

Pascal-F Verifier
User’s Manual

\ersion 2

by Scott D. Johnson and John Nagle

Pascal-F Verifier
User's Manual

\ersion 2

by Scott D. Johnson and John Nagle

Ford Aerospace &
Communications Corporation
Western D&elopment
Laboratories Division

3939 Fabian Way
Pdo Alto, California 94303

Permission is herebywgn to modify or use, but not for profit, ror dl of this program provided that this
copyright notice is included:

Copyright 19105

Ford Motor Company
The American Road
Dearborn, Michigan 48121

This work was supported by the Long Range Research Program of the Ford Motor @oampbhnas
carried out at &rd Scientific Research Labs in Dearborn, Michigan and Ford Aerospace and
Communications Corporatian\Western Deelopment Laboratories in Palo Alto, California.

Printing of 11/6/105.

This is the uses’ manual for the second release of the Pascadiifidt. The current version of the system
operates on VAX and SUN systems running BerkelBlIX.

Comments and trouble reports should be addressed to

Division Software Technology and Support

Mail Station X20

Ford Aerospace and Communications Corporation
3939 Fabian Way

Pdo Alto, CA 94303.

or
verifier@FORD-WDL1.ARPA

on the Internet.

1. Anintroduction to verification

Verifiers are not yet common software toolBor this reason, a substantial amount of
explanation is in order This manual is addressed to the professional programmer
involved in the production of high-reliability sofare. Acquaintancevith Pascal-F is
assumed; acquaintance with verification is not. No specific mathematical background
beyond that necessary to comprehendaadal-lile language is assumed. Users who are
uncomfortable with formal mathematics inydiorm, havever, will find using the \érifier

rather heavy going.

There has been a certain mystique associated \eitification. \érification is often
viewed as either an academic curiosity or as a subject incomprehensible by mere
programmers. Its neither Verification is not easyout then, neither is writing reliable
computer programs. More than anything else, verifying a program requires thatvene ha
a very clear understanding of the programesired behaor. It is not verification that is

hard to understand;evification is fundamentally simple. It igally understanding
programs that can be hard.

1.1 Whata verifier is and what it can and cannot do

A verifier is a computer program, or set of computer progralhgxamines other
programs and tries to pre that they meet specified criteria. Some of these criteria are
implied by the language in which the program is written. Others are supplied by the
programmer or the system designéris the task of the erifier to try to shw that the

program alays meets the stated criteria, no matter what data or conditions the program
is faced with, provided only that the program is faithfultgcited by the computer.

This task is not an easy onk.is much more difficult than, for example, checking that a
program is syntactically correcEhaving that the program works for all cases requires a
much more paerful approach than testing, simply because for programs wf an
complexity exhaustve testing requires numbers of test cases that are far too large for
there to be anhope of trying all of them.

Verifiers attack this problem by turning a program and its criteria for correctness into a
large number of mathematical formulas, and then trying toeptuat all these formulas
always hold. When the criteria for correctness can be expressed mathematicslly
approach is ery useful. When the criteria for correctness are not easy to define, the
approach is of limited use.

Fortunately it is quite straightforward to express mathematically the concept of a
program ‘blowing up at run-timé. Errors that a run-time system for a language can
catch, such as subscripting out of rangeeeding the allowed range of a variable, and
referencing a variable that has not yet been assignedlue,vare easy to define
mathematically Unlike a un-time system, which can only detect these errors when the
occur, a \erifier can detect these errdmsforethey occur.

The first step in ansound verification is to shw that no run-time errors occuSome
verifiers do not bother with this step, but assume, f¥an®le, that integer variables can
contain ag value and that arrays V& infinite dimensions. While such verifiers are
useful as research tools, one cannot place much confidence in a result of ‘no errors found’
from such a verifier.

Ideally, verifying that a program cannot generate a run-time error should not require an
help from the programmesnce the program contains sufficient information to decide

this question. However, our verification tools are not sophisticated enough to do this
checking without help.

The first step of verification is the translation of the question of the correctness of a
program into a collection of mathematical formulas. This process is comptakj$no

worse than that of translating the program into object code, which is performed by a
compiler The hard part of erification is constructing proofs that the formulas are true,
or discwering that thg are false.

Early attempts at verification required users to write out proofs by hand, just as
mathematicians v done for centuries. Other people reagrahe proofs and cheekl

them. Thisapproach didi’'work very well. It worked about as well as desk checking of
programs doesA number of supposed program proofs published in various professional
journals hae keen found to contain errors.

The next step was automatic proof checking.this mode, people ovked out their
proofs at computer terminals, with the computer checking each step of the prbisss.
approach is reliable, but it is slcand expensve. It has not been much used because of
the high labor cost.

Fully automatic generation of proofs is the ultimate g&lccess has been aclae for

certain kinds of problems. Researchers are tryingctene the range of problems that
can be handled automaticallyhere are good, fast techniques for a useful class of simple
problems. Othemore powerful (though much slower) techniques can be used agea lar
class of problems. Research continues in this area.

A number of automatic theorem ping programs hae been written. All \erification
systems in serious use today use automatic theorewerproHavever, verifiers are
usually unable to pre programs correct without substantial help from the programmer
because of limitations of these theoremvprs. Itis this fact that keeps verifiers from
coming into widespread use.

Fortunately the mathematics in real-time programs and system programs tends not to be
very advanced. Morestatements look like

than

X = (-b+sqgrt(b**2 - 4*a*c)) / (2*a);

This fact makes erification of these programs tractableere with todays theorem
provers.

We @an attempt to erify ary condition that can be expressed in the form of a computable
Boolean expression that iswalys supposed to be true at some point in the program.
Such conditions are calledsertions.A typical assertion would be

ASSERT x >y;
One can compare this with a run-time check of the form

IF NOT (x >y) THEN ABORT;

If correct operation of the program requires that x be greater than y when control reaches
this statement, we would kkto be orvinced that the ABOR will never occur A

verifier can often generate a proof that the assertion is true wirezomtrol reaches the
ASSER statement.

Verifiers generally are not very good at diagnosing/ wehgrogram cannot beevified.
When a erifier says a program is correct according to its rules, then either the program is
correct or the verifier is not working properlg&adly an eror in the \erifier, as vell as a
compiler error resulting in incorrectly generated object code, arayslpossibilities.)
However, when a verifier fails to pr@ a pogram correct, the program may not be in
error. It may simply be that the verifier needs more help from the progranomrat
some of the help alreadyvgn is misleading. Itis not aWays possible for the verifier to
diagnose the problem in a concise form. But tkefier can usually point out which
section of code is giving troubleBeyond that, the typical verifier merely lets the
programmer see the formula that it is trying toverend lets the programmer try to figure
out what is wrong. This el of diagnostic can be annoying, but is really no harder than

debugging.

Verification is an iteratie pocess. Oneubmits the program to a verification system,

gets some error messages, fixes the errors, and tries again until all the errors are gone.
Because verifiers tend to be rathemsltacilities for reverifying only the parts that va
changed are often prled. Thisfeature is akin to being able to recompile only part of a
program after making a change, and speeds up debugging substantially.

In time, verification may become a routine part of programméigpresent, it is an area
of actve research, but the techniques of verificatiowehéieen used only on ae
projects. Inmost cases, the sofane tools needed to use verification on real projests ha
been lacking. This fact has retarded the acceptanceerfication as a means of
improving the quality of programs.

1.2 ThePascal-F Verifier and its powers

The Rascal-F Verifier is designed to be used to inaprtne reliability of medium-sized
real-time programs written inaBcal-F Its paver is generally adequate to check
programs for absence of run-time errordigher-level constraints may be also be
submitted for verification, and an attempt will be madeetafy them, but there are limits
on the complexity of the relations that can be verified.

The Verifier operates on a dialect aiideal-F that has been augmented with language
features used to provide additional information to tlezifr. These extensions are
described in Chapter 2. The assertions required to verify a program are placed in the
program text itself; there is no separate specification Ale.extended version of the
Pascal-F compiler is\ailable which will accept but ignore the verification statements,
allowing verified programs to be compiled without change.

The basic units of verification are the procedure, function, momiodule, and main
program. Collectiely, we a@ll theseprogram wnits. We dso refer to procedures and
functions agoutines. Each program unit is verified in isolation, using previously stored
information about all other relent procedures andaviables. Thénformation stored for
each program unit is

« The name, formal argument list, and result type
The ENTRY and EXIT assertions

The INVARIANT assertions

The list of global variables referenced

The list of global variables altered

The list of all routines called, and the arguments to each call
+ Information concerning multiprogramming.

These items define thaterface of the routine. The only information about a routine
available when verifying its callers is the intecké. Thereforall the information about
what a routine does must be included in the EXIT assertions, and all the information
about what a routine needs must be included in the EYNaBRBertions.

Before verifying a program, theexifier checks the program for violations of the rules
given in chapter 2. This is referred to aprewerification decking. Once all parts of a
program hae passed these tests, which in themselves may shqgrogram ‘bugs’, the

actual \erification process lggns. TheVerifier generates assertions for all statements that
could cause \rflows, out-of-range subscripts, references to variables not yet assigned a
value, or other run-time errord-ormulas callederification conditionsare generated for

all these assertions and for the usessertions. Attemptare made to pre dl the
verification conditions using an automatic theoremvpro Diagnostic messages are
generated for all unpven conditions.

It is expected that the user will want to alter the program being verified and to attempt
reverification. TheVerifier maintains a file that minimizes the amount of work required
when reerifying a program. The units of verification are the procedure, function,
monitor, and module. In general a change made within a program unit will not require
reverification of parts of the program outside that unit unless the interface of the unit is
altered by the user.

2. Writing verifiable Pascal-F

Programs to be verified must in a sense‘lnederstood’ by the \érifier, for which it

needs a substantial amount of help from the programiest of this help is supplied in

the form of special statements embedded in the text of the program. These statements are
meaningless to the Pascal-F compiler (though the compiler will recognize and ignore
them), but to the Verifier tlyesupply information about e the program works.

2.1 TheVerifier s view of Pascal-F

The Verifier needs additional information beyond the Pascal-F statements needed to
produce a running program. The basic form of additional information is the assertion.
An assertion is a Boolean expression (that is, one whalse vs true or false) that is
supposed to be true wheme some point in the program is reachedl.typical assertion

is

ASSERT x >;

This assertion is a claim that wheaecontrol reaches the statement, x will be greater
than y The Verifier will tale an the task of proving that the code that leads up to the
ASSER statement alays guarantees that x is greater thanFgllowing the ASSER
statement, the Verifier will assume that x is greater than vy.

The Verifier does notxecute programs. It examines programs and attempts to predict
their actions whenxecuted. Thisexamination takes place based on a set wikt-n
notions about thexecution environment.

2.1.1 Initialization

All variables are considered to be uninitialized at start and may not be referenced before
being gven a \alue. Atprogram start, only constantsvieavalues. Uponentry to a
routine, all local variables are uninitializedverywhere that a variable is used, the
Verifier will attempt to proe that the variable has been assignedalmes r simple

variables this task is usually trivial; for arrays it is usually har@&ee the section on the
DEFINED predicate for information on Wwao cope with arrays.

2.1.2 Ranges

All types hae finite bounds.For subrange types, these angpkcit. The bounds of the

type INTEGER are from -32768 to 32767; these bounds are determined by the 16-bit
hardware arithmetic used in the implementation afséal-F Everything that has a
numeric value thus has a subrange associated witlliitvariables that hae leen
initialized are assumed to be within randéence, all actions that change the value of a
variable must be checked for out-of-range conditions.

2.1.3 Multiprogramming

The Verifier viavs programs as if control can be takewveya from the current process
only at certain points called “singular poiritsT he singular points are at SEND and
WAIT statements and places where a process calls a roufioeterd from a dierent
monitor. This assumption allows the Verifier to process all other parts of programs as if
they are purely sequential.

This assumption is a simplification of realignce processes can be pre-empted when
interrupts occur Howeve, Ince no monitor is allowed to access arigble that is
declared in a diérent monitoy the fact that there is preemption can be ignored because
the preempted process cannot detect that it was preempted.

Normally, the Verifier can assume thatyavariable not altered by a statement does not
change. Whem process P encounters a singular point, this assumption isalbt At

those points P can be interrupted by other processes that canasttes that P is
allowed to read. When a process reaches a singular point, monitor variables visible to
that process are assumed to beeginew vdues that are consistent with the monitor
invariant. Thusthe monitor irariant must be strong enough to contain all the necessary
information about the values the monitor variables will contain weeriee monitor is
entered or left.

The restrictions necessary to meakis simplified model of multiprogramming work are
enforced by the Verifier during the pesification checking phase.A style of
programming in which shared variables are accessed only by routines declared within
monitors is required.This style of programming is strongly recommended asious
structured programming enthusiasts, including HoareARBE74] but it tends to result in
programs with may tiny routines. Hiicient implementation of such programs will
require additional optimization support in the compiler.

2.1.4 Deices

In Pascal-F devices hae the syntax of variables, but very different semantithe
Verifier treats devices as proceduresveagithe definitions

TYPE atod = DEVICE (* Ato D converter *)
channel: 0..15; (* used to select channel *)
data: 0..2047; (* returns data value *)

END;

the program fragment

atod.channel := 2; (* select A/D channel *)
tab[2] := atod.data; (* read A/D value *)

is treated by the Verifier much as if the program read

atodchannel(2); (* select A/D channel *)
atoddata(tab[2]); (* read A/D value *)

and atodchannel and atoddata were proceduresThe Verifier makes no assumptions
about the values returned byviees other than that values returned from devices are
assumed to be in the range declared in the DEVICE declaraftans, DEVICE ranges
should include the entire range oélwes that the device is electrically capable of
producing. The Verifier assumes that the taare has been correctly described by the
programmer.

2.1.5 Enbrcement

In this chapter are a number of restrictions on the way in whadtadRF programs
intended for verification may be written. Therfier checks and enforces all of these
restrictions before proceeding witknfication. Thisstep is referred to as peification
checking.

2.2 Extensiondo Pascal-F for verification

2.2.1 \érification statements

The statements described hergeheo efect on the behavior of the programhey serve
only as a documentation aid, to help therifiler (and the human reader) understand the
operation of the program.

Because verification statements are not allowed to cedd hay &ect on the program,
they cannot contain calls to functions that/kasde effects.

2.2.1.1 TheASSERT statement

ASSERT (<Boolean expression list>) ;

This is the basicerification statement. An ASSHRstatement is a claim that thevgn
expressions are true wherse control reaches the statement. The Verifier will attempt to

prove tis claim. Like dl verification statements, the ASSERtatement has no effect on
program @&ecution.

2.2.1.2 TheSTATE statement

STATE (<Boolean expression list>) ;

The SATE gatement may only be written within the body of a loop, and represents the
loop invariantof the loop. The Boolearxpressions in the $lr'E gatement must be true
eveay time the SATE gatement is reached’ he Verifier uses the T E satement as the
place at which it will begin and end analysis of the loop. Each Boolean expression in the
STATE gatement is grified for the path around the loop and for the path into the loop.
For the path around the loop, the path tracing starts at tA€ES¥atement, goes around

the loop once (backwards) and ends at the samA& S&atement. Thusthe Boolean
expression list must include all important information about variables that are changed by
the loop bodybut it need not mention variables that are left untouched. More advice on
the use of the SATE gatement appears in the sectiOWhat to do when aerification

fails”.

One (and only one) & E gatement must be written fovery loop. The statement must
contained in the loop bodwt the top leel. Thatis, if the loop body contains gn
compound statements then theABE gatement for the loop must appear outside those
statements.

2.2.1.3 TheMEASURE statement

MEASURE (<numeric expression>) ;

The MEASURE statement is used to yeohat loops terminate Every WHILE and
REPEA loop (except for deliberate infinite loops, which must begin with "WHILE true
DO" or end with “UNTIL false;) must contain a MEASURE statemenfThe
MEASURE statement must immediately felléhe STATE gatement associated with the
loop. The<numeric &pression> is a limit on the number of iterations of the loop body
left to be performed.More specifically the Verifier will insist that the value of the
expression

» be greater than or equal to zero when control reaches the MEASURE statement,
and

+ decrease by at least one (for gees) or the precision of the expression (foedix
point numbers) each time controlvile from the MEASURE statement around the
loop back to the SATE gatement.

How complex a MEASURE statement is required is a function ofvhatvious it is that
the loop alvays terminates. FOR loopsvedys terminate, and no MEASURE statement
is used. If a loop uses a counter of one form or anothe™MEASURE statement will

contain a simple expressiorvolving the counter For example, if the loop is counting i
from 1 to 100, "MEASURE 100-i" would be a good choice. If the fact that a loop
terminates is subtle, a complicated MEASURE statement, perhapsvolvinip EXTRA
variables, will be necessaryf the loop does not terminate under some circumstances, no
MEASURE statement, no mattervia@omplex, will be accepted by the Verifier.

2.3 Newexpressions

The Verifier allovs the use of some weconstructs for building xpressions. Somef
these constructs can be used only in the special verification that will be described; others
can be used inxecutable statements as well.

2.3.0.1 TheDEFINED predicate

DEFINED(<variable>)
DEFINED(<array>,<low bound>,<high bound>)

DEFINED(<block name>)

DEFINED is a generic, built-in function that can be applied jovamniable or part thereof
and returns a Boolearale. DEFINEDcannot be used inxecutable statementsA
variable is said to be DEFINED wheree it is guaranteed to va& a neaningful alue.
The following rules are used to determine whether an expression is DEFINED:

« All constants are DEFINED, including VALUE constants.
+ Values obtained from DEVICE variables are DEFINED.

+ A record ariable is DEFINED if and only if all the fields of the record are
DEFINED.

« An array variable is DEFINED if and only if all the entries of the array are
DEFINED.

« A variable is DEFINED after it has been used on the left side of an assignment
statement in which the right side was DEFINED.

« At the beginning of the body of a FOR loop, the idariable is DEFINED.

+ A subscripted variable is DEFINED if the subscript is DEFINED, the subscript is
in the range of the array bounds, and the specific array element being referenced is
DEFINED.

Once a wariable is DEFINED it remains DEFINED, unless an operation is performed that
results in the variable receiving an indeterminatalue. Only the folloving
circumstances can result in a variable not being DEFINED:

« The \ariable is used in an indetatement of a FOR loop is not DEFINED when
the loop terminates.

« Immediately after the tag field of @wvant record is changed, all the other fields in
that record are no longer DEFINED.

The second form of DEFINED is used to test the definedness of portions of anTéeay
form

DEFINED(tab,i,j)

is true if the arrayab has all elements DEFINED for elements with subscripts between
andj inclusive. This form is often used in loopvariants, inside the SATE gatement.

The DEFINED predicate can also be applied to monitors and modules, as in the third
form given aove, but it has a slightly different meaning. If an INVARIANT has been
declared for the monitor or module, thevanant is expected to hold wheree the
construct is entered or lefThere must be one exception to this ruleyéer. Snce no
variables are DEFINED when the program begimscation, the inariant cannot be
expected to hold. It is the responsibility of the statements in the body of the monitor or
module to initially establish the variant. If m is a nonitor or module, then
DEFINED(m) is TRUE whengr m has been initialized. No routine exported from a
monitor or module may be called unless DEFINED(m) is true.

2.3.0.2 TheOLD annotation

At the beginning of wery procedure and function, the Verifier implicitlyvea the \alue

at entry of gery variable used as an input to the routime.assertions, it is possible to
refer to these values by placing a@LD following a variable name or selector
expression. Thusjf X is a parameter or ariable, X.OLD denotes the value the
parameter orariable had when the routine was entered. Old values of array variables are
referenced with forms such asX.[3].OLD for an array reference, or
X.FIELDNAME.OLD for field references. OLD may only be used witharifrcation
statements and PROOF statements, since thisgsaf OLD values does not occur in the
running program.

The chief use of OLD is as a specification toBbr example, suppose one wanted to
write a procedure to increment thalwe of a variable by one. The interface for this
procedure might be

TYPE smallint = 1..100;

PROCEDURE bump(VAR x: smallint);
ENTRY x < 100;

EXIT x = x.OLD + 1;

2.3.0.3 ThelMPLIES operator

A new Boolean operator IMPLIES is added to the langudgérmally, the expression

p IMPLIES q means, "if p is TRE, then q will be TRUE as well." If p and q are
Boolean expressions, thedPLIES ghas the value TRUE if p iSAESE or g is TRJE,
and it has the value FALSE in all other casEet purposes of precedence, IMPLIES is
considered to be a relational operator.

The IMPLIES operator is for the most part used in verification statements$,rbay be
used in ®gecutable statements as welBecause it happens to be the case that
FALSE <= TRJE, every IMPLIES operator in Pascal-F can be replaced by the operator
<= without changing the meaning of the prograhhis practice is not advised, since the
resulting program will be harder to read than the one using IMPLIES.

2.3.1 \érification declarations

To verify a program, more information about each routine is needed than what is
necessary to compile a program. The Verifier expects routine headers that are more
comple than those of standardgtal. Theextended syntax is:

<block> ::= <entry declaration part>
<exit declaration part>
<effect declaration part>
<invariant declaration part>
<depth declaration part>
<constant declaration part>
<type declaration part>
<variable declaration part>
<statement part>

Each declaration part is either empdy consists of a &word followed by a series of
declarations, each of which is followed by a semicol®he declarations that are not part
of standard Pascal are explained in this section.

2.3.1.1 TheENTRY declaration section

ENTRY <Boolean expression series>;

The Boolean expressions/gn in this section are assertions that must b&ERvhenger

the routine is calledThe scope rules of Pascal-F et the Boolean expressions from
containing variables other than parameters of the routine and variables global to the
routine. Ina routine exported from a module, ENYRissertions cannot usenables

local to the module. The purpose of the ENT8ection is to state restrictions on the
values of these variables.

ENTRY assertions are a form of documentation as well as a verification requirement.
Instead of writing "This procedure may only be called when filesopen is 0" in a comment,
one writes

ENTRY filesopen = 0;

Some ENTR assertions are automatically generated for each routine.

+ For each value argument, an assertion is generated that the argument is DEFINED.

« For routines that are exported from a monitor or module m, an EN&BRertion is
generated consisting of thevaniants for m.

Wheneer a variable is gren a \alue, the ¥rifier checks that the value is appropriate to
the type of the ariable. Thereforeary variable that is DEFINED has a value that is
appropriate to its type. Therefore is not necessary to write EFNaBRertions that state
that a parameter has a value appropriate for its subrange type.

When a wariablev is passed to &AR parametelp and used as an input variable, the
Verifier automatically add®EFINED(p) to the ENTR conditions of the routine being
called. Similarly for a VAR output ariable, DEFINED(p) would be added to the EXIT
conditions. Thisautomatic insertion oDEFINED predicates can beveridden by
mentioning the formal argumentvisived in a usesuppliedDEFINED in an ENTR/ or
EXIT condition. A common case in which the user mugéroide the \érifier's automatic
insertion is shown bela

PROCEDURE search(var n: integer);
ENTRY DEFINED(n) = DEFINED(n);
EXIT DEFINED(n);

BEGIN

n:=0;

WHILE (n < 100) AND (tab[n] <> 0) DO BEGIN
STATE(defined(n), defined(tab));
n:=n=+1;

END,;

END;

Here, we do not want to require thmmbe DEFINED at entry tgeach, but n appears to
be an output variable since there are references to it within the procedure. The use of

DEFINED(n) = DEFINED(n)

prevents the Verifier from adding a requirement thdite DEFINED at input, but does not
impose ay requirement of its own.

