
1

IDEAL Pages

VT CS 6604: Digital Libraries

IDEAL Pages

Project Group Project Client
Ahmed Elbery Mohammed Magdy

Mohammed Farghally

Under Supervision Of

Prof. Edward A. Fox.

Computer Science department, Virginia Tech

Blacksburg, VA

5/8/2014

2

IDEAL Pages

Table of Contents

1. Abstract ..4

2. Developer's Manual ..5

2.1. Document Indexing ..5

2.1.1. Introduction to Solr ..5

2.1.1.1. Solr Features ...6

2.1.1.2. SolrCloud...6

2.1.1.3. schema.xml ...7

2.1.1.4. Customizing the Schema for the IDEAL Pages ..8

2.1.1.5. Solrctl Tool ..8

2.1.1.6. Typical SolrCloud Configurations ..9

2.1.2. Hadoop .. 11

2.1.2.1. Hadoop File System (HDFS) ... 11

2.1.2.2. MapReduce .. 14

2.1.2.3. Event Indexer ... 15

2.1.2.4. IndexDriver.java ... 16

2.1.2.5. IndexMapper.java .. 17

2.1.2.6. Event_IndexerUsage Tutorial .. 17

2.2. Web Interface for the indexed documents ... 21

2.2.1. Solr REST API .. 21

2.2.2. Solarium ... 22

2.2.2.1. Installing Solarium ... 24

2.2.2.2. Using Solarium in your PHP code .. 25

2.2.3. Other tools for the web interface.. 26

2.2.4. Web Interface Architecture ... 27

3. User's Manual .. 28

4. Results and contributions .. 31

5. Future works .. 32

6. References ... 32

7. Appendix .. 33

3

IDEAL Pages

List of Figures

Figure 1 Big Picture ...4

Figure 2 Solr Server vs. SolrCloud ...7

Figure 3 SolrCloudCollections and Shards ... 11

Figure 4 HDFS architecture .. 13

Figure 5 MapReduce Operation .. 15

Figure 6 The Events directory structure .. 16

Figure 7 Map-Reduce terminal Output ... 20

Figure 8 Solr Web interface ... 21

Figure 9 A Solr query result formatted in JSON ... 22

Figure 10 Web Interface Architecture ... 27

Figure 11 Web Interface Main Screen ... 29

Figure 12 Viewing Documents related to a particular event .. 30

Figure 13 Document Details .. 30

Figure 14 Search results and Pagination ... 31

file:///F:/Books/PhD%20-%20VT-MENA%20Program/CS6604-%20Digital%20Libraries/Project/VTechWorks/IDEAL%20Pages%20Report.docx%23_Toc387503569
file:///F:/Books/PhD%20-%20VT-MENA%20Program/CS6604-%20Digital%20Libraries/Project/VTechWorks/IDEAL%20Pages%20Report.docx%23_Toc387503570
file:///F:/Books/PhD%20-%20VT-MENA%20Program/CS6604-%20Digital%20Libraries/Project/VTechWorks/IDEAL%20Pages%20Report.docx%23_Toc387503571
file:///F:/Books/PhD%20-%20VT-MENA%20Program/CS6604-%20Digital%20Libraries/Project/VTechWorks/IDEAL%20Pages%20Report.docx%23_Toc387503572
file:///F:/Books/PhD%20-%20VT-MENA%20Program/CS6604-%20Digital%20Libraries/Project/VTechWorks/IDEAL%20Pages%20Report.docx%23_Toc387503573
file:///F:/Books/PhD%20-%20VT-MENA%20Program/CS6604-%20Digital%20Libraries/Project/VTechWorks/IDEAL%20Pages%20Report.docx%23_Toc387503574

4

IDEAL Pages

1. Abstract
Events create our most impressive memories. We remember birthdays, graduations, holidays,

weddings, and other events that mark important stages of our life, as well as the lives of family and

friends. As a society were member assassinations, natural disasters, political uprisings, terrorist attacks,

and wars as well as elections, heroic acts, sporting events, and other events that shape community,

national, and international opinions. Web and Twitter content describes many of these societal events.

Permanent storage and access to big data collections of event related digital information, including

webpages, tweets, images, videos, and sounds, could lead to an important national asset. Regarding that

asset, there is need for digital libraries (DLs) providing immediate and effective access and archives

with historical collections that aid science and education, as well as studies related to economic,

military, or political advantage. So, to address this important issue, we will research an Integrated

Digital Event Archive and Library (IDEAL). [10]

Our objective here in this project is to take the roughly 10TB of webpages collected for a variety of

events, and use the available cluster to ingest, filter, analyze, and provide convenient access. In order to

achieve this, automation of Web Archives (.warc files) extraction will be run on the cluster using

Hadoop to distribute and speed up the process. HTML files will be parsed and indexed into Solr to be

made available through the web interface for convenient access.

Figure 1 Big Picture

Figure 1 show the big picture of the project architecture, the .warc files should be input to the

extraction module on Hadoop cluster which is responsible of extracting the HTML files and extract the

file body into .txt files. Then the .txt files should be indexed using indexing module which runs also on

5

IDEAL Pages

Hadoop, the indexing module will directly update SolrCloud index which is also distributed on a cluster

of machines. Using Hadoop cluster and SolrCloud for storing, processing and searching provide the

required level of efficiency, fault tolerance and scalability will be shown in upcoming sections. Finally

the users can access the indexed documents using a convenient web interface that communicates with

SorlCloud service.

