged and contains many examples of cyclical flows,
eliminating those cyclical flows may lead to a significantly different set of flows
(although arguably they may be nearer to a true Wardrop Equilibrium solution)
which causes more confusion than benefit.

Finally note that .UFO files may equally be converted into equivalent (or virtually
equivalent) .UFC files using SATUFC - see 15.23.5 above – and that an
alternative form of .UFO file may be created based on aggregated “spider”
networks – see 22,5.3 – which is generally speaking much faster to use for
analysis

15.23.7 Creating .UFO files (SAVUFO): Batch File Procedures (SATUFO)

In order to create both a UFO and UFC output file from a (Frank-Wolfe, MET = 0)
run of SATALL it is normally necessary to have both SAVEIT = T and SAVUFO =
T within the original network .dat file. (By contrast OBA always produces a UFO
file as long as SAVEIT = T.) The (approximate) algorithms used to create UFO
files from Frank-Wolfe assignment are described in Section 22.5.3

However, alternatively, .UFO files may be created “after the fact” if SAVUFO is not
T in the initial assignment by either:

1) Running the procedure SATUFC (15.23.5) with an extra (text) argument UFO
included in the command line, or

2) Running a procedure “SATUFO net” to create a file net.UFO on the
presumption that the file net.ufc has already been created.

Note that SATUFC and SATUFO are both batch files which call $SATALL.EXE
with particular command line parameters in order to carry out particular functions;
i.e., they are not distinct .exe files.

15.23.7.1 SATUFO: Single User Class option

A sub-option within the batch procedure SATUFO.BAT allows a .UFO file to be
created for a single user class n by using a Command:

SATUFO net NOMAD n

in which case the output .UFO file will be named net_n.ufo.

15.23.7.2 SATUFO: Multi-core option

The SATUFO process will also take advantage of the multi-core capability within
the software if available – see section 15.53 for further details.

15.23.8 Final Comments: The Uniqueness of Route Flows and Other Limitations

In applying the various analyses available within SATURN based on specific O-D
routes users must appreciate that all such outputs must be taken with a rather
large pinch of salt.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-58
Section 15

Firstly, it must be appreciated that O-D routes are not uniquely specified by
Wardrop Equilibrium (see 7.1.6) and that the routes generated by the Frank-Wolfe
algorithm (plus OBA) are, to a certain extent, arbitrary. Thus, strictly speaking,
Wardrop Equilibrium only identifies those O-D routes that may be assigned
positive flows but not the precise split of traffic between those routes. A simple
example is given in Section 7.1.6 to demonstrate the non-uniqueness of origin or
user class based flows between two parallel routes even when the total link flows
are uniquely specified. The final assigned route flows may simply be due to some
minor artefact of the algorithm used.

From which it follows – and this is the important point - that any outputs from a
route flow analysis such as a Select Link Analysis or skimming, say, distance from
a forest (15.27.6) are also non-unique and, therefore, prone to being arbitrary.

A knock-on impact of skimmed times, distances etc. etc. being non-unique is that
any further analyses based on those skimmed matrices becomes non-unique.
This therefore may introduce further problems with economic evaluation packages
such as TUBA or external demand models (VDM) which are not based on
generalised cost matrices generated by SATURN (which are unique); see also
7.8.6.

Secondly, there are potential problems with the “all or nothing” division of O-D
routes into “used” and “non-used”. Thus a “rat run” route which includes a large
proportion of very low capacity links may be allocated O-D route flows if it is a
minimum cost route, whereas an alternative route along a series of high-capacity
motorway links may not be used at all if its generalised cost is (just) 1 second
above the minimum. Small changes in either the network or trip matrix may
reverse either allocation.

On a more positive note one could argue that, given its sequence of operations,
the Frank-Wolfe algorithm is unlikely to produce a totally unbalanced or extreme
set of O-D route flows. Equally it treats all origins equally and simultaneously and
will not therefore produce route flows which are “biased” by origin. Its outputs
might therefore be charitably described as “plausible” – but never perfect.

The situation, however, becomes worse if we consider not just the OD route
patterns in a single network but any comparison of the route flows in two networks
which differ slightly from one another. Here the “noise” generated by the above
two problems may render any comparisons extremely tenuous.

To a certain extent the problems with route flows are simply an inevitable
consequence of the fact that more you disaggregate data the more unreliably it
becomes. There are far more route flows than, say, link flows and the flows per
route are much smaller than the flows per link. These problems are, however,
aggravated by the problems of non-uniqueness and the lack of an acceptable
behavioural model of route choice. What is required, possibly, is an extension to
Wardrop Equilibrium to deal with route choice and which would operate at a far
more disaggregate level than total link flows. This issue is discussed further in the
following section, 15.23.9.

15.23.9 Unique Route Flows: The Principle of Proportionality

One method (in theory at least) to define a unique set of path flows within a
Wardrop Equilibrium solution is to require that the path flows satisfy the

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-59
Section 15

“proportionality condition”; see, for example, various articles by BarGera and
others.

Proportionality requires that, at any node A where there are more than one exit
links that are on minimum cost paths to another node further downstream, i.e.,
they represent parallel route segments with the same cost, then the proportion of
trips using each segment / exit link must be the same for all origins and/or
destinations. Thus, with reference to the example of two parallel links as
described in Section 7.16, the 50:50 split between the two alternative path
segments must be maintained for all origin and/or destination flows.

Proportionality is thus only a statement of conditions which must hold, it does not
in itself provide an algorithm for achieving such a solution. However there are
certain assignment algorithms which have recently been developed which do
generate proportional solutions but which have not reached the stage of finished
products.

An alternative “principle” for specifying a unique set of path flows is that of
“entropy maximisation” where we choose a set of path flows Tpij which maximise
the entropy measure (see equation (13.2) in section 13.1.1). To a large extent (as
I understand it) proportionality and entropy maximisation generate the same
solutions but there may be pathological situations where they differ. To a certain
extent the differences are academic since algorithms to solve for either are hard to
come by.

15.24 Alternative Link Costs and/or Times for Tree Building

15.24.1 Introduction

P1X, SATDB and SATLOOK contain various options (with a large degree of
overlap) which allow “trees” or minimum cost paths to be built from an origin to a
selected destination zone or indeed to all destinations. The “cost” used to build a
minimum cost path is defined as a linear combination of time and distance (or
distance-related parameters) as follows:

1 2 k kc a t a d b d= + +∑

 where c is the cost on a link

 t is the link travel time (including any 44444 time penalties)

 d is the link distance

 m is a monetary toll (if any)

a1 and a2 are the values of time and distance respectively (generally set by
parameters PPM and PPK and possibly disaggregated by user class)

dk, k = 1, ... K are the additional link “KNOB” properties

bk, k = 1, ... K are conversion factors to reduce them to a common cost (see
7.12.2).

For most applications the KNOBS facility will not be invoked and cost is therefore
a linear combination of time, distance and, possibly, tolls. Weighting parameters

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-60
Section 15

PPM and PPK will already have been defined by the user during the SATURN
runs and, if the user wishes to re-create the same or similar trees, the same
values should be selected. These values may also have been user-class specific.
However alternative cost trees may also be investigated; e.g., you may run
SATURN on the basis of minimum time trees but then look at minimum distance
trees.

Distance, KNOBS data and tolls are, by definition, fixed. However time may be
defined in a number of different ways (e.g., with or without penalties added) and
calculated at different points during the programs as elaborated below in 15.24.2,
15.24.3 and 15.24.4.

 Note that these discussions refer equally to “time skims” as discussed in 15.27.

15.24.2 Travel Time: Alternative Definitions

“Time”, unless otherwise qualified, refers to the time to traverse a particular
(assignment) link by a standard vehicle or pcu. However in certain situations it
may be necessary to consider differential times by, say, user class or by bus lane.
These are explained further below, 15.24.4

For display purposes, e.g., in P1X, time is very often sub-divided into various sub-
components, e.g., fixed times, transient delays, queuing delays, etc. etc. Equally
link travel times as displayed may or may not include additional delays associated
with one or all of the delays from turning movements at the downstream end of the
link.

15.24.3 Calculating Times at Different Stages within SATURN

Link travel times are set at 4 different stages within SATURN as follows:

1) Free flow travel time;

2) Times calculated at each assignment iteration;

3) Travel time as calculated at the end of the assignment;

4) Travel time as calculated (for simulation turns only) by the simulation.

Of these (1), (3) and (4) are generally saved on the SATURN UF files but (2) is
only (in effect) saved on a UFC file if the SAVEIT option is requested.

Trees may be built using any of the (available) times above. The following notes
describe the differences between these times in greater detail and suggest
circumstances in which they might be used.

1) Free flow times are defined within SATNET for all network elements (e.g.,
links, centroid connectors) EXCEPT for simulation turns whose free flow times
are the delays calculated by SATSIM with zero flow on each turn. Free flow
times are generally used to build the first set of trees in the assignment.
These may be thought of as the "ideal" routes.

2) At each subsequent assignment iteration the times are set according to
equations (5.1) where V is the “current” flow such that the assigned volumes
at iteration i are used to set the times (and therefore the costs) at iteration i+1.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-61
Section 15

Therefore these times would be used to re-construct the routes built at each
stage of the assignment procedure; they constitute the “real” routes as
assigned.

(N.B. The times as defined above are only preserved on a UFC file if SAVEIT
= T, so that only then can actual routes be re-created. In actual fact what are
saved are NOT the times but the costs, i.e., including the fixed components
appropriately weighted. Therefore it is not possible to use, say, the second
set of link times in a new definition of generalised cost, although there is
probably very little reason why one should ever want to do that - the important
thing is to be able to re-create the routes to which trips were assigned at each
iteration.)

3) At the conclusion of the assignment, times are also calculated using (5.1) with
V equal to the final assigned flows. These are therefore the “best” times as
calculated by the assignment but, somewhat perversely, they are never used
by the assignment to build routes. These times should therefore be used to
calculate the minimum cost routes at convergence, e.g., to calculate an O-D
cost matrix for evaluation purposes.

(N.B. Although routes calculated using the above times were not necessarily
generated by the assignment this is not to say that they definitely were NOT.
Indeed in most cases the final routes will correspond to one and probably
more than one of the routes actually generated so that they are not
necessarily unrepresentative. However some care should be exercised in
their analysis.)

4) When the simulation stage is run after the assignment the delays on turns in
the simulation network are re-calculated by simulation. If the model has
converged properly these delays should differ by only a small amount from
those calculated by the assignment (and be identical in the event of perfect
convergence). These times are somewhat more “realistic” than those
calculated at the end of the assignment and therefore the “best” estimate of
O-D costs would be obtained using these costs. Again the same caveat as
above applies to the routes actually calculated using these costs; i.e., they do
not necessarily correspond to routes generated by the assignment although
they are unlikely to be “unrepresentative” routes.

Times (1), (3) and (4) can be selected by the user via menus in SATDB,
SATLOOK and P1X. Times (2) are effectively only available through the options
to “loop” over each iterative set of costs to construct each built tree in turn.

15.24.4 Extended Travel Times

The “basic” link travel times for “cars” as defined in 15.24.2 may need to be
extended to include additional time components as required in certain
circumstances. The need arises very often when different user classes have
different speeds and, in particular, when time is being skimmed (see 15.27.7.1)
as opposed to being used to set minimum cost routes.

Thus, by default, link time penalties as defined under the network 44444 data
records (6.8) are, by default, included within the normal definitions of skimmed
time on the basis that they are more likely to be “real” times rather than “notional”
times added by the user to improve the assignment routings. (Note that the

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-62
Section 15

contribution of penalties is always included under the definition of “cost”, e.g.,
used to define minimum cost routes, since it is an integral component of the fixed
link costs)

Equally, any extra travel times associated with specific user classes calculated
using the CLICKS options (15.47) are also included by default. (N.B. CLICKS was
only introduced in 10.6.)

On the other hand there will definitely be occasions when a user wishes to
exclude 44444 penalties and/or CLICKS in the definition of times. Thus in the
interactive menus used in P1X, SATLOOK and SATDB to define time for tree
building and/or skimming there are “toggle” options to explicitly include or exclude
CLICKS and/or penalties.

In addition the include/exclude default options may be user set using parameters
USETP and CLICKY in the appropriate preferences files (SATLOOK0.dat etc.).
Thus if USETP = T then, if “time” is selected, it will include all 44444 time penalties
(for that user class); similarly if CLICKY = T then times defined according to
CLICKS are used in preference to “normal” times. Both parameters default to T.

15.24.5 Units of Time and Costs

As explained in 7.11.1 SATURN conventionally expresses all costs as
“generalised time” as opposed to “generalised cost” within the assignment
procedures. The same rule also applies by default to the analysis of the
assignment via tree building etc., although with 9.1 options have been introduced
to allow costs to be defined in units of, say, pence rather than seconds. This is
particularly useful for “skimming” trees as explained in Section 15.27.

Note however that SATURN virtually always defines generalised cost internally in
units of seconds, e.g., when carrying out elastic or variable demand calculations.
Users are therefore strongly recommended to stick with generalised time unless,
e.g., they specifically require costs in some other units to be exported to some
other evaluation package.

15.25 Stochastic Trees

“Stochastic trees” refers to minimum cost routes between origin and destination
zones (hence trees) built on the basis of using random number distributions to
generate individual link costs (hence stochastic). It is therefore the process at the
heart of stochastic assignment as described in Section 7.2.

All programs that allow the user to build trees - SATLOOK, P1X and SATDB -
also enable stochastic trees to be built by setting the parameter “SUZIE” to
.TRUE. Parameters SUET, KORN and KOB then control the generation of
randomised link costs in the same way as they do within stochastic assignment -
see Sections 7.2.3 and 7.2.4.

There are two very general circumstances in which stochastic trees are built:

1) To precisely reproduce the routes generated during the stochastic
assignment itself; and

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-63
Section 15

2) To generate a series of “typical” stochastic routes in order to assess
qualitatively the effect of different parameter values.

In order to do (1) it is essential to have invoked the SAVEIT option during the
assignment (see Section 15.23) and to then select the desired iteration number or
numbers. As long as SUET, KORN and KOB are identical to those values used
during the assignment then the routes SHOULD be identical. (But, N.B., this
reproducibility is a function of how your program has been compiled vis a vis
random numbers since there is a choice between using your own
machine-dependent random number generating functions, which are probably
NOT reproducible, and using a SATURN-supplied function which is. If your
programs were supplied as “executables” from Leeds or Atkins, worry not; if they
are home-compiled check.)

Method (2) may be used, for example, to see how large a value SUET can take
before the routes generated using, say, minimum time as the basis, become
unrealistic.

15.26 Trees, Forests and Arboreta

A “tree” refers to the set of shortest routes from one origin to one (or all)
nodes/zones in a network. As such a separate tree is calculated on each iteration
within an assignment. A “forest” is therefore an aggregation of all the trees from a
single origin over all internal assignment iterations, weighted by the fraction of the
trip matrix as ultimately assigned to each iteration.

More precisely the “forest” value for a link is the proportion of trips from a
particular origin to a particular destination which use that link. It is therefore
virtually identical to the “Pija” factors as used by SATME2, although used in
different contexts

Forests are a highly preferable method of analysing O-D routes for the simple fact
that they contain information about ALL routes assigned traffic for that O-D pair,
as opposed to looking at the single route which is currently minimum cost at the
end of the assignment process and which may even not have been used in the
assignment itself.

Trees may be built in a number of different ways within P1X, SATDB or
SATLOOK, although the graphical methods within P1X (11.8.3) are generally
recommended.

Forests may be built in either P1X (graphically) or SATDB (numerically). Equally
they may be built under both stochastic and Wardrop equilibrium style
assignments. (But see remarks in Section 7.2.4 concerning the consistent re-
creation of randomised costs).

By contrast an arboretum is defined to be the set of all different routes used by a
single O-D pair; i.e. the complete set of different trees. Thus if an assignment
takes 20 iterations it generates 20 trees of which only 5 of these may make up the
arboretum. The “arboretum display” option in P1X displays each tree one at a
time with data on the fraction of all trips using that route (summed over all
iterations or trees). Because it uses fewer displays it is preferable to displaying
trees one at a time.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-64
Section 15

(N.B. An arboretum is essentially a Frank-Wolfe algorithm based construct for
which there is no direct equivalent under OBA.)

Note as well that forests and arboreta can only be constructed IF the SAVEIT
option is in effect - see Section 15.23.

15.27 Skimming Trees and/or Forests

15.27.1 Minimum Cost Trees and Matrices

Trees (15.26) represent the full set of minimum “cost” O-D paths, where cost is
some criteria such as time, distance, monetary cost or, most often, generalised
cost (i.e., a weighted combination of two or more components such as time and
distance) which the individual O-D paths (or “routes”) minimise. They are called
“trees” since, if you plot the set of minimum cost paths from one origin to all
destinations, the resulting sub-network resembles a tree which continuously
branches outwards from its root/origin such that there is only one possible path to
each destination D. The cost along the single path to D is therefore the minimum
cost to D and a “tree” is therefore synonymous with “minimum cost O-D path”.

Clearly trees depend on how “cost” is defined: the path that minimises time
between O and D is not necessarily the same path that minimises distance nor the
one that minimises generalised cost.

Note that in the vast majority of transport models “cost” is synonymous with
“generalised cost” so that we may distinguish cost from its sub-components such
as time and distance.

A “minimum cost matrix” is the complete matrix of O-D minimum costs as
extracted from the tree.

15.27.2 Skimming Trees

To “skim” a tree is to sum a particular “quantity”, e.g., time, distance, toll, etc., etc.,
link-by-link along the minimum cost paths for each O-D pair. For example, we may
wish to calculate the distance along the O-D path which minimises cost Therefore
we distinguish between the quantity which is used to build the tree and the
quantity which is skimmed. Skimming is very often an essential step in scheme
evaluation.

Within SATURN skimmed O-D matrices may be obtained in two different ways:
via trees (as described here) or, much more usefully, via “forests” as described in
15.27.3.

Trees may be skimmed to produce “skimmed matrices” as part of the tree-building
option 14 within SATLOOK; thus the ij-th element in the output matrix is, e.g., the
distance from origin i to destination j as summed along the links in the minimum
cost (time) path from i to j.

Note that using a “tree” to produce, say, distance skims does not necessarily
accurately reflect the average assigned distance for trips between a given O-D
pair in those cases where several different routes with several different distances
are used within the assignment process. Skimming a tree only gives one
particular route distance and indeed other routes may give lower or higher

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-65
Section 15

distances so that the “true” average distance may also be greater or less than a
skimmed tree.

The problem becomes more acute with quantities such as tolls which are much
more “off or on”. Thus if an O-D pair uses two routes, one of which is tolled and
the other is not, then it is somewhat hit or miss whether the single skimmed route
gives zero toll or the full toll.

WARNING! Skimming O-D data from single path trees may therefore produce
unreliable or misleading results. The only quantity which may be skimmed
absolutely unambiguously from, say, the minimum cost tree is cost itself.

In fact the only arguable advantage to skimming a tree as opposed to skimming a
forest is that it is much faster – only one tree needs to be built per origin as
opposed to a forest skim where separate trees have to be built for each Frank-
Wolfe iteration; e.g., it may be 50 or 10 times more time consuming.

Cumulative link/node skims may also be obtained for individual links using the tree
building option within SATDB; in this case a distance skim, for example, would be
the summed distance from the origin to the end of a link. Similarly in P1X time
and distance skims are automatically accumulated for O-D trees plotted
continuously there.

15.27.2.1 Default O-D Costs

In the event that a particular o-d pair is not connected, for example due to the
origin having no out-bound centroid connectors, the skimmed cell in the matrix
takes on a default value of zero by default. Logically it might be argued that, if it is
impossible to get from o to d, the default value should be a very large value. On
the other hand, if the trip matrix contains a positive value in that cell (for whatever
reason), multiplying the trip matrix by the skimmed matrix would yield very large
numbers for the unconnected cells which may swamp the “correct” cells as part of
an economic evaluation of total vehicle-costs. The default value may, however,
be changed by the user within the SATLOOK interactive menus or via a
parameter DEFODC in SATLOOK0.dat.

15.27.3 Skimming Forests

As noted above (15.27.2) skimming the single minimum cost tree to produce, say,
distance may be unreliable and/or misleading. An alternative procedure – option 9
within SATLOOK - is to skim a “forest” (see 15.26) whereby the distance (say) is
calculated using the exact routes used on iterations 1, 2, 3, etc. and a correct
weighted average distance obtained.

The one basic option within a forest skim is to nominate the quantity to be
skimmed. Generally, but not always, the quantity skimmed will be a sub-
component of the generalised cost used to define the forest, e.g., time, distance,
toll, etc. Alternative options exist to either:

♦ construct the skimmed quantity from elements in the base network file;

♦ select a link property which is stored in a SATDB data base column (which in
turn may be read in from an external ascii file) (N.B. This option is only

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-66
Section 15

available when SATLOOK is accessed via P1X and therefore SATDB may
be accessed as well; see 11.11.19);

♦ if a second network file is defined which is topologically identical to the first,
then a DA array from that file may also be nominated. This enables one to,
e.g. skim average times on network 1 paths based on the times calculated in
network 2 (new in SATURN 10.1).

In principle, therefore, it should be possible to set up properties such as fuel
consumption or accident rates per link and skim them in order to create O-D
matrices of fuel consumption or accident rates.

In addition there are a number of sub-options to modify the precise definition of
certain skimmed quantities. For example penalty times input under 44444 may be
optionally included or excluded, extra time components associated with specific
user/vehicle classes under CLICKS may be in/excluded and times/distances on
centroid connectors may be deliberately excluded (XCCSK; see 15.41.5).

Note that a forest skim is only possible with SAVEIT = T and also, since it involves
building and skimming one tree per iteration within the “SAVEIT assignment”, it
may take considerably more cpu time than skimming a tree. However the results
obtained will generally speaking be more accurate and are recommended for use
in matrix-based evaluation such as TUBA.

 In particular a forest skimmed matrix satisfies the condition (but see 15.27.5
below) that:

ij ij a a
ij a

T S V S=∑ ∑

where the left hand side of the equation represents the total, say, vehicle-kms
summed over ij pairs and the right hand side represents the same quantity
summed over links. Sij and Sa refer to the property being skimmed e.g., distance.

Note that some care needs to be exercised in the definition of Va in the above
equation since it must be: (1) the link flows from the trip matrix itself (e.g.,
excluding any fixed link flows); and (2) demand as opposed to actual flows. We
return to this point in the following section.

We may also note that forest and tree skims will give identical results for O-D pairs
where the assignment has only generated a single route. Typically this occurs for
very near O-D pairs or for very uncongested sections of the network.

For further information on SAVEIT and forests please refer to sections 15.23 and
15.26.

We also note one additional caveat with forest skims which is that, since the path
flows generated by a Wardrop Equilibrium assignment are not, strictly speaking,
unique (see 7.1.6), neither are skims taken over those paths (see 15.23.8). The
example given in 7.1.6 as to which origin(s) pay tolls illustrates the problem –
although, in practice, the problem is much more likely to be that the model shows
the two origins paying tolls in slightly different proportions rather than the extreme
“all or nothing” case where one origin pays tolls and a second does not. Note (7)
in 15.27.6 discusses this issue further.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-67
Section 15

15.27.4 Minimum Cost Matrices vrs Skimmed (Average) Cost Matrices

In effect minimum cost matrices – the matrix of minimum possible costs from O to
D 15.27.1) - are a particular example of matrices skimmed from a single tree
whereby the quantity which is skimmed (summed) is the same quantity which
defined the minimum “cost” paths. However, since the minimum O-D travel costs
are obtained as an integral part of the tree-building process, it is not necessary to
do a subsequent “skim” which would clearly give identical results.

However it is also possible to construct a matrix of costs by skimming a forest
where in this case the “cost” refers to the “generalised cost” used in the
assignment process (see 7.11.1) which, in turn, are the same costs upon which
the forest of assigned O-D routes are based. In this case the skimmed cost will be
the weighted average cost over all O-D routes used.

We recall that Wardrop’s Principle requires that at equilibrium all used routes have
equal and minimum costs so that – in the case of perfect equilibrium - the
minimum cost matrix will be identical to the cost matrix obtained by skimming the
forest. For less than perfect convergence (the inevitable norm) the minimum costs
will be (potentially) less than the costs along some assigned routes and therefore
less than the average.

In certain respects, assuming the inevitable less than perfect convergence, the
forest cost matrix is “better” than the minimum cost matrix since it corresponds to
the costs actually incurred according to the assignment; it might, therefore, be
better to use within economic evaluation. On the other hand it requires
considerably more CPU time to calculate. And, strictly speaking, neither is
“correct” in the sense of being equal to the cost matrix which would be obtained
under perfect convergence; in general one would expect that the minimum cost
matrix would be a slight under-estimate of the “true” ultimate cost matrix and the
average would be a slight over-estimate.

Thus, faced with two alternatives, neither of which is correct but one of which is
much cheaper to calculate, there is a strong case to be made for choosing the
cheaper alternative, i.e., to take cost matrices as equal to the minimum cost
matrices rather than the forest skims.

Note, however, that this advice does certainly not apply to any sub-components of
cost such as time or distance which can only be obtained reliably as skims over
forests as opposed to, say, building a minimum time tree or skimming a minimum
cost tree.

Finally, there is a third method by which cost matrices may be constructed. Thus,
if the cost per link is a weighted combination of, say, time and distance such that:

Ca = w1 ta + w2 da

Then, if we take forest skimmed matrices of time and distance tij and dij then we
can also obtain the average cost matrix Cij via:

Cij = w1 tij + w2 dij

This method is sometimes necessary if, for example, the user wishes to define
different values of the weights w1 and w2 (se 7.8.6)

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-68
Section 15

15.27.5 Skim/Cost Matrices and Trip Matrices

It needs to be appreciated that skimmed and/or cost matrices (in general) are
calculated entirely independently of any considerations of demand and actual
flows on individual links. Thus the O-D “distance” in a distance matrix is the sum
of the individual link distances along a particular path or paths whether or not the
O-D trips use those links in the “current” or a “later” time period. Demand and
actual flows play no role.

This may have certain implications for matrix-based evaluation procedures and, in
particular, for the interpretation of the “product” of a trip matrix and a skimmed
matrix; i.e., under what conditions will the following equation hold:

ij ij a a
ij a

T S V S=∑ ∑

where the left hand side of the equation represents the total, say, vehicle-kms
summed over ij pairs and the right hand side represents the same quantity
summed over links (and displayed in output tables such as Table 17.3 as
described in Section 17.9).

Firstly, such an equality never holds if the flows Va correspond to actual link flows
and the summation corresponds to, say, total pcu-kms within “this time period”
(see Table 17.3). In particular, there is no such thing as an “actual” trip matrix for
use on the left-hand side, only a demand matrix.

Secondly, if the matrix Sij has been skimmed from a (single path) tree then the
equality will not hold in general (unless, most unlikely, all O-D trips have been
assigned to single, not multiple, paths).

The equality may hold if: (a) Tij is a demand matrix; (b) Sij has been skimmed from
a forest and (c) the link summation includes both this and the following time
periods (the “Totals” column in Table 17.3).

However, even these conditions may not be sufficient to guarantee exact equality.
For example, if the link flows Va are obtained from the “true” model run and the
skimmed matrix is based on a forest obtained using an approximate SAVEIT
assignment (15.23.2) then the equality will only be approximate, limited by the
lack of perfect convergence within both the true and the SAVEIT assignment.
More specifically, if S represents time then the parameter AFTERS must equal
0.5; see 17.6.2.

Conditions becoming slightly easier if the quantity S refers to the “generalised
cost” used by the assignment as opposed to a particular component such as time
or distance (or if, say, the assignment is based on pure time). In this situation the
skim matrix Sij is effectively the same whether it is obtained as a minimum cost
matrix or as a forest skim to the extent that under perfect Wardrop Equilibrium all
used paths have equal and minimum cost. Clearly if the convergence is not
perfect then the equality will be only an approximation.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-69
Section 15

15.27.6 Summary: Minimum and/or Skim Matrices

This section summarises several common sources of confusion experienced by
users faced with the problem of producing “cost” and/or skimmed matrices (in
general).

1) A matrix of, say, O-D distances (times, tolls, etc.) may be produced in at least
three different ways (where we assume first that the assignment is not based
on minimum distance):

a) building minimum distance trees,

b) skimming distance along the (single path) minimum cost trees,

c) skimming average distance along the (forest of) multiple paths used
within the assignment.

These correspond to minimum cost matrices (Option 14 in SATLOOK),
skimmed matrices (Option 14 in SATLOOK) and forest skims (Option 9 in
SATLOOK and/or batch files such as SKIMDIST (15.27.7)) respectively. It is
important that users understand how these three types of matrices differ.

2) Of the above three methods, the third, i.e., the “forest skim” (15.27.3), is
almost certainly the most realistic since it corresponds most closely to the
“true” assigned paths, generates fewer problems in terms of uniqueness,
reliability etc. etc. (but not NO problems – see points 6, 7 and 8 below).
However it may take considerably more cpu – see point 9 below.

3) The first, “true” minimum distance (etc.), has the advantage of being
unambiguously defined but, on the other hand, it may not correspond to a
route that would actually be used by drivers. However, it might be useful to
compare a “true” minimum distance matrix to the “actual” distance matrix to
see how near users are to minimum distance.

4) Equally skimming distance (etc.) from a single minimum-cost tree is highly
unreliable (see 15.27.2). However skimming a single tree may be much faster
than skimming a forest and, if only an approximate answer is required, may
be sufficient.

5) On the other hand, if we are interested in a “cost” matrix for use, say, in an
external demand or evaluation model, where cost refers to the generalised
cost used in the assignment, then methods (a) and (b) above give identical
results while (c) differs only in terms of non-convergence. Indeed, if we have
achieved perfect Wardrop Equilibrium, cost should be equal on all routes used
and (c) must give the same result as (a) and (b). In practice deviations occur
due to a lack of perfect convergence so that (a) must give lower values than
(c). The answer which would be obtained ultimately by a perfectly convergent
Wardrop Equilibrium solution will (almost certainly) be somewhere between
the two values. Method (a) is therefore recommended unless one is
specifically interested in the average O-D costs.

6) When skimming from a forest, under the standard Frank-Wolfe method of
assignment as opposed to path-based or OBA, the level of convergence
achieved by the extra SAVEIT assignment (if one is required) becomes an
issue (15.23.2). Thus the routes generated by a SAVEIT Forest will not, in

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-70
Section 15

general, reproduce the same routes and the same link flows as generated by
the assignment proper; they are only an approximation. The differences are
reduced by better convergence (i.e., increased values of NITA_S) which leads
to more accurate skims but it also means more cpu time. Compromises may
be required.

(N.B. These problems do not arise if the skimmed forests are based on the
actual assignment routes as opposed to an extra SAVEIT assignment; e.g., if
UFC109 = T; see 15.23.3.1)

7) Since the precise route flows generated under Wardrop Equilibrium are not
unique (see 7.1.6 and 15.23.8) neither are the average (forest-weighted) O-D
times, distances etc. cost components which are skimmed from them, even if
convergence were perfect. In addition the average OD speed matrix obtained
by dividing average distance by average time would not be unique either. This
may have implications for the convergence of linked supply and demand
models (7.8.6) or for economic evaluation models where the
demand/evaluation model is based on a different definition of generalised
cost from the assignment model and therefore requires separate skims of
time, distance, etc. The problem is most acute if a high degree of
convergence is required. It may also have implications for economic
evaluation models when applied to relatively small schemes when any source
of “noise” in time and distance etc. matrices is a problem.

8) The problems of non-uniqueness may be further aggravated by the presence
of “residual path flows” in the solution used which may make skimmed
quantities considerably more unreliable than, say, flows. See 15.57.

9) The problems of non-uniqueness for time and/or distance skims may be
particularly evident when comparing skims from two different schemes where,
for example, there may be large differences in individual O-D times or
distances when none might be otherwise expected. These differences may be
due to network 1 using an arbitrarily different set of OD routes from network 2
and, if there is a large degree of variability between the times/distances on the
alternative routes (even though they may have identical generalised costs),
then there will equally be a high degree of variability in the time/distance
skims.

10) The degree of variability may also depend on the relative cost “weights” (i.e.,
PPM and PPK) assigned to time and distance. Thus if PPK were near zero,
implying that distance is not very important in choosing minimum cost routes,
and an O-D pair is assigned to two routes, one with short distance and one
with long, then the skimmed distance could be anywhere between the
minimum and maximum distances depending on the essentially arbitrary split
between the two routes. On the other hand, the time skims in this situation
would be far more stable since time would be effectively equal to cost and the
costs on the two alternative routes would be equal. Conversely if PPM is small
then distance skims will be stable and time skims more variable. Note,
therefore, that different user classes which have different values of PPM and
PPK may well behave differently.

11) For assignments based on Frank-Wolfe (as opposed to OBA) calculating a
minimum cost matrix requires one tree build operation per origin; skimming

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-71
Section 15

an average matrix from a forest requires one tree build operation per origin
per assignment iteration. Hence it may require 25, 50, 100, etc. times more
cpu time depending on the value of NITA_S. For large networks this time may
be significant. (Note that this does not apply to OBA since skimming under
OBA requires only a single pass; see 22.5.6)

15.27.7 Skimming Costs Using .Bat Files (E.g., SATCOST.bat)

A number of useful standard .bat files have been created within SATURN in order
to simplify and automate the creation of minimum and/or averaged “cost” etc.
matrices.

