
AN1577/0103 1/30

AN1577
APPLICATION NOTE

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN
ST7 USB DEVICES

by Microcontroller Division Applications

1 INTRODUCTION

This application note presents the implementation of a Device Firmware Upgrade (DFU) ca-
pability in ST7 USB microcontrollers. It follows the DFU class specification defined by the USB
Implementers Forum, for reprogramming an application through USB. The DFU principle is
particularly well suited to USB applications that require need to be reprogrammed in the field:
The same USB connector can be used both for the standard operating mode, and for the re-
programming process.

This operation is made possible by the IAP capability featured by most of the ST7 microcon-
trollers, which allows a FLASH MCU to be reprogrammed by any communication channel
(Please refer to AN1575 for more details).

The DFU process, like any other IAP process, is based on the execution of firmware located in
Sector 0 of the ST7 Flash memory which manage the Flash operations (erasing and program-
ming) of Sectors 1 and 2.

This application note covers then two main aspects:

The firmware located in Sector 0,

The Interface between the firmware in Sector 0 and the firmware in Sectors 1 & 2.

The proposed implementation is demonstrated with 2 different projects: the USB Low-Speed
devices Evaluation Kit and the ST7265 Full-Speed 5-in-1 demoboard. In this document these
projects are referred to as “LS project” and “FS project”.

A basic DFU protocol is also used in these projects. The modular approach used in the imple-
mentation based on a DFU library allows you to adapt it easily to other higher level protocols
or new types of hardware.

1

2/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

1 INTRODUCTION . 1

2 DFU CLASS . 4

2.1 INTRODUCTION . 4

2.2 PHASES . 4

2.3 REQUESTS . 5

2.4 ENUMERATION PHASE . 5

2.4.1 Run-Time Descriptor Set . 6
2.4.2 DFU Mode descriptor Set . 6

2.5 RECONFIGURATION PHASE . 6

2.6 TRANSFER PHASE . 7

2.6.1 Downloading . 7
2.6.2 Uploading . 7

2.7 MANIFESTATION PHASE . 7

3 DFU IMPLEMENTATION . 8

3.1 FIRMWARE ORGANIZATION . 8

3.2 DFU MECHANISM . 8

3.3 FLASH SECTOR MANAGEMENT . 9

3.3.1 SECTOR 1 AND 2 INTEGRITY CHECK . 9
3.3.2 LIBRARY FUNCTIONS CALLED BY THE APPLICATION 10
3.3.3 APPLICATION FUNCTIONS CALLED BY THE LIBRARY 11
3.3.4 JUMP TABLE . 12

3.4 RAM MANAGEMENT . 12

3.4.1 SHARED VARIABLES . 12
3.4.2 LOCAL VARIABLES . 12
3.4.3 OVERLAP AREA . 13
3.4.4 STACK . 14

3.5 DESCRIPTORS . 14

3.5.1 STANDARD DESCRIPTORS . 14
3.5.2 DFU DESCRIPTORS . 15
3.5.3 DFU STRING DESCRIPTORS . 15

3.6 PROTOCOL . 16

3.6.1 DOWNLOAD STRATEGY . 16
3.6.2 wBLockNum VALUES . 16

2

3/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

3.7 HARDWARE CONSIDERATIONS . 16

3.7.1 VPP . 16
3.7.2 FORCED DFU MODE ENTRY . 17

3.8 HDFLASH DRIVERS . 17

3.8.1 FUNCTIONS USED . 17
3.8.2 STACK AND RAM . 17

4 DFU LOW-SPEED PROJECT . 19

4.1 DIRECTORIES . 19

4.2 DFU FILES . 19

4.3 DFU CALL-BACK FUNCTIONS . 20

4.4 OTHER DFU FUNCTIONS . 21

4.5 DFU VARIABLES . 21

4.6 RESTRICTIONS . 22

5 DFU FULL-SPEED PROJECT . 23

5.1 DIRECTORIES . 23

5.2 DFU FILES . 23

5.3 DFU CALL-BACK FUNCTIONS . 24

5.4 OTHER DFU FUNCTIONS . 24

5.5 DFU VARIABLES . 25

5.6 RESTRICTIONS . 26

6 RELATED DOCUMENTS . 27

7 RELATED SOFTWARE . 28

8 TERMS AND ABBREVIATIONS . 29

1

4/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

2 DFU CLASS

2.1 INTRODUCTION

The DFU class uses the USB as a communication channel between the ST7 and the program-
ming tool, generally a PC host. The DFU class specification states that, all the commands,
status and data exchanges have to be performed through Control Endpoint 0. The command
set, as well as the basic protocol are also defined, but the higher level protocol (Data format,
error message, ..) remain vendor specific. This means that the DFU class does not define the
format of the data transferred (.s19, .hex, pure binary, etc...).

