I . —
I . A
- - LW
L —— I ——
- L% L&} |
- L I N W -
I Y N W -
I T Y _®

IBM ILOG OPL V6.3

IBM ILOG OPL Interface User's
Manual

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

COPYRIGHT NOTICE
© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information™ at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Acknowledgement

The language manuals are based on, and include substantial material from, The OPL
Optimization Programming Language by Pascal Van Hentenryck, © 1999 Massachusetts
Institute of Technology.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

INTEITACES USEI'S MaANUAL. et 5

F Y foTo (¥ Loy [0 o AP PRURP RS 7
About the Interfaces USEI'S MANUAL............coiiiiiiiiiiiii ettt 8
(O gTo (gL O T o1 (=T = Lo = TSRO 9
THE JAVA INEEITACE.cciiiiie ittt et b e s b e st e r e e b e e s
Overview Of the Java INTEITACE. e et a e e as
Object creation and fACLOMES.iiuiiiiie e e e e e e s e e e e e sata e e e e e e ssaaees
MEMOTY MANAGEMENT. ... eeitititieitie ettt ettt et e et este e et e e sbe e et e e st et e beeabe e e ke e sae e e bt e aabeebeessbeenbeennnean
Compatibility With Java CPLEX.......cooiiiiiiiiiiie ettt s
Compatibility with CP Optimizer Java interface
Deployment of Java @ppliCaLIONS.coiiiiiiiiie e
TRE INET INEEITACE. ... ettt oottt e oo ettt e e e e e bbbt e e e e e snbbe e e e e e abbeeeeaeeannbeeeaeeantes
Overview Of the INET INTEITACE. ...t e e et e e e s et e e e e s snneeeas
Object creation and fACLOMES.coi i it e e e e et e e e e eeneeeas
=T o YA T FoTo =T o o =T o | SO TP TOP PR PP
(O I Qo 0T 1T O SPPPR
Compatibility with .NET CPLEX
Compatibility with CP Optimizer .NET interface

Deployment of .NET applications (WIiNAOWS ONIY).......ccoiiriiiiiiiiiiiieiiie e 26
L0 (o] g = PO P PP PR RPPTPP 27
OVEIVIEW OF the TULOTIALcoeeee et e bt e ab et e s e et e e e anreeennnes 28
Creating an OPL MOGEL......co ettt e e et ee e e et e e e e e s aab b et e e e e e anb b e e e e e e annbeeeas 29
SPECITYING @ LA SOUICE.......eeeiiiiii ettt ettt et e e et e e e b et e e s s et e e b et e e asbe e e sab e e e st b e e e anneeenanes 32

© Copyright IBM Corp. 1987, 2009 3

Generating the CONCEIT MOUEL........cccuuiiiiiieiie ettt et e et e e snb e e e ntbeeennteeennnes 33

Yo 1Yo Vo TR TN 4T To = SR PRRR R 34
ACCESSING the SOIULION. ...ttt ettt ettt s et sen e bt e nreenane s 35
Using run configuration @nd PrOJECES.eiiieiiiiiiee ettt ettt e ettt e e e e sttt e e e e anbee e e e e e anneeeeeeeanereeaaeaan 36
WOrking With OPL INTEITACES........cciiiiiiieii e e e r e e e e e e e 39
USING OPL MOUEI INSTANCES. ... viieiiiiei ittt et ettt e e s e e et e e e e e snneee s 41
(O YT VT PP O PP UUPTPPPPPRP 42
The model definition43
TRE GALA. ...ttt e b ettt e e 45
SEIVICES ON SOIULIONS.eeieeiiteiee e e ettt ettt e e e ettt e e e et e et e e e e ntae e e e e e aasneeeeaeeaansbeeeaeeaansaeeaeeeeannsseeaeeeansaneeas 46
CUSEOM GAIA SOUICES.c.ueiiitiiiiteetee sttt bttt ettt et b et et e ebe e b e e s be e ea bt e eh bt e bt e s b bt et e e nes e e s ke e ees e e nbeesaneenneean 47
ACCESSING EIEIMENTS.ei ittt ettt e ekt e e b e e s b et e ekt e e s b et e s nn e e e asne e e nann e e s nnneeeanneeenan 51
ACCESSING MOAEl EIEMENTS........uiiiiii it e e e e e e s e e e s e e b e e e e e e e e staaeeaeesanees 52
Iterating through OPL @IEMENES......cooo et e et e e e e et e e e e e ennae e e e e e anees 54
Y= 1] o 1= PSP OUPRPTN 56
POStPrOCESSING SOIULIONS. ...ttt ettt e e e ekttt e e e e et b et e e e e s atbe e e e e e anbeeeeeeeanseeeaaeeanneaneaaaan 57
Error handling.................. .
[D1=] 10T I 4 To o L= TP
Printing data to a stream
Integrating OPL with Excel using Visual Studio ToOIS for OffiCe..........uuiiiiiiiiii e 62
MEMOTY MANAGEIMENT. ... iettieeeeei ittt e e et e e e e st et e e e s e b e et e e e e aabe e et e e e e s n e et e e e s asnnnneeeeesnrrneeeenas 70
10 1= PR 71

4 I

BM ILOG OPL INTERFACE USER'S MANUAL

Interfaces User’s Manual

IBM® ILOG® OPL Interfaces enable users to integrate OPL models with IBM ILOG Concert.
They are available in the C++, Java, and .NET programming languages. This manual provides
a tutorial approach to using these application programming interfaces (APIs), and should

be used in conjunction with the Interfaces Reference Manual for the language you are using.

In this section

Introduction

Explains how to use the C++, Java, and .NET libraries to integrate OPL models with IBM®
ILOG® Concert Technology. The introduction to the C++, Java, and .NET interfaces stresses
the specificities for each language.

Tutorial

Shows how to write basic code to create a simple OPL model from a model definition file
and a model data file. The model is solved using CPLEX through the Concert API. Each step
is illustrated by a code sample in each language.

Working with OPL interfaces
Explains in more general terms how to work with the OPL C++, Java and .NET Interfaces.
This section is also illustrated by code samples for each language.

© Copyright IBM Corp. 1987, 2009 5

B

M

I'LOG

o}

P

L

NTERFACE

USER"'

S

MANUAL

B

Introduction

Explains how to use the C++, Java, and .NET libraries to integrate OPL models with IBM®
ILOG® Concert Technology. The introduction to the C++, Java, and .NET interfaces stresses
the specificities for each language.

In this section

About the Interfaces User's Manual
Provides a short overview of the purpose of the OPL interfaces, the design principles
underlying them, and material you should read before using this manual.

Using the C++ interface
Explains how to compile and build an application that uses OPL C++ interfaces. For details,
see the C++ API Reference Manual.

The Java interface
Presents the Java API delivered with IBM® ILOG® OPL. For details, see the Java API
Reference Manual.

The .NET interface
Presents the .NET API delivered with IBM® ILOG® OPL. For details, see the .NET API
Reference Manual.

M ILOG OPL INTERFACE USER'S MANUAL 7

About the Interfaces User's Manual

8 I

B

M

IBM® ILOG® OPL Interfaces enable users to integrate OPL models with IBM ILOG Concert.

These interfaces are available in the C++, Java, and .NET programming languages. Each
of these application programming interfaces (APIs) is documented in the Interfaces Reference
Manual for that language, accessible from the table of contents.

Before you start

Before reading this manual, we recommend that you read the part about Languages and
APIs in the CPLEX User's Manual, which presents IBM ILOG Concert for the various
programming languages. IBM ILOG Concert is used by both solving engines, CPLEX® and
CP Optimizer.

Also make sure you read How to read the OPL documentation for details of prerequisites,
conventions, documentation formats, and other general information.

When to use the API
The recommended approach to modeling and solving a problem is to start with the IBM
ILOG OPL IDE.

Later, you may wish to use an API to extend your model.

Design principles
The design principles for the OPL interfaces are:

4 separate the model from the solver

4 instantiate the same OPL model with different data
4 allow Concert to access and modify the model

¢ provide data easily
¢

access data and results

ILOG OPL INTERFACE USER'S MANUAL

Using the C++ interface

The C++ API of OPL is based on the C++ Concert Technology, on the CPLEX® C++ API,
and on the CP Optimizer API which are themselves based on Concert Technology. For more
information, see the Concert Reference Manual.

Important: Microsoft limitation: The C++ OPL API (VS 2005 and VS 2008) example projects
contain a post-build event specified as

mt.exe /nologo —-outputresource:$ (TargetFileName);1 -manifest
examples.manifest

This event is required for C++ applications compiled with Visual Studio 2005 and
2008. By default, all applications built with these versions of Visual Studio are
built as isolated applications with a manifest, either embedded as a resource, or
accompanying the final binary as an external file. Sometimes the manifest
generated automatically is not correct. In this case, you need to force generation
of the right manifest.