This technical report is organized as follows: First we present a developer's manual describing the

tools used in developing the project and how it was configured to meet our needs. Also a brief

background about each tool is presented. Next we present a user manual describing how the end user can

use our developed web interface to browse and search the indexed document. Next Finally we present an

appendix describing for subsequent groups that will continue and contribute to this project in the future,

how they can install the application on their servers and how they can make it work in their own

infrastructure.

2. Developer's Manual

2.1. Document Indexing
In this section, the first phase of our project will be described which is "Document Indexing".

Most of our discussion will be focused on the tools applied in this phase (Apache Solr and Hadoop

mainly) and the step by step configuration of these tools to work as required for this project. First we

will present Solr, a search engine based on Lucene java search library used to index and store our

documents, and then we will present Hadoop which is required for fast distributed processing which is

applied for the indexing process into Solr since we have a tremendous amount of documents to be

indexed.

2.1.1. Introduction to Solr

Solr is an open source enterprise search server based on the Lucene Java search library. Its major

features include powerful full-text search, hit highlighting, faceted search, near real-time indexing,

dynamic clustering, database integration, rich document (e.g., Word, PDF) handling, and geospatial

search. Solr is highly reliable, scalable and fault tolerant, providing distributed indexing, replication and

load-balanced querying, automated failover and recovery, centralized configuration and more. Solr

powers the search and navigation features of many of the world's largest internet sites. Solr is written in

Java and runs as a standalone full-text search server within a servlet container such as Jetty. Solr uses

6

IDEAL Pages

the Lucene Java search library at its core for full-text indexing and search, and has REST-like

HTTP/XML and JSON APIs that make it easy to use from virtually any programming language [1].

2.1.1.1. Solr Features

Solr is a standalone enterprise search server with a REST-like API. You can post documents to it

(called "indexing") via XML, JSON, CSV or binary over HTTP. You can query it via HTTP GET and

receive XML, JSON, CSV or binary results.

 Advanced Full-Text Search Capabilities

 Optimized for High Volume Web Traffic

 Standards Based Open Interfaces - XML, JSON and HTTP

 Comprehensive HTML Administration Interfaces

 Server statistics exposed over JMX for monitoring

 Linearly scalable, auto index replication, auto failover and recovery

 Near Real-time indexing

 Flexible and Adaptable with XML configuration

 Extensible Plugin Architecture

2.1.1.2. SolrCloud

SolrCloud is a set of Solr instances running on a cluster of nodes with capabilities and functions that

enable these instances to interact and communicate so as to provide fault tolerant scaling [2].

 SolrCloud supports the following features:

 Central configuration for the entire cluster

 Automatic load balancing and fail-over for queries

 ZooKeeper integration for cluster coordination and configuration.

SolrCloud uses ZooKeeper to manage nodes, shards and replicas, depending on configuration files

and schemas. Documents can be sent to any server and ZooKeeper will figure it out. SolrCloud is based

on the concept of shard and replicate, Shard to provide scalable storage and processing, and Replicate

for fault tolerance and throughput.

7

IDEAL Pages

Figure 2 Solr Server vs. SolrCloud

Figure 2 briefly shows scalability, fault tolerance and throughput in SolrCloud compared to single

Solr server.

We use Cloudera in which a SolrCloud collection is the top level object for indexing documents and

providing a query interface. Each SolrCloud collection must be associated with an instance directory,

though note that different collections can use the same instance directory. Each SolrCloud collection is

typically replicated among several SolrCloud instances. Each replica is called a SolrCloud core and is

assigned to an individual SolrCloud node. The assignment process is managed automatically, though

users can apply fine-grained control over each individual core using the core command.

2.1.1.3. schema.xml

The schema.xml is one of the configuration files of Solr that is used to declare [5]:

 what kinds and types of fields there are.

 which field should be used as the unique/primary key.

 which fields are required.

 how to index and search each field.

The default schema file comes with a number of pre-defined field types. It is also a self-documentary

so you can find documentation for each part in the file. You can also use them as templates for creating

new field types.

8

IDEAL Pages

2.1.1.4. Customizing the Schema for the IDEAL Pages

For our project we need to customize the schema file to add the required fields that we need to use

for indexing the events’ files. The fields we used are:-

id : indexed document ID, this ID should be unique for each document.

category: the event category or type such as (earthquake, Bombing…etc.)
name: event name

title: the file name

content: the file content

URL: the file path on the HDFS system

version: automatically generated by Solr.

text: a copy of the name, title, content and URL fields.

We need to make sure that these fields are in the schema.xml file, if any of them is not found we

have to add it to the schema file. Also we need to change the “indexed” and “stored” properties of both

the “content” and the “text” fields to be “true”.

2.1.1.5. Solrctl Tool

We use Cloudera Hadoop, in which solrctl tool is used to manage a SolrCloud deployment,

completing tasks such as manipulating SolrCloud collections, SolrCloud collection instance directories,

and individual cores[3].

A typical deployment workflow with solrctl consists of deploying ZooKeeper coordination service,

deploying Solr server daemons to each node, initializing the state of the ZooKeeper coordination service

using solrctl init command, starting each Solr server daemon, generating an instance directory,

uploading it to ZooKeeper, and associating a new collection with the name of the instance directory.

In general, if an operation succeeds, solrctl exits silently with a success exit code. If an error

occurs, solrctl prints a diagnostics message combined with a failure exit code [3].

