Component Wizard

User Manual

version 1.55
Copyright 2010 Freescale Semiconductor, Inc.
PROCESSOR EXPERT is trademark of Freescale Semiconductor, Inc.

CONTENTS

1. Introduction 4
2. Basic Terms 5
2.0, INNEIMTANCE . . o e e 7
2.0 1. InheritanCe SCREME . . e e e e e 8
2.1.2. Options of Methods Inheritancet e e e ceeccemeeaaeann, 9
2.1.3. Options of Events INNeritanCe e e e e e e e 11

3. Versions 12
4. How to work with Component Wizard 13
4.1. How to create a Template 2 . .. 13
4.2. How to create an Interface 2 e e, 14
4.3. Modifying INterfaces . .. 14
4.4, Interface AppPliCation ... e 16
4.5. Inheriting from a CoOmMpPONeNt 16
4.6. Problems with inherintanCe ... e 17
4.7. Sharing a ComMPONENt . e e 19
4.8, Editing AriVers . . 20
4.9. Component Creation e 21
4.10. Distributing COMPONENt . . . 23
5. User Interface 24
5.1. Component Wizard MeNU . _ e 25
L 00 00 @ T o)T) 26
B, L. 2, PrOPEIIES - . o oo e e e e e e e e e e 30
5.1.3. CompoNent MaNAQEr oo i e e e e e e e e e e e e e e e m 31
5.1.3.1. Deleting COMPONENTSo e e e e e e e e e e e e 32

5.1.3.2. Exporting / Importing a COMpPONENt e e e e e 33

5.1.4. Inheritance Wizardo e e e e e e 35
5.1.5. Save Interface Dialog . . . oo . oo e e e e e e 36
5.1.6. Save Template Dialog oo e e e e e e e e e e e 37

B, 1.7, REVISIONS . . oo e e e e e e e e e e e e e 38
5.1.8. Create COMPONENt . o e o e e e e e e e e e e e e e e e e 39
5.1.8.1. Import ANSIC eXample e e e e 41

D 2. S artUD MBNU . e e 47
5.3. COMMON PAGE . . .o e e e e e e 48
5.3.1. COmMPONENt CAtEQOIY . . . oo o o e e e e e e e e e e e e e e e e e e e m 49
5.4, PropertieS Page 51
Lot o 0T Y 1N 54

5.4, 1.1 Feature INK . . e e e e e e e e 63

Lo = 1= A] 1= 41 1 o 63
5.5. Global properties Pageo e 65
5.6. Component Property type Page e 67
B, 7. MethOds Page ... 69
5.8, EVENIS PAgE ... e 71
5.9. USEr tYPeS PaAgE e e e e e e 74
B.10. CONSIANTS . .. e e 76
B5.11. DrVEIrS Page .. . e 77
5.11.1. DriVer PrOCESSING . . . o e oo et e e e e e e e e e e e e e e e e e e e m e 79

o I I Y = Tod o] o] g T == o 80
5.11.2.1. Macroprocessor Denotation m - 81

5.11.2.2. Macroprocessor COMmMANAS oo oo e e e e e e e e e 83

5.11.2.3. Predefined Macros and DireCtiVeso e e e e e eeeeeeemnn, 87
5.11.2.4. Predefined global Macros e e e e s 88
5.11.2.5. Predefined [0cal MaCroso e e e e e eeeeeeemeeaan 90
5.11.2.6. Macros Defined From a Property oo e e e e e 91

ST 5 0 T 5 I 11 93
ST 5 O @ [1= 94
ST 0 O T o 1 oo Yo [I 96
5.11.6. Driver ditOrot e e e e e e 97
5.12. Documentation Page e 100
5.12. 0. Help StYIES . oo e e e e e e e e e e e e —————- 102
5.13. Interface info Pageo e 104
5.14. Methods Page ... 105
5.15. EVENIS PAQE . ..ottt 107
5.16. Templates Page e 110
6. Component Viewer 112
7. Tutorial Courses 114
7.1, Tutorial, Course L .. e 114
7.1.1. Tutorial, Course 1, Step 1: Specification of Component Function 115
7.1.2. Tutorial, Course 1, Step 2 - Component Creationo oee e e eeeecaanns 115
7.1.3. Tutorial, Course 1, Step 3 - Design of Propertieso ooe e eeeeeeeeee, 117
7.1.4. Tutorial, Course 1, Step 4 - Design of Methodso eaaan 119
7.1.5. Tutorial, Course 1, Step 5- Creating Drivero e e eeeeeeeeeanns 120
7.1.6. Tutorial, Course 1, Step 6 - Editing Drivert e e eeeeeeaaae, 122
7.1.7. Tutorial, Course 1, Step 7 - Generating Helpo e eeeeenns 123
7.1.8. Tutorial, Course 1, Last Step - Installing Componento aeaan- 124
7.2. Tutorial, CoUISe 2 . . e 125
7.3. Tutorial, CoUISe 3 . . e 128
7.3.1. Tutorial, Course 3, Step 1: Specification of Component Function 129
7.3.2. Tutorial, Course 3, Step 2 - Component Creation _o e eee e 130
7.3.3. Tutorial, Course 3, Step 3 - Inherited component selectiono eeaeaaao.. 131
7.3.4. Tutorial, Course 3, Step 4 - Interface Creation e 131
7.3.5. Tutorial, Course 3, Step 5 - Template Creation e aeae e 133
7.3.6. Tutorial, Course 3, Step 6 - Inheriting CycCle e e 133
7.3.7. Tutorial, Course 3, Step 7 - Inheriting againo e eeeaaas 134
7.3.8. Tutorial, Course 3, Step 8 - Configuring componenttemplate 135
7.3.9. Tutorial, Course 3, Step 9 - Design of Methods e e aaaa 136
7.3.10. Tutorial, Course 3, Step 10 - Design of EVeNts e 138
7.3.11. Tutorial, Course 3, Step 11 - Code WIiting . - . . oo e e e e e 140
7.3.12. Tutorial, Course 3, Last step - Generating help, Installing component __. 142
T7.4. Tutorial, CoUrSE 4 . . e e e 142
7.4.1. Tutorial, Course 4, Step 1: Specification of Component Function 143
7.4.2. Tutorial, Course 4, Step 2 - Component Creation oee e e eeeecaanes 144
7.4.3. Tutorial, Course 4, Step 3 - Design of Properties, Inheriting oo oeiinae... 145
7.4.4. Tutorial, Course 4, Step 4 - Template and Interface Settingccoeeeeeanaa.. 148
7.4.5. Tutorial, Course 4, Step 5 - Design of Methodso ioi e aaaan 151
7.4.6. Tutorial, Course 4, Step 6 - Design of EVeNnts e e eeeeeaeee, 153
7.4.7. Tutorial, Course 4, Step 7 - Code WItiNGo e e e e e e e e ceeeemeemne 154
7.4.8. Tutorial, Course 4, Last step - Generating help, Installing component 156

8. Component Wizard - Command line parameters 158
9. Revision List 159

Introduction

1. Introduction

Component Wizard is atool dedicated to the edition of Embedded Components.
It provides a graphical interface for the composition of new components, and generates component files.

Benefits

Using Component Wizard, the user can create new components very quickly and easily, with the guarantee that
there will be no errors in the generated files. The user only needs to determine Properties, Methods and Events
and make the necessary implementation of methods and events. Component Wizard generates the declaration
files such as header files in C or definition files in Modula, as well as the structure of the source code.
Consequently, only the contents of methods and events remains to be written.

Component Wizard facilitates the reusability of existing Components, and helps edit the source code (quick
location, editor, ...).

Quick Links

* Basicterms

* Available versions of Component Wizard
e 'How To...' guides

» User interface description

e Tutoria courses

Basic Terms

2. Basic Terms

This chapter explains the basic terms used within Component Wizard and Processor Expert applications.

Component

A component is an object with defined function. A component can be accessed by a properties, methods and
events.
Properties can be changed in design-time only. Properties define the

e component initialization state
e component settings and features supported in runtime

e component connection to the CPU (only for hardware components)

Using methods you can set the component state and read the component results.

If you select any event in the component you must specify the name of the procedure - event handler. This
procedure will be called by a component driver when something important happens in the system (for example
hardware interrupt or some error, etc.)

A driver of a component contains the implementation of the component's methods and calling of the
component's events.

A Software component is the component with no direct access to hardware in the driver code. Access to
hardware (initialization and control) can be done using inheritance of any hardware component.

A Pure software component is the component with no access to hardware at all (doesn't even inherit any
hardware component).

Driver

A driver contains source codes of all methods and events of a component. Every component (except the CPU
driver) has a driver associated with it. After creation of a new component, user has to write the code of all its
new (not inherited) methods into the driver of the component. The code is written in special macro-language.
 For details on macroprocessor see chapter 5.11.2 Macroprocessor.

 For further details on drivers see the chapter 5.11 Drivers Page.

« Todiscover how to edit the code of methods and eventsin driver see the chapter 4.8 Editing drivers.

Inheritance

Inheritance allows to use and/or redefine methods and events of another component. This simplifies and
speeds-up a process of creation of the new embedded components and allows user to develop a platform
independent components by inheriting the platform independent components included in Processor Expert. For
details on inheritance see chapter 2.1 Inheritance.

Basic Terms

Template

A Template holds the state of component's properties, methods and events settings.

A template can additionally contain:

« default value of each property, method (selected/unselected) and event (sel ected/unsel ected)
« read-only feature: if user can change the value of the property, method, event

Every template contains association to a component that the template was created for (or from). This association
allowsto use atemplate as a "component representative". Like a component, the template can be added to user's
project. The template acts like an ordinary component with the only exception - it is already initialized.

Note: in Components Wizard you cannot select hardware dependent value of the component (for example pin or
serial channel). These templates can be edited in Processor Expert.

There are two types of templates:

« Local templates - These templates can be used only by local interfaces that are stored in the same directory
as the template (the directory of a component which is using that interface)

¢ Global Template - These templates are visible for all interfaces. These templates are stored in the specia
directory Processor Expert base directory\templts. A change in this template has an influence to al
interfaces that use it.

Interface

Inheritance is important for the components inheritance. See 2.1 Inheritance for details. To inherit functionality
of other component in a new component, an interface has to be specified. Interface is a list of methods and
events that must be implemented by the ancestor (inherited) component. If a component implements any
interface (so it is suitable for inheritance), it can be registered into thisinterface. If the component is registered in
any interface it is offered to user in Processor Expert.

Note: If you specify any interface, be sure that all methods and events from the interface will be implemented by
inherited component. You can call inherited methods from the driver and you must implement all inherited
eventsin your driver.

Often, specific initial settings of the ancestor component instance are required so a template can be registered in
interface instead of a component. Registration of components or templates into the interface can is done in
Component Wizard during the interface creation/modification.

There aretwo types of interfaces:

* Local interfaces - These interfaces can be used only by components where these interfaces are stored (the
interface is stored with a component in the same directory).

« Global interfaces - These interfaces are visible for all components. These interfaces are stored in directory
Processor Expert base directory\components which is the base directory for al components. A change in
thisinterface has an influence to all components which use this.

Basic Terms

2.1. Inheritance

In order to create hardware-independent components, it is necessary to implement them for every processor you
may use. Without the inheritance process, this would mean alot of fastidious coding.

The basic hardware components provided within Processor Expert cover the entire functionality of processors
and are hardware independent (In fact they are hardware dependent but you have drivers for all CPUs supported
in your version of Processor Expert). By inheriting from these components, you don't need anymore to deal with
the low-level part of your components. Writing the high-level part of the algorithm, using inherited
hardware-independent methods and events of components, will keep the new component hardware independent.

Component Wizard allows to pre-configure the basic components you want to use (by creating templates), and
select the methods and events to inherit (by creating interfaces).

Y our own components, can also be used for further inheritance by another components, providing a high level of
re-usability to your work.

For further details see chapter 4.5 Inheriting from a component.

Comparison with object oriented languages:

In PE, the inheritance is implemented in quite different way than in most object oriented languages. Of course, a
component (descendant) can inherit another component (ancestor) - but the background of the inheritance
process is dlightly different from what would an C++ or Object Pascal programmer expect. The main difference
is that a descendant (newly created) component can replace his ancestor component with another one and this
can be done any time after the new component was created. In standard object oriented languages, the ancestor
object is declared in the definition of a new object, and from that moment it can not be changed.

How the ancestor component can be selected ?

When a component is inherited and it's interface is created or specified, there is still ho binding between it (the
ancestor) and the descendant component - the interface is only alist of methods and events. To create a binding,
the component must be registered into the interface. Then, usually during the component setup in Component
Inspector window, the Processor Expert will allow user to choose any component that supports (is registered for)
the desired interface to be the ancestor component.

How are the Templates and Interfaces used in the Inheritance process ?

A component template represents a real component. This representation is used in the inheritance mechanism in
the following way:

Because user usually wants the inherited component to be already initialized (in a project, he wants to set only
some properties of the descendant), the template for that component must be registered instead of the component
itself in the interface.

For easier understanding of inheritance and bindings between templates and interfaces see chapter 2.1.1
Inheritance scheme.

Details for practical use of inheritance:

e |nterfaces

= Interface selection is donein Component Wizard (component design-time)
» Interface specifies the methods and events needed by a new component, which is using thisinterface

e Templates

Basic Terms

» Template selection is done in Processor Expert (component "run"-time, usage of the component)
» Template settings should be CPU independent, because Component Wizard cannot set CPU-dependent

properties.

» Template isthe group of initialization values of the component for selected interface

» Thereis a possibility to disable editing of value of any property, method or event for chosen interface.
This can be done by setting the property, method or event to "Read Only" in the template.

Options of Methods and Events Inheritance

According to the MethodsScope/Evenscope feature in interface, the Methods/Events can be inherited as Private,
Override or Published. The Private methods and events are intended for a use within the descendant component
only. Methods and Events selected as Override or Published automatically appear in the descendant
component. See the description of individual options in chapters 2.1.2 Options of Methods Inheritance and 2.1.3

Options of Events Inheritance.

2.1.1. Inheritance scheme

This example shows a component (descendant) inheriting two other components via selected interface and

template (registered for this interface).

New Component - Descendant

A

Component can inherit other
component registered to selected

Component can inherit more
components with same or
different interfaces

Highlighted (bold) path
shows the active (selected)
template (i.e. bean)

interface.
One template/component
Interface 3 i

Interface b s from one or more available
Interface specifies o registered templates can be
methods and events. 2 ‘ > selected. Only one can be
Interface also registers list © i M S active at a time for each
of templates L interface.
(components) that
implement these methods
and events

Template Template Template |~ Template

SRR S SR ——" | ‘
4 * :
Component can
have one or more ~
templates
Component Component |~ Component
A ’ N
You can use multi-level |
inheritance

Interface | Interface

|

Figure 2.1 - Inheritance Scheme

Basic Terms

2.1.2. Options of Methods Inheritance

This chapter explains possible ways of inheriting methods from an ancestor component. Lets assume that a
chosen ancestor component has a method M. The inheritance process requires an interface to be created (see
chapter 4.2 How to create an Interface ? for details). There are the following options (values of MethodScope)
that are available for the ancestor's method M in the interface (please see also a corresponding part of the picture
below):

e Private - The method M does not appear in the descendant's methods list (in the component inspector of the
descendant component) and should be called only from the code of the descendant component. This option is
suitable when we want to only use the component without publishing it's methods to user.

e Override - The method M appears in the descendant methods list (in the component inspector of the
descendant component) but user can write his’her own code to change it's function (and also call the original
method M of the ancestor if isis reasonabl€).

e Published - The method M behaves like the native method of the descendant component. This approach
doesn't mean any overhead, the method is generated as a macro calling the ancestor's method.

Basic Terms

Legend:

. Code of application using the new bean

D Code generated by the user's new bean

Inherited bean New bean User application
| | |
| |
| 2l X0 - T
~g—Sallprivate MO 1% |
| |
return > | | Private
| - call private M2() | method M
| |
| |
return > | |
| return |
| | W |
| | [
| | |
| |
| . - call M()
- call M() . |
! ! Overrride
' | thod M
return metho
| > I
| return |
| | 1
| |
I | |
©
| | |
| | |
| call M) .
-
[| Published
return >- method M
1

. Generated code of the iherited bean's method M

-10 -

Basic Terms

2.1.3. Options of Events Inheritance

This chapter explains possible ways of inheriting events from an ancestor component. L ets assume that a chosen
ancestor component has an event E. The inheritance process requires an interface to be created (see chapter 4.2
How to create an Interface ? for details). There are the following options (values of EventScope) that are
available for the ancestor's event E in the interface (please see also a corresponding part of the picture below):

e Private - The event E does not appear in the descendant component events list and should be used for
internal processing of the events from the ancestor component.

« Override - The event E appears in the descendant component events list and component author can write
his/her own code before and/or after calling the user's event handling routine.

* Published - The event E appears in the descendant component events list and the event behaves like the
native event of the descendant component. User's event handling routineis called directly.

Inherited bean New bean User application

| I
1 I
| |
Event E I
| -¢ return | Private
- | [event E
| [
| | NS
| I
I Event E | |
| > |
Event E
! . >
[[- return Overrride
| | event E
return |
| | | N
| | o
| |
l Event E !
T -
Published
| | return event E
| |
| <

|
Legend:
. Event handling code of the iherited bean
. Event handling code of the new bean

D User's event handling code in the application

-11 -

Versions

3. Versions

There are two versions of Component Wizard:

« Basic Component Wizard
e Professional Component Wizard

Basic version

The basic version of Component Wizard is designed for the creation of software components, i.e. hardware
independent. These components are written in high-level programming languages (MODULA, ANSI C, ...). You
can create pure softwar e components (associated to other software modules), such as component for computing
Fast Fourier Transform, or you may create software components which are indirectly dealing with hardware,
using inheritance. You can, for example, create a component for controlling EEPROM by inheriting methods
and events from the input/output hardware components and using them in your code. As input/output
components are written for all processors of Processor Expert's database, your EEPROM control component is
hardware independent and you may use it with each processor of Processor Expert's database.

In this version you cannot change existing hardware components (for example input/output components, timers,
etc). You may only inherit from them by creating templates and interfaces.

You have a smaller choice of properties (properties which you don't need are hidden) and some pages of
Component Wizard are not available.

Professional version

The Professional version of Component Wizard is designed for creating software and hardware components.
Thisisthe full version of Component Wizard.

-12 -

How to work with Component Wizard

4. How to work with Component Wizard

The following sub-chapters show the usual tasks the Component Wizard is used for.

* How to create a component ?

» How to create a component from existing ANSIC source ?

* How to create atemplate ?

* How to create an interface ?

* How to modify an existing interface (add/remove methods)?
e How to apply an interface to a component ?

* How to useinheritance ?

* How to share component ?

* How to edit drivers ?

* How to distribute component ?

» How to create simple component without inheritance? See tutorial, course no. 1

See also

» Details about driver syntax and Processor Expert macroprocessor

4.1. How to create a Template ?

In order to create a template, you must have a component loaded in Component Wizard. Then, you can modify
the settings of the properties, methods and events, and save the new settings as a template (File - Convert To -
Template).

One Bit I/O Component Template Example

We will make atemplate of the component allows only the output direction (a simple One Bit Output). For steps
of creation of this component please see the chapter 4.9 Component Creation.

« At first we load the One Bit I/O component into the Component Wizard (Menu File | Open | Component).
Then, we go into the Property page, and we modify the settings of the Direction property.

¢ We change the main Direction setting on the left side window; we set it to output. After selecting the
Direction property on the left side window, we can see its settings displayed on the right side window.

¢ The ReadOnly setting need to be switched to True (so that Direction cannot be modified in the Processor
expert environment).

« Now, we can save these settings in atemplate (Menu File - Create Template) that we call One Bit Output.

-13 -

How to work with Component Wizard

4.2. How to create an Interface ?

An interface can be created from a component currently loaded in Component wizard (Menu File - Create
Interface), or may also be created as an empty interface (Menu File - New Interface), following a process close
to that of the creation of a component. In both cases, the creation of an interface require to have created at least
one template. We will illustrate the creation of an interface from a component, using the example developed in
the section How to create a Component? We will make an interface for the ouput facility.

Example

Creation of an interface from the One bit /O Component

In order to create an interface, we need atemplate.

* So we first create a template from the One Bit 1/O component, following the procedure described in the
section 'How to create atemplate 7.

< Then we can create an interface (Menu File - Create Interface) and open it. Go into the Templates page, in
order to select and add the One Bit Output template to the interface.

e The right side window displays the list of existing templates. We select the One Bit Output template and
click on the left arrow button in order to add the template to the interface.

* Then, we go into the Methods page, in order to delete the useless methods: GetVal, GetDir and SetDir.To
delete the methods, you need to select them and push on the Delete M ethod button.

* Finaly, we save the interface as OneBitOutput (File Menu - Save/Save Interface As).

4.3. Modifying interfaces
Adding or removing method/event into/from an interface

Example:

You have an interface with component registered via template. The interface has defined list of methods and
events which registered component supports. But the component has more methods than the interface uses and
you want to use them as well (e.g. those methods or events were added after the interface was created).

There are two ways:

 Difficult - open interface and add methods in pages Methods and Events with their parameters, types and
hints,... this solutions expects you know the correct syntax of those methods and it is not effective.

e Easy and fast - you can use the fact, that those methods are already specified by the component which is
registered into this interface or other component. With using the View component utility you can easily drag
and drop feature and drag them from component into the interface.

Steps:

a. Open existing interface - menu File - Open - Interface. The open dialog appears, select the interface
and confirm it by button OK.

b. Open existing component into the view component utility - menu Tools View component On/Off. If
the View component utility has not been used yet, the open dialog appears, select the component and
confirm it by button OK or use local menu described here.

-14 -

How to work with Component Wizard

c. Switch to the page methods in both - View component utility and opened interface.
d. Drag & drop desired methods.

F1l| - *Component Wizard 1.33 - Interface : Extinte

File Edit Help File Edit Tools Help

Froperties Methods |Events| R = n - | | e ﬁ | c? @ |
Enable don't generate code :

Ol R Interface info Methods | Eventsl Templatesl
Interpt generate code List of methods

Gety/al generate code Enable

SetEdge don't generate code Disable

-56800/MCF Getval

L| ConnectPing |don't generate code

Figure 4.1 - Modifying interfaces

e. Switch to the page eventsin both - View component utility and opened interface.
f. Drag & drop desired events.

Bean Viewer- ExtInk il . - *Component Wizard 1.33 - Interface : Extinte
File Edit Help File Edit Tools Help

F'ru:upertiesl Methods Ewvents |

DEed» Had@d3E| 7 &

Ewvent module name |Events -
-Oninternupt generate com Interface |nh:|| Methods Ewvents | Templatesl
t Event procedure narr List of events
Fricrity zame az interr -Oninterrupt
-CPUCondition gron H Event procedure narne
L| +0nTnggerinterru|don't aenerate | Pricrity

Figure 4.2 - Modifying interfaces

g. Savetheinterface- menu File- Save.

See also

Common problems with inheritance

-15-

How to work with Component Wizard

4.4. Interface Application

How to apply an interface to a component ?

You can make a component inherit the methods and events of one or more component(s) by the mean of
interfaces. There are two ways to apply an interface to a component. You can create a component from an
interface currently loaded in Component wizard (Menu File - Create Component), or you can create a new
component (Menu File - New Component) and apply later the interface.

We will illustrate this last process by the example of the creation of a Two Bit Output component, using the
interface defined in the section How to create an interface ?

Example

Creation of a Two Bit Output Component using an Interface

e Let usstart from anew component (Menu File - New Component).

< To apply an interface, we need to go into the Properties page and add the two properties corresponding to the
two output pins.

« In order to add the first property, we click on the Add Down button. A menu appears where we can select
the type of thefirst property. The property needs to be of the Inherited component (interface) type.

* Then, we modify the setting | nterfaceName on the right side window.

* In the setting menu, we need to select OneBitOutput, the name of the interface to be applied. Finaly, we
repeat the procedure for the second property.

From now, the component can inherit the methods and events specified in the interface and apply them to each
of the two output pins. We need finally to define the methods for the Two Bits Output (PutVal, SetvVal, Negva
and Clrval). The advantage is that we can use the One Bit Output Methods when we write the code for the Two
Bit Methods (see section How to edit drivers ?).

4.5. Inheriting from a component

Procedure for inheriting

Y ou may let the Inheritance Wizard guide you through the inheritance process. If you want to inherit component
into the existing component, you can use the fast inheriting.

The next steps should be followed by advanced users only:

(for more details on inheritance and bindings between templates and interfaces see chapters 2.1 Inheritance and
2.1.1 Inheritance scheme.

Open the component from which you want to inherit.

Create anew template (dialog Save template appears) and modify eventually its settings.
Create an interface (dialog Save interface appears) from this component

Open thisinterface and insert the previously created template

Delete the methods and events which you do not need for your new component.
Savetheinterface

Open your new component

o N o g b~ w NP

In the properties page add an inherited component (interface) property.

-16 -

How to work with Component Wizard

9. Infeature I nterfaceName, select the name of the created interface
10. Now you have inherited from the first component. Learn here how to use the inherited methods and events.

Setting of an enabled Speed mode for inherited components

All inherited components have disabled (read only) settings of an enabled speed modes. This setting is
performed in the main (root) component. If the main component doesn't have these items for this settings, the
implicit values for al modes are "Enabled”. You can copy this properties from existing component (e.g. from
inherited component which is time dependent). These properties are usualy if group " Speed modes". You can
copy them by using Component Viewer utility by drag & drop this group.

See also

Common problems with inheritance

4.6. Problems with inherintance

If you inherit some component and you have difficulties in the Processor Expert when this (or similar) error
occursin the inherited component:

Method is required by the interface, but is disabled by conponent settings
or by tenplate.

Y ou have probably conflict with the settlings in the interface and by settingsin the CHG file.

Typica situation is when you want to inherit some method/event, but the component itself disables this
method/event because of its settings.

Example 1: Y ou have turned off some property detecting some interrupts, so the component disables generating
of some events, but you have these eventsin the interface as ALWAY S REQUIRED (default value) i.e. interface
says that the inherited (ancestor) component must have this method and must be generated.

Example 2: Y ou have AsynchroSerial component and you define the input buffer as 0 (zero). So the component
disables the method RecvBlock, but you have this method in your interface as ALWAY S REQUIRED (default
value) - i.e. - see previous Example 1.

There are several solutions; The method/event with the error:

-17 -

How to work with Component Wizard

Situation

Solution

| don't use the method/event in my
descendant component.

1

Open the interface for the inherited component
e.g. from descendant component using popup
menu on the "Inherited component” property in
page Properties

Delete this method/event

Save the interface

Open the descendant component and save if it is
needed.

| use the method/event but only if itis

) o . 1. Open the interface for the inherited component
Qeﬁ‘efated (i know when it 'S. a.\nd Yvhen It e.g. from descendant component using popup
|sr_1t and | have correct condition |_n ‘r'ny menu on the "Inherited component” property in
dl‘ll ver). T.he M .ethod/ Event scopeis page Properties
Private", i.e. this method cannot be)
. . . Select this method/event
inherited again.
Select the feature Mode and select
OWNER_MUST_EXIST.
Save the interface
Open the descendant component and saveif itis
needed.
| use the m.ethod/ event b%ﬂ_on'y ifitis . 1. Open the interface for the inherited component
Qe'fefa"ed (i know when it 'S_ a_\nd yvhen It e.g. from descendant component using popup
'S'_“ and | have correct condition |.n Ty menu on the "Inherited component” property in
driver). The Method/Event scope is page Properties
Published" or "Override" i.e. this method)
. . . Select this method/event
can be inherited again.
3. Select the feature Mode and select
"SAME_AS OWNER".
4. Savetheinterface

Open the descendant component and saveif itis
needed.

-18 -

How to work with Component Wizard

4.7. Sharing a component

Procedure for sharing a component

Sharing components is similar to inheriting components. But the difference between inheriting and sharing is:

e Every component using inheritance will have their own inherited components: i.e. if you have got two
instances of component LCDDisplay, which inherits two BitlO (input/output component), there will be
allocated four BitlOs!

e Component using sharing components has the access to methods and properties of a component, which can
be shared by another component (or not). Example is a component uses components which want to have a
shifted access to serial line. This serial line can be only one, but the number of components sharing it can be
more than one. Access is done by methods define in the interface.

If you want to share a component , you can use the fast inheriting/sharing.
The next steps should be followed by advanced users only:
(for more details of inheritance and bindings between templates and interfaces see the inheritance scheme.

Open the component from which you want to inherit.

Create a new template (dialog Save template appears) and modify eventually its settings.
Create an interface (dialog Save interface appears) from this component

Open thisinterface and insert the previously created template

Delete the methods which you do not need for your new component.

S R

Delete ALL events. Shared component cannot have the events in the interface. The implementation of
these events is made in the Processor Expert for the shared component.

Savethe interface
Open your new component
In the properties page add an Link to component property.
10. Infeature InterfaceName, select the name of the created interface

11. Now you have inherited component from the first component. Learn here how to use the shared methods.

Setting of an enabled Speed mode for inherited components

All inherited components have disabled (read only) settings of an enabled speed modes. This setting is
performed in the main (root) component. If the main component doesn't have these items for this settings, the
implicit values for all modes are "Enabled”. You can copy this properties from existing component (e.g. from
inherited component which is time dependent). These properties are usualy if group " Speed modes". You can
copy them by using Component Viewer utility by drag & drop this group.

See also

Common problems with inheritance

-19 -

How to work with Component Wizard

4.8. Editing drivers

After having defined a component (properties, methods, and events), it's necessary to implement the methods
and events in at least one language section of one driver. We will illustrate the creation of alanguage section of a
driver, using the example of the Two Bits Output component presented in the section How to apply an interface
to a component ?.

See also detailed information about driver syntax.

Example

1.

Switch to the Drivers page. When the component is saved first time, the Component wizard offers to
create a new driver for the user. If you have confirmed that and there is the sw/TwoBitOutput.drv in the
List of driversfor component, please follow to the next step. Otherwise, click on Add driver button. In the
list of driversfor Component. The name sw/TwoBitOutput.drv appearsin the list.

Now, double-click on Edit code of method/event in the right-bottom corner. A list of methods and events
for the component appears.

* '+ Edit driver - select method or event =] |
Lizt of methods and events E dit I
=-[E tethods ; :
7 Yoo Edit whaole section |
L [H] Method? |

Events sence
Inherited events
El Ciriver parts

----- Initialization
zer types
: Header includes
----- Module includez
= Static variables

[~ Read only

Figure 4.3 - Editing drivers

See 5.11.5 Edit code for details.

