

Integrity Instruments

P.O. Box 451 Pine River Minnesota 56474 USA Order Phone Fax Phone Tech Phone 800-450-2001 218-587-3414 218-587-3120

http://www.integrityusa.com

USBM1A0 Series I/O Modules

Digital I/O Analog I/O

Table of Contents

Introduct		2
	Features Quick Start	
Commun		
	USB Packet Information	6
Comman	ds and Responses	_
	Command and Response Table	
	Command and Response Examples Analog Control Nibble	
Module (Configuration	
inouule (EEPROM Map	10
	EEPROM Map	
Sampling	g rates	
	Analog and digital	12
Modes of	f Operation	
	Polled Mode	
	Asynchronous Update Mode	
	Continuous stream Mode	
	Continuous stream Mode Configuration EEPROM Map	
	Continuous stream Mode Example	15
Digital I/0	O Technical Information	
	Digital I/O Characteristics	16
	Digital I/O Port Configuration Example	
	PWM Characteristics	
	PWM Commands	17
Analog I/	O Technical Information	
	Analog I/O Characteristics	18
	Voltage References	
	Analog Voltage Sampling	
	Analog Conversion	
	Analog Offset Calibration	ا ۱۹
	Analog Current Conversion	
		20
Digital &	Analog I/O Port Specifications Digital & Analog pin outs	24
	Digital & Arialog piri outs	21
Module S	Specifications	
	PCB Illustrations	
	Dip switch and jumper settings	
	USBM300 Series Module Specifications	23 23
Danink		
Peripher	als Analog Connection Board	24
	Signal Conditioner Board	
	DB15/DB25 Terminal Strip Board	
	Digital Interface Board	

Introduction

Welcome to the Integrity Instruments **USBM100 Series** of I/O modules. These modules using RS-232 communications are available in an enclosure, or open allowing you the end user complete flexibility when determining the parameters for your project.

Configurations for USBM100 series model are:

USBM1A0CE 8 digital I/O and 8 channels A/D conversion

With enclosure

USBM1A0CT 8 digital I/O and 8 channels A/D conversion

No enclosure

I/O Module features:

MPU: Microchip PIC18F4455

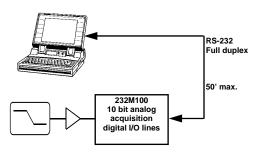
MPU Clock: 32 Mhz

Interface: RS-232 (single ended)

Baud: 9600, 19200, 57600, 115200 (DIP switch selectable)

LED: Bicolor diagnostic LED

Watchdog: MPU has built-in watchdog timer


POR: MPU contains timed Power On Reset circuitry Brownout: MPU brownout detection ciruictry built-in

Temperature: 0° to 70°C (32° to 158°F) Commercial Temperature Range

PCB: FR4

Power: 7.5Vdc to 15.0 Vdc (approx. 50 ma nominal current)

24 Vdc maximum 100 ma current draw.

USBM100 Series Features

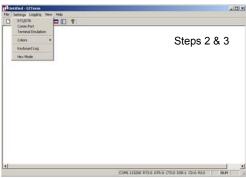
- 8 Digital I/O lines
 - 8 10 bit Analog Inputs
- PWM Output
- 32 bit Pulse Counter 1 Mhz

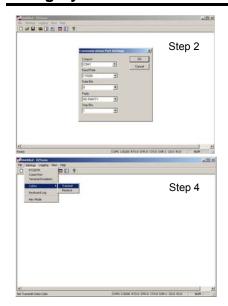
Quick Start Instructions

You need the following:

- EZTerminal program available free on our website http://www.integrityusa.com
- An open COMPORT on your PC
- Power supply PS9J (9VDC 400 ma unregulated)
- A cable to connect your PC (C9F9M-6 6 foot serial cable)

