

BJ194J-9SY Power Analyzer

User Manual

Version: 3.0

Read me

When you use BJ194J-9SY series Power Analyzer, be sure to read this user manual carefully, and be able to fully understand the implications, the correct guidance of operations in accordance with user manual, which will help you make better use of BJ194J-9SY series Power Analyzer, and help to solve the various problems at the scene.

- 1. Before the meter turning on the power supply, be sure that the power supply within the provisions of the instrument;
- 2. When installation, the current input terminal must non-open, voltage input terminals must Non-short circuit;
- 3. Communication terminal (RS232/RS485 or Ethernet) is strictly prohibited to impose on high pressure;
- 4. Be sure the instrument wiring consistent with the internal system settings;
- 5. When communicating with the PC, instrument communication parameters must be consistent with the PC.

- Please read this user manual carefully
- Please save this document

Directory

CONTENTS

Page

1. SUMMARIZE	3
2. APPLICATIONS	3
3. FEATURES	4
3.1 Electricity metering	4
3.2 Specifications	5
4. INSTALLATION AND START-UP	7
4.1 Installation	7
4.2 Connection Terminal	9
4.3 Connection Drawing	10
5. SCREEN DISPLAY	11
6. OPERATION MODE	12
7. SETUP PROCEDURE	18
7.1 Input Password	18
7.2 Input Signal Selection	18
7.3 Communication Preferences	22
7.4 Digital Output Setting	24
7.5 Analog Output Setting	
7.6 Time and Date Setting	31
7.7 Muti-tariff Setting	
7.8 System Setting	
7.9 Menu Structure	
7.10 Display Character instructions	40
8. PULSE OUTPUT	41
9. COMMUNICATION INTERFACE	42
10. SAFETY CONSIDERATIONS	49
11. MAINTENANCE	49
12. TECHNICAL SERVICE	50

1. - SUMMARIZE

BJ194J-9SY series Power Analyzer is a high-end multifunction power meter. It is the ideal choice for monitoring and measuring of power systems.

It can measure all of the power parameters in power grid:

Current,	*Current harmonics 2~63 times,
Voltage,	*Voltage harmonics 2~63 times,
Frequency,	Voltage and current THD%,
Active power,	Harmonics factor
Reactive power,	Voltage crest factor
Apparent power,	Current K-factor
Energy (Active/Reactive),	Multi- tariffs ratio.
Power factor,	

And it can also transmit the parameter into 2 route relay output (2DO) and 4 route switch input (4DI), 2 route analog output (2AO). For transformers, generators, capacitor banks and motors of the distributed detection, automatic control system, on-line monitoring display. 194J provide max 50 lists event logging, real-time saving DI/DO acted events.

It can replace the traditional analog or many digital measurement instruments (such as ammeter, voltmeter, power meter, power factor meter, frequency meter, etc.) with the advantages of improving system reliability, making the on-site wiring convenient and reduce system cost.

With serial port, BJ194J-9SY Power Analyzer can connect with PC; and use Modbus to set programming and read the data. Based on this power meters, you can simply set up a monitoring system with the IPC and central software.

2. - APPLICATIONS

- All power parameter measurement;
- Power factor measurement and control;
- Energy Measurement;
- ◆ Replacing the three-phase power meter, three phase electricity transmitter;
- ◆ Transformers, generators, capacitors and electric motors distributed detection;
- Medium and low pressure systems;
- SCADA, EMS, DCS integrators.

3. - FEATURES

3.1. - Electricity Metering

By means of an internal microprocessor it simultaneously measures:

Parameter	Symbol	A-phase	B-phase	C-phase	Total/Avg
Single phase voltage	V	x	х	x	/
*Phase-phase voltage	V	х	Х	X	/
Current	А	x	х	x	/
Frequency	Hz	/	/	/	x
Power factor	Cos Φ	x	х	х	x
Active power	W	x	х	x	x
Reactive power	Var	x	X	x	x
Apparent power	VA	x	х	x	Х
Active energy	Wh	/	/	/	x
Reactive energy	Varh	/	/	/	X
Multi- tariffs ratio.Energy	Wh	/	/	/	x
Max demand(W/var/VA)	MAX	/	/	/	x
Voltage/frequncy deviation		/	/	/	X
Voltage/current unbalance		/	/	/	x
Individual harmonic current content (Up to the 63 th)		/	/	/	x

Notes: Phase-phase voltage is Uab, Ubc, Uca, voltage data determined by the different wiring Available: **x:** Display and communications.

xx: Only can read in RS485 communication

The 194J-9SY delivers the visualization of parameters listed above by means of LCD type displays. In the main display area shows 4 power parameters, with other display area show the various parameters and state of meter on each page jump. For more details of measurement parameters please refer to the subsequent for displays introduction and RS485 communication instructions.

OTHER FEATURES

- Low-size (96 x 96 mm), panel-mounting meter.
- True R.M.S. measuring system.
- Instantaneous, maximum and minimum values of each measured parameter.
- Energy measurement (indication through a lighting led)
- RS-485 or Ethernet(optional) type communication to a PC.

Email:tech@cqbluejay.com

3.2. - Specifications

1. - Reference standard:

Basic electricity: GB/T13850-1998 (IEC688-1992) Active power: GB/T17215-2002 (IEC61036:2000) Reactive power: GB/T17882-1999 (IEC61268:1995)

2- Accuracy standards

Parameter	Accuracy	A phase	B phase	C phase	All	Averag e
Voltage Current Active Power Reactive Power Apparent power Power Factor Active Energy Reactive Energy Frequency	0.5s 0.5s 0.5s 0.5s 0.5s 0.5s 1s 0.05s	V1 A1 Var1 VA1 PF1	V2 A2 W2 var2 VA2 PF2	V3 A3 W3 var3 VA3 PF3	W var VA PF Wh varh Hz	VE AE

3. - Input

Voltage: Rated 400V (optional 100V) Current: Rated 5A (optional 1A) Frequency: 45-65Hz

4. - Load

Voltage: <0.1VA / phase (rated 220V)

Current: <0.4VA / phase (rated 5A)

5. - Overload

Current: 1.2 times rated continuous; 1 seconds for 10 times the rated Voltage: 1.2 times the rated continuous; 10 seconds for 2 times the rated

6. - Dielectric strength

IEC 688 / IEC 255-3 (1989)

2kV AC RMS 1 minute, between input / output / case / power supply

7. - EMC Test

	standard	Test voltage
Electrostatic discharge immunity test:	IEC-61000-4-2 level 4	8Kv
Electrical fast transient burst immunity test	IEC61000-4-4 level 3	Input 1kV; Power supply 2kV
Surge (Shock) immunity test	IEC61000-4-5 level 4	common mode test voltage 4kV

8. - Work environment

Temperature: -20 °C ~ +60 °C Humidity: RH 20% \sim 95% (No condensation)

9. - Protection

Panel: IP54 Case: IP20

10. - Storage Conditions

Temperature: -25℃~+70℃ Humidity: RH 20%~95%

11. - Working Power

AC 80-265V, 45-65Hz, DC 80-380V DC 20-60V (Optional) Maximum power consumption 6W

12. - Dimensions

 $L \times W \times H = 96 mm \times 96 mm \times 71 mm$

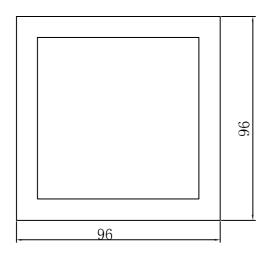
13. - Installation hole size

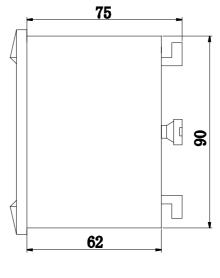
L × W = (91+0.8mm) × (91+0.8mm)

4.- INSTALLATION AND START-UP

The manual you hold in your hand contains information and warnings that the user should respect in order to guarantee a proper operation of all the instrument functions and keep it in safety conditions. The instrument must not be powered on and used until its definitive assembly is on the cabinet's door.

If the instrument is not used as manufacturer's specifications, the protection of the instrument will be damaged.


When any protection failure is suspected to exist (for example, it presents external visible damages), the instrument must be immediately powered off. In this case contact a qualified service representative.


4.1.- Installation

Mounting

Instrument is to be mounted on panel (cut-out 91+0.8 x 91+0.8 mm). Keep all connections into the cabinet.

