
Manual

Manual for CN2 version 6.1

Robin Boswell

The Turing Institute Limited

TI/P2154/RAB/4/1.5
January 1990

Task : T

Document type : Manual

Status : Draft

Classi�cation : Public

Document class : ITM

Int. Doc. ID : TI/MLT/4.0T/RAB/1.2

Distribution : Universal

Abstract

This document is an introduction and user's manual for release 6.1 of the rule-

induction program cn2.

1

Contents

1 Introduction 4

2 Overview 4

3 Example and Attribute Files 5

3.1 Files : 5

3.2 Attributes : 6

3.2.1 Semantics : 6

3.2.2 Attribute ordering : 7

3.2.3 Syntax : 7

3.3 Examples : 9

3.3.1 Semantics : 9

3.3.2 Syntax : 10

3.4 Specimen input �le : 10

4 Rules: �les and evaluation 11

4.1 File format : 11

4.2 Class distributions : 12

4.2.1 Rare classes : 12

4.3 Evaluation : 13

4.3.1 \All" rule evaluation : 13

4.3.2 \Individual" rule evaluation : : : : : : : : : : : : : : : : : : : 14

2

4.4 Inducing and testing rules : 14

5 Using CN 15

5.1 Interactive use : 15

5.1.1 Top-level commands : 16

5.2 Non-interactive use : 18

A Getting Started 19

B Example run 19

C Handling of Unknowns and Don't Cares 22

C.1 Training (Learning) Phase : 22

C.2 Testing (Execution) Phase : 22

3

1 Introduction

The program described in this manual is version 6.1 of the Turing Institute's imple-

mentation of cn2. For details of the cn2 algorithm itself, and plans for further work,

see [Clark, 1989].

For brevity, I shall use the term \cn2" in the following account to refer both to the

algorithm and to its current implementation.

2 Overview

For instructions on installing cn2, see Appendix xA.

cn2 is a rule-induction program which takes a set of examples (vectors of attribute-

values), and generates a set of rules for classifying them. It also allows you to evaluate

the accuracy of a set of rules (in terms of a set of pre-classi�ed examples).

To use the program, you must provide an ASCII �le of examples in a standard format

(described in x 3). When the program has induced some rules from these examples,

you may display or evaluate them, or store them in a �le. Rules are stored in a human-

readable form, but they may also be read back in by cn2, to save re-calculating them.

If you have data �les in MLT CKRL format, then these can be converted into cn2's

format by a CKRL translator (provided by the Turing Institute). In addition, cn2

can itself translate attributes, examples and decision-trees into CKRL format (see

the Ckrl command in section 5.1.1).

See Appendix xB for an example of a terminal session with cn2.

The interface to cn2 is similar to that for the Turing Institute's other recently-

developed program NewID described in [Boswell, 1990], so if you are using both

programs, you may �nd the following comparisons useful:

Input The format of attribute and example �les is identical for the two programs.

(Declarations of attributes as `binary' are meaningful only for NewID: such dec-

larations will be silently ignored by cn2.)

Commands The interfaces are similar, but NewID has a smaller menu of commands

than cn2, because it has fewer customisable parameters (such as `signi�cance

4

threshold').

Output The output formats di�er (as do the algorithms): cn2 generates production

rules and NewID generates decision trees.

3 Example and Attribute Files

The input to cn2 consists of:

1. A set of attribute declarations.

2. A set of examples.

Items 1. and 2. may be presented in the same �le, or in two di�erent �les. Storing

the attributes separately from the examples makes it possible to read and process

several example �les in succession without having to re-load the attribute declarations

(provided all the examples use the same attributes).

3.1 Files

Input �les are of three types:

1. Attribute �les.

2. Examples �les.

3. Attribute and Example �les.

The most complex of these, the attribute and example �le, consists of a header,

followed by attribute declarations, then examples. The two types of data are separated

by punctuation, as speci�ed in x 3.2.3. (See x 3.4 for a specimen of such a �le).

Attribute and example �les consist of the appropriate header followed respectively by

attributes and examples.

In all �le types, characters between a `%' and the next end-of-line are regarded as

comments and ignored.