Make these DIP switch settings for 115,200 baud

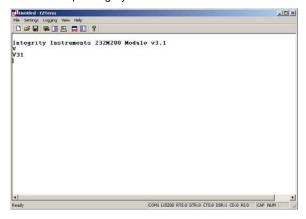

SW1: ON


SW2: ON (These are **factory default** settings, see page 21)

Launch the EZTerminal program

- 1. Double click the icon in whatever area you have put the program.
- Under "Settings" then choose Comport and select your RS-232 port, 115,200 Baud Rate, 8 Data Bits, NO PARITY, and 1 Stop Bits.
- 3. Under "Settings" now choose "Terminal Settings", and check the "Append LF to incoming CR" box, and "Local echo typed characters" check box.
- 4. You may change the color of the transmitted and received characters by going under "Settings" and selecting "Colors" then "Transmit" or "Receive" and pick the color of your choice.

Your First Command

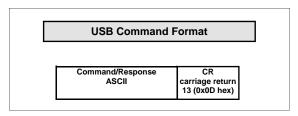

Now that you have a EZTerminal session running, your ready to power up the **USBM100 Series** I/O Module. After powering up your **USBM100 Series** Module, EZTerminal will receive a welcome message from the unit indicating you are ready to provide your first command.

RS-232 Firmware Version 3.1 Command:

- Typethe letter V and the Enter Key
- You should see V30 on the screen
- NOTE: Make sure to type CAPITAL V, not lowercase v!

After your first command, see **Commands and Responses** section for more commands.

Screenshots and setup instructions performed running EZTerminal on a PC installed with Microsoft® Windows® XP Operating System.


Communications

The Integrity Instruments USBM100 Series I/O Modules support USB communications interface using simple ASCII commands. A carriage return (decimal code 13 or Hex code 0x0D) marks the end of each command. Line feeds (decimal code 10 or Hex code 0x0A) are ignored.

USB Interface:

- USB operates Full Duplex
- USB modules can also enter Continuous Stream Mode whereby the module is configured via EEPROM settings to continuously send data to output its current Digital, Counter or Analog readings.

USB Command Format

NOTE

- All numeric data is represent as ASCII Hexadecimal integers (values x/y in the Command and Response table)
- If a module receives an illegal or improperly formatted command, Error Response is sent.
- All ASCII characters are CASE SENSITIVE (use all capital letters!)

Commands and Responses v4.3 Firmware

Command Sent by Host	Response Sent by I/O Module	Description
V	Vxy	Firmware version x.y
I	Ixxyy	Input digital port status xx = 00 yy = PORT2 Also returns current output port status
Оххуу	О	Output digital port: xx = (ignored) yy = PORT2)
Тххуу	Т	Set digital direction: xx = (ignored) yy = PORT2 bit set(1) = Input, bit clear(0) = Output
G	Gxxyy	Get current digital direction: xx = 00 yy = PORT2 bit set(1) = Input, bit clear(0) = Output
N	Nxxxxxxx	Get Pulse Counter (xxxxxxxx 32 bit counter value)
М	М	Clear Pulse Counter
Uy	Uyxxx	Unipolar sample analog (y control niblle, xxx analog value)
Lyxxx	L	D/A output (y channel setting 0 or 1, xxx 12 bit D/A output)
К	Kxx	Get receive error count (xx current count)
J	J	Clear receive error count
Рххууу	Р	PWM (xx = PWM frequency, yyy = PWM duty)
Qy		Unipolar sample analog (y control nibble, x.xxxxx analog value decimal format)
Wyyxx	W	Write EEPROM (yy address, xx value)
Ryy	Rxx	Read EEPROM (yy address in command, xx value in reponse)
s	S	Start continuous stream mode
Н	Н	Halt continuous stream mode
Z	Z	Reset CPU
?		Command list
	x	Command error response sent by module

Commands and Responses

The following table illustrates actual command and response data for an RS-232 interface.

NOTE:

- All numeric data is represent as ASCII Hexadecimal integers.

