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1. Introduction 
This report concerns itself with the practical issues in implementing the Internet 
Protocol Version 6 (IPv6) in embedded systems. 
 
IPv6 is the next generation of the Internet Protocol, the protocol that all computers use 
to communicate across the Internet.  It supports features such as auto-configuration 
that are ideal for Low Cost Network Appliances (LCNAs) by making them easier to 
configure and deploy.  One problem however is that IPv6 has considerably more 
complexity than IPv4 in some areas, and as such, presents practical difficulties in its 
implementation in embedded systems. 
 
An embedded system is a small computer system literally ‘embedded’  into an 
appliance or piece of machinery.  Embedded systems are typically very limited in the 
amount of memory and processing power that they have, and often do not even run 
Operating Systems. 
 
For this project I have built a small embedded system that is typical of an low cost 
network appliance and ported and modified an existing IPv6 stack to it.  The existing 
IPv6 stack that was used communicated via a slow serial line and needed to be tested 
on Ethernet – hence I wrote an Ethernet driver, and implemented specific 
functionalities required for Ethernet operation, such as Neighbour Discovery and 
Auto-configuration, as detailed in later sections.  The initial software development 
was done on a development board on loan from Mitsubishi in order to parallelise the 
software and hardware development, and as such two Ethernet drivers were written, 
as the hardware that was produced used a different chipset from the development 
board Ethernet card.  The purpose of this project was to find the practicalities (and 
limits) of implementing IPv6 in an embedded system by building a ‘ typical’  system 
and attempting to modify an existing IPv6 stack to run on it. 
 
The problems that have been tackled in this project fit into four main categories – the 
design and construction of the hardware, the data transfer strategy and interfacing of 
the stack to the hardware, the IPv6 stack development, and the testing of work 
completed.  The following report is structured as such. 

1.1. Specification 
IPv6 is still a protocol under development, and work is still going on to standardise 
the minimum node requirements.  Work has been done by the TACA (Tiny software 
and system Architecture for non-Computer Appliances) Project to define the 
minimum requirements for LCNAs (Low Cost Network Appliances) (Okabe., 
Sakane., Inoue., Ishiyama., Esaki., 2003), but that effort has since been absorbed into 
the main IPv6 Node requirements document (Loughney., 2003), which defines what 
an IPv6 node must implement in order to be considered IPv6 compliant.  The 
elements of the node requirements document that this project is compliant with are 
listed under testing. 
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2. Hardware 

2.1. Introduction 
In this project two sets of hardware have been used – one set was a development 
board with add-on Ethernet card, kindly loaned by Mitsubishi, and the other set of 
hardware was the hardware designed specifically for this project.  The decision was 
made to construct hardware for the project in order to provide a ‘ typical system’  – one 
that matched the approximate specifications of the target system family, but was also 
engineered for the optimal performance that a system of this type would be 
engineered for.   
 
An important part of implementing networking on such a limited platform is to make 
maximum use of hardware to support the software implementations – for instance the 
common Network Interface Controller used in the final hardware contains 16KB of 
on-board buffer RAM (Realtek., 2001), and much more control on how it is used, as 
opposed to the 4KB buffer RAM available on the add-on card (Cirrus Logic., 2001).  
The hardware designed in this project has the capability of providing better 
performance in several areas while being a very similar computing platform to the 
development board.  It was also projected at the beginning of the project that more 
system resources may have been needed, in terms of RAM or a processor upgrade, to 
determine the minimum requirements for such a system, could it not be implemented 
on the development board, but this turned out not to be the case. 
 
The development board was also however a critical part of the project – although the 
use of two different Ethernet chips required the development of two Ethernet drivers, 
the use of the development board was critical in both an early understanding of the 
issues involved, and in the parallelisation of the hardware and software development. 
 

2.2. Problem Statement 
The notion of an ‘embedded system’  is a vague one, in terms of processing power and 
memory capacity, with such systems including 4 MHz, 8-bit, micro-controllers to 300 
MHz Celeron systems such as found in Biscuit PCs.  Clearly, the upper end of this 
scale is not what this project is concerned with – a 300 MHz Celeron certainly has the 
processing power to manage IPv6.  It is also clear that the lower end of the scale is not 
relevant either – a 4 MHz 8 bit micro-controller would lack the sheer processing 
power to even receive 10 Mbit Ethernet at full rate.   
 
The first decision that was made was to design the hardware with a common 
embedded micro-controller that runs at approximately the 20 MHz mark.  This means 
that there is sufficient processing power available to manage the Ethernet 
communication, but also that the device will be close in specification to those 
employed in such applications as office equipment or consumer network appliances 
(Mitsubishi 2001). 
 
The second decision was in order to satisfy the memory requirements for both RAM 
and ROM within the system.  The amount of RAM needed was estimated to be at a 
minimum of 10 KB, with preference for more.  The reasoning for this is that the 
existing stack already uses 10 KB of RAM, and with the addition of Ethernet 
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functionality, the memory requirements increase.  The amount of ROM was estimated 
to be a minimum of approximately 10KB.  This figure allows for the code size of the 
existing stack, with some room to spare.  Given that in most embedded micro-
controllers the ROM capacity far exceeds the RAM capacity, this metric was not 
important in selecting a micro-controller (Renesas., 2003). 
 
In addition to the requirements above, the decision was made to use a micro-controller 
with DMA support in order to relieve CPU contention, as the transfer of Ethernet-
scale amounts of data amounts to a considerable waste of processor power in copying. 
 
The system also needed a Network Interface Controller (NIC) in order to interface the 
micro-controller to the network.  The NIC was specified to be a common 10 Mbit 
controller, as 10 Mbit Ethernet is both common and compatible with a large amount 
of network equipment such as hubs and routers.  In addition, 10 Mbit Ethernet 
presents a reasonable amount of data to the micro-controller – a 100 Mbit NIC would 
require computing power far in excess of what the target micro-controller provides. 

2.3. Component Decisions 
The Mitsubishi M30803 processor was selected for the hardware implementation.  It 
is part of the M16C family of micro-controllers which scale from 5 MIPS up to 32 
MIPS in CPU power, while still remaining reasonably compatible, enabling the 
replacement of the micro-controller should the selected micro-controller prove 
insufficient for the task.  The M30803 runs at 20MHz, which is the same as the 10 
Mbit Ethernet NICs, and features 20 KB RAM and 256 KB of ROM – hence 
satisfying or exceeding memory and processing power requirements.  It has a DMA 
controller, and features In-System-Programming (ISP), a technology that allows the 
internal ROM to be programmed without removing the micro-controller from the 
circuit.  It is also a micro-controller aimed at the household appliance and office 
equipment market, which means that it is well-suited as exemplar of the target system 
family (Mitsubishi., 2003). 
 
The Realtek RTL8019 was selected for the Ethernet interface, as it is a cheap and 
common NIC, and it supports both 10 Mbit Ethernet and the ISA bus interface 
standard, which makes it easier to interface to the micro-controller, as opposed to 
more recent NIC designs which utilise the PCI bus common in modern PCs.  In 
addition to these considerations, the hardware structure of the RTL8019 supports 
solutions to some Hardware/Software interface difficulties involving low memory and 
the Memory Recycle Algorithm.  This is detailed under later sections. 

2.4. Direct Memory Access (DMA) Support 
Direct Memory Access is important in an embedded system running a high-bandwidth 
device such an NIC because it allows more efficient copying, and it allows the 
copying to occur with minimal CPU intervention, in parallel with other tasks.  For a 
comparison, in the M16C series, at a minimum, a 16-bit transfer from an external 
memory area to the internal RAM, actuated by a CPU instruction, will take two cycles 
to execute, depending on factors such as the number of bytes in the CPU instruction 
queue buffer (Mitsubishi., 2001 C).  A 16-bit DMA transfer under the same 
conditions will take a guaranteed two cycles, without overhead needed for loop 
control or incrementing of addresses (Mitsubishi., 2001 A).  In the best case, even 
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when utilising such optimisation techniques as loop unrolling, DMA as a mechanism 
for data transfer is faster, and hence more efficient. 
 
The efficiency is clearly critical when the amount of data to be transferred and 
processed is taken into account.  An Ethernet link rate of only 10 Mb could at 
maximum produce in the order of 1.25 MB per second of data each way (full-duplex 
operation).  This means that the micro-controller should optimally be capable of 
transferring a full 2.5 MB of data across its external data bus, at a speed of 1.25 
million 16-bit transfers/second.  When the differing amounts of cycles for reading 
versus writing are taken into account, this operation will occupy a maximum of 16% 
CPU time (using DMA) – close to a sixth of the CPU time available.  If other 
operations such as measurement or data processing are also time-critical, then this 
means that the time must be efficiently multiplexed – the means to which this is 
possible by software alone are limited, if existent, highlighting a need for hardware 
parallelism. 
 