Note that with the instrument powered on, the terminals could be dangerous to touch and cover opening actions or elements removal may allow accessing dangerous parts. Therefore, the instrument must not be used until this is completely installed.

Front view

Notes:

Input signal: BJ194J using a separate acquisition calculate for each measurement channel, to ensure consistent in use, for different load forms, it's a variety of connection mode. Access wire shall be met: the current 2.5 square mm, voltage of 1.5 square millimeters.

A. Voltage input:

Input voltage should not exceed the rated input voltage products (100V or 400V), Otherwise, you should use external CT. Suggest 1A fuse be installed in the voltage input side.

B. Current Input:

Standard input current is 5A, if greater than 5A should use external CT. When the CT is connected with other instruments, make sure wiring methods be used in series.

Before remove the current input connection, must be sure to disconnect the primary circuit or shorted secondary circuit of CT. In order to facilitate disassembly, please do not connect to CT directly, and the terminal block is suggested.

C. Please make sure that the input voltage and current corresponding to the same phase sequence, and the same direction; Otherwise, the Values and symbols will be wrong!! (Power and Energy)

The input network configuration of instrument depends on the CT number of the system: in the condition of 2 CT, select the three-phase, three-lines two components; in the condition of 3 CT, select the three-phase, four-lines three component mode.

Instrument connection mode, set of the instrument (programming input network NET) should be the same load wiring as measured wiring. Otherwise, the measurement instrument will lead to incorrect voltage or power.

In three-phase three-wire mode, the measurement and shows the line voltage; In three-phase four-wire mode, the measurement and shows the phase voltage.

Auxiliary power:

BJ194J Series Power Analyzer with universal (AC / DC) power input, if not for a special statement, we provide the 220VAC/DC or 110VAC/DC power interface for standard products. Instruments limit work power supply: AC / DC: 80-270V, please ensure that the auxiliary power can match with BJ194J series meter to prevent damage to the product.

A. Suggest install 1A fuse in the fire line side.

B. For the areas with poor power quality, suggest install lightning surge suppressor and rapid burst suppressor to prevent lightning strikes.

4.2. - Connection Terminal

Upper connection terminal

15	16	50	49	48	47	60	59	58	2	1
AO-	AO+	RP-	RP+	AP-	AP+	GUD	RS485B	RS485A	Power	supply

- 1. *Supply voltage input: 0 V
- 2. *Supply voltage input: 220 Va.c.
- 58. RS-485 (+)
- 59. RS-485 (-)
- 60. RS-485 (GND)

- 47. Active energy pulse output (+)
- 48. Active energy pulse output (-)
- 49. Reactive energy pulse output (+)
- 50. Reactive energy pulse output (-)
- 16. Analog output (+)
- 15. Analog output (--)

Middle connection terminal

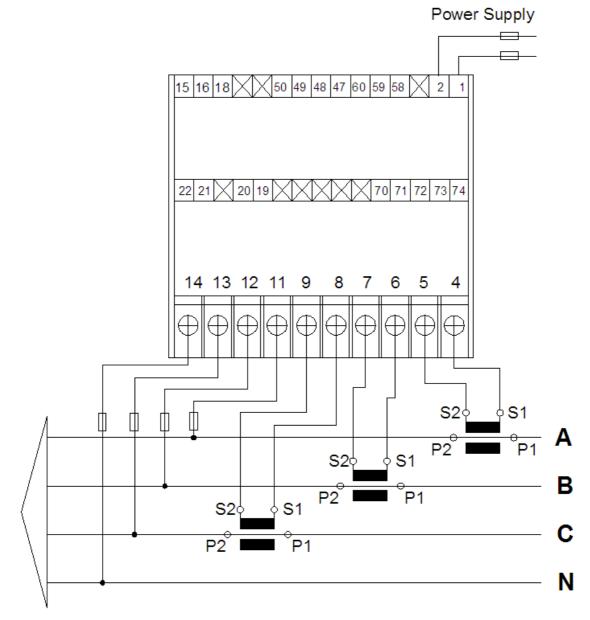
22	21	20	19	70	71	72	73	74
DC)2	DC	D1	COM	DI1+	DI2+	DI3+	DI4+

- 20. Route 1 digital output (+)
- 19. Route 1 digital output (-)
- 22. Route 2 digital output (+)
- 21. Route 2 digital output (-)

- 70. Digital input COM pin
- 71. Route 1 digital input (+)
- 72. Route 2 digital input (+)
- 73. Route 3 digital input (+)
- 74. Route 4 digital input (+)

Lower connection terminal

14	13	12	11	9	8	7	6	5	4
Un	Uc	Ub	Ua	C-phase	Current	B-phase	Current	A-phase	e Current


- 4. Current A-phase S1 input
- 5. Current A-phase S2 input
- 6. Current B-phase S1 input
- 7. Current B-phase S2 input
- 8. Current C-phase S1 input

- 9. Current C-phase S2 input
- 11. Voltage A-phase input
- 12. Voltage B-phase input
- 13. Voltage C-phase input
- 14. Neutral Voltage input

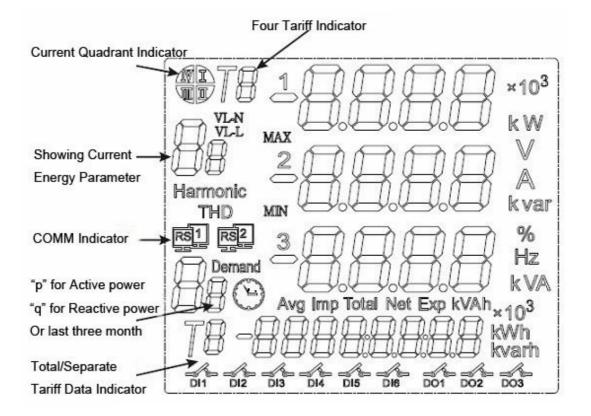
Notes: The terminal pin will change depends on customer order; please refer to the label on the meter!

4.3. - Connection Drawing

IMPORTANT REMARK!

If power = -0.01 is shown for any of the phases and voltage and current are not zero for this phase, check out following points:

- Assure that A, B and C phases coincide in voltage and current.


- Correct polarity? Reverse the current transformer placed at this phase.

Note: This connection drawing is for reference only, the actual connecting terminal please refer to the label on the rear part.

5. SCREEN DISPLAY

5.1. - Panel Diagram

Note: Please see detail instructions of "*" items at "OPERATION MODE".

6. - OPERATION MODE

When the 194J-9SY is powered up, the entire symbol will be on, and the meter starts to selftest. After some seconds, the meter is ready for operation and shows one of the available screens.

 \circledast

Parameters on display can be switched by pressing key \bigcirc or \bigcirc LCD shown on screen at any moment

When the key (is pressed, the screen CURRENT values of each phase are now showing.

Pressing again the key , the screen will show the following parameters successively.

In setting menu, pressing \bigotimes can move the setting cursor to left; Pressing \bigotimes can enter the number 0 ~ 9.

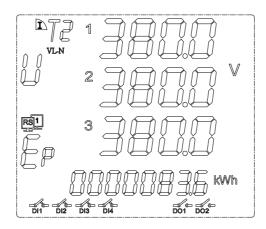
$\langle \rangle$

This key named "SET" key, pressing it can open the programming menu and return to previous menu.

\bigotimes

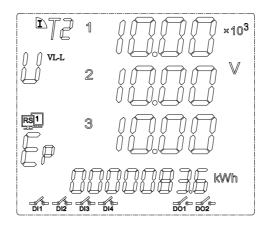
This key named "Enter" key, pressing this key you can exit it with saving any modification that you might have done, in menu operation press "Enter" key, and user can go to the next menu.

Note:


Press key 《 or 》 in normal standby status, and the meter will show different data in main screen:

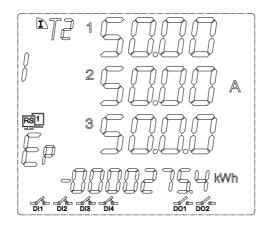
In the menu set mode, when changes the parameter and exit setting, the meter will ask to "SAVE", press *exit without saving*

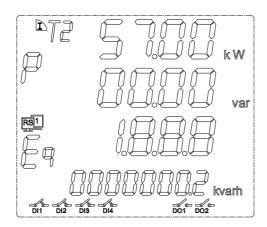
press (V) save and exit.