Command Sent by Host	Response Sent by I/O	Description	
۱ ۸	V40₊J	Module Firmware version 3.0	
ال	1000F₊	Input digital port [PORT2 bits 0-3 ON] [PORT2 bits 4-7 OFF] Note: this command also returns the current digital output	
O007F↓	04	Output digital port [PORT2 bit 7 OFF, bits 0-6 ON]	
T0080₊J	T₊1	Set digital direction [PORT2 bit 7 INPUT, bits 0-6 OUTPUT]	
G₊J	G00801	Get current digital direction [PORT2 bit 7 INPUT, bits 0-6 OUTPUT]	
N₊J	N000000F↓	Get pulse counter: Current count = 15	
M→	M₊	Clear pusle counter: Current count = 0	
U3.↓	U3 40F₊J	Unipolar analog control nibble = 0x3 Analog reading = 0x40F	
K٦	K00↓	Current receive errors = 0	
ابل	J ₊ J	Clear receive error count: Current receive errors	
P4801F↓	P↑	PWM freq = 50499 Hz, PWM duty = 10.6%	
Q3+1	Q1.123456	Unipolar analog control nibble = 0x3 Analog reading = 1.123456 volts	
W0410₊	W₊I	Write EEPROM Address 0x04 with value 0x10	
R04₊	R10₊	Read EEPROM Adress 0x04 (value is 0x10)	
S1	000ET 000ET 000ET 000ET	START continuous stream mode See Modes of Operation section This example illustrates continuous stream mode configured to continuously update with Input Digital Port command and Query Analog command with control 0x1. The module continues until a command H_lis received.	
H₊J	H+1	HALT continuous stream mode	
Zہا	Z+I	Reset CPU (forces a watchdog timeout)	

Analog Control Nibble and Example

The **USBM100 Series** I/O modules equipped with analog inputs utilizes the internal analog to digital conversion in the processor chip. In the process of performing a data sample, the user sends a control nibble to the **USBM100 Series** module. The **USBM100 Series** module in turn performs a data conversion using the control nibble and transmitts a response data sample back. The following table lists each of the 8 possible analog configurations.

NOTE

- All numeric data is represent as ASCII Hexadecimal integers
- See Analog I/O Technical Information section for sample to volts conversion

Control Nibble	Analog Sample
0	Single Point: CH0
1	Single Point: CH1
2	Single Point: CH2
3	Single Point: CH3
4	Single Point: CH4
5	Single Point: CH5
6	Single Point: CH6
7	Single Point: CH7

Command Sent by Host	Response Sent by I/O Module	Description
U2₊ [⊥]	U2 123₊J	Unipolar sample CH2 (Control = 2) Analog sample = 0x123 (decimal 291)
U6₊1	U6 123₊J	Unipolar sample CH6 (Control = 2) Analog sample = 0x123 (decimal 291)
Q2,J	Q3.694532	Unipolar sample CH2 (Control = 2) Analog sample = 3.694532 volts
Q6,1	Q1.682473	Unipolar sample CH6 (Control = 2) Analog sample = 1.68247 volts

EEPROM Map:

Address	Description
0x00	N/A - Reserved
0x01	N/A - Reserved
0x02	N/A - Reserved
0x03	Data Direction Port 2 Bit set (1) = Input Bit clear (0) = Output [factory default = 0xFF]
0x04/0x05	Asynchronous Update Mode Configuration 0x0000= No asynchronous updates 0x0001= Change Update on Digital Input or Counter change 0x00020xFFFF = Timed Update (Time = Value · 1 milliseconds) 16 bits - upper byte in 0x04 lower byte in 0x05 [factory default = 0x0000]
0x06	N/A - Reserved
0x07	Port 2 Power on Default output [factory default = 0x00]
0x08	N/A - Reserved
0x09 to 0x0E	N/A - Reserved

WARNING!

The I/O Module CPU must be reset before new EEPROM settings take effect.

