
Interfacing a LabVIEW-driven DAQ instrument

with LabWare LIMS

Swati Lakhanpal

Submitted to the faculty of the School of Informatics

in partial fulfillment of the requirements

for the degree

Master of Science

in Laboratory Informatics

Indiana University

May 2007

 2

Master’s Thesis Committee

Mahesh Merchant, Ph.D.

Chair

Douglas Perry, Ph.D.

Silpa Wairatpanij, MS.

Accepted by the Faculty of Indiana University

in partial fulfillment of the requirements for the degree of Master of Science in

Chemical Informatics (Laboratory Informatics Specialization)

 3

ACKNOWLEDGEMENTS

I would like to thank everyone who has been a help at Indiana University-Purdue

University Indianapolis (IUPUI) throughout my two years at the School of Informatics.

I would like to thank Dr. Douglas Perry for his efforts in creating the Laboratory

Informatics program at IUPUI. I am grateful to Dr. Mahesh Merchant for the support and

encouragement that I received from him throughout this project. I am indebted to Silpa

Wairatpanij for his invaluable guidance and support right from the beginning of my work.

Many thanks go to the staff at School of Informatics, especially Ms. Mary O‘ Neill and

Ms. Elisabeth Hinshaw-Osgood.

Special thanks are due to LabWare for awarding me with the LabWare

Fellowship. I would like to mention a special thanks to my parents, sister and Sumit for

their whole-hearted support and encouragement throughout my program and I would like

to dedicate my thesis to them.

 4

ABSTRACT

The main purpose of this project is to automate information management and

analysis, as well as to integrate different types of data. We intend to interface data

acquisition (DAQ) instruments with LIMS by using LabVIEW
TM

.

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is graphical

programming software from National Instruments (NI). LabVIEW is the tool of choice

due to its unparalleled connectivity to instruments, powerful data acquisition capabilities,

natural dataflow-based graphical programming interface, scalability, and overall function

completeness and designed specially for data acquisition. NI has many kinds of DAQ

instruments that can be used with LabVIEW DAQ VI‘s (LabVIEW programs).

LabVIEW, plug-in data acquisition (DAQ) boards will help perform single point and

continuous measurements.

LabWare LIMS is able to interface to a variety of instruments using LabWare

LabStation module. Integrated LabStation is used to validate the results. The data used

and generated by the instruments using LabVIEW will be maintained by a LIMS.

 5

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. 3

ABSTRACT .. 4

TABLE OF CONTENTS .. 5

LIST OF FIGURES .. 6

LIST OF TABLES .. 7

INTRODUCTION .. 8

BACKGROUND .. 16

METHODS ... 18

RESULTS ... 31

CONCLUSION ... 44

DISCUSSION ... 45

REFERENCES ... 47

APPENDIX ... 48

 6

LIST OF FIGURES

Figure 1: Screen shot of the block diagram of VI ... 9

Figure 2: Screen shot of the front panel of VI .. 9

Figure 3: 'Function' palette in front panel ... 10

Figure 4: ‗Function‘ palette in block diagram .. 12

Figure 5: Screen shot of LabWare LIMS with Integrated LabStation 14

Figure 6: Project Outline ... 17

Figure 7: Block Diagram of the VI calculating random path and displacement of a

particle... 18

Figure 8: Screen shot of the block diagram for Case 1: Result Entry............................... 20

Figure 9: Screen shot of the block diagram for Case 2: Modify Sample 21

Figure 10: Screen shot of the block diagram for Case 3: Login Samples-Result Entry ... 22

Figure 11: Front panel of the LabVIEW-LIMS.VI ... 23

Figure 12: Flow chart representing logic behind importing results using

Sample.Sample_Number, Test.Analysis, Result.Name, Result.Entry 28

Figure 13: Flow chart representing the logic behind importing results using

Sample.Text_Id, Sample.Template, Test.Analysis, Result.Name, Result.Entry 30

Figure 14: CSV data file for Case 1: Result Entry.. 31

Figure 15: File Import Grid for Case 1: Result Entry ... 32

Figure 16: CSV data file for Case 2: Modify Sample ... 33

Figure 17: File Import Grid for Case 2: Modify Sample .. 33

Figure 18: CSV data file for Case 3: Login Samples-Result Entry 34

Figure 19: File Import Grid for Case 3: Login Samples-Result Entry 35

Figure 20: Screen-Shot for the Instruments added to LabWare LIMS 36

Figure 21: Instrument Configuration in LabStation.. 37

Figure 22: File Instrument Setup in LabStation .. 38

Figure 23: Parsing Script used to parse the raw data for Case 1: Result Entry 39

Figure 24: Assigning a raw data file to parse in LabStation ... 39

Figure 25: Screen shot of the raw data file used with LabStation 40

Figure 26: Screen-Shot of the Parser Interface with the Parsing Script used with raw data.