The solrctl command details are on solrctl Reference on Cloudera documentation website. And you

can use solrctl --help command to show the commands and options[4].The following is a list of detailed

tutorials about installing, configuring and running SolrCloud, these tutorials are found on Cloudera

website:-

Deploying Cloudera Search in SolrCloud Mode

Installing Solr Packages

Initializing Solr for SolrCloud Mode

http://svn.apache.org/viewvc/lucene/dev/trunk/solr/example/solr/README.txt?view=markup
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_solrctl_ref.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/1.0.0/Cloudera-Search-Installation-Guide/csig_deploy_search_solrcloud.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/1.0.0/Cloudera-Search-Installation-Guide/csig_install_solr_packages.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/1.0.0/Cloudera-Search-Installation-Guide/csig_init_solr_solrcloud.html

9

IDEAL Pages

Configuring Solr for Use with HDFS

Creating the /solr Directory in HDFS

Initializing ZooKeeper Namespace

Starting Solr in SolrCloud Mode

Administering Solr with the solrctl Tool

Runtime Solr Configuration

Creating Your First Solr Collection

Adding Another Collection with Replication

2.1.1.6. Typical SolrCloud Configurations

We use the solrctl tool to configure SolrCloud, create the configuration files and create collections.

Also we can use it for other purpose such as deleting the index for a particular collection. Following are

the steps we use to configure and run the SolrCloud.

a- Initializing SolrCloud

If the SolrCloud is not initialized then we need to start the Cloudera Search server. So first you need

to create the /solr directory in HDFS. The Cloudera Search master runs as solr:solr so it does not have

the required permissions to create a top-level directory. To create the directory we can use the Hadoop fs

shield as shown in the next commands

$ sudo -u hdfshadoop fs -mkdir /solr

$ sudo -u hdfshadoop fs -chownsolr /solr

Then we need to create a Zookeeper Namespace using the command

$ solrctlinit

Now SolrCloud should be running properly but without any data collection created.

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/1.0.0/Cloudera-Search-Installation-Guide/csig_config_solr_hdfs.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/1.0.0/Cloudera-Search-Installation-Guide/csig_create_solr_dir_hdfs.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/1.0.0/Cloudera-Search-Installation-Guide/csig_init_zookeeper_namespace.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/1.0.0/Cloudera-Search-Installation-Guide/csig_start_solr_solrcloud_mode.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/1.0.0/Cloudera-Search-Installation-Guide/csig_admin_solr_with_solrctl.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/1.0.0/Cloudera-Search-Installation-Guide/csig_runtime_solr_config.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/1.0.0/Cloudera-Search-Installation-Guide/csig_create_solr_collection.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/1.0.0/Cloudera-Search-Installation-Guide/csig_add_collection_replication.html

10

IDEAL Pages

b- Creating a Configuration

In order to start using Solr for indexing the data, we must configure a collection holding the index. A

configuration for a collection requires a solrconfig.xml file, schema.xml and any helper files may be

referenced from the xml files. The solrconfig.xml file contains all of the Solr settings for a given

collection, and theschema.xml file specifies the schema that Solr uses when indexing documents.

To generate a skeleton of the instance directory run:

$ solrctlinstancedir --generate $HOME/solr_configs

After creating the configuration, we need to customize the schema.xml as mentioned in schema.xml

section.

c- Creating a Collection

After customizing the configuration we need to make it available for Solr to use by issuing the

following command, which uploads the content of the entire instance directory to ZooKeeper:

$ solrctlinstanced --create collection1 $HOME/solr_configs

Now we can create the collection by issuing the following command in which we specify the collection

name and the number of shards for this collection

$ solrctl collection --create collection1 -s {{numOfShards}}

d- Verifying the Collection

Once you create a collection you can use Solr web interface through http://host:port/solr (the host

is the URL or the IP address of the Solr server, the port is the Solr service port by default it is 8983). By

going to the Cloud menu, it will show the collections created and the shards for each one. as shown in

Figure 3, there are two collections collection1 and collection3. Collection 3 has two shards and all of

them are on the same server instance.

http://host:port/solr

11

IDEAL Pages

Figure 3 SolrCloudCollections and Shards

2.1.2. Hadoop

In this section we will give a brief overview on Hadoop and its main components, Hadoop

Distributed File System (HDFS) and, Map-Reduce.

 Hadoop is an open-source software framework for storage and large-scale processing of data-sets on

clusters of commodity hardware. Hadoop is characterized by the following features:-

 Scalable: It can reliably store and process PetaBytes.

 Economical: It distributes the data and processing across clusters of commonly available

computers (in thousands).

 Efficient: By distributing the data, it can process it in parallel on the nodes where the data is

located.

 Reliable: It automatically maintains multiple copies of data and automatically redeploys

computing tasks based on failures.

2.1.2.1. Hadoop File System (HDFS)

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on

commodity hardware. HDFS is highly fault-tolerant and is designed to be deployed on low-cost

hardware. HDFS provides high throughput access to application data and is suitable for applications that

have large data sets [6].

12

IDEAL Pages

Files are stored on HDFS in form of blocks, the block size 16MB to 128MB. All the blocks of the

same file should be of the same size except the last one. The blocks are stored and replicated on different

nodes called Data nodes. For better high availability the replicas should be stored on other rack, so that

if any rack is becomes down (i.e. for maintenance) the blocks are still accessible on the other racks.

As shown in Figure 4 HDFS has master/slave architecture. An HDFS cluster consists of a single

Name node, a master server that manages the file system namespace and regulates access to files by

clients. In addition, there are a number of Data nodes, usually one per node in the cluster, which manage

storage attached to the nodes that they run on. HDFS exposes a file system namespace and allows user

data to be stored in files. Internally, a file is split into one or more blocks and these blocks are stored in a

set of Data nodes. The Name node executes file system namespace operations like opening, closing, and

renaming files and directories. It also determines the mapping of blocks to Data nodes. The Data nodes

are responsible for serving read and write requests from the file system’s clients. The Data nodes also

perform block creation, deletion, and replication upon instruction from the Name node. For more details

about HDFS refer to [6].