The DMA controller in the M30803 micro-controller works by what is called ‘ the 
cycle steal’  method (Mitsubishi, 2001).  This means that when there are DMA 
transfers in progress, CPU cycles are shared between each DMA channel and the CPU 
in a round-robin manner, providing the data transfer/program execution parallelism.  
The word transfer count and the addresses to transfer to and from are also loaded, but 
in order for a single word transfer to occur, a selectable trigger signal must be 
activated (Mitsubishi., 2001 A).  In the case of the demonstration board, there was no 
available trigger signal from the NIC to activate these, so the DMA transfers were 
triggered from a high-speed internal clock.  In the final hardware design, the DMA 
transfers were set to trigger from the IOCS16B signal.  The IOCS16B signal is an ISA 
bus signal that is triggered on a word transfer, hence allowing the DMA controller to 
effectively self-trigger.  The timing of the trigger is not critical – the CPU schedules 
the DMA transfer to occur at the next available moment, although  if two requests are 
made before the hardware has the opportunity to react, only one transfer will take 
place (Mitsubishi, 2001).  This is not an issue in the design. 

2.5. Implementation 
The Printed Circuit Board (PCB) was implemented using a two-layer design, as that 
was determined to be the minimum number of layers necessary in order to be able to 
complete the design.  Two layers was considered the minimum, especially when noise 
considerations were taken into account – two layers allowed a reasonable area of one 
layer to be used for a ground plane as well as providing for the routing considerations 
in connecting two 100-pin chips.  The costs of manufacture was also a factor in the 
design – a two layer board is considerably cheaper than boards with more layers, as it 
can be manufactured in New Zealand.  Quotes were obtained from multiple 
manufacturers confirming this.  Implementing the design in two layers was of 
moderate difficulty, as the design parameters of the PCB manufacturer were larger 
than manufacturers offering multi-layer board manufacture, so some parts were 
changed, and the board was increased in size. 
 
The board was designed for hardware-triggered DMA operation as described above, 
and featured two serial ports, for In-System-Programming, a method by which the 
Flash ROM in the micro-controller is written via serial port, debugging via monitor, 
and simultaneous program output.  The micro-controller units were sourced from 
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Mitsubishi in Australia, and arrived promptly.  The NICs were sourced from  
Cornelius Consulting in Germany, as Realtek does not provide samples, and only sells 
in bulk.  The PCBs were manufactured in Auckland by Circuit Graphix Ltd. 
 

2.6. Implementation Issues 
Due to the timeframe of the project, and a miscalculation on time available, the PCB 
design was completed under intense time pressure – pressure that was increased when 
the RTL8019s failed to come in the two weeks promised.  The RTL8019s eventually 
arrived from Germany six weeks after they were ordered.  Due to the time pressure in 
getting the board designs off to be manufactured, several small errors crept into the 
design.  The M30803 comes in two different packages, and I did not realise that the 
pin configurations on the two different packages were different.  In fact they were out 
by two.  In addition, the serial interface chip also came in two packages, both the 
same shape, but one smaller than the other.  They too, had different pin 
configurations.  As a result, the first ‘smoke test’  failed, and considerable time was 
spent in debugging the hardware – offline, as the problems in the hardware could 
obviously not be observed in the state it was in.   
 
The problems were discovered, and it looked as if the hardware part of the project 
would fail – the one hundred pin micro-controllers and NICs had been considered far 
too difficult to hand-solder on to the board, and it was planned to have the boards 
assembled by a company in Auckland.  However, due to the helpful suggestions and 
assistance of other people, a solution was realised.  One hundred wires, approximately 
1.5 cm long, were hand soldered to the micro-controller, and then the other ends were 
painstakingly hand-soldered to the board.  This was accomplished using strong 
reading glasses, silver solder, flux and a fine tipped soldering iron, and then inspected 
using a microscope to ensure that the wires did not touch.  After achieving this, the 
soldering of the one hundred pin Ethernet chip to the board was not comparatively 
difficult. 
 
After this saga had run to its completion, the errors in the serial interface chip were 
discovered and corrected, and several other small modifications to the board were 
made in the form of pull-up or pull-down resistors for the In-System-Programming, 
that had somehow been missed in the design.  When the In-System-Programming was 
eventually working, it was discovered that a compiler upgrade was necessary in order 
to get programs working and loaded onto the micro-controller. 
 
The last error in the hardware was discovered during the programming phase of the 
final device driver.  The RTL8019 is a mixed 8/16 bit device, and it had been mapped 
into the address space in a manner which only allowed for sixteen-bit transfers.  There 
were two possible solutions.  One solution was to modify the board such that all of the 
address lines were moved down one bit, omitting address line zero.  The other 
solution was that the software had to switch the bus between eight and sixteen bit 
mode when accessing control registers and DMA ports respectively.  The software 
method was used to resolve this problem. 
 
Though the implementation issues involved in this project were daunting, they were 
very valuable learning experiences – few university graduates complete their degrees 
having completed a design such as this. 
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3. Hardware/Software Interface 

3.1. Problem Statement 
The interface between the hardware and the software is a critical one.  It must transfer 
data quickly and efficiently from the NIC to the micro-controller RAM while 
inflicting a minimum of CPU overhead.  To do this, it must exploit fully the 
functionality available in the hardware, and should only minimally dictate the 
structure and requirements of the packet processing code.  One example which it 
would be best to avoid, for instance, would be to require the stack to process all 
incoming messages in the inter-packet delay time.  This would put high (perhaps 
unachievable) requirements on the stack processing code that need not exist.  Another 
situation it is best to avoid is where the stack wishes to send a packet, but must wait in 
a loop until the NIC becomes ready to send – this can be overcome by buffering 
outgoing packets.  The last piece of functionality that the stack must exhibit is 
buffering – in a manner that makes the most efficient use of memory possible.  
Clearly, only a minimum of memory space is actually available for buffering – an 
intrinsically memory-hungry operation. 

3.2. The Zero-Copy Paradigm 
The Zero-Copy paradigm is an important concept in the design of both embedded 
systems software and modern Operating Systems.  The concept is simple – data 
should be transferred or assembled inside the system only once, and the data should 
then be passed by reference.  This concept developed from the observation that in 
Operating Systems of the time, a large proportion of the CPU time consumed was in 
simple copy operations.  Although the concept is simple, the implementation can 
however be complex, due to issues surrounding the use of the memory in a 
multithreaded environment. 

3.3. The Memory Recycle Algorithm 
The Memory Recycle Algorithm is a response to the issues involved in implementing 
the Zero-Copy paradigm and efficient memory use.  It is intended to avoid the 
overhead of memory allocation, deallocation and excessive copying, and it provides a 
structure that implements the Zero-Copy paradigm. 
 
In the Memory Recycle Algorithm, each buffer is treated as an object, in that only one 
distinct process can ‘own’  the buffer at a time.  When a particular process has finished 
processing the buffer, it ‘gives’  the buffer to the next process – in practical terms, 
passes a pointer to the object, and then ‘ forgets’  that it ever saw the object.  This 
concept in the algorithm is the part that implements the Zero-Copy paradigm. 
 
The Memory Recycle Algorithm can perhaps be best explained by explanation of the 
packet lifecycle.  Each packet starts as a buffer in the free packet pool.  When the NIC 
signals that a packet is ready to be received, the Ethernet driver is called.  It requests a 
buffer from the free packet pool and transfers the data into the buffer via DMA.  
When DMA completes, the driver is called again and the packet is transferred into the 
queue of packets that the stack is processing.  The driver returns and the stack then 
processes the packet.  Upon completion of the processing, the stack gives the packet 
back to the free packet pool.  The stack will then usually need to produce a response.  
To do this, it requests a buffer from the free packet pool, fills the buffer with data, and 
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the response buffer is put on to the queue of packets ready for transmission by the 
driver.  The driver is then called again, and if the NIC is ready for a packet to be 
transmitted, then the packet is transferred via DMA.  When DMA completes and the 
packet has been transmitted successfully, then the driver gives the buffer back to the 
free packet pool. 
 