Select the PutVal method and click "Edit". It opens the body of the method and we may now make the
implementation.

As explained in the How to apply an interface ? example section, the TwoBitOutput component inherited
twice from the BitlO component. That means that we have two "Inherited" properties in the Properties
page. We change their Symbol feature to Pin0 and Pinl.

Inherited methods are named with the following convention:;
inherited.name_of the inherited_property.name of the method(parameters);

For example, our two inherited PutVal methods are called inherited.Pin0.PutVal and inherited.Pinl.PutVal

Remark: In the Component Wizard Editor, you must not make changes in method header (name of the method or
name and types of parameters). You may do such changes only in Component Wizard.

-20 -

How to work with Component Wizard

.

*» Component Wizard Editor -"Driver TwoBitOutput.drv for Language ANSIC.

File Edit Help
vold %'ModuleName':.3PutVal (bool Cutput)
inherited.Pin0.PutVal (Output} ;
inherited.Pinl.FPFutVal [(Output) ;

=@ 2 5|0
Mo b W R

Figure 4.4 - Editor window

Hint: If you write the left paranthesis by the name of function/procedure, hint with the list of parameters of
function/procedure is displayed.

4.9. Component Creation

There are several ways to create a new component. Y ou can create a component

« from scratch (menu File - New Component),
» existing component (Menu File - Open - Component) that you modify,
 create component from existing ANSI-C source. See 5.1.8 Create Component for details.

from an interface (menu File - Conver To - Component, when the interface is currently loaded). In this case
the component gets methods and events from the interface.

The Inheritance Wizard may also help you to create a component inheriting from other components. See
5.1.4 Inheritance Wizard for details.

The specification of a component is decomposed in 9 pages in Professional Component Wizard and in 6 pagesin
Basic Component Wizard. In order to describe the procedure, we will use the example of the creation of a
component corresponding to asimple one bit output.

Installation to Processor Expert

Updating changes of a component in Processor Expert:

If you are editing a component in Component Wizard while working in Processor Expert on a project including
this component, you may update the component in your project by following these steps:

1. Savethe component in Component Wizard
2. Saveand reopen the current project in Processor Expert
Now isthe component in Processor Expert updated.

-21 -

How to work with Component Wizard

Example

One bit Input/Output Component

In the Common page, we put a hint like General 1- bit input/output in the Short Hint edit item, and we put our
names in the Author edit item (the default Version number 1.0 is correct, since we are creating the component).
We then click on the Open... button next to the Icon edit item. A standard File Open menu appears, and we go
into the component's directory. There, we select our icon file, BitlO.bmp, that we had previously stored in the
component's directory. Notice that the icon file must be stored to the same directory as that of the component,
using the appropriate format (see the section Icon in the Common Page Help).

In the Properties page, we add the necessary properties by clicking on the Add Down button. Every time, a
menu appears where we can select the right property type.
Hereisthelist of the properties we add, with their associated type:

e Pinfor I/O [Pin/Port]

e Pull Mode [Pull Resistor]

« Direction [Direction I nput/Output/I nput-Output]
« Initialization [Group of Items]

Initialization is a group of properties. We can start adding properties to this group by clicking on the Add to
Group button. Then, we can use the Add Down button again inside the group to add the next properties of the
group.

So we add the following properties to the group:

¢ |nit Direction [Boolean yes/no]

¢ Init Value [Boolean yes/no]

For every property, we can modify the default settings, which appear on the right side window. These settings
determine the features of the property item within the Processor Expert environment. After selecting a property
on the left side window, the list of settings appear on the opposite window and we can modify some features,
such as ItemName and Hint.

In our case, the TypeSpecName setting of the Pull Mode, Direction, InitValue and Init Direction properties
must be set to TypePull, TypeDir, TypeOneZero and Typel nputOutput, respectively.

In fact, at this moment the TypeOneZer o type doesn't exist yet. We must create it in the Property types page.

So, in the Property types page, we click on the AddBoolEnum button in order to create an Enumeration of only
two items.

In the Name edit item, we write TypeOneZero and we change the default name of the itemsinto 1 and O in the
List window.

In the Methods page, we can add the names of the necessary methods (PutVal, GetVal, GetDir, SetDir, SetVal,
NegVal, CIrVal). To that purpose, we haveto click on the Add method button and type the name of the method.
The right side window displays the properties of the method, that is currently selected in the opposite window.
We have there to add a parameter Value to the properties of the PutVal and GetVa methods. So we need to click
on the Add Parameter button, and then change the Parameter-Name setting into Value.

There are no events, so we don't need to consider the Events page.

Now, the Component structure is complete and we can save it (Menu File - Save).

-22 -

How to work with Component Wizard

See also

How to create simple component without inheritence? See tutorial, course no.1

4.10. Distributing component

It is possible to export the component as a one file which holds all the files which the component consists of. See
the Exporting/Importing component page for details.

-23 -

User Interface

5. User Interface

The Component Wizard application user interface consists of the pull-down menu and the page tabs that users
could switch using the mouse.

Menu

Main menu of the application. See the chapter Main Menu description.

Ilcons

0. opens a new empty component
= opens alist of components and loads the selected component
= saves the currently opened component/template/interface
e creates anew interface. See 2.1 Inheritance for details.

- opensthelist of revisions. See 5.1.7 Revisions for details.

69" _ shows the component in the component viewer.

W . opens the Component Manager. Seep.1.3 Component manager| for details.

- opens the options dialog. See 5.1.1 Options for details.
il opens the Component Wizard help chapter related to the currently active page.

@ . opens Component Wizard help contents page.

Pages
Component/Template

e Common page

» Properties page

» Global properties page (Professional Component Wizard only)
* Property types page

* Methods page

* Events page

e User types page

» Driverspage

* Helppage

Interface

* Interfaceinfo page
» Methods page

* Events page

e Templates page

-24 -

User Interface

5.1. Component Wizard Menu

Description of Main menu items

File

New

= Component - starts the creation of a new component

= Component using Inheritance Wizard - starts the creation of a component by using the Inheritance
Wizard.

= Interface - startsthe creation of a new interface

Open

= Component - |oads a component

* Interface - loads an interface

= Template - loads atemplate

Save - saves the currently opened object. If changes have been made, a dialog listing the changed files can be

shown. For more details please see the Confirm all file changes option in the chapter 5.1.1 Options.

Save As - saves the currently opened object with the new name

Import

= Create component from ANSIC module - converts existing ANSI C source into the component.
Displays open dialog for *.c and *.h sources for conversion. See here for more information.

= Import components from package... - displays open dialog for selecting component package. Then
appears import dialog.

Export

= Export component to package - exports the current component into the package. Dialog for exporting
components appears. For more details see here.

Convert To

= Component - creates acomponent from the current interface
* Interface - creates an interface from the current component. See here for more information.

= Template - creates atemplate from the current component. See here for more information.

Open Recent - alows to open previously edited objects.
Exit - closes the application

Edit

Undo (change description) - restores the state of the item (specified in the brackets) to the state before the
change.
Note: The Undo / Redo functions are available only for property, methods and events changes.

Redo (change description) - restores again the state of the item (specified in the brackets) to the state after
the change.

Edit driver abstract - opens editor windows with a short description of the component. This text is used for
component comment (section Abstract:) in the driver and in the text help file. Editing is enabled if at least

-25-

User Interface

one language section exists. This file is independent on selected language and compiler, it is common for all
implementations. Seep.11 Drivers Pagd for details.

Edit driver settings - plain text file with macros reading components settings. The text resulting from
preprocessing of this file is generated as a comment to component header file, component implementation
file and project text help file.

Edit chg file - Opens editor window with the CHG file. See 5.11.4 CHG file for details.
Edit external file - allows to open any text file into the Component Wizard editor.
Component revisions - opens the Revisions window allowing to view/edit the component history

Tools

Options - opens the Options window for setting Component Wizard preferences and default values
Properties configuration - opens the Properties window for renaming or deleting available properties
Always on Top - makes Component Wizard's window stay on top of all windows

View component On/Off - starts the Component viewer and displays the load component dialog

Delete Backups - erases backup files

Component Manager - opens the Component Manager window for managing components, templates,
interfaces and includes.

Help

Contents - opensthis help file
Help - opens this help file - shows help for active page in Component Wizard.
About - displays the About box

5.1.1. Options

This dialog window allows to customize behaviour of the Component Wizard. It can be invoked using the
command T ools - Options

Preferences page

Preferences |Default valuesl Displa_l,ll Editar I

[~ Open last work on start History: |1I:I 3,

[T Wizard Always on top [+ Create backups of components
[~ Regenerate all includes M ax: I5 5‘

[Show startup menu [+ Create backups of drivers

[~ Ask to add revizion on zave [+ Confirm all file changes

[~ Pre-fill revizion text
[+ Bool group change warning

[+ Select lagt property’s spmbol

Figure5.1 - Preferences

-26 -

User Interface

Open last work on start - last edited file is automatically opened when Component Wizard is started
Wizard Always on top - makes Component Wizard's window stay on top of al windows

Regenerate all includes - al includes are regenerated, regardless of their header line. (Usualy, includes are
regenerated only if the header line of the includes has not been removed by the user)

Show startup menu - when Component Wizard is launched, a startup menu proposes to start directly with
Inheritance Wizard or not.

Ask to add revision on save - if this option is enabled, after each save command the Component Wizard
shows adialog allowing to add a new revision information.

Prefill revision text - If this option is enabled, the Component Wizard shows offers a revision description
text based on the changes made.

Bool group change warning - If enabled, a warning is shown when the value of Expanded feature of
Boolean group is changed by the user. This helps the user to avoid to forget to set it back.

Select last property's symbol - after loading a component, selects the property with the same ymbol as the
last property selected before the component has been loaded.

History - maximal number of history itemsin menu File - Reopen

Create backups of drivers a backup file is made (when saving the component) for each driver modified
after opening the component. The backup file contains the initial state of the driver (before the component
modification).

Confirm all file changes - if enabled, after the save command is invoked, a dialog summarizing changes
within al files that are about to be updated. The user can select files and check the changes using the button
Show changes and individually select/unselect which files should really be written.

=lol x|

Select the resources to save

[BasicPropertiestethods. html - [beansB asicPropertiesh]

B azicProperties. bean [beanzhB azsicPropertiesh)
[BasicFroperties.uis [beanzhB azicFropertiesh)
[BasicProperties. drv [Driversiamy)

Select all | Dezelect alll

Ok | LCancel |

Figure 5.2 - Confirm changes dialog

-27-

User Interface

Default values page

[T Common - Global types [¥ Help - Detailed help
[¥ Drivers - Auto zave project | [Help - Auto save help
[¥ Drivers - Software bean

Properties - Details
r B Default return type

[Methods - Details Iabit unsigned j

[¥ Events - Details Default return hint
|Ern:|r code

[~ Open files read only

Figure 5.3 - Default values

Common - Global types - default setting of the Global types check box of the Common page

Drivers- Auto save project - default setting of the Auto save project check box of the Drivers page
Drivers- Software Component - default setting of the Software Components check box of the Drivers page
Properties - Details - default setting of the Detail on/off check box of the Properties page

Open filesread only - default value for opening components, templates and interfaces. If you want to open
them in read only mode almost every time, check this. Y ou can explicitly open filesin read only mode or not
in the open dialogs.

Help - Detailed help - default setting of the Detailed help check box of the Help page

Help - Auto save help - default setting of the Auto save help check box of the Help page

Default return type - default return type of methods. When you add new method, it will have set this
return type.

Default return hint - default text of the return hint of methods. When you add new method, it will have set
thistext in return hint.

Display page

F'referencesl Default walues | Editar I

Wizard interface

Basic -
I J Fublizhed Change color

[~ Features in one window Overide Change colar I

|+ Highlight inherited methods

Figure 5.4 - Display

-28 -

User Interface

* Wizard interface - level of component edition:

Basic - presents only the important pages and information

Professional - presents all pages and input objects (Professional Component Wizard only)

* Featuresin onewindow - presentation style for the Properties page features.

¢ Highlight inherited methods - show inherited methods or events with a different color in Methods and

Events pages for component and | nterface methods and | nterface events pages for interface.

Published methods - select color for published methods
Override - select color for overridden methods

Editor page

Preferencesl Default valuesl Dizplay

[+ Align text "%3" and the rest of line to specified column

Column IEE 3’ [+ Fix the comment at this column

[+ Align only #>> comments

Editor tab stops IE 3,

[T Show modified lines after the last load/save
[Remove trail spaces
[¥ Show line numbers [~ Show real line numbers

[+ Highlight methods boundary

ey Change color Subroutines Change color I

Change font I Drefault font I

I The quick brown fox Jjuwnps over the lazy dog.

Figure 5.5 - Editor

e Align text "%>" and the rest... - Align Macroprocessor comment at specified column - only visua
enhancement - code is more readable with aligned comments. When you type % >, the cursor will be moved
with the comment to the specified column.

Column - Column position for macroprocessor comment

Align only % >> comments - align only "%>>" comments (i.e. do not align e.g. "%> 40")

< Editor tab stops - number of spaceswhen TAB key is pressed.
< Show modified lines after the last load/save - if enabled, the editor shows changed lines/letters with different

color.

Fix the comment at this column - if checked, anything you write before the % > won't cause moving the
comment to the left or to the right.

-29 -

User Interface

* Removetrail spaces - when the document is saved, possible spaces after the end of every line are removed.
* Show line numbers - enables/disables line numbers display besides every line.

e Show real line numbers - show areal line numbers, even if only apart of thefile is edited.

« Highlight methods boundary - highlights beginning of the method definition/implementation.

« Changefont - change the font in the internal editor. In the bow below is visible your selected font.

« Default font - change the font in the internal editor to the default settings.

5.1.2. Properties
This dialog window lists the properties you can add to the Properties page of a component. Is is invoked using
the Tools - Properties config menu command.

Property names can be changed (click the Rename button after selecting a property), and unnecessary properties
may be deleted (click on Delete). The default state (all properties and their default names) may be restored by
clicking the Default button.

Properties E

Select type of an item :

& Boolean group [expanded/not expanded)
& Boolean ves / no

B¥ Date

i

(£ Directary Hename
=F Enumeration Delete
[| Extemal bitmap file

[Z] Extemal file | | Default
@ Group - boolzan [expanded/not expanded)

=3 Group of iterns

& Inherited bean (nterface)
@ Integer number - signed
@ Integer number - unsigned LI

Figure 5.6 - Propertiesdialog

-30 -

User Interface

5.1.3. Component manager

The Component manager allows to easily manage available components, templates, interfaces and includes.

te Component manager =10l =]
Compaonents | Interfaces' Templatesl Inu:luu:lesl

Lizt of components

@ B azicProperties [Ielete
@ TwoBitQutput
@ Twok.eys

Evport component

Impart component

Il L

Refrezh | Cloze |

Figure 5.7 - Component Manager with the components page active

General common buttons:

¢ Refresh - refreshes the Component manager (the current state of files on disc)
¢ Close - closes the Component manager

Components page
Buttons:

« Delete - opens a window displaying the list of files used by this component. Y ou may then select the files
you wish to delete. Y ou can delete only one component at atime.

« Export component - opens awindow where you can package the selected component. Y ou can select one or
more components.

« Import component - opens adialog window for loading a new component from a package

Interface page

Buttons:

* Deélete - removes the selected I nterfaces from your disk.

e Select unused - selects Interfaces which are not associated with any existing component
* Unselect all - cancelsthe selection

Remark: There are hints over each interface. If the interface contains some errors (interface is marked with red
letter "E") they are displayed in hint too.

-31-

User Interface

Templates page

Buttons:

« Delete - removes the selected Templates from your disk.

» Select bad - selects Templates which are not associated with any existing component
o Select unused - selects Templates which are not used by any interfaces

e Unselect all - cancels the selection

Includes page

Description:

With often manipulating components (copying, deleting, importing, etc.) there may be unused includes on th
disk. To find them, click button Find unused. It displays includes on disk which are no longer referenced from
drivers. It also shows (in lower window) those drivers which want some includes which are not available on
disk.

Buttons:

* Deélete - removes selected include files from your disk

e Find unused - Search in all drivers on your disk for used includes and displays unused include files. Also
displays references to non existing includes.

¢ Sdlect all - selectsall includefiles
¢ Unselect all - cancels the selection

¢ Include is used if its name begins like name of some driver - If it is checked, Component Manager
assumes, that includes which have the same beginning of their names like the name of some driver are used.
It is recommended to check this button.

5.1.3.1. Deleting components

*.# Files used by bean "TwoBitOutput™ =lo] =]
Application D :lf: Proc Hpert 308 Cancel |
plication Data d -

plic Elhl i |:| a

Select All |

Urizelect Al |
plic ation |:| Y
plication Da
j plication D

[['I:II:IJl'Ill" nd S etting Application Datah FI
Delete

Figure 5.8 - Deleting window

This window appears when you request to delete a component with the Component manager. This window lists
all the files used by the component you have selected in the Component manager. You can then select the files

-32-

User Interface

you wish to delete. Initially, Component wizard automatically selects the files which you may safely delete.

M eaning of buttons:

¢ Cancd - cancels the deletion and shuts this window
e Select All - selects al listed files

e Unselect All - cancels the selection

e Delete- deletes all selected files

5.1.3.2. Exporting / Importing a component

This function allows to export/import one file (package) with all component files for one or more components.
When you wish to distribute a component (or several components), you may use this approach instead of
distributing manually the numerous files related to the component. You can also add your own files into the
package and you can add a comment about this package which will be displayed to the user when he/she will
import your component. This package is automatically compressed to save space on your disk.

The export function is accessible using :

« Component Manager where you specify the list of components you want to add into a package and click the
Export component button.

e Component Wizard main menu File - Export - Export component to package

Remark: Exporting components package is suitable for creating backups of components too.
Theimport function is accessible using :

» Component Manager after click on the Import component button.

» Component Wizard main menu File - Import - Import components from package...

-33-

User Interface

*.# Import component | Export component =10l =]
Files in package
EI® Bitl0 = Expont

----- [0 beans\BitlO%_BITIO.bmp

----- 01 beans\BilONBITIO bmp Save file list |
----- [beanz\BitlOMBitO. hirl

----- (1 beans\BitlO4BiO_b.bmp Import |
----- 1 beanz\BitlO\BitO_b. gif

----- [1 beans‘Bitl0WBit DEvents. himi add file |
----- (1 beans\BitlO4Bitl OMethods. html

----- [beanz\Bil04Bitl OProperties. htrl Defete file |
----- 01 beans\BitIOAEMOTypical Uzage html

----- = Additional files = Cloze |

Package comment

Package from component[s): ;l
- TwoBitOutput version 01,008

- BitlO version 02.075

created 15.01.2010

Figure 5.9 - A component export window

Component Export Mode
M eaning of buttons:

* Export - creates a package file containing all files which are displayed in left window

« Savefilelist - creates atext file with the list of files that are displayed in the Files in package field to be in
the package.

e Import - disabled for exporting

* Addfile- add afileinto the additional fileslist

» Deéletefile- deletes selected additional file from the list

¢ Close - closes this window and returns to the Component Manager

Component Import Mode

Files in the package which are older are displayed with red colour. There is possibility to get information about
file date/time by positioning mouse cursor above the red filename.

M eaning of buttons:
» Export - disabled for importing in left window
« Savefilelist - creates atext file with the list of filesthat in the package.
e Import - copiesfiles from the package into the disk.
= |If current file is newer than in the package, the confirmation about replacing this file appears.

» |f the package contains more than one component, you will be prompted to select the components you
want to import from package.

-34-

User Interface

e Add file- disabled for importing
« Deletefile - disabled for importing
¢ Close - closes thiswindow and returns to the Component Manager

5.1.4. Inheritance Wizard

The Inheritance Wizard is designed for easy creation of new components that inherit functionality from other
components. It guides the user through the whol e inheritance process.

For details on inheritance see chapter 2.1 Inheritance. The functionality of the Inheritance Wizard is
demonstrated in tutorial 7.3 Tutorial, Course 3.

*.# Inheritance Wizard =1oj =]

Wizard steps

Enter the name of the new component. Under this
name the component will be available in the

Component information Component selector of Processor Expert [must be an

Select component identifier)

Inheritance type I

Interface definition

Template definition Enter the description of the new

component [can be changed later]

bultiple inheritance : : - ; :
P Component generated by Inheritance Wizard. Thiz companent is designed for ..

bodifications

Finish

Wweloome in the Component creatorl

Brevious << et =2 Eirigh Help |

Figure 5.10 - Inheritance Wizard Window

-35-

User Interface

5.1.5. Save Interface Dialog

This dialog appears when an interface is created or saved.

When you are creating new interface, you have to know if the interface will be local or global. For more details
about interfaces please see the chapter 2 Basic Terms

Lizt of interfaces

{ Local interface

List of components

ChMP_BE200_trigger
DTIM_MCF_trigger
eFP'whd_BER00_trigger
HSCMP_SE800_trigger
Phatd_BEB00_trigger
Ftd_MCF_trigger
THMRA_BE200_trigger

Interface name

TwoB it utput
Twokeys

x|
ok
LCancel |

If you want to save theinterface as:

L ocal

Figure 5.11 - Dialog window

Select the radio button Local interface and in the right part of this dialog select the component which will
use thisinterface. (1.e. the component must exists). Thereisthelist of local interfaces for selected component
in the left part of this dialog. Enter the name of the new interface (or existing - confirm rewriting of the old

file) and click on the button OK.
Global

Select the radio button Global Interface.There is the list of global interfaces in the left part of the dialog.
Enter the name of the new interface (or existing - confirm rewriting of the old file) and click on the button

OK.

-36 -

User Interface

5.1.6. Save Template Dialog

This dialog window appears when the template is created or saved. When you are creating a template from a
component, you have to know if the template will be local or global. For more details about templates look to
Basic terms - chapter Templates.

Save template as ...

If you want to save the template as:

{~ Global template

List of templates

{* Local template

List of components

Estlnterupt
[npLtFin

Template name

B azicProperties

TwoBit utiut

x|
o
LCancel |

L ocal

Figure 5.12 - Dialog window

Select the radio button Local template and in the right part of this dialog select the component where you
want to store this template. (I.e. the component must exists). There is the list of local templates for selected
component in the left part of this dialog. Enter the name of the new template (or existing - confirm rewriting
of the old file) and click on the button OK.

Global

Select the radio button Global Template.There is the list of globa templates in the left part of the dialog.
Enter the name of the new template (or existing - confirm rewriting of the old file) and click on the button

OK.

-37-

User Interface

5.1.7. Revisions

Revisions are intended for logging changes during the development of a component, ie. the bugs, change of

functionality, new features, etc.

Revisions E3 |

List of revisions

Revizion info

3.03.2003 Lewvel3
13.01.2004 Levelh
{15, 5, 04

DEelete Edit

Date : 05052004

erzion: 07.017

Level : 5 - Changes in hintz or comments
Author LU

ey

Camment:

Comrected hints for proper digplay in htrl code.

Add revizian LCloze

=

M eaning of buttons:

Figure 5.13 - Revision window

* Delete - deletes selected revision. Only new revisions can be deleted. Once the revision is saved together
with the component, it cannot be modified.

e Edit - edit selected revision. Only new revisions cad be modified. Like button Delete. Displays dialog
described in Add/Edit revision chapter.

e Add revision - displays dialog for adding new revision. See Add/Edit revision chapter. it is not possible to

deleteit.

e Close - closes window with revisions. To remember changes in revisions save the component.

Add/Edit Revision Dialog

Thisdiaog is common for adding new revisions and for editing already existing revisions.

Meaning of fields:

e Author - who made the change

* Verify - who checked that the change is correct

« Comment - Notes about the revision

+ Date - date of the revision

¢ Changeleve - it tells how serious the changeis.

There are six levels of component change:

= 0- Fatal change - total change of component functionality

-38 -

User Interface

1 - Changes of a method/event - new methods, method renamed, new or deleted method/event
parameters, modified parameters, etc.

= 2- Property added/removed - new, deleted or modified properties
» 3- Property types. init. value - changesin property types or initialization values
» 4-User Types, CHG file change - changesin User typesor in CHG file

= 5 - Changes in hints or comments - only the minor changes (hints of methods, events, parameters,
properties and etc.)

Meaning of buttons:

OK - applies changes in new/edited revision

Cancel - cancels the changes in new/edited revision

5.1.8. Create Component

Description

Component Wizard alows to import *.c and *.h module and automatically convert it to the component. The
code is analyzed:

4,

exported methods (extern methods defined in header file) are inserted into the component (page Methods)
text from *.c and *.h is modified:
» exported methods and variables are renamed to names used in normally generated drivers:
- method MethodName is renamed into %'Modul eName'%.%MethodName
- variable var isrenamed into %'ModuleName %.var
= al occurrences of renamed methods (callings) are renamed too
= exported methods become conditional generated methods

* include "H module" in C file is commented. This include will be generated automatically, depending
on the name of the component.

the result isinserted into the driver with macroprocessor language.

user definitions of types (by typedef) from header file are inserted into the User types page.

After this component is ready for modifications, like:

L]

define methods description
adding properties

adding methods

adding events

creating HTML help

etc..

For an example of importing ANSIC source see here.

-390 -

User Interface

Requirements

Requirements on imported code :

N o o &

ANSI-C compatible
Limited length of identifiers of functions to 32 characters

All methods are defined in one module *.C and exists correct header file *.h. Name of the C and H module
must be the same.

Macros can be used only for constants definitions
No interrupts may be defined in the code
No pragmas (#pragma) may be used in the code
Conditional macros like #if, #ifdef, etc. can be used only inside of the body of the methods or just only
outside of the methods. It is not allowed this construction:
#i fdef XXX

voi d nyFunc(voi d)
#el se

int nyFunc(int par)
#endi f
{ ...}

This construction is allowed:

#i fdef XXX

[* this function is NOT in the header *.h */
int local Fun(int par)

{
/* code */
return ...;
}
#endi f

/* this function can be exported in the header *.h */
voi d nmyFunc(int par)

{
#i fdef XXX

i nt vari abl e=myFunc(par);
#el se

i nt vari abl e=0;
#endi f
}

Return types of methods and types of theirs parameters must be types supported by Component Wizard or
must be defined in the H module.

macro #include "header_name" can contain only ANSI standard libraries:
= assert.h

= complex.h

= ctypeh

= errno.h

= fenv.h

= float.h

- 40 -

User Interface

* inttypes.h
* {50646.h
= limits.h

= |ocaleh

= math.h

= satjmp.h
* gignd.h

» gtdarg.h
= stdbool.h
= stddef.h
= stdint.h

= stdio.h

= gdlib.h

» gtring.h

= tgmath.h
= timeh

= wchar.h

= wctypeh

If other user libraries are used, they must be in the path of the imported module. The user is aso
responsible for setting right paths for these libraries in the Processor Expert project.

5.1.8.1. Import ANSIC example

Description

Here isasimple example of converting ANSIC source into the component. Bellow you can see:

e H source- importc.h
» Csource- importc.c

« generated driver (modified H source and C source). The name of the component is Complex (this name is
used for macros %include).
This driver was generated by these steps:

= run Component Wizard, or if it is running, choose File - New Component
= choose menu File- Import - Create component from ANSI C module
= browse for file importc.c

= choose menu File - Save Component As. Type Complex.

The following screenshot from page M ethods after the import shows two methods created from the functions.

-41 -

User Interface

Common | Properties | Property typez Methads | Eventsl zer Typeal Driveral Help I

List of methods Properties of the selected method - il
realPart generate code |zlndzzembler Falze |
addComplex generate code £ |zlnDefinitiontd odule True |

Methiod_Mame addComple:

Publictdethod True Rd|

ReturnT ype wioid =

Symbol addComple:

-Parameter =

F| Marne (ol

F Type Camp -

r Pazsing " alue -

- Hirt

- Reoizter

- User &MSIC declaration |

-Parameter

F Hame hwio

F Type Comp -

r Pazsing " alue -

F Hint LI
fdd Delete Add parameter Delete parameter |

Figure 5.14 - Methods page

Example Header File 'importc.h’

/* conpl ex number - declare it */
#i fndef __ Conp

#define __ Conp

typedef struct {

float Re;

float Im

} Conp, *ConpPtr;
#endi f

/* return real part of conplex nunber */
float real Part(Conp num);

/* add two conpl ex nunbers */
voi d addConpl ex(Conp one, Conp two, Conp* result);

/* gl obal variable */
extern Conp gl obal Conp;

-42 -

User Interface

Example C File 'importc.c’

#i nclude "inportc. h"

/* gl obal variable */
Conmp gl obal Conp;

/* return real part of conplex nunmber */
float real Part(Conmp num) {
return num Re;

/* add two conpl ex nunbers */

voi d addConpl ex(Conp one, Conp two, Conmp* result) {
result->Re = one. Re + two. Re;
result->Im= one.Im+ two.Im
return;

}

Generated driver

Remark: Original lines are marked bold.

% Driver generated by the Conmponent Wzard
%

% WARNI NG !

%

% Do not nmake changes to these lines (if you nake sone changes,
% you danmage this driver)

% which begins wth:

%

% % STARTUSERTYPES

% % ENDUSRTYPES

% /* END %bdul eNanme. */

% [/* MODULE %bdul eName. */

% % | NTERNAL_METHOD_BEG

% % | NTERNAL_METHOD_END

% 9% | NHERI TED_EVENT_BEG N

% % | NHERI TED_EVENT_END

% % BW METHOD BEGQ N

% % BW METHOD _END

% % BW DEFI NI TI ON_START

% % BW.DEFI NI TI ON_END

% % BW. | MPLEMENT _START

% % BW | MPLEMENT_END

% % BW EVENT_DEFI NI TI ON_START
% % BW EVENT_DEFI NI TI ON_END
% % BW EVENT | MPLEMENT START
% % BW EVENT_| MPLEMENT_END

-43-

User Interface

%
%
% These lines are not conments, but they are necessary for Conmponent Wzard

% |f you change these |ines, Conponent Wzard will not be responsible for |oosing or
% damagi ng your code!

%

%

% readyCPU ...

% readyDEVICE ...

