1-Wire Automation Server v1.1.0

User Manual - Part 1

June 2015

1-Wire Automation Server v1.1.0

Table of Contents

1 Overview 6
2 Third-party Resources 7
LibUSB 7

Zadig 7

TMEX 7

3 Command Line 8
4 Running the Server 9
Current Directory 9
Windows 9

Control Panel 9

Command Line 9

Stopping the Server 10

Linux 10
Required Privileges 10

Starting the Server 10

Stopping the Server 11

5 Client Connections 12
Server Port 12
Connection Limit 12

Allowed IP Addresses 12

User Authentication 12

Network Congestion 12

6 Client Protocol 13
Command Parsing 13
Command Queue 13

Macro Commands 15
Unsolicited Responses 15
Command Identifier 15

Dump Command 16

ROM Code Formatting Style 16

7 Hardware 17
Overview 17

Slave 17
Network 17

Hub 17
Channel 18

2 User Manual - Part 1

1-Wire Automation Server v1.1.0

Controller 18
Adapter 19

Probing 19

Device Nodes 19

LibUSB Subsystem 20

W1 Connector 21

8 Topology 23
Channels 24
Unallocated Channels 24
Non-present Devices 24
Enumeration Procedure 24
Detection Procedure 25

Untying 27

9 Sensor Data 28
Overview 28

Sensing 28

Short Responses 29

Polling and Reporting 30
Temperature Scale 31

10 Programmable I/0 Pins 32
Overview 32

Reading State of PIO Pins 32
Controlling Output State of PIO Pins 32

11 Configuration File 33
Overview 33

Path 33
Contents 33

Port 34

Connection Limit 34

Allowed IP Addresses 34

User Authentication 34

ROM Code Formatting Style 35

Command File 35

12 Topology Files 36
Overview 36

Saving 36

Loading 36

Path 37

13 1-Wire Masters 38

User Manual - Part 1 3

1-Wire Automation Server v1.1.0 85?3 =
AxiCat Adapter 38
UARTO and UART1 38

I12C Master 38
1-Wire Master 39
DS2480B Serial to 1-Wire Controller 39
DS9097U Adapter 39
HA7E/HA7S Adapter 39
DS9097 Adapter 40
DS2482 12C to 1-Wire Controller 40
AbioWire 1-Wire Adapter 40
AbioWire+ 1-Wire Adapter 41
m.nu 1-Wire Adapter 41
DS2490 USB to 1-Wire Controller 42
DS9490R/DS9490B 1-Wire Adapter 42
Flyfish FF32/FF34 1-Wire Master 42
USBMicro U401/U421/U451 1-Wire Master 43
OW-SERVER-ENET-2 44
TMEX Adapters 45
14 1-Wire Slaves 46
DS2401/2411/1990A Silicon Serial Number 46
DS18520/DS1920 Thermometer 47
DS2406/DS2407 1Kb EPROM Dual Switch 48
DS28E04-100 4Kb EEPROM with PIO 49
DS2423 4Kb SRAM with counters 50
DS2409 MicroLan Coupler 51
DS2450 Quad A/D Converter 52
DS1822 Econo Digital Thermometer 53
DS2438 Smart Battery Monitor 54
DS18B20 Thermometer 55
DS2408 8-Channel Addressable Switch 56
DS2760/2761/2762 Li+ Battery Monitor 57
DS2780 Standalone Fuel Gauge 58
DS2755/2756 High-Precision Battery Fuel Gauge 59
DS2740 Coulomb Counter 60
DS2413 Dual-Channel Addressable Switch 61
DS1825 Thermometer 62
MAX31826 Thermometer 63
MAX31850 Thermocouple 64
DS2775/2776/2781 Li+ Fuel Gauge 65
DS28EA00 Thermometer 66
DS1420 Serial ID Button 67
Axiris 1-Wire RGB Controller 68
Axiris 1-Wire Mains Switch 69

4 User Manual - Part 1

1-Wire Automation Server v1.1.0

Hobby Boards 6-Channel Hub 70
Hobby Boards 4-Channel Hub 71
15 Server Versions 72
16 Software Revision History 73
17 Legal Information 74
Disclaimer 74
Trademarks 74
18 Contact Information 74
Revision History
Date Authors Description
2015-03-06 | Peter S'heeren Initial release.
2015-06-16 |Peter S'heeren Added USBMicro U4x1 adapters.
Added DS9097 adapter.
Added W1.
Added TMEX.
Second release.
User Manual - Part 1 5

1-Wire Automation Server v1.1.0

1 Overview

The 1-Wire Automation Server, called the server throughout this document, is a powerful
software tool for automating 1-Wire-based projects.

The server has built-in drivers for many 1-Wire adapters that are available in today's
market. A component called Device Nodes enables the server to control 1-Wire adapters
and other interfaces like serial ports and I12C, in a generic and extensible way.

The server automates the acquisition of sensor data of 1-Wire slaves. The acquired data
can be streamed to a database, summarized in graphical representations, etc.

The 1-Wire Automation Server is a true network server that allows clients to connect
from remote systems. The server implements a client protocol that's easy to use both
interactively (using a terminal program like PUTTY or netcat) as well as programmatically
(from software).

The 1-Wire Automation Software includes a logger and a graphical front-end (GUI)
application. Both are client programs that can connect with the server locally and
remotely over the network. For example, you can run the server on a single board
computer strategically places in the field, log sensor data on a database server system,
and use the GUI program to monitor the server's state on a desktop PC.

6 User Manual - Part 1

1-Wire Automation Server v1.1.0

2 Third-party Resources

LibusSB

The server depends on the LibUSB library for driving USB-based 1-Wire adapters.
Currently these adapters include device on the DS2490 chip (like the DS9490B and
DS9490R adapters), the Flyfish FF32 and the Flyfish FF34.

LibUSB is available for Linux and Windows. The server relies on the library in both
systems.

In Linux, LibUSB works out of the box. You have to make sure that LibUSB is installed on
your system. If LibUSB isn't installed, the server won't be able to work with USB-based
1-Wire adapters.

In Windows, you need to update the driver of the 1-Wire adapter to a specific driver in
order to enable access through LibUSB. You can use the Zadig tool for updating the
driver. You don't have to install the LibUSB library itself; the 1-Wire Automation Software
includes the library.

LibUSB home page: http://www.libusb.org/

Zadig

This Windows tool allows you to update the driver of any USB device to a driver suitable
for use with LibUSB. The tool includes various driver sets. It's recommended to install
libusbK.

Home page: http://zadig.akeo.ie

TMEX

TMEX offers an API for controlling 1-Wire adapters on Windows operating systems. TMEX
is developed by Maxim Integrated.

Currently, TMEX supports maxim's 1-Wire adapters with USB, serial, passive serial, and
parallel interfaces. The 1-Wire server supports all of these adapters except for the
parallel to 1-Wire adapter.

SDK download page:
http://www.maximintegrated.com/en/products/ibutton/software/windowsdk/index.cfm
Drivers download page:
http://www.maximintegrated.com/en/products/ibutton/software/tmex/download_drivers.cfm

Note that TMEX comes with WinUSB version 7 while Zadig includes WinUSB version 6. If
you have updated the drivers of your DS9490 adapter using Zadig, TMEX won't work for
the adapter as it expect version 7. If this is the case, update to version 7 of WinUSB in
the Device Manager.

User Manual - Part 1 7

http://www.libusb.org/
http://www.maximintegrated.com/en/products/ibutton/software/tmex/download_drivers.cfm
http://www.maximintegrated.com/en/products/ibutton/software/windowsdk/index.cfm
http://zadig.akeo.ie/

1-Wire Automation Server v1.1.0

3 Command Line

Parameter Description

-service Run the program as a service. For this to work, the program must be
installed as a Windows service.

-console Open a console. This parameter as no effect when the program is run as
a service.

-V Enable verbose output.

-h Display help and exit.

-port n The value specifies the port humber the server must listen to. Value
n=1..65535 decimal.

-romcode f |Set the default formatting style of ROM code in client responses. Valid
values for f are native and owfs.

-cfg FILE Specify configuration file.

Parameters -service and -console are specific to the Windows version of the server.

The -port parameter overrules the port number specified in the configuration file.

The -romcode parameter overrules the formatting style of ROM codes specified in the
configuration file.

The -cfg parameter overrules the default configuration file. The given filename may
include an absolute or relative path.

User Manual - Part 1

1-Wire Automation Server v1.1.0

4 Running the Server

Current Directory

When the server starts up, it changes its current directory to the location where the
server's executable file resides. This is also the directory where the 1-Wire Automation
Software installer puts the program files, unless of course you've moved the files to
another directory.

The current directory acts as the base directory for a filename that's specified with a
relative path. This is true in the following places:

= Command line parameter -cfg.
= Configuration file keyword cmdfile.
= Client command Topology Load.

= Client command Topology Save.
Windows

Control Panel

The control panel application offers a convenient way of configuring and running the
server (and logger). The 1-Wire Automation Software installer creates a shortcut on your
desktop. When the control panel is running, it shows an icon in the desktop's tray for
quick access.

The graphical interface 1-Wire Automation Sofware Control Panel v1.1.0
enables you to run the ﬁ

server as an application or a [] 1-wire Server

Windows service. You can + Logger [Verbose [Console Native
configure command line || D Port [5001 Cfg. file |
parameters, start and stop || ———_ _ e
the server as application or Explore 28 9
Windows service, install the || QEEEEEg ©A ©M ©D Display |
server as a Windows _
service, etc. Please read the —

1-Wire Automation Software > owsaslogger
Control Panel user manual
for more information.

Service |

Command Line

You can run the server from the command line. In this environment, you run the server
as an application.

You can't run the server as a service from the command line; specifying parameter
-service won't work. Use the control panel application or the Windows Service Control
Manager to start and stop services.

The following examples assume the current directory in the command line interpreter is
changed to the location of the server executable file.

User Manual - Part 1 9

1-Wire Automation Server v1.1.0 8:"?3

|> owsas.exe -port 5020 |

This command runs the server in the background, thus as an invisible program. The
server loads the default configuration file, if present, and listens at port 5020.

|> owsas.exe -console -v -cfg d:\myowsas.cfg I

This command runs the server with a console and verbose output enabled. The specified
configuration file must exist.

|> owsas.exe -v > owsas.log |

The server is run in the background. The server loads the default configuration file, if
present. Verbose output is written to the specified file.

|> owsas.exe -h |

The server displays the help screen and exits.

In Windows, the server can be stopped gracefully using the following methods:
= Stop the server in the control panel application.

= If the server has a console, press CTRL+C, press CTRL+BREAK, or click the console
window's close button.

Although not strictly necessary, the server should be run with root privileges. There are
good reasons for this:

= The server has built-in drivers for a wide range of 1-Wire adapters. Some drivers
require root privileges while other drivers don't, depending on permissions set in the
file system of your particular Linux distribution. In most cases, root privileges are
required.

= The 1-Wire Automation Software is installed as root user, hence all installed files are
owned by the root user, including the provided configuration files. Most users want to
use these configuration files, possibly modified, so the server must have root
privileges in order to be able to access these files.

In conclusion, as a rule of thumb, run the server with root privileges.

The following examples assume the current directory in the shell is changed to the
location of the server executable file.

|# owsas -port 5020 -v -cfg /home/peter/myowsas.cfg |

The server listens at port 5020. Verbose output is enabled. The specified configuration
file must exist.

|# owsas -v > owsas.log & |

10 User Manual - Part 1

1-Wire Automation Server v1.1.0

This command runs the server in the background, detached from the console. The server
loads the default configuration file, if present. Verbose output is written to the specified
file.

owsas -h

The server displays the help screen and exits.

If you want to run the server when Linux starts up, relying on cron is an good choice.
You can edit the cron table as follows:

crontab -e

In Linux, the server can be stopped gracefully using the following methods:
= Send sighal SIGTERM to the server.
= If the server is attached to a console, press CTRL+C.

Use kill to send the SIGTERM signal. For example, if the process identifier of the server is
18104, send SIGTERM from the shell:

kill 18104

Use killall if you want to specify the program name rather than the process identifier:

killall owsas
killall owsas-free

Note that killall sends the SIGTERM signal to all processes with the specified name. If
you're running multiple instances of owsas, the killall command will terminate all of
them.

User Manual - Part 1 11

1-Wire Automation Server v1.1.0

5 Client Connections

Server Port

When the server starts up, the program creates a server socket port for accepting client
connections over the network. The server can accept multiple client connections.

The port number can be specified in the server configuration file or on the command line
using parameter -port.

Connection Limit

The maximum number of client connections can be limited in the configuration file by
means of the maxconn keyword. For example:

|maxconn 5;

The server accepts up to five incoming client connections. Any more connections will be
refused.

