

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Application Note

Multimedia Processor for Mobile Applications

SD Memory Card Interface
--

EMMA Mobile1

Document No. S19895EJ1V0AN00

Date Published Aug. 2009

 2009

Printed in Japan

PREFACE

PREFACE

Purpose The purpose of this document is to specify the usage of EMMA Mobile1

SD Memory Card (SDM) interface.

Organization This document includes the following:

 Introduction

 Usage of SDM Interface

 Example of SDM Operation

 SD Driver Function

Notation Here explains the meaning of following words in text:

Note Explanation of item indicated in the text

Caution Information to which user should afford special attention

Remark Supplementary information

Related document The following tables list related documents.

Reference Document

Document Name Version/date Author Description

S19265EJ1V0UM00_ASMUGIO.pdf 1st Edition NECEL SMU&GPIO user’s manual

S19268EJ1V0UM00_1chip.pdf 1st Edition NECEL 1 chip user’s manual

S19361JJ2V0UM00_SDI.pdf 2nd Edition NECEL
SDM interface user’s

manual

S19907EJ1V0AN00_GD.pdf 1stEdition NECEL GD spec

Application Note S19895EJ1V0AN00

PREFACE

Application Note S19895EJ1V0AN00

Disclaimers

 The information contained in this document is subject to change without prior

notice in the future. Refer to the latest applicable data sheet(s) and user manual

when designing a product for mass production.

 No part of this document may be copied or reproduced in any form or by any means

without the prior written consent of NEC Electronics. NEC Electronics assumes no

responsibility for any errors that may appear in this document.

 NEC Electronics does not assume any liability for infringement of patents, copyrights or

other intellectual property rights of third parties by or arising from the use of NEC

Electronics products listed in this documents or any other liability arising from the use of

such products. No license, express, implied or otherwise, is granted under any patents,

copyrights or other intellectual property rights of NEC Electronics or others.

 Descriptions of circuits, software and other related information in this document are

provided for illustrative purposes in semiconductor product operation and application

examples. The incorporation of these circuits, software and information in the design of a

customers’ equipment shall be done under the full responsibility of the customer. NEC

Electronics assume no responsibility for any losses incurred by customers or third parties

arising from the use of these circuits, software and information.

 While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC

Electronics products, customers agree and acknowledge that possibility of defects thereof

cannot be eliminated entirely. To minimize risks of damage to property or injury (including

death) to persons arising from defects in NEC Electronics products, customers must

incorporate sufficient safety measures in their design, such as redundancy, fire-

containment and anti-failure features.

Note)

1. “NEC Electronics” as used in this document means NEC Electronics Corporation and also

includes its majority-owned subsidiaries.

2. “NEC Electronics products” means any product developed or manufactured by or for NEC

Electronics (as defined above)

3. All trademarks or registered trademarks are the property of their respective owners.

Registered trademarks ® and trademarks™ are not noted in this document.

INDEX 4/52

CONTENTS

Chapter 1 Introduction ... 7

1.1 Outline .. 7

1.2 Development Environment... 7

Chapter 2 Usage of SD Memory Card Interface... 8

2.1 Initialization... 9

2.2 Data Transfer...11

2.3 Erase .. 14

Chapter 3 Example of SD Memory Card Interface Operation.. 15

3.1 Outline of SDM Operation .. 15

3.2 Initialization... 16

3.2.1 Operation Flow .. 16

3.2.2 Operation Detail... 17

3.3 Example of SDM Single Block Read/Write .. 20

3.3.1 Operation Flow .. 20

3.3.2 Operation Detail... 21

3.4 Example of SDM Multi Block Operation... 23

3.4.1 Operation Flow .. 23

3.4.2 Operation Detail... 25

APPENDIX A SD Driver Function ... 26

A.1 Function List... 26

A.2 Global Variable Define ... 26

A.3 Structure & Enum Define ... 27

A.3.1 mmc_csd... 27

A.4 Function Details ... 28

A.4.1 Hardware Initialization Function... 28

A.4.2 Card Init Operation.. 29

A.4.3 Sector Setting.. 31

A.4.4 Send Command .. 32

A.4.5 Set Clock... 34

A.4.6 Set Block Length ... 35

A.4.7 Select Card ... 36

A.4.8 Check Device Status ... 37

A.4.9 Erase Function .. 39

A.4.10 Single Block Read... 40

A.4.11 Single Block Write ... 42

A.4.12 Multiple Block Read .. 44

A.4.13 Multiple Block Write... 45

A.4.14 Transfer Prepare ... 46

A.4.15 Decode CSD ... 47

Application Note S19895EJ1V0AN00

INDEX 5/52

A.4.16 Check Response Status.. 48

APPENDIX B COMMANDS .. 49

ANNEX Modification History... 52

Application Note S19895EJ1V0AN00

INDEX 6/52

Application Note S19895EJ1V0AN00

LIST OF TABLES

Table 1-1 Hardware Environment ... 7

Table 1-2 Software Environment... 7

Table A-1 SD Driver Function List... 26

Table A-2 Global Variable Define.. 26

Table A-3 Structure Define.. 27

Table A-4 Structure of mmc_csd... 27

Table B-1 Command Description List ... 49

LIST OF FIGURES

Figure 2-1 EMMA Mobile 1 SDM Initialization .. 9

Figure 2-2 EMMA Mobile 1 SDM Data Transfer in DMA Mode .. 11

Figure 2-3 EMMA Mobile 1 SDM Erase Operation ... 14

Figure 3-1 Connection between EMMA Mobile 1 and SD card .. 15

Figure 3-2 Initialization before Test... 16

Figure 3-3 SDM Single Read/Write Operation Flow ... 20

Figure 3-4 SD Multi block Operation Flow .. 23

Figure A-1 SDM Hardware Initialization Flow ... 28

Figure A-2 SD card Initialization Flow... 30

Figure A-3 Sector Setting Flow ... 31

Figure A-4 Send Command .. 33

Figure A-5 Set Block Length ... 35

Figure A-6 Select Card.. 36

Figure A-7 Check Card Stauts .. 38

Figure A-8 Single Block Read in CPU mode .. 41

Figure A-9 Single Block Write in CPU mode... 43

Figure A-10 Register Prepare before Data transfer .. 46

Figure A-11 Check Response Status.. 48

Chapter 1 Introduction 7/52

Chapter 1 Introduction

1.1 Outline

This document will show users how to operate SD memory card interface on EMMA Mobile1

evaluation board.

1.2 Development Environment

 Hardware environment of this project is listed as below.