To compile and build an application that uses OPL C++ interfaces:
1. Include the directory of header files:
<OPL_dir>\include

2. Link with the following IBM ILOG libraries:

Windows libraries Unix libraries except AIX AIX libraries
concert.lib concert.so concert.a
cp.lib cp.so cp.a

cplex <version_number> .lib cplex <version_number> .so cplex <version_number> .a

dbkernel.lib dbkernel.so dbkernel.a
dbinkdyn.lib dbinkdyn.so dbinkdyn.a
iljs.lib iljs.so ilis.a
ilocplex.lib ilocplex.so ilocplex.a
ilog.lib ilog.so ilog.a
opl.lib opl.so opl.a

These libraries are in the following directory:
<OPL_dir>\1lib\<port_ name>\<format>

where <OPL_dir> is your installation directory.

IBM ILOG OPL INTERFACE USER'S MANUAL 9

10

B

M

3. Make sure the following directory is in your PATH (on Windows), LIBPATH (AIX

I'LOG

platforms), or LD_LIBRARY PATH (other Unix platforms) environment variable:
<OPL_dir>\bin\<port name>\<format>

It contains the shared libraries (Windows .d11 and Unix .so or .a files) that
applications need to run. When you install OPL on Windows, this directory is added
to the PATH, LIBPATH, or LD_LIBRARY PATH variable.

Set your environment variables.
4 On Windows, make sure that the path

<OPL_dir>\bin\<port name>

is in your PATH environment variable, so that the shared libraries are found.
4 On Unix, make sure that

<OPL_dir>\bin\<port name>

is in your LIBPATH or LD_LIBRARY PATH environment variable, so that the shared
libraries are found.

Note: To see the solution in your file, you have to force the flush of the output
stream, using

cout<<endl;

For more information and examples on how to use Concert Technology, as well as the
CPLEX® and CP Optimizer APIs for Concert Technology, see the Concert, CPLEX
and CP Optimizer documentation.

OPL INTERFACE USER'S MANUAL

B

The Java interface

Presents the Java API delivered with IBM® ILOG® OPL. For details, see the Java API
Reference Manual.

In this section

Overview of the Java interface
Presents a high-level overview of the OPL Java interface.

Object creation and factories
Describes the usage of constructors in the OPL Java interface.

Memory management
Provides information on memory management while using the OPL Java interface.

Compatibility with Java CPLEX
Describes the relationship of the i1og.concert and ilog.cplex packages with their
equivalent packages in IBM® ILOG® CPLEX® .

Compatibility with CP Optimizer Java interface
The Java interface is fully compatible with the CP Optimizer Java interface

Deployment of Java applications
Provides information on how to deploy an application that uses the OPL Java interface.

M ILOG OPL INTERFACE USER'S MANUAL

11

Overview of the Java interface

12

B

M

The Java interface offers basically the same functionality as the C++ one.

The Java API is split into several packages:
4 The ilog.concert package contains the Concert modeling API, for modifying models.

4 The ilog.cp package contains the CP Optimizer control API, for controlling the solving
process of constraint programming models.

4 The ilog.cplex package contains the CPLEX® control API, for controlling the solving
process of mathematical programming models.

4 The ilog.opl package contains the OPL control API, for loading and accessing models.

The Java API is written as a JNI wrapper on the equivalent C++ libraries; it offers the same
functionality as the C++ APIL.

Each call to a method of the API goes through a wrapping layer. This may result in a slight
performance overhead while the model is created, compared to using the C++ API, depending
on the number of API function calls. Since you call only few API functions to load and solve
your model, the overhead is negligible in usual cases, but it may become important if you
use the low-level Concert, CP Optimizer, or CPLEX API for a complete model creation (for
example, constructing a matrix line by line using 11oNumExpr APIs or adding I1oConstraint
objects one by one to an I1oModel using the API). It is therefore recommended to use the
OPL language to model your problems whenever possible, and use only the low-level Concert
APIs for the parts that need it (runtime additions, etc.).

Once created, the model is still solved fully in C++, so there is no loss of performance when
solving models, whatever language you choose.

ILOG OPL INTERFACE USER'S MANUAL

Object creation and factories

B

The C++ API allows you to create objects using a constructor. To provide greater flexibility
and allow for evolution, the Java API uses a “Factory” pattern: objects are created by calls
to the methods of a root object. For example, you create OPL objects using the methods of
the class I1o0PLFactory.createOPLModel, IloOPLFactory.createCPLEX, and so on. Similarly,
you create Concert modeling constructs using the methods of the class I11oMPModeler
(implemented by the 11oCplex class): numvar, range, minimize, and so on.

For example, the following code lines create an instance of IloNumvar:

IloMPModeler modeler=new IloCplex();
IloNumVar var=modeler.numVar (0,10);

The Concert C++ modeling API works by redefining operators to provide a compact notation
for common constructs. In Java, the equivalent constructs are created through regular
methods of I1oModeler: ge, eq, prod, and so on.

M ILOG OPL INTERFACE USER'S MANUAL 13

Memory management

14

B

M

The Java garbage collector usually takes care of the memory allocated by Java objects.
However, since the OPL Java API allocates memory in C++ as well, the memory management
is slightly different. When you use the OPL Java API, the first object you create is always
the OPL factory. Then, you use the OPL factory to create all other objects. All the C++
memory is allocated on an internal heap of the 1100plFactory object and cleaned up by a
call to the method T100PLFactory.end. The internal heap is an instance of the C++ class
IloEnv.

Important: This means that in most cases you do not need to be concerned with memory
management: all the memory used by your model is correctly cleaned up at the
end.

Some applications may need tighter control on memory management.

This is the case for applications to which all of the following applies:

4 They demand a lot of memory.

and

4 They make a lot of incremental model modifications: elements are repeatedly added to,
then removed from, the model, which is solved after each addition or removal.

and

4 They are long-lived, that is, the application keeps modifying and re-solving the same
model over long periods.

Such applications can explicitly manage memory by calling the method 11oMPModeler.delete
on Concert objects or end on OPL objects. These methods delete objects before the global
cleanup and thus free memory earlier.

ILOG OPL INTERFACE USER'S MANUAL

Compatibility with Java CPLEX

The ilog.concert and ilog.cplex packages are designed to be compatible with the
equivalent packages in IBM® ILOG® CPLEX® . This means that they offer the same API
(slightly extended for OPL), although the implementation is quite different. The benefit is
that you can reuse your existing JConcert/Java CPLEX modeling code and combine it with
OPL models.

Because OPL can produce full Concert models and offers a backward compatible API, you
benefit from a smooth migration path to OPL without losing your previous work.

Note: 1. The CPLEX Java APl related to I1oLPMatrix, which allows direct manipulation
of the CPLEX matrix in Java, is not available in the OPL implementation.

2. Serialization is not supported for JConcert modeling classes.

3. CPLEX callbacks are supported with parallel search in Java interfaces.

IBM ILOG OPL INTERFACE USER'S MANUAL 15

Compatibility with CP Optimizer Java interface

The Java interface is fully compatible with the CP Optimizer Java interface. The ilog.cp
package shipped with OPL is identical to that shipped with CP Optimizer.

16 IBM I1LOG OPL INTERFACE USER'S MANUAL

Deployment of Java applications

To compile and build an application that uses OPL Java interfaces, you need only one JAR
file: oplall.jar, located in

<OPL_dir>\1lib

This JAR file uses the dynamic library bin\<port name>\opl<version>.dl1l (on Windows)
or bin\<port name>\opl<version>.so (on UNIX) at run time. The OPL Java API supports
the JDK from version 5.0, on Windows and UNIX.

Make sure your CLASSPATH variable includes

<OPL dir>\lib\oplall.jar

See also AIX platforms in Working Environment for limitations.

IBM ILOG OPL INTERFACE USER'S MANUAL 17

18

B

M

I'LOG

o}

P

L

INTERFACE

USER"'

S

MANUAL

The .NET interface

Presents the .NET API delivered with IBM® ILOG® OPL. For details, see the .NET API
Reference Manual.

In this section

Overview of the .NET interface
Presents a high-level overview of the OPL .NET interface.

Object creation and factories
Describes the usage of constructors in the OPL .NET interface.

Memory management
Provides information on memory management while using the OPL .NET interface.

CPLEX goals
Describes how the .NET API handles search strategies on CPLEX goals.

Compatibility with .NET CPLEX
Describes the relationship of the 110G.Concert and I1L0G.CPLEX namespaces with their
equivalent packages in ILOG CPLEX.

Compatibility with CP Optimizer .NET interface
The .NET interface is fully compatible with the CP Optimizer .NET interface

Deployment of .NET applications (Windows only)
Provides information on how to deploy an application that uses the OPL . NET interface.