EEPROM Map:

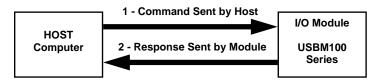
Address	Description
0x0F	N/A - Reserved
0x10	Continuous Stream Analog configuration count 0x00 = No analog stream readings 0x01 0x08 = Number of analog queries [factory default = 0x00]
	See Modes of Operation Continuous Stream for locations 0x110x1A
0x11	Analog Query 1 - control byte - analog control nibble
0x12	Analog Query 2 - control byte - analog control nibble
0x13	Analog Query 3 - control byte - analog control nibble
0x14	Analog Query 4 - control byte - analog control nibble
0x15	Analog Query 5 - control byte - analog control nibble
0x16	Analog Query 6 - control byte - analog control nibble
0x17	Analog Query 7 - control byte - analog control nibble
0x18	Analog Query 8 - control byte - analog control nibble
0x19	Continuous Stream Digital Input configuration 0x00 = Digital Input status OFF 0xFF= Digital Input status ON [factory default = 0x00]
0x1A	Continuous Stream Pulse Counter configuration 0x00 = Pulse Counter status OFF 0xFF = Pulse Counter status ON [factory default = 0x00]
0x1B to 0x3A	N/A - Reserved calibration DO NOT TOUCH
0x3B to 0xFF	Available to User

Analog& Digital I/O Sampling Rates

Analog I/O			
Baud Rate	Polled Mode	Continuous Mode	
115,200	777	1515	
57,600	412	847	
19,200	143	310	
9600	72	157	
Digital I/O			
Baud Rate	Polled Mode	Continuous Mode	
115,200	878	1884	
57,600	456	960	
19,200	156	319	
9600	78	159	

Sampling rates are in samples per second for a single analog channel or 8 bit digital I/O port tested on Windows 2000 850 Mhz P3 with A/D clock running at full speed. Samples per channel = Sample rate ÷ number of channels being sampled.

Modes of Operation:


The Integrity Instruments I/O modules can operate in three operation modes:

- 1) Polled
- 2) Asynchronous Update
- 3) Continuous Stream.

These modes of operation can be used singularly or together in combination.

#1) Polled Mode

By far, the Polled Mode is the most common usage of the **232M100 Series** I/O modules. In this mode the Host computer sends a command to the I/O Modules which in turn sends an associated response back to the Host computer.

#2) Asynchronous Update Mode

The I/O Module sends data **without** the Host sending a command to poll the I/O Module in Asynchronous Update Mode.

NOTE: Asynchronous Update Mode is configured using EEPROM locations 0x04/0x05.

Integrity Instruments USBM100 Series User Manual

Value at EEPROM Location 0x04/0x05	Description
0x0000	Asynchronous Update Mode disabled
0x0001	State Change Update Digital Input or Pulse Counter change
0x0002 to 0xFFFF Decimal Range 2 to 65535)	Timed Update Time = Value * 1 millisecond Range = .002 second - 65.5 seconds

#2a) Asynchronous Update Mode — State Change Update
When EEPROM locations 0x04/0x05 = 0x01, the USBM100 Series I/O module enters an asynchronous update mode whereby any detected change on the Digital Input port or the Counter Capture port causes the I/O module to transmit data to the host.

Status Change	Data Sent by I/O Module
Digital Input port change	Ixxxx
Counter Capture change	Nxxxx

#2b) Asynchronous Update Mode — Timed Update

When EEPROM locations 0x04/0x05 = 0x0002...0xFFFF, the 232M100 Series I/O module enters a timed update mode whereby the I/O module will send data to the host after the specified time period has elapsed.

Time Period = Value (EEPROM locations 0x04/0x05) * .001 second

When using Asynchronous Update Mode, the I/O module uses the Continuous Stream **Mode** configuration to determine the data sent to the host.

#3) Continuous Stream Mode

The final mode of operation is Continuous Stream mode. This mode constantly sends or streams data to the host until the host halts the mode. In brief, the I/O Module can send 0 thru 8 analog samples, digital input status, and the counter capture status.