Table 1-1 Hardware Environment

Name Version Maker

EMMA Mobile 1 evaluation board (PSKCH2Y-

S-0016-01)

- NEC Electronics

PARTNER-Jet ICE ARM M20 Kyoto Microcomputer Co. Ltd

 Software used in this project is listed as below.

Table 1-2 Software Environment

Name Version Maker

GNUARM Toolchain V4.3.2 GNU

WJETSET-ARM V5.10a Kyoto Microcomputer Co. Ltd

Application Note S19895EJ1V0AN00

 Chapter 2 Usage of SD Memory Card Interface 8/52

Chapter 2 Usage of SD Memory Card Interface

According to the hardware feature, the EMMA Mobile 1 SD memory card (SDM) interface has the

following main function:

1. Initialization

2. Data Transfer

3. Erase

Application Note S19895EJ1V0AN00

 Chapter 2 Usage of SD Memory Card Interface 9/52

2.1 Initialization

Following figure shows EMMA Mobile 1 SD initialize progress:

Start

End

Power on

Clock and Reset setting about

SDM module

Wait/Read/Driver ability and Auto

frequency configuration

Switch GPIO to SD function and

Setting pull-up/pull-down for SD

Software reset SD

Setting bus width and response

time out value

Clear and mask all info

Enable and setting clock (in low

frequency)

Send CMD 0, setting EMMC

device into idle state

Send CMD 55 and CMD41,

setting device into ready state

Get CID info(CMD 2) and setting

relative address(CMD 3) for all

devices in bus

Get CSD info from device(CMD 9)

Select device (CMD 7)

Set block size (CMD 16)

Setting transfer bus width and

speed (CMD55 and CMD 6)

ASMU_GCLKCTRL4ENA
ASMU_GCLKCTRL4
ASMU_RESETREQ3
ASMU_RESETREQ3ENA

ASMU_AB1_SDIxWAITCTRL
ASMU_AB1_SDIxREADCTRL
CHG_DRIVE1
ASMU_AUTO_FRQ_MASK3

SDIx_SOFT_RST

SDIx_OPTION

SDIx_INFO1
SDIx_INFO2
SDIx_INFO1_MASK
SDIx_INFO2_MASK

SDIx_CLK_CTRL

SDIx_CMD

Note3

Note4

Note5

SDIx_ARG0
SDIx_ARG1
SDIx_CMD

Note1

Note2

Figure 2-1 EMMA Mobile 1 SDM Initialization

Note:

1) Switch pins to SD function, users should operate this step according the actual hardware

Application Note S19895EJ1V0AN00

 Chapter 2 Usage of SD Memory Card Interface 10/52

connection, for example: if users connect the SD card with SD1 interface, please switch the

related GPIO to SD1 function.

2) Before the initialization of SD card, set the bus width to be 1bit and the response time out

value to be maximum, reason is: in SD card identification progress, bus width will use 1bit and

the clock frequency should in 10-400 KHz range.

3) After setting the clock for SDM transfer, please wait 1ms for stability.

4) After send command, user should check the command response, if error occurred (except

when response time out for CMD 2), the initialization will be ended abnormally.

Commands simple description please refers to the “APPENDIX B COMMANDS”.

5) CID: Card Identification

 CSD: Card Specific Data

6) After initialization, users can configure the bus width and clock frequency for transfer speed

according the CSD parameter of SD card, the transfer speed defines in CSD register just clock

frequency not in high speed mode, so the actual transfer speed is related to SD card

specification version.

7) The register name SDIx described in this document means the SDIA, SDIB or SDIC, which can

be changed according the hardware connection, more details about SDM registers and related

bits please refer to SDM interface user’s manual of EMMA Mobile 1.

Application Note S19895EJ1V0AN00

 Chapter 2 Usage of SD Memory Card Interface 11/52

2.2 Data Transfer

SD memory card interface has two kinds of data transfer mode: DMA mode and CPU mode. In

realize operation, mainly use DMA mode to transfer data, so in this chapter, introduce the DMA

mode operation, about SD single block read/write in CPU mode; please refer to “APPENDIX A

SD Driver Function”.

Following figure shows EMMA Mobile 1 SD DMA read/write progress:

Start

End

Enable SDM DMA mode

Start DMA

DMA init and transfer setting

 Send read/ write command

DMA transfer end?

R/W transfer end?

There is still data
 to be transfer?

Resetting DMA transfer parameter

Restart DMA for the left data

Check whether error occuer

No

Yes

Yes

No

Yes

No
Clear transfer info and disable

DMA mode

Wait for SD card interface not

busy
SDIx_INFO2[14]

SDIx_CC_EXT_MODE

Note1

Set sector enable and sector

number to be transfered
SDIx_STOP
SDIx_SECCNT

Transfer prepare Note3

Note2

Note4

SDIx_INFO1[2]

SDIx_INFO2

Disable sector

Check SD card status

SDIx_INFO1
SDIx_INFO2
SDIx_CC_EXT_MODE

Note5

SDIx_STOP

Figure 2-2 EMMA Mobile 1 SDM Data Transfer in DMA Mode

Note:

1) In DMA init and transfer setting step, user should reset DMA channel, open DMA clock, clear

Application Note S19895EJ1V0AN00

 Chapter 2 Usage of SD Memory Card Interface 12/52

DMA interrupt source, set transfer parameter for DMA.

DMA reset setting related register:

 ASMU_RESETREQ0ENA

ASMU_RESETREQ0

DMA clock setting related register:

ASMU_GCLKCTRL0

ASMU_GCLKCTRL0ENA

P2M Clear DMA interrupt source related register:

 For SD0:

DMA_P2M_PE0_LCH0LCH3_INT_REQ_CL

DMA_P2M_DSP_LCH0LCH3_INT_REQ_CL

For SD1 and SD2:

DMA_P2M_PE0_LCH4LCH7_INT_REQ_CL

DMA_P2M_DSP_LCH4LCH7_INT_REQ_CL

M2P Clear DMA interrupt source related register:

For SD0:

DMA_M2P_PE0_LCH0LCH3_INT_REQ_CL

DMA_M2P_DSP_LCH0LCH3_INT_REQ_CL

For SD1 and SD2:

DMA_M2P_PE0_LCH4LCH7_INT_REQ_CL

DMA_M2P_DSP_LCH4LCH7_INT_REQ_CL

P2M DMA transfer setting related register:

DMA_P2M_LCHx_AADD

DMA_P2M_LCHx_BADD

DMA_P2M_LCHx_BOFF

DMA_P2M_LCHx_BSIZE

DMA_P2M_LCHx_BSIZE_COUNT

DMA_P2M_LCHx_LENG

DMA_P2M_LCHx_MODE

Here x = 3 (when use SD0)

 x = 4 (when use SD1)

 x = 5 (when use SD2)

M2P DMA transfer setting related register:

DMA_M2P_LCHx_BADD

DMA_M2P_LCHx_AADD

DMA_M2P_LCHx_AOFF

DMA_M2P_LCHx_ASIZE

DMA_M2P_LCHx_ASIZE_COUNT

DMA_M2P_LCHx_LENG

Application Note S19895EJ1V0AN00

 Chapter 2 Usage of SD Memory Card Interface 13/52

DMA_M2P_LCHx_MODE

Here x = 3 (when use SD0)

 x = 4 (when use SD1)

 x = 5 (when use SD2)

2) Start DMA transfer.

