
IBM ILOG OPL V6.3

IBM ILOGOPL Interface User's
Manual

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

COPYRIGHT NOTICE

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Acknowledgement

The language manuals are based on, and include substantial material from, The OPL
Optimization Programming Language by Pascal Van Hentenryck, © 1999 Massachusetts
Institute of Technology.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Interfaces User’s Manual...5
Introduction..7
About the Interfaces User's Manual..8
Using the C++ interface..9
The Java interface..11

Overview of the Java interface..12
Object creation and factories..13
Memory management...14
Compatibility with Java CPLEX...15
Compatibility with CP Optimizer Java interface...16
Deployment of Java applications...17

The .NET interface...19
Overview of the .NET interface...20
Object creation and factories..21
Memory management...22
CPLEX goals...23
Compatibility with .NET CPLEX..24
Compatibility with CP Optimizer .NET interface..25
Deployment of .NET applications (Windows only)..26

Tutorial..27
Overview of the Tutorial..28
Creating an OPL model..29
Specifying a data source..32

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Generating the Concert model...33
Solving the model...34
Accessing the solution..35
Using run configuration and projects..36

Working with OPL interfaces..39
Using OPL model instances...41

Overview...42
The model definition..43
The data..45

Services on solutions...46
Custom data sources...47
Accessing elements...51

Accessing model elements...52
Iterating through OPL elements..54

Settings..56
Postprocessing solutions..57
Error handling...59
Debug mode...60
Printing data to a stream..61
Integrating OPL with Excel using Visual Studio Tools for Office...62
Memory management..70

Index..71

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L4

Interfaces User’s Manual

IBM® ILOG® OPL Interfaces enable users to integrate OPLmodels with IBM ILOG Concert.
They are available in the C++, Java, and .NET programming languages. This manual provides
a tutorial approach to using these application programming interfaces (APIs), and should
be used in conjunction with the Interfaces ReferenceManual for the language you are using.

In this section

Introduction
Explains how to use the C++, Java, and .NET libraries to integrate OPL models with IBM®
ILOG® Concert Technology. The introduction to the C++, Java, and .NET interfaces stresses
the specificities for each language.

Tutorial
Shows how to write basic code to create a simple OPL model from a model definition file
and a model data file. The model is solved using CPLEX through the Concert API. Each step
is illustrated by a code sample in each language.

Working with OPL interfaces
Explains in more general terms how to work with the OPL C++, Java and .NET Interfaces.
This section is also illustrated by code samples for each language.

© Copyright IBM Corp. 1987, 2009 5

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L6

Introduction

Explains how to use the C++, Java, and .NET libraries to integrate OPL models with IBM®
ILOG® Concert Technology. The introduction to the C++, Java, and .NET interfaces stresses
the specificities for each language.

In this section

About the Interfaces User's Manual
Provides a short overview of the purpose of the OPL interfaces, the design principles
underlying them, and material you should read before using this manual.

Using the C++ interface
Explains how to compile and build an application that uses OPL C++ interfaces. For details,
see the C++ API Reference Manual.

The Java interface
Presents the Java API delivered with IBM® ILOG® OPL. For details, see the Java API
Reference Manual.

The .NET interface
Presents the .NET API delivered with IBM® ILOG® OPL. For details, see the .NET API
Reference Manual.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 7

About the Interfaces User's Manual

IBM® ILOG® OPL Interfaces enable users to integrate OPLmodels with IBM ILOG Concert.

These interfaces are available in the C++, Java, and .NET programming languages. Each
of these application programming interfaces (APIs) is documented in the Interfaces Reference
Manual for that language, accessible from the table of contents.

Before you start
Before reading this manual, we recommend that you read the part about Languages and
APIs in the CPLEX User's Manual, which presents IBM ILOG Concert for the various
programming languages. IBM ILOG Concert is used by both solving engines, CPLEX® and
CP Optimizer.

Also make sure you read How to read the OPL documentation for details of prerequisites,
conventions, documentation formats, and other general information.

When to use the API
The recommended approach to modeling and solving a problem is to start with the IBM
ILOG OPL IDE.

Later, you may wish to use an API to extend your model.

Design principles
The design principles for the OPL interfaces are:

♦ separate the model from the solver

♦ instantiate the same OPL model with different data

♦ allow Concert to access and modify the model

♦ provide data easily

♦ access data and results

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L8

Using the C++ interface

The C++ API of OPL is based on the C++ Concert Technology, on the CPLEX® C++ API,
and on the CP Optimizer API which are themselves based on Concert Technology. For more
information, see the Concert Reference Manual.

Microsoft limitation: The C++ OPL API (VS 2005 and VS 2008) example projects
contain a post-build event specified as

Important:

mt.exe /nologo -outputresource:$(TargetFileName);1 -manifest
examples.manifest

This event is required for C++ applications compiled with Visual Studio 2005 and
2008. By default, all applications built with these versions of Visual Studio are
built as isolated applications with a manifest, either embedded as a resource, or
accompanying the final binary as an external file. Sometimes the manifest
generated automatically is not correct. In this case, you need to force generation
of the right manifest.

To compile and build an application that uses OPL C++ interfaces:

1. Include the directory of header files:

<OPL_dir>\include

2. Link with the following IBM ILOG libraries:

AIX librariesUnix libraries except AIXWindows libraries

concert.aconcert.soconcert.lib

cp.acp.socp.lib

cplex <version_number> .acplex <version_number> .socplex <version_number> .lib

dbkernel.adbkernel.sodbkernel.lib

dblnkdyn.adblnkdyn.sodblnkdyn.lib

iljs.ailjs.soiljs.lib

ilocplex.ailocplex.soilocplex.lib

ilog.ailog.soilog.lib

opl.aopl.soopl.lib

These libraries are in the following directory:

<OPL_dir>\lib\<port_name>\<format>

where <OPL_dir> is your installation directory.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 9

3. Make sure the following directory is in your PATH (on Windows), LIBPATH (AIX
platforms), or LD_LIBRARY_PATH (other Unix platforms) environment variable:

<OPL_dir>\bin\<port_name>\<format>

It contains the shared libraries (Windows .dll and Unix .so or .a files) that
applications need to run. When you install OPL on Windows, this directory is added
to the PATH, LIBPATH, or LD_LIBRARY_PATH variable.

4. Set your environment variables.

♦ On Windows, make sure that the path

<OPL_dir>\bin\<port_name>

is in your PATH environment variable, so that the shared libraries are found.

♦ On Unix, make sure that

<OPL_dir>\bin\<port_name>

is in your LIBPATH or LD_LIBRARY_PATH environment variable, so that the shared
libraries are found.

To see the solution in your file, you have to force the flush of the output
stream, using

Note:

cout<<endl;

For more information and examples on how to use Concert Technology, as well as the
CPLEX® and CP Optimizer APIs for Concert Technology, see the Concert, CPLEX
and CP Optimizer documentation.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L10

The Java interface

Presents the Java API delivered with IBM® ILOG® OPL. For details, see the Java API
Reference Manual.

In this section

Overview of the Java interface
Presents a high-level overview of the OPL Java interface.

Object creation and factories
Describes the usage of constructors in the OPL Java interface.

Memory management
Provides information on memory management while using the OPL Java interface.

Compatibility with Java CPLEX
Describes the relationship of the ilog.concert and ilog.cplex packages with their
equivalent packages in IBM® ILOG® CPLEX® .

Compatibility with CP Optimizer Java interface
The Java interface is fully compatible with the CP Optimizer Java interface

Deployment of Java applications
Provides information on how to deploy an application that uses the OPL Java interface.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 11

Overview of the Java interface

The Java interface offers basically the same functionality as the C++ one.