Thus the .bat file SATCOST automatically extracts the minimum (as opposed to
average) cost matrix (as defined in 15.27.1) and is available both within DOS and
SATWIN. For example, the command:

SATCOST net cij

Generates the matrix of minimum o-d costs for network net.ufs and stores them in
cij.ufm. Type “SATCOST” for full filename conventions. This is usefully coupled
with elastic assignment to generate cost matrices for external demand models
(see 7.8.6).

If the input network contains multiple user classes the calculations include all user
classes and the output matrix is a stacked matrix, one “level” per user class.
Similarly if the input network has an extension .uft., i.e., it represents the outputs
of multiple time periods, then the output matrix cij.ufm will be “stacked by blocks”
with each “block” (see 10.2.4) representing the o-d costs for a particular time
period.

Note that SATCOST - and all the variants below - produce cost matrices defined
in units of generalised seconds which are therefore compatible with the units used
within all elastic or variable demand models.

 Equally note that the units are, effectively, O-D travel cost per pcu and bear no
relationship to the trip matrix or any factors used, e.g., to factor trip matrices. For
example, if you have a model with a single total trip matrix equally divided into six
user classes, then SATCOST will create a stacked .ufm matrix with six levels, one
per user class, each approximately equal to the cost matrix for a single user class.
Thus the fact that the trip matrix is divided by six per user class does not imply
that the cost matrices are equally factored.

Several alternative bat files are provided based on Forest Skimming (Option 9
within SATLOOK; see 11.11.9). In particular:

♦ SATC_AV skims average costs from a forest (15.27.3)

♦ SATC_MAR skims marginal costs (but only from networks which were
assigned under system optimal conditions; see 7.11.9).

♦ SATC_TP produces a minimum cost matrix (à la SATCOST) but over multiple
time periods (see Section 17).

♦ SKIMTIME skims averaged o-d times (in seconds) from a forest as described
in 15.27.3.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-72
Section 15

♦ SKIMDIST skims averaged o-d distances (in metres) from a forest.

♦ SKIMTOLL skims averaged o-d tolls (in pence; see Section 20.3) from a
forest.

♦ SKIMPEN skims averaged o-d time penalties (in seconds) as defined within
the 44444 data records from a forest.

♦ SKIM_ALL combines SKIMTIME, SKIMDIST, SKIMTOLL and/or SKIMPEN
into a single routine which skims all 3 or 4 quantities “simultaneously” which
means that the CPU time is reduced by a factor of roughly 3/4 (or 2 if there
are no tolls included in the definition of generalised cost). Time penalties are
only output if they exist.

♦ SKIMDA skims a particular property identified by its DA code, hence a
general purpose skim routine which could be used to skim time, distances,
etc. etc. by using the requisite DA code

♦ SATTUBA skims time, distance and/or tolls directly to a series of ascii files in
various TUBA formats; see Section 15.41 for further details

For further details on file format conventions etc. please type the names above.

Note also that routines SKIMTIME to SATTUBA as listed above may all take
advantage of multiple processors if available; see 15.53.3.2.

15.27.7.1 The Definition of Skimmed “Cost”

The following notes may help clarify exactly how the skimmed “cost” is defined in
certain of the above batch files.

Under SKIMTIME, times are equal to the “real” times along links and/or turns plus,
by default, any penalty times which may have been added under the 44444
restrictions (see 6.7). However, post 10.6, the 44444 penalties may be excluded
if a parameter USETP is set to F in the preferences file SATLOOK0.DAT. Equally,
if the CLICKS option is being used, the link times will use the CLICKS rules if a
parameter CLICKY = T in SATLOOK0.DAT which, by default, it is. See also
15.24.4. Finally skimmed times on centroid connectors may be excluded (by
setting them to zero) if a parameter XCCSK = T in SATLOOK0.dat (15.41.5).

In addition times under SKIMTIME are those calculated by the final simulation as
opposed to those calculated by the final assignment (DA code 4013 rather than
4003).

XCCSK also applies to SKIMDIST; i.e., if T skimmed distances on centroid
connectors are assumed to be zero.

Tolls under SKIMTOLL are in units of “pence” (or, strictly speaking, defined by the
parameter COINS) and include all monetary toll components whether defined
under the 44444 records or as a KNOBS input. See Section 20. (N.B. Since tolls
in the sense of explicit monetary tolls were only introduced in version 10.3
SKIMTOLL cannot be used with files created prior to 10.3.)

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-73
Section 15

By contrast with SKIMTOLL SKIMPEN also extracts data from the 44444 data
inputs but only those elements which been defined as “times” rather than “money”;
i.e., those without a $ or £ sign. See 6.7.

15.27.7.2 Skimming Using Aggregated (SPIDER) Networks

If SPIDER = T and the network has been built using an aggregated network
definition (see 15.56) then the algorithm used to build minimum cost trees may be
based on either the basic or the aggregated network depending on whether a
parameter USESPI = F or T respectively. The default value set by the program is
F but it is generally over-written by the value within the preferences file
SATLOOK0.DAT (which may be set by the user). Or see the sub-section below for
a further method for setting USESPI.

The resultant skimmed matrices are the same whether or not the aggregated
network is used; the main difference is that the aggregated method requires
significantly less CPU time.

The use of aggregated networks applies to both skimming a single tree as well as
to forest-based average skimming. For forest-based skims the potential CPU time
reductions are significant (e.g., 10 times faster); however, for a single tree build
operation per origin/user class, not multiple iterations, CPU time is less of an issue
here in absolute terms.

Note, however, that at the time of writing the possibility to use aggregated
skimming applies to most – but not all – applications of skimming. Its use is being
gradually extended and will eventually cover all applications. Information within
the .LP files should hopefully make it clear whether it is being applied or not.

For further information see 15.56.7.1.

15.27.7.3 Command Line Over-rides for, e.g., the use of .UFO files

The command lines associated with procedures such as SKIMDIST, SKIMTIME
etc. etc. may also be used to “over-ride” certain default skimming options. For
example, the choice of whether or not to use a Spider Web network
representation rather than the normal network (assuming, of course, that the
SPIDER network has been created in the first place) is normally controlled by a
parameter USESPI described above and which may be set in the preferences file
(e.g., SATLOOK0.DAT). However, rather than changing the value of USESPI in
the preferences file, the choice may be made by including the “token” USESPI on
the command line. Hence:

 SKIMDIST net matrix USESPI

Requests a distance skim on net.ufs with skimmed output to matrix.ufm but with
the parameter USESPI definitely set to .TRUE. independent of its default value
and/or any value set in the preferences file SATLOOK0.DAT.

Similarly the command:

 SKIMDIST net matrix USEUFO

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-74
Section 15

Requests the use of a .UFO file for skimming rather than a .UFC file (again
assuming, of course, that both .UFO and .UFC files are available). In this case the
default choice is set by USEUFO as defined within the network .dat file.

Other command line “tokens” include:

♦ USEUFC – use .UFC in preference to .UFO;

♦ NOT_USEUFO – do not use .UFO (and hence equivalent to USEUFC);

♦ NOT_USESPI – do not use a Spider Web network and

♦ NOT_USEUFC – use .UFO instead of .UFC.

These options were first introduced in release 11.1.11 in July 2012.

15.27.8 Post 10.9.17 Skimming Algorithms (NUSKIM = T)

Releases 10.9.17 and beyond include a new set of algorithms to carry out OD
skimming within SATLOOK which should be more cpu-efficient than the older
versions. Essentially they employ a “once-through” algorithm rather than tracing
each O-D path separately.

The new algorithms may be invoked by setting a namelist parameter NUSKIM = T
in the preferences file SATLOOK0.DAT. The default is, provisionally, T.

Alternatively the “preferences” option may be invoked in the command line to
define an alternative “local” preferences file rather than over-writing the “master”
version. For example:

SKIM_ALL net mat PREF mylook0.dat

Substitutes the preferences file mylook0.dat (which should be in the same folder
as net.ufs etc.).

15.28 Variable Program Dimensions

SATURN is available in differently compiled .exe files, each allowing for a different
maximum problem size. The smallest standard array size is version B with
intermediate versions available up to the largest X7 – further details are listed
below:

Array / Level Simulation Junctions Assignment Links Zones

B 500 7,500 400

C 1,000 22,500 800

S 1,500 32,500 1,200

H 2,000 47,500 1,600

K 2,500 60,000 2,000

L 3,000 73,500 2,000

M1 3,500 83,500 2,000

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-75
Section 15

Array / Level Simulation Junctions Assignment Links Zones

M2 4,000 93,500 2,000

M3 4,500 103,500 2,000

N1 5,000 112,500 2,000

N2 9,500 120,000 2,000

N3 21,000 200,000 2,000

N4 23,000 200,000 4,000

X7 30,000 250,000 5,750

The above table provides a quick reference guide to the principle variations
between the different licence levels but other constraints – such as the number of
simulation links or turns - will also determine the licence level required to run
specific models.

Beyond Level ‘K’, the number of zones available is capped at 2000 to reduce
excessive memory requirements. If a larger version is required, please contact
Atkins to discuss your specific requirements.

Pre 11.2 several variants of Level ‘N3’ were created to accommodate the suite of
sub-regional models developed by Transport for London with various bespoke
configurations to accommodate their specific requirements. With the release of
11.2, the internal array dimensions were restructured to provide a new Level ‘N4’
to meet all their anticipated requirements but within a much smaller RAM footprint.
Therefore, there may be some issues of backward compatibility for very large
networks using SPIDER Network Aggregation and the standard ‘N3’ will not
necessarily be capable of running the TfL Sub-Regional HAMs and an upgrade to
Level ‘N4’ will be required.

The values of the above dimensions for a particular set of executables may be
established via Help/About in the P1X menu bar or the full set is contained in the
.lpn output files from SATNET.

Note that one particular array dimension, that controlling the maximum size of a
trip matrix within SATALL, may be effectively increased in size by the judicious
use of a parameter SPARSE; see 7.11.12.

Further details on the financial implications of upgrading your existing version are
may be found on the website (www.saturnsoftware.co.uk).

15.29 Comment Cards and Blank Records in Data Files

In theory any ASCII file used as input to a SATURN program, e.g., the .dat file
input to SATNET, may contain comment cards indicated by a ‘*’ in column 1. Any
such records are ignored and the next record read. This complements the use of
‘*’ in the namelist input conventions to indicate comments at the end of a line - see
Appendix A. This convention was first introduced in SATURN 9.1.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-76
Section 15

For network data files comment cards are particularly useful for, e.g., identifying
specific nodes, inserting comments when changes are made (impresses the QA
boyos!) or for “editing out” previous coding.

In practice the convention may not be 100% fool-proof as the new rule has meant
changing every single “read” statement to check for the ‘*’; almost certainly some
will have been overlooked. It should be fairly obvious when this happens - most
likely the program will crash - so the obvious solution is: (a) remove the comment
card, and (b) politely alert your friendly SATURN agent.

The same convention applies to other input ASCII files - in particular, .key files
may have comment lines inserted as may the standard graphics system file
“graf.dat”.

Blank lines in input data files are, generally speaking, handled in the same way as
comment cards, i.e., if read they are ignored and the next record read in its place.
If, on the other hand, they are allowed as input numerical records (see below) they
are interpreted by FORTRAN as a string of zeros.

Their (intentional) use is not recommended at all, in particular since there are
exceptions to the above rule. For example, numerical KNOB data contained on
extra lines in network .dat files may legitimately contain all zero entries and be
correctly represented by a blank line (15.14.5). Equally key files and GRAF.DAT
may contain all-blank records. There may be other examples but we haven’t
thought of them yet!

Prior to 10.5 blank lines were not explicitly detected and could give rise to fatal
errors, e.g., if they were meant to contain node numbers.

15.30 The Use of Sub-Files within Data Files: $INCLUDE

Certain data sections within, e.g., network .dat files allow “sub-files” to be
referenced by inserting a record containing the characters ‘$INCLUDE’ starting in
column 1 followed by a file name which should be read at that point. For example
the sequence:

66666
$INCLUDE metro.bus
99999

in a network .dat file requests the program to read the bus route data from a file
‘metro.bus’.

Note that the filename need not be enclosed in inverted commas, i.e., metro.bus,
not ‘metro.bus’, unlike filenames etc. which are specified within Namelist inputs
(see Appendix A). However, if they are, the ‘s are removed and a warning printed
in the .LP file.

Note that the file “metro.bus” should not contain the opening ‘66666’ record but
should contain a closing ‘99999’ record which indicates only that reading reverts
to the original file at that point. (Strictly speaking the 99999 record is optional as
an end-of-file has the same effect; however the use of 99999 records is strongly
recommended if only to positively affirm that this is the end of the desired data.)
The original file must therefore also contain a ‘99999’ record in the normal way to
indicate the end of a data section.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-77
Section 15

The facility is available within SATNET to read any of sections 1 through 8 in the
network input data files. It is being gradually extended to other programs and/or
files (e.g., counts in SATPIJA, see 13.2.1) and may also be used within Namelist
inputs; see Appendix A.

It may also, post 10.9 be “subscripted” so as to apply to a particular time period
under multiple time period modelling (PASSQ; see 17.4.4) in SATNET. For
example:

$INCLUDE(1) bus1.dat
$INCLUDE(2) bus2.dat

in a network .dat file would indicate that two different sets of bus routes were to be
included in the first and second time periods. See Appendix B.

An example of a network .dat file which makes extensive use of sub-files is given
below:

 44444
 $INCLUDE 444.DAT
 99999
 55555
 $INCLUDE XY.DAT
 99999
 66666
 $INCLUDE BUS.DAT
 99999
 77777
 $INCLUDE COUNTS.DAT
 99999

 77777
 45 53 52 826 60
 32 33 1500 70
 * COMMENT
 33 34 1600 80
 7 8 800 90
 99999
 77777
 $INCLUDE COUNTS3.DAT
 99999

There are many possible benefits from using sub-files. For example if you have a
large number of networks in a certain study, all of which have the same co-
ordinates, it is much simpler to update a single .xy file than to update every single
network file when you wish to make changes. Clearly the resulting .dat files use
less disk space as well.

Sub-files may also be created and/or extended interactively using P1X; see
Section 11.9.2.6 and 11.9.2.7.

Finally we note that it is possible – and often highly desirable – to have effectively
the same data appearing in more than one file. For example, data for the same
simulation node may appear in several locations such that one may deliberately
take precedence over another as part of coding alternative scheme and/or
scenarios. See Section 6.15 for advice on using FIFO, TOPUP and DOUBLE
options.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-78
Section 15

15.31 Setting “Optimum” Stage Green Times

15.31.1 Background

A common problem in setting up future-year SATURN networks is to determine
appropriate signal setting parameters. The same problem does not arise with
current networks since, in theory at least, the settings may be observed. However
the easy solution of carrying present day settings forward into the future is clearly
fraught with errors since there is no guarantee that “good” settings for today’s
traffic levels will still be “good” in the future. The same problem also occurs in
present-day networks when network changes are tested.

The two main parameters of concern here are stage green times and offsets.
Cycle times generally have a smaller influence and anyway can be set as a
universal parameter LCY; inter-green times are generally fixed by reasons of
safety etc. The question of setting optimum offsets is discussed in Section 12.2
with respect to SATOFF.

However the problem of determining optimum stage green times is considerably
more complex than that of optimising offsets due to the potentially highly sensitive
feedback between stage times (which affect capacities) and flows. Basically if
one sets optimum green times for a pattern of flow which is in Wardrop
Equilibrium given the “old” green times, those flows will no longer be in equilibrium
since those routes which have been allocated more green times will have become
faster. We must therefore reassign in order to take account of the latest green
times. However this will tend to put more flow down those links that were given
extra green time and therefore, if we re-optimise the green time in accordance
with the new flows, the more heavily loaded links will tend to be assigned more
green time. And more green time tends to mean more flow -a vicious circle is
thereby established.

Considerable research work has gone into the investigation of the “Iterative
Optimal Approach” whereby a loop is established between Wardrop assignment
and signal optimisation using a number of different signal control policies as given
in section 15.31.3. Interested readers are referred to the classic tome on the
subject “Route Choice and Signal Control”, Avebury Press, by Tom van Vuren and
Dirck Van Vliet. Under certain circumstances this approach can lead to
considerable reductions in total travel time, eg up to 20% compared to the initial
(and therefore potentially arbitrary) settings in the base network. However a
closer examination of the process shows that this is often obtained via a process
in which flows and green times move in small steps in consistent directions with
the process only terminating once the stage times reach their minimum values.
Such solutions are also characterised by near “all-or-nothing” flow patterns
whereby very high flow rates with corresponding near maximum green rates occur
on certain well-defined corridors whereas parallel routes are virtually unused.
These solutions argue: (a) a large degree of co-operation between drivers and
signal setters and (b) that drivers can detect and react correctly to very small
shifts in green times.

It is therefore our belief that such solutions are not entirely realistic and may
actually over-estimate the level of performance of a network. Therefore the use of
an optimal iterative strategy must be viewed with extreme caution. See also
15.31.4.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-79
Section 15

On the other hand some reaction of signals to altered flow is clearly necessary.
Perhaps a good compromise for future year networks is to first set signals using
“engineering judgement”, carry out one full assignment followed by a stage time
optimisation and one more assignment (where by “assignment” in this case we
refer to a full run of SATURN with assignment/simulation loops internally).

If the improvements in total network travel time are significant, this procedure
could be repeated, always bearing in mind the possibility of producing unrealistic
flow and green time patterns and even deterioration of overall travel times.

There is another possible need for a fully automated approach; this is the case
where a network is not yet in existence, and initial green times can be determined
to impose a preferred flow pattern on traffic. The traffic engineer then has the
freedom to pursue the iterative loop until the signal settings are found that lead to
the lowest network travel times.

15.31.2 Optimum Stage Times using PIX

In order to optimize stage green times a special option has been included within
the P1X Network Editing options (see 11.9.13) to automatically consider all
signalised junctions and to optimise all green times (using options as detailed
below). This option is to be found within Global Operations on Signals and would
normally be followed by the creation of a new UF file and/or .dat file containing the
updated signal settings.

N.B. This replaces similar options previously available under option 1 of the now
discontinued program SATED

An illustration of a “typical” sequence of programs is given below.

Having re-assigned and re-simulated via SATALL the option of course exists to
loop back through P1X in order to re-optimise the signals - subject to the caveats
expressed in Section 15.31.1.

The optimisation process may also be carried out at selected nodes only
(11.9.13.2).

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-80
Section 15

Alternatively, a new “batch procedure” SIGOPT has been introduced in Release
10.8.16 to optimise stage times and/or offsets and which effectively supersedes
both SATED/P1X in terms of stage times and SATOFF in terms of offsets -
described in detail in 15.31.6. Thus, in the above diagram, substitute SIGOPT for
SATED/P1X.

15.31.3 Stage Length Optimisation Algorithms

Five basic algorithms to optimise stage green times are provided:

1) SATURN Equi-saturation.

2) Webster.

3) Delay minimisation.

4) P0.

5) SATURN Equi-saturation Mark 2.

The first is the traditional algorithm provided for many years within SATURN; the
last is a recent modification thereof, while the remaining three were first
introduced in SATURN 9.2, having been converted from versions programmed for
SATURN 8 as part of a research project. They are provided primarily for
experimentation and their reliability cannot be guaranteed. Their choice is
governed by the Namelist parameter MYTVV set in the network .dat files with a
default, post 10.9, of 5 (previously 1).

The basic equi-saturation policy essentially follows the classic Webster approach
of attempting to minimise the maximum volume/capacity ratio by turn by adjusting
green splits. There are therefore only minor differences between options 1 and 2
(which mostly occur in complex situations with lane sharing, overlapping stages,
etc.)

Delay minimisation, as the name implies, attempts to minimise total vehicle-delay
at the intersection. Since it uses analytical approximations to calculate SATURN
delays it will not necessarily lead to a true optimum.

P0 is based on the elegant principle put forward by Mike Smith (University of
York) of equating the product of saturation flow times delay on competing arms.
Again, given the complexities at signals as represented within SATURN, our
version is not necessarily a “pure” application of PO. It differs from the first three
options in that it does not explicitly set out to produce a true local optimum but to
set the signals such that, in conjunction with the consequent re-assignment of
traffic, the total network travel times will be reduced.

Finally equi-saturation Mark 2, as introduced in 10.1, has the same general
objective as 1 but uses a different algorithm to achieve it. Experience to date is
limited; certainly in certain situations it performs much better but whether there are
other situations where it performs worse is not yet certain. Nonetheless it is
recommended over 1.

Each algorithm follows an iterative strategy whereby green time is “swapped”
between the “best” and “worst” stages, with the amount of green time swapped
being the (local) optimum. After each swap the best/worst criteria are recalculated

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-81
Section 15

and the next pair identified. While fairly reliable, such an approach is not
guaranteed to produce a global optimum; under certain circumstances the
algorithm may “stick” and the apparently best pair for swapping may not in fact
lead to any improvement. For this reason the maximum number of iterations is
user-set in order to prevent infinite loops.

Further “outer” iterations may also be required since, once new stage times have
been generated, a re-simulation of that node may change some of the criteria on
which the optimisation was based; e.g. lane sharing may change. A further (user-
set) option specifies the maximum number of outer iterations allowed (default 1
since in most cases a re-simulation and re-optimisation has no effect).

Finally it should be noted that the optimisation procedures all assume that stage
times are defined by integer seconds as opposed to being continuous variables.
Again this implies that the solutions are not “true” global optima, but equally
means that they may be insensitive to small changes in junction parameters (e.g.
flows) and therefore they converge more rapidly.

15.31.4 Using SIGOPT (and/or SATOFF) within SATALL

As an alternative to optimising stage green times outside the
assignment/simulation loop as discussed in 15.31.2 it is also possible to do so
within the loop using SATALL. Thus setting the parameter SIGOPT = .TRUE in
(preferably) the original network .dat file or in the SATALL control file results in a
“two pass” simulation process within the standard loop. Thus on the first “pass”
the simulation uses the current stage green times and the latest assigned flows; it
then updates all stage times at signalised junctions independently and re-runs the
simulation in a second pass. Statistics describing the degree of changes to the
green times appear both on the screen and (in greater detail) in the .LPT file.

Note that the option SIGOPT automatically optimises all nodes; there is, as yet,
no option to optimise over a subset of signals although this can be done using the
batch procedure SIGOPT described in 15.31.6 below.

Equally the offsets can be automatically optimised within each simulation by
setting SATOFF = T – or offset optimisation could be done on its own by setting
SIGOPT = F and SATOFF = T (but, see below, this is not recommended).

The choice of optimisation algorithm 1 to 5 above is set by the parameter MYTVV
as set in &PARAM either in the SATNET .dat file or in the control file to SATALL.

It needs to be emphasised that this procedure is largely experimental and we
have very little experience so far to compare the results from the above procedure
from that using the explicit SATED-SATALL loop. Since the updates are more
frequent in SATALL - one per loop - one might expect to find “better” signal
settings and lower travel times using this method - but life is not necessarily
straight forward with network models! However using SIGOPT = T within
SATALL is likely to lead to over-estimates of network performance as noted in
15.31.1 and it should therefore be used with some caution and only if the resulting
signal times and flows are carefully analysed for “realism”.

The same note of caution should also be applied to the use of SATOFF = T within
SATALL. In particular, since the optimum offsets are most sensitive to link cruise
times which are (generally) fixed as opposed to turning delays which may vary

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-82
Section 15

considerably with iterations of SATALL, the optimum offsets per node may only
change once within SATALL and the same result could be obtained by using the
program SATOFF on its own. Using SATOFF = T on its own within SATALL with
SIGOPT = F has even less to recommend it.

N.B. Optimising stage times (in particular) and/or offsets may lead to significant
improvements in the overall convergence of the assignment-simulation loops. See
Section 9.1.5.

15.31.4.1 NIPS

On the other hand, using the parameter NIPS to limit the number of times the
signal and/or offset optimisation within SATALL is called is STRONGLY
recommended. See 9.12.2. A value of 2 or 3 is recommended.

15.31.5 Preserving and Transferring New Stage Times

Having created new stage times (and/or offsets) by any of the above methods it is
natural to wish to include that information within a network .dat file. The best way
to do that is to use the Network Editing facilities within P1X and, in particular the
update option described in 11.9.13.2 and/or rgs files as described in 11.9.14.
Alternatively, the batch procedure described in 15.31.6 has options to output an
updated .dat file automatically.

Once an updated .dat file has been created you may wish to re-run SATURN
“from scratch” with the signals and/or offsets fixed at their optimal values. Before
you do so be careful that parameters such as SIGOPT or SATOFF have all been
“turned off” within the new .dat file. Also note that the “from scratch” results may
not be identical to those previously obtained since the new run may follow a
slightly different “convergence path” and wind up with slightly different results; only
with perfect convergence (unobtainable) would this problem would not arise.

15.31.6 The Batch Procedure SIGOPT

A new “batch procedure” SIGOPT.BAT has been introduced in Release 10.8.16 to
optimise stage times and/or offsets in a .ufs file and to create a new output file(s).
It effectively supersedes both P1X in terms of stage times and SATOFF in terms
of offsets. Output files may be either (a) .UFS, (b) .DAT and/or (c) .RGS

SIGOPT makes use of existing routines within P1X but runs in a non-graphical
non-interactive mode such that it resembles any other batch-mode program. It is
called via:

SIGOPT net KR control KP fildat

where control.dat (optional) is an ascii file which sets various options, filenames
etc. via Namelist and may also contain a list of selected nodes for optimisation.
The full list of parameters with their defaults is listed below.

Fildat (optional) specifies the name of an output (.dat) file containing the revised
network .dat file. Fildat may equally be specified as a Namelist parameter within
control.dat.

Note that if the input network file net.dat references $INCLUDE files within the
11111 records then the output file fildat copies these files directly into the new

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-83
Section 15

11111 records; the $INCLUDE files may be recreated – and potentially renamed –
using text editing cut’n’paste. See 11.9.2.1.

The filenames for a new .ufs file and – optionally - a new .dat file must be explicitly
set within control.dat but that a file net.rgs is always output with its filename fixed
by the input network net.ufs.

PARAMETER TYPE DEFAULT FUNCTION NAME

SIGOPT LOGICAL .TRUE. If .TRUE. optimise green times

SATOFF LOGICAL .FALSE. If .TRUE. an offset optimisation is carried out
prior to green time optimisation

SELECT LOGICAL .FALSE. If .TRUE. read a set of selected nodes to be
optimised from this file immediately after
&END; see also 11.9.13.2

RESIM LOGICAL .FALSE. If .TRUE. a complete simulation is carried
 out prior to the output of .ufs file

MYTVV INTEGER 1 Stage time Optimisation algorithm –
See 15.31.3

NOPMAX INTEGER 1 Maximum number of internal iterations used
 by the signal setting routines; see 15.31.3

MANOFF INTEGER 0 The signalised simulation node number used
 as the reference point for all optimum offset

set by SATOFF. See 12.2.3.

FILDAT CHARACTER Blank Defines an output .dat file

FILUFS CHARACTER Blank Defines an output .UFS file

RECORD(S) 2 – Selected (Signalised) Nodes

One node number per record in free format terminated by 99999 to select a
subset of nodes to be optimised for both stage times and/or offsets.

15.31.7 Using SIGOPT for Base Year Networks

In principle there should be no need to run signal optimisation for base-year
networks where the stage times should be directly obtainable from observation
and, one would hope, SIGOPT would give very similar times with very little
improvement in travel time. However, it may be a very useful
“calibration/validation” exercise to check that this is indeed the case since large
deviations between observed and “optimised” stage times at an individual node
might well be a very good indication that there is something wrong, e.g., that the
node has been miscoded or that the assigned flows are well out, etc. etc.

15.31.8 Convergence Statistics for Signal Optimisation

Whether or not the green splits at signals have actually been optimised it is
possible to calculate the maximum possible improvement in the V/C ratio per turns
at signalised nodes. These calculations are carried out at the end of every run of
SATALL and the improvements per node are saved on the output .UFS files as

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-84
Section 15

well as the maximum time change per stage in order to achieve optimisation. The
.LPT file contains a global summary of the potential improvements.

In addition it is also possible within the P1X Convergence Menu (11.15) to list the
10 nodes with the maximum potential V/C improvements and to highlight them.
Note that those nodes with poorly set stage times are also likely to be the same
nodes that cause convergence problems for the assignment-simulation loops and
therefore optimising those signals may significantly improve overall convergence.
See note 9) in 9.1.5.

15.32 Determining Fuel Consumption

Fuel consumption is an area of major concern to traffic engineers for obvious
reasons. It is also an area which, as with emissions (15.33), is probably best
handled “post processing”; i.e., users will have their own particular favourite model
or formulae for fuel consumption which will require both data from SATURN such
as flows and/or speeds and exogenous data such as graphs of fuel consumption
vrs. speed. In such cases the best option is to dump the required SATURN data
into, say, a link-based text file using SATDB and to pass that data into their own
procedures. (Or it may also be feasible for users to set up their own equations /
calculations using the data manipulation facilities within SATDB (11.10.8.1))

 However there are also internal fuel consumption models within SATURN. Thus,
in order to estimate the total amount of petrol consumed within the simulated
network, SATURN uses the following equation:

1 2f FLPK d FLPH t FLPPS s FLPSS s= ∗ + ∗ + ∗ + ∗

where:

f = fuel consumption in litres

d = total travel distance in vehicle-kilometres

t = total delayed (idling) vehicle-hours

s1 = total number of ‘primary’ or ‘full’ stops at an intersection; e.g. where a vehicle
arrives at the end of a queue

s2 = total number of ‘secondary’ stops; e.g. stop-starts while a vehicle moves up
in a queue

and the “weighting” parameters FLPK etc. have been assigned default values as
follows:

FLPK = 0.07

FLPH = 1.2

FLPPS = 0.016

FLPSS = 0.005

These parameters were all chosen as appropriate figures for an ‘average’ British
car in 1981. More details may be found in Ferreira. (“The role of comprehensive

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-85
Section 15

traffic management in energy conservation”, PTRC Summer Annual Meeting, July
1981).

Clearly these figures are now out-of-date and take no account, for example, of
the breakdown of the flow into various vehicle types. The parameters may be
user-set as standard namelist parameters within SATNET.

15.33 Determining Emission Statistics

Emissions of harmful pollutants from road traffic are an increasingly important
issue for engineers, planners and politicians alike - not to mention the general
public who have to live in it! It is also an extremely complicated process, both in
terms of actual emissions (e.g., variations between vehicles) and their ultimate
dispersion and chemical reactions.

Predicting emissions is, as with fuel consumption (15.32), probably best handled
“post processing”; i.e., users will have their own particular favourite model or
formulae for calculating emissions which will require both data from SATURN
such as flows and/or speeds and exogenous data such as meteorological data. In
such cases the best option is to dump the required SATURN data into, say, a link-
based text file using SATDB and to pass that data into their own procedures. (Or
it may also be feasible for users to set up their own equations / calculations using
the data manipulation facilities within SATDB (11.10.8.1))

Alternatively, in order to encourage the consideration of pollutant emissions,
SATURN contains some fairly simple-minded internal procedures for the
estimation and display of five standard pollutants: carbon monoxide, carbon
dioxide, hydrocarbons, nitrogen oxides and lead. The estimation procedures are
similar to those used to estimate fuel consumption, i.e. a linear model with
explanatory variables of time, distance, primary and secondary stops. Hence the
basic equation for the emission of pollutant i from a link is:

()1 2 3 4 1 5 2
i i i i i i

c qE a d a t a t a s a s V= + + + +

where:

d is link distance

tc is average cruise travel time on the link

tq is the time spent “idling” in queues at junctions

s1 is number of primary stops per vehicle

s2 is number of secondary stops per vehicle

V is the vehicle flow

ai1, ai2... are (user-set) coefficients.

It needs to be emphasised that this is an extremely crude model. Moreover the
default coefficients given below are even worse! If it gets to within an order
magnitude of the “true” answer it will be doing well. The main reason for including
it at this stage is to provide, for examples, options in P1X to display emissions per
link or options in SATLOOK to print totals. Improved models with more reliably

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-86
Section 15

calibrated coefficients will undoubtedly follow and users are strongly encouraged
to put forward their own models.

Default parameter values for four of the pollutants (excluding CO2) have been
extracted (with some fairly broad brush assumptions; e.g. that a primary stop
involves a deceleration from 50 kph to rest and the reverse acceleration) from the
data used in the 1988 Leeds PhD dissertation of Athanasios Matzoros (see also A
Model of Air Pollution from Road Traffic I and II, A. Matzoros and D. Van Vliet,
Transportation Research, pp.315-335, Vol 26A, 1992). Default values are listed
below.

Grams / PCU / Kilometres Cruise
Hour

Idling
Hour

Primary
Stop

Secondary
Stop

Carbon dioxide 70.0 0.00 1200.00 16.000 5.000

Carbon monoxide 0.0 304.80 180.00 2.22 0.444

Nitrogen oxides 0.0 102.60 1.80 0.42 0.084

Hydrocarbons 0.0 57.00 30.00 0.39 0.078

Lead 0.0 0.36 0.09 0.0024 0.0005

Carbon dioxide parameters are extracted from the fuel consumption parameters
on the assumption that “most fuel” is converted into carbon dioxide.