... 41

Figure 27: Screen-Shot of the Parsing Information from the Parser Interface. 42

Figure 28: Parsed raw data file from LabStation for Case 1: Result Entry 43

 7

LIST OF TABLES

Table 1: File headers for each of the three cases………………………………………...24

Table 2: Pre-defined fields in LabWare LIMS…………………………………………..25

 8

CHAPTER 1

INTRODUCTION

LabVIEW

LabVIEW is an acronym for Laboratory Virtual Instrument Engineering

Workbench. It is a computer software development application created by National

Instruments™ (Austin, Texas) that aims to aid scientists and researchers in gathering and

understanding data using computer programs. LabVIEW is graphical (G) programming

software that utilizes graphical objects to symbolize lines of code instead of text-based

languages. In the source code of this graphical program, data execution depends on the

flow of data. What may take days in C++ or Java written code is cut down to hours in G

programming. Moreover, LabVIEW has built a general purpose library of functions and

subroutines for most programming tasks. The time saved allows the user to fully focus

on and understand the data. Even though some type of programming experience is

useful, a novice in text-based programming language(s) can grasp the mechanics of

LabVIEW because it is a graphical programming language utilizing iconic symbols to

illustrate program action.

Operating LabVIEW

The building blocks of the LabVIEW program are called Virtual Instruments (VI).

The name comes from the fact that the program emulates the appearance and tasks of

physical instruments while still operating in the same capability as a text-based program.

There are three key components to any VI: the front panel, the block diagram, and the

icon and connector pane. The figures 1 & 2 below show the block diagram and the front

panel of a typical VI.

 9

Figure 1: Screen shot of the block diagram of VI

Figure 2: Screen shot of the front panel of VI

 10

Front Panel

The front panel is the VI‘s interactive interface built with controls (inputs) and

indicators (outputs) that replicate conventional instruments, like thermometer etc. It can

also represent the output in the form of graphs, charts, boolean, digital waveforms, and

other controls that may be found in the real world. The LabVIEW programmer can

simply drag and drop the input data to the panels using the mouse, wire them and get the

results on the front panel. Figure 3 illustrates the ‗Function‘ palette in the front panel.

Figure 3: 'Function' palette in front panel

Block diagram

The block diagram is the source code location for executing programs in

LabVIEW and is equivalent to text-based programming such as C++. The block diagram

has three central parts to its source code: nodes, wires, and terminals. This is the site

 11

where the wiring of graphical objects or terminals is connected to the functional nodes.

Terminals are the controls (inputs) and indicators (outputs) of the block diagram. When

compared with written source code, nodes are equal to statements, functions, and

subroutines. An example of a node may be an addition function or a while loop. The

addition function is considered a lower-level VI. It is part of the general purpose

LabVIEW library of functions and subroutines for programming tasks. Execution of the

program, with all three—nodes, terminals, and wires—can occur when wiring between

the terminals and nodes has been connected to designate the flow of data. The terminals

in the front panel have parallel terminals on the block diagram; thereby data continuously

flows from the interface in the front panel to the source code in the block diagram and

back to the interface. Figure 4 illustrates the ‗Function‘ palette in the block diagram.

Some subpalettes like Instrument I/O, Structures, Numeric, Array, Boolean, etc. are

subVIs which are used to perform subroutines like opening, closing, or inserting a

database.

Icon/Connector

An icon symbolizes a VI in another block diagram. When an icon is placed in a

foreign block diagram, it is there to act as a subroutine. A VI within another VI is called

a subVI and is considered a lower-level call. A subVI connects with a top-level VI by

means of a connector that passes data to outputs/indicators in the block diagram and

receives data from inputs/controls in the front panel of the lower call terminal. The icon

is the graphical representation of the subVI and may be likened to constraints of a

subroutine in written code. To function as a subtask in a top-level call, there must be an

icon and a connector.

 12

The LabVIEW graphical program is both hierarchical and modular. Top-level and

low-level calls, such as routines within a subroutine, are examples of this program‘s

hierarchical nature. Each subroutine, or subVI, can execute independently of the top-level

VI. A subVI can be built upon other subVIs.

Figure 4: ‘Function’ palette in block diagram

Laboratory Information Management Systems

Laboratory Information Management Systems (LIMS) are computer software that

is used in the laboratory for the management of samples, standards, laboratory users and

other laboratory functions. LIMS are generally targeted towards environmental, research,

 13

or commercial use, viz. pharmaceutical or petrochemical. The main goal of using LIMS

is to create an organization where:

 Instruments used in the laboratories can be integrated with LIMS and can receive

instructions, return the results back to LIMS where they can be stored.

 Laboratory users can perform calculations, document and review the results

received from integrated instruments and other resources.

 Management can supervise the laboratory process to ensure the regulatory

demands.

LabWare LIMS

LabWare LIMS is a customer-configurable LIMS with a variety of optional

modules. The use of modules allows the LIMS to integrate into any computing

environment. LabWare LIMS offers major capabilities for pharmaceutical companies that

help automate the laboratories. It is an object oriented application designed for Windows

users. It has a built-in scripting language called LIMS Basic, and therefore allowing the

user to configure the extensions. It also includes Database Management Utility that

allows records to be imported/exported to LIMS via .CSV files. Instrument interfacing is

accomplished in LIMS using the built-in LabStation module (discussed next). In this

project, the LabStation module is used with the LabWare LIMS.