There are rare cases in which a parameter p is only sometimes used for input depending
on the values of the other parameters are. In this case, anyEd$ERrtion of the form

C IMPLIES DEFINED(p)

should be used, where C is the condition under which the variable is read. Routines that
have aray or record VAR parameters may need com@BITRY assertions indicating
which portions of the array must be DEFINED at entry.

Monitors and modules may V& ENTRY declaration sections.These refer to the
initialization block of the monitor or moduld=or monitors and modules, the assertions
in the ENTR section must be true when the INIT statement for the monitoresuéed,

and will be assumed true at the beginning of the initialization part of the block.
2.3.1.2 TheEXIT declaration section

EXIT <Boolean expression series>;

The EXIT declarations define the state of the program upibfrem a routine by giing
assertions that will be true at that time. The scope rules of Pascal-F limeartables
allowed in an ENTR assertion to parameters and variables global to the roufine.
additional restriction enforced is that value parameters cannot appear in an EXIT
assertion, except as fields of the redotdD.

EXIT assertions tend to be long and complex, becausgteing that the routine does
that is of importance to the caller must be described in the EXIT assertioseme
cases the EXIT assertions may be as long as the body of the routine.

If a routine has a AR parameter p that is used for outpDEEFINED(p) must be
included among the EXIT assertions. If the parameter is only used for output some of the
time, the situation must be described in an EXIT assertion of the form

C IMPLIES DEFINED(p)

where C is the condition under which p is used for outffup. is an array or record and
only part ofp is written, the situation must be described using more conpdT
assertion.

2.3.1.3 TheEFFECT declaration section

EFFECT <Boolean expression series>;

This declaration may only appear in a routine that is exported from a moduole.
EFFECT assertion is similar to an EXIT assertion, except that EFFECT assertions cannot
contain references to variables local to the module.

Upon return from a‘regular” routine (that is, one that is not part of a module) the
Verifier uses the fact that the EXIT assertions (with actual arguments replacing formal
parameters) for that routine are trudowever, if the routine is exported from a module
and called from outside the module, its EXIT assertions cannot be used sinceathe
contain variables not visible to the callénstead, the EFFECT assertions are used by the
Verifier. These assertions cannot contain variables local to the monitar routine
exported from a monitor is referenced from within the moniboth EXIT and EFFECT
assertions are used.

The following example shows WoOLD, ENTRY, EXIT, and EFFECT are used to
specify a module. The module also contains anARMNT declaration. INVARIANT
declarations are explained in the next section.

MODULE stack;
EXPORTS size, push, pop;
VAR stp: 0..maxsize;
buf: array [1..maxsize] of stackelt;

EFFECT size = 0;

INVARIANT FOR x: 1..maxsize
ALL x<stp IMPLIES DEFINED(buf[x]);

PROOF FUNCTION size: 0..maxsize;
EXIT size = stp;
BEGIN size :=stp END;

PROCEDURE push(x: stackelt);

ENTRY size < nmaxsize;

EFFECT size = OLD.size + 1;

BEGIN stp :=stp+1;
buffstp] := x

END;

FUNCTION pop: stackelt;

ENTRY size > 0;

EFFECT size = OLD.size - 1;

BEGIN pop := buf[stp];
Stp:=stp-1

END;

BEGIN stp := 0 END;

A few things should be noted about thimmple. TheENTRY assertions indicate under

what conditions each routine can be calléthey are written in terms of the proof
function size. The EFFECT declarations describe what each routine does to size so that
the users of the module can tell when it aid/ to call push and pop. The EXIT
assertion in size is used by therMer to translate the ENTYRand EFFECT assertions in

push and pop into assertions about theanable stp, which is (unbeknownst to the

caller) changed by those routines.

2.3.1.4 ThelNVARIANT declaration

INVARIANT <Boolean expression series>;

The assertions gen in an NVARIANT declaration are required to hold at multiple
points in a program.

« Putting an INVRIANT P in a routine is equalent to putting ASSERP
statements at the g@ning of the routine (i.e. as an ENYRssertion), the end of
the routine (as an EXIT assertion), before and after ea&il \8tatement in the
routine, and before and after each call to another routine.

« Putting an INVARIANT P in a MONIDR is eqwalent to putting ASSERP
statements at the end of the monitor block, before and after each WAIT statement
in the monitoy before and after each call to a routine outside the moratar
adding P as an INVARIANT assertion to each routine exported from the monitor
Note that an ASSERP is rot added to the beginning of the monitor block; the
invariant is not assumed to hold until the monitor has been initialized.

« If the declaration INVARIANT P is put into a MODULE, the onlpnables on
which P can depend are those local to the MODULE. The assertion P must be true
at the end of the initialization block of the MODULE, before and after ea&lT W
statement in the module, before and after each call to a routine outside the module,
and at the beginning and end of each routine exported from the MONITOR.

In other words, if an assertion P is declared to be an INVARIANT of a construct, P must
be true whenger control passes into or out of that construct.

2.3.1.5 TheDEPTH declaration

A recursve outine R1 is one that can call R2, which in turn calls R3, and so on until R1
is called agin. A special case of recursion is a routine that calls it&¥len a program
uses recursion, it is necessary tovertnat it is impossible to initiate an endless sequence
of routine calls, none of whictver returns.

Every recursie routine must contain a DEPTH declaration of the form:

DEPTH <integer expression>;

By the scope restrictions obBcal-F-the integer expression may only contain parameters
of and variables global to the routine. Note that a fixed point expression cannot be used.

The DEPTH expression is an indication ofshmuch time will be used by the routine.
The ENTRY assertion for the routine must be strong enough to imply that the DEPTH
expression is nonmgative whenever the routine is called.

From a recurse routine R1 tvo kinds of calls to other routines are possible. If R1 calls
itself, or if it calls a routine R2 that can initiate a chain of routine calls treatieally
leads to R1 being called again, the call is said to be a reeadl. Otherwisethe call is
said to be nonrecur&.

Wherever a recursve outine R1 mags a recurse all to a routine R2 (a special case is
when R1 and R2 are the same routine), it must be established that an infinite chain of
calls is not being initiatedLet d1 be the value (at the time R1 was called) of the DEPTH
expression declared for RSimilarly, let d2 be the alue (at the time R2 is being called)

of the DEPTH gpression declared for R2. The Verifier will attempt toverdnat d2 is

strictly less than d1. If this condition is peal for every recursve all, then each call in a

chain must perform a successy easier task, so thatvery use of recursion must

eventually terminate.
2.3.2 EXTRAVvariables and PROOF statements

Quite often, it is not easy to demonstrate to tleeifdr that a program evks. One
method of simplifying this task is to demonstrate that a program with some ‘debug code’
added works. For example, in proving that a linked list is correctly linked, it is easier to
prove that a doubly-linkd list is correct than that a singly-linked list is correct, because
in the doubly-linked case, anvariant can be stated that claims that the operations of
inserting and deleting from the list keep the backward and forward links consistent.
Consisteng for a singly-linked list is harder to define.

In a case such as the abpimplementing a doubly-linked list may not be necessary for
the operation of the program, but may be desirable dafisation. EXTRAvariables,

for use in assertions, and PROOF statements, for manipulating EXTRA variables, are
useful in such situations.

2.3.2.1 TheEXTRA variable attribute

<variable name list>: EXTRA <type>;

The EXTRA attriute may be used in VAR declarations, in formal parameter
declarations, and in RECORD definitions. The type of the result of a function may not
have the EXTRA attrilute. Ineach case, the attribute denotes a variable, pararoeter
record field that is to be used for proof purposes.onhat is, EXTRA variables must be
used in such a way that all the EXTRA information can be vecthfrom a program
without affecting its recution. Seéhe section on PROOF statements for more details.

2.3.2.2 TheEXTRA function and procedure atribute

EXTRA FUNCTION <function definition>

EXTRA PROCEDURE <procedure definition>

Functions and procedures designated as EXTRA are solely for use in PROOF statements
and assertionsEvery parameter to an EXTRA routine is implicitly an EXTR&rable,
and eery statement in the routine is implicitly a PROOF statement.

2.3.2.3 RJLE functions

RULE FUNCTION <function definition> BEGIN END;

Functions may be declared as RULE functions for use in proof rules. Such function
definitions hae ro body.

Rule functions are used when an expression is needed in an assettibe beeded
expression cannot be written as a simple PascaipFession. Theise of rule functions
is covered in detail in the chapter on rules.

Rule functions are restricted to results of tyjmsger, char, andboolean. Arguments to
rule functions may be declared ay &alid Pascal-F type.

2.3.2.4 ThePROOF statement

PROOF <statement>

Any executable statementyven a ompound statement, may be turned into PR
statement by preceding the statement with tégvird PROOE Such statements are
ignored by the compilerPROOF statements are used to manipulate EXTRAables
and to control conditionalxecution of other PROOF statements. The reshof all
PROOF statements and EXTRA variables from a program must not changethéaan
of the program. The Verifier checks this restriction by enforcing rules thagnprary
PROOF statement from affectingyamon-PROOF variable.

Any expression containing an EXTRA variable will be referred to as a ‘peqoession’.
The specific restrictions imposed to ymet PROOF statements and expressions from
affecting program>eecution are as follows.

» Proof epressions may not contain calls to non-EXTRA functions the¢ lsde
effects (other than the modification of EXTRA variables).

» Proof expressions can only be used in PROOF statements and as arguments to
routines. Theollowing parameter matching rules must be observed when calling
non-EXTRA routines:

- If a formal value parameter of a routine is an EXTRA variable, the
corresponding argument cannotvlaany g&le efects (other than the
modification of EXTRA variables).

- If a formal VAR parameter of a routine is an EXTRA variable, the
corresponding argument must also be an EXTRA variable.

« If a formal parameter is not an EXTRANable, the correspondinggaimment
must not contain 3nEXTRA variables.

« EXTRA functions and procedures may be called only from withirDBR
statements.

+ Non-EXTRA \ariables may not be modified inyaway by PROOF statements.
This restriction applies to assignment statements, FOR loops, and routine calls.

« The multiprogramming statementsAW, SEND, and INIT are forbidden in
PROOF statements.

Study of the sample engine control program in Chapter 4, which contains a number of
EXTRA variables, will gike sme insight into the use of this language feature.

2.4 Restrictionson Pascal-F programs

The restrictions gen here are imposed to makhe task performed by the Verifier easier
In most cases, the restrictions are in line with good programming prakkiveever, the
concern here is not style buenfiability. A construct is prohibited only when there is
some specific problem in handling that construct.

2.4.1 Restrictionson program structure

« The only legitimate ways to write non-terminating loops for a process is

WHILE true DO BEGIN <loop body> END;
or
REPEAT <loop body> UNTIL true;

This construct may not appear withiryasther control structure. This restriction is
imposed so that theevifier can discriminate between accidental and deliberate
non-terminating loops.

- The iteration variable of a FOR loop may not be modified from within the loop.
Further the value of the iteration variable is not DEFINED after the loop
terminates. Thé/erifier issues an error message whene \ariable that is not
DEFINED is accessed.

2.4.2 Restrictionson variant records
Variant records are not permitted by the verifier.
2.4.3 Restrictionson exception handling

Pascal-F incorporates a powerfutaption handling mechanism similar to that in Ada.
This version of the Verifier operates on the assumption ttwapéon handlers are not
used in normal operation and enforces the following rules.

« The RAISE statement, for exception handling, is considered to be a mechanism for
recovering from hardvare errors only The Verifier will try to pree that no RAISE
statement isver executed.

« Exception handling routines are not examined.
2.4.4 Aliasingand side effects

Aliasing and side effects are awelated phenomena that neakrograms difficult to
understand andevify. Aliasing is the condition in which twnames refer to the same
variable. Aside effect occurs when a function modifies one of its parameters or a global
variable. TheVerifier enforces restrictions that pemt variables from being changed in a
fashion that it cannot detect, or in suchaahion that the resulting value of the modified
variable depends of the order ofauation.

The following program contains an example of aliasing.

PROGRAM pr;

VAR x: 1..100;
PROCEDURE p(VAR a: 1..100);
BEGIN
a =1;
X = 2
ASSERT(a =1);
END;
BEGIN
p(x);
END pr.

Procedure p, viewed in isolation, iald. Thevariable ‘a’is clearly 1 after the body of

the procedure has beexeeuted. Havever, the call ‘p(x)’ causes the variables ‘a’ and ‘X’
to refer to the sameaviable within the procedure ‘p’. The assignment to ‘x’ will
therefore chang®@’ at the same time, and the assertion ‘a = 1’ will not be valid.

Because this sort of thing is far more often a cause of error than a useful feature of the
language, it is prohibited.

When a function is called,AR parameters of the function or variables global to the
function can be modified. The modification of a variable by a function is called a "side
effect” because the modification is usually not the primary purpose of the statement in
which the function is calledGenerally programming with side effects is a dangerous
practice because it is easy to forget that the side effect welljda&e.

This danger is diminished when using theriffer, snce the Vérifier will detect side
effects. Havever, there is a class of sidefefts whose result depends on the order of
evduation in «pressions. Asan example, suppose the functions f and g set their
arguments to 1 and 2, respeely. The value gien to x by he statement:

y =f x)+9)
depends on whether the call to f or gvaleated first. The Verifier allows statements to

have sde effects only if it can determine that the results of the siflectsf are
independent of the order ofatuation in expressions.

The programmer can use the following simple rulesvtidaproblems with aliasing and
side effects.

1. Donot pass the same variable totdfferent VAR parameters of a routine.

2. Donot pass a variable oryoomponent thereof to aAR parameter of a routine
that sets or uses the variable as a global.

3. Within a function, do not modify AR parameters or global variables, perform
WAIT statements, or call a routingported from a monitgunless the function is
called only in simple assignment statements.

4. Donot use functions exported from monitors in expressions; use them only as the
right side of simple assignment statements.
The Verifier detects grviolations of these rules.

2.4.5 Restrictionson multiprogramming

The restrictions required to makpograms with multiple processesrifiable are
somevhat seere. Unlike the other restrictions, which generally prohibit only language
forms of little if ary real use, the multiprogramming restrictions can be difficultvi® li
with. Theobject of these restrictions, as discussed earlier in this chegpterdlow the
Verifier (and the programmer) to generally ignore tha that semi-concurrent operations
are taking place.

The major restriction required to mekrultiprogramming work is to require thatyan

code referencing a static variable must be at the same priority aaridigle; InPascal-

F, this is easy to enforce, because both the priority of both code and static variables is
determined strictly by the priority of the module in whichytlaee enclosed. The rules

are as follows.

» No variable may be imported or exported from a monitor.

« A routine that has been exported from the monitor may not be called before the
monitor has been initialized with an INIT statement.

« A monitor variable may not be passed asfAR\argument to a routine outside the
monitor. (There are no restrictions on arguments passed by value.)

+ A signal may not be a component ofyasther type.

2.5 UsingPascal-F with verification statements

2.5.1 Guidelinedor writing verifiable programs

« Every variable should be of the minimum subrange type required for the range of
vaues neededFor example, if ngaive values are illgd for a variable, its type
should not permit rggtive values. Lilewise, if zero is also prohibited, a pos#i
range should be specified. These declaratiorestge \erifier extra information to
use without etra writing by the programmerThey also can see Pace in the
object program.

+ Where alternaties ae mutually &clusive, use the IF - THEN - ELSE structure in
preference to consecu#i IF gatements so that it is clearly impossible for more
than one alternaté o be eecuted. Properlgtructuring a program holds down the
number of possible paths to be traced dudrge numbers of paths malor long
sessions with the Verifier.

« Use magy short assertions instead of awfebig ones. Do not lump assertions
together with AND operators. The diagnostic messages, which refer vad uradi
assertions, will then be more useful.

« Because mandiagnostic messages are line-number oriented, it helps to put only
one assertion on a source line.

« When writing loops, remember to use aASE gatement to describe what the state
is after each iterationKeeping the loop simple eases the difficult task of writing
loop state assertions.

« The Verifier can mak better deductions about addition and subtraction than it can
about multiplication and dision. It will be quite difficult to verify anything that
depends on more than the mosviohs properties of multiplication andviion.
Multiplication by constants is not a problem. The Verifier can deduce the possible
range of the result of a division, but little else.

+ Avoid scaling fixed-point operations so that truncation occurs. The Verifier can
deduce the possible range of the result of a truncation, but little else.

« When progressing through an array with a loop, use a FOR loop unlessxdarly e
from the loop is planned. The Verifier supplies the proofs that FOR loops
terminate.

« When processes at f#ifent priorities must communicate, one process wikha
call a routine in another module to accesg srared \ariables. Thigestriction is
an incentve o reduce access to shared variables.

« Do not combine data that logically belongs to different priority code in the same
record. Doingso will force the use of access routines unnecessarily.

2.5.2 Obtainingthe most from the Verifier

Having a Verifier around encourageséefensve pogramming’. Good programmers
often write error detection into programidnfortunately when program space or time are
at a premium, it is not possible to put in (or in some cases liea all the traps for
software bugs that should be there. When these traps are writtenifeeble assertions,
the checking can be done during verification, and there izaooition penalty.

In this sense, the most important defense against errorgeissie wse of ENTR
assertions. USENTRY assertions as a documentation aid,xtplan each routine to its
users. Thesassertions (and module INVARIANT assertions) can be used to protect the
routine from its callers, since the Verifier requires that the state of the system is what it is
supposed to be when the routine is called.

Once all these ENTR assertions are verified, theshould be left in the program as a
guide for those who must maintain the progra@ver the long haul, one of the most
important benefits of verification is that it allows the designer of the original program to
leave kehind rules about othe program is supposed tomk. Theserules might be
unknawn, forgotten, or ignored by future maintenance programmers, buyiéteen the
program text, the Verifier will use them.

3. Usingthe verifier

The Verifier runs on Digital Equipment Corporation VAX computers under eBeyk
UNIX or Wollongong Eunice/VMS, or on SUN orkstations. Thischapter contains

instructions for using the verifier.
3.1 Invoking the Verifier

The Verifier is called using the UNIX command line:

pasver [flags] <file>

This command initiatesevification of the Pascal-F program in the named file. The file
name must end impf indicating that the file is Pascal-F source.

If the -dvcg flag is gven, messages will be printed indicating the progress of the
verification, and failed verification conditions will be stored for examination by the user
The -d flag enables all internal debugging output, and should be used when trouble
reports are submitted.

The verifier creates, in the current directayrew drectory for its scratch and history
files. Thisnew directory has the name of the program being verifiadepgt that the
trailing .pf is replaced with d indicating a directory The files in this directory are used
to speed up rerifications when not all the program units of the programehaen
changed. Theules associated with the verification are also stored in this directory
Reverification is omitted for praously-verified program units when the unit is
unchanged and the program unit was successfully verified in theRastifications are
much faster than original verifications.

3.2 Understandingerror messages

The \erifier generates error messages during three phases of processing; syntax checking,
preverification checking, anderification. Sampleappear bel. Detection of an error

during aty phase preents further phases from taking place, so only one of the three kinds
shown belav will appear as output from ggiven verification attempt.

3.2.1 Syntaxerror messages

prog.pf
4. IF x <0 THENx:=0)
*kkk 14 ~
14. 'y expected
Compilation complete - 1 errors detected

*** Pass 2 deleted ***
Pass 1 error abort.

Syntax checking in theevifier is essentially the same as the Pascal-F comfites is to

be expected, since the first passes of both are the sEmeemessages here are of the
same types one would expect from a compikelt messages here indicate errors; there
are no ambiguities.

3.2.2 Pevaeification error messages

Pass 1:
Pass 2:
XXX.pf:
9. procl(globall);
*** Variable "globall" is already used globally by "procl1". ***
1 error.
Pass 2 error abort.

Preverification checking is performed only after the entire program has been syntax
checled, and information about procedures and global objects has been collEgi®d.
phase is primarily a check for inconsistencies between definition and use of ohbjects.
addition, the restrictions necessary to makrification possible are enforced by this
phase, and some common errors which can be caufitiertfy in this phase are
diagnosed. Irhe example abe, there is an aliasing error; thanablegloballis being
passed as ¥AR argument to a procedure which uggsballas a global ariable. This

is of course forbidden, singaocl will not behae & it normally would when a global

and formal variable actually refer to the same location in memory.

One line of the source program is printed with each message to reduce the need to refer to
a printed listing.

3.2.3 \érification error messages

In general, a message from this phase indicates that the possibility of a praisem e
As discussed earliema dhange in the program or the assertions will be required to
eliminate the message.

Each message represents a proof failure along some path between a previous control
point (procedure entryoop invariant, wait, or SATE assertion) and the line displayed.
Where more than one path exists, because of conditional statements, the path being traced
out is described. This is done by stating the choice made at each conditional statement on
the path.

Pass 1:
Pass 2:
Pass 3:

Verifying example6
Could not prove {example6.pf:18} tablel[(j- 1) + 1]=0
(ASSERT assertion)
for path:
{example6.pf:11} Start of "example6”
{example6.pf:11} FOR loop exit

Could not prove {example6.pf:14} allzero(tablel,1,i)
(STATE assertion)
for path:
{example6.pf:11} Start of "example6”
{example6.pf:15} Back to top of FOR loop

Could not prove {example6.pf:14} allzero(tablel,1,i)
(STATE assertion)
for path:
{example6.pf:11} Start of "example6”
{example6.pf:11} Enter FOR loop

Could not prove {example6.pf:13} allzero(tablel,1,i - 1)
(ASSERT assertion)
for path:
{example6.pf:11} Start of "example6”
{example6.pf:15} Back to top of FOR loop

Could not prove {example6.pf:13} allzero(tablel,1,i - 1)
(ASSERT assertion)

for path:
{example6.pf:11} Start of "example6”
{example6.pf:11} Enter FOR loop

5 errors detected

The Verifier shavs which specific assertion it could not yepand for what path through
the program proof was unsuccessfl.listing of the Rscal-F program to which the
above messages refer appears in a later chapter.

3.3 How to proceed when a verification fails

The first attempt at a verification will produce maeror messages. An orderly
approach to dealing with these will be helpful. The messages may be divided/en&d se
classes, as shown belo Each class should be eliminated in ordévhen nev errors
appear in a class pieusly eliminated, the ne errors should be dealt with before
continuing work on the old.

3.3.1 Eliminatethe syntax errors

First, if ary syntax errors or preification error messages are presenty tireist be
eliminated before theerifier will attempt the verification phase. This is straightfmav
and the messages are usually unambiguous.

3.3.2 Eliminateany definedness problems

When verification-phase messages appgarfirst thing to do is to look at all messages
associated with definedness. These look like

{progl.pf: 25} Cannot prove "x" is defined.

Messages li& this indicate that the Verifier could not peothat a \ariable was initialized

at some point where thablue of the variable was used. All errors related to definedness
should be eliminated before working on further problems. Often this will require adding
definedness assertions such as

ENTRY DEFINED(X);

to procedure and function definitions. Adding an ENTe&bndition such as the one
above will usually eliminate the error message for the routine to which it is addéd, b
since it places a merequirement on\ery caller to the routine the nexenification
attempt may well hae rew aror messages concerning the callers of the routidee
works outward until the main program is reached.