2.2 PHASES

There are four distinct phases required to accomplish a firmware upgrade:

1. Enumeration: The device informs the host of its capabilities. A DFU class-interface de-
scriptor and associated functional descriptor embedded within the device’s normal run-time
descriptors serve this purpose and provide a target for class-specific requests over the control
pipe.

2. Reconfiguration: The host and the device agree to initiate a firmware upgrade. The host is-
sues a USB reset to the device, and the device then exports a second set of descriptors in
preparation for the Transfer phase. This deactivates the run-time device drivers associated
with the device and allows the DFU driver to reprogram the device’s firmware unhindered by
any other communications traffic targeting the device.

3. Transfer: The host transfers the firmware image to the device. The parameters specified in
the functional descriptor are used to ensure correct block sizes and timing for programming
the nonvolatile memories. Status requests are employed to maintain synchronization between
the host and the device.

4. Manifestation: Once the device reports to the host that it has completed the reprogram-
ming operations, the host issues a USB reset to the device. The device re-enumerates and ex-
ecutes the upgraded firmware.

To ensure that only the DFU driver is loaded, it is considered necessary to change the id-
Product field of the device when it enumerates the DFU descriptor set. This ensures that the
DFU driver will be loaded in cases where the operating system simply matches the vendor ID
and product ID to a specific driver.

LS project Example: the Product ID of the Evaluation Kit with the DFU class is the FF03h and
0003h for the standard Evaluation Kit without the DFU.

5/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

2.3 REQUESTS

A number of DFU class-specific requests are needed to accomplish the upgrade operations.
The following table summarizes the DFU class-specific requests.

For additional information about these requests, please refer to the DFU Class specification.

2.4 ENUMERATION PHASE

A device with DFU capability must be able to be enumerated in two ways by the host:

- As a single device with only DFU capability.

- As a composite device: HID, Mass storage, or any functional class, and with DFU capability.

During the enumeration phase, the device exposes two distinct and independent descriptor
sets, one each at the appropriate time:

- Run-time descriptor set: shown when the device performs normal operations.

- DFU mode descriptor set: shown when host and device agree to perform DFU operations.

Table 1. Summary of DFU Class-Specific Requests

bmRequestType bRequest wValue wIndex wLength Data

00100001b
DFU_DETACH

(0)
wTimeout Interface Zero None

00100001b
DFU_DNLOAD

(1)
wBlockum Interface Length Firmware

10100001b
DFU_UPLOAD

(2)
Zero Interface Length Firmware

10100001b
DFU_GETSTATUS

(3)
Zero Interface 6 Status

00100001b
DFU_CLRSTATUS
(4)

Zero Interface Zero None

10100001b
DFU_GETSTATE

(5)
Zero Interface 1 State

00100001b
DFU_ABORT

(6)
Zero Interface Zero None

6/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

2.4.1 Run-Time Descriptor Set

During normal run-time operation, the device exposes its normal set of descriptors plus two
additional descriptors:

- Run-Time DFU Interface descriptor

- Run-Time DFU Functional descriptor

Note: The number of interfaces in each configuration descriptor that supports the DFU must
be incremented by one to accomodate the addition of the DFU interface descriptor.

2.4.2 DFU Mode descriptor Set

After the host and the device agree to perform DFU operations, the host re-enumerates the
device. At this time the device exports this descriptor set:

- DFU Mode Device descriptor

- DFU Mode Configuration descriptor

- DFU Mode Interface descriptor

- DFU Mode Functional descriptor: identical to the Run-Time DFU Functional descriptor

For detail information on these descriptors see the USB Device Firmware Upgrade Specifica-
tion.

2.5 RECONFIGURATION PHASE

Once the operator has identified the device and supplied the filename, the host and the device
must negotiate to perform the upgrade.

An example of negotiation could be as follows:

- The host issues a Vendor Specific request containing a key (optional).

- The device checks the key received and sends back a status on the acknowledgement of the
flash read or write request.

- If the host receives a negative acknowledgement then the host aborts the firmware upgrade.
otherwise the following operations are performed:

- The host issues a DFU_DETACH request to Control Endpoint EP0.

- The host issues a USB reset to the device. This USB Reset is not possible on some Windows
versions. To bypass this issue, the USB reset is performed by the device (USB regulator is
powered-off then powered-on).

- The device enumerates with the DFU Mode descriptor set, as described above.

To support entering the transfer phase, a variable mapped in RAM keeps the DFU_DETACH
request status: DETACH received or not

7/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

When a USB reset signal is received, the USB reset interrupt routine checks this variable. If a
DETACH has previously been received, the device exports the DFU Mode descriptor set, oth-
erwise it exports its normal run-time descriptor set.

2.6 TRANSFER PHASE

The Transfer phase begins after the device has processed the USB reset and exported the
DFU Mode descriptor set. Both downloads and uploads of firmware can take place during this
phase. This transfer phase consists of a succession of DFU requests according to the state di-
agram defined in the DFU Class specification (Fig A1 page 26).