Parameter values may be reset by users using the namelist inputs to SATNET
within a network .dat file. See Section 6.3.3; all parameters are “reals”. Their
names are constructed using the following conventions:

♦ All names commence with the characters CO, CO2, XNO, HC or PB.

♦ The next character is a P (for “per”).

♦ The final characters are K (for kilometre), CH (for cruise hour), IH (for idling
hour), PS (for primary stop) or SS (for secondary stop).

Thus HCPCH is the variable denoting hydrocarbons emitted (units of grams) per
hour cruise time per pcu.

15.34 Estimating Primary and Secondary Stops

While the simulation element within SATURN does not explicitly model the exact
progression of every vehicle as they move down a link it is possible to infer certain
properties of their progression. Thus SATURN estimates the number of times on
each simulation link that vehicles execute primary and secondary stops.

The distinction between the two forms of stop is basically the following. Imagine a
minor arm at a priority junction with a “stop sign” at the end; every vehicle
approaching that junction should (must!) come to a complete stand still either at
the stop line (if there is no queue) or behind the last vehicle in the queue; that is a
primary stop. If there is a queue and vehicles depart from the head of the queue
one at a time then vehicles further back will move up by accelerating and then
decelerating to a stationary position; these are secondary stops.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-87
Section 15

Clearly this two-way split does not exactly represent all possible vehicle
movements in a queue but it may well be sufficiently good for estimating
secondary parameters such as fuel consumption or emissions and for providing a
very broad description of the state of a junction.

The rules for estimating primary and secondary stops are, like their definitions,
somewhat arbitrary. Thus for minor arms at priority junctions all arriving traffic
must make a primary stop if its turn is over capacity or if the queue per lane is
greater than 2. If the queue per lane is (in the limit) zero the probability of a
primary stop is equal to the calculated probability of there being no gap. For
queues per lane between 0 and 2 pcu’s a linear relationship is assumed.

Secondary stops are calculated by assuming that all primary stops make a further
number of secondary stops equal to the queue length per lane divided by the
number of vehicles that can depart from the stop line “in a platoon” once a gap
occurs (assumed equal to one over the probability of a gap).

Roundabouts are treated in the same way as minor priority arms.

For major priority arms secondary stops are ignored and a primary stop only
occurs if the arm is over capacity or if, at the moment of arrival, the expected
queue length per lane is greater than 1.

At signals all arrivals primary stop during a red phase or, during the green phase,
if the expected queue is non-zero. Secondary stops occur whenever the lights go
red to all vehicles in the queue at that instant.

15.35 Altered Data Formats in .DAT Input Files

Generally data input files to SATURN programs are “formatted”, meaning that
repeated numerical data needs to be in fixed fields or sets of columns with a
specific number of decimal places, etc. See Section 2.8.1. These are specified by
“format statements” set within the program but which, as explained here, may also
be altered by the user.

An example taken from the buffer-network data input to SATNET, see 6.6, is
given below. Thus the first line specifies a buffer link from node 23 to node 22 in
the standard format. The line FORMAT (3F7.1... requests a new format, the
basic change being that the 3F7.1 implies that the three input fields following the
A-node and B-node occupy 7 columns with 1 decimal place as demonstrated by
the next data line for link 20 to 21. A line with characters FORMAT in columns 1
to 6 but blank thereafter causes the format to revert to its default.
 23 22 28 56 2500 2 1000 2.19 125
FORMAT (3F7.1,2X,I1,A1,1X,F5.0,F5.1,2X,I3)
 20 21 28.1 56.1 2500.2 2 1000 2.19 125
FORMAT
 20 21 28 56 2500 2 1000 2.19 125

In principle the change of format facility could be applied almost anywhere: in
practice it has only been programmed in a very few places, including the buffer
network inputs illustrated above. In this case it has been done to make the data
generated under the SATBUF conversion procedure (see 15.8.2) accessible to
SATNET. Further extensions are planned.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-88
Section 15

The advantages of being able to change formats are mostly associated with the
ability to import data from other suites of programs with formats which do not
coincide with those of SATURN. Another example of the same basic principle is
the parameter XYFORM used by SATNET; see 6.3.4.

It should also be stressed that very often data may be read in a variety of forms,
provided that it appears within the column boundaries set, and that therefore the
formats specified within the Manual may not need to be absolutely strictly adhered
to. For example, the format specified in order to read in the “power” for a buffer
link speed flow is specified in Section 6.6 as FORMAT F5.1, implying that a single
digit appears after the decimal point and that the decimal place must appear in
column 39. In practice, since FORTRAN compilers are “forgiving” in terms of input
formats, the decimal point may appear in any column with any number of digits
following provided that the whole input appears in columns 36-40. Thus inputs of ‘
3’, ‘ 3.0’, ‘3.123’ will all be correctly read.

In addition, certain inputs which are specified as Integers, e.g., link times and/or
speeds with buffer link records, may generally have decimal places included,
again with the proviso that the full input appears within the strict column limits.

15.36 Turning Flows at Buffer Nodes

Although SATURN does not explicitly differentiate between different exit turning
movements from a buffer link in calculating minimum cost routes (unlike the
simulation network) when the O-D trips are assigned to paths through the buffer
network they do implicitly go through turns and the resulting turn flows may
optionally be saved.

To calculate and store buffer turn flows you must have both parameters SAVEIT
and REFFUB (which, if you think about, has a rational explanation!) as .TRUE on
entry to SATALL (the facility is not available in SATEASY). The turning flows are
calculated by carrying out a final full assignment using the iteration costs stored
on the ufc files (see 15.23) and the resulting flows stored in DA array 4953 on the
output .ufs file. These may subsequently be accessed using option 2 (look at
individual buffer nodes) within SATLOOK (11.11.2).

Note the following points:

1) Bus routes through the buffer network clearly also make turns; if there are
any such bus routes their (pcu) turn flows are calculated within SATNET and
stored in DA array 943. These are then added to the assigned flows in 4953
which therefore contains total pcu flows.

2) The same treatment is not applied to pre-loaded flows (but see note 4
below).

3) In multiple-user-class assignment all user classes are combined together in
array 4953.

4) Since, as explained in 15.23, the routes re-calculated via SAVEIT may be
only an approximation to the true routes used in the assignment (due to the
effects of DIDDLE or KOMBI for example) the turning flows are “furnessed”
so that the total exit and entry flows on each arm correspond exactly to

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-89
Section 15

those assigned. This procedure would also account for any “missing” turn
flows due to pre-loaded flows.

15.37 Repeated Assignments: Modelling Cold Starts, etc.

The SATRAP option within the Assignment/Tree Building sub-menu within
SATDB repeats a full assignment to the same routes and in the same proportions
as in the final assignment (or, strictly speaking, the final assignment as re-created
under SAVEIT - see 15.23). Thus re-assigning the original trip matrix should give
the same (demand) link flows as already stored on the .ufs file. So why bother?

Firstly, SATRAP allows the user to investigate the impact of assigning a different
trip matrix to the same routes. One of the sub-options within SATRAP allows the
user to modify the matrix using random numbers in order to model the impacts of
day-to-day variability.

A further option allows the user to assign trips over only a section of the O-D
routes defined in terms of distance. For example you may ask for only the first (up
to) 500 metres from the origin to be loaded, the obvious application of which is to
model vehicle flows when the engine is still cold. Alternatively the flows may only
be loaded beyond, say, 500 metres, to represent warm vehicle flows. Adding the
two together gives total flows. In the case of the critical distance falling in the
middle of a link along an O-D path (as in fact must virtually always occur) the
loaded flow is taken pro-rata depending on the length of that link.

15.38 Non-discontinuous Speed-Flow Curves: the Kinky Option

Generally, as described in Section 5.4 and elsewhere, SATURN speed-flow or
cost-flow curves are assumed to follow a power law for flows up to capacity and to
be linear thereafter; equations (5.1a) and (5.1b) respectively. Thus there is a
discontinuity in the slope introduced at V=C (although the times or costs
themselves are continuous). Generally the discontinuity does not create problems
within the assignment algorithms and the shift to a linear form is quite realistic
particularly bearing in mind that a power-law curve with, say, power 5 goes very
rapidly towards infinity for V>>C, a not very realistic forecast which can have
serious consequences for scheme benefits.

However there may be circumstances when the user does wish to extend the
simple power law relationship over flows from zero to infinity, for example in
modelling networks with so-called “BPR curves” or when doing system-optimal
assignment where the discontinuity in slope may be an algorithmic problem (see
7.11.9). This is simply done by setting a parameter KINKY to .FALSE in the
network .dat file (or in control files elsewhere) in which case equation (5.1a) holds
over the full range of flows for “actual” times and (7.19a) holds for the full range of
marginal costs.

The default is .TRUE. and, it needs to be stressed again, the alternative should be
used with great caution. In particular it is not recommended to use with KINKY =
F with simulation networks. In addition, if KINKY = F, then care should be
exercised that parameters that control the power of cost-flow curves such BCRP
or PMAX should be less than or equal to 5.0.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-90
Section 15

In general KINKY = F should only be used in research-based applications and,
even then, for very specific purposes. For example, it may be useful in studies of
system optimal assignment and system optimal tolls; see 7.11.9.

Note that KINKY applies to all cost-flow curves, i.e. both buffer as input and
simulation as calculated.

15.39 Bus-only Lanes

Bus-only lanes in SATURN represent extra lanes along simulation links which are
for the exclusive use of public transport vehicles as coded under the 66666
network data records (6.9). The format specification for identifying bus lanes and
whether they are “nearside” or “offside” are given in Section 6.4.9.2.

15.39.1 Flows in bus lanes

Bus flows on a link are assigned to a bus lane – and are therefore removed from
“normal” traffic – but only if certain criteria based on the next link in the route are
satisfied. Two sets of acceptance criteria are applied: the first is fairly obvious but
may be overly strict so that a second rule has been added.

Thus, rule 1, for a nearside bus lane, if a bus route makes a turn at the
downstream end of the link which is allowed to use lane 1 (given the input
turn/lane specifications on that link) then it is allocated to the bus lane; otherwise it
is assumed not to use the bus lane. Thus, for example, a bus route which turns
right (drive on the left) at the end of a link would not be able to use a nearside bus
lane if the normal right turns were only allowed from lane 2. Similarly an offside
bus lane may only be used by a route whose exit turn uses the highest (most
offside) lane; e.g., left-turning buses would be excluded from an offside bus lane.

The second rule, termed the “1+1 rule”, relaxes the above criteria by increasing
both the critical lane and exit turn by 1. Thus, if a bus route takes the second exit
from the nearside and if that turn can use the second lane then that route may
use the nearside bus lane on the link. For example, a bus which is going straight
ahead (second turn) at a 4-arm junction may use a nearside bus lane if ahead
traffic can use lane 2.

Similar rules apply to offside bus lanes but in reverse.

At the moment the model does not fully consider the “continuity” of nearside and
offside bus lanes in allocating buses to bus lanes. Thus buses on a nearside bus
lane on link AB may transfer seamlessly to an offside bus lane on link BC and
back again to a nearside lane on CD. Furthermore it is not, for example, possible
to restrict bus lanes to certain “companies” or to require that only trams may use
offside lanes.

N.B. The above rules were only added in release 11.1. Prior to that all bus
flows were assigned to a bus lane if one were available.

15.39.2 Delays in Bus Lanes

Note that a bus lane in SATURN is assumed to go from the upstream “entry line”
to the downstream “stop line”; set-back bus lanes are therefore excluded. In
addition buses in bus lanes form separate queues and therefore have different

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-91
Section 15

delays from “normal” traffic making the same turning movement. In effect we
assume that the exclusive lane continues through the junction to the next link’s
entry line - where it may, of course, meet up with a further bus lane.

More specifically the delay to a turn from a bus lane is equated to the minimum
delay associated with normal turning traffic; i.e. t0 in equation (8.5a). Moreover
this delay is fixed, independent of the volume of traffic in the bus lane. Travel
time/speed along the link itself equals the cruise time for normal traffic and the
same link distance is assumed.

Clearly this model is only an approximation which will hopefully be improved with
later versions of SATURN. It does however include the two most salient features
of such bus lanes; i.e. that buses should incur lower queues and delays than other
traffic and, perhaps more importantly, that buses in an exclusive lane do not
reduce the capacity of other traffic on the same link.

15.39.3 Exits/Entries from Bus Lanes

At the start of a bus lane the bus traffic effectively leaves at the upstream end so
that: (a) its flow is an integral part of the previous turn (unless of course this is the
start of the route); and (b) its flow is not included as part of the normal flow on the
link. At the termination of a bus lane the buses rejoin normal traffic upstream on
the following link so that (a) it is not part of the final turn flow but (b) is part of the
next link flow.

In some respects bus lanes may be thought of as “tunnels” in that, as far as the
rest of the traffic on the network are concerned, buses “disappear” at the
upstream start of a sequence of bus-lane links and only “reappear” at the
upstream end of the first non bus-lane link.

Information on flows to, on and from bus lanes may be obtained via SATDB
(11.10.6) with up to 15 levels of flow definition available. In addition a table in the
.lpn file output by SATNET lists similar information on all links with bus lanes.

15.40 Motorway Weaving Segments

15.40.1 Introduction

Weaving segments on motorways correspond to the situation depicted in the
diagram below (Figure 15.4) whereby an entrance ramp onto a motorway is
followed by an exit ramp downstream such that traffic entering the motorway and
staying on it (Flow 2) will need to “weave” with traffic which is already on the
motorway but wishes to take the next exit (Flow 3). This will lead to a reduction in
the capacity of the middle segment of the motorway if the fraction of traffic which
weaves is high and/or the distance between entry and exit is relatively short.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-92
Section 15

Figure 15.4 - Fig 2/7 from DMRB Vol. 6, Sect 2, part 1

In these situations SATURN uses formulae derived from DMRB (Design Manual
for Roads and Bridges) recommendations to reduce the saturation flow (and
hence the capacity) of the link (or links) comprising the intermediate segment.

N.B. The treatment below only applies to links coded as part of the simulation
network, not buffer. In addition it need not apply only to “motorways” (SATURN
normally does not know whether a link is motorway or not), although in practice
the required geometry of entries and exits is most likely to occur with motorways.

In addition it may not be used if the assignment is based on either path-based
assignment, OBA or multi-core. In principle it could but it hasn’t been coded;
requests to DVV.

15.40.2 Basic Background Theory

Paragraph 2.26 in DMRB Volume 6 Section 2 Part 1 TD 22/92 gives a formula for
the number of traffic lanes required for weaving:

Equation 15.3

min
1 2

1 2 1r nw w w
act

LN Q Q Q
D L
   = + + +  
   

Where:

Nr = Number of traffic lanes required

Qnw = Total non-weaving flow in vph

Qw1 = Major weaving flow in vph

Qw2 = Minor weaving flow in vph

D = Maximum mainline flow in vph per lane, refered to as S below.

Lmin = Desirable minimum weaving length

Lact = Actual weaving length available (in metres) (referred to simply as L from
now on)

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-93
Section 15

 (where Lact is assumed to be greater than Lmin and, if not, take Lmin = Lact such
that the factor within the bracket multiplying Qw2 = 3.)

In SATURN we need to “invert” this equation since the actual number of lanes
provided Na is already specified by the SATURN input along with its “natural”
saturation flow (which determines capacity) and what we need to know is how
much the saturation flow/capacity is reduced by the effect of weaving.

Thus we begin by factoring all the flows Q in Equation 15.2 by a uniform factor F
such that the required number of lanes given by Equation 15.2 equals the number
of actual lanes Na (i.e., F.Q… are the flows at capacity) :

Equation 15.4

()1 2nw w f w aF Q Q X Q N S+ + =
Where:

F = required factor

S = the saturation flow per lane as input by the user and ignoring any effect of
weaving (replacing D in Equation 15.2)

Xf = the extra weight associated with the minor weaving flow (= 2Lmin/Lact + 1)

Furthermore at capacity the total unweighted flow should also equal the actual
number of lanes times the effective saturation flow Se:

Equation 15.5

()1 2nw w w a eF Q Q Q N S+ + =

Let 1 2w nw w f wQ Q Q X Q= + +

Hence from Equation 15.3

Equation 15.6

a
w

SF N
Q

=

Subtracting Equation 15.4 from Equation 15.3 gives:

Equation 15.7

() ()2 1w f a eQ F X N S S− = −

whence:

Equation 15.8

()2 1w f
e

a

Q F X
S S

N
−

= −

and substituting F from Equation 15.5 into Equation 15.7 gives

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-94
Section 15

Equation 15.9

()2 1
1 w f

e
w

Q X
S S

Q

 − = − 
  

Hence the saturation flow is reduced by a factor W:

Equation 15.10

()2 1
1.0 w fe

w

Q XSW
S Q

−
= = −

which may be more simply and intuitively written as:

w

QW
Q

=

where Q = Qnw + Qw1 + Qw2.

Note that in the “worst possible case” when Xf takes its maximum value of 3.0 and
Qnw = 0, Qw1 = Qw2 then the reduction factor W = 0.5 which might be thought a bit
extreme. Various alternative formulations have been proposed as discussed next.

15.40.3 Extensions and Alternatives to the Basic Theory

A further “feature” of the above model not mentioned above is that the reduction
factor is assumed not to apply for weaving lengths in excess of some value Lmax
(typically 3 km.) This will introduce a discontinuity into the multiplier of Qw2, Xf, in
that it jumps from a value of (2Lmax/Lmin – 1) > 1 at L = Lmax to 1.0 at L>=Lmax.
Recall that the maximum value of Xf is 3.0 at L <= Lmin.

Two alternatives have been suggested (in addition to retaining the discontinuity):

(i) Reducing Xf by a constant amount throughout such that it goes smoothly to
Xf(Lmax) = 1.0 and is 1.0 beyond.

(ii) Assume that Xf(L) is a linear function between L = Lmin and Lmax going from
3.0 down to 1.0.

More specifically under assumption i) we introduce a correction factor equal to the
“normal” value of Xf at L = Lmax less its desired value of 1.0:

Equation 15.11

min

max

2.0 LC
L

=

Hence the full formula for Xf (L)is:

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-95
Section 15

Equation 15.12

()

min
min

max

min min
min max

max

max

3.0 2.0

1.0 2.0

1.0

f

L L L
L

L LX L L L L
L L

L L

 − <

  = + − < <  

 
 >



Method ii) may be written:

Equation 15.13

() ()
()

min

max
min max

min max

max

3.0

1.0 2.0

1.0

f

L L
L L

X L L L L
L L

L L

<


−= + < < −
 >

Having established Xf (by whatever method) an alternative method for establishing
the capacity reduction factor W is to use the formula (as proposed by Philip
Barrett of HKBR):

Equation 15.14

()2 1
1.0 / 1.0 w f

w

Q X
W

Q

 −
 = +
 
 

Which, to a first approximation, is the same as Equation 15.9 for small corrections
but is less severe as the effect increases, e.g., as Qw2 increases. Thus, whereas
Equation 15.9 gives a maximum reduction (minimum W) of 0.5 Equation 15.13
gives 2/3 under the same conditions.

A final extra “rule” is to set a minimum value on the capacity reducing effect of
weaving traffic by requiring that, say:

Equation 15.15

min 0.75W W≥ =

Which, or which combination, of the above approaches is preferable is very much
in the eye of the user. There is very little empirical evidence to say that this
equation is “right” and that is “wrong” - what SATURN is doing is providing a set of
approaches which have been proposed (by experienced modellers!) and let the
user decide. And if the user has an alternative approach it should not be too
difficult to include alternative formulae within the programs.

15.40.4 Application within SATURN

To apply capacity reductions due to weaving within SATURN users must (a) set
various parameter values as used in the above equations (strictly speaking

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-96
Section 15

optional as default values are provided), and (b) identify those links where
weaving occurs.

15.40.4.1 Network Coding: the W link marker

We note first that a weaving section may consist of either a single link as
illustrated in Figure 15.4 connecting the node with the “on ramp” to the node with
the “off ramp” or (less frequently) a series of (essentially one way) links
connecting the “on” and “off” nodes as illustrated in Figure 15.5.

Link identification is accomplished by coding a W within the 4 columns of the
simulation link record normally used to specify the number of lanes, i.e., columns
12 to 15 (see Sections 6.4.1 and 6.4.9.4). Thus 3W or W3 would both denote a 3-
lane link where weaving takes place.

Note that the link where the W is added is the middle link in the weaving section
(provided that there is only one intermediate link) and that nothing needs to be
added on either the links which enter the weaving segment or that exit (e.g., entry
and exit ramps). On the other hand if there are multiple intermediate links as in
Fig. 15.3 then a W must be added for all those links, otherwise a non-fatal error
results and the weaving movement is ignored.

15.40.4.2 Network Geometry

In either case a number of geometrical conditions need to be satisfied.

Figure 15.5 - A weaving section with intermediate links

Thus the “on” or “upstream” node will (normally) be a 3-arm priority junction with 2
one-way in-bound links feeding a single one-way out-bound link; i.e., in-bound
motorway and in-bound ramp feeding the out-bound motorway. In more precise
geometric terms there must be only one permitted turn from the entry ramp link -
the first geometrically possible turn - and only one permitted turn from the
“motorway” - the second geometrically possible turn - so that both have the same
exit arm. Thus one cannot have an exit from the motorway onto the ramp arm -
entry and exit ramps must therefore be defined at distinct nodes.

Equally the “off” or “downstream” node will also be a 3-arm priority junction with
one one-way in-bound arm feeding two outbound one-way arms. The entry
(motorway) arm must have both its two possible turns defined - the first to the off
ramp, the second continuing along the motorway and the off ramp link must be
one-way out-bound.

In practice both the on and off nodes will be 3-arm priority nodes as described
above. However, strictly speaking, the nodes may have more than 3 arms as long
as the extra arms and turns do not interfere with the required geometry. For

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-97
Section 15

example the nodes could include both the entry and exit ramps on either side of a
motorway with the two motorway arms being two-way but the turns on one side of
the motorway could not cross those on the other side. In general such coding is
not recommended, particularly if weaving is being modelled: each direction of the
motorway should contain distinct nodes and links.

If there are one or more intermediate nodes such as nodes 11 and 19 in Figure
15.5, then each should be essentially a two-arm priority with a single one-way exit
feeding a single one-way exit. (Such nodes might be added in order to provide
“shape” to the network although, it should be noted, the “shape” may also be
obtained via a GIS file; see 5.7).

15.40.4.3 Assignment Calculations

The methods by which the required entry exit flows are monitored with an
assignment differ depending on whether not Network Aggregation (15.56) is
invoked or not (SPIDER = T or F).

Thus, if Network Aggregation is not invoked (SPIDER = F), the 4 demand entry-
exit flows which make up the weaving segment (two possible entries and two
possible exits) are continually monitored while the assignment is taking place and,
at the end of the assignment and prior to the next simulation, that information is
used to calculate the reduction factor as described above. (Strictly speaking only a
single flow is monitored since the other 3 flows may all be obtained knowing the
total demand flows on the entry/exit arms.)

On the other hand, if SPIDER = T and if all the nodes within the weaving segment
(e.g., nodes 10 to 20 inclusive in Fig. 15.5) are aggregated then all the possible
weaving movements 1-3, 1-4, 2-3 and 2-4 will either be distinct aggregated links
or part of larger aggregated links. In either case the necessary flows may all be
taken directly from aggregated link flows and no extra steps are required during
the assignment itself. The method is therefore much more efficient and
significantly faster in terms of CPU.

For additional discussion on aggregated networks see 15.56.7.4.

15.40.4.4 Simulation Capacities

Within the simulation the reduction factor is applied to the saturation flows for all
turns out of the “motorway” links coded as W. Thus, in Figure 15.5, it would be
applied to turns 10-11-19, 11-19-20, 19-20-3 and 19-20-4. It would not, however,
be applied to the turns corresponding to entry into the first weaving link (i.e., turns
2-10-11 and 1-10-11 in Figure 15.5)

The factor is, in effect, applied immediately after the saturation flows are set and
at the same time as the blocking back factor is applied; i.e., step (2) in Section
8.2.1. Note that the reduction factor is equally applied to all turns at intermediate
nodes (if any) between the entry and exit nodes.

Note that the weaving reduction is applied in addition to any other capacity-
reducing effects such as give-ways or blocking back.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-98
Section 15

15.40.4.5 Simulation Delays

Weaving does not, of necessity, add extra delays to traffic although there are
three ways in which extra simulation delays may result.

 Firstly, if a link becomes over capacity due to weaving then queuing delays will be
imposed.

Secondly, if the weaving links are subject to link-capacity restraint functions (see
6.4.12) then the “link” or “pinch-point” capacity used in equation (6.2) is also
reduced in accordance with Equation 15.9 above leading to (in effect) a reduction
in cruise speed for a given flow.

Finally, if a Q-marker has been used on an intermediate link (see App. Q), then
the capacity used to calculate the V/C ratio in equation (Q.1) is taken after the
weaving factor W has been applied to the saturation flow, thus potentially
increasing the delay.

If none of the above three conditions occurs then introducing a weave marker will
have virtually no impact on travel times and hence on assignment. Link capacity-
restraint speed-flow curves are therefore highly recommended in conjunction with
weave markers.

15.40.5 SATURN Namelist Parameters

The following parameters may all be defined within the &PARAM namelist
parameters within a network .dat file (Section 6.3) to control the various options
within weaving calculations:

♦ WLMIN - Minimum length for weaving in metres - Lmin in Equation 15.2

♦ WLMAX - Maximum length for weaving in metres - Lmax in Equation 15.2

♦ PHILIP - If .TRUE. use Phil’s formula (Equation 15.13)

♦ STUART - If .True. use Stuart’s formula (Equation 15.11); else use (Equation
15.12)

Note that the first two parameters are “reals” while the latter two are “logicals”. The
default values are, respectively, 300 metres, 2000 metres, False and True. Thus if
the weaving section were 300 metres or less the maximum reduction would be
applied to saturation flows; if it were more than 2000 metres than no reduction
would apply.

15.40.6 Restrictions

The weaving calculations may not yet be applied to all possible situations within
SATURN. Thus it will not work with stochastic assignment (SUZIE = T). It should,
however, still function with, e.g., elastic assignment or multiple user classes (I
Think!).

15.40.7 Link Weaving and W Turn Priority Markers

There are certain obvious parallels between the phenomenon of weaving on a link
as described above and of “weaving at a node” as described in 6.4.2.5 and based

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-99
Section 15

on the use of W turn priority markers. In both cases 4 sets of individual flows
come together and, depending on the level of “crossing over”, reductions in
capacity and increased delays may result.

The precise mechanisms by which these effects are modelled within SATURN are
different however. Thus W priority markers are modelled essentially as a form of
give ways at a single junction controlled by parameters such as GAP whereas the
link weaves use quite formulae and quite different parameters and apply over
more than one coded node.

Link weaving may be seen as weaving “over a distance” whereas W priority
markers represent weaving “at a point” - effectively therefore over much shorter
distances. The choice of one form over the other should therefore be partly
governed by the distance over which weaving is felt to take place.

15.40.8 Display of Link Weaving Data (E.g., P1X)

Each link which has been coded with a W is assigned a numerical “marker” which
indicates, inter alia, its position in the sequence. Thus a value of 1 indicates that
the link is the first link beyond the entry ramp in a sequence of more than 1 links
(e,g,, 10-15 in Figure 15-3), 4 indicates it is the final link before the exit ramp (16-
20 in 15-3), 5 that it is the only link in the sequence (i.e., both entry and exit) while
2 indicates an intermediate link in a sequence of multiple links (e.g., 15-16).

The markers may be displayed as link annotation data via P1X (under
“Properties”) or otherwise accessed as a data base item within SATDB.

In addition the .lpt files output by SATALL print a list of all links where weaving
factors have been applied at each assignment-simulation loop with the current
values of all relevant data such as Qnw, Xf, etc. The factors may also be displayed
in the numerical node information menu in SATLOOK (post 10.6).

15.41 SATTUBA

15.41.1 Objectives

SATTUBA is a procedure embedded within SATLOOK which enables a set of
skimmed cost matrix files to be calculated from a .ufs network file and output in a
text format which is compatible with the economic appraisal program TUBA.

More specifically TUBA requires as input a set of matrices giving for each O-D
pair:

♦ passenger or vehicle trips;

♦ distance;

♦ time; and

♦ (monetary) charges.

These matrices may be further disaggregated by, e.g., user class, time period, trip
purpose etc.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-100
Section 15

Distance, time and/or charge matrices all need to be path-weighted averages, i.e.,
the travel time averaged over the paths used by each O-D pair as opposed to
being, say, the time component along a single minimum generalised cost path or
even the time along the minimum time path. In SATURN terminology TUBA
requires skimmed matrices as opposed to cost matrices; see Section 15.27.4.
Hence SATTUBA requires that the network is set up with SAVEIT = T and the
skims are based on forests, not trees.

We note that, as explained in 15.23.2 and 15.27.5, the forest path flows generated
by SAVEIT are not necessarily exactly equal to the path flows generated during
the “true” assignment. Thus quantities such as total pcu-hours, pcu-kms etc.
calculated using the skimmed and demand trip matrices – which is, effectively,
what TUBA seeks to do – are only approximations. See 15.23.2 for a discussion
of how these approximations may be improved.

We further note that, quite apart from numerical uncertainties arising from the
method of calculation and/or convergence, there are further theoretical problems
in that, in principle, Wardrop Equilibrium does not yield unique values of O-D time,
distance or toll. On the other hand it does yield unique values of OD generalised
cost. See below and sections 7.1.6, 7.8.6 and 15.23.8 for further discussion.

In a wider context it also has to be remembered that the “accuracy” of a skimmed
matrix is also affected by the overall convergence of the full model run, not just the
SAVEIT accuracy. Counter-intuitive results from economic evaluation techniques
such as TUBA or COBA may be simply a consequence of poor convergence in
either or both the do-nothing and do-something model runs.

Note that the trip matrix necessary as an input to TUBA may be “dumped” from
MX using the standard option to dump a matrix as comma-separated (CSV)
output; see 10.15.

N.B. The problem noted above with respect to the uniqueness of the sub-
components of generalised cost (i.e., time, distance etc.) is potentially a problem
for all economic evaluation procedures. There is therefore a very strong case for
basing economic evaluation on the generalised cost as used in the traffic
assignment model which has the advantage of being uniquely determined
(although there are still problems of convergence accuracy) as opposed to relying
on sub-components such as O-D time and distance which are not unique.

15.41.2 Single User Class Networks

The required matrices for a network with a single user class may be produced by
a specific bat file sattuba.bat which is run by a command such as:

sattuba net

which takes as input a network file net.ufs and outputs (up to) 3 matrices in text
format:

net_d.txt

net_t.txt

net_m.txt

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-101
Section 15

net_p.txt

where the first matrix contains distances, the second contains times, the third
contains toll charges (if any exist) and the fourth contains penalties (if any exist).

Units are the defaults as specified by TUBA: distance is in kilometres, time and
penalties are in hours and tolls are in pence. The format used is TUBA “Format 1”
- see Appendix C of the TUBA User Manual for more details. (Essentially this
outputs all O-D cells, one record per origin, in comma-separated format. If
required options to input under formats 2 or 3 could be provided.)

15.41.3 Multiple User Class Networks

If the network has multiple user classes (NOMADS > 1) then separate TUBA data
files will probably need to be produced for each individual user class. Thus:

Sattuba net UC 2

processes data for user class 2 from the MUC network file net.ufs to produce:

Net.uc2_d.txt, net.uc2_t.txt, etc. etc.

Equally
Sattuba net UC *

processes data for all user classes. See 15.41.4.2.

15.41.4 Options within SATTUBA

We describe here three alternative options within SATTUBA: the use of a control
file, the use of distinct user classes and alternative output matrix file formats.

15.41.4.1 The ‘Control File’

The precise format of the output .txt files may be modified by a number of
parameters and/or options contained as Namelist parameters in the SATLOOK
preferences file satlook0.dat (11.17.2). Alternatively, a different preferences or
“control file” may be defined on the command line by, e.g.:

Sattuba net KR control

in which case the file control.dat defines the parameters.

The following namelist variables may be used:

♦ EFORM (Logical): If .TRUE. the data is output using E-Formats; Default F.

♦ NDPS (Integer): Number of decimal places printed (subject to certain
minima); Default 4.

♦ USETP (Logical): If .TRUE. 44444 time penalties are included within the
skimmed times (See 15.24.4); Default T

♦ CLICKY (Logical): If .TRUE. skimmed times by user class include any
possible extra times due to CLICKS (See 15.24.4); Default T.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-102
Section 15

♦ XCCSK (Logical) – If .TRUE. times and distances on all centroid connectors
(effectively only buffer centroids since simulation centroids have zero time
and distance by definition) are excluded from the skims by setting them to
zero. However any tolls on centroid connectors are included as set. See
15.41.5 below.

15.41.4.2 Distinct User Classes

SATTUBA may be used to output files for individual user classes using
commands of the form:

SATTUBA network UC n

which will output matrices of the form network.ucn_t.txt, etc. etc.