The Java API is split into several packages:

♦ The ilog.concert package contains the Concert modeling API, for modifying models.

♦ The ilog.cp package contains the CP Optimizer control API, for controlling the solving
process of constraint programming models.

♦ The ilog.cplex package contains the CPLEX® control API, for controlling the solving
process of mathematical programming models.

♦ The ilog.opl package contains the OPL control API, for loading and accessing models.

The Java API is written as a JNI wrapper on the equivalent C++ libraries; it offers the same
functionality as the C++ API.

Each call to a method of the API goes through a wrapping layer. This may result in a slight
performance overhead while themodel is created, compared to using the C++API, depending
on the number of API function calls. Since you call only few API functions to load and solve
your model, the overhead is negligible in usual cases, but it may become important if you
use the low-level Concert, CP Optimizer, or CPLEX API for a complete model creation (for
example, constructing a matrix line by line using IloNumExpr APIs or adding IloConstraint
objects one by one to an IloModel using the API). It is therefore recommended to use the
OPL language to model your problems whenever possible, and use only the low-level Concert
APIs for the parts that need it (runtime additions, etc.).

Once created, the model is still solved fully in C++, so there is no loss of performance when
solving models, whatever language you choose.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L12

Object creation and factories

The C++ API allows you to create objects using a constructor. To provide greater flexibility
and allow for evolution, the Java API uses a “Factory” pattern: objects are created by calls
to the methods of a root object. For example, you create OPL objects using the methods of
the class IloOPLFactory.createOPLModel, IloOPLFactory.createCPLEX, and so on. Similarly,
you create Concert modeling constructs using the methods of the class IloMPModeler
(implemented by the IloCplex class): numVar, range, minimize, and so on.

For example, the following code lines create an instance of IloNumVar:

IloMPModeler modeler=new IloCplex();
IloNumVar var=modeler.numVar(0,10);

The Concert C++modeling API works by redefining operators to provide a compact notation
for common constructs. In Java, the equivalent constructs are created through regular
methods of IloModeler: ge, eq, prod, and so on.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 13

Memory management

The Java garbage collector usually takes care of the memory allocated by Java objects.
However, since the OPL Java API allocates memory in C++ as well, the memory management
is slightly different. When you use the OPL Java API, the first object you create is always
the OPL factory. Then, you use the OPL factory to create all other objects. All the C++
memory is allocated on an internal heap of the IloOplFactory object and cleaned up by a
call to the method IloOPLFactory.end. The internal heap is an instance of the C++ class
IloEnv.

This means that in most cases you do not need to be concerned with memory
management: all the memory used by your model is correctly cleaned up at the
end.

Important:

Some applications may need tighter control on memory management.

This is the case for applications to which all of the following applies:

♦ They demand a lot of memory.

and

♦ They make a lot of incremental model modifications: elements are repeatedly added to,
then removed from, the model, which is solved after each addition or removal.

and

♦ They are long-lived, that is, the application keeps modifying and re-solving the same
model over long periods.

Such applications can explicitly managememory by calling themethod IloMPModeler.delete
on Concert objects or end on OPL objects. These methods delete objects before the global
cleanup and thus free memory earlier.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L14

Compatibility with Java CPLEX

The ilog.concert and ilog.cplex packages are designed to be compatible with the
equivalent packages in IBM® ILOG® CPLEX® . This means that they offer the same API
(slightly extended for OPL), although the implementation is quite different. The benefit is
that you can reuse your existing JConcert/Java CPLEX modeling code and combine it with
OPL models.

Because OPL can produce full Concert models and offers a backward compatible API, you
benefit from a smooth migration path to OPL without losing your previous work.

Note: 1. The CPLEX Java API related to IloLPMatrix, which allows direct manipulation
of the CPLEX matrix in Java, is not available in the OPL implementation.

2. Serialization is not supported for JConcert modeling classes.

3. CPLEX callbacks are supported with parallel search in Java interfaces.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 15

Compatibility with CP Optimizer Java interface

The Java interface is fully compatible with the CP Optimizer Java interface. The ilog.cp
package shipped with OPL is identical to that shipped with CP Optimizer.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L16

Deployment of Java applications

To compile and build an application that uses OPL Java interfaces, you need only one JAR
file: oplall.jar, located in

<OPL_dir>\lib

This JAR file uses the dynamic library bin\<port_name>\opl<version>.dll (on Windows)
or bin\<port_name>\opl<version>.so (on UNIX) at run time. The OPL Java API supports
the JDK from version 5.0, on Windows and UNIX.

Make sure your CLASSPATH variable includes

<OPL_dir>\lib\oplall.jar

See also AIX platforms in Working Environment for limitations.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 17

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L18

The .NET interface

Presents the .NET API delivered with IBM® ILOG® OPL. For details, see the .NET API
Reference Manual.

In this section

Overview of the .NET interface
Presents a high-level overview of the OPL .NET interface.

Object creation and factories
Describes the usage of constructors in the OPL .NET interface.

Memory management
Provides information on memory management while using the OPL .NET interface.

CPLEX goals
Describes how the .NET API handles search strategies on CPLEX goals.

Compatibility with .NET CPLEX
Describes the relationship of the ILOG.Concert and ILOG.CPLEX namespaces with their
equivalent packages in ILOG CPLEX.

Compatibility with CP Optimizer .NET interface
The .NET interface is fully compatible with the CP Optimizer .NET interface

Deployment of .NET applications (Windows only)
Provides information on how to deploy an application that uses the OPL . NET interface.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 19

Overview of the .NET interface

The .NET interface offers basically the same functionality as the C++ one.

The .NET API is split into several namespaces:

♦ The ILOG.Concert namespace contains the Concert modeling API, for modifying models.

♦ The ILOG.CP namespace contains the CP Optimizer control API, for controlling the solving
process of constraint programming models.

♦ The ILOG.CPLEX namespace contains the CPLEX control API, for controlling the solving
process of mathematical programming models.

♦ The ILOG.OPL namespace contains the OPL control API, for loading and accessing models.

This API is available for all the languages supported by the .NET platform. Examples are
provided with OPL for C#, and Visual Basic.

The .NET API is written as a JNI wrapper on the equivalent C++ libraries; it offers the same
functionality as the C++ API.

Each call to a method of the API goes through a wrapping layer. This may result in a slight
performance overhead while themodel is created, compared to using the C++API, depending
on the number of API function calls. Since you call only few API functions to load and solve
your model, the overhead is negligible in usual cases, but it may become important if you
use the low-level Concert, CP Optimizer, or CPLEX® API for a complete model creation
(for example, constructing a matrix line by line using INumExpr APIs or adding IConstraint
objects one by one to an IModel using the API). It is therefore recommended to use the OPL
language to model your problems whenever possible, and use only the low-level Concert
APIs for the parts that need it (runtime additions, etc.).

The .NET API requires the vjslib.dll library.Note:

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L20

Object creation and factories

The C++ API allows you to create objects using a constructor. To provide greater flexibility
and allow for evolution, the .NET API uses a “Factory” pattern: objects are created by calls
to the methods of a root object. For example, you create OPL objects using the methods of
OPLFactory.CreateOPLModel, OPLFactory.CreateCPLEX, and so on. Similarly, you create
Concert modeling constructs using the methods of IMPModeler (implemented by the Cplex
class): NumVar, Range, Minimize, and so on.

The Concert C++modeling API works by redefining operators to provide a compact notation
for common constructs. In .NET, the equivalent constructs are created through regular
methods of IModeler: Ge, Eq, Prod, and so on.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 21

Memory management

The .NET CLR garbage collector usually takes care of the memory allocated by .NET objects.
However, since the OPL .NET API allocates memory in C++ as well, the memorymanagement
is slightly different.