2.6.1 Downloading

The host slices the firmware image file into N pieces and sends them to the device by means
of control-write operations in the default endpoint (Endpoint 0).

The maximum number of bytes that the device can accept per control-write transaction is
specified in the wTransferSize field of the DFU Functional Descriptor.

There are several possible download mechanisms . The third mechanism described in
chapter 6.1 of the USB Device Firmware Upgrade Specification is implemented in this project:

1. A large portion of memory is erased. In our case all of Sector 1 and/or all of Sector 2.

2. Small firmware blocks are written. 8 bytes in the LS project, 128 bytes in the FS project.

Note: The number of bytes sent to the device in a control-write transfer is indicated by the
wTransferSize field of the DFU Functional Descriptor.

2.6.2 Uploading

The purpose of an Upload is to retrieve and archive a device’s firmware. It is by definition the
reverse of a Download. After Upload the Host should have a DFU suffix in the file where the
data are saved. This suffix contains useful information like the VendorID, ProductID, Firmware
Version, etc...

2.7 MANIFESTATION PHASE

After the transfer phase is terminated, the device is ready to execute the new firmware. To do
this the host must send a USB reset to re-enumerate the device in normal run-time operation.

8/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

3 DFU IMPLEMENTATION

3.1 FIRMWARE ORGANIZATION

Both LS and FS projects are organized in the same way in terms of their DFU implementation.
Figure 1 shows the different software layers that have been added between the Library and
the Application:

Figure 1. Firmware Overview

3.2 DFU MECHANISM

The solution proposed by STMicroelectronics provides a mechanism for selecting entry into
DFU Mode (See Figure 2). To accomplish this task it is very important to understand that only
the Sectors 1 and 2 can be erased and programmed during DFU operation. Sector 0 contains
the USB Standard Library and the DFU class routines.

After MCU Reset, the Reset Vector points to the DFU main routine. Just afterward, a verifica-
tion of the integrity of Sectors 1 and 2 is performed. This check can be done in several ways:
Checksum, CRC, Code etc... If this test is OK (meaning that Sectors 1 and 2 are correct), then
the application main routine is executed. Otherwise the DFU process takes place.

There are two other ways to enter DFU mode:

1. By receiving a DFU_DETACH request while the application is running.
2. By Hardware after an MCU Reset. This solution allows the user to force entry into DFU

mode. This solution is only given as example and is implemented in the LS project only. It is
not described in the DFU specification.

USB Library

DFU Core

DFU Protocol

Flash Driver

Application

Example

STMicroelectronics

Customer

9/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

Figure 2. DFU Mode Entry Mechanism

3.3 FLASH SECTOR MANAGEMENT

In order for the DFU mode entry mechanism described above to function correctly, it is neces-
sary to place the firmware routines in the right sectors.

Basically, Sector 0 contains all routines that must be preserved during DFU erasing and pro-
gramming. It principally contains the USB standard Library and the DFU layer routines.

Note: Application routines or constants can also be present in this sector, but in this case they
cannot be updated in DFU mode.

The Sectors 1 and 2 contain all routines and data that can be erased or changed in DFU
mode. They contain the Application routines and the “jump table” (see below).

The DFU_DETACH request decoding must also be present in these sectors. We can imagine
a “one shot DFU”, where the DFU_DETACH request decoding is not implemented in the new
firmware just downloaded (software protection). The only way to recover is by using a Hard-
ware switch (see Figure 2).

3.3.1 SECTOR 1 AND 2 INTEGRITY CHECK

As we have seen previously, we need to check if Sectors 1 and 2 are correct before calling the
main application routine. This will insure that these sectors are not corrupted due bad erasing
or bad programming. This check is not described in the DFU specification. and it can be easily
removed from the DFU protocol.

Sectors 1 & 2

DFU ProcessMain Application

Main DFU

MCU Reset

are OK ?

Yes

No

DFU_Detach

Forced DFU Mode Entry

Sector 0

Sectors
1 and 2

Code, Checksum,
CRC, ...

(Controlled by hardware switch)

10/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

In the LS project, the solution adopted for this check is the following:

- the last byte of sector 1 is reserved.

- after the erasing operation this byte contains FFh.

- at the end of downloading this byte is written with 6Dh.

- after each MCU Reset this byte is checked. If it contains 6Dh we jump to the Application main
routine, otherwise we jump to the DFU process routine.

So, if the download operation is aborted or if something wrong happens the MCU will always
enumerate in DFU mode.

In the FS project a Checksum calculation is used:

- during downloading the Checksum is calculated on all the data received.

- at the end of download the Checksum is written at the end of Sector 1.

- after MCU Reset the Checksum is re-calculated and compared to the value written in the last
bytes of Sector 1.

Note: This second solution takes more execution time than the first one.