Screen 1: Displays the three phase voltage Ua, Ub, Uc; As shown: Ua = 380.0V; Ub = 380.0V; Uc = 380.0V;

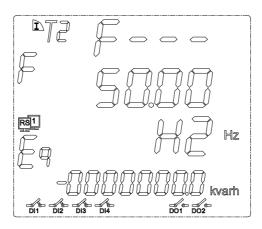
In the bottom character "Ep" show **total active energy** is 83.6KWh.

In other display area region show the system information: DI1, DI2, DI3, DI4 in the close state; DO1, DO2 in the open state; Communication transceiver normal;


Note: Detail information for each symbol, please refer chapter 5, following sections as same

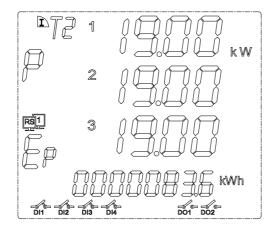

<u>Note</u>: in the high voltage measurement, $X10^3$ mean the showing voltage value multiplied by 1000, in the screen diagram mean the voltage is 10X1,000=10,000volt

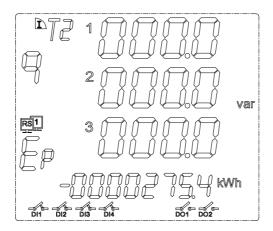
Screen 2: Display the three-phase current la, lb, lc. In the bottom **Ep** shows **total negative active energy**.

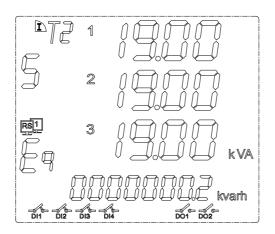


Screen 3: Display the total active power, total reactive power, and total factor. In the bottom "Eq" shows total active energy.

Screen 4: Display the frequency of a phase.

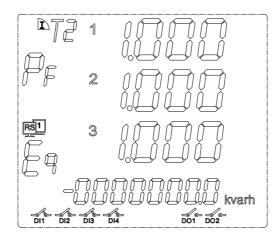

In the bottom "Eq" shows total negative reactive energy.


Email:tech@cqbluejay.com


Screen 5: Display independent active phase. (only Three-phase 4 wire type) In the bottom **Ep** shows total active energy

Screen 6: Display independent reactive phase. (only Three-phase 4 wire type) In the bottom **Ep** shows total negative active energy.

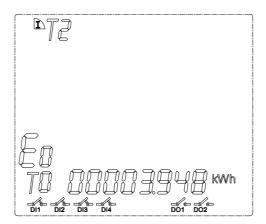
Screen 7: Display independent apparent phase. (only Three-phase 4 wire type) In the bottom "Eq" shows total active energy.



Tel: +0086-023-86850812Email:tech@Fax:+0086-023-67636974Add: Building 13, 2-8, Jialing third village Pioneer Park, Jiangbei District, Chongqing

Email:tech@cqbluejay.com

Screen 8: Display independent power factor. (only Three-phase 4 wire type) In the bottom "Eq" shows total negative reactive energy.



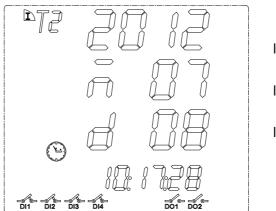
Screen 9: Display the 4 tariff energy data.

In the <u>top screen</u> "T1"~"T4" indicate current showing tariff. In diagram show tariff_2

- E0~E3 indicate the last three month
- E0: Three month total energy data
- E1: Current month energy
- E2: Last month energy
- E3: Month before last month energy

In the **bottom screen** "T1"~"T4" indicate the energy sum data in each tariff.

Note: Press key " () an switch show other energy data


Screen 10: Display maximum power demand.

Notes: use slip method, slip interval 1 minute, total of 15 minutes

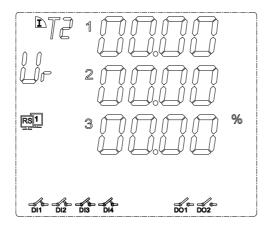
The lower left corner symbol "d1" mean display the current month's max demand power "d2" for last month max demand power

"d3" for the month before last month max demand power

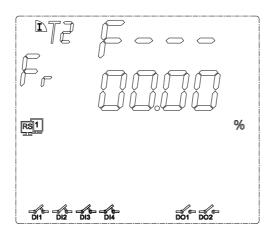
Screen 11: Display real-time clock,

line 1 shows year

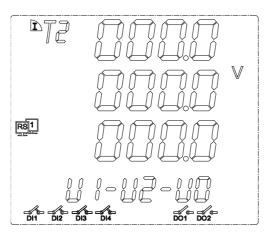
line 2 shows month


line 3 shows date

In the bottom line shows: Hour, minute and second.

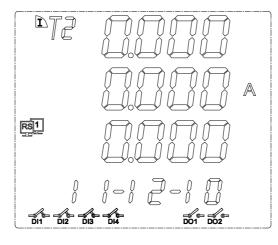


Screen 12: Display voltage deviation


show three phase voltage deviation, unit %

Screen 13: Display voltage deviation, unit %

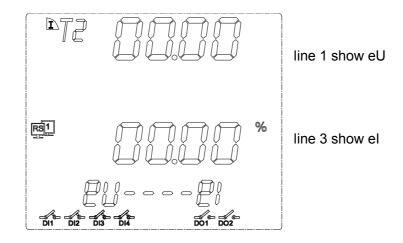
Screen 14: Display the voltage unbalance



line 1 for positive sequence voltage line 2 for negative sequence voltage

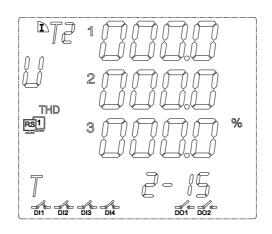
line 3 for zero-sequence voltage

Screen 15: Display the current unbalance

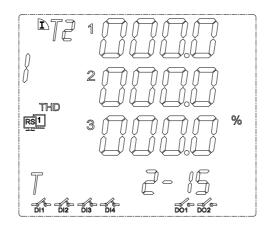


line 1 for positive sequence current

line 2 for negative sequence current


line 3 for zero-sequence current

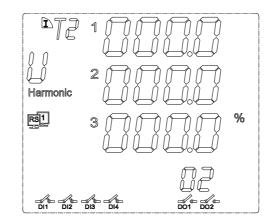
Screen 16: Display the voltage & current unbalance

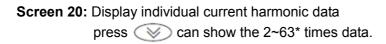


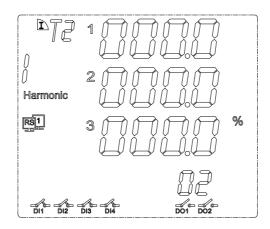
Screen 17: Display voltage THD%

press () can show the 2~63* times voltage harmonic distortion tOhd (total odd harmonic distortion) tEhd (total even harmonic distortion) tHFF (telephone harmonic form factor) CF (crest factor).

Screen 18: Display current THD%


press () can show the 2~63* times harmonic distortion tOhd (total odd harmonic distortion) tEhd (total even harmonic distortion) tHFF (telephone harmonic form factor) CF (crest factor).


- 20 -



Screen 19: Display individual voltage harmonic data

press \bigcirc can show the 2~63* times data.

Notes: not all the 194J can display 63 time harmonic data, please contact Blue Jay Sales team for more details

7. - SETUP PROCEDURE

The SETUP procedure of the BJ194J-9SY is performed by means of several SETUP options. Once into the SETUP, use the keyboard to select different options and enter required variables:

7.1.- Input Password

A 4-figure password is required to be entered (in case that in case that the meter will work without permission.)

At normal display mode, press (to enter the programming mode, meter display

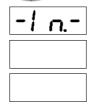
	PASS
Meter display "	

Ask for the password. Press () to input the password number, from "0~9". Press () to move the cursor. After password switch press (V) to confirm the input.

If password is correct, meter can enter next setting. Notes: the default password is 0001.

7.2. - Input Signal Selection

Press (, return to level 1 menu.


In this section, user will set:.

- 1. Input net mode;
- 2. Voltage measure range;
- 3. Current measure range;
- 4. Voltage transformation ratio;
- 5. Current transformation ratio.

7.2.1.- Choice the input net mode

In level 1 menu, use *(()* and *()* to choose item "-IN-", and the meter shows like this:

then press (), enter the level 2 menu, choose "LINE", meter shows:

-1	n
1	nE

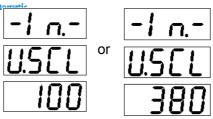
Then press () again, enter the level 3 menu.