%

%lefine DriverAut hor Author

%lefine DriverVersion 01. 00

%lefine DriverDate 22.01. 2002

% f Language=' ANSI C

%

%

% NTERFACE

%define! Settings Conmon\ Conpl exSettings.|nc
%lefi ne! Abstract Conmon\ Conpl exAbstract.|nc
% ncl ude Common\ Header. h

#i f ndef __ %vbdul eName
#define _ %vbdul eNane

% f def Shar edMbdul es
/*1 ncl ude shared nodul es, which are used for whol e project*/
% or var from I ncl udeSharedMbdul es
#i nclude "% var' . h"
%endf or
%endi f
/* Include inherited conponents */
% f def | nhr Synbol Li st
% or var from I nhrSynbol Li st
#i ncl ude "%@war @bdul eName. h"
%endf or
%l se
% or var from Mdul eLi st
#include "% var'.h"
%endf or
%endi f

#i ncl ude " %°r ocessor Mbdul e. h"
% STARTUSERTYPES - Do not nodify |ines between % STARTUSERTYPES and % ENDUSRTYPES
% ENDUSRTYPES

/* MODULE 9%bdul eName. */

% STARTUSERTYPES - Do not nodify |ines between % STARTUSERTYPES and % ENDUSRTYPES

-44 -

User Interface

% ENDUSRTYPES

% BW DEFI NI TI ON_START

/* conpl ex nunber - declare it */
#i f ndef __ Conp

#define __ Conp

typedef struct {

fl oat Re;

float Im

} Conp, *ConpPtr;
#endi f

/* return real part of conplex nunber */

% BW METHOD BEGQ N real Part

% f def real Part

fl oat % Modul eNanme' % % eal Part (Conp num);
%lefine! Parnum

%lefi ne! Ret Val

% ncl ude Common\ Conpl exreal Part. | nc

%endi f real Part

% BW METHOD _END r eal Part

/* add two conpl ex nunbers */

% BW METHOD BEGQ N addConpl ex

% f def addConpl ex

voi d % Modul eNane' % %addConpl ex(Conp one, Conp two,
%efine! Parresult

%define! Partwo

%lefi ne! Parone

% ncl ude Comon\ Conpl exaddConpl ex. | nc

%endi f addConpl ex

% BW METHOD_END addConpl ex

/* gl obal variable */

extern Conp % Mbdul eNane' % gl obal Conp;
% BW DEFI NI TI ON_END

/* END %bdul eNane. */

#endi f /* ifndef _ %bdul eNane */

% ncl ude Conmon\ Header . End

%

% BW EVENT_DEFI NI TI ON_START

% BW EVENT_DEFI NI TI ON_END

9% MPLEMENTATI ON

%define! Settings Conmon\ Conpl exSettings.Inc
%defi ne! Abstract Conmon\ Conpl exAbstract.|nc
% ncl ude Common\ Header . C

Conp* result);

- 45 -

User Interface

/* MODULE %bdul eNane. */

% or var from Event Modul es
#i ncl ude "%ar. h"

%endf or

#i ncl ude "% Modul eNane' . h"

% BW | MPLEMENT_START
/* #include "inportc.h" BWhas commented this Iine */

/* gl obal variable */
Conmp % Modul eNane' % gl obal Conp;

/* return real part of conpl ex nunber */

% BW METHOD BEGQ N real Part

% f def real Part

%lefine! Parnum

%lef i ne! Ret Val

% ncl ude Common\ Conpl exreal Part. | nc

float 9% Modul eNane' % % eal Part (Conp num) {
return num Re;

}

%endi f real Part

% BW METHOD _END r eal Part

/* add two conpl ex nunbers */

% BW METHOD BEGQ N addConpl ex

% f def addConpl ex

%lefine! Parresult

%efine! Partwo

%lefi ne! Parone

% ncl ude Comuon\ Conpl exaddConpl ex. | nc

voi d % Modul eNane' % %addConpl ex(Conp one, Conp two, Conp* result) {
result->Re = one. Re + two. Re;
result->Im= one.Im+ two.Im
return;

}

%endi f addConpl ex

% BW METHOD _END addConpl ex

% BW | MPLEMENT _END

/* END %bdul eNane. */

% ncl ude Common\ Header . End
%
%
% BW EVENT _| MPLEMVENT _START
% BW EVENT | MPLEMENT _END
% NI Tl ALl ZATI ON
[* ### YDevi ceType "%evi ceNane" init code ... */

- 46 -

User Interface

%CODE_BEG N

%CODE_END

%

%l se % Language (& Conpiler)

%error™ This conmponent is not inplenented in selected | anguage & conpiler !
%endi f % Language (& Conpil er)
%
YOEBUG
Y%ALL_SYMBOLS
%

5.2. Startup menu
Thiswindow opensif it isenabled in Options. The default state is enabled.

It serves as a startup menu - what you want to do. Y ou may choose from:

e Start with Inheritance Wizard - opens the Inheritance Wizard which is used for inheriting components. For
more detailslook here.

e Open classic Component Wizard - opens the Component Wizard which is used for editing and creating
components, interfaces and templates. Details of al available pages and functions of the Component Wizard
are described here. If this startup menu is disabled, thisis selected as a default choice.

*.# Component Wizard ' x|

Chooze one of theze possibilities:

Component Wizard - editing new/exizting components Help |

Inhertance wWizard

[¥ Show it next time

Figure 5.15 - Sartup menu window

-47 -

User Interface

5.3. Common page

{ Comman | F'ru:upertiesl Froperty t_l,lpe&l Methudsl Eventsl Izer T_I,Ipeal Ennstantal Driversl Documentation

Short hint Copyright

|Descri|:utiu:un [c] Copyright <comparyfuzer-names, 2010 =]
hitp ;v < companys .com

Author mail : infof@< comparn: . com

I.-'-‘«uthu:ur

Yersion Shortcut
IEH IEIEIEI I
Icon 16x16

I@Defaulticnn d Open ... | Diefault | =l

Component category

|SW-LI zer Components Change |

[~ One instance of component in PE project only

Mezzage

Component's level

| B

Figure 5.16 - Common Page Picture

Description

e Short hint - short description of the component, which is used as hint in Processor Expert
e Author - author's name, which will appear in the source code header

e Version - version number of the component. To indicate a beta version, use format 00.9X. With every saving
the Component Wizard automatically increases the version.

e lcon - file name of the icon which will represent the component in the Processor Expert environment. The
file must be stored in the same directory as that of the component. The icons must have ".BMP" as extension.
All icons must be in 16x16 pixels/16 colors format. If you want to specify a 256 colorsicon for the 256 color
version of Processor Expert, put the bitmap file of the icon into the directory of the component. The name of
icon file must be the name of the 16 colors icon, preceded by the underscore sign. For example, if the 16
colorsicon is named "BitlO.bmp", the 256 colorsicon must be named *_BitlO.bmp".

* Shortcut - Thisfield isoptional - when it isfilled, thistext is used for creating name of the component in the
Processor Expert project.

e Component category - Thisfield describes the category of the component Software (SW), Hardware (HW),
etc. Processor Expert sorts components by categories and displays them in its component selector. Thisfild is
read only, to change category click button Change, dialog Select component category with tree of categories
appears.

¢ Oneinstance of component in PE project only - Thisfield is optional - when checked this component can
be inserted only once in Processor Expert project.

If you want one instance of some set of components, every component from this set must have identical
message, which is below the checkbox. If the message is empty it affects instances from this component only.

e Component'slevel - Thisfield isoptional and it describes the level of the component:

-48 -

User Interface

See also

Interface info page

Thisinformation is also displayed in documentation when selected.

5.3.1. Component category

Description

Select bean category

High Level Component - The basic set of components designed carefully to provide functionality of most
microcontrollers on the market.

Low Level Component - The components dependent on the peripheral structure to allow user to benefit
from the non-standard features of a peripheral.

Periphera Initialization Component - The lowest level of abstraction. These components cover all
features of the peripherals and were designed for initialization of these peripherals.

Bean category tree

=1-=8 CPU Irtemal Peripherals

----- =5 Commurication

L——_|=@ Correerter

=2 Display

=5 DMA

=g HIS

=S |nterupts

=8 Measurement LI

Category order:
IMain categary j [T | Bemove categony

Bean iz especially for this CPU producer:

I <hanes j

LCancel |

Figure 5.17 - Component category dialog window

Component category tree
Every component can be sorted into some logic groups accordingly of the function. For example component
fast Fourier belongs to SW-Math, component for encapsulating some display device belongs to HW-Display.
Select the right category in the tree and click OK.

Thi dialog window is accessible from page Common.

Category order - The component can be shown in several categories. As the component has to be at least in
one category, the Main category is mandatory. Other categories are optional.

Remove category - if checked, after the dialog is confirmed by OK button, the category selected in Category
order field is cleared.

Component is especially for this CPU producer - each category in the tree can be divided into subgroups
described by CPU producer. If the component is available for one only CPU producer, select it here. If not,
select < none >

- 49 -

User Interface

Remark: Processor Expert sorts components by their category and creates logical groups in the Component
selector.

Component Categories

Current categories are;

« HW

Sensor
Display
Communication

Converter

ADC

DAC

Memory
Keypad/Keyboard
Port 1/0
Peripherals

Virtual periphera

OS configuration
Security
En/Decryption
(De)compression
Browser

Resource management
DSP

Controlling
Communication
Tutorials and demonstrations
Data

Math

e Internal peripherals

Port 1/O
Interrupts
Timer
Communication
M easurement
Converter

ADC
DAC

-50 -

User Interface

= Memory

CPU producers
Current possible CPU producers:

e <none>-i.e no CPU producer
e Atme

* Fujitsu

¢ Freescale

e Toshiba

* National Semiconductor

5.4. Properties page

Common — Properties | Froperty t_l,lpesl Methu:udsl Eventsl Izer T_I,Ipesl Eu:unstantsl Driversl Du:u:umentatiu:unl

List of properties: Features of the zelected property :
Property name: |Inherted component [interface]
s MO P LB S ceely e |
1i— 1= -t L
k2 i= i 02 InterfaceMame TwoBitDutputs Find |
Component name [termM anme Fin
o Symbol |Pir0
Fir

Add Up Add Down Sdd bo Group Delete Search Restore groups | IBasic vI

Figure 5.18 - Page Picture

-51 -

User Interface

Description

On this page, you can view, create and modify the properties of the component.

The panel on the left contains the list of the properties and the of the currently selected property are
displayed on the right side. These features influence the behaviour of the property in Processor Expert
environment. Y ou can change the amount of shown features from basic ones (Basic) to complete list (Expert) by
switching the drop-down selector in the bottom right corner of the window.

Remark: Each component must have the property Component name, which allows within the Processor Expert

environment to del ete the component or move it to another position.

Creating Properties

The basic commonly used properties can be added by clicking one of the icons at the top of the left panel. For
description, see the hint available when mouse is placed at icon.

Y ou can also add properties above (Add Up button) or below the selected property (Add Down button).
If the selected property is a group of properties, you can add a property to this group by pushing the Add to
Group button.

Properties Management

The selected property can be deleted by clicking the Delete button or by pressing the Delete key on the
keyboard. If the selected property isagroup of properties, al the properties in the group will be deleted too.

Sear ch button allows to find a property, by giving the content of its symbol item.

Restore groups button restores the expanded/collapsed state of all groups into the state as the component was
loaded.

For easier manipulation of the properties, there are also copy and move functions available:

Moving: To move a property, simply drag and drop it (with left mouse button) inside the left window (list of
properties).

If you are moving to a property which belongs to a group, the moved property will be dropped in the same
group. To move an item to an empty group, hold " Shift" key down.

Copying: To copy a property, simply drag and drop it (with left mouse button) while holding "Ctrl" key down.
If you are copying to a property which belongs to a group, the copied property will be dropped in the same
group. To copy an item to an empty group, hold "Shift" and "Ctrl" keys at the same time.

It isalso possible to use the drag and drop facilities of the VView Component utility.

Mouse Operations And Context Menus

It is possible to use context menus for the manipulation of properties.
Simple right click

Clicking the right mouse button opens the context menu for Adding and Deleting a property.

M eaning of the menu items:

-52 -

User Interface

Items

= Add Up

= Add Down

= Add To Group

= Dedlete

have the same meaning as the buttons in the properties page.

Duplicate - duplicates the selected property (It will create new property of the same type as the selected and
Create as new property - it will save the settings of the selected property and it will be new virtua
property. Next time you will add new property item, this property will be in the list of all properties. (For
example you can create an Integer number property, set the minimal and maximal value to O to 255 and store

it as Integer number - Byte. Next time when you add property Integer number - Byte, this property will have
set the minimal and maximal value). it will copy the settings (features) of the existing property into the new

property).

Add item from ListltemFromFile - creates a property which is defined in file which was created by the
previous action - Create item of ListltemFromFile.

Create item of ListltemFromFile - you can save the settings of the property into the file. This file can be
used by property List of items (itemis defined in file). The link to the file is by the feature ItemsFile. Save it
into the directory where the component is.

Submenu List of items defined in file - if the selected property is|.ist of items (item is defined in file) this
submenu is enabled:

* Create new item description - you can create the *.item file. First of all file dialog appears for
specifying the target file name and after that edit modal window appears, the same like this page
Properties. There you can edit the type of the item (i.e. properties) for selected |ist of items (item is|
property.

= Edit item description - you can edit the *.item file. If feature [temsFile is set this menu is enabled and
modal window appears, the same like this page Properties. There you can edit the type of the item (i.e.
properties) for selected List of items (itemisdefined in filej property.

For more details see List of properties and property List of items (item is defined in file)|
(TListitemFromFile).

Submenu I nherited item/Link to component - if the selected property is Inherited component (interface) or
Link to component (it is used for sharing components), this submenu is enabled:

* Inherit component (fast) - you can quickly inherit a component (create Interface and Template) in afew
seconds. If you select this menu item, dialog for fast inheriting appears.

» Open interface - if the property has assigned some interface, you may easily open it and edit it. Save the
changes in the component first.

Drag and drop with right mouse button

When you drag and drop with the right mouse button, a context menu for Copying and Moving appears.

M eaning of the menu items:

Copy Up - it copies the source property before the destination property
Copy Down - it copies the source property below the destination property
Copy To Group - if the destination property if Group property, it copies the source property into this group

-53 -

User Interface

of properties.

« Move Up - it moves the source property before the destination property

« Move Down - it moves the source property below the destination property

* Move To Group - if the destination property if Group property, it moves the source property into this group
of properties.

* Assign - it copies the settings of the features of the selected property to the destination property (if a feature
isin source property and it isn't in destination property, this feature is skipped)

Properties and macros

Every property generates macro from its Symbol and some properties have detailed information which
are defined as macros too. For more details see page Macros defined from property.

See also

List of properties

5.4.1. Property List

Thereisafull list of component properties and properties features. Featureis "property of the property”, settings
of one feature of the property. Features influences behaviour of the property in Processor Expert.
List of properties and features is different for Basic and for Professional version.

See aso which macros are defined from properties.

Properties in Basic version

List of properties in Basic version

Addressin CPU address space - input of any address from the CPU address space. Feature FixedSze
defines size of the requested address range or number of the allocated bit if addrONEBIT is selected in
AddrType. Processor Expert checks if selected address is inside target CPU address space and type of the
memory at the specified address corresponds the component requests. See example in component
BasicProperties

Feature name Description Terpl.

AddrType Address Type: EXTERNAL - address in external address space, No
INTERNAL - address in internal address space (internal memory), RAM,
ROM, FLASH, EEPROM - memory type, FIRMWARE - address in internal
memory for firmware, 10 - 1/O space for controll registers, CODE - address
only in code memory, DATA - address only in data memory,
ONETYPEONLY - address rnage must be selected only in one memory
type, ALLOCATE - address range is allocted, e.g. exclusivelly used (cannot
be shared for example with compiler), ONEBIT - only one hit (see feature
SizeOrBitNum), MULTIBITS - severa hits (see feature NumOfBits)

EnabledRadix supported number system: binaty, octal, decadic, hex No

FixedSize fixed memory size in addresable units; the value isvalid only if feature No
"SizeOrBitNum" is not assigned

Hint item's description, simple HTML formating is supported (see Component No
Wizard user documentation for details)

-54 -

User Interface

ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
MaxValue maximal value, valueisvalid only if >=MinVaue otherwise it isignored No
MinValue minimal value, aways valid No
ReadOnly determinesif the item's valueis only for reading Yes
Symbol identifier, unique item'sidentification in the list No
Value item'svalue Yes
ValueRadix selected number system for items value (see also feature EnableRadix) Yes

Group - boolean (expanded/not expanded) - group of items, possible values are "Enabled" or "Disabled".
Y ou can change TypeSpecName to change these two possible values. Y ou can edit new type in Property

types page.
See example in component BasicProperties
Feature name Description ek
DefineSymbol determines way how the item value will be defined for macroprocessor: No
either value yes/no, or defined/undefined symbol or text value of theitem
Expanded determines if the group is expanded No
Hint item's description, simple HTML formating is supported (see Component No
Wizard user documentation for details)
ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
ReadOnly determinesif theitem'svalueis only for reading Yes
Symbol identifier, unique item'sidentification in the list No
TypeChangeAble determines if the item's type (see feature TypeSpecName) may be changed No
in CHG script
TypeSpecName name of the item's type, type contains additional informations for the item, it | No
is supported for items { TEnumitem}, { TBoolltem}, { TBool Grupltem},
{ TEnumGrupltem}
Value item's value (group is enabled/disabl ed) Yes

Boolean yes/ no - input of boolean value, possible values are "yes" or "no". Y ou can change
TypeSpecName to change these possible values. Y ou can edit new type in Property types page. See example
in component BasicProperties

Feature name Description Terpl.

GetTextValuelndex determines if the item define index otherwise text value. Thisfeatureis No
ignored if the item's type contains user defined symbols for each item. If this
feature is TRUE for boolean item, symbol is defined/undefined according to
item'svalue.

Hint item's description, simple HTML formating is supported (see Component No

Wizard user documentation for details)

-55-

User Interface

ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
ReadOnly determinesif the item's valueis only for reading Yes
Symbol identifier, unique item'sidentification in the list No
TypeChangeAble determines if the item's type (see feature TypeSpecName) may be changed No
in CHG script
TypeSpecName name of the item's type, type contains additional informations for the item, it | No
is supported for items { TEnumitem}, { TBoolltem}, { TBool Grupltem},
{ TEnumGrupltem}
Value item'svalue Yes

External bitmap file - external bitmap file, supported format: "BMP". Y ou can restrict number of colorsin
selected file by setting up the feature BitmapFormat. See example in component BasicProperties
Feature name Description Terpl.
BitmapFor mat determines required picture format: - Any - no limitations, - BW - No
black& white, - Color - color, - Col16 - 16 colors, - Col256 - 256- colors
FileDefine determines way how the item definesits value: NONE, BINARY, TEXT No
Filter determines filter for file selection No
Hint item's description, simple HTML formating is supported (see Component No
Wizard user documentation for details)
ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
ReadOnly determinesif the item's valueis only for reading Yes
Symbol identifier, unique item'sidentification in the list No
Value item'svalue Yes

Date - input of date. Y ou can specify possible date range using features MinDateVal ue and MaxDateVal ue.

Dateis displayed/editable in format specified in Regional setting of your Windows Operating System (short

date format). See example in component BasicProperties

Feature name Description Terpl.
Hint item's description, simple HTML formating is supported (see Component No

Wizard user documentation for details)

ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
MaxDateValue the newest supported date in Windows format No
MinDateValue the oldest supported date in Windows format No
ReadOnly determinesif theitem's valueis only for reading Yes
Symbol identifier, unique item'sidentification in the list No
Text item'sinitial value Yes

-56 -

Use

r Interface

Directory - selection of directory on the disk. See example in component BasicProperties

Feature name Description Terpl.
ExcludeTrailBackSlash |format of the value No
Hint item's description, simple HTML formating is supported (see Component No
Wizard user documentation for details)
ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
ReadOnly determinesif theitem'svalueis only for reading Yes
Symbol identifier, unique item'sidentification in the list No
Vaue item'svalue Yes

Enumeration - selection of one of predefined values. Y ou can edit type (list of items) in Property types
page. Y ou can choose type of the item in TypeSpecName. See example in component BasicProperties

Feature name Description Termpl.

GetTextValuelndex determines if the item define index otherwise text value. Thisfeatureis No
ignored if the item's type contains user defined symbols for each item. If this
feature is TRUE for boolean item, symbol is defined/undefined according to
item'svalue.

Hint item's description, simple HTML formating is supported (see Component No
Wizard user documentation for details)

Index index of itemsvaue Yes

ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes

ItemName item's name displayed in first column No

ItemsCount number of items in the popup list No

ReadOnly determines if the item's valueis only for reading Yes

Symbol identifier, unique item'sidentification in the list No

TypeChangeAble determines if the item's type (see feature TypeSpecName) may be changed No
in CHG script

TypeSpecName name of the item's type, type contains additional informations for the item, it | No
is supported for items { TEnumitem}, { TBoolltem}, { TBool Grupltem},
{ TEnumGrupltem}

External file- external file. See example in component BasicProperties

Feature name Description Terpl.

FileDefine determines way how the item definesits value: NONE, BINARY, TEXT No

Filter determines filter for file selection No

Hint item's description, simple HTML formating is supported (see Component No

Wizard user documentation for details)

-57-

User Interface

ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
ReadOnly determinesif the item's valueis only for reading Yes
Symbol identifier, unique item'sidentification in the list No
Vaue item'svalue Yes

Group of items- simple group of items. Feature Expanded defines the group default setting (expandedinot
expanded). See example in component Basi cProperties

Feature name Description Terpl.
Expanded determines if the group is expanded No
Hint item's description, simple HTML formating is supported (see Component No
Wizard user documentation for details)
ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
ReadOnly determinesif theitem'svalueis only for reading Yes
Symbol identifier, unique item'sidentification in the list No
Text item'sinitial value No

Inherited component (interface) - link to inherited component. The inherited component is described by
interface specified by feature InterfaceName.

Feature name Description ek
Hint item's description, simple HTML formating is supported (see Component No
Wizard user documentation for details)
Index index of items value Yes
I nterfaceName name of interface No
ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
ReadOnly determines if the item's valueis only for reading Yes
display all methods and events of inherited component in the project tree No
Showl nheritedM ethodsEyentsinPrj Tree
Symbol identifier, unique item'sidentification in the list No
Vaue Yes

Link to component - link to shared component. The shared component is described by interface specified
by feature InterfaceName

Feature name Description ek

Hint item's description, simple HTML formating is supported (see Component No
Wizard user documentation for details)

-58 -

User Interface

InterfaceName name of interface No
ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
ReadOnly determinesif the item's valueis only for reading Yes
SortStyle setting for sorting of valuesin popup list (criteriaare listed from lowest to No
highest priority): - ALPHA - aphabetically, -
DONT_PUT_DOWN_INTERNAL_SIGNALS - internal signals shout NOT
be placed at the end of the list, - USED - used peripherals should be at the
end of the list, - EICON - values with exclamation mark, that is not possible
to use, at the end
Symbol identifier, unique item'sidentification in the list No

Integer number - signed - input of signed integer value. Input value can be written in enhanced format

supported in version 2.34 or higher: {format}:{number}, where {format} is H for hexadecimal numbers, D for decimal
numbers, O for octal numbers and B for binary numbers and {number} is value is specified format. For example:
H:FO, D:240 and B:1111111100000000 are the same values. See example in component BasicProperties

Feature name Description Terpl.
EnabledRadix supported number system: binaty, octal, decadic, hex No
Hint item's description, simple HTML formating is supported (see Component No
Wizard user documentation for details)
ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
MaxVaue maximal value, valueisvalid only if >=MinVaue otherwise it isignored No
MinValue minimal value, aways valid No
ReadOnly determines if the item's valueis only for reading Yes
Symbol identifier, unique item'sidentification in the list No
Value item'svalue Yes
ValueRadix selected number system for items value (see also feature EnableRadix) Yes

List of items- input of several items of the same type. Type of the item is defined in the ItemsType feature
(see below). User can modify number of these items. See example in component BasicProperties

Feature name Description Terpl.
Expanded determines if the group is expanded No
Hint item's description, simple HTML formating is supported (see Component No
Wizard user documentation for details)
ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
ItemsName prefix of names of list items No
ItemsSymb prefix of symbols of list items (item has no meaning for valuesinside group) | No

-850 -

User Interface

ItemsType type of list item No
ItemsTypeSpecName |setting for list item feature TypeSpecName No
MaxItems max number of itemsin the list No
Minltems min number of itemsin the list No
ReadOnly determinesif the item's valueis only for reading Yes
Symbol identifier, unique item'sidentification in the list No
Text item'sinitial value No

List of items (item isdefined in afile) - input of several items of the same type. Type of theitem s
defined in external file (*.item). The file may be created and modified using the commands from properties
popup menu. User can modify number of theseitems.
Remark: The *.item file can contain only one property in the root. If you need more propertiesin each item
record, you have to create property Group of itemsin the root and all properties you need put into this

group.

Feature name Description Terpl.
Expanded determines if the group is expanded No
Hint item's description, simple HTML formating is supported (see Component No

Wizard user documentation for details)

ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
ItemsFile relative path and file name, that contains definition of the list item No
ItemsName prefix of names of list items No
ItemsSymb prefix of symbols of list items (item has no meaning for valuesinside group) | No
MaxItems max number of itemsin the list No
Minltems min number of itemsin the list No
ReadOnly determines if the item's valueis only for reading Yes
Symbol identifier, unique item'sidentification in the list No
Text item'sinitial value No
Real number - input of real number value.

Feature name Description ek
Hint item's description, simple HTML formating is supported (see Component No

Wizard user documentation for details)

ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
MaxValue max items' value No
MinValue min item's value No
ReadOnly determines if the item's valueis only for reading Yes
Symbol identifier, unique item'sidentification in the list No

-60 -

User Interface

Value

item's value

Yes

Speed mode setting (Enable/Disable) - speed mode enabled/disabled - necessary for components which
inherit from time- dependent hardware components. it is better to drag&.drop group of these items from any time-dependent Processor

Expert component than edit this item manually. See exampl e in component BasicProperties

Feature name Description Terpl.

GetTextValuelndex determines if the item define index otherwise text value. Thisfeatureis No
ignored if the item's type contains user defined symbols for each item. If this
feature is TRUE for boolean item, symbol is defined/undefined according to
item'svalue.

Hint item's description, simple HTML formating is supported (see Component No
Wizard user documentation for details)

ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes

ItemName item's name displayed in first column No

ReadOnly determinesif theitem's valueis only for reading Yes

Symbol identifier, unique item'sidentification in the list No

TypeChangeAble determines if the item's type (see feature TypeSpecName) may be changed No
in CHG script

TypeSpecName name of the item's type, type contains additional informations for the item, it | No
is supported for items { TEnumitem}, { TBoolltem}, { TBool Grupltem},
{ TEnumGrupltem}

Vaue item'svalue Yes

String - input of string. See example in component BasicProperties

Feature name Description ek

Hint item's description, simple HTML formating is supported (see Component No
Wizard user documentation for details)

ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes

ItemName item's name displayed in first column No

MaxL ength max string length No

MinLength min string length No

ReadOnly determines if the item's valueis only for reading Yes

Symbol identifier, unique item'sidentification in the list No

Value item'svalue Yes

String list - input of text with multiple lines. See example in component BasicProperties

Feature name Description Terpl.

AcceptNonPrintChars [determines if non-printable characters are supported by the item No

-61 -

User Interface

DefineList determines if the list of list of characters (i.e. list of lines, each lineislist of | No
characters) is defined (as macro symbol with suffix List).

ExternEditorEnabled determines if it is supported external editor for item's value No

Hint item's description, simple HTML formating is supported (see Component No
Wizard user documentation for details)

ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes

ItemName item's name displayed in first column No

ReadOnly determinesif theitem'svalueis only for reading Yes

StringList item'svalue Yes

Symbol identifier, unique item'sidentification in the list No

Time- input of time. Y ou can specify allowed time range using features MinTimeValue and MaxTimeValue
. See example in component BasicProperties

Feature name Description ek
Hint item's description, simple HTML formating is supported (see Component No

Wizard user documentation for details)

ItemLevel item'sview level: BASIC, ADVANCED, EXPERT, HIDDEN Yes
ItemName item's name displayed in first column No
MaxTimeValue the newest supported time No
MinTimeValue the oldest supported time No
ReadOnly determines if the item's valueis only for reading Yes
Symbol identifier, unique item'sidentification in the list No
Text item'sinitial value No
L egend:

Feature marked as bold are compulsory. It has no default value and has to be configured.
Feature name - name of the feature

Description - description of the feature

Templt. - if the feature is shown in templates

Example

There is complete component BasicProperties in this version of Component Wizard. This component contains all
properties provided in Basic version of Component Wizard.

-62 -

User Interface

5.4.1.1. Feature link

Component Wizard - Links (Professional Component Wizard only)

Description

Some property features need to be linked to a specific property. For example, the direction feature of a Pin
(Pin/Port) property needs to be linked to a Direction property. Thus, when you create a Pin property, you need
to create also a Direction property. In the direction feature of the Pin property, you will then select the symbol
of the Direction property.

The features of many properties can be linked to the same property. For example, the direction feature of 8 Pin
properties can be linked to the same Dir ection property. As a conseguence, they will all have the same direction.
Some links are aready available within Processor Expert. For example for the direction feature of a Pin
Property, you can select PE_OutputDir (output only) or _PE_InputDir (input only). In this case, you do not
need to create a Direction property. These links are listed in the next paragraph.

Available Links

e _PE_OutputDir: Direction property fixed to output
= Type=TDrctltem
= Symbol=_PE_OutputDir

e _PE_InputDir: Direction property fixed to input
» Type=TDrctltem
= Symbol=_PE_InputDir

e _PE_False: Boolean property fixed to false

= Type=TBoolltem
= Symbol=_PE False

5.4.2. Fast Inheriting

If you want to inherit/share components into a new component, you should use the Inheritance Wizard. For
details on inhteritance see chapter 2.1 Inheritance. Fast inheriting offers a simplified and quick method of
inheriting/sharing a component.

Switch to page Properties

2. Add new property Inherited component (interface) for inheriting a component or property Link to
component to share a component.

Click with the right mouse button on this property and the context menu will appear.
Select the submenu I nherited item and then click on the menu item Inherit component (fast)

The dialog appears (see bellow) - select the component you want to inherit and fill the edit line (name of
the interface and templ ate)

6. Click the button Inherit

-63 -

User Interface

Dialog Description

Inherit component

Lizt of components

@ sw_l2C

€§) SwSPI

@ SyncProc

@ Synchrobd aster
@ SynchroSlave

@ Term
@ TimeD ate

[A% .
-L";‘J Timnerlnt
@ TirnerOut

@ TwoBit0utput

@TWDKE_I,IS
= -

]

=

x|
Inherit |
_ Gencdl |

LCancel

Mame of the new interface [and template]
ITimerInterface

[¥ Create and register template inta the interlface

Inheriting details:
* Only uze all inherited methods and events

" Only uze gome of inherited methods and events
" Bedefine some methods

Figure 5.19 - Fast inheriting dialog

M eaning of the buttons:

e Inherit - creates an interface and template, modifies the property inherited component and closes this

window.