When you use the OPL .NET API, the first object you create is always the OPL factory. Then,
you use the OPL factory to create all other objects. All the C++ memory is allocated on an
internal heap of the OplFactory object and cleaned up by a call to the method OPLFactory.
End. The internal heap is an instance of the C++ class IloEnv.

This means that in most cases you do not need to be concerned with memory
management: all the memory used by your model is correctly cleaned up at the
end.

Important:

Some applications may need tighter control on memory management.

This is the case for applications to which all of the following apply:

♦ They demand a lot of memory.

and

♦ They make a lot of incremental model modifications: elements are repeatedly added to,
then removed from, the model, which is solved after each addition and removal.

and

♦ They are long-lived, that is, the application keeps modifying and re-solving the same
model over long periods.

Such applications can explicitly manage memory by calling the method IMPModeler.Delete
on Concert objects or End on OPL objects. These methods delete objects before the global
cleanup and thus free memory earlier.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L22

CPLEX goals

IBM® ILOG® CPLEX® provides advanced control on search strategies through user goals
that are called during the search. This feature is not available for the .NET API in this release
(although it is supported in C++ and Java). It will be supported in a future release. However,
CPLEX callbacks, including CPLEX callbacks with parallel search, are supported in this
release of OPL.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 23

Compatibility with .NET CPLEX

The ILOG.Concert and ILOG.CPLEX namespaces are designed to be compatible with the
equivalent namespaces in IBM® ILOG® CPLEX® . This means that they offer the same
API (slightly extended for OPL) although the implementation is quite different. The benefit
is that you can reuse your existing Concert.NET or CPLEX.NET modeling code and combine
it with OPL models. Because OPL can produce full Concert models and offers
backward-compatible APIs, you benefit from a smooth migration path to OPL without losing
your previous work.

The CPLEX .NET API related to ILPMatrix, which allows direct manipulation of the
CPLEX matrix in .NET, is not available in the OPL implementation.

Note:

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L24

Compatibility with CP Optimizer .NET interface

The .NET interface is fully compatible with the CP Optimizer .NET interface. The IBM®
ILOG CP .NET API shipped with OPL is identical to that shipped with CP Optimizer.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 25

Deployment of .NET applications (Windows only)

The .NET API is provided as the assembly file lib/oplall.dll, which uses the dynamic
library bin/opl<version_number>_dotnet.dll at run time. The OPL .NET API supports
version 2.0 of .NET Framework.

More specifically, to compile and build an application that uses OPL .NET interfaces, you
need:

♦ one DLL file: oplall.dll, located in OPL_dir\lib

♦ Microsoft .NET Framework Version 2.0 Redistributable Package. This package is included
in Microsoft Visual Studio. You can also download it for free from

http://www.msdn.microsoft.com/netframework/

The appropriate version of Visual Studio is VS2005 for .NET2.0.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L26

http://www.msdn.microsoft.com/netframework/

Tutorial

Shows how to write basic code to create a simple OPL model from a model definition file
and a model data file. The model is solved using CPLEX through the Concert API. Each step
is illustrated by a code sample in each language.

In this section

Overview of the Tutorial
Reviews the design principles of the OPL APIs, where to locate the libraries and their
respective code samples in the distribution, and presents the different sections of this tutorial.

Creating an OPL model
Shows how to create an OPL model that utilizes the OPL interfaces.

Specifying a data source
Shows how to specify the data source for your OPL model.

Generating the Concert model
Describes how to generate the Concert model for your OPL model.

Solving the model
Shows how to solve your model.

Accessing the solution
Provides information on how to access the solution through OPL and through Concert.

Using run configuration and projects
Shows how to use run configurations to create the project and access the run configuration
and the model using Concert.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 27

Overview of the Tutorial

The IBM® ILOG® OPL Interfaces library enables users to integrate OPL modeling with
IBM ILOG Concert Technology.

These interfaces are designed to fulfill several goals, chiefly:

♦ separate the model from the data

♦ separate the modeling phase from the solving phase

♦ instantiate the same OPL model definition with different data

♦ embed with IBM ILOG Concert Technology

♦ provide custom data easily

OPL Interfaces are available in C++, Java, and .NET. See Introduction for a general
presentation of the Interfaces in the three languages. See also the Interfaces Reference
Manuals in

<OPL_dir>\doc\html\en-US\refcppopl\index.html

<OPL_dir>\doc\html\en-US\refjavaopl\index.html

<OPL_dir>\doc\chm\index.chm

where <OPL_dir> is your installation directory.

Most of the code snippets used in this tutorial are extracted from the mulprod example,
which exists in all four languages at the following locations:

<OPL_dir>\examples\opl_interfaces\cpp\src\mulprod.cpp

<OPL_dir>\examples\opl_interfaces\java\mulprod\src\mulprod\Mulprod.java

<OPL_dir>\examples\opl_interfaces\dotnet\x86_.net2005_8.0\VisualBasic\Mulprod\Mulprod.vb

<OPL_dir>\examples\opl_interfaces\dotnet\x86_.net2005_8.0\CSharp\Mullprod\Mulprod.cs

A general presentation of the code samples is provided in Interfaces examples in the Language
and Interfaces Samples manual.

In this tutorial, the .NET code samples from Mulprod.vb are written in Visual Basic.
The instructions that cannot be illustrated in each language are given by default in C++.
This tutorial walks you through the procedures.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L28

Creating an OPL model

To create an OPL model using the IBM® ILOG® OPL Interfaces library, you need:

1. To create the Concert environment.

2. To create the error handler in the environment.

3. To identify the model source.

4. To identify the model definition.

5. To create the engine instance.

6. To create the OPL model.

These steps are explained in this topic.

To create the Concert environment
As for any IBM® ILOG® Concert Technology model, you need an instance of the
environment in which to create your model objects.

♦ Write the following code.

C++
IloEnv env;

Java
IloOplFactory oplF = new IloOplFactory();

.NET (Visual Basic)
Dim oplF As OplFactory = New OplFactory

To create the error handler

♦ Create an error handler is necessary in the environment to report errors and warnings
during the translation of the model text.

C++
IloOplErrorHandler handler(env,cout);

Java
IloOplErrorHandler errHandler = oplF.createOplErrorHandler();

.NET (Visual Basic)
Dim errorHandler As OplErrorHandler = oplF.CreateOplErrorHandler()

To identify the model source

♦ Pass the model source that provides the text to interpret.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 29

C++
IloOplModelSource modelSource(env, DATADIR 'mulprod.mod');

Java
IloOplModelSource modelSource = oplF.createOplModelSource(DATADIR

+ '/mulprod.mod');

.NET (Visual Basic)
Dim modelSource As OplModelSource = oplF.CreateOplModelSource(DATADIR

+ '/mulprod.mod')

To identify the model definition

♦ Use same model definition to instantiate one or more models.

C++
IloOplSettings settings(env,handler);
IloOplModelDefinition def(modelSource,settings);

Java
IloOplModelDefinition def = oplF.createOplModelDefinition

(modelSource,settings);

.NET (Visual Basic)
Dim def As OplModelDefinition = oplF.CreateOplModelDefinition

(modelSource, settings)

To create the engine instance

♦ Create the instance of the algorithm to use for this model.

C++
IloCplex cplex(env);

If the model is to be solved by CP Optimizer engine, you would instantiate
an IloCP object using

Note:

IloCP cp(env)

Java
IloCplex cplex = oplF.createCplex();

If the model is to be solved by CP Optimizer engine, you would instantiate
an IloCP object using

Note:

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L30

IloCP cp = oplF.createCP()

.NET (Visual Basic)
Dim cplex As Cplex = oplF.CreateCplex()

If the model is to be solved by CP Optimizer engine, you would instantiate
an IloCP object using

Note:

Dim cp As CP = oplF.CreateCP()

To create the OPL model

♦ You can now create the OPL model. The constructor takes a model definition instance
and an instance of IloCplex .