If “UC *” is used in the command line then the output matrices represent all the
possible user classes with matrices of the form network.uc1_t.txt,
network.uc2_t.txt, etc. etc.

15.41.4.3 Alternative Matrix Formats

By default SATTUBA outputs matrices using TUBA format 1 (CSV); alternatively
SATTUBA0 outputs its matrices as SATURN .ufm files whereas SATTUBA3
outputs them in TUBA Format 3. Otherwise the formats, filenames etc. are the
same as under SATTUBA.

The number of decimal places used in text output formats, e.g., CSV files, may be
user-set via a parameter NDPS in the “standard” SATLOOK preferences file
satlook0.dat or via user-set file; see 15.41.4. The current default is 4.

Note that there is no SATTUBA2 procedure since TUBA Format 2 does not make
much sense in this context. Equally there is no SATTUBA1 since that is what
SATTUBA does.

15.41.5 O-D Speeds in TUBA: XCCSK

We note that TUBA uses the O-D time and distance matrices produced by
SATTUBA to construct its own internal matrices of average O-D speed which in
turn it uses to estimate fuel consumption and vehicle operating costs. Problems
may arise if either the time or distance matrices contain “artificial” elements or
have certain components missing leading to unrealistic speeds.

Thus, if buffer centroid connectors have been created with either a distance and
no time or a time and no distance then the summed O-D times and/or distances
may lead to very high or very low speeds. The most frequent (inadvertent) cause
of this is when SHANDY = T and CROWCC = T (see 15.10.3), in which case a
buffer centroid connector which is defined in the network .dat file with both time
and distance fields blank will have its distance set equal to the crow-fly distance
but no equivalent time.

One solution is to set CROWCC = F (as recommended and, post 10.9, the
default), in which case the distances will not be added in the original network file.

 An alternative is to use the parameter XCCSK (eXclude CC in SKims) within the
SATTUBA control file (see 15.41.4 above) to effectively set the time and distances

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-103
Section 15

for all centroid connectors equal to zero, in which case they make no contribution
to O-D skims which are therefore based entirely on “real” network components
only. XCCSK is new in release 10.9 but is “retrospective” in the sense that 10.9
SATTUBA may be applied to .ufs files created prior to 10.9.

Note that XCCSK applies only to skims of time and distances, not to skims of,
e.g., tolls or generalised costs and that it is also used more widely within time
and/or distance skims; see, e.g., SKIMTIME and SKIMDIST in 15.27.7. Its default
(F) is set within the preferences file SATLOOK0.DAT.

A further example occurs when two zones both have centroid connectors feeding
in/out of the same simulation node, in which case the obvious path consists of an
entry connector to the stop-line at the node, a single turn at the junction followed
immediately by an exit connector. In this case the O-D pair will have positive time
from the turn but zero total distance (since both turns and simulation centroid
connectors have zero distance by definition). In this case there are fewer simple
remedies within SATURN.

N.B. SATTUBA is still very much “work in progress” and not all the final essential
options have been added. We therefore welcome feedback from users.

15.42 SATCOBA

SATCOBA is a procedure embedded within SATDB which enables a sub-network
of links to be defined which is compatible with that required by the economic
assessment program COBA and, in addition, to output a text file which specifies
the network and includes flow data and selected link data as required by COBA in
the formats required by COBA.

Alternatively a sub-set of links as would be used by COBA (see paragraph 1 in
15.42.1) may be selected within SATDB, after which the user is free to output
whatever data they wish in whichever format they wish (as opposed to SATCOBA
which outputs fixed data in fixed formats).

15.42.1 General Functionality

COBA requires that the network be defined in such a way that: (a) there are no
centroid connectors, only “real” links, and (b) all links are “bi-directional”; i.e., if a
link (A,B) is included it represents both the link from A to B and that from B to A
(or, in the case of a one-way link, only the direction that exists). Thus the first job
carried out by SATCOBA is to define an appropriate sub-network. Note that within
this sub-network node names are those used by SATURN but each link is given a
unique number which equals its normal link number in the SATURN assignment
network (so there will be gaps in the numbers). An alternative system of user-set
link numbers is described in 15.42.3.

Secondly SATCOBA then calculates the total flow per COBA link with the flow for
a 2-way link being the sum of its two directional flows. Furthermore, since COBA
wants flows over, say, 24 hours (or 12, etc. etc.), the flows are factored by a user-
set parameter COBAF which is defined under &PARAM in the original network
.dat file (default 1.0) and/or within the SATCOBA control file (see 15.42.2) via
COBAF1, COBAF2 etc.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-104
Section 15

By default the flows output are total flows and therefore include all fixed flow etc.
contributions, although there are alternative options (MUC and MVC) by which
flows by individual user or vehicle classes may be output (see 15.42.2 below). In
addition the units may be either pcu/hr or vph.

In addition, since COBA flows would normally be the weighted sum of flows from,
say, an AM, off-peak and PM network SATCOBA accepts as input one or more
“networks” (i.e., time periods) and outputs a single flow which is the weighted sum
of each individual network flow. (It is assumed that all networks have the same
“topology”.) Alternatively, if the parameter SUMNET = F (15.42.2), each network
flow is output separately

Next SATCOBA generates a (partial) data set which contains certain fixed data
such as the link distances. The full COBA input file requires further information
such as lit/unlit which is not available from within a SATURN network file on its
own.

Finally SATCOBA generates a set of turning proportions at each (internal)
simulation junction (the “turning matrix” in COBA terminology) with a directionality
flow factor for 2-way roads.

Thus the output from SATCOBA is a text file (extension .cba) which contains four
sections:

♦ a network definition section (COBA KEY 042)

♦ network flows (KEY 056)

♦ network fixed data (KEY 060)

♦ the “turning matrix” at each junction (KEY 082)

all in a format specified by COBA and which we need not specify in detail here.

To run SATCOBA (which can effectively only be run via its bat file) type:
SATCOBA net1 net2 net3 ... KR control

where net1.ufs, net2.ufs, net3.ufs ... are the output files from different time periods
whose (factored) flows are to be (optionally) added together. The output (text) file
would be net1.cba.

A control file, control.dat, which sets/over-writes various parameters may be
optionally defined via the bat file. If none is defined a “null” default file,
satcoba0.dat, is used which basically accepts all program defaults. See 15.42.2

Like SATTUBA, SATCOBA is very much “work in progress” - comments on a
postcard please to DVV.

15.42.2 The SATCOBA Control File

The control file consists of a standard set of namelist parameters headed by
&PARAM and terminated by &END. The default file satcoba0.dat sets all defaults.
The following parameters may be set:

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-105
Section 15

Table 15.1 – SATCOBA Namelist Parameters
OPTION TYPE DEFAULT INTERPRETATION

NAMES Logical T If T use standard node names in the output file ;
if F use map-based sequential numbers 15.42.6

DEMAND Logical T If T use demand flows ; if Fuse actual flows

SUMNET Logical F If T add the link flows from each input network
and output their sum ; if F output individual flows

MIDLF Logical F If T define simulation link flows mid-link, not
downstream

MILES Logical F If T output link distances in miles ; else
kilometres

MAJORM Logical F If T the “turning matrix” for all priority junctions is
output in the order of a major arm first followed
by a minor arm

MUC Logical F If T flows are output separately for up to 3 user
classes, all from network 1, in the KEY056
records

MVC Logical F If T flows are output for up to 3 vehicle classes
from network 1 in the KEY056 records

PCUS Logical T If T user/vehicle class flows are output in units of
pcu/hr; if F they are converted into veh/hr. N.B.
This does not apply to total flows, only
disaggregate flows.

COBAF1 Real 1.0 Factor to be applied to the flows on input
network….

COBAF2 Real 1.0 ….ditto network 2 up to COBAF4

KNOB Integer 0 The SATNET KNOB field used to define COBA
link numbers ; see 15.42.3

FILKNB Character Blank The input file used to define COBA link numbers ;
see 15.42.3

FILNOD Character Blank The input file used to define node numbers; see
15.42.6

Notes:

1) NAMES will default to F, i.e., sequential numbers, if the standard SATURN
node names exceed 4 digits since 4 digits is the maximum permitted within
COBA format

2) MUC = T will only work if (a) only one network is being processed and (b) if
the number of user classes is less than or equal to 3 in that network. If not, it
is automatically replaced by F. Note that the limit of 3 is due to a limit imposed
by COBA in its KEY056 record formats.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-106
Section 15

3) Similarly MVC = T will only work if (a) only one network is being processed
and (b) if the number of vehicle classes is less than or equal to 3. Vehicle
class flows are obtained by summing over their constituent user class flows.
(Clearly both MUC and MVC cannot be T at the same time.)

4) Post 10.9 user and/or vehicle class flows may be output as either PCU/hr or
vph depending on whether parameter PCUS = T or F.

15.42.3 Defining COBA Link Numbers using KNOBS data

The default link numbering system used by SATURN to define link numbers in the
created coba-formatted network is, as mentioned above (15.42.1), to use the
(essentially arbitrary) numbering system used within SATURN assignment
networks. However it is also possible for the user to define their own set of link
numbers using the “KNOBS” input facility to SATNET; see 15.14. This option is
controlled by the namelist parameter KNOB in the satcoba control file (15.42.2).

Thus, if KNOB = 1, then the link numbers are those defined within KNOBS field 1,
etc., etc. If the input KNOBS value for a particular link is 0 then that link is not
included in the newly created satcoba network; this facility therefore allows the
user to “select” those links which are to be included in the coba files via KNOBS
data.

The KNOBS data is, by default, that input via SATNET into the network .ufs files
but it may also be input directly into SATCOBA via the namelist parameter
FILKNB (15.42.2) which defines the name of an input file. Format conventions for
the file FILKNB are as per inputs to SATNET (15.14.5).

Note that KNOBS data are essentially input and stored as “real” data but when
used in this context they are rounded off to the nearest integer

15.42.4 Common COBA Link Numbers in Multiple Networks

One very useful application of using KNOBS data to define link numbers is that it
allows two (or more) networks (e.g., a do-minimum and a do-something) to use
the same definitions of link numbers. To do so the user must first create a “text”
data file for the “base” network which contains one record per COBA link
containing three integers: the link A-node, its B-node and the corresponding link
number used to define that link in the output .cba COBA file. We propose a
standard extension of .cln (Coba Link Number) for such files such that net.ufs
would produce a file net.cln.

To create a .cln file use SATDB and choose (starting in the Master Menu):

6 – Miscellaneous Data Input

12 – COBA Network Link Numbers

13 – Dump the Full Data Base to an ASCII File (Master Menu)

and create the file with extension .cln. (A batch file to do the job automatically
could be created if desired – requests/bribes to DVV!)

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-107
Section 15

To use a file, say net_base.cln, within another network, net_ds.ufs, you must first
create a “control file” coba_ctl.dat which might contain:

&PARAM

KNOB = 1

KNBFIL = ‘net_base.cln’

&END

and then run SATCOBA via:
SATCOBA net_ds KR coba_ctl

The output COBA file net_ds.cba would then contain, inter alia, flows on all the
links contained in net_base.cln using the same link number conventions. Note
that links which are in net_ds but not in net_base.cln would not appear in the .cba
file. However they are listed in the output .lpd file in order to help the user decide
whether to include them somewhere else within the coba file. Equally links which
are in net_base.cln but not in net_ds would not appear in the output .cba file.
Thus the only function of the .cln file is to supply link numbers, not network
structure.

15.42.5 Viewing COBA Link Numbers

The link numbers used in the output COBA network may be displayed (Version
10.5 and onwards) via P1X and/or SATDB but only (at the moment) if they are
based on SATURN assignment link numbers as opposed to user-set KNOBS
data. Thus they appear as option 12 under the “Miscellaneous Data Input” sub-
menu from the SATDB top menu.

In addition the links used may be selected under Link Selection in SATDB. (Recall
that for 2-way links only one direction is “used”, in general A-B rather than B-A
where A has a lower node number than B.)

To display the user-set link numbers simply access the KNOBS data element
used, preferably with the links “selected” as above.

15.42.6 Alternative / Sequential COBA Node Numbers

While it is generally preferable to use the “standard” SATURN node numbering
system within COBA networks it is not always possible. In particular, COBA
requires that node number have a maximum of 4 digits so that, if your SATURN
network uses 5-digit numbers then they will have to be reduced/converted to a
system that uses a maximum of 4. (One might well ask why COBA isn’t upgraded
to accept 5-digit node numbers rather than SATURN having to resolve the
problem mais c’est la vie!)

There are two alternative node numbering systems that may be used within
SATCOBA to avoid 5-digit node numbers.

The first is based on the sequential node numbers as used internally by P1X to
create “map networks” whereby each sequential number refers either to a zone
(the first NCENTS entries) or a junction, whether buffer or simulation. Note that
map sequential numbers may be viewed within the SATDB node data base as

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-108
Section 15

accessed within P1X by selecting the appropriate entry from the list of node
attributes.

Sequential numbers are selected within SATCOBA by setting NAMES = F in the
control file (15.42.2) or, alternatively, it will be done automatically if the maximum
node number exceeds 9999.

The second system uses an explicit input file to convert SATURN node numbers
into a more compressed system – which could indeed be based on pure
sequential numbers as above but any arbitrary conversion system may be used.
To select this option (a) set NAMES = F as above but (b) define the conversion file
filename as FILNOD within the control file (15.42.2).

The conversion file consists of a series of records, one per “real” node (i.e., zones
are not included as they do not appear in COBA outputs), each of which contains:
(a) a (real) node name (which may exceed 5 digits) and (b) its equivalent output
number (4 digits or less). All COBA node number outputs are automatically
converted to the new system.

The main advantage of the second system is that it may applied to any number of
different networks, for example a do-minimum and a do-something network, which
have (some) different node numbers and therefore different sequential numbers.
In particular a new option in P1X (see 11.4.2) allows for a file to be created
containing the names and sequential number based on a “union” of all nodes.

If your network has more than 9999 sequential map numbers it cannot be used by
COBA in its current form and you’re in deep doodah! Try a cordon maybe?

15.43 Bitmaps within SATURN

15.43.1 General Principles

Bitmaps are used as inputs within SATURN to provide a background to network
plots within P1X; see 11.3.6. Thus instead of a blank (i.e., white) screen
background an image obtained from a .bmp file is used and the network plot is
over-written upon it. An example from the central area of York is shown below.
Note that in this case the “network window” as nominated by P1X is larger than
the area covered by the bitmap so that there is a blank surround to the bitmap.
Had the bitmap covered a wider region than the network window then the
appropriate region of the bitmap would have been selected and suitably
expanded. Thus a very useful property of the bitmap displays is that they “move”
with the network window.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-109
Section 15

Within this particular context bitmap files must be of either “.bmp” or “pcx” format,
as opposed to, e.g., .jpg, .gif, etc.formats (although .jpg is allowed as output; see
11.3.6). However other graphical formats may almost certainly be converted into a
.bmp format by making use of standard software such as Paint.

Where or how the bitmap file is obtained is not strictly relevant; it might be
downloaded from, e.g., OS sources, scanned from a road map, dumped from a
GIS software package or even output from a different run of P1X for a different
network. The important thing is that it be in .bmp format and, equally important,
that the “area” which it covers be identifiable.

Thus in order for P1X to draw a bitmap background within the windowed area
covered by a network plot it is necessary to know (a) the precise area covered by
the network window and (b) the full area covered by the .bmp file, in effect the co-
ordinates of its 4 corners, so that the degree of overlap between the two may be
ascertained. This may not sound too difficult, indeed most of the time it isn’t; the
tricky thing is being able to obtain the co-ordinates of the bitmap and of the
network within the same reference system. (Note that it is the network “window”
which “controls” the region plotted and that the bitmap must be manipulated to fit
onto the area chosen by the P1X network window rather than the other way
around.)

Thus for every .bmp file used by P1X, say picture.bmp, it is necessary to set up a
further (very small) file, named picture.xyb, which specifies the 4 corners of
“picture” using the same coordinate system as that used by the network (i.e., the
co-ordinates as used within the 55555 network data section and independent of
XYUNIT (6.8)). .xyb files consist of a single record containing 4 (real) values in the
following order:

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-110
Section 15

♦ XMIN - the east-west co-ordinate of the lower left-hand corner;

♦ XMAX - ditto for the upper right corner;

♦ YMIN - the north-south co-ordinate of the lower left-hand corner;

♦ YMAX - ditto for the upper right corner.

Optionally, a second record may be included which contains the “intensity scaling
factor” to be applied for that particular bmp image; see 15.43.6.

Note that the “units” of XMIN etc. should be the same as the units of the node X,Y
co-ordinates as defined under the 55555 records in the original network .dat file
(see 6.8). Thus if XYUNIT = 10.0 so that the co-ordinates are defined to the
nearest 10 metres then XMIN etc. should also be the nearest 10 metres.
However, as noted in 15.43.2, we strongly recommend that all co-ordinates are
defined in units of metres to minimise confusion,

The .xyb file may be most conveniently set up the user assuming that the
information is known in advance through knowing the source of the image.

Alternatively, if a bitmap is input into P1X without a corresponding .xyb file being
located, the user is offered the option to “calibrate” the .bmp file as detailed in
15.43.3.

15.43.2 Co-ordinate Systems

Once again, the importance of having a common system of co-ordinates for both
the network and the .bmp files cannot be over-emphasised. The simplest method
is to base both upon some standard system such as, in the UK context, the
Ordinance Survey (OS) co-ordinates with both east-west (X) and north-south (Y)
co-ordinates defined to the nearest metre. (Very often the “leading digits” as used
by the full OS system may be dropped; e.g., if all your X values begin with, say, 45
followed by 4 digits then it is easier to drop all the 45’s and stick to the final 4
digits.)

Note that defining co-ordinates as metres implies that XYUNIT should be set to
1.0 (its default). And we strongly recommend that such a system be adopted
throughout.

This means that networks which, for one reason or another, have been defined
from their “birth” using OS-based co-ordinates will find it much simpler to use .bmp
files than networks which are based on a more arbitrary set of co-ordinates. In the
latter situations it is probably far easier in the short term to convert .xyb co-
ordinates to the arbitrary system (see 15.43.3 below) rather than trying to convert
the original X,Y co-ordinates. However, on the other hand, there are considerable
longer-term benefits, e.g., being able to interface with various GIS-based data
sources, in using OS-based co-ordinates and it may therefore be a good idea to
“bite the bullet” and transform your arbitrary co-ordinates into OS NOW! For
further advice on how to do so please contact DVV.

15.43.3 “Calibrating” .bmp files

By “calibration” we refer to the process by which the four corners of a particular
.bmp file are established in terms of the co-ordinates used by the network. Ideally,

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-111
Section 15

as we have pointed out above, both should be based on the same system and the
coordinates of the four corners should be established a priori. However, in the
absence of such information, a procedure has been established within P1X to
obtain this information.

In order to carry out this procedure the user must be able to identify the (network-
based) co-ordinates of two points within the bitmap display. Ideally these two
points should be as far away from one another as possible and near one or the
other diagonals. Normally the points will correspond to nodes for which the
network co-ordinates are known, although in principle they could be any points
which can be easily identified in network terms.

Formally the bitmap is displayed with a thin red strip added along the edges and a
further red cross displayed in the centre. The user is asked, first, to move and
click the mouse over the red cross (in order to confirm the centre point in pixels)
and next to click on two points and input their X,Y network co-ordinates. The four
corner points may then be easily calculated via a simple linear transformation.

A practical problem which arises in the above procedure is that it is not possible
within P1X to simultaneously display both the bitmap and the network (prior to
calibration). We therefore recommend first viewing the bitmap (e.g., enter it within
PMAKE or use any other graphical system such as Paint) in order to identify the
two points(/nodes) to be used and then viewing the network in P1X and using the
X,Y monitoring option under Information to determine - write them down! - the two
sets of co-ordinates. Armed with this information you can return to P1X and the
bitmap display to complete the calibration. Both procedures may be carried out at
the same time by having two program windows open - or even two computers!

This process is probably most easily done by using PMAKE to select, view and
calibrate the .bmp file and then exit the program. Trying to do the same process
within P1X leads to problems of having both a bitmap and an (incompatible)
network both trying to define a network window.

Once calibrated a .xyb file is automatically created (so that picture.bmp spawns a
file picture.xyb) and which will from then on be opened at the same time as the
.bmp file is opened.

15.43.4 Outputting Bitmaps to Hard Copy Devices

Bitmap files may be included in output hard copy plots in the same way that they
appear on the screen but there may be certain restrictions.

Bitmap files are held by P1X in internal memory and the array thus used has
dimensions (2001 by 2002 by default but may be increased by request) which will
normally cover the pixel dimensions set by the screen resolution. However hard
copy devices may well have pixel resolutions which exceed the above limits by
considerable margins and therefore the program is unable to print “full”
background bitmap images to such devices. Currently only the “upper half” of the
bmp file is printed (so as to use as much as possible of the available memory); a
more permanent “fix” is currently being sought.

Note that a pre-10.6 problem whereby the network and the bmp file were printed
with slightly different scales (by 5%) has been corrected.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-112
Section 15

There is, however, no problem in dumping the current plot plus bitmap display to a
.bmp output file or the clipboard and subsequently outputting to a printer (but with
some loss of resolution).

15.43.5 Bitmap backgrounds within Node Graphics

In principle a bitmap image could equally well be used as the background to node
graphics displays. At the time of writing the necessary co-ordinate
transformations have not been worked out but it will happen soon!

15.43.6 Changing the Intensity of Bitmap displays

If the bitmap display is too “intense” it may make the over-printed P1X displays
difficult to see. This may be corrected by reducing the intensity of the background
by setting a “scaling” factor between 0 and 1 (set within Display/Background or via
the .xyb file, 15.43.1); the lower the factor, the “whiter” the bitmap. The default
scaling factor is 1.0 but may be changed globally via the namelist parameter
SCABMP in the P1X preferences file p1x0.dat.

This option may be particularly useful within PMAKE when a new network is being
traced on a bitmap image.

15.43.7 Maximum Bitmap File Sizes

The “size” of a bitmap file which can be read by P1X, i.e., the number of pixels in
both the horizontal and vertical dimensions, is limited to certain upper limits, e.g.,
2003 x 2004. This may create problems for users since it is quite easy to create
.bmp files with an almost infinite number of pixels depending on the geographical
size of the file (i.e., the number of square kilometres) and its resolution. Some
compromises may be necessary within SATURN.

For example, if the .bmp file covers an area of 1 km x 1 km with 2,000 pixels in
each dimension then one pixel (in the .bmp file) covers 0.5 metres which, for most
purposes should provide sufficient resolution, However, if the user “windows in” to
a 20 x 20 metre display in order to look at a single junction then each pixel in the
original .bmp file covers 0.5/20 equals 1/40-th of the screen and the image would
be very “chunky”. That problem could be avoided by creating (outside SATURN) a
.bmp which covered just the 20x20 area with the full resolution of 2,000 x 2,000
pixels. However, that would not be a very useful background for a window of 1 km
x 1 km.

It is, of course, possible within P1X to prepare several different input .bmp files
and to “swap them over” depending on the current window, but it is not highly
satisfactory.

Such problems could also be removed by increasing the maximum dimensions
which SATURN can handle, e.g., to go from 2001 x 2002 to 10,000 x 10,000 and
this can be done easily enough when compiling the program. However this may
create other problems in that a .bmp file of 10,000 x 10,000 pixels requires 6 x 108
bytes, i.e., 0.6 GigaBytes, within P1X which might, in combination with all the
other demands from P1X, exceed the RAM provided on most machines and
therefore slow down the overall execution speed dramatically. In addition, even if
there were sufficient internal RAM, the cpu time required to input and manipulate
very large .bmp files may still be excessive for most user requirements.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-113
Section 15

The size and resolution of .bmp files may be easily manipulated using standard
Windows graphics packages such as MS Paint or MS Picture Manager for
example.

15.44 Defining Extra Bus Travel Times (BUSSPK and BTKNOB)

The travel times associated with bus routes are normally calculated by summing
the standard link and/or turn times associated with other vehicles along the route.
However it is possible to “supplement” these times to represent the additional
effects of, e.g., bus dwell times at stops or bus speeds being slower than cars.

The extra time may be introduced using either:

(i) an additional time proportional to the total distance over the whole route,

(ii) explicit link by link extra travel times coded as “knobs”.

In both cases the additional travel times are calculated once and for all per route
when the network is built within SATNET and then recorded within the .uf* files.
This means, for example, that it is not possible to “view” the extra travel times per
link using the bus “joy ride” display within P1X. The extra times are reported both
within the individual route statistics and in the more aggregate statistics under
option 6 in SATLOOK (but not, N.B. in the total pcu-hrs etc. reported under either
options 4 or 5 in SATLOOK).

Under (i) the proportionality between extra (i.e., stop) time and distance in km is
set by the parameter BUSSPK (Bus Stop Seconds Per Kilometre) defined within
the &PARAM namelist records in the network .dat file. In the event of there being
more than one “bus company” BUSSPK may be subscripted so that, e.g.,
BUSSPK(3) = 0.04 would set the specific value for bus company 3.

Under (ii) link data must firstly be defined using the KNOBS facility (see 15.14 -
any of the 3 input methods may be used) and a proportionality factor
BTKNOB(b,k) set > 0 where b refers to a bus company and k to a KNOB data set
(1 ... KNOBS). The units of BTKNOB are assumed to be seconds per whatever
units that particular knob data field is in. Again BTKNOB may be defined within
the &PARAM namelist records (6.3.3).

Note that in using namelist input to set BTKNOB which is a 2-dimensional array
you may need to use the array based input, so that:

BTKNOB(3) = 0.3, 0.0, 4.0

would set the elements (3,1), (3,2) and (3,3) to 0.3, 0.0 and 4.0 respectively. See
note 17, Appendix A. (In fact BTKNOB is the only variable to which array-based
inputs may be applied.)

Both methods are fairly “aggregate”, even crude, in that they do not allow you to
define stopping times by links by bus route (unless you have one route per
company which is not very practical). However they are a start and all requests
for more will be listened to.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-114
Section 15

15.45 Representing Walk / Pedestrian Networks

Traditionally SATURN networks represent roads down which cars travel and their
travel speeds are vehicle speeds. However there is no hard and fast reason why
every “link” in a SATURN network should be a road link and it is quite possible to
“fool” SATURN into treating a link as though it were part of the road network while
clever old you give it characteristics more appropriate to a pedestrian than a car.

How such coding “tricks” are accomplished is of course up to the user. One
common method (assuming that the walk networks are superimposed on a
simulation network) is to code the walk links and nodes as part of the buffer
network with (low) fixed speeds/times, a flat flow-delay curve (power = 0) and,
effectively, infinite capacity (e.g., 99999). The walk links are then connected to the
simulation network via external simulation nodes. The origin/destination zones
to/from which trips exit/enter are then connected to walk nodes rather than
simulation links.

Thus an o-d trip with a destination which requires walking will be assigned a route
which starts at a “normal” zone and initially follows a set of “normal” (i.e., car) links
until it reaches the walk links through which it can reach its destination. At this
point, in effect, the car becomes a pedestrian although as far as SATURN is
concerned nothing has really changed - it is simply finding a route through a
network. The same principle works in reverse for trips which start as walk trips.

If, very naturally, the point of transition from car to walk is at a car park note that
tolls (and capacities) may be associated with the car park as described in Section
20.5.3.

Certain “presentational” problems may occur in P1X if, for obvious reasons, the
nodes in the walk network have the same (or very close) co-ordinates to “real”
junctions since there will be a high degree of overlap between the walk network
and the road network. This may be avoided by assigning a unique set of capacity
indices to the walk links (a good idea anyway) and then excluding those capacity
indices from the network link plots as described in 11.6.1.4 and/or note 4, 11.6.4.

15.46 DBDUMP & P1XDUMP: Dumping Link Data to Text Files

15.46.1 DBDUMP: Dumping Data via SATDB

A batch file dbdump.bat based on the program SATDB has been set up in order
to provide a simple method to dump selected link data from a binary .ufs file into
an ascii text file. For example, the command:

Dbdump net flows.txt 4503

dumps the demand flows (DA code 4503) from net.ufs into a file flows.txt following
the “rules” described in 11.10.9.

Various options described below are provided to control the precise “format” and
contents etc. of the output file.

Tokens on the command line may be divided into two types:

♦ DA codes for output data items

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-115
Section 15

♦ Options

DA codes are always given as numerical values; For a full list of the DA codes
within a .ufs file please consult Appendix J. Note, in particular, that codes such as
3808 to represent actual flow by user class 1 are also permitted (see 15.21.4).

Options are always represented by characters beginning with a $. They may be
further sub-divided into two groups, link types and format.

(i) Those that select the link types to be output

Under link selection the following characters indicate link types to be included:

$SL Include simulation links (i.e. roads)

$ST Include simulation turns

$SCC Include simulation centroid connectors

$BL Include buffer links

$BCC Include buffer centroid connectors

and the composites

$L Include all (simulation and buffer) links

$CC Include all (simulation and buffer) centroid connectors

Including an X immediately after $ indicates “exclude” that link type; e.g., $XST
implies exclude simulation turns but leave the other 4 types.

For example:
DBDUMP net net.txt 4503 $SL

would dump demand flows for simulation links only to file net.txt.

(ii) Those that control the format

Further options controlling the output formats, e.g., nodes in fixed columns versus
free format (CSV), are being added to match some of the interactive options within
SATDB. Thus:

$KP5COL Nodes are output in fixed columns of 5 or …

$KP6COL … in fixed columns of 6

Note that if the node or zone numbers in the network being dumped exceed 4
digits then the output link format automatically allocates 6 columns per node.
(The 5-column option may be set by default by defining the parameter KP5COL =
T in the preferences file p1x0.dat; KP5COL = F selects 6 columns.)

Furthermore, if the filename of the output file in the command line has an explicit
extension .CSV, then it is assumed that the output data format will be CSV rather
than fixed columns. For example:

DBDUMP net net.csv 4503 $ST

would dump demand flows for simulation turns to a CSV formatted file, net.csv.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-116
Section 15

15.46.2 P1XDUMP: Dumping Data via P1X

A very similar batch file to DBDUMP, P1XDUMP, dumps selected data to a text
file but based on P1X internal codes rather than DA codes. For example, the
command:

P1XDUMP net flows.txt 5

dumps the free-flow speeds (P1X internal code 5) from net.ufs into a file flows.txt.
See Appendix I for a full list of codes.

To request a particular user class for a user-class dependent variable (such as
link flows) the class is indicated by appending ‘Un’ to the internal code; for
example:

P1XDUMP net flow_uc4.txt 40U4

dumps the (demand) flow for user class 4.

The options $SL etc. described above under DBDUMP apply equally under
P1XDUMP.

15.47 CLICKS: Variable Free Flow Speeds by User Class

15.47.1 General Principles of CLICKS

The “CLICKS” parameters represent a somewhat simplistic method to model the
clearly evident fact that on, say, motorways, heavy lorries travel at a lower speed
than cars (whether due to speed restrictions or to vehicle characteristics – or
both). Setting a parameter CLICKS(2) = 100 signifies that user class 2 vehicles
(e.g., lorries) have a maximum speed of 100 kph on all roads (both buffer and
simulation).

Input values of CLICKS are included as subscripted variables within &PARAM in
the network .dat file; the default of 0.0 signifies that there is no maximum speed
restriction for that user class. Units are in kph.

CLICKS only has an impact on road links (i.e., buffer and/or simulation roads, not
simulation turns and not centroid connectors) whose free-flow speed is in excess
of the input value(s) of CLICKS. In modelling terms it is represented by a fixed
time penalty per user class equal to the difference in time between a vehicle
travelling at the input free-flow speed and at CLICKS; if the free-flow speed is less
than or equal to CLICKS then the time penalty is zero. (And equally if CLICKS is
not set the time penalty is zero.) (But see 15.47.3 for an alternative model with
variable time penalties.)

Generally speaking CLICKS is applied to links which have a speed-flow curve, but
they may equally well be applied to links which have a flat speed-flow curve. If the
link does have a speed-flow curve then it would be expected that CLICKS would
be somewhere in between the maximum free-flow speed and the minimum speed
at capacity; if not a Serious Warning 159 is generated.

In general we would expect that CLICKS(1) = 0 on the assumption that user class
1 represents cars and that cars can always travel at the maximum speed, i.e., the

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-117
Section 15

free-flow speed coded for each link, and that there is no need to impose an extra
travel time on them. But, if you do want to impose penalties on all user classes,
go right ahead!

The fact that the penalty is fixed means that it is included within the travel time (for
that user class) under all conditions, i.e., all speeds and all flows. To give a simple
numerical example, consider a link 1 km long with an input free-flow speed of 120
kph (which presumably applies to cars, user class 1) but with user class 2 (lorries)
having been assigned CLICKS(2) = 100. Under free-flow conditions cars take 30
seconds to travel the 1 km. at 120 kph, lorries take 36 seconds at 100 kph. Hence
the fixed time penalty is 6 seconds for user class 2.

The end effect is identical to adding a penalty of 6 seconds within the 44444 data
records for user class 2 on that particular link; in both cases, the 6 seconds is
simply added to the minimum generalized cost for that link as used within the
assignment. Therefore, in both cases, the extra time may influence their route
choice. However, in practical terms, it is much simpler to set a single parameter
under &PARAM than to include explicit penalties for every link which requires it.
Although, on the other hand, explicit penalties under 44444 can be made much
more precise.