The I/O module uses parameters found in EEPROM locations 0x10 thru 0x1A to configure the Continuous Stream mode. Therefore, the EEPROM must be configured before engaging the Continuous Stream mode.

Continuous Stream Mode setup steps

- Configure EEPROM locations 0x10 thru 0x1A
- 2. Begin Continuous Stream mode by sending command 'S' to the I/O Module
- Halt Continuous Stream mode by sending command 'H' to the I/O Module 3.

<u>Continuous Stream Mode Configuration — EEPROM Locations</u>

All parameters configuring the Continuous Stream mode are strored in EEPROM. See the following table for a description of the locations and the parameters. Use command ' \mathbf{W} ' to update EEPROM values.

EEPROM	Value	Description
0x10	0x000x08	Analog Configuration 0x00 = No analog samples 0x010x08 = Number of analog samples
0x11 Sample 1	0x8y 0x8y	Unipolar Analog: y = analog control nibble
0x12 Sample 2	0x8y 0x8y	Unipolar Analog: y = analog control nibble
0x13 Sample 3	0x8y 0x8y	Unipolar Analog: y = analog control nibble
0x14 Sample 4	0x8y 0x8y	Unipolar Analog: y = analog control nibble
0x15 Sample 5	0x8y 0x8y	Unipolar Analog: y = analog control nibble
0x16 Sample 6	0x8y 0x8y	Unipolar Analog: y = analog control nibble
0x17 Sample 7	0x8y 0x8y	Unipolar Analog: y = analog control nibble
0x18 Sample 8	0x8y 0x8y	Unipolar Analog: y = analog control nibble
0x19	0x00 0xFF	Digital Input status disabled Digital Input status enabled
0x1A	0x00 0xFF	Pulse Counter status disabled Pulse Counter status enabled

Continuous Stream Mode Example

In this example, the I/O module EEPROM is configured to take 3 Analog samples and update the Counter status.

EEPROM Location 0x10	0x03	Take 2 Analog samples
EEPROM Location 0x11	0x82	Sample 1 - Unipolar sample CH2
EEPROM Location 0x12	0x85	Sample 2 - Unipolar sample CH5
EEPROM Location 0x13	0x87	Sample 3 - Unipolar sample CH7
EEPROM Location 0x1A	0x01	Pulse Counter Status enabled

Continuous Stream Mode Example continued

The following table illustrates the Host Command and I/O Module responses for the continuous stream example configuration and usage.

EEPROM Location 0x10	0x03	Take 2 Analog samples
EEPROM Location 0x11	0x82	Sample 1 - Unipolar sample CH2
EEPROM Location 0x12	0x85	Sample 2 - Unipolar sample CH5
EEPROM Location 0x13	0x87	Sample 3 - Unipolar sample CH7
EEPROM Location 0x1A	0x01	Pulse Counter Status enabled

NOTE

- All numeric data is represent as ASCII Hexadecimal integers
- The symbol

 → equates to a carriage return (decimal 13, hex 0x0D)

Host Sends	I/O Module Sends
W10034	W₊I
W1182-J	W₊I
W1285₊J	ΜΉ
W1287₊J	₩
W1A01₊J	W₊
S-I	S.J Continuous Stream mode started
	U2 023₊J
	U5 823ฝ
	U5 823₊J
	N 0000 0044₊J
	U2 023₊J
	U5 823ฝ
	U5 823₊J
	N 0000 00444
	repeats continually
H↓	H.J Continuous Stream mode halted

The HOST may send any command during the Continuous Stream mode and it will be accepted and processed by the I/O Module as in normal operation.

NOTE

Engaging the Continuous Stream mode at a high baud rate (115.2K baud) may overwhelm certain host computer systems due to the high volume of data transmitted on the RS-232 link. The is especially true of slower 386 or 486 based systems running Windows 95 with limited memory resources.

Digital I/O Characteristics

The following chart lists the Digital I/O characteristics and values.