Use 《 and 》 to select the right wiring mode, meter shows like this:

-1 n	-1 n
LI nE	Or LI nE
n.]4	n.]]

Note: Selecting the wiring mode must match with actual wiring, or the reading data will go wrong.

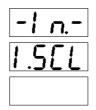
7.2.2.- Voltage measure range

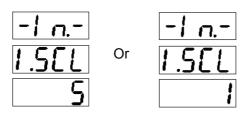

In level 1 menu of "-IN-"

Choose item "U.SCL", and the meter shows like this:

-1 n
U.SEL

then press \bigotimes , enter the level 3 menu, user can see the voltage range:

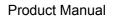


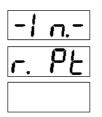

100V: Maximum measured value is 100V **380V:** Maximum measured value is 380V

- **Note:** A different range will affect the accuracy of measurements. If the accuracy is 0.5. Select 100V range, means the minimum scale value is 0.5V (100 x 0.5%); Select 380V range, means the minimum scale value is 1.9V (380 x 0.5%).
- 7.2.3.- Current measure range

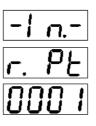
In level 1 menu of "-IN-". Choose "I.SCL", meter shows like this:

then press (), enter the level 3 menu, user can see the current range:


5A: Maximum measured value is 5A.

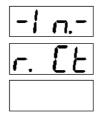

1A: Maximum measured value is 1A.

- **Note:** Select a different range will affect the accuracy of measurements, if the accuracy is 0.5. Select 1A range, means the minimum scale value is 0.005A (1 x 0.5%); Select 5A range, means the minimum scale value is 0.025A (5 x 0.5%).
- 7.2.4- Voltage transformation ratio


In level 1 menu of "-IN-". Choose item "r.PT", meter shows like this:

then press (), enter the level 3 menu, allowing us to set the current transformer.

Press \bigcirc to input the number, from "0~9". Press \bigcirc to move the cursor. After password switch press \bigcirc to confirm the input, value is 1~9999.


Note: The input values represent the voltage transformer (primary side voltage) / (secondary side voltage).

Secondary side voltage is 100V or 380V; user set it at section 7.2.2

7.2.5. - Current transformation ratio

In level 1 menu of "-IN-".

Choose the item "r.CT", meter shows like this:

then press (), enter the level 3 menu, allowing us to set the current transformer.

Press \bigcirc to input the number, from "0~9". Press \bigcirc to move the cursor. After password switch press \bigcirc to confirm the input, value is 1~9999.

Note: The input values represent the current transformer (primary side voltage) / (secondary side current) .

Secondary side current is 1A or 5A, user set it at section 7.2.3

7.3. - Communication Preferences

Press (A), return to level 1 menu.

- In this section, user will set:
- 1. Meter communication address;
- 2. Baud rate;
- 3. Communication format.

<u>Note:</u> Not all the meter have communication function, please make sure your purchase meter first, if no communication mode, you can skip this section.

7.3.1. - Meter communication address setting

One or some BJ194...meter can be connected to a P.C. With this system we can get all the parameters in one central point of reading. The BJ194..., has a serial RS-485 or RS-232 type output (according to the model). If we connect more than one device to the same communication line (RS-485), we have to assign to each of them a different code or direction (from 1 to 247), since the P.C. needs the identification of every measuring point.

In level 1 menu, choose the item "bus", the meter shows like this:

6US

Then press (), enter the level 2 menu, choose the item "Addr", the meter shows like this:

Press \bigcirc to input \bigcirc the number, from "0~9". Press \bigcirc to move the cursor. After password, press \bigcirc to confirm the input, value is 1~9999.

7.3.2.- Communication Baud rate setting

In level 1 menu of "bus".

Choose item "BAUD", and the meter shows like this:

Then press (), enter the level 3 menu, allowing us to set the Baud rate 2400, 4800 or 9600.

685		682		605
PARA	or	6809	or	6809
2400		4800		9600

7.3.3.- Choose communication format

In level 1 menu of "bus".

Choose item "data", and the meter shows like this:

Then press \bigotimes , enter the level 3 menu, allowing us to set the communication data format. (Factory setting n.8.1)

6US		6US		6US
<u> </u>	or	98F8	or	98F8
o.8. 1		<i>2.8. 1</i>		n.8. 1

7.4. - Digital Output Setting

Press (A), return to level 1 menu.

In this section, user will set:

- 1. Digital output type;
- 2. Output delay;
- 3. Choose the electrical parameter;
- 4. Set the alarm value
- 5. Set the hysteresis value
- <u>Note:</u> If the meter have more than one channel digital output, you can set the DO-2,DO-3...as the following step, please select the appropriate output settings in the level 1 menu,.

7.4.1. - Output type

In level 1 menu, use *(()* and *()* to choose item "DO-1", and the meter shows like this:

then press (), enter the level 2 menu, choose "TYPE". The meter shows:

do - 1
F765

then press () again, enter the level 3 menu.

Use 《 and 》 to select the output type, meter shows like this:

do - 1		do-l		do- I
FAbe	Or	FAbe	or	FAbe
<u>г.</u> п		<u>ALr</u>		OFF

r.n: Mean remote control mode, there have *pulse* and *level* output mode, more detail refer chapter **7.4.2**.

Host inquiry:

	,			
01	05	00 01	FF 00	DD FA
Address	Code	Relay address	Relay value (FF00:close; 0000: open)	CRC

Slave answer

01	05	00 01	FF 00	DD FA
Address	Code	Relay address	Relay value (FF00:close; 0000: open)	CRC

RS485 communication please refer to RS485 protocol document.

<u>ALr:</u> Mean directly alarm mode <u>OFF:</u> Mean the relay will not work

7.4.2. - Set output delay

In level 1 menu of "DO-1".

Choose item "DELY", and the meter shows like this:

do	-	1
д£	L	Ч

Then press \bigcirc , enter the level 3 menu, user can set the delay value:

do-	1
dEL	Ч
000	1

Press \longrightarrow to input the number, from "0~9". Press \iff to move the cursor. After password switch press \bigotimes to confirm the input, value is 1~9999. (Default 0010)

Note: The setting of relay value is indicating the width pulse output; value "0000" is for level output. The setting value resolution is 100ms, which means "0001" is 100ms, "9999"

means 999.9s. 0 for level output, 1~9999 for pulse output

7.4.3. - Choose the electrical parameter

In level 1 menu of "DO-1".

Choose item "PArA", meter shows like this:

then press (), enter the level 3 menu, user can choose the output parameter:

 $\underline{\textbf{Note:}}$ There are two alarm mode, indicate with "XX-H" and "XX-L",

"XX-H" mean the rising edge alarm;

"XX-L" mean the falling edge alarm;

- **Example:** "IA-H" mean when the A-phase current is rising to a certain value then output alarm. "I3-H" mean when one phase of A, B, C phase current is rising to a certain value then output alarm.
 - "PS-L" mean when Three-phase total power is falling to a certain value then output alarm.

7.4.4. - Set the alarm value

In level 1 menu of "DO-1".

Choose item "VALU"; meter shows like this:

then press \bigotimes , enter the level 3 menu, user can set the alarm value:

Email:tech@cqbluejay.com

Press \bigcirc to input the number, from "0~9". Press \bigcirc to move the cursor. After password switch press \bigcirc to confirm the input, value is 1~9999. (Default 5500)

Note: Alarm value is about the secondary side value (such as AC100V, AC5A).

Voltage unit is 0.1V;
Current unit is 0.001A;
Active power unit is 0.1W;

Reactive power unit is 0.1VAR; Power factor Is 0.001; Frequency 0.01HZ;

7.4.5. - Set the hysteresis value

In level 1 menu of "DO-1".

Choose item "HYS", meter shows like this:

then press \bigotimes , enter the level 3 menu, and user can set the alarm value:

Press () to input the number, from "0~9". Press () to move the cursor. After password switch press () to confirm the input, value is 1~9999. (Default 0050)

Hysteresis value is for cancel alarm status

Formula: X=A x Y

A for alarm value(rising edge / falling edge) Y for Hysteresis value

Only the difference between DO setting parameter value and real-time monitor value is greater than value **X** that can cancel the alarm

Example: Alarm value 3.700A; hysteresis value 0.03; Rising edge alarm; Measured value is 3.700A then relay action, output alarm; When measured value is bellow 3.700-3.700*0.03=3.589A, the alarm will be cancel.