The algorithm avoids the overheads of memory allocation and de-allocation by 
effectively simplifying the memory allocation scheme for packets, which also has the 
benefit of reducing memory fragmentation to zero – given the small amount of 
memory available for processing packets, and the otherwise high allocation/de-
allocation rate, this is a highly desirable result.  One drawback is that, in the simplest 
of implementations at least, the buffers in the free packet pool must be at least large 
enough to hold a complete IPv6 packet.  This could be overcome by having multiple 
free packet pools, with different size buffers in each.  Carrying this to the extreme 
would however eventually result in the normal memory-allocation behaviour of the 
system. 
 
If many small packets are sent, in a system that has only the one packet pool of 
maximum size packets, then memory usage is not very efficient, except for one point 
– memory allocation can be controlled with respect to time, instead of just with 
respect to memory available.  Consider the situation where the buffers have been 

The Memory Recycle Algor ithm: Data flow 
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A The driver detects an incoming packet, and gets a pointer to a free buffer 
B DMA occurs to fill the buffer with data 
C The driver passes the full buffer pointer to the stack for processing 
D The stack processes the data and gives the pointer back to the free packet pool 
E The stack gets a pointer to a free buffer and fills it with the packet response 
F The stack passes the full buffer pointer to the driver for transmission 
G DMA occurs to transmit the data in the buffer 
H Once transmission is complete, the buffer pointer is given back to the free packet pool 
Note: Conceptually each buffer is treated like a physical object, in that only one entity has 
possession of it at any one point in time.  It is explained with pointers in this diagram for 
clarity. 
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exhausted, and the stack wishes to compose a transmission.  Under a normal memory-
allocation scheme, the memory allocation would fail – usually desirable; as in a 
normal system there is no guarantee that memory will become available.  In the 
situation of the data processing system detailed above however, memory becoming 
available is just a matter of time – time for the hardware to complete its current 
transmissions and free some more buffers.  Under the Memory Recycle Algorithm, 
the memory allocation is blocked if no buffers are available – naturally only for non-
driver processes.  This means that the data flow can be controlled to where demands 
can be met in all places in the system – effectively making more efficient use of 
memory by using it where it is needed most.  This also makes the data-processing 
programs easier to write, as the sensible behaviour for a process in this state would be 
to poll the free packet pool until it had buffers available.  In the case of the driver, the 
driver can drop packets, or delay reception of packets, without substantial effect on 
the system, as IPv6 assumes a lossy link-layer.  The last effect of controlling memory 
usage this way is that the total memory usage of the IPv6 subsystem is fixed, and 
hence memory availability can be guaranteed for other processes in the system, given 
that IPv6 operation is unlikely to be the primary operation in any particular embedded 
system. 
 
One last point to make is that while one free packet pool has been assumed to exist 
above, in practice two were used – one for packets being transmitted and one for 
being received.  This is so that the entirety of the free packet pool cannot be utilised 
by incoming packets, deadlocking a system hence unable to make outgoing 
transmissions. 

3.4. The Memory Recycle Algorithm – Problems and Solutions 
There are some practical faults in the implementation of the Memory Recycle 
Algorithm detailed above – one of which is the basic assumption that packets are 
independent, and that time is the only thing limiting buffer flow around the system.  
However, the algorithm can be modified to work around these blocking points without 
too much difficulty. 
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One clear blocking point at the level of code that this project is concerned with is 
address resolution.  When a packet is addressed to an IPv6 address that the system 
cannot yet map to a hardware address, the packet is put on a queue and an address 
resolution request is sent.  When an address resolution response arrives, this queue is 
checked and any outstanding packets that can be sent, are sent.  However, if too many 
packets requiring address resolution are queued, then the transmit buffers can become 
blocked.  When the transmission buffers become blocked, the blocking effect 
propagates through the system – the stack cannot compose responses because it has no 
buffers to compose them into, and it cannot receive any more packets because it is 
waiting for transmit buffers in order to complete processing on previous packets.  This 
results in deadlock if not checked by other mechanisms.  
The first phase of this occurrence can be seen in the diagram above.  In this case, a 
packet (Rx Packet 1) is received by the Ethernet driver, and is then passed along to the 
stack, which generates a response.  The response is directed towards an IPv6 address 
that hasn’ t been seen yet – hence there is no way to send the packet, since all Ethernet 
packets must have a hardware destination address.  The response (Tx Packet 1) is put 
in a queue awaiting address resolution, and an address resolution request (Tx Packet 
2) is sent out in order to get the hardware address to which Tx Packet 1 must be sent.  
Since the stack was able to get a transmit buffer and compose a response, processing 
of Rx Packet 1 completes, and Rx Packet 1 is released into the free packet pool.  A 
second packet (Rx Packet 2) is then received by the driver and passed along to the 
stack.  Unlike the previous packet, processing on this packet cannot be completed, as 
there are no transmit buffers available in which a response can be built.  The transmit 
buffer allocation procedure locks the IPv6 stack until a transmit buffer becomes 
available – in this case when the address resolution request finishes transmitting. 

Rx Packet 1 

Rx Packet 2 

Tx Packet 1 

Tx Packet 2 

Rx Packet 1 

Rx Packet 2 

Tx Packet 1 

Tx Packet 2 

Rx Packet 1 

Rx Packet 2 

 

Tx Packet 2 

NIC 

Stack buffers Free Receive Buffers Driver Receive 

Stack buffers Free Transmit Driver Transmit Buffers 

Stage 1: Receive packet 1 comes in, is processed, and a response (Transmit packet 1) is generated 
to an unknown address.  The response is hence frozen, and an address resolution packet (Transmit 
packet 2) is sent in order to get a hardware address to send the response to.  Receive packet 1 is 
freed.  Meanwhile, Receive packet 2 is received – an independent request.  It is processed, but 
when the stack tries to get a transmit buffer in order to send a response, it is frozen until a transmit 
packet becomes free, hence freezing receive packet 2. 

The Memory Recycle Algor ithm: Four  Steps to deadlock (Par t 1) 
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The second phase of this occurrence can be seen in the next diagram.  In this diagram, 
the address resolution request is sent, freeing up a transmit buffer and hence allowing 
processing of Rx Packet 2 to continue.  In this case, the response to Rx Packet 2 (Tx 
Packet 3) is also to an address whose hardware address is unknown, but there are no 
free transmit buffers in which to compose an address resolution request.  This is not 
too much of a problem – this packet can be sent later, but it means that the second 
transmit buffer is put on the queue, awaiting address resolution.  This situation would 
be resolvable, if the next packet were the packet resolving the address for Tx Packet 1.  
That would allow Tx packet 1 to be sent, freeing up its transmit buffer.  Instead two 
more packets are received – Rx Packet 3 and Rx Packet 4.  The processing of Rx 
Packet 3 stops at the stack, as there are no free transmit buffers, and hence freezes the 
stack.  Rx Packet 4 is received by the driver, but is not processed, as the stack is still 
completing processing of Rx Packet 3.  The resulting situation is that the system is 
deadlocked, as it requires an address resolution response in order to free up its 
transmit buffers, but the address resolution response cannot be received because the 
receive buffers are full. 
This may at first glance seem to be symptomatic of a lack of buffer memory – 
certainly the situation will be exacerbated by a lack of buffer memory.  However, 
merely increasing the amount of buffer memory will only make the problem less 
likely to occur, as in a theoretical sense, this problem could clearly occur regardless of 
the amount of buffer memory unless other steps were taken. 
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Stage 2: Tx Packet 2 (The Address Resolution Packet) is sent, freeing up a transmit buffer for 
Receive Packet 2.  The stack generates the response (Transmit Packet 3) to Receive Packet 2, again 
to an unknown address.  An address resolution packet must be sent, but there are no free transmit 
buffers – hence Transmit Packet 3 is frozen for the time being.  Receive Packet 2 is however 
released.  In the meanwhile, reception continues and Receive Packet 3 comes into play – again, 
being frozen as there are no free transmit buffers.  Receive packet 4 delivers the coup-de-grace. 

The Memory Recycle Algor ithm: Four  Steps to Deadlock (Par t 2) 
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There are however solutions to this problem – three of which are detailed below.  A 
complete solution would likely combine aspects of each solution, as some have the 
advantage of simplicity, while others offer better performance in general. 
 