The user should beware that the Verifier generates ENYRind EXIT definedness
assertions internally for each procedure for each variable referenced (for ENTRY) and set
(for EXIT) in the procedure but not mentioned by the user in the ENail EXIT
assertions. Thisorvenience feature handles most common casgscdn be werridden

by the user when required by mentioning tregiable in aDEFINED clause. This
mechanism usually does the right thing for sim@lgables. Br more comple variables

not fully initialized for all calls to the routine, the user willveato provide entry
conditions of hiswn. If, for example, at entry to a routine, the art@yis only epected

to be initialized from 1 tx, one would write an entry assertion of the form

ENTRY DEFINED(tab,1,x);

A special case is the assignment before use of a global variabkr @rgument to a
procedure or functionFor example, in

procedure p(var x: integer; y: integer);

BEGIN
X =1;
IFy>0THEN x :=x + 1,
END;

the formal parameterseems to be an input and an output variable, since it is both set and
used withinp. Here, an entry condition of the form

ENTRY DEFINED(x) = DEFINED(X);

is required. This form is essentially meaningless but turrfgiod built-in assumption that
x had to be DEFINED at grcall to p.

3.3.3 Eliminatethe run-time safety errors

Messages referring to array bounds and variable ranges should be addnessAdaie,
it may be necessary to add ENTRnd EXIT assertions to do this. It may also be
necessary to add terms toAFE invaiants.

3.3.4 EliminateENTRY errors

When an error message associated with an BENddhdition appears, the message will
specify which call to the routine is causing the problem. First check the ENTR
statement to makaure that the requirement is what you had in mind; if so, the caller may
need work.

3.3.5 EliminateINVARIANT and EXIT errors
These refer to the state at the end of a routine.
3.3.6 Work on loop invariants

This is the really hard job inevification. Frtunately when one is only trying to pve
absence of fatal run-time errors, it is not too toughfew smple cases or most
situations, of which the following is typical.

WHILE parens > 0 DO BEGIN
printchar(’)");
parens := parens - 1;
STATE(DEFINED(parens));
END;

The irvariant can go anywhere in the loop but usually placing it at the end of the loop is
more conenient, as in the example balo

FORi:=1TO 100 DO BEGIN

tabli] := 0;
STATE(DEFINED(tab,1,));
END;

When initializing an array of records, it is usually desirable to write a procedure which
initializes one record in the array througha argument, and use that procedure in the
initialization loop. The record initializing procedure shouldéas its exit condition that

the entirevar argument is DEFINED.

3.3.7 Findall hard-to-pr ove asertions

Examine the remaining error messages. Look at each one and ask yourself “can you
convince yourself informally that the assertion is true for that path at that point, purely by
tracing backward along the indicated path and looking at the statements.thére6t,

the program or the assertions neeatky If so, defer wrking on that assertion until all

the assertions that needrk have keen dealt with. Once all the easy assertions are out of
the way it is time to deal with the hard ones.

The Verifier can pree, without assistance, assertions that are true because of properties
of addition, subtraction, multiplication by explicit constants, the relational operators, the
Boolean conneates, and storing into and referencing arrays and records. This takes care
of about 90-95% of allerification conditions.Beyond this point, the Verifier needs help.

Help is provided by adding ASSERstatements to the program and by addialgs to

the rule databaséWhenaer an ASSER' statement is placed in a Pascal-F program, the
Verifier will try to prove that it holds. For any datement after the ASSHRstatement in

the program, the assertion will be assumed true. Hard assertions should be preceded by
an easy assertion or assertions (ones that the Verifier ceg) proich imply the hard
assertion by some formal argument the Verifier daggt knav about. Thisargument

should be something that depends only on the ASSfRement and the follang hard
assertion. Itwill then be necessary to w® that argument as a rulé?roving rules is

done with the Rule Builder as a separate job; wherkiwg on the program, all the hard
assertions should be found and preceded with an easy assertion, until the entire
verification is a succesxeept for the errors from hard assertion preceded by easy ones.
Then it is time to go to the Rule Buildend probably to the resident Rule Buildepert.

An example is indicated.

FORi:=1TO 100 DO BEGIN
tablel][i] := 0;
assert(tablel[i] = 0);
assert(allzero(tablel,1,i-1));
STATE(allzero(tablel,1,i));
END;

In this example, the S\TE assertion is hard to pve. But if we add the tw ASSERT

statements, both of which the Verifier canyeravthout much trouble, we could certainly
argue that this makes it obvious that theABE assertion is soundlf we had a rule that
said

ali] = 0 and allzero(a,1,i-1)
implies
allzero(a,1,i)

the Verifier would apply the rule and peothe assertion. So we wdknow exactly what
rule we need, and can pit with the Rule Builder.

3.3.8 Completingthe debugging

With this sequential approach to debugging a verification, the rather forbidding prospect
of eliminating all those error messages is somewhat less intimidating. Note, though, that
no sound statement can be made about the progranewsrierror message has been
eliminated. Ondalse assertion can causeyamumber of other problems to be hidden.

As an example, writing

ENTRY false;

will eliminate all error messages foryaroutine, but will cause gncaller of the routine
to fail. (Itis an interesting property of the Verifier that unreachable code needarid).w
The same problem can be induced by accident; for example

ENTRY (x <0) and (x > 100);

is essentially equélent to the previous statement, since no number can satisfy both
constraints. Thusuntil all error messages & been eliminated, the verification is
unsuccessful.

4. TheSyntax of Pascal-F

This chapter describes the syntax as&al-Fincluding the verification statementsines
marked with asterisks indicate productions altered to include the additional syntax
necessary for erification. Thesyntax here is a superset of thatepiin the Rascal-F
Language Reference Manual, and igegiin the notation used in that manual.

4.1 Production Rules

<program> ::= <program heading> <outer block> .
<program heading> ::= PROGRAM <identifier> ;

<outer block> ::= <label declaration part>
<constant definition part>
<type definition part>
<value declaration part>
<variable declaration part>
<global routine declarations>
<statement part>

<label declaration part> ::=
<empty> | LABEL <label> {, <label>};

<entry declaration part> ::= <empty> |
ENTRY <expression> {; <expression>} ;

<exit declaration part> ::= <empty> |
EXIT <expression> {; <expression>} ;

<effect declaration part> ::= <empty> |
EFFECT <expression> {; <expression>};

<invariant declaration part> ::= <empty> |
INVARIANT <expression> {; <expression>};

<depth declaration part> ::=
<empty> | DEPTH <expression> ;

<constant definition part> ::= <empty> | CONST
<constant definition> {; <constant definition>} ;

<type definition part> ::= <empty> |
TYPE <type definition> {; <type definition>} ;

<variable declaration part> ::= <empty> |
VAR <variable declaration>
{; <variable declaration>} ;

<value declaration part> ::= <empty> |
VALUE <value declaration>
{; <value declaration>} ;

<global routine declarations> ::= { <global routine> ; }

<routine declaration part> ::= { <routine declaration> ;}

<statement part> ::= BEGIN <statement> {; <statement>}
{; <exception handler>} END

<global routine> ::= <monitor declaration> |
<routine declaration>

<routine declaration> ::= <module declaration> |
<function declaration> |
<procedure declaration>

<module declaration> ::=
<module heading> <block>

<module heading> ::=
MODULE <identifier>;
<export list> <import list>

<export list> ::= EXPORS <identifier>{, <identifier>} ;
| <empty>

<import list> ::= IMPOR'S <identifier>{, <identifier>} ;
| <empty>

<monitor declaration> ::=
<monitor heading> <block>

<monitor heading> ::= MONITOR <identifier> PRIORITY
<priority level> ; <export list> <import list>

<priority level> ::= <constant>
<procedure declaration> ::= <procedure heading> <block>

<procedure heading> ::= <possibly extra>ORFEDURE
<identifier> <parameters> ;

<function declaration> ::= <function heading> <block>

<function heading> ::= <possibly extra> FUNCTION <identifier>
<parameters> : <result type> ;

<parameters> ;.= (<formal parameter section>
{; <formal parameter section>}) | <empty>

<formal parameter section> ::= <parameter group> |
VAR <parameter group>

<parameter group> ::= <identifier> {, <identifier>} :
<possibly extra> <type identifier>

<block> ::= <label declaration part>
<entry declaration part>
<exit declaration part>
<effect declaration part>
<invariant declaration part>
<depth declaration part>
<constant definition part>
<type definition part>
<value declaration part>
<variable declaration part>
<routine declaration part>
<statement part>

<value declaration> ::= <identifier> =
<type identifier> (<value list>)

<value list> ::= <value> { , <value> }
<value> ::= <constant> | (<value list>)
<compound statement> ::= BEGIN <statement> {; <statement>} END

<statement> ::= <unlabeled statement> |
<label> : <unlabeled statement> |
PROOF <unlabeled statement> |
<verification statement>

<verification statement> ::= <assert statement> |
<summary statement>

<unlabeled statement> ::= <simple statement> |
<structured statement>

<simple statement> ::= <assignment statement> |
<procedure statement> |
<init statement> |
<send statement> |
<wait statement> |
<raise statement> |
<empty statement>

* ok X ok ok

* ok k%

*

<structured statement> ::= <compound statement> |
<conditional statement> |
<repetitve datement> |
<with statement>

<exception handler> ::=
WHEN <exception spec> DO <statement>

<exception spec> ::= <exception name> {, <exception name>} |
OTHERS

<exception name> ::= <identifier>
<constant definition> ::= <identifier> = <constant>
<constant> ::= <unsigned constant> | <sign> <unsigned constant>
<type definition> ::= <identifier> = <type>
<type> ::= <simple type> | <structured type>
<simple type> ::= <ordinal type> |

<fixed point type> |

<signal type>
<ordinal type> ::= <enumerated type> |

<subrange type> |

<type identifier> |
<enumerated type> ::= (<identifier> {, <identifier>})
<subrange type> ::= <constant> .. <constant>

<type identifier> ::= <identifier>

<fixed point type> ::= FIXED <constant> .. <constant>
PRECISION <constant>

<signal type> ::= SIGNAL <hardware mapping>

<structured type> ::= <unpacked structured type> |
PACKED <unpacked structured type> |
DEVICE <hardware mapping> <field list> END

<hardware mapping> ::= [<address} kempty>

<address> ::= <expression>

<unpacked structured type> ::= <array type> |
<record type> |
<set type>

<array type> ::= ARRX [<index type> {, <inde type>}] OF
<component type>

<index type> ::= <ordinal type>

<component type> ::= <type>

<record type> ::= RECORD <field list> END
<field list> ::= <fixed part> |
<fixed part> ; <variant part> |
<variant part>

<fixed part> ::= <record section> {, <record section>}

<record section> ::= <field identifier> {, <field identifier>}
: <possibly extra> <type>| <empty>

<variant part> ::= CASE <tag field> <possibkt@a>
<type identifier> OF <variant> {; «ariant>}

<tag field> ::= <identifier> :

<variant> ::= <case label list> : (<field list>) | <empty>
<set type> ::= SET OF <base type>

<base type> ::= <simple type>

<variable declaration> ::= <identifier> {, <identifier>} :
<possibly extra> <type>

<possibly extra> ::= <empty> | EXTRA
<result type> ::= <type identifier>

<assignment statement> ::= <variable> := <expression> |
<function identifier> := <expression>

<variable> ::= <entire variable> {<component part>}

<component part> ::= [<expression> {, <expression>}] |
. <field identifier>

<entire variable> ::= <variable identifier> | <field identifier>
<variable identifier> ::= <identifier>

<field identifier> ::= <identifier>

<expression> ::= <relation>

<relation> ::= <simple expression> <relation part>

<relation part> ::= <empty> | <relational operator> <relation>

<relational operator> ::= = | <> | '< | '<= | >= |
>|IN| IMPLIES

<simple expression> ::= <unsigned simple expression> |
<sign> <unsigned simple expression>

<sign> =+ | -
<unsigned simple expression> ::= <term> <addend>

<addend> ::= <empty> |
<adding operator> <unsigned simple expression>

<adding operator>::=+ | - | OR

<term> ::= <factor> <multiplier part>

<multiplier part> ::= <empty> | <multiplying operator> <term>
<multiplying operator> ::=* | /| DIV | MOD | AND

<factor> ::= <variable> | <unsigned constant> | (<expression>) |
<function designator> | <set> | N&factor>

<unsigned constant> ::= <unsigned number> | <string> |
<constant identifier>

<constant identifier> ::= <identifier>

<function designator> ::= <function identifier>
<actual parameter part>

<function identifier> ::= <identifier>

<set> ::= [<element list>]

<element list> ::= <element> {, <element>} | <empty>
<element> ::= <expression> <range part>

<range part> ::= <empty> | .. <expression>

<procedure statement> ::= <procedure identifier>
<actual parameter part>

<procedure identifier> ::= <identifier>

<actual parameter part> ::= <empty¥ ¢actual parameter>
{, <actual parameter>})

<actual parameter> ::= <expression>

<label> ::= <constant>

<empty statement> ::= <empty>

<conditional statement> ::= <if statement> | <case statement>

<if statement> ::= IF <expression> THEN <statement> <else part>
<else part> ::= <empty> | ELSE <statement>

<case statement> ::= CASE <expression> OF <case list element>
{; <case list element>} END

<case list element> ::= <case label list> : <statement> |
<empty>

<case label list> ::= <case label> {, <case label> }
<case label> ::= <constant>
<repetitve gatement> ::= <while statement> |

<repeat statement> |
<for statement>

<while statement> ::= WHILE <expression> DO <loop body>

<repeat statement> ::= REPEAloop body>
UNTIL <expression>

<for statement> ::= FOR <control variable> := <for list> DO
<loop body>

<for list> ::= <initial value> <direction> <final value>
<direction> ::= O | DOWNTO

<control variable> ::= <identifier>

<initial value> ::= <expression>

<final value> ::= <expression>

<loop body> ::= BEGIN {<statement> ;} <state statement>
<optional measure statement> {; <statement>} END

<optional measure statement> ::= ; <measure statement> | <empty>
<with statement> ::= WITH <record variable list> DO <statement>
<record variable list> ::= <record variable> {, <record variable>}
<record variable> ::= <identifier>

<init statement> ::= INIT <monitor identifier>

<monitor identifier> ::= <identifier>

<raise statement> ::= RAISE <exception name>

<send statement> ::= SEND <signal name>

<wait statement> ::= WAIT <signal name>

<assert statement> ::= ASSER<expression> {, <expression>})
<summary statement> ::= SUMMAR <expression> {, <expression>})
<state statement> ::= 8TE (<expression> {, <expression>})

<measure statement> ::= MEASURE (<expression>)

<signal name> ::= <identifier>

5. Examples

The examples in this chapter are designed to aid the user in learning to useftee V
For the first example, a square root calculatioryification conditions hse hbeen
generated by hand and informal proofgegi Thisexample is intended to g the user
some insight into he the Verifier examines programs.

The second example, a set of routines for managing a ciraifar, Ishows the use of the
verifier to verify only absence of run-time errors, and the maintenance of a simple
invariant. Itis useful to note he few asertions were required. This example has been
passed by the Verifier in the form shown.

The third example, a very simple-minded engine control program, is intended to illustrate
the use of assertions and proof variables in constructiegifiable Pascal-F progranit

also illustrates means of programming within the restrictions required for a reliable and
verifiable multi-process program. This example also has been passed by the Verifier.

5.1 Asimple example worked by hand

In this example the reader is &k‘'behind the scenes’, so to speak, to seegrogram
verification can be performed manuallyhe function shown here is a fixed point square
root routine. In addition to the normal proof of runtime-error-free operation, a full proof
of correctness is attempted, which is to say that we actually try ve frat the function
computes square root to within some explicit error bound. This example is rather more
complex mathematically than most parts of control programs, and as will be seen the
verification conditions generated are sometimefcdit mathematicallyespecially when

one bears in mind that the rules of fixed-point arithmetic are being interpreted strictly.

Figure 1L Function before addition of verification statements

(*
Square root by bisection
This technique has the useful property that it
it will work for any monotonic function.

*)

FUNCTION sqrt(s: FIXED 2.0 .. 100.0 PRECISION 0.1):
FIXED 1.0 .. 10.0 PRECISION 0.1;

VAR
X, lowbound, highbound: FIXED 1.0 .. 100.0 PRECISION 0.1;
BEGIN
X =S ; (* setinitial try *)
lowbound := 1.0; (* lowest possible square root *)
highbound := x; (* highest possible *)

(* stop when interval tiny *)
WHILE highbound - lowbound > 0.1 DO
BEGIN (* choose new trial value *)
X := (highbound + lowbound) / 2;
IF x*x >s THEN BEGIN (* if x is too big *)

highbound := x; (* then answer must be below x *)
END ELSE BEGIN (* if x is too small *)
lowbound := x; (* then answer must be above x *)
END;
END;
sqrt ;= X; (* return answer *)
END; (* ofsqrt?*)

The first step in documenting the function ferification is to define what the procedure
is supposed to do. This is simple in this case, because square root is easy toAdefine.
exit assertion of the form

EXIT abs(x * x - s) < 0.2;
describes the desired result.

The next step is to figure outwdo prove that the function will produce the desired
result. V& can prave tis by noting the following facts about the situation thaste
when the loop exits.

+ X is between lowbound and highbound
+ sis ketween lowbound squared and highbound squared
« lowbound is less than or equal to highbound

+ lowbound is within 0.1 of highbound

All these conditions except the last hold feery iteration of the loop, and thus form part

of the loop imvariant. Theseinsights must be provided to theenfier in a SATE
statement.

Proving that the loop terminates requires that we find some measure that decreases as the
loop iterates. Since the algorithm operates by closing the aftbetween highbound

and lowbound, the difference between these isva sitable value to appear in the
MEASURE statement.

Figure 2 Function after addition of verification statements

(*
Square root by bisection
This technique has the useful property that it
it will work for any monotonic function.

*)

FUNCTION sqrt(s: FIXED 2.0 .. 100.0 PRECISION 0.1):
FIXED 1.0 .. 10.0 PRECISION 0.1;
EXIT abs(sqrt*sqgrt - s) <= 0.2; (* definition of result *)

VAR
X, lowbound, highbound: FIXED 1.0 .. 100.0 PRECISION 0.1;
BEGIN
X =S ; (* setinitial try *)
lowbound := 1.0; (* lowest possible square root *)
highbound := x; (* highest possible *)

(* stop when interval tiny *)
WHILE highbound - lowbound > 0.1 DO
BEGIN
MEASURE highbound - lowbound;
STATE lowbound*lowbound <=s,
highbound*highbound >= s,
highbound >= lowbound,
X <= highbound,
X >= | owbound;
(* choose new trial value *)
X := (highbound + lowbound) / 2;
IF x*x >s THEN BEGIN (* if x is too big *)

highbound := x; (* then answer must be below x *)
END ELSE BEGIN (* if x is too small *)
lowbound := x; (* then answer must be above x *)
END;
END;
sqrt ;= X; (* return answer *)
END; (* ofsqrt?*)

We @an nav attempt actual erification. Thefirst step in verification is to trace out all
possible paths of control fho Paths bgin and end at the boundaries of procedures and at
STATE datements. Therare thus six paths in this function.

1. Thepath starting at the beginning of the function, treating the WHILE condition
as true, and ending at the/ AAE gatement.

Thepath starting at the beginning of the function, treating the WHILE condition
as false, and ending at the end of the procedure.

Thepath starting at the &TE gatement, treating the IF condition as true, going
around the loop, treating the WHILE condition as true, and ending at KIeEST
statement.

Thepath starting at the STE gatement, treating the IF condition as false, going
around the loop, treating the WHILE condition as true, and ending at KIe&EST
statement.

Thepath starting at the &TE gatement, treating the IF condition as true, going
around the loop, treating the WHILE condition atsé, and ending at the end of
the procedure.

Thepath starting at the 3TE gatement, treating the IF condition as false, going
around the loop, treating the WHILE condition atsé, and ending at the end of
the procedure.

After working out the control fle in the program, the next step is to locate all the
assertions which must benfied for the path and generate a verification condition for
each. Assertionsome not only from the usereXIT and STRTE gatements but from
internal requirements needed tovarg run-time errors.

For the first path, it is necessary to verify all the following conditions.

1. Arange error does not occur at ‘x := s’. (No problem, the type of x has less

restrictve bounds than that of s.)

A range error does not occur at ‘lowbound := 1.0’. (No problem, the constant
value is in the correct range.)

A range error does not occur at ‘highbound :=®lo problem, the types match.)

Thevaue in the MEASURE statement is nongaive. (Since lowbound is 1.0,
and highbound is constrained by its type to be 2.0 or grehigrequirement is
met.) Notethat we are only concerned with the first time through the loop on this
path.

TheSTATE assertion ‘lowbound * lowbound <= s’ holds. (Since 1.0 * 1.0 <= 2.0,
this holds.)

The STATE assertion ‘highbound * highbound >= s’ holds. (Since on this path
highbound = x, we need only p®tat x > 2.0 IMPLIES x*x > X.)

TheSTATE assertion ‘highbound >=lgbound’ holds. (We know that highbound
is not less than than 2.0 and that lowbound is 1.0, so this is no problem.)

The STATE assertion ‘x <= highbound’ holds. (x is equal to highbound; no
problem.)

The STATE assertion ‘x >= lowbound’ holds(We know that lowbound is 1.0,
and that x is 2.0 or greajeo this is no problem.)

Proceeding on to path two, the path on which the WHILE statement bodyes ne

executed, we find an interesting phenomenon. The loop is entered under tieniplio
conditions:

lowbound = 1.0
highbound >= 2.0

For path two to be &ecuted, the condition for exiting the loop,

NOT(highbound - lowbound > 0.1)

would have 0 be tue at initial entrance to the loop. Since these three conditions cannot
all be true simultaneouslyhis path is neer executed, and the loop body iswalys
executed at least once when the function is called. All verification conditions for this
path are true since the requirement for entryaisef Notethat there is no dead code;

there merely is no case where a specific set of decisions are taken when passing through
several conditional statementdt is not unusual for this to happen and this presents no
problems.

We row reach the first of the twinteresting paths, the one around the loop taking the
true branch at the IF statement. This path starts and ends atXhE Sdtement.

The STATE gatement defines the loopvaniant. We havealready proed (for path one)
that the loop iwariant is true at entry to the loopMe nust nav prove that if the loop
invariant is true for a gen iteration of the loop, it will still be true at the end of that
iteration. Byproving this, we prage by induction that the loop wariant is true for eery
iteration of the loop.

This path is compbkeenough that each verification condition is written out formally as a
proposition to be praen.

1. Thefirst verification condition is produced by trying to yeothat the inariant
condition

lowbound * lowbound <= x

holds. Theverification condition generated is

lowbound >= 1.0 AND lowbound <= 100.0

AND highbound >= 1.0 AND highbound <= 100.0

AND s >= 2.0 AND s <= 100.0

AND lowbound * lowbound <='s

AND highbound * highbound >=s

AND highbound >= lowbound

AND x <= highbound

AND x >= lowbound

AND xNEW = (highbound + lowbound) / 2

AND XNEW * xXNEW > s

AND highboundNEW = xNEW

AND highboundNEW - lowbound > 0.1
IMPLIES

lowbound * lowbound <= s;

This simplifies to

lowbound * lowbound <='s
IMPLIES
lowbound * lowbound <= s;

which is obviously true.This is a trivial case, because lowbound did not change
on this path.

lowbound >= 1.0 AND lowbound <= 100.0

AND highbound >= 1.0 AND highbound <= 100.0

AND s >= 2.0 AND s <=100.0

AND lowbound * lowbound <=s

AND highbound * highbound >='s

AND highbound >= lowbound

AND x <= highbound

AND x >= lowbound

AND xNEW = (highbound + lowbound) / 2

AND XNEW * XNEW > s

AND highboundNEW = xNEW

AND highboundNEW - lowbound > 0.1
IMPLIES

highboundNEW*highboundNEW >=s;

which simplifies to

XNEW * XNEW > s
IMPLIES
XNEW * XNEW >= s

which is true.

lowbound >= 1.0 AND lowbound <= 100.0

AND highbound >= 1.0 AND highbound <= 100.0

AND s >= 2.0 AND s <= 100.0

AND lowbound * lowbound <=s

AND highbound * highbound >='s

AND highbound >= lowbound

AND x <= highbound

AND x >= lowbound

AND xNEW = (highbound + lowbound) / 2

AND XNEW * xXNEW > s

AND highboundNEW = xNEW

AND highboundNEW - lowbound > 0.1
IMPLIES

highboundNEW >= lowbound;

which simplifies to

lowbound >= 1.0
AND highbound >=1.0
AND highbound >= lowbound
IMPLIES
(highbound + lowbound) / 2 >= lowbound

which is true.

lowbound >= 1.0 AND lowbound <= 100.0

AND highbound >= 1.0 AND highbound <= 100.0

AND s >= 2.0 AND s <= 100.0

AND lowbound * lowbound <=s

AND highbound * highbound >='s

AND highbound >= lowbound

AND x <= highbound

AND x >= lowbound

AND xNEW = (highbound + lowbound) / 2

AND XNEW * xXNEW > s

AND highboundNEW = xNEW

AND highboundNEW - lowbound > 0.1
IMPLIES

XNEW <= highboundNEW;

which transitivity of equality shows to be true.