Allowed IP Addresses

When keyword allowip occurs in the configuration file, the server will only accept
incoming client connections from the specified list of IP addresses. For example:

|[allowip 192.168.1.105, localhost;

A client must be localhost (same computer as the server) or have IP address
192.168.1.105, else the server will refuse the connection.

User Authentication

Specify one or more user keywords in the configuration file to enable user
authentication. Once enabled, all clients must authenticate. For example:

user "winston" "OnewlreXL";
user "lizzy" "";

Each client that connects with the server must issue the Authentication command
before any other command. For example:

auth "winston" "OnewlreXL"

If the client passes a known username with the correct password, the server marks the
connection as authenticated, if not the server immediately closes the connection.

Network Congestion

When the server sends responses to the client but the network can't keep up, network
congestion is occurring and the server saves the responses in a large buffer for later
transferring. However, if this buffer is full, the server drops any further responses until
the network is transferring data again. The server ensures that entire response text lines
are dropped, so the client won't receive partial responses.

12 User Manual - Part 1

1-Wire Automation Server v1.1.0

6 Client Protocol

Once a client is connected to the server, it sends commands. The server returns
responses. The set of commands and responses and related rules for transferring them is
called the client protocol.

All commands and responses are encoded as UTF-8, fully supporting the Unicode
character set. Note that the full range of Unicode characters only applies to strings
containing descriptive text like adapter names, so it's perfectly possible to stick to ASCII
characters by not using specific Unicode characters at all.

The client protocol suits both interactive communication (using a terminal program) and
programmed communication (client software).

The server parses each incoming command and checks for valid formatting. If a
command is ill-formatted, it's discarded. If you want to track invalid commands, run the
server with verbose printing turned on; the server will prints an error message for each
incoming command that's ill-formatted.

Once an incoming command has been parsed successfully, it's ready for processing.
Besides a few exceptions, most commands are added to the server's command queue.

Some commands are not queued but executed immediately. These commands are:
= Cancel.

= Adapter Add.

= Authentication.

You can specify multiple commands in the same line. Just separate the commands using
a semi-colon:

dev "28-40CBBB2" add ; dev "28-40CBBB2" attr poll=on, 60000

Commands sent by clients end up in the
server's command queue. Commands are
added to the tail of the queue in the order they
come in. Head

Command
Queue

A 4

Command #1

All commands in the command queue are Client #1 | .
executed concurrently. Each command thus is a (1°2:168.1.121:5578),
task in its own. Command #2

The server iterates through the command [

queue head to tail. As a result, commands are
executed in the order they were queued, no
matter how many iterations it takes to
complete. [

Client #2 |7
192.168.1.121:5580 |\, Command #3

Client #3 |-~ "
192.168.1.145:8116 :

] %..J-| Command #4

Commands that take just one iteration to
execute are called synchronous commands.)
They will complete in the order they were Tail Command #5

v ..o

User Manual - Part 1 13

R

1-Wire Automation Server v1.1.0 (/C*? 5

queued. For example, if the server receives these commands in the given order:

dev "1C-B8DD77F" add
dev "32-6DBDCO" add

then the commands will complete in the given order as they need just one iteration to
fulfill their task.

When a command requires one or more iterations to execute, it's called an asynchronous
command.

The concurrent activity of commands allows the server to perform lengthy operations at
the same time, greatly improving performance. Operations like sensing data and the
enumeration procedure benefit from this. For example, you can enumerate slaves on
multiple adapters at once:

ch "ha7s-1":1:1 enum
ch "ha7s-2":1:1 enum

The responses of these commands are asynchronous as well. An asynchronous command
returns its response (if any) when it's completed its task, and that moment is variable.

All asynchronous commands can be canceled. They are two variants of the cancel
command:

cancel
cancel all

The first command cancels all asynchronous command that the client sent earlier. The
latter command cancels all asynchronous commands of all clients.

Commands can be executed concurrently as long as they don't need to access the same
master, slave or other resource. Doing so would introduce errors. The server enforces
exclusive access to the same resource using an elaborate scheme of locking semantics.
For example, the following commands are all asynchronous but will execute one at a time
due to their accessing the same 1-Wire slave:

dev "3B-19CCEF" move ch 1:1:1
dev "3B-19CCEF" sense force
dev "3B-19CCEF" remove

When multiple commands access the same resource, the server guarantees that these
commands are executed and completed in the order they were received. So the order in
which the server grants access to the resource is deterministic rather than random.

The concurrent activity of commands may be undesirable in some situations. The server
offers two client commands that control concurrency: Block and Wait.

Command Block prevents all subsequent commands in the queue from being executed;
the Block command thus ends the iteration through the queue prematurely. As soon as
all preceding commands have been completed, the Block command becomes the first
command in the queue and also completes, thereby allowing subsequent commands to
be executed.

A typical usage is shown in the following example:

hw enum
block
dump topo

14 User Manual - Part 1

1-Wire Automation Server v1.1.0

The client wants to fully enumerate the adapters before dumping the topology. The Block
command will unblock the Dump Topology command only after the enumeration
commands have completed.

The Wait command is analogous to the Block command except that it completes after a
given number of milliseconds. A typical usage involves enabling of an adapter followed by
an enumeration:

adapter "abiowire" enable
wait 1000
adapter "abiowire" enum

Enabling the adapter is a synchronous command. Nevertheless it takes some time for the
adapter to come up. The Wait command blocks the subsequent enumeration command
for a while allowing the server to bring the adapter to a fully enabled state.

A number of client commands do not directly end up in the command queue; they're split
up into zero or more commands first. These so-called macro commands are always part
of a base command that determines how the macro command will be split up.

Base commands are Hardware, Adapter, Controller, and Channel. Basically, the
macro command is split up to the level of channels (Probe, Enumerate, Untie),
controllers (Detect) or adapters (Enable, Disable).

The actual number of commands that end up in the command queue depends on the
current composition (controllers and channels) and state (enabled or disabled) of the 1-
Wire adapters.

If the server generates a response that doesn't originate from the completion of a
command, it's called an unsolicited response.

Unsolicited responses are generated on a per-client basis, at the client's request, by
means of the Report command. For example:

report add sensed dev "3A-000000052F6A"
report add sensed max31850

The client asks the server to report sensed data for the 1-Wire slave with ROM code 3A-
000000052F6A and for all 1-Wire slaves that are based on a MAX31850 chip. Note that
polling must be enabled for these devices; when a client issues an explicit Device Sense
command, this will not lead to the generation of unsolicited responses.

It's possible to assign an identifier to a client command. As a result, the server will
always return a client response when the command has completed.

For example:

id 10 dev "20-14C3CF" add
id 10 done

User Manual - Part 1 15

1-Wire Automation Server v1.1.0

Another example:

id 20 hw enum ; id 21 block ; id 22 dump

id 20 done
id 21 done

id 22 done

The identifier is a 32-bit unsigned number. The client typically keeps track of the
identifier and increments the value for each client command it sends to the server.

The use of command identifiers is particularly useful for client programs that need to
track the lifespan of the client commands they send to the server. For example, the 1-
Wire Automation Server GUI program tracks command identifiers for animating the
activity indicator and for highlighting command buttons like "ENUM".

The Dump command provides the client with a quick way to print out a block of useful
information. Currently, these commands are defined:

|dump dn | Dump Device Nodes
|dump topo | Dump Topology
|dump | Same as Dump Topology

Do not try to programmatically parse the contents of the information block. The
formatting of the information is not officially defined nor is it guaranteed to remain
unchanged in between software releases.

Various client commands and responses embed a 1-Wire ROM code. The client protocol
defines two formatting styles for ROM codes: native and owfs.

A client may specify any formatting style in its client commands, the server understands
all of them.

As for client responses, the server uses native as the default formatting style. Command
line argument -romcode and configuration file keyword romcode can be specified to
overrule the default setting. A client can change the current formatting style as follows:

lattr romcode=native | Set native formatting style.

lattr romcode=owfs | Set owfs formatting style.

The example commands and responses in this document use native formatting style. For
all these example, owfs formatting style is equally applicable.

16 User Manual - Part 1

1-Wire Automation Server v1.1.0

7 Hardware

Overview
1-Wire Bus 1-Wire Slaves
\

(" adapter Vi), A A
7l e S TS 20 I T M
Controller | | | o i | | |DsisB20| | Ds2438 DS2760 | |
DS2482-800 | e g ;

W #8 T

\ Channels Network

This chapter explains the various concepts in 1-Wire hardware and the way the server
works with these concepts.

Slave

A 1-Wire slave or device resides on a 1-Wire bus behind a 1-Wire channel. Each 1-Wire
slave carries a unique 64-bit value called the ROM code. This value is world-unique
meaning no two 1-Wire slaves in existence carry the same ROM code.

The server maintains information about each 1-Wire slave it knows and uses the ROM
code as the unique identifier for looking up the device when needed.

There are several methods you can use to add 1-Wire slaves to the server:
= Run the enumeration procedure.

= Load a topology file.

= Use client command Device Add.

Many 1-Wire slaves have a built-in temperature sensor, ADC, counters, input lines and/or
other sources that produce data. This data is called sensor data. The server assigns a
sensor identifier to each slave that produces sensor data. Acquisition of sensor data is
one of the main activities of the server.

A number of 1-Wire slaves provide programmable I/O (PIO) pins. The server reports the
input state in the sensor data while offering a dedicated client command for controlling
the output state of PIO pins.

Network

A network is a tree structure (or a hierarchical structure) of 1-Wire slaves. A network
can hold multiple slaves in its root branch. 1-Wire hubs add sub-branches to the tree
structure.

Hub
A 1-Wire hub is a 1-Wire slave that adds sub-branches to the 1-Wire network. A sub-

User Manual - Part 1 17

1-Wire Automation Server v1.1.0

branch is hooked up to a port that provides the electrical characteristics required for the
proper operation of a 1-Wire bus.

The server supports these hubs:

= Hobby Boards 4-Channel Hub. This device is a 1-Wire slave that adds four sub-
branches to the 1-Wire network. The ports are numbered 1 to 4.

= Maxim DS2409 MicroLan coupler. This 1-Wire slave chip adds two sub-branches to the
1-Wire network. The first port is called MAIN, the second AUX.

1-Wire Bus 1-Wire Bus
\ \

4 Hobby Boards \4 """" i i 4 DS2409 . \
4-Port Hub 71 2-Port Hub =

0O i 0 o < =01
H #2 =] =

1-Wire Slave ; #3 ' o 1-Wire Slave é o
Function : Function Ho<
: #42; s i

K S ' Ports K Ports

When the server accesses a 1-Wire slave, it makes sure the hub ports that lay on the
path from the controller to the target slave are activated first.

When you add hubs explicitly, you've to specify the type of hub in the Device Add client
command:

dev "EF-15207BA3" add ds2409
dev "1F-56BA7" add hbh4

Channel

A 1-Wire channel is the starting point of a network of 1-Wire slaves which are physically
connected to a 1-Wire bus. A channel is usually embodied as an RJ12 connector, an RJ45
connector, or a header.

Unlike USB or PCI, 1-Wire is not a plug-and-play protocol. This means the server must be
explicitly informed about the whereabouts of the 1-Wire slaves. When the server is told
that a slave is located in the network behind a channel, the server knows the slave can
be accessed through that particular channel's 1-Wire master.

Maintaining the channels of the topology can be a tedious task. Luckily the server offers a
number of powerful tools like the enumeration procedure, the detection procedure and
topology files. Using these tools you should have no problem synchronizing the topology
with your physical 1-Wire hardware.

Controller

A 1-Wire controller or master is a function that controls a 1-Wire bus. The controller
divides the bus into one or more 1-Wire channels. Most controllers provide one channel.
The DS2482-800 chip is an example of an 8-channel controller.

18 User Manual - Part 1

1-Wire Automation Server v1.1.0

Note that a multichannel controller can only work with one channel at a time. A
multichannel controller controls a single bus and as such it can communicate with one 1-
Wire slave at any given time. The multichannel feature is there for electrical reasons, not
for adding concurrent communication over multiple channels.

A 1-Wire adapter represents a logical grouping of one or more 1-Wire controllers. Most
adapters have one controller.

Some adapters comprise multiple controllers. For example, an AbioWire comes with two
DS2482-800 controllers and one DS2482-100 controller for a total of three 1-Wire buses
and seventeen 1-Wire channels.

Macro command Device Probe offers the functionality to probe for the presence of a
specific 1-Wire slave on a physical 1-Wire bus. For example, lets see whether a DS2450
slave with ROM code 20-00000014C3CF-0E is present behind any of the available 1-Wire
channels:

hw probe "20-00000014C3CF-0OE"

probe ch "ow":1:1 "20-00000014C3CF" nonpresent
probe ch "usb-4-2":1:1 "20-00000014C3CF" present
probe done

Note that the probe command doesn't change the state of hub ports during probing. If
hubs are present in the 1-Wire network and some ports are open, then the probe
command will include those parts of the network that are visible to the 1-Wire master
due to the open ports.