7.5. - Analog Output Setting

Press (A), return to level 1 menu.

In this section, user will set:

- 1. Analog output type;
- 2. Choose the electrical parameter;
- 3. Set the zero value for transmission output;
- 4. Set the full scale value for transmission output.
- <u>Note:</u> If the meter have more than one channel analog output, you can set the AO-2,AO-3...as the following steps, please select the appropriate output settings in the level 1 menu,.
- **7.5.1.** Output type

In level 1 menu, use *(()* and *()* to choose item "DO-1", meter shows like this:

then press (), enter the level 2 menu, choose "LINE", meter shows:

8o-	!
F 76	•

then press () again, enter the level 3 menu.

Use 《 and 》 to select the output type, meter shows like this:

8o-1	80-1		80- I
FAbe or	FAbE	or	FAbe
05.51	4-20		0-20

Note: output type can choose 12~20mA,4~20mA,0~20mA (default is 12~20mA)

Email:tech@cqbluejay.com

7.5.2. - Choose the electrical parameter

In level 1 menu of "AO-1".

Choose item "PArA", meter shows like this:

then press (), enter the level 3 menu, user can choose the output parameter:

8o-	1
PAr A	7
ปห	

Note: The analog parameter can set Ia, Ib, Ic, Ua, Ub, Uc, P, Q, H, F; default is UA.

7.5.3. - Set the low value for transmission output

In level 1 menu of "AO-1".

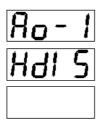
Choose item "LDIS", meter shows like this:

<i>80</i> -	1
Ldl	5

then press (), enter the level 3 menu, user can set the low value:

Ro-	1
Ldl	5
000	1

Press \bigcirc to input the number, from "0~9". Press \bigcirc to move the cursor. After password switch press \bigcirc to confirm the input, value is 1~9999. (Default 0000)


Note: Alarm value is about the secondary side value (such as AC100V, AC5A).

Voltage unit is 0.1V; Current unit is 0.001A; Active power unit is 0.1W; Reactive power unit is 0.1VAR; Power factor Is 0.001; Frequency 0.01HZ;

7.5.4. - Set the full scale value for transmission output.

In level 1 menu of "AO-1".

Choose item "HDIS", meter shows like this:

then press (), enter the level 3 menu, user can set the full scale value:

Press \longrightarrow to input the number, from "0~9". Press \ll to move the cursor. After password switch press \ll to confirm the input, value is 1~9999. (Default 5000)

Note: Alarm value is about the secondary side value (such as AC100V, AC5A).

Voltage unit is 0.1V; Current unit is 0.001A; Active power unit is 0.1W; Reactive power unit is 0.1VAR; Power factor Is 0.001; Frequency 0.01HZ;

7.5.5. - Example of analog output.

Set analog output:

TYPE 4-20mA; PARA select la; LdIS 0000; HdIS 5000

This mean when A-phase current is 0.000A output 4mA, current is 5.000A output 20mA;

7.6. - Time and Date Setting

Press (A), return to level 1 menu.

In this section, user will set the meter system time, which will affect the function of Muti-tariff:

7.6.1. - Set year

In level 1 menu, use *(()* and *()* to choose item "TIME", meter shows like this:

then press (), enter the level 2 menu; choose "YEAR", meter show:

then press () again, enter the level 3 menu.

Use \bigcirc and \bigcirc to select the year, setting value from 00-99:

7.6.2. - Set month

In level 1 menu of "TIME".

Choose item "MON", meter shows like this:

٤	1	n	n
	n	0	n

then press () again, enter the level 3 menu.

Use 《 and 》 to select the month, with setting value from 1-12:

7.6.3. - Set week day

In level 1 menu of "TIME".

Choose item "DAY", meter shows like this:

٤	1	ſ	- 7	٢	7
	d	f	7	1	ł

then press () again, enter the level 3 menu.

Use \bigcirc and \bigcirc to select the day, with setting value from 1-31:

7.6.4. - Set date

In level 1 menu of "TIME".

Choose item "DATE", meter shows like this:

<u>tl nn</u>	
<u> </u>	

then press () again, enter the level 3 menu.

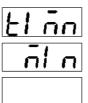
Use 《 and 》 to select the week day, with setting value from 1-7:

7.6.5. - Set hour

In level 1 menu of "TIME".

Choose item "HOUR", meter shows like this:

then press () again, enter the level 3 menu.


Use \bigotimes and \bigotimes to select the hour, setting value from 00-23:

7.6.6. - Set minute

In level 1 menu of "TIME".

Choose item "MIN", meter shows like this:

then press () again, enter the level 3 menu.

Use 《 and 》 to select the minute, with setting value from 00-59:

7.6.7. - Set second

In level 1 menu of "TIME".

Choose item "SEC", meter shows like this:

F	1	<u>_</u>	п
	5	E	

then press () again, enter the level 3 menu.

Use \bigcirc and \bigcirc to select the second, setting value from 00-59:

7.6.8. - Set billing date

In level 1 menu of "TIME".

Choose item "E.DAY", meter shows like this:

then press () again, enter the level 3 menu. Meter will show:

Use \bigotimes and \bigotimes to select the billing date:

Note: Default value is 0101, mean the billing date is At 1:00 on the 1st of each month.

Date : time So the setting value max is 3123, which means each month 31st, 23:00

7.7. - Muti-tariff Setting

Press (), return to level 1 menu.

In this section, user will set:

- 1. Billing segment setting;
- 2. Ttariff setting

Note: BJ-194J contains 12 billing segments, with the billing segment 1 setting method in this manual.

7.7.1. - Set the billing time of segment 1

In level 1 menu, use \bigotimes and \bigotimes to choose item "S.EG1", and the meter shows like this:

Then press (), enter the level 2 menu, choose "TIME". The meter shows:

5	3.	ĺ	- J		1
F	1	i	7	٢	7
					_

Then press () again, entering the level 3 menu.

Tel: +0086-023-86850812 Email:tech@ Fax:+0086-023-67636974 Add: Building 13, 2-8, Jialing third village Pioneer Park, Jiangbei District, Chongqing


```
Use \bigotimes and \bigotimes to select the billing date.
```

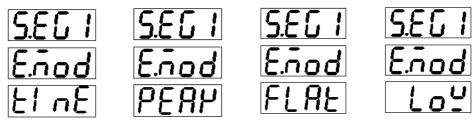
Note: Default value is 0000, which means the billing date is at 00:00 on each day.

Segment 1 is for the muti-tariff starting time!!

7.7.2. - Choose the segment 1 billing tariff

Note:

BJ194J provides 3 months of energy data; use "Sharp" "Peak" "Flat" "Valley" (T1~T4)to calibrate the total energy data. Users can get monthly energy data from panel display or RS485(RS485 data refer to <u>Communication protocol</u>), and calculate their energy cost.


You can set up 12 billing segment in one day. The segment 1 setting steps are as follows, and other segment setting method is the same.

In level 1 menu of "S.EG1".

Choose item "E.Mod", meter shows like this:

then press (), enter the level 3 menu, user can choose the billing mod:

Note: Above mean: Sharp, Peak, Flat, Valley.

7.8. - System Setting

Press (A), return to level 1 menu.

In this section, user will set:

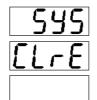
- 1. Backlight time of the LCD;
- 2. Clear energy counters;
- 3. Set display mode;
- 4. Change the password
- 7.8.1. Set the LCD backlight time

In level 1 menu, use *(()* and *()* to choose item "SYS", meter shows like this:

then press \bigotimes , enter the level 2 menu, choose "LCd.t", meter show:

then press \bigotimes again, enter the level 3 menu, Use \bigotimes and \bigotimes to select the value

<u>Note:</u> Minimum step is 1 minute, 0005 for 5 minutes, which means if not any operation in 5 minutes, the backlight will turn off


Set value > 1000, the backlight always on; Set value = 0000, the backlight always off.

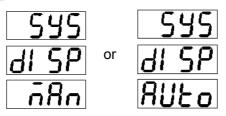
7.8.2. - Clear energy counters

In level 1 menu of "SYS".

Choose item "CLr.E", meter shows like this:

then press () again to confirm clear all the energy data, meter display:

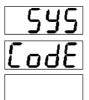
And then press () again, to save the operation and exit. Press (without save and exit.