5. Thepossibility that @erflow might occur in the statement

X := (highbound + lowbound) / 2;
must be considered. The verification condition

lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND s >= 2.0 AND s <= 100.0
AND lowbound * lowbound <=s
AND highbound * highbound >='s
AND highbound >= lowbound
IMPLIES
(highbound + lowbound) / 2 >= 1.0
AND (highbound + lowbound) / 2 <= 100.0

describes this, and this can be whoto alvays hold based solely on the
restrictions on lowbound and highbound.

6. Itis necessary to pve tat the loop terminates. This is done bywing that the
vaue in the MEASURE statement decreases with each loop iteration \ait ne
becomes rg#tive.

lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND s >= 2.0 AND s <=100.0
AND lowbound * lowbound <=s
AND highbound * highbound >='s
AND highbound >= lowbound
AND x <= highbound
AND x >= lowbound
AND xNEW = (highbound + lowbound) / 2
AND XNEW * XNEW > s
AND highboundNEW = xNEW
AND highboundNEW - lowbound > 0.1
IMPLIES
(highboundNEW - lowbound) < (highbound - lowbound)
AND (highboundNEW - lowbound >= 0);

This immediately reduces to

lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND highbound >= lowbound
AND ((highbound + lowbound) / 2) - lowbound > 0.1
IMPLIES
AND (highbound + lowbound) / 2 < highbound;
(highbound + lowbound) / 2 >= lowbound;

which is true.

The next path to be considered is the same as the owe, abcept that the IF branch
takes the ‘false’ pathWe will spare the reader the details of this path, which are similar
to those shown ale.

The last tvo paths start at the STE gatement and go to the top of the loop, but exit at
the WHILE statement rather than continuing in the loop, finally ending at the EXIT
assertion. Lets first consider the path through the ‘true’ branch.

1. Thereplacement

sgrt ;= X; (* return answer *)

implies a restriction on x that x is less than or equal to 10.0, because the type of
the function ‘sqrt’ is FIXED 1.0 .. 10.0, while the type of ‘X’ is FIXED 1.0 ..
100.0, leading to the verification condition

lowbound >= 1.0 AND lowbound <= 100.0

AND highbound >= 1.0 AND highbound <= 100.0

AND s >= 2.0 AND s <= 100.0

AND lowbound * lowbound <=s

AND highbound * highbound >='s

AND highbound >= lowbound

AND x <= highbound

AND x >= lowbound

AND xNEW = (highbound + lowbound) / 2

AND XNEW * xXNEW > s

AND highboundNEW = xNEW

AND highboundNEW - lowbound <= 0.1
IMPLIES

XNEW <= 10.0;

Performing obvious simplifications, we obtain

lowbound <= 100.0
AND highbound <= 100.0
AND lowbound * lowbound <= 100.0
AND highbound * highbound >= 2.0
AND highbound >= lowbound
AND xNEW = (highbound + lowbound) / 2
AND xXNEW - lowbound <= 0.1
IMPLIES
XNEW <= 10.0;

which we fail to pree.

Let us see wh A counterexample to the amvaeification condition is

lowbound = 10.0
highbound = 10.2
XNEW = 10.1

which would causewerflow. There are tw possibilities to be considered; either
the Verifier does not lva enough correct information to constrain the value more,
because of an ill-chosen SIE assertion, or the program contains a bug.

In this case, the program indeed contains a bug; an attempettheéasguare root
of 100.0 will compute aatue of 10.1, which is within the desired error tolerance
for the square root routineubnot within the range of appred values for the
function. Thisis a good example of the sort of bug thexifer is good at finding
but which might be werlooked without verification.

Continuingonward, our last verification condition for this path is that the square
root function gets the right answer

lowbound >= 1.0 AND lowbound <= 100.0

AND highbound >= 1.0 AND highbound <= 100.0

AND s >= 2.0 AND s <=100.0

AND lowbound * lowbound <=s

AND highbound * highbound >='s

AND highbound >= lowbound

AND x <= highbound

AND x >= lowbound

AND xXNEW = (highbound + lowbound) / 2

AND XNEW * XNEW > s

AND highboundNEW = xNEW

AND highboundNEW - lowbound <= 0.1
IMPLIES

abs(xXNEW * xNEW - s) <= 0.2;

Opening up the definition of ‘abs’\gs us

lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND s >= 2.0 AND s <= 100.0
AND lowbound * lowbound <=s
AND highbound * highbound >=s
AND highbound >= lowbound
AND x <= highbound
AND x >= lowbound
AND xNEW = (highbound + lowbound) / 2
AND XNEW * xXNEW > s
AND highboundNEW = xNEW
AND highboundNEW - lowbound <= 0.1
IMPLIES

(XNEW * XNEW > s) AND (XNEW * xXNEW - s) < 0.2))

OR ((XNEW * XNEW < s) AND (s - XNEW * xNEW) < 0.2));

which simplifies to

lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND s >= 2.0 AND s <=100.0
AND lowbound * lowbound <='s
AND highbound * highbound >='s
AND highbound >= lowbound
AND xNEW = (highbound + lowbound) / 2
AND XNEW * XNEW > s
AND XNEW - lowbound <= 0.1
IMPLIES
XNEW * XNEW - s < 0.2;

which if augmented by the previously ped information that xXNEW is greater
than or equal to lowbound, can, with some difficyttpved true.

This completes the analysis of theample. Oneclear bug was found, as mentioned
above; an dtempt to compute the square root of 100 will result in an out-of-range result.
This sort of boundary conditionuy is common, and is one of the things which the
Verifier is good at finding.

5.2 Circular buffering routines

This simple example shows a common program component; a set of cingfiiéaimi
routines. Herehe \érifier has been used to shabsence of run-time errors and the
maintenance of a “sanity wariant” which if violated would indicate that theanous
pointers were out of synchronism.

The main program here is a dummy one; the object here is to verify the subroutines.

program circle;

{
}

monitor circlebuf priority 5;
exports bufget, bufput;
const bufsize = 20;

Circular Buffering Module Version 1.9 of 1/5/83

type bufindex = 1..20; { position in buffer }
bufarray = array [bufindex] of char;
buffer = record { b uffer structure }
bufin: bufindex; { n ext position to insert }
bufout: bufindex; { n ext position to read }
bufcount: 0..bufsize; { c hars in buffer }
buf: bufarray; { t he buffer itself }
end,;
var b: buffer; { t he buffer}
invariant defined(b); { t he buffer is always defined }
{ b uffer sanity }

((b.bufout + b.bufcount) = b.bufin)
or
((b.bufout + b.bufcount - bufsize) = b.bufin);

{
bufput -- put in buffer
}
function bufput(ch: char) { c hartoinsert}
: b oolean; { returns true if insert OK }
begin
if b.bufcount < bufsize then begin { if b uffer not full }
b.bufcount := b.bufcount + 1; { i ncrement buffer count }
b.buf[b.bufin] := ch; { s tore char in buffer }
assert(defined(b.buf,1,bufsize));{ array still defined }
if b.bufin = bufsize then {if at m ax}
b.bufin ;=1 { r esetto start }
else b.bufin := b.bufin + 1; { o therwise increment }
bufput := true; { s uccess}
end else begin {if £ ull}
bufput := false; { 1 nsertfails }
end,

end {bufput};

{

bufget -- get from buffer
}
function bufget(var ch: char)
: b oolean;
exit return implies defined(ch);
begin
if b.bufcount > 0 then begin
b.bufcount := b.bufcount - 1;
assert(defined(b));
ch := b.buf[b.bufout];
if b.bufout = bufsize then
b.bufout :=1
else b.bufout := b.bufout + 1,
bufget := true;
end else bufget := false;
end {bufget};
{
buffer initialization block
}
var i: bufindex;
begin
fori:=1to 20 do begin
b.buffi] :="";
assert(defined(b.buf,1,i-1));
state(defined(i),
defined(b.buf,1,i));
end,;
b.bufout :=1;
b.bufin := 1,

b.bufcount := 0;
end {circlebuf};
var stat: boolean;
ch: char;
begin {main}
init circlebuf;
stat := bufput(’x’);
stat := bufget(ch);
if stat then begin
end,;
end.

{ c har returned }
true if successful }
{ c har only if not empty }

{ if b uffer not empty }

{ d ecrement buffer count }
still all defined }

{ g et char from buffer }

{if at m ax}

{ r esetto start }

{ o therwise increment }

{ s uccess}

{ f ailsif empty }

{ c lear to spaces }

still defined up to i-1 }

{ startat 1}
{endatl}
{1 engthO}

{ s tatus from routines above }
{ working char }

{ getachar}
{ if we g otachar}

The Verifier can verify these routines in about four minutes. This verification does
require rules, but all the rules needed are in the Rule Buildaridard database.

Verifying circle
No errors detected

Verifying circlebuf
No errors detected

Verifying circlebuf-bufget
No errors detected

Verifying circlebuf-bufput
No errors detected

5.3 Anexample in the form of an engine control program

The “engine control’ program here is not related to yameal engine or control
electronics. Itis an example of a way in which a real-time program might be written.
The program as written primarily to illustrate the kinds of things one might attempt to
prove éout a program of this typdt also demonstrates that it is natedy difficult to
program under the restriction that monitors may not import or expoiables. The
program was written tw years before the \erifier was operational, and appeared in a
preliminary version of this manual.

This program has been verified by theriffer. Quite a number of bugs were found in the
program during the process. Most of therkvin getting the Verifier to accept the
program was in dise@ring the irvariants needed for thexcluder module. Mostof the

bugs found were related to proper handlingailiure of the clock or crankshaft interrupts.
Note that the ivariants proided to check proper engine operationvrimld even if the
crankshaft interrupt or clock interruptvee comes. Br example, there is code to fire the
spark (belatedly) if the mé crankshaft interrupt comes in before the spark has been fired
under normal timing rules. This code was required before the constraint of one-spark-
per-crank-pulse could be met.

program simpleengine; * version
(*

sample engine control program

This is a sample program written to illustrate some features of
Pascal-F as extended for verification purposes. The program has a
rather simple-minded model of the engine, and controls only the
fuel pump and spark. The only inputs available to the program
are the clock, and the shaft position pulse.

This program does not interface with any existing engine hardware.

John Nagle

Ford Aerospace and

1.50 of 1/14/83

Communications Corporation
Western Development Labs

*)

const
maxticks = 1000; (* biggest time value *)
maxrpm = 8000; (* largest possible RPM *)
ms = 2; (* unit of time is 500 us *)
cylinders = 8; (* size of engine *)
maxsparkretard = 30; (* max retard angle *)
mustrecalc = 10; (* 10 rpm change forces recalc *)
stalllim = 200*ms; (* after 0.2 secs, stop fuel *)
interval = 2000; (* interval of spark table *)
tablemax = 15; (* max entry in table *)

(* retard at 1000 rpm int*)
type

rom =0 .. maxrpm; (* revolutions per minute *)
angle = 0..45; (* for shaft angles *)

ticks = 0..maxticks; (* for time measurement *)
delay = 0..stalllim; (* spark delay type *)
tableindex = 0..5; (* index to retard table *)
tableentry = 0..tablemax; (* entry in table *)

tabletype = array [tableindex] of tableentry; (* a retard table *)
(* spark retard table *)

(* i.e at 2000 rpm, 12 degree retard*)

value sparktable = tabletype(15,12,8,6,2,0);

(*
")

rule function nonincreasing(a: tabletype; i,j: tableindex): boolean;

Rule function used in proofs concerning spark retard table

begin end;
(*
Monitor for interlocking - within the monitor processing is
sequential.
There is no process associated with this monitor; it exists only
to protect the shared variables. The processes clockprocess and
shaftprocess use the procedures exported from this monitor.
*)
monitor excluder priority 2;
exports
doclocktick, (* called from clock monitor *)
doshaftpulse; (* called from crankshaft monitor *)
imports

nonincreasing,

rpm, angle, ticks,

tableindex, tableentry, tabletype, tablemax,
delay,

sparktable,

mustrecalc,

maxticks,

maxrpm,

interval,

stalllim,

excluder,

ms, cylinders, maxsparkretard;

(*

hardware interfaces

*)

type engineinterface = device
fuelpumpswitch: boolean; (* fuel pump on-off *)
firespark: boolean; (* store into here to fire *)
end,

(* max spark delay *)
const minrps = 1; (* minimum revs/second *)
(* largest time per rev *)
maxtimeperrev = (ms * 1000) div minrps;
(* worst-case spark delay *)
maxsparkdelay = stalllim; (* worst-case spark delay *)

var
(*
monitor global variables
*)
engine: engineinterface[01000]; (* engine hardware i/o *)
sparkdelay: 0..maxsparkdelay; (* between pulse and spark*)

(* angle: pulse to spark *)
enginespeed: rpm; (* actual engine speed *)
fuelpumpon: boolean; (* last orders to fuel pump *)
ticksuntilspark: 0..maxsparkdelay; (* ticks until next spark needed *)
tickssinceshatft: ticks; (* ticks since crankshatft pulse *)
oldenginespeed: rpm; (* speed at last spark recalc *)

(*
global proof variables
these have no existence in the operational program
and can be used only in verification statements.

*)

cylssincespark: extra integer;
tickssincespark: extra integer;

invariant

(*

")

(*

")

The follogin invariants are invariants of the excluder
module. These invariants must be true whenever control
is not in the excluder module.

The following invariants describe real-world constraints to
be proved about the program.

(* if fuel pump is on, spark must occur soon*)
fuelpumpon implies (tickssincespark < (1000*ms));

(* fuel pump must be disabled if the
engine is not rotating *)
(enginespeed < rpm(1)) implies (not fuelpumpon);

(* a spark must be issued for each cylinder pulse *)
cylssincespark <= 1;

(*

")

The following invariants are needed to help the proof process.
They must be proven; they are not accepted as given.

(* either we have a spark scheduled or
we haven't seen a cylinder pulse
since the last spark

*)

((cylssincespark > 0)
and (ticksuntilspark > 0))
or ((cylssincespark = 0)
and (ticksuntilspark = 0));

(* the invariants below were introduced
during the task of making the program
verifiable *)

(* if engine is running,
spark delay must be set *)

(enginespeed > 0) implies (sparkdelay > 0);

(* also true for last time around *)
(oldenginespeed > 0) implies (sparkdelay > 0);

(* consistency of timers *)
(cylssincespark = 0) implies (tickssinceshaft >= tickssincespark);

(* upper bound on tickssincespark *)
(enginespeed > 0) implies

((tickssinceshaft + 2*stalllim) >= tickssincespark);

(* consistency of tickssincespark *)

(enginespeed > 0) implies
((tickssincespark + ticksuntilspark) <= 2*stalllim);

(* if timeout, stalled *)
(tickssinceshaft > stalllim) implies (enginespeed = 0);

(* fuel pump locked to engine speed *)
(enginespeed > 0) = fuelpumpon;

(* old speed reset after stall *)
(oldenginespeed = 0) = (enginespeed = 0);

(* definedness conditions *)
defined(enginespeed);
defined(ticksuntilspark);
defined(tickssinceshatft);
defined(fuelpumpon);
defined(cylssincespark);
defined(tickssincespark);
defined(oldenginespeed);
defined(sparkdelay);
defined(excluder);

(*
")

procedure spark;
exit tickssincespark = 0;
cylssincespark = 0;

spark -- fire spark and update counters

begin
engine.firespark := true; (* fire spark *)
proof tickssincespark := 0; (* update proof variables *)
proof cylssincespark := 0;

end (* spark *);

(*

fuelpumpset -- check engine speed and set fuel pump
*)
procedure fuelpumpset;
exit fuelpumpon = (enginespeed.old > 0); (* on iff engine running *)
begin

fuelpumpon := enginespeed > 0; (* turn on iff engine running *)
engine.fuelpumpswitch := fuelpumpon;(* DEVICE 1/O *)
end (* fuelpumpset *);

(*

doclocktick -- called from clock monitor on every tick

this procedure issues the spark command when required, and

turns the fuel pump on and off based on engine rpm.
*
)
procedure doclocktick;
begin

proof if tickssincespark < maxticks then (* count time for
spark proof *)
tickssincespark := tickssincespark + 1;

if tickssinceshaft < maxticks then (* avoid timer overflow *)
tickssinceshatft := (* used to compute inverse of rpm *)
tickssinceshaft + 1;

if tickssinceshaft >= stalllim then (* check for stalled engine *)

begin
enginespeed = 0; (* engine is not rotating *)
oldenginespeed := 0; (* forget past history *)
proof cylssincespark := 0; (* forget about spark history *)
proof tickssincespark := 0; (* forget about spark history *)
tickssinceshatft := 0; (* forget about crank history *)
ticksuntilspark := 0; (* unschedule spark *)
end,
(* spark timing *)
if ticksuntilspark > 0 then (* if spark scheduled *)
begin (* count down time until spark *)

ticksuntilspark := ticksuntilspark - 1;
if ticksuntilspark = 0 then spark; (* fire spark if time *)
end,
fuelpumpset; (* decide fuel pump on/off *)
end; (* doclocktick *)

(*

recalcretard -- recalculate the spark offset

This is called only when engine RPM changes by a significant amount.

The calculation is by linear interpolation from a table.
*
)
procedure recalcretard;
exit (enginespeed.old > 0) implies (sparkdelay > 0);

oldenginespeed = enginespeed.old;
(* retard at 1000 rpm int*)

type tdiff = 0..tablemax; (* table difference *)
var
low, high: tableentry; (* value in table *)
diff: tdiff; (* difference between neighbors *)
offset: O..interval, (* offset from start of entry *)
i tableindex; (* which entry *)
const tickspersec = 1000*ms; (* ticks per second *)

(* really need fixed-point here *)
k = (tickspersec div 360) * 60; (* convert degrees to rpm-ticks *)

var sparkretard: angle; (* calculated spark retardation *)
delaywork: 0..45%k; (* largest possible value *)

begin

(* force case analysis for table *)

assert(nonincreasing(sparktable,0,0)); (* table is monotonic *)
assert(nonincreasing(sparktable,0,1)); (* table is monotonic *)
assert(nonincreasing(sparktable,0,2)); (* table is monotonic *)
assert(nonincreasing(sparktable,0,3)); (* table is monotonic *)
assert(nonincreasing(sparktable,0,4)); (* table is monotonic *)
assert(nonincreasing(sparktable,0,5)); (* table is monotonic *)

i := t ableindex(enginespeed div interval); (* calc table index *)
assert(sparktable[i] >= sparktable[i+1]); (* goal for rule *)
offset := enginespeed mod interval; (* offset from last entry *)

low := sparktablel[i]; (* table entry from low side *)
high := sparktable[i+1]; (* table entry from high side *)
assert(high <= low); (* this is a decreasing table *)
diff := tdiff(low - high); (* difference in this interval *)

(* linear interpolation *)

sparkretard := angle(high + (diff * offset) div interval);
assert(sparkretard <= maxsparkretard); (* not too much *)

(* compute delay until spark *)
sparkdelay := 0; (* assume 0 (no spark) *)
if enginespeed > 0 then begin (* if engine turning *)

(* compute spark delay *)

delaywork := ((k*sparkretard) div enginespeed) + 1,

(* avoid oversize delay
at low rpm *)
if delaywork <= (stalllim div 2) then sparkdelay := delay(delaywork)
else sparkdelay := delay(stalllim);
end,
oldenginespeed := enginespeed,; (* save speed at last calc *)
end; (* recalcretard *)

(*

doshaftpulse -- handle crankshaft pulse
*
)
procedure doshaftpulse;
var speedchange: integer; (* local for calculation *)
rpmwork: 0..20000; (* working RPM *)
begin
if ticksuntilspark > 0 then begin (* if spark still in future *)

(* TROUBLE: clock may have failed *)
spark; * force spark now, poorly timed *)
end,

assert(cylssincespark = 0); (* must not miss spark *)
proof cylssincespark (* we try to prove this never reaches 2 *)

:= cylssincespark + 1;
(* engine speed computation *)
if (tickssinceshatft > 0) then begin
(* compute new rpm *)
romwork := 1 + (60*ms*(1000 div cylinders)) div
tickssinceshatft;
assert(rpmwork > 0); (* must be running if cyl pulse *)
if rpomwork > maxrpm then (* limit measured engine speed *)
enginespeed := maxrpm
else enginespeed := rpm(rpmwork);

tickssinceshatft := 0; (* clear shaft timer *)
end else begin (* TROUBLE: probable clock fail *)
enginespeed = rpm(1); (* assume minimum RPM *)
end,
(* recalc spark if speed chg*)
if oldenginespeed = 0 then begin (* engine just started *)
ticksuntilspark := O; (* clear all timers and counters *)

tickssinceshaft := 0;

proof tickssincespark := 0;

recalcretard; * recalc spark retardation *)
end else begin (* engine did not just start *)

speedchange := enginespeed - oldenginespeed; (* calc speed change *)

(* take abs value *)
if speedchange < 0 then speedchange := - speedchange;
if (speedchange > mustrecalc) then (* if big change *)

recalcretard; * go recalculate spark *)
end; (* end time to recalculate *)
ticksuntilspark := sparkdelay; (* schedule next spark *)
fuelpumpset; (* turn fuel pump on *)

end (* doshaftpulse *);

begin

initialization

*)

enginespeed = 0; (* start with engine stopped *)

ticksuntilspark := 0;

tickssinceshatft := 0;

sparkdelay := 0;

fuelpumpon := false;

proof cylssincespark := 0;

proof tickssincespark := 0;

oldenginespeed := 0; (* original speed is zero *)
end; (* excluder *)

(*
")

monitor shaftprocess priority 2;
imports excluder, rpm, doshaftpulse;

shaft signal process - once per cylinder time

entry defined(excluder); (* must be defined at INIT *)
invariant defined(excluder); (* must stay defined *)
var

shaftpulse: signal[0002B];
(* crankshaft pulse interrupt *)

(*
shaft processing loop
*)
begin
while true do begin
wait(shaftpulse); * wait for shaft pulse *)
doshaftpulse; (* handle shaft pulse *)
state(defined(excluder)); (* loop invariant *)
end; (* end forever loop *)

end; (* shaftprocess *)

(*

clock monitor

all the processing is done in the shaft monitor.