The server works with a system of device nodes for defining adapters and controllers.
The device nodes are organized in tree structure with a single root node. The device
nodes provide a powerful tool for setting up 1-Wire adapters of many manufacturers in
combination with a variety of common interface types like serial ports, USB-to-serial
adapters, and the I2C bus.

You can dump the current state of the device nodes by sending the Dump Device
Nodes client command. Example:

dump dn
Device Nodes:
+ ROOT
+ SERIAL: "/dev/ttyUSBO"
+ AXICAT
+ SERIAL: uartO
+ OWS-DRV: HA7S -> adapter "ha7s"
+ OWS-DRV: 1l-Wire -> adapter "owaxicat"
+ I2CBUS: i2c-dev "/dev/i2c-1" [open:4]
+ OWS-DRV: DS2482 ad 18h [open] -> adapter "owhost"
+ OWS-DRV: DS2482 ad 19h [open] -> adapter "owhost"

User Manual - Part 1 19

1-Wire Automation Server v1.1.0

+ OWS-DRV: DS2482 ad 1Ah [open] -> adapter "owhost"
+ OWS-DRV: DS2482 ad 1Bh [open] -> adapter "owhost"
+ OWS-DRV: DS2490 [open] -> adapter '"usb-4-2"

A client uses commands Adapter Add and Adapter Remove to dynamically add and
remove device nodes. As their names suggest, these commands works at the level of the
1-Wire adapter, hence they add or remove one or more controllers at once.

As stated earlier, an adapter comprises one or more controllers. From the viewpoint of
the device nodes, all controllers must be located on the same hardware bus. This
obviously is only possible if the hardware bus can host multiple slaves, like is the case
with I2C. In the example, adapter “owhost” is composed of four I12C to 1-Wire controller
chips all residing on the same 12C bus “/dev/i2c-1".

The LibUSB subsystem, if enabled, automatically adds device nodes when USB to 1-Wire
adapters are plugged in. The DS2490 node in the dump above is an example of an
automatically added device node.

Adapters can be enabled and disabled using client clients Adapter Enable and Adapter
Disable. In the example, device nodes labeled “open” represent enabled controllers and
their corresponding adapters.

Let's look at the client commands that are required to build the device nodes in the
example:

adapter "ha7s" add serial "/dev/ttyUSBO" axicat uartO0 ha7s

adapter "owaxicat" add serial "/dev/ttyUSBO" axicat ow

adapter "owaxicat" add i2cdev "/dev/i2c-1" ds2482 18h ds2482 19h ds2482
1Ah ds2482 1Bh

Remember that the last device node was automatically added by the LibUSB subsystem,
so we don't have to issue an Adapter Add command for adding this device node.

The nodes from the root node to a controller's device node make up a so-called device
path. Each controller has a unique device path.

The parameters specified in the Adapter Add command basically describe one or more
device paths, one for each controller.

Each adapter must have a unique name consisting of 1..16 Unicode characters. If the
client doesn't specify a name in the Adapter Add command, the server assigns a unique
name. Its possible to change an adapter's name:

adapter 2 attr name="100€ adapter"
adapter "usb-4-10" attr name="f£32-1"

The server incorporates a component, the LibUSB subsystem, that tracks plug-and-play
events of USB devices.

When the LibUSB subsystem is enabled, it tracks the arrival of supported USB to 1-Wire
adapters. When such an adapter is plugged in, the server creates a device node and
enables the adapter.

When the LibUSB subsystem is disabled, the arrival of USB devices is neglected. This
doesn't mean that connected USB to 1-Wire adapters cease to function! As long as one or
more connected adapters stay plugged in, the corresponding device nodes remain in

20 User Manual - Part 1

(\

1-Wire Automation Server v1.1.0 (5"?3

existence and you can enable, disable and remove the adapters.

When the server starts up, the LibUSB subsystem is disabled by default. Once the server
is up and running, you can issue the following client commands to enable and disable the
LibUSB subsystem:

[1u enable | LibUSB Enable

[1u disable | LibuSB Disable

The LibUSB subsystem supports the following USB devices:

Vendor ID | Product ID Name
Maxim DS2490. This chip can be found in adapters like the
04FAR 24300 1559490R and DS9490B.
Flyfish FF32 and FF34. These devices shares the same USB
04D8h F8BSh IDs. The server determines the model when the 1-Wire
adapter is enabled.
ODE7h 0191h USBMicro U401.
ODE7h 01A5h USBMicro U421.
ODE7h 01C3h USBMicro U451.

The LibUSB subsystem depends on the presence of the LibUSB library. The server loads
the library as soon as the LibUSB subsystem is enabled. If the library can't be found, the
server reverts the LibUSB subsystem to the disabled state.

When the LibUSB subsystem is disabled, the library is kept in memory as long as
associated USB to 1-Wire adapters are present. Once all associated USB to 1-Wire
adapters are gone, the library is unloaded.

The W1 subsystem, part of the Linux kernel, provides a framework for managing 1-Wire
masters and 1-Wire slaves. The W1 subsystem offers a connection to applications. The 1-
Wire server incorporates a component, called W1 connector, that connects to the W1
subsystem.

When the server starts up, W1 connector is disabled by default. Once the server is up
and running, you can issue the following client commands to enable and disable the W1
connector:

[wl enable | W1 Enable

[wl disable | W1 Disable

When the W1 connector is disabled, the server disconnects from the Wirel interface and
removes all associated 1-Wire adapters.

There are drawbacks when using W1. First, the W1 subsystem is slow compared to the
native support offered by the 1-Wire server.

Secondly, the W1 subsystem regularly enumerates its 1-Wire networks in the background
without synchronizing with commands coming from the server. When the enumeration
takes off in the middle of a command sequence, errors or timeouts will occur. Note that

User Manual - Part 1 21

1-Wire Automation Server v1.1.0

the server ignores the background enumeration completely; use the enumeration
procedure for discovering your 1-Wire slaves.

W1 doesn't support probing of 1-Wire slave nor the detection procedure.

You typically use W1 with 1-Wire masters that are not supported by the server. For
example, you can connect a DS18B20 temperature sensor to the GPIO pins of a
Raspberry Pi, start the wl-gpio kernel driver, and enable the W1 connector to access the
temperature sensor.

22 User Manual - Part 1

1-Wire Automation Server v1.1.0

8 Topology

The server's view on the 1-Wire slaves is called the topology. The topology contains the
1-Wire slaves that the server knows about.

The topology is subdivided in three areas: channels, unallocated channels and non-
present devices.

Client command Dump Topology prints out the current topology. Example:

dump topo
Non-present devices:
30-000012B5735B-F4 DS2760/2761/2762 Li+ battery monitor
3B-00000019CCEF-07 DS1825 thermometer
Network 1:
1C-00000B8DD77F-C8 DS28E04-100 4Kb EEPROM with PIO
32-0000006BDBCO-DB DS2780 standalone fuel gauge
36-000003612CDB-84 DS2740 Coulomb counter
3B-0000001529B5-FC MAX31826 thermometer
Network 2:
35-00000043F47C-E9 DS2755/2756 high-precision battery fuel gauge
01-000016707B5C-40 DS2401/2411/1990A silicon serial number
Network 3:
3D-00000081D206-15 DS2775/2776/2781 Li+ fuel gauge
3B-000000183368-2E MAX31850 thermocouple
01l: USB to 1-Wire "usb-4-3"
01: DS2490
01l: 28-0000040CBBB2-C4 DS18B20 thermometer
01: 42-00000038DOBE-A3 DS28EAO00 thermometer
01: 81-000000324BBD-31 DS1420 serial ID button
01: 29-00000011BD2A-4E DS2408 8-channel addressable switch
02: AbioWire "aw"
01: DS2482-800
01: 22-0000003201DA-1C DS1822 Econo digital thermometer
01: 3A-000000052F6A-85 DS2413 dual-channel addressable switch
01l: 01-000016707B5B-C5 DS2401/2411/1990A silicon serial number
02: DS2482-800
01: 20-00000014C3CF-0E DS2450 quad A/D converter
01: 10-000802A49A17-B1 DS18S20/1920 thermometer
03: DS2482-100

Several commands allow a client to manipulate the topology:
= Run the enumeration procedure.

= Run the detection procedure.

= Load a topology file.

= Add, remove, and move a device.

= Add, remove, move, and clear a device group.

= Add and remove an unallocated channel.

= Add, remove, enable, and disable an adapter.

User Manual - Part 1 23

1-Wire Automation Server v1.1.0

Channels

The channels are the place where the topology meets the physical hardware. A channel is
the starting point of a network of 1-Wire slaves which are physically connected to a 1-
Wire bus.

Unallocated Channels

An unallocated channel stores a 1-Wire network that's not currently connected to any
channel.

Unallocated channels are most often used in conjunction with the detection procedure
and the removal and disabling of adapters.

Non-present Devices

The non-present devices (NPD) area in the topology stores information about 1-Wire
slaves that are not part of a channel or unallocated channel. This way information about
1-Wire slaves can be retained.

There's no hierarchy in the NPD, just the root level. All slaves including hubs that are
moved or added to the NPD reside at the root level. This means that when a hub is
moved from a channel or unallocated channel to the NPD, all slaves that are located
behind ports are disassociated from the hub and end up at the same level in the NPD.

The NPD area is most often used in the context of the enumeration procedure. When the
server enumerates a channel, it first moves all present 1-Wire slaves to the NPD in order
to empty the channel.

The NPD comes in handy when you want to configure a 1-Wire slave for polling before it's
actually known to the server. For example:

dev "1C-B8DD77F" add
dev "1C-B8DD77F" attr poll=on, 60000

In this example, the slave is first added. If it's not known to the server, it's added to the
NPD, else it stays put wherever it is located in the topology. Next, polling is turned on. As
soon as the slave moves to a position in a network behind a 1-Wire channel, the server
starts polling the slave.

Enumeration Procedure

The enumeration procedure is a very powerful tool for discovering 1-Wire slaves that are
present in a physical 1-Wire network. Client command Enumerate initiates the
enumeration. It's a macro command that operates at the level of the 1-Wire channel.

When the server enumerates a channel, it first moves all present 1-Wire slaves to the
NPD in order to empty the channel. Then discovery of 1-Wire slaves begins. During the
discovery process, 1-Wire slaves may be moved between the NPD and the channel
several times, especially when hubs are present in the 1-Wire network.

24 User Manual - Part 1

1-Wire Automation Server v1.1.0

Example enumeration commands:

hw enum

adapter "f£32" enum
ctrl "abiowire":2 enum
ch 1:1:1 enum

Features of the enumeration procedure include:
= Support for the Hobby Boards 4-Channel Hub.
= Support for the DS2409 MicroLan Coupler chip, a 2-port hub.
= Usage of DS2409 Smart-ON feature for faster enumeration.
= Discovery of arbitrarily deep networks (nested hubs).
= Support for hardware-accelerated enumeration:

= AxiCat 1-Wire Master.

= OW-SERVER-ENET-2.

= HA7E/HA7S.
= Recognition of type of family 3Bh chip (DS1825, MAX31826, MAX31850).
= Recognition of Hobby Boards devices.

The enumeration procedure is a manual tool. There's no reason for the server to
automatically perform enumerations. You've to see enumeration as a tool for adding your
physical 1-Wire networks to the server's topology. Once you've set up your 1-Wire
networks, they usually remain static, so there's little reason for the server to run the
enumeration procedure periodically.

You can set an adapter to automatically enumerate upon arrival. For example:

adapter "enet" add enet "192.168.1.101" 8080
adapter "enet" attr enum=on
adapter "enet" enable

Although it's preferred to turn on detection, some 1-Wire adapter like the OW-SERVER-
ENET-2 are substantially faster doing enumeration than detection. Note that when the
OW-SERVER-ENET-2 disappears and reappears, due to the nature of the enumeration
procedure an empty unallocated channel will remain. If this occurs regularly, empty
unallocated channels will pile up. To avoid this situation, you're advised to issue client
command UCH Purge periodically.

The aim of the detection procedure is find out where networks of unallocated channels
are physically located behind 1-Wire channels.

During detection, the server picks 1-Wire slaves from the unallocated channel's network
and probes for their presence behind the channels of the controller. The 1-Wire slaves are
picked from the root level of the network. They're picked not just randomly, but in a strict
order based on their family code:

User Manual - Part 1 25

1-Wire Automation Server v1.1.0

1. DS2401/2411/1990A Silicon Serial Number chips (family code 01h). These slaves have
the specific purpose of identifying a 1-Wire network.

2. DS1420 Serial ID Button chips (family code 81h). These slaves are usually part of
DS9490 adapters.

3. The remaining slaves, a.k.a. non-identification slaves. The server only uses a limited
number of these slaves. The default is one slave.