* Cancd - cancelsthe fast inheriting - closes this window.

* Create and register template into the interface - if checked the template is created and registered. If not,
the component is registered directly into the interface. If you want to later set/change the properties of the
inherited component or set some methods/events as read only, etc. create the template.

e Inheriting details - you can specify for what the component will be used and what changes in the inherited

component you will do:

a Only dl inherited methods and events - the component will be used only for calling aready existing

methods.

b. Only use some of inherited methods and events - the component will be used only for calling already
existing methods but inherite all methods is not necessary. See inheriting details picture for more
details. Thisdialog appears after click on button OK.

c. Redefine some methods - the component will be inherited for changing behaviour and/or extending its
functionality for another inheriting. See inheriting details picture for more details. This dialog appears

after click on button OK.

Edit line Name of the interface and template - Enter the file name (without extension) of the interface and the
template. If the collision of the names occurs, then similar names will be used.

-64 -

User Interface

Fast Inheriting Configuration Dialog

How methods and events will be inherited E
Choose how pou will inherit the methods and events ‘ gk I
E-@ Timerlnt : Details for selected object [method/event] Cancel |
i [H] Evab\e -Inherite yes o =
- [H Disable Scope Frivate >
~drs [l EnableEvent Mode Alwieal's REQUIRED hd
i [l DisableEvent Readonly |no

e [SetPerindMode
e [SetPeriodTicks16
e [SetPeriodTicks32
e [SetPeriodlS

i M SetPeriodds
1M SetPeriodSec
1M SetPeriodReal
1M SetFreqHz
%1 M SetFreqkHz
%1 M SetFreqHz

i [B BeforeMewSpeed
s [B] AfteNewSpeed
~-des [E Onlntermupt

Legend

<& Private method/event [use only]
& Overide method/event [redefing behaviour)
v Publisghed methad/event [propagate]

Figure 5.20 - Inheriting details picture

In this dialog you can configure the interface, i.e. how the inherited methods will be inherited if they will be
inherited. The panel with a tree on the left contains the list of component's methods. The inheritance parameters

for the selected method or event can be configured in the panel on theright.

For more details about scope and mode see chapters 5.14 Methods page and 5.15 Events page.

Note: The automatically created interface can also be modified later.

5.5. Global properties page

Notice: This pageisavailablein Professional Component Wizard only

-65 -

User Interface

D:ummunl Properties Global properties | Froperty t_l,lpe&l Methudal Eventsl zer Typeal Driveral Help I
Bean Inspector Bean - Untitled Features of the zelected property :
OripDutput [na Property name:|B oolean yez / o
[ternM arne |InlyDutput
Symbal [Only0 utput
TypeChangedble Falze
TypeSpecHame typerezMo
Walug Falze
GetTextaluelndes |True :I
Hirt
|=InGIDE True
|zInStandtlone True
[ternLevel itBASIC
ReadOnly Falz] =]
RuntimeProperty Falze
izible True
sddUp || AddDown | Addte Group | | Delete || Seach | I Details on/off

Figure5.21 - Page Picture

Description

On this page, you can create the global properties of the component.

Difference between " properties’ and " global properties':

Global properties are not visible within the Processor Expert environment. Y ou may create as global properties
the properties that are used as links for the features of other properties and that do not require to be visible for the
user. As aresult, you increase the readability of your properties page within Component Wizard.

Let's give an example. The Direction feature of a Pin (Pin/Port) property needs to be linked to a Direction
(Direction Input/Output/Input-Output) property. If the direction of the pin is not to be modified within Processor
Expert, and thus, has to be invisible, you may create the Dir ection property into the Global properties page.

Remark: in fact, thisis not a typical example, because some links (input only and output only) for the direction
feature of Pin properties are already included into Processor Expert, and you might not have to create a
Direction property.

Remark: It isalso possible to create invisible properties into the properties page, by setting the feature Visible to
False. The advantage of creating them into the Global Properties page is that you separate the visible properties
fromthe others and get subsequently a clearer overview.

In the rest of the description, for simplification, global propertieswill just be called properties.

The created properties are listed on the left side and the of the selected property are displayed on the
other side. These features are the features of the property edit item in the Processor Expert environment. Y ou
may visualize only the essential features by unchecking the Details on/off check box.

You can add properties above (Add Up button) or below the selected property (Add Down button). If the

- 66 -

User Interface

selected property is a group of properties, you can add a property to this group by pushing the Add to Group
button.

The selected property can be deleted by clicking the Delete button or by pressing the Delete key of the keyboard.
If the selected property is a group of properties, al the properties of the group will be deleted too. Search allows
to find a property, by giving the content of its symbol item.

For easier manipulation of the properties, there are also copying and moving facilities.

Moving: To move a property, simply drag and drop it (with left mouse button) inside the left window (list of
properties).

If you are moving to a property which belongs to a group, the moved property will be dropped in the same
group. To move an item to an empty group, hold "Shift" key down.

Copying: To copy a property, simply drag and drop it (with left mouse button) holding "Ctrl" key down.

If you are copying to a property which belongs to a group, the copied property will be dropped in the same
group. To copy an item to an empty group, hold "Shift" and "Ctrl" keys at the same time.

It isalso possible to use the drag and drop facilities of the VView Component utility.

Remark: It is possible to use context menus for the manipulation of properties. Clicking the right mouse button
opens the context menu for Adding and Deleting a property. And when you drag and drop with the right mouse
button, a context menu for Copying and Moving appears.

5.6. Component Property type page

Enmmnnl Froperties ~ Froperty twpes lMethDdsI Eventsl Ilzer Typesl Eu:unstantsl Driversl Diocurmentation

List of enumerate types for properties: Hame of the type:

Lizt of items of selected type:

Indes | Item name [tem walue [tenm hirt

Add/bem | [elete itenm |

[~ Ivpes are global

Add Enum Add Bool [elete type |

Figure 5.22 - Property types page

-B7 -

User Interface

Description

In this page, you can create your own enumerate types.
Y ou can use the buttons or the context menu in order to add and delete enumeration types/items.

Therearetwo types of enumeratetypes:

e Enumeration of 1 or more item(s) - Add Enum button
¢ Enumeration of 2 itemsonly. It is used for boolean based properties. - Add Bool button

These two types are used by the properties of the Enumer ate type.

Every item for enumeration have these subitems:

¢ |tem name - compulsory - fill in the name of theitem - it is displayed in Processor Expert

e |tem value - optiona - The Enumeration property in a Macroprocessor language defines its value from the
Item valueif defined otherwise from the Item name.
Remark: All Item value must be empty or defined at atime for current property type. It's not allowed to have
some I tem values defined and the others not!

e |tem hint - optional - hint for thisitem - this text will be displayed in processor expert as a context help.

Changing the order of theitems:
You can change the order using the drag and drop function on the left grayed column (the column with the
indexes). Drag the desired row and drop at the new position.

Remark: If you are currently using a created type in the "Properties’ page, you cannot delete it.

Types are global - this check box determines whether the user types will be local or global. If the box is
checked, the types will be global and other components share this file and the file is located in the directory "
Beans*.tps'. If you want to keep these types hidden from other components, make the file local. The fileis then
located in the same directory as that of the component.

User enumerate type file - name of the file, which will contain the global enumeration types. By default, it is
the name of the component. The created file will have the extension ".TPS', which is automatically added to the
input name.

Remark: To use already created global types check " Types are global " and select the wished user types after
clicking Open button. These types will be loaded automatically.

Context menus

It is possible to use context menus for the manipulation of property types.

Simple right click

Clicking the right mouse button (in the list box List of enumeration types for properties) opens the context menu
for Adding and Deleting a property type.

¢ Add Enum - add Enumeration of 1 or more item(s) - the same action as Add Enum button
¢ Add Boolean Enum - add Enumeration of 2 items only - the same action as Add Bool button
« Delete Enum - delete selected enumeration - the same action as Delete type button

-68 -

User Interface

5.7. Methods page

Enmmnn' F'ru:upertiesl Froperty types Methodsz | Eventsl zer Types Eu:unstants' Driversl Du:u:umentatiu:unl

List of methods Properties of the selected method : [~ Details
Enable generate code [lzlndzzembler Falze |
Dizable generate code |zl efinitiontd odule True |
Getyal generate code b ethod_Mame Enable

Publickdethod True hd
ReturnType woid |
Symbol Enable

Add Delete &dd parameter [elete parameter

|vu:uiu:| Enablefvoid)

Figure 5.23 - Methods page

Description

On this page, you can create and configure the methods of the component. The created methods are listed on the
left side and properties of the selected method are displayed on the other side.

A method has the following properties :

M eaning of buttons:

* Details- shows or hides details for selected method. Necessary featuresto set are aways visible.
e Add - adds new method

¢ Delete - deletes selected method

e Add parameter - adds new parameter to selected method

« Delete parameter - deletes selected parameter for current method

Properties of selected method :
¢ Symbol - name of the method (the same name asin the left window)
¢ Method_Name - the same as Symboal (it is a synonym)

< Hint - hint displayed in the Processor Expert environment and method description of the help file. See Help
Page.

- 69 -

User Interface

IsinAssembler- if the method isimplemented in assembler

I sinDefinition module - if it isin the definition module (when the method is not public)

PublicM ethod - if the included method is public

ReadOnly - if the method isin Processor Expert read only, i.e. the Value cannot be changed (generate code

or don't generate code)

ReturnHint - hint for the return type, displayed in the Processor Expert environment (default value you may

set in Options - Default values page)

ReturnType - type of the returned value. (void means that the method has no return value) (default value

you may set in Options - Default val ues page)

Selected - generation source code into the driver (in Processor Expert Code design). There are four

possibilities:

= selYES - Method will be generated, it can be changed in Processor Expert (sets ReadOnly to false and
Valueto true)

= selNO - Method will not be generated, it can be changed in Processor Expert (sets ReadOnly to false and
Valuetofase)

» selNEVER - Method will not be generated, it cannot be changed in Processor Expert (sets ReadOnly to
true and Vaueto false)

» selALWAYS - Method will be aways generated, it cannot be changed in Processor Expert (sets
ReadOnly to true and Value to true)

Value - if the method is included in the component (it will be generated into the driver or not - in Processor
Expert Code design)

al other method properties which are not described here, are described in properties featured.

UserMethodName - If you want to display another name in the Processor Expert. It is recommended for
advanced users only!

Properties of each parameter :

Name - name of the parameter displayed and used in Processor Expert
Type - type of the parameter (selected from the list)
Passing - how the parameter is passed to the method

Hint - hint for the parameter displayed in the Processor expert environment and parameter description in
help files. See Help Page.

Y ou can use the buttons to add and del ete methods/parameters.

It isalso possible here to use the drag and drop facilities of the \VView Component utility.

If you have filled the driver and language sections of the Drivers page, Component Wizard can automatically
find a method in the driver by right clicking on the method (in the left window). A context menu appears, where
you can select either the definition, implementation or the help part of the selected driver and language. Using
double-click (left mouse button), you may automatically go to the implementation part of the selected driver.
Before editing drivers, you have to save the component (Y ou can check the Autosave check box in the Drivers

page).

-70 -

User Interface

Context menus

Clicking with the right mouse button on the method opens the context menu for working with selected method:

M eaning of the menu items:

* Go to Definition module - if a driver is already created and selected in page Drivers, you can edit the
definition of the method in the driver. (for experienced users)

* Go to INTERFACE module - this command is available for events only.

¢ Goto Implementation module - if adriver is aready created and selected in page Drivers, you can edit the
implementation of the method in the driver.

e Edit include - if adriver isaready created, you can edit the include for selected method

« GotoHelp page - opens the help page with the method selected. See 5.12 Documentation page for details.
¢ Includeall - setsthe property "Value' to "yes' for all methods

e Excludeall - setsthe property "value" to "no" for all methods

* Add - creates anew method

e Delete - deletes the methods from the component

¢ Duplicate - duplicates the method (hints, parameters, ...)

Clicking with the right mouse button on the method's parameter will open the following context menu:

e Move Up - the parameter is moved to be closer to the beginning.
e Move Down - the parameter is moved to be closer to the end.
« Delete - removes the parameter definition.

5.8. Events page

-71 -

User Interface

Common | Properties | Property types | Methods Ewents | Lser Types Eunstantsl Driversl Documentatiunl

List of events Properties of the selected event : [~ Details

Event module name Syrmbol |E verthd ndule
-OnkeyPress generate code

t Event procedure name

Frioity interrupts disabled Ll
Add Delete Add parameter [elete pararmeter
Figure 5.24 - Events page
Description

On this page, you can create the events of the component.

The created events are listed on the left side and properties of the selected event are displayed on the other side.
An event has the following properties:

M eaning of buttons:

Details - shows or hides details for selected event. Necessary features to set are always visible.
Add - adds new event

Delete - deletes selected event

Add parameter - adds new parameter to selected event

Delete parameter - deletes selected parameter for current event

Properties of selected event :

Symbol - name of the event (the same name asin the left window)
HasPriority - if the event has priority. If true, event has subitem Priority (in the left window)

Hint - hint displayed in the Processor Expert environment and event description of the help file. See Help
Page.
IsinAssembler- if the event is implemented in assembler

ReadOnly - if the event isin Processor Expert read only, i.e. the Value cannot be changed (generate code or
don't generate code)

-72 -

User Interface

e Selected - generation source code into the driver (in Processor Expert Code design). There are four
possibilities:

= selYES - Event will be generated, it can be changed in Processor Expert (sets ReadOnly to false and

Valueto true)

= selNO - Event will not be generated, it can be changed in Processor Expert (sets ReadOnly to false and
Valuetofase)

» selNEVER - Event will not be generated, it cannot be changed in Processor Expert (sets ReadOnly to
true and Vaueto false)

» selALWAYS - Event will be always generated, it cannot be changed in Processor Expert (sets ReadOnly
to true and Valueto true)

¢ Value - if the event is included in the component (it will be generated into the driver or not - in Processor
Expert Code design)

» dl other event properties which are not described here, are described in properties' featured.

Properties of selected Priority:

e MainPriority- Link to the Priority property in the page Properties. In the Basic version of Component
Wizard this property is not available.

« al other properties which are not described here, are described in properties’ featured.

Properties of each parameter :

« Name - name of the parameter displayed and used in Processor Expert
¢ Type- type of the parameter (selected from the list)
e Passing - type of passing parameter to the method

< Hint - hint for the parameter displayed in the Processor expert environment and parameter description in
help files. See Help Page.

Y ou can use the buttons to add and del ete events/parameters.
It is also possible here to use the drag and drop facilities of the View Component utility.

If you have filled the driver and language sections of the Drivers page, Component Wizard can automatically
find a event in the driver by right clicking on the event (in the left window). Y ou can select either the definition,
implementation or the help part of the selected driver and language. Using double-click (left mouse button), you
may automatically go to the implementation part of the selected driver. Before editing drivers, you have to save
the component (Y ou can check the Autosave check box in the Drivers page).

Context menus

Clicking with the right mouse button at event opens the context menu for working with selected event:

M eaning of the menu items:
* Goto INTERFACE module - if adriver is already created and selected in page Drivers, you can edit the
definition of the event in the driver. (for experienced users)

* Goto Implementation module - if adriver is aready created and selected in page Drivers, you can edit the
implementation of the event in the driver.

e Edit include - if adriver isaready created, you can edit the include for selected event

-73 -

User Interface

e GotoHep module - if adriver is aready created and selected in page Drivers, you can edit the help part of
the event in the driver (for experienced users)

¢ Includeall - setsthe property "Event included" to "yes' for al event
e Excludeall - setsthe property "Event included" to "no" for all event
e Duplicate - duplicates the event (hints, parameters, ...)

Clicking with the right mouse button on the event's parameter will open the following context menu:

e Move Up - the parameter is moved to be closer to the beginning.
* Move Down - the parameter is moved to be closer to the end.
e Delete - removes the parameter definition.

5.9. User types page

Eu:ummu:unl F'rc:pertiesl Property t_l,lpes' Melhndsl Eventz User Types |Eu:unstants| Driversl Documentation

Uszer types for methods and events: Properties of user type:
ewipe HioaTye
Generate ta diver yes
Generate to doc yes
IIrigue name fio
|2 type 1Ebit zigned -
Hirt
Propertie:
Select new type: : :
— i Add ikem [relete ten |

| iz [~
Add Delete | Check. all uzer types |

Figure 5.25 - Page picture

-74 -

User Interface

Description

For advanced components, you may need to create your own typesin this page.

List of typesyou can create:
e Aliases

e Arrays

* Records

e Pointers

¢ Enums

¢ User definitions

Properties of selected type: (these properties are common to every user type)

e Type Name - type name as it will be stored in the types list (for Parameter Type feature in Methods page
and Events page, and for parameters type and return types of functions).

e Generatetodriver - if the declaration is generated in the drivers

¢ Unique name- if set to 'yes, the type will have the unique name, which will consist of the name of the of the
component and the Type Name. Two instances of one type of the component will have two different
declarations of thistype.

Example: Our component is MyBean. This component has one user type MyType which has selected option
Unique name to 'yes. We have two instances in Processor Expert MB1 and MB2. After Generation code
there will be declared two user types:

= MB1 MyType
= MB2 MyType
Remark: this property has no influence on type User definition
« Hint - description of the selected type. It is used in help files. See Help page

Properties of type Alias:
e Istype- Aliastypeisthe same type as selected type

Properties of type Array:

e Lowindex - Low index of the array. The size of array is (high-low+1).
e High index - High index of the array. The size of array is (high-low+1).
e Of type- Type of array

Properties of type Record:

¢ Item Name - Name of the variable in the record
e Item Type- Type of variable
e Ispointer totype- isthe variable pointer to Item Type

e Item Hint - Description of the variable. It isused in help files. See Help page
Note: The order of the items of the record can be changed using drag& drop on -ltem line.

-75 -

User Interface

Properties of type Pointer:

« Ispointer tothistype- Thisuser typeisapointer to the selected type.

Properties of type Enum:
¢ List of enum values - Thereis alist of values stored in the enum. You can add or delete them. But at |east
onevaue must beinthelist.

Properties of type User:

e Type - Thereisauser definition. All responsibility is left on user, he has full control of the user type. There
can be defined either ssimple or complicated types, e.g.

= typedef int *TIntPtr;

« typedef struct { float real; float imaginary; } TConpl ex;

Attention:If you use this User definition fill in the property Type Name with the correct type. In these examples
itwill be Tl nt Pt r or TConpl ex.

5.10. Constants

I:u:ummu:unl F'ru:upertiesl Property t_l,lpesl Methu:udsl Eventsl User Types Constants | Driversl Documentation

Constant list Properties of constants:
Constant name CHS_Speed
Constant value 255
-Overmide doc. value Enabled o

L| Constant value
Congtant dezcription

Generate ta driver yEs
Generate to doc yes
IInigue name yes

&dd Delete |

Figure 5.26 - Constants page

-76 -

User Interface

Description

In this page, the user can define a constants that will be available to the user of the component and will be
documented in the documentation.

The left panel contains alist of the constants and the right contains a value and other properties of the currently
selected constant in the left panel.

Constants can be added or removed by pressing the button Add / Delete.

Each constant has the following properties:

« Constant name - speficifies aindentifies that will be used in the generated code.
e Constant value - avalue that will be assigned to the constant.

* Override doc. value - a value of the constant that will be used in the documentation instead of the value
defined in the property Constant value.

« Constant description - atext used for the documentation.
e Generatetodriver - if the constant will be placed in the generated into the driver automatically.
e Generateto doc - enables generation of the constant into the documentation.

* Unique name - enables generation of the constant with unique name. If there will be more instances of one
component, each will contain a different constant name (usually there will be a prefix of the component
name).

5.11. Drivers Page

Enmmunl F'n:npeﬂiesl Froperty t_l,lpesl Methadsl Eventsl Lser Types | Constants Drivers | Documentation

Lizt of drivers for component

s TwaBitOutput. drv

Add driver | Create Test files | Drelete driver |

Edit test file | Repair driversl Drriver info |

[¥ Software component

Language section for selected driver: [+ Auto zave component before edit
Language="4MN5SICECompiler='dny' E---E Diiver code o
: ----- =] Edit code of a method/event
o Edit whole driver
----- Yiew whole driver [read only)
: e Edit TST
= N taki
7+ Daeumentaton =

Add section Delete zection Edit zelected item

-77-

User Interface

Figure5.27 - Drivers Page

Description

Driver page is divided into two parts. In the upper part, there is the list of drivers. The lower part alows to
configure languages and compilers supported by the component an open any part of the driver or related filesin
editor.

If the component isn't a software component (i.e. hardware dependent - Softwar e component unchecked), there
isaso alist of CPUs for which the selected driver is applicable. (CPU producer and family of the processor -
one driver can be applicable to many processors).

Remark: In Basic Component Wizard you can create only software components, i.e. in this case you cannot
uncheck the check box Softwar e component.

Drivers Management

This panel is placed in upper part of the window. It contains alist of drivers currently assigned to the component
and control buttons.

M eaning of buttons:

e Add driver - adds a driver to the component. If the component is a software component, there can be only
one driver, which is added to the right directory automatically. Otherwise, a dialog box is displayed where
you select the directory of the processor for which you want to make an implementation.

e Delete driver - removes the driver from the component. If the component is not empty (has at least one
language section) it is NOT deleted on disk. Otherwise, it is removed from component and deleted from disk.

e Createtest files- createsfiles needed by Processor Expert. See 5.11.3 TST file for details.
o Edit Test file- openstest file for selected driver. If the test file doesn't exist, then it is created
e Driver info - Information about selected driver (driver author and driver version)

¢ Repair drivers - Checks if every method and event (defined in page Methods and Events) is defined in
driver. If not, the missing part is added (or updated). (Thisis useful e.g. if you are editing whole driver and
you delete the implementation of some method/event and don't delete the method/event in page
M ethods/Events)

Notice: The extension of the driver fileis *.DRV, but in the demo version of the Processor Expert the extension
of driversis changed into *.DMO.

Driver Content Panel

This panel occupies the lower part of the window. It contains a list of programming languages that the selected
driver supports. At the moment, only ANSI-C is supported. You can select the compiler for the selected
language. Y ou may also set the language as compiler independent (set the compiler to "Any").

The panel also contains the tree with the parts of the driver code. These part may also be specific for the
language/compiler pair selected in the language selection area. See 5.11.1 Driver Processing for details. The part
part of the driver or arelated file can be opened in editor by clicking the Edit selected item button. Before each
editing you have to save the whole project to disk. To avoid the dialog window whether you want to save the
component, check the Auto save component before edit check box. The component will then be saved every
time you click on Edit code button.

M eaning of buttons:

-78 -

User Interface

e Add section - displays awindow where you can choose the language and compiler for the section. It will add
the corresponding language section to the driver.

e Delete section - removes the selected language section from driver.

< Edit selected item - opens selected item for the selected language and compiler in the editor. If a driver part
is edited, a window appears (see details in chapter 5.11.5 Edit code) allowing you to select the method or
event you want to edit. After selecting one method or event, you enter the Component Wizard Editor, where
you may make the implementation. 4.8 Editing drivers

See also

Detail information about drivers, macroprocessor, TST file and CHG file
How to - Editing drivers
How to - Editing method/event code

5.11.1. Driver Processing

Driver, sections

Every component has a least one driver. The drivers consists of sections. Sections is component implementation
for one compiler and language. Sections consist of subsections. Text or code is generated into file specified by
subsection name or parameters. See 5.11.2.2 Macroprocessor Commands for details.

Macroprocessor

The text of the component driver is processed by Processor Expert macroprocessor . This is special
macroprocessor designed for this kind of component drivers. The output from the component driver can be
generated to several files. See 5.11.2.2 Macroprocessor Commands for details.

Commands

If the line starts with character % as a first non-space character on the line, macroprocessor consider following
word as acommand. See complete list of supported commands.

Predefined macros

There are some predefined macros by Processor Expert. See topics:

 list of globals macros
 list of local macros
* macros defined from a property

 list of special macros and directives

Testing of component setting

Y ou can write ascript files TST fileand CHG file for testing of component setting.

SRC file

Driver or TST file are included to the Processor Expert from SRC file. SRC file is located in directory
Processor Expert\Drivers\ and has the same name as the component. If there are more drivers for one component,
SRC file contains conditional trandation which choose the right driver.

-79 -

User Interface

See also

Drivers page

List of macroprocessor commands

Predefined |ocal macros, global macros and special macros
Macros defined from a property

TST fileand CHG file

5.11.2. Macroprocessor

Description

The text of the component driver is processed by Processor Expert macroprocessor. This is special
macroprocessor designed for this kind of component drivers. The macroprocessor supports:

 conditional translation - see list of commands.
e includes - seelist of commands.
» evaluation of simple expressions - see list of commands.
o lists- seelist of commands.
e for cycles- seelist of commands.
e error output - see list of commands.
* globa macros - the same for all componentsin project, defined by Processor Expert
* local macros
* Local macros are defined by Processor Expert and contain setting of the component in Processor Expert.
This macros cannot be changed by adriver.
* New local macros can be defined and modified by adriver.

e generating to several part - see commands - subsections.

Macro

isan identifier which holds any value. Identifier of a macro can contain characters: a..z, A..Z, 0..9, _ and cannot
start with a digit. The value can be string, number of list. If macro's value is a number or a string, the macro
identifier can be directly replaced by its value in the driver text.

%{def nane}, % {def _nane}', %-{def_nane}~ will bereplaced by itsvalue.

Example

%lefi ne MyMacro | ocal _val ue
MyMacr o=%wW Macr o
MyMacr 0=% MyMacr o' _3333

after processing by macroprocessor the result will be
MyMacr o=l ocal _val ue
MyMacr o=l ocal _val ue_3333

There are several types of macros:

» global - defined by Processor Expert, the same for all components during code generation, cannot be changed
by driver. Driver can define new global macro but cannot modify them.

-80 -

User Interface

local - two types:

special macros and directives

Command

defined by Processor Expert for each component, cannot be changed by a driver. Some of them are
defined for each component and the others depends on component's properties, methods and events.

defined by driver and can be changed by adriver.

starts with character %as a first non-space character on line. The commands ends at the end of line. See list of
supported commands.

See also

Details about drivers

List of macroprocessor commands
Predefined local macros, global macros and special macros
Macros defined from a property

5.11.2.1. Macroprocessor Denotation

This chapter describes the denotation used in description of macroprocessor.

Basic Denotation

{def _nane}

and cannot start with a number

{text} -texttotheendof line

{nunber} - decima number

{string}
{def _list}
{fil enane}

{event nane}

Operator

{operator} is

+=

assignment (the same as command Y@lef i ne!l)

addition

substraction

division

integer division (integer operation)
modul O (integer operation)
multiplication

bit or (integer operation)

bit and (integer operation)

bit XOr (integer operation)

bit shift to the right (integer operation)

- string inside quotation marks,

- name of a macro, case-sensitive identifier, can contain characters: a. . z, A. . Z,0. .9, _

- name of amacro which contains list of items
- name of external file with relative path

- name of any event of the component

-81-

User Interface

e <= Dit shift to the left (integer operation)

e ~= power of

* $= round, returns closest integer number
e .= truncate

e @ exponent,(8@=2 returns3)
Condition

{condition} is

e {condval ue} is{def name} or {string} or element from list (see macro %)

e {condition} is

def i ned({def_nane}) conditionistrueif macro {def_name} is defined

ndef i ned(<def _nanme>) conditionistrueif macro {def_name} is not defined

{condval ue} = {condval ue} string compare

{condval ue} <> {condval ue} string compare

{condval ue} !'= {condval ue} string compare

{condval ue} > {condval ue} string compare

{condval ue} < {condval ue} string compare

{condval ue} >= {condval ue} string compare

{condval ue} <= {condval ue} string compare

{condval ue} >N {condval ue}

{condval ue} <N {condval ue}

{condval ue} >=N {condval ue}

{condval ue} <=N {condval ue}

- if N is number 1..9 then string are formatted to length N characters - there are inserted spaces to the
begin of string or end of string is cuted. Strings are compared after the formatting.

- if N is number 0 then strings are formatted to the same length - to the begin of shorter string are
inserted spaces. Strings are compared after the formatting.

- if Nisdecimal point then strings are converted to real number and these numbers are compared.
{condval ue} =" {condval ue} string compare, { condvalue} are converted to uppercase before
compare.

{condition} | {condition} logica or, {condition} can not contain & operator. If the first {
condition} istrue then the result istrue.

{condition} & {condition} logical and, {condition} cannot contain| operator. If thefirst {
condition} isfalsethen the result isfalse.

for | ast conditionistrueif the actual for variable isthe last from list

{string} in {def _list} -conditionistruewhen{string} iselement of list {def list}. { def list}
is name of variable.

-82 -

User Interface

See also

Component driver
List of macroprocessor commands
Macroprocessor

5.11.2.2. Macroprocessor Commands

Macroprocessor command starts with character % as first non-space character on line. Then follows
command-identifier and parameters. Therest of lineisignored and can be used as a comment.

Here is complete description of commands supported in basic version of Component Wizard. Commands are
divided into several groups according to its function.

Conditional translation

% f def { def_nane} conditional trandation. Following lines are generated to output only if macro {
def_name} is defined. This command must be finished by command %endi f , %el se or %l i f .

% f ndef {def _nanme} conditional translation. Following lines are generated to output only if macro {
def_name} is not defined. This command must be finished by command %endi f , %el se or %el i f.

% f {condition} conditional trandation. Following lines are generated to output only if condition {
condition} istrue. This command must be finished by command %endi f , %el se or %el i f.

%l if {condition} conditiona trandation. Following lines are generated to output only if condition {
condition} istrue. This command must be finished by command %endi f , %el se or %el i f .

%l se conditiona trandation. Following lines are generated to output only if all previous conditions of
% f commands were false. This command must be finished by command %endi f .

%endi f ends conditional translation.

Example

% f ndef Macrol
% f def MacrolVal ue
%rror MacrolValue is defined without Macrol
%l se
%error Macrol is not defined
%endi f
%l if Macrol='yes'
%lefi ne MacrolVal ue 1
%l if Macrol='no'
%lefi ne MacrolVal ue O
%l se
%error Unrecogni zed value in Macrol
%endi f

-83 -

User Interface

Macros definition

« Ygefine {def_nane} [{text}] thiscommand definesanew local macro called { def name} with
value { text}. The macro will exist only during processing of current driver. The command raise error if
macro already exists with another value. Macro can be defined also without value.