P2M start register

DMA_P2M_CONT

M2P start register

DMA_M2P_CONT

3) Before data transfer, clear all information register, make sure data transfer end, enable the

related interrupt.

Related register:

SDIx_INFO1

SDIx_INFO2

SDIx_INFO1_MASK

SDIx_INFO2_MASK

SDIx_STOP

4) Check whether DMA transfer has ended

P2M transfer related register:

DMA_P2M_CONTSTATUS

M2P transfer related register:

 DMA_M2P_CONTSTATUS

5) After data transfer, send CMD 13(SEND_STATUS) to read SD card status register info, check

whether error occurred.

Related register:

SDIx_ARG0

SDIx_ARG1

SDIx_CMD

SDIx_RSP0

SDIx_RSP1

SDIx_INFO1

SDIx_INFO2

SDIx_INFO1_MASK

SDIx_INFO2_MASK

More details about SD card status register information please refer to SD card product user’s manual.

Application Note S19895EJ1V0AN00

 Chapter 2 Usage of SD Memory Card Interface 14/52

2.3 Erase

Following figure shows EMMA Mobile 1 SD memory card erase progress:

Start

Error End

Send CMD 32 for erase group

start setting

Send CMD 38 to execute erase

operation

Send CMD 33 for erase group end

setting

Send command OK?

Send command OK?

Yes

No

Send command OK?

Normal End

No

No

Yes

Yes

Note 1

Figure 2-3 EMMA Mobile 1 SDM Erase Operation

Note:

1)Parameter about CMD 32, CMD33 will be the address to start and end, the address will be in

Group erase unit, more details about erase operation and meaning of erase group unit please

refer to SD card product user’s manual.

Application Note S19895EJ1V0AN00

Chapter 3 Example of SD Memory Card Interface Operation 15/52

Chapter 3 Example of SD Memory Card Interface Operation

3.1 Outline of SDM Operation

This chapter will show users how to operate SD card using SD0 interface.

Figure 3-1 shows the connection of EMMA Mobile 1 SDM interface and SD card.

SD0_DATA2

SD0_DATA1

SD0_DATA0

SD0_CKO

SD0_DATA3 DAT3

SD0_CMD

EMMA Mobile1 SD Card

DAT2

DAT4~7

CLK

CMD

DAT0

DAT1

Figure 3-1 Connection between EMMA Mobile 1 and SD card

Application Note S19895EJ1V0AN00

Chapter 3 Example of SD Memory Card Interface Operation 16/52

3.2 Initialization

Before SD card operation, initialization should be executed at first.

3.2.1 Operation Flow

Start

End

Init SD card

[em1_sd_init()]

Init hardware interface

[em1_sd_hw_init()]

Init OK?

Error End

Yes

No

Figure 3-2 Initialization before Test

More details about the functions used in initialization please refer to “APPENDIX A SD Driver

Function”

Application Note S19895EJ1V0AN00

Chapter 3 Example of SD Memory Card Interface Operation 17/52

3.2.2 Operation Detail

(1) Init SDM module hardware

Init SDM module (function: em1_sd_hw_init()).

Following steps shows the hardware initialization (em1_sd_hw_init()) progress:

Step1: Reset setting

 ASMU_RESETREQ3[2] (0: reset; 1: cancel reset)

ASMU_RESETREQ3ENA [2] (0: disable setting; 1: enable setting)

Step2: Clock setting

 ASMU_GCLKCTRL4[5] (0: close clock; 1: open clock)

 ASMU_GCLKCTRL4ENA[5] (0: disable setting; 1: enable setting)

Step3: Switch pins to SD function:

 CHG_PINSEL_G80 = 0x00550000 (GIO_P88-P91 -> SD0_DAT1-3, SD0_CKI)

CHG_PINSEL_SD0 = 0x00000001 (Switch the SD0_DATA1 to DATA3 and SD0_CKI

pins by using GIO_P88 to GIO_P91)

Step4: Pull-up/down setting

CHG_PULL_G88 = 0x00006666 (DATA1-3: Pull-down , mask release)

CHG_PULL2 = 0x00004663 (CKO: Pull release

CMD, DATA0: Pull-up, mask release)

Step5: Drive capability setting

 CHG_DRIVE1 = 0x00050000 (SD0_CK and SD0 pins : 4mA, default value)

Setp6: Read and wait control register setting

 ASMU_AB1_SDIAWAITCTRL = 0x00000300

 ASMU_AB1_SDIAREADCTRL = 0x00000000 (default value)

Setp7: Auto frequency control setting

 ASMU_AUTO_FRQ_MASK3 = 0x07 (default value)

(2) Init SD Card

SD card initialization (em1_sd _init()) including following steps:

Step1: Power on SD card

Step2: Soft reset SD

 SDIA_SOFT_RST = 0x0000 (module reset)

SDIA_SOFT_RST = 0x0007 (release reset)

Application Note S19895EJ1V0AN00

Chapter 3 Example of SD Memory Card Interface Operation 18/52

Step3: Set bus width and time out value for response, card detect stable time

SDIA_OPTION = 0x80EE (bus width: 1bit; biggest time value for response time

out and card detection stable time)

Step4: Clear and mask all information and interrupt

 SDIA_INFO1 = 0x0000

 SDIA_INFO2 = 0x0000

 SDIA_INFO1_MASK = 0xFFFF

SDIA_INFO2_MASK = 0xFFFF

Step5: Set clock

SDIA_CLK_CTRL = 0x0140 (divide factor: 256, about 325KHz; Use the lower

frequency when init SD card)

 Delay 1ms after setting the clock frequency

Step6: Send CMD0, make SD card to idle state, including following steps:

 Clear all error and information (SDIA_INFO1, SDIA_INFO2)

Enable response end interrupt occur (SDIA_INFO1_MASK)

Enable all error occur (SDIA_INFO2_MASK)

Send command (SDIA_CMD)

Wait for command send end or error occur (SDIA_INFO1, SDIA_INFO2)

Check whether error occur (SDIA_INFO2, SDIA_RSP0, SDIA_RSP1)

 Note:

 If command has argument, setting the argument at first (SDIA_ARG0, SDIA_ARG1)

Step7: Send CMD55 with argument 0x00000000, after CMD55, send ACMD41 with argument

0x00100000, make SD card to ready state.