IBM ILOG OPL INTERFACE USER'S MANUAL 19

Overview of the .NET interface

20

B

M

The .NET interface offers basically the same functionality as the C++ one.

The .NET API is split into several namespaces:
4 The 110G.Concert namespace contains the Concert modeling API, for modifying models.

4 The TL0G.CP namespace contains the CP Optimizer control API, for controlling the solving
process of constraint programming models.

4 The 11.0G.CPLEX namespace contains the CPLEX control API, for controlling the solving
process of mathematical programming models.

4 The I1.0G.OPL namespace contains the OPL control API, for loading and accessing models.

This API is available for all the languages supported by the .NET platform. Examples are
provided with OPL for C#, and Visual Basic.

The .NET API is written as a JNI wrapper on the equivalent C++ libraries; it offers the same
functionality as the C++ APIL.

Each call to a method of the API goes through a wrapping layer. This may result in a slight
performance overhead while the model is created, compared to using the C++ API, depending
on the number of API function calls. Since you call only few API functions to load and solve
your model, the overhead is negligible in usual cases, but it may become important if you
use the low-level Concert, CP Optimizer, or CPLEX® API for a complete model creation
(for example, constructing a matrix line by line using 1NumExpr APIs or adding IConstraint
objects one by one to an IModel using the API). It is therefore recommended to use the OPL
language to model your problems whenever possible, and use only the low-level Concert
APIs for the parts that need it (runtime additions, etc.).

I Note: The .NET API requires the vjslib.d11 library.

ILOG OPL INTERFACE USER'S MANUAL

Object creation and factories

The C++ API allows you to create objects using a constructor. To provide greater flexibility
and allow for evolution, the .NET API uses a “Factory” pattern: objects are created by calls
to the methods of a root object. For example, you create OPL objects using the methods of
OPLFactory.CreateOPLModel, OPLFactory.CreateCPLEX, and so on. Similarly, you create
Concert modeling constructs using the methods of 1MPModeler (implemented by the Cplex
class): Numvar, Range, Minimize, and so on.

The Concert C++ modeling API works by redefining operators to provide a compact notation
for common constructs. In .NET, the equivalent constructs are created through regular
methods of IModeler: Ge, Eqg, Prod, and so on.

IBM ILOG OPL INTERFACE USER'S MANUAL 21

Memory management

22

B

M

The .NET CLR garbage collector usually takes care of the memory allocated by .NET objects.
However, since the OPL .NET API allocates memory in C++ as well, the memory management
is slightly different.

When you use the OPL .NET API, the first object you create is always the OPL factory. Then,
you use the OPL factory to create all other objects. All the C++ memory is allocated on an
internal heap of the opl1Factory object and cleaned up by a call to the method opPLFactory.
End. The internal heap is an instance of the C++ class I1oEnv.

Important: This means that in most cases you do not need to be concerned with memory
management: all the memory used by your model is correctly cleaned up at the
end.

Some applications may need tighter control on memory management.

This is the case for applications to which all of the following apply:

¢ They demand a lot of memory.

and

¢ They make a lot of incremental model modifications: elements are repeatedly added to,
then removed from, the model, which is solved after each addition and removal.

and

¢ They are long-lived, that is, the application keeps modifying and re-solving the same
model over long periods.

Such applications can explicitly manage memory by calling the method I1MPModeler.Delete
on Concert objects or End on OPL objects. These methods delete objects before the global
cleanup and thus free memory earlier.

ILOG OPL INTERFACE USER'S MANUAL

CPLEX goals

IBM® ILOG® CPLEX® provides advanced control on search strategies through user goals
that are called during the search. This feature is not available for the .NET API in this release
(although it is supported in C++ and Java). It will be supported in a future release. However,
CPLEX callbacks, including CPLEX callbacks with parallel search, are supported in this
release of OPL.

IBM ILOG OPL INTERFACE USER'S MANUAL 23

Compatibility with .NET CPLEX

The I10G.Concert and ILOG.CPLEX namespaces are designed to be compatible with the
equivalent namespaces in IBM® ILOG® CPLEX® . This means that they offer the same
API (slightly extended for OPL) although the implementation is quite different. The benefit
is that you can reuse your existing Concert.NET or CPLEX.NET modeling code and combine
it with OPL models. Because OPL can produce full Concert models and offers
backward-compatible APIs, you benefit from a smooth migration path to OPL without losing
your previous work.

Note: The CPLEX .NET API related to ILPMatrix, which allows direct manipulation of the
CPLEX matrix in .NET, is not available in the OPL implementation.

24 I BM ILOG OPL INTERFACE USER'S MANUAL

Compatibility with CP Optimizer .NET interface

The .NET interface is fully compatible with the CP Optimizer .NET interface. The IBM®
ILOG CP .NET API shipped with OPL is identical to that shipped with CP Optimizer.

IBM ILOG OPL INTERFACE USER'S MANUAL 25

Deployment of .NET applications (Windows only)

26

B

M

The .NET API is provided as the assembly file 1ib/oplall.d11, which uses the dynamic
library bin/opl<version number> dotnet.dll atrun time. The OPL .NET API supports
version 2.0 of .NET Framework.

More specifically, to compile and build an application that uses OPL .NET interfaces, you
need:

4 one DLL file: oplall.dll, located in OPL dir\lib

4 Microsoft .NET Framework Version 2.0 Redistributable Package. This package is included
in Microsoft Visual Studio. You can also download it for free from

http://www.msdn.microsoft.com/netframework/

The appropriate version of Visual Studio is VS2005 for .NET2.0.

ILOG OPL INTERFACE USER'S MANUAL

http://www.msdn.microsoft.com/netframework/

Tutorial

Shows how to write basic code to create a simple OPL model from a model definition file
and a model data file. The model is solved using CPLEX through the Concert API. Each step
is illustrated by a code sample in each language.

In this section

Overview of the Tutorial
Reviews the design principles of the OPL APIs, where to locate the libraries and their
respective code samples in the distribution, and presents the different sections of this tutorial.

Creating an OPL model
Shows how to create an OPL model that utilizes the OPL interfaces.

Specifying a data source
Shows how to specify the data source for your OPL model.

Generating the Concert model
Describes how to generate the Concert model for your OPL model.

Solving the model
Shows how to solve your model.

Accessing the solution
Provides information on how to access the solution through OPL and through Concert.

Using run configuration and projects
Shows how to use run configurations to create the project and access the run configuration
and the model using Concert.

IBM ILOG OPL INTERFACE USER'S MANUAL 27

Overview of the Tutorial

28

B

M

The IBM® ILOG® OPL Interfaces library enables users to integrate OPL modeling with
IBM ILOG Concert Technology.

These interfaces are designed to fulfill several goals, chiefly:

4 separate the model from the data

4 separate the modeling phase from the solving phase

4 instantiate the same OPL model definition with different data
4 embed with IBM ILOG Concert Technology

4 provide custom data easily

OPL Interfaces are available in C++, Java, and .NET. See Introduction for a general
presentation of the Interfaces in the three languages. See also the Interfaces Reference
Manuals in

<OPL_dir>\doc\html\en-US\refcppopl\index.html
<OPL_dir>\doc\html\en-US\refjavaopl\index.html
<OPL _dir>\doc\chm\index.chm

where <OPL_dir> is your installation directory.

Most of the code snippets used in this tutorial are extracted from the mulprod example,
which exists in all four languages at the following locations:

<OPL_dir>\examples\opl_interfaces\cpp\src\mulprod.cpp
<OPL_dir>\examples\opl_interfaces\java\mulprod\src\mulprod\Mulprod.java
<OPL_dir>\examples\opl interfaces\dotnet\x86_.net2005_8.0\VisualBasic\Mulprod\Mulprod.vb
<OPL_dir>\examples\opl_interfaces\dotnet\x86_.net2005_8.0\CSharp\Mullprod\Mulprod.cs

A general presentation of the code samples is provided in Interfaces examples in the Language
and Interfaces Samples manual.

In this tutorial, the .NET code samples from Mulprod.vb are written in Visual Basic.
The instructions that cannot be illustrated in each language are given by default in C++.
This tutorial walks you through the procedures.

ILOG OPL INTERFACE USER'S MANUAL

Creating an OPL model

To create an OPL model using the IBM® ILOG® OPL Interfaces library, you need:
1. To create the Concert environment.
2. To create the error handler in the environment.
3. To identify the model source.
4. To identify the model definition.
5. To create the engine instance.
6. To create the OPL model.
These steps are explained in this topic.
To create the Concert environment

As for any IBM® ILOG® Concert Technology model, you need an instance of the
environment in which to create your model objects.