As soon as one slave has been successfully detected behind a channel, the server moves
the entire network from the unallocated channel to the channel and removes the
unallocated channel from the topology.

You can change the number of non-identification slaves to use for each unallocated
channel, like this:

uch 1 attr nid=10

The number has a valid range of 0..255. Zero indicates the server must not use any non-
identification slaves.

The detection procedure works at the level of the 1-Wire controller. All channels of the
controller are involved during detection. Nonetheless, it's possible to narrow down the
procedure to a single channel on a multichannel controller. For example, let's run the
detection procedure on the fifth channel of the second DS2482-800 controller on an
AbioWire:

ch "abiowire":2:5 detect

In combination with a topology file, the detection procedure can effectively provide an
efficient replacement for enumeration. The following commands are typically sent when
the server starts up:

topo load "abiowire networks.txt" force

adapter "abiowire" add i2cdev "/dev/i2c-1" abiowire
adapter "abiowire" attr detect=on

adapter "abiowire" enable

The commands instruct the server to load a topology file containing networks that are to
be detected on the AbioWire. The AbioWire is added, set to automatic detection, and
enabled. As soon as the AbioWire is fully enabled, the server commences the detection
procedure on all three 1-Wire controllers in search of the networks that the topology file
has provided.

The detection procedure is also useful for recovering from a situation where a 1-Wire
adapter may disappear and reappear again due to the nature of its physical and/or
mechanical connection. A good example is a DS9097U adapter connected to a USB-to-
serial adapter. Although the DS9097U is firmly connected to the USB-to-serial adapter,
the USB-to-serial adapter itself may be unplugged and replugged, or it may disappear
from the USB bus and come back due to electromagnetic interference for example.
Here's an example how to recover:

topo load "networks.txt" force

adapter "ow" add serial "/dev/ttyUSBO" ds9097u
adapter "ow" attr reconn=on,5000 detect=on
adapter "ow" enable

When the USB-to-serial adapter is unplugged, the DS9097U adapter will be brought to
the disabled state and the server will move the 1-Wire network to a newly created

26 User Manual - Part 1

1-Wire Automation Server v1.1.0

unallocated channel. When the USB-to-serial adapter is plugged in a bit later, the server
will be able to re-enable the DS9097U. As soon as the DS9097U is enabled again, the
detection procedure kicks in and the network is moved from the unallocated channel to
the DS9097U's channel (assuming the physical network hasn't changed).

It's possible to turn on automatic detection by default. This feature is especially useful
when using USB-based adapters that are automatically added (DS2490, FF32, FF34):

hw attr detect=on |

Technically, if the detection attribute for an adapter is set to “on” or “off”, it overrules the
detection attribute for all hardware. When an adapter is added either automatically (USB)
or by issuing client command Adapter Add, its detection attribute is set to “default”
meaning the adapter uses the detection attribute for all hardware.

The opposite of detection is called untying. This happens when a network is moved from
a channel to a new unallocated channel.

The following events result in the untying of networks:

= An adapter disappears from the system. For example, when you unplug a DS9490
adapter.

= The client issues command Adapter Disable.
= The client issues command Adapter Remove.
= The client issues command Untie.

Client command Untie comes in handy when you move one or more physical networks
from one channel to another, even between different adapters. After you've moved the
physical networks, you can untie the affected channels in the topology and run the
detection procedure to let the server figure out where the networks have moved to.

For example, suppose you physically unplug all networks from an OW-SERVER-ENET-2
adapter named “enet” and connect them to an AbioWire named “aw”. After you're done
with the changes, you can update the server's topology with these client commands:

adapter "enet" untie
adapter "aw" detect

Just make sure you move your physical networks as a whole, not parts of it. If you
change the structure of a network, you better run the enumeration procedure to rebuild
the topology.

User Manual - Part 1 27

1-Wire Automation Server v1.1.0

9 Sensor Data

Acquisition of sensor data from 1-Wire slaves is one of the main activities of the server.
The server supports many 1-Wire slaves including temperature sensors, A/D converters,
battery monitors, counters, and PIO chips.

For each known 1-Wire slave, the server keeps data you should be aware of:

= Sensor identifier: Indicates the actual sensor information that the 1-Wire slave
produces.

= Current sensor data: The sensor data that was acquired most recently. This data is
marked unavailable when the 1-Wire slave hasn't been read yet. If marked as
unavailable, the data is marked valid or invalid, depending on whether the slave was
successfully read or not.

= Previous sensor data: A copy of the sensor data that was acquired before the current
sensor data. By keeping this data the server can keep track of differences in sensor
data.

= Polling information: Polling interval (milliseconds) and is-polling-enabled state.
The server also keeps information per client connection:

= Temperature scale: The scale used when formatting the sensor data string. The scale
can be set to Celsius (default), Fahrenheit, or Kelvin.

= Reporting: A list of 1-Wire slave ROM codes and a list of sensor identifiers that trigger
the generation of unsolicited responses.

Client command Device Sense allows a client to acquire the sensor data of a 1-Wire
slave. For example, let's read a temperature sensor:

dev "28-0000040CBBB2-C4" sense force
dev "28-0000040CBBB2" sensed dsl8b20 "2014-11-12 02:44:47 0132 +019.1 C
parasite"

Label “force” tells the server to always read the 1-Wire slave even when previously
acquired sensor data is stored.

If you omit label “force”, the server will return the stored sensor data rather than actually
accessing the 1-Wire slave, unless there's no sensor data available in which case label
“force” has no effect and the server accesses the 1-Wire slave. The latter usually
happens when the 1-Wire slave is sensed for the first time.

The response includes the ROM code of the 1-Wire slave, sensor identifier, and the
sensor data string. The string always starts with the date and time when the sensor
data was acquired, followed by the actual sensor data.

The sensor data string shown in the example contains the value of the temperature
register and a decimal representation of the temperature in Celsius. The representation is
derived from the register value and will usually do for your purposes. The register value
is there in case you need the highest precision.

28 User Manual - Part 1

1-Wire Automation Server v1.1.0

Whenever the server returns a temperature value, the server uses a scale for the
representation. The available scales are Celsius, Fahrenheit and Kelvin. The scale is
configured per client connection, the default is Celsius. Use client command Attribute to
change the temperature scale.

If the client tries to sense a 1-Wire slave that's not located behind a channel or that's not
part of the topology at all, the server responds as follows:

dev "28-0000040CBBB2-C4" sense
dev "28-0000040CBBB2" sensed nonpresent

If the 1-Wire slave does reside behind a channel, but it can't be accessed over the 1-Wire
bus, the server responds as follows:

dev "28-0000040CBBB2-C4" sense force
dev "28-0000040CBBB2" sensed dsl8b20 "2014-11-12 02:44:47 ERROR"

The presence of a sensor data string indicates the server really has tried accessing the 1-
Wire slave. The "ERROR" label says that access has failed. Usually this means the 1-Wire
slave is disconnected from the 1-Wire bus or the 1-Wire slave is located behind the
wrong channel or hub port in the topology.

You can also have the server return so-called short responses. A short response consists
of a single value. For example:

dev "28-40CBBB2" sense force rsp=temp
19.5

This command just returns the temperature value. Note that the value is formatted a bit
differently than the representation in the sensor data string; leading zeroes and the plus
sign are omitted. The idea is that a client uses short responses when simple processing of
sensor data is at hand.

Label “temp” is called the short response identifier. For each sensor identifier, the server
defines a set of response identifiers. Some 1-Wire slaves have an elaborate set of short
response identifiers, like the MAX31850.

It's important to know that a forced sense command will acquire all sensor data, not just
the one specified in the short response. This attribute of command Device Sense allows
a client to read a 1-Wire slave and request the sensor values in shorthand form like this:

dev "42-38DOBE" sense rsp=sensedt all force
dev "42-38DOBE" sense rsp=temp

dev "42-38DOBE" sense rsp=piosensed

dev "42-38DOBE" sense rsp=pioset

dev "42-38DOBE" sense rsp=pwrmode
2014-12-10 15:20:24

19.4

3

3

external

If the result of the requested short response isn't available, the server returns "ERROR”.
For example:

User Manual - Part 1 29

1-Wire Automation Server v1.1.0

dev "42-38DOBE" sense rsp=pwrmode
ERROR
A set of short responses is available for all sensor identifiers:
Name Return Values Description
. (] One if sensor data is valid, zero if sensor
valid . - .

1 data is invalid or unavailable.

. Example: ds2408 . - W
sensorid ERROR The sensor identifier of the 1-Wire slave.

Example: 2014-12-10 15:20:24 |Date and time the sensor data was
sensedt all .

ERROR acquired.

0..9999 .
sensedt year ERROR The year the sensor data was acquired.
sensedt month 1..12 The month the sensor data was acquired

ERROR quired.
sensedt day 1..31 The day the sensor data was acquired

ERROR)
sensedt hour 0..23 The hour the sensor data was acquired

ERROR ’
sensedt minute 0..59 The minute the sensor data was acquired

ERROR quired.
sensedt second 0..59 The second the sensor data was acquired

ERROR)

You can instruct the server to poll a 1-Wire slave periodically and report the sensor data
in unsolicited responses. This takes two commands:

= Issue client command Report Sensed to enable unsolicited responses.
= Issue client command Device Attribute Poll for the 1-Wire slave.

For example, let the server poll our DS18B20 temperature sensor each minute:

report add sensed dev "28-40CBBB2"
dev "28-40CBBB2" attr poll=on, 60000

You can freely choose the order of the commands, the results are the same, but there's a
catch. When you issue command Device Attribute Poll, the server immediately starts
polling the 1-Wire slave. So if you issue command Report Sensed some time later, you
may miss the first polled sensor data.

The client can instruct the server to report sensor data only when it has changed. For
example:

report add sensed dev "28-40CBBB2" diff

This example command tells the server that the client wishes to receives sensor data
when it differs from the previously acquired sensor data.

Take note that client command Report Sensed operates at the level of the individual
client connection, while client command Device Attribute Poll takes effect at the server
level thus affecting all clients. This means multiple client can enable unsolicited

30 User Manual - Part 1

1-Wire Automation Server v1.1.0

responses for the same 1-Wire slave or family, while it takes just one command to enable
polling of the 1-Wire slave or family.

Temperature Scale

When the server returns a temperature value, either in the sensor data string or in a
short response, it uses a temperature scale. By default, the scale is set to Celsius when
the client connects to the server.

Use client command Attribute to change the temperature scale for the client connection.

|attr tscale=celsius | Set temperature scale to Celsius.
|attr tscale=fahrenheit | Set temperature scale to Fahrenheit.
|attr tscale=kelvin | Set temperature scale to Kelvin.

User Manual - Part 1 31

1-Wire Automation Server v1.1.0

10 Programmable I/O Pins

Overview

A number of 1-Wire slaves provide programmable I/O (PIO) pins. These pins act as
general-purpose digital I/0 lines and can be remotely controlled over a 1-Wire network.

The server reports the input state and activity state of PIO pins in the sensor data string
of the Device Sensed client response. For controlling the output state of PIO pins the
server offers a dedicated client command called Device PIO.

Reading State of PIO Pins

In the realm of 1-Wire, a PIO pin can have three states:

= Sensed state: The state on sampled the pin, a.k.a. the input state.

= Qutput state: The state written to the pin.

= Activity state: Indicates whether the input or output state of the pin has changed.
Not all slaves implement the activity state.

There's no explicit setting of the input/output direction. See the datasheet of your
particular 1-Wire slave for more details on how to cope with direction.

For example, the DS2408 slave implements all three states:

dev "29-00000011BD2A-4E" sense force

dev "29-00000011BD2A" sensed ds2408 "2014-11-12 02:37:51 01000000 11111110
01100001 reset external"

The sensor data in the example shows that the input state of 7' pin is one, all pins but
the 1t have output state one, and three pins have their activity bit set.

Controlling Output State of PIO Pins

Client command Device PIO controls the output state of PIO pins. This command works
for all supported 1-Wire slaves that incorporate one or more PIO pins.

Let's change the output state of some pins on a DS2408 slave:

dev "29-00000011BD2A" pio off 1 on 4 5

The example command clears the output state of the 1% pin, and sets the output state of
the 4™ and 5" pin. PIO pins are numbered from 1 onwards.

You can also specify a bit mask of pins:

dev "29-00000011BD2A" pio set 80h clear 110b

This command set the output state of the 8™ pin, and clears the output state of the 2™
and 3" pin.

It's perfectly possibly to combine arguments “on”, “off”, “set” and “clear”. The server
accumulates all arguments into two pin masks, a mask for setting pins, and a mask for
clearing pins. If the two masks overlap for some pins, then these pins are set (setting
takes precedence over clearing). Unspecified PIO pins remain untouched.

32 User Manual - Part 1

1-Wire Automation Server v1.1.0

11 Configuration File

When the server starts up, it optionally processes a configuration file. This file contains a
number of settings that aren't strictly necessary but can't be set elsewhere.