 SDIA_ARG0

 SDIA_ARG1

Check whether power up is ready? (SDIA_RSP1[15]). If not ready, circle this step; if in

ready state, run to next step. Details about send command please refer to step6.

Step8: SD card send CID to host, and get RCA (relative card address) information from host,

including following steps:

 Send CMD2(ALL_SEND_CID) with argument 0x00000000

 Send CMD3 (SNED_RELATIVE_ADDR) with argument RCA (RCA init value is 0)

 Wait until RCA value is not 0. Details about send command please refer to step6.

Step9: Get CSD information, including following steps:

 Send CMD9 (SNED_CSD) with argument RCA (the one that need to send CSD

information to host). Details about send command please refer to step6.

 Get CSD information from the command response (SDIA_RSP0~SDIA_RSP7)

Application Note S19895EJ1V0AN00

Chapter 3 Example of SD Memory Card Interface Operation 19/52

Step10: Select card

 Send CMD7 (SELECT) with argument RCA(which selected to communicate).

Details about send command please refer to step6.

Step11: Re-setting clock

SDIA_CLK_CTRL = 0x0301 (divide factor: 4, about 20.8MHz; Use higher frequency

after init SD card)

 Delay 1ms after setting the clock frequency

Step12: Set block length, including following steps:

Send CMD16 (SET_BLOCKLEN) with argument “block length”. Details about send

command please refer to step6.

 Changing block size values in SDIA_SIZE register.

Step13: Set bus width, including following steps:

Send CMD55 with argument RCA.

Send ACMD6 (SWITCH) with argument bus width to set the bus width, if no error,

Change bus width which set in SDIA_OPTION register. Details about send command

please refer to step6.

 Note:

The argument of ACMD6 defines the bus with, when use 1 bit as bus width, the

argument is 0x00000000; when use 4 bit as bus width, the argument is 0x00000002.

More details about the initialization progress please refer to “APPENDIX A SD Driver Function”.

(3) Check Card Status

Check the card status (function: em1_sd_check_dev_status()) after data transfer to make sure

read and write operation followed can works normally.

Check card status (em1_sd_check_dev_status()) including following steps:

 Step1: Send CMD13 (SEND_STATUS) with argument RCA. Details about send command

 please refer to step 6 of “(2) Init SD card” in “Chapter 3.2.2 Operation Details”

Step2: Read response value (SDIA_RSP0, SDIA_RSP1)

Step3: Check whether SD card locked and error occurred according the card status structure.

More details about the card status structure please refer to SD card product user’s

manual l.

Note:

The EMMA Mobile 1 SDM interface can support 512 byte as the maximum block size.

Application Note S19895EJ1V0AN00

Chapter 3 Example of SD Memory Card Interface Operation 20/52

3.3 Example of SDM Single Block Read/Write

In this example, we will write fixed data to SD card, then read out and compare whether the data is

right, both read and write operation will use single CPU operation mode.

3.3.1 Operation Flow

Initialization data buffer

 Start

Normal End

Write data to SD card
[em1_sd_single_write()]

Read data from SD card
[em1_sd_single_read()]

Check data, data right?

Error End

Write operation OK?

Read operation OK?

No

Yes

No

No

Yes

Yes

Yes

Figure 3-3 SDM Single Read/Write Operation Flow

More details about the functions used in this example please refer to “APPENDIX A SD Driver

Function”

Application Note S19895EJ1V0AN00

Chapter 3 Example of SD Memory Card Interface Operation 21/52

3.3.2 Operation Detail

(1) Initialization Data Buffer

Initialize the write data buffer, set fixed value (as the following code segment shows) to write data

buffer which will be wrote to SD card. At the same time, initialize the read data buffer with 0, it will

read out data from SD card.

for (i =0; i<SDM_BLOCKLEN_VAL; i++)

{

 g_write_buff[i] = (i&0xFF);

}

(2) Write Data to SD card

Call the “em1_sd_single_write()” function to write data into SD card. If write operation failed (error

occur during data transfer), end the operation and print error information; if write operation works

OK, continue the test program.

Following steps shows the write operation progress:

Step1: Ensure SDM interface is not busy, check bit 14 of SDIA_INFO register

Step2: Enable sector setting and set sector number (SDIA_STOP, SDIA_SECCNT)

Step3: Prepare for data transfer, including following steps:

 Clear interrupt information in SDIA_INFO1 register

Clear all error information in SDIA_INFO2 register

Set transfer none stop (SDIA_STOP[0] = 0)

Enable all error interrupt in SDIA_INFO2_MASK register

Enable read/write access interrupt occur in SDIA_INFO1_MASK register

Step4: Send CMD24 (WRITE_SINGLE_BLOCK) with argument “write address”. Detail steps

about send command please refer to step 6 of “(2) Init SD Card” in “Chapter 3.2.2

Operation Details”.

Step5: Wait for write enable (SDIA_INFO2) and check whether error occur (SDIA_RSP0,

SDIA_RSP1)

Step6: Write data

If no errors occur after send CMD24 (WRITE_SINGLE_BLOCK), write data to SD card

(SDIA_BUF0 = data)

Step7: Wait for data transfer end or error occur (SDIA_INFO1, SDIA_INFO2)

Step8: Send CMD13 (SEND_STATUS) with argument RCA to check device status. Detail

Application Note S19895EJ1V0AN00

Chapter 3 Example of SD Memory Card Interface Operation 22/52

steps about check SD card status please refer to “(3) Check Card Status” in

“Chapter 3.2.2 Operation Details”.

More details about single block write operation please refer to “chapter A.4.12 Single Block Write”.

(3) Read Data

Call “em1_sd_single_read()” function to read out the written data by step (2) from SD card. If read

failed, end the operation and print error; if read OK, continue the test program.

Following steps shows the read operation progress and registers configurations:

Step1: Ensure SDM interface is not busy, check bit 14 of SDIA_INFO register

Step2: Enable sector setting and set sector number (SDIA_STOP, SDIA_SECCNT)

Step3: Prepare for data transfer, including following steps:

Clear interrupt information in SDIA_INFO1 register

Clear all error information in SDIA_INFO2 register

Set transfer none stop (SDIA_STOP[0] = 0)

Enable all error interrupt in SDIA_INFO2_MASK register

Enable read/write access interrupt occur in SDIA_INFO1_MASK register

Step4: Send CMD17 (READ_SINGLE_BLOCK) with argument “read address”. Detail steps

about send command please refer to step 6 of “(2) Init SD Card” in “Chapter 3.2.2 Operation

Details”.