3.4.1. Deadlock detection and buffer flushing 
One way to deal with the problem of deadlock in this manner is with co-operation of 
the IPv6 stack.  In this case, the stack updates a variable when it receives each packet 
– as to whether it is an address resolution packet or not.  In the case where the 
transmit buffers are all engaged, a situation that is easy to detect in the buffer 
allocation function, these buffers can be checked to see if they are waiting on address 
resolution.  If they are, then the transmit buffers can be flushed, freeing them up for 
new responses.  This method is perfectly valid in IPv6, as it expects to see a lossy 
transmission medium, but it is not very efficient due to the amount of CPU time 
already spent processing the relevant packets.  A similar variant on this is to have a 
separate module for address resolution, filtering out non-address-resolution packets in 
situations where all the transmit buffers were waiting on address resolution.  This 
variant would still have to drop packets from the transmission queue however, for 
retransmissions of address resolution request packets.  This method is one of the 
simplest solutions, but probably the least efficient. 
 
3.4.2. Dedicated Privileged buffers 
Another way of dealing with the deadlock problem as outlined above is by the 
introduction of dedicated buffers for address resolution.  Address resolution packets in 
IPv6 are only 100 bytes, compared to full-size Ethernet buffers at 1.5 KB, or 
minimum MTU size IPv6 buffers at 1.2 KB.  This solution would set aside small 
sized ‘privileged’  buffers only usable by address resolution code.  In the case of 
address resolution transmissions, these buffers would recycle quickly and reliably, 
since address resolution requests are targeted towards multicast addresses, which are 
already known.  In the case of address resolution responses however, filtering would 
need to be performed.  The first filter would be at the Ethernet driver level, which 
would drop any packets too large to be an address resolution packet.  The second 
would be at the stack or address resolver module, which would filter any packets that 
were not address resolution responses.  This solution is an improvement on the 
method above, as it does not waste the processing time that has already been used 
producing packets, but instead provides an out-of-band channel in the buffer 
management in order to get requests through.  It is still relatively simple however. 
 
3.4.3. Packet-Assemble-Instructions (PAI) Queues 
The Packet-Assembly-Instructions (PAI) queue is a different way of looking at the 
problem.  It is based on the observation that there are some packets that are static, 
very close to static, or are responses in request-response pairs where the response is 
very similar to the request.  Neighbour discovery packets and ping responses fit into 
this category.  The normal sending of a Neighbour Discovery Request, for instance, 
involves copying most of a static structure into a buffer, modifying the address to 
which it is to be sent, and then calculating the ICMPv6 checksum.  In the case of a 
ping response it is similar - it is the copying of a static packet header coupled with a 
copying of the additional request data.  Again, the checksum is calculated across the 
entire packet. 
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This is inefficient, both in its use of memory and processing power.  The Neighbour 
Discovery request could be represented as a pre-built packet, along with an instruction 
to modify two fields - the destination address and the ICMPv6 checksum.  The 
ICMPv6 checksum could be recalculated more quickly by taking the checksum of the 
existing packet and combining it with the checksum of the new destination address, 
rather than the entire packet.  (This is of course assuming that there is no encryption in 
place).  The entire set of Neighbour discovery requests could hence be represented by 
a declaration of the static portions of the packet, along with { new destination, new 
checksum}  parameter pairs.  Ping responses could be represented the same way, using 
the same incremental checksum update techniques, with the exception that they would 
have to include a pointer to the ping data to be sent.  This leads to the idea of the 
Packet-Assembly-Instructions queue.  The idea of the PAI queue is that instead of 
filling a buffer for certain packets, instructions for packet assembly are sent.  The 
driver could then modify a static buffer containing the appropriate packet format and 
immediately transmit the packet to the hardware.  This would mean that the 
processing could be done more efficiently, as only the necessary data is copied inside 
the CPU, and also only one copy of the static data is used at all, and hence the use of 
memory is vastly more efficient.  The assembly could however only be done at the 
driver level, as only the driver can guarantee synchronised access to write to the static 
data structures.  Stack layering would still be preserved, as the packet formation 
would still effectively be done at the correct level of the stack. 
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Ping data 
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Ping data 
Send buffer 
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This takes the idea of Zero-copy one step further - instead of avoiding copying the 
packet around in the CPU, it avoids even assembling the packet in the CPU, and it 
achieves this in an efficient way that requires very little processing. 
 
It allows a very low memory-usage out-of-band channel to be constructed, aiding the 
solution of the deadlock problem in the transmit path, but handling of the receive path 
would have to follow a similar procedure as outlined under the other solutions. 

3.5. Multi-Buffering 
The use of DMA allows the parallelisation of data transfer and other tasks, but to fully 
exploit this fact software support must be provided as well – parallelising tasks is not 
possible without the tasks themselves being parallelisable.  In terms of getting 
maximum throughput while transferring data to the hardware, this project utilises a 
multi-buffering scheme.  The effect that this scheme has is that previous data is being 
processed while new data is being transferred from the hardware.  This requires at 
least two buffers per transfer direction – one buffer for the data that is currently being 
transmitted, and one ‘working’  buffer where data is being assembled or processed.  
This transforms the stack data transfer from what is essentially a ‘stop-and-wait’  
scheme to a ‘sliding window’  scheme.  The Ethernet driver produced allows the 
number of buffers to be easily modified. 

3.6. Multicast Reception 
Both NICs must be explicitly programmed to receive multicast packets, but can be 
programmed to be selective about which multicast packets are to be received.  This is 
done via the ‘Hash Filter’  in the CS8900A, and the ‘Multicast Address Register’  in 
the RTL8019.  The mechanism is very similar.  When a packet is received, its address 
is put through a CRC function to produce a 6 bit code.  This six bit code is put 
through a demultiplexer to in order to select 1 of 64 bits.  If the bit that is selected 
matches the corresponding bit in the hash filter register, and that corresponding bit is 
set to a one, then the packet is accepted.  Due to time constraints, no use was made of 
the hash register, but it could be a factor in speeding up processing, as detailed in later 
sections.  The address so accepted is referred to in the documentation as a ‘hashed 
address’ , or a ‘hashed multicast address’ . 
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3.7. Differences between the CS8900A and the RTL8019AS 
The CS8900A is the NIC in the Ethernet Card used on the demonstration board, and 
the RTL8019 is the NIC used on the final hardware.  The two NICs are quite different 
in terms of the programming interfaces that they export, and an understanding of these 
interfaces is relevant to understanding the Ethernet driver operation. 
 
The CS8900A exports quite a simple interface – it generates an interrupt, and passes 
sequences of event in the Interrupt Status Queue register.  The interrupt is edge-
triggered, and hence the interrupt logic in the NIC does not have to be reset on return 
from the Interrupt Service Routine.  This means that there is a period in the Interrupt 
Service Routine, after the reading of the Interrupt Status Queue, where new events can 
occur, but not generate a response due to the micro-controller ignoring the interrupt 
(Unless enabled explicitly, interrupts cannot interrupt Interrupt Service Routines). 
 
The programming interface consists of the queue of events being exposed via the 
Interrupt Status Queue, and also a set of control registers which can be written to so as 
to execute commands to initiate received buffer transfers or transmissions.  It is a 
relatively simple interface in terms of transmission and reception, as processes like 
buffer management and event queuing are managed on the NIC. 
 
The RTL8019 has, by contrast, a slightly more complex interface, due to more 
exposure of the internals to the outside world.  The interrupt is level-triggered, which 
means that the interrupt logic needs to be reset for each event, as otherwise the 
Interrupt Service Routine will be called again by the micro-controller on exit.  This 
does however provide the advantage that, in the period between the Interrupt Status 
Register and the Interrupt Service Routine exiting, the Interrupt Service Routine will 
be immediately re-triggered.  The memory management of the buffers is reasonably 
simple, and is exposed to the micro-controller.  Memory management of the NIC 
transmit buffer space is left to the micro-controller, and memory management 
elements of the  NIC receive buffers are manipulable by the micro-controller, 
meaning that if jams occur it is immediately clear to the debugger, as contrasted to the 
CS8900A where errata and FAQs indicate what operations or sequences of operations 
should not be performed.  The way that the RTL8019 manages its buffers is by the 
control logic for the Receive Buffer Ring – four registers.  As the name suggests, the 
Receive Buffer Ring is a space in the RTL8019 buffers that is managed by treating it 
as a ring of buffers.  The four registers that control the Receive Buffer Ring are the 
Boundary Pointer, Current Page Pointer, Page Start Pointer, and the Page Stop 
Pointer. 
 
The Boundary Pointer is set to the end of the last buffer that the micro-controller has 
read, while the Current Page Pointer is set to the beginning of the next free 256-byte 
page of buffer memory.  If the Current Page Pointer should be incremented such that 
it is equal to the Boundary Pointer, then a Ring Buffer Overflow condition is 
considered to have occurred, and the NIC will need to be reset. 
 