7.8.3. - Set display mode

In level 1 menu of "SYS".

Choose item "dISP", meter shows like this:

then press (), enter the level 3 menu, user can choose the display mode:



Note: Man means the screen display will change by press (and ()Auto means the screen display will change in every 10 sec.

7.8.4. - Change the password

In level 1 menu of "SYS".

Choose item "CodE", meter shows like this:

Tel: +0086-023-86850812 Fax:+0086-023-67636974

then press () again, enter the level 3 menu. Use () and () to input the new password:

Note: Please do not change the password, If necessary, please contact Blue Jay technical !!

7.9. – Menu Structure

level 1	Level 2	Level 3	Description
	(LCD backlight time) LCd.t	0000~1000	Factory default is 0005
(System setting)	(Clear energy counters) CLr.E		Unrecoverable for Clear data
SYS	(Display mode) dISP	Manual or Automatic	Factory default is manual
	(Change the password) CodE	0000~9999	Default is 0001
	(Net) Lin.e	N.3.4, N.3.3, N.1	Select the input signal network measurement
	(Voltage Range) U.SCL	100V, 220V, 380V	Select the range of measured voltage signal
(Signal input)	(Current Range) I.SCL	5A and 1A	Select the range of measured current signal
-IN-	(Voltage transformation ratio) R.PT	1-9999	Setting voltage signal transformation ratio = 1 / 2 scale
	(Current transformation ratio) R.CT	1-9999	Setting current signal transformation ratio = 1 / 2 scale
	(Address) ADDR	1-247	Instrument address range 1-247
(Communication Parameters)	(Communication speed) BAUD	4800~9600	Default is 4800
bUS	Protocol DATA	o.8.1; e.8.1; n.8.1	Factory default communication mode for the word (n.8.1)
	(Output type) TYPE	r.n, Alr, OFF	Default is Alr
	(Set output delay) DELY	0000~9999	Default is 0010
(Digital output setting) DO-1	Choose the electrical parameter PArA	I3-H, PS-HU3-H	Default is I3-H
	(Set the alarm value) VALU	0000~9999	Default is 0050
	hysteresis value HYS	4800~9600	Default is 4800

	(Output type) TYPE	12.20, 4-20, 0-20	Default is 12.20
	Choose the electrical parameter PArA	UA,UB,UCFR	Default is UA
(Analog Output Setting) AO-1	(low value for transmission output) LdIS	0000~9999	Default is 0000
	full scale value for transmission output HdIS	0000~9999	Default is 5000
	(Year) YEAR	00~99	Default is 20XX
	(Month) MON	1~12	
	(Week day) DAY	1~7	
(Time setting)	(Date) DATE	1~31	
TIME	(Hour) HOUR	00~23	
	(Minute) MIN	00~59	
	(Second) SEC	00~59	
	(Dilling date) E.dAy	0101~3123	Default is 0101

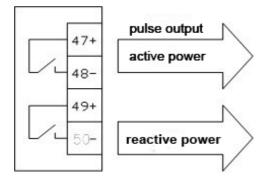
level 1	Level 2	Level 3	Level 4	Description
	(Billing date of	Billing time of segment 1 (TIME)	Default 0000	
	segment 1) S.EG1	Segment 1 billing tarfiff (E.Mod)	(Sharp) TinE (Peak) PEAK (Flat) FLAt (Valley) LOW	
(Muti-tariff				
Setting) E.SEG				
	(Billing date of segment 12) S.EG12	Billing time of segment 12 (TIME)	Default 0000	
		Segment 1 billing tarfiff (E.Mod)	(Sharp) TinE (Peak) PEAK (Flat) FLAt (Valley) LOW	

Note: Not all 194J series power analyzer have the complete menu settings, Please confirm your purchased power analyzer has the corresponding extension module. Without the module, the corresponding part of the menu is not valid.

7.10.- Display Character instructions

PRSS	User passwords	545	System parameter settings
Erro	Input error	FALE	Choose Setted parameter
-1 n	User settings menu	PAr A	The corresponding parameters
<u> ៦៩</u>	Communication settings menu	ប828	Set the alarm value
SCAL	Shows scal input value	LdI S	Show Low alarm setting
Pole	Set the decimal point	Hdl S	Show High alarm setting
<u> </u>	Communication parameter setting	LodE	System password
Rddr	Metter address setting	YEAr	Year
600A	Baud rate	non	Month
o.8. 1	8 data bits, 1 stop bit, even parity	987	Week day
<u> </u>	8 data bits, 1 stop bit, odd parity	98F8	Date
n.8. 1	8 data bits, 1 stop bit, no parity	Hour	Hour
SUrE	Confirm the change	n In	Minute
U.SEL	Input voltage range selection	580	Second
1.5EL	Input current range selection	E.SEG	Tariff segment
r. [Ł	Set CT ratio	E.nod	Tariff
r. PE	Set PT ratio	<u> </u>	Sharp
LInE	Select phase	PERY	Peak
do- 1	Route 1 switch output settings	FLAF	Flat
do-2	Route 2 switch output settings	Lou	Valley
		E.dAY	Billing day

8.- PULSE OUTPUT

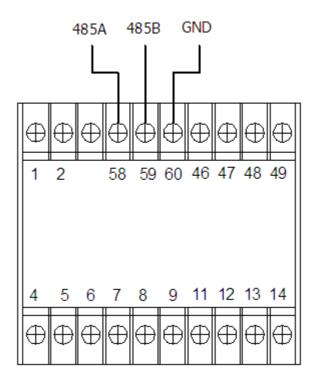

BJ-194J power analyzer provides 2 routes pulse output for the total active energy and total reactive energy.

The host/PLC/DI module can cumulative the data of both the active and reactive power energy sent by the pulse from optocoupler relay.

- 1). Electrical specification: voltage VCC \leq 48V, Iz \leq 50mA.
- 2). Pulse: 5000 imp / kWh, pulse upto 80ms.This means: When the meter detect 1 kWh, the meter output 5000 pulse
- <u>Note:</u> 1 kWh energy is for <u>secondary side energy data</u>, if there have PT and CT accessed; primary side energy data is "1 kWh ×PT ratio× CT ratio".

For example: In measure time "T", the received total pulse is "N", Primary side input of voltage is 10Kv Primary side input of current is 400A. Secondary side measurement range is 100V and 5A.

In the time "T", energy accumulated is : N/5000 × 100 × 80



9.- COMMUNICATION INTERFACE

9.1.- Connection for the RS485 BUS

The composition of the RS-485 cabling must be carried out with a meshed screen cable (minimum 3 wire), diameter of not less than 0.5mm², with a maximum distance of 1,200 m between the BJ194... and the master unit. This Bus may connect a maximum of 32 BJ194...

Note:

- 1. For communication with the master unit, customers can choose the RS-232 to RS-485 converter to use
- 2. Full range of BJ-194Q... meter RS485 PIN number is 58,59,60
- 3. Due to product modifications or custom requirements, the interface pin place may be change. For details, please refer to product label on the rear board

9.2.- MODBUS © protocol

Modbus RTU Frame Format:

Address code	1 BYTE	Slave device address 1-247
Function code	1 BYTE	Indicates the function codes like read coils / inputs
Data code	4 BYTE	Starting address, high byte Starting address, low byte Number of registers, high byte Number of registers, low byte
Error Check code	2 BYTE	Cyclical Redundancy Check (CRC)

MODBUS FUNCTIONS

:

Code:	Meaning:	Description:
FUNCTION 03	Reading of n Words	This function permits to read all the electrical parameters of the BJ194series.
FUNCTION 16	Preset Multiple Registers	<i>Write value in to the relevant register</i>

<u>Notes:</u> Blue Jay Default disable the write function, if want change configuration via RS485, please contact Blue Jay Sales Team before your order.