Step5: Wait for write enable (SDIA_INFO2) and check whether error occur (SDIA_RSP0,

SDIA_RSP1)

Step6: Read data

If no errors occur after send CMD17 (READ_SINGLE_BLOCK), read data from SD card

(data = SDIA_BUF0)

Step7: Wait for data transfer end or error occur (SDIA_INFO1, SDIA_INFO2)

Step8: Send CMD13 (SEND_STATUS) with argument RCA to check device status. Detail

steps about check card status please refer to “(3) Check Card Status” in “Chapter

3.2.2 Operation Details”.

(4) Compare Data

Compare the read out data with the written data. If same, print OK; otherwise, print error end.

Application Note S19895EJ1V0AN00

Chapter 3 Example of SD Memory Card Interface Operation 23/52

3.4 Example of SDM Multi Block Operation

In this example, we will write fixed data (0x5A) to SD card (first 16MB data area), then read out and

compare whether the data is right. When read/write works OK, erase the first 2MB data area in SD

card, then read out and check whether data in first 2MB is zero or not. Both read and write operation

will use multi block DMA operation mode.

3.4.1 Operation Flow

Initialization data buffer

 Start

Write data to SD card(first 16MB)
[em1_sd_multi_write()]

Read data from chip(first 16MB)
[em1_sd_multi_read()]

Check data, data right?
[strncmp()]

Write operation OK?

Read operation OK?

No

Yes

No

No

Yes

Yes

Yes

Normal End Error End

Erase first 2MB in SD card
[em1_sd_erase()]

Erase operation OK?

Read data from chip(first 2MB)
[em1_sd_multi_read()]

Read operation OK?
No

Yes

Yes

All data is zero?

Yes

Yes

No

No

Figure 3-4 SD Multi block Operation Flow

Application Note S19895EJ1V0AN00

Chapter 3 Example of SD Memory Card Interface Operation 24/52

More details about the functions used in this example please refer to “APPENDIX A SD Driver

Function”

Application Note S19895EJ1V0AN00

Chapter 3 Example of SD Memory Card Interface Operation 25/52

Application Note S19895EJ1V0AN00

3.4.2 Operation Detail

(1) Initialization Data Buffer

Initialize the write data buffer, set fixed value (0x5A) to write data buffer which will be wrote to SD

card. At the same time, initialize the read data buffer with 0, it will read out data from SD card.

(2) Write Data to SD card

Setting parameters about the data transfer, call the “em1_sd_multi_write()” function to write data

into SD card. Check the write operation, if failed, end the operation and print error information; if

OK, continue the test program.

Details about multiple blocks write operation please refer to “figure2-2 EMMA Mobile 1 SDM

Data Transfer in DMA Mode “.

(3) Read Data from SD Card

Call “em1_sd_multi_read()” function to read out the written data by step (2) from SD card. Check

the read operation, if read failed, end the operation and print error; if read OK, continue the test

program.

Details about multiple blocks read operation please refer to “figure2-2 EMMA Mobile 1 SDM

Data Transfer in DMA Mode “.

(4) Compare Data

Compare the read out data with the written data. If same, print OK; otherwise, print error and end

the test.

(5) Erase first 2MB in SD Card

Call “em1_sd_erase()” function to erase the first 2MB data area in SD card. If failed, end the

operation and print error; if OK, continue the test program.

Details about SD card erase operation please refer to “figure2-3 EMMA Mobile 1 SDM Erase

Operation “.

(6) Read Data from SD Card

Call “em1_sd_multi_read()” function to read out the first 2MB data from SD card. If read failed,

end the operation and print error; if read OK, continue the test program.

(7) Compare Data

Compare the read out data. If 2MB data are all zero, test operation works OK; otherwise, error

end.

APPENDIX A SD Driver Function 26/52

APPENDIX A SD Driver Function

A.1 Function List

The following table shows the SD card driver interface functions:

Table A-1 SD Driver Function List

Class Function Name Function Detail

em1_sd_hw_init Init the SDM module setting

em1_sd_init SD card initialization

em1_sd_set_seccnt Enable/disable sector and set sector number

em1_sd_send_cmd Send comand

em1_sd_set_clk Set SDM output clock value

em1_sd_set_blklength Set block length

em1_sd_select_card Select card

em1_sd_set_ext_csd Set extend CSD register

em1_sd_check_dev_status Check SD card status

em1_sd_erase Erase function

em1_sd_single_read Single block read operation in CPU mode

em1_sd_signle_write Single block write operation in CPU mode

em1_sd_multi_read Multi block read operation in DMA mode

External

function

em1_sd_multi_write Multi block write operation in DMA mode

_em1_sd_tranf_prepare Prepare before data transfer

_em1_sd_decode_csd Decode CSD structure
Internal
function

_em1_sd_check_rsp_status Check response status

A.2 Global Variable Define

Table A-2 Global Variable Define

Name Type Detail

g_RCA_VAL ushort Globle flag for relative address

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 27/52

A.3 Structure & Enum Define

Table A-3 Structure Define

Structure Name Detail

SDM_NUM Enum for SDIA, SDIB and SDIC

mmc_csd CSD register sturcture

A.3.1 mmc_csd

Table A-4 Structure of mmc_csd

Member Detail

uchar mmca_vsn MMC structure version

ushort cmdclass Command classes

ushort tacc_clks Read access time in clocks

uint tacc_ns Read access time in ns

uint max_dtr Maximum data transfer speed

uint read_blkbits Read block bits

uint read_blkbits Write block bits

uint capacity Device capacity

uint erase_grp_size Erase group base size

uint erase_grp_mult Erase group size multipile factor

uint wp_grp_size Write protect froup size

uint read_partial Whether enable read in partial block

uint read_misalign Whether enable read block cross physical block

boundaries

uint write_partial Whether enable write in partial block

uint write_misalign Whether enable write block cross physical block

boundaries

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 28/52

A.4 Function Details

A.4.1 Hardware Initialization Function

[Function Name]

em1_sd_hw_init

[Format]

int em1_sd_hw_init (SDM_NUM sd_n);

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I Enum to select SDIA, SDIB or SDIC

[Function Return]

None

[Flow Chart]

Start

End

Power on

Clock and Reset setting about

SDM module

Wait/Read/Driver ability and Auto

frequency configuration

Switch GPIO to SD function and

Setting pull-up/pull-down for SD

ASMU_GCLKCTRL4ENA
ASMU_GCLKCTRL4
ASMU_RESETREQ3
ASMU_RESETREQ3ENA

ASMU_AB1_SDIxWAITCTRL
ASMU_AB1_SDIxREADCTRL
CHG_DRIVE1
ASMU_AUTO_FRQ_MASK3

Note1

Figure A-1 SDM Hardware Initialization Flow

[Note]

1) Switch GPIO to SD function, users should operate this step according the actual hardware

connection.