 9define! {def_name} {text} thiscommand issame as the previous one, but is macro aready
existsit is redefined without any error.

e Ygefine_prj {def_nane} {text} definesnew globa macrowith value{text}. This macro will be
defined to the end of generation of al drivers.

* %undef {def_nane} removes macro definition. This command raise error if macro { def_name} does
not exits.

« Yundef! {def_nane} removesmacro definition. If macro does not exist, it does nothing.

Example
Ydefi ne MyFi rst MacroDefinition Val ue
%def i ne! MyFi rst MacroDefinition Value redefinition
Yundef MyFi r st MacroDefinition
Yundef ! MyFi rst MacroDefi ni tion

Including external file

* % nclude {filenanme} includesfile{filename} to the current position of text. { filename} must be
with relative path from directory Processor Expert\Drivers\.

e % nclude {filenane} ({parl},{par2},..) isthesameassimple% ncl ude command and
additionally parameters are accessible using macros %4, 92, .. . Parameter par? is defined as all
characters between separators (,, ,) -

Example

% ncl ude SubProg. prg (Val ue)
Contents of Processor Expert\Drivers\SubProg.prg
% f MyMacro! =%
Y%efine! MyMacro %
%endi f

Comments and text formatting

e %[{stringl}[{string2}]]{text} appends{string2}{text} totheend of previous generated line.
But if the new line would be too long it produces a new line: { stringl}{text}. { strings} are not required and
they must be closed with quotation marks.

« %{nunber} setthe current output position of the text to column { humber}. At least one space will be
inserted.

* 9% comment to the end of line

Example

% Comment: This is assenbler formatting
%20 ADD A, 20
%20 SUB A, B

-84 -

User Interface

Errors

All following messages will be displayed in Processor Expert Error window.

e % error {text} produceserror message {text}.
e %rror!{text} thesameas%err or andtheerror message will contain file name and line number.
e %errorn{text} thesameas¥%err or and generationisstopped for current driver.

« %varning {text} produces warning message If there exists a TST file for current component the
warning from the driver will not be displayed.

e 9%hint {text} produces hint. If there existsa TST file for current component the hint from driver will
not be displayed.

Example

%rror I'msorry but this driver is not finished yet.
%var ni ng This configuration is not useful.
%rror! Internal error in the driver. Please contact your distributor.

Lists

Macroprocessor supports macros with list asavalue. You can have several itemsin alist.

* %dd {def list} {text} additem{text} tothelist{def list}. If thelistisnot defined then will be
created. Item cannot be empty string. There is duplicate checking, if the item is aready in the list, this
command does NOT add a new one. List { def list} is a global macro for while project. But you can not
modify lists defined by Processor Expert.

e Y%append {def list} {text} additem{test} ththelist{def list}. If thelistisnot defined then will
be created. Item cannot be empty string. There is not duplicate checking, if theitem is aready in thelist, this
command add a new one. List { def list} is a globa macro for while project. But you can not modify lists
defined by Processor Expert.

e Y%apploc {def list} {text} thesameas %append, but the macro isloca - defined only for
current driver.

e %ddloc {def_list} {text} thesameasadd, butthe macroislocal - defined only for current
driver.

e % or {def_nane} from {def _list}

{bl ock of text}

%endf or {block of text} is several lines of text. This block will be generated for each value in the list {
def_list} and during each generation the macro { def_name} will have value of one item from list. Macro {
def_value} cannot be defined before this command and will not be defines after the end of command.
You canusenotation: [{ nunber}..{nunber}] instead{def list} macro.

e % or {def_nane} frondown {def |ist}
{bl ock of text}
%endf or the same as command for ... from... , but the items from the list are selected from the last item to
thefirst one.

Example

%appl oc MyFirstList Iteml
%appl oc MyFirstList Iten?
%appl oc MyFirstList ItenR

-85 -

User Interface

%or i from MyFirstList
Report: List Itemis "%"
%endf or
%or i from[O..7]
%
%endf or

Expressions

Evaluation of expressions is done in real numbers. For integer operations the value is rounded to 32-bit signed
integer.

% { def _nanme}{operator}{nunmber}[;{text}] textisignored. Expression is evaluated and the
result is assigned to macro def_name

% { def _nane}?={ nunber }, { nunber 1}: { nunmber _1}, { nunber 2}: { nunber _2}, .. ;
converts value number using table: if number is equal to numberl then the result is number_1, if number is
equal to number2 then result is number_2 etc. The result is assigned to macro def_name. Error is reported to
Processor Expert Error window if the value is not found in the table.

Example

% a=0
% a+=1
% b?=%, 0: 3. 1415, 1: 6. 2830

Subsections

% NI Tl ALI ZATI ON - component initialization code, this code will be inserted into CPU initialization
procedure

% NTERFACE - component header file, this file must contain interface of all selected methods

% MPLEMENTATI ON - component implementation file, this file must contain implementation of all
selected methods

% NTERFACE { eventname} - interface of selected event, this part will be inserted into interface of
events module

% MPLEMENTATI ON { event nanme} - implementation of selected event, this part will be inserted into
events implementation module

%1 LE [{dir}]{filenanme} -textfrom thissubsection will be saved to the specified file

See also

Macroprocessor

Denotation of description of macroprocessor

Component driver

Predefined local macros, global macros and special macros
Macros defined from a property

-86 -

User Interface

5.11.2.3. Predefined Macros and Directives

To replace a macro by its value, write the name of macro after character % Each line of the driver is processed
from the right side to the left side and all macros are replaced.

Special macros and directives

%®%6- character %
% def _name}, % {def_nane}', %-{def_nane}~ -isreplaced by def value.

% or _i ndex, % f or _i ndex"' isreplaced by index of actua variable of for-cycle from range: 1..number
of itemsin thelist.

% or _i ndex_0 isreplaced by index of actual variable of for-cycle from range: 0..number of itemsin the
list-1.

% i st_size({def list}) -number of itemsinthelist.

%str_length({string}) -string length, number of charactersin the string

%str_| engt h({def _nane}) - string length, number of characters of the macro value. Macro cannot be
alist.

%hort _pat h({ val ue}) - convert path to short path for MS-DOS 16-bit application. value must be
macro or string between brackets. Path should exist on the disk.

% {i ndex},{def _Iist}] -returnsitemfromthelistdef list with index equal to index. Index of first
itemsis 1. Result is empty string if the requested index if out of range. def_list must be defined.

% is replaced by sequence of characters which defined comment to the end of line. See also global macro
%CommentLine.

% is replaced by separator of module name and method name. The separator is defined according to
selected language, usually it is character _ (underscore).

9%{ isreplaced by sequence of characters which begins a multi-line comment.
% isreplaced by sequence of characters which ends a multi-line comment.

%#{ srcf }{dstf }[-]{ nunber} - contents signed 32-hit integer number from srcf to dstf format.
Supported formats of srcf:

= nothing - decimal number

= 2 - binary number

Supported formats of dstf:

= h - selected format of high level language

= a - selected format of assembler - data

= aa - selected format of assembler - address

» ab - selected format of assembler - binary data

%#tb{ nunber } - converts 8-bit number (0..256) from decimal to hexadecimal format (without prefix or
suffix)

%#wW{ nunber } - converts 16-bit number (0..65535) from decimal to hexadecimal format (without prefix or
Suffix)

%# { nunber} - converts 32-bit number from decimal to hexadecimal format (without prefix or suffix)

-87-

User Interface

Access to inherited items

e %@ inhr_property} @ def_nanme} - value of macro def_name from inherited component pointed by
property inhr_property.

e W@ inhr_property}@ index},{ def _list}] - retuns item from the list from inherited
component, with item'sindex equal to index.
inhr_property isa symbol of property for inheritance.

See also

Component driver

Macroprocessor

List of macroprocessor commands
Predefined |ocal macros and global macros
Macros defined from a property
Denotation

5.11.2.4. Predefined global macros

Global macros are macros defined by Processor Expert for the whole project. They are the same for all
components in the project and they are not changed during code generation.

Language, compiler, version

e Language - identification of selected target language: MODULA, ANSI C, JAVA, ASM
e Compiler - identification of selected target compiler.

« CommentLine - is defined if there is sequence of characters which starts comment to the end of line for
selected target language. Value of the macro is this sequence.

e PEversion - version of Processor Expert, format XX.XX.

e TimeStamp - date and time of code generation.
CPU, interrupt vector table

e CPUvariant - selected target CPU type (from CPU properties).
¢ CPUtype - type of the target CPU component.

e CPUfamily - target CPU family.

e CPUproducer - producer of the target CPU.

e InterruptTableType - type of the interrupt vector table.

e InterruptVector Type - type of the interrupt vector.

- 88 -

User Interface

Clock, speed modes

« Xtal_kHz - frequency of Xtal of the CPU, integer number.

« HighClock_kHz - clock frequency in front of system prescaler in high speed mode, integer number.

e LowClock _kHz - clock frequency in front of system prescaler in low speed mode, integer number.

e SlowClock_kHz - clock frequency in front of system prescaler in slow speed mode, integer number.

e CPUsystem_ticks- number of ticks behind system prescaler, list of three values for every speed mode.

¢ CPUrunSpeedM odeNum - number of supported speed modesin the target CPU.

* SetHighSpeedM ode - defined if high speed mode is supported in the target CPU (high speed mode must be supported).
* Setl owSpeedM ode - defined if low speed mode is supported in the target CPU.

e SetSleepMode - defined if slow speed mode is supported in the target CPU.

< names of all common prescalers - initialization value, names depend on the CPU description database.

Modules

e ProjectName - name of the project.

« ProjectModule - name of the main module.

e Processor M odule - name of the PCU module.

¢ Processor Name - name of the CPU component.

e ModuleList - list of all component modulesin the project (without CPU module).

« EventModulelist - list of all event modules in the project.

« ExternalModules- list of al external programs in the project.

e ExternalModuleExts- list of corresponding extensions of external programs.

e ExternalModuleDir - list of corresponding directories of external programs.

e ExternalModuleRelDir - list of corresponding relative directories of external programs.

* DriverExtension - extension of driver filename, DRV or DMO or TST.

Directories

e Dir_Project - directory of the current project.

* DirRel_Events, DirRel_Binary relative path from project-directory to drivers-directory and
binary-directory.

« DirRel_EventToBinary - relative path from code-directory to binary-directory.

o Dir_Drivers, Dir_Events, Dir_Binary - absolute path for drivers, event modules and binary files. You
should always use relative paths.

* Dir_Compiler - absolute path of external compiler isit is defined as external tool.

-89 -

User Interface

Registers

e Register ??List - list of all names of 8-, 16- and 32-bit CPU control registers, dependent on the CPU
description database.

* Reg??AddrList - list of al addresses of 8-, 16- and 32-bit CPU control register, dependent on the CPU
description database.

description database.

See also

Component driver

Macroprocessor

List of macroprocessor commands
Predefined global macros and special macros
Macros defined from a property

5.11.2.5. Predefined local macros

Local macros are macros defined by Processor Expert individually for each component. Component can define
its own local macros. These macros can be aso changed in the driver. Other components have no access to
macros defined by other components.

Each driver should define following macros:

¢ DriverVersion - version of the driver, format XX. XX
¢ DriverAuthor - name of author of the driver
* DriverDate - date of last modification of the driver, format: DD.MM.YYYY

There are local macros defined for every component dependent on list of component's properties, methods and
events. Macros defined by Processor Expert cannot be changed by driver. Other components have no access to
macros of another component with exception of inheritance.

List of macros defined for each component:

« DeviceType - type of the component.

e DeviceName - name of the component.

¢ ModuleName - name of the component driver. It must be identifier.

e Comment - user comment to the component. List of strings. It isif user do not enter any text.
« runHighSpeed defined if component is supported in high speed mode.

e runLowSpeed defined if component is supported in low speed mode

e runSleep defined if component is supported in slow speed mode

* runSpeedMoaode list of supported speed modes, three values: Yes/No.

¢ runSpeedM odeNum number of supported speed modes.

* method - For each method of the component which must be implemented in the driver (user requeststio use the method
inhiscode), the name of the method is defined as a macro. Vaue of the macro is same as the name.

¢ method_Hint - hint for the corresponding method.

« event - For each event user requests to handle in his code, the name of event is defined as a macro. Value of

-90 -

User Interface

the macro is name of event handler function.
e eventPrior - event priority. It isdefined only if the event support priority.
* eventModule - event module of corresponding event.
e event_Hint - hint for the event
e MethodList - list of requested methods
« MethodHints- list of corresponding hints for the requested methods
e EventList - list of requested events
e EventModules - list of corresponding event modules

See also

Component driver

Macroprocessor

List of macroprocessor commands
Predefined |ocal macros and special macros
Macros defined from a property

5.11.2.6. Macros Defined From a Property

Every property must have defined unique symbol in the component (it should not begin with the character
underscore ' _"). This symbol is name of macro defined for the component driver in the Processor Expert. The
value of the macro is value of the property set in Processor Expert Component I nspector.

Note: Integer values are aways defined as decimal numbers.

Some properties have detailed information defined as macros. The name of the macro is completed from the
name of the property (feature Symbol) and the suffix. The suffix depends on the type of the property. The
following properties have defined the detailed information:

e List of items
suffixes:
= Numltems - the number of theitemsin list
= Maxltem - the maximal index of theitem (i.e. Numltems-1)
e Date
suffixes:
= Day - the day of the date stored in property (range from 1 to 31)
* Month - the month of the date stored in property (range from 1 to 12)
= MonthLong - the name of the month (language depends on the current country which is set in windows)

= MonthShort - the name of the month (language depends on the current country which is set in windows)
- short version

* Year - theyear of the date stored in property (format is XXXX)

= DayOfWeek - the day in the week (range from 0-monday to 6-sunday)

= DayOfWeekLong - the name of the day (language depends on the current country which is set in
windows)

= DayOfWeekShort - the name of the day (language depends on the current country which is set in
windows) - short version

-91 -

User Interface

Time

suffixes:

= Hour - the hour of the time stored in property
= Min - the minute of the time stored in property
= Sec - the second of the time stored in property
String list

Macro without suffix - the list of lines of the text. If user do not enter any text, macro is not defined.
suffixes:

= Len-list of corresponding lengths of linesin the string-list (number of characters on each line).
= Lines- the number of thelinesin the string-list.

= List - list of lines, every line is defined as a list of characters (This macro is available if the feature
DefineList is set to value True)

External file

suffixes:

» FileName - only the name of the file (without the path)

= ShortPath - the whole name of the file (with the path) for DOS applications

= Value- binary valuesin afile (depends on th settings of the feature FileDefine)

= Valuelist - binary valuesin afile (depends on th settings of the feature FileDefine)

External bitmap file
suffixes:

= Width - width of the picture
= Height - height of the picture

= Size- the size of the picture (the number of the occupied bytesin a memory)

Directory
suffixes:
= (onecharacter underscore) - the directory ends with '\'

= (wocharacters underscore) - the directory doesn't end with '\'

Addressin CPU address space

suffixes:

= External - "yes' if any address from selected address range is inside external memory, "no" otherwise.
= _Internal - "yes" if any address from selected address range isinside internal memory, "no" otherwise.
» RAM -"yes" if any address from selected address range isinside RAM, "no" otherwise.

» ROM -"yes"if any address from selected address range isinside ROM, "no" otherwise.

_FLASH - "yes" if any address from selected address range isinside FLASH, "no" otherwise.
= _EEPROM - "yes' if any address from selected address range is inside EEPROM, "no" otherwise.

-92 -

User Interface

Example

There is complete component BasicProperties in this version of Component Wizard. This component contains all
properties provided in Basic version of Component Wizard.

See also

Component driver

Macroprocessor

List of macroprocessor commands

Predefined |ocal macros, global macros and special macros

5.11.3. TST file

TST file is a script which describes implementation-dependent tests of the component setting. It is run from
Processor Expert only if the component is set-up correctly. Component modules won't be generated if any error
isreported from the TST file.

The TST fileis stored in the same directory as the driver, the file-name is also the same and the file-extension is
TST. You can edit TST file directly in Component Wizard, see Drivers page.

The list of macros defined for the TST file is the same as macros for the driver. Y ou can use al macroprocessor
commands (See details in chapter 5.11.2.2 Macroprocessor Commands) in the TST file as in the component
driver. Messages from the TST script are reported using the commands %err or, 9%war ni ng, %i nt to
Processor Expert Error window. The TST script cannot define any global macros accessible from other TST files
or drivers.

Warning: If you write any TST file for your component, any warning and hint will NOT be generated from the
driver. All warnings and hints should be generated from the TST file.

Example

% f Propertyl="MASTER'
%error Sorry - this feature is not inplenented yet.
%endi f
%
% f Property2="0"
i nt Define buffer for better performance.
%endi f

There is complete component BasicProperties in this version of Component Wizard. This component contains
example of TST fileand CHG file.

-03 -

User Interface

See also

Component driver
CHGfile
Macroprocessor commands

5.11.4. CHG file

CHG file is a script for testing of component settings and control the component behaviour in the Component
Inspector window in Processor Expert.

This file should implement implementation-independent tests and report errors if the component setting is
incorrect (component function is not defined for this component settings). For example, the CHG file can
generate error if the buffer size if lower than 16 bytes.

CHG file is placed in the same directory as the component (ProcessorExpert\Beans\[BeanName]\), the file-name
is the same as the component name and the file-extension is CHG. Y ou can edit CHG file directly in Component
Wizard, see Drivers page. The CHG script is run from Processor Expert every time user change the component
setting even if the setting is not correct. There may miss any macros because of incorrect setting, you should test
if macro is defined before its usage. Y ou should never use global macrosin the CHG files.

Y ou can generate error messages using commands: %er r or, %war ni ng, %hi nt or you can change or read
the value of any property/method/event using special commands %set and ¥get . These command can be used
only in CHG files.

Set Command

Syntax:

%set {Synbol} {FeatureSynbol} {Val ue}

Description:

e {Synbol } isasymbol of any property, method or event

e {FeatureSynbol } isasymbol from following list

e {Val ue} isanew valuefor the feature. Valueistext to the end of line.

List of FeatureSymbols:

« ReadOnly - you can enable/disable changing of value of any property.
{ Synbol } must be symbol of any property.
{Val ue} must beyes or no.

e Selection - you can enable/disable changing of selection of any method or event, e.g. if method will be
generated to the driver and if event will be called from the driver.
{ Synbol } must be symbol of any method or event.
{Val ue} must be

= al Way S (the method/event must be selected) OF
= NeVer (the method/event cannot be selected) OF
= enabl e(you can change selection).
¢ Value - you can change value of any property.

{ Synbol } must be symbol of any property.
{ Val ue} must be value for the property (the same as you can enter in the Processor Expert Component

-94 -

User Interface

Inspector). Integer value can be expressed in enhanced format, see Property Signed integer number for
details.

« MinValue, MaxValue - you can change the minimal and maximal possible value of the property.
{ Synbol } must be symbol of property of type: integer number, real number or list of items.
{'Val ue} must be decimal number.

Warning: If you change any value of the property, the macros are NOT changed to the end of CHG file. You
can read the value of any property using %get command.

Get Command

Syntax:
%get ({ Synbol }, { Feat ur eSynbol })

List of known symbolsisthe same asfor % et command. Result isvalue of selected feature.

Example

% f defined(Propertyl) & Propertyl="MASTER'
%error Sorry - this feature is not inplenented yet.
%endi f
%
% f defined(QutputBufferSize) & CQutputBufferSize="0"
%set SendDat a Sel ection never
%l se
%set SendData Sel ection enable
%endi f
There is complete component BasicProperties in this version of Component Wizard. This component contains
example of CHG fileand TST file.

Configuring Methods and Events of Inherited and Shared Components

For OPTIONALLY REQUIRED methods/events (see the description of the mode property and its values in the
chapter 5.14 Methods page or 5.15 Events page) it is possible to use the following commands in the descendant
component:

e Uset @I nhrSynbol} @ Synbol} Sel ection al ways - The generation of the method/event will
be enabled without a possibility to enable it by the Processor Expert user. It is necessary for example if the
descendant needs the method/event.

« Uset @I nhrSynbol} @ Synbol} Sel ection enabl e - This option can be used to enable the
method/event if the descendant doesn't need the method/event.

e Uset @I nhrSynbol} @ Synbol} Sel ection never - The generation of the method/event will
be disabled without a possibility to enable it by the Processor Expert user. This command is available for
inherited componentsonly.

Description of the symboals:

- {I nhr Synbol } isasymboal of the inherited component (interface) property.
- {Synbol } isaname of the method/event.

-05 -

User Interface

See also

Component driver
TST file
Macroprocessor commands

5.11.5. Edit code

*.« Edit driver - select method or event - 1ol =]
Lizt of methods and events E dit I
Edit whale section |
LCancel |
- [E Inherited events
=1+ Driver parts
Initialization
& User types
[Read only

Figure 5.28 - Selection of the code to edit

Treestructure:

« Methods - methods defined by the component
« Events- events defined by the component
¢ Inherited events - serve inherited events here

e Driver parts - Drivers from Component Wizard 1.14 have some parts of the driver marked with specia
Component Wizard keywords. It allows you to insert your own includes, global variables into the driver with
editing necessary part of the driver only.

= Initialization - Initialization of the driver. Write a code here for driver initialization. This code will be
generated into the initialization method of the CPU component which is executed at the beginning of the
"main" routine.

= User types - here in this section you can write your own user types which cannot be made by Component
Wizard (page User Types)

» Header includes - there you can write includes for you libraries. These part will be in the header file
generated bellow includes generated by Component Wizard. Also here you can import/export global
variables into/from your module.

= Module includes - there you can write includes for you libraries. These part will be in the module
generated bellow includes generated by Component Wizard.

= Static variables - Do you need global variablesif your module? Write them here.

-906 -

User Interface

M eaning of buttons:

< Edit - displays source code for selected method/event or selected part of the driver only.

< Edit whole section - displays source code for selected driver, the cursor is set to the selected method/event
or selected part.

« Read only - driver will be open in read only mode

e Edit whole section - you will see the whole language section.

See also

Detail information about drivers, macroprocessor, TST file and CHG file
How to - Editing drivers

5.11.6. Driver editor

See also

Drivers page
How to - Editing drivers
Detail information about drivers, macroprocessor, TST file and CHG file

*. Component Wizard Editor -"Driver TwoBitOutput.drv for Language &

File Edit Help
vold %'ModuleName':.3PutVal (bool Cutput)
inherited.Pin0.PutVal (Output} ;
inherited.Pinl.FPFutVal [(Output) ;

]

=@ 2 5|0
Mo b W R

Figure 5.29 - Editor picture

Description

Built-in editor serves for editing implementation of methods, events, includes, HTML help files and other files
generated by Component Wizard.

Editor has these enhanced features:

« gyntax highlight for selected language (if editing driver) and for macroprocessor language, e.g. when editing
CHG files.

« simple syntax highlight when editing html files

» 10 bookmarks accessible by context menu or by shortcuts Ctrl+Shift+Number (where Number isfrom O to
9) to set the bookmark and Ctrl+Number to goto the bookmark.

Toolbar description:
. H- savethefiletodisc
» ¥2 _ Undo the previous action

» 4 _ Redo the previous action

-97-

User Interface

- Copy the selected text into the clipboard
& - Cut the selected text into the cli pboard

- Paste the text from the clipboard into the editor where the cursor is

& - Print the entire text in the editor

£ _ Paste the name of the macro/method/event or inherited method/event into the editor. For more details
see Auto complete chapter. Accessible also usng short cut Ctrl+SPACE

- Find the text in the editor
& Replace the text in the editor
T - Displays help for Macroprocessor language.

Statusbar description:

Lineand column position - There isinformation about the line (with prefix L:) and column (with prefix C:)
where the cursor is. If you are editing only part of the driver, there is aso information about line number in
the brackets in respect of beginning of thefile.

Write mode - displays actual mode - insert or overwrite mode.

Context menus

The context menu is available using the right button mouse click and offers the following commands:

Edit

= Undo - restores the text to the state before the last change made by the user.

* Redo - restores the text back to the state after the last change made by the user.
= Cut - cutsthe select text into the clipboard.

= Copy - copiesthe select text into the clipboard.

= Pagte - placesthe text from the clipboard at the cursor position.

= Cut - cutsthe select text into the clipboard.

= Delete - removes selected text.

» Select All - cuts the select text into the clipboard.

= Deéleteline - removesthe line with the cursor.

Search

= Find... - invokes a"find" dialog that allows to find specified phrasein the text.

= Find next - continues to search next occurrence of searched phrase

» Replace - invokes a"replace" dialog allowing to find and replace a specified phrase.

Bookmark - serves for setting bookmarks in the text. The line with the bookmark is marked with the small
circle with the number of the bookmark on left side of the editor window.

» Set/Clear - setsthe select bookmark on the line with cursor
= Goto - goesto the line with selected bookmark
Use component method/event - the same as in the "flash" toolbar button - Paste the name of the

macro/method/event or inherited method/event into the editor. For more details see Auto complete chapter.
Accessible also usng short cut Ctrl+SPACE

Open file... - allowsto open any file into the editor.

-08 -

User Interface

Auto complete

Auto complete

For easy writing drivers the Auto complete function has been integrated into the Editor driver.

Advantages:

e Fast typing - you don't have to type long macro names, just write the first part of macro and press

Ctrl+SPACE

« Case sensitive - Programming languages (e.g. ANSI C) and Macroprocessor are case sensitive. No you don't
have to remember the exact macro names. With this you can avoid keying mistakes and errors reported by

compiler.

¢ Hints- each macro defined from property, method or event displays context help when you roll over it.

Auto complete function is accessible using short cut Ctrl+SPACE. Only what you have to do is write the
beginning of the macro e.g. %5 and press CtrI+SPACE. Editor will offer the list of macros which starts with %8.

See picture bellow.

E’: byte %'ModuleNamne'%.%Ensble (void)
— {
L0 $CODE_BEGIN
Cul FF Write metkhod implementation here ... */
B for(int i=0; i<%SuplLangsNumltems: i++ 1 |
int dwmy = %3
5 K MAacHo SendBlock e
= CODE END rmethod SendBlock.
= aprnbial SenalMumber T
H macro zet
syrnbal SlowSpeed
syrnbal SupLangs
sprnbal SupLangsh asltemn -

SE (WM

Symbial:

SuplLangs

Property type:list of items {iter is defined in File)

index of last item in the list, number of items in the lisk minus 1
Itermn name: Supparted languages

‘L:E- [292] C:17 Insertk

Figure 5.30 - Editor window

Hot keys
List of hot keys:

e Ctrl+PgUp - go to thefirst line on the screen.
e Ctrl+PgDn - go to the last line on the screen.

+ Home, End, PgUp, PgDn, arrows - cursor movement (Shift marks a block).

e Ctrl+left/right - move cursor to the beginning of the word left/right to the current position.

e Ctrl+Home - go to the beginning of file.
e Ctrl+End - go to the end of file.

e Ctrl+C,Ctrl+Ins- copy.

e Ctrl+V,Shift+lns - paste.

o Ctrl+X,Shift+Dd - cut.

-99 -

User Interface

Ctrl+Del - delete.

Alt+left/right - indent/unindent selected block.

Ctrl+Alt+left/right - indent/unindent macroprocessor inside selected block.
Ctrl+K+I - indent selected block.

Ctrl+K+U - unindent selected block.

Alt+P - search backward for the first similar word like the word at the cursor and replace the word at the
cursor with the found.

Alt+N - search forward for the first similar word like the word at the cursor and replace the word at the
cursor with the found.

5.12. Documentation page

Eu:ummu:unl F'ru:upertiesl Froperty typesl Methu:udsl Eventsl Idzer Types' Eu:unstants' Drivers Documentation

Style of the help Froperties | Methu:udsl Events' Eu:unstanlsl

IEasic j Cormponent hiarne Mame of the component.
List of the HTML files i Ineiited Bitl0

EER TS Fir Inkerited Eitl0

[] Application Mates Symbal

Ewventz

[Histary

b ethiods

Froperties

[] Typical Usage
[] Types and constants

pdate and show |

Edit descriptian |

Freview hint

[+ Auto save help
[+ More detailed help

Figure 5.31 - Properties sub-page

-100 -

User Interface

Eu:ummu:unl F'ru:upertiesl Froperty t_l,lpesl Methu:udsl Eventsl Idzer T_I,Ipes' Eu:unstants' Drivers Documentation |

Style of the help Properties Methods | Events |

I Bazic j Enable
Dizable
Lizt of the HTML files

MGeneral Inkin i
[] Application Mates

Ewvents

[Higtary

b ethods

Properties

[] Typical Usage

[] Types and constants

Methiod hint [Get the state of the butt
Return kint Returmz no value
Lizt of parameters
Butl State of the Button 1 - T
Btz State of the button 2 - T

pdate and show |

Edit dezcrption |
Preview hint

[+ Auto zave help
[More detailed help

Figure 5.32 - Methods sub-page

Description

This page is designed for fast creation of documentation (help) for your components in HTML format,
respectfully of the style of Processor Expert Help.

The Help files describe the properties, user types, methods, and events of the component. The hint associated
with the items - properties, user types, methods or events - defines the content of the items' description.

This page regroups the hints for all the items defined in the Properties, User Types, Methods, and Events pages.
If you edit hints in this page, the changes are immediately reflected on the corresponding hint fields in the
Properties, User Types, Methods or Events page (and vice versa).

Y ou can visualize how the hint will look by placing the mouse over the Preview hint square.

If auto-creation of help is enabled ("Enable auto save help” check box) or if you click on the "Preview" button,
help files (in HTML format) will be created.

Help styles

For each component can be set different style of HTML help. Each style has different list of generated files. The
basic set of these filesis:

e General - genera information about the component, displayed as help for the component in Processor
Expert - Compulsory page.

-101 -

User Interface

« Methods- list of methods and their description (hints) - Compulsory page.

¢ Events- list of eventsand their description (hints)

* Properties- list of properties of the component and their description (hints) - Compulsory page.
e UserTypes- list of user types of the component and their description (hints)

e Typical usage - typical usage of the component (to edit this page select this file and press button Edit
component description)

e History - list of revisions of the component

Y ou can choose predefined style or check/uncheck the desired filein the List of the HTML files. Some of these
are compulsory, you cannot uncheck them (those check boxes are grayed).