LabStation
TM

 The integrated LabStation by LabWare LIMS is used for instrument integration. It

is a general-purpose instrument interfacing tool that can accept results from almost any

type of instrument and enter those results into LIMS automatically or upon user‘s review

and approval. The built-in instrument integration software assures regulatory compliance

 14

issues like 21 CFR Part 11. Title 21 Code of Federal Regulations (21 CFR Part11) applies

to records in electronic form that are created, modified, maintained, archived, retrieved,

or transmitted under any records requirements set forth in Agency regulations. Part 11

also applies to electronic records submitted to the Agency under the Federal Food, Drug,

and Cosmetic Act (the Act) and the Public Health Service Act (the PHS Act), even if

such records are not specifically identified in Agency regulations.

 LabStation offers various mechanisms to integrate various instruments to LIMS, such as:

 Serial RS-232 Communications (COM ports)

 File based Import

 Reports stored in the NuGenesis Unify/ Vision Product (Version 5.2 or higher)

Screenshot

Figure 5: Screen shot of LabWare LIMS with Integrated LabStation

There are fundamentally two types of instruments that can be used with LabWare

LIMS/LabStation: RS232 and file generating instruments. In this project, file based

instrument integration is used.

LabStation comes with a complete library of parsing functions that allows users to

use a parsing script for each type of instrument interface. It also provides a number of

pre-built parsing scripts for many popular brands of instruments. Once the result has been

 15

acquired, LabStation can apply a user-defined set of parsing instructions to parse out the

key result information that LIMS is expecting from the instrument.

 16

CHAPTER 2

BACKGROUND

Laboratory Information Management Systems (LIMS) are information

management systems designed specifically for the analytical laboratory. This includes

research and development (R&D) labs, in-process testing labs, quality assurance (QA)

labs, and more.

Originally, LIMS were developed in-house by organizations wishing to streamline

their data acquisition and reporting processes. In-house developed LIMS take

considerable time and resources to implement, therefore the need for a more immediate

solution helped drive LIMS to the next stage in the 1970s. Custom-built systems became

available during this time and were designed by independent systems development

companies to run in specific laboratories. These commercial systems, while typically

developed for a particular industry (such as the pharmaceutical industry), still required

considerable customization to meet a specific laboratory's needs. In 1990s open systems

emphasizing user configurability were launched. Today's commercial LIMS offer a high

degree of flexibility and functionality.

The rise of Informatics, coupled with the increasing speed and complexity of the

analytical instruments, is driving more sophisticated data manipulation and warehousing

tools that work hand-in-glove with LIMS to manage and report laboratory data with ever

greater accuracy and efficiency. Data collection from various instruments is a routine for

most of the laboratories.

The purpose of this thesis project is to create an interface between LabVIEW and

LabWare LIMS. LabVIEW program will be used to simulate the data from the

 17

instrument. The raw data will be parsed, and thus getting meaningful information that can

be stored in LIMS. LabStation is also used to parse the same raw data file generated by

LabVIEW, and therefore validating the results coming from LabVIEW (Figure 6).

Figure 6: Project Outline

 18

CHAPTER 3

METHODS

LabVIEW™ (Laboratory Virtual Instrument Engineering Workbench)

LabVIEW™ version 8.0 was used to build the LabVIEW-LIMS.VI. A

LabVIEW™ program – virtual instrument (VI) is written to produce random data that can

be used with LabWare LIMS. The VI has two significant parts. The first part of the VI

creates an example to acquire data from an instrument. In the first part, the VI calculates

the random path and the displacement followed by a particle (Figure 7).

Figure 7: Block Diagram of the VI calculating random path and displacement of a

particle

Since this data is to be used and stored in a LIMS system, it has to be formatted in

a way such that it can be parsed and read by LabWare LIMS. Therefore, in the second

part of the VI, the data is made compatible with LabWare LIMS system. The data

calculated in the first part of the VI is parsed, and written on a comma separated value

 19

(CSV) file, usually depicted as .CSV file. The details of parsing the data in LabVIEW are

discussed later in the chapter.

Following three different cases are defined in the second part of the VI. The data is

parsed depending on the case selected by the user.

Case 1: Result Entry

Case 2: Modify Sample

Case 3: Login Samples to Result Entry

The details of each case are discussed below:

Case 1: Result Entry

This case is selected if the user wants to assign tests and enter results for a range

of defined sample numbers. In this case, the samples should be logged in manually by the

user in LabWare LIMS. Before executing the VI, the user needs to define few field

values which will be used by the program to parse the raw data, so that it is ready to store

in LIMS. The user needs to define the sample beginning and the ending number for the

result entry, select the ‗test analysis‘ from the list on the front panel, and define the file

path where the formatted data file will be saved. The test analysis ‗LABV_DATA‘ and

‗DATA‘ are predefined in LabWare LIMS. The test analysis – DATA is used by default.