*)
monitor clockprocess priority 2;
imports excluder, doclocktick;
entry defined(excluder);
invariant defined(excluder);
var hardwareclock: signal[0004B];
begin
while true do
begin wait(hardwareclock);
doclocktick;
state(defined(excluder));
end,
end,

(*

*)
begin
init excluder,;
init shaftprocess;
init clockprocess;
end.

main program

(* from shatft *)

(* must be defined at INIT *)
(* must stay defined *)
(* clock interrupt *)

(* wait for clock interrupt *)
(* handle clock interrupt *)
(* loop invariant *)

(* end of clock monitor *)

(* initialize variables *)
(* start crankshaft process *)
(* start clock process *)

Verification of this program tads about one hour andvea minutes on a VAX 11/780,
without ary previous history being\ailable. Thisdoes not include the building of some
necessary rules about the functimmmincreasingwith the Rule Builder are sufficient to

verify this program.

Verifying clockprocess
No errors detected

Verifying excluder
No errors detected

Verifying excluder-doclocktick
No errors detected

Verifying excluder-doshaftpulse
No errors detected

Verifying excluder-fuelpumpset
No errors detected

Verifying excluder-recalcretard
No errors detected

Verifying excluder-spark
No errors detected

Verifying shaftprocess
No errors detected

Verifying simpleengine
No errors detected

6. Rules

It is possible to pnee quite comple things about programs with theeNfier. In order to
accomplish this, the user must defmiée functionswhich represent the properties to be
proven and must prge mles about them using thrale builder. We will illustrate this
with a simple gample, going into considerable detail onvhto go dout doing such
things.

6.1 Anintroduction to rules

Consider the following simple program fragment.

type tabix = 1..100;
type tab = array [tabix] of integer;
var tablel: tab;

I,J: tabix;
fér i :=1to 100 do begin
tablel[i] := 0;
end,
assert(tablel[j] = 0); { t ablel[j] must be 0}

Here we hee deared an array to zero, and somewhere further along in the program we
need to be sure that a specific element in the array is Zerdo this we will need some

way to express the concept that all the elements in the array are arce there is no
built-in way in Pascal to talk about the values of all the elements in an array in a
collective nse, it is necessary to introduce a means for doing this.

In the is case we introducerale functioncalledallzero. We cefine it in Pascal-F with
the declaration

rule function allzero(a: tab; i,j: tabix): boolean; begin end;

Here, the kyword rule identifies this as a rule function. Rule functions are used only for
verification purposes and are ignored by the compiRule functions may not ka
function bodies or entry andkie assertions; the have only a minimal declaration as
shown in the example.

Rule functions are useful only when some rules about themn lten proen. We will
defineallzeroinformally as being true if the array elementsaaire all zero from element
i to elemenf inclusive and false otherwise. Some useful rulesdtizeroare

(j <i) implies allzero(a,i,))

which says thaallzero is vacuously true if the the upper bound is less than tverlo
bound;

(i=j) implies (allzero(a,i,j) = (a[i] = 0))

which tells us that if both bounds are the same, #thgevof allzero is equal to true if the
value at the bounds is true and false otherwise;

(allzero(a,i,j) and (a[j + 1] = 0)) implies allzero (a,i,j + 1)
which states that iillzerois true fromi to j anda[j + 1] is equal to zero theallzerois
true fromitoj+ 1;
(allzero(a,i,j) and ((x <) or (x >))))
implies allzero (<a,x,v>,i,}),

(where the strange notaticta,x,v> means “the array with elementx replaced by
which says that i&llzerowas true fromi to j, storing into an elementoutside the range

to j will not destry theallzeroproperty; and finally
((allzero(a,i,j) and (x >=i) and (y <=)) implies (a[i] = 0)

which allovs us to use the information that allzero is true for a range of valuesvi® pro
that a specific value is zero.

For the time being, we will ignore where these rules came from and will concentrate on
what can be done with them. Going back to our program, it is clear that we are going to
want to prove

allzero(tablel,1,100)

at the end of théor loop. Thisimplies that a loop wariant, astate statement, will be
required to describe the situation which is true at each iteration of the loop.

One minor complication is that it is not obvious to the Verifier that storingaiie1][i]
does not change the fact tladlizerois true fromltoi-1. We ae going to need a rule that
tells the Verifier that out-of-bounds stores daauseallzeroto becomedilse. Alsothe

rule handler in the Verifier only uses one rule betwegntaa fatements. & thus will

have 10 put an assertion in the program that the previoukT&Tis dill true after the
assignment statemengincei has increased by 1, this assertion will be #ilaerois true
from1toi-1. So nav let us see the program with the addition of the required assertions.

type tabix = 1..100;
type tab = array [tabix] of integer;
rule function allzero(a: tab; i,j: tabix): boolean; begin end;
var tablel: tab;
i,j: tabix;

fori:=1to 100 do begin
tablel[i] := 0;
assert(allzero(tablel,1,i-1));
state(allzero(tablel,1,i));
end,

assert(allzero(a,1,100));

assert(table1[j] = 0); { t able1[j mustbe 0}

Each time through the loopJlzero becomes true for one more element, afidero is
then true from 1 up to the loop index.

Given the rules described, thenfier is able to pree dl the assertions in the program
fragment automatically.

Typically, the user will be provided with a knowledge base containing a library of rules
which coer most common situations in programming, and will be able to proceed much
as shown abee. In the next chaptemwe will return to the example alie and shaev in

detail hav the rules for it are pren.
6.2 Rulesand the Verifier

6.2.1 Haw the Verifier applies rules
Rules are almost\ahbys of the form
A implies B

whereA is referred to as thbypothesisand B as the conclusion. Thee¥ifier, when
trying to prove ©mething such as

assert(allzero(a, i, j));

whereallzerois a rule function, will search the database for rules with conclusions of the
form

allzero(x,y,z)

and will then apply the rule Hyindingeach free variable in the rule to the corresponding
expression in the form being pren. This process is callednstantiating the rule,
because the general form of the rule has been applied to a specific instancehe
Verifier will try every applicable rule in\eery legitimate vay, but will not apply a rule to

a form introduced by a rule. In other words, trexiffer applies rules only one deep. Itis
the users job to add assertions to the source program so that betweénaessertions
the application of only one rule is requireHow to do this was described in detail in
chapter 2.

6.2.2 Haw the rules get to the Verifier

Rules are created with the Rule Builder (described in the next chapter) and made
available to the Verifier with th@utrules utility program. The Rule Builder creates a
knowledge basdfile, which may be used for verifying\seal different programs.The

rules being used in awgn verification must be placed inraledatabasefile. Thereis

one such file for each program beirggified, and this file resides in the directory afriv

files used by the verifier for each program beiedfied. Thedirectory has the name

<programname>_d

where the program being verified has the name

<programname>.pf

This directory is created by theefier the first time an attempt is made to verify \aegi
program, and is ver deleted by the ®fifier. Theruledatabaseandhistory files, along
with all the scratch files used during verification, reside in this directanch is
managed entirely by thee¥ifier. The user should not alter yaiiile in the work file
directory at ap time.

6.2.2.1 Theputrules utility

The putrules utility reads a knowledge base file and createsledatabasefile. It is
invoked with the call

putrules <knowledge base> <program>_d

whereprogram is the name of the program (not including the trailpig) being \erified.
Putrules can only be run after therMication of the program has been tried at least once
and the ¥rifier's work directory<program>_d created by the &fifier. After ary change

to the knowledge base, it is necessary to rguuimules to male the changes in the
knowledge basevailable to the Verifier.

If the changes to the kmtedge base included the alteration or deletion of ame
function definition,putrules will print a message so stating and will clear the history of
successfully verified routines, so that a fullerfication will be performed the next time
the Verifier is inoked. Thischeck is required to insure soundness.

6.2.3 Standardknowledge bases

Standard knowledge bases may be creafedinowledge base may contain information
useful for verifying more than one prograrfor example, the information aboatlzero
above would be useful in gnprogram that cleared arrays to zero. One usefulvietige

base is the Rule Builder'kuilt-in knowledge base. This knowledge base is called
verifier and is usually sufficient (and necessary) for programs which contain no user
provided rule functions but do contain instances of the 3-argument foldEBINED

for proving the definedness of parts of arrays.

Usually a cop of this knowledge base is maintained in a wellsknoplace on each
system on which the Verifier is installed®ut a coy of this knowledge base can be
obtained, if required, by woking the Rule Builder and, without proving yamew
theorems, using the Rule Builder command

(MAKE-LIB ’verifier)
which will create the kneledge base filewerifierlib and verifierlispin the curent
directory.
7. Therule builder

In the previous chaptethe concept of verification usingiles was introduced. These
rules must be created by the user andgrevith machine assistancd.he rule builder is

a tool used with the &fifier proper to construct soundweules and thus provide the
Verifier with more knowledge.

7.1 Introduction

Using the Rule Builder requires a substantially greatedl & expertise in both formal
mathematics and verification than does using the Verifier proper.

The Rule Builder is a version of the yg@-Moore theorem pneer initialized with a
knowvledge base compatible with theerifier's kuilt-in knowledge. Itis a dificult

program to use, and requires some training in formal logic to use succeskkoilgll
users of the Verifier need be familiar with the Rule Bujltet users must va access to
someone with this expertise for assistance when a verification requingsaleae

7.1.1 Requied reading

Before attempting to use the rulailder, it is necessary to become familiar with three
documents. Thdirst of these is the book Computational Lgic, by Robert S. Bger

and J. Strother Moore, published in 1979 by Academic Press, YN, NY. This book
describes the theory upon which the varois based. Chapters, 2, and 3 should be
studied closelyand reading the entire text while trying out some of the examples is
advisable.

Some knowledge of the Franz Lisp implementation of Lisp is required. The reference
manual is provided with the Berlkey UNIX distribution, and is alsovailable from
Franz, Inc. of Ber&ley, California. Hovever, anyone with a working knowledge of Lisp

will probably not require this manual.

Finally, the manualA Theoem Powver for Recursive Functions: A UssrManual
published in 1979 as Report CSL-91 by SRI International of Meaitk, CA., is useful.
This manual describes the mechanics of running the theorem.pithe ley parts hae
been extracted and appear in thetrfew pages, but the theorem pep users manual
goes into more detail and should be on hand.

The prover has changed somewhat since the 1979 manwé. will try to cover the
important differences in this manual.

7.2 Anintroduction to the Rule Builder

In A Computational Lgic [BOYER79], Boyer and Moore describe a formal logic based
on recursre functions, and thepresent a large number of techniques for disgng
proofs in that theory These techniques are implemented in their theoreweprdhis
chapter of the erifier manual is an adapted version of Boyer and Medneborem praer
manual.

7.2.1 Teaching the theorem pover

While using the rule builder the user will spend most of his time teaching the system
about the concepts he defines and their relationships to other defined coftepts.
system is taught by defining functions and suggesting lemmas for it W@ @and
remember for future use.

The system uses axioms and previouslygidemmas in four distinct ays. Thesystem
does not decide automaticallyvindo use a gren theorem; whener any new theorem is
introduced, the user must specifywhthe lemma is to be used by providing the system
with a list names drawn from the followingywords.*

* Theinductionlemma type has been discontinued. It isvm@cessary to use manually-piged hints
to help the preer with difficult inductions.

rewrite lemmasare used to rewrite terms. Most lemmas arerite

lemmas.

elim lemmasare used to replace certain comxpterms by single
variables.

generalize lemmaare used to guide the theorem mrowhen it looks

for stronger induction hypotheses.
Any lemma with an empty list of lemma types wilveebe wsed again by by the system.

The theorem pneer is very sensitre o the syntactic form chosen by the user to represent
each nes fact. For example, a rewrite lemma of the form

(implies (and p q) (equal r s))

is used to rewrite instancesrao s provided that the system can first estabpsind then

g. This is the most common form of lemmBlote the asymmetry betweeggothesis

and conclusion, and between left and right hand sides of the conclusion. In fact, because
the system must limit the resources it is willing to spend establighargl g, even the

order of the fipotheses is relant to the system. Thus, the aleorewrite lemma causes
different behavior than grof the following logically equialent formulae:

(implies (and p q) (equal s))
(implies (and p (not (equal r s))) (not q))

(implies (and g p) (equal r s))

To become an ééctive wser of the system one must understand liwe commands
influence the behavior of the systerit.is possible to infer the meaning of tharious
lemma types after enough hands-on experience with the sygBayer and Moore add
the comment herélt is also possible to infer the structure of a brick wall by battering it
down with your head”.)

7.2.1.1 Eents, Dependencies, and Commands

The insertion of a definition or lemma into the Whedge base is called avent. All

eveits hae rames. Somevents, such as definitions of wefunctions, are naturally
associated with a name (e.g., the name of the function defined); others, such as theorems,
are gven names by the usefSee the section on syntax b&lo

The basic theorem-pver commands are those that createv mgents: the definition of a
new function, and the proof and storage of avrieeorem. Thecommands that create
new events aredcl, defn, prove-lemma, andmove-lemma.

Events are related to each other by logical dependeneasxample, the admission of a
certain formula as a theorem depends on all of the functions and lemmas used in the

proof of the theorem.Similarly, the admission of a merecursve function definition
depends not only upon all of the previously introduced concepts used in the definition,
but also upon the functions and lemmas used torgorbat the proposeddefinition”

truly defines a function.

Thus, the theorem-pver’'s knowledge base is actually a noncirculdirected graph of
events. Thetheorem proer’s performance is layely determined by its knowledge base.

The Rule Builder is initialized with a kmdedge base with definitions and lemmas which
define the basic objects of Pascal-F verifications, integers and arrays, and provide a
reasonable set of knowledge about arithmetic and array operatibasuser will need to

add his own definitions and p® theorems about them. It is possible to dump the
systems knowledge base to a “library fileto savethe systens date from one session to

the next, and to provide information to the Verifier proper.

After proving several theorems, the user finds that one of his earliest defined concepts
was incorveniently or inappropriately defined, the user can undo that definition (using the
undo-name or undo-back-through commands) and lose only those results whose
meaning or logical validity may depend on that definition.

7.2.2 Error handling

If one tries to recute an inappropriate command (e.g., assign the same name to tw
different @ents, or attempt to define a function in terms of unknown concepts) self-
explanatory error messages will be printed. The system checkyéod@0 errors and

has an error handling mechanism designedepkthe theorem proving machine in a
consistent statel-or example, when an mecommand is processed, all possible errors are
checled before the first change is made to the data base, since an aborticay midw
through the update would &the machine in an unacceptable state.

Error messages are grouped into three classes; WARNING, ERRORABRD ERROR
messages. ¥nings arise when the system has detected something unusual but not
logically incorrect. For example, the system prints a WARNING message if the user
defines a functionui do not refer to one of the formal parameters in the body of the
function. Afterprinting a WARNING message, the system continues norrealigon.

ERROR messages result from true errors in the sense that the system cannot continue
until the error is repairedubthe error can be repaired by editing a formula or changing a
name. Whersuch an error occurs the system prints an explanatory error message and
then returns to the LISP command prompélediscarding the failed command.

FATAL ERROR messages occur when system resources are exhausted or when internal
checks indicate the presence of inconsistencthe data base or bugs in the theorem
prover itself. Itis usually not possible to proceed past a fatal endhen a RTAL

ERROR is observed, it should be reported as described in the section on repenifiag v
problems.

Despite the precautions &kin the theorem pver, it is possible to get the system in an
illegd state by aborting a command while the data base is in the process of being
changed. Ctl-Gwill abort ary command, but this is unsafédowever, the praover may

spend hours exploring dead ends when trying some prttofs thus necessary to abort

commands on some occasions. The following cautions apply:

« dcl, make-lib, move-lemma, note-lib, and undo-name should neer be @orted
while running.

+ dependent-@ents, events-since piove, ppe, and chronology may be aborted at
ary time without harm.

- defn and prove-lemma can be abortedub there is a small risk of corrupting the
theorem proer's database, if thelefn or provelemma had in fact succeeded and
the database was in the process of being updated.

Boyer and Moore recommend that the result of proof where a command was aborted
be considered suspect.

7.2.3 Output

The theorem pnger prints an English description of what it is doing as it proceddee
sample session, shown b&jashows what this is lik. Normally the output goes to the
users terminal, but can be dirted.

7.2.4 Syntax

All formulas in Bo/er-Moore logic are written in a LISP-kk prefix notation. This
notation is fully described in chapter 11l AfComputational Logic.

7.2.4.1 Functions

The functions usable in this notation are those defined in the seGitwn Built-In
Knowledge Basé’and ary new wserdefined functions the user introduces with deén
and dcl commands. Functionsave a fked number of arguments as specified in the
definition of the function.*

7.2.4.2 \ariables

The \ariables used in this notation are free variable names amdrbaelationship to
names used in Pascal-F programs. Namesanbies, and of ne functions, may be
composed of the characters A-Z, a-z, 0-9, 'and “!"’. Uppercase letters are coerted
to lower case letters.

7.2.4.3 Constants

The aallable constants are the integers, written in the usum} and the aplicit
constants shown belo

(true) Booleartrue.

t Alternate for (true).
(false) Boolearffalse.

f Alternate for (false).

* Some functions are by design N-afgr example, and and or.

(undefined) Aspecific object which is not an arragn nteger or a
Boolean walue. Itis used in building up the theory of arrays.

(emptyarray) Anarray-\alued object, all elements of which are equal to
(undefined).
Onlyt, f, and the integers ae typically used by the user of the Rule Builder.

7.3 Themechanics of using the Rule Builder

7.3.1 Startingup the program
The instructions in this section apply to the UNIX version of the program.
The command

rulebuilder

invokes the Rule Builder This is a version of the BerMoore praer pre-initialized
with a knowledge base compatible with therifier. It takes about a minute to load the
program (which requires about 2 gabytes of memory Themessages

Pascal-F Rule Builder of 2-JAN-86 16:02:04
[load /usr/lib/verifier.lisp]

Standard Pascal-F knowledge base loaded.
->

indicate that the system is ready for commands.

If a previous session with the Rule Builder has been used to produce a knowledge base,
that knowledge base can be used as a starting point fow &ule Builder session by
invoking the Rule Builder with the command

rulebuilder knowledgebase

where knowledgebases the name of a knowledge base created with niadxe-lib
command.

Commands are aborted with control-C, which is sometimes unsafe, as mentiored abo
7.3.2 CommandsSummary

The commands listed beloare a subset of the full command list of theyBoMoore
theorem preer. The commands listed are normally sufficient for building rules for the
Verifier.

7.3.2.1 chonology

The word chronology, without parentheses, will display a list of the names in the current
knowledge base, in wverse chronological orderThus, the last name listed will be the
name of the oldestvent, which is usuallyground-zero. The chronology list covers
events brought in througimote-lib, so the gents which make up a library may be
listed.

7.3.2.2 (dckname> <arglist>)

Dcl declaresnameto be an undefined function of N arguments, where N is the length of
arglist, which must be a list of distinct, but otherwise meaningless, variable names.
Functions created vidcl have o s£mantics in the Rule Buildglout may hae £mantics

in the \érifier. The theory of uninterpreted functions does apply to functions created by
dcl, which means only thatffis an uninterpreted function,

X=y
implies
f(x) = f(y)

7.3.2.3 (defn<name> <arglist> <body> [<hints>])

Defn defines a function namathme,with formal agument listarglist and bodybody.

The optional parametéintsallows the user to assist the theoremvpron validating the
definition. Thearglist must be a list of distinct variable names, dwdly must be an
expression in the thearyThis expression must be constructed as described under the
section on syntax, and may use agable names only the names presegtrglist. Only
previously defined functions, and the the function being defined in the defn, may be used
in thebody.

For recursve cefinitions, the system insists that the recursion terminate and will not
accept the definition fully unless it can peahis. Thesystem will try to pree that some
measure oérglist gets smaller in each recursiall to namewithin body.

When the system cannot pe that a recurse definition terminates, a RNING
message appears stating that the definition is not well-founded. The definition is not,
however, rejected by the systemit should be. The user should immediately reed

with anundo-namecommand.

The hint parameter todefn is seldom required.If the function being defined is
nonrecursie, it is neve required. Ifthe function is recurge hut recurses in such aay
that at least one of the arguments in the reeairall is clearly less than thealue at
invocation, no hint should be requiredzor example, if the function recurses by
subtracting 1 from an argument until the value becomes zero, the theoramwaitiobe
able to satisfy itself of the soundness of the definition withoficudlify. But if a function
recurses byddingone to an argument until a limit is reached, a hint will be necessary.

Hints for defn are very similar to the @&cal-FMEASURE statement; the user must
supply an expression whose value becomes smaller with each recursion. kntseha

form of a list of (<comparing-operator> <recursion measue>) terms. Inthe usual
case, where only one hint is required, thet parameter has the forff<comparing-
operator> <recursion measue>)). Suitablecomparing-operatorgrelessp,andlex2*.
Therecursion measwg must be some expression which, whedwated both at entry to
the recursie function and at entry to the recwesifunction one leel deeper in the
recursion, becomes smaller with each recursidere, ‘smaller” is defined relatre ©
the comparing-operator chosen.

Note thatdefn definitions are actually small recwrsi programs. Itis possible to run
these programs on test data; see tbemmand.

7.3.2.4 (dependentaents <name>)

Dependent-eventsikes an eent name (i.e. a function or lemma name) and returns the
events which depend on itif nameis deleted withundo-nameall the dependents of
namewill be deleted.

Dependeng is amply defined. If adefn g mentions a functiof, theng depends o If
the proof of lemma used lemmg anddefn f, thenx depends ofandy.

7.3.2.5 (gents-since <gentname>)

This returns a list of all thevents stored since the namedkat. Thelist is based strictly
on time, not dependeync

7.3.2.6 (exit)

Exit causes an exit from the Rule Buildeiny new knowledge added since the last
make-lib is lost.

7.3.2.7 (lemmasfunctions>)

This is a cross-referencing tooA list of all lemmas which mention wrrfunction in
functionsis returned.

7.3.2.8 (male-lib <file>)

Make-lib makes a file namedlle.lib and a file namedle.lisp which together contain the
entire current knowledge base.vdking the Rule Builder with

rulebuilder <file>
will restore the state of the Rule Builder to that in effect when ntiag&e-lib was
executed.

Library files are of moderately large size, about 100 kilobytes, and contain not only the
events but substantial amounts of internal information.

7.3.2.9 (meelemma <name> <lemmatypes> <oldname>)

The move-lemma&ommand allws the user to change the ways in which a lemma can be
applied within the Rule Builderlt is used primarily to ‘hide” lemmas or definitions

* SeeA Computational Logidor an explaination oex2.

which although correct cause the Rule Builder to pursue dead &sdally,lemmatypes
is NIL, which causes thdefn or provelemma event oldnameto be hidden. When a
prove-lemmaevent is hidden, the lemma will not be used by the Rule Byilet when
a cefn esent is hidden, that definition will not be opened up. Hidindedn does not
prevent its evaluation with the r command.

7.3.2.10 (note-lib<file>.lib <file>.lisp)

Note-libreads infile, which must hae been produced bynake-lib, and reinitializes the
Rule Builder with the knowledge base in that file. This is a reinitialization, not an
addition; the state of the theorem ymois deared before the read.

7.3.2.11 (ppe<eventname>)
Theppecommand prints thevent eventnamen a tidy format.
7.3.2.12 (pove <hm>)

Prove attempts to pnee the conjecturehm, using all the theorem-proving techniques at
the systens dsposal. pree pints an English-language description of the proof attempt
in real-time, so the user can monitor the progress of the atté@hptresult of the proof

is not saed.