3.3.2 LIBRARY FUNCTIONS CALLED BY THE APPLICATION

The Application calls several functions from the USB Library.

For the LS project the Library functions called are:

Init_USB_HW, Disable_USB_HW, Handle_USB_Events, Enable_STATUS_Stage,
Test_EP_Ready, Set_EP_Ready, Write_EP_Buffer, Read_EP_Buffer.

These Library routines are placed in Sector 0 and their content and address locations are not
changed in DFU mode. The problem we face is that the Application firmware is also linked with
these Library routines. The location of these Library routines can be different from the location
chosen by the linker when the Library is compiled on its own...

A simple way to solve this issue is to access the Library functions using their direct address.

LS project example:

#define Init_USB_HW ((void(*)(void)) 0xF635)

The call to the function remains the same:

Init_USB_HW();

Special case: Functions with Parameters

Some Library routines need parameters with a number of bytes greater than 2. These are:

In the LS project: Set_EP_Ready, Write_EP_Buffer, Read_EP_Buffer.

11/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

If the MetroWerks compiler is used, the third and any subsequent bytes are saved in the
Overlap area. However, this is not compatible with DFU operation, because the same area
could be used by a new application firmware (See RAM management for more details).

For these routines the parameters are passed through a structure of global variables.

LS project example:
#define Set_EP_Ready(EndPointPrm,DirectionPrm,LengthPrm) {\

GParams.SEPRParams.EndPoint=EndPointPrm;\

GParams.SEPRParams.Direction=DirectionPrm;\

GParams.SEPRParams.Length=LengthPrm;\

Set_EP_Ready_NP(); }

#define Set_EP_Ready_NP ((void(*)(void)) 0xF70E)

In the Application firmware we still use the same call to the Library routine:
Set_EP_Ready(0, EP_IN, 8);

But here the 3 parameters are saved in RAM. Then the Set_EP_Ready_NP routine is called.
The purpose of this routine is to retrieve the parameters previously saved in RAM and then to
call the Library routine located in Sector 0:
void Set_EP_Ready_NP (void) {

Set_EP_Ready(GParams.SEPRParams.EndPoint,GParams.SEPRParams.Direction,GPar-

ams.SEPRParams.Length);

}

Note: In the FS project, none of the Library functions use parameters. So, the issue does not
occur in this project.

3.3.3 APPLICATION FUNCTIONS CALLED BY THE LIBRARY

Also called ‘Call-back’ functions.

The Application routines called by the Library can have their address location changed after a
download. The address of these routines must be saved somewhere in order to allow the Li-
brary to call them. This area is called a ‘Jump Table’ (see below for details).

The Application functions called by the Library are:

In the LS and FS projects:

- the main application routine

- all the interrupt routines

In the LS project:

- the MCU_Init routine called when an USB EndSuspend interrupt occurs

- the USB specific routines Appli_Status_In and Appli_Status_Out for each Status IN/OUT
stage

12/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

In the FS project: all USER_USB_xxx functions.

3.3.4 JUMP TABLE

As already mentioned, this table is used to store the address of the Application routines called
by the Library.

In the LS project: In order to use fewer bytes (when routines are called) this table is defined in
assembly. It simply contains a JP to the routine address.

This table is placed at a fixed address at the end of Sector 1: EFC0h

It is important to note that two assembly files are used for this Jump Table. One is used during
the compilation of the Library in Sector 0, and contains dummy addresses. The second one is
used during the compilation of the Application in Sectors 1 and 2. At this time the addresses
of the routines are known.

In the FS project: the call is performed in C language directly using a double function call.
Dummy functions placed at a fixed address are used for this purpose.

FS project example: The Library calls the USER_USB_Setup function. This function calls the
dummy function Vec_USB_Setup. It is located at a fixed address and it in turn calls the appli-
cation function App_USB_Setup.

3.4 RAM MANAGEMENT

3.4.1 SHARED VARIABLES

Some variables are accessed by both Library and Application functions. These variables are
located at a fixed addresses in 16-bit RAM.

Some variables used:

In the LS project: UsbLibStatus, USBbRequest, USBwValue, USBwIndex, etc...

In the FS project: EPs_DataAddress, EPs_Length, etc...

The EndPoint buffers are also shared variables.

The location of these variables is done using pragmas or using the “@” symbol after the vari-
able declaration.

3.4.2 LOCAL VARIABLES

This refers to all variables which are not shared between the Library and the Application func-
tions. Library variables and Application variables are located in different areas in order to
avoid overlapping when an application firmware is upgraded. See the PRM files for details on
the location of these variables.

13/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

3.4.3 OVERLAP AREA

The Overlap area is not used by the Library of the FS project. So no precautions are neces-
sary for this project.