9.3. - Register address table

9.3.1- Basic Power Data—Primary Side

Address	Data	Byte mo	ode	Instruction
0x00	Ua	float	2	Phase to Line Voltage, Unit: V
0x02	Ub	float	2	
0x04	Uc	float	2	
0x06	Uab	float	2	Phase to Phase Voltage, Unit: V
0x08	Ubc	float	2	
0x0a	Uca	float	2	
0x0c	la	float	2	Three phase Current, Unit: A
0x0e	lb	float	2	
0x10	lc	float	2	
0x12	Pa	float	2	
0x14	Pb	float	2	Individual phase active power, Unit: kW
0x16	Pc	float	2	
0x18	ΡΣ	float	2	Total active power, Unit: kW
0x1a	Qa	float	2	
0x1c	Qb	float	2	Individual phase reactive power, Unit: kVar
0x1e	Qc	float	2	
0x20	QΣ	float	2	Total reactive power, Unit: kVar
0x22	reversed	/	/	
0x24	reversed	/	/	
0x26	reversed	/	/	
0x28	SΣ	float	2	Total apparent power, Unit: kVA
0x2a	reversed	/	/	
0x2c	reversed	/	/	
0x2e	reversed	/	/	
0x30	cosQ	float	2	Total power factor, 0~1.000
0x32	FR	float	2	Frequency, Unit:0.01Hz
0x34	Ep+	float	2	Positive active energy, Unit: kWh
0x36	Ep-	float	2	Negative active energy, Unit: kWh
0x38	Eq+	float	2	Inductive reactive power, Unit: kVarh
0x3a	Eq-	float	2	Capacitive reactive power

9.3.2 - Basic Power Data—Secondary Side

Address	Data	Byte mode		Instruction
0x100	Ua	int	1	Phase to Line Voltage, Unit: 0.1V
0x101	Ub	int	1	
0x102	Uc	int	1	
0x103	Uab	int	1	Phase to Phase Voltage, Unit: 0.1V

0x104	Ubc	int	1	
0x105	Uca	int	1	
0x106	la	int	1	Three phase Current, Unit: 0.001A
0x107	lb	int	1	
0x108	lc	int	1	
0x109	Ра	int	1	
0x10a	Pb	int	1	Individual phase active power, Unit: W
0x10b	Pc	int	1	
0x10c	ΡΣ	int	1	Total active power, Unit: W
0x10d	Qa	int	1	
0x10e	Qb	int	1	Individual phase reactive power, Unit: Var
0x10f	Qc	int	1	
0x110	QΣ	int	1	Total reactive power, Unit: Var
0x111	reversed	/	/	
0x112	reversed	/	/	
0x113	reversed	/	/	
0x114	SΣ	int	1	Total apparent power, Unit: VA
0x115	reversed	/	/	
0x116	reversed	/	/	
0x117	reversed	/	/	
0x118	cosQ	int	1	Total power factor, 0~1.000
0x119	FR	int	1	Frequency, Unit:0.01Hz
0x11a	Ep+	int	2	Positive active energy, Unit: Wh
0x11c	Ep-	int	2	Negative active energy, Unit: Wh
0x11e	Eq+	int	2	Inductive reactive power, Unit:Varh
0x120	Eq-	int	2	Capacitive reactive power

9.3.3- Meter status data

Address	Data	Byte mode		Instruction
0x200	DO	int 1		Digital output: Bit 0~1 show channel 1and channel 2 status 0 for open, 1 for closed
0x201	DI	int 1		Digital input: Bit 0~3 show channel 1 to channel 4 status 0 for open, 1 for closed
0x20A	TIME.year	int	1	
0x20B	TIME.month	int	1	
0x20C	TIME.date	int	1	
0x20D	TIME.hour	int	1	Internal RTC real time clock: Year - Month - Day - Time - minutes - seconds
0x20E	TIME.minute	int	1	Day - Time - Minutes - Seconds
0x20F	TIME.second	int	1	
0x210	TIME.day	int	1	

9.3.4- Advanced electrical parameter

Address	Data	Byte mo	ode	Instruction				
0x300	Pde	float	2	Present active power demand, Unit: W				
0x302	Qde	float	2	Present reactive power demand, Unit: var				
0x304	Sde	float	2	Present apparent power demand, Unit: var				
0x306	Pdmax	float	2	active power demand in this month				
0x308	Qdmax	float	2	reactive power demand in this month				
0x30a	Sdmax	float	2	apparent power demand in this month				
0x30c		float	2	active power demand in last month				
0x30e		float	2	reactive power demand in last month				
0x310		float	2	apparent power demand in last month				
0x312		float	2	active power demand in month before last month				
0x314		float	2	reactive power demand in month before last month				
0x316		float	2	apparent power demand in month before last month				
0x318-0x 31F		float	2	reversed				
0x320		float	2	positive sequence voltage in primary side				
0x322		float	2	negative sequence voltage in primary side				
0x324		float	2	zero sequence voltage in primary side				
0x326		float	2	positive sequence current in primary side				
0x328		float	2	negative sequence current in primary side				
0x32A		float	2	zero sequence current in primary side				
0x32C		float	2	percentage of negative sequence voltage				
0x32E		float	2	percentage of negative sequence current				
0x330		float	2	A phase voltage deviation				
0x332		float	2	B phase voltage deviation				
0x334		float	2	C phase voltage deviation				
0x336		float	2	Frequency deviation				

9.3.5- Multi- tariffs ratio data

Address	Data	Byte mo	de	Instruction
0x400	Cumulative_tol(Total)	long	2	The total energy
0x402	Cumulative_T1(Sharp)	long	2	The total sharp energy
0x404	Cumulative_T2(Peak)	long	2	The total peak energy
0x406	Cumulative_T3(Flat)	long	2	The total flat energy
0x408	Cumulative_T4(Vally)	long	2	The total valley energy
0x40a	0x40a Current_tol(Total)		2	Total energy of this month
0x40c	Current_T1(Sharp)	long	2	Sharp energy of this month
0x40e	Current_T2(Peak)	long	2	Peak energy of this month
0x410	Current_T3(Flat)	long	2	Flat energy of this month
0x412	Current_T4(Vally)	long	2	Valley energy of this month
0x414	Last_tol(Total)	long	2	Total energy of last month

Tel: +0086-023-86850812 Email:tech@cqbluejay.com Fax:+0086-023-67636974 Add: Building 13, 2-8, Jialing third village Pioneer Park, Jiangbei District, Chongqing

0x416	Last_T1(Sharp)	long	2	Sharp energy of last month
0x418	Last_T2(Peak)	long	2	Peak energy of last month
0x41a	Last_T3(Flat)	long	2	Flat energy of last month
0x41c	Last_T4(Vally)	long	2	Valley energy of last month
0x41e	Prior_tol(Total)	long	2	Total energy of the month before last month
0x420	Prior_T1(Sharp)	long	2	Sharp energy of the month before last month
0x422	Prior_T2(Peak)	long	2	Peak energy of the month before last month
0x424	Prior_T3(Flat)	long	2	Flat energy of the month before last month
0x426	Prior_T4(Vally)	long	2	Valley energy of the month before last month

9.3.6- THD and Individual harmonic (Max 15 times)

Address	Data	Byte r	node	Instruction
0x500	THDUa	int	1	A-phase Voltage THD, unit 0.1%
0x501	THDUb	int	1	B-phase Voltage THD
0x502	THDUc	int	1	C-phase Voltage THD
0x503	THDia	int	1	A-phase Current THD, unit 0.1%
0x504	THDib	int	1	B-phase Current THD
0x505	THDic	int	1	C-phase Current THD
0x508-0x545	HUa	int	62	A phase voltage harmonic content ratio for 2 to 63 times, unit 0.1%
0x548-0x585	HUb	int	62	B phase voltage harmonic content ratio for 2 to 63 times, unit 0.1%
0x588-0x5c5	HUc	int	62	C phase voltage harmonic content ratio for 2 to 63 times, unit 0.1%
0x5c8-0x605	Hla	int	62	A phase current harmonic content ratio for 2 to 63 times, unit 0.1%
0x608-0x645	HIb	int	62	B phase current harmonic content ratio for 2 to 63 times, unit 0.1%
0x648-0x685	HIc	int	62	C phase current harmonic content ratio for 2 to 63 times, unit 0.1%
0x688	TOHDUa	int	1	A phase voltage total odd harmonic distortion, unit 0.1%
0x689	TOHDUb	int	1	B phase voltage total odd harmonic distortion, unit 0.1%
0x68a	TOHDUc	int	1	C phase voltage total odd harmonic distortion, unit 0.1%
0x68b	TEHDUa	int	1	A phase voltage total even harmonic distortion, unit 0.1%
0x68c	TEHDUb	int	1	B phase voltage total even harmonic distortion, unit 0.1%
0x68d	TEHDUc	int	1	C phase voltage total even harmonic distortion, unit 0.1%
0x68e	THFFUa	int	1	A phase voltage telephone harmonic form factor, unit 0.1%
0x68f	THFFUb	int	1	B phase voltage telephone harmonic form factor, unit 0.1%