Creating own styles

To create you own or customize the styles, please see the chapter 5.12.1 Help styles see here for more
information.

Editing help files

You can edit the file selected in "List of the HTML files" by clicking the "Edit html code" button. Y ou may
also edit this files manually (without the editor), but normally it is not necessary. If you want to edit these files
manually, please don't change the lines marked "DON'T CHANGE THISLINE".

The "General" file includes a description of the component. To avoid editing the whole file, there is a " Edit
component description" check box . The description is then inserted into thefile.

Other settings

If moredetailed Help is checked, the help files contain more details, such as the description of parameters, €tc...
If Enable auto save help is checked, every time you save the component, the Component Wizard regenerates
the help files. Subsequently, manual changes to the help files are lost. The Type of the help files roll down
menu sel ects the template used for the help creation. In thisversion, only the Basic template is available.

Context menu

Using the context menu in the text field area (in the bottom part of these three pages) it's possible change text
formatting or simply paste hypertext references to the component's properties, methods or events in the edited
text.

5.12.1. Help styles

Editing/creating Documentation styles

Description

Every component can have different style of the generated help. Some styles are predefined and other can be
easily created.

Creating/editing and deleting styles is accessible on the Documentation Page in context menu on the combo box
Style of the help or List box List of the HTML files:

-102 -

User Interface

Save as new skyle
Delete skyle
Edit style

« Save as new style - current style - (set files) saves as new style - dialog for creating style appears - see
paragraph Creating/Editing help style

» Delete style - delete current style.
« Edit style - edit current style - you can edit description and the order of the generated files.

Creating/Editing help style

Help style

Style name

|
ar.
I LCancel |
Desgcription

Files order

General [nfo Up
Properties
hdethods

Ewvents Diovin

External links

Kl
Heplace word "Component” by

)L

Figure 5.34 - Creating/Editing help style

Controls:
e Style name - name of the style (There cannot be two styles with the same name)
e Description - notes about the style (optional)

e Filesorder - if you want to change the order of the generated files, select the file and move it up or down
using buttons Up and Down.

< External links - html code for externa links to files or web pages. The links will appear in the left menu
column of the documentation. (e.g. Google)

-103 -

User Interface

5.13. Interface info page

See also

Common page

1-hit Input/Output interface
oo |

Figure 5.35 - Page Picture

Description
Short hint - short description of the interface which is used as hint in Processor Expert

Author - author's name which will appear in the source code header
Version - interface's version number. To indicate a beta version use format 00.9X

-104 -

User Interface

5.14. Methods page

Interface Methods page

See also

* How to create an interface ?
* How to modify an existing interface (add/remove methods)?

* How to apply an interface to a component ?

Interface info Methods | Eventsl Templatesl

List of methods Properties of the selected method :

Sethal |generate code ﬂ BoldH ame Falze
Hirk Set [zet to one] the Input/Oug
|zlnAzzembler Falze
|zlnDrefinitiontd odule Falze
[termlevel IHEASIC
hMode - x|
Publickdethod True
ReadOnly Falze
Reagizter
FeturnHint
ReturnT upe woid
Selected zelfES
Symbal Setval
Walue True
YWizible True

Add Delete] [Add parameter] Delete parameter J
||:uru:u:eu:|ure Sekval;

Figure 5.36 - Page Picture

Description

On this page, you can create the methods of the interface.

The created methods are listed on the left side and properties of the selected method are displayed on the other
side. A method has the following properties :

Hint:

For adding new methods and eventsinto the interface, the best and the fastest way is:

¢ Sdect Interface Templates Page
« Use popup menu on registered template/component and open it in Component Viewer.
e Go back to this (Interface methods or events) page.

» Drag and drop desired methods/events from Component View into the opened interface.

- 105 -

User Interface

If you have difficulties with inheriting see Common problems with inheritance.

Properties of selected method :

¢ Symbol - name of the method (the same name asin the left window)

< Hint - hint displayed in the Processor Expert environment and method description of the help file. See Help
Page.

¢ |IslnAssembler - if the method isimplemented in assembler

« |slnDefinition module - if it isin the definition module (when the method is not public)

e PublicMethod - if the included method is public

¢ ReadOnly - if the method isin Processor Expert read only, i.e. the Value cannot be changed (generate code
or don't generate code)

¢ ReturnHint - hint for the return type, displayed in the Processor Expert environment (default value you may
set in Options - Default val ues page)

* ReturnType - type of the returned value. (void means that the method has no return value) (default value
you may set in Options - Default val ues page)

e Selected - generation source code into the driver (in Processor Expert Code design). There are four
possibilities:
» selYES - Method will be generated, it can be changed in Processor Expert (sets ReadOnly to false and
Valueto true)

= selNO - Method will not be generated, it can be changed in Processor Expert (sets ReadOnly to false and
Valueto false)

= selNEVER - Method will not be generated, it cannot be changed in Processor Expert (sets ReadOnly to
true and Valueto false)

= selALWAYS - Method will not generated, it cannot be changed in Processor Expert (sets ReadOnly to
true and Valueto true)

¢ Mode- There are seven values:

= ALWAYS REQUIRED - ALWAY S REQUIRED - Method/event must be in the ancestor and is always
generated.

= REQUIRED_IF_EXIST - REQUIRED IF EXIST - Method/event is generated if it existsin the ancestor.

= OPTIONAL_MUST_EXIST - OPTIONALLY REQUIRED, BUT MUST EXIST - Method/event must
exist in descendant, it may not be set for generating (code design), but it can be changed in the CHG file
of the descendant component. See 5.11.4 CHG file for details.

Remark: The method cannot be published, i.e. - feature M ethodScope cannot be mePUBLISHED.

= OPTIONAL_IF_EXIST - OPTIONALLY REQUIRED, MAY NOT EXIST - Method/event may not
exist, but if it exists it may not be set for generating (code design), but it can be changed in the CHG file
of the descendant. See 5.11.4 CHG file for details.

Remark: The method cannot be published, i.e. - feature M ethodScope cannot be mePUBLISHED.

« OWNER_MUST_EXIST - MAY NOT EXIST, GENERATE IF OWNER - Method/event may not
exist, if exists it will be generated if will be generated method/event with the same name in the
descendant.

= OWNER_IF_EXIST - MUST EXIST, GENERATE IF OWNER - Method/event must exist, it will be
generated only if descendant has method/event with the same name.

- 106 -

User Interface

» SAME_AS OWNER - The method may not exist in ancestor component and is generated if it is
required in descendant component and ancestor component can generate it. The settings of descendant
component method is updated automatically.

= UNDEFINED - Reserved
* MethodScope - scope of the method - the visibility and reimplementation of the method.
* PRIVATE - the method is implemented in an ancestor and descendant can call it. This method is not
visible in the descendant (in the page Methods).

= PUBLISHED - the method is implemented in an ancestor. It is aso visible in the descendant (the same
like if it was method of the descendant), but is read only, i.e. you cannot change its name, parameters,
etc. The descendant generates only macro which calls the ancestor.

= OVERRIDE - combination of previous two ones, i.e. method is implemented in an ancestor but
descendant overrides this implementation.

 all other method properties which are not described here, are described in the chapter |or0perti es feaIure#.

Properties of each parameter :

« Name - name of the parameter displayed and used in Processor Expert

* Type- type of the parameter (selected from the list)

¢ Passing - how the parameter is passed to the method

e Hint - hint for the parameter displayed in the Processor expert environment

Y ou can use the buttons to add and to del ete methods/parameters.

It is also possible here to use the drag and drop facilities of the View Component utility.

If you have filled the driver and language sections of the Drivers page, Component Wizard can automatically
find a method in the driver by right clicking on the method (in the left window). A context menu appears, where
you can select either the definition, implementation or the help part of the selected driver and language. Using
double-click (left mouse button), you may automatically go to the implementation part of the selected driver.
Before editing drivers, you have to save the component (Y ou can check the Autosave check box in the Drivers

page).

5.15. Events page

See also

* How to create an interface ?
* How to modify an existing interface (add/remove methods)?

* How to apply an interface to a component ?

-107 -

User Interface

Interface info | Methodz EVEHtSlTempIatesI

List of events Properties of the zelected event :
-Oninterrupt ﬂ Boldi ame True
Event procedure name HazPriority Falze
Hirt
|zl ndyezembler Falze
[temlevel itB&SIC
Mode o e R [
ReadOnly Falze
Selected zelES
Symbol Onlnterrupk
W alue True
Visible True
Add Delete] [Add parameter Delete pararneter J

|pr|:|cedure onlnkerrupt;

Figure 5.37 - Page Picture

Description

On this page, you can create the events of the interface.

The created events are listed on the left side and properties of the selected event are displayed on the other side.

An event has the following properties :

Hint:

For adding new methods and eventsinto the interface, the best and the fastest way is:

» Sdlect Interface Templates Page

e Use popup menu on registered template/component and open it in Component Viewer.

* Go back to this (Interface methods or events) page.

» Drag and drop desired methods/events from Component View into the opened interface.

If you have difficulties with inheriting see Common problems with inheritance.

Properties of selected event :

e Symbol - name of the event (the same name as in the left window)

e HasPriority - if the event has priority. If true, event has subitem Priority (in the left window)

« Hint - hint displayed in the Processor Expert environment and event description of the help file. See Help

Page.
¢ |IslnAssembler- if the event isimplemented in assembler

* ReadOnly - if the event isin Processor Expert read only, ie. the Value cannot be changed (generate code or

-108 -

User Interface

don't generate code)

Selected - generation source code into the driver (in Processor Expert Code design). There are four
possibilities:

selYES - Event will be generated, it can be changed in Processor Expert (sets ReadOnly to false and
Valueto true)

selNO - Event will not be generated, it can be changed in Processor Expert (sets ReadOnly to false and
Valuetofase)

selNEVER - Event will not be generated, it cannot be changed in Processor Expert (sets ReadOnly to
true and Vaueto false)

sel ALWAYS - Event will not generated, it cannot be changed in Processor Expert (sets ReadOnly to true
and Value to true)

M ode - There are seven values:

ALWAYS REQUIRED - ALWAY S REQUIRED - Method/event must be in the ancestor and is always
generated.

REQUIRED _IF_EXIST - REQUIRED IF EXIST - Method/event is generated if it existsin the ancestor.

OPTIONAL_MUST_EXIST - OPTIONALLY REQUIRED, BUT MUST EXIST - Method/event must
exist in descendant, it may not be set for generating (code design), but it can be changed in the CHG file
of the descendant. See 5.11.4 CHG file for details.

Remark: The method cannot be published, i.e. - feature MethodScope cannot be mePUBLISHED.
OPTIONAL_IF_EXIST - OPTIONALLY REQUIRED, MAY NOT EXIST - Method/event may not
exist, but if it exists it may not be set for generating (code design), but it can be changed in the CHG file
of the descendant. See 5.11.4 CHG file for details.

Remark: The method cannot be published, i.e. - feature MethodScope cannot be mePUBLISHED.
OWNER_MUST_EXIST - MAY NOT EXIST, GENERATE IF OWNER - Method/event may not

exist, if exists it will be generated if will be generated method/event with the same name in the
descendant.

OWNER_IF_EXIST - MUST EXIST, GENERATE IF OWNER - Method/event must exist, it will be
generated only if descendant has method/event with the same name.

SAME_AS OWNER - The event may not exist in ancestor component and is generated if it is required
in descendant component and ancestor component can generate it. The settings of descendant component
event is updated automatically.

UNDEFINED - Reserved

EventScope - scope of the event - the visibility and reimplementation of the event.

PRIVATE - the event is called from ancestor and descendant must handle it. Event is not visible in the
descendant (in the page Events).

PUBLISHED - the event is called from ancestor and descendant must handle it. It is aso visible in the
descendant (the same like if it was event of the descendant), but is read only, i.e. you cannot change its
name, parameters, etc. Setting event ih the decendant automaticaly sets event in the ancestor and vice
versa

OVERRIDE - the event is called from ancestor and handled in descendant and he can call this event
again (to its descendant). It is also visible in the descendant (the same like if it was event of the
descendant), but is read only, i.e. you cannot change its name, parameters, etc.

al other event properties which are not described here, are described in properties featured,

- 109 -

User Interface

Properties of each parameter :

« Name - name of the parameter displayed and used in Processor Expert
« Type- type of the parameter (selected from the list)

e Passing - type of passing parameter to the method

e Hint - hint for the parameter displayed in the Processor expert environment and parameter description in
help files. See Help Page.

Y ou can use the buttons to add and del ete events/parameters.

It isalso possible here to use the drag and drop facilities of the VView Component utility.

If you have filled the driver and language sections of the Drivers page, Component Wizard can automatically
find aevent in the driver by right clicking on the event (in the left window). Y ou can select either the definition,
implementation or the help part of the selected driver and language. Using double-click (left mouse button), you
may automatically go to the implementation part of the selected driver. Before editing driver, you have to save
the component (Y ou can check the Autosave check box in the Drivers page).

5.16. Templates page

Interface infu:ul Methu:u:lsl Eventz Templates I

List of registered templates/components : List of templates/components you can register :
& Tem E
@' TimeD ate

@ Timnerlnt

@ TimerJut

S @ Twiokeys

& UsE

& USEHLE

@ WwhatchDog j

(B8

Status of adding template: and checking templates with method: and events

Clear log | Checking interface. ...
- Checked O.K.

Figure 5.38 - Page Picture

-110 -

User Interface

Description

In the upper part of the tab, there are two windows containing a list of accessible templates and all components.
The left list is the list of templates and components, that the interface contains. The right list is the list of all
possible templates and components you can add (register). Before adding a template or a component, the
Component Wizard checks automatically, whether the template or component can be used in the interface. If it
can be used, it is added, otherwise it is not added and some explanations are displayed in the lower window.

The Check button is used for checking if the interface is correctly created.

In order to be valid, the methods of the interface should be common to all the templates of the interface.

Context menus

It is possible to use context menus for the manipulation of the registered templates’components. Clicking the
right mouse button opens the context menu for working with selected template:

Set as default
Cpen template
Open source bean in Bean Wiewer

M eaning of the menu items:

o Set asdefault - set selected template/component as the default template/component

* Open template - opens the selected template in Component Wizard. If the interface is not saved, dialog for
saving appears.

« Open source component in Component Viewer - opens the registered component in Component Viewer
e.g. for drag and drop methods and events into the interface.

-111-

Component Viewer

6. Component Viewer

Component Viewer - drag&drop properties, methods or events to
your component

Description

The Component Viewer is designed for viewing existing components. It displays the properties, methods and
events of the component. It provides the possibility to drag and drop these properties, methods and events into
the Component Wizard environment, where it is allowed.

Note 1: To drag and drop switch to desired page in both - Component Viewer and Component Wizard. E.g. to
drag and drop methods switch to the page Methods in the Component Viewer and to the page Methods in the
main window of Component Wizard.

Note 2: In Basic Component Wizard some properties, methods or events couldn't be possible to drag and drop
because not al properties are available in this version e.g. if you view component supplied with Processor
Expert.

=
File Edit Help
Properties I Methods I Events I
Bean name
Fin for [/0 él
Fin zignal
Pull reziztor autozelected pull
Open drain no open drain
Reduced diive
Direction Input/Output
-Initialization
Imit. direction Cutput
i, walue 1]
S afe mode yes
Optimization for zpeed

Figure 6.1 - View utility Picture

Main Menu
File:

e Load component - loads existing component from disk into this viewer.

Edit :
e Copy all properties - copies al properties into Component Wizard properties page and erases al existing
properties in Component Wizard's properties. A dialog box will request confirmation.

e Copy all methods - copies al methods into Component Wizard methods page and erases all existing
methods in Component Wizard's methods. A dialog box will request confirmation.

* Copy all events - copies al events into Component Wizard events page and erases all existing events in
Component Wizard's events. A dialog box will request confirmation.

Help:

-112 -

Component Viewer

e Help - Displaysthis page.

-113 -

Tutorial Courses

7. Tutorial Courses

List of tutorial courses

See also

Component Wizard Introduction

Tutorial courses

List of tutorial courses

How to create my first component - two-digit 8-segment LED display
Usage of basic properties - ready to use example

Usage of Inheritance Wizard for inheritance

A 0w D P

Usage of inheritance without Inheritance Wizard

7.1. Tutorial, Course 1

My First Component, two-digit 8-segment LED display

Contents

In this course you will create a ssmple two-digit 8-segment LED display component without inheritance. You
will learn step-by-step:

* how to edit general component information (Common page)
« how to design properties and methods of the component

« how to create and edit driver of the component

e how to create HTML help

The course is divided into the following steps:

Definition of Component Function
Component Creation

Design of Properties

Design of Methods

Creating driver

Editing driver

Generating help

© N o gk w NP

Component Installation

-114 -

Tutorial Courses

Example Ready to use

Y ou can see complete example of the software component BWcoursel S2D with driver prepared in accordance
with this course.
This component is not installed in the Processor Expert.

Links

First step >> | List of Tutorial Courses | Component Wizard Introduction

7.1.1. Tutorial, Course 1, Step 1: Specification of Component Function
Simple two-digit 8-segment LED display

Contents

Definition of component function - two-digit 8-segment display

Description

This component shall encapsulate simple two-digit 8-segment LED display. The display is connected to the
external bus of the CPU and chip-select of the display isimplemented in the external hardware. The display has
only one 16- bit control register accessible using external bus. This register holds information which segments of
the display are light on. The address of control register will be set up in the component properties. Also
initialization value of the control register will be set as a component's property.

Component will have one method to change the display contents and no events. Help for the component will be
generated automatically by Component Wizard.

Links

Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard Introduction

7.1.2. Tutorial, Course 1, Step 2 - Component Creation

Component Wizard - New component, Common page

Contents

In this step you can learn how to ...

e Start up Component Wizard

e Create anew component

 Fill up the basic information about the component
e Savethe component to the disk

-115-

Tutorial Courses

Description

Any inherited component will be not needed for accessing the hardware. The access of the display control
register will be written directly in ANSI-C language inside component driver.

1. Run Component Wizard from Windows "Start" menu (if you are using standalone version) or using
CodeWarrior menu command Processor Expert - Tools - Component Wizard . Select Component
Wizard in the introductory dialog (do not use Inheritance Wizard because you do not need inheritance in
this example).

Choose File | New | Component from Component Wizard main menu.

Select Conmon page in the Component Wizard workspace

Fill in following items:

= Short hint - simple component description, Two- di git 8- segnent di spl ay

= Author - your name

= Version - version of the component, 01. 000

= Shortcut - short component name (max. 4 characters), S2D

= If you have aicon of the new component (16x16 pixels, BMP format, 16 colors), you can specify the
file name.

5. Choose File - Save from Component Wizard main menu to save the component to the disk. Write file
name of the component: S2D. File name is always the same as the component name. Choose 'no’ on
question dialog 'Do you want to create a software driver?. If you successfully save the component, the
new component name appears in the Component Wizard window title.

Cormmaor | F'ru:upertiesl Property t_l,lpesl Methu:udsl Eventsl Izer T_l,lpesl Eunstantsl Driversl Documentation

Short hint Copyright

ITW.;...jigit 8-zegment display [z] Copyright < compary/user-names:, 2010 ;l
http ;v <companys . com
Author mal : infof@< company: . com

I.-’-'«uthor

Yerzion Shortcut
|EI1 IEIEIEI |S2D
lcon 16x16

I@Default izoh j Open ... | Default | LI

Component category

|5W-LI zer Components Change |

[~ DOne instance of component in PE project only

Mezzage

Component’s level

[

Figure 7.1 - Content of the Common page

-116 -

Tutorial Courses

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

7.1.3. Tutorial, Course 1, Step 3 - Design of Properties

Tutorial, Course 1, Step 3 - Design of Properties

Contents

Design of component's properties

Description
The new display component shall have the following properties:

« Component name - this is the default property and can not be changed or removed. It must be present in
every component.
e Address of display control register

« Display initialization value

To define these properties follow the steps:
1. Select Properties page in the component workspace. There is an aready defined the default
property - Component name. This property can not be modified or removed.

2. Pressbutton Add down to add new property. The dialog box with list of al available types appears.
Choose requested type of the new property.
Select the type Addressin CPU address space.

3. You can change features of this property in the right side of the Component Wizard workspace.

Select Advanced in the drop-down list in the right-bottom corner of the Component Wizard workspace to
see the optional features needed in following steps.

Fill in the following features:

= FixedSze - size of addressrange, write 2 (because of 16-bit width control register)
= [temName - name of the property, writethevalue Address of control register

= Symbol - name of macro with value of the property, this macro you can use in the component driver,
value: ADDR. See description of macroprocessor for details.

= Hint - description of the property, Address of display control register in
ext ernal CPU address space

= ValueRadix - select the 16, default value will be displayed as hexadecimal number.

= AddrType - type of the address. Unfold the group by clicking the '+' and type the value True for flags
addr EXTERNAL and addrALLOCATE.

This property will required address from external address space of the CPU, 2 byte width. Address range
will be protected from usage by other components.

Presstheicon Integer number - signed (@) to add a new property of the type 'signed integer number'.

Fill in the following features:

-117 -

Tutorial Courses

= [temName-Initialization val ue

« Symbol-INI T

= Hint-lInitialization value of the display control

= EnabledRadix - set flags: radix2, radix10, radix16 to True
= MaxValue - H: FFFF (H introduces hexadecimal number)

= ValueRadix- 16

6. Other features should stay without any change.

register

Common Properties |F'ru:u|:uert_l,l t_l,lpes' Melhndsl Eventsl | zer T_I,Ipesl Ennstantsl Driversl Diocumentation

List of properties:

Features of the zelected property :

Froperty hame: |Integer number - zsigned
s BOL B < Hint I | walue of the dizpl trol regist
1— 1= — It h value of the display control register
k2 i= | 02 Itembt ame Initialization walue
Component name Miri/ aluie 0
&dress of control register |0 H|E= =ymbol INIT
Irililization vale 0000 n| | Yalue 0
+E nabledR adix
[temlevel BASIC |
b 2 alue E5535
ReadOnly Falze d
" alueF adix 16 |
Add Up Add Down Add e Group Delete Search Restore groups | I.ﬁ.dvanced "I
Figure 7.2 - Properties page after adding the properties
Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard

Introduction

-118 -

Tutorial Courses

7.1.4. Tutorial, Course 1, Step 4 - Design of Methods

Design of Component's Methods

Contents

Design of the component's methods. The method will allow the user to control the operation during runtime.

Description

The component will be controlled by one method. This method (DisplayValue) will set the display content using
adirect write to the display control register. The methods will have one parameter - a 16-bit value for the control
register.

To define the method, follow these steps:

Select the page Met hods in the Component Wizard workspace
Click on the button Add to add a new method to the component
Enable detailed options by checking the Details check-box.

Set up the following method's properties:

A w0 DR

= Symbol - Di spl ayVal ue

= Hint-Di spl ays val ue on the LED displ ay
= ReturnType-voi d

* ReturnHint - Ret urns no val ue

Click on the button Add par anet er to add a new parameter to the selected method
Set up the following parameter's features:

= Name- Val ue

= Type-16-bit unsigned

= Passing - Val ue

= Hint-Val ue to display

-119 -

Tutorial Courses

Cammon F'rupertiesl Froperty types Methods | Eventsl Ilzer Types Eunstantsl Driversl Documentatiunl

List of methods

Properties of the selected method :

[+ Details

Dizplay alue

Add

|generate code

Delete

3]

Hint izplays value on the LED di
lzlndzzembler Falze 1|
| zInD efinitionkd oduls Tiue |
ItemLevel BASIC ~|
kethod_MHame Dizplay alue
Publich ethod True R
Feadlnly Falze |
ReturnHint Returns no value e
ReturnT ype wiaid |
Selected YES | -
-Parameter

I ame W alue

Type 16bit unzigned -

Pazzing W alue -

Hint Walue to dizplay

Reaister

zer AMSIC declaration

Add parameter

[elete parameter

|'u'nid DisplayValue{word Yalue)

Links

Figure 7.3 - Methods tab after adding the method

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard

Introduction

7.1.5. Tutorial, Course 1, Step 5 - Creating Driver

Creating Component's Driver

Contents

Creationg a simple component driver.

Description

The component is now prepared for the creation of the driver. Component driver is the source file/script from

which is generated:

« interface of all generated component methods (header file)

* implementation of all component methods (implementation file)

e part of CPU initialization (optionally)

e part of project text help file

« interface and implementation of all component events

Please follow these steps:

Tutorial Courses

1. SedecttheDri ver s page on the Component Wizard workspace and click on the button Add dri ver.
Note: software component can have only one driver (in the directory Processor Expert\Driver S\SM).

2. The Add language section dialog pops up. Specify language and compiler of the new section: language =
ANSI - C, compiler = any. Click OK, skip the Revision update and the section is prepared for editing and
writing the implementations of component's methods.

Eu:ummu:unl F'rupertiesl Property t_l,lpesl Methodsl Eventsl | zer T_l,lpesl Constants Drivers Documentatiunl

Lizt of drivers for component

Addidriver | Create Test files | Dielete driver |

Edit tezt file | Repair driversl Diriveer info |

[¥ Software component

Language section for selected driver: [+ Auto save component before edit

Language="aMSIC'ECompiler="4ny’ -

- [BF EdtTeT
= Documentation LI

HE e

Add zection | Delete zection | Edit selected itern |

Figure 7.4 - Drivers page after adding a driver

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

-121 -

Tutorial Courses

7.1.6. Tutorial, Course 1, Step 6 - Editing Driver

Editing Component's Driver

Contents

How to edit the component's driver

Description

The component's driver can be modified in Component Wizard internal editor. Y ou can edit implementation of
one method or whole section of one language/compiler.

The section with empty method skeletons was generated by Component Wizard. The following parts shall be
edited only:

e Implementation of method DisplayValue
« Initialization of the component

Steps

1. Select the item Edit code of a method/event in the bottom-right part of the window and click the button
Edit selected item. A dialog with the driver part selection appear.

2. Select the method DisplayValue method and click the Edit button. The skeleton of the DisplayValue
method's code will be displayed in the internal code editor.

3. Fill inthe implementation of method DisplayValue: (added code is displayed as abold.)

voi d % Modul eNane' _Di spl ayVal ue(word Val ue)

{
(*(word*) %th% ADDR UL) = Val ue;

}

where

= % ADDR isvaue of Address property of the component. The value is represented as a value of a
macro named as a feature Symbol of property.

= O8th isanumbersformatting directive. User can choose formatting of numbersin Processor Expert.

= UL isCdirectivefor integer numbers, it definesthat number is unsigned long.

= (word*) istypecasttothe pointer to word.

* Val ue isparameter of the method.

The method writes the value to the display control register (at address specified in the component
properties).

Select File - Save to save file and close the window.
Click the button Edit selected item again.
Select the part Driver parts/ Initialization and click the Edit button.

N o o &

Write the implementation line of component initialization at the place marked by comment /* Write code
here ... */:

(*(wor d*) %¢th% ADDR UL) = 9% NI T;

-122 -

Tutorial Courses

where

= % N T isinitidization value of control register specified in the component properties.
The initialization value is written to the display control register in the component initialization.

Close the editor window and confirm the question 'Accept changes ? by selecting Y es.

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

7.1.7. Tutorial, Course 1, Step 7 - Generating Help

Generating Documentation For the Component

Description

The html documentation can be automatically generated from the Component Wizard. Help files contain &l
information about the component created in previous steps.
The documentation has usually four pages:

e General info - general component information, description of component function.
« Properties - description of al properties.

¢ Methods- list of al methods.

e Events- list of al events.

Description of properties, methods and events is generated from the hints. Besides that, the user should briefly
describe on the General Info page how the component works and how it's intended to be used.

Steps

Select page Docunent at i on on the Component Wizard workspace

Select Style of the help: Basi c.

Check options: More detailed help and Auto save help.

Select the General info from thelist of HTML files

ClickonEdit descri pti on button to edit the component description in the General Info pages.
Write the text file in the editor.

Close theinternal editor and click on Updat e and show button

© N o gk w NP

Generated help file will be opened in default html viewer

-123 -

Tutorial Courses

I:u:ummu:unl F'ru:upertiesl Property t_l,lpesl Methu:u:lsl Eventsl zer Typesl Ennstantsl Drivers Documentation

Style of the help Froperties | Methodsl Eventsl Eu:unstantsl

IBaSic j Camponent name Marme aof the companent.

List of the HTML files .i'u?lr_es_x u:u_f control register .i'u?lr_es_x u:u_f dizplay control rgglster in s
Initialization value Initialization walue of the dizplay cont

[] Application Naotes
Events

[] Higtary

Methods

Properties

[] Typical Uzage

[] Twpes and constants

Ipdate and show |

Edit dezcription |

Preview hint

[+ Auto save help
[+ More detailed help

Figure 7.5 - Picture of the help page

<< Previous step | Last step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

7.1.8. Tutorial, Course 1, Last Step - Installing Component

A new Component in Processor Expert

Contents

Where to find the new component in Processor Expert.

Description
The new component is prepared for usage in Processor Expert. It appears in the component selector window.

The component can be used for code generation in Processor Expert. It supports languages (and compilers)
specified inthe page Dr i ver s.

Do not forget to save the last component state before switching to Processor Expert.

124 -

Tutorial Courses

'-._-_'"-Eumpunents Library -0l x|
Categories | On-Chip Prph | Alphabet .&ssistant' Cluick help »

P
(= CPU Estemal Devices
= CPU Internal Peripherals
B 2 G
(= Communication
(= Data
(= Operating Systern
(= Tutorials And Demonstrations
=== User Components

@ s

Two-digit 8-zegment dizplay
Dauble click ta insert the component inko current project.

Figure 7.6 - The created component in Processor Expert

<< Previous step | Contents of This Course | List of Tutorial Courses | Component Wizard Introduction

7.2. Tutorial, Course 2

Course 2 - Usage of basic properties

Contents

In this course you will learn:

how to use macros defined from the properties

how to create component settings file

how to use comment and output text formatting, macr o %N
how to use conditional translation, macros% f def, % f ndef

Description

There is ready-to-use example BasicProperties component. This component contains all properties supported in
Basic version of Component Wizard. Open the Basic Properties component in Component Wizard.

The component-settings file contains most of macros generated from the properties. To see its content, select
Driver page tab and select Documentation / Settings in the tree in bottom-right part of the window. Then click on
the Edit selected item button.

You can see also CHG fileand TST file of this component.

-125-

Tutorial Courses

Contents of the Component Settings file

This file is included into Component driver several times. The text from this file is generated as a comment to
component header file, component implementation file and project text help file.