The sample beginning and ending numbers and the file path can be defined on the front

panel. The result name is also needed to import the results in LIMS. In this case, the

result name is set to default - ‗DISPLACEMENT‘ (because the calculation is not

changing in any case, and it‘s known that displacement results are imported). The final

form of the data file is shown in Figure 14. The screen shot of the block diagram for this

case is shown in Figure 8.

 20

Figure 8: Screen shot of the block diagram for Case 1: Result Entry

Case 2: Modify Sample

This case is selected if the user wants to modify any sample that has already been

logged in LabWare LIMS. In this case, the sample location and/or the assigned operator

can be modified by defining the sample number. Before executing the VI, the user needs

to define few field values which will be used by the program to parse the raw data, so that

it is ready to store in LIMS. The user needs to define the sample number that is to be

modified, select the ‗sample location‘, the ‗assigned operator‘ from the list on the front

panel, and define the file path where the formatted data file will be saved. The Sample

Locations: WK316 and Laboratory; Assigned Operator: System, Swati, Lab User; are

predefined in LabWare LIMS. There can be a case where the user wants to modify only

the sample location and not the assigned operator. In this case the user can select the new

 21

sample location from the front panel, and keep the assigned operator unchanged. No field

value can be left blank. The screen shot of the block diagram for this case is shown in

figure 9. The final form of the data file is shown in figure 16.

Figure 9: Screen shot of the block diagram for Case 2: Modify Sample

Case 3: Login Samples to Result Entry

By selecting this case, the user can perform major functions with one .CSV

extension file. The user can log a sample, assign tests, and enter results using one data

file. The user needs to define the sample text_Id, select the sample template, sample

customer, test analysis from the list on the front panel, and define the file path where the

formatted data file will be saved before executing the VI.

Since the sample does not yet exist, proxy identification of the text id for the

sample is required in order to specify which records belong to same sample. The Sample

 22

Customer: WK316 and LAB; Sample Template: LV_DATA, TRY; Test Analysis:

DATA is predefined in LabWare LIMS. The result name (DISPLACEMENT) is set to

default, and the Result Entry is the actual data. The information entered before executing

the VI is used to parse the raw data, such that it is ready to be stored in LIMS. The screen

shot of the block diagram for this case is shown in figure 10. The final form of the data

file is shown in figure 18.

Figure 10: Screen shot of the block diagram for Case 3: Login Samples-Result Entry

Figure 11 shows the screenshot of the front panel of LabVIEW-LIMS.VI. It can

be seen from the screen shot that the user can select the case from the front panel and fill

the required field values. The field values like sample beginning and ending number,

sample number for modification, test analysis, sample customer, sample location etc. can

be entered in the front panel.

 23

Figure 11: Front panel of the LabVIEW-LIMS.VI

Details of the Data file: As mentioned before, the raw data is parsed such that it

can be read and imported to LabWare LIMS. The procedure and approach used to import

the results file is discussed in the next section. The data file is formatted; the headers are

added to the .CSV file and saved by the VI in the directory from where it can be imported

to LabWare LIMS. The first line of the file contains the table and field names separated

by commas. For example, Sample.Sample_Number is used to indicate the sample number

field in the sample table. The lines following the first line contain the data corresponding

to the table and field names where data is separated by commas.

 24

Three different headers are used for the three cases, and therefore, there is a different file

format for each case (Refer Table 1).

Cases File Headers

Case 1 Result Entry Sample.Sample_Number,Test.Analysis,Result.Name,Result.

Entry

Case 2 Modify Sample Sample.Sample_Number,Sample.Location,Sample.Assigned

_Operator

Case 3 Log-in

Samples to

Result Entry

Sample.Text_ID,Sample.Template,Sample.Customer,

Test.Analysis,Result.Name,Result.Entry

Table 1: File headers for each of the three cases

LabWare LIMS

LabWare LIMS version 5.0 is used to store the results from LabVIEW
TM

. The

data is imported using the .CSV data file from LabVIEW
TM

. The user can perform major

functions using one file. Also, results can be entered automatically in one instance. As

mentioned before, some field values are pre-defined in LabWare LIMS, and the same

field values are used in LabVIEW so that the data can be integrated. The following table

shows the field names that are pre-defined in LabWare LIMS (Table 2).

Importing Files to LabWare LIMS

The files can be imported in two ways into LIMS, either, by manually selecting

the file path each time we want to import the data, or automating this process.

To import the files manually, select the desired file. The import files must have an

extension of .CSV. The selected file will be parsed and the data will be displayed in the

Import File Dialog. If an error occurs during parsing, it will be displayed in the Error

Message field. If the operation finishes successfully, the .CSV file is renamed with an

extension of .ARK and located in the same directory as the .CSV file. If an error occurs

on any record in the file, the entire operation fails and no data is imported.

 25

TABLE NAME FIELDS

Analysis DATA

Analysis Type READ_DATA

Common Name LABVIEW-DATA

Customers LAB, WK316

Instruments DAQ_INST, LABVIEW, LV-LIMS

LabStation LAB-LAKH

Lists INST_GRPS – LV driven DAQ inst.