4 Write the following code.

C++
IloEnv env;

Java
IloOplFactory oplF = new IloOplFactory() ;

.NET (Visual Basic)
Dim oplF As OplFactory = New OplFactory

To create the error handler

4 Create an error handler is necessary in the environment to report errors and warnings
during the translation of the model text.

C++
IloOplErrorHandler handler (env, cout) ;

Java
IloOplErrorHandler errHandler = oplF.createOplErrorHandler () ;

.NET (Visual Basic)
Dim errorHandler As OplErrorHandler = oplF.CreateOplErrorHandler ()

To identify the model source

4 Pass the model source that provides the text to interpret.

IBM ILOG OPL INTERFACE USER'S MANUAL 29

30

B

M

LOG OPL

C++

IloOplModelSource modelSource (env, DATADIR 'mulprod.mod');

Java

IloOplModelSource modelSource
+ '/mulprod.mod') ;

oplF.createOplModelSource (DATADIR

.NET (Visual Basic)

Dim modelSource As OplModelSource = oplF.CreateOplModelSource (DATADIR
+ '/mulprod.mod"')

To identify the model definition

4 Use same model definition to instantiate one or more models.
C++

IloOplSettings settings (env,handler) ;
IloOplModelDefinition def (modelSource,settings) ;

Java

IloOplModelDefinition def =

= oplF.createOplModelDefinition
(modelSource, settings) ;

.NET (Visual Basic)

Dim def As OplModelDefinition =

= oplF.CreateOplModelDefinition
(modelSource, settings)

To create the engine instance

4 Create the instance of the algorithm to use for this model.
C++
IloCplex cplex(env);

Note: If the model is to be solved by CP Optimizer engine, you would instantiate
an I1oCP object using
I1oCP cp (env)
Java

IloCplex cplex oplF.createCplex() ;

Note: If the model is to be solved by CP Optimizer engine, you would instantiate
an I1oCP object using

NTERFACE USER'S MANUAL

B

M

oplF.createCP ()

I I1oCP cp

.NET (Visual Basic)
Dim cplex As Cplex = oplF.CreateCplex()

Note: If the model is to be solved by CP Optimizer engine, you would instantiate
an I1oCP object using

Dim cp As CP = oplF.CreateCP ()

To create the OPL model

4 You can now create the OPL model. The constructor takes a model definition instance
and an instance of T1oCplex .

C++
IloOplModel opl (def,cplex);

Java
IloOplModel opl = oplF.createOplModel (def, cplex);

.NET (Visual Basic)
Dim opl As OplModel = oplF.CreateOplModel (def, cplex)

ILOG OPL INTERFACE USER'S MANUAL 31

Specifying a data source

32

B

M

I'LOG

4 In order to generate the Concert model, you need to provide data, just as you would

add a data file in an OPL project along with the model file. The simplest way to get
data is also to provide a file.

C++
IloOplDataSource dataSource (env, DATADIR "mulprod.dat");
opl.addDataSource (dataSource) ;

Java

IloOplDataSource dataSource = oplF.createOplDataSource (DATADIR
+ "/mulprod.dat") ;
opl.addDataSource (dataSource) ;

.NET (Visual Basic)
S{snippet N32324}

OPL INTERFACE USER'S MANUAL

Generating the Concert model

4 Once you have specified your data source, you can generate the Concert model.

C++
opl.generate () ;

Java
opl.generate () ;

.NET (Visual Basic)
$S{snippet N32380}

This method also loads the model into the engine instance passed earlier.

IBM ILOG OPL INTERFACE USER'S MANUAL 33

Solving the model

4 You can solve the model in the usual way with Concert Technology.

C++
if (cplex.solve()) {

Java
if (cplex.solve())

.NET (Visual Basic)
S{snippet N323F2}

34 IBM ILOG OPL INTERFACE USER'S MANUAL

Accessing the solution

You can access the solution directly through OPL or through the Concert API.
Accessing the solution through OPL

4 Print the OPL solution directly like this:

C++
opl.printSolution (cout);

Java
opl.printSolution (System.out) ;

.NET (Visual Basic)
S{snippet N3247F}

Accessing the solution through Concert

4 You can use the typical Concert API to access results.

C++
cout << endl
<< "OBJECTIVE: " << fixed << setprecision(2) << opl.
getCplex () .getObjValue ()
<< endl;
Java
System.out.println ("OBJECTIVE: " + opl.getCplex().getObjValue

)

.NET (Visual Basic)
${snippet N324EE}

In the same way, you can ask the 11oCplex instance for the values of the variables from the
OPL model. See Using OPL model instances for details.

IBM ILOG OPL INTERFACE USER'S MANUAL 35

Using run configuration and projects

36

B

M

Sometimes, it is not necessary to create intermediate objects for the model definition or the
data sources as explained in Creating an OPL model. This is the case, for example, when
you do not plan to use the data source object for various different OPL models. You can then
use the classes I100plProject and I1loOplRunConfiguration to create the I1o0OplModel
instance directly.

This section demonstrates this feature using the oplrun example which exists in all four
languages at the following locations:

<OPL_dir>\examples\opl_interfaces\cpp\src\oplrunsample.cpp

<OPL_dir>\examples\opl_interfaces\java\oplrunsample\src\oplrunsample\OplRunSample.java
<OPL dir>\examples\opl interfaces\dotnetx86_net2005_8.0\VisualBasic\OpIRumSample\OpIRimSamplexb
<OPL dir>\examples\opl interfaces\dotnet\x86_net2005_8.0\CSharp\OpIRunSample\OpIRunSample.cs

where <OPL_dir> is your installation directory.
Creating the project

4 You can create an I1oOplProject instance directly using a project path.

C++

IloOplProject prj(_env, cl.getProjectPath());

Java

IloOplProject prj = oplF.createOplProject(cl.getProjectPath());
C#

Dim prj As OplProject = oplF.CreateOplProject(cl.ProjectPath)

Accessing a run configuration

4 From that project, you can access one of the included run configuration. If you pass
no argument, you get the default run configuration.

C++
rc = prj.makeRunConfiguration(cl.getRunConfigurationName ()) ;
Java
rc = prj.makeRunConfiguration(cl.getRunConfigurationName ()) ;

C#

rc = prj.MakeRunConfiguration(cl.RunConfigurationName)

ILOG OPL INTERFACE USER'S MANUAL

OPL creates the 1100p1Model instance from the run configuration automatically.
Accessing the model

4 You can access with the following code.

C++
IloOplModel opl = rc.getOplModel () ;
Java

IloOplModel opl = rc.getOplModel () ;

C#
Dim opl As OplModel = rc.GetOplModel ()
You can then use the I100plModel instance as usual.
Using the T1100plProject and IloOplRunConfiguration API brings more than one benefit:
4 It is easier to use when intermediate structures are not necessary.
4 It enables you to use settings files (.ops).

4 All the advantages of run configurations remain available. In particular, it is possible to
easily run the same model with different setting files or with different data sets.

IBM ILOG OPL INTERFACE USER'S MANUAL 37

38

B

M

I'LOG

o}

P

L

INTERFACE

USER"'

S

MANUAL

Working with OPL interfaces

Explains in more general terms how to work with the OPL C++, Java and .NET Interfaces.
This section is also illustrated by code samples for each language.

In this section

Using OPL model instances
Explains how to instantiate OPL models using a model definition, data, and a solving engine.

Services on solutions
Mentions additional services available through the 1100p1Model instance as soon as a solution
is available.

Custom data sources
Describes how to provide custom data sources for your model by extending the class
IloOplDataSourceBaseIl

Accessing elements
Describes what APIs to use to access model elements such as decision variables and their
values, and to iterate through model elements.

Settings
Describes the various Settings options available to customize the behavior of OPL.

Postprocessing solutions
Shows how to initiate the call to postprocessing in your model.

Error handling
Describes how to handle messages and integrate them with your environment.

IBM ILOG OPL INTERFACE USER'S MANUAL 39

40

B

M

Debug mode
Explains how to work with your model in debug mode.

Printing data to a stream
Shows how to print your data to a stream, using the .dat file syntax.

Integrating OPL with Excel using Visual Studio Tools for Office
Explains how to create a Microsoft Excel Add-in. It is coded in C# and uses OPL to solve
the warehouse problem within Excel 2003.

Memory management
Provides recommendations to manage memory in Concert applications.

ILOG OPL INTERFACE USER'S MANUAL

Using OPL model instances

Explains how to instantiate OPL models using a model definition, data, and a solving engine.

In this section

Overview
Presents basic information about working with OPL model instances.

The model definition
Shows how to specify a model definition that can then be used to instantiate one or more
models.

The data
Shows how to specify the data source for your model.