C++
IloOplModel opl(def,cplex);

Java
IloOplModel opl = oplF.createOplModel(def, cplex);

.NET (Visual Basic)
Dim opl As OplModel = oplF.CreateOplModel(def, cplex)

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 31

Specifying a data source

♦ In order to generate the Concert model, you need to provide data, just as you would
add a data file in an OPL project along with the model file. The simplest way to get
data is also to provide a file.

C++
IloOplDataSource dataSource(env, DATADIR "mulprod.dat");
opl.addDataSource(dataSource);

Java
IloOplDataSource dataSource = oplF.createOplDataSource(DATADIR

+ "/mulprod.dat");
opl.addDataSource(dataSource);

.NET (Visual Basic)
${snippet_N32324}

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L32

Generating the Concert model

♦ Once you have specified your data source, you can generate the Concert model.

C++
opl.generate();

Java
opl.generate();

.NET (Visual Basic)
${snippet_N32380}

This method also loads the model into the engine instance passed earlier.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 33

Solving the model

♦ You can solve the model in the usual way with Concert Technology.

C++
if (cplex.solve()) {

Java
if (cplex.solve())

.NET (Visual Basic)
${snippet_N323F2}

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L34

Accessing the solution

You can access the solution directly through OPL or through the Concert API.

Accessing the solution through OPL

♦ Print the OPL solution directly like this:

C++
opl.printSolution(cout);

Java
opl.printSolution(System.out);

.NET (Visual Basic)
${snippet_N3247F}

Accessing the solution through Concert

♦ You can use the typical Concert API to access results.

C++
cout << endl

<< "OBJECTIVE: " << fixed << setprecision(2) << opl.
getCplex().getObjValue()

<< endl;

Java
System.out.println("OBJECTIVE: " + opl.getCplex().getObjValue

());

.NET (Visual Basic)
${snippet_N324EE}

In the same way, you can ask the IloCplex instance for the values of the variables from the
OPL model. See Using OPL model instances for details.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 35

Using run configuration and projects

Sometimes, it is not necessary to create intermediate objects for the model definition or the
data sources as explained in Creating an OPL model. This is the case, for example, when
you do not plan to use the data source object for various different OPL models. You can then
use the classes IloOplProject and IloOplRunConfiguration to create the IloOplModel
instance directly.

This section demonstrates this feature using the oplrun example which exists in all four
languages at the following locations:

<OPL_dir>\examples\opl_interfaces\cpp\src\oplrunsample.cpp

<OPL_dir>\examples\opl_interfaces\java\oplrunsample\src\oplrunsample\OplRunSample.java

<OPL_dir>\examples\opl_interfaces\dotnet\x86_.net2005_8.0\VisualBasic\OplRunSample\OplRunSample.vb

<OPL_dir>\examples\opl_interfaces\dotnet\x86_.net2005_8.0\CSharp\OplRunSample\OplRunSample.cs

where <OPL_dir> is your installation directory.

Creating the project

♦ You can create an IloOplProject instance directly using a project path.

C++

IloOplProject prj(_env,_cl.getProjectPath());

Java

IloOplProject prj = oplF.createOplProject(_cl.getProjectPath());

C#

Dim prj As OplProject = oplF.CreateOplProject(_cl.ProjectPath)

Accessing a run configuration

♦ From that project, you can access one of the included run configuration. If you pass
no argument, you get the default run configuration.

C++

rc = prj.makeRunConfiguration(_cl.getRunConfigurationName());

Java

rc = prj.makeRunConfiguration(_cl.getRunConfigurationName());

C#

rc = prj.MakeRunConfiguration(_cl.RunConfigurationName)

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L36

OPL creates the IloOplModel instance from the run configuration automatically.

Accessing the model

♦ You can access with the following code.

C++

IloOplModel opl = rc.getOplModel();

Java

IloOplModel opl = rc.getOplModel();

C#

Dim opl As OplModel = rc.GetOplModel()

You can then use the IloOplModel instance as usual.

Using the IloOplProject and IloOplRunConfiguration API brings more than one benefit:

♦ It is easier to use when intermediate structures are not necessary.

♦ It enables you to use settings files (.ops).

♦ All the advantages of run configurations remain available. In particular, it is possible to
easily run the same model with different setting files or with different data sets.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 37

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L38

Working with OPL interfaces

Explains in more general terms how to work with the OPL C++, Java and .NET Interfaces.
This section is also illustrated by code samples for each language.

In this section

Using OPL model instances
Explains how to instantiate OPL models using a model definition, data, and a solving engine.

Services on solutions
Mentions additional services available through the IloOplModel instance as soon as a solution
is available.

Custom data sources
Describes how to provide custom data sources for your model by extending the class
IloOplDataSourceBaseII

Accessing elements
Describes what APIs to use to access model elements such as decision variables and their
values, and to iterate through model elements.

Settings
Describes the various Settings options available to customize the behavior of OPL.

Postprocessing solutions
Shows how to initiate the call to postprocessing in your model.

Error handling
Describes how to handle messages and integrate them with your environment.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 39

Debug mode
Explains how to work with your model in debug mode.

Printing data to a stream
Shows how to print your data to a stream, using the .dat file syntax.

Integrating OPL with Excel using Visual Studio Tools for Office
Explains how to create a Microsoft Excel Add-in. It is coded in C# and uses OPL to solve
the warehouse problem within Excel 2003.

Memory management
Provides recommendations to manage memory in Concert applications.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L40

Using OPL model instances

Explains how to instantiate OPL models using a model definition, data, and a solving engine.

In this section

Overview
Presents basic information about working with OPL model instances.

The model definition
Shows how to specify a model definition that can then be used to instantiate one or more
models.

The data
Shows how to specify the data source for your model.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 41

Overview

To instantiate an OPL model, you need its definition and data, as well as an engine that will
solve the model. Most of the code samples used in this topic are extracted for each language
from the warehouse example, which exists in all four languages at the following locations:

<OPL_dir>\examples\opl_interfaces\cpp\src\warehouse.cpp

<OPL_dir>\examples\opl_interfaces\java\warehouse\src\warehouse\Warehouse.java

<OPL_dir>\examples\opl_interfaces\dotnet\x86_.net2005_8.0\VisualBasic\Warehouse\
Warehouse.vb

<OPL_dir>\examples\opl_interfaces\dotnet\x86_.net2005_8.0\CSharp\Warehouse\
Warehouse.cs

where <OPL_dir> is your installation directory.

A general presentation of the code samples is provided in Interfaces examples in the Language
and Interfaces Samples manual.

In this chapter, the .NET code samples from Warehouse.cs are written in C#. The instructions
that cannot be illustrated in each language are given by default in C++.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L42

The model definition

The model source provides the text to interpret. An error handler is necessary to report
errors and warnings during the translation of the model text. Later, you can use the same
model definition to instantiate one or more models.