Tel: +0086-023-86850812 Email:tech@cqbluejay.com Fax:+0086-023-67636974 Add: Building 13, 2-8, Jialing third village Pioneer Park, Jiangbei District, Chongqing

0x690	THFFUc	int	1	C phase voltage telephone harmonic form factor, unit 0.1%				
0x691	CFUa	int	1	A phase voltage crest factor, unit 0.001				
0x692	CFUb	int	1	B phase voltage crest factor, unit 0.001				
0x693	CFUc	int	1	C phase voltage crest factor, unit 0.001				
0x694	TOHDIa	int	1	A phase current total odd harmonic distortion, unit 0.1%				
0x695	TOHDIb	int	1	B phase current total odd harmonic distortion, unit 0.1%				
0x696	TOHDIc	int	1	C phase current total odd harmonic distortion, unit 0.1%				
0x697	TEHDIa	int	1	A phase current total even harmonic distortion, unit 0.1%				
0x698	TEHDIb	int	1	B phase current total even harmonic distortion, unit 0.1%				
0x699	TEHDIc	int	1	C phase current total even harmonic distortion, unit 0.1%				
0x69a	KFla	int	1	A phase current K factor, unit 0.01				
0x69b	KFlb	int	1	B phase current K factor, unit 0.01				
0x69c	KFlc	int	1	C phase current K factor, unit 0.01				

9.3.7- SOE record (Max 50 list)

Address	Data	Byte mode		Instruction		
0X700-0X7F9	SOE_1~50	int	1	Byte 0: Fault channel Byte 1: Fault event Byte 2,3: Fault value Byte 4: Fault time: Year Byte 5: Fault time: Month Byte 6: Fault Time: Day Byte 7: Fault time: Time Byte 8: Fault time: Minute Byte 9: Fault time: Seconds		

Byte 0		Byte 1
1:DI1	100:Remote control	
2:DI2	101:UA upper alarm	132:UA lower alarm
3:DI3	102:UB upper alarm	133:UB lower alarm
4:DI4	103:UC upper alarm	134:UC lower alarm
5:DI5	104:UAB upper alarm	135:UAB lower alarm
6:DI6	105:UBC upper alarm	136:UBC lower alarm
101:DO1	106:UCA upper alarm	137:UCA lower alarm
102:DO2	107:UA/UB/UC upper alarm	138:UA/UB/UC lower alarm
103:DO3	108:IA upper alarm	139:IA lower alarm
104:DO4	109:IB upper alarm	140:IB lower alarm
	110:IC upper alarm	141:IC lower alarm
	111:IA/IB/IC3 upper alarm	142:IA/IB/IC3 lower alarm
	112:PA upper alarm	143:PA lower alarm
	113:PB upper alarm	144:PB lower alarm
	114:PC upper alarm	145:PC lower alarm
	115:total active power upper alarm	146:total active power lower alarm
	116:QA upper alarm	147:QA lower alarm
	117:QB upper alarm	148:QB lower alarm
	118:QC upper alarm	149:QC lower alarm
	119:total reactive power upper alarm	150:total reactive power lower alarm
Tel: +0086-023-	86850812	Email:tech@cqbluejay.com

120:SA upper alarm	151:SA lower alarm
121:SB upper alarm	152:SB lower alarm
122:SC upper alarm	153:SC lower alarm
123:total apparent power upper alarm	154:total apparent power lower alarm
124:total power factor upper alarm	155:total power factor lower alarm
125:frequency upper alarm	156:frequency lower alarm
126:DI1 close alarm	157:DI1 open alarm
127:DI2 close alarm	158:DI2 open alarm
128:DI3 close alarm	159:DI3 open alarm
129:DI4 close alarm	160:DI4 open alarm
130:DI5 close alarm	161:DI5 open alarm
131:DI6 close alarm	162:DI6 open alarm

Note:

- 1. Not all of the data above can be read by RS485, the reading address will be unsuccessful
- 2. The data can be read out depends on your multi-function meter model, please refer to the corresponding product manual before build your software.
- Some software has different definitions of the start bit of register address, there will be offset, please add 1 for the right address. To get more info, please contact technical support <u>tech@cqbluejay.com</u>
- 4. Blue Jay provide BOS1000 software for small measurement network and customer testing, it can connect max 32pcs of power meter, user can free to download this software on Blue Jay online site: <u>www.cqbluejay.com</u>

9.4.- Example

Host to Slave inquiry

Addr	Fun	Data Address (high)	Data Address (low)	Data Number (high)	Data number (low)	CRC16 (low)	CRC16 (high)
0CH	03H	00H	00H	00H	06H	C4H	D5H

PC user ask upload UA, UB, UC, IA, IB, IC

Slave to Host answer

Addr	Fun	Byte count	Data1 high	Data1 Iow	Data2 high	Data2 Iow	Data3 high	Data3 Iow
0CH	03H	0CH	03H	E8H	03H	E9H	03H	E8H
Data4 high	Data4 Iow	Data5 high	Data5 Iow	Data6 high	Data6 Iow	CRC16 low	CRC1 6 high	
13H	84H	13H	88H	13H	8AH	A6H	D6H	

Show the data:

UA=3E8H (100.0) UB=3E9H (100.1) UC=3E7H (99.9) IA=1384H (4.996) IB=1388H (5.000) IC=138AH (5.002)

Notes:

- 1. User can write register data for meter testing and remote control the meter
- 2. When the write is unsuccessful, no return data from the slave, in this addition, user can send write inquiry again

10. - SAFETY CONSIDERATIONS

All installation specification described at the previous chapters named: INSTALLATION AND STARTUP, INSTALLATION MODES and SPECIFICATIONS.

Note that with the instrument powered on, the terminals could be dangerous to touching and cover opening actions or elements removal may allow accessing dangerous parts. This instrument is factory-shipped at proper operation condition.

11. - MAINTENANCE

The 194J does not require any special maintenance. No adjustment, maintenance or repairing action should be done when the instrument is open and powered on, should those actions are essential, high-qualified operators must perform them.

Before any adjustment, replacement, maintenance or repairing operation is carried out, the instrument must be disconnected from any power supply source.

When any protection failure is suspected to exist, the instrument must be immediately put out of service. The instrument's design allows a quick replacement in case of any failure.

12. - TECHNICAL SERVICE

FAQ's

1. The BJ-194J Power Analyzer, once cabled and connected is seen to give a correct voltage and current reading, but shows negative values for active power (generation).

This is an error with the cabling for the current transformer secondary; the direction of the transformer current has to be respected as shown in the connection diagram. The current transformers have a two face primary; the current must pass from P1 to P2 giving the result in secondary (S1 and S2) of 5 amps.

The error stems from:

a). The current transformers have been incorrectly installed. As a result it gives the direction of the current as passing from P2 to P1; to resolve this problem, the current transformer does not have to be dismantled and installed again, but the transformer secondary (S1 and S2) just has to be inverted.

b). The connection of the current secondary in the current transformers have been incorrectly connected; to resolve this problem just connect the S1 transformer secondary to the S1 on the meter and the S2 on the current transformer to the S2 on the meter

2. The BJ-194J, once cabled and connected, is seen to give an incoherent Power factor and CosΦ reading (-0.01 or similar).

This is again a current transformer and voltage phase connection error phase A, must correspond to the current transformer installed in phase A; phase B, must correspond to the current transformer installed in phase B; and phase C, must correspond to the current transformer installed in phase C.

This connection is clearly shown on the back of the analyzer.

 The BJ-194J is measuring in average voltage and is displaying the secondary voltage (for example 110 volts).
Ensure that the voltage Transformer ratio has been correctly set (see section on chapter7).

The BJ-194J does not correctly display the current reading. It shows values varying between 0 to 5 amps of current.
Ensure that the Transformer ratio has been correctly set; once correctly set the current

measurement shall be shown correctly (see section on **chapter7**).

For any inquiry about the instrument performance or any failure, contact to Blue Jay's technical service.

Blue Jay - After-sales service

Building 13, 2-8, Jialing third village Pioneer Park, Jiangbei District , 400020 Chongqing

Tel - + 0086 023 86850812 Fax - + 0086 023 67636974 E-mail : tech@cqbluejay.com