Parsing Scripts MY_SCRIPT

Sample Login Template LV_DATA, TRY

Test List LABV_DATA

Sample ID Configuration Sample Number

Table 2: Pre-defined fields in LabWare LIMS

The .CSV file is renamed with an extension of .ERR and another file is created

with an extension of .LOG, which contains the error message. The importing of files can

be set as an automatic process on any LIMS client PC. To set a client PC for automatic

importing, the following steps were followed:

1. Select ―System‖ from the ―Configure‖ menu, then Select ―Client‖.

2. Set the ―File Import Directory‖ to the drive and path where the CSV files will be

located (in this project: C:\LW-LIMS-V5\LW-LIMS_LAKHANPAL)

3. Set ―Import files‖ to ‗Yes‘ for automatic operation.

4. Click on OK to confirm the settings.

 26

LIMS client PC will now poll for CSV files in the background and process them

without user prompting or interaction. The activity is indicated by the status pane of the

main menu. Again, the completion of any importing can be verified by the CSV file

being renamed with an ARK extension, or ERR and LOG extensions.

File Import Logics

Results can be imported by using different logics and result values. In this project,

the results are imported using three different file formats. Now we discuss the logic

behind setting result values using three different the import file structures.

Case 1: Result Entry

The following flow chart represents the logic behind importing results using

Sample.Sample_Number, Test.Analysis, Result.Name, Result.Entry (Figure 12).

The import parser must distinguish between records that are intended to update

information on a sample. If the Sample Number is valid, then the fields will be updated

on the specified sample. If the Sample Number is not valid, an error will be generated.

Similarly, when importing the data in the above mentioned format, it should be made sure

that the test details exist and that the right tests are added to the right sample. Each test is

identified by Test.Analysis field. In this case, Test.Analysis is used for the results entry;

therefore, a match is first attempted on the Analysis Names on the sample, then on the

Alias Names of the Analyses on the Sample. Also for the result entry data, each result

must be identified by the Result.Name field. Anytime the Result.Name is specified, a

match is first attempted on the result names on the tests assigned to that sample, then on

the Alias Names of the results on the tests assigned to that sample.

 27

If the Result.Name is not found then the sample is searched for a result that has a

result alias that matches the name in the import file. If the Result.Name does not match

any of the existing results on the specified test, it is added to the test as an ad-hoc result if

the matching test has a status of incomplete. If the Result.Name does not match any of

the existing results on the specified test and all matching tests have status of complete

then a new test matching the name in the import file is added, and an ad-hoc result is

added to that test and selected for update. The new ad-hoc result added to the test will not

be reportable. It can be made reportable by adding the Result.Reportable field to the

import file and setting its value to ‗T‘.

Case 2: Modify Sample

The import parser must distinguish between records that are intended to update

information on a sample. If the Sample Number is valid, then the fields (Sample

Location, Assigned Operator) will be updated on the specified sample. If the Sample

Number is not valid, an error will be generated.

 28

Figure 12: Flow chart representing logic behind importing results using

Sample.Sample_Number, Test.Analysis, Result.Name, Result.Entry

Case 3: Login Samples to Result Entry

The flow chart in figure 13 represents the logic behind importing results using

Sample.Text_Id, Sample.Template, Test.Analysis, Result.Name, Result.Entry. Since in

this case, the sample does not yet exists, proxy identification of the text id for the sample

is required in order to specify which records belong to the sample. Either its Sample

Number or Text ID must identify each sample. If the Text ID is valid, then all remaining

 29

fields will update information on the specified sample. These fields can be sample, test,

or result fields. If a sample template has been specified, then the record will log a new

sample. If a sample is being logged and a Text ID was specified, this Text ID will be used

for the new sample if the sample template contains the Text ID field as a user entry field.

Otherwise, the Text ID is treated as proxy identification for the records in the import file

and is only used for that purpose. In either case, the import parser grid will display the

actual Text ID for the new sample. If neither Sample Number nor Text ID is specified,

and a sample template is not specified, an error is generated. Each test is identified by

Test.Analysis field. In this case, Test.Analysis is used for the results entry, therefore, a

match is first attempted on the Analysis Names on the sample, then on the Alias Names

of the Analyses on the Sample. Also for the result entry data, each result must be

identified by the Result.Name field. Anytime the Result.Name is specified, a match is

first attempted on the result names on the tests assigned to that sample, then on the Alias

Names of the results on the tests assigned to that sample. If the Result.Name is not found

then the sample is searched for a result that has a result alias that matches the name in the

import file. If the Result.Name does not match any of the existing results on the specified

test, it is added to the test as an ad-hoc result if the matching test has a status of

incomplete. If the Result.Name does not match any of the existing results on the specified

test and all matching tests have status of complete then a new test matching the name in

the import file is added, and an ad-hoc result is added to that test and selected for update.

The new ad-hoc result added to the test will not be reportable. It can be made reportable

by adding the Result.Reportable field to the import file and setting its value to ‗T‘. It

 30

should be made sure that the sample status must not be canceled, authorized or rejected

for any of the case, because no change is permitted to these samples.