The server treats the configuration file as read-only. The server will never write a
configuration file to disk.

The configuration file must use one of these character encoding schemes: UTF-8, UTF-16
Little Endian, or UTF-16 Big Endian. The server recognizes the character encoding by
means of the byte order mark (BOM) at the beginning of the file. If no byte order mark is
present, the server assumes the file is encoded as UTF-8.

Note that UTF-8 encoding is a super set of ASCII characters 0..127. This means you can
create a configuration file with a simple ASCII editor.

If command line parameter -cfg is specified, the given filename overrules the default
configuration file. The filename may include an absolute or relative path. If the path is
relative, the location of the server's executable file acts as the base directory. The given
filename must exist, else the server stops with an error.

If command line parameter =-cfg isn't specified, the server assumes a default
configuration file is located in the program directory. The default configuration file is
called owsas-free.cfg for the free version of the server and owsas.cfg for the full
version of the server.

The presence of the default configuration file is optional, the server can run without it.
Note that in case the default configuration file is not present, then at least command line
parameter -port must be specified, else the server doesn't know what port to listen at.

The configuration file consists of keywords followed by one or more parameters.

Keyword Description
port The number of the server port the server listens at.
maxconn The maximum number of client connections allowed.

allowedip!! |A list of allowed IP addresses clients can connect from.

user!! A user account.

romcode Default ROM code formatting style for client connections.

cmdfilel! File containing client commands to be executed when the server starts
up.

[1] Not available in the free version.

User Manual - Part 1 33

1-Wire Automation Server v1.1.0

You can specify the server port in the configuration file. If you don't, you'll have to
specify the server port with the -port command line parameter, else the server doesn't
know which port to listen at.

Example:

port 5001;

Valid port numbers are 1..65535.

If this keyword occurs multiple times in the configuration file, the last one will take effect.

Keyword maxconn sets the maximum number of incoming client connections. You can
specify a non-zero value to set a limit, or value zero to allow an unlimited number of
connections.

|maxconn 0; | Allow unlimited number of client connections.

[maxconn 10; | Allow up to 10 client connections.

If this keyword occurs multiple times in the configuration file, the last one will take effect.

You can specify a list of IP addresses from which clients are allowed to connect. The list is
a comma-separated enumeration of IP addresses.

Example:

allowip
192.168.1.105,
192.168.1.110,
localhost;

The label “localhost” is equivalent to "127.0.0.1"” and refers to the system the server is
running on.

In the absence of a list of allowed IP addresses, the server will accept incoming client
connections.

This keyword can be specified multiple times in the configuration file. The server adds the
IP addresses to a single list.

Add one or more users to enable authentication. The parameters of the user keyword are
a user name followed by a password. The password is optional.

user "winston" "OnewlreXL";
user "lizzy" "";

When one or more users are added, the server expects each incoming client connection
to authenticate itself by issuing client command Authentication as the first command.

34 User Manual - Part 1

I

1-Wire Automation Server v1.1.0 8:*?3 F

ROM Code Formatting Style

Keyword romcode selects the formatting style of ROM codes in client responses.

|romcode native; | Native formatting of the server.

|romcode owfs; | Formatting of the owfs software.

If this keyword occurs multiple times in the configuration file, the last one will take effect.

Command line parameter -romcode overrules this keyword. If neither this keyword nor
the command line parameter is specified, the server uses native formatting. Individual
client connections can send command Attr to select a different formatting style.

Command File

The configuration file can point to a file that contains client commands that are to be
executed when the server starts up. Note that any responses that result from executing
these client commands will be discarded.

For example:

cmdfile "owsas-startup-cmds.txt";

This keyword can occur only once in the configuration file.

IMPORTANT! The command file is processed in the context of a separate client
connection. If you've set up one or more users in the configuration file, the command file
must start with an Authentication client command. If authentication fails, the server
won't process the command file any further.

User Manual - Part 1 35

1-Wire Automation Server v1.1.0

12 Topology Files

A topology file contains information about 1-Wire slaves and the structure of 1-Wire
networks. Topology files are primarily used in combination with the detection procedure.

A topology file is a human-readable Unicode text file and can be manually edited. The
format allows for future extensions and is upwards and backwards compatible.

Client command Topology Save saves the server's current topology to a topology file.
It's like taking a snapshot of the topology. The command is synchronous.

Saving a topology file involves these steps:

1. The server saves all 1-Wire slaves in the NPD.

2. The server saves each non-empty unallocated channel as a network.
3. The server saves each non-empty channel as a network.

Example client command:

|topo save "mytopology.txt" utf8

You can explicitly choose the character encoding of the output file: utf8 (UTF-8), utfi6le
(UTF-16 Little Endian), or utfilébe (UTF-16 Big Endian). If the encoding is omitted, the
server chooses a default one depending on the system it's on (UTF-8 for Linux, UTF-16
LE for Windows).

The server will overwrite the target file if it already exists.

Client command Topology Load instructs the server to load a topology file. The
command is asynchronous, it can takes a while to complete and it can be cancelled.

Examples:

topo load "mytopology.txt" |

The server loads the given topology file. 1-Wire slaves and unallocated channels are
added as the server reads the information from the file. When the server reads
information about a 1-Wire slave that already exists in the topology (same ROM code),
the information is discarded and the existing 1-Wire slave remains unchanged.

topo load "mytopology.txt" force |

This command changes the behavior of the server when it reads information about a 1-
Wire slave that exists in the topology. With the force flag in place, the server will remove
the 1-Wire slave and recreate a new one in the NPD based on the information read from
the topology file.

36 User Manual - Part 1

1-Wire Automation Server v1.1.0

Path

Topology files are stored on the host system of the server, not on the client side. When
you specify a topology file name and optionally a path, it's important to follow the syntax
rules of the file system on the server's host system.

You can specify a path with the topology file name. If the path is relative, the location of
the server's executable file acts as the base directory.

User Manual - Part 1 37

1-Wire Automation Server v1.1.0

13 1-Wire Masters

AxiCat Adapter

The AxiCat is a USB-12C/SP1/1-Wire/UART/GPIO
interface adapter.

The server support the following interfaces: 1-
Wire master, I12C master, UARTO, and UART1.
The interfaces operate concurrently, making the
AxiCat a powerful adapter that can interface
with multiple 1-Wire masters and 1-Wire slaves
at once.

The voltage level of the I/O interface can be set
to 3.3 V or 5 V. This enables the use of 3.3 V 1-
Wire slaves like the MAX31850 thermocouple.

Although the AxiCat technically is a USB to FIFO device, the operating system installs the
AxiCat as a USB-to-serial port adapter. As such, label “serial” must occur in client
command Adapter Add and you've to specify the serial path of your AxiCat.

UARTO and UART1

You can connect a serial to 1-Wire adapter that operates at 3.3V or 5 V to the AxiCat. For
example, let's hook up a HA7S to interface UART1:

|adapter "ow" add serial "/dev/ttyUSBO" axicat uartl ha7s

Since the HA7S is designed to operate at 5 V, make sure the AxiCat is set to 5V as well.

I2C Master

The I2C master can interface with all supported I2C to 1-Wire controllers. For example:

|adapter add serial "/dev/ttyUSBO" axicat twi ds2482 1Eh ds2482 1Fh

You can plug an AbioWire onto an AxiCat and let the server use the combo. For example:

adapter "abiowire" add serial "/dev/ttyUSBO" a
axicat twi abiowire .

adapter "abiowire" attr reconn=on,5000
adapter "abiowire" enable

These three commands turn the AbioWire into a true
plug-and-play USB device.

IMPORTANT! The AbioWire is a 3.3 V device. Make
sure the jumper (JP1) on the AxiCat is set to 3.3 V
operation.

38 User Manual - Part 1

1-Wire Automation Server v1.1.0

1-Wire Master

The AxiCat implements a 1-Wire master with accelerated enumeration and probing of 1-
Wire slaves and strong pull-up control. Here's an example how to add the 1-Wire master
to the server:

|adapter "ow" add serial "\\.\COM14" axicat ow

DS24808B Serial to 1-Wire Controller

The DS2480B chip bridges between a serial interface and a 1-Wire bus. It can be found in
a number of adapters like the DS9097U.

|adapter add serial "\\.\COM1" ds2480

Label "ds2480"” tells the server to use the DS2480B driver.

DS9097U Adapter

This adapter uses the DS2480 Serial to 1-Wire controller chip. It
can be directly connected to an RS-232 serial port.

The adapter draws power from the serial port's DTR and RTS lines.
If neither of these lines are activated, the adapter won't function.
The server must be told to activate these lines:

|adapter add serial "\\.\COM1" ds9097u

Label “"ds9097u” tells the server to use the DS2480B driver and activate DTR and RTS.

HAZE/HAZ7S Adapter

EDS produces two Serial to 1-Wire adapters called
HA7E and HA7S. Functionally, these adapters are
the same. Electrically, the HA7E interfaces with a
standard serial port while the HA7S requires a 5 V
level serial interface.

Client command Adapter Add accepts Ilabels
“ha7e” and “ha7s” for adding an device node for
these adapters. The labels mean the same to the
server, so you can specify “ha7s” for a HA7E and
the other way around. The reason both labels exists is that client command Dump
Device Nodes can show an appropriate description of the adapter.

Examples:

|adapter "ha7s" add serial "\\.\COM14" ha7e I

The command adds device nodes for a HA7E that's connected to a USB-to-serial adapter.
The system is running Windows.

|adapter "ha7e" add serial "/dev/ttyUSBO" axicat uartl ha7s |

The command adds device nodes for a HA7S that hook up to an AxiCat that's plugged
into a USB port on a Linux system.

User Manual - Part 1 39

1-Wire Automation Server v1.1.0

DS9097 Adapter

The DS9097 is a passive adapter that performs level conversion between RS-232 and 1-
Wire. This adapter relies on the UART for generating and sampling the 1-Wire signals.

The DS9097 is a simple circuit that sits between an RS-232 serial port and the 1-Wire
network. It's primarily used with on-board UARTs but also performs well when interfacing
with a USB-to-serial adapter.

The DS9097 adapter requires a DTR line to function properly. It doesn't support strong
pull-up.

Various implementations of passive adapters are available. They should work well with
the server provided they're compatible with the DS9097.

Example:

|adapter add serial "/dev/ttySO0" ds9097

Label "ds9097"” tells the server to use the DS9097 driver and activate DTR.

DS2482 I2C to 1-Wire Controller

The DS2482 chip is a 1-Wire master that incorporates a I12C slave function for interfacing
with a host system. It's found on various adapters and boards. There are two variants of
this chip:

= DS2482-100: A single-channel 1-Wire master.
= DS2482-800: An eight-channel 1-Wire master.
The server can distinguish between a DS2482-100 and a DS2482-800.
|adapter add i2cdev "/dev/i2c-2" ds2482 20h

Label “ds2482” is followed by the I2C slave address assigned to the DS2482 chip.

AbioWire 1-Wire Adapter

The AbioWire was initially developed for use
with the Raspberry Pi A and B single board
computers. Using the USB-based AxiCat
adapter, you can connect the AbioWire to a
multitude of computer systems.

The AbioWire comprises three I12C to 1-Wire
controllers for a total of seventeen channels:

= DS2482-800 with slave address 18h.
= DS2482-800 with slave address 19h.
= DS2482-100 with slave address 1Ah.
The adapter also features a battery-backed PCF2129A real-time clock chip.

Let's look at examples of an AbioWire fitted on a Raspberry Pi:

adapter "abiowire" add bscdetect abiowire

The command tells the server to detect how to interface with the AbioWire.

40 User Manual - Part 1

1-Wire Automation Server v1.1.0

|adapter "abiowire" add bscl abiowire

The server uses direct I/O with BSC 1 to interface with the AbioWire.

|adapter "abiowire" add i2cdev "/dev/i2c-1" abiowire

The server uses the i2c-dev subsystem to interface with the AbioWire.

You can deploy the AbioWire with an AxiCat as a combo. For example, let's plug the
combo into a Windows system and let the server take control:

adapter "abiowire" add serial "\\.\COM3" axicat twi abiowire

In the free version of the server, enumeration is limited to the :
first channel of the first controller. The connector of this channel h
is labeled “K1” on the AbioWire. The orange marker in the image N
to the right shows the physical location of the channel's 4 gm
connector. t |

AbioWire+ 1-Wire Adapter

The AbioWire+ is designed for use with the
Raspberry Pi A+, B+ and 2 single board
computers.

The adapter can be used in conjunction with the
AxiCat adapter meaning you can connect the
AbioWire+ to a multitude of computer systems.

The AbioWire+ is software-compatible with the
AbioWire. To add the adapter to the server's
topology, you can use the same Adapter Add
commands as with the AbioWire.