C++
C++: Specifying the model definition
int main(int argc,char* argv[]) {

IloEnv env;

int status = 127;
try {

IloCplex cplex(env);
IloOplErrorHandler handler(env,cout);
std::istringstream in(getModelText());
IloOplModelSource modelSource(env,in,"warehouse");
IloOplSettings settings(env,handler);
IloOplModelDefinition def(modelSource,settings);
IloOplModel opl(def,cplex);

Java
Java: Specifying the model definition

IloOplFactory.setDebugMode(true);
IloOplFactory oplF = new IloOplFactory();
IloOplErrorHandler errHandler = oplF.createOplErrorHandler(System.out)

;
IloCplex cplex = oplF.createCplex();
IloOplModelSource modelSource=oplF.createOplModelSourceFromString

(getModelText(),"warehouse");
IloOplSettings settings = oplF.createOplSettings(errHandler);
IloOplModelDefinition def=oplF.createOplModelDefinition

(modelSource,settings);
IloOplModel opl=oplF.createOplModel(def,cplex);

.NET (C#)

.NET: Specifying the model definition
OplFactory.DebugMode = true;
OplFactory oplF = new OplFactory();

OplErrorHandler errHandler = oplF.CreateOplErrorHandler(Console.
Out);

Cplex cplex = oplF.CreateCplex();
OplModelSource modelSource = oplF.CreateOplModelSourceFromString

(GetModelText(), "warehouse");
OplSettings settings = oplF.CreateOplSettings(errHandler);

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 43

OplModelDefinition def = oplF.CreateOplModelDefinition
(modelSource, settings);

OplModel opl = oplF.CreateOplModel(def, cplex);

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L44

The data

To generate the CPLEX® model, OPL needs to know where to take the data from. You must
therefore specify a data source.

The data source can be:

♦ either an OPL data file (as in the Tutorial) which allows access to data in files or databases,
or

♦ a custom-coded data source, as in the examples below. (The custom data source is
described in Custom data sources.)

C++
C++: Specifying a data source

Java
Java: Specifying a data source

IloOplDataSource dataSource=new MyParams
(oplF,nbWarehouses,nbStores,fixed,disaggregate);

opl.addDataSource(dataSource);
opl.generate();

.NET (C#)

.NET: Specifying a data source
OplDataSource dataSource = new MyParams(oplF, nbWarehouses,

nbStores, fixedP, disaggregate);
opl.AddDataSource(dataSource);
opl.Generate();

Now, the OPL model is available from CPLEX® . You can use the full IloCplex API to solve
the model. You can reuse the same cplex instance for different OPL models. However, when
you access for the first time a postprocessing model element that uses variable values in its
definition, you may get an “unbound variable” exception if the cplex instance has been used
later for another model and hence is not synchronized with the invoking model anymore.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 45

Services on solutions

Additional services are available through the IloOplModel instance as soon as a solution is
available. The values for decision variables within the solution are accessible by their names.
See Accessing elements.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L46

Custom data sources

You can provide OPL models with custom data sources by extending the class
IloOplDataSourceBaseI . All you need to do is implement the read method, which will be
called by the OPL interpreter as necessary. A custom data source uses the interface
IloOplDataHandler to transfer data to the model, and the method getDataHandler to access
the associated data handler and send events. The handler API is event-driven, similar to
SAX interfaces for XML.

Two examples of how these handlers could be used to initialize custom data sources are
given below:

Initialization of a multi-dimensional array custom data source

handler.StartElement("cost")
handler.StartIndexedArray()
For i = 1 To NUMDEMAND

handler.SetItemStringIndex(dtin.Rows(i - 1)(0))
handler.StartIndexedArray()
For j = 1 To NUMSUPPLY

handler.SetItemStringIndex(dtin.Columns(j).ColumnName)
handler.AddNumItem(dtin.Rows(i - 1)(j))

Next j
handler.EndIndexedArray()

Next i
handler.EndIndexedArray()
handler.EndElement()

Initialization of a string set custom data source

handler.StartElement("Plants")
handler.StartSet()
For j = 1 To NUMSUPPLY

handler.AddStringItem(dtin.Columns(j).ColumnName)
Next j
handler.EndSet()
handler.EndElement()

C++
C++: Providing custom data sources
void MyParams::read() const {

IloOplDataHandler handler = getDataHandler();

handler.startElement("nbWarehouses");
handler.addIntItem(_nbWarehouses);
handler.endElement();

handler.startElement("nbStores");
handler.addIntItem(_nbStores);
handler.endElement();

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 47

handler.startElement("fixed");
handler.addIntItem(_fixed);
handler.endElement();

handler.startElement("disaggregate");
handler.addIntItem(_disaggregate);
handler.endElement();

}

Java
Java: Providing custom data sources

static class MyParams extends IloCustomOplDataSource
{

int _nbWarehouses;
int _nbStores;
int _fixed;
int _disaggregate;

MyParams(IloOplFactory oplF,int nbWarehouses,int nbStores,int fixed,int
disaggregate)

{
super(oplF);
_nbWarehouses = nbWarehouses;
_nbStores = nbStores;
_fixed = fixed;
_disaggregate = disaggregate;

}

public void customRead()
{

IloOplDataHandler handler = getDataHandler();

handler.startElement("nbWarehouses");
handler.addIntItem(_nbWarehouses);
handler.endElement();

handler.startElement("nbStores");
handler.addIntItem(_nbStores);
handler.endElement();

handler.startElement("fixed");
handler.addIntItem(_fixed);
handler.endElement();

handler.startElement("disaggregate");
handler.addIntItem(_disaggregate);
handler.endElement();

}
};

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L48

.NET (C#)
Accessing the values a decision variable within a solution

internal class MyParams : CustomOplDataSource
{

int _nbWarehouses;
int _nbStores;
int _fixed;
int _disaggregate;

internal MyParams(OplFactory oplF,int nbWarehouses,int
nbStores,int fixedP,int disaggregate)

: base(oplF)
{

_nbWarehouses = nbWarehouses;
_nbStores = nbStores;
_fixed = fixedP;
_disaggregate = disaggregate;

}

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 49

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L50

Accessing elements

Describes what APIs to use to access model elements such as decision variables and their
values, and to iterate through model elements.

In this section

Accessing model elements
Shows how to access the elements of your model.

Iterating through OPL elements
Shows how to iterate through the elements of your model.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 51

Accessing model elements

To access any model element by its name:

♦ Use the method getElement.

C++

IloOplElement supply = oplModel.getElement("supply");

Java

IloOplElement supply = oplModel.getElement("supply");

.NET

OplElement supply = oplModel.GetElement("supply");

The IloOplElement interface offers accessors for all possible element types. It is the user’s
responsibility to pick the right accessor for the type of the elements he has declared.

For decision variables, there are two different types of accessors:

♦ one to obtain the Concert object itself for this decision variable,

♦ the other to get the values of decision variables within a solution. The latter is available
only if a solution has been found.

The subsequent sections give examples of each for a supply model element.

To access a decision variable:

♦ To get the supplyVar1 decision variable within a model, write the following code.

C++

IloNumVarMap supplyVarMap = supply.asNumVarMap();
IloNumVar supplyVar1 = supplyVarMap.get(1);

Java

IloNumVarMap supplyVarMap = supply.asNumVarMap();
IloNumVar supplyVar1 = supplyVarMap.get(1);

.NET

INumVarMap supplyVarMap = supply.AsNumVarMap();
INumVar supplyVar1 = supplyVarMap.Get(1);

To access the values of a decision variable:

♦ To get the values of the supply1 decision variable within a solution, write the following
code.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L52

C++

IloNumMap supplyMap = supply.asNumMap();
double supply1 = supplyMap.get(1);

Java

IloNumMap supplyMap = supply.asNumMap();
double supply1 = supplyMap.get(1);

.NET

INumMap supplyMap = supply.AsNumMap();
double supply1 = supplyMap.Get(1);

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 53

Iterating through OPL elements

The OPL Interface libraries enable your applications to iterate through OPL elements such
as arrays (maps) and sets. This feature is illustrated by the iterators example, which
contains two samples. The iterators example is available in C++, Java, and .NET Visual
Basic and C# at the following locations:

<OPL_dir>\examples\opl_interfaces\cpp\src\iterators.cpp

<OPL_dir>\examples\opl_interfaces\java\iterators\src\iterators\Iterators.java

<OPL_dir>\examples\dotnet\x86_.net2005_8.0\VisualBasic\Iterators\Iterators.vb

<OPL_dir>\examples\dotnet\x86_.net2005_8.0\CSharp\Iterators\Iterators.cs

where <OPL_dir> is your installation directory.