7.3.2.13 (ppvelemma <erentname> <lemmatypes> <thm> [<hints>])

This is the most important command in the Rule BuildRrove-lemmaattempts to pree

a lemma as withprove and if the attempt is successful, the lemma will beedsa
available for use in the ways specified in the lishmatypes.The allowed lemma types
are rewrite, elim, and generalizprovellemmalfirst checks to see if the syntactic form of
thm is acceptable for theemmatypesndicated. Ifno error is diagnosed in this pre-
processing, a proof is attempted as with thevgprmmmand. Ifthe proof succeeds, the
lemma is stored under the nanesentnameand is usable with the lemma types
lemmatypes.

If eventnameends in “rule” or *‘-RULE’’, and thelemmatypedist includes ‘rewrite”
then the eent is considered adyifier rule and, if placed in a Rule Builder library with
make-lib and then copied to a Verifier database file with thetrules’ utility, will be
used by the Verifier.

The optional parametdrints allows the user to order the theoremyarao try a specific
lemma or induction at the beginning of the proof, thdsrding some minimal control

over the proof process. Hints are not normally necessary; it is better when possible to
help the theorem pver along by proving lemmas which will then be used in later proofs.
However, hints can be provided if necessarihis is an advanced feature of theyaro

and is not recommended formesers.

The hints aguement to therovelemma command, if not ommitted, must be a list of
hint entries. There are fie kinds of hints:

use Indicateshat a specific lemma is to be applied in a specific
way at the beginning of the proof. The form otiaehint is

expand
disable

induct
time

(use (eventl (v1tl) ... (vn tn))

(eventk (vk tk) ... (vm tm)))

where eachewenti is the name of aradd-axiom, prove
lemma, or defn event, eachvi is a variable name from the
definition of the eent, and eachi is a term in the formula
being proen. The user is thus explicitly requesting the
application of a rule, and the user museghe exact bindings

of the variables in the rule to the terms in the formula being
proven.

A usehint is a request, not a demand; if the lemma indicated
in the hint cannot be applied to the formula being/@mpthe

hint will be ignored and the pver will proceed without it. It

is thus important when usingsehints to watch the lggnning

of the proof for the application of the hint.

Indicateshat adefn should be ¥panded at the beginning of
the proof.

Preents the use of a named lemma gpansion of a named
definition in the proof.

Indicateshe induction strategy that the penis to wse.
We don’t know what this is for.

The useanddisablehint types are sufficient for most proofs. Thevarohas relatrely
good diagnostics for incorrectly formed hints; a badly formed hint will produce a
message giving the correct form and an indication of twk praver is unhapy with the

hint.

7.3.2.14 (r<term>)

The r command ealuatesterm, which must be an expression constructed frahdv
built-in functions, defn functions, and constanExr example,

(r (plus 2 2))

will return 4. More usefullyif we define a function of our own,

(defn FACTORIAL (N)
(if (lessp O N)
(times N (FACTORIAL (difference N 1)))
1))

we can then try test cases on it.

(r (FACTORIAL 4))

will return 24.

This evaluation process is quita$t. TheRule Builder generates Lisp code for edelfin
when thedefn is created, so that definitions can be rapidigiuated for constantalues.
Recursve definitions generate recuvsi wde. Sincethe Rule Builder insists that
definitions be praably well-founded, infinite recursion is pranted.

The Bo/er-Moore theory is a construeé theory of total functions. This means thayan
syntactically valid variable-free expression can \muated. or example, RCTORIAL

can be applied to,Tthe Boolean alue true, and a consistent value will be returned.
When constructing definitions, the actions for inputs of unexpected types must be borne
in mind.

It is worthwhile to try out the command on some of the built-in functions todlep a

feel for what thg do. An interesting gercise is to produce an array-valued resitr
example,

(r (storea! (storea! (empty.array) 3 100) 5 200))

will produce an array-valued object with element 3 equal to 100 and element 5 equal to
200. Thisgives the user some insight intowarrays are represented internally.

7.3.2.15 (undo-back-though <eventname>)

Eventnameand all @ents performed sinceventnamewill be undone. This includes
evants not dependent aentname.

7.3.2.16 (undo-nameeventname>)
Eventnameand all @ents dependent upon it will be undone.
7.4 Thebuilt-in knowledge base

The Rule Builderas sated before, is a version of the y@o-Moore theorem pneer pre-
initialized with a knowledge base compatible with therifer. This knowledge base
includes definitions of arithmetic for the natural numbers and the integers, Boolean and
comparison functions, and a definition of arralfsalso contains about a hundred lemmas

of general utility most of which are statements about arithmetic.

7.4.1 Thebuilt-in functions

(add1 N)

(and B1 B2 ...)
(difference N M)
(equal XY)

(if P XY)

(implies P Q)
(lessp N M)
(not P)
(numberp N)
(orB1B2..)
(plus N M)
(quotient N M)
(remainder N M)
(subl N)
(times N M)
zero

(zerop N)
(addi! 1 J)
(alltrue! r)

(arrayp! A)
(arraytrue! A'1J)

(booleanp! A)

The predefined functions are as follows.

Adds one, usable on natural numbers only.
N-argument and.

Natural number subtraction.

Equality; usable on watype operands.

If P then X else Y if must not appear in rules, but may be
used indefn definitions or non-rule lemmas.

Boolean implication.
Natural number comparison.
Boolean rgztion.
True if value is a natural number.
N-argument or.
Natural number addition.
Natural number division.
Natural number remainder.
Subtracts one.
Natural number multiplcation.
Equwaent to 0.
True if N is equal to 0.
Integer addition.

True if all parts of the gument are true. This is a dcl to the
rule luilder, and has no semantics in the ruleilder. The
Verifier expandslltrue! based on type information.

Array type predicate, true if the argument is an array.
True if the elements from | to J of array A atlrue!l. When

defined(A,1,J)

is written in Pascal-F sourc@rraytrue! A | J)applied to the
definedness part of A will be generated in tleification
condition. Thisallows inductve proofs of definedness of
arrays.

Type predicate, true if A is Boolean.

(divil 1) Integer division.

(gei! 1J) Integer >=.

(gti' 1) Integer >.

(integerp! 1) Type predicate, true if | is an integer.

(lei' 1J) Integer <=.

(Itir 1 J) Integer <.

(mod! 1 J) Intger remainder Mod should be applied to posgi

numbers onlybecause the &fifier has no knowledge about
what the result is for mgtive rumbers. Thisreflects the
Pascal-F implementation.

(mulit 1 J) Integer multiply.

(negi! 1) Integer ngation.

(numberp! I) Type predicate, true if | is a natural number (n@atiee).

(selecta! Al) Array subscripting function; equalent to the Pascal form
Alll.

(selectr! AF) Record selectorequivalent to the Bscal form ‘A.F”. The

Rule Builder does not kmo about records because it lacks
type information. This is a dcl uninterpreted functiohe
Verifier interpretsselectr! based on the type information from
the program.

(storea! A 1V) Array store function. The result storea! is an array equal
to A except that A[l] = V This function has no Pascal infix-
form equvalent, ut is displayed in the éfifier's log of
verification conditions as “<A | V>”.

(storer! AF V) Record store functionThe result ofstorer! is a record equal
to A except that A.F = V This function is displayed in
verification conditions as “<A | V=) and looks just like the
array store function in that formThe storer! function, like
selectrl,is a dcl.

(subi! I J) Integer subtraction.

The upper-case names are identical to thogeG@omputational Lgic in both syntax and
meaning. W& have not changed these becauseytlaee built into the Bger-Moore

system. Naule function may be gen the same name as one of the built-in nanfdse

names ending in‘l*’ represent the additional functions needed to handkscdt-F

verification conditions.

7.5 Anexample of rule building

In the chapter'Rules’, we gavea sample program fragment which used a rule function
calledallzero. Verification of this piece of a program required some rules. As a concrete
example, we mad a smple program out of our program fragment.

1 program example6;
2 {
3 Program fragment to demonstrate rule usage
4}
5 type tabix =1..100;
6 type tab = array [tabix] of integer;
7 rule function allzero(a: tab; i,j: tabix): boolean; begin end;
8 vartablel: tab;
9 i ,j: tabix;
10 begin
11 for i :=1to 1 00dobegin
12 tablel[i] =0;
13 assert(allzero(tablel,1,i-1));
14 state(allzero(tablel,1,i));
15 end;
16 assert(allzero(tablel,1,100));
17 j =25 { s ome arbitrary value }
18 assert(tablel[j] = 0); { tablel[j] must be 0}
19 end.

We will make an @tempt at verifying the program, knowing that the attempt will be
unsuccessful, since the Verifier has no idea \&hz¢ro means.

% pasver example6.pf

Of course, we get diagnostic messages.

Pass 1:
Pass 2:
Pass 3:

Verifying example6
Could not prove {example6.pf:18} tablel[(j- 1) + 1]=0
(ASSERT assertion)
for path:
{example6.pf:11} Start of "example6”
{example6.pf:11} FOR loop exit

Could not prove {example6.pf:14} allzero(tablel,1,i)
(STATE assertion)
for path:
{example6.pf:11} Start of "example6”
{example6.pf:15} Back to top of FOR loop

Could not prove {example6.pf:14} allzero(tablel,1,i)
(STATE assertion)
for path:
{example6.pf:11} Start of "example6”
{example6.pf:11} Enter FOR loop

Could not prove {example6.pf:13} allzero(tablel,1,i - 1)
(ASSERT assertion)
for path:
{example6.pf:11} Start of "example6”
{example6.pf:15} Back to top of FOR loop

Could not prove {example6.pf:13} allzero(tablel,1,i - 1)
(ASSERT assertion)
for path:
{example6.pf:11} Start of "example6”
{example6.pf:11} Enter FOR loop

5 errors detected
We doviously need rules abowlzero. In the pre@ious chapters, we figured out what
rules we needed. So let us build them.
We kegn by invoking the rule builder

% rulebuilder

which responds with its signon message and a prompt.

Pascal-F Rule Builder of Wed Feb 26 19:58:22 1986
[load /ul/jbn/ver/cpc6/verifier.lisp]

Default Pascal-F knowledge base loaded.
->

In this session, we will define the functia@tizero, which is a predicate for testing
whether an array is composed entirely of zero elements betweesuldacript bounds.
The definition is a recung function; allzero is true vacuously if J is less than I,
otherwise we recurse, checking each element, until J is less than I.

-> (defn allzero
(aij
(if (lessp j i)
t
(and (allzero a (add1 i) j)
(equal (selecta! a i) 0))))

WARNING: The recursion in allzero is unjustified.

Warning: The admissibility of allzero has not been established.
We will assume that there exists a function satisfying this

definition. An induction principle for this function has also
been assumed, corresponding to the obvious subgoal induction

for the function. These assumptions may render the theory
inconsistent.

Note that (or (falsep (allzero a i j)) (truep (allzero a i j)))
is a theorem.

kkkkkkkkkkkkkk F A I L E D kkkkkkkkkkkkkk

[14.183333 0.4166669999999992]
nil

This is no good.We nust not accept this definition or our theory might be unsound.
Although the praer has (grudgingly) stored the definition, went to delete it and try
again. Sowe use thaindo-back-through command to delete the definitionaifzero.

-> (undo-back-through ’allzero)
(defn allzero (aij) (if (lesspji) t (and (allzero a
(add1i)j) (equal (selecta! a i) 0))))

Actually, there is nothing wrong with our definition alizero. It is just that the theorem
prover isn't smart enough to figure out that the recursion terminates. There @realys

to deal with this problem; one is toaete the definition so that the theorem ymocan

figure this out by itself, and the other is to provide a hint. The first approach could be
applied by revriting allzero so that it recursed by subtracting 1 frpmn each iteration
rather than adding 1 t@ The theorem pneer has no trouble understanding that
subtracting 1 repeatedly with a test fiesspin the right place must lead to termination.

But for purposes of illustration we’re going to bull our way through with a hitg.
mentioned in the Command Summary sectiondi&fn, a hint for adefn is a lot like the
Pascal-F MEASURE statement. W reed an expression which gets smaller with each
recursion. Theexpression(difference (addl j) iwill do the job We reed theaddl
becausdlifference returns a natural number; agaBve value is not possibleWe thus
must bias the value pto avoid trouble for the case wheyés one less than

Our hint will have the form

(lessp (difference (add1 j) 1))

indicating that we ant(difference (addl j) iused as the recursion measure l@sdp,as
usual, used as the well-founded relation.

-> (defn allzero
(@aij)
(if (lesspji)t
(and (allzero a (addl i) j)
(equal (selecta! a i) 0)))
((lessp (difference (addl)) i))))

Linear arithmetic establishes that the measure (difference
(addl) i) decreases according to the well-founded relation
lessp in each recursive call. Hence, allzero is accepted under
the principle of definition. Observe that:
(or (falsep (allzero a i j))
(truep (allzero a i})))
is a theorem.

[3.20.25]
allzero

It succeeds; the definition iskd. It has nav been preen that the recurse definition
cannot loop infinitely The theorem pneer also notes thatllzero is Boolean-alued,
which it may find useful later.

We ask the Rule Builder to print the definition @fzero to illustrate the ppe command.

-> (ppe 'allzero)

and the definition is printed in suitably indented form, with the hint included.

(defn allzero
(@aij)
(if (lessp j 1)
t
(and (allzero a (addl i) j)
(equal (selecta! a i) 0)))
((lessp (difference (addl)) i))))
nil

Incidentally we @uld have definedallzero so that it recursed @mward, and the prer
would still be able to pne every lemma preed in this session. In manways, this
would have been an easier approach; we would noteheeeded the hint in thdefn
command that defineallzero.

Let us nav test out our ng definition. We havedefined a function and canwaun it on

some test data. The r command is used t@hzero on an array in which element 2 is O
and element 3 is 0. (Remember tfgtbrea! A | V) is equal to the arragx except that
elementl has been replaced by thalweV) The form(empty.array) is simply the array
of no elements.

-> (r (allzero (storea! (storea! (empty.array) 2 0) 3 0) 2 3))

The system responds with

which is what we ant. Letus try an array which is not all zero.

-> (r (allzero (storea! (storea! (empty.array) 2 1) 3 1) 2 3))

Another test case; an array with one zero element; is it all zero from 2 to 2?

-> (r (allzero (storea! (storea! (empty.array) 2 0) 3 1) 2 2))

It is. Finally, we check out the case where the upper bound oélizero is less than the
lower bound.

-> (r (allzero (storea! (storea! (empty.array) 2 1) 3 1) 3 2))

This, also, seems to work.

With our definition in good shape, we camwnoy to prove ome theorems about iOur
first lemma will be that if the lower bound exceeds the upper bound wlldeeo call,

thenallzero is vacuously true.

-> (prove-lemma allzero-void-rule

(rewrite)

(implies (and (arrayp! a)
(numberp i)
(numberp j)
(lessp j i)

(allzero a i j)))

Note that the name of the lemnadlzero-void-rule, ends in-rule which will later male
this rule ®ailable to the “rifier. The theorem pmer now proceeds with the proof,
which, given the definition, ought to be trivial.

This conjecture simplifies, opening up allzero, to:
t.

Q.E.D.

[7 .683333000000001 0.06666699999999916]
allzero-void-rule

It is trivial; the proof succeeds in 7.6 seconds (this is on a Sun |l) andeiteaizero-
void-rule is stored.

We dso need a rule to handle the case where both bouradizerfo are equal. This, too,
should be tnial. We type in our lemma

-> (prove-lemma allzero-single-rule

(rewrite)

(implies (and (arrayp! a)
(numberp i)
(numberp j)
(equal i j))

(allzero a i j)))

and the theorem pver goes to work.

This formula simplifies, using linear arithmetic, rewriting
with allzero-void-rule and x-not-less-than-x, and expanding
allzero, to:

(implies (and (arrayp! a) (numberp j))
(equal (selecta! a j) 0)),

which we will name *1.

We will appeal to induction. The recursive terms in the
conjecture suggest two inductions. However, they merge into
one likely candidate induction. We will induct according to
the following scheme:
(and (implies (and (array-recognizer a)
(equal a (empty-array)))
(paj)
(implies (and (array-recognizer a)
(not (equal a (empty-array)))
(or (not (numberp
(array-elt-subscript a)))
(equal (array-elt-value a)
(undefined))))
(paj)
(implies (and (array-recognizer a)
(not (equal a (empty-array)))
(not (or (not (numberp
(array-elt-subscript a)))
(equal (array-elt-value a)
(undefined))))
(equal (array-prev a) (empty-array)))
(paj)
(implies (and (array-recognizer a)
(not (equal a (empty-array)))
(not (or (not (numberp
(array-elt-subscript a)))
(equal (array-elt-value a)
(undefined))))
(not (equal (array-prev a)
(empty-array)))
(p (array-prev a))
(paj)
(implies (not (array-recognizer a))
(paj))).
Linear arithmetic and the lemma array-prev-lessp can be used
to show that the measure (count a) decreases according to

the well-founded relation lessp in each induction step of the
scheme. The above induction scheme generates six new goals:

Case 6. (implies (and (array-recognizer a)
(equal a (empty-array))
(arrayp! a)
(numberp j))
(equal (selecta! a j) 0)),
which simplifies, unfolding array-recognizer, arrayp!,
equal, array-prev, array-elt-value, array-elt-subscript,
and selecta!, to the formula:
(not (numberp j)).
Eliminate the irrelevant term. This produces:
f.

Need we go on?

kkkkkkkkkkkkkk F A I L E D kkkkkkkkkkkkkk

The theorem pneer stops, after about a minute ofovk, and reportsdilure. Whatwent
wrong? W& can display the failed theorems in this session by typing

-> (pp failed-thms)

to which the theorem pver replies

(setq failed-thms
'((implies (and (arrayp! a)
(numberp i)
(numberp j)
(equalij))
(allzero ai)))
(defn allzero
(@aij)
(if (lessp j i)
t
(and (allzero a (add1 i) j)
(equal (selecta! a i) 0)))
nil)))

We et to see our previous failure with the definitionatizero as well as our latest
problem. Theproblem is obvious; we ardrtesting anything for zero in the/potheses
of the theorem, so we campossibly expect it to pre allzerotrue in the conclusionWe
are missing aypothesis. Lets try again.

-> (prove-lemma allzero-single-rule

(rewrite)

(implies (and (arrayp! a)
(numberp i)
(numberp j)
(equalij)

(equal (selecta! a i) 0))
(allzero a i j)))

We haveadded the ypothesigequal! (selecta! a i) Oand the theorem pver is now ale
to prove this quite easily.

This conjecture simplifies, using linear arithmetic, rewriting
with allzero-void-rule and x-not-less-than-x, and unfolding the
functions equal and allzero, to:

t.
Q.E.D.

[3.20.1333330000000008]
allzero-single-rule

Much better Again, a trivial proof.

Now we et to a hard but crucial lemma&Vhen a program is iterating through an array
clearing each element to zero, we will need to be able tar shat clearing each
additional element extends trelzero property of the array This will require an
inductive proof.

-> (prove-lemma allzero-extend-upward-rule

(rewrite)

(implies (and (arrayp! a)
(numberp i)
(numberp j)
(allzero a'ij)

(equal (selecta! a (add1l j)) 0))
(allzero a'i (add1 j))))

Turning the problemer to the theorem pneer...

Call the conjecture *1.

Let us appeal to the induction principle. The recursive
terms in the conjecture suggest four inductions. They merge
into two likely candidate inductions. However, only one is
unflawed. We will induct according to the following scheme:

(and (implies (lessp ji) (p aij))
(implies (and (leqij) (p a (addl) j))
(paij).
Linear arithmetic informs us that the measure
(difference (add1 j) i) decreases according to the well-founded
relation lessp in each induction step of the scheme. The above
induction scheme generates three new formulas:

Case 3. (implies (and (lessp j i)
(arrayp! a)
(numberp i)
(numberp j)
(allzero ai))
(equal (selecta! a (add1l j)) 0))
(allzero ai (add1 j))),

which simplifies, appealing to the lemmas allzero-void-rule
and subl-addl, and unfolding allzero and lessp, to four new
formulas:

Case 3.4.
(implies (and (lessp j i)
(arrayp! a)
(numberp i)
(numberp j)
(equal (selecta! a (add1 j)) 0)
(leq (subl i) j))
(allzero a (add1 i) (add1 j))),

which again simplifies, using linear arithmetic, to:

(implies (and (lessp j (plus 1 j))
(arrayp! a)
(numberp (plus 1j))
(numberp j)
(equal (selecta! a (add1l j)) 0)
(leg (subl (plus 1)) j)
(allzero a
(addl (plus 1))

(add1 j))).

But this again simplifies, using linear arithmetic,
rewriting with plus-1, subl-add1, allzero-void-rule,
and x-not-less-than-x, and unfolding the definitions of
lessp, plus, numberp, addl, and subl, to:

t.

Case 3.3.
(implies (and (lessp j i)
(arrayp! a)
(numberp i)
(numberp j)
(equal (selecta! a (add1l j)) 0)
(leg (subli))
(equal (selecta! a i) 0)).

This again simplifies, using linear arithmetic, to:

(implies (and (lessp j (plus 1 }))
(arrayp! a)
(numberp (plus 1j))
(numberp j)
(equal (selecta! a (add1l j)) 0)
(leg (subl (plus 1)) j)
(equal (selecta! a (plus 1 j)) 0)).

But this again simplifies, applying the lemmas plus-1,
subl-addl, and x-not-less-than-x, and unfolding the
functions lessp, plus, numberp, addl, subl, and equal, to:

t.

Case 3.2.
(implies (and (lessp j i)

(arrayp! a)

(numberp i)

(numberp j)

(equal (selecta! a (add1 j)) 0)
(equal i 0))

(allzero a (add1 i) (add1 j))),

which again simplifies, using linear arithmetic, to:

t.

Case 3.1.
(implies (and (lessp j i)

(arrayp! a)

(numberp i)

(numberp j)

(equal (selecta! a (add1 j)) 0)
(equal i 0))

(equal (selecta! a i) 0)),

which again simplifies, using linear arithmetic, to:
t.

Case 2. (implies (and (leq i j)
(not (allzero a (add1 i) j))
(arrayp! a)
(numberp i)
(numberp j)
(allzero a'ij)
(equal (selecta! a (add1l j)) 0))
(allzero ai (addl)))),

which simplifies, opening up allzero, to:
t.

Case 1. (implies (and (leq i)
(allzero a (add1 i) (addl j))
(arrayp! a)
(numberp i)
(numberp j)
(allzero ai))
(equal (selecta! a (add1l j)) 0))
(allzero ai (add1 j))),

which simplifies, applying subl-addl1, and opening up the
definitions of allzero, lessp, and equal, to:
t.

That finishes the proof of *1. Q.E.D.

[2 9.84999999999998 1.966667000000014]

In 30 seconds, an indueti proof, produced without manual intemtion. Thisis Boyer
and Moores geat accomplishmentlt took them seen years to write the program that
does this.Note that our earlier lemmallzero-void-rule was used in the proof; we are
teaching the pneer more and more facts abaoaitzero.

Now a semingly simple but non-trivial property; storing into the array outside the
bounds ofallzero does not affect thallzero property.

-> (prove-lemma allzero-unchanged-1-rule

(rewrite)

(implies (and (numberp i)
(numberp j)
(arrayp! a)
(allzero ai))

(numberp x)
(or (lessp x i) (lessp j x)))
(allzero (storeal ax v) i}))))

The proer takes oer...

This conjecture simplifies, opening up the function or, to
two new goals:

Case 2. (implies (and (numberp i)
(numberp j)
(arrayp! a)
(allzero a'ij)
(numberp x)
(lessp x 1))
(allzero (storea! a x v) i))),

which we will name *1.