Characteristic	Value
Digital I/O Current	I/O line source & sink 25 ma
	Total current PORT2 200 ma
Digital I/O Voltage Levels	Input Off (0) = 0V - 0.8V Input On (1) = 2.0V - 5.0V Output Off (0) = 0.6V max. Output On (1) = 4.3V min.
Pulse Counter Input	1 Mhz max. input rate 32 bit counter capture Counter increments on high-low transition

<u>Digital Port Configuration Example</u> Any Digital I/O configuration changes made to the I/O Module using the 'T' command are stored in EEPROM location 0x03.

> FFPROM Location 0x03 Port 2 I/O Configuration

When using either the 'T' command or directly writing to EEPROM using the 'W' command, a binary 1 at a bit location puts the I/O line into Input mode, while a binary 0 at a bit location puts the I/O line into Output mode.

NOTE

- All numeric data is represent as ASCII Hexadecimal integers
- The symbol \downarrow equates to a carriage return (decimal 13, hex 0x0D)

Host Command	Module Response	Action
T0000→	LT L	All I/O lines are configured as Outputs
T00FF₊	T.J	All I/O lines are configured as Inputs
T000F↓	T₊1	Port 2 bits 0-3 Inputs Port 2 bits 4-7 Outputs
T00F0↓	T₊	Port 2 bits 0-3 Outputs Port 2 bits 4-7 inputs
T0034↓	T₊1	Port 2 bits 4,5,2 Inputs Port 2 bits 7,6,3,1,0 Outputs

Pulse Width Modulation (PWM) Characteristics

The **232M100 Series** modules have a configurable PWM output. There are two settings to configure for proper PWM operation: **PWM frequency** and **PWM duty cycle**.

PWM — Command

Pxxyyy xx = Pwm_Divisor yyy = Pwm_Duty (10 bits max.)

Pwm Divisor = 0x00 ... 0xFF

Pwm_Duty = 0x000 ... 0x3FF Pwm_Duty = 0, PWM output is disabled (output 0)

PWM — Control Values (32 Mhz clock)

PWM Period = (Pwm_Divisor + 1) / 8,000,000 PWM Duty Period = (Pwm_Duty) / 32,000,000 Duty_Resolution = log (32,000,000/ Fpwm) / log (2) PWM Duty Cycle % = PWM Duty Period / PWM Period

if (PWM Duty Period > PWM Period) then PWM Duty Cycle = 100%

Pwm_Divisor	PWM Freq	Duty_Resolution
0xFF (255)	31,250 Hz	10 bits* (see note)
0xFE (254)	31,373 Hz	10 bits
0x5B (91)	86,957 Hz	8 bits
0x00 (0)	8,000,000 Hz	2 bits

^{*} **Note:** Pwm_Divisor 0xFF cannot achieve complete 100% duty cycle. Use Pwm_Divisor 0xFE if 100% duty cycle is required.

Example PWM Commands

- All numeric data is represent as ASCII Hexadecimal integers

Host Command	Module Response	Action
P00001	P٦	PWM off Any duty cycle of 0 disables PWM output
P4801F₊J	₽↓	PWM frequency = 109,599 Hz PWM duty = 10.6%
PFE3FF↓	₽↓	PWM frequency = 31,327 Hz PWM duty = 100%
PFE1FE↓	P↓	PWM frequency = 31,327 Hz PWM duty = 50%

Analog I/O Characteristics:

Characteristic	Value
A/D Converter	0 to 10 Volt input
Linearity Error	<± 1 LSB
Gain Error	<± 1 LSB
Offset Error	<± 1.5 LSB
Max Input Voltage	10V

Analog Operation

The analog inputs look like a 100pf capacitor (\mathbf{C} in) in series with a 560 Ω resistor (\mathbf{R} on). Cin gets switched between (+) and (-) inputs once during each conversion cycle. Large external source resistors and capacitances will slow the settling of the inputs. It is important that the overall RC time constant is short enough to allow the analog inputs to settle completely within the allowed time.