IBM ILOG OPL INTERFACE USER'S MANUAL 41

Overview

To instantiate an OPL model, you need its definition and data, as well as an engine that will
solve the model. Most of the code samples used in this topic are extracted for each language
from the warehouse example, which exists in all four languages at the following locations:

<OPL _dir>\examples\opl interfaces\cpp\src\warehouse.cpp
<OPL dir>\examples\opl interfaces\java\warehouse\src\warehouse\Warehouse.java

<OPL_dir>\examples\opl interfaces\dotnet\x86 .net2005 8.0\VisualBasic\Warehouse\
Warehouse.vb

<OPL dir>\examples\opl interfaces\dotnet\x86 .net2005 8.0\CSharp\Warehouse\
Warehouse.cs

where <OPL_dir> is your installation directory.

A general presentation of the code samples is provided in Interfaces examples in the Language
and Interfaces Samples manual.

In this chapter, the .NET code samples from Wwarehouse. cs are written in C#. The instructions
that cannot be illustrated in each language are given by default in C++.

42 1BM ILOG OPL INTERFACE USER'S MANUAL

The model definition

The model source provides the text to interpret. An error handler is necessary to report
errors and warnings during the translation of the model text. Later, you can use the same
model definition to instantiate one or more models.

C++

C++: Specifying the model definition
int main(int argc,char* argv[]) {
IloEnv env;

int status = 127;

try {
IloCplex cplex(env);
IloOplErrorHandler handler (env,cout) ;
std::istringstream in(getModelText ());
IloOplModelSource modelSource (env, in, "warehouse") ;
IloOplSettings settings (env,handler) ;
IloOplModelDefinition def (modelSource, settings) ;
Ilo0OplModel opl (def,cplex);

Java

Java: Specifying the model definition
IloOplFactory.setDebugMode (true) ;
IloOplFactory oplF = new IloOplFactory();
IloOplErrorHandler errHandler = oplF.createOplErrorHandler (System.out)

IloCplex cplex = oplF.createCplex();

IloOplModelSource modelSource=oplF.createOplModelSourceFromString
(getModelText (), "warehouse") ;

IloOplSettings settings = oplF.createOplSettings (errHandler) ;

IloOplModelDefinition def=oplF.createOplModelDefinition
(modelSource, settings) ;

Ilo0OplModel opl=oplF.createOplModel (def, cplex) ;

.NET (C#)

.NET: Specifying the model definition
OplFactory.DebugMode = true;
OplFactory oplF = new OplFactory();

OplErrorHandler errHandler = oplF.CreateOplErrorHandler (Console.
Out) ;

Cplex cplex = oplF.CreateCplex();

OplModelSource modelSource = oplF.CreateOplModelSourceFromString
(GetModelText (), "warehouse");

OplSettings settings = oplF.CreateOplSettings (errHandler) ;

M ILOG OPL INTERFACE USER'S MANUAL 43

OplModelDefinition def = oplF.CreateOplModelDefinition
(modelSource, settings);
OplModel opl = oplF.CreateOplModel (def, cplex);

M ILOG OPL INTERFACE USER'S MANUAL

The data

To generate the CPLEX® model, OPL needs to know where to take the data from. You must
therefore specify a data source.

The data source can be:

4 cither an OPL data file (as in the Tutorial) which allows access to data in files or databases,
or

4 a custom-coded data source, as in the examples below. (The custom data source is
described in Custom data sources.)

C++

C++: Specifying a data source

Java

Java: Specifying a data source
IloOplDataSource dataSource=new MyParams
(oplF, nbWarehouses, nbStores, fixed,disaggregate) ;
opl.addDataSource (dataSource) ;
opl.generate () ;

.NET (C#)

.NET: Specifying a data source

OplDataSource dataSource = new MyParams (oplF, nbWarehouses,
nbStores, fixedP, disaggregate) ;

opl.AddDataSource (dataSource) ;

opl.Generate () ;

Now, the OPL model is available from CPLEX® . You can use the full 11oCplex API to solve
the model. You can reuse the same cplex instance for different OPL models. However, when
you access for the first time a postprocessing model element that uses variable values in its
definition, you may get an “unbound variable” exception if the cplex instance has been used
later for another model and hence is not synchronized with the invoking model anymore.

M I1LOG OPL INTERFACE USER'S MANUAL 45

Services on solutions

Additional services are available through the 1100p1Model instance as soon as a solution is
available. The values for decision variables within the solution are accessible by their names.
See Accessing elements.

46 I1BM ILOG OPL INTERFACE USER'S MANUAL

Custom data sources

You can provide OPL models with custom data sources by extending the class
IloOplDataSourceBasel . All you need to do is implement the read method, which will be
called by the OPL interpreter as necessary. A custom data source uses the interface
IloOplDataHandler to transfer data to the model, and the method getDataHandler to access

the associated data handler and send events. The handler API is event-driven, similar to

SAX interfaces for XML.

Two examples of how these handlers could be used to initialize custom data sources are

given below:

Initialization of

Initialization of

a multi-dimensional array custom data source

handler.StartElement ("cost")

handler.StartIndexedArray ()

For i = 1 To NUMDEMAND
handler.SetItemStringIndex (dtin.Rows (i - 1) (0))
handler.StartIndexedArray ()

For j = 1 To NUMSUPPLY
handler.SetItemStringIndex (dtin.Columns (j) .ColumnName)
handler.AddNumItem (dtin.Rows (i - 1) (j))

Next j

handler.EndIndexedArray ()

Next i

handler.EndIndexedArray ()

handler.EndElement ()

a string set custom data source

handler.StartElement ("Plants")

handler.StartSet ()

For j = 1 To NUMSUPPLY
handler.AddStringItem(dtin.Columns (j) .ColumnName)

Next j

handler.EndSet ()

handler.EndElement ()

C++

C++: Providing

custom data sources

void MyParams::read() const {
IloOplDataHandler handler = getDataHandler () ;

handler.
handler.
handler.

handler.

handler.
handler.

IBM I LOG

startElement ("nbWarehouses") ;
addIntItem(nbWarehouses) ;
endElement () ;

startElement ("nbStores") ;
addIntItem(nbStores);
endElement () ;

OPL INTERFACE USER'S MANUAL

47

handler.startElement ("fixed") ;
handler.addIntItem(fixed);
handler.endElement () ;

handler.startElement ("disaggregate");
handler.addIntItem(disaggregate);
handler.endElement () ;

Java

Java: Providing custom data sources
static class MyParams extends IloCustomOplDataSource
{
int _nbWarehouses;
int _nbStores;
int _fixed;
int disaggregate;

MyParams (IloOplFactory oplF,int nbWarehouses, int nbStores,int fixed, int
disaggregate)
{
super (oplF) ;
_nbWarehouses = nbWarehouses;
_nbStores = nbStores;
_fixed = fixed;
_disaggregate = disaggregate;

public void customRead ()

{
IloOplDataHandler handler = getDataHandler();

handler.startElement ("nbWarehouses") ;
handler.addIntItem(nbWarehouses);
handler.endElement () ;

handler.startElement ("nbStores") ;
handler.addIntItem(nbStores);
handler.endElement () ;

handler.startElement ("fixed") ;
handler.addIntItem(fixed);
handler.endElement () ;

handler.startElement ("disaggregate");

handler.addIntItem(disaggregate);
handler.endElement () ;

M ILOG OPL INTERFACE USER'S MANUAL

B

NET (C#)

Accessing the values a decision variable within a solution

M

internal class MyParams

{

LOG

(o]

CustomOplDataSource

int _nbWarehouses;
int nbStores;

int _fixed;

int disaggregate;

internal MyParams (OplFactory oplF,int nbWarehouses, int
nbStores, int fixedP,int disaggregate)

P

L

base (oplF)

_nbWarehouses = nbWarehouses;
_nbStores = nbStores;
_fixed = fixedP;

_disaggregate = disaggregate;

NTERFACE USER

S

M ANUAL

49

50

B

M

I'LOG

o}

P

L

INTERFACE

USER"'

S

MANUAL

Accessing elements

Describes what APIs to use to access model elements such as decision variables and their
values, and to iterate through model elements.

In this section

Accessing model elements
Shows how to access the elements of your model.

Iterating through OPL elements
Shows how to iterate through the elements of your model.

IBM ILOG OPL INTERFACE USER'S MANUAL 51

Accessing model elements

To access any model element by its name:
4 Use the method getElement.
C++
IloOplElement supply = oplModel.getElement ("supply");
Java
IloOplElement supply = oplModel.getElement ("supply");
NET

OplElement supply = oplModel.GetElement ("supply") ;

The T11o00plElement interface offers accessors for all possible element types. It is the user’s
responsibility to pick the right accessor for the type of the elements he has declared.

For decision variables, there are two different types of accessors:
4 one to obtain the Concert object itself for this decision variable,

4 the other to get the values of decision variables within a solution. The latter is available
only if a solution has been found.

The subsequent sections give examples of each for a supply model element.