A possible modelling disadvantage of assigning a fixed penalty may be seen,
using the above 1 km long motorway link, by assuming that the speed at capacity
for that link has been coded as 40 kph. Under capacity conditions it is perhaps
more realistic to assume that both cars and lorries travel at the same bumper-to-
bumper speed. In fact the extra 6 second penalty on the lorries will bring their
effective speed down to 37.5 kph, an “error” of 2.5 kph. On the other hand it might
be argued that even under bumper-to-bumper conditions cars will still have a
slight advantage over lorries by being able to weave in and out a bit more and that
maybe a differential speed of 2.5 kph is not too bad an estimate of that effect. It is
up to user to judge whether or not this represents an “acceptable” model.

At this point, users may well be asking why there cannot be two (or more) different
speed-flow curves per link per user class which may differ at free-flow but come
together at capacity. In principle, there is no reason why such differential curves
could not be defined. Unfortunately, for complicated theoretical reasons, the
multiple user class assignment algorithm used within SATURN (see 7.3) requires
that there can be only one cost component which is flow-sensitive and that that
component (i.e., time) is common across all user classes. Fixed cost components
may, however, differ between user classes (e.g., the evaluation of distance in
generalized cost seconds) and the differential time penalties must therefore fall
into that category. Otherwise multiple equilibria may occur.

In practical terms, as mentioned above, the use of CLICKS may influence route
choice by user class. The extra time penalties will automatically be included within
any O-D skim that includes time.

Summary statistics listing the total extra travel time in terms of pcu-hours incurred
under CLICKS are given in the .lpt files and within the various list options under
SATLOOK and P1X. The outputs are disaggregated by: user class,
simulation/buffer, this/next/total time period and by capacity index. In principle
these totals could (and possibly should) be added to the cruise time etc. totals
which appear in standard output tables; however, for the time being, this has not

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-118
Section 15

been done in order to allow users to think about exactly how they would wish to
have the data presented.

In summary setting a value for CLICKS is an extremely simple method to
represent differential speeds by user class but some users might feel that the
possible “errors” introduced at high flow levels may outweigh the advantages of
simplicity.

15.47.2 Disaggregated Levels of CLICKS (KLUNK)

Prior to the release of version 10.7 the value of CLICKS for a particular user class
applied equally to all links (excluding centroid connectors); post 10.7 CLICKS may
be disaggregated either by a link’s capacity index or, ultimately, per individual link.
The choice is set by an Integer input parameter KLUNK defined under &PARAM.

Thus, if KLUNK = 0 (the default) CLICKS(u) applies to all links for user class u. If
KLUNK = 1 then, in effect, CLICKS becomes a two-dimensional array such that
CLICKS(v,k) defines the value of CLICKS for vehicle class v for all links with
capacity index k. If KLUNK = 2 then every individual link can (potentially) have its
own unique set of CLICKS values.

N.B. With KLUNK > 0 the values of CLICKS are defined by vehicle class, not user
class, but, recall from section 5.8, that each user class should be associated with
a particular vehicle class (as set on the network 88888 data records) so the
general principle that each user class has a maximum speed per link is retained.

The reason for using vehicle classes directly rather than user classes is that there
are generally a much smaller number of vehicle classes (e.g., cars, light and
heavy lorries) and it is really the type of vehicle that determines maximum speeds,
not whether a car driver chooses a route based on minimum time or distance. It
also allows users to introduce new definitions of user classes but with the same
set of vehicle classes (e.g., split a user class Work into HB Work and NHB Work
but both are part of Vehicle Class 1) without having to update CLICKS(,). Plus it
allows data files such as FILVSD files (see below) to apply to more than one
network as long as both networks use the same conventions for capacity indices
and vehicle classes

15.47.2.1 KLUNK = 1 (Disaggregate by Capacity Index)

To input variable values of CLICKS by vehicle class under KLUNK = 1 the user
must either:

(a) prepare a text file (formatted as below) and define its file/pathname via the text
parameter FILVSD input under &PARAM in the network .dat file, or

(b) include extra records within the 33333 buffer data (new with 10.9).

15.47.2.2 FILVSD File Input:

The file must contain one record for each Capacity Index for which CLICKS values
are required with the first entry field containing the (integer) Index and the
following values containing the (real) maximum speeds for Vehicle Classes 1, 2,
3…. The format is essentially free – each item must be separated by either a
space or a comma from its neighbours; i.e., CSV is acceptable. All values for

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-119
Section 15

Capacity Indices not included in the file default to zero (i.e., maximum speeds are
not applicable) as do missing or zero values per Vehicle Class as input.

For example, if capacity index 1 refers to a road type where vehicle classes 1 and
2 have normal link-dependent speed-flow curves but vehicle class 3 (HGVs
maybe) has an upper speed limit of 88 kph the relevant (CSV-formatted) record
would read:

1,0,0,88

and the maximum speed of 88 kph would then apply to all user classes associated
with vehicle class 3.

The file is terminated either explicitly by 99999 in columns 1 to 5 or simply by the
end of the file.

As with CLICKS(1) under KLUNK = 0 we anticipate that CLICKS will not apply to
the vehicle class “cars” (generally 1) so that one of the input fields (the first) will be
uniformly zero.

N.B. Note that the input maximum speeds are defined by vehicle class, NOT
by user class.

15.47.2.3 Extra 33333 Data records

To define the maximum speed for a particular combination of vehicle class and
capacity index the user must include a record in the network .dat file, similar to
default speed-flow records per capacity index (15.9.5), under 33333 (see note
(16), section 6.6) with:

(i) The character V in column 1 followed (in free format) by:

(ii) The vehicle class

(iii) The maximum speed (CLICKS) in kph

(iv) The capacity index

Thus the 3 data fields following V may be in any columns as long as they are
separated by either a blank or a comma. However, for “visual” reasons, we would
strongly recommend having the vehicle class in columns 2-5, the maximum speed
in columns 11-15 and the capacity index in columns 43-45 as done (in the latter
two cases) for default speed-flow curves1. In fact it would make good sense to
include any specific maximum speeds by vehicle class/index immediately after
the equivalent default speed-flow record to make any comparisons of data much
more transparent.

Alternatively they might be contained in a separate file referenced by $INCLUDE.

Note that fields (ii) and (iv) must be integers (as well as, clearly, being valid
numbers) but the speed (iii) may be input as a real value. Normal logic checks

1 Note, if DUTCH=T has been set to permit longer node numbers, the matching columns will be 21-25 and 53-
55 respectively

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-120
Section 15

that, e.g., CLICKS speeds are less than normal speeds, etc. etc. are carried out
and error messages produced as necessary.

The V-records will be ignored, in the same way that default speed-flow curves by
capacity index with a D in column 1 are ignored, when the buffer network is built.

Note as well that if any V- records are included under 33333 and KLUNK = 1 then
any reference to FILVSD is ignored; you cannot therefore use both methods to
define KLUNK = 1 data at the same time.

15.47.2.4 KLUNK = 2 (Disaggregate by Link)

Not yet implemented. This will probably be done in conjunction with the 33333
input formats above but per link rather than per capacity index. Thus the HGV
(say) speed-flow curves will be defined independently per link, e.g., as a flat
maximum speed until it intersects with the “normal” speed-flow curves.

15.47.3 Fixed Maximum Speeds: CLIMAX

An alternative to having a fixed difference in travel times per user/vehicle class is
to specify a fixed maximum speed by setting a parameter CLIMAX = T under
&PARAM. If CLIMAX = T then it is assumed that the speed-flow curve for a
particular user (or vehicle) class is fixed at CLICKS independent of the total link
flow until the car speed drops below that value, at which point the car and “other”
speed-flow curves coincide. In other words, the penalty time imposed under
CLICKS is not fixed but gradually reduces from its maximum value at flow equal
zero until it goes to zero at the point where the car speed equals CLICKS.

In almost all cases CLIMAX is used to model fixed speeds for HGV’s which are
less than car speeds under free-flow conditions up to the point where car and
HGV speeds become equal. Whether or not this is a better representation of the
differences between HGV and car speeds is of course up to the user.

In modelling terms the fixed travel time per link applied to, e,g., HGV’s is adjusted
within the simulation-assignment loops within SATALL at the end of each
simulation step, effectively at the same time as the link speed-flow curves per turn
are updated for the next assignment step via the simulation,

For example, consider (as in 15.47.1) a link which is (a) 1 km long, (b) has a
maximum speed (CLICKS) for HGVs of 100 kph and (c) a speed-flow curve
defined with a speed of 120 kph at free-flow. With CLIMAX = F the time penalty
for HGVs would be fixed and equal to the difference between 1/100 and 1/120
hours, i.e., 36 – 30 = 6 seconds. With CLIMAX = T the penalty would be initially
set to 6 seconds but if, at the end of the first assignment, the flow on that link were
sufficient to reduce the car speeds to 110 kph the new HGV penalty would be
1/100 – 1/110 = 3.27 seconds. If car speeds dropped to less than 100 kph the
HGV penalty would go to zero.

By introducing an “interaction” between two different sets of costs and flows on
the same link (in the same way that the delays to minor arm flows at a T-junction
are affected by and interact with flows on the major arm) an extra complication is
introduced into the assignment-simulation loops which, in principle, could lead to
non-convergence and/or multiple equilibria. However, compared to the
interactions that go on within the normal simulation process, the sort of

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-121
Section 15

interactions we are talking about here are relatively “weak” and, touch wood,
should not lead to any extra convergence problems. Statistics to demonstrate the
degree of convergence, e.g., the ratio of the total absolute changes in penalties to
the total penalties, are printed each time the adjustments are made and should
converge to (near) zero.

15.47.3.1 Defining CLIMAX

CLIMAX is a Logical variable set in the network .dat files under &PARAM which is
set by individual user classes. Thus CLIMAX(3) = T turns “on” the CLIMAX option
for user class 3. The default is .FALSE. for all user classes.

Setting CLIMAX = T (i.e., no subscript) sets CLIMAX(n) = T for all user classes n
by default unless a specific record is included for an individual user class.

Note that CLIMAX(n) is only relevant if CLICKS(n) has been set. So, unlike
CLICKS, there is no problem with having CLIMAX(n) = T for all user classes since
normally there should be at least one user class to which CLICKS is not applied.
In addition CLIMAX() is a function of user class only and applies to all links (or,
strictly speaking, all links where CLICKS is less than the free-flow speed).

15.47.4 Link Times Incorporating CLICKS

By default the link travel times generally calculated and, e.g., displayed by P1X do
not include any extra times associated with CLICKS for particular user classes; in
effect they represent travel times by cars. Post release 11.3 it is possible to
calculate and display an average travel time representing a flow-weighted travel
time over all vehicle classes. Thus:

 Tw = t + ∑u ∆ tu Vu / ∑ Vu

Where tw is the weighted travel time

 T is the “normal” time

 ∆ tu is the extra travel time for user class u

 Vu is the flow for user class u

Where flows are expressed either in units of vehicles/hr or PCU/hr.

The weighted times are calculated within SATALL once the assignment-
simulation loops have converged and are then stored in DA codes 4008 (weighted
by vehicles/hr) and/or 4018 (weighted by PCU/hr). They may then be viewed in,
e.g., P1X as normal link data.

In the event that all user classes have the same PCU weight, ie., 1.0, both
measures of time are identical and 4008 is not included.

Current applications of weighted times include validation of timed routes (see
11.7.2.1) and joyrides (see 11.8.2.3). Further suggestions are most welcome.

15.48 UNIQUE: Combined Queues within the Buffer Network

The option “UNIQUE” was introduced in 10.7 in order to minimise the double-
counting of V>C delays in buffer networks in certain circumstances.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-122
Section 15

More precisely, consider a series of links A-B-C-D… in the buffer network such
that traffic on A-B can only exit to C (ignoring U-turns to A), traffic on B-C can only
exit to D, etc. etc. Hence all links must be assigned the same demand flow V. If,
say, A-B and B-C both had the same capacity C and V > C then, in reality, one
would expect that a queue of traffic would form on A-B at a rate V-C but that the
capacity on A-B would restrict or “meter” the “actual” flow to B-C to equal C and
that therefore there would not be a second queue on B-C. Hence there should be
a “queuing” delay on the first link but not on any of the flow-metered links
downstream.

However, prior to 10.7 and UNIQUE, the same queue build-up and consequent
ing delay was imposed on all links A-B, B_C, …., hence “double-counting” the
effects of queuing. But, if UNIQUE is set to T within the &PARAM of the .dat file,
the extra delay is imposed at only one of the links (that with the minimum capacity
which therefore represents the true “bottleneck”).

This option is useful if, say, an existing buffer link A-C is split by a mid-link node B
with no other changes and the same link properties apply on both A-B and B-C.

15.49 SATURN Summary Statistics Reporting Tool (SATSTAT)

SATSTAT is a tool used to automatically extract and summarise convergence and
summary performance statistics for each network(s) into a CSV file. The resulting
CSV files may be then be readily imported into the associated MS Excel
spreadsheet and comparisons undertaken between different networks.

SATSTAT consists of two parts: (i) a Fortran 32-bit program to extract the
summary statistics; and (ii) an MS Excel spreadsheet to undertake the
comparisons.

15.49.1.1 SATSTAT FORTRAN Program

For each UFS network(s) selected, the SATSTAT Fortran Program (v3.00) will:

♦ Automatically extract SATURN convergence, assignment/simulation statistics
and queues using the standard reports available through SATLOOK, SATDB,
P1X etc;

♦ Produces summary outputs in MS Excel CSV format of:

♦ Model Convergence (NITA,NITS,%flows, %gaps,%epsilon - SATLOOK
option 8);

♦ Model Runtimes (SATNET, Assignment, Simulation - SATLOOK option
8);

♦ Matrix Totals including Origins & Destinations within Buffer/Sim areas
BUT excluding INTRA-ZONALS;

♦ Simulation statistics (speed/distance/time within this time period /
following time period - SATLOOK option 4)

♦ Assignment / Simulation statistics (speed/distance/time - SATLOOK
option 5)

♦ Average Queue in the Simulation Network (SATDB DA Code 1433)

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-123
Section 15

♦ Queue at End of Time period in Simulation Network (SATDB DA Code
1483)

♦ Average Delay / Vehicle (mins) (calculated)

♦ Congestion Index (mins / km) (calculated)

The name of the output file is the network name with a CSV extension (eg
EPSOM98M.CSV).

15.49.1.2 SATSTAT Excel Spreadsheet

In conjunction with SATSTAT, the resulting CSV file(s) may be imported into the
MS Excel spreadsheet called "Summary Report (v3.02).xls" via the "Import CSV"
Visual-Basic macro available in the Summary worksheet. Once the MS Excel
macro is run, it will ask for the name of the CSV file to be imported into the
spreadsheet and become available in the selection box. If selected, the network
stats will appear in the column below both in summary and more detailed form
enabling comparisons to be made between different networks. A demonstration is
available under Test Networks > Option 4 Run SATSTAT for Epsom.

SATSTAT has been successfully tested on all versions of SATURN 10.xx (ie 10.1
to 10.8). Please note that it does not disaggregate summary statistics by separate
user class, only for "TOTAL FLOWS".

15.49.2 Worked Example

A worked example is provided in the "Test Network" menu, option 4 that will run
the SATURN Epsom network for two scenarios (without/with development), run
SATSTAT to extract the summary statistics and open MS Excel (using a
Workspace) and import the two SATSTAT output CSV files.

The SATURN files are located in the sub-directory called “TEST\DEMO –
SATSTAT”. There are two sample networks: a reference case called
EPSOM98AXX.DAT and a development scenario called EPSOM98RXX.DAT.

Below we step through the process rather than running it all automatically.

15.49.2.1 Running SATSTAT in SATWIN

The SATSTAT module is selected for running in the usual fashion as shown below
for SATWIN11; from the Home tab, we can select SATSTAT.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-124
Section 15

This will load-up the SATSTAT module requesting the network(s) that you wish to
extract the summary statistics from:

The two networks we wish to compare are:

♦ Reference Case EPSOM98AXX.UFS; and

♦ Development scenario EPSOM98RXX.UFS.

We now select both these networks to run through SATSTAT as shown below.
Note that in this example, we have changed the Working Folder to
“C:\Users\SWAI2000\AppData\Local\Atkins|SATWIN” but the files may be located
in any folder.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-125
Section 15

We now run SATSTAT and the module will now, for each network in turn:

♦ Run SATLOOK and SATDB to determine the version of SATURN in use;
♦ Run SATLOOK and SATDB to extract the summary statistics; and
♦ Run the SATSTAT Fortran program to generate a summary statistics file in

CSV format.

The output(s) from the process will be a one (or more) CSV files with the same
filename as the network UFS file. In our example, the two output files will be
EPSOM98AXX.CSV and EPSOM98RXX.CSV.

15.49.2.2 Using the SATSTAT Spreadsheet

Once the Summary CSV files have been produced, we may import them into the
SATSTAT spreadsheet, the latest versionof which (at the time of writing) is called
"Summary Report Excel2007 (v4.10).xlsm". The process has however not
changed since the following example (which refers to "Summary Report
(v3.00).xls") as shown below was created. The spreadsheet consists of a number
of worksheets:

♦ A Version Control worksheet – for reference only
♦ A Summary worksheet – this is the main report; and
♦ A number of imported CSV summary files.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-126
Section 15

15.49.2.3 Importing CSV Files

♦ To import our new Summary Spreadsheet files, we select the Summary worksheet
and press the Import CSV button to bring up the Windows File Open dialogue box:

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-127
Section 15

We may then select each CSV file, in turn, and these will be imported as new
worksheets into the existing spreadsheet.
Once they have been loaded as new worksheets, we may now select them to be
loaded into the reporting columns in the summary worksheet by clicking on the
Filter box at the top of each column. The summary statistics for that network will
then be summarised in the column below.

Once completed, Table 1 ‘Scenario Reports’ shows the summary statistics for two
networks side-by-side, as show below.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-128
Section 15

15.49.2.4 Summary Reports

At the highest level, the summary reports are available for:
Convergence in the Assignment-Simulation loop
♦ Number of loops undertaken;
♦ %Flows achieved
♦ %GAP achieved
Summary Statistics (post-simulation for TOTAL flows)
♦ Matrix totals excluding intra-zonals;

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-129
Section 15

♦ Over-capacity queues;
♦ Link cruise times;
♦ Total travel times
♦ Average speed;
♦ Total delay;
♦ Average delay per vehicle;
♦ Average delay per vehicle-kilometre;
♦ Average trip length
♦ Average simulation queue;
♦ Simulation queue at end of modelled time period; and
♦ Turn penalties.
More detailed comparisons are available within the Summary worksheet by
selecting the second level option to highlight more convergence statistics and, for
example, performance for both the modelled hour and the next time period.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-130
Section 15

15.49.2.5 Importing Additional Networks

♦ This may be repeated for any number of networks. If further reporting columns
are required, an existing column may be copied across as shown below.

EXISTING

EXTENDED

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-131
Section 15

15.49.2.6 Comparing Different Networks

We may also compare the summary statistics for each of the different networks
(eg the Development Scenario EPSOM98RXX against the Reference Case
EPSOM98AXX) by specifying the appropriate column ID (ie ‘C’ in this case).

Whilst Table 1 will remain unchanged, Table 2 below will now report on the
Differences and %Differences in the summary statistics (ie this network MINUS
the one with the column ID just selected) as shown below.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-132
Section 15

15.49.2.7 SATURN Versions

SATSTAT will work for all versions of SATURN v10 available i.e., v10.1 through to
10.9. It should operate correctly on any UFS files created under these various
versions as well as undertaking the summary reporting using any of these
versions.

15.50 SATMECC – Marginal Economic Consumer Costs

15.50.1 Basic Theory

The principle of “marginal cost” was introduced in Section 7.11.9 where equation
(7.46) defined the marginal cost for a “separable” cost-flow curve, i.e., one where
the cost of travel on link a is a function only of the flow on link a, as:

Equation 15.16

() () a
a a a a a

a

cc V c V V V
∂= + ∂

In this section we generalise the concept to allow for “interactions” between
different streams of traffic and therefore “non-separable” cost-flow functions as
modelled by the simulation stage within SATURN. We use the acronym MECC to
stand for Marginal External Cost of Congestion.

However, the basic underlying concept of marginal cost is unchanged: it is the
extra cost imposed on all trips by the addition of one extra pcu (N.B. pcu, not
vehicle) on a particular “link” (where a link may be either a road or a simulated
turn). With separable costs the only other vehicles which are affected by an extra
vehicle on link a are those vehicles already on link a; with non-separable costs the
affected vehicles may be on other links. Unfortunately, since SATURN does not
generate explicit non-separable cost-flow curves of the form ca(V) where V
represents the complete vector of all link flows, we must resort to simulation.

We recall that non-separable or interaction costs only arise from turning
movements at simulation nodes. For buffer links and “pure” simulation links there
are no direct interactions and equations such as (7.46) may still be applied.

The basic method used to calculate marginal costs for simulation turns is to add
one pcu per turn, re-simulate that individual node and to calculate the changed
costs on all turns and/or links at that simulation node. It is carried out by a
procedure (i.e., .bat file) known as SATMECC which, in fact, makes use of special
procedures within SATLOOK. The procedure outputs an ascii file (details below,
15.50.8) with an extension .mec.

SATMECC was first introduced in 10.8 in 2007 and was developed with the
financial support, advice and technical co-operation of GMPTE (Greater
Manchester Public Transport Executive) and GMTU (Greater Manchester
Transportation Unit) whose inputs are gratefully acknowledged.

15.50.2 Marginal Cost vrs Marginal Time

Generalised cost is normally a weighted sum of time, distance and other
components such as tolls (see 7.11.1) but, of these, only time is directly affected
by flows; adding an extra pcu has no impact on link distance, for example.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-133
Section 15

Therefore marginal cost is effectively equivalent to marginal time with a “value of
time” factor (i.e., PPM) to convert marginal time into marginal cost in exactly the
same way that time is converted to cost.

We note briefly at this point, and in more detail later (15.50.5), that the value of
time may differ between different user classes and that we may distinguish
marginal cost by user class.

Within SATMECC outputs are always expressed in terms of marginal time (in
units of seconds/pcu) and it is up to the user to convert to marginal cost if and
when desired. (Indeed it would probably be more accurate to refer to MECT rather
than MECC but we retain the more standard convention.)

15.50.3 Marginal Cost Calculations: Incremental Simulation

MECC values per simulation turns are estimated by (a) carrying out a full
simulation of the “base” to obtain both base delays and base flows per turn and
(b) repeating a full simulation of the node with an additional small increment of
flow ΔV (e.g., 1 pcu) added to the turn in question. (But see 15.50.6 for alternative
procedures in selected circumstances.)

The total value of MECC may be calculated as:

Equation 15.17

() ()()a i i i a
i

MECC V d l d B V= − ∆∑

Where i represents a particular turning movement (link) at that junction (including
a)

Vi is the (total) demand flow for that turn

ΔVa is the increment of traffic to the current turn a (either positive or negative)

di (I) is the simulated delay with the increment ΔVa

di (B) is the delay in the “base” simulation

Notes:

1) This definition excludes the current cost of link a, i.e., the first term on the
right-hand-side of 7.46. However it is not difficult to add this contribution later
on as required.

2) Strictly speaking Equation 15.16 defines marginal time, not cost since we use
“unweighted” delays in units of seconds.

3) This method can give both positive and negative values of MECC whereas
the use of equations with separable cost-flow curves can only yield non-
negative values. Negative MECC values may seem counter-intuitive but in
fact they occur quite naturally as a result of normal give-way conventions. For
example, consider a roundabout with 4 arms (north, south, east and west)
with a very heavy flow from east to west which effectively blocks all entry
traffic from the south. In these circumstances the only way traffic from the
south can enter is when north-south traffic cuts off entry from the east. Hence

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-134
Section 15

an increase in N-S flow can reduce the delays from the south leading to a
negative contribution to MECC which, in turn, can potentially drive the total
MECC negative as well.

15.50.4 Disaggregated Marginal Costs by Turn

The impact of adding an extra pcu on a particular simulation turn may be
disaggregated into increased delays to:

(a) pcus making that particular turn,

(b) other turning movements from the same arm and

(c) turns out of other arms at the same junction.

MECC is the sum of all three impacts.

We refer to these three disaggregate contributions as “own-MECC”, “arm-MECC”
and “interactive-MECC”.

15.50.5 Disaggregated Marginal Costs by User Class, Vehicle Class, etc.

If we wish to consider the marginal impact of increased flows on a particular link
on, e.g., one particular class of flows – as opposed to the total flow on links as
implied by the definition of Vi in equation (15.16) – it is simply a question of re-
defining Vi as the flow for that user class. Equally we could define marginal cost
for a particular class of flows such as buses.

Note that user class is defined here in terms of the class of vehicles affected as
opposed to the class of vehicles which is causing the changes. In particular, if we
increase the flow on link a by 1 pcu it does not matter which class of vehicles is
being increased since, say, 1 pcu of user class 1 has the same effect within the
simulation as 1 pcu of user class 2.

Note that in this context it is very important to distinguish between marginal cost
and marginal time since the conversion between the two will depend on the value
of time defined for that user class. If – as is most likely the case – users require
the total marginal cost in terms of, say, pence as opposed to total marginal time
then it is necessary to calculate marginal time for each individual user class,
weight that by the appropriate value of time for that class and then sum over all
user classes. It is not really possible to define an “average” value of time since the
distribution of flows by user class will vary by turn.

By a similar token please note that MECC is always calculated per pcu and that
different user classes may also have different values of pcu/vehicle. Again it is up
to the user to take account of these factors in terms of translating SATMECC
outputs into actual toll per vehicle.

15.50.6 Alternative Modifications to Incremental Simulation

There are a variety of circumstances under which the simple “add a pcu”
simulation method may give unreliable results (where “unreliable” generally
means extremely high absolute values). Therefore a number of “alternatives” have
been included within SATMECC as follows:

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-135
Section 15

1) If the turn is over capacity in the base simulation we do not have to perform
a second simulation to calculate MECC since the main impact of an extra
pcu on an over-capacity link is essentially to make the queue on that arm
one pcu longer rather than changing the flows through the node. Thus we
may combine equations (7.46) and (8.5b) (or (8.11b) in the case of shared
lanes) to obtain:

Equation 15.18

()2MECC LTP V C=

2) If the turn is “almost at capacity” (strictly 90% < V/C < 100% then a negative
increment of 1 pcu is used in the first instance rather than an increase of 1.0.
(But see point (7) below.)

3) If the turn has zero or very low flow (arbitrarily under 5 pcu/hr) the turn is
simulated at flows of, say, 5.0 and 6.0 pcus/hr as opposed to, say, 0.0 and
1.0 pcus/hr since, very often, there can be very highly significant changes
between no flow and a very small flow. This is particularly true of X-turns at
signals, even more so when they come from a single lane with other shared
movements.

4) If the addition of +1 pcu takes a turn beyond capacity then the increment is
reduced so as to go only “halfway” to capacity.

5) In order to minimise any problems of “noise” in the two simulations (if we are
looking at two very similar flows any “errors” in delay calculations will be
magnified) we convert the value of NUC applied at signalised junctions to a
large value. In particular this has proved to be essential for junctions with
very short signal phases and/or X-turns.

6) If, for whatever reason, a node does not converge to the required limits (see
8.3.2) even with any changes to NUC, etc. its convergence is judged to be
“poor” and, rather than permit any noise to creep into the calculations, its
MECC values are calculated using its separable cost-flow curve and
equation (15.15) above. This is probably an underestimate of the total
MECC since it exclude any interactions with other turns at that junction but
this is felt to be preferable to introducing random errors. In most networks
the number of “poorly” converged nodes is probably well under 1%. (A
higher percentage of poorly converged nodes may be an indication of
slightly dodgy coding practice.)

7) As an example of belt’n’braces and to cope with various “noise” problems
which empirically are observed to occur even with all the above rules, for
priority and signalised junctions, whenever both positive and negative
increments are feasible, we carry out two increments, both plus and minus 1
pcu, and take the minimum of the two MECC values. (In almost all cases
the two give virtually equal answers but there are odd examples when one
result appears to be unreliable and we prefer to believe the lower values.)

8) Turns at simulation dummy nodes experience zero delay by definition and
therefore zero marginal costs. They are included in the output .mec files with
values of zero. Similarly bus-only links and/or turns are assigned zero
MECC values.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-136
Section 15

15.50.7 Marginal Costs on Links

In addition to calculating marginal costs on simulation turns SATMECC also
calculates marginal costs for “pure” links (i.e., roads A-B as opposed to turns A-B-
C) which are (a) in the buffer network or (b) simulation links with capacity-restraint
speed-flow curves. In both cases it is only necessary to use equations (7.47a)
and/or (7.47b). Note that simulation links which do not have speed-flow curves
are excluded.

Links are included within the output .mec file (see 15.50.7) and are identified by a
value of 0 in the third node field; i.e, A B 0 as opposed to A B C for simulation
turns.

Simulation links without capacity-restraint speed-flow curves are totally excluded
as are all centroid connectors.

15.50.8 The SATMECC Batch Control File

A special batch file SATMECC.bat has been set up in order to carry out the
calculations detailed above making use of the program SATLOOK. Its
specification is as follows:

Call: SATMECC network (UC n KR control

Files: network.ufs Input network file

 Network.mec Output ascii file of MECC values

 Network.LPL Output line printer file from SATLOOK

 Control.dat Control file (Optional)

UC n (optional) requests that the calculations be carried out for user class n and
the output file will be network.ucn.mec. UC * requests a loop over all user classes
to produce files network.uc1,mec, network.uc2.mec, etc. etc.

Output .mec files contain 8 “fields” formatted as follows:

Field 1 A-node

Field 2 B-node

Field 3 C-node (for a turn; 0 for a link whether simulation or buffer)

Field 4 The “base” delay to turn A-B-C in seconds

Field 5 The total MECC in seconds (N.B. marginal time, not cost)

Field 6 “Own” MECC

Field 7 “Arm” MECC

Field 8 “Interactive” MECC

For “pure” links A-B (i.e., simulation or buffer links) fields 7 and 8 are blank.

Note that Fields 1, 2 and 3 all occupy 6 columns in order to improve legibility for
networks which have up to 5-digit simulation node numbers. This may cause

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-137
Section 15

problems in input to certain SATURN programs where the convention is to have 5
columns by default. Note that the latest 10.8 version of SATDB allows either 5 or
6 column node fields under the input of miscellaneous text files.

If DUTCH = T and the maximum node number used in the buffer network exceeds
5 digits then the first two fields occupy 9 columns each and the third (which is zero
by definition) occupies 2 columns (i.e., 0 in column 20).

In general MECC values are printed with two decimal places (with units of
seconds) although, in some extreme cases, there may not be sufficient “width” in
the format to permit two decimal places, in which case MECC is printed in an E-
format.

15.51 Running SATURN within DIADEM

The DIADEM suite of programs has been created by Mott-MacDonald under
contract to the DfT to provide demand matrix calculations linked to various traffic
assignment programs. In particular Diadem has been linked with SATURN such
that Diadem calculates vehicle trip matrices which SATURN may then assign. See
Section 7.4.5 for a discussion of the general VDM principles involved and for
suggestions as to how to make the overall process more efficient.

Full documentation on Diadem and its linkages with SATURN are provided by the
Diadem documentation.

Generally the procedures for running SATURN programs within Diadem are
controlled by Diadem itself. However, there are various options within SATURN
programs which may assist in achieving a well-converged solution with minimal
cpu and which either users may set themselves in their network .dat files and/or
Diadem developers may incorporate within the internal control procedures.

It is highly recommended that Diadem users ensure that they are running the most
up to date releases of SATURN since some of the features listed below are fairly
recent additions.

QUIET – This option enables SATURN programs such as SATALL to run totally
in “the background” without interrupting anything else. See 14.9

NDPS – This controls the number of decimal places used to output skimmed
matrices in TUBA Format 2. Large values, e.g., 4, are recommended to avoid
convergence problems due to rounding off but, in older releases of SATURN, this
could cause problems of “overflow” if a numerical skim value required more than
10 columns including decimal places. Corrected in 10.7. The current default
number of decimal places is 5. See 10.15.2 and 15.41.4.

DIADEM parameter. Setting DIADEM = T under &OPTION (N.B. not &PARAM) in
a network .dat file at the same time that UPDATE and/or WSTART are also T
means that, if the file to be updated as set in UPFILE does not exist, UPDATE
and/or WSTART are ignored. Normally a missing UPFILE is a semi-fatal error. In
the context of DIADEM this allows the same network .dat file to be used to build a
network for both the initial assignment and for later assignments where the
UPDATE/WSTART options may be invoked to update/warm start the previous
network. See 6.1.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-138
Section 15

XCL ON COMMAND LINES This feature allows more than 9 arguments per
command line. In the particular context of DIADEM this increases the number of
matrices which may be stacked and unstacked but the number is still potentially
limited. See 14.8.

UFMSTACK AND UFMUNSTACK These new bat files allow matrices to be
stacked and/or unstacked with, effectively, no limit on the number of levels / user
classes which may be accommodated. See 10.20.17 and 10.20.18.