But the Library of the LS project is strongly impacted. A lot of Library functions have parame-
ters. When more than 2 bytes are used, the parameter passing is done through the Overlap
area. An overlapping problem can occur when a firmware is upgraded. See the example
below:

Initial state: the linker has placed a variable used by the application at address 50h and a var-
iable used by a Library function at address 51h. The Library and Application firmware are
written in Sectors 0, 1, 2 using an EPB programming board:

Figure 3. Initial State of Overlap area prior to DFU

The problem appears when a new application firmware is written in the Flash and the overlap
area is modified. Suppose now that the application function uses a second variable. The linker
will locate this second variable at address 51h and the Library function variable at address
52h. But in DFU programming, the Library in Sector 0 is not changed and still uses the ad-
dress 51h:

Library
(sector0)

Application 1

(sectors 1 & 2)

FLASH memory RAM memory (Overlap area)

50h

51h

14/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

Figure 4. Problem of Overlap area conflict after DFU

So, it is necessary also in this case to separate the Library and the Application Overlap areas.
Note: The same thing must also be done for the ZeroPage area. Refer to the project PRM file
for details about the location of these areas.

3.4.4 STACK

The stack area is shared by the Library and the Application. No special precautions are
needed in normal mode, but a minimum amount of free stack must be available before calling
any of the Embedded Commands used for HDFlash programming. This is explained in detail
further on.

3.5 DESCRIPTORS

3.5.1 STANDARD DESCRIPTORS

The normal run-time descriptors have to be modified to support DFU capability.

Device descriptor

The Product ID must be changed because when DFU is implemented, the device becomes
composite.

In the LS project: Evaluation Kit + DFU has the number FF03h (instead of 0003h for Evalua-
tion Kit alone)

In the FS project: 5-in-1 + DFU has the number 0320h (instead of 1307h for 5-in-1 alone).

Note: When the device is in DFU mode only, its Product ID is the number DF11h. This number
is common for any project with DFU support.

Configuration descriptor

The bNumInterfaces of each configuration that supports DFU must be incremented by one.

For LS project: bNumInterfaces = 2 (HID + DFU)

For FS project: bNumInterfaces = 2 (MASS STORAGE + DFU)

Library
(sector0)

Application 2

(sectors 1 & 2)

FLASH memory RAM memory (Overlap area)

50h

51h

52h

problem

15/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

Furthermore, 2 additional descriptors must be added at the end of the Configuration de-
scriptor: the Run-Time DFU Interface descriptor and the Run-Time DFU Functional descriptor.
These descriptors are described in detail below.

3.5.2 DFU DESCRIPTORS

The table below summarizes the 5 DFU descriptors to be created and in which mode they ap-
pear:

(*) Descriptor included in the Run-Time Configuration descriptor

(**) Descriptor included in the DFU Mode Configuration descriptor

These descriptors are placed in Sector 0 in the following files:

In the LS project: DFUDescript.c, DFUDescript.h

In the FS project: DFU_desc.c

3.5.3 DFU STRING DESCRIPTORS

DFU string descriptors are in theoretically optional. But three descriptors are created for the
DFU in the LS and FS projects. These allow the host to get some useful information when
Sectors 1 & 2 are incorrect.

DFU Language ID: 0409h (US English code)

DFU Manufacturer Name: STMicroelectronics

DFU Product Name: DFU Demo

These descriptors are located in Sector 0 in the same files as listed above.

Table 2. DFU Descriptors

Name Run-Time Mode DFU Mode

DFU Device Descriptor X

DFU Configuration Descriptor X

DFU Interface Descriptor X (**)

DFU Run-time Interface Descriptor X (*)

DFU Functional Descriptor X (*) X (**)

16/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

3.6 PROTOCOL

3.6.1 DOWNLOAD STRATEGY

The strategy adopted in the LS and FS projects is exactly the same:

1) Sector 1 and/or Sector 2 are erased.

2) Blocks of data are transferred and programmed: 8 bytes for LS project and 128 bytes for the
FS project.

3) A code or a checksum is written at the end of Sector 1. This code certifies that the download
operation has been performed correctly.

The Host selects the data to be downloaded into the device. In order to decrease the down-
loading time, blocks of data containing only FFh are not transferred. To achieve this strategy
the wBlockNum field of the DFU_DNLOAD request is used.

3.6.2 wBLockNum VALUES

As already mentioned, this field is used to pass certain information during download. The
same field is also used in the DFU_UPLOAD request to read the flash memory. The table
below summarizes the values used:

Note: The fact that the Flash address is given divided by 8 is only a protocol example.

3.7 HARDWARE CONSIDERATIONS

3.7.1 VPP

The HDFlash memory needs 12V on the Vpp pin during erasing and programming operations.
This 12V is provided using a ST662A device. This device is already present on the Evaluation

Table 3. wBlockNum values

wBlockNum Description

FFFFh Erase Sectors 1 and 2

FFFEh Erase Sector 1 only

FFFDh Erase Sector 2 only

FFFC to 1E000h Not Used

1DFFh to 1000h Flash address divided by 8

0FFFh to 0000h Not Used

17/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

Kit and the 5-in-1 boards. A specific I/O port is used to control the presence of the 12V on the
Vpp pin:

LS project: I/O Port PB1

FS project: I/O Port PE4

Please refer to the “ST7 Family Flash Programming Reference Manual” for implementation
details concerning the ST662A device.