To access a decision variable:

4 To get the supplyvarl decision variable within a model, write the following code.

C++

IloNumVarMap supplyVarMap = supply.asNumVarMap () ;
IloNumVar supplyVarl = supplyVarMap.get (1) ;

Java

IloNumVarMap supplyVarMap = supply.asNumVarMap () ;
IloNumVar supplyVarl = supplyVarMap.get (1) ;

NET

INumVarMap supplyVarMap = supply.AsNumVarMap () ;
INumVar supplyVarl = supplyVarMap.Get (1) ;

To access the values of a decision variable:

4 To get the values of the supplyl decision variable within a solution, write the following
code.

52 IBM ILOG OPL INTERFACE USER'S MANUAL

C++

IloNumMap supplyMap = supply.asNumMap () ;
double supplyl = supplyMap.get(1l);

Java

IloNumMap supplyMap = supply.asNumMap () ;
double supplyl = supplyMap.get(1l);

.NET

INumMap supplyMap = supply.AsNumMap () ;
double supplyl = supplyMap.Get (1) ;

M ILOG OPL INTERFACE USER'S MANUAL 53

Iterating through OPL elements

54

B

M

The OPL Interface libraries enable your applications to iterate through OPL elements such
as arrays (maps) and sets. This feature is illustrated by the iterators example, which
contains two samples. The iterators example is available in C++, Java, and .NET Visual
Basic and C# at the following locations:

<OPL_dir>\examples\opl interfaces\cpp\src\iterators.cpp

<OPL dir>\examples\opl interfaces\javaliterators\src\iterators\Iterators.java
<OPL_dir>\examples\dotnet\x86 .net2005 8.0\VisualBasic\Iterators\Iterators.vb
<OPL dir>\examples\dotnet\x86 .net2005 8.0\CSharp\Iterators\Iterators.cs

where <OPL_dir> is your installation directory.

Samplel

The purpose of samplel is to check the result of filtering by iterating on the generated data
element. The data element is an array of strings that is indexed by a set of strings. It is filled
as the result of an iteration on a set of tuples by filtering out the duplicates. It is based on
the transp2.mod model.

The simplified model is:

{string} Products = ...;

tuple Route { string p; string o; string d; }

{Route} Routes = ...;

{string} orig[p in Products] = { o | <p,0,d> in Routes };

Sample2

The purpose of sample2 is to output a multidimensional array x[i] [§] to illustrate how
arrays and subarrays are managed, as shown in Output of a multidimensional array.

Output of a multidimensional array
IloIntMap x = opl.getElement ("x") .asIntMap () ;
IloSymbolSet sl = opl.getElement ("sl").asSymbolSet();
IloSymbolSet s2 = opl.getElement ("s2").asSymbolSet () ;

// Iterate on the first indexer.
for (IloSymbolSetIterator itl(sl); itl.ok(); ++itl) {
// Get the second dimension array from the first
dimension.
IloIntMap sub = x.getSub(*itl);
// Iterate on the second indexer of x (that is the
indexer of the subarray) .
for (IloSymbolSetIterator it2(s2); it2.ok(); ++it2) {
// This is the last dimension of the array,
so you can directly use the get method.
cout << *itl << " " << *it2 << " " << sub.get

LOG OPL INTERFACE USER'S MANUAL

(*1t2) << "\n";

To access the elements of an array, you must first access the sub-arrays until the last
dimension, then you can get the values. Here, as there are two dimensions, you have to get
one sub-array from which you can directly get the values. The array of integers is indexed
by two sets of strings.

The simplified model is:

{string} sl = ...;
{string} s2 = ...;
{int} x[sl1l][s2] = ...;

Sample 3

The purpose of sample3 is to output an array of tuples arrayT[i], to illustrate how tuple
elements can be accessed.

The simplified model is:

tuple t

{

int a;

int b;

}

{string} ids={"idl","id2","id3"};
t arrayT[ids]=[<1,2>,<2,3>,<1,3>];

IBM ILOG OPL INTERFACE USER'S MANUAL 55

Settings

56 I B M

There are various options available through the class 1100plSettings to customize the
behavior of OPL.

There is an accessor to retrieve the settings of an OPL model object. You can set, for example,
whether decision variable names are generated or not, or whether source locations are
associated with Concert objects or not. See the C++ Interfaces Reference Manual for a
complete list.

ILOG OPL INTERFACE USER'S MANUAL

Postprocessing solutions

As modeling and solving are two separated phases, the OPL model does not know when a
solution is available. Therefore, it does not know when to postprocess that solution. You
must therefore initiate the call to postprocessing.

Note: To avoid unexpected behavior, you are recommended to call the postprocess method
even if your model does not contain a postprocessing block.

C++

C++: Calling the postprocessing phase

Java
Java: Calling the postprocessing phase
if (cplex.solve())
{
System.out.println ("OBJECTIVE: " + opl.getCplex().getObjValue());

opl.postProcess() ;
opl.printSolution (System.out) ;

status = 0;

} else {
System.out.println("No solution!");
status = 1;

}

oplF.end() ;

NET (C#)

Visualizing intermediate data
if (cplex.Solve())
{
Console.Out.WriteLine ("OBJECTIVE: " + opl.Cplex.ObjValue)

opl.PostProcess () ;
opl.PrintSolution (Console.Out) ;
status 0;

}

else

{
Console.Out.WriteLine ("No solution!");
status = 1;

IBM ILOG OPL INTERFACE USER'S MANUAL 57

58

B

M

I'LOG

o}

P

L

oplF.End() ;

INTERFACE

USER"'

S

MANUAL

Error handling

B

To better integrate messages with your environment, you may choose to handle them yourself.
This is possible by extending the class 11o00plErrorHandlerBasel.

You can override the virtual methods to report messages:
4 IloBool handleError
4 IloBool handleWarning

4 IloBool handleFatal

These methods return a value to indicate whether the messages were handled correctly or
not. If a message could not be handled, an exception is thrown.

It is not possible to extend the class I11o0plErrorHandler in Java and .NET. However, you
can redirect the error messages to any stream by using the appropriate factory methods:

Java

IloOplFactory.createOplErrorHandler (java.io.OutputStream outs)

NET (C#)

OplFactory.CreateOplErrorHandler (TextWriter outs)

M ILOG OPL INTERFACE USER'S MANUAL 59

Debug mode

60

B

M

By default, the debug mode is on. It is a good practice to keep it on while you develop your
application because it helps you diagnose problems. In particular, you need to have it on if
you experience a core dump when running Java code. However, the debug mode slows down
your application. You should therefore make sure you turn it off when you release your
application. To do this, use the method 11o00plFactory.setDebugMode .

When the default mode is on, a warning message prints to the console. The message is
disabled when you turn the debug mode off. You can disable the message while still running
in debug mode by a call to the method 11o0plFactory.setDebugModeWarning (false).

To turn off the warning, call the method
IloOplFactory.setDebugModeWarning (false)
or

OplFactory.DebugModeWarning = false;

before the I11o00plFactory or OplFactory constructor is called:

IloOplFactory.setDebugModeWarning (false) ;
IloOplFactory oplF = new IloOplFactory();
IloOplErrorHandler errHandler = oplF.createOplErrorHandler () ;

The same applies if you work with .NET interfaces.

ILOG OPL INTERFACE USER'S MANUAL

Printing data to a stream

B

As an additional service for testing and debugging, the class 1100p1Model offers the possibility
to print all the data to a stream, using the .dat file syntax.

C++

IloOplModel: :printExternalData (ostreamé&)

Java

IloOplModel.printExternalData(java.io.OutputStream outs)

NET (C#)

OplModel.PrintExternalData (TextWriter outs)

If your model uses data from various sources, like databases, spreadsheets, or custom
sources, you will be able to write this data to one single file, which makes it easier to read.
This file can be used as a data source for other model instances.

For debugging purposes, you can visualize intermediate data, that is, the data that is not
provided by data sources but calculated during preprocessing.

C++

IloOplModel: :printInternalData (ostreamé&)

Java

IloOplModel.printInternalData(java.io.OutputStream outs)

NET (C#)

OplModel.PrintInternalData (TextWriter outs)

M ILOG OPL INTERFACE USER'S MANUAL 61

Integrating OPL with Excel using Visual Studio Tools for Office

62

B

M

Since the release of MS Office 2003, Microsoft has been working towards the integration
of Office with .NET. For this purpose, Microsoft released a Visual Studio add-on named
“Visual Studio Tools for Office 2003” which allows users to extend MS Office applications
with any .NET language, thus bringing the benefit of the Visual Studio environment and
tools to Office development.

Microsoft has replaced the VSTO 2003 add-on with Visual Studio Tools for Office 2005
for basically the same purpose.