SAVEIT – Unless you specifically need to create skimmed matrices of time,
distance, etc. in order to run the demand model within DIADEM (which, in general
terms, we do not recommend; see 7.4.5.3 and 7.8.6) or you are using a warm
start we recommend that you set SAVEIT = F and avoid the excess CPU of
creating .UFC files which will not be used at the end of each run of SATALL. Note
that, if required, a .UFC file can be created at the very end by running the
procedure SATUFC (see 15.23.5). (N.B. This does not apply under OBA where
the overheads associated with SAVEIT = T are minimal.)

SKIM_ALL – If, however, the Diadem model requires skimmed matrices of time,
distance and/or tolls on each supply-demand loop it will save CPU time to use the
simultaneous skimming procedures embedded in SKIM_ALL (see 15.27.7) rather
than skimming each component separately.

Further general advice on linking SATURN with external variable demand models
such as Diadem as given in Section 7.4.5.

Users may also wish to note that the “%Gap” convergence measure used within
Diadem has an equivalent measure within SATEASY, i.e., TxCij-AAD as referred
to in Section 7.5.5.

15.52 Running SATURN in Parallel
From SATURN v10.7 onwards, a new feature was introduced that enabled users
to take advantage of desktop PCs with more than one core and/or processor.
This was intended as stop-gap measure until development work on modifying the
SATURN source code to access more than one core was completed during early
2009. Subsequent testing has demonstrated that the process is also compatible
SATURN Multi-Core and enables the maximum use of all the cores available.

The software was developed in response to a need to reduce runtimes for
demand models where there is a requirement to undertake independent highway
assignments by time period (e.g., separate morning peak hour, inter-peak hour
and evening peak hour models) and to subsequent skim various permutations of
travel costs and/or demand for use in WebTAG-based compliant models.

The recent advances in PC-based desktop hardware has resulted in Intel-based
Core2Duo/ Nahlem / Sandy Bridge chips becoming the norm (amongst others)
and the existing methods of using SATURN to undertake tasks sequentially does
not utilise any of the other cores available as illustrated below in Figure 15.6 and
Figure 15.7..

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-139
Section 15

Figure 15.6 – Traditional Sequential Operation

Figure 15.7 – Advantages of Multi-Core Processors

15.52.1 Additional Programs

Parallel runs can be performed with the aid of two programs: MONITOR and WAIT

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-140
Section 15

15.52.1.1 Monitor

MONITOR takes a snapshot of all running processes in Windows at regular (user
specified) intervals and checks if a user specified program is still running. The
program terminates when the user specified program is not one of the currently
running processes. MONITOR takes two parameters:

♦ Parameter 1 – the SATURN program to run in parallel (eg $SATALL.EXE).

♦ Parameter 2 – the time interval (in seconds) for taking snapshots of running
processes to determine if the SATURN program specified by parameter 1 is
still running (eg 10).

15.52.1.2 Wait

WAIT (used within a batch file) causes the batch file to pause (where it is called)
for a user specified number of seconds before the batch file proceeds to the next
command. This introduces a short pause before the next instance of the
SATURN program that is to run in parallel is called. In other words, if the user
wishes to run two instance of $SATALL, the user should request a small pause
between the first and second runs commencing to prevent potential file access
errors arising. Note that WAIT has to be used within a batch file – it will not ‘wait’
as a single command line call.

15.52.2 An Example

An example of a batch file to undertake a ‘parallel’ run of the SATURN module is
annotated below (but the process would also readily work with other SATURN
modules including $SATALL, $SATPIJA, $SATLOOK, $SATME2, and $SATEASY
for example).

The batch file should contain the following commands:
PATH = C:\SATWIN\XEXES

1) sets the path to the folder containing SATURN programs (if required)..
SET INPUT1=EPSOM5000

2) sets the input parameter for the first SATURN run as an environment
variable. In this example, the network and matrix file have the same root
name (i.e. EPSOM5000.UFN and EPSOM5000.UFM), hence only one
environment variable (i.e. INPUT1) is required. If the root names were
different, two environment variables would have been required: one for the
UFN file and one for the UFM file.
SET INPUT2=EPSOM5001

3) sets the input parameter for the second SATURN run as an environment
variable. The root name of the network and matrix file is the same in this
example; hence, one environment variable is required as in 2.
START SATURN %INPUT1% %INPUT1%

4) starts the first SATURN run.
WAIT 5

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-141
Section 15

5) Waits for 5 second to avoid simultaneous access to SAT10KEY.DAT
START SATURN %INPUT2% %INPUT2%

6) starts the second SATURN run
START /W MONITOR $SATALL 10

7) starts monitoring $SATALL.EXE every 10 seconds and MONITOR
terminates if $SATALL.EXE is not found in the latest snapshot of running
processes controlled by the Windows Operating System.

8) SATURN MULTI-CORE applications are multi-threaded versions of existing
programs that are able to take advantage of the additional processors (either
in the form of physical cores or virtual threads) available on most Intel /
AMD-powered standard desktop PCs.

The ‘start’ command will open a new command shell to run SATURN every time it
runs. If the user wishes each command shell to be closed at the end of the
operation, create a copy of the existing SATURN.BAT and add an extra line at the
end saying “EXIT”. So for example, if the amended batch file was called
“SATURNEXIT.BAT” the revised command line would be:

START SATURNEXIT %INPUT2% %INPUT2%

15.53 SATURN Multi-Core Applications

SATURN MULTI-CORE applications are multi-threaded versions of existing
programs that are able to take advantage of the additional processors (either in
the form of physical cores or virtual threads) available on most Intel / AMD-
powered standard desktop PCs.

SATURN MULTI-CORE is a separate, low-cost add-on to the standard suite and
may be accessed through an updated set of executables (and system files). The
control of the multi-threaded processors is automatically undertaken by the
program and the Operating System.

Multi-processor applications may be sub-divided into two categories:

a) those programs that allocate calculations to separate threads internally
within the processor(s) and therefore need to be linked with certain
routines compiled using IVF as opposed to Salford Fortran, and

b) those where the allocation to separate threads is handled at the level of
the batch file but the same basic program exe is used for each thread
(“distributed processing” as previously described in Section 15.52).

Applications under (a) require distinct EXE files, those under (b) require special
.bat files identified with the ‘_MC’ suffix.

In principle method a) should be faster and more efficient than method b) but, on
the other hand, it requires specially compiled versions of the .exe files whereas
method b) uses the standard exe’s but with “clever” batch files. Method a) works
by allocating tree-building etc. operations by origin between processors, method
b) works at a much more aggregate level by allocating, say, calculations per user

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-142
Section 15

class to separate threads (and therefore is most efficient if the number of threads
available equals the number of user classes).

15.53.1 Programs Available

SATALL was the first program to be modified to function with multiple parallel
processors and was first released with version 10.8.22. Since then, further
development work has been undertaken to expand the number of programs
available with multi-threaded capability as detailed below. The development work
was completed with the release of 11.2.05 in March 2013.

Program Status How to Access? Version Comment

SATALL Final
Release

Replacement
$SATALL.EXE and

set MULTIC=T

v10.8.22
onwards

The assignment routines are
multi-threaded internally
whereas, the simulation
remains unchanged

SATLOOK Final
Release

Replacement
$SATLOOK.EXE and

set MULTIC=T

v10.9.22
onwards

Various skimming options may
be run using multiple threads
in parallel. See 15.53.3.2.

SATUFO Beta
Release

Replacement
$SATUFO.EXE and

set MULTIC=T
(and/or embedded

within $SATALL.EXE
if SAVUFO=T

v11.1.02
onwards

Generation of .UFO from
existing .UFC undertaken
using multiple threads in
parallel. Replaces previous
distributed SATUFO_MC
process.

SATPIJA_MC Final
Release

New
SATPIJA_MC.BAT

and
$SATPIJA_MC.EXE

v10.9.22
onwards

Undertaken using a
distributed version whereby
the PIJA process is split by
“blocks” of origins and multiple
versions of SATPIJA run for
each. A final SATPIJA run
combines the individual
datasets into a single file.
The management of the
process is undertaken
automatically by the software.
See 15.53.3.3.

SATCH_MC Final
Release

New
SATCH_MC.BAT

and
$SATCH_MC.EXE

v10.9.24
onwards

Multi-distributed as per
SATPIJA with each user class
undertaken on a separate
thread; See 15.53.3.6

(Secondary
Analysis) (See SATUFO

above) (Undertaken using UFO files)

15.53.1.1 SATALL Multi-Core Restrictions

We note that the multi-core facilities within SATALL do not (yet) work with every
possible combination of assignment options. Thus it does not work with any form
of elastic assignment, with stochastic assignment (SUZIE = T) or with
networks which incorporate Motorway Weaving Segments (Section 15.40). If

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-143
Section 15

there is sufficient demand to include such options it will be considered for future
inclusion.

SATALL also does not work with either path-based or origin-based (OBA)
assignment because the theoretical principles of these algorithms require them to
be undertaken in a purely sequential process.

In addition multi-core requires that there is sufficient RAM provided to store the full
trip matrix in core; with certain matrices it may therefore be necessary to set a
control parameter SPARSE = F to select a more efficient system for matrices
where more than 50% of the Tij cell values are positive. See 7.11.12.

15.53.1.2 Numerical Differences between Multi-Core and Standard Programs

The development work required the computational intensive sub-routines to be
modified so that they may be undertaken in parallel. The work also required the
modified source code to be created separately using a different software compiler
than the standard release (specifically Intel Virtual Fortran rather than Salford).

An unavoidable consequence of using a different compiler is the introduction of
very small differences in the numerical precision that the internal calculations
within the assignment are stored in their respective versions. The differences
should, generally, be too small to spot but there may be some cases where, like
the analogy of a butterfly flapping its wings, the two may give detectable, even
significant, differences although each will be perfectly valid solutions.
Consequently, the results from the SATALL MC executable may be different
from the standard version.

However, the other executables that undertake the secondary analysis, should not
be affected as they are either (i) only re-building the existing stored paths rather
than undertaking new assignments; (ii) undertaking the analysis for each user
class in parallel using the same process.

15.53.2 Processors, Cores and Threads

Processors (or ‘Central Processor Units’ (CPUs) to give them their full name)
provide the computing power for the Personal Computer (PC). The processor
undertakes the tasks as specified by the Operating System (usually a version of
Windows) and the software programs using the Operating System. The processor
may have a single or multiple cores with each core capable of running
independently to provide additional computing power. Most Desktop PCs will
have at least two cores but four is becoming more common with higher-end
systems having six or more cores.

Cores and threads are often used interchangeably even though they are
fundamentally different. This has implications for the performance gains available
from multi-threaded applications.

Cores are physical hardware blocks in the central processor unit (CPU) that can
run applications serially whereas threads aren’t physical but are software-
generated tasks that can be undertaken independently. The computing power of
each core is a fixed quantity available for use. In day-to-day applications, not all
of the processing power available may be fully used if a software-generated
thread is paused or stopped whilst waiting for data so some of the processing

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-144
Section 15

power may be unused and ‘wasted’. However, running two threads on the same
core enables the second thread to take advantage of this ‘spare’ processing
power whilst the first thread was waiting for data. Whilst running two threads on a
single core reduces wastage it is not a substitute for having additional physical
cores instead

There are various different propriety names for this technology - Intel’s Hyper
Threading (HT) technology, available on most of their medium and high-end
processors, is probably the most widely known. Intel HT uses this principle
whereby each physical core is able to run two threads simultaneously.

As far as SATURN Multi-core applications are concerned, its applications will
automatically generate N threads (either up to the maximum available as defined
by the operating system, the user-defined MCNUM parameter or the maximum
number of threads that the application may be broken down into as defined in the
batch files) so that tasks may be undertaken simultaneously. The Windows
Operating System takes the threads generated by the SATURN application(s) and
schedules them to run on the threads available. No further user intervention is
required.

15.53.3 Performance Gains

The performance gains available are dependent on a large number of variables
namely:

♦ PC hardware including the processor, operating system and RAM available;
and

♦ Model size and configuration particularly with the number of zones and user
classes.

The performance testing across a range of different sized SATURN models
demonstrated the significant reductions in model runtimes available with SATURN
Multi-Core. In the following paragraphs, examples are provided for a medium
sized model on a high performance desktop PC.

Typically, the multi-threaded applications reduced the overall model runtimes by
up to 1 / N where N was the number of physical cores available (depending on the
size and type of network and the assignment parameters used). For example, on
a quad-core machine, the model runtimes on various test networks were reduced
by up to a factor of four.

Note that all the tests were undertaken on the same HP XW8600 workstation (2 x
Intel Xeon X5450 3GHz with 4Gb RAM running Windows XP 32-bit). The
processors provided eight physical cores with each core able to handle one thread
each (i.e. no Hyper-threading option was available on these particular
processors).

15.53.3.1 SATALL (Multi-threaded)

The performance gains available with the multi-threaded version of SATALL are
shown below in Figure 15.8. The overall reduction in the total CPU time for
SATALL was reduced by up to 3.5 times on a Quad-core PC. With an extra fifth
core available, further reductions in model runtimes were achieved but with six or
more cores, the model runtimes marginally increased in this example.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-145
Section 15

Figure 15.8 – Example of SATALL Performance (Medium Size Network)

The assignment undertaken using SATALL involves an iterative looping process
between successive assignment (for tree-building and loading) and simulation (for
junction interactions). However, only the main assignment routines are undertaken
in parallel and therefore the benefits of SATALL Multi-core are dependent on the
time taken within the assignment and simulation routines. Similar results were
found in other models but the performance gains will be dependent on a large
number of variables including the PC hardware available and the SATURN model
used.

SATALL Multi-Core is also compatible with Network Aggregation techniques (see
Section 15.56) and the performance gains are independent (and hence, typically,
multiplicative). Further information may be found in Appendix S.

15.53.3.2 SATLOOK Skims (Multi-threaded)

At present multi-threaded versions of SATLOOK may only be run within a limited
number of applications / batch files which skim costs; specifically: SKIMTIME,
SKIMDIST, SKIMPEN, SKIMTOLL, SKIM_ALL (see 15.27.7) and SATTUBA (see
15.41.1).

The performance gains for such routines are similar to those produced by
SATALL with reductions of up to 3.5 times on a Quad-core PC (see Figure 15.9
for applications of SKIM_ALL). Performance benefits continued to improve with
five cores but there was some erosion of the gains beyond six cores.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 Core 2 Cores 3 Cores 4 Cores 5 Cores 6 Cores 7 Cores 8 Cores

%
 o

f E
xi

st
in

g
Si

ng
le

 C
or

e
Ru

nt
im

e CPU Ratio

1/N

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-146
Section 15

Figure 15.9 – SATLOOK Performance (Medium Size Network using SKIM_ALL)

15.53.3.3 SATUFO (Multi-threaded)

SATUFO Multi Core may be used to create a network .UFO file from a .UFC file
(see 15.23.7). The same implementation is used as with SATALL and SATLOOK
skimming. The .UFO file may be created as part of the main SATALL assignment
by setting SAVUFO=T and MULTIC=T or, alternatively, as separate standalone
process following the main assignment via the batch file SATUFO.BAT (with
MULTIC=T previously used in the main assignment).

15.53.3.4 SATPIJA_MC (Distributed)

Unlike the SATALL, SATLOOK and SATUFO Multi-Core applications, SATPIJA
uses a distributed approach whereby the creation of the PIJA file from the
assignment is split into ‘N’ blocks of zones (see 13.4.9), with each block
undertaken by a separate run of SATPIJA. Each SATPIJA run is undertaken in a
separate sub-directory (or ‘production folder’) and an extra (short) SATPIJA run is
undertaken at the end to combine the ‘N’ (smaller) PIJA files into a single file.

The process is automatically controlled by a new SATPIJA_MC batch file (13.6.3)
so, in theory, there are no changes to either the basic program, $SATPIJA.EXE,
or to its associated batch file, SATPIJA.BAT (13.6.2).

As with SATALL, the performance benefits will vary between models and the PC
hardware available. The splitting of the production of the PIJA into zones blocks
is (currently) undertaken based on the sequential zone numbers and the
distribution of trips in the matrix is unlikely to be equally shared between the
blocks of zones. In addition, for each of the SATPIJA runs, the network, matrix
and control files need to be copied to/from the ‘production folders’ which will incur
a performance ‘hit’.

The performance of the distributed SATPIJA_MC on a very large SATURN
network is shown below in Figure 15.10. As noted above, the potential benefits
will be dependent on the model and PC hardware used.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 Core 2 Cores 3 Cores 4 Cores 5 Cores 6 Cores 7 Cores 8 Cores

%
 o

f E
xi

st
in

g
Si

ng
le

 C
or

e
Ru

nt
im

e CPU Ratio

1/N

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-147
Section 15

Figure 15.10 – SATPIJA_MC Performance (Very Large Network)

15.53.3.5 Performance Scaling

As illustrated in the figures above, the practical testing showed that there were
(typically) negligible performance benefits over and above the use of five cores.
This ‘throttling’ of the performance arises due to the limited memory available
within the internal CPU Level 1/2/3 caches.

Conversely practical testing on other hardware systems (such as Blade servers)
shows further performance benefits arising with six or more cores. The
performances gains are clearly dependent on the SATURN model and computer
hardware used.

15.53.3.6 Running More than One Multi-Core Assignment

In Section 15.52, we describe how SATURN may be used (and controlled) to
undertake parallel operations. The same procedures may be used with SATURN
Multi-Core without any change to those procedures.

15.53.3.7 SATCH_MC: Distributed Trip Matrix Cordoning

A distributed procedure SATCH_MC may be used to create a multiple user class
cordoned trip matrix by creating cordoned matrices by user class within separate
processors and then finally creating a full stacked trip matrix by stacking the
individual sub-matrices using MX. See 12.1.6.

15.53.4 Multi-Core Parameters

15.53.4.1 Options

To activate the multi-threaded operations within SATALL and SATLOOK once
installed, the &PARAM namelist parameter MULTIC is set to TRUE in the network
.dat file and the Windows Operating System handles the allocation of the
computational calculations between the available threads available. The value of

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 Core 2 Cores 3 Cores 4 Cores 5 Cores 6 Cores 7 Cores 8 Cores

%
 o

f E
xi

st
in

g
Si

ng
le

 C
or

e
Ru

nt
im

e CPU Ratio

1/N

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-148
Section 15

MULTIC parameter is stored in the network binary files (.ufn/s) and the value read
by SATALL, SATLOOK, etc. where necessary.

An additional (integer) namelist parameter MCALG selects one of a set of optional
algorithms which are basically provided for internal testing. We recommend the
default value of 1.

A further (integer) &PARAM Namelist parameter MCNUM defines the maximum
number of core processors to be used on the computer; default 0 (meaning use all
available threads). See 15.53.4.2 below.

For the other Multi-Core programs (i.e. SATPIJA, SATCH and SATUFO), the
Multi-Core batch files have to be used.

15.53.4.2 Upper Limit on MCNUM Values

The SATURN-MC will require more memory than the standard versions
dependent on the number of threads available. Within the software, there is no
restriction set on the maximum number of threads that may be used. For the
distributed processes, a practical limit of 8 (eight) was coded but for version 11.3
onwards, the limit was increased to 32.

15.54 SATURN CASSINI

15.54.1 Overview

CASSINI is a Visual-Basic program developed to significantly reduce SATURN
runtimes when SATURN is used within a Variable Demand Model such as a
simple DIADEM model or a more complex, bespoke modelling system. See
Section 7.4.1 for a general discussion of the problems of convergence between
supply (i.e., assignment/SATURN) and trip matrix demand models and Section
7.4.5 for a description of the iterative “cobweb” loops between supply and demand
models whose runtimes CASSINI seeks to “optimise”.

CASSINI enables the user to automatically adjust the convergence targets set for
each run of SATURN to match the current level of convergence achieved for the
supply-demand “cobweb” loops. Typically, a ‘relaxed’ set of convergence criteria
would be set for the initial loops when supply-demand convergence is poor and
the trip matrices are still highly uncertain but these would be subsequently
tightened as the overall model convergence improves; in other words, reducing
the ‘over-convergence’ within the supply model (i.e., SATURN).

See section 7.4.5.3 for a more general discussion of the principles applied by
CASSINI.

Appendix R contains a copy of the ETC2009 paper that describes the practical;
benefits of CASSINI within a full WebTAG-compliant demand model.

15.54.2 Basic Principles

Given a fixed trip matrix SATURN uses internal loops between its assignment and
simulation sub-models as well as internal iterations within the two sub-models in
order to achieve an overall equilibrium solution in terms of path-flow choices as
best represented by its “gap value” (see 9.2.1).

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-149
Section 15

 A characteristic of the process is a rapid initial descent before a much more
gradual approach to a highly converged solution as shown in Figure 15.11 below.
In this example, to achieve a %GAP value of 0.05 requires around 20 times the
CPU time to achieve a %GAP of 5.0, eight times the time to achieve a %GAP of
1.0 and four times the time to achieve a %GAP of 0.5 respectively. Clearly,
significant CPU savings may be achieved by (appropriately) reducing the
convergence targets for the SATURN highway model where possible.

Figure 15.11 – Typical SATURN Model Convergence Profile

However, SATURN may also be embedded within a larger demand model
structure (aka VDM Shell) in which the trip matrices are not fixed but are variable
and cost-dependent and this larger model structure must also converge to an
equilibrium solution (see 7.4.1). Typically some form of cobweb loop between
supply (assignment) and demand (see 7.4.5) is used in order to achieve
equilibrium between the two sub-models as illustrated in Figure 7.8.

We may quantify the degree of convergence between successive loops of the
demand models by a “supply-demand gap value” as given in TAG Unit M.2 and
defined by:

() ()()
() *100

ijctm ijctm ijctmijctm

ijctm ijctmijctm

C X D C X X
GAP SD

C X X

−
− =

∑
∑

where:

♦ Xijctm is the current flow vector or matrix from the model

♦ C(Xijctm) is the generalised cost vector or matrix obtained by assigning that
matrix

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

9.00%

8.00%

7.00%

6.00%

5.00%

4.00%

3.00%

2.00%

1.00%

0.75%

0.50%

0.25%

0.10%

0.05%

%
G

A
P

(A
ss

ig
nm

en
t)

%CPU Time

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-150
Section 15

♦ D(C(Xijctm)) is the flow vector or matrix output by the demand model, using the
costs C(Xijctm) as input; and

♦ ijctm represents origin i, destination j, demand segment/user class c, time
period t and mode m.

The convergence profile of GAP-SD over cobweb loops is similar to the
assignment profile of GAP over internal loops, i.e., decreasing rates of
improvement as convergence improves, as shown below in Figure 15.12.

The objective of CASSINI is therefore to minimise the overall CPU time required in
order to achieve a satisfactory degree of convergence within both SATURN (the
supply model) and the supply-demand model; i.e., both GAP and GAP-SD must
be sufficiently near zero at the end of the process. (We assume here that the CPU
time required to run the demand model on its own (i.e., to produce the new set of
trip matrices) is effectively fixed per loop and that internal convergence within the
(pure) demand model is not an issue.)

CPU may be reduced by either reducing the time per SATURN run and/or by
reducing the total number of cobweb loops (or, as it turns out, by reducing the
former and not increasing the latter too much). We achieve this by noting that it is
not efficient to spend a lot of CPU obtaining a highly internally convergent
SATURN assignment for a particular trip matrix if that trip matrix is then going to
be considerably changed by the next supply-demand loop. For example, there is
no point in having link flows accurate to +-0.1% if trip matrix cells are varying by +-
10%.

We therefore apply a principle of “relaxed convergence” (see 7.4.5.3) by
specifying relatively easy convergence criteria for the initial SATURN runs when
the trip matrix to be assigned is still “in flux” but to tighten up those criteria once
the demand trip matrices begin to stabilise. While this may potentially increase the
overall number of cobweb loops required to achieve convergence the expectation
is that that increase will be more than offset by the CPU saved on earlier loops
where internal SATURN convergence is much faster.

We may note that this process of “relaxed convergence” is very similar to that
used by AUTONA (see 9.5.4) whereby we set “easy” assignment stopping
conditions when the assignment-simulation loops are poorly converged (in order
to minimise assignment CPU) but tighten them up as the assignment-simulation
convergence improves.

By setting a more relaxed highway convergence target for the early cobweb loops
using CASSINI, considerable savings in CPU time may be achieved as the ‘over-
convergence’ of the highway assignment is reduced. These two convergence
profiles are also shown below in Figure 15.12.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-151
Section 15

Figure 15.12 – Typical Demand Model Convergence Profile

15.54.3 Performance Gains
With CASSINI introduced, the demand model usually requires a few more loops to
achieve the same %GAP-SD value of <0.2 (say) – typically an extra three or four
loops reflecting the slower descent in this example. Nevertheless, there was an
overall saving of around 50% in the total CPU time required compared to the
standard method as shown below in Figure 15.13.

Figure 15.13 - Comparison of Highway Model Runtimes by Demand Loop

15.54.4 Compatibility with SATURN Multi-Core
CASSINI is fully compatible with SATURN Multi-Core, the new multi-threaded
version of the SATURN assignment program. The recent testing work using the

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9 10 11
Demand Model Loop

%
G

A
P

(S
up

pl
y/

D
em

an
d)

Standard SATURN Convergence
(%GAP=0.05)

SATURN-CASSINI Convergence
(%GAP=Variable)

Demand Model (%GAP)

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9 10 11
Demand Model Loop

%
G

A
P

(S
up

pl
y/

D
em

an
d)

Standard SATURN Convergence
(%GAP=0.05)

SATURN-CASSINI Convergence
(%GAP=Variable)

Demand Model (%GAP)

0.00

5.00

10.00

15.00

20.00

25.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Demand Model Loops

C
um

ul
at

iv
e

SA
TU

R
N

 C
PU

 (h
rs

)

Standard

CASSINI

Time Saving

0.00

5.00

10.00

15.00

20.00

25.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Demand Model Loops

C
um

ul
at

iv
e

SA
TU

R
N

 C
PU

 (h
rs

)

Standard

CASSINI

Time SavingTime Saving

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-152
Section 15

GBMF modelling system demonstrated that using Multi-Core has reduced overall
CPU times by a further 25% as shown below in Figure 15.14 below.

Figure 15.14 – Performance of CASSINI and SATURN Multi-Core

15.54.5 Convergence Strategies

To operate CASSINI, the user needs to define the convergence strategy that
describes how the SATURN convergence parameters should change in response
to improving convergence in the trip matrices. As shown earlier in Figure 15.12,
the convergence parameters adopted for the early loops should be relaxed and
progressively tightened as the demand model convergence improves.

If the assignment convergence strategy is too relaxed then the supply-demand
model may not converge whereas setting too tight convergence criteria for the
initial loops may over-converge the highway assignment and ‘waste’ CPU time.
As such, it is a balancing act but it’s better to err on the side of caution and over-
converge the assignment (as a fully converged model remains the ultimate goal).

15.54.6 Running SATURN CASSINI

In normal operation, the CASSINI program is usually called internally within
SATNET and produces a supplementary ASCII data file containing eXtra
Convergence Parameters (.XCP) which propose new values for the relevant
convergence parameters such as MASL, etc. etc. SATNET then reads in this new
XCP file before fully processing the main network data file - the parameters in the
XCP file overwriting those contained in the network data file. CASSINI is
activated in SATNET by setting the parameter CASINI=T under &OPTION.

15.54.6.1 File Inputs

CASSINI requires three input files, namely:

13.82

9.52 9.52

20.42

8.78

4.03

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

Standard Method (Parallel
Assignment)

Plus CASSINI Plus CASSINI & Multi-Core

To
ta

l C
PU

 fo
r a

ll
O

pe
ra

tio
ns

 (h
rs

)

SATURN
Demand

Time Savings

47% 63%

13.82

9.52 9.52

20.42

8.78

4.03

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

Standard Method (Parallel
Assignment)

Plus CASSINI Plus CASSINI & Multi-Core

To
ta

l C
PU

 fo
r a

ll
O

pe
ra

tio
ns

 (h
rs

)

SATURN
Demand

Time Savings

47% 63%

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-153
Section 15

♦ An existing SATURN Network data file with some additional parameters to
control the CASSINI process;

♦ A CASSINI Control ASCII file that defines the convergence strategy/strategies
to be implemented; and

♦ An ASCII report file on the Demand Model convergence (which defaults to a
DIADEM output file).

SATURN NETWORK FILE

As noted above, to operate CASSINI, a number of new parameters need to be
added to the existing &OPTION section (see 6.1) in the SATURN Network data
file as described below.

CASINI
If TRUE, CASSINI will be called within SATNET and a number of
additional checks will be undertaken to ensure the files named below
exist. If any of these files do not exist, a semi-fatal error occurs.

CASTXT
Specifies the type of demand model used and the file format (and other
operations) that CASSINI will expect. There are currently two options
either:

‘DIADEM’ file format and CASSINI will extract the convergence of the
demand model from a standard DIADEM report file a illustrated below –
this is the default option, or

A simpler ‘OTHER’ file format with the file consisting of two data fields in
CSV format. The first value is the demand model loop number whilst the
second value specifies the GAP-SD convergence of the demand model.

FILCAS The “file name” of the CASSINI Control file defining the convergence
strategy to be applied (see below for more information).

 Default - blank (i.e., no file defined at this stage)

FILGAP The “file name” of the ASCII CSV file reporting the convergence of the
demand model

 Default – blank (i.e., no file defined at this stage)

Note that the convergence parameters in the SATURN network file should be
relaxed as these will be applied for the assignment of the first demand model loop.
These will be subsequently overwritten by .XCP produced by CASSINI.

CASSINI CONTROL FILE

The convergence strategy is defined in the CASSINI Control file (as specified by
FILCAS parameter). The strategy is defined by setting a series of %GAP-SD
thresholds which, for a given %GAP-SD (or lower) in the demand model, the user
defines the parameters that CASSINI will export to the .XCP file. The parameters
are a sub-set of those normally contained in the &PARAM &END section of the

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-154
Section 15

network data file, in particular those that relate to convergence options within
SATALL as shown in the table below. (N.B. the list may be extended if
necessary.)

The current list of parameters that may be changed by CASSINI is as follows (with
the new v11.2 parameters in italics):

♦ &OPTIONS: UPDATE, WSTART, DIADEM

♦ &PARAMS: SAVEIT, UFC109, FISTOP, STPGAP, XFSTOP, UNCRTS,
MASL, KONSTP, ISTOP, MET, NISTOP, NITA_M, NITA_C, NITA_S, NITS,
NITA, SPIDER, MULTIC, ILOVEU, NITS_M, SAVUFO, AK_MIN

The user may also provide more than one strategy with the strategy chosen
determined by the number of loops undertaken by the demand model. This
provides the user with the flexibility to switch between strategies depending on
whether the demand model is in an early stage (e.g., loops 1 to 5 for example),
middle stage (e.g., loops 6 to 10) or late stage (loops 11 onwards) and
approaching completion as illustrated below:

 Early Middle Late

Demand Model Loop 1 to 5 6 to 10 11 to 15

KONSTP 1 1 1

STPGAP 10% 2.5% 0.05%

ISTOP 90% 95% 98%

MET 0 0 0

SAVEIT F T T

UNCRTS 10% 2.5% 0.05%

NISTOP 1 1 2

MASL 10 40 80

NITA_S 25 100 250

Each strategy is identified by a “[LoopThreshold Y]” where Y is the demand
model loop which that strategy is used. If more than one strategy is specified, the
Loop Thresholds must be provided in ascending order.

Within each strategy (or LoopThreshold), the following row(s) provide the
parameters to be transferred to the .XCP file depending on the GAP-SD value
reported in the Demand Model convergence file (FILGAP). Each row starts with
GAPValue Z% where Z% is the %GAP-SD threshold that identifies the
parameter(s) to be adopted for the next loop if the demand model convergence is
less than the value of Z. The parameters for each GAP-SD value must be
contained on the same row and each parameter separated by a comma.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-155
Section 15

In operation, CASSINI will:

♦ Read the demand model convergence file (as defined by FILGAP) and
determine the number of loops undertaken (so far) by the demand model and
resulting demand model convergence;

♦ Read the CASSINI Control file (as defined by FILCAS)

♦ Match the number of demand loops undertaken and the strategy to apply (as
defined by the Loop Threshold). So, for example, if there are two strategies:
an initial strategy for the first loop and a second defined for loop 5 onwards
[i,e., LoopThreshold 5], and four loops have been undertaken so far, the first
strategy will be applied;

♦ Within that strategy, compare the current demand model GAP-SD value
against the various %GAP-SD ranges [GAPVALUE] and export the
parameters to the XCP file.

An example of the control file is provided below.

EXAMPLE OF THE CONTROL FILE

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-156
Section 15

EXAMPLE OF THE ‘DIADEM’ DEMAND MODEL FILE

EXAMPLE OF THE ‘OTHER’ DEMAND MODEL FILE

DIADEM Results FileDIADEM Results File

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-157
Section 15

EXAMPLE OF THE XCP FILE

15.55 QUIET & QUICK Options via SATWIN

The QUIET and QUICK options in SATURN (see section 14.9 and 14.10) may
also be activated via SATWIN10 or SATWIN11. Once QUICK and/or QUIET is
toggled ‘ON’, the option remains active for subsequent SATURN commands
within SATWIN until they are toggled to ‘OFF’. The QUICK and/or QUIET settings
in SATWIN are also applied to DOS command line runs created by the SATWIN
(ie via the “TOOLS/SATURN DOS Command Shell” menu option). The SATWIN
settings can be overwritten if QUICK and/or QUIET is subsequently explicitly set
on the command line.