Another important tool that we use in the project is the Hadoop file system (fs) shell commands are

used to perform various file operations like copying file, changing permissions, viewing the contents of

the file, changing ownership of files, creating directories… etc. If you need more details about Hadoop

FS shell you can refer to [7].

13

IDEAL Pages

Figure 4 HDFS architecture

But here we will discuss the some commands that we will use or need in our project. For example to

create a directory on HDFS and change its user permissions we use the following two commands

$ hadoop fs -mkdir /user/cloudera

$ hadoop fs -chowncloudera /user/cloudera

To remove a directory we can use

$ hadoop fs -rmdir

or

$ hadoop fs -rmrdir

The -rm command removes the directory while the -rmr is a recursive version to delete none empty

directories.

To move a directory we can use

$ hadoop fs -mv source1 [source1 …] <dest>

Moves files from source to destination. This command allows multiple sources as well in which case

the destination needs to be a directory.

14

IDEAL Pages

An important command that we need is the -put command that uploads data from the local file

system to HDFS.

$ hadoop fs -put <localsrc> ... <dst>

This command can copy single source , or multiple sourcesfrom local file system to the destination

HDFS as shown in the following commands.

$ hadoop fs -put localfile /user/hadoop/hadoopfile

$ hadoop fs -put localfile1 localfile2 /user/hadoop/hadoopdir

$ hadoop fs -put localfile hdfs://nn.example.com/hadoop/hadoopfile

2.1.2.2. MapReduce

Hadoop Map-Reduce is a software framework for writing applications which process vast amounts

of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of nodes) of commodity

hardware in a reliable, fault-tolerant manner[8].

MapReduce uses the following terminologies to differentiate between kinds of process it runs.

 Job – A “full program” - an execution of a Mapper and Reducer across a data set

 Task – An execution of a Mapper or a Reducer on a slice of data

 Task Attempt – A particular instance of an attempt to execute a task on a machine

Atypical Map-Reduce program consists of Map and Reduce tasks in addition to a Master task that

drives the whole program. The Master task can also overwrite the default configuration of the

MapReduce such as the data flow between the Mappers and Reducer.

A Map-Reduce job usually splits the input data-set into independent chunks called input-

splitseachinput-split is a set of conjunct blocks. These splits are processed by the map tasks in a

completely parallel manner. The framework sorts the outputs of the maps, which are then input to

the reduce tasks as shown in Figure 5. The framework takes care of scheduling tasks, monitoring them

and re-executes the failed tasks.

15

IDEAL Pages

Figure 5 MapReduce Operation

Typically the compute nodes and the storage nodes are the same, that is, the MapReduce framework

and the Hadoop Distributed File System are running on the same set of nodes. This configuration allows

the framework to effectively schedule tasks on the nodes where data is already present, resulting in very

high aggregate bandwidth across the cluster.

The Map-Reduce framework has a single master JobTracker and one slave TaskTracker per cluster-

node. The master is responsible for scheduling the jobs' component tasks on the slaves, monitoring them

and re-executing the failed tasks. The slaves execute the tasks as directed by the master [8].

2.1.2.3. Event Indexer

In this section we will describe the Event_Indexer tool that we developed and then give a tutorial on

how to use it.

The input data is a set of text files extracted from the WARC files. And we need to index these files

into SolrCloud to make them accessible. The Event_Indexer will read those files from the HDFS as

input to the Mapper. The Mapper will read each file and create the fields and update SolrCloud by this

new document. It is clear that we do not need a Reducer because the Mapper directly sends its output to

the SolrCloud which in its turn add the files to the index using the fields received from the

Event_Indexer. The overall indexing process is performed in parallel distributed manner, that is, both

Event_Indexer and SolrCloud run in distributed manner on the cluster on machines.

16

IDEAL Pages

The Event_Indexer has two main classes; the IndexDriver and the IndexMapper. We built them in

JAVA using Eclipse on CentOS machine.

2.1.2.4. IndexDriver.java

This is the master module of the program, which receives the input arguments from the system then

creates and configures the job and then submit this job to be scheduled on the system. The syntax of the

Event_Indexer command is:-

$ hadoop jar Event_Indexer.jar -input input_dir/**/* -output outdir -solrserver SolrServer

–collection collection_name

 The program receives two required parameters in the command line which are the input and output

directories. The input directory contains the files to be indexed. The files should be arranged in

hierarchical structure of “input_dir/category_dir/event_dir/files”. The input_dircontains a set of sub-

directories; each one is for a category of the events and should be named as the category. Each category

directory contains a set of sub-directories also each one is for a particular event and also should be

named as the event name. Each of these event directories contains all the files related to this event. This

structure is shown in Figure 6. The importance of this structure is that the mapper uses it to figure out

the category and the event name of each file. So this structure works as a metadata for the event files.

The output directory will be used as a temporary and log directory for the Event_Indexer. It will not

has any indexing data because the index will be sent to the Solr server.

Figure 6 The Events directory structure

17

IDEAL Pages

To give the program more flexibility we implemented the Event_Indexer in such away it can

communicate with SolrCloud on different cluster and update its index using the Solr API. So we when

running the program we can specify the Solr Server URL using the “-solrserver” option in the command

line. Also we can specify which collection to be updated using the “-collection” option as we will see

later. This feature enables the Event_Indexerto run on a cluster and update Solron another cluster. If the

command line has no “-solrserver” option the program will use the default Solrserver

http://localhost:8983/solr. And if it does not have a “-collection” option the default collection is

collection1. So by default the Event_Indexer will try to communicate to

http://localhost:8983/solr/collection1.