The Page Start and Page Stop Registers respectively set the beginning and the end of 
the Receive Buffer Ring in the buffer RAM.  The ability to modify these registers 
means that varying proportions of transmit to receive buffer space can be set, which is 
an advantage as this ratio can be optimised to the application. 
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The exposure of the Receive Buffer Ring is significant in terms of programming, as it 
makes the device easier to program and test.  Events are signalled by the Interrupt 
Status Queue, as stated before, but the role of the Interrupt Service Routine is then just 
to read registers, make decisions on what data to transfer, and trigger transfers, as 
opposed to having to process specific events, as is the case with the CS8900A.  The 
transparency of the buffer management interface is an advantage, as it means that the 
micro-controller can form a complete picture of the state of the buffers, vastly 
improving its ability to utilise the buffers in a manner that supports software 
buffering.  This is clear when the following situation is considered:  If the stack has 
two buffers for reception, totalling 3KB, and the NIC is configured to set aside 13KB 
of 16KB of buffer space for reception buffers, then the total amount of space that can 
be utilised for buffering is 16KB, assuming that the buffer space is managed in a 
sensible manner.  This is an example of the maximum utilisation of hardware needed 
for high efficiency in systems utilising limited memory. 

3.8. Ethernet Driver Structure and Operation 
The Ethernet Driver is in the critical path of all packets, and it is hence critical that it 
be as efficient as possible.  To make the matter more complex, it must fully utilise the 
available hardware such as to maximise efficiency, and also be structured with care so 
that the correct sequences of operations are performed upon the hardware - for 
instance, reading of the Interrupt Service Register on the CS8900A NIC changes the 
state of the NIC.  It is hence not surprising that the hardware dictates some of the 
structure of the driver.  Ideally, the ISR should also not impose many (if any) 
restrictions on the other processes that produce or consume the data that it processes - 
the interface must be static so that replacement of the hardware driver does not impact 
the integration of the stack and the driver.  It should also ideally be asynchronous, 
such that it does not demand, or rely on, processing from other code.  The drivers that 
have been developed in this project are strongly event-driven synchronous processes, 
which present an asynchronous best-effort (with respect to delay) service to the other 
consumer/producer processes.  The drivers that were written are identical in the 
interfaces that they export to the other processes, and also share some code.  They 
however vary quite markedly in the Interrupt Service Routine (ISR). 
 
Non Hardware-Specific Functions 
The functions that do not have to access the hardware - functions like the transfer 
buffer allocation function - are quite simple in structure.  They are directly called by 
other procedures and either add or delete objects from various linked-lists, with the 
manipulation procedure flanked by interrupt disabling and enabling operations in 
order to ensure that the operations are atomic.  If a receive buffer needs to be freed, 
for example, then the procedure merely inserts the free buffer into the free buffer 
linked list for the ISR to utilise at its leisure.  The send buffer and release receive 
buffer functions are unique in that they are the only exported functions that actually 
trigger an interrupt.  The send buffer function does this only if the NIC is idle, as there 
could otherwise be considerable delay in transmitting packets.  The receive buffer 
function triggers an interrupt only under the same conditions, in order for the Interrupt 
Service to quickly process delayed packets. 
 
3.8.1. Initialisation Code 
The initialisation code naturally differs in both drivers, but is very similar both 
structurally and in intent.  It initialises the queue structures used in the driver, the 
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hardware, the interrupts and the DMA.  In the case of the Mitsubishi demonstration 
board, it sets the DMA controller to trigger off an clock signal internally generated 
within the micro-controller, and also initialises a system timer to generate this signal.  
In the case of the final hardware, it sets the DMA controller to trigger off the INT1 
signal, which is the line to which the hardware trigger is wired.  It detects the NIC by 
reading the product ID code – naturally if in an embedded system the hardware were 
missing, this would be extremely surprising, but this also serves to ascertain that the 
hardware is responding correctly and that the system is configured correctly in the 
development process. 
 
The initialisations of the NICs follow similar forms: Following a software reset, the 
hardware address must be programmed into the unit and the device configured to both 
generate and filter interrupts.  The physical interface must be selected, as both NICs 
offer the ability to work with both twisted-pair and coaxial interfaces, although both 
pieces of hardware have only been designed with the external circuitry for twisted-
pair operation.  The multicast hash filter must be initialised, and both transmitter and 
receiver parameters configured.  In the case of the RTL8019 the ‘endian-ness’  of the 
NIC interface can and must be set. 
 
The receiver parameters have been selected such that only correct packets are 
received, as although the hardware will accept and pass on packets with checksum 
errors and undersized or oversized packets, there is no reason to waste resources 
processing these packets.  The ability to receive broadcast and multicast packets must 
also be enabled explicitly.  In the case of the RTL8019, the receive buffer ring must 
also be explicitly initialised. 
 
The transmitter parameters have been initialised so as to maximise throughput and 
minimise extra processing needed.  In the case of the CS8900A, the device is 
configured to start transmitting packets after only 381 bytes have been received.  This 
allows the use of buffer memory for less time, and causes no problem with operation, 
as the DMA controller can easily keep up the necessary data rate to supply the chip 
with data.  The hardware is also configured to generate the CRC checksums at the end 
of each packet, as otherwise these would need to be generated in software.  In the case 
of the RTL8019, there is no option to disable the CRC generator, and the size of the 
transmit buffer has already been set in the receive buffer ring initialisation. 
 
3.8.2. The Interrupt Service Routine (ISR) 
The core of the driver is the ISR.  This is the only part of the driver that interacts 
directly with the hardware, apart from the initialisation code.  This is done this way so 
that all interactions with the hardware can be tightly synchronised and controlled.  If, 
for example, the send packet and receive packet functions directly wrote to the 
hardware, then they would have to be synchronised via wait loops, wasting CPU time, 
as otherwise they would interrupt each other's transfers and hence not only would 
nothing be accomplished, but the hardware would be left in an unknown state. 
 
The first ISR that was written for this project was the ISR for the Mitsubishi 
demonstration board and Ethernet card, which utilised the CS8900A NIC.  The ISR 
was triggered by either a DMA transfer completing, or by the NIC asserting an 
interrupt.  The first step upon entering the ISR was to check if the DMA was running 
– if it was then the ISR would exit, as it would disturb the DMA transfer if it started 
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reading or writing to the NIC.  If the DMA had completed, then it would set the status 
of the latest received packet to indicate that it was ready for passing to the stack 
before reading the Interrupt Status Queue on the CS8900A.  If the result was nonzero, 
indicating that the NIC had signalled an event, then the ISR would execute the event 
handling code – otherwise it would continue on to the transmit initiation code to 
transmit any outstanding packets. 
 
The event handling code would then check the Interrupt Status Queue value to 
determine which particular event had occurred.  The most important events were the 
Transmit Ready, Transmit Complete, Transmit Terminated and Receive Events – the 
others events generated by the NIC are primarily informational, or only useful for 
debugging.  The Transmit Ready Event would indicate that the NIC was ready for the 
next transmission to be started.  In this case the ISR would initiate the DMA transfer, 
which had been previously set up by the transmit initiation code, and return from the 
ISR.  The Transmit Complete Event would signal that the most recent transmission 
had completed successfully without colliding with other packets.  In this case the last 
transmitted packet would be taken off the ‘ transmitted’  queue and transferred to the 
free packet pool, leaving a fresh entry on the top of the transmission queue for the 
next time the queue was accessed by the transmit initiation code.  The Transmit 
Terminated Event was initiated when transmission of a packet was terminated due to 
excessive collisions.  The ISR increments a counter at the moment, but it would 
normally retransmit the packet in this case.  The last main event is the Receive event, 
indicating that the hardware has received a packet.  This event indicates whether the 
packet received was addressed to a broadcast, unicast or ‘hashed’  address.  The ISR 
doesn’ t pass this address type information up the stack at this stage, but it may be 
desirable for it to do so in the future, in order to speed up address recognition further 
up the stack.  Upon receiving this event, the ISR would check that the ‘Packet OK’  bit 
was set before checking for a free receive buffer.  If a free receive buffer was 
available, the ISR would allocate it and then initiate DMA to transfer the packet into 
the waiting buffer.  If there were no free receive buffers, then the ISR would issue a 
‘skip packet’  command to the NIC in order to avoid overflowing the internal memory 
– an event that would require a minimum of a 10 ms reset time to correct.  The ISR 
would then return.  Should the ISR process an event that did not require returning 
from the ISR, it would loop back to the start and continue reading the Interrupt Status 
Queue until the time at which the Interrupt Status Queue held a value of zero, 
signalling that no events were currently outstanding. 
 