OPL uses this approach to integrate the OPL .NET API. This is demonstrated by the
ExcelWarehouse example. This file is at the following location:

<OPL_dir>\examples\opl interfaces\dotnet\x86 .net2005 8.0\ExcelWarehouse
where <OPL_dir> is your installation directory.

The solve process is triggered by a button embedded in the worksheet. The input data is
taken from the worksheet and the results are written back to the worksheet.

This walkthrough explains how to create a Microsoft Excel Add-in. It is coded in C# and
uses OPL to solve the warehouse problem within Excel 2003.

To create a Microsoft Excel Add-in:
1. Install MS Visual Studio 2005 and MS Office 2003.
2. Download VSTO 2005 Second Edition from this page:
http://msdn.microsoft.com/en-us/office/aa905543.aspx

The downloadable is free if you have VSTO 2005 or VS 2005 Professional Edition.
VSTO 2005 SE allows you to create Office 2003 and 2007 add-ins from Visual Studio
2005.

3. Open Visual Studio 2005 and create a new project:
a. Select Visual C#/Office/2003 Add-ins in the New Project Wizard.
b. Name it ExcelWarehouse.

A new project is created, with a dummy add-in name ThisAddIn.cs .

namespace ExcelWarehouse
{
public partial class ThisAddIn
{
private void ThisAddIn Startup (object sender, System.
EventArgs e)

{
<VSTO generated code>

}

private void ThisAddIn Shutdown (object sender, System.
EventArgs e)

ILOG OPL INTERFACE USER'S MANUAL

http://msdn.microsoft.com/en-us/office/aa905543.aspx

<VSTO generated code>
}

4. In the ThisAddIn.cs file, replace the dummy code with the following lines to create
a new command bar and buttons for OPL.

namespace ExcelWarehouse

{

public partial class ThisAddIn

{

private Office.CommandBar AddInMenuBar;
private Office.CommandBarButton SetupButton;
private Office.CommandBarButton SolveButton;

private void ThisAddIn Startup (object sender, System.EventArgs e)

{

}

<VSTO generated code>

CreateOPLCommands () ;

private void ThisAddIn Shutdown (object sender, System.EventArgs e)

{

RemoveOPLCommands () ;

private void CreateOPLCommands ()

{

try

{

// new command bar for OPL:
AddInMenuBar = Application.CommandBars.Add (
"OPL Commands", Office.MsoBarPosition.msoBarTop, missing,

true);
// setup button:
SetupButton = (Office.CommandBarButton)AddInMenuBar.Controls.
Add
(Office.MsoControlType.msoControlButton, missing, missing,
missing,
true);
SetupButton.Caption = "OPL Warehouse Setup";
SetupButton.Style =
Microsoft.Office.Core.MsoButtonStyle.
msoButtonCaption;
SetupButton.Click += new
Office. CommandBarButtonEvents ClickEventHandler
(
SetupButton Click);
// solve button:
I'LOG OPL INTERFACE USER"'™S M ANUAL 63

64

B

M

LOG

SolveButton = (Office.CommandBarButton)AddInMenuBar.Controls.

Add (
Office.MsoControlType.msoControlButton,
missing, missing, missing, true);
SolveButton.Caption = "OPL Warehouse Solve";
SolveButton.Style =
Microsoft.Office.Core.MsoButtonStyle.
msoButtonCaption;
SolveButton.Click += new
Office. CommandBarButtonEvents ClickEventHandler
(
SolveButton Click);
AddInMenuBar.Visible = true;
}
catch (Exception ex)
{
MessageBox.Show (ex.Message, ex.Source, MessageBoxButtons.OK,
MessageBoxIcon.
Error) ;
}
}
private void RemoveOPLCommands ()
{
SolveButton.Delete (false) ;
SolveButton = null;
SetupButton.Delete (false) ;
SetupButton = null;
AddInMenuBar = null;
}
private void SolveButton Click (Office.CommandBarButton Ctrl,
ref bool
CancelDefault)

{

// respond to solve button click

private void SetupButton Click (Office.CommandBarButton Ctrl, ref
bool CancelDefault)

{
// respond to setup button click }

}

Add some utility methods to get/set values in cells.

static private void setValue (Excel.Worksheet sheet, String cell, String
value)

{

OPL INTERFACE USER'S MANUAL

sheet.get Range (cell,
cell) .set Value (Excel.XlRangeValueDataType.xlRangeValueDefault,
value);

}

static private String getValue (Excel.Worksheet sheet, String cell)

{
return (String)sheet.get Range(cell, cell) .Text;

6. Add the code for the Setup button to populate the current Excel sheet.

private void SetupButton Click (Office.CommandBarButton Ctrl, ref bool

CancelDefault)
{
Excel.Worksheet sheet =
(Excel.Worksheet)this.Application.ActiveWorkbook.ActiveSheet;

setValue (sheet, "Al", "Data used by the OPL model:");
setValue (sheet, "A2", "nbWarehouses:");

setValue (sheet, "B2", "5");

setValue (sheet, "A3", "nbStores:");

setValue (sheet, "B3", "10");

setValue (sheet, "A4", "fixed:");

setValue (sheet, "B4", "30");

setValue (sheet, "AS5", "disaggregate:");

setValue (sheet, "B5", "1");

setValue (sheet, "A8", "Result computed by the OPL model:");
setValue (sheet, "A9", "State:");

setValue (sheet, "AlO0", "Objective:");

}

7. Add the code for the Solve button to launch the OPL solve process.

private void SolveButton Click (Office.CommandBarButton Ctrl,
ref bool
CancelDefault)
{
Excel.Worksheet sheet =
(Excel.Worksheet) this.Application.ActiveWorkbook.
ActiveSheet;
System.IO.StringWriter errHandlerErrors = new System.IO.StringWriter
()7
try
{
setValue (sheet, "B9", "Computing...");
SolveProblem(sheet, errHandlerErrors);
setValue (sheet, "B9", "Success"):;

catch (Exception ex)

M ILOG OPL INTERFACE USER'S MANUAL 65

66

B

M

8.

9.

LOG

setValue (sheet, "B9", "Error:" + ex.ToString()
+ " (" + errHandlerErrors.ToString() + ")")

private void SolveProblem (Excel.Worksheet sheet,
System.IO.StringWriter

errHandlerErrors)

{

// actually solve the problem with OPL

}

Add some references to the OPL .NET APIs used to solve the problem.

a. In the Solution view, select the project (ExcelWarehouse), the References, and
click Add Reference.

b. In the Add Reference Wizard, select Browse, navigate to the OPL installation,
and add <0PL>/1ib/oplall.dll.

C. At the top of the ThisAddIn.cs file, append the following lines to the using list.

using ILOG.Concert;

using ILOG.CPLEX;

using ILOG.OPL;

using Exception = System.Exception;

Add the code that actually solves the problem using OPL.

private void SolveProblem (Excel.Worksheet sheet,
System.IO.StringWriter

errHandlerErrors)
{

OplFactory.DebugMode = true;

OplFactory oplF = new OplFactory();

OplErrorHandler errHandler =

oplF.CreateOplErrorHandler (errHandlerErrors)

OplModelSource modelSource =
oplF.CreateOplModelSourceFromString (GetModelText (), "warehouse")

OplSettings settings = oplF.CreateOplSettings (errHandler);
OplModelDefinition def = oplF.CreateOplModelDefinition
(modelSource, settings)

Cplex cplex = oplF.CreateCplex();

OplModel opl = oplF.CreateOplModel (def, cplex);
OplDataSource dataSource = new MyParams (oplF, sheet);
opl.AddDataSource (dataSource) ;

opl.Generate () ;

if (cplex.Solve())

OPL INTERFACE USER'S MANUAL

setValue (sheet, "B10", "" + opl.Cplex.ObjValue);

}

else

{

setValue (sheet, "B10", "No solution");

}

oplF.End() ;
}
/**
* This class feeds data to the OPL model from the appropriate cells of
the
* input Excel worksheet.
*/
class MyParams : CustomOplDataSource

{

private Excel.Worksheet xlDataSheet;

public MyParams (OplFactory oplF, Excel.Worksheet xlDataSheet) :

(oplF)
{
_x1DataSheet

public override

{

= x1DataSheet;

void CustomRead ()

OplDataHandler handler = this.DataHandler;

try
{

handler.
handler.

handler.

handler.
handler.

handler.

handler.
handler.

handler.

handler.
handler.

handler.