After parsing the arguments, the IndexDriver then initiate and configure a job to be run. The job

configuration includes:

 Assigning the Mapper using the to be the IndexMapper.class

 Setting the number of Reducer to Zero because we do not need Reducers.

 Setting the input directory

 Setting the output directory

2.1.2.5. IndexMapper.java

The IndexMapper reads all the lines from the file and sum-up them to form the content of the file. It

also finds out the event category, the event name, the file URL as well as the file name which are some

of the fields of the document to be indexed. The category and the event name are extracted from the file

path as described previously. The file name and the URL are properties of the map job configuration.

The mapper also calculates the document ID field. To calculate the find the ID we use the java built-

in hashcodebased on the file URL. This means that if the same file transferred to another location and

then indexed then the Solr will add a new document to its index because of the different ID.

After reading all the file line and before the mapper closes, it updates the Solr server with the new

document through the Solr “add” API and then commits this document using the Solr “commit” API.

SolrCloud Service receives these documents from the Mapper and adds them to its index which is

also distributed on the HDFS.

2.1.2.6. Event_Indexer Usage Tutorial

To index data set using the Event_Indexer you should follow these steps

http://localhost:8983/solr
http://localhost:8983/solr/collection1

18

IDEAL Pages

1. First you must make sure that the Solr Service is running properly. You can do that by browsing

the Solr Server URL on port 8983

2. If Solr Service is not running you can restart it from the Cloudera Service Manager

3. If it is running but has no collections, you can add collections as shown in the SolrCloud section

using the solrctl tool

4. If you wish to clear the index of the collection, you can use the command

$ solrctl collection --deletedocscollection_name

5. Prepare the data to be indexed: the files should be organized in the hierarchical structure

described earlier. We assume the data are in the $HOME/sample_datadirectory.

6. Upload the data to the HDFS using this command. assuming that we will upload the data from

$HOME/sample_data to the hdfs_sample_datadirectory on HDFS, we will use

$ hadoop fs -put $HOME/ sample_datahdfs_sample_data

7. Confirm that the data is correctly uploaded to the HDFS using the Hue file manager or using the

command

$ hadoop fs -lshdfs_sample_data

8. Use the Event_Indexer.jar to index the files, the command is

$ hadoop jar Event_Indexer.jar –input hdfs_sample_data/**/* -output outdir

This command will update the index on the default Solr server and the default collection

(http://localhost:8983/solr/collection1/). We have to note that if the outdir already exists this will

result in an error.

9. If you want to specify another server and/or collection you can use the “-solrserver” and/or “-

collection” options as follow

$ hadoop jar Event_Indexer.jar -input hdfs_sample_data/**/* -output outdir -

solrserverhttp://12.34.56.78:4321/solr -collection collection3

This command tells the indexer to update the Solr server on the IP address 12.34.56.78 on port

number 4321 and add the documents to the index of collection3.

http://localhost:8983/solr/collection1/
http://12.34.56.78:4321/solr

19

IDEAL Pages

If the Event_Indexer runs correctly you will receive output similar to Figure 7. However this output

may change based on the Hadoop version. The first set of lines (first 11 lines) in the output is generated

by the IndexDriver class to show the program parameters. The other output is reported from the Map-

Reduce to give some statistics about the job running.

Line 13in this output gives us important information which “Total input paths to process:

8”statement. It says that there are 8 files to be indexed. You can also consult the Solr Server web

interface, the number of documents should be increased by 8 if these documents were not indexed

before. This is shown in Figure 8 where the number of documents is 8 because we deleted all the

documents before running the Event_Indexer.

20

IDEAL Pages

.

Figure 7 Map-Reduce terminal Output

21

IDEAL Pages

Figure 8 Solr Web interface

2.2. Web Interface for the indexed documents
After Indexing the documents into Solr using Hadoop's map-reduce function, the next major step in

the project comes into action which is building the web interface for the indexed documents. In order to

do this we need to find a web tool or an API that can interface well with Solr and provides an interface

for all of its major functionality. After doing some research in this issue we found a web Solr client API

called "Solarium" which is based on PHP and provides an Object oriented interface to major Solr

functionality. Before talking about Solarium, we will first briefly discuss the available Solr REST API

and its difficulties that led us to think about other interface, then next we will give a brief discussion

about Solarium, and after that we will have a subsection for other tools that were used in building the

web interface.

2.2.1. Solr REST API

In order to access Solr's functionality and execute queries from your web browser or even from

your web application, Solr provides a REST interface that you can use to formulate your queries as

URLs with parameters. For example in order to search within your indexed documents in core

"collection1" on your "preston.dlib.vt.edu" server about the keyword "sisters", highlight the keyword

within its context, and return the results in JSON format, you may need to define a URL like this:

http://preston.dlib.vt.edu:8983/solr/collection1/select?q=Sisters&wt=json&indent=true&hl=true&
hl.simple.pre=%3Cem%3E&hl.simple.post=%3C%2Fem%3E

22

IDEAL Pages

As we see, formulating complex queries this way is tedious and inconvenient for users accessing

Solr from the browser and also for developers trying to create dynamic queries programmatically.

Another issue with Solr's REST API is that the results may be returned in a various types of formats

such as XML, JSON, PHP, CSV, ruby, and python which may require some sort of parsing work to

extract the document fields that you need to render on your interface. For example, figure 9 is an

example of a query result returned by Solr formatted in JSON.