If the ISR had not returned by this point, it would check to see if there were any 
outstanding transmission requests.  If so, it would initiate them, which involved 
writing a transmission event to the hardware and then checking a status register to see 
if the NIC was ready for data to be transmitted.  If the NIC was ready for the data, the 
ISR would set up and initiate a DMA transfer.  If not, the transmission request would 
later result in a Transmit Ready event, which would initiate the transfer of the packet 
to the NIC.  The packet status would then be marked as ‘started’ , and if the DMA 
transfer had taken place, the packet would be transferred to the ‘ transmitted’  buffer 
queue, awaiting confirmation of its transmission.  If there were no outstanding 
transmission requests, then the ISR would just exit. 
 
Several things to note in this structure are the partitioning of events with respect to the 
reading of them, and the necessity of dealing with events first in the ISR, as opposed 
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to last.  In the CS8900A, the reading of events changes the Interrupt Status Queue, 
and also changes the state of the hardware.  For an example, if an Interrupt Status 
Queue read occurred during a DMA transfer of a packet to the micro-controller, the 
read would be interpreted as an ‘ implied skip’  – and the internal buffer in which the 
packet resided would be de-allocated, ensuring that the packet data would be 
irretrievable.  This means that events must be partitioned, in that the event that the 
Interrupt Status Queue signals must be completely processed before the next event is 
read, even in the case of events that do not require reading the Interrupt Status Queue, 
such as the transmission of packets, which can be polled.  The approach of combining 
DMA read and writes (Transmitting a packet to the NIC at the same time as receiving 
a packet from it) was attempted, but the hardware failed to work under these 
conditions.  This was unfortunate, because the ability to transfer data using two DMA 
channels would allow higher use of data bus bandwidth, but it did not come as a 
surprise.  The necessity of processing NIC signalled events before actuating driver 
transmit events was prompted by earlier code revisions that failed to operate correctly 
when processing driver transmit events first.  The relevance of the former point is that 
the hardware affects the structure of the ISR – in this case, the ability to read the 
hardware status at any time does not exist.  The relevance of the latter point is that 
processing the transmit events first would be a little better, as the processing of the 
transmit events before the receive events follows the natural data flow of the system.  
For an example, consider the situation where the receive buffers are full, and the stack 
is waiting on a transmission in order to continue processing packets.  If data cannot be 
transmitted before the receive events are processed, then incoming packets must be 
skipped before the transmit event can take place in order to free up the stack.  If the 
transmit event can occur first however, then the possibility exists to leave the receive 
event unprocessed and hence let the stack do more processing and free up a receive 
buffer for incoming packets, letting the ISR process the incoming packet at a later 
time, hence avoiding having to drop the packet.  This shows what subtle effects the 
hardware can have on system dataflow. 
 
The second ISR was for the final hardware produced in this project, utilising the 
RTL8019AS.  This ISR was also triggered by both hardware interrupt and by DMA 
completion.  This first step in this ISR was to check a state variable, indicating 
whether the ISR was in a state where it was completing DMA, or whether it was 
responding to an NIC interrupt.  The state variable is necessary because it is not 
possible to determine the interrupt source without querying the hardware [CHECK 
THIS], and due to the way that both the hardware and the RTL8019 were designed it 
is not possible to check the Interrupt Status Register during DMA.  This is for two 
reasons.  The first is that the registers in the RTL8019 are divided into four pages, and 
the register that selects which page to expose to the system bus is  also the page that 
controls the DMA requests, including the DMA abort.  The second is due to a minor 
error in the hardware that means that the bus width must be switched between eight 
and sixteen bits when accessing control registers and performing DMA respectively. 
 
In the case where the ISR has been triggered by DMA completion, the  ISR switches 
the bus back into eight bit mode, and then checks the top elements of both the transmit 
queue and the receive queue to determine whether the event was the completion of 
transmit DMA, or receive DMA.  In the case of the receive DMA finishing, it sets the 
status of the packet to 'done', making it ready to be picked up by the stack.  It then 
updates the boundary pointer register in the RTL8019 to indicate the point up to 
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which it has read.  In the case of the transmit DMA finishing, it goes through a short 
wait cycle, checking the Interrupt Status Register until it has determined that the 
RTL8019 has internally completed the DMA transfer, before moving the packet from 
the transmit queue to the transmitted queue, reading for the transmit command.  After 
the ISR has completed the appropriate post-DMA processing, it resets the 'DMA 
completed' flag in the Interrupt Status Register.  The Interrupt Status Register is the 
register that signals what event has caused a hardware interrupt - if it is non-zero, then 
the RTL8019 interrupt line is asserted.  The ISR then re-enables the hardware 
interrupt that would normally trigger it, and resets the state variable.  The hardware 
interrupt that would normally trigger the ISR is disabled during DMA transfers 
because the Interrupt Status Register, as noted before, cannot be read during DMA.  
 
The ISR then reads the Interrupt Status Register to check the status of the NIC.  The 
first bits that it checks are the 'Transmit completed ok' and the 'Transmit failed' bits, 
indicating the obvious.  In the case of a successful transmission it frees the most 
recently transmitted packet by transferring it to the free packet pool, and updates a 
static variable that keeps track of the RTL8019 transmit ring buffer usage.  In the case 
of the transmit failing, it merely changes the state of the packet, indicating that it 
needs to be retransmitted.  After these processing steps are  complete, it resets the bits 
that it uses in the Interrupt Service Register - in a similar manner to the DMA.  It is 
worth noting that each functional section in the ISR only resets the bits that are 
responsible for triggering them.  This is because the Interrupt Status Register can 
change over the execution time of the ISR, and if they cleared all bits, then they 
would eliminate critical status information, causing severe ISR malfunction.   
 
The next step of the ISR is to check for any packets that are ready to be transmitted.  
If there are, then the size of the packet, in 256 byte pages, is calculated, and hence it is 
determined whether there is enough space in the RTL8019 transmit buffers for the 
packet.  If there isn't, then execution continues after this stage of the ISR.  If however 
there is space then the NIC hardware interrupt is disabled, the chip is configured to set 
up a DMA transfer, the bus is put into sixteen-bit mode, and a DMA transfer is 
initiated.  The state variable is also set to indicate that a DMA transfer is in progress.  
At this point the ISR returns, as it must wait until it is called again by the DMA 
transfer completing, as it cannot do anything until the DMA transfer is complete. 
 
The last step of the ISR is to read the current page pointer and the boundary pointer 
from the RTL8019.  The current page pointer indicates where the NIC has written to 
in the Receive Ring Buffer.  The boundary pointer indicates where the micro-
controller has read to in the Recieve Ring Buffer.  The ISR checks to see whether the 
two values are equal.  If they are, then nothing is available to be received, and the ISR 
clears any miscellaneous bits (Unused informational bits) in the Interrupt Status 
Register and returns.  If however the two values are not equal, then the NIC has 
received a packet that must be transferred.  It clears the 'Packet Received OK' bit in 
the Interrupt Status Register and checks the Free Packet Pool to see whether there is a 
free buffer.  If there isn't, then the ISR returns.  This means that the NIC will buffer 
the packet in the meantime, and the ISR will receive it later when there is a free buffer 
available.  It then disables the NIC hardware interrupt and configures the RTL8019 
for a DMA transfer before switching the system bus into eight-bit mode and initiating 
the DMA transfer.  At this point the ISR returns. 
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There are a couple of differences between this ISR and the previous one.  Though the 
operations are still partitioned because of hardware usage, the order of the operations 
is much more flexible, as the state of the hardware is only changed explicitly, not 
implicitly.  This means that receive operations can be delayed and packets left in the 
hardware buffer for later processing, enabling the order of driver operations to follow 
the natural data flow of the system.  The second main difference is because the 
RTL8019 only changes its internal state by explicit operations, the demands on the 
ISR are relaxed, as there is little danger of losing data by out-of-order operations.  The 
other side to this of course is that some smarter management is needed in the ISR, but 
this works to the advantage of the programmer by increasing the flexibility.  In this 
ISR, for an example, the amount of free transmit buffer space in the NIC could be 
read, and then if it was not possible to transmit the oldest packet due to size 
constraints, then the transmit packet queue could be checked for an appropriately 
sized packet.  Due to time constraints, this was not implemented, along with a few 
other elements that would improve the robustness and efficiency of the driver, such as 
checking for Receive Buffer Ring overflows. 