The voltage on the inputs must settle completely within the sample period. Minimizing R source will improve the settling time.

<u>Sampling Analog Voltage Inputs</u>
By far the most common configuration of the **232M100 Series** I/O modules is to sample voltage values. Analog voltage levels are converted to integer digital values. The input voltage range is determined by the reference voltage.

Thereis only one analog sample type:

1) Unipolar

Sampling type results in a 10 bit binary integer value.

Vref = 5.000 standard

Unipolar Analog Sampling Resolution

Unipolar analog sampling span is from ground (GND) to voltage reference (Vref). Only positive voltages are sampled in unipolar mode. The unipolar sample is represented as an unsigned integer as follows:

> Unipolar voltages: 0V ... +Vref 1 LSB unipolar = Vref/1024 1 LSB unipolar = 5.000/1023

But there is a voltage divider on the inputs dividing the input equally

Vref effectively =10

1 LSB unipolar = $(5.000/1023) \times 2$

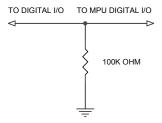
1 LSB unipolar = 0.0097751

<u>Voltage Conversion</u>
The Analog conversion value obtained from the **USBM100 Series** module is represented as an integer value unsigned for Unipolar sample and is normally converted to a Real or Floating Point number for ultimate usage.

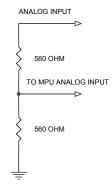
Vref = 5.000 standard

Unipolar Voltage Conversion Formula

Volts [unipolar] = ADC Sample * (5.000/1023) X 2 Volts [unipolar] = ADC_Sample * 0.0097751


Obtaining accurate Analog samples

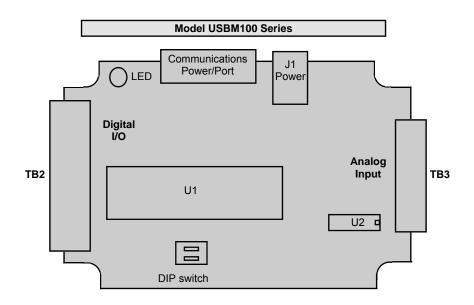
Please keep the following points in mind when attempting to obtain accurate samples.

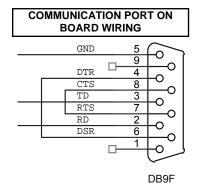

- Avoid high impedance analog signal sources!
- Watch out for UPS systems! They create loads of EMI/EMF noise.
- Keep the analog signal source as close to the ADC-x module as possible.
- Keep transformers far away from the **USBM100 Series** module.
- Use good wiring practices, especially in regards to ground connections.
- USB interface can generate approx. 2 mv noise.

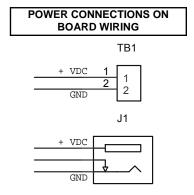
Resistors for Analog and Digital I/O

The digital I/O points have a 100K Ω resistor to ground to prevent floating inputs.

The analog inputs have a two 560 ohm resistors in series to convert the 0 to 10 volt input to the 5 volt mpu input..


TERMINAL STRIP PINOUTS


DIGITAL	TB2	COMM PORT	ТВ3	ANALOG
+ UNREG + 5VDC + 5VDC GND GND PWM PULSE CNT BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1	TB2 000000000000000	COMM PORT PIN 1	TB3 000000000000000000000000000000000000	ANALOG CHAN 0 CHAN 1 CHAN 2 CHAN 3 CHAN 4 CHAN 5 CHAN 6 CHAN 7 GND GND GND GND GND + 5VDC + 5VDC
BIT 0	0	PIN 1		+UNREG


Hex Conversion Chart

		EXAMPLE HEX CONVERSION														
	х х						(Y				Y				
BI T S	1	1	0	0	1	0	0	0	1	0	1	1	0	1	1	1
H E X		(;			8	3			E	3			7	,	