3.7.2 FORCED DFU MODE ENTRY

In the LS project only, there is a possibility to enter DFU mode directly without checking the in-
tegrity of Sectors 1 & 2. To do this, the SW1 Switch must be pressed while the Reset button
is released. This mechanism is very useful when a problem occurs in the Application and the
DFU_DETACH command cannot be interpreted. If this happens in the FS project, the only
way to recover is to erase Sector 1 using an EPB programming board.

3.8 HDFLASH DRIVERS

Erasing and programming the HDFlash memory is done using the Embedded Commands in
the System Memory of the ST7 device.

Some routines (drivers) have been created to access these Embedded Commands easily.
These routines can be used in any project that needs to erase or program the HDFlash.

For more information on these drivers see the AN1576.

3.8.1 FUNCTIONS USED

Only few driver functions are used in the DFU project. They are:

RASS_Disable: to unlock the FCSR register

HDFlashEraseSector: to erase a sector

HDFlashWriteByte: to write a single byte

HDFlashWriteBlock: to write a block

Note: The FS project uses the WriteBlock function to program the bytes into the Flash, while
the LS project uses the WriteByte function.

3.8.2 STACK AND RAM

Caution: Before launching any Embedded Command, the Stack Pointer must be greater than
or equal to 017Ch. This is due to the fact that 124 bytes are used in the Stack by the Em-
bedded commands.

In the LS project, the Stack area of the ST72F62 and ST72F63B devices contains only 128
bytes. So, we must have a maximum of 2 function calls (starting from the main routine) before

18/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

launching a HDFlash function. This limitation does not exist in the FS project because the
Stack area is bigger in the ST72F65 device.

Embedded commands also use the RAM from F0h to FFh for parameter passing and local
variables. This area must not be used by the application while the Embedded commands are
running.

19/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

4 DFU LOW-SPEED PROJECT

The LS DFU project has been created starting from the ST7 USB LS Evaluation Kit project
and the ST7 USB LS Library. Two other parts have been added: the DFU specific files and the
HDFlash drivers (in bold in the next section).

4.1 DIRECTORIES

ST7USBLS-DFU

+-- EvalKit: ST7 USB LS Evaluation Kit project

+-- Config: project configuration files (mak, prm, etc...)

+-- Appli: application files

+-- DFU: DFU layer files

+-- Objects: output from compilation

+-- HDFlashDriver: Flash routines to erase and program

+-- Library: ST7 USB LS Library project

+-- Config: project configuration files (mak, prm, etc...)

+-- Macro: macros definitions

+-- Micro: devices mapping files

+-- Usb: ST7 USB Low-Speed Library kernel files

+-- Objects: output from compilation

As you can see the Library can be compiled alone without the EvalKit project. This is because
the RAM area of the Library is completely separated from the RAM area of the EvalKit project.
So, a different prm file is needed. The S19 file generated from the Library can then be loaded
into Sector 0 even if the EvalKit project is not ready.

4.2 DFU FILES

All these files are placed inside the “DFU” directory. Files in bold are files that depend on the
protocol and/or the application, and may be modified by the user.

20/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

4.3 DFU CALL-BACK FUNCTIONS

These functions are called by the DFU Kernel routines. They are dependant on the protocol
and/or the application. All these functions are located in the “DFUProtocol.c” file. The content
of these functions is only a DFU implementation example. Depending on the protocol adopted,
these functions can be modified by the user.

Table 4. LS Project DFU Files

File Name Description

DFUCore.c / DFUCore.h
Contain the DFU Kernel routines. Not protocol nor applica-
tion dependant.

DFUDescript.c / DFUDescript.h
Contain the DFU descriptors. They are dependant on the ap-
plication.

DFUJumpTable_XXX.asm
Contain the Jump Tables used by the Library to access the
application routines. Dependant on the application.

DFULibFuncAdd.h
Contain the address of the Library routines called by the Ap-
plication. Must be modified each time the Library function ad-
dresses are changed.

DFUProtocol.c / DFUProtocol.h
Contain the DFU protocol routines. They are dependant on
the application.

Table 5. LS Project DFU Call-back Functions

Function Name Description

DFU_Abort_User
Called by the DFU_Abort function when a DFU_ABORT re-
quest is received. Used to set Vpp to 5V.

DFU_ClearStatus_User
Called by the DFU_ClearStatus function when a
DFU_CLRSTATUS request is received.

DFU_Download_User
Called by the DFU_Download function when a
DFU_DNLOAD request is received. Used to received and
decode the data from the Host.