3.9. Implementation Issues 
There were a number of issues experienced in the programming of the hardware/ 
software interface that made it more difficult.  Some of these were from the compiler, 
some from the documentation available, and some were a result of hardware issues.  
The issues with the compiler were in code generation.  In certain cases, the compiler 
would fail to perform shift operations correctly, instead setting the variable to zero.  
This problem had to be resolved and debugged down at the assembly-language level, 
and the debugger (Running on the PC and communicating with the board via serial 
port) provided with the development kit proved an invaluable tool in resolving this 
problem.  However, much care had to be taken in writing further code, as even with 
care, this error was experienced several times.  The second code generation problem 
related to near and far pointer parameters to functions.  The micro-controller, being a 
16-bit device with a larger than 16-bit address space has the concept of near and far 
pointers – the near pointer being 16 bits, and the far pointer being 32 bits.  In the case 
of pointers being passed as parameters the pointers were not automatically converted 
– for instance, two bytes of pointer data would be pushed onto the stack, and four 
bytes taken off as a parameter.  This problem was bypassed by using explicit casts on 
some parameters to functions, although it came up a number of times, as much care 
had to be taken to avoid the situation.  These issues had a strong effect on the 
development of the code, as a compiler is usually a trusted part of the system, and 
hence compiler error is one of the last possibilities to be considered and examined. 
 
The RTL8019 documentation was the second major issue – the datasheet that Realtek 
produced for the RTL8019 is insufficient to program the device, and it is difficult to 
program and understand a device based on public driver code written for other 
operating systems and architectures.  Fortunately, upon contacting Realtek, they were 
able to provide me with datasheets that were sufficient to program the device – in fact 
devices for a National Semiconductor chip that the RTL8019 was an upgraded clone 
of.  The material that they gave me also had example drivers for some embedded 
systems, as well as popular PC operating systems, but these were only of limited use, 
since the embedded drivers were primarily using polled mode, instead of interrupt-
driven I/O. 
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The last issue experienced with the hardware/software interface was due to the 8/16 
bit hardware error detailed in the hardware section.  This took some time to debug, as 
the problem eventually had to be diagnosed with an oscilloscope. 
 

4. Software 

4.1. Problem Statement 
The stack that needed to be modified was a stack written by Chris Gascoigne for the 
Infineon C167 processor.  It communicated via the Point-to-Point Protocol (PPP) over 
a 9600 bps serial line.  The requirements of this project dictated a stack for an M16C-
family processor, communicating via 10 Mbit Ethernet.  This dictated three main 
objectives for the stack.  The first is that the stack had to be ported to the M16C 
family of micro-controllers.  The second, achieved by the hardware-software 
interface, is that the micro-controller had to be interfaced to the NIC.  The last is that 
additional support is required in order to support IPv6 over Ethernet.  Unlike PPP, 
Ethernet has multiple destinations reachable on one interface, and hence requires 
hardware addressing.  Other requirements specific to Ethernet are the implementation 
of Stateless Address Auto-configuration, Neighbour Discovery and the mapping of 
IPv6 addresses to Ethernet Addresses in general.  These will be detailed in later 
sections. 

4.2. Stateless Address Auto-configuration 
In a protocol such as IPv4, nodes must either be statically configured with an address, 
or they must request an address from an external source.  This is due both to the 
design and the limited address space of the protocol.  In IPv6 however, 128 bits are 
allocated to the address, and in addition, one of the addresses that an interface may 
have is an address scoped purely to the link to which it is attached.  Stateless Address 
Auto-configuration is a process by which a node may allocate addresses to its 
interfaces itself, instead of being forced to have them configured statically or 
externally.  This is an advantage in deployment, as it is part of a set of features that 
make IPv6 literally “plug’n’play”  with respect to a network environment. 
 
Due to the vast array of network types that IPv6 is expected to run on, Stateless 
Address Auto-configuration is specified in a link-specific manner.  In the case of 
Ethernet, the host portion of the IPv6 address is formed from a identifier called the 
EUI-64.  The EUI-64 is an identifier that is guaranteed unique to each Ethernet node, 
as it is formed from the 48-bit Media Access Controller (MAC) address by the 
expedient of inserting two bytes in the middle.  To use the EUI-64 to generate the host 
portion of an address, one bit is inverted (the universal/local bit) is inverted in the 
EUI-64 (Thomson., Narten., 1998). 
 
Unfortunately, the process is more complex than the generation and use of a ‘magic 
number’ , since other methods of generating an address on a link are possible, and 
hence the host must check that the address is unique on the link.  It does this by 
performing a process known as Duplicate Address Detection (DAD), and then by 
searching for routers to give it a link prefix so as to form a globally unique address. 
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4.3. Duplicate Address Detection 
Duplicate Address Detection (DAD) is performed by forming a tentative address from 
the EUI and the link-local prefix, which is a special network prefix meaning ‘on this 
link’ .  The host then sends a number of Neighbour Solicitations, querying whether 
another host is already using the address.  The Neighbour Solicitation message is a 
general message that is used for querying the mapping of IPv6 addresses to Ethernet 
Addresses on a link.  If another host is either using the address already, or is testing 
the address with a view to using it, then Duplicate Address Detection fails, and the 
interface must be configured manually.  This situation can be detected by either 
receiving a Neighbour Solicitation message querying the tentative address, or by 
receiving a Neighbour Advertisement – a message stating the Ethernet address 
mapping to the IPv6 address.  In order to be able to receive a Neighbour 
Advertisement message, a host is required to include its Ethernet address in the 
Neighbour Solicitation, so that other hosts have a hardware address mapping that they 
can use to address a reply.  The Neighbour Solicitation message is addressed to a 
special IPv6 address – the Solicited Node Multicast address, formed by a Solicited-
Node Multicast prefix and the lower 24 bits of the address required (Narten., 
Nordmark., Simpson., 1998). 

4.4. Router Discovery 
Router discovery is fairly simple in IPv6 – a host sends out a Router Solicitation 
message, addressed to the all-routers multicast address, and if there are any routers 
attached to the link, they will reply with a Router Advertisement message, containing  
the prefixes for the link, as well as other parameters that the host should or may use – 
such as the Time-To-Live for outgoing packets, the link MTU, and optionally the 
router’s link-layer address.  The host then combines the advertised network prefixes 
with its host identifier to get a unicast addresses scoped globally, or to the site.  The 
information in the Router Advertisement is however time-limited, and includes an 
expiry date, at which point the host may no longer use the prefix (Narten et al., 1998).  
This is intended to allow site easy renumbering.  Unfortunately, due to time 
constraints, this timing out of router information has not yet been implemented. 

4.5. Neighbour Discovery 
Neighbour Discovery is the IPv6 equivalent to the Address Resolution Protocol 
(ARP) - it is the protocol that maps IPv6 addresses to hardware addresses on 
multicast-capable links.  Neighbour Discovery also keeps track of reachability in both 
directions.  To map an IPv6 address to an Ethernet address, the host sends out a 
Neighbour Solicitation message, as detailed above under Duplicate Address 
Detection.  If it gets a Neighbour Advertisement back, then it knows the Ethernet 
address, and also that the host is bidirectionally reachable at that point in time, and so 
it caches the address for a time defined by the mandated ReachableTime variable.  If 
it fails to receive a Neighbour Advertisement in a certain amount of time, then it will 
retransmit the Neighbour Solicitation a certain amount of times (Narten et al., 1998). 
 
The behaviour above is sufficient to get enough address information to be able to 
transmit packets to the specified IPv6 address, but it does not address questions of 
reachability.  The Neighbour Discovery specification specifies a number of states that 
addresses may be in at certain points, and appropriate actions to take.  Due to time 
restrictions, the complete Neighbour Discovery specification has not been completed 
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in this project, although there is enough implemented to allow the project to function, 
if non-compliantly. 