% Address in CPU address space

% **%12Address in CPU address space

% **%-17Addr ess%40: %*th%ADDR

% **%17Address i s external %40: %ADDR _Ext er nal
% **%17Address is internal %40: %A\DDR | nter nal
% **%17Address is in RAM&40: %ADDR _RAM

% **%17Address is in ROWF40: %ADDR ROM

% **%17Address is in FLASH%40: %ADDR_FLASH

% **%17Address is in EEPROW&40: %ADDR _EEPROM
%

% Bool ean group

% f ndef BOOLGROUP

% **9%12Bool ean group%40: macro is not defined
%l if BOOLGROUP="'

% **9%12Bool ean group%40: macro is defined

%l se

% **9%12Bool ean group%40: %BOOLGROUP

%endi f

%

% Bool ean yes/ no

% f ndef BOOL

% **9%12Bool ean yes/ no%40: nmacro is not defined
%lif BOOL=""

% **9%12Bool ean yes/ no%40: macro is defined
%l se

% **9%12Bool ean yes/ no%40: %BOOL

%endi f

%

% Dat e

% **%12Dat e:

% **9%17Day%40: YOATEDay

% **%17Mont h%40: YOATEMont h

% **9%17Mont h | ong%40: %OATENMONt hLong

% **9%17Mont h short %40: Y%OATEMont hShort

% **%17Year %40: YDOATEYear

% **9%17Day of week%40: YDOATEDayf Week

% **%17Day of week | ong%40:. YOATEDayOf WeekLong
% **%17Day of week short%40: YATEDayOf WeekShort
%

% Directory

% **%12Di rectory:

% **9%171 nput val ue%40: "%l R’

% **%17Absol ute path\%40: "% R "

% **%17Absol ute path%40: "% R__"

-126 -

Tutorial Courses

%

% Enunerati on (col or)

% ** 9% 12Enuner ati on%40: %ENUM

%

% External bitmap file

% **9%12External bitmap file

% ** %171 nput 9%»40: %8Bl TMAP

% **%17Ext ensi on%40: 98I TMAPFi | eExt

% **%17Fi | e nane%40: % Bl TMAPFi | eNane
% **%17Absolute fil e¥%40: 9Bl TMAPFi | ePat h
% **9%17Short pat h%40: % Bl TMAPShort Pat h
% **%17Hei ght %40: %8I TMAPHei ght

% **9%17W dt h9e40: 9Bl TMAPW dt h

% **%17Si ze%>40: 9Bl TMAPSI ze

%

% External file

% **%12External file

% **9%171 nput %40: %I LE

% **9%17Ext ensi on%40: %-| LEFi | eExt

% **%17Nane%40: %l LEFi | eNane

% **%17Absol ute fil e%40: %l LEFi | ePath
% **9%17Absol ute short%40: 9%l LEShort Path
%

% Group of itens

% **%12G oup of itens%40: no macros

%

% | nteger - signed

% ** %12l nteger - signed%40: % NT

%

% | nt eger - unsigned

% **9%12i nt eger - unsi gned%40: %AORD

%

% List of itens

% **%12Li st of itens

% **%17Nunber of itenms%40: % STNumnl tens
% **%17Maxi mal i ndex%40: %. STMaxl|tem
%or i from[O..%.ISTMaxlten

% **%17Real % %40: YREAL%

%endf or

%

% String

% **%12Stri ng¥%40: %STRI NG

%

% String |ist

% **9%12String |ist

% **9%17Nunber of |ines%40: %STRLI STLi nes
%

% Ti ne

% **9%12Ti ne

-127 -

Tutorial Courses

% **9%17Hour %40: 9%l MEHour

% **%17M n%40: %1 MEM n

% **%17Sec%40: %Il MESec

%

% Speed nodes

% **%12Speed nopdes

% **9%17Nunber of speed npdes%40:. % unSpeedModeNum
% **%17H gh speed node%40: % unHi ghSpeed

% **9%17Low speed node%40: % unLowSpeed

% **9%17Sl ow speed node%40: % unSl eep

Links

List of Tutorial Courses | Component Wizard Introduction

7.3. Tutorial, Course 3

Course 3 - My first component with inheritance - keyboard

Description

There is description of creation of simple component with inheritance (using Inheritance Wizard) in this course.
The new component is keyboard with two keys.

The creation is donein following steps:
1. Definition of Component Function
Component Creation
Selection of the component for inheriting
Interface creation
Template settings
Inheriting cycle
Inheriting again
Configuring template

© © N o 0k~ W DN

Design of methods

H
©

Design of events

'_\
=

Code writing

'_\
N

Generating help, Installing component

-128 -

Tutorial Courses

Example Ready to use

Y ou can see complete example of the software component TwoKeys with driver prepared in accordance with this
course.

Links

First step >> | List of Tutorial Courses | Component Wizard Introduction

7.3.1. Tutorial, Course 3, Step 1: Specification of Component Function

Simple two-key keyboard

Contents

Definition of component function - two-key keyboard

Description

This component should encapsulate simple two-key keyboard. The keyboard is connected to the 2 input pins and
to one external interrupt which informs about the key press. The information which key is pressed is read from
two pins.

For connecting the keyboard to the CPU we will use two types of components:

« BitlO - This component implements a one-bit input/output. It uses one bit/pin of a port

< Extint - This component implements an external interrupt. The interrupt is caused by a signal level/edge on a
pin.

Component will have three methods for enable and disable the keyboard event and one method for reading status

of the keys, and one event occuring when some key is pressed. The simple schema follows:

Bution 1 Pin 1

1
—

Button 2 —\ clot pj

1
—O Pin2

Help for the component will be generated automatically by Component Wizard.

P
|

-129 -

Tutorial Courses

Links

Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard Introduction

7.3.2. Tutorial, Course 3, Step 2 - Component Creation

Tutorial, Course 3, Step 2 - Component Creation

Contents

In this step you can learn how to ...

e Start up Component Wizard
¢ Create anew component with Inheritance Wizard
¢ Fill up the basic information about the component - name of the component

Description

The component will inherit another component for that will provide a user-configurable CPU-independent
accessto a hardware.

1. Run Component Wizard and select the Inheritance Wizard from startup menu. If the startup menu is turned
off or the Component Wizard is aready running, select File | New | Component using Inheritance
Wizard from main menu.

¥ “Inheritance Wizard] =10 x|

Wizard steps

Enter the name of the new component. Under this
name the component will be available in the

Component information Component zelector of Proceszor Expert [must be an

Select component identifier)

Inheritance type |TW':'KEP3

Interface definition

Template definition Enter the description of the new

component [can be changed later]

bultiple inheritance -
H Two keys simple keyboard componert|

kModifications
Finish

Wwelcome in the Compaonent creator

Brevious <% et = Einigh Help |

2. Fill theitem Enter the name of the new component - enter the name of the new component - TwoK eys.
(Note: If the edit lineis empty or some component of this name exists, the button Next is disabled.)

3. Fill the description of the component: Two keys simple keyboard component.

-130 -

Tutorial Courses

4. Click button Next for next page.

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

7.3.3. Tutorial, Course 3, Step 3 - Inherited component selection

Tutorial, Course 3, Step 3 - selection of the inherited component

Contents

Inheriting components.

Description

Now we are ready to inherit three components - two input pins and one external interrupt. Let's start with the
first input pin for Button 1.

Select the component Bitl O

Fill up the Description for the inherited component - enter the name for the first button (e.g. First
button).

Fill up the Identifier for the inherited component - enter Buttonl - this name will be used as symbol
which we will use in driver (calling inherited methods).

Click button Next for the Inheritance type page.
Select Exclusive usage of component methods and event.

Click button Next for next page.
Answer 'NO' on the question/message There are methods or events that exists only for specific CPUs.
Include theminto the interface ?. We won't need such methods or events.

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

7.3.4. Tutorial, Course 3, Step 4 - Interface Creation

Tutorial, Course 3, Step 4 - interface creation

Contents

In this step you can learn how to ...

« Definetheinterface (specify thelist of inherited methods and events).

-131-

Tutorial Courses

Description

Now we have selected the component we are inheriting from. We have to specify methods and events of
inherited component we want to use in our new component. We will use only one method GetVal for reading

the state of the button.

1. Select the method GetVal

* “Inheritance Wizard

Wizard steps
Component information
Select component
Inheritance type
Interface definition
Template definition
bultiple inheritance
bodifications
Finish

=@ BitlD - First Buttan
----- = M GetDir

----- =M SetDi

----- = H Setinput

----- HH Setval
----- = H Wegval

Mow you have to specify which methods and events you want bo inhent. Y'ou may inherit therm all or you can chooze which
you want and which nat. [n the left tree pou can use popup menu or short-cuts [zee popup menu for all shaort-cutz).

Presious << Mewt =

Eirigky

_iol x|
Details far selected object [method/event]
-Inherite nes
Scope Private -
Mode ALWAYS REQUIREL =
FRead only no
Legend
. Private method/event [use only)
& Overide method/event [redefine behaviour)
M Published method/event [propagate)
Help |

2. Keep other setting in default state and click the button Next to go to the next page.

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard

Introduction

-132-

Tutorial Courses

7.3.5. Tutorial, Course 3, Step 5 - Template Creation

Tutorial, Course 3, Step 5 - template settings

Contents
In this step you can learn how to ...

¢ Select template options.

Description

Now we have defined the interface for which we will later create and set the template for inherited component.
The template allows to pre-configure state of properties, methods or events of the inherited component.

1. Select Createtemplate option.
2. Click button Next for next page.

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

7.3.6. Tutorial, Course 3, Step 6 - Inheriting cycle

Tutorial, Course 3, Step 6 - inheriting cycle

Contents
In this step you can learn how to ...

 Inherit other required components

Description
We have finished inheriting of one component. Now there are the next two components to inherit.
1. Wewill repeat the inheritance cycle - choose radio button Inherit another component.
Click button Next for next page.

2. Now we areinheriting I/O pin for Button 2. Thisis the same like in Step 3, except the name of the second
inherited component.
Choose the component Bitl O again

Fill in the Button2 asidentifier of the inherited component and fill in its description (e.g. " Second button”).
Click next to go to Inheritance type selection page.

Because the buttons will be identical, we will use the interface already created for the Buttonl.
Select Existing inter face usage mode and click on the Next button.

Answer No on the 'There are methods... for specific CPU. Include them into the interface question.
Select TwoK eys\Buttonl interface from the list of all suitable interfaces. Click the Next button.

-133-

Tutorial Courses

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

7.3.7. Tutorial, Course 3, Step 7 - Inheriting again

Tutorial, Course 3, Step 7 - inherited third component - external
interrupt

Contents

Inheriting another different component.

Description

We have finished with inheriting of two button components. The last inherited component will implement an
interrupt from the keyboard. For this purposes we can use the component External interrupt . For this
component we will create a new interface/template. From the component External interrupt we will use all
methods and events which it offers (Enable, Disable, GetVal, Oninterrupt).

1. Select radio button I nherit another component.
Click button Next for next page.

2. Select the component Extlnt.
Fill the description of the component: Keyboar d interrupt and write I nterruptPin asidentifier.
Click button Next for next page.

3. Select Exclusive usage of component methods and events.
Click button Next for next page.

Answer 'No' to the question about CPU specific methods and events.

Enable all methods and events by double-clicking on them. Then click the Next buton.
Select Create template (...) option in Templace definition step.

Select Continue without another multipleinheritance... and click on the Next button.

© N o 0 &

Click on the Finish button. Now the component is ready and we are back in Component Wizard main
window.

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

-134 -

Tutorial Courses

7.3.8. Tutorial, Course 3, Step 8 - Configuring component template

Tutorial, Course 3, Step 8 - configuring the templates

Contents

Configuring the automatically created templates to match our needs.

Description

We have created the component that inherits three components - two ButlO and one Extlnt. There were
automatically created the templates for each interface (Buttonl and InterruptPin) that will modify the default
values of inherited components.

Now we will configure these templates as it will be needed for the component driver. Because we are using the
10 pins for input only, we pre-set the inherited BitlO component for input only (we will disable the possibility to
change the 10 pin to output). The used method GetVal of these components is necessary, so we enable this
method and we will remove the ability to disable it by the user - its state will be read only.

For the Extint component we will setup al methods to be always generated and preset the property Generate
interrupt.

Select the menu command File | Open | Template

Find the template TwoK eys\Button1 and click OK.

Switch to Properties tab (if it isn't already open). Select the property Direction and set its features (in the
right panel):

= Feature Index to O (the Feature Text after this changes to Input)

» Feature Read Only to True

4. Select the property Init. direction and set its features :

= Feature Valueto True(input only)
= Feature Read Only to True
5. Switch to Methods tab. Select the method GetVal. Enable Details check-box in the right panel. Set its
feature ReadOnly to True.
Save the template using the main menu command File | Save.
Select the menu command File | Open | Template

Find the template TwoK eys\InterruptPin and click OK.

© © N o

Switch to the Properties tab and select the Generate I nterrupt on property. Set it's feature Read only to
True.

10. Switch to the M ethods tab and for all methods select the features:
= Feature Valueto True.
= Feature Read only to True.

-135-

Tutorial Courses

Template Info | Properties MElhDdSlEventaI Constants | Documentation

Lizst of methods Properties of the selected method : v Details
Enable aenerate code [temlewvel BASIC |
Dizable generate code ReadOnly True |
Getal generate code I zert ethodt ame Geb/al
SetEdos generate code Walue True =]
-6800
I-| ConnectFin don't generate code

Figure 7.10 - Methods setup in the InterruptPin template

11. Savethe template using the main menu command File | Save.

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

7.3.9. Tutorial, Course 3, Step 9 - Design of Methods

Design of Component's Methods

Contents

Design of component's methods

Description

Now will return to the component TwoKeys. Component will offer to the user three methods and one event.
Methods are intended for enabling or disabling this component and for reading status of buttons. Event informs
about press or release of the buttons. We will create these three methods:

e voi d Enabl e(voi d) - enablesinterrupt (event) from buttons.
e void Disabl e(voi d) -disablesinterrupt (event) from buttons.
e void GetVal (bool *But1, bool *But?2) -readsthe buttons states (pressed, not pressed).

Re-open the component TwoK eys using the menu command File | Open recent | Component TwoK eys.
Select the page M ethods in the Component Wizard workspace

Click on the button Add to add a new method to the component

Set up the following method's properties (enable the detailed view by checking the Details check-box):

= Symbol - Enable

= Hint - Thismethod enablesthe component

A w0 DR

= ReturnType - void

* ReturnHint - Returnsno value

Click on the button Add to add a another method to the component
Set up the following method's properties:

= Symbol - Disable

-136 -

Tutorial Courses

10.

11.
12.

» Hint - Thismethod disables the component

* ReturnType - void

= ReturnHint - Returnsno value

Click on the button Add to add a third new method to the component
Set up the following method's properties:

= Symbol - GetVal

* Hint - Get the button states

= ReturnType - void

= ReturnHint - Returnsno value

Click on the button Add parameter to add a new parameter to the GetVa method
Set up the following parameter's features:

= Name- Butl

= Type- Boolean

= Passing - Address

= Hint - State of the Button 1 - TRUE = pressed

Click on the button Add parameter again to add a second new parameter to the selected method
Set up the following parameter's features:

= Name- But2

= Type- Boolean

= Passing - Address

= Hint - State of the Button 2 - TRUE = pressed

-137 -

Tutorial Courses

Common | Properties | Property types Methods |Events| zer Types Eunstantsl Driversl Documentatiunl

Lizt of methods
Enable generate code
Dizable generate code
Getval generate code
Add Delete

o
o

Properties of the selected method : v Details
lzlndzzembler Falze =N
|zInD efinitionkd odule True |
Itemlevel BASIC |
kethod_Mame Getal
Publichethod True ~|
FeadOnly Falze |
ReturnHint Feturnz no vaue
ReturnT ype woid -|
Selected VES |
Symbol Getal LI
-Parameter -
-l Hame Butl
H| Tupe Boolean -

-| Pazzing Address -

= Hink State of the Button 1 - TRLE =

-| Register

“| Uzer AMSIC declaration

-Parameter e

-l Mame Buz

- Type Boolean -

r| Pazsing Address - ;I
Add parameter [Melete parameter |

|vc:iu:1 GetYal{bool ¥Butl, bool *Buz)

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard

Introduction

7.3.10. Tutorial, Course 3, Step 10 - Design of Events

Design of Component's Events

Contents

Design of component's events

Description

Now we will create the event informing about a pressing and releasing of buttons.

Follow these steps:

Select page Events in the Component Wizard workspace

2. Click on the button Add to add a new event to the component. This event will inform about the press or

release of some button - voi d OnKeyPr ess(bool

3. Set up the following event's properties:

= Symbol - OnK eyPress

= Hint- Thisevent is called when some button is pressed or released

But 1, bool

But 2, bool

Down)

-138 -

Tutorial Courses

Click on the button Add parameter to add a new parameter to the selected event

Set up the following parameter's features:

= Name- Butl

* Type- Boolean

= Passing - Value

= Hint - State of the Button 1 - TRUE = pressed

Click on the button Add parameter again to add a second new parameter to the selected method
Set up the following parameter's features:

= Name- But2

= Type- Boolean

= Passing - Value

= Hint - State of the Button 2 - TRUE = pressed

Click on the button Add parameter again to add athird new parameter to the selected method
Set up the following parameter's features:

= Name- Press

= Type- Boolean

= Passing - Value

= Hint - Determinesif the button is pressed (TRUE) or released (FAL SE)

Eu:ummu:unl F'rc:pertiesl Property types' Methods Ewverts | I zer Typesl Ennstantsl Driversl Dncumentatiunl

Lizt of events Properties of the zelected event : [Details
L|I:|;::r?p|:;§:§ure harme genetate cock ﬁl E\.fent=Name OnkeyPress =
Hint [zarme button is pressed or released
Selected YES hd|
Symbal OnkeyPrezs
W alue True d
H Hint State of te Button 2 - TRUE = = |
-| Register
- User AMSIC declaration
-Parameter
- Mame Press
- Type Boolean -
- Pazzing " alue -
= Hint ed [TRUE] or releazed [FALSE]
-| Fegister
S Uzer AMSIC declaration
Add Delete Add parameter [Telete parameter
|vuid CnkeyPressibool Butl, bool ButZ, boal Press)

-139 -

Tutorial Courses

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

7.3.11. Tutorial, Course 3, Step 11 - Code writing

Implementing component's methods and events

Contents

Implementing of the component's methods and events. Here we will use the inherited method and implement
inherited events.

Description

The component is complete except the implementation. With using inheritance it is fast and easy.

To write code into the driver (created by Inheritance Wizard) select the Driver page on the Component Wizard
workspace.

Select Edit code of a method/event and click the Edit selected item button.

Eu:ummu:unl F'rupertiesl Property t_l,lpesl Methodsl Eventsl I zer T_l,lpesl Constants Drivers | Diocumentation

Ligt of drivers for component

_ (ol x|
Lizt of methods and events Edit I
E| Edit whals zection |
Add drive 5 LCancel |
: : ﬂ Ewvents
Edit test fi - [E Inherited events
+-E Dn i
[Software 3] river parts
Language = =fore edit
hod/event
[~ Head only
read anly]
| o] Edit TST
= T4 D Lati
il B i =

Add zection | Delete zection | Edit zelected item |

Thelist of implemented methods follows:
Now select a method, click the Edit button and fill in the source code below (Changed code is displayed as a

- 140 -

Tutorial Courses

bold) and repeat this step for each method.

Implementation of method Enable

voi d % Modul eNane' _Enabl e(voi d)

{
i nherited. I nterruptPin. Enable();

Implementation of method Disable

voi d % Modul eNane' _Di sabl e(voi d)

{
i nherited. I nterruptPin.Disable();

Implementation of method GetVal

voi d % Modul eNane' _Get Val (bool *But 1, bool *But 2)

{
*Butl = inherited. Buttonl. GetVal ();

*But2 = inherited. Button2. GetVal ();

Implementation of inherited event Oninterrupt

void i nhrsym I nterruptPin. Onlnterrupt(void)
{
bool Butl1, But2, press;
% Modul eName' _Get Val (&But 1, &But2);
press = inherited. InterruptPin. GetVal ();
%nKeyPress(Butl, But2, press);

}
Links

<< Previous step | Last step >> | Contents of This Course | List of Tutorial Courses | Component Wizard

Introduction

- 141 -

Tutorial Courses

7.3.12. Tutorial, Course 3, Last step - Generating help, Installing component

Tutorial, Course 3, Last step - Generating help, Installing component

Contents

e Automatic generation of component's html help and
* Whereto find the component in Processor Expert and how to use it.

Description

Please follow according to the steps described in Tutorial 1, step 7 and Tutorial 1, Last step

Links

<< Previous step | Contents of This Course | List of Tutorial Courses | Component Wizard Introduction

7.4. Tutorial, Course 4

Course 4 - My first component with inheritance - keyboard

Description

There is description of creation of simple component with inheritance (without using Inheritance Wizard) in this
course.
The new component is keyboard with two keys.
The creation is done in following steps:
1. Definition of Component Function
Component Creation
Design of component’s properties, inheriting
Template and Interface setting
Design of methods
Design of events

Code writing

© N o 0 bk~ WD

Generating help, Installing component

Example
Ready to use

Y ou can see complete example of the software component TwoKeys with driver prepared in accordance with this
course.

- 142 -

Tutorial Courses

Links
First step >> | List of Tutorial Courses | Component Wizard Introduction

7.4.1. Tutorial, Course 4, Step 1: Specification of Component Function

Simple two-key keyboard

Contents

Definition of component function - two-key keyboard

Description

This component should encapsulate simple two-key keyboard. The keyboard is connected to the 2 input pins and
to one external interrupt which informs about the key press. The information which key is pressed is read from
two pins.

For connecting the keyboard to the CPU we will use two types of components:

¢ BitlO - This component implements a one-bit input/output. It uses one bit/pin of a port
e Extint - This component implements an external interrupt. The interrupt is caused by a signal level/edge on a
pin.

Component will have three methods for enable and disable the keyboard event and one method for reading status
of the keys, and one event occurring when some key is pressed. The simple schemafollow:

Button 1 Pin 1

1
—C

Button 2 —\ ingietiy pj

1
—O Pin 2

Help for the component will be generated automatically by Component Wizard.

L

Links

Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard Introduction

- 143 -

Tutorial Courses

7.4.2. Tutorial, Course 4, Step 2 - Component Creation

Tutorial, Course 4, Step 2 - Component Creation

Contents
In this step you can learn how to ...

e Start up Component Wizard
* Create a new component with Inheritance Wizard
 Fill up the basic information about the component - name of the component

Description

Inherited components will be needed for CPU independent accessing the hardware. The access to keyboard will
be written directly in ANSI-C language inside component driver.

1. Run Component Wizard and select Component Wizard - editing new/existing components from startup
menu. (iff the startup menu is not turned off).

Select File - New - Component from main menu.
Select Conmon page in the Component Wizard workspace if it's not already active.

Fill in following items:

= Short hint - simple component description, Keyboard with two keys

= Author - your name

= Version - version of the component, 01. 000

= Shortcut - short component name (max. 4 characters), Key?2

» |f you have aicon of the new component (16x16 pixels, BMP format, 16 colors), you can add it using
the Open.. button.

5. Choose File - Save from Component Wizard main menu to save the component to the disk. Write file
name of the component: TwoKeys. File name is aways the same as the component name. Confirm the
dialog "Do you wan to aso create SW driver?" by clicking on Yes button. If you successfully save it, the
new component name appears in the Component Wizard window title.

Picture

- 144 -

Tutorial Courses

*.« *Baan Wizard 1.26 - Bean : Untitled =18l =]

File Edit Tools Help

e B a@E| 7 &)

Cormmor | F'ru:upertiesl Froperty t_l,lpesl Methu:udsl Events' | zer T_I,Ipesl Ennstantsl Driversl Diocumentation

Short hint Copyright

IKE}.b.;.ar.j with by keps [c] Copyright <company/user-name:, 2008 =
http o v <companys . com

Author mail :infof@<cormpant . com

|.-’-'-.ulhu3r

Yerzion Shortcut

IF Iﬁ IKE_I,Q

lcon 16x16
Iﬁ[ﬁlefault ican j Open ... | Drefault | =

Bean category

Sw-Uzer Beans Change
| _ Change |

[~ Dne instance of bean in PE project only

Mezzage
|

Bean's level

| 5

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

7.4.3. Tutorial, Course 4, Step 3 - Design of Properties, Inheriting

Tutorial, Course 4, Step 3, Design of component's properties,
Inheriting

Contents

In this step you can learn how to ...
¢ Createinherited property

* Inherit acomponent

« Fill up the basic information about inherited property

- 145 -

Tutorial Courses

Description

New TwoKeys component will have following properties:

Component Name - thisis the default property and can not be changed or removed. It must be present in every component.
Inherited component for Buttonl

Inherited component for Button2

Inherited component for external interrupt

To define these properties follow the steps:

1.

Select Properties pageinthe component workspace. These is already defined the default property -
Component name. This property is set by saving the component and cannot be modified and removed.

Press button Add down to add new property. The dialog box with list of al available types appears.
Choose requested type of the new property. Select type Inherited component (interface). Select 'Yes' in the

dialog asking "Do you wan to inherit new component now ? ...".
Thedialog for inheriting appears:

x
Lizt of components
(@ a0 - Inhesit |
@ Agynichrobd aster j
@ AsynchioSerial Lancel |
@AS}TCWDSI&?E Mame of the new interface [and template]
I@ BazicProperties IIputF‘ir]
BooLc | —
[+ Create and register template inta the interface
@ Bits(0 [mheriting details;
@ Btwfimage {* Only uze all inherited methods and events
@ BytelD) ™ Only uze some of inherited methods and events
@»‘ Bytesll) LI ™ Redefine zome methods
o o

Select the Bi t | O component for inheriting. Fill the edit line with | nput Pi n, i.e. the name of the
local interface and local template. Press button | nherit . The dialog is closed and the interface and
template have been created and the feature InterfaceName of this property has vaue
TwoKeys\ | nput Pi n.

You can change features of this property in the right side of the Component Wizard workspace. Some
more advanced features can be displayed by switching Basic/Advanced/Expert view mode in the
bottom-right corner of the Component Wizard workspace. Select Advanced mode. Fill in the following
features:

= [temName - name of the property, write value But t onl

= Hint - description of the property, | nherited conponent Bitl O

= Symbol - name of macro with value of the property, this macro you can use in the component driver,
value: Butt onl. Seedescription of macroprocessor for details.

Press button Add down to add new property. The dialog box with list of all available types appears.
Select the same as in previous case - Inherited component (interface). Select 'No' in the dialog "Do you
want to inherit a new component now?...". Fill in the following features:

- 146 -

Tutorial Courses

» [InterfaceName - name of the interface - select the already created interface, value:
TwoKeys\ | nput Pi n.

= [temName - name of the property, write value But t on2

= Hint - description of the property, | nherited conponent Bitl O

= Symbol - name of macro with value of the property, this macro you can use in the component driver,
value: Button2.

6. Pressbutton Add down to add new property. In the dialog box with list of all available types appears,
select again the same Inherited component (interface) and select 'Y es' in the dialog "Do you want to inherit

anew component now?...".
7. Thediaog for inheriting appears:

Inherit component ...

Lizt of components

x|
@ E43200 B phent |
@ Exai0
@ cmii0 ﬂl
@ EHtBytElq J Hame of the new interface [and template]
ExternalFile IE:-:tInterrupt
@ —m—r— [v Create and register template inta the interface
@ FreeCntr16 Inheriting details:
@ Freelnir3Z = Only uze all inherited methods and events
@ FreeCnird {™ Only uze gome of inherited methods and events
@ FreescaleCAN | " Redsfing some methods

Select the Ext | nt component for inheriting. Fill the edit line with Ext | nt er r upt , i.e. the name of the

local interface and local template. Press button | nherit . Thedialog is closed and the interface and

template have been created and the feature InterfaceName of this property has vaue

TwoKeys\ Ext | nt errupt.

Fill in the following features:

= [temName - name of the property, writevalue | nt err upt Pi n

= Hint - description of the property, | nherited conponent Extlnt

= Symbol - name of macro with value of the property, this macro you can use in the component driver,
value. I nterruptPin.

8. Other features should stay without any change.

Picture

- 147 -

Tutorial Courses

*.# *Bean Wizard 1.26 - Bean : TwoKeys =101 =]
File Edit Tools Help
Nedx BlsaaE| 7 &
Common Properties | Froperty t_l,lpesl Methu:udsl Events' | zer T_I,Ipesl Ennstantsl Driversl Du:uc:umentatiu:unl
Lizt of properties: Featurez of the zelected property :
Froperty hiame: Jinkenited bean [interface
&@D@aﬁla:@ IFFPN I Tli\EI] |
SEEN — nterlraceMN arme wok.epssExtinterrupt -
El i= B @ Itemtd ame InterruptPin
FraEmm— Symbal | nterruptPin
Button
ButtonZ2
InterruptFin
Hirt Irherited bear E stnt
Index -1
ItemLevel BASIC |
ReadOnly Falze R
Add Up Add Diown Addita Groum Delete Search Bestare aroups | I.ﬂ.dvanced 'I

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard

Introduction

7.4.4. Tutorial, Course 4, Step 4 - Template and Interface Setting

Tutorial, Course 4, Step 4, Template and Interface Setting

Contents
In this step you can learn how to ...

¢ Createinherited property
* Inherit acomponent

« Fill up the basic information about inherited property

- 148 -

Tutorial Courses

Description

Now we have defined the interfaces and templates. We will set which methods/events will be generated into the
drivers and which not, i.e. which we want to use and which not. We will set aso the state of some properties.
Because we are using the 10 pin for input only, we set the inherited component for input only (we will disable
the possibility to change the 10 pin to output). We need the used method Get Val , so we set to generate this
method always and we will set this state as read only.

To configure the interfaces and templ ates follow the steps:

1. Select property Butt onl and click on this property with right mouse button. in the pop-up menu select
Inherited item/Link to component - Open interface The InputPin interface is opened.

2. Select Met hods page in the component workspace. Because the pin for akey is for input only, delete
al methods except the Get Val method for reading of the status of the pin.