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 29/52

A.4.2 Card Init Operation

[Function Name]

em1_sd_init

[Format]

int em1_sd_init(SDM_NUM sd_n) ;

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I Enum to select SDIA, SDIB or SDIC

[Function Return]

DRV_OK

Others: error end

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 30/52

[Flow Chart]

Start

End

Set block size (CMD 16)

Software reset SD

Setting bus width and response

time out value

Clear and mask all info

Enable and setting clock (in low

frequency)

Send CMD 0, setting SD card into

idle state

Send CMD55 and ACMD41,

setting SD card into ready state

Get CID info(CMD 2) and setting

relative address(CMD 3) for card

in bus

Get CSD info from card (CMD 9)

Select device (CMD 7)

Setting clock to higher frequency

Setting transfer bus width and

speed (CMD 6)

SDIx_SOFT_RST

SDIx_OPTION

SDIx_INFO1
SDIx_INFO2
SDIx_INFO1_MASK
SDIx_INFO2_MASK

SDIx_CLK_CTRL

SDIx_CMD

Note2

Note3

SDIx_ARG0
SDIx_ARG1
SDIx_CMD

Note1

Note4

Figure A-2 SD card Initialization Flow

[Note]

1)Before the initialization of SD card, set the bus width to be 1bit and the response time out value

to be maximum, reason is: in card identification progress, bus width will use 1bit and the clock

frequency should in 10-400 KHz.

2) After setting the clock for SDM transfer, please wait 1ms for stability.

3) After send command, user should check the command response, if error occurred (except

when response time out for CMD 2), the initialization will be ended abnormally.

4) After initialization, users can configure the bus width and clock frequency for transfer speed

according the CSD parameter of SD card, the transfer speed defines in CSD register just clock

frequency not in high speed mode, so the actual transfer speed is related to card specification

version.

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 31/52

A.4.3 Sector Setting

[Function Name]

em1_sd_set_seccnt

[Format]

void em1_sd_set_seccnt(SDM_NUM sd_n ,BOOL bEnable, uint sec_num);

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I Enum to select SDIA, SDIB or SDIC

bEnable BOOL I Enable/disable sector

sec_num uint I Sector number

[Function Return]

None

[Flow Chart]

Enable the Sector ?

Enable and Configure Sector
[SDIx_STOP

SDIx_SECCNT]
Disable Sector
[SDIx_STOP]

No

Yes
Ensure R/W Operation is Over

[SDIx_INFO1]

Figure A-3 Sector Setting Flow

[Note]

 None

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 32/52

A.4.4 Send Command

[Function Name]

em1_sd_send_cmd

[Format]

int em1_sd_send_cmd (SDM_NUM sd_n, int cmd) ;

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I Enum to select SDIA, SDIB or SDIC

cmd int I Command index that need to be send

[Function Return]

DRV_OK

 Others: error end

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 33/52

[Flow Chart]

Enable response end error
[SDIx_INFO1]

Send command
[SDIx_CMD]

Clear all information registers
[SDIx_INFO1
SDIx_INFO2]

Enable all errors
[SDIx_INFO2_MASK]

Wait until command send end

Time out?

Response end?
[SDIx_INFO1]

Error occur?
[SDIx_INFO2]

Read the error information register
[SDIx_INFO2]

Error occur?

Clear response end information
[SDIx_INFO1]

Clear all error information
[SDIx_INFO2]

Normal End Error End

Start

Yse

No

No

No

Yse

Yse

Yse

No

Figure A-4 Send Command

[Note]

Send command to SD card.

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 34/52

A.4.5 Set Clock

[Function Name]

em1_sd_set_clk

[Format]

void em1_sd_set_clk(SDM_NUM sd_n, ushort value);

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I Enum to select SDIA, SDIB or SDIC

value ushort I Clock setting value

[Function Return]

None

[Flow Chart]

None

[Note]

Set SDIx_CLK_CTRL register.

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 35/52

A.4.6 Set Block Length

[Function Name]

em1_sd_set_blklength

[Format]

int em1_sd_set_blklength(SDM_NUM sd_n, ushort length);

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I Enum to select SDIA, SDIB or SDIC

length ushort I Block length setting value

[Function Return]

DRV_OK

Others: error end

[Flow Chart]

Command parameter setting
[SDIx_ARG0 SDIx_ARG1]

Send CMD16 to set block length
[em1_sd_send_cmd()]

Send command OK?

Set block size
[SDIx_SIZE]

Normal End Error End

Start

Yse

No

Figure A-5 Set Block Length

 [Note]

Data transfer block length setting.

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 36/52

A.4.7 Select Card

[Function Name]

em1_sd_select_card

[Format]

int em1_sd_select_card(SDM_NUM sd_n, uint RCA);

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I Enum to select SDIA, SDIB or SDIC

RCA uint I Relative card address that need to be select

[Function Return]

DRV_OK

Others: error end

[Flow Chart]

Setting RCA for command
parameters

[SDIx_ARG0 SDIx_ARG1]

Send CMD7 to select card
[em1_sd_send_cmd()]

Send command OK?

Normal End Error End

Start

Yse

No

Figure A-6 Select Card

[Note]

None.

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 37/52

A.4.8 Check Device Status

[Function Name]

em1_sd_check_dev_status

[Format]

int em1_sd_check_dev_status (SDM_NUM sd_n) ;

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I Enum to select SDIA, SDIB or SDIC

[Function Return]

DRV_DEV_LOCKED

DRV_DEV_UNLOCKED

DRV_ERR_STATE

[Flow Chart]

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 38/52

Set command parameters(RCA)
[SDIx_ARG0 SDIx_ARG1]

Send CMD13 to get card status
[em1_sd_send_cmd()]

Send command OK?

Normal End Error End

Start

Yse

No

Read response value
[SDIx_RSP0 and SDIx_RSP1]

Yse

Check whether card locked

Check whether error occur

Error occured?

No

Figure A-7 Check Card Stauts

[Note]

Check card status register.

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 39/52

A.4.9 Erase Function

[Function Name]

em1_sd_erase

[Format]

int em1_sd_erase(SDM_NUM sd_n, uint str_addr, uint end_addr) ;

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I
Enum to select SDIA, SDIB or

SDIC

str_addr uint I Start erase group unit address

end_addr uint I End of erase group unit address

[Function Return]

DRV_OK

Others: error end

[Flow Chart]

Please refer to “figure2-3 EMMA Mobile 1 SDM Erase Operation” in “chapter 2.3 Erase”.