15.55.1 Using SATWIN10

In SATWIN 10 this is done by setting the QUIET and QUICK drop down to ON as
shown below.

XCP FileXCP File

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-158
Section 15

15.55.2 Using SATWIN11

In SATWIN 11 this is done by pressing the QUIET and/or QUICK buttons located
on the bottom right-hand corner of the SATWIN11 interface as shown below.

15.56 Network Aggregation (SPIDER)

15.56.1 Basic Principles

Network aggregation is a technique whereby links and/or nodes in the basic
assignment network may be combined together into an equivalent set of
aggregated links/nodes with the objective of reducing the cpu time required to
carry out the basic assignment steps of tree building and loading.

For example, as illustrated below, a one-way link from A to B followed (in series)
by a one-way link from B to C (so that node B has only one entry and one exit)
may be replaced by a one-way link from A to C with a cost equal to the sum of the
costs on A-B and B-C. Thus we have reduced two links to one link and removed
node B while at the same time retaining the same cost of travel between A and C
so that, if links A-B + B-C are part of a minimum cost path from a particular origin
in the original network, then so is A-C in the aggregated version of the network.

A-------B------C === A----------C

The cpu time required to build a minimum cost (shortest path) tree from a single
origin to all nodes in a network may be estimated by formulae such as, for the
d’Esopo algorithm most commonly used in SATURN:

Tcpu = a1 + (a2 Nnodes + a3 Nlinks) (1 + a4 Sqrt(Nnodes))

See “Improved shortest path algorithms for transport networks” by Dirck Van Vliet,
Transportation Research Vol. 12, 7-20 (1978) and reproduced in Appendix T.

Other algorithms may have slightly different functional forms but all share the
same basic property of being increasing functions of the number of nodes and the
number of links in the network. Similarly the cpu time required to load a single
(origin) row of the trip matrix is proportional to the number of destinations times
the number of links.

Thus the total time required to carry out a single all-or-nothing assignment step,
the basic building block of the Frank-Wolfe algorithm, is an increasing function of
(a) the number of (origin) zones, (b) the number of nodes and (c) the number of
links. Any reductions in one or all of these should therefore lead to reduced cpu
times; network aggregation achieves this by reducing the number of nodes and/or
links.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-159
Section 15

In addition network aggregation reduces the cpu time involved in building trees
during post-assignment analysis such as skimming, select link analysis, etc, etc.
See Section 15.56.7.

A condensed version of the material that follows was presented at the ETC
(European Transport Conference) in Glasgow, 2010, by Wright et al and
reproduced in Appendix S (.pdf version only).

15.56.2 Aggregation Techniques

15.56.2.1 2-arm Links in Series

The simplest example of combining two links in series into one has been
illustrated above. Clearly the same technique may be applied in both directions
when both links A-B and B-C are two-way (assuming that U-turns are banned at
B); hence an aggregate link A-C replaces A-B and B-C while C-A replaces C-B
and B-A.

The same technique may clearly be extended to the case where there are a series
of more than one two-arm nodes between A and B such that a single link from the
start to the exit node replaces all the intermediate links and all the intermediate
nodes are removed. (This form of configuration occurs not infrequently in
SATURN networks when a number of artificial nodes are inserted between two
“main” nodes in order to give the link “shape” – although clearly a better method is
to define the shape via a .GIS file. In fact a common theme in network aggregation
is that the degree of potential aggregation and time savings that are available may
depend very sensitively on the coding techniques adopted.)

15.56.2.2 Aggregating Multiple-arm Nodes

It is also possible to eliminate nodes with more than 2 arms, for example a 3-arm
node N as illustrated below

May be aggregated into a “triangle”:

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-160
Section 15

Such that the cost on the aggregate link A-C is the sum of the original costs on A-
N plus N-C. (Note that it is not necessary to create a “U-turn” link, say, from A to A
equivalent to A-N plus N-A since, even though the movement may be valid in the
original network, it can never be part of a shortest path tree.)

Note that in this case, if all the original links are 2-way, then the original network
segment contained 6 links as does the aggregated segment. So, if we have not
managed to reduce the number of links, we have at least removed one node
which, given the form of equation (15.x), should still lead to an overall reduction in
cpu time.

On the other hand if one of the original links were one-way - imagine that A-N
were one-way for example - then the original segment has 5 one-way links but the
aggregated segment has only 4 (A-C, A-B, B-C and C-B) and therefore the
numbers of both nodes and links has been reduced.

A common example of a 3-arm node might be an entry ramp onto a motorway
where A-N would be a one-way entry onto a motorway with one-way links B-N and
N-C. In this case 3 links are reduced to 2.

The entry ramp configuration may be generalised to any node that has a single
one-way exit and n one-way entries such that n+1 links are reduced to n. Equally
all nodes with a single entry and multiple exits may be aggregated to save one
node and one link.

Indeed a node with any number of entry/exits may always be removed by
aggregating pairs of entry/exits. The example of a 4-arm node is illustrated below.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-161
Section 15

which reduces to:

Note that here, if all arms are two-way, then we actually increase the number of
links from 8 to 12 in order to remove 1 node, although if one or more of the arms
are one-way the increase in links is reduced and may even represent a reduction.
(E.g., 2 one-way entry links and 2 one-way exit links reduce 4 links to 2.)

15.56.2.3 Application to “Spigot Zone Connectors”

A not uncommon coding “trick” used in SATURN is illustrated below where a zone
Z, rather than being connected onto a link A-B directly, is connected by an
external simulation “spigot” or “stub” node S which is in turn connected to an
“artificial” mid-link node M. (See also Sections 16.6.2 to 16.6.4 and 11.9.4.1)

However, in the assignment network representation of this section of the network
where “mini nodes” are created at the start and end points of all one-way links, the
situation would be as follows:

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-162
Section 15

We therefore note that traffic leaving the network from zone Z has only two
possible paths available to it: Z-S1-M1-M3-B2 or Z-S2-M2-M4-A2. Equally there
are only two possible paths into Z from A1 or A2. Thus, in this situation we may
aggregate the network into 4 aggregate links – Z-B2, Z-A2, B1-Z and A1-Z – while
at the same time removing all the mini nodes at S and M. (Assuming all links are
two-way this removes 8 nodes out of13 and 8 links out of 14.)

Note that if the spigot node S has been coded as a buffer node under 33333 (see
Section 16.6.3) then a third mini-node is created at S has shown below. This
however does not change the general principle that zone Z is connected via
aggregate centroid connectors to nodes A and B but it does increase by 2 the
number of assignment links replaced.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-163
Section 15

We may further note (see also 16.6.4) that the above buffer node connector
allows possible U-turns via S1-S3-S2 in the full network but that this possibility is
explicitly excluded in the aggregate network since, e.g., there is no aggregate link
created from A1 to A2 which would correspond to a U-turn.

15.56.2.4 Spigot Centroid Connectors in General

A more general variation on the spigot centroid connector configuration occurs
when the simulation node M is connected to more than 2 other internal simulation
nodes. In this situation a “mini aggregation” may be invoked by substituting direct
centroid connector links from M1 to Z and from Z to M2 in Figure 15.x with a
reduced number of zones and/or links removed. However, see step 2) in 15.56.3,
it is still an aggregation step worth doing.

15.56.2.5 Some Properties of Aggregate Networks

The final aggregate network will consist of a sub-set of the original nodes (since
none of the steps described above introduce new nodes) plus a set of new
aggregate links joining those nodes. Note that the number of zones remains
unchanged and therefore the proportion of zones within nodes – as well as the
proportion of centroid connector links within links – increases significantly.

In addition an aggregate network may contain a significant number of “duplicate
links”, i.e., links with the same A-node and B-node, the reason for which is
discussed below.

Both of these slightly unusual network properties may lead to variations in basic
tree build algorithms becoming effective; see below.

Note that the sub-set of nodes which are retained within the aggregate network
may be selected and therefore highlighted within P1X; see 11.6.3.5.

15.56.3 Implementation within SATNET

A (semi-empirical) methodology has been introduced into the network building
procedures within SATNET to produce an aggregated network, activated if a
&PARAM parameter SPIDER is set to .TRUE. (default .FALSE.). It proceeds via a
number of successive steps as follows:

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-164
Section 15

1) Aggregate certain “priority” nodes, i.e., buffer nodes where there are
banned/penalised turns and weaving sections, where aggregation is
essential for the modelling (see 15.56.7.3);

2) Aggregate all “spigot” centroid connectors (15.56.2);

3) Aggregate stub link centroid connectors to external buffer zones (see
15.56.2)

4) Remove any bus-only links (since they will never form part of minimum
cost paths for trips in the trip matrix)

5) Aggregate all nodes which have a single exit with one or more entries
(N.B. this will include all “dummy” 2-arm nodes)

6) Ditto but with nodes with a single entry and / or more exits

7) Aggregate all nodes with, progressively, 3 arms, 4 arms, etc. etc. up to a
maximum of MAXSPA arms

Thus at the end of each step a new aggregated network is created and passed to
the following step for further aggregation. Steps 5) to 7) are repeated iteratively
with the maximum number of arms increased by one on each pass. Thus on the
first pass all 3-arm nodes are aggregated in step 7), on pass 2 all 3- and 4-arm
nodes are aggregated, etc. etc. The iterative loops are repeated until no further
aggregation is feasible or the maximum number of arms per node which may be
aggregated reaches MAXSPA as set in &PARAM (with a default value of 15).

A further rule is applied in step 7) which is that a node is only aggregated if, in
addition to having less than a certain number of arms, it also satisfies the (highly
empirical) rule that:

 Nnew =< 23 + Nin + Nout + N2w / 2

Where: Nin = the number of in-bound directional links

 Nout = out-bound links

 N2w = number of two-way arms

 Nnew = number of new direct links that will be created = Nin * Nout - N2w

For example, aggregating a 6-arm node with 2 two-way arms, 2 one-way inbound
and two one-way outbound would create 14 new links from 8 existing links (i.e.,
we add 6 links and lose 1 node) but the above rule says to go ahead regardless.
In fact this rule allows nodes with up to roughly 20 arms to be removed even if this
seems totally counter-intuitive – empirically it saves CPU! And hencc the default
value of MAXSPA = 15 noted above.

Note that there is a large degree of overlap between some of the steps. Thus the
nodes which are aggregated under steps 5) and 6) would also be picked up under
step 7) but there may be a benefit to identifying the simplest structures and
aggregating them first before eliminating the more complex node structures.

Note as well that the number of links per node is not fixed but potentially grows
with each successive step. Thus node A may have initially have 4 arms but if one

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-165
Section 15

of its neighbouring nodes B is aggregated then A will have additional links added
to all of B’s other neighbours.

At the end of the process the aggregated network structure is stored within the
.ufn/.ufs files so that it may be optionally used within subsequent assignments
and/or analyses.

15.56.4 Implementation within SATALL

Having created an aggregated network within SATNET the assignment procedure
within SATALL may then be based on the aggregated network. Thus the basic
Frank-Wolfe algorithm proceeds as normal with the one exception that step 3 (see
Section 7.1.2) - build minimum cost trees and load all O-D trips to the minimum
cost paths – uses the aggregated network. This is turn involves two extra steps:

1) Prior to tree building calculate the current cost of each aggregated link by
summing the costs of its constituent links, and

2) Post loading transfer the flows onto the aggregate links back onto their
constituent normal links to obtain Fa(n).

All other FW steps, e.g. the optimum combination of link flows and the calculations
of the objective function in step (4) are all based on the basic network definitions.
(Note that steps (1) and (2) above are repeated once per user class for MUC
assignment.)

While steps (1) and (2) are an extra overhead on the normal all-or-nothing loading
sequence which increases cpu these are compensated by the reductions in cpu
time for tree building and loading per origin and, provided that the number of origin
zones is large, the latter will always outweigh the former. Indeed, the larger the
number of zones, the more cpu time will be saved.

It should also be noted that the aggregate version of Frank-Wolfe may
occasionally give different results to the normal version. One reason arises when
there are two equal minimum cost routes between two nodes and the one
selected is essentially arbitrary. Equal cost routes occur most commonly on the
very first iteration where the costs are based on free flow speeds, distances etc.
which may well be identical on parallel routes; on later iterations, where flows are
essentially continuous variables, equal costs are much less likely. Another reason
may be the treatment of possible U-turns at simulation-buffer boundaries. In any
event, the final differences should be relatively small and it should be borne in
mind that both solutions are equally valid.

15.56.5 Alternative Tree Building Algorithms

Having established a different “form” of network on which to build trees it should
equally be feasible to create different tree building algorithms that take advantage
of the new network properties.

15.56.5.1 Duplicate Links

For example, aggregate networks tend to have a large number of duplicate links
(i.e., joining the same two nodes together) whereas these are not permitted in
“normal” networks. (The reason that they are not permitted in normal networks is

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-166
Section 15

not because they are judged not to exist but due to the technical problems of
being able to uniquely identify links by their A-node and B-node; e.g., in a counts
file.)

The reason that duplicates can arise in aggregate networks is illustrated below
with a segment of a “grid network”.

If node D is aggregated a diagonal link from C to B will be created whose cost is
equal to the costs of CD plus DB. Similarly if A is aggregated another diagonal link
will be created from C to B with cost CA plus AB. For all origins (with costs fixed)
only one of the two alternative CB links may possibly appear in the minimum cost
tree, that version which has the lower cost. (Note that it is quite possible that
neither link appears in the minimum cost tree if B has an entirely different back-
node).

Thus if we eliminate the more expensive link between C and B prior to tree
building we will save time on tree building since only one version of link CB will
ever be considered as a candidate for inclusion in the minimum cost tree.
Unfortunately it is not possible to totally eliminate one of the duplicates once and
for all since the one to be eliminated depends on the current definitions of link
costs which change throughout the assignment process. However for a particular
iteration of Frank-Wolfe where the costs are fixed it is possible to eliminate the
more expensive alternative and therefore save cpu time for each origin zone’s tree
build.

This modification has therefore been introduced into the Frank-Wolfe algorithm
applied to aggregated networks and is found to reduce total cpu significantly.
(Duplicate links do not need to appear just as pairs: it is quite feasible for several
duplicate links to exist between the same two nodes so that eliminating all but one
reduces cpu time still further.)

15.56.5.2 Separate Centroid Connectors from Real Links

Tree building algorithms are based on repeating a number of very simple steps a
very large number of times; any reduction in the basic step sequence (no matter
how silly it appears!) may lead to not insignificant reductions in CPU time.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-167
Section 15

Thus in the aggregate tree building algorithm based on d’Esopo-Pape (see
Appendix T) we find empirically that splitting the algorithm into three distinct
stages saves a small amount of time. Specifically the stages are:

1) Construct the minimum cost paths from the origin zone to all connected
nodes. (Since we know that all the connected nodes must be added to
the loose end table we can do away with that test.)

2) Carry on tree building through all “real” links but ignore all out-bound
centroid connectors to destination zones.

3) For each destination zone consider all entry centroid connectors and
choose the minimum cost alternative (Once again we avoid any tests as
to whether a minimum cost link requires a loose-end table entry).

The reason that this 3-stage process appears to reduce CPU time for aggregate
networks but not necessarily for normal networks is probably associated with the
fact that aggregate networks contain a much higher proportion of zones and
centroid connectors than normal networks (see 15.56.2 above).

15.56.5.3 Eliminating Zero-flow Links

If we “know” in advance that certain links are never going to feature in minimum
cost O-D paths then they may be eliminated before the tree building takes place.
In particular if a link has zero flow then it can never be part of a used path for an
O-D cell with positive trips and it may be ruled out a priori.

For example, if we are re-constructing O-D paths post-assignment as part of a
Select Link Assignment (see 15.23 and/or 11.8.1) then we are only interested in
those paths which carry positive flows and clearly any link which we already know
has zero flow cannot be part of those paths. Thus before carrying out SLA we
remove all links with zero flow in total.

On the other hand if we are skimming, say, O-D distance or time then it is possible
for a link with zero flow to be part of a min-cost O-D path where the O-D itself has
zero flow.

Equally during the extra SAVEIT assignment where we have already carried out a
full assignment as part of the assignment-simulation loops we know which links
are unused and these can be eliminated within SAVEIT. (Although, strictly
speaking, it is possible that, due to poor convergence, a link could be used during
a SAVEIT assignment when it was never used during the “full” assignment.)

At the moment the “trick” of eliminating zero-flow links is used in the following
situations:

1. SAVEIT assignments: see 15.23.2;

2. SAVUFO calculations: see 22.5.3;

3. Select Link Analysis (SLA) with P1X: see 11.8.1.12.

4. SATCH cordoned matrices; see 15.56.7.2.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-168
Section 15

Eliminating zero-flow links can substantially reduce CPU time in all instances
since, empirically, it appears that over 50% of aggregate spider links may be
unused.

N.B. In principle it is possible to apply the same rules to “basic” networks but
since, in practice, there are very few if any “proper” links with zero flow then it is
not worth the added effort.

15.56.6 Results from Representative Networks

15.56.6.1 Pure Assignment (SATASS only)

We display below a table of results from a randomly selected set of real-life
networks in which we give:

♦ The number of zones and user classes (which are the same for both basic
and aggregated networks)

♦ The number of (assignment network) nodes and links in the base network

♦ The number of nodes and links in the aggregated network

♦ The number of newly created aggregate links which are duplicates (joining
the same A- and B-nodes)

♦ The total number of equivalent base links which the aggregate links map into

♦ The ratio of base/aggregate CPU time for a single Frank-Wolfe assignment
(i.e. no SATSIM)

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-169
Section 15

Table 15.2 – Performance Comparison (SATASS CPU time only)

Network Zones UC
Original Network Aggregate

Network Duplicates Equivalent CPU
Ratio

Nodes Links Nodes Links

New
Town(5) 115 2 1,964 3,022 308 2,858 362 24,232 3.2

York 176 1 1,246 2,329 340 3,026 413 16,379 2.2

Horley (4) 229 2 4,263 6,440 621 6,313 1,063 5,89 3.3

Heysham 299 3 3,758 6,198 692 6,712 949 50,401 1.9

Dorset (2) 527 6 3,204 20,116 1,616 18,114 4,693 175,665 9.2

Corby 598 8 13,374 21,229 2,310 27,364 4,187 200,797 13.5

Bristol (1) 600 6 13,515 19,947 1,688 17,675 3,444 177,598 6.7

SALT 804 4 65,183 96,602 8,336 69,240 11,121 564,480 3.9

GMTU 993 1 42,665 63.596 5,264 60,363 14,422 567,896 11.0

East
London 1,348 7 30,633 52,277 4,926 53,363 17,028 387,600 8.6

M25 1,417 5 75,178 109,568 9,992 68,584 5,601 556,742 9.6

Central
London 1,638 7 28,587 60,325 6,064 61,922 22,645 335,510 6.0

South
London (3) 2,520 5 57,877 93,905 8,833 96,296 23,593 753,240 2.9

LoHAM 5,624 5 119,534 185.576 21,348 151.776 13.513 962.301 3.75

The networks are arranged in order of increasing number of zones.

It is difficult to draw any universal conclusions from the above table; clearly the
improvement in CPU time is a function of certain network coding “idiosyncrasies”
(e.g., whether or not stub zone connectors are widely used). There is a tendency
for networks with smaller number of zones to be more efficient under aggregation
as we might expect since the more zones there are, the more opportunities there
are to reduce tree building times compared to the overheads involved in
constructing aggregate link costs.

15.56.6.2 Full Assignments (Assignment & Simulation)

Since SATURN incorporates both assignment and simulation sub-models and the
CPU time for the simulation is unaffected by network aggregation the overall
reductions for full runs are less spectacular than those demonstrated for pure
assignment sub-models above. Five of the above networks were selected (as
identified with suffixes 1 – 5) to compare the overall runtimes for the full SATURN
assignment using the four Frank-Wolfe-based assignment techniques currently
available:

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-170
Section 15

♦ Standard Frank-Wolfe (FW);

♦ Multi-Core Frank-Wolfe;

♦ Frank-Wolfe with Network Aggregation technique; and

♦ Multi-Core Frank-Wolfe with Network Aggregation technique.

The assignments were undertaken on the same desktop PC with up to four cores
available to the software package. The three main elements of the SATURN
assignment are:

♦ Path-building and loading with fixed flow-delay relationships (assignment);

♦ Updating the flow-delay relationships representing vehicle interactions at
modelled junctions (simulation); and

♦ Re-estimation of the final paths and costs for skimming (SAVEIT – if
selected).

The first and third elements are multi-threaded whilst the simulation remains a
sequential process. Consequently, the reductions in CPU time arising from using
both network aggregation and multi-core processes do not directly translate into
the same proportional reduction in total CPU time.

Figure 15.15 presents the total CPU times for the FW algorithm combined with the
NA and/or Multi-core techniques using the five SATURN models. The total CPU
time is normalised with respect to the standard FW algorithm.

The results show that all three techniques - using either Multi-Core and/or
Network Aggregation - are at least twice as fast as the existing standard FW
algorithm for all five models and, in the best case found, virtually 20 times faster.

The reductions in CPU expenditure achieved by the Multi-Core algorithm or the
Network aggregation on its own are broadly comparable with CPU time reducing
by a factor of 2 to 2.5 for Model 5, increasing to factors between 4 and 5 for Model
1. In most cases, aggregating the network before assignment is more efficient
than distributing the original network across more than one CPU core – the
exception is the very large Model 3 network.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-171
Section 15

Figure 15.15 – CPU Time by Algorithm (Normalised to Standard FW)

As expected, creating a multi-core version of the network aggregation provides a
substantial “multiplicative” reduction in CPU time. In all cases, Multi-Core FW with
NA reduces the CPU expenditure by factors of between 3 (Model 5) and 20
(Model 1). The overall performance gain is principally determined by the
proportion of CPU expended on path building/loading relative to that spent in
junction simulation and the re-estimation of paths for the final assignment. The
overall reductions in CPU expenditure may be substantial – for example, for
Model 3, using Multi-Core FW with NA reduces the model run time (compared to
the standard FW technique) from 4.5 hours to less than 30 minutes with the same
level of convergence.

Further information on the practical benefits of Network Aggregation techniques
may be found in the Appendix S.

15.56.7 Other Applications of Aggregate Networks

Thus far we have concentrated on how aggregated networks may be used to
reduce the cpu time required to (a) build minimum cost trees and (b) load O-D
trips onto those paths. They may, however, be used effectively in several post-
assignment analyses as well as other modelling issues.

15.56.7.1 Tracing Paths in Aggregate Networks

If an analysis option of min-cost O-D paths wishes to trace a path which, in the
basic network, follows a link sequence A-B-C-...X-Y-Z then it requires 25 steps. If,
on the other hand, the network has been aggregated such that the equivalent
aggregated path is A-G-M-R-Z then only 4 steps are required: clearly potentially
much faster.

0.05

0.06

0.07

0.31

0.33

0.18

0.15

0.36

0.44

0.40

0.26

0.27

0.28

0.44

0.50

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Model 1

Model 2

Model 3

Model 4

Model 5

Multi-Core FW FW with NA Multi-Core FW with NA

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-172
Section 15

For example, O-D skims of, say, times along a forest may equally be calculated
on an aggregated network following the same basic procedures as for standard
networks but with one preliminary step: calculate the time (or whatever quantity is
to be skimmed) per aggregate link. CPU savings accrue from being able to
reconstruct the minimum cost paths per iteration using the much more compact
aggregate network such that similar time savings to those illustrated above for
assignment should also be achieved for skimming.

See Section 15.27.7.2 for information on aggregate skims within SATLOOK as
selected by a parameter USESPI.

Aggregated networks are also optionally used for Select Link Analysis within P1X
- see 11.8.1.12; also controlled by a parameter USESPI..

15.56.7.2 Tracing Paths in Hybrid Networks

For certain applications it is possible to trace paths through a “hybrid network”
which consist of a mixture of both aggregate and normal links. Hybrid networks
were first introduced in release 11.2.3 in February 2013.

For example, if in the above example of the basic path A-B-C-....X-Y-Z one were
doing a select link analysis of link K-L one could analyse a path that used the
aggregate links A-G, M-R and R-Z but, for the section G-M which contains the
individual link of interest K-L, one could revert to a basic network trace G-H-I-J-K-
L-M. Thus the “hybrid network” is formed of aggregate links where no “events of
interest” (e.g., a selected link) occur plus “normal” network links in the vicinity of
“events”. In so far as the majority of links in the hybrid network are aggregate the
number of steps required and hence CPU will be reduced.

The concept of a hybrid network was first used in trip matrix cordoning where the
“event” that distinguishes aggregate from normal links is the crossing of a cordon
link (either in-bound or out-bound). See 12.1.4, note 13). It is planned to extend
the principle to other areas of post-assignment analysis such as SATPIJA and
SLA.

We may also note that the concept of a hybrid network may be usefully combined
with that of eliminating zero-flow spider links prior to tree building and path tracing
as explained above in 15.56.5.3.

15.56.7.3 Banned and/or Penalised Turns at Buffer Nodes

Post release 11.1 it is possible to model banned and/or penalised turning
movements at buffer nodes provided that the node in question has been
aggregated (i.e., removed). These are defined within the 44444 data section using
the same formats etc. as for simulation nodes. See section 6.7.

For example, if a turn A-B-C in the buffer network is to be banned then, if and
when B is aggregated, the aggregate link from A to C (link A-B plus link B-C) is
not created. If the turn is penalised then the aggregate link A-C is created but any
time A-C is used during tree building then the necessary penalty is added to its
cost. The same principles apply if A-C is part of longer aggregate links.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-173
Section 15

15.56.7.4 Motorway Weaves in Aggregated Networks

The necessary flow calculations required to invoke the motorway weaving rules
(see 15.40.4.3) may be obtained far more efficiently using Network Aggregation if
all the nodes within the motorway weaving section have been aggregated.

15.56.7.5 High-Priority Nodes for Aggregation

In the cases of both banned turns and motorway weaves in order to insure that
the required nodes are in fact aggregated (since the final set of nodes to be
aggregated is effectively arbitrary) those nodes are assigned a high priority which
means that, in terms of steps 5) and 6) in the algorithm described in 15.56.3, they
are preferentially aggregated at an early stage of the process, independent of the
number of arms per node. Once all the “priority” nodes have been aggregated the
process proceeds as described in 15.56.3.

15.56.8 Further Research

Despite the impressive reductions in cpu time achieved with the current
techniques there are almost certainly further improvements possible. Thus the
rules that are used to determine when a node should be aggregated – and indeed
the order in which nodes are considered - are highly empirical and their efficiency
is highly dependent on unknown factors, e.g., how many new links will form
duplicates which may be subsequently removed. A more “intelligent” set of rules
would doubtlessly lead to further improvements in cpu times.

In effect network aggregation may be thought of as a form of “pre-tree” building; in
other words, before a minimum cost tree is built from a single origin, a number of
minimum cost “sections” are pre-constructed from existing links which then allow
the actual tree building to proceed with larger steps. Thus if the node-link
sequence A-B-C-D-E-F is repeated as a minimum cost segment for multiple
origins then replacing it by a single aggregate link A-F reduces CPU. On the other
hand if the aggregated link A-B-C-X-Y-Z never features as part of a minimum cost
path then its presence simply wastes CPU.

The “trick” therefore is to selectively aggregate “good” link sequences and to avoid
the “bad”; the current rather simple-minded procedure must almost certainly be
capable of improvement.

There may also well be more efficient methods for combining links together which
are dependent on a particular set of link costs - as opposed to the current network
aggregation procedure which aggregates links without regard to costs.

It may also be possible to eliminate a greater number of aggregated links prior to
tree building than just removing the more expensive duplicates. For example, one
may be able to apply a “triangle rule” which says that if nodes A, B and C form a
triangle and c(A,B) + c(B,C) < c(A,C) then link AC may be disregarded in terms of
tree building (for that particular set of costs, not necessarily universally).

An alternative, though less rigorous, approach would be to distinguish between
“probable” and “improbable” links where an improbable link (A,B) is very unlikely,
given its cost and the alternatives from A to B, to be part of any min cost trees but
an exact assessment might take longer than the time saved by eliminating that
link. Eliminating improbable links will speed up individual Frank-Wolfe iterations

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-174
Section 15

but it would be necessary, near the end of the process, to re-introduce all links
just to confirm that none of the improbable links should be reclassified. (As long as
Frank-Wolfe finds lower cost auxiliary solutions on each iteration it should not
matter if it finds the absolute minimum cost auxiliary as long as no potential paths
are being ignored in perpetuity.)

The above thoughts on eliminating certain links are based on the empirical
observation that in most spider web networks less than 50% of all aggregate links
are assigned flows so that, had they been eliminated a priori, the ultimate solution
would be the same but achieved more quickly.

Several good topics for further research!

15.57 Residual (Incorrect) Path Flows and Restricted Frank-Wolfe
Algorithms

15.57.1 Residual Path Flows: Definition

A problem in identifying path flows under the Frank-Wolfe algorithm for solving
Wardrop Equilibrium (which does necessarily not apply to other algorithms such
as OBA) is that of “residual paths”. A residual path is one which has been
generated as a (current) best route on an early iteration of Frank-Wolfe but which,
by the end of the algorithm, is very much longer than the current best route but
has not been totally removed from the final averaged solution.

Thus, consider a situation where an O-D pair has two alternative routes available:
a “short” route that goes through a signalised intersection and a “long” route
without potential capacity restrictions. At equilibrium the signals are under
capacity and incur relatively minor delays and the all-or-nothing solution with all O-
D flow going through the “short” route and none on the “long” route is the correct
solution for this particular O-D pair.

However, it may have happened that on an early FW iteration (most likely the
second iteration following the initial all-or-nothing assignment to free-flow routes)
the signals had become heavily over capacity (due to the routes chosen by
alternative OD pairs which later divert elsewhere) and the minimum cost OD route
for our particular O-D pair went via the long route on that particular iteration. But
on all subsequent iterations the signals are never again as over-saturated and the
best O-D route is always via the signals. In this case the final path flow
contribution from the long route (as expressed by equation 7.2b) will never be
reduced to zero unless (unlikely) a particular value of lambda equals 1.0.

The creation of incorrect residual flows is an intrinsic property of the Frank-Wolfe
algorithm and is one of the reasons why its convergence rate slows drastically as
it approaches convergence.

Apart from slowing down convergence residual flows may also have several other
undesired consequences.

15.57.2 The Importance of Residual Flows

The practical impact that residual flows may have on different forms of path
analysis (see the list in 15.23.1) can be extremely variable. For example, in Select
Link Analysis, if a link has a total flow of 1000.0 pcus/hr of which 0.1 is based on

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-175
Section 15

residual flows then the differences between including or excluding the residual
flows is arguably minimal.

On the other hand the impact of a small residual flow may be considerably
amplified in certain circumstances. Consider, for example (and this is based on an
example found in a real-life network), an O-D pair separated by a single link of
100 metres with signals at the downstream end such that, at equilibrium, the
correct solution is an all-or-nothing flow along that link even if the signals turn out
to be over capacity. (Since in that case more distant O-D pairs would have options
to divert further up/downstream to avoid the congested signals but the only option
for the “local” O-D pair might involve a relatively long and costly diversion.) Hence
a distance skim along the used path should give 100 m for that O-D pair.

If, however, on the very first all-or-nothing Frank-Wolfe free-flow assignment the
initial assumption is that the signals are operating under capacity then that first
assignment may “optimistically” severely over-assign multiple O-D trips along that
link, resulting in the downstream signals have a V/C ratio of, say, 2.0 and a
queuing delay (LTP = 60) of 30 minutes. Hence an alternative route of 30 km at an
average speed of 60 kph (assuming time-only assignment, PPK = 0) could be
lower cost and that path would be selected on the second FW iteration and
therefore become part of the final solution, even if its contribution may have been
diluted to, say, 1% by the end of the Frank-Wolfe iterations. Thus, in terms of
distance skims, that path would add 0.01 * 30,000 = 300 m to the average
distance so the skimmed distance would be 400 m, not 100.

In this case a small difference in flow has been magnified to produce a very much
larger difference in outputs.

15.57.3 Frank-Wolfe Assignment with Restricted Residual Flows

There appear to be (at least) two alternative methods to minimize the impact of
residual flows within Frank-Wolfe assignment:

(1) Apply Frank-Wolfe assignment as per normal but, in any post-assignment
analysis of individual O-D paths, identify any which appear to be “residual” and
remove them from the analysis, or

(2) Attempt to identify and eliminate any potentially likely residual flow paths
during the tree building stages within Frank-Wolfe so that any post-assignment
analyses may proceed as normal without worrying about possible residual
paths.

In effect the first tries to cure the disease once it has occurred, the second tries to
inoculate against it.

 A semi-empirical method based on method (1) was initially introduced within
SATURN release 10.9 and is described in the following section, 15.57.4.
However, on further reflection, it seems that the method (2) is far more promising
but, at present, it has only been applied in preliminary stages. See 15.57.5.

The jury is still out!