For these reasons, we decided to search for another way to interface with Solr that makes it

easier for developers to access Solr functionality without the need to formulate complex URLs or worry

about parsing the results.

2.2.2. Solarium

Solarium is an object oriented Solr client library for PHP applications that not only facilitates

Solr communication but also tries to accurately model Solr concepts. Solarium has more focus on

feature quality than quantity. However, over time Solarium has gathered quite a list of features. Next we

will briefly describe the features relevant to our project, more features can be found at

[http://www.solarium-project.org/why-solarium/features/].

Figure 9 A Solr query result formatted in JSON

%5bhttp:/www.solarium-project.org/why-solarium/features/%5d

23

IDEAL Pages

 Query building API: Solarium makes it easier for formulating queries. Rather than using Solr's

REST interface described previously and defining URL queries with complex parameters

manually, Solarium provides a powerful querying API that allows developers to build Solr

queries easily and conveniently using object oriented concepts. For example, the following code

snippet describes how can we formulate the same query defined in the previous subsection easily

using Solarium.

 $client = new Solarium\Client($config);
 $query = $client->createSelect();
 $query->setFields(array('id','url'));
 $query->setStart($start)->setRows(10);
 // get highlighting component and apply settings
 $hl = $query->getHighlighting();
 $hl->setFields('content');
 $hl->setSimplePrefix('');
 $hl->setSimplePostfix('');
 $query->setQuery($keyword);

As we see in the previous code everything in Solarium is treated as object with their own

methods that models Solr concepts and functionality. For example the $client variable is an

object that is used to establish a connection between a PHP program and a Solr instance by using

the $config variable which holds the server name and access port and the path of the Solr core.

The same for the query ($query) and the highlight objects ($hl).

 Receiving result sets: Solarium also provides a result API to easily retrieve results for a search

result document. Using this feature, the developer now would not worry about parsing the results

to extract the information he wants to render on the interface. For example, the following code

snippet is used to render the results of the defined query in the previous subsection by displaying

each document's fields and values in the result set of the query.

24

IDEAL Pages

$resultset = $client->execute($query);
$highlighting = $resultset->getHighlighting();
foreach ($resultset as $document){
 foreach ($document as $field=>$value){
 echo "$field: $value
";
 }
$highlightedDoc = $highlighting->getResult($document->id);
 if ($highlightedDoc) {
 foreach ($highlightedDoc as $field => $highlight) {
 echo "$field: " .implode(' (...) ', $highlight) . '
';
 }
 }
}

 Highlighting: Solarium provides highlighted matches for field values. Solarium offers a query

API to set highlight options and a result API to easily retrieve the highlight results for a search

result document.

 Facet support: Complex Faceted queries are supported in Solarium. Also multi-faceted queries

are supported. For example, the following code snippet easily defines a faceted query that groups

the indexed documents according to the values of the "stock" field for each indexed document.

$client = new Solarium\Client($config);
$query = $client->createSelect();
$facetSet = $query->getFacetSet();
$facetSet->createFacetField('stock')->setField('inStock');
$resultset = $client->select($query);
$facet = $resultset->getFacetSet()->getFacet('stock');

2.2.2.1. Installing Solarium

For installing Solarium a minimal PHP version 5.3 is required. While previous Solarium versions

with any PHP5 version, Solarium 3 uses interfaces so 5.3+ is a hard requirement. There is no Solr

version requirement. Solr versions 1.4 and upwards have been tested with Solarium. Of course, if you

want to use version specific features like spatial search you need the right Solr version. For spatial

search you will need at least 3.1.

There are several ways to get Solarium. The preferred method is by using Composer. Composer

is quickly becoming the standard for handling dependencies in PHP applications and many libraries

25

IDEAL Pages

support it. Alternatively you can download a pre-packed release from GitHub, or use Git. Next we will

describe the steps of installing Solarium using composer.

1. First go to [https://getcomposer.org/] where you can download and install composer

according to your platform. You can download and install composer from the command line

or you can just download a windows installer (Of course if you are using windows). Our

project's development apache server was installed on a windows machine as so our choice

was to download and install the windows installer.

2. After installing composer, go to the location (Typically a directory on your apache web

server in which your entire project code will reside) in which you want to install Solarium.

Create a text file and name it composer.json. Open the file and write the following JSON

code which instructs composer to download Solarium version 3.2.0.

{
"require": {
 "solarium/solarium": "3.2.0"
 }
}

3. After that, open a terminal or command line and point to the directory of the composer.json

file you have just created in the previous step. Then type the following comand and hit enter.

This command will fetch Solarium 3.2.0 for you.

composer install

4. After fetching Solarium, you will find a directory called "vendor" created on the same

directory as the file composer.json was created. The folder "vendor" contains all Solarium

files required for interfacing with Solr.

2.2.2.2. Using Solarium in your PHP code

In order to include Solarium functionality in your PHP file, you need to do the following steps:

https://getcomposer.org/

26

IDEAL Pages

1. From the "vendor" directory created in the last step of the previous discussion, navigate to

"init.php" file available on this path: vendor\solarium\solarium\examples. This file contains

references to the seminal files required to operate Solarium.

2. Open the "init.php" file and add the following line of code. This line points to the

"autoloader.php" file which loads all of Solarium's classes and interfaces for your PHP code.

require __DIR__.'/../../../autoload.php';

3. In the same directory that you are in now you will find another file named "config-dist.php".

This file is very important as it defines the $config variable which will hold the information

required to connect to a particular Solr instance installed on a server. Open this file and

update the code according to your own server location and Solr installation. For our project,

the next lines of code points to our Solr instance.