DFU_Init_User
Called by the DFU_Init function when entering DFU mode.
Used to initialize variables, Vpp, etc...

21/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

4.4 OTHER DFU FUNCTIONS

These functions are not called by the Library. They are utility routines used during DFU
processing.

4.5 DFU VARIABLES

These variables are shared by the DFU kernel and the DFU protocol functions.

DFU_ManifestWaitReset_User
Called by the DFU_GetStatus function at the end of the
downloading phase. This function is used to write the End Of
Programming code in the last byte of Sector 1.

DFU_S1S2Valid
Used to check the integrity of Sectors 1 and 2. This is the first
function called by DFU_Main after Reset.

DFU_UpLoad_User
Called by the DFU_Upload function when a DFU_UPLOAD
request is received. Used to prepare and send the data to the
Host.

HDFlashProcess
Called by the DFU_Main function. This function manages the
call to all HDFlash routines.

VbusCheck
Used to check the presence of the Vbus when device is in
self-powered mode. This function is compiled if the
SELF_POWERED compilation variable is defined.

Table 6. LS Project Other DFU Functions

Function Name Description

SetVpp12V
Used to set the Vpp voltage to 12V needed during erasing or
programming operations.

SetVpp5V
Used to set the Vpp Voltage to 5V when not erasing or pro-
gramming.

Table 5. LS Project DFU Call-back Functions

Function Name Description

22/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

4.6 RESTRICTIONS

This project is compatible with MetroWerks compiler only and with ST72F62-16K and
ST72F63B-16K devices due to RAM size restriction.

Table 7. LS Project DFU Variable

Variable Name Description

DFUDataReceived
Buffer for storing data coming from the host after a Down-
Load request.

DFUDataToSend
Buffer containing data to send to the host for UpLoad, Get-
State or GetStatus requests.

DFUDeviceState
Contains the current DFU state of the device as defined in the
DFU specification. Sent after a GetState or GetStatus re-
quest.

DFUDeviceStatus
Contains the current DFU status of the device as defined in
the DFU specification. Sent after a GetStatus request.

DFUPollTimeOutH
Contains the high byte of the Polling TimeOut. Sent after a
GetStatus request.

DFUPollTimeOutL
Contains the low byte of the Polling TimeOut. Sent after a
GetStatus request.

23/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

5 DFU FULL-SPEED PROJECT

The FS DFU project has been created from the ST7265 5-in-1 project and the ST7 USB FS Li-
brary. Two other parts have been added: the DFU specific files and the HDFlash drivers (in
bold in the next section).

5.1 DIRECTORIES

ST7USBFS-DFU

+-- Object: output from compilation

+-- Sources

+-- MassSto

+-- Mcl

+-- Usb: ST7 USB Full-Speed Library kernel files

+-- Usb_App: USB application specific files

+-- Usb_DFU: USB DFU specific files (kernel + application + HD Flash drivers)

For details of “MassSto” and “Mcl” directories please refer to AN1475 “Developing an
ST7265X Mass Storage Application”.

5.2 DFU FILES

All these files are located in the “Usb_DFU” directory. Files in bold are files that depend on the
protocol and/or the application, and can be modified by the user.

Table 8. FS Project DFU Files

File Name Description

DFU.c / DFU.h Contain all DFU kernel and Protocol routines.

DFU_Desc.c Contains the DFU descriptors.

DFU_Var.asm Contains the definition of DFU variables.

Flashing.h Contains the HDFlash routines.

User_USB.c / User_USB.h
Contain all call-back functions called by the Library. These
functions call the DFU functions described in the DFU.c file.

24/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

5.3 DFU CALL-BACK FUNCTIONS

These functions are not directly called by the Library. Instead they are called by intermediate
layer functions like “USER_USB_Reset”, etc... They are protocol and application dependant,
and you can modify them to fit with yours application/protocol.

5.4 OTHER DFU FUNCTIONS

These functions are not call-back functions. They are utility routines used during DFU
processing.

Table 9. FS Project DFU Call-back Functions

Function Name Description

DFU_App_Valid

Used to check if the Application code in Sectors 1 and 2 is
valid. A Checksum is calculated and compared with the
Checksum previously saved in the last bytes of Sector 1. Re-
turns 0 if Checksum is false.

DFU_Status_In
Processes some of the DFU OUT requests during the Status
stage. For example DownLoad and Detach.

DFU_Status_Out
Processes some of the DFU IN requests during the Status
stage. For example UpLoad and GetStatus.

DFU_CopyDataIN Not used in this project.

DFU_CopyDataOUT
Used to copy data returned by a DownLoad request into the
EndPoint 0 Out buffer.

DFU_Setup Used to decode and process all DFU requests.

Table 10. FS Project Other DFU Functions

Function Name Description

CheckSum_ROM Used to calculate a checksum on Sectors 1 and 2.