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-176
Section 15

15.57.4 Removing Residual Flows Post-Assignment

SATURN release 10.9.12 introduced two (highly experimental) applications which
attempt to remove residual flows if they have occurred within the assignment:

(1) Calculating multiple commodity (i.e., times, distances and tolls) O-D skims in
SATLOOK (SKIM_ALL, 15.27.7)

(2) Converting a .UFC O-D route format file into a .UFO format file in SATALL
(15.23.6 and 22.5.3)

Since any path flow along a non-minimum cost route is, strictly speaking, a
residual flow it becomes important to establish a rule to identify an “important”
residual flow which needs to be dealt with as opposed to the unimportant flows
that may be ignored. Within SATURN we use two criteria:

(i) The absolute difference AD in costs between the cost on a path cpij and its
minimum cost cij

* and

(ii) The relative difference RD = (cpij - cij
*) / cij

*

AD and RD are then compared to use-defined parameters (within &PARAM)
RESIDD and RESIDR such that if a path (or a portion of a path) satisfies the
condition that AD > RESIDD and RD > RESIDR then the path is considered to be
a residual flow path.

The default values of both RESIDR and RESIDD are both 0.0 signifying that
residual paths are to be ignored. Recommended values might otherwise be
RESIDR = 1.5 and RESIDD = 60.0 (in units of seconds).

N.B. These two options are only available on Beta-release and will almost
certainly be replaced by the use of methods to prevent residual paths
occurring in the first place.

15.57.5 Avoiding Residual Flows during Frank-Wolfe Assignment

An alternative approach to dealing with residual flows AFTER they have been
generated by an assignment is to prevent the assignment from generating them in
the first place.

The basic idea is, on very early iterations of Frank-Wolfe, to use an estimate of
what the final converged link costs are likely to be (e.g., from a “warm start”
network) to build a minimum cost tree per origin based on the final costs. Then,
when building the “proper” FW minimum cost trees links using the current FW
costs, exclude any links which, according to the final cost tree, are clearly
nowhere near minimum. The expectation is that the extra CPU involved in building
two trees instead of one will be justified by the early elimination of “bad” paths and
therefore not only reduce residual flows but accelerate convergence.

Improved Frank-Wolfe algorithms which incorporate the above ideas are currently
being developed and tested but are not yet available to users.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-177
Section 15

15.57.6 Avoiding Residual Flows: Choice of Assignment Algorithms

Whereas residual flows may be an intrinsic problem created by the Frank-Wolfe
algorithm the same problems do not occur with all traffic assignment algorithms.
Thus they are virtually non-existent under OBA and very much less common
under path-based algorithms (where social-pressure based algorithms, see
Appendix H, preferentially remove residual flows).

In addition the Partan variant of Frank-Wolfe (7.11.7) tends to reduce the
occurrence of residual flows due to its ability to include “backward steps” which
are able to entirely remove the contributions from early iterations. It is therefore
automatically invoked during a SUC SAVEIT assignment (15.23.4). N.B. To use
Partan during the MUC SAVEIT assignment you must set the parameter SPARTA
= T; it is not automatically invoked as with SUC. See 15.23.4.

Equally the use of incremental assignment (7.11.13) during the initial stages of an
assignment should, it is hoped, discourage the build-up of residual paths since, as
congestion builds up more slowly on early incremental assignments, the “correct”
O-D pairs should be able to choose alternative routes avoiding locally congested
links.

In particular the use of incremental assignment is (potentially) recommended to
reduce residual paths during SAVEIT assignments (15.23.2). Set the Namelist
parameter INKS_S = 4, say, in the network .dat file.

15.58 Error Listing (ERL) Files

15.58.1 Structure and Contents

Version 10.9.17 contains a new feature, Error Listing Files (.ERL), which provide a
list of the errors reported within SATNET ordered by node number(s) rather than
in the order in which they are detected (as they appear in the body of .LPN files)
or sorted by error number (as in the .LPN summary statistics).

Thus at the end of SATNET a text file with the extension .ERL is created which
contains one record per error detected with the following data fields:

(i) A-node

(ii) B-node

(iii) C-node

(iv) Error number

(v) A 0/1 identifier (Extra field 1)

(vi) A second numerical identifier (Extra field 2)

(vii) The (short) text message associated with the error number

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-178
Section 15

A sample segment of a .ERL file follows:
14 10 0 137 0 2 Turn saturation flows per lane differ widely
14 10 27 97 1 0 Opposing X-turns at signals hook (interfere);
27 10 0 137 1 0 Turn saturation flows per lane differ widely
0 11 0 15 0 0 Maximum roundabout turn sat flow exceeds
13 12 0 162 0 1 Multiple turns sharing multiple lanes

The records are sorted firstly by B-node, secondly by A-node, thirdly by C-node
and finally by error number. If the error is associated purely with a node then the
A- and C-node entries are zero; equally if the error is on a link then the C-node is
zero while for an error associated with a turn all 3 fields are used. Errors which are
not associated with nodes, e.g., errors in parameter inputs, do not appear in the
.ERL list.

The error number uses the standard numbering system as listed in Appendix L,
e.g., all Warnings are in the range 1 -99, all Serious Warnings in the range 101-
199, etc. etc.

The first 0/1 extra identifier field is used, at the moment, to distinguish whether the
error is new (value = 1) or whether it has occurred in a previous .ERL file, in which
case it is set to zero. Thus an .ERL file for a previous run of SATNET may be
defined via a Namelist parameter FILERL input under &OPTION in the network
.dat file and the errors listed in the new .ERL file are compared to those in the old
.ERL in order to identify an exact match.

The second numerical identifier field is also used in association with a matching
entry in an input .ERL file but in this case the value is simply copied directly from
the value in the old .ERL file. The thought here is that if users wish to “mark”
certain error messages as being “OK”, e.g., by writing a 1 in the second field, then
the new .ERL file simply carries this information over. If no match is found the
second identifier defaults to 0.

Thus the intention is that users might input the .ERL file output by SATNET into,
say, Excel, and then add their own numerical marks therein before either re-
creating a new .ERL file for subsequent use by SATNET or inputting the new file
directly into P1X in order to highlight certain nodes (See 15.58.2). Hence the
procedure could be used as part of an “audit trail” where errors which have been
checked and approved might be assigned one numerical values and errors which
have not been checked could be assigned a different value.

It must be emphasised that at this stage in its development the concept of a
.ERL file is still highly fluid and we are very much open to suggestions from
users as to the basic format and contents of such files and equally the uses
to which they might be put.

15.58.2 Display of ERL Data in P1X

ERL data may be displayed in P1X by “highlighting” nodes (see 11.6.5.4) based
on the values in either the first or second extra identifier fields described above.
The options are entered via menu choices 1st or 2nd ERL Field within the Display
sub-menu.

These options differ from the “normal” highlighting procedures which highlight
nodes based on all errors detected within SATNET by basing it only on errors

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-179
Section 15

which have been included within the .ERL file but with extra tests based on values
stored in the first and/or second “extra” data fields.

In both cases a “critical” value needs to be defined by the user but its application
differs between whether data from Field 1 or 2 is to be used. Thus with Field 1 the
test is based on equality; i.e., if you set a critical value of 1 only those error
records which have a 1 in Field 1 will be selected. Under 2 the test is “greater than
or equal”; i.e., all entries whose Field 2 value >= the critical value are selected.

In addition the second field differs in that the colour used to highlight the selected
nodes depend upon the value in the second field. Thus a low value might be
displayed with a light colour and progressively higher values with progressively
darker colours in order to indicate possible degree of urgency as set by the user.
The pens to be used for different numerical values are pre-defined within the
program but may be over-written using parameters NP_ERL(n) within the (most
recent) preferences file P1X0.DAT.

We repeat the information given above that, at the moment, Field 1 is set as either
0 or 1 within SATNET depending on whether an error is “old” or “new”, whereas
Field 2 is intended to be manipulated externally by the user via, say, Excel, prior
to its use in P1X.

15.59 Disaggregate Network Summary Statistics

15.59.1 General Principles

Network statistics such as total PCU-hrs, total PCU-kms etc. are automatically
calculated over all links by SATALL (and SATSIM) with a split between, e.g.,
simulation links, buffer links, etc. as illustrated by the tables in Sections 17.8 and
17.9. In addition to total flows, flows are always disaggregated into the following
categories (if they exist): (1) bus flows, (2) pre-loaded flows, (3) PASSQ flows,
(4) all user class flows, and (5) flows exclusively from the trip matrix. Therefore the
standard output statistics always include the total PCU-kms by pre-loaded flows or
by user class 3, etc. etc.

However it is also possible to optionally obtain a further disaggregation of the
same statistics by sub-sets of links and/or by sub-sets of flows, either calculated
within SATALL/SATSIM or afterwards using SATLOOK.

Note that the sub-sets of flows are effectively fixed and used in each level of link
disaggregation. Thus the main choices to be made by the user are how to define
the disaggregation of links.

Traditionally links were disaggregated into sub-sets according to their capacity
indices but, post 11.2.8, it is possible to define a much wider range of criteria to
set link sub-sets. For example, links may be grouped into self-contained sectors or
“traffic boroughs” (see 5.1.7.1 and 5.1.7.2) and statistics such as total PCU-kms
by user class 3 produced per sector or borough.

Indeed these more general link criteria now take precedence over disaggregation
by capacity index since capacity indices are generally aimed primarily at setting
link speed-flow curves, from which a disaggregation of, say, PCU-kms may not be
particularly useful.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-180
Section 15

15.59.2 Disaggregation within SATALL

At the end of each run of SATALL (or SATSIM) a complete set of total network
statistics are calculated and stored within the output .UFS file. In addition,
optionally, a further set of disaggregate statistics is calculated and stored in .UFS
as controlled by user-set Namelist parameters in the network .dat files.

Thus if BYGRUP = T, statistics are calculated by link “groups” (see 5.1.7.3) where
the groups are defined either as (a) traffic boroughs if a parameter TFL = T or, if
TFL = F, (b) by a “N2G” file set as FILN2G. N2G files are specified further in
Section 15.60.?; basically they define an “index” for each node such that links are
grouped according to the node index of their B-node. (Which is effectively the way
in which links are grouped into traffic boroughs where the “name” of a link’s B-
node defines its borough number following TfL rules - see 5.1.7.2.)

Finally if BYGRUP = T, TFL = F, but no N2G filename has been set (FILN2G is
blank) then no disaggregate statistics are calculated within SATALL. When this
happens a warning message is generated.

If BYGRUP = F then the disaggregation is (potentially) set by the link capacity
indices but only if (a) a further namelist parameter BYCAPI = T and (b) capacity
indices exist in the network. Since, as explained above, capacity indices may not
be all that useful for disaggregate statistics BYCAPI defaults to F.

The disaggregate statistics calculated by SATALL and stored within the .UFS file
may be viewed only within SATLOOK – option 4, then 1 from the main menu; see
Section 11.11.4.

15.59.3 Disaggregation within SATLOOK

As mentioned above disaggregate network statistics as (optionally) calculated
within SATALL may only be accessed using SATLOOK (either the standalone
version or called from P1X). However, it is also possible to calculate similar
statistics “on the fly” within SATLOOK using not only those criteria available within
SATALL (e.g., disaggregation into traffic boroughs) but also by a much wider
range of possible disaggregation rules – main menu option 4 followed by option 2.

Thus the most basic level of link disaggregation is set by the parameters
BYGRUP, TFL and BYCAPI; if any of these three is “toggled” interactively then
the link sub-sets will be re-calculated and the disaggregate statistics will be re-
calculated and output. In addition the .N2G file which would have been initially set
as a network .dat file parameter may be re-defined interactively and the
disaggregate data re-calculated

In addition the link selection rules as set within SATDB may also be applied “on
top” of the normal link disaggregation rules – but only if SATLOOK is being
accessed via P1X.

A further P1X-only option allows the “indices” which define sub-sets of links to be
set via an existing integer data base column. Alternatively the link indices may be
input directly from a “.L2G” text file which gives the required index for each link;
see 15.60.4 for formatting rules.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-181
Section 15

15.60 Node and/or Zone Aggregation Files

15.60.1 General Principles and File Extensions

A set of filename conventions has been drawn up in order to identify ASCII text
files which define the “mapping” of one set of node/zone definitions into another.
Thus a file with extension .Z2G will contain data which specifies which Groups are
to be associated with each Zone, .Z2S maps Zones into Sectors, N2G maps
nodes into groups,G2S maps groups into sectors, etc. etc.

The following letters may be used: N for nodes, Z for zones, D for districts, B for
boroughs and S for sectors. In addition T represents “text” so that a .G2T file
would consist of a series of group names followed by a text description of that
group; e.g., “1 Otley”.

As a matter of good practice and common sense it is proposed – although this is
not a rigid requirement in SATURN – that all *2* (N2G, G2S, etc.) files should (a)
have the same “root” filename and (b) be stored in the same folder. In other
words, files such as mapping.z2g, mapping.z2s, mapping.g2s, etc. would all be
stored in the same folder and therefore have a common root pathname as well as
a common filename. The advantage of this is that the user need not define all the
possible mapping files since a SATURN program could logically infer a file/path
name when necessary.

In particular this facility is routinely used with text descriptor files of the form .G2T
whereby if the predicted file mapping.g2t can be found it is used to add text
names to groups; if not group text names are simply ignored.

15.60.2 FILZ2* – Zone Aggregation (.Z2G)

All files which map zones into more aggregate structures such as groups, sectors,
etc. have the same general, very simple format described as follows:

They consist of a series of text records (terminated by a 99999 record) where
each record consists of two integers in free format (i.e., including CSV) specifying
a zone followed by its group (where we use the terms “zone” and “group” to
denote the first and second quantities as in a Z2G file but the same specifications
apply equally to all such files)..

Note that numerical “names” must always be used for both the zone and the
group - not sequential numbers (although very often zone and/or group names
are in fact sequential).

Records need not be in numerical order of zones, i.e., the first number given is
always increasing, although this is generally the most convenient way to create
such files.

Duplication (i.e., assigning the same zone to two different groups) is not allowed
(although it may not always be checked).

A hyphen in front of a zone name (negative numbers) may be used to indicate a
“range” of zones. Thus two successive records:

9 1
-19 2

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-182
Section 15

would indicate that all zone names in the range 10 through 19 would be assigned
to group 2 (and that zone 9 would be in group 1).

Note that 19 need not necessarily be a valid zone name itself, it simply represents
an upper limit, in which case the “true” upper limit would be the maximum zone
name lower than 19. The lower value of the range is the previous upper limit plus
one. If a negative number is used to indicate an interval the absolute value of the
negative number must be greater than the absolute of the previous number in the
list. If as above a positive number is used (e.g., 9) to set the previous line that
zone name must exist.

Therefore it is recommended that you use either all intervals (negative numbers)
or include all zone names in the Z2* file using the philosophy that the point of
using intervals is for the process not to fail and the point of using a zone by zone
list is that you want the process to warn you about missing elements by failing.

Errors occur and are noted if a record does not consist of two integers, if a zone
cannot be identified (excluding negative values above) and if some zones are not
assigned to groups. These may or may not result in the operation being rejected.

Blank records are allowed and ignored as our comments, i.e., records with a * in
column 1.

In order to process a Z2G file the zone names (and their number) must already be
known but the set of group names and their total number are only known and fully
specified after the Z2G file has been processed.

Note that the Z2G format also corresponds to a simplified version of the Records
2 used by the batch file MXM5; see Appendix W.3.

15.60.3 FILN2* - Node Aggregation (.N2G)

Files which map nodes into more aggregate groups follow the same specifications
as for zonal aggregation files as described in 15.60.2, two integer values in free
format – with the obvious caveat that the first integer value per record is a node
number, not a zone number.

The use of negative node numbers to indicate ranges is also allowed.

15.60.4 FILL2* - Link Aggregation (.L2G)

Links may be directly mapped into groups of links (as opposed to using their
B-node to define the mapping) via an “L2G” etc. file where the default file
extension .L2G signifies a file which gives the mappings of links into “groups”.

L2G files contain 3 free-format integer values per record, the first two being the
link A-node and B-node and the third being the group. The use of negative node
numbers to indicate “ranges” is not permitted with L2G files.

Currently L2G files are only processed within SATLOOK; i.e., it is not possible to
define an L2G file as a namelist parameter in a network .dat file and have the
appropriate aggregation statistics calculated within SATALL and stored on .UFS
files in the same way that node-based aggregate statistics may be set.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-183
Section 15

15.60.5 FIL*2T – Text Definitions

Files with extensions of the form Z2T, N2T, etc. etc. are used to supply alpha-
numerical titles to zones, nodes as indicated by the first letter in the extension.

They are not, however, generally available to users at present.

SATURN MANUAL (V11.3)

Special Options and Facilities

5120257 / Apr 15 15-184
Section 15

15.61 Version Control

JOB NUMBER: 5120257 DOCUMENT REF: Section 15.doc

Revision Purpose / Description

 Originated Checked Reviewed Authorised Date

10.9.10 SATURN v10.9 Release DVV DG IW IW 04/09/09

10.9.12 SATURN v10.9 Release (Full) DVV DG IW IW 31/10/09

10.9.17 Web release – Jun 10 DVV NP IW IW 22/06/10

10.9.22 Web release – Dec 10 DVV AG IW IW 06/12/10

10.9.24 SATURN v10.9 Release (Full) DVV AG IW IW 31/05/11

11.1.09 SATURN v11.1 Release (Full) DVV AG IW IW 31/03/12

11.2.01 SATURN v11.2 Beta Release DVV JS IW IW 07/12/12

11.2.05 SATURN v11,2 Release (Full) DVV JS IW IW 17/03/13

11.3.03 SATURN v11.3 Release DVV EN IW IW 30/04/14

11.3.07 SATURN v11.3.07 Release DVV DAS EN IW 26/09/14

11.3.10 SATURN v11.3.10 Release DVV DAS IW IW 22/01/15

11.3.12 SATURN v11.3.12 Release DVV DAS IW IW 22/04/15

	15. Special Options and Facilities
	15.1 Network Aggregation and Simplification within Intermediate Bands
	15.1.1 General Principles of Network Simplification and/or Aggregation
	15.1.2 Network Simplification using Fixed Cost Curves (FCF)
	15.1.3 Modelling FCF nodes within a Simulation Network
	15.1.4 Creating a FCF Network using SATCH
	15.1.5 Creating a FCF Scheme Network using SATNET
	15.1.6 Viewing FCF Nodes within P1X
	15.1.7 Simulation Buffer Transformation (SBT): Conversion to a Buffer Network
	15.1.8 FCF vrs SBT

	15.2 Preferences files
	15.3 Network Updates (The Update Option)
	15.4 Updating the Trip Matrix (The Re-start Facility)
	15.5 Pre-Loading Fixed Flows (The “Plod” Option)
	15.5.1 Pre-loading HGV’s
	15.5.2 Pre-loading Distance Minimisers
	15.5.3 Pre-Load Statistics
	15.5.4 Pre-Loading from a (Text) Data File
	15.5.5 Pre-Loading Bus (PCU) Flows

	15.6 Comparing Assigned and Observed Flows: GEH Statistics
	15.6.1 General Options
	15.6.2 GEH Statistics

	15.7 Use of SATURN Outside the U.K.
	15.7.1 The NOTUK Parameter
	15.7.2 Right-hand Drive: LEFTDR = F

	15.8 Using SATURN as a Conventional Assignment Model
	15.8.1 Buffer-only networks
	15.8.2 Converting Simulation Networks to Buffer (SATBUF)
	15.8.3 SATCCS: Converting Simulation Centroid Connectors to Buffer

	15.9 Converting Conventional Speed-Flow Curves into SATURN Curves
	15.9.1 General Principles
	15.9.2 DFT/DTp Advice Note 1A
	15.9.3 COBA 10 Speed-Flow Curves
	15.9.4 Conversion of existing speed-flow curves into SATURN
	15.9.5 Default Speed-Flow Curves
	15.9.6 Default Speed-Flow Curves: COBA-10 Formats

	15.10 The use of Crow-Fly Distances (The SHANDY Option)
	15.10.1 General Principles
	15.10.2 Correcting XYUNIT
	15.10.3 CROWCC: Zero Distance Buffer Centroid Connectors

	15.11 Coding Combined Buffer and Simulation Networks
	15.12 Automatic Network Coding (The AUTOX and AUTOZ Options)
	15.13 Supplementary Data for Simulation Links Using Buffer Network Inputs
	15.14 Extra Link Data (Knobs)
	15.14.1 Introduction to Knobs
	15.14.2 Data-Base Applications
	15.14.3 Using Knobs within Generalised Costs
	15.14.4 Using Knobs to Set Tolls (Road Charges)
	15.14.5 Creating Knobs Data
	15.14.5.1 External KNOBS data files (FILKNB)
	15.14.5.2 KNOBS Data on Centroid Connectors
	15.14.5.3 Wildcard Inputs

	15.14.6 Storing Knobs: Dirck Access Codes
	15.14.7 Transferring Internal Knobs Data to an External File

	15.15 Node-Dependent Parameters: GAP, GAPM, NUC and LCY
	15.15.1 GAP and GAPM
	15.15.2 NUC
	15.15.3 LCY – Cycle time

	15.16 Simulation Link Flows and Centroid Connectors
	15.16.1 Simulation Zone Connectors
	15.16.2 Simulation Link Exit/Entry and/or Upstream/Downstream Flows

	15.17 Pcu’s, Cars, Buses and Vehicles
	15.17.1 General Principles
	15.17.2 PCU Factors by Vehicle Class

	15.18 Interpolating Routes
	15.19 Select Link Analysis (SLA)
	15.20 The Dutch Option (Long Node Numbers)
	15.21 Referencing Data Arrays Via Dirck Access Codes
	15.21.1 General Principles
	15.21.2 Creating your own DA codes in SATDB
	15.21.3 Extended Dirck Access Codes
	15.21.4 DA Codes for Actual User Class Flows

	15.22 Choice of Gap Parameters
	15.23 Re-constructing Assignment Routes: The SAVEIT Option and UFC Files
	15.23.1 General Principles
	15.23.2 SAVEIT/UFC as an Approximation: The SAVEIT Assignment
	15.23.2.1 Comparison Statistics: SAVEIT vrs Original Assignment

	15.23.3 UFC109/UFC111: Alternative UFC files
	15.23.3.1 UFC109 = T: Storing “True” Frank-Wolfe Iteration Costs
	15.23.3.2 UFC109 or UFC111 = T: Storing UFC Link Times under MUC

	15.23.4 NITA_S and UNCRTS: Accuracy of SAVEIT/UFC Assignments
	15.23.5 SATUFC – Re-creating .UFC files
	15.23.6 Alternative Formats for Saving O-D Routes: UFO and UFQ files
	15.23.6.1 UFO vrs UFC

	15.23.7 Creating .UFO files (SAVUFO): Batch File Procedures (SATUFO)
	15.23.7.1 SATUFO: Single User Class option
	15.23.7.2 SATUFO: Multi-core option

	15.23.8 Final Comments: The Uniqueness of Route Flows and Other Limitations
	15.23.9 Unique Route Flows: The Principle of Proportionality

	15.24 Alternative Link Costs and/or Times for Tree Building
	15.24.1 Introduction
	15.24.2 Travel Time: Alternative Definitions
	15.24.3 Calculating Times at Different Stages within SATURN
	15.24.4 Extended Travel Times
	15.24.5 Units of Time and Costs

	15.25 Stochastic Trees
	15.26 Trees, Forests and Arboreta
	15.27 Skimming Trees and/or Forests
	15.27.1 Minimum Cost Trees and Matrices
	15.27.2 Skimming Trees
	15.27.2.1 Default O-D Costs

	15.27.3 Skimming Forests
	15.27.4 Minimum Cost Matrices vrs Skimmed (Average) Cost Matrices
	15.27.5 Skim/Cost Matrices and Trip Matrices
	15.27.6 Summary: Minimum and/or Skim Matrices
	15.27.7 Skimming Costs Using .Bat Files (E.g., SATCOST.bat)
	15.27.7.1 The Definition of Skimmed “Cost”
	15.27.7.2 Skimming Using Aggregated (SPIDER) Networks
	15.27.7.3 Command Line Over-rides for, e.g., the use of .UFO files

	15.27.8 Post 10.9.17 Skimming Algorithms (NUSKIM = T)

	15.28 Variable Program Dimensions
	15.29 Comment Cards and Blank Records in Data Files
	15.30 The Use of Sub-Files within Data Files: $INCLUDE
	15.31 Setting “Optimum” Stage Green Times
	15.31.1 Background
	15.31.2 Optimum Stage Times using PIX
	15.31.3 Stage Length Optimisation Algorithms
	15.31.4 Using SIGOPT (and/or SATOFF) within SATALL
	15.31.4.1 NIPS

	15.31.5 Preserving and Transferring New Stage Times
	15.31.6 The Batch Procedure SIGOPT
	15.31.7 Using SIGOPT for Base Year Networks
	15.31.8 Convergence Statistics for Signal Optimisation

	15.32 Determining Fuel Consumption
	15.33 Determining Emission Statistics
	15.34 Estimating Primary and Secondary Stops
	15.35 Altered Data Formats in .DAT Input Files
	15.36 Turning Flows at Buffer Nodes
	15.37 Repeated Assignments: Modelling Cold Starts, etc.
	15.38 Non-discontinuous Speed-Flow Curves: the Kinky Option
	15.39 Bus-only Lanes
	15.39.1 Flows in bus lanes
	15.39.2 Delays in Bus Lanes
	15.39.3 Exits/Entries from Bus Lanes

	15.40 Motorway Weaving Segments
	15.40.1 Introduction
	15.40.2 Basic Background Theory
	15.40.3 Extensions and Alternatives to the Basic Theory
	15.40.4 Application within SATURN
	15.40.4.1 Network Coding: the W link marker
	15.40.4.2 Network Geometry
	15.40.4.3 Assignment Calculations
	15.40.4.4 Simulation Capacities
	15.40.4.5 Simulation Delays

	15.40.5 SATURN Namelist Parameters
	15.40.6 Restrictions
	15.40.7 Link Weaving and W Turn Priority Markers
	15.40.8 Display of Link Weaving Data (E.g., P1X)

	15.41 SATTUBA
	15.41.1 Objectives
	15.41.2 Single User Class Networks
	15.41.3 Multiple User Class Networks
	15.41.4 Options within SATTUBA
	15.41.4.1 The ‘Control File’
	15.41.4.2 Distinct User Classes
	15.41.4.3 Alternative Matrix Formats

	15.41.5 O-D Speeds in TUBA: XCCSK

	15.42 SATCOBA
	15.42.1 General Functionality
	15.42.2 The SATCOBA Control File
	15.42.3 Defining COBA Link Numbers using KNOBS data
	15.42.4 Common COBA Link Numbers in Multiple Networks
	15.42.5 Viewing COBA Link Numbers
	15.42.6 Alternative / Sequential COBA Node Numbers

	15.43 Bitmaps within SATURN
	15.43.1 General Principles
	15.43.2 Co-ordinate Systems
	15.43.3 “Calibrating” .bmp files
	15.43.4 Outputting Bitmaps to Hard Copy Devices
	15.43.5 Bitmap backgrounds within Node Graphics
	15.43.6 Changing the Intensity of Bitmap displays
	15.43.7 Maximum Bitmap File Sizes

	15.44 Defining Extra Bus Travel Times (BUSSPK and BTKNOB)
	15.45 Representing Walk / Pedestrian Networks
	15.46 DBDUMP & P1XDUMP: Dumping Link Data to Text Files
	15.46.1 DBDUMP: Dumping Data via SATDB
	15.46.2 P1XDUMP: Dumping Data via P1X

	15.47 CLICKS: Variable Free Flow Speeds by User Class
	15.47.1 General Principles of CLICKS
	15.47.2 Disaggregated Levels of CLICKS (KLUNK)
	15.47.2.1 KLUNK = 1 (Disaggregate by Capacity Index)
	15.47.2.2 FILVSD File Input:
	15.47.2.3 Extra 33333 Data records
	15.47.2.4 KLUNK = 2 (Disaggregate by Link)

	15.47.3 Fixed Maximum Speeds: CLIMAX
	15.47.3.1 Defining CLIMAX

	15.47.4 Link Times Incorporating CLICKS

	15.48 UNIQUE: Combined Queues within the Buffer Network
	15.49 SATURN Summary Statistics Reporting Tool (SATSTAT)
	15.49.1.1 SATSTAT FORTRAN Program
	15.49.1.2 SATSTAT Excel Spreadsheet
	15.49.2 Worked Example
	15.49.2.1 Running SATSTAT in SATWIN
	15.49.2.2 Using the SATSTAT Spreadsheet
	15.49.2.3 Importing CSV Files
	15.49.2.4 Summary Reports
	15.49.2.5 Importing Additional Networks
	15.49.2.6 Comparing Different Networks
	15.49.2.7 SATURN Versions

	15.50 SATMECC – Marginal Economic Consumer Costs
	15.50.1 Basic Theory
	15.50.2 Marginal Cost vrs Marginal Time
	15.50.3 Marginal Cost Calculations: Incremental Simulation
	15.50.4 Disaggregated Marginal Costs by Turn
	15.50.5 Disaggregated Marginal Costs by User Class, Vehicle Class, etc.
	15.50.6 Alternative Modifications to Incremental Simulation
	15.50.7 Marginal Costs on Links
	15.50.8 The SATMECC Batch Control File

	15.51 Running SATURN within DIADEM
	15.52 Running SATURN in Parallel
	15.52.1 Additional Programs
	15.52.1.1 Monitor
	15.52.1.2 Wait

	15.52.2 An Example

	15.53 SATURN Multi-Core Applications
	15.53.1 Programs Available
	15.53.1.1 SATALL Multi-Core Restrictions
	15.53.1.2 Numerical Differences between Multi-Core and Standard Programs

	15.53.2 Processors, Cores and Threads
	15.53.3 Performance Gains
	15.53.3.1 SATALL (Multi-threaded)
	15.53.3.2 SATLOOK Skims (Multi-threaded)
	15.53.3.3 SATUFO (Multi-threaded)
	15.53.3.4 SATPIJA_MC (Distributed)
	15.53.3.5 Performance Scaling
	15.53.3.6 Running More than One Multi-Core Assignment
	15.53.3.7 SATCH_MC: Distributed Trip Matrix Cordoning

	15.53.4 Multi-Core Parameters
	15.53.4.1 Options
	15.53.4.2 Upper Limit on MCNUM Values

	15.54 SATURN CASSINI
	15.54.1 Overview
	15.54.2 Basic Principles
	15.54.3 Performance Gains
	15.54.4 Compatibility with SATURN Multi-Core
	15.54.5 Convergence Strategies
	15.54.6 Running SATURN CASSINI
	15.54.6.1 File Inputs

	15.55 QUIET & QUICK Options via SATWIN
	15.55.1 Using SATWIN10
	15.55.2 Using SATWIN11

	15.56 Network Aggregation (SPIDER)
	15.56.1 Basic Principles
	15.56.2 Aggregation Techniques
	15.56.2.1 2-arm Links in Series
	15.56.2.2 Aggregating Multiple-arm Nodes
	15.56.2.3 Application to “Spigot Zone Connectors”
	15.56.2.4 Spigot Centroid Connectors in General
	15.56.2.5 Some Properties of Aggregate Networks

	15.56.3 Implementation within SATNET
	15.56.4 Implementation within SATALL
	15.56.5 Alternative Tree Building Algorithms
	15.56.5.1 Duplicate Links
	15.56.5.2 Separate Centroid Connectors from Real Links
	15.56.5.3 Eliminating Zero-flow Links

	15.56.6 Results from Representative Networks
	15.56.6.1 Pure Assignment (SATASS only)
	15.56.6.2 Full Assignments (Assignment & Simulation)

	15.56.7 Other Applications of Aggregate Networks
	15.56.7.1 Tracing Paths in Aggregate Networks
	15.56.7.2 Tracing Paths in Hybrid Networks
	15.56.7.3 Banned and/or Penalised Turns at Buffer Nodes
	15.56.7.4 Motorway Weaves in Aggregated Networks
	15.56.7.5 High-Priority Nodes for Aggregation

	15.56.8 Further Research

	15.57 Residual (Incorrect) Path Flows and Restricted Frank-Wolfe Algorithms
	15.57.1 Residual Path Flows: Definition
	15.57.2 The Importance of Residual Flows
	15.57.3 Frank-Wolfe Assignment with Restricted Residual Flows
	15.57.4 Removing Residual Flows Post-Assignment
	15.57.5 Avoiding Residual Flows during Frank-Wolfe Assignment
	15.57.6 Avoiding Residual Flows: Choice of Assignment Algorithms

	15.58 Error Listing (ERL) Files
	15.58.1 Structure and Contents
	15.58.2 Display of ERL Data in P1X

	15.59 Disaggregate Network Summary Statistics
	15.59.1 General Principles
	15.59.2 Disaggregation within SATALL
	15.59.3 Disaggregation within SATLOOK

	15.60 Node and/or Zone Aggregation Files
	15.60.1 General Principles and File Extensions
	15.60.2 FILZ2* – Zone Aggregation (.Z2G)
	15.60.3 FILN2* - Node Aggregation (.N2G)
	15.60.4 FILL2* - Link Aggregation (.L2G)
	15.60.5 FIL*2T – Text Definitions

	15.61 Version Control