Sample1
The purpose of Sample1 is to check the result of filtering by iterating on the generated data
element. The data element is an array of strings that is indexed by a set of strings. It is filled
as the result of an iteration on a set of tuples by filtering out the duplicates. It is based on
the transp2.mod model.

The simplified model is:

{string} Products = ...;
tuple Route { string p; string o; string d; }
{Route} Routes = ...;
{string} orig[p in Products] = { o | <p,o,d> in Routes };

Sample2
The purpose of Sample2 is to output a multidimensional array x[i][j] to illustrate how
arrays and subarrays are managed, as shown in Output of a multidimensional array.

Output of a multidimensional array
IloIntMap x = opl.getElement("x").asIntMap();
IloSymbolSet s1 = opl.getElement("s1").asSymbolSet();
IloSymbolSet s2 = opl.getElement("s2").asSymbolSet();

// Iterate on the first indexer.
for (IloSymbolSetIterator it1(s1); it1.ok(); ++it1){

// Get the second dimension array from the first
dimension.

IloIntMap sub = x.getSub(*it1);
// Iterate on the second indexer of x (that is the

indexer of the subarray).
for (IloSymbolSetIterator it2(s2); it2.ok(); ++it2){

// This is the last dimension of the array,
so you can directly use the get method.

cout << *it1 << " " << *it2 << " " << sub.get

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L54

(*it2) << "\n";
}

}

To access the elements of an array, you must first access the sub-arrays until the last
dimension, then you can get the values. Here, as there are two dimensions, you have to get
one sub-array from which you can directly get the values. The array of integers is indexed
by two sets of strings.

The simplified model is:

{string} s1 = ...;
{string} s2 = ...;
{int} x[s1][s2] = ...;

Sample 3
The purpose of sample3 is to output an array of tuples arrayT[i], to illustrate how tuple
elements can be accessed.

The simplified model is:

tuple t
{
int a;
int b;
}
{string} ids={"id1","id2","id3"};
t arrayT[ids]=[<1,2>,<2,3>,<1,3>];

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 55

Settings

There are various options available through the class IloOplSettings to customize the
behavior of OPL.

There is an accessor to retrieve the settings of an OPLmodel object. You can set, for example,
whether decision variable names are generated or not, or whether source locations are
associated with Concert objects or not. See the C++ Interfaces Reference Manual for a
complete list.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L56

Postprocessing solutions

As modeling and solving are two separated phases, the OPL model does not know when a
solution is available. Therefore, it does not know when to postprocess that solution. You
must therefore initiate the call to postprocessing.

To avoid unexpected behavior, you are recommended to call the postprocess method
even if your model does not contain a postprocessing block.

Note:

C++
C++: Calling the postprocessing phase

Java
Java: Calling the postprocessing phase

if (cplex.solve())
{

System.out.println("OBJECTIVE: " + opl.getCplex().getObjValue());

opl.postProcess();
opl.printSolution(System.out);
status = 0;

} else {
System.out.println("No solution!");
status = 1;

}

oplF.end();

.NET (C#)
Visualizing intermediate data

if (cplex.Solve())
{

Console.Out.WriteLine("OBJECTIVE: " + opl.Cplex.ObjValue)
;

opl.PostProcess();
opl.PrintSolution(Console.Out);
status = 0;

}
else
{

Console.Out.WriteLine("No solution!");
status = 1;

}

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 57

oplF.End();

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L58

Error handling

To better integrate messages with your environment, youmay choose to handle them yourself.
This is possible by extending the class IloOplErrorHandlerBaseI.

You can override the virtual methods to report messages:

♦ IloBool handleError

♦ IloBool handleWarning

♦ IloBool handleFatal

These methods return a value to indicate whether the messages were handled correctly or
not. If a message could not be handled, an exception is thrown.

It is not possible to extend the class IloOplErrorHandler in Java and .NET. However, you
can redirect the error messages to any stream by using the appropriate factory methods:

Java

IloOplFactory.createOplErrorHandler(java.io.OutputStream outs)

.NET (C#)

OplFactory.CreateOplErrorHandler(TextWriter outs)

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 59

Debug mode

By default, the debug mode is on. It is a good practice to keep it on while you develop your
application because it helps you diagnose problems. In particular, you need to have it on if
you experience a core dump when running Java code. However, the debug mode slows down
your application. You should therefore make sure you turn it off when you release your
application. To do this, use the method IloOplFactory.setDebugMode .

When the default mode is on, a warning message prints to the console. The message is
disabled when you turn the debug mode off. You can disable the message while still running
in debug mode by a call to the method IloOplFactory.setDebugModeWarning(false).

To turn off the warning, call the method

IloOplFactory.setDebugModeWarning(false)

or

OplFactory.DebugModeWarning = false;

before the IloOplFactory or OplFactory constructor is called:

IloOplFactory.setDebugModeWarning(false);
IloOplFactory oplF = new IloOplFactory();
IloOplErrorHandler errHandler = oplF.createOplErrorHandler();

The same applies if you work with .NET interfaces.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L60

Printing data to a stream

As an additional service for testing and debugging, the class IloOplModel offers the possibility
to print all the data to a stream, using the .dat file syntax.

C++

IloOplModel::printExternalData(ostream&)

Java

IloOplModel.printExternalData(java.io.OutputStream outs)

.NET (C#)

OplModel.PrintExternalData(TextWriter outs)

If your model uses data from various sources, like databases, spreadsheets, or custom
sources, you will be able to write this data to one single file, which makes it easier to read.
This file can be used as a data source for other model instances.

For debugging purposes, you can visualize intermediate data, that is, the data that is not
provided by data sources but calculated during preprocessing.

C++

IloOplModel::printInternalData(ostream&)

Java

IloOplModel.printInternalData(java.io.OutputStream outs)

.NET (C#)

OplModel.PrintInternalData(TextWriter outs)

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 61

Integrating OPL with Excel using Visual Studio Tools for Office

Since the release of MS Office 2003, Microsoft has been working towards the integration
of Office with .NET. For this purpose, Microsoft released a Visual Studio add-on named
“Visual Studio Tools for Office 2003” which allows users to extend MS Office applications
with any .NET language, thus bringing the benefit of the Visual Studio environment and
tools to Office development.

Microsoft has replaced the VSTO 2003 add-on with Visual Studio Tools for Office 2005
for basically the same purpose.

OPL uses this approach to integrate the OPL .NET API. This is demonstrated by the
ExcelWarehouse example. This file is at the following location:

<OPL_dir>\examples\opl_interfaces\dotnet\x86_.net2005_8.0\ExcelWarehouse

where <OPL_dir> is your installation directory.

The solve process is triggered by a button embedded in the worksheet. The input data is
taken from the worksheet and the results are written back to the worksheet.

This walkthrough explains how to create a Microsoft Excel Add-in. It is coded in C# and
uses OPL to solve the warehouse problem within Excel 2003.

To create a Microsoft Excel Add-in:

1. Install MS Visual Studio 2005 and MS Office 2003.

2. Download VSTO 2005 Second Edition from this page:

http://msdn.microsoft.com/en-us/office/aa905543.aspx

The downloadable is free if you have VSTO 2005 or VS 2005 Professional Edition.
VSTO 2005 SE allows you to create Office 2003 and 2007 add-ins from Visual Studio
2005.