$config = array(
 'endpoint' => array(
 'server' => array(
 'host' => 'preston.dlib.vt.edu',
 'port' => 8983,
 'path' => '/solr/collection1',
)
)
);

4. Finally, you will need to include the "init.php" file in your PHP code by adding the following

line of code in your PHP file and you are now ready to use Solarium and play with Solr from

your PHP code. (Note that you are required to adjust the path according to the location of

your PHP file).

require('../../vendor/solarium/solarium/examples/init.php');

2.2.3. Other tools for the web interface

To store the various event types and event names available, a table holding this information was

created in a mysql database created using phpmyadmin which is a good interface for a simple mysql

server which is typically included with the apache server installation. (For our case we used XAMPP for

27

IDEAL Pages

windows, a completely free, easy to install Apache distribution containing MySQL, PHP, and

Perl. available at [https://www.apachefriends.org/index.html]).

To speed up the communication with the Solr instance as well as the mysql database, JQuery's

AJAX HTTP GET requests were applied. Requests are sent from the main HTML interface, packaged as

an HTTP GET request in JQuery and then posted to a server file written in PHP for processing and then

the results are returned back to be rendered to the user as HTML.

For a better interface colors and styles, Twitter Bootstrap was adopted for the HTML user

interface. Bootstrap can be downloaded from [http://getbootstrap.com/]. To use Bootstrap in your

HTML interface, you can follow these steps:

1. After downloading Bootstrap and extracting the contents of the downloaded zip file, you will

find three main folders: css, img, and js. (This may differ according to your Bootstrap

version; here I am using an older version).

2. In your HTML file you need to include two files: "bootstrap.css" and "bootstrap.js". The first

one contains the various CSS styles that you can apply to your HTML DOM elements, and

the second file contains the JavaScript code that is required for these styles to work.

2.2.4. Web Interface Architecture

In figure 10 the big picture of the IDEAL pages web interface is depicted. Tools are represented

as rectangles in which the name of the tool is written. Arrows represent communication or data flows

between the various tools. Data (Indexed documents and the events data) are represented as cylinders.

Figure 10 Web Interface Architecture

https://www.apachefriends.org/index.html
http://getbootstrap.com/

28

IDEAL Pages

To better understand the web interface architecture, it is better to describe a typical use case and

describe how each component perform its work and interact with other components and how data flows

between them.

Consider for example a typical search query as the one presented in section 2.1. The user is

interacting with the HTML interface in which he can enter search keywords and execute queries. When

the user submits his search keyword an HTTP AJAX request is packaged using JQuery holding the

search keyword, the request type (i.e. Search) and the starting point from which results are required to be

returned (This is required in the case of paginated search as we will see in the next section). A server

PHP program resides on an Apache server listening for requests sent from the HTML interface and

respond accordingly. In our search example, the PHP server program receives the packaged search

request sent from JQuery and it executes the request by first creating a connection to the Solr Server

instance (Which may reside on another server) using Solarium and formulating a Solarium search query

using the received user's keyword. The Solr server receives the search request created by Solarium and it

executes the query on the indexed documents stored in the referenced core and it returns the response in

whatever format (Default is JSON). Solarium receives the results and it creates a result set object

formatted as associative arrays that can be easily dealt with in PHP. Then the PHP server program

renders the results to the HTML interface in whichever form required. The HTML interface also

provides a browsing capability by allowing the user to browse the documents by events information

(Event category and Event Name). Accordingly a database of events information was created on a

MySQL Server using PHPMyAdmin tool holding all the events categories (i.e. Earthquake, bombing,

flood,...etc) and event names (i.e. Chile Earthquake) which is communicated to the PHP server to be

rendered on the HTML interface as menus to select from (See the next section).

3. User's Manual
When the application is first loaded, the screen in figure 11 appears displaying all the event

categories and event names extracted from the mysql database as stated in the previous section and

populated into a vertical menu to allow you to browse documents by events information. Also as we see

in the figure, there is a search box in which you can enter your keywords to search within all the indexed

documents and return those documents matching the entered keyword.

29

IDEAL Pages

As an example of the browsing service, consider the case that you are interested in viewing the

documents related to the "Bombing" event. Accordingly you will click on the "bombing" event category,

as we see in figure 11, all the events related to bombing are displayed as menu items from which you

can select the event name you are interested in and then all the documents related to this particular event

will be displayed in the empty space to the right of the menu as shown in figure 12 which illustrates the

case when you are interested to view all the documents related to the "Somalia Bomb Blast" event.

You are also allowed to view a particular document with all its details by clicking on its

displayed information. For example, if you click on the displayed information of the first displayed

document, you will be presented with all the fields and their values (i.e. metadata) of the document

along with its content as shown in figure 13.

Beside the browsing service, the searching service also is supported. You are allowed to enter

your own search queries or keywords in the presented search box to search for relevant documents

among the whole collection of indexed documents. For example, figure 14 illustrates the results of

executing a search query by entering "train derailment" in the search box. As shown in the figure the

number of returned documents are displayed as part of the result and the results are paginated by

displaying only 10 documents per page and allowing you to navigate easily between pages by providing

Figure 11 Web Interface Main Screen

30

IDEAL Pages

"first", "previous", "next", and "last" controls. Also the entered search query is highlighted in context

within each of the returned documents.

Figure 13 Viewing Documents Related to a Particular Event

Figure 12 Viewing Documents related to a particular event

Figure 13 Document Details

31

IDEAL Pages

4. Results and contributions
In this section the major achieved results and contributions is outlined:

 We first studied the Events and what fields we need to index Events based on the dataset.