[Note]

None

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 40/52

A.4.10 Single Block Read

[Function Name]

em1_sd_single_read

[Format]

int em1_sd_single_read(SDM_NUM sd_n, uint address, uchar *data);

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I Enum to select SDIA, SDIB or SDIC

address uint I block address to be read

data uchar * I/O read out data buffer

[Function Return]

DRV_OK

Others: error end

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 41/52

[Flow Chart]

Start

Normal End

 Send single block read command

 [em1_sd_send_cmd()]

Send command Ok?

R/W transfer end?

No

Yes

Yes

No

Clear response and r/w end info

[SDIx_INFO1]

Wait for SDM not busy
[SDIx_INFO2[14]]

Set sector enable and sector

number to be 1
SDIx_STOP
SDIx_SECCNT

Transfer prepare

[_em1_sd_transfer_prepare]

Check device status

[em1_sd_check_dev_status()]

Check parameter

[whether data buffer is NULL]

Wait for read enable

[SDIx_INFO2]

Check response OK?
[_em1_sd_check_rsp_status]

Yes

No

Read data

[SDIx_BUF0]

Error occur?
[SDIx_INFO2]

Clear all error info

[SDIx_INFO2]

Error occur?

No

Error End

No

Yes

Yes

Figure A-8 Single Block Read in CPU mode

[Note]

None

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 42/52

A.4.11 Single Block Write

[Function Name]

em1_sd_single_write

[Format]

int em1_sd_single_write(SDM_NUM sd_n, uint address, uchar *data);

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I Enum to select SDIA, SDIB or SDIC

address uint I block address to be write

data uchar * I/O Write source data buffer

[Function Return]

DRV_OK

Others: error end

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 43/52

[Flow Chart]

Start

Normal End

 Send single block write command

 [em1_sd_send_cmd()]

Send command Ok?

R/W transfer end?

No

Yes

Yes

No

Clear response and r/w end info

[SDIx_INFO1]

Wait for SDM not busy
[SDIx_INFO2[14]]

Set sector enable and sector

number to be 1
SDIx_STOP
SDIx_SECCNT

Transfer prepare

[_em1_sd_transfer_prepare()]

Check device status

[em1_sd_check_dev_status()]

Check parameter

[whether data buffer is NULL]

Wait for write enable

[SDIx_INFO2]

Check response OK?
[_em1_sd_check_rsp_status]

Yes

No

Write data

[SDIx_BUF0]

Error occur?
[SDIx_INFO2]

Clear all error info

[SDIx_INFO2]

Error occur?

No

Error End

No

Yes

Yes

Note1

Figure A-9 Single Block Write in CPU mode

[Note]

1) During write operation, check SDIx_INFO2, if buffer write access error occur, end the write

operation and return with error information.

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 44/52

A.4.12 Multiple Block Read

[Function Name]

em1_sd_multi_read

[Format]

int em1_sd_multi_read (SDM_NUM sd_n, uint address, uchar *read_buf, uint blk_num);

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I Enum to select SDIA, SDIB or SDIC

address uint I block address to be read

read_buf uchar * I/O read out data buffer

blk_num uint I block number to be read

[Function Return]

DRV_OK

Others: error end

[Flow Chart]

Please refer to “figure2-2 EMMA Mobile 1 SDM Data Transfer in DMA Mode” in “chapter 2.2

Data Transfer”.

[Note]

None.

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 45/52

Application Note S19895EJ1V0AN00

A.4.13 Multiple Block Write

[Function Name]

em1_sd_multi_write

[Format]

int em1_sd_multi_write (SDM_NUM sd_n, uint address, uchar * write_buf, uint blk_num);

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I Enum to select SDIA, SDIB or SDIC

address uint I block address to be write

write_buf uchar * I/O write source data buffer

blk_num uint I block number to be write

[Function Return]

DRV_OK

Others: error end

[Flow Chart]

Please refer to “figure2-2 EMMA Mobile 1 SDM Data Transfer in DMA Mode” in “chapter 2.2

Data Transfer”.

[Note]

None.

APPENDIX A SD Driver Function 46/52

A.4.14 Transfer Prepare

[Function Name]

_em1_sd_transfer_prepare

[Format]

int _em1_sd_transfer_prepare(SDM_NUM sd_n);

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I Enum to select SDIA, SDIB or SDIC

[Function Return]

None

[Flow Chart]

End

Start

All information clear
[SDIx_INFO1 SDIx_INFO2]

Clear stop setting bit
[SDIx_STOP]

Enable all error occur
[SDIx_INFO2_MASK]

Enable R/W access end
[SDIx_INFO1_MASK]

Figure A-10 Register Prepare before Data transfer

[Note]

None.

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 47/52

A.4.15 Decode CSD

[Function Name]

_em1_sd_decode_csd

[Format]

void _em1_sd_decode_csd(uint *raw_csd);

[Argument]

Parameter Type I/O Detail

raw_csd uint I Raw CSD value buffer

[Function Return]

None

[Flow Chart]

 None

[Note]

This function will decode the response of SEND_CSD command; get CSD members that

useful for data transfer.

Application Note S19895EJ1V0AN00

APPENDIX A SD Driver Function 48/52

A.4.16 Check Response Status

[Function Name]

_em1_sd_check_rsp_status

[Format]

int _em1_sd_check_rsp_status(SDM_NUM sd_n);

[Argument]

Parameter Type I/O Detail

sd_n SDM_NUM I Enum to select SDIA, SDIB or SDIC

[Function Return]

DRV_OK

DRV_ERR_STATE

[Flow Chart]

Normal End Error End

Start

Yse

Read response value
[SDIx_RSP0 and SDIx_RSP1]

Check whether error occur

Error occured?

No

Figure A-11 Check Response Status

[Note]

None

Application Note S19895EJ1V0AN00

APPENDIX B COMMANDS 49/52

APPENDIX B COMMANDS

Following table shows the simple function of the SD card command which used in this document.

More details about the commands format and function please refer to SD card user’s manual.

Table B-1 Command Description List

CMD
INDEX

Argument Abbreviation Command Description

CMD0 [31:0] stuff bits GO_IDLE_STATE Resets the card to idle state

CMD1 Reserved

CMD2 [31:0] stuff bits ALL_SEND_CID
Ask card to send their CID number on the
CMD line

CMD3
[31:16] RCA

[15:0] stuff bits
SET_RELATIVE_A

DDR
Assigns relative address to the card

CMD4 Not Supported

CMD5 Reserved

CMD6

[31] Mode

0: Check
1: Switch
[30:24] (all 0)

[23:20]: group 6
[19:16]: group 5
[15:12]: group 4

 [11:8]: group 3
[7:4] : group 2 for
command

[3:0]: group 1for
access mode

SWITCH
Checks switchable function (mode 0) and

switch card function (mode 1).