Case 1. (implies (and (numberp i)
(numberp j)
(arrayp! a)
(allzero ai))
(numberp x)

(lesspjx))
(allzero (storea! a x v) i j)),

which we would usually push and work on later by induction.
But if we must use induction to prove the input conjecture,

we prefer to induct on the original formulation of the

problem. Thus we will disregard all that we have previously
done, give the name *1 to the original input, and work on it.

So now let us consider:

(and (implies (and (numberp i)

(numberp j)
(arrayp! a)
(allzero a'ij)
(numberp x)
(lessp j x))

(allzero (storea! a x v) i}))

(implies (and (numberp i)

(numberp j)
(arrayp! a)
(allzero ai))
(numberp x)
(lessp x 1))

(allzero (storea! a x v) i)))),

which we named *1 above. We will appeal to induction. The

recursive terms in the conjecture suggest 12 inductions.
They merge into three likely candidate inductions. However,
only one is unflawed. We will induct according to the following
scheme:
(and (implies (lesspji) (paxvij))
(implies (and (leqij) (p ax v (addli))))
(paxvij)).
Linear arithmetic informs us that the measure (difference
(addl) i) decreases according to the well-founded relation
lessp in each induction step of the scheme. The above induction
scheme produces the following seven new goals:

Case 7. (implies (and (lessp j i)
(numberp i)
(numberp j)
(arrayp! a)
(allzero ai))
(numberp x)

(lessp j x))
(allzero (storea! a x v) i })).

This simplifies, applying the lemmas allzero-void-rule and
store-is-proper, to:

t.

Case 6. (implies (and (leq i j)
(not (allzero a (add1 i) j))
(numberp i)
(numberp j)
(arrayp! a)
(allzero ai))
(numberp x)

(lessp j x))
(allzero (storea! a x v) i })).

This simplifies, unfolding the definition of allzero, to:
t.

Case 5. (implies (and (leq i j)
(allzero (storea! a x v) (add1 i) j)
(numberp i)
(numberp j)
(arrayp! a)
(allzero a'ij)

(numberp x)

(lessp j x))
(allzero (storea! a x v) i))).

This simplifies, rewriting with select-of-store, and unfolding
the function allzero, to:

(implies (and (leq i))
(allzero (storea! a x v) (add1 i) j)
(numberp i)
(numberp j)
(arrayp! a)
(allzero a (add1 i) j)
(equal (selecta! a i) 0)
(numberp x)
(lessp j x)
(equal x 1))

(equal v 0)).

This again simplifies, trivially, to:
t.

Case 4. (implies (and (lessp j i)
(numberp i)
(numberp j)
(arrayp! a)
(allzero ai))
(numberp x)
(lessp x i)
(allzero (storea! a x v) i j)).

This simplifies, applying allzero-void-rule and
store-is-proper, to:

t.

Case 3. (implies (and (leq i j)
(leq x j)
(leq (addl i) x)
(numberp i)
(numberp j)
(arrayp! a)
(allzero ai))
(numberp x)
(lessp x 1))

(allzero (storea! a x v) i})),
which simplifies, using linear arithmetic, to:
t.

Case 2. (implies (and (leq i j)

(not (allzero a (addl1 i) j))
(numberp i)

(numberp j)

(arrayp! a)

(allzero ai))

(numberp x)

(lessp x 1))

(allzero (storea! a x v) i })),

which simplifies, unfolding the definition of allzero, to:
t.

Case 1. (implies (and (leq i)

(allzero (storea! a x v) (add1 i) j)
(numberp i)

(numberp j)

(arrayp! a)

(allzero ai))

(numberp x)

(lessp x 1))

(allzero (storea! a x v) i})),

which simplifies, rewriting with the lemma select-of-store,
and opening up the function allzero, to:

(implies (and (leq i j)
(allzero (storea! a x v) (add1 i) j)
(numberp i)
(numberp j)
(arrayp! a)
(allzero a (add1 i) j)
(equal (selecta! a i) 0)
(numberp x)
(lessp x i)
(equal x 1))

(equal v 0)).

However this again simplifies, using linear arithmetic, to:

That finishes the proof of *1. Q.E.D.

[7 9.36666600000002 2.65000099999999]
allzero-unchanged-1-rule

An unexpectedly difficult proof; the prer went down a blind alle backed up, started
over, began induction, performed a case analysis, and found a proof.

For our next rule, we pne that storing zero into an array does not causealizero
predicate to become false.

-> (prove-lemma allzero-unchanged-2-rule

(rewrite)

(implies (and (allzero a i j)
(arrayp! a)
(numberp i)
(numberp j)

(numberp x))
(allzero (storea! a x 0) i j)))

The proer replies:

Call the conjecture *1.

We will appeal to induction. Four inductions are suggested
by terms in the conjecture. They merge into two likely candidate
inductions. However, only one is unflawed. We will induct
according to the following scheme:

(and (implies (lesspji) (paxij))
(implies (and (leqij) (p a x (add1 i) j))
(paxij)).
Linear arithmetic informs us that the measure
(difference (add1 j) i) decreases according to the well-founded
relation lessp in each induction step of the scheme. The above
induction scheme produces the following three new goals:

Case 3. (implies (and (lessp j i)
(allzero a'ij)
(arrayp! a)
(numberp i)
(numberp j)
(numberp x))
(allzero (storea! a x 0) ij)).

This simplifies, rewriting with allzero-void-rule and
store-is-proper, to:

t.

Case 2. (implies (and (leq i j)
(not (allzero a (addl1 i) j))
(allzero ai))
(arrayp! a)
(numberp i)
(numberp j)
(numberp x))
(allzero (storea! a x 0) ij)),

which simplifies, opening up allzero, to:
t.

Case 1. (implies (and (leq i)
(allzero (storea! a x 0) (add1)))
(allzero a'ij)
(arrayp! a)
(numberp i)
(numberp j)

(numberp x))
(allzero (storea! a x 0) i)),

which simplifies, applying select-of-store, and opening up
the functions allzero and equal, to:

t.

That finishes the proof of *1. Q.E.D.

[2 0.23333099999997 1.10000200000001]
allzero-unchanged-2-rule

That one wasnhtoo hard.

Finally, the rule that lets us get some pdyodm usingallzero in a program grification;
we shaov that if allzero is true for A from | to J, then for grelement X between | and J,
then A[X] = 0.

-> (prove-lemma allzero-select-rule

(rewrite)

(implies (and (allzero a i j)
(numberp i)
(numberp j)
(arrayp! a)
(numberp x)
(leg x j)
(leq i x))

(equal (selecta! a x) 0)))

Over to the preer.

WARNING: Note that allzero-select-rule contains the free
variables j and i which will be chosen by instantiating
the hypothesis (allzero a i j).

Here the preer grumbles at us; our rule is not well chosen according to its built-in ideas
as to what an efficient rewrite lemma is. Rules of this type may ddavn the praver in

later proofs. In this case, though, there is no better way to state thisThdetheorem
prover proceeds; this was only aARNING. Thereis no risk to soundness here.

Name the conjecture *1.

Let us appeal to the induction principle. There are seven

plausible inductions. They merge into three likely candidate

inductions. However, only one is unflawed. We will induct

according to the following scheme:

(and (implies (lesspji) (paxij))
(implies (and (leqij) (p a x (add1 i) j))
(paxij)).

Linear arithmetic establishes that the measure
(difference (add1 j) i) decreases according to the well-founded
relation lessp in each induction step of the scheme. The above
induction scheme generates three new formulas:

Case 3. (implies (and (lessp j i)

(allzero ai))
(numberp i)
(numberp j)
(arrayp! a)
(numberp x)

(leg x j)

(leg i x))

(equal (selecta! a x) 0)),

which simplifies, using linear arithmetic, to:
t.

Case 2. (implies (and (leq i j)
(not (allzero a (add1 i) j))
(allzero ai))
(numberp i)
(numberp j)
(arrayp! a)
(numberp x)
(leg x j)
(leg i x))
(equal (selecta! a x) 0)),

which simplifies, unfolding allzero, to:
t.

Case 1. (implies (and (leq i j)
(lessp x (add1 i))

(allzero a'ij)
(numberp i)
(numberp j)
(arrayp! a)
(numberp x)

(leq x j)

(leg i x))

(equal (selecta! a x) 0)),

which simplifies, using linear arithmetic, to:

(implies (and (leq i))

(lessp i (addl 1))
(allzero ai))
(numberp i)
(numberp j)
(arrayp! a)
(numberp i)
(leqij)
(leqii)

(equal (selecta! a i) 0)).

But this again simplifies, applying subl-addl, and opening
up lessp, numberp, equal, and allzero, to:

(implies (and (equal i 0)
(allzeroa 0j)
(numberp j)
(arrayp! a))
(equal (selecta! a 0) 0)),

which again simplifies, opening up the definitions of
add1, lessp, equal, and allzero, to:

t.

That finishes the proof of *1. Q.E.D.

[15.01.266665999999987]
allzero-select-rule

Success. Wnow havea st of rules which will aller us to seallzero in a \erification
and to use it in most of the reasonable ways to use such a prediltaee that this

approach will work for ay predicate based on properties of individual array elements.
Allzero is a simple example.

We ae done proving; it is time to mala lbrary file for use with the &fifier (or for later
use withnote-lib in case we need some more lemmas for our verification).

-> (make-lib 'allzero)
(%%Sunopenedport %$unopenedport)

The files allzero.lib and allzero.lisp have mow been created in the current directory
Together these constitute ourvn&nowledge baseWe ae nav ready to leae the Rule
Builder.

-> (exit)

This returns us to the UNIX shell. At this point, we can put our mees in the werking
directory created by the Verifier for the prograxample6.pfby using theputrules

utility program, which extracts all the needed information from a Rule Builder database
and puts it into a much more compact file which the Verifier can use.

% putrules allzero.lib example6_d

Putrules runs and prints some messages. This is just a format translation; nothing
profound is going on here.

Processing database allzero.lib
Installing new database in example6_d

We @an nav rerun our verification.

% masver example6.pf

and the verifier prints

Pass 1:
Pass 2:
Pass 3:

Verifying example6
No errors detected

S0 our verification is a success.

7.6 Additional output from the verifier

To show what the Verifier actually does with the information\pded through rules, we
shav some of the diagnostic output thenfier produces for the use of those building and
testing rules. When aevification is unsuccessful, it is usually best to try to fix the
problem by looking at the source program. There are, though, additional outputs
awailable from the Verifier for dealing with difficult problems.

This section is not intended tovgia eal understanding of othe Verifier works. There

is an internal documentation manual for therifier, and the sections of that manual
entitled Icode to Jcode Tanslator and Verification Condition Generator cover the
generation of verification conditions and the internal file formats in much greater detail.

7.6.1 Thelogging file

The output bely al appears in the filgp3-vcs in the \érifier's <ratch directory
programname-dvcg flag is set on the call to pasver.)

7.6.1.1 Therule listing

The first part of this file is the list of rules found in théedatabasefile.

allzero-extend-upward-rule --
Usable on conclusions only, free variables (A | J g00002)
Trigger pattern sequence: ((allzero A 1 g00002) (allzero A'1J))

arrayp!(A)

and numberp!(l)

and numberp!(J)

and allzero(A,1,J)

and (A[addn!(J,1)] = 0)

implies
allzero(A,l,addn!(J,1))

We remember this rule from the Rule Builder session. Here, the rules appear in infix
form, in Rascal-like motation. Operatorsvhich have o Pascal-F source representation
appear as function calls. These names all end Withtd avoid interference with user
defined functions. Note that numberp has becaomaberp!, and (addl J) has become
addn!(J,1), where addn! is the plus function (natural number add) from the Rule

Builder.

The list of free wariables lists all the terms which must be bound when the rule is
instantiated. Thedlummy nameg00002is a placeholder for thaddn! term in the
conclusion.

The trigger pattern sequenceshovs when the rule will be appliedThe Verifier will

look at the erification condition, and will try to match the first pattern in the sequence.
Once it matches, the variables in that pattern are bound and the Verifier begins looking
for the second pattern in the sequence. The message “usable on conclusions only’
indicates that the first pattern is general enough (containing only one function symbol)
that applying the ruleverywhere in gery way thatallzero appeared would sho down

the system too much. So this rule will only be applied wdlezero appears in a proof

goal, that is, something written in A8SERT, STATE, SUMMARY, ENTRY, exit, or
INVARIANT, or (not possible in this case) in an internally generated requirement used to
insure subscripts within range or arithmetic results within bouwdghin this limitation,

rules are applied invery possible combination of ays, but only one deep, so if a proof
can be found in one step with theeaj rules, it will be found.

allzero-select-rule --
Usable on conclusions only, free variables (A 1 J X)
Trigger pattern sequence: ((selecta! A X) (allzero A | J))

allzero(A,1,J)
and numberp!(l)
and numberp!(J)
and arrayp!(A)
and numberp!(X)
and not gtn!(X,J)
and not gtn!(l,X)
implies

AX]=0

Note that A[X] is(selecta! A X)in the pattern. The functiogtn! is the greater than
operator for the natural numbers.

allzero-single-rule --
Usable on conclusions only, free variables (A | J)
Trigger pattern sequence: ((allzero A 1J))

arrayp!(A) and numberp!(l) and numberp!(J) and (I = J) and (A[l] = 0)
implies
allzero(A,1,J)

allzero-unchanged-1-rule --
Usable anywhere, free variables (A1 J V X)
Trigger pattern sequence: ((allzero (storea! A X V) 1 J))

numberp!(l)

and numberp!(J)

and arrayp!(A)

and allzero(A,1,J)

and numberp!(X)

and (gtn!(1,X) or gtn!(X,J))

implies
allzero(<A,X,V>,1,J)

Note that this rule is usableyamhere. Becausthere are nested function symbols in the
pattern, we dom’expect to see too mgplaces where this rule could be applied without
purpose. Alsaote the appearance oA,X,V> which is the infix form of (storea! A X
V).

allzero-unchanged-2-rule --
Usable anywhere, free variables (A 1 J X)
Trigger pattern sequence: ((allzero (storea! A X 0) 1 J))

allzero(A,1,J)

and arrayp!(A)

and numberp!(l)

and numberp!(J)

and numberp!(X)

implies
allzero(<A,X,0>,1,J)

allzero-void-rule --
Usable on conclusions only, free variables (A | J)
Trigger pattern sequence: ((allzero A 1J))

arrayp!(A) and numberp!(l) and numberp!(J) and gtn!(l,J)
implies
allzero(A,1,J)

The following rules are part of the standard database, and are used Yorg pro
definedness.

arraytrue-extend-upward-rule --
Usable on conclusions only, free variables (A | J g00005)
Trigger pattern sequence: ((arraytrue! A | g00005) (arraytrue! A 1 J))

(arraytrue!(A,1,J) = true) and (alltrue!(A[addn!(J,1)]) = true)
implies
arraytrue!(A,l,addn!(J,1)) = true

arraytrue-single-rule --
Usable on conclusions only, free variables (A I)
Trigger pattern sequence: ((selecta! A I))

arraytrue!(A,l,1) = true = alltrue!(A[l]) = true

arraytrue-unchanged-rule --
Usable anywhere, free variables (A 1JV X)
Trigger pattern sequence: ((arraytrue! (storea! A X V) | J))

numberp!(X)
and numberp!(l)
and numberp!(J)
and arrayp!(A)
and (arraytrue!(A,l,J) = true)
and (gtn!(1,X) or gtn!(X,J))
implies
arraytrue!(<A,X,V>,1,J) = true

arraytrue-void-rule --
Usable on conclusions only, free variables (A | J)
Trigger pattern sequence: ((arraytrue! A | J))

gtn!(1,J) implies arraytrue!(A,l,J)

7.6.1.2 Theverification trace

Now we go on b the verification goals themsels. Ifa verification condition hadailed,
it would hare been printed, but all these succeeded, so only the goal and path. appear
This is exactly the text that would appear as an error message if the proof failed.

Verification condition for {example6.pf:18} tablel1[(j- 1) + 1] =0
(ASSERT assertion)
Path:
{example6.pf:11} Start of "example6"
{example6.pf:11} FOR loop never entered
Tried arraytrue-single-rule.
VC #1 proved in 1.00 seconds.

This one took one second, aadaytrue-single-rule was successfully pattern-matched,
although it is irreleant in this case.The messag€eTried” indicates only that the rule
could hae been applied, not that it actually was.

Verification condition for {example6.pf:18} tablel[(j-1) + 1] =0
(ASSERT assertion)
Path:
{example6.pf:11} Start of "example6”
{example6.pf:11} FOR loop exit
Tried allzero-select-rule.
Tried arraytrue-single-rule.
VC #2 proved in 2.70 seconds.

Here there is some statement about definedness in the hypothesis efification
condition which triggered the built-in ruéaraytrue-single-rule.

Verification condition for {example6.pf:16} allzero(table1,1,100)
(ASSERT assertion)
Path:
{example6.pf:11} Start of "example6”
{example6.pf:11} FOR loop never entered
Tried allzero-extend-upward-rule.
Tried allzero-single-rule.
Tried allzero-void-rule.
VC #3 proved in 0.63 seconds.

We db not get ai useful information about which rule did it, if an

Verification condition for {example6.pf:16} allzero(table1,1,100)
(ASSERT assertion)
Path:
{example6.pf:11} Start of "example6”
{example6.pf:11} FOR loop exit
Tried allzero-extend-upward-rule 2 times.
Tried allzero-single-rule.
Tried allzero-void-rule.
VC #4 proved in 1.00 seconds.

Verification condition for {example6.pf:11} i <= 99
(FOR loop count)

Path:
{example6.pf:11} Start of "example6”

VC #5 proved in 0.75 seconds.

Verification condition for {example6.pf:14} allzero(tablel,1,i)
(STATE assertion)

Path:
{example6.pf:11} Start of "example6”
{example6.pf:15} Back to top of FOR loop
Tried allzero-unchanged-2-rule 2 times.
Tried allzero-unchanged-1-rule 2 times.
Tried allzero-extend-upward-rule 2 times.
Tried allzero-single-rule.
Tried allzero-void-rule.

VC #6 proved in 28.81 seconds.

This is the inductie ase around the loop, the hard one. It took 28 seconds.

Verification condition for {example6.pf:14} allzero(tablel,1,i)
(STATE assertion)

Path:
{example6.pf:11} Start of "example6”
{example6.pf:11} Enter FOR loop
Tried allzero-unchanged-2-rule 2 times.
Tried allzero-unchanged-1-rule 2 times.
Tried allzero-extend-upward-rule 2 times.
Tried allzero-single-rule.
Tried allzero-void-rule.

VC #7 proved in 2.45 seconds.

Verification condition for {example6.pf:13} allzero(tablel,1,i - 1)
(ASSERT assertion)

Path:
{example6.pf:11} Start of "example6”
{example6.pf:15} Back to top of FOR loop
Tried allzero-unchanged-2-rule.
Tried allzero-unchanged-1-rule.
Tried allzero-extend-upward-rule.
Tried allzero-single-rule.
Tried allzero-void-rule.

VC #8 proved in 9.25 seconds.

Verification condition for {example6.pf:13} allzero(tablel,1,i - 1)
(ASSERT assertion)

Path:
{example6.pf:11} Start of "example6”
{example6.pf:11} Enter FOR loop
Tried allzero-unchanged-2-rule.
Tried allzero-unchanged-1-rule.
Tried allzero-extend-upward-rule.
Tried allzero-single-rule.
Tried allzero-void-rule.

VC #9 proved in 2.03 seconds.

Verification condition for {example6.pf:12} i - 1 <= 99
(subscript check for "table1" 1..100)

Path:
{example6.pf:11} Start of "example6”
{example6.pf:15} Back to top of FOR loop

VC #10 proved in 0.30 seconds.

This is an internally-generated proof goal, a subscript check.

Verification condition for {example6.pf:12} i - 1 <= 99
(subscript check for "table1" 1..100)

Path:
{example6.pf:11} Start of "example6”
{example6.pf:11} Enter FOR loop

VC #11 proved in 0.26 seconds.

Verification condition for {example6.pf:12}i-1>=0
(subscript check for "table1" 1..100)

Path:
{example6.pf:11} Start of "example6”
{example6.pf:15} Back to top of FOR loop

VC #12 proved in 0.31 seconds.

Verification condition for {example6.pf:12}i-1>=0
(subscript check for "table1" 1..100)

Path:
{example6.pf:11} Start of "example6”
{example6.pf:11} Enter FOR loop

VC #13 proved in 0.26 seconds.

Verification condition for {example6.pf:12} "i" is defined
Path:
{example6.pf:11} Start of "example6”
{example6.pf:15} Back to top of FOR loop
VC #14 proved in 0.08 seconds.

This is a test to makaure the ariablei was defined at line 12. These usually aeryw
fast to proe.

Verification condition for {example6.pf:12} "i" is defined
Path:
{example6.pf:11} Start of "example6”
{example6.pf:11} Enter FOR loop
VC #15 proved in 0.06 seconds.

That is the summary of theesification. Whenra \erification is unsuccessful, and it is is
not clear wly, examination of this file can be quite useful. Remember that this file is not
generated unless requested, and generating it doedsln the verification by about
20-40%.

7.6.1.3 Whatverification conditions look like

It is not usually necessary for the user to look atification conditions, but when
difficulties are encountered it can sometimes be us&illien using a compileit is
sometimes useful to turn on a listing of generated object code. Thalequlisting for

a \erifier is the listing of verification conditiond/Me thus provide an explanation as to
how to read a verification condition.

Had a verification condition failed, in the al@oexample, we would see, in this log of
verification conditions, the verification condition itself. If we force some errors by trying
to run the verification alwe without ary rules aboutllzero available, we would find the
information bela in the log.

Verification condition for {example6.pf:14} allzero(tablel,1,i)
(STATE assertion)

Path:
{example6.pf:11} Start of "example6”
{example6.pf:15} Back to top of FOR loop

(TEMP4_ v01 = 1)
and (TEMP5__v01 =100)
and true
and (i_4v03 <= TEMP5__ v01)
and allzero(tablel_2v02,1,i 4v03)
and (i_4v03 >= TEMP4__ v01)
and (i_4v03 < TEMP5__ v01)
and (i_4v03 <= 99)
and (i_4v04 =i _4v03 + 1)
and (i_4v04 - 1 >=0)
and (i_4v04 - 1 <=99)
and (tablel 2v03 = (tablel 2v02[(i_4v04 - 1) + 1] := 0))
and allzero(tablel_2v03,1,i_4v04 - 1)
implies
allzero(tablel 2v03,1,i 4v04)

VC #6 FAILED in 1.48 seconds.

Here, we see the actual verification condition to begoro Thisverification condition is
for the path around the loop, with the proof goalafizero(tablel,1,i)in the SRATE
statement.

Verification conditions are walays of the form “big conjunction implies proof goal'The

proof goal is alvays the term printed after the implication. The terms in y@othesis

are generated by backwards tracing through the program, examining each statement along
the indicated pathThe details of he this is done are beyond the scope of this manual,

but generally follav the backwards-tracing approach of Floyd, Manna, and othérs.

basic idea is that programs are wated to formulas by tracing backwards through each
statement, using a wevariable name for each variableesy time its value is changed.

For example, the Pascal-F statements

X =1;
X =X+ 1
assert(x = 2);

would generate a verification condition of the form

x_1v0l1=1
and x_1v02 = (x_1v01 + 1)
implies

x_1v02 =2

Note thatx_1vOlandx_1v02represent values ofat different points in the progranin

our allzero example, the variable namesindtablel appear here in modified form; the
tablel 2v03string is the wriabletablel after the third assignment to it. The names are
actually constructed by taking the usemme of the variable, adding a delimiter and a
variable serial numbelso that ariables with the same name but in different scopes are
made unique) and addingvaor ad, where av indicates that thealue of the variable is
being referred to, and indicates that thalefinedness partof the \ariable is being
referenced. Finallya o dgit suffix indicating, as in the little example withabove,
which value of the variable we are referring to, is added to the name. the code.