BM ILOG OPL I

StartElement ("nbWarehouses") ;
AddIntItem(Intl6.Parse(getValue(xlDataSheet,

EndElement () ;

StartElement ("nbStores") ;
AddIntItem(Intl6.Parse(getValue(xlDataSheet,

EndElement () ;

StartElement ("fixed");
AddIntItem(Intl6.Parse(getValue(xlDataSheet,

EndElement () ;

StartElement ("disaggregate") ;
AddIntItem(Intl6.Parse(getValue(xlDataSheet,

EndElement () ;

base

"an)))

"B3")))

"B4MY))

"B5")))

NTERFACE USER'S MANUAL 67

68

B

M

LOG

/**

catch (Exception ex)
{
MessageBox.Show ("Exception in custom data source:
" + ex.ToString

* This is the warehouse OPL model:

*/

static String GetModelText ()

{

String model =

model
model
model
model
model

model
model

model

model

model
model

model
model
model

model
model
model
model
model

model
model
model
model
model

OPL

(LTI
7

+= "int fixed =

+= "int nbWarehouses =

+= "int nbStores = 500f"P

+= "int disaggregate = ...;";

+= "assert nbStores > nbWarehouses;";

+= "range Warehouses = 1..nbWarehouses;";

+= "range Stores = 1l..nbStores;";

+= "int capacity[w in Warehouses] = nbStores div nbWarehouses
+ w mod (nbStores div nbWarehouses)

+= "int supplyCost[s in Stores][w in Warehouses] =

1+ ((s+10*w) mod 100)

+= "dvar float open[Warehouses] in 0..1;";
+= "dvar float supply[Stores] [Warehouses] in 0..1;";

+= "minimize ";
+= "sum(w in Warehouses) fixed * openlw] +";
+= "sum(w in Warehouses, s in Stores) supplyCost[s] [w]
* supply([s] [w]
+= "constraints {";
+= " forall(s in Stores)";
+=" sum(w in Warehouses) supplyls][w] == 1;";
+= " forall(w in Warehouses)";
+= " sum(s in Stores) supplyls][w] <= open[w]*capacityl[w];";
+= " if (disaggregate == 1) {";
+= " forall (w in Warehouses, s in Stores)";
= W supply[s] [w] <= open[w];";
4= " 3
=y

INTERFACE USER'S MANUAL

return model;

The code is complete.

10. Launch Microsoft Excel with your plug-in, using the Visual Studio Debug/Start
Debugging command.

Excel starts, with the new command bar containing OPL Warehouse Setup and OPL
Warehouse Solve.

a. Click the button OPL Warehouse Setup.
It populates the current sheet with default values for the problem.
b. Edit the values as appropriate.
c. Click the button OPL Warehouse Solve.
It solves the problem using OPL, displaying results in cell B10 (425 for the default

values).

B Microsoft Excel - Book1

(] Fle Edit View Insert Format Tools Data Window Help Type a question For help (=0 @ X
RN e TR NN AR NS W - L] 20 B ru=A- §
§|OPL ‘Warehouse Setup |OPL Warehouse Solve

Al oL warehouse Setup [P ata used by the OPL madel
a5 ¢ o P E R e R T N S

1_[Data usedlhy the OPL model

| 2 |nbVarehal 5

| 3 |nhStores: 10

| 4 |fixed 30

| 5 |disaggregs 1

1 6 |

7 |

| 8 |Result computed by the OPL model:

| 9 |State Success

| 10 | Objective 425

11|

12

| 13 |

4]

15|

6|

7]

16
19

T M
4 4 » »]\Sheetl / shestz / sheets / | |
Ready UM

Integrating OPL .NET API into an MS Excel worksheet

Useful training material on working with VSTO 2005 is available at:

http://msdn2.microsoft.com/en-us/library/ebax1172(VS.80).aspx

IBM ILOG OPL INTERFACE USER'S MANUAL 69

http://msdn2.microsoft.com/en-us/library/ebax1172(VS.80).aspx

Memory management

The recommended way to manage memory in Concert applications is to use the method
IloEnv.end to clear all the memory currently in use.

If you need more control on the memory used by your OPL objects, 1100p1Model objects
offer the method end.

In the default case, after an OPL model instance has been ended, all its Concert objects that
correspond to data elements are still available. After the method end, no objects remain.
Availability of Concert objects summarizes the availability of Concert objects accessed
through OPL elements.

Availability of Concert objects

OPL Element Definition Available after Available a
end()

external data elements read from a data source no yes

internal data elements initialized inside the .mod file no yes

dvar array solution value An array with values of decision variables for | no no

the current solution, available by calling the
method asIntMap() or asNumMap() for a dvar
array element

postprocessing All elements declared for postprocessing no no

When postprocess is called multiple times, as when processing intermediate feasible solutions,
the second call ends the objects created for the first call.

See these two stock-cutting examples:
<OPL_dir>\examples\opl\cutstock\cutstock main.mod
<OPL_dir>\examples\opl\cutstock\cutstock_ int main.mod

where <OPL_dir> is your installation directory.

70 IBM ILOG OPL INTERFACE USER'S MANUAL

accessing
model, through API 36
run configurations, through API 36
solutions, through API 35
values of decision variables, through API 52
API
.NET 19
C++9
Java 11
assembly file for the OPL .NET API 26

C++ API
compiling and linking applications 9
classes
IloCP 30
IloCplex 30, 35
IloEnv 29
IloOplErrorHandler 29
IloOplFactory 29
IloOplModel 31
IloOplModelDefinition 30
IloOplModelSource 29
IloOplProject/IloOplRunConfiguration 36
IloOplSettings 30
code samples
iterators 54
compiling and building applications
.NET 26
Java 17
Concert Technology
environment 29
generate model 33
cplex, model instance
used by more than one model 45
custom data sources 47
initializing 47

© Copyright IBM Corp. 1987, 2009

Index

CustomOplDataSource class
initializing 47

data
accessed by the model 45
printing to a stream 61
data elements
iterators 54
data sources
adding via API 32
custom 47
debug mode 60
decision variables
accessing values within a solution 52
deployment
.NET API 26
Java API 17

end method
IloEnv class 70
IloOplModel class 70
environment variables 9
environment, instance of, for model objects 29
error handling, with APIs 59
Excel integration
using Visual Studio Tools for Office 2003 62

factories
in .NET 21
in Java 13
files
.ops 37

garbage collector
NET 22
Java 14

71

72

getDataHandler method
IloOplDataSourceBasel class 47

getElement method
IloOplDataSourceBasel class 52

IIoCP class 30
IloCplex class 30, 35
IloEnv class 29
end method 70
IloOplDataHandlerlI interface 47
IloOplDataSourceBasel class 47
getDataHandler method 47
getElement method 52
IloOplErrorHandler class 29
IloOplErrorHandlerBasel class 59
IloOplFactory class 29
setDebugMode method 60
IloOplModel class 31, 42, 46, 61
end method 70
IloOplModelDefinition class 30
IloOplModelSource class 29
IloOplProject class 36
IloOplRunConfiguration class 36
IloOplSettings class 30, 56
interfaces
.NET 19
C++9
Java 11
iterator example 54

Java API
compatibility with Java CPLEX 15
deployment 17
memory management 14
object creation and factories 13
overview 11

libraries
C++, linking 9
linking C++ libraries 9

memory allocation and management 70
in .NET 22
in Java 14

models
accessing data 45
accessing through API 36
creating via API 31
error handling 29
instantiating via API 36, 41
model definition 30, 43
model source 29
solving via API 34

IBM ILOG OPL INTERFACE

object creation
in .NET 21
in Java 13
oplrun
using projects and run configurations 36

postprocessing
via APIs 57
projects
creating
via API 36

run configurations
accessing through API 36

setDebugMode method
IloOplFactory class 60
settings
API to customize OPL behavior 56
settings files
and IloOplProject API 37
solutions
accessing through API 35
accessing values of decision variables 52

Visual Studio
and .NET Framework packages 26
Visual Studio Tools for Office 2003
integrating OPL with Excel 62

USER'S MANUAL

	Table of contents
	Interfaces User’s Manual
	Introduction
	About the Interfaces User's Manual
	Using the C++ interface
	The Java interface
	Overview of the Java interface
	Object creation and factories
	Memory management
	Compatibility with Java CPLEX
	Compatibility with CP Optimizer Java interface
	Deployment of Java applications

	The .NET interface
	Overview of the .NET interface
	Object creation and factories
	Memory management
	CPLEX goals
	Compatibility with .NET CPLEX
	Compatibility with CP Optimizer .NET interface
	Deployment of .NET applications (Windows only)

	Tutorial
	Overview of the Tutorial
	Creating an OPL model
	Specifying a data source
	Generating the Concert model
	Solving the model
	Accessing the solution
	Using run configuration and projects

	Working with OPL interfaces
	Using OPL model instances
	Overview
	The model definition
	The data

	Services on solutions
	Custom data sources
	Accessing elements
	Accessing model elements
	Iterating through OPL elements

	Settings
	Postprocessing solutions
	Error handling
	Debug mode
	Printing data to a stream
	Integrating OPL with Excel using Visual Studio Tools for Office
	Memory management

	Index