In the free version of
the server, enumeration
is limited to the first
channel of the first controller. The connector of this channel is
labeled “"K1” on the AbioWire+. The orange marker in the image
to the left shows the physical location of the channel's connector.

m.nu 1-Wire Adapter

This adapter incorporates a DS2482-100 chip as the
1-Wire master. It's designed to fit on a Raspberry Pi
single board computer.

Up to four adapters can be stacked on a single
Raspberry Pi. Solder pads ADO and AD1 on the circuit
board provide a way to configure the I2C slave
address of the DS2482-100 chip. The address range is
18h..1Bh.

Example:

User Manual - Part 1 41

1-Wire Automation Server v1.1.0

adapter "mnu" add bscdetect mnu0

You can choose from the following labels to specify the I12C slave address in the Adapter
Add command:

Label mnu mnu0 mnul mnu?2 mnu3

I2C Slave Address 1Bh 1Bh 1Ah 19h 18h

DS2490 USB to 1-Wire Controller

The DS2490 chip implements a USB device function and a 1-Wire master. It can be found
in @ number of adapters like the DS9490B and DS9490R.

The server relies on LibUSB for driving the DS2490 chip. You don't have to issue
command Adapter Add, the server automatically adds a device node when a DS2490-
based 1-Wire adapter is plugged into a USB port. Just make sure the LibUSB subsystem
is enabled.

When you're using a DS2490- EXE—— =lolx|
based 1-Wire adapter in & 26w =

Windows, use_the Zadig tool .tO USE Host Adapter for 1-Wire Network using WinUS8 =1 Edit
update the driver of the 1-Wire

adagte;- -Irge LffstBh Vegggzgg and Driver [WinUS8 (+7.0.0.0) libusbK (v3.0.5. 16) j m‘““
produc of the are _ _ o
04FAR/2490h. We recommend "1 [*° L. e
installing the libusbK driver. wew? [WinUsB (Microsoft)

|3 devices found. [zadig v2.0.1.160

DS9490R/DS9490B 1-Wire Adapter
These adapters are based on the DS2490 USB

to 1-Wire controller chip. i

The DS9490R exposes an RJ12 connector. This 0
Flyfish FF32/FF34 1-Wire Master
zadio =olx]

number chip (family code 81h).

adapter usually comes with a 1-Wire serial
The DS9490R is designed to hold an iButton.
Device Options Help

IUSB Human Interface Device j [~ Edit /&fl Fng
TECHNOLOGIES
Driver [FidUsb (v5. 1.2600.2180) " [libusbK (v3.0.5.16) :II More Information i i e e s L
z WinUSB (ibusbx)
USE D |04Da IFaEg bush-win32
i Replace Driver i libushi
WCID I_ ; ; WinUSB (Microsoft)

|3 devices found. [zadig v2.0.1.160

The Flyfish FF32 and FF34 are versatile USB-based interface adapters that offer a variety

42 User Manual - Part 1

1-Wire Automation Server v1.1.0

of features like digital I/O pins, PWM, I12C master, and a 1-Wire master.

The FF32 and FF34 have the ability to use each I/O pin as the 1-Wire bus. There are two
defined ways to assign the I/0 pin:

= The chosen I/O pin is stored in non-volatile memory in the device, as a setting. As
soon as 1-Wire activity occurs, the device uses the I/O pin as the 1-Wire bus.

= The server explicitly assigns an I/O pin as the 1-Wire bus.
The server supports both.

Each FF32/FF34 stores a chip address (called “USB address” in the FF32/FF34
documentation) in non-volatile memory. The server reads this chip address to look up
information for assigning an I/O pin as the 1-Wire bus. If the information is found, the
server sends the command to assign the I/O pin, else the server assumes the FF32/FF34
will use the I/0 pin stored in non-volatile memory. You can change the chip address using
the FF3x Demo program from Flyfish.

The server defines client commands for controlling the assignment of the I/O pin.
Examples:

|ff32 ow 10 "B1" |The server instructs the FF32 with chip
address 10 to use pin B1.

|ff32 ow 10 "© |The server assumes the FF32 with chip
address 10 assigns a pin as 1-Wire bus.

|ff34 ow 28 "C5" |The server instructs the FF34 with chip
address 28 to use pin C5.

|ff34 ow 28 "n |The server assumes the FF34 with chip
address 28 assigns a pin as 1-Wire bus.

The server relies on LibUSB for driving the FF32 and FF34. You don't have to issue
command Adapter Add, the server automatically adds a device node when an FF32 or
FF34 is plugged into a USB port. Just make sure the LibUSB subsystem is enabled.

When you're using a Flyfish FF32 or FF34 in Windows, use the Zadig tool to update the
driver of the interface adapter. The USB vendor ID and product ID of the FF32/FF34 are
04D8h/F8B9h. We recommend installing the libusbK driver.

USBMicro U401/U421/U451 1-Wire Master

e
Device Options Help

IUSB Human Interface Device j [Edit

Driver [FidUsb (v5. 1.2600.2180) libusbK (v3.0.5. 16) j More Information

z WinUSB (ibusbx)
USB ID IODE? IOlAS @l libush-win32
= libusbi
WCID'—I? WinUSB (Microsoft) o o o @ o o 0 0 @ (0 o fo

|2 devices found. | Zadig v2.0.1.160

The USBMicro U401/U421/U451 USB-based adapters offer a number of interfaces
including a 1-Wire master. Two 8-bit port, A and B, expose all I/O pins. The adapter is
capable of using all 16 pins as the 1-Wire DQ line, be it one pin at a time, meaning each
I/O pin can act as a 1-Wire channel.

User Manual - Part 1 43

1-Wire Automation Server v1.1.0

The server defines client commands for controlling the assignment of I/O pins as 1-Wire
channels. You can assign I/O pins for a specific adapter based on its USB serial number,
and as a default setting for all adapters. Examples:

|u401 ow default "Bl" | Assign pin B1 to U401 adapters by default.
|u421 ow "150211144718" "Ad A5" | Agsign [:_)in A4 and ‘,‘0\5 to the U421 adapter
with serial number “150211144718".
|u421 ow default "A4 B7 A5 B2" |Assign pins A4, A5, B2 and B7 to U421
adapters by default.
|u451 ow default "BAO ALl" | Q:?;grrtpins AO and Al to U451 adapters by
ult.

The number of channels is dynamic, based on the pin assignment. The maximum number
of channels is sixteen.

Notes that the default assignment for all U401/U421/U451 adapters is pin AQ, resulting in
a single 1-Wire channel.

The server relies on LibUSB for driving the U401/U421/U451. You don't have to issue
command Adapter Add, the server automatically adds a device node when a
U401/U421/U451 is plugged into a USB port. Just make sure the LibUSB subsystem is
enabled.

When you're using a U401/U421/U451 in Windows, use the Zadig tool to update the
driver of the interface adapter. The USB vendor ID and product ID are ODE7h/0191h for
the U401, ODE7h/01A5h for the U421, and ODE7h/01C5h for the U451. We recommend
installing the libusbK driver.

OW-SERVER-ENET-2

The OW-SERVER-ENET-2 device by EDS is a
standalone Ethernet server with built-in 1-Wire ﬁgﬂﬁ%&?ﬂ
master. The device exposes three channels with
RJ12 jacks for connecting 1-Wire networks.

=
_sERVER-REET

= A e Yo IO

L=
The device can operate autonomously as a 1-
Wire system that supports a variety of 1-Wire
slaves.

When the server connects to the device, it
bypasses all high-level functionality and directly
controls the 1-Wire bus using the low-level interface.

You've to configure OW-SERVER-ENET-2 before the server can connect with the device.
The configuration procedure is explained in the documentation of the OW-SERVER-ENET-
2. The following settings are of importance to the server:

IP address of the OW-SERVER-ENET-2.

Port of the low-level interface.

The low-level interface must be enabled.

Example:

adapter "enet" add enet "192.168.1.101" 8080

44 User Manual - Part 1

1-Wire Automation Server v1.1.0 8:"?/)

If your OW-SERVER-ENET-2 has a hostname assigned to it, you can specify the hostname
instead of the IP address:

adapter "enet" add enet "owserverenet2.mydomain.net" 8080

In the free version of the server, enumeration is limited to the first channel of the first
controller. This channel is exposed as the RJ12 connector labeled “1” on the OW-SERVER-
ENET-2.

If the server's TMEX subsystem is enabled, you can add adapters that are driven by the
TMEX software.

TMEX adapters are identified with a port type (0..15) and a port number (0..15). The

port type denotes the interface type of the 1-Wire adapter (USB for example), the port
number distinguishes between adapters with the same interface.

Port Type | Interface Adapters
1 Serial DS9097, DS9097E, DS1413, other compatible passive serial
adapters
Parallel DS1410E

Serial DS2480 chip, DS9097U variants
6 usB DS2490 chip, DS9490R, DS9490B

The mapping of port number to actual adapter depends on the interface type. Read the
TMEX documentation for more information.

Example:

adapter add tmex 1 4

This command adds a passive serial adapter connected to serial port \\.\COM4.

User Manual - Part 1

45

1-Wire Automation Server v1.1.0

14 1-Wire Slaves

DS2401/2411/1990A Silicon Serial Number

The sole purpose of this 1-Wire slave chip is to associate a unique serial number (ROM
code) with a 1-Wire network.

The server's detection procedure uses this
family of 1-Wire slave chips as its primary target
in the search for 1-Wire networks. When an
unallocated channel contains one or more serial
number chips, the detection procedure will first
search for these chips on the physical 1-Wire
bus.

The Axiris 1-Wire Breakout Board (pictured to
the right) incorporates four serial number chips,
one per breakout path, that accommodate for
the detection of up to four 1-Wire networks.

Family code 01h

Sensor ID None

PIO pins None

46 User Manual - Part 1

1-Wire Automation Server v1.1.0

Family code 10h
Sensor ID ds18s20
PIO pins None

Example Device Sensed response:

dev "10-000802A49A17" sensed ds18s20 "2014-11-12 02:44:17 0026 +019.0 C
parasite"

Sensor data information:

Sensor Data String
0026 +019.0 C parasite

1 2 3

1 |Temperature register, hexadecimal digits.

2 |Temperature, decimal representation of 1 in client temperature scale.
3 |Power mode: parasite or external.

Short responses

temp Temperature.

pwrmode |Power mode.

User Manual - Part 1 47

1-Wire Automation Server v1.1.0

Family code 12h
Sensor ID ds2406
PIO pins l1or2

Example Device Sensed responses:

dev "12-000000A22310" sensed ds2406 "2014-11-12 02:49:35 0 -1 -1 -1
external"
dev "12-000000A2230F" sensed ds2406 "2014-11-12 02:49:40 0 0 1 1 11 2
parasite"

Sensor data information:

Sensor Data String
001111 2 parasite
1234567 8

1 |PIO-A sensed state, 0 or 1.
PIO-B sensed state, — or 0 or 1.
PIO-A output state, 0 or 1.
PIO-B output state, — or 0 or 1.
PIO-A activity state, 0 or 1.
PIO-B activity state, — or 0 or 1.

Number of PIO pins, 1 or 2. If this value is 1, fields 2, 4 and 6 contain a - sign.

N o/ un & W|N

8 |Power mode: parasite or external.

Short responses

piosensed |PIO pins sensed state.

pioset PIO pins output state.
pioact PIO pins activity state.
piocnt Number of PIO pins, 1 or 2.

pwrmode |Power mode.

48 User Manual - Part 1

1-Wire Automation Server v1.1.0

Family code 1Ch
Sensor ID ds28e04
PIO pins 2

Example Device Sensed response:

dev "1C-00000B8DD77F" sensed ds28e04 "2014-11-12 02:33:45 0 01 111
external"

Sensor data information:

Sensor Data String
001111 external

123456 7
1 |PIO pin PO sensed state, 0 or 1.

2 | PIO pin P1 sensed state, 0 or 1.
3 |PIO pin PO output state, 0 or 1.
4 | PIO pin P1 output state, 0 or 1.
5
6

PIO pin PO activity state, 0 or 1.
PIO pin P1 activity state, 0 or 1.

7 |Power mode: parasite or external.

Short responses

piosensed |PIO pins sensed state.

pioset PIO pins output state.

pioact PIO pins activity state.

pwrmode |Power mode.

User Manual - Part 1 49

1-Wire Automation Server v1.1.0

Family code iDh
Sensor ID ds2423
PIO pins None

Example Device Sensed response:

dev "1D-0000000DACO1" sensed ds2423 "2014-11-12 02:52:28 0000000072
0000000032"

Sensor data information:

Sensor Data String
0000000072 0000000032

1 2

1 | Counter A, decimal digits.

2 | Counter B, decimal digits.

Short responses

cntra Counter A.

cntrb Counter B.