PORT 1							P	OR	Γ2										
	х х						Y Y												
H E X	,	B VAL			H E X	,	B VAL			H E X	,	B VAI			H BIT E VALUE				
*VALUE	7	6	5	4	< > < 」 ⊃ Ш	3	2	1	0	< > < 」 ⊃ Ш	7	6	5	4	X>ALUE	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	1	0	0	0	1	1	0	0	0	1	1	0	0	0	1
2	0	0	1	0	2	0	0	1	0	2	0	0	1	0	2	0	0	1	0
3	0	0	1	1	3	0	0	1	1	3	0	0	1	1	3	0	0	1	1
4	0	1	0	0	4	0	1	0	0	4	0	1	0	0	4	0	1	0	0
5	0	1	0	1	5	0	1	0	1	5	0	1	0	1	5	0	1	0	1
6	0	1	1	0	6	0	1	1	0	6	0	1	1	0	6	0	1	1	0
7	0	1	1	1	7	0	1	1	1	7	0	1	1	1	7	0	1	1	1
8	1	0	0	0	8	1	0	0	0	8	1	0	0	0	8	1	0	0	0
9	1	0	0	1	9	1	0	0	1	9	1	0	0	1	9	1	0	0	1
Α	1	0	1	0	Α	1	0	1	0	Α	1	0	1	0	Α	1	0	1	0
В	1	0	1	1	В	1	0	1	1	В	1	0	1	1	В	1	0	1	1
С	1	1	0	0	С	1	1	0	0	С	1	1	0	0	С	1	1	0	0
D	1	1	0	1	D	1	1	0	1	D	1	1	0	1	D	1	1	0	1
Ε	1	1	1	0	Ε	1	1	1	0	Ε	1	1	1	0	Ε	1	1	1	0
F	1	1	1	1	F	1	1	1	1	F	1	1	1	1	F	1	1	1	1

Power 2.5mm

Baud Rate Switch Settings							
SW1	SW2	Baud Rate					
OFF	OFF	9600 baud					
ON	OFF	19200 baud					
OFF	ON	57600 baud					
ON	ON	115200 baud (factory default)					

IC	232M300 I/O Module
U1	PIC16F874A MPU [40 pin dip]
U3	RS-232 driver [16 pin DIP]

LED Operation

Blinking Green	[1 per Second]	Unit functioning correctly - idle
Blinking Green	[Rapid or Steady]	Unit receiving serial data
Blinking Red	[Rapid or Steady]	Unit transmitting serial data
No LED		Unit is not functioning

Power Supply 7.5-15.0 Vdc approx. 50 ma. nominal power, 24 Vdc maximum 100 ma current draw (we suggest our PS9J a 9VDC 400 ma unregulated power supply)

 $\underline{\text{GND}}$ and $\underline{\text{Shield}}$ The GND and Shield terminals are connected on the 232M300 Series boards and are therefore electrically equivalent.

USB Cabling

The USB interface uses a USB A\B cable..

Peripheral Add-On Modules

The **EXP-X** expander unit provides for digital interface and signal conditioning via industry standard opto-isolated I/O modules such as Opto-22. Each unit has 4 I/O points with large easy to use terminal screws. If more I/O points are required, simply plug in another unit up to 8 total I/O points may be used the **USBM100** module.. **Opto isolated modules:** 90V-140V AC input, 12V-140V AC output, 3.3V-32V DC input, 3V-60V DC output.

You will have to use our **DB25TSF** adapter to wire from the terminal strip of the **USBM100** unit to the expander module.

WARRANTY

Integrity Instruments warranties all products against defective workmanship and components for the life of the unit. Integrity Instruments agrees to repair or replace, at it's sole discretion, a defective product if returned to Integrity Instruments with proof of purchase. Products that have been mis-used, improperly applied, or subject to adverse operating conditions fall beyond the realm of defective workmanship and are not convered by this warranty.

Copyright © 2000-2006, Integrity Instruments

All trademarks and/or registered trademarks are the property of their respective owners.