4.6. IPv6 to Ethernet Address Mapping 
IPv6 has a number of address types – unicast, multicast, and anycast, to name a few.  
Some of these addresses have corresponding addresses in Ethernet – the ‘all link local 
nodes’  multicast address directly maps onto the Ethernet broadcast mechanism.  The 
unicast addresses must clearly map onto corresponding unique Ethernet addresses.  
The other multicast addresses also have equivalents, and since multiple multicast 
addresses are provided on Ethernet, a mechanism has been specified to map IPv6 
multicast addresses to Ethernet addresses - albeit imperfectly, but sufficiently, such 
that nodes will not have to process excessive quantities of broadcast messages in the 
case of extensive multicast usage.  This mapping is an effective use of the medium, 
but increases processing time, as the type of address and the mapping must be 
determined for each and every outgoing packet – there is a similar occurrence at the 
reception end of the stack, where the stack has to check the address against the 
multiple addresses that it either owns or listens to.  A way to optimise this is to pass 
up and down the stack information about which class an incoming or outgoing address 
falls into.  This optimisation has not been implemented (time constraints), but the 
multicast mapping has been implemented for all multicast addresses which the stack 
is expected to send or receive at this point – mostly addresses used by processes such 
as Neighbour Discovery.  An additional, but not overly significant, overhead is that in 
order to receive packets addressed to multicast addresses, the driver should be 
instructed to program the NIC to receive packets from these addresses (The 
alternative is to receive all multicast packets, lowering efficiency).  This involves a 
checksum calculation duplicating the checksum hardware in the NIC.  This would 
only be an issue if large amounts of multicast groups were joined and left constantly – 
using a lot of CPU time and requiring that the addresses be kept track of.  At the 
current time, the driver does not have this functionality, and instead accepts all 
multicast addresses. 

4.7. IPSec 
IPSec is the security and encryption layer for IPv6, and it is a requirement for all IPv6 
nodes to implement (Loughney., 2003).  The minimum requirements for IPSec are 
that the ESP and AH protocols are implemented.  IPSec was not implemented in the 
stack due to time constraints.  It will however have a significant effect on the 
feasibility of IPv6 on embedded micro-controllers because it involves a data-
processing step over most of the packet, which will slow the stack down considerably.  
This may be a function better implemented in specialised hardware positioned 
between the micro-controller and the NIC, as the encryption methods supported in 
IPv6 have been selected to be able to be performed efficiently in hardware.  In 
addition to this requirement, automatic key generation may be too higher a load for 
the micro-controller to handle while dealing with other tasks. 

4.8. Implementation Issues 
The implementation issues experienced during the work on the stack were similar to 
the issues experienced in the software/hardware interface programming.  The 
compiler’s code generation was a factor in the stack programming, as well as in the 
hardware/software interface.   
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In terms of selecting code to modify, the code that I was originally to modify was in 
fact a different stack that had already been ported to the M16C, but the commenting 
was poor, and the code a little untidy, with sections of code commented out – so I 
decided to use the original stack that it had been based on.  It was noticed that some of 
the standard C routines were a little slow, and so for time-critical sections of the code, 
functions such as memcpy() have been replaced with macros to do fixed-length copy 
operations, which produced substantial improvements.  These sort of modifications 
have not been implemented throughout the code however, and the code as it stands 
could benefit from many optimisations, as the focus of the project in terms of the time 
constraints was to prioritise the objective of getting at least a minimum set of 
functionality.  As a result, complete compliance was not achieved in all modules, and 
some optimisation work would benefit the stack greatly.  One example of this is in the 
addressing module – the Neighbour Cache should really be a direct-mapped cache, 
but was implemented very quickly as a fixed array structure with first-in-first-served 
mapping.  This simple modification would show significant differences in stack 
performance. 

5. Testing 

5.1. Problem Statement 
For an IPv6 implementation to be useful, it must be known to follow the IPv6 
standards so that it can communicate with other devices, including devices from 
different vendors.  The way that this is done is to do conformance testing – running a 
test suite that can report whether the stack satisfies the requirements.  The TAHI test 
tools are tools that were designed for such a purpose, and satisfy the requirements for 
IPv6 testing.  However, during the development process conformance tools are not 
necessarily useful, as often very localised tests testing specific or incomplete 
functionality are required. 

5.2. Testing Setup 
The WANDNet test network was used to test the hardware and software in the 
development stages.  The FreeBSD operating system was installed on two spare PCs, 
and the PCs were connected to WANDNet, along with the device under test.  One of 
the PCs was configured as an IPv6 router, in order to test stateless address auto-
configuration, and the other was configured as an IPv6 host in order to be able to test 
on-link (directly connected) and off-link (indirectly connected via a router) data 
transmissions.  FreeBSD was selected as the operating system to run on the PCs 
because the TAHI test tools have been developed to run on *BSD variants, and also 
because *BSD contains an IPv6 reference implementation, so the machines that the 
project was tested against were known to be compliant. 

5.3. Testing Results 
Extensive testing was not possible to perform due to time constraints.  However, basic 
testing through the development process showed that the stack functioned.  In terms 
of throughput as tested by a flood ping test, the implementation on the final hardware 
was able to handle ping packets at a steady rate of 50000 per minute, and that 100000 
per minute was possible.  In the latter test the stack stopped functioning after a short 
time at the higher data rate, and although the matter has not been thoroughly 
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debugged, it is thought that the fault may be a missed DMA interrupt.  The figure of 
50000 packets per minute is exhibited by the stable implementation, which was 
capable of sustaining operation indefinitely.  The tests performed much earlier on the 
development board showed a sustained packet rate of 36000 packets per minute, 
although that stack stopped functioning after a number of minutes at that data rate.  
These figures cannot however be compared, as the tests on the development board 
used some timing configurations that may have been too conservative with respect to 
what the CS8900A is capable of.  The reason for the stack stopping functionality had 
not been fully debugged on the CS8900A due to time constraints, but the problem is 
thought to be linked to an incorrect skipping of packets causing internal memory 
management problems inside the CS8900A.  The correct manner of processing the 
packet skip operations had been implemented as per the documentation, but the 
symptoms are the same as if it had not. 
 
Apart from the throughput testing, only function testing has been performed.  The 
stack correctly auto-configures itself and correctly detects routers and configures link 
prefixes.  It correctly performs both Neighbour Discovery and Duplicate Address 
Detection, and is capable of responding to and addressing hosts both on and off link. 
 
One issue struck with the testing was that the initial routing daemon failed to respond 
to Router Solicitations.  This was resolved by replacing the routing daemon, after an 
attempt at debugging that showed that packets were not being passed correctly to the 
daemon.  This may have been a configuration error, but the quicker and easier 
solution was simply to replace the daemon. 
 
The stack complies with the following node requirements: 
It follows the appropriate layer 2 document (IPv6 over Ethernet) (Crawford., 1998) 
It processes unrecognised options in hop-by-hop or destination options  
It processes extensions as described in RFC 2460 
It limits the layer 4 payload size because it doesn’ t allow outgoing fragments 
It accepts packets addressed to it, but not router packets 
Implements Neighbour Discovery [Mostly] 
It supports router discovery 
It supports prefix discovery 
It responds to Neighbour Solicitations. 
It implements DAD 
It supports sending router solicitations 
It receives and processes Router Advertisements 
It can send and receive Neighbour Solicitation and Advertisement messages 
It supports ICMPv6 (Conta., Deering., 1998) 
It supports IPv6 Stateless Address Auto-configuration (Thomson., Narten., 1998) 
It uses native addressing instead of transition-based addressing (RFC3484) 

6. Conclusion 
The following objectives have been met in this project: 

o An embedded system has been designed, representing a ‘ typical’  embedded 
system that maximised the usage of the hardware resources available to it. 

o The aforementioned system has been constructed, debugged, fully tested and 
works successfully. 
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o A stack for a different processor has been ported to the M16C platform for use 
on both the demonstration board and the final hardware produced.  This stack 
communicated via PPP over serial, and hence the hardware layer driver was 
removed. 

o An Ethernet driver has been written for each system used in the project 
o The Ethernet driver for the CS8900A was moderately successful 
o The Ethernet driver for the RTL8019 operates successfully 

o Ethernet-specific functionality has been written into the stack, including 
Neighbour Discovery, Address Auto-configuration, Duplicate Address 
Detection and mapping between Ethernet and IPv6 multicast addresses 

o Limited testing has been performed on the stack to ensure that it can configure 
itself correctly and communicate with other devices, both on-link and off-link. 

o A data flow system has been implemented so as to make efficient use of 
memory and time. 

 
Although there is more work to be done in order to make the software produced in 
this project fully compliant, this project shows that it is at least feasible to implement 
IPv6 on an embedded device.  The system produced is capable of up to 100000 
packets/minute, corresponding to a data rate of approximately 4 Mb/s each way, with 
room for improvement.  This is a utilisation of approximately 40% of the link rate, 
and a respectable figure for a low powered device.  The only barrier to feasibility of 
IPv6 in embedded devices that remains is the question of  IPSec, which this project 
does not address. 
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