50 User Manual - Part 1

1-Wire Automation Server v1.1.0

DS2409 MicroLan Coupler

1-Wire Bus
\

/DSZ409 S \

2-Port Hub i z i
0] o < =l

Ik

1-Wire Slave H =
D =]

Function <

\ Ports

The DS2409 chip adds two sub-branches to a 1-Wire network. The first port is called
MAIN, the second one is called AUX.

Family code iFh

Sensor ID None

PIO pins None

When you add a DS2409 slave explicitly, you've to specify the type of hub in the Device
Add client command:

dev "EF-15207BA3" add ds2409

User Manual - Part 1 51

1-Wire Automation Server v1.1.0

Family code 20h
Sensor ID ds2450
PIO pins None

Example Device Sensed response:

dev "20-00000014C3CF" sensed ds2450 "2014-11-12 02:41:13 0305 0.0601 V
0333 0.0637 VvV 0308 0.0603 V 0308 0.0603 V parasite"

Sensor data information:

Sensor Data String
0305 0.0601 VvV 0333 0.0637 vV 0308 0.0603 V 0308 0.0603 V parasite

1 2 3 4 5 6 7 8 9

AIN-A pin conversion result register, hexadecimal digits.

Measured voltage on AIN-A pin, decimal representation of 1.

AIN-B pin conversion result register, hexadecimal digits.

Measured voltage on AIN-B pin, decimal representation of 3.

AIN-C pin conversion result register, hexadecimal digits.

Measured voltage on AIN-C pin, decimal representation of 5.

AIN-D pin conversion result register, hexadecimal digits.

QVIN GO NS~ WN =

Measured voltage on AIN-D pin, decimal representation of 7.

9 |Power mode: parasite or external.

Short responses

aina Measured voltage on AIN-A pin.
ainb Measured voltage on AIN-B pin.
ainc Measured voltage on AIN-C pin.
aind Measured voltage on AIN-D pin.
pwrmode |Power mode.

The DS2450 can be wired for parasite power mode or external power mode in an
electronic circuit. However, unlike other chips like the DS18B20, the DS2450 can't detect
the effective power mode. Instead, the host must tell the chip which power mode is in
effect. The server provides client command Device Attribute for this purpose. For
example:

|dev "20-14C3CF" attr pwrmode=external | Set chip in external power mode.

|dev "20-14C3CF" attr pwrmode=parasite | Set chip in parasite power mode.

The default is parasite power mode.

52 User Manual - Part 1

1-Wire Automation Server v1.1.0

Family code 22h

Sensor ID ds1822

PIO pins None

Example Device Sensed response:

dev "22-0000003201DA" sensed ds1822 "2014-11-12 02:45:12 013D +019.8 C
parasite"

Sensor data information:

Sensor Data String
013D +019.8 C parasite

1 2 3

1 |Temperature register, hexadecimal digits.

2 |Temperature, decimal representation of 1 in client temperature scale.
3 |Power mode: parasite or external.

Short responses

temp Temperature.

pwrmode |Power mode.

User Manual - Part 1 53

1-Wire Automation Server v1.1.0

Family code 26h

Sensor ID ds2438

PIO pins None

Example Device Sensed response:

0000 00.00 Vv O01F3 04.99 V FFF9 -0007"

dev "26-00000141BFCE" sensed ds2438 "2014-11-12 02:35:30 1440 +020.3 C

Sensor data information:

Sensor Data String

1440 +020.3 C 0000 00.00 Vv O1F3 04.99 V FFF9 -0007
1 2 3 4 5 6 7 8

Temperature register, hexadecimal digits.

Temperature, decimal representation of 1 in client temperature scale.

Voltage register, measured on pin Vpp, hexadecimal digits.

Voltage measured on pin Vpp, decimal representation of 3.

Voltage register, measured on pin Vap, hexadecimal digits.

Voltage measured on pin Vap, decimal representation of 5.

N aoul W N R

Current register, hexadecimal digits.

8 |Current, decimal representation of 7.

Short responses

temp Temperature.

vdd Voltage measured on pin Vpp.

vad Voltage measured on pin Vap.

cur Current.

54 User Manual - Part 1

1-Wire Automation Server v1.1.0

Family code 28h
Sensor ID ds18b20
PIO pins None

Example Device Sensed response:

dev "28-0000040CBBB2" sensed ds18b20 "2014-11-12 02:44:47 0132 +019.1 C
parasite"

Sensor data information:

Sensor Data String
0132 +019.1 C parasite

1 2 3

1 |Temperature register, hexadecimal digits.

2 |Temperature, decimal representation of 1 in client temperature scale.
3 |Power mode: parasite or external.

Short responses

temp Temperature.

pwrmode |Power mode.

User Manual - Part 1 55

1-Wire Automation Server v1.1.0

Family code 29h
Sensor ID ds2408
PIO pins 8

Example Device Sensed response:

dev "29-00000011BD2A" sensed ds2408 "2014-11-12 02:37:51 00000000 11111111
00000000 reset external"

Sensor data

information:

Sensor Data

String

00000000 11111111 00000000 reset external

1

2 3 4 5

PIO pin

s sensed state, binary digits.

PIO pin

s output state, binary digits.

PIO pin

s activity state, binary digits.

AW (N | =

RSTZ p

in configuration:

= reset: the pin is configured as RST input.
= strobe: the pin is configured as STRB output.

5 |Power mode: parasite or external.

Short responses

piosensed |PIO pins sensed state.
pioset PIO pins output state.
pioact PIO pins activity state.
rstz RSTZ pin configuration.
pwrmode |Power mode.

56

User Manual - Part 1

1-Wire Automation Server v1.1.0

Family code 30h
Sensor ID ds2760
PIO pins 1

Example Device Sensed response:

dev "30-000012B5735B" sensed ds2760 "2014-11-12 02:44:28 1320 +019.1 C
7730 +4.65 V 8000 -4096 3CF8 +15608 1"

Sensor data information:

Sensor Data String
1320 +019.1 C 7730 +4.65 VvV 8000 -4096 3CF8 +15608 1

1 2 3 4 5 6 7 8 9

Temperature register, hexadecimal digits.

Temperature, decimal representation of 1 in client temperature scale.

Voltage register, hexadecimal digits.

Voltage measured on pin Vi, decimal representation of 3.

Current register, hexadecimal digits.

Current, decimal representation of 5.

Current accumulator register, hexadecimal digits.

QVIN GO NS~ WN =

Current accumulator, decimal representation of 7.

9 |PIO pin sensed state, 0 or 1.

Short responses

temp Temperature.

vin Voltage measured on pin V.
cur Current.

curacc Current accumulator.
piosensed |PIO pin sensed state.

User Manual - Part 1 57

1-Wire Automation Server v1.1.0

Family code 32h
Sensor ID ds2780
PIO pins 1

Example Device Sensed response:

54A0 +3.30

dev "32-0000006BDBCO" sensed ds2780 "2014-11-12 02:33:54 14CO +020.8 C

V 0063 +00012 0037 DAEO 003607982 0"

Sensor data information:

Sensor Data String

14C0 +020.8 C 54A0 +3.30 vV 0063 +00012 0037 DAEO 003607982 0
1 2 3 4 5 6 7 8 9 1_0
1 |Temperature register, hexadecimal digits.
2 |Temperature, decimal representation of 1 in client temperature scale.
3 |Voltage register, hexadecimal digits.
4 |Voltage measured on pin Vi, decimal representation of 3.
5 |Current register, hexadecimal digits.
6 |Current, decimal representation of 5.
7 | Current accumulator register, most significant 16 bits, hexadecimal digits.
8 | Current accumulator register, least significant 12 bits, 4 undefined bits, hexadecimal digits.
9 | Current accumulator, decimal representation of 8 and 9, 28-bit value.
10 |PIO pin sensed state, 0 or 1.

Short responses

temp Temperature.

vin Voltage measured on pin V.

cur Current.

curacc Current accumulator.

piosensed |PIO pin sensed state.

58 User Manual - Part 1

1-Wire Automation Server v1.1.0

Family code 35h
Sensor ID ds2755
PIO pins 1

Example Device Sensed response:

dev "35-00000043F47C" sensed ds2755 "2014-11-12 02:34:24 139A +019.5 C
54BE +3.30 V 0011 +0002 OOF1 +00241 1"

Sensor data information:

Sensor Data String
139A +019.5 C 54BE +3.30 V 0011 +0002 OOF1l +00241 1

1 2 3 4 5 6 7 8 9

Temperature register, hexadecimal digits.

Temperature, decimal representation of 1 in client temperature scale.

Voltage register, hexadecimal digits.

Voltage measured on pin Vi, decimal representation of 3.

Current register, hexadecimal digits.

Current, decimal representation of 5.

Current accumulator register, hexadecimal digits.

QVIN GO NS~ WN =

Current accumulator, decimal representation of 7.

9 |PIO pin sensed state, 0 or 1.

Short responses

temp Temperature.

vin Voltage measured on pin V.
cur Current.

curacc Current accumulator.
piosensed |PIO pin sensed state.

User Manual - Part 1 59

1-Wire Automation Server v1.1.0

Family code 36h

Sensor ID ds2740

PIO pins 1

Example Device Sensed response:

+00156 0"

dev "36-000003612CDB" sensed ds2740 "2014-11-12 02:34:08 0115 +00277 009C

Sensor data information:

Sensor Data String

0115 +00277 009C +00156 O
1 2 3 4 5

Current register, hexadecimal digits.

Current, decimal representation of 1.

Current accumulator register, hexadecimal digits.

AW (N | =

Current accumulator, decimal representation of 3.

5 |PIO pin sensed state, 0 or 1.

Short responses

cur Current.

curacc Current accumulator.

piosensed |PIO pin sensed state.

60

User Manual - Part 1

1-Wire Automation Server v1.1.0

Family code 3Ah
Sensor ID ds2413
PIO pins 2

Example Device Sensed responses:

dev "3A-000000052F6A" sensed ds2413

"2014-11-12 02:45:28 0 0 1 1"

Sensor data information:

Sensor Data String

0011

12314

1 |PIO-A sensed state, 0 or 1.

2 | PIO-B sensed state, 0 or 1.

3 |PIO-A output state, 0 or 1.

4 | PIO-B output state, 0 or 1.

Short responses

piosensed

PIO pins sensed state.

pioset

PIO pins output state.

User Manual - Part 1

61

1-Wire Automation Server v1.1.0

Family code 3Bh
Sensor ID ds1825

PIO pins None

Example Device Sensed response:

dev "3B-00000019CCEF" sensed dsl1825 "2014-11-12 02:35:22 B 0135 +019.3 C
external"

Sensor data information:

Sensor Data String

B 0135 +019.3 C external

1 2 3 4
1 | Address pins AD[3..0], hexadecimal digit.
2 |Temperature register, hexadecimal digits.
3 |Temperature, decimal representation of 2 in client temperature scale.
4 |Power mode: parasite or external.

Short responses

adpins Address pins.

temp Temperature.

pwrmode |Power mode.

When you add this chip explicitly, you've to specify the sensor identifier in the Device
Add client command:

dev "3B-00000019CCEF" add ds1825

62 User Manual - Part 1

1-Wire Automation Server v1.1.0

Family code 3Bh

Sensor ID max31826

PIO pins None

Example Device Sensed response:

dev "3B-0000001529B5" sensed max31826 "2014-11-12 02:34:55 0 0139 +019.6 C
external"

Sensor data information:

Sensor Data String

0 0139 +019.6 C external

1 2 3 4
1 | Address pins AD[3..0], hexadecimal digit.
2 |Temperature register, hexadecimal digits.
3 |Temperature, decimal representation of 2 in client temperature scale.
4 |Power mode: parasite or external.

Short responses

adpins Address pins.

temp Temperature.

pwrmode |Power mode.

When you add this chip explicitly, you've to specify the sensor identifier in the Device
Add client command:

dev "3B-0000001529B5" add max31826

User Manual - Part 1 63

1-Wire Automation Server v1.1.0

Family code 3Bh

Sensor ID max31850

PIO pins None

Example Device Sensed responses:

dev "3B-000000183368" sensed max31850 "2014-11-12 02:45:48 0 0130 O
+0019.00 C 1380 0 0 0 +019.5 C external"”
dev "3B-000000183368" sensed max31850 "2014-11-12 22:18:56 0 7FFD 1
UNCONN 13A1 1 0 0 +019.6 C external”

Sensor data information:

Sensor Data String

0 0130 0 +0019.00 C 1380 0 0 0 +019.5 C external

1 2 3 4 5 678 9 10

1 | Address pins AD[3..0], hexadecimal digit.

2 | Thermocouple hot temperature register, hexadecimal digits.

3 |Fault detected y/n, 0 or 1.

4 |Depends on whether the thermocouple is connected:
= Thermocouple hot temperature, decimal representation of 2 in client temperature scale.
= UNCONN indicates the thermocouple isn't connected.

5 |Internal cold junction temperature register, hexadecimal digits.