3. Open Visual Studio 2005 and create a new project:

a. Select Visual C#/Office/2003 Add-ins in the New Project Wizard.

b. Name it ExcelWarehouse.

A new project is created, with a dummy add-in name ThisAddIn.cs .

namespace ExcelWarehouse
{
public partial class ThisAddIn

{
private void ThisAddIn_Startup(object sender, System.

EventArgs e)
{

<VSTO generated code>

}

private void ThisAddIn_Shutdown(object sender, System.
EventArgs e)

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L62

http://msdn.microsoft.com/en-us/office/aa905543.aspx

{
}

<VSTO generated code>
}

}

4. In the ThisAddIn.cs file, replace the dummy code with the following lines to create
a new command bar and buttons for OPL.

namespace ExcelWarehouse
{

public partial class ThisAddIn
{
private Office.CommandBar AddInMenuBar;
private Office.CommandBarButton SetupButton;
private Office.CommandBarButton SolveButton;

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{

<VSTO generated code>

CreateOPLCommands();
}
private void ThisAddIn_Shutdown(object sender, System.EventArgs e)
{

RemoveOPLCommands();
}

private void CreateOPLCommands()
{

try
{
// new command bar for OPL:
AddInMenuBar = Application.CommandBars.Add(
"OPL Commands", Office.MsoBarPosition.msoBarTop, missing,

true);
// setup button:
SetupButton = (Office.CommandBarButton)AddInMenuBar.Controls.

Add
(Office.MsoControlType.msoControlButton, missing, missing,

missing,
true);

SetupButton.Caption = "OPL Warehouse Setup";
SetupButton.Style =

Microsoft.Office.Core.MsoButtonStyle.
msoButtonCaption;

SetupButton.Click += new
Office._CommandBarButtonEvents_ClickEventHandler

(
SetupButton_Click);

// solve button:

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 63

SolveButton = (Office.CommandBarButton)AddInMenuBar.Controls.
Add(

Office.MsoControlType.msoControlButton,
missing, missing, missing, true);

SolveButton.Caption = "OPL Warehouse Solve";
SolveButton.Style =

Microsoft.Office.Core.MsoButtonStyle.
msoButtonCaption;

SolveButton.Click += new

Office._CommandBarButtonEvents_ClickEventHandler
(

SolveButton_Click);
AddInMenuBar.Visible = true;

}
catch (Exception ex)
{
MessageBox.Show(ex.Message, ex.Source, MessageBoxButtons.OK,

MessageBoxIcon.
Error);

}
}

private void RemoveOPLCommands()
{

SolveButton.Delete(false);
SolveButton = null;
SetupButton.Delete(false);
SetupButton = null;
AddInMenuBar = null;

}

private void SolveButton_Click(Office.CommandBarButton Ctrl,
ref bool

CancelDefault)
{
// respond to solve button click

}

private void SetupButton_Click(Office.CommandBarButton Ctrl, ref
bool CancelDefault)

{
// respond to setup button click }
}

}
}

5. Add some utility methods to get/set values in cells.

static private void setValue(Excel.Worksheet sheet, String cell, String
value)
{

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L64

sheet.get_Range(cell,
cell).set_Value(Excel.XlRangeValueDataType.xlRangeValueDefault,

value);
}

static private String getValue(Excel.Worksheet sheet, String cell)
{

return (String)sheet.get_Range(cell, cell).Text;
}

6. Add the code for the Setup button to populate the current Excel sheet.

private void SetupButton_Click(Office.CommandBarButton Ctrl, ref bool

CancelDefault)
{

Excel.Worksheet sheet =
(Excel.Worksheet)this.Application.ActiveWorkbook.ActiveSheet;

setValue(sheet, "A1", "Data used by the OPL model:");
setValue(sheet, "A2", "nbWarehouses:");
setValue(sheet, "B2", "5");
setValue(sheet, "A3", "nbStores:");
setValue(sheet, "B3", "10");
setValue(sheet, "A4", "fixed:");
setValue(sheet, "B4", "30");
setValue(sheet, "A5", "disaggregate:");
setValue(sheet, "B5", "1");

setValue(sheet, "A8", "Result computed by the OPL model:");
setValue(sheet, "A9", "State:");
setValue(sheet, "A10", "Objective:");
}

7. Add the code for the Solve button to launch the OPL solve process.

private void SolveButton_Click(Office.CommandBarButton Ctrl,
ref bool

CancelDefault)
{

Excel.Worksheet sheet =
(Excel.Worksheet)this.Application.ActiveWorkbook.

ActiveSheet;
System.IO.StringWriter errHandlerErrors = new System.IO.StringWriter

();
try
{

setValue(sheet, "B9", "Computing...");
SolveProblem(sheet, errHandlerErrors);
setValue(sheet, "B9", "Success");

}
catch (Exception ex)

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 65

{
setValue(sheet, "B9", "Error:" + ex.ToString()

+ "(" + errHandlerErrors.ToString() + ")")
;

}
}

private void SolveProblem(Excel.Worksheet sheet,
System.IO.StringWriter

errHandlerErrors)
{
// actually solve the problem with OPL
}

8. Add some references to the OPL .NET APIs used to solve the problem.

a. In the Solution view, select the project (ExcelWarehouse), the References, and
click Add Reference.

b. In the Add Reference Wizard, select Browse, navigate to the OPL installation,
and add <OPL>/lib/oplall.dll.

c. At the top of the ThisAddIn.cs file, append the following lines to the using list.

using ILOG.Concert;
using ILOG.CPLEX;
using ILOG.OPL;
using Exception = System.Exception;

9. Add the code that actually solves the problem using OPL.

private void SolveProblem(Excel.Worksheet sheet,
System.IO.StringWriter

errHandlerErrors)
{

OplFactory.DebugMode = true;
OplFactory oplF = new OplFactory();
OplErrorHandler errHandler =

oplF.CreateOplErrorHandler(errHandlerErrors)
;

OplModelSource modelSource =
oplF.CreateOplModelSourceFromString(GetModelText(), "warehouse")

;
OplSettings settings = oplF.CreateOplSettings(errHandler);
OplModelDefinition def = oplF.CreateOplModelDefinition

(modelSource, settings)
;

Cplex cplex = oplF.CreateCplex();
OplModel opl = oplF.CreateOplModel(def, cplex);
OplDataSource dataSource = new MyParams(oplF, sheet);
opl.AddDataSource(dataSource);
opl.Generate();
if (cplex.Solve())

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L66

{
setValue(sheet, "B10", "" + opl.Cplex.ObjValue);

}
else
{

setValue(sheet, "B10", "No solution");
}
oplF.End();

}

/**
* This class feeds data to the OPL model from the appropriate cells of
the
* input Excel worksheet.
*/
class MyParams : CustomOplDataSource
{

private Excel.Worksheet _xlDataSheet;

public MyParams(OplFactory oplF, Excel.Worksheet xlDataSheet): base
(oplF)

{
_xlDataSheet = xlDataSheet;

}

public override void CustomRead()
{

OplDataHandler handler = this.DataHandler;

try
{

handler.StartElement("nbWarehouses");
handler.AddIntItem(Int16.Parse(getValue(_xlDataSheet, "B2")))

;
handler.EndElement();

handler.StartElement("nbStores");
handler.AddIntItem(Int16.Parse(getValue(_xlDataSheet, "B3")))

;
handler.EndElement();

handler.StartElement("fixed");
handler.AddIntItem(Int16.Parse(getValue(_xlDataSheet, "B4")))

;
handler.EndElement();

handler.StartElement("disaggregate");
handler.AddIntItem(Int16.Parse(getValue(_xlDataSheet, "B5")))

;
handler.EndElement();