*.“ Bean Wizard 1.28 - Interface : InputPin =101 =]
File Edit Tools Help
Ded= 0 «oE|7? &
Irterface info - Methods |Events| Templatesl
Lizt of methods Properties of the zelected method : v Details
Gl Hint Get input value
[temLevel BASIC |
MethodS cope FRIVATE ~|
Method_MHame Getal
tode Lwiay's_REUUIRED x|
ReturnHint |rpLt walue
ReturnT ype Boalean |
Syrbol Getal
Add Delete Add parameter [Melete parameter
|I:u:u:u| Gethal(void)

Savetheinterface by pressing Ctrl +S or using the command File - save

Select command File - Open - Template from Component Wizard main menu. Select the local template
TwoKeys\ | nput Pi n and open it by clicking on "OK" button.

5. Select Properties pageinthetemplate workspace.
= Select the property Di r ect i on and set these featuresto:
- Featurel ndex to O (the Feature Text after thisitsvalue changesto | nput)

- 149 -

Tutorial Courses

- FeatureRead Only toTrue

= Selecttheproperty | nit. directi on and set these features to:

- Feature Val ue to Tr ue (input only)
- FeatureRead Only toTrue

s

*.#Bean Wizard 1.28 - Template : InputPin =101 =]
File Edit Tools Help

Ned% | 0«aE|7? €|

Template Info ~ Properties | Methndsl Eventsl Dacumentation

Lizt of properties: Features of the zelected property :

- @ 0o & B Froperty name: |B|:u:ulean ez f ho

R = ltemLewvel |B,r:'.,5||: -|

k2 i= i 02 RealOni T =
Eean name Value True i
i for 40

Pir zignal

Pull rezistor autozelected pull

Open drain puzh-pul

Reduced drive

LED drive

Direchion [Fipat

-lmitialization

H Init. directior IFput

L Init. walue]

S afe mode e

Optirmization for speed

Add e Bdd [awn Addite Group [elete Search Restore groups | IBasiu: *I

Select Met hods pagein the template workspace.

Select method Get Val and set both Val ue and ReadOnly to true - the method will be always
generated. For al others method set the ReadOnl y to f al se andtheVal ue tof al se.

Save the template (File - Save).

Choose File - Open - Template from Component Wizard main menu. Select the local template
TwoKeys\ Ext | nt errupt and openit.

Select Properti es pageinthetemplate workspace.
= Select the property Gener at e i nterrupt on and set these featuresto:

- Feature | ndex to O (the value of this property after this changesto Ri sing or falling
edge)

- FeatureRead Onlyto True

Select Met hods pagein the template workspace. For the Enable, Disable, GetVal methods set both the

-150 -

Tutorial Courses

Read Only andtheVal uetotrue.
12. Savethetemplate.

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

7.4.5. Tutorial, Course 4, Step 5 - Design of Methods

Design of Component's Methods

Contents

Design of component's methods

Description

Now you are editing component TwoKeys. Component will be controlled by three methods and one event.
Methods are for enabling or disabling this component and for reading status of buttons. Event informs about
press or release of the buttons. We create these three methods:

e voi d Enabl e(voi d) - enablesinterrupt (event) from buttons.

e voi d D sabl e(voi d) -disablesinterrupt (event) from buttons.

e void GetVal (bool *But1, bool *But?2) -readsthe buttons states (pressed, not pressed).

To define methods follow these steps:

1. Returnto component editing by selecting File - Open recent - Component TwoK eys.
Select page Met hods in the Component Wizard workspace
Click on the button Add to add a new method to the component

A w D

Set up the following method's properties:

= Symbol - Enabl e

= Hint-This met hod enabl es the component
= ReturnType-voi d

= ReturnHint - Ret urns no val ue

Click on the button Add to add a second new method to the component
Set up the following method's properties:

= Symbol - Di sabl e

= Hint-This net hod di sabl es the conponent

= ReturnType-voi d

* ReturnHint - Ret urns no val ue

Click on the button Add to add athird new method to the component
Set up the following method's properties:

= Symboal - Get Val
= Hint-get the button states

-151 -

Tutorial Courses

9. Clickonthebutton Add par anet er

10.

11.
12.

Picture

ReturnType - voi d

ReturnHint - Ret ur ns no val ue

Name - But 1
Type - Bool ean
Passing - Addr ess

Set up the following parameter's features:

Hint-State of the Button 1 - TRUE = pressed

Click on the button Add par anet er

Name - But 2
Type - Bool ean
Passing - Addr ess

Set up the following parameter's features:

Hint-State of the Button 2 - TRUE = pressed

to add a new parameter to the selected method

Eu:ummu:unl Properties | Property types Methods |Events| zer Types Ennstantsl Driversl Dncumentatiunl

again to add a second new parameter to the selected method

List of methods Properties of the selected method : v Details
Erjal:lle generate code T Falee Llﬂ
P JEhEiaE Gl IslnD efintiontadule True -
Getal generate code ot TEREE BASIC 5

kethod_Mame et al

Publict sthod True ~i

Readlnly Falze |

ReturnHint Feturnz no vaue

FeturnT ype void ~1

Selected TES Rd

Symbial et al LI

-Parameter -

-| Mame But?

- Type Boolean -

-| Fazsing Address -

- Hint State of the Button 1 - TRUE =

-| Hegister

- Uzer AMSIC declaration

-Parameter e

- M ame Buz

- Type Boolean -

-| Pazzing Address - ;I
Add Delete Add parameter [Jelete parameter |

|vuid GetYallbool ¥*But1, boaol *Buz)

-152 -

Tutorial Courses

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard

Introduction

7.4.6. Tutorial, Course 4, Step 6 - Design of Events

Design of Component's Events

Contents

Design of component's events

Description

Now we create the event informing of pressing or releasing of the buttons.
To define methods follow these steps:

1. Selectpage Event s inthe Component Wizard workspace

2. Click onthe button Add to add a new event to the component. This event will inform about the press or

release of some button - voi d OnKeyPr ess(bool But 1, bool But 2, bool Down)
3. Set up the following method's properties:
= Symbol - OnKeyPr ess

= Hint-This event is called when sone button is pressed or rel eased

Click on the button Add par armet er to add a new parameter to the selected method
Set up the following parameter's features:

= Name-But 1

= Type- Bool ean

= Passing - Val ue

= Hint-State of the Button 1 - TRUE = pressed

Click on the button Add par amet er again to add a second new parameter to the selected method
Set up the following parameter's features:
= Name- But 2
= Type- Bool ean
= Passing - Val ue
= Hint-State of the Button 2 - TRUE = pressed
8. Clickonthebutton Add par aneter againtoadd asecond new parameter to the selected method
Set up the following parameter's features:
= Name- Press
= Type- Bool ean
= Passing - Val ue
= Hint-Some button is pressed (TRUE) or rel eased (FALSE)

- 153 -

Tutorial Courses

Picture

Eu:ummu:unl F'rc:pertiesl Property t_l,lpes' Methods Ewvents | zer Types Ennstantsl Driversl Dncumentatiunl

Lizt of events Properties of the selected event : [T Details
Llcl'!::r:y:u'z:ujure name Igenerate ek e Event_Name |OnkeyPress
Hint |zome button iz pressed or released
Selected YES |
Symbal OnkeyPreszs
Walue True hd
- Hint State of te Button 2 - TRUE = |
-| Heqister
| Uzer AMSIC declaration
-Parameter
-| Mame Frezz
- Type Boolean -
-| Fazzing Walue -
- Hint ed [TRUE] ar releazed [FALSE]
-| Register
- User AMSIC declaration
&dd Delete £&dd parameter [felete parameter
|vuid CnkeyPressiboaol Butl, bool ButZ, boal Press)

Links

<< Previous step | Next step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

7.4.7. Tutorial, Course 4, Step 7 - Code writing

Implementing of component's methods of Component's Events and
events

Contents

Implementing of the component's methods and events. Here you learn hot to call inherited method and
implement inherited events.

- 154 -

Tutorial Courses

Description

The component is complete except the implementation. With using inheritance it is fast and easy. To write code
into the driver (created by Inheritance Wizard) select Dri ver page on the Component Wizard workspace.
Click onthebutton Driver | nfo tospecify driver information: driver version and name of the author.
Click on the button Edit code to edit code of methods. You can edit implementation of one method or
whole section. Uncheck option Whole section to one method only.

Thelist of implemented methods follows:

Changed code is displayed as a bold.

Implementation of method Enable

voi d % Modul eNane' _Enabl e(voi d)
{

i nherited. I nterruptPin. Enable();

Implementation of method Disable

voi d % Modul eNane' _Di sabl e(voi d)

{
i nherited. I nterruptPin.Disable();

Implementation of method GetVal

voi d % Modul eNane' _Get Val (bool *But 1, bool *But 2)
{
*But 1
*But 2

i nherited. Buttonl. GetVal ();
i nherited. Button2. GetVal ();

Implementation of inherited event Oninterrupt

void inhrsym InterruptPin. Onlnterrupt(void)

{
bool Butl, But2, press;
% Modul eNane' _Get Val (&But 1, &But?2);
press = inherited. InterruptPin.GetVal ();
%OnKeyPress(Butl, But2, press);

}

- 155 -

Tutorial Courses

Picture

Eu:ummu:unl Propertiez | Property types Melhndsl Eventsl Usger Types | Corstants Diivers | Diocumentation

Lizt of drivers for component

gt Twok eps diy

f.:u‘ Edit driver - select method or event

=0l x|

Lizt of methods and events

Edit

B |E| b ethods

¢ L[Dizable
Add drive C LA Getval

: : --ﬁ Events

Edittesti | | o B Inherted events

[Software - [&] Driver parts

Language =

Edit whole section

LCancel

=fore edit

Add section | [relete zection |

hod/event
[~ Head only:
read only]
~-|E] Edit TST
E-= Documentation
i I = I

Edit zelected item |

Links

<< Previous step | Last step >> | Contents of This Course | List of Tutorial Courses | Component Wizard
Introduction

7.4.8. Tutorial, Course 4, Last step - Generating help, Installing component

Tutorial, Course 4, Last step - Generating help, Installing component

Contents

Automatic generation of component's html help and

How to install the component into Processor Expert and how to useit.

- 156 -

Tutorial Courses

Description

These steps are similar steps described in Tutorial 1, step 7 and Tutorial 1, Last step

Links

<< Previous step | Contents of This Course | List of Tutorial Courses | Component Wizard Introduction

- 157 -

Component Wizard - Command line parameters

8. Component Wizard - Command line parameters

Running Component Wizard from command line

Note: Command line parameters are not available for CodeWarrior plug-in version of Component Wizard.

Description

Component Wizard accepts these parameters from command line;

BeanW zard. exe [/test driver_filenane] [bean_filenane] [/inport headerfile]
[/userdir workingdirectory]

Parameters description:

e Jtest - createstest file for driver specified with full path.

e bean_filename - full path to component to be opened

e Jimport - imports a ANSI C module into component. For more information see here. Second parameter is
source of C module with full path

Remark: Parameters are case sensitive.

Examples

¢ Open component mybean
BeanW zar d. exe c:\ nyDat a\ beans\ nybean\ nybean. bean

¢ Import ANSI C module module.c located in the directory c:\user s\myData\
BeanW zard. exe /inmport c:\users\nyData\nodule.c

e Createtest file from the software driver mybean.drv located in the directory c:\programs\PE\driver s\sw\
BeanW zar d. exe /test c:\prograns\PE\drivers\sw\ nybean. drv

-158 -

Revision List

9. Revision List

Revisions of the Component Wizard help

History

e 27.4.2010version 1.55
= Updated 'Inheritance Scheme' diagram.
= Updated List of propertiestable
e 18.9.2009 version 1.54
= Updated main menu, editor, documentation and options chapters.
e 30.6.2009 version 1.53
= Beansrenamed to Components.
e 8.4.2009 version 1.52
= Updated page footer
e 235.2008 version 1.51
= Minor corrections
e 10.4.2008 version 1.50
= Minor corrections
= Removed component skeletons
= Tutorial corrections
= Options corrections
= Import dialog updates
e 23.10.2007 version 1.49
= Minor corrections
e 20.12.2006 version 1.48
* The Component creator changed to Inheritance Wizard
» Updated main menu
= Added Constants page
» Updated screens
e 5.10.2005 version 1.47
* CHG file commands for inherited components moved to the CHG file chapter.
e 25.10.2005 version 1.46
= Added Basic Terms/Inheritance chapter
= Changed look of the pages
= Updated descriptions and screenshots
e 08.10.2004 version 1.45
= CHM Content file generation (!BWHelp.hhc) corrected.

- 159 -

Revision List

This help should be used with Component Wizard 1.17
01.10.2004 version 1.44

= Minor changesin the help.
This help should be used with Component Wizard 1.17
07.05.2004 version 1.43

* new feel&look of the help.

= Minor changes (up-to-date screen-shots) in the help.

This help should be used with Component Wizard 1.17

01.12.2003 version 1.42

= Minor changes (up-to-date screen-shots) in the help.

= Fontintheinternal editor can be changed in menu Options - page Editor
= New page Common problems with inheritance

This help should be used with Component Wizard 1.17

29.08.2003 version 1.41

= Minor changesin the help.

= Only oneinstance of acomponent in Processor Expert can be ensured in Common page
This help should be used with Component Wizard 1.16

29.08.2003 version 1.40

= Minor changesin the help.

= It'snow easier to inherite components in page Properties using improved fast inheriting dialog
This help should be used with Component Wizard 1.16

28.04.2003 version 1.39

= Minor changesin the help.

= |t's now easier to add new methods or vents into the interface via Component Viewer using context
menus in I nterface templates page

This help should be used with Component Wizard 1.16
03.04.2003 version 1.38

= List of properties - added links to the examplesin the tutorial Course 2.
= Link to this page added to the introduction page.

This help should be used with Component Wizard 1.16

28.03.2003 version 1.37

= Dialog Options has a new page for setting of internal editor.

» Main menu changed - Import beans from package has been addedtomenuFi l e | | nport.

= Tutorial course 3 - screenshots updated to current version of Component Wizard.

This help should be used with Component Wizard 1.16

28.11.2002 version 1.36

= Page Interface Templates changed. Now an interface can register components without creating templates
(until now only templates could have been registered)

This help should be used with Component Wizard 1.15

19.11.2002 version 1.35

- 160 -

Revision List

* New page How to modify existing interface

» Listof hot keysin the driver editor.

= Page Property types changed.

This help should be used with Component Wizard 1.14
15.10.2002 version 1.34

= Improved Auto complete function

= New page describing editing code of methods/events/driver parts. See edit code dialog
This help should be used with Component Wizard 1.14

12.09.2002 version 1.33

= New - user help styles- see HTML Help styles

» Graphica changein the page Help

* Changesin the Component category

This help should be used with Component Wizard 1.14

31.07.2002 version 1.32

= More details about Editing drivers

= New page Driver editor

= New page Command line

= Moreinformation about interfacesin Component Manager page Interfaces
= Minor changesin page Properties List

This help should be used with Component Wizard 1.13

25.07.2002 version 1.31

= Added description of popup menu in the page Property types
This help should be used with Component Wizard 1.12
20.06.2002 version 1.30

= New inheriting featuresin the interfaces - MethodScope for Methods and EventScope for Events

= New highlighting of inherited methods and events in pages Methods and Events. It can be turned on/off
in the Options - page Display.

= components, interfaces and templates can be opened in read only mode - see Options - page Default
values

= Improved user type Record in the page User types
This help should be used with Component Wizard 1.12
03.06.2002 version 1.29

= This page has been reorganized; the latest changes are on the top of this page.

= PageList of properties - added new property List of items (item is defined in file).
= Page Properties - new context menu for properties.

This help should be used with Component Wizard 1.11

01.03.2002 version 1.28
Minor changes in the help. This help should be used with Component Wizard 1.10

11.01.2002 version 1.27

= The component can be created from existing module written in ANSIC. See here for more information.

-161 -

Index

= New page How to share component - the difference between sharing and inheriting.
This help should be used with Component Wizard 1.09

20.12.2001 version 1.26

» New User type (User definition).

= Removed optional background from Component Wizard (page Options changed).

= Thegraphic design of editing methods and events changed.

= Page common changed, component has category classification.

This help should be used with Component Wizard 1.08

30.10.2001 version 1.25

The User types and Importing/Exporting a component pages changed. This help should be used with
Component Wizard 1.07

25.07.2000 version 1.24

New Tutorial 4 for inheritance process without Component Creator. Inheriting in an existing component.
This help should be used with Component Wizard 1.04

02.06.2000 version 1.23

New Tutorial 3 for inheritance process with Component Creator This help should be used with Component
Wizard 1.04

26.05.2000 version 1.22

More detailed description of inheritance process. This help should be used with Component Wizard 1.04
21.04.2000 version 1.21

The User Types page is now available for Basic version of Component Wizard too. This help should be used
with Component Wizard 1.03

13.04.2000 version 1.2

The Revisions page changed. This help should be used with Component Wizard 1.03

21.02.2000 version 1.1
This help should be used with Component Wizard 1.03

-162 -

Index

O e e e e e e ememeeeeemmmmee——aaaa 87, 83
L 83
O e e e e e e e e e e e e 83
B> o e e e e memeeeeeememem——aaa 83
7= Lo o 83
LY=o [o [[o T 83
LT: 1] o 1T Lo 83
L0T= 1] o] o 83
%define ... i i eeiieeeieaeeaaa—a- 83
e (=i g T= T o o 83
=] 83
QOEISE & e i e eeeeeeeeeaeeeam—aaan 83
LT o | (o] 83
LT o 1 83
L 1= 1 (o) 83
WFILE « o e e e e e e cecccccacaanaenn 83
L] (o] 83
%fOr_INAEX - o e e e e e e e emeccccaeae—nn 87
%for_index_0 ... i i eemeaeaa———- 87
0T = 94
L] 11| R 83
L] 83
L3710 1= 83
Soifndef . . eeeeeeeeaeeaaan 83
%IMPLEMENTATION L o i i eeeemmmes 83
%include . ..o i e e emeaeaaaa. 83
%INITIALIZATION Lo i i eiececccceaennn 83
WINTERFACE . . .o e e e e e e eemmmnmnn. 83
%liSt_SiZe oo e e eeeaeeeeaeanaa—a- 87
BT 94
%ostr_length © . oo e e e meaa—aa. 87
YTEXTHELPFILE . . i i e i e e e e e e m - 83
doundef .. eeeiieeeeaeeeaaaaan 83
QOWAIMING - - e e e e e e e mmmmccccccceemaene. 83
ofindex,list] - oo e e 87
L 87
L) 87
access to macros of inherited components 87
Basic Properties . . . c e e e e e e mmm———a 125
BasicVersion e e m——————. 12
Boolean group - . v o i i i i e e emeaeaaaa. 54
Booleanyes /N0 .. c e e e e e e e e e mem— - 54
COMMANGS « o e e e e e e eeccccccmcccaeaaennn 83
CommonPage ciece e eane - 48
COMPONEeNt . L e e e e ccccccccamaea—nn- 5
Componentcreation ccecamenaman.. 21
componentdriver i aii i aaaaaa. 79
ComponentManagercceeeeaccannaann- 31
Component properties ceceeeccece - 54
Component Settingsfile - oo . 125
ComponentTemplate . ..o e e ececeeceee e, 5
Component VIeWer e e e e e mmmmammnn 112
ComponentWizardHelp oo ooo.... 4
Component Wizard versionscccceceaann-x 12
(0] 151 7= g | £ 76
Course loftutorial . ..o ee e e e e ceaeaaas 114
COUrSE 2 o eieecccccccaccaacaaaaaa 125
Coursedoftutorial - ..o e e e e e emmems 142
Deleting component . _ oo aaoaaa. 32
details about drivers and macroprocessor 79
Distributing componento, 23
DocumentationPageccceceeeacennana- 100
(o[£ 79
Driver Processing .« o v ccccccecccccaancannn 79
DriversPage . ..cccoceceecccccccccananann 7
Editingdriver . . .o e e e e e e e mmmaa——- 20
Enumeration e e e mmmaa——- 54
EventsPage . ..o ceeciceccececcccenanna- 71

Example of basic propertieso aan... 125
Exporting component o aaiiaaaaa 33
Fastinheriting - .o v oo i e e e e e meemenenn 63
Features . .. e i e cccccccamama—an 54
globalmacros . ..o i i i e e 88
Global Properties Page . .. v o ccecccccccnean. 65
Group-boolean eaaaaa. 54
Group of itemS - . oo i i e i ececcecemeamaaa. 54
How to apply an interface to a component 16
How to create interfaceo eceeaenaann. 14
Howtocreatetemplate cccceececeanana. 13
How to delete acomponento ceeeeeenana. 32
Howtoeditdriver . ..o e e e e mmemmnn. 20
How to use inheritance cccceceaceaaan. 16
HOWIO... oo e e eeiieccccccccccaaccaann- 13
Inheritanceo e e e emme——a- 57
Inheritance scheme oo eceemeceannnn 8
Inheritance Wizard eeeeenancannn 35
Inherited component i e e, 54
inheritedevents ceeeceececeaeana. 5
inherited methods cciioemeeei e 5
Inheriting componento i e 16
Inheriting Events - ... oo 11
Inheriting Methods oe i ie i eeeeeeeas 9
Integernumbero e e e eemeeaaaaa 54
Interface ... eci e ccecccccccaceaeaaan. 5
Interface applicationo v e e ece e e e 16
Interface creation eeeeeeeeeaana- 14
Interface EventsPageo eaeanann 107
Interface INfoPage . .. c e cce e e e e e eeemnnn 104
Interface Methods Pageo ceeeeean-- 105
Interface TemplatesPageo eceacaan- 110
LiNKS oo i i eeicecccccccaccaaaaaa- 63
List of components properties oo aaa.. 54
Listof features . .o v o ccececc e cccceaeana. 54
List Of Properties . ..o ceceececcccacaneaann 54
localmacros e i ecccccccamaaaaaa 90
MACIOPIrOCESSON © o o v i e cccccccaccaaacaaaan. 83
Macroprocessor Commandsceeeenceann- 83
Macroprocessor Denotationccceeeann. 81
Macroprocessor features caiiaaaaax 80
macroprocessor featurescccieceaannaa 79
Macroprocessor OVEIVieW cccecceaacenn- 80
= Lo 01 91
MainMenu i i ecececccaaeeaan- 25
Methods Page . ..o oo e e e e ccecccmemeamns 69
OptiONS - e e e ececccccaccccacamaaeaman. 26
Predefined Global Macroscceeeeceanan.. 88
Predefined LocalMacroscceeeceeannn- 90
predefined macroso ccioaciaaaaaaan 87
Predefined Macros and Directives 87
Professional version eei i i, 12
Properties . ..o e ee i i e e ecemeaamaaa- 54
Properties config - v o i e e e i e e e e mm e ———a 30
Properties of the propertieso eeeeeecanan-. 54
PropertiesPageo i i e aaaa. 51
Property Macros . . o v e e e ccccecmmanmnman 91
Property TypesPage ..o cececee e ccceeman- 67
Realnumber i i i e e aaaa 54
Registration into interfaceo eceeaanaa. 5
REVISIONS & ¢\ e e e e e cccccccecaan——- 38
Revisions list . . oo ie e e ce e eceaeaaan 159
Save Interface Dialog . - o v e e e e e mmmma 36
Save Template Dialog . .- e e e e i e e e mmemn 37
Settings file of acomponent 125
Speedmode setting - . oo e e e i e e mmaaa 54
SRC file <o e e e e e e e e ————aa 79
StartupMenu . ..o e i i e eeeeeemeaaaa 47

- 163 -

Index

15111 R 54
Template . .o e e e e emeeeemaaaaa 5
Templatecreationccccceceeeaaaaann- 13
Tutorial - e i i i eeeeeeeeaaeaaa- 125
Tutorial -Course 1l ..o e iecieccccacanaa- 114
Tutorial -Course 4 . ..o e ieeceamaan- 142
Tutorial, Course 1 . .. eeceeacennn. 114
Tutorial, Course 1, LastStep .o oo eccacaana. 124
Tutorial, Course 1, Step 2 .« oo e eeeccenccann- 115
Tutorial, Course 1, Step 3 . .o oo i e e e e meemmm s 117
Tutorial, Course 1,Step4 . oo i ece e eeeaea 119
Tutorial, Course 1, Step5 .« . oo i ecceieceaan 120
Tutorial, Course 1, Step6 . . oo ece e eeeennn 122
Tutorial, Course 1, Step 7 < oo e eccceeceaea- 123
Tutorial, Course 2 . . oo e i i e cccmanmmann. 125
Tutorial, Course 3,Step l .« . oo e e e e e e mmm s 129
Tutorial, Course 3,Step 10 ..o v ececeeceannna 138
Tutorial, Course 3,Step 11o ceeeannnn- 140
Tutorial, Course 3,Step 12 ..o ci e eeeens 142
Tutorial, Course 3,Step2 < oo e cieccccacenna- 130
Tutorial, Course 3,Step 3 ..o e i ecceiecann- 131
Tutorial, Course 3,Step4 . . oo e e e eeemmm s 131
Tutorial, Course 3,Step5 ..o ieieceeeaceaea- 133
Tutorial, Course 3,Step6 ... cceeeeeeaceann- 133
Tutorial, Course 3, Step 7 v c i e e e e e mmmmmm s 134
Tutorial, Course 3,Step 8 ..o ciececeaeeaea 135
Tutorial, Course 3,Step9 ..o e i eecieccanns 136
Tutorial, Course 4 . . .o i e e eameaaa. 142
Tutorial, Course 4,Stepl « .o eieccceeceaea- 143
Tutorial, Course 4, Step 2 .« oo e ieeccenccnnn- 144
Tutorial, Course 4, Step 3 .« .o oo i e e e e eeemmm s 145
Tutorial, Course 4,Step4 - oo ec e e eceaea- 148
Tutorial, Course 4, Step5 .« oo i eeceeecean- 151
Tutorial, Course 4, Step6 . . oo e e e eeeemn- 153
Tutorial, Course 4, Step 7 v« oo e eccccaceana- 154
Tutorial, Course 4, Step 8 . .o ieecciemcann- 156
Tutorials .« .o e i e e eeeeeaeeaaeaa- 114
Two-digit 8-segment LED display 114
Userinterfaceccecececcccaaccnanaan- 24
User Types Page . .o vce e e cicmcccmeemeanns 74
[V /= 51 T o L 12
View Component Utility - . ..o ooooaaaaa. 112

- 164 -

Index

- 165 -

	1. Introduction
	2. Basic Terms
	2.1. Inheritance
	2.1.1. Inheritance scheme
	2.1.2. Options of Methods Inheritance
	2.1.3. Options of Events Inheritance

	3. Versions
	4. How to work with Component Wizard
	4.1. How to create a Template ?
	4.2. How to create an Interface ?
	4.3. Modifying interfaces
	4.4. Interface Application
	4.5. Inheriting from a component
	4.6. Problems with inherintance
	4.7. Sharing a component
	4.8. Editing drivers
	4.9. Component Creation
	4.10. Distributing component

	5. User Interface
	5.1. Component Wizard Menu
	5.1.1. Options
	5.1.2. Properties
	5.1.3. Component manager
	5.1.3.1. Deleting components
	5.1.3.2. Exporting / Importing a component

	5.1.4. Inheritance Wizard
	5.1.5. Save Interface Dialog
	5.1.6. Save Template Dialog
	5.1.7. Revisions
	5.1.8. Create Component
	5.1.8.1. Import ANSIC example

	5.2. Startup menu
	5.3. Common page
	5.3.1. Component category

	5.4. Properties page
	5.4.1. Property List
	5.4.1.1. Feature link

	5.4.2. Fast Inheriting

	5.5. Global properties page
	5.6. Component Property type page
	5.7. Methods page
	5.8. Events page
	5.9. User types page
	5.10. Constants
	5.11. Drivers Page
	5.11.1. Driver Processing
	5.11.2. Macroprocessor
	5.11.2.1. Macroprocessor Denotation
	5.11.2.2. Macroprocessor Commands
	5.11.2.3. Predefined Macros and Directives
	5.11.2.4. Predefined global macros
	5.11.2.5. Predefined local macros
	5.11.2.6. Macros Defined From a Property

	5.11.3. TST file
	5.11.4. CHG file
	5.11.5. Edit code
	5.11.6. Driver editor

	5.12. Documentation page
	5.12.1. Help styles

	5.13. Interface info page
	5.14. Methods page
	5.15. Events page
	5.16. Templates page

	6. Component Viewer
	7. Tutorial Courses
	7.1. Tutorial, Course 1
	7.1.1. Tutorial, Course 1, Step 1: Specification of Component Function
	7.1.2. Tutorial, Course 1, Step 2 - Component Creation
	7.1.3. Tutorial, Course 1, Step 3 - Design of Properties
	7.1.4. Tutorial, Course 1, Step 4 - Design of Methods
	7.1.5. Tutorial, Course 1, Step 5 - Creating Driver
	7.1.6. Tutorial, Course 1, Step 6 - Editing Driver
	7.1.7. Tutorial, Course 1, Step 7 - Generating Help
	7.1.8. Tutorial, Course 1, Last Step - Installing Component

	7.2. Tutorial, Course 2
	7.3. Tutorial, Course 3
	7.3.1. Tutorial, Course 3, Step 1: Specification of Component Function
	7.3.2. Tutorial, Course 3, Step 2 - Component Creation
	7.3.3. Tutorial, Course 3, Step 3 - Inherited component selection
	7.3.4. Tutorial, Course 3, Step 4 - Interface Creation
	7.3.5. Tutorial, Course 3, Step 5 - Template Creation
	7.3.6. Tutorial, Course 3, Step 6 - Inheriting cycle
	7.3.7. Tutorial, Course 3, Step 7 - Inheriting again
	7.3.8. Tutorial, Course 3, Step 8 - Configuring component template
	7.3.9. Tutorial, Course 3, Step 9 - Design of Methods
	7.3.10. Tutorial, Course 3, Step 10 - Design of Events
	7.3.11. Tutorial, Course 3, Step 11 - Code writing
	7.3.12. Tutorial, Course 3, Last step - Generating help, Installing component

	7.4. Tutorial, Course 4
	7.4.1. Tutorial, Course 4, Step 1: Specification of Component Function
	7.4.2. Tutorial, Course 4, Step 2 - Component Creation
	7.4.3. Tutorial, Course 4, Step 3 - Design of Properties, Inheriting
	7.4.4. Tutorial, Course 4, Step 4 - Template and Interface Setting
	7.4.5. Tutorial, Course 4, Step 5 - Design of Methods
	7.4.6. Tutorial, Course 4, Step 6 - Design of Events
	7.4.7. Tutorial, Course 4, Step 7 - Code writing
	7.4.8. Tutorial, Course 4, Last step - Generating help, Installing component

	8. Component Wizard - Command line parameters
	9. Revision List