6 |Open circuit detected y/n, 0 or 1.

7 |Short to GND pin detected y/n, 0 or 1.

8 |Short to VCC pin detected y/n, 0 or 1.

9 |Internal cold junction temperature, decimal representation of 5 in client temperature scale.

10 |Power mode: parasite or external.

Short responses

adpins Address pins.

tcfault Fault detected y/n.

tcunconn | Thermocouple is unconnected y/n.

tchot Thermocouple hot temperature. Value is valid only if tcunconn returns 0.
tcopen Open circuit detected y/n.

tcgnd Short to GND pin detected y/n.

tcvcc Short to VCC pin detected y/n.

tccold Internal cold junction temperature.

pwrmode |Power mode.

When you add this chip explicitly, you've to specify the sensor identifier in the Device
Add client command:

dev "3B-000000183368" add max31850

64 User Manual - Part 1

1-Wire Automation Server v1.1.0

Family code 3Dh
Sensor ID ds2781
PIO pins 1

Example Device Sensed response:

dev "3D-00000081D206" sensed ds2781 "2014-11-12 02:34:46 1420 +020.1 C
2A40 +3.30 v 0020 +00032 0024 0000 000000036 O™

Sensor data information:

Sensor Data String
1420 +020.1 C 2A40 +3.30 vV 0020 +00032 0024 0000 000000036 O

1 2 3 4 5 6 7 8 9 10

Temperature register, hexadecimal digits.

Temperature, decimal representation of 1 in client temperature scale.

Voltage register, hexadecimal digits.

Voltage measured on pin Vi, decimal representation of 3.

Current register, hexadecimal digits.

Current, decimal representation of 5.

Current accumulator register, most significant 16 bits, hexadecimal digits.

Current accumulator register, least significant 12 bits, 4 undefined bits, hexadecimal digits.

O 0 N U | ~h WIN | =

Current accumulator, decimal representation of 8 and 9, 28-bit value.

10 |PIO pin sensed state, 0 or 1.

Short responses

temp Temperature.

vin Voltage measured on pin V.
cur Current.

curacc Current accumulator.
piosensed |PIO pin sensed state.

User Manual - Part 1 65

1-Wire Automation Server v1.1.0

Family code 42h

Sensor ID ds28eal00

PIO pins 2

Example Device Sensed responses:

dev "42-00000038DOBE" sensed ds28eal00 "2014-11-12 02:44:58 0133 +019.2 Cc 1
1 1 1 external"

Sensor data information:

Sensor Data String

0133 +019.2 C 1 1 1 1 external

2 3456 7

Temperature register, hexadecimal digits.

Temperature, decimal representation of 1 in client temperature scale.

PIO-A sensed state, 0 or 1.

PIO-B sensed state, 0 or 1.

PIO-A output state, 0 or 1.

PIO-B output state, 0 or 1.

\lG\U’I-huNI-IH‘

Power mode: parasite or external.

Short responses

temp Temperature.

piosensed |PIO pins sensed state.

pioset PIO pins output state.

pwrmode |Power mode.

66 User Manual - Part 1

1-Wire Automation Server v1.1.0

DS1420 Serial ID Button
This chip is often found in the DS9490R USB to 1-Wire adapter.

The server's detection procedure uses this family of 1-Wire slave chips as a target in the
search for 1-Wire networks. When an unallocated channel contains one or more members
of this family, the detection procedure will search for these chips on the physical 1-Wire

bus.

Family code 81h
Sensor ID None
PIO pins None

User Manual - Part 1 67

1-Wire Automation Server v1.1.0

Axiris 1-Wire RGB Controller

The 1-Wire RGB Controller by Axiris offers three
individually controllable PWM output channels
able to directly drive a 12V LED RGB strip. The
generated PWM signals have a frequency of
approx. 1000 Hz and an adjustable duty cycle
from 0 % to 99.61 %. PWM signals are shifted
120 degrees for optimal power distribution.

The device embeds a DS2408 as the 1-Wire
slave function.

Before the RGB channels can be programmed,
the RSTZ pin of the DS2408 must be configured as STRB output. For example:

|dev "29-11CEE1" pio rstz strobe |

Use client command Device RGB Controller to control the RGB channels. Examples:

|dev "29-11CEE1" rgbctrl red=100 |

Turn on the red channel at 100/256 = 39 %.

|dev "29-11CEE1" rgbctrl red=64 green=128 blue=192 |

Turn on the RGB channels: red at 25 %, green at 50 %, blue at 75 %.

You can set channel values in advance and turn on and off channels later. For example:

dev "29-11CEE1l" rgbctrl red=off,200 green=off,200 blue=off,200
dev "29-11CEE1l" rgbctrl red=on
dev "29-11CEE1l" rgbctrl green=on blue=on red=off

The following command sets all channels to zero and turns them off.

dev "29-11CEE1l" rgbctrl clear

68 User Manual - Part 1

1-Wire Automation Server v1.1.0

Axiris 1-Wire Mains Switch

The 1-Wire Mains Switch by Axiris is designed to
switch a 120 V or 230 V load remotely over a 1-
Wire bus. Applications include switching on and
off lights, home automation, and industrial
automation.

The device embeds a DS2406 as the 1-Wire
slave function.

You can use client command Device Switch to
control the device. Examples:

[dev "12-974696" switch on | Turn on the switch.

|[dev "12-974696" switch off | Turn off the switch.

User Manual - Part 1 69

1-Wire Automation Server v1.1.0

Hobby Boards 6-Channel Hub

Hobby Boards 6-Channel Hub

. . .

DS2409 DS2409 DS2409

Main

Passthrough

Ch.1 Ch.1 Ch.2 Ch.2 Ch.3 Ch.3
Main Aux Main Aux Main Aux

The Hobby Boards 6-Channel Hub incorporates three DS2409 chips. The hub adds six
sub-branches to a 1-Wire network.

When you add the hub explicitly, you've to specify the type of hub in the Device Add
client command:

dev "1lF-56B3E" add ds2409
dev "1F-56B31" add ds2409
dev "1F-56BA7" add ds2409

Example topology dump:

dump
0l: USB to 1-Wire "usb-4-2"
01: DS2490
01: 81-000000324BBD-31 DS1420 serial ID button
01: 1F-000000056B3E-A7 DS2409 Microlan coupler
01: 1F-000000056B31-83 DS2409 MicrolLan coupler
01: 1F-000000056BA7-80 DS2409 Microlan coupler

70 User Manual - Part 1

1-Wire Automation Server v1.1.0

Hobby Boards 4-Channel Hub

1-Wire Bus
\
/Hobby Boards & -------- 5 i
4-Port Hub : #1 ;
0 o
#2 "-.
1-Wire Slave ; #3 : o
Function g §
o #4 E
\ R ' Ports

The Hobby Boards 4-Channel Hub adds four sub-branches to a 1-Wire network. The ports
are numbered 1 to 4.

Family code EFh
= Hobby Boards type 05h

Sensor ID None

PIO pins None

When you add the hub explicitly, you've to specify the type of hub in the Device Add
client command:

dev "1F-56BA7" add hbh4

User Manual - Part 1 71

1-Wire Automation Server v1.1.0

15 Server Versions

Feature Free Version | Full Version
Enumeration procedure LIMITED YES
Detection procedure YES YES
Limiting the number of connections NO YES
User authentication NO YES
List of allowed client IP addresses NO YES
Loading and saving topology files NO YES
Moving device groups NO YES
Clearing device groups NO YES
Supported 1-Wire adapters ALL ALL
Supported 1-Wire slaves ALL ALL
Program instances ONE UNLIMITED
Number of connected adapters ONE UNLIMITED

11 Enumeration is limited to the first channel of the first controller and stops after finding three 1-
Wire slaves.

72 User Manual - Part 1

1-Wire Automation Server v1.1.0

16 Software Revision History

Changes apply to all program versions unless specified otherwise.

Version Description
1.0.0 = Initial release.
1.1.0 Added USBMicro U401/U421/U451 1-Wire master.

Added DS9097 passive serial adapter.

Added W1 subsystem.

Added TMEX connector.

Added support for owfs-style ROM codes in client commands and
responses.

Added command line argument -romcode.

Fixed precedence of command line option -port. It now overrules the port
setting in the configuration file as stated in the user manual.

Fixed a crash that may occur when a 1-Wire controller is disabled while
multiple client commands are trying to access the controller.

User Manual - Part 1 73

1-Wire Automation Server v1.1.0

17 Legal Information

Disclaimer

Axiris products are not designed, authorized or warranted to be suitable for use in space,
nautical, space, military, medical, life-critical or safety-critical devices or equipment.

Axiris products are not designed, authorized or warranted to be suitable for use in
applications where failure or malfunction of an Axiris product can result in personal
injury, death, property damage or environmental damage.

Axiris accepts no liability for inclusion or use of Axiris products in such applications and
such inclusion or use is at the customer's own risk. Should the customer use Axiris
products for such application, the customer shall indemnify and hold Axiris harmless
against all claims and damages.

Trademarks

“Maxim Integrated” is a trademark of Maxim Integrated Products, Inc.

“1-Wire” and “iButton” are registered trademarks of Maxim Integrated Products, Inc.
“Raspberry Pi” is a trademark of the Raspberry Pi Foundation.

All product names, brands, and trademarks mentioned in this document are the property
of their respective owners.

18 Contact Information
Official website: http://www.axiris.eu/

o
!
il
(")

74 User Manual - Part 1

http://www.axiris.be/

	1 Overview
	2 Third-party Resources
	LibUSB
	Zadig
	TMEX

	3 Command Line
	4 Running the Server
	Current Directory
	Windows
	Control Panel
	Command Line
	Stopping the Server

	Linux
	Required Privileges
	Starting the Server
	Stopping the Server

	5 Client Connections
	Server Port
	Connection Limit
	Allowed IP Addresses
	User Authentication
	Network Congestion

	6 Client Protocol
	Command Parsing
	Command Queue
	Macro Commands
	Unsolicited Responses
	Command Identifier
	Dump Command
	ROM Code Formatting Style

	7 Hardware
	Overview
	Slave
	Network
	Hub
	Channel
	Controller
	Adapter
	Probing
	Device Nodes
	LibUSB Subsystem
	W1 Connector

	8 Topology
	Channels
	Unallocated Channels
	Non-present Devices
	Enumeration Procedure
	Detection Procedure
	Untying

	9 Sensor Data
	Overview
	Sensing
	Short Responses
	Polling and Reporting
	Temperature Scale

	10 Programmable I/O Pins
	Overview
	Reading State of PIO Pins
	Controlling Output State of PIO Pins

	11 Configuration File
	Overview
	Path
	Contents
	Port
	Connection Limit
	Allowed IP Addresses
	User Authentication
	ROM Code Formatting Style
	Command File

	12 Topology Files
	Overview
	Saving
	Loading
	Path

	13 1-Wire Masters
	AxiCat Adapter
	UART0 and UART1
	I2C Master
	1-Wire Master

	DS2480B Serial to 1-Wire Controller
	DS9097U Adapter
	HA7E/HA7S Adapter
	DS9097 Adapter
	DS2482 I2C to 1-Wire Controller
	AbioWire 1-Wire Adapter
	AbioWire+ 1-Wire Adapter
	m.nu 1-Wire Adapter
	DS2490 USB to 1-Wire Controller
	DS9490R/DS9490B 1-Wire Adapter
	Flyfish FF32/FF34 1-Wire Master
	USBMicro U401/U421/U451 1-Wire Master
	OW-SERVER-ENET-2
	TMEX Adapters

	14 1-Wire Slaves
	DS2401/2411/1990A Silicon Serial Number
	DS18S20/DS1920 Thermometer
	DS2406/DS2407 1Kb EPROM Dual Switch
	DS28E04-100 4Kb EEPROM with PIO
	DS2423 4Kb SRAM with counters
	DS2409 MicroLan Coupler
	DS2450 Quad A/D Converter
	DS1822 Econo Digital Thermometer
	DS2438 Smart Battery Monitor
	DS18B20 Thermometer
	DS2408 8-Channel Addressable Switch
	DS2760/2761/2762 Li+ Battery Monitor
	DS2780 Standalone Fuel Gauge
	DS2755/2756 High-Precision Battery Fuel Gauge
	DS2740 Coulomb Counter
	DS2413 Dual-Channel Addressable Switch
	DS1825 Thermometer
	MAX31826 Thermometer
	MAX31850 Thermocouple
	DS2775/2776/2781 Li+ Fuel Gauge
	DS28EA00 Thermometer
	DS1420 Serial ID Button
	Axiris 1-Wire RGB Controller
	Axiris 1-Wire Mains Switch
	Hobby Boards 6-Channel Hub
	Hobby Boards 4-Channel Hub

	15 Server Versions
	16 Software Revision History
	17 Legal Information
	Disclaimer
	Trademarks

	18 Contact Information