 We then configured the SolrCloud with a collection and these fields in the Schema.xml file.

 We built Hadoop's Map-Reduce function along with SolrCloud to index documents related to

the data that contains 60 events crawled from the web.

 We were able to find a way to interface with the Solr server in which the indexed documents

reside through a PHP server application.

 We were able to design a convenient user interface that allow users to browse the documents by

event category and event name as well as to search the document collection for a particular

keyword.

Figure 14 Search results and Pagination

32

IDEAL Pages

5. Future works
This section outlines our thoughts of what is still required to be done for those who will continue on

and extend our project:

 The first thing actually required to be done is to make use of the evolving cluster in the digital

libraries lab in VT for distributed processing. What we did here in this project was just a test case

on a single node, but for future extensions, the cluster consisting of 11 nodes should be utilized.

This may require some slight changes in the configurations.

 Another important feature that may be added is to integrate the browsing service with the

searching service. The user should be allowed to browse documents by events information as

was described in the user manual, but also he should be able to perform keyword search on the

set of documents resulted from his browsing activity. On the other hand, the user should be

allowed to browse search results by events information returned from keyword search queries.

6. References
[1] http://lucene.apache.org/solr

[2] https://cwiki.apache.org/confluence/display/solr/SolrCloud

[3] http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-

User-Guide/csug_solrctl_ref.html

[4] http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/1.0.0/Cloudera-Search-

Installation-Guide/csig_admin_solr_with_solrctl.html

[5] http://www.solrtutorial.com/schema-xml.html

[6] http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[7] http://hadoop.apache.org/docs/r0.19.0/hdfs_shell.html

[8] https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

[9] http://wiki.solarium-project.org/index.php/Main_Page

[10] Edward A. Fox, Kristine Hanaa et.al. "IDEAL pages NSF project proposal".

http://lucene.apache.org/solr/
https://cwiki.apache.org/confluence/display/solr/SolrCloud
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_solrctl_ref.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_solrctl_ref.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/1.0.0/Cloudera-Search-Installation-Guide/csig_admin_solr_with_solrctl.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/1.0.0/Cloudera-Search-Installation-Guide/csig_admin_solr_with_solrctl.html
http://www.solrtutorial.com/schema-xml.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://hadoop.apache.org/docs/r0.19.0/hdfs_shell.html
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

33

IDEAL Pages

7. Appendix
This section acts as a manual or a flyer to describe the major steps required by users to use the

interface in accessing the indexed documents.

1. Download and extract the zip file named "IDEAL_PAGES" from our project's collection on

VTechWorks. After extracting the zip file, you will find two folders, one single text file, one

single jar file, and one single zip file. One folder is named "app" contains the files of the web

Interface's source code, and the other named "vendor" which contains all the source files for

the Solarium library already configured and can be used out of the box to access the

documents already indexed on the "preston.dlib.vt.edu" server on the "Solr/Collection1"

instance. The file named "ideal_pages.sql" contains the SQL script required to create the

mysql database and the table containing the available events information required for the web

interface operation. The file name "Event_indexer.jar" is an executable file that can be used

from a terminal to index the documents on the Solr server using the Hadoop Map-Reduce

function. The zip file named "Indexer_eclipse_project" contains the Java source files

required to generate the "Event_indexer.jar" that can be opened directly from Eclipse

development environment for any modification.

2. Place the two IDEAL_PAGES folder along with its contained folders ("app" and "vendor")

together on your Apache server instance on your own machine.

3. Open the file named "ideal_pages.sql" and copy the code inside it. Open the interface of your

mysql server instance (If you phpmyadmin you can open it) and execute the code on your

own mysql server. This will create the database and the table automatically for you.

4. Inside the "app" folder you will find 4 files and a single folder: The first file named

"index.html" which is the main access point to our project containing the web user interface.

There is a file named "server.php" which acts as our server that accepts the user requests as

HTTP AJAX GET requests, communicate with Solr using Solarium and then return the

results. There is also a file named "ajax.js" which acts as our controller which packages the

user requests in a way that the server can understand. The last file named "style.css" contains

CSS code required for designing the appearance of the web interface. The only folder

available named "bootstrap" which contains Twitter's bootstrap library required by the web

interface to provide a good look and feel experience.

34

IDEAL Pages

5. To access the web interface, just open a browser and enter the following URL:

 http://you_server_name/IDEAL_PAGES/app

	1. Abstract
	2. Developer's Manual
	2.1. Document Indexing
	2.1.1. Introduction to Solr
	2.1.1.1. Solr Features
	2.1.1.2. SolrCloud
	2.1.1.3. schema.xml
	2.1.1.4. Customizing the Schema for the IDEAL Pages
	2.1.1.5. Solrctl Tool
	2.1.1.6. Typical SolrCloud Configurations

	2.1.2. Hadoop
	2.1.2.1. Hadoop File System (HDFS)
	2.1.2.2. MapReduce
	2.1.2.3. Event Indexer
	2.1.2.4. IndexDriver.java
	2.1.2.5. IndexMapper.java
	2.1.2.6. Event_Indexer Usage Tutorial

	2.2. Web Interface for the indexed documents
	2.2.1. Solr REST API
	2.2.2. Solarium
	2.2.2.1. Installing Solarium
	2.2.2.2. Using Solarium in your PHP code

	2.2.3. Other tools for the web interface
	2.2.4. Web Interface Architecture

	3. User's Manual
	4. Results and contributions
	5. Future works
	6. References
	7. Appendix