CRC_ROM
Used to calculate a CRC on Sectors 1 and 2. Not used in this
project, only given as example.

DFU_Init Used to initialize all DFU variables.

DFU_Manifest
Called after Downloading is finished. Calculates and writes
the Checksum in the Flash.

25/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

5.5 DFU VARIABLES

Flashing_End Sets Vpp to 5V. Called when Flash operations are finished.

Flashing_Start
Sets Vpp to 12V and unlock FCSR register. Called before
Flash operations start.

Jmp_Label
Jumps to the address previously saved by the Set_Label
function.

Replug_Device
Powers down and Power up the USB voltage regulator to
simulate a replug to the Host. Used after a Detach and after
programming is finished.

Set_Label
Saves current PC in a variable. This variable is used to jump
to the right place after a Detach request for example.

Setup_Timer
Initializes the timer used to count the timeout value after a
Detach request is received.

Table 11. FS Project DFU Variables

Variable Name Description

DFU_Action Used to keep trace of the current DFU action.

DFU_BlockNum
Contains the wBlockNum value present in DownLoad and
UpLoad DFU requests.

DFU_BlockSiz Contains the number of bytes to program or read.

DFU_Buffer
Used to store the data received from the Host (DownLoad re-
quest) or to send to the Host (UpLoad request).

DFU_Capability Contains information on DownLoad and UpLoad capabilities.

DFU_Request Contains the current DFU request received.

DFU_State
Contains the current DFU State. Sent by GetState and Get-
Status requests.

DFU_Status Contains the current DFU Status. Sent by GetStatus request.

DFU_Timeout Contains the TimeOut value sent by Detach request.

Table 10. FS Project Other DFU Functions

Function Name Description

26/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

5.6 RESTRICTIONS

This project is compatible with MetroWerks compiler and with the ST72F65 device only.

27/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

6 RELATED DOCUMENTS

Table 12. External Documents

Name Version/Date

Universal Serial Bus Specification 1.1

Sept 23, 1998

Universal Serial Bus Device Class Specification for Device
Firmware Upgrade

1.0

May 13, 1999

Table 13. STM Documents

Name

ST7 Family Flash Programming Reference Manual

AN1575 “On-Board Programming Methods for XFlash and HDFlash ST7 MCUs”

AN1576 “In-Application Programming Drivers for XFlash and HDFlash ST7 MCUs”

AN1475 “Developing a ST7265X Mass Storage Application”

AN1603 “Using the ST7 USB Device Firmware Upgrade Development Kit (DFU-DK)”

ST7 USB Device Firmware Upgrade Demonstrator User Manual

28/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

7 RELATED SOFTWARE

Table 14. Microcontroller Software

Table 15. PC Software

Name Description

ST7 USB Full Speed DFU Project:
DFU for ST72F65x devices

This is the example referred to in this application note
(AN1577) of a user application firmware with DFU capabil-
ity for the ST72F65x devices. The project is supplied as a
zip file containing all the necessary source and project files
ready for compilation by the Metroworks C Complier. It can
be used to test the DFU process and can be easily adapt-
ed by the user to another application.

ST7 USB Low Speed DFU Project:
DFU for ST7262/63B devices

This is the example referred to in this application note
(AN1577) of a user application firmware with DFU capabil-
ity for the ST72F62 or ST72F63B devices. The project is
supplied as a zip file containing all the necessary source
and project files ready for compilation by the Metroworks
C Complier. It can be used to test the DFU process and
can be easily adapted by the user to another application.

Name Description

ST7 DFU Demo Package

This an example of a Graphical User Interface for starting
a DFU session. It can be used with the ST7 USB Full
Speed and Low Speed Projects listed in Table 14 or with
any user-developed project that uses the same protocol. It
has been developed in Visual C++ and is supplied as an
installation file ready to be installed on a Windows PC.

DFU-DK Development Kit Package

This a set of library routines and device drivers that can be
used to develop a Windows GUI application such as the
ST7 DFU Demo Package listed above. Refer to AN1603
for more information.

29/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

8 TERMS AND ABBREVIATIONS

Table 16. Terms and Abbreviations

Term Definition

DFU Device Firmware Upgrade

Firmware Executable software stored in a write-able, nonvolatile mem-
ory on a USB device

Upgrade
(1) To overwrite the firmware of a device, (2) the act of over-
writing the firmware of a device, (3) new firmware intended to
replace a device’s existing firmware

Download To transmit information from host to device

Upload To transmit information from device to host

LS project Low Speed Evaluation Kit project (for ST72F62 and 72F63B
devices)

FS project Full Speed 5-in-1 board project (for ST72F65 device)

30/30

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 USB DEVICES

“THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH
INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RE-
SULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT OF
SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF THE INFORMATION CONTAINED
HEREIN IN CONNECTION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

2003 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan

Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