Figure 13: Flow chart representing the logic behind importing results using

Sample.Text_Id, Sample.Template, Test.Analysis, Result.Name, Result.Entry

 31

CHAPTER 4

RESULTS

LabVIEW
TM

 & LabWare LIMS

Figure 14 shows the results of the .CSV data file for Case 1: Result Entry. The

information entered in the front panel, like Sample beginning number, Sample ending

number, Test Analysis, Result Name is used to parse the raw data generated by

LabVIEW.

Figure 14: CSV data file for Case 1: Result Entry

 32

The following field values were entered in the front panel:

Sample Beginning Number = 137, Sample Ending Number = 149,

Test Analysis = DATA, Result Name = Displacement (it is set to default).

Figure 15: File Import Grid for Case 1: Result Entry

The data file shown in figure 14 is imported to LabWare LIMS. Figure 15 shows

the Import grid of LabWare LIMS for Case 1. There is no ‗Error Message‘; therefore, the

results are ready to be stored in the LIMS.

Figure 16 shows the results of the .CSV data file for Case 2: Modify Sample. The

information entered in the front panel, like Sample number for modification, Sample

Location, Assigned Operator is used to parse the raw data.

The following field values were entered in the front panel:

Sample Number for Modification = 155, Sample Location = Laboratory,

Assigned Operator = System.

 33

Figure 16: CSV data file for Case 2: Modify Sample

The data file shown in figure 16 is imported to LabWare LIMS and the Import

Grid is shown in figure 17. There is no ‗Error Message‘; therefore, the results are ready to

be stored in the LIMS.

Figure 17: File Import Grid for Case 2: Modify Sample

Figure 18 shows the .CSV data file for Case 3: Login Samples-Result Entry.

The following field values were entered in the front panel and where used to parse the

raw data:

 34

Sample Beginning Number = 1, Sample Ending Number = 25, Sample Template =

LV_DATA, Sample Customer = WK316, Test Analysis = DATA,

Result Name = Displacement.

Figure 18: CSV data file for Case 3: Login Samples-Result Entry

The data file shown in figure 18 is imported to LabWare LIMS and the Import

Grid is shown in figure 19. There is no ‗Error Message‘; therefore, the results are ready to

be stored in the LIMS.

 35

Figure 19: File Import Grid for Case 3: Login Samples-Result Entry

If an error occurs during parsing, it will be displayed in the Error Message field.

If the operation finishes successfully, the .CSV file is renamed with an extension of

.ARK and located in the same directory as the .CSV file. If an error occurs on any record

in the file, the entire operation fails and no data is imported. The .CSV file is renamed

with an extension of .ERR and another file is created with an extension of .LOG, which

contains the error message.

LabStation
TM

The main purpose of using LabStation is to validate the results from LabVIEW.

The raw data generated by LabVIEW-LIMS.VI is used with LabStation, and the standard

procedure as explained below is followed to parse the raw data in LabStation. LabStation

has a huge library of parsing commands that can be used to parse the data collected from

various instruments connected to LabWare LIMS. Therefore, the parsed output file from

 36

LabStation should be similar to the parsed output file generated by LabVIEW for proper

validation.

File based instrument integration is used with LabWare LIMS. The instrument is

added to the instrument table in LIMS. Figure 20 shows the screenshot for the

instruments defined in LIMS. Instruments: DAQ_INST, LABVIEW, LV-LIMS are

already added to the LIMS instrument table. ‗Instrument Group: LABVIEW‘ was defined

for each instrument defined in LIMS. The ‗Instrument Group‘ is used to tag the

information with LabStation to configure the instrument.

Figure 20: Screen-Shot for the Instruments added to LabWare LIMS

‗Instrument Group‘ was defined for each instrument defined in LIMS. The

‗Instrument Group‘ is used to tag the information with LabStation to configure the

instrument. This Instrument is now configured in LabStation. Select ‗Instrument

 37

Configuration‘ and add the instrument (Figure 21). Instrument Type is defined as

‗LABVIEW‘, the source is selected as ‗FILE‘, the instrument holds ‗Jobs‘, parsing script-

‗MY_SCRIPT‘ is selected.

Since the source is defined as ‗File‘, the user also needs to further define the ‗File

Instrument Setup‘. In the file instrument setup, the full path name for the data file is

defined and the polling time is set to 0 (Figure 22).

Figure 21: Instrument Configuration in LabStation

A job is created manually that requests for data. These requests are passed along

to the instrument queue to await data from the instrument. Samples are added to the Job.

First job/samples are assigned to an instrument queue in order to acquire data, then the

 38

job/sample is selected and ‗Assign Raw Data File‘ is selected from the Edit menu (Figure

24). This will open a file selection dialog. Select the appropriate file, and the data is

assigned to the selected Job/Sample(s). Now the data is parsed, and the status of the

Job/Sample changes from incomplete to complete. The screenshot of the parsing script

used is shown in Figure 23. The parsed data is saved in a new file named Limsdata.raw.

Figure 22: File Instrument Setup in LabStation

 39

Figure 23: Parsing Script used to parse the raw data for Case 1: Result Entry

Figure 24: Assigning a raw data file to parse in LabStation

 40

Since the parser interface is not very user friendly in LabStation, only one parsing

script is defined and that is for Case 1 (Result Entry). Therefore, LabStation can be used

to enter the results for the samples that are already logged in LIMS, whereas, LabVIEW

is used to parse the data for each case.