}

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 67

catch (Exception ex)
{

MessageBox.Show("Exception in custom data source:
" + ex.ToString

());
}

}
}

/**
* This is the warehouse OPL model:
*/
static String GetModelText()
{

String model = "";
model += "int fixed = ...;";
model += "int nbWarehouses = ...;";
model += "int nbStores = ...;";
model += "int disaggregate = ...;";
model += "assert nbStores > nbWarehouses;";

model += "range Warehouses = 1..nbWarehouses;";
model += "range Stores = 1..nbStores;";

model += "int capacity[w in Warehouses] = nbStores div nbWarehouses
+ w mod (nbStores div nbWarehouses)

;";
model += "int supplyCost[s in Stores][w in Warehouses] =

1+((s+10*w) mod 100)
;";

model += "dvar float open[Warehouses] in 0..1;";
model += "dvar float supply[Stores][Warehouses] in 0..1;";

model += "minimize ";
model += "sum(w in Warehouses) fixed * open[w] +";
model += "sum(w in Warehouses, s in Stores) supplyCost[s][w]

* supply[s][w]
;";

model += "constraints {";
model += " forall(s in Stores)";
model += " sum(w in Warehouses) supply[s][w] == 1;";
model += " forall(w in Warehouses)";
model += " sum(s in Stores) supply[s][w] <= open[w]*capacity[w];";

model += " if (disaggregate == 1) {";
model += " forall(w in Warehouses, s in Stores)";
model += " supply[s][w] <= open[w];";
model += " }";
model += "}";

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L68

return model;
}

The code is complete.

10. Launch Microsoft Excel with your plug-in, using the Visual Studio Debug/Start
Debugging command.

Excel starts, with the new command bar containing OPL Warehouse Setup and OPL
Warehouse Solve.

a. Click the button OPL Warehouse Setup.

It populates the current sheet with default values for the problem.

b. Edit the values as appropriate.

c. Click the button OPL Warehouse Solve.

It solves the problem using OPL, displaying results in cell B10 (425 for the default
values).

Integrating OPL .NET API into an MS Excel worksheet

Useful training material on working with VSTO 2005 is available at:

http://msdn2.microsoft.com/en-us/library/ebax1172(VS.80).aspx

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L 69

http://msdn2.microsoft.com/en-us/library/ebax1172(VS.80).aspx

Memory management

The recommended way to manage memory in Concert applications is to use the method
IloEnv.end to clear all the memory currently in use.

If you need more control on the memory used by your OPL objects, IloOplModel objects
offer the method end.

In the default case, after an OPL model instance has been ended, all its Concert objects that
correspond to data elements are still available. After the method end, no objects remain.
Availability of Concert objects summarizes the availability of Concert objects accessed
through OPL elements.

Availability of Concert objects
Available after second postProcess()Available after

end()
DefinitionOPL Element

yesnoelements read from a data sourceexternal data

yesnoelements initialized inside the .mod fileinternal data

nonoAn array with values of decision variables for
the current solution, available by calling the

dvar array solution value

method asIntMap() or asNumMap() for a dvar
array element

nonoAll elements declared for postprocessingpostprocessing

When postprocess is calledmultiple times, as when processing intermediate feasible solutions,
the second call ends the objects created for the first call.

See these two stock-cutting examples:

<OPL_dir>\examples\opl\cutstock\cutstock_main.mod

<OPL_dir>\examples\opl\cutstock\cutstock_int_main.mod

where <OPL_dir> is your installation directory.

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L70

A
accessing

model, through API 36
run configurations, through API 36
solutions, through API 35
values of decision variables, through API 52

API
.NET 19
C++ 9
Java 11

assembly file for the OPL .NET API 26

C
C++ API

compiling and linking applications 9
classes

IloCP 30
IloCplex 30, 35
IloEnv 29
IloOplErrorHandler 29
IloOplFactory 29
IloOplModel 31
IloOplModelDefinition 30
IloOplModelSource 29
IloOplProject/IloOplRunConfiguration 36
IloOplSettings 30

code samples
iterators 54

compiling and building applications
.NET 26
Java 17

Concert Technology
environment 29
generate model 33

cplex, model instance
used by more than one model 45

custom data sources 47
initializing 47

CustomOplDataSource class
initializing 47

D
data

accessed by the model 45
printing to a stream 61

data elements
iterators 54

data sources
adding via API 32
custom 47

debug mode 60
decision variables

accessing values within a solution 52
deployment

.NET API 26
Java API 17

E
end method

IloEnv class 70
IloOplModel class 70

environment variables 9
environment, instance of, for model objects 29
error handling, with APIs 59
Excel integration

using Visual Studio Tools for Office 2003 62

F
factories

in .NET 21
in Java 13

files
.ops 37

G
garbage collector

.NET 22
Java 14

© Copyright IBM Corp. 1987, 2009 71

I N D E X

Index

getDataHandler method
IloOplDataSourceBaseI class 47

getElement method
IloOplDataSourceBaseI class 52

I
IloCP class 30
IloCplex class 30, 35
IloEnv class 29

end method 70
IloOplDataHandlerI interface 47
IloOplDataSourceBaseI class 47

getDataHandler method 47
getElement method 52

IloOplErrorHandler class 29
IloOplErrorHandlerBaseI class 59
IloOplFactory class 29

setDebugMode method 60
IloOplModel class 31, 42, 46, 61

end method 70
IloOplModelDefinition class 30
IloOplModelSource class 29
IloOplProject class 36
IloOplRunConfiguration class 36
IloOplSettings class 30, 56
interfaces

.NET 19
C++ 9
Java 11

iterator example 54

J
Java API

compatibility with Java CPLEX 15
deployment 17
memory management 14
object creation and factories 13
overview 11

L
libraries

C++, linking 9
linking C++ libraries 9

M
memory allocation and management 70

in .NET 22
in Java 14

models
accessing data 45
accessing through API 36
creating via API 31
error handling 29
instantiating via API 36, 41
model definition 30, 43
model source 29
solving via API 34

O
object creation

in .NET 21
in Java 13

oplrun
using projects and run configurations 36

P
postprocessing

via APIs 57
projects

creating
via API 36

R
run configurations

accessing through API 36

S
setDebugMode method

IloOplFactory class 60
settings

API to customize OPL behavior 56
settings files

and IloOplProject API 37
solutions

accessing through API 35
accessing values of decision variables 52

V
Visual Studio

and .NET Framework packages 26
Visual Studio Tools for Office 2003

integrating OPL with Excel 62

I B M I L O G O P L I N T E R F A C E U S E R ' S M A N U A L72

	Table of contents
	Interfaces User’s Manual
	Introduction
	About the Interfaces User's Manual
	Using the C++ interface
	The Java interface
	Overview of the Java interface
	Object creation and factories
	Memory management
	Compatibility with Java CPLEX
	Compatibility with CP Optimizer Java interface
	Deployment of Java applications

	The .NET interface
	Overview of the .NET interface
	Object creation and factories
	Memory management
	CPLEX goals
	Compatibility with .NET CPLEX
	Compatibility with CP Optimizer .NET interface
	Deployment of .NET applications (Windows only)

	Tutorial
	Overview of the Tutorial
	Creating an OPL model
	Specifying a data source
	Generating the Concert model
	Solving the model
	Accessing the solution
	Using run configuration and projects

	Working with OPL interfaces
	Using OPL model instances
	Overview
	The model definition
	The data

	Services on solutions
	Custom data sources
	Accessing elements
	Accessing model elements
	Iterating through OPL elements

	Settings
	Postprocessing solutions
	Error handling
	Debug mode
	Printing data to a stream
	Integrating OPL with Excel using Visual Studio Tools for Office
	Memory management

	Index