The v or d component deserves some extra discussion. Definedness of variables is
handled by a comnient fiction. We pretend that associated with each variable there is a
definedness flag, set to true whey aalue is assigned to the variable and testedeny e
reference to theariable. V& then try to pree tat the flag is alays true at eery
reference. Br an array or record our definedness part will be an array or record with all-
Boolean elements or West-level fields. Whenthe Verifier generates aesification
condition about the definedness of a variable, it constructs a name usirigttee

Not shavn in the verification condition is the type information. The theorenaepias
available to it all the information in the type declarations of the Pascal-F prodfam.
example, if the declaration

var i: 0..100;

appeared in a Pascal-F program, the theorenepwould be able to pre

true
implies
i_1v01 <= 100

without ary difficulty. We can assume that all variables stay within their type because we
generate proof goals for the bounds g variable at eery assignment to thaaviable.
Since we also check awepy reference to \ery variable that the variable has been
initialized (defined) we are thus safe in assuming that variables stay within their types.

7.6.2 Thediagnostics file

The file p3-diags contains ay error messages produced during tlegification. Thisis
useful if messages scroll by on aTCrminal and are thereby losbnly messages from

pass 3 appear in this file, but pass 3 is where all the time goes.
7.6.3 Therule data base file

The rule data base filelledatabaseis created by theutrules utility and read by the
Verifier. It contains the rule data base to be used for the current verification.

7.6.4 Thehistory file

The history filehistory contains the entire intermediate code for each program unit
previously verified successfully On reveification attempts, if the newly generated
intermediate code matches that found in the history #gfieation of that program unit

is skipped.Remoaval of this file will force a complete rerun of thenfication. Notethat
putrules will remove tis file if a nev database is used with fiifentdefn entries for
some previously usatkfn definition.

8. Theformal theory of the Rule Builder

The theory built into the Rule Builder is the y@p-Moore theory of the natural numbers,
plus the definitions and lemmasven in this chapter The notation is that ofA
Computational Logic. Note that gerything here has been men by the Bg/er-Moore
prover.

8.1 Thetheory
We kegn by defining the notion of Boolean value.

Definition.
(booleanp! X)

(o; (equal X (true))
(equal X (false)))

The next step is to add a large batch of carefully chosen facts about the natural numbers.

Theorem. equal-lessp:
(equal (equal (lessp X Y) 2)
(if (lessp X Y)
(equal t 2)
(equal f 2)))

Theorem. associaity-of-plus:
(equal (plus (plus X Y) 2)
(plus X (plus Y 2)))

Theorem. equal-times-0:
(equal (equal (times X Y) 0)
(or (zerop X) (zerop Y)))

Theorem. commutafity2-of-plus:
(equal (plus X (plus Y 2))
(plus Y (plus X 2)))

Theorem. commutafity-of-times:
(equal (times X Y) (times Y X))

Theorem. distribtivity-of-times-over-plus:
(equal (times X (plus Y Z))
(plus (times X Y) (times X Z)))

Theorem. plus-O:
(equal (plus X 0) (fix X))

Theorem. plus-1:
(implies (numberp X)
(equal (plus 1 X) (add1 X)))

Theorem. x-not-less-than-x:
(equal (lessp X X) f)

Theorem. times-0:
(equal (times X 0) 0)

Theorem. plus-non-numberp:
(implies (not (numberp Y))
(equal (plus XY) (fix X)))

Theorem. times-non-numberp:
(implies (not (numberp Y))
(equal (times X Y) 0))

Theorem. associaity-of-times:
(equal (times (times X Y) 2Z)
(times X (times Y Z)))

Theorem. commutatity2-of-times:
(equal (times X (times Y Z))
(times Y (times X Z)))

Theorem. plus-addl:
(equal (plus X (add1 Y))
(if (numberp Y)
(addl (plus X Y))

(add1 X)))

Theorem. times-add1:
(equal (times X (add1 Y))
(if (numberpY)
(plus X (times X Y))
(fix X)))

Theorem. commutatity-of-plus:
(equal (plus X Y) (plus Y X))

Theorem. plus-equal-0:
(equal (equal (plus A B) 0)
(and (zerop A) (zerop B)))

Theorem. plus-cancellation:
(equal (equal (plus A B) (plus A C))
(equal (fix B) (fix C)))

Theorem. plus-right-id2:
(implies (not (numberp Y))
(equal (plus XY) (fix X)))

Theorem. monotonicity-of-plus-1:
(implies (and (numberp A)
(numberp B)
(numberp C))
(equal (lessp (plus A B) (plus A C))
(lessp B Q)))

Theorem. diference-x-x:
(equal (difference X X) 0)

Theorem. diference-plus-1:
(equal (difference (plus X Y) X)
(fix Y))

Theorem. diference-plus-2:
(equal (difference (plus Y X) X)
(fix Y))

Theorem. equal-dérence-0:
(equal (equal O (difference X Y))
(not (lessp Y X)))

Theorem. zero-diérence:
(implies (lessp A B)
(equal (difference A B) 0))

Theorem. plus-diérence3:
(equal (difference (plus X Y) (plus X 2))
(difference Y Z))

Theorem. monotonicity-of-dérence-1:
(implies (and (numberp V)

(numberp Y)

(numberp 2)

(not (lessp Z V))

(not (lessp Y V)))

(equal (lessp (difference Y V)
(difference Z V))
(lessp Y 2)))

Theorem. monotonicity-of-dérence-2:
(implies (and (numberp V)

(numberp Y)

(numberp 2)

(lessp Z V)

(lessp Y V))

(equal (lessp (difference V 2Z)
(difference V'Y))
(lessp Y 2)))

Theorem. monotonicity-of-dérence-3:
(implies (and (numberp W)

(numberp V)

(numberp X)

(not (lessp X W))

(not (lessp X V)))

(equal (lessp (difference X V)
(difference X W))
(lessp W V)))

Theorem. times-zero:
(equal (times X 0) 0)

Theorem. distribtivity-of-times-over-difference:

(equal (times X (difference Y Z))
(difference (times X Y) (times X Z)))

Theorem. monotonicity-of-times-1.:
(implies (and (numberp X)
(numberp Y)
(numberp 2)
(not (zerop X)))

(equal (not (lessp (times X Y) (times X Z)))

(not (lessp Y 2))))

Theorem. monotonicity-of-times-3:
(implies (and (numberp A)
(numberp B)
(numberp C)
(not (equal C 0)))
(equal (lessp (times C A) (times C B))
(lessp A B)))

Theorem. monotonicity-of-times-by-ts:
(implies (and (lessp X Y) (lessp Z W))
(lessp (times X Z) (times Y W)))

Theorem. remaindet-x:
(equal (remainder X X) 0)

Theorem. remaindeguotient:
(equal (plus (remainder X Y)
(times Y (quotient X Y)))
(fix X))

Theorem. remaindeguotient-elim:
(implies (and (not (zerop Y)) (numberp X))
(equal (plus (remainder X Y)
(times Y (quotient X Y)))

X))

Theorem. remainderon-numeric:
(implies (not (numberp X))
(equal (remainder Y X) (fix Y)))

Theorem. remaindesrt-1:
(equal (remainder Y 1) 0)

Theorem. quotient-times:
(equal (quotient (times Y X) Y)
(if (zerop Y) 0O (fix X)))

Theorem. monotonicity-of-times:
(implies (and (numberp X)
(numberp Y)
(numberp 2)
(not (lessp Y 2)))
(equal (lessp (times X Y) (times X Z))

f)

We row add an object called undefined which will be needed in the definition of arrays.
This has nothing to do with theekifier's proofs of definedness; it is just a default object

introduced to makeelecta! a total function.

Shell Definition.

Add the shell undefined-object of zero arguments with
bottom object undefined,

recognizer undefinedp,

accessors,

and default values.

The definition of arrays is construeti An aray is actually represented as an ordered list
of subscript-value pairs.

Shell Definition.
Add the shell array-shell of three arguments with
bottom object empty-array,
recognizer array-recognizer,
accessors array-elt-value, array-elt-subscript, and array-pre
type restrictions (none-of), (one-of numberp), and:
(one-of array-recognizer)
and default values undefined, zero, and empty.array.

The predicatarrayp! is true only if an array is aalid ordered list of pairs, properly
ordered in increasing order of subscript. Note that something is an array only if the
subscripts in the list are in ascending order and no value part is UNDEFINED.

Definition.
(arrayp! A)
(if
(array-recognizer A)
(if (equal A (empty-array))
t
(if (or (not (numberp (array-elt-subscript A)))
(equal (array-elt-value A)
(undefined)))
f
(if (equal (array-pre A) (empty-array))
t
(and (lessp (array-elt-subscript (arrayypfg)
(array-elt-subscript A))
(arrayp! (array-preA))))))
f)

selecta! is the array subscripting function, which searches the list of pairs.

Definition.
(selecta! A l)

(if (equal (array-elt-subscript A) 1)
(array-elt-value A)
(if (equal (array-pre A) (empty-array))
(undefined)
(selecta! (array-preA) 1)))

storea! is quite complex, since it is actually a routine for inserting into an ordered list.
Our check on the validity of this is that we are able tor@ral the standard theorems
aboutselecta! andstorea!, which are axioms in the Oppen system.

Definition.
(storea! A 1V)

(if (and (arrayp! A) (numberp 1))
(if (equal A (empty-array))
(if (equal V (undefined))
A
(array-shell V | (empty-array)))
(if (equal (array-elt-subscript A) I)
(if (equal V (undefined))
(array-pre A)
(array-shell V | (array-preA)))
(if (lessp (array-elt-subscript A) 1)
(if (equal V (undefined))
A
(array-shell V 1 A))
(array-shell (array-elt-value A)
(array-elt-subscript A)
(storea! (array-preA) 1 V)))))

(empty-array))
The result oftorea! is shown to be a valid array.

Theorem. store-is-proper:
(equal (arrayp! (storea! A 1V))t)

We prove the classic lemmas abosgtlecta! andstorea! This not only shows thealidity
of our definition ofstorea! , but gives the Rule Builder a set of rules which comprise a
decision procedure for our array theory.

Theorem. select-of-store-1:
(implies (and (arrayp! A) (numberp 1))
(equal (selecta! (storea! A1V) 1)

V)

Theorem. store-of-select:
(implies (and (arrayp! A) (numberp 1))
(equal (storea! A | (selecta! A 1))

A)

Theorem. select-of-store-2:
(implies (and (arrayp! A)
(numberp 1)
(numberp J)
(not (equal 1 J2)))
(equal (selecta! (storea! A 1V) J)
(selecta! A J)))

Theorem. select-of-store:
(implies (and (arrayp! A)
(numberp 1)
(numberp J))
(equal (selecta! (storea! A 1V) J)
(if (equal I J) V (selecta! A J))))

Theorem. store-of-store-1:
(implies (and (arrayp! A) (numberp 1))
(equal (storea! (storea! A V) I W)
(storea! A 1 W)))

storer! is the record store functionThe Rule Builder does not kwoabout \érifier

record structures, but the definition as an undefined function allows the appearance of
storer! in rules. Of course, the only thing known about it in the Rule Builder is that if
the arguments tstorer! are the same, the result is the same. The Verifier proper has
built-in knowledge aboustorer! andselectr!O, but that knowledge is type-dependent

and cannot be used here.

Undefined Function.
(storer! AB C)

Undefined Function.
(selectr! r)

alltrue! is true of an object if and only if all its componentvéhdne Boolean alue
TRUE. The Verifier has built-in knowledge aboatitrue! and, as with the record
operators, that knowledge is type-dependent.

Undefined Function.
(alltrue! r)

Integers are bilt up by defining a Bger-Moore shell such that getive rumbers are a
shell whose rgative-guts field contains the natural number for the absolaligev This
creates a problem in that there is such a thing gstime z2ro. Thisdefinition of
integerp! disallons neydive zro, and all our operations on the integengenproduce

negaive zro.

Definition.
(integerp! X)

(if_(numberp X)
t
(if (negativep X)
(if (zerop (ngdive-guts X)) f t)
f))

This turns ngative zro into positre zro.

Definition.
(znormalize X)

(if_(negativep X)
(if (equal (ngaive-guts X) 0) 0 X)
X)

This is a cowmersion from a natural number to agadve rumber which aoids minus
zero.

Definition.
(zmonus X)

(znormalize (minus X))
Unary ngation.

Definition.
(negi! X)

(if (integerp! X)

(if (negativep X)
(negaive-guts X)
(zmonus X))

0)

Integer addition is defined by cases. Proofs aboutgertearithmetic thus generate
extensve @se analysis, and due to a limitation of theyddéMoore praer it does not
help to provide lemmas about nonrecugsiefinitions. Thereforéhere are no lemmas in
this knowledge base about the integer arithmetic functitinis. quite possible to pve
rules aboutaddi! and its friends, and it is not usually difficult, but such proofs run
slowly.

Definition.
(addi! X'Y)

(if (negativep X)
(if (negaivep Y)
(zmonus (plus (rgetive-guts X)
(negaive-guts Y)))
(if (lessp Y (ngaive-guts X))
(zmonus (difference (getive-guts X) Y))
(difference Y (ngaive-guts X))))
(if (negaivep Y)
(if (lessp X (ngaive-guts Y))
(zmonus (difference (myetive-guts Y) X))
(difference X (ngaive-guts Y)))
(plus X'Y)))

Definition.
(subi! XY)

(azidi! X (negi! Y))

Definition.
(muli! X'Y)

(if (negaivep X)
(if (negaivep Y)
(times (ngaive-guts X)
(negaive-guts Y))
(zmonus (times (rgative-guts X) Y)))
(if (negativep Y)
(zmonus (times X (rggtive-guts Y)))
(times X Y)))

Definition.
(divi! X'Y)

(if (negativep X)
(if (negaivep Y)
(quotient (ngative-guts X)
(negaive-guts Y))
(zmonus (quotient (rgative-guts X) Y)))
(if (negaivep Y)
(zmonus (quotient X (metive-guts Y)))
(quotient X Y)))

The integer relational operators are defined by cases.

Definition.
(Iti' X Y)

(if (negativep X)
(if (negaivep Y)
(lessp (ngaive-guts Y)
(negaive-guts X))
(not (and (equal (rgative-guts X) 0)
(zerop Y))))
(if (negativep Y) f (lessp X Y)))

Definition.
(gti! XY)

(itit Y X)

Definition.
(gei! XY)

(not (Iti! X Y))

Definition.
(lei XY)
(n:)t (Iti' Y X))

zabsis not actually used in rule building, but has been used in producing soundness
proofs for the definitions of integer arithmetic.

Definition.
(zabs X)

(if (negativep X) (negaive-guts X) X)

Definition.
(sign-mult X Y)

(if_(equal X1)
Y
(if (equal Y 1) -1 1))

Definition.
(positivep X)

(if_(numberp X)
(if (not (zerop X)) t 1)
f)

Definition.
(sign X)

(if_(numberp X)
1
(if (negaivep X) -1 Q)

Definition.
(switch s X)

(if_(equal s 1) X (negi! X))

Definition.
(negaive-and-non-zerop X)

(if (negaivep X)
(if (not (zerop (ngaive-guts X)))
tf)
f)
Definition.
(diff-plus-1 X Y)

(difference (add1 Y) X)

Thearraytrue! function is used in showing definednesstaytrue! of A is true froml
to J if and only if every element ofA within the rangeé to J is equal to true.The \érifier
will crank outarraytrue! forms when the user writes

defined(A,l1,J)
or

defined(A)
whereA is an array.

Definition.
(arraytrue! A 1J)

(if_(lessp JI)
t
(and (equal (alltrue! (selecta! A 1)) t)
(arraytrue! A (add1 1) J)))

We haveall the obvious rules aboatraytrue!.

Theorem. arraytrueeid-rule:
(implies (lessp J 1)
(arraytrue! A 1 J))

Theorem. arraytrue-single-rule:
(equal (equal (arraytrue! A11) t)
(equal (alltrue! (selecta! A 1)) t))

Theorem. arraytruexéend-upward-rule:
(implies (and (equal (arraytrue! A 1 J) t)
(equal (alltrue! (selecta! A (add1 J)))

)
(equal (arraytrue! A 1 (addl J)) t))

Theorem. arraytrue-unchanged-rule:
(implies (and (numberp X)

(numberp 1)

(numberp J)

(arrayp! A)

(equal (arraytrue! A1J)t)

(or (lessp X 1) (lessp J X)))

(equal (arraytrue! (storea! A X V) 1J)

)

Theorem. arraytrue-unchanged-2-rule:
(implies (and (numberp X)

(numberp)

(numberp J)

(arrayp! A)

(equal (alltrue! V) t)

(equal (arraytrue! A 1J) 1))

(equal (arraytrue! (storea! A X V) 1J)
B)

Theorem. arraytrue-select-rule:
(implies (and (arraytrue! A 1J)
(numberp 1)
(numberp J)
(numberp X)
(not (lessp X 1))
(not (lessp J X)))
(alltrue! (selecta! A X)))

Finally, we have the array construction function. This function is used to construct
constant arrays in which all elements are the sahie only use for this function is to
construct objects which represent the definedness parts of arrays known to be defined.
When an entire array replacement appearsast#l-f, the definedness part of the array

will be set equal to a value built widrrayconstruct! in the verification condition.

Definition.
(arrayconstruct! V 1 J)
(if (lessp J 1)
(empty-array)
(storea! (arrayconstruct! V (add1 1) J)
1V))

Theorem. arrayconstruct-is-arrayp:
(arrayp! (arrayconstruct! V | J))

Theorem. arrayconstruct-select-rule:
(implies (and (numberp 1)
(numberp J)
(numberp X)
(not (lessp X 1))
(not (lessp J X)))
(equal (selecta! (arrayconstruct! V I J) X)

V)

Theorem. arrayconstruct-implies-arraytrue-rule:
(implies (and (numberp 1)
(numberp J)
(equal (alltrue! V) t))
(equal (arraytrue! (arrayconstruct! V I J)

1 J)
t)

That is the built-in knowledge base. It takes abowataurs to proe.

9. Appendices
1. Restrictiongnd limitations
2. Reportingrouble
3. Acknownvledgements
4. References

9.1 Restrictionsand limitations

This release of the system is the first release, and while we taken etensve
precautions against unsoundness we cannot at this time dnahg statements about the
validity of the \erifications. Anumber of features are unimplemented or implemented
with restrictions; howeer, none of these limitations affect soundness.

9.1.1

Unimplementedeatures

The system is faithful to this manual except as notedibelo

9.1.2

9.1.3

9.1.4

Fixed point arithmetic is unimplemented.

The SUMMARY statement is not implemented.

Arrays with ngative lower bounds are prohibited.

Variant records are unimplemented.

Arrays with Boolean subscripts (not elements) are prohibited.
Most set operators are unimplemented.

The built-in functions of &scal are unimplemented. The type coercicmsand
ord, along with the Pascal-F named type coercions, are implemented.

The EFFECT declaration part is not fully implemented; EFFECT clauses are
accepted and checked but not utilized in proofs.

Restrictions

Side effect detection for functions is safef bverly restrictive. If a function has
side effects, essentially the onlyayit can be used is alone in an assignment
statement. Proceduresth side effects present no problems.

The \erifier's knowledge about multiplication is weak. Nothing yests the user
from building nev rules about the multiplication operatbut performance auld
be much better if the knowledge were built-in.

The built-in knowledge about definedness of arrays is limited; arrays must be
initialized in strictly increasing order of subscripiowever, it is possible to pree
more lemmas abouatrraytrue! to allov more general initialization if desired.

The target machine against which the Verifier verifies is the Ford Electronic Engine
Control 1V, and the 16-bit, twos complement restrictions of that machine are
enforced by the verifier.

There is no compiler code generator pass compatible wittetifeer at present, so
there is no way to run Pascal-F programs containgmification statementsThere
is a Rascal-F compiler for the EEC lYut it is not &ailable for distribution outside
Ford.

Knaown bugs

Rass 1 (Compiler pass)

Some VALUE statements generate unexpected syntax errors.

9.1.5

9.1.6

9.1.7

9.1.8

The compiler pass is not as solid as werild like; the intermediate code generated
for some operations confuses the decompiler in pass 2, resulting in fatal internal
errors.

Rass 2 (Semantic analysis)

FORWARD declarations will cause pass 2 to become confused about block
numbers and an internal check will abort the Verifier.

There is a worry that the semantics of the FOR loop exit test may not exactly match
the compilers for the case where the bounds are near to arithmetiowe or
underflav. The \erifier's mantics are consative kut may not be conseative
enough.

Records with only one field can create ambiguities as to whether a reference to a
data item refers to a field or the entire recofdhis can result in pass 2 internal
errors.

Rass 3 (Path tracing)

The optimization of verification conditions will sometimes cause a useful term to
be omitted from a hypothesis of a verification condition. The ommitted term will
be from a proof goal, and will be a mention of a function whogenaents contain

no variables needed in the proof at that pofktvork-around for this is known.

Rass 4 (Simplifier)

Rule handling is unreasonably wiin the presence of mgmules applicable to the
same expression.

In at least one known case, the numeric portion of theepfails to find a proof
for a simple formula known to be true.

RuleBuilder

Lemmas about nonrecwsi functions are not &fctively used by the Bger-Moore
prover. This seerly limits the proof power of the system with respect to the
integers.

The manual sections on hints are inadequate.

9.2 Reportingtrouble

Problems with the system should be reported to the addnessigithe preace. All
trouble reports should include copies of the files in the scratch diretherysource
program, and the error messages print&kfore submitting the trouble report, the
verification should be rerun with the keyletter on. This will rerun the verification with
all debug output turned on.

9.3 Acknownledgements

Pascal-F was desloped at the &rd Scientific Research Laboratories in Dearborn,
Michigan, by Dr Edward Nelson. The Verifier is the work of Brott Johnson, John
Nagle, Dr John Privitera, and DiDavid Sryder, of Ford Aerospace and Communications
Corporation. Dr Derek Oppen consulted on the theoremvaranodifications. The
assistance of DIRobert Boyer and Drday Moore, of the Uwersity of Texas at Austin,
has been ery valuable, and we are indebted to. teven German, of Harard
University, for his formulation of the problem of checking for run-time errdtmally, |
would like to hank Dr Shaun Devlin, of the Ford Motor Scientific Research Labs, for his
faith and encouragemenve the two years of the project.

John Nagle
9.4 Refeences
BOYER79 Boser, Robert S, and Moore, J. Strothéx Computational Lgic,
Academic Press, MeYork, 1979.
BOYERS80 Boyeand Mooe, private communication.
FLOYD67 Floyd, Robert., Assigning Meanings to dgrams, Mathematical

Aspects of Computer Sciende&roc. Symp. Applied Math.oV XIX
American Mathematical Sociefrovidence R1. 1967

GERMANS81 Germar;. M., Verifying the Absence of Common Runtimer&in
Computer Pograms, PhD Thesis, HarvdiUniversity 1981.

HOARE74 C.A.RHoare, Monitors: An Opeating System Structuring Concept,
Comm. ACM 17, pp. 549-557 (OctopEd74)
OPPEN79 OppenDerek, Simplification by Co-operating DecisionoBedures,

Computer Science Department, Stadfoniversity 1979.

STANFORD79 Lukham, German,.\Henle, Karp, Milne Oppen, Polak, Sterlis,
Stanfod Pascal Verifier User Manual, Computer Science
Department, StanfdrUniversity 1979.