Figure 25 shows the screen shot of the raw data generated by LabVIEW that will

be parsed in LabStation. This raw data file will be parsed and put in a .CSV extension file

so that the results can be imported and stored in LabWare LIMS. Figure 26 shows the

screen shot of a portion of the parser interface in LabStation. Figure 27 shows the screen

shot of a portion of the parser interface that includes the test file, and the parsing

information interface.

Figure 25: Screen shot of the raw data file used with LabStation

 41

Figure 26: Screen-Shot of the Parser Interface with the Parsing Script used with

raw data

 42

Figure 27: Screen-Shot of the Parsing Information from the Parser Interface

The final form of the parsed raw data file is shown in figure 28, which is similar

to the output file from LabVIEW for Case 1, and therefore completes the validation.

 43

Figure 28: Parsed raw data file from LabStation for Case 1: Result Entry

 44

CHAPTER 5

CONCLUSION

This project interfaces LabWare LIMS with LabVIEW. The different type of data

is integrated using LabVIEW and the results are validated using LabStation.

The LabVIEW-LIMS.VI is an easy to use program that can login samples, modify

samples and enter results in LabWare LIMS using one comma separated value data file.

The user needs to select few field values from the front panel depending on the case

selected, and then LabVIEW parses the raw data and writes it to a file that is

automatically imported and stored in LabWare LIMS. Using LabVIEW created .CSV

data file, the user can now continuously enter, store results and/or update any sample

information in the LIMS system automatically. By pre-defining fields in LIMS, viz.,

sample template, users, customers and other relevant features that can be anchored with

the sample information, the user can skip all other steps, and can directly review,

approve, authorize or reject samples right after importing the results in LIMS.

The user does not have to follow the standard steps in LIMS and can login

samples, assign tests, enter results, modify samples automatically that leads to automated

information management. The first part of the VI can be replaced by any instrument and

can be used in conjunction with the second part of the VI.

Future Work:

This project can be continued further by using different instrument integration types

(RS232, COM Ports) in LabStation. As mentioned in the discussion this project can be

configured as per the requirements mandated by the regulatory agencies.

 45

CHAPTER 6

DISCUSSION

The results demonstrate the utility of LabVIEW
TM

 to make data files that are

compatible with LabWare LIMS and hence, the results and other sample information can

be stored automatically in LIMS system.

The integrated LabStation by LabWare LIMS is used for the validation of the

results from LabVIEW. LabStation is used for file based instrument integration to store

results in LIMS. The raw data generated by LabVIEW is parsed using a parsing script in

LabStation and the results are stored in LabWare LIMS.

The main purpose of using LabStation is to validate the results generated by

LabVIEW. Also, we discuss the user interface and functionalities of these two softwares.

It is observed that parsing the data in LabVIEW is easier compared to parsing the same

data in LabStation. The LabStation parser interface offers a huge number of parsing

commands. However, they are not very direct to use and the parsing interface is not very

user friendly. LabStation is a product of LabWare, still, there is no command or pre-

defined parsing script that can be used for any standard instrument integration to make a

raw data file into .CSV file or ASCII text files and thus compatible with LabWare LIMS.

The advantage of using LabVIEW is that it is not limited to any number of RS232

connections and can acquire data from a number of instruments at the same time, whereas

LabStation can acquire data from one instrument at a time. Also, LabVIEW can interface

with any instrument on a network.

 46

In this project, the field values are pre-defined in LabWare LIMS. To integrate

LIMS with LabVIEW same fields are defined in the VI. For better data flow, the VI can

be configured such that it can pull the data from LIMS database, and can update the

required fields in LabVIEW VI.

The other important issue in interfacing LabVIEW with LabWare LIMS is the use

of data file (results) in a regulatory environment. In this project, the data file is stored in a

drive on the system therefore; it can be easily changed or edited by anyone using the

system. In a regulatory environment, the Universal Naming Convention (UNC) should be

used. In a network, the UNC is a way to identify a shared file in a computer without

having to specify (or know) the storage device it is on. In Windows operating systems,

and possibly other operating systems, the UNC can be used instead of the local naming

system (such as the DOS naming system in Windows). UNC specifies a common syntax

to describe the actual location on a network resource; such as a shared file, folder or

printer. In the second part of the VI where the raw data is parsed, the date and time when

the data is generated is not recorded. In this project, only the date and time when the data

is stored in LIMS is recorded. When working in a regulatory environment, it is essential

to record when the data was generated and when it was stored. Therefore, the VI needs

some configuration so that it can be used in a regulatory environment.

 47

REFERENCES

1.) Bishop, Robert. National Instruments Learning with LabVIEW 7 Express.

Upper Saddle River, NJ: Pearson Education, Inc., 2004.