5

Formally:

attribute-and-example-�le ::=

att-and-ex-header attribute-delarations separator examples separator

att-and-ex-header ::=

\��ATTRIBUTE AND EXAMPLE FILE��"

separator ::=
\@"

attribute-�le ::=

att-header attributes

att-header ::=
\��ATTRIBUTE FILE��"

example-�le ::=

ex-header examples

ex-header ::=
\��EXAMPLE FILE��"

The format for attributes and examples in the above grammar is de�ned below.

3.2 Attributes

3.2.1 Semantics

Attributes are of two types: discrete and ordered. A discrete attribute takes one of

a �nite set of values (and the set of values has no further structure). An ordered

attribute takes numeric values: integer or oating point.

An attribute declaration consists of the name of the attribute, together with either:

� Its possible values (for a discrete attribute), or

� Its numeric type (for an ordered attribute).

For the purposes of the rule-induction algorithm, one of the attributes is distinguished

as the class attribute. The aim of the algorithm is to �nd rules whereby the class

6

attribute of an example may be inferred from the non-class attributes. The class

attribute must be discrete.

3.2.2 Attribute ordering

In some domains, it may be desirable to impose constraints on the order in which

attributes are tested. For example, one should determine whether a patient is female

before asking whether she is pregnant, rather than afterwards. Such constraints may

be imposed on cn2 by means of attribute ordering declarations, which (optionally)

follow the attribute declarations.

Note that it is not possible to make the result of one attribute test a precondition of

some other test (for example, \if sex is male, then don't ask about pregnancy") but

given sensible data, an inappropriate test will yield a low entropy gain, and so be

excluded anyway by cn2's existing criteria.

An attribute ordering declaration takes the form:

Attribute1 BEFORE Attribute2;

You may include as many such declarations as you wish. Note that cn2 does not

currently check for \loops" (A before B before C before A : : :): if you introduce such

a loop, the result will be that none of the attributes involved will ever be used.

Finally, note that the order in which attribute tests are displayed in cn2's output

has no signi�cance (as it happens, it matches the order of attribute declaration), so

in particular is not a�ected by attribute ordering constraints. The only e�ect of, for

example, the constraint sex BEFORE pregnancy is to ensure that any rule containing

a test of pregnancy also contains a test of sex.

3.2.3 Syntax

An attribute declaration consists of the attribute's name, followed either by its pos-

sible values (if it's discrete), or its numeric type (if it's ordered), separated by appro-

priate punctuation. The class attribute must be declared last. (i.e. cn2 will treat the

last attribute as the class attribute).

Formally:

7

attribute-data ::=
attribute-declarations att-ordering-section

j attribute-declarations

attribute-declarations ::=

attribute-declaration

j attribute-declarations attribute-declaration

attribute-declaration ::=

string \:" attribute-values \;" % For discrete attributes

j string \:" \(" type \)" % For ordered attributes

attribute-values ::=
string attribute-values

j string

type ::=

\FLOAT"
j \INT"

string ::=

quoted-string
j unquoted-string

att-orderings-section ::=
\ORDERINGS" attribute-orderings

attribute-orderings ::=
attribute-ordering

j attribute-orderings attribute-ordering

attribute-ordering ::=

string \BEFORE" string \;"

An unquoted-string is a sequence of one or more characters made up of

upper or lower-case letters, digits, and the characters \{", \+" and \ ",

with the constraint that the �rst character must be a letter or \ ".

A quoted-string is any sequence of printable characters (except newline

and the double-quote character) surrounded by double-quotes.

Thus the following are all valid strings:

Fred _42 "42" "%^=- !"

and the following are not valid strings:

42 -green +

8

For example:

sex: male female;

job: cleaner secretary manager director hacker;

salary: (FLOAT)

status: content discontented % The class attribute

ORDERING

sex BEFORE salary;

3.3 Examples

3.3.1 Semantics

Each example consists of a set of values, one for each attribute, and may also include

a weight.

3.3.1.1 Values

Each value must be of the appropriate type. However, in addition to the numeric

and string values given in the attribute declarations, any attribute except the class

attribute may take one of the two special values \Unknown" or \Don't Care".

The \Unknown" value is used to represent an unknown value (!), such as frequently

occur in real-world data. The \Don't Care" value, on the other hand, is assigned to

an attribute whose value is irrelevant to the classi�cation of the example. In practice,

\Don't Care" values are most likely to arise as a means of compressing synthetic data.

Thus, an \Unknown" attribute corresponds roughly to an existentially quanti�ed

variable, whereas a \Don't Care" attribute is universally quanti�ed.