CMD7
[31:16] RCA

[15:0] stuff bits
SELECT/DESELEC

T_CARD

Select device by its own relative address
and gets deselected by any other address;
address 0 deselects the card.

CMD8 Reserved

CMD9
[31:16] RCA

[15:0] stuff bits
SEND_CSD

Addressed card sends its Card-Specific
Data (CSD) on the CMD line.

CMD10
[31:16] RCA

[15:0] stuff bits
SEND_CID

Addressed card sends its Card Identification
(CID) on CMD the line.

CMD11
[31:0] data
address1

READ_DAT_UNTIL
_STOP

Reads data stream from the card, starting at
the given address, until a

STOP_TRANSMISSION follows

CMD12 [31:0] stuff bits
STOP_TRANSMIS

SION
Forces the card to stop transmission

CMD13
[31:16] RCA

[15:0] stuff bits
SEND_STATUS Addressed card sends its status register.

Application Note S19895EJ1V0AN00

APPENDIX B COMMANDS 50/52

CMD14 Reserved

CMD15
[31:16] RCA

[15:0] stuff bits
GO_INACTIVE_ST

ATE
Sets card to inactive state

CMD16
[31:0] block

length
SET_BLOCKLEN

Sets the block length (in bytes) for all
following block commands (read and write).

CMD17
[31:0] data

address
READ_SINGLE_BL

OCK
Reads a block of the size selected by the
SET_BLOCKLEN command

CMD18
[31:0] data

address
READ_MULTIPLE_

BLOCK
Multipile block read command

CMD19
~

CMD23
Reserved

CMD24
[31:0] data

address
WRITE_BLOCK

Writes a block of the size selected by the

SET_BLOCKLEN command.

CMD25
[31:0] data

address

WRITE_MULTIPLE

_BLOCK

Continuously writes blocks of data until a

STOP_TRANSMISSION follows or the
requested number of block received

CMD26 Not applicable

CMD27 [31:0] stuff bits PROGRAM_CSD
Programming of the programmable bits of
the CSD

CMD28
[31:0] data

address
SET_WRITE_PROT

Sets the write protection bit of the addressed
group.

CMD29
[31:0] data

address
CLR_WRITE_PRO

T
Clears the write protection bit of the
addressed group

CMD30
[31:0] write
protect data

address

SEND_WRITE_PR
OT

Asks card to send the status of the write
protection bits.

CMD31 Reserved

CMD32
[31:0] data

address
ERASE_GROUP_S

TART
Sets the address of the first erase group
within a range to be selected for erase

CMD33
[31:0] data

address
ERASE_GROUP_E

ND

Sets the address of the last erase group
within a continuous range to be selected for

erase

CMD34

~
CMD37

Reserved

CMD38 [31:0] stuff bits ERASE Erases all previously selected write blocks

CMD39
~

CMD41
Reserved

CMD42
~

CMD54
Reserved

CMD55
[31:16] RCA

[15:0] stuff bits
APP_CMD

Indicates to the card that the next command
is an application specific command rather

than a standard command

CMD56 [31:1] stuff bits. GEN_CMD Used either to transfer a data block to the

Application Note S19895EJ1V0AN00

APPENDIX B COMMANDS 51/52

Application Note S19895EJ1V0AN00

[0]: RD/ WR1 card or to get a data block from the card for
general purpose / application specific

commands.

CMD57

…
CMD63

Reserved

ACMD
6

[31:2] stuff bits
[1:0]bus width

SET_BUS_WIDTH
Defines the data bus width (’00’=1bit
or ’10’=4 bits bus) to be used for data
transfer.

ACMD
13

[31:0] stuff bits SD_STATUS Send the SD Card status

ACMD
17 ~21

Reserved

ACMD
22

[31:0] stuff bits
SEND_NUM_WR_B
LOCKS

Send the number of the written (without
errors) write blocks. Responds with
32bit+CRC data block.

ACMD

23

[31:23] stuff bits
[22:0]Number of

blocks

SET_WR_BLK_ER

ASE_COUNT

Set the number of write blocks to be pre-

erased before writing (to be used for faster
Multiple Block WR command). “1”=default
(one wr block)2.

ACMD
25~40

Reserved

ACMD
41

[31:0]OCR
without busy

SD_APP_OP_CON
D

Asks the accessed card to send its operating
condition register (OCR) con tent in the

response on the CMD line.

ACMD

42

[31:1] stuff bits
[0]set_cd

SET_CLR_CARD_

DETECT

Connect[1]/Disconnect[0] the 50KOhm pull-

up resistor on CD/DAT3 (pin 1) of the card

ACMD

43~49
Reserved

ACMD

51
[31:0] stuff bits SEND_SCR Reads the SD Configuration Register (SCR).

ANNEX Modification History 52/52

ANNEX Modification History

Number Modification Contents Author Date

Ver 1.00 New version Aug.4.2009

Application Note S19895EJ1V0AN00

	Chapter 1 Introduction
	1.1 Outline
	1.2 Development Environment

	Chapter 2 Usage of SD Memory Card Interface
	2.1 Initialization
	2.2 Data Transfer
	2.3 Erase

	Chapter 3 Example of SD Memory Card Interface Operation
	3.1 Outline of SDM Operation
	3.2 Initialization
	3.2.1 Operation Flow
	3.2.2 Operation Detail

	3.3 Example of SDM Single Block Read/Write
	3.3.1 Operation Flow
	3.3.2 Operation Detail

	3.4 Example of SDM Multi Block Operation
	3.4.1 Operation Flow
	3.4.2 Operation Detail

	APPENDIX A SD Driver Function
	A.1 Function List
	A.2 Global Variable Define
	A.3 Structure & Enum Define
	A.3.1 mmc_csd

	A.4 Function Details
	A.4.1 Hardware Initialization Function
	A.4.2 Card Init Operation
	A.4.3 Sector Setting
	A.4.4 Send Command
	A.4.5 Set Clock
	A.4.6 Set Block Length
	A.4.7 Select Card
	A.4.8 Check Device Status
	A.4.9 Erase Function
	A.4.10 Single Block Read
	A.4.11 Single Block Write
	A.4.12 Multiple Block Read
	A.4.13 Multiple Block Write
	A.4.14 Transfer Prepare
	A.4.15 Decode CSD
	A.4.16 Check Response Status

	APPENDIX B COMMANDS