2.) ―An Introduction to LIMS‖:

 Available: http://www.limsource.com/intro.html

3.) LabWare LIMS Customer Support

 Available: http://www.labware.com/LWCustomerHomePage.NSF

4.) LabWare LIMS Version 5 User Guide

Available: http://www.labware.com/LWCustomerHomePage.NSF

5.) LabStation Version 1 User Manual

Available: http://www.labware.com/LWCustomerHomePage.NSF

6.) Universal Naming Convention

Available:

http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci214159,00.html

http://www.limsource.com/intro.html
http://www.labware.com/LWCustomerHomePage.NSF
http://www.labware.com/LWCustomerHomePage.NSF
http://www.labware.com/LWCustomerHomePage.NSF
http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci214159,00.html

 48

APPENDIX

SWATI LAKHANPAL
 835 Camp Street, Phone: 317-603-2860

 Indianapolis, IN 46202. Email: slakh11@yahoo.com

OBJECTIVE

To obtain a full-time position in Laboratory Informatics.

EDUCATION

Master of Science, Chemical Informatics (Specialization Laboratory Informatics),
Indiana University, Indianapolis, IN

GPA: 3.90 /4.0, Expected graduation: December 2006

Thesis Topic: Task level programming of Zymate
TM

 laboratory robot using LabVIEW

Bachelor of Engineering, Department of Chemical Engineering & Technology, Panjab University,

Chandigarh, India

GPA: 3.40/4.0 (First class) Graduation: May 2003

Undergraduate Project: Removal of Toxics from Industrial Waste Water

WORK EXPERIENCE
Intern, Lab Rat Software Systems, Indianapolis, September 2006 till present

Potential duties include system testing, user documentation development, usability studies, method development

and integration studies.

Graduate Research Assistant, Indiana University, August 2005 till present

Interfacing LabVIEW driven DAQ instrument with LabWare LIMS

Graduate Teaching Assistant, Indiana University, January 2005 – May 2005

Held weekly study sessions, grading quizzes in Chemistry.

Tutor, Math Assistance Centre, Indiana University, January 2005 – July 2005

Graduate Engineer Trainee, Gurdarshan Leathers Limited, India, August 2003- June 2004

Design of an effluent treatment plant and the removal of toxics from industrial wastewater.

Summer Intern, Rallis India Ltd., India, May - June 2003

Industrial waste water management system, setup of the new waste water recycle system, and a brief study

of the effects of pesticides pollution in the environment.

Practical Surveying Training, Jagatjit Distilleries, Hamira, India, Jun 2002

Educational Training, India International Trade Fair (IITF), New Delhi, India, Dec 2002

LABORATORY INFORMATICS PROJECTS

Scientific Data Management & Analysis- National Cancer Institute Dataset: Database was populated by

parsing the records of interest from the files in the dataset, the data was then analyzed and visualized using

Spotfire. LabTrack, CyberLab and Waters NuGenesis eLab Notebook was also used.

LIMS for Gel-Electrophoresis of DNA: Application of LabWare and LabVantage Sapphire for developing the

Gel-Electrophoresis LIMS system.

Programmatically Controlling the Zymate
TM

 Laboratory Robot: LabVIEW was used to develop joystick

code for complete control of 4-axis of the Zymate
TM

 robot.

AWARDS
Inaugural Recipient of the LabWare Fellowship for Innovation in Laboratory Informatics, 2005-2006

PRESENTATIONS

―Scientific Data Management & Analysis: National Cancer Institute‖, School of Informatics, Indiana

University Purdue University, Indianapolis, December 2005.

―Programmatically Controlling the Zymate
TM

 Laboratory Robot‖, School of Informatics, Indiana

University Purdue University, Indianapolis, December 2005.

 49

―Information Architecture of the Web As It Relates To Chemical Informatics‖, School of Informatics,

Indiana University Purdue University Indianapolis, May 2005.

―Pre-Hospital Patient Data from the Marion County Patient Database: Database design, HIPAA Security,

Products in Market, Problems and Future Work‖, School of Informatics, Indiana University Purdue

University Indianapolis, May 2005.

―FTC and the Internet: Advertising and Marketing on the Internet‖, School of Informatics, Indiana

University Purdue University Indianapolis, April 2005.

―Website Analysis: NIST Chemistry Workbook‖, School of Informatics, Indiana University Purdue

University Indianapolis, April 2005.

―URL Spoofing‖, School of Informatics, Indiana University Purdue University Indianapolis, February

2005.

―Next Generation Search Tools‖, School of Informatics, Indiana University Purdue University

Indianapolis, February 2005.

―Design of a green house for off season growth‖, Department of Chemical Engineering and Technology,

Panjab University, March 2003.

―Expanded Foam Molding‖, Department of Chemical Engineering and Technology, Panjab University,

November 2002.

SKILLS

LabWare, LabVantage Sapphire

eLab Notebook: Waters eLab Notebook, LabTrack, CyberLab

Molecular Modelling: Spartan, SYBYL

Software: Spotfire, ChemDraw, Total Chrom

Computer Languages: LabVIEW

MEMBERSHIPS

Member of Indian Institute of Chemical Engineers

Member of Indian Society of Plastics

REFERENCES

Available on request