A brief account of how NewID handles \unknown" and \don't care" values appears

in Appendix C

9

3.3.1.2 Weights

By default, each example is assigned a weight of 1, and this is su�cient for most

applications. However, in some cases it may be useful to assign di�erent weights to

examples; the weight must be a positive real number. If you use this facility, you

should note that references in this document to the \number of examples" in a set

(e.g. 4.3.1) really mean \the sum of the weights of the examples".

3.3.2 Syntax

examples ::=

example
j examples example

example ::=

values \;"
j values \w" number

values ::=

value
j values value

value ::=
string

j number
j \?" % Unknown

j \�" % Don't Care

number ::=
integer

j oat

In addition, the order of items in values must correspond to the order of the at-

tributes as previously declared, so the length of values must be equal to the number

of attributes, and each value
n
must match the type of attribute

n
.

3.4 Specimen input �le

This is a small \Attribute and Example" �le:

10

ATTRIBUTE AND EXAMPLE FILE

% Vertebrate classification

skin_covering: none hair feathers scales;

milk: yes no;

homeothermic: yes no;

habitat: land sea air;

reproduction: oviparous viviparous;

breathing: lungs gills;

class: mammal fish reptile bird amphibian;

@

% mammal

hair yes yes land viviparous lungs mammal;

none yes yes sea viviparous lungs mammal;

hair yes yes sea oviparous lungs mammal;

hair yes yes air viviparous lungs mammal;

% fish

scales no no sea oviparous gills fish w 4;

% reptile

scales no no land oviparous lungs reptile w 3.2;

scales no no sea oviparous lungs reptile;

% bird

feathers no yes air oviparous lungs bird;

feathers no yes land oviparous lungs bird;

% amphibian

none no no land oviparous lungs amphibian;

@

4 Rules: �les and evaluation

4.1 File format

When cn2 writes a rule set to �le, it does so in a human-readable ASCII form, but

unlike example and attribute �les, you are not expected to write or modify rule �les

yourself. (i.e. you do so at your own risk, and should note that cn2 does very little

error-checking when reading rule �les). In future releases, a graphical interface may

be provided for manipulating rules.

11

A small rule-set appears as part of the trace on page 22.

4.2 Class distributions

The list of numbers at the end of each rule indicates the number of training examples

covered by that rule, divided into classes.

The precise signi�cance of the counts depends on whether the rules are ordered or

unordered. Ordered rules are intended to be executed in order (!), so the counts

associated with rule N refer to the examples covered1 by rule N which were not

covered by any of the rules 1 through N � 1. This applies also to the default rule|

since this rule has no conditions, its counts comprise all the examples which were not

covered by the preceding rules.

The counts associated with each of a set of unordered rules, however, comprise all the

examples covered by that rule including those which may be covered by other rules as

well. Again, this applies equally to the default rule, whose count therefore comprises

the whole example set.

4.2.1 Rare classes

Given the above de�nition of \class distribution", you might expect that the class

predicted by a rule would always show the largest class-count in the corresponding

distribution; so to avoid possible confusion when using the program, you should note

that this won't always be the case.

In the case of ordered rules, the class predicted by each rule will be the majority class

among the examples covered, by de�nition.

In the case of unordered rules, however, this property will not always hold, though

it usually will. The exceptions are rules which give better than average predictions

of rarely-occurring classes. For example, in a medical domain, where the program

is trying to predict the rarely-occurring phenomenon of diabetes, the following rule

might be induced:

IF temperature = high

AND uid-intake = high

THEN diagnosis = diabetes [420 0 0 126]

1A rule is said to cover an example if the example satis�es the conditions of the rule

12

where there are 126 examples of diabetes, and 420 of something di�erent (colds, as

it happens). Since the occurrence of diabetes in the general population is only 0.1%,

a rule that predicts it with an accuracy of 30% is clearly of some use, even if 70% of

patients satisfying the conditions just have colds.

4.3 Evaluation

The evaluation module takes a set of rules and a pre-classi�ed set of examples, and

compares the classi�cation given by the rules with the given class-values. There are

currently two modes of evaluation: all and individual. (Individual rule evaluation is

a recent addition in response to local demand).

4.3.1 \All" rule evaluation

In this mode, the evaluation is of a set of rules taken as a whole. The results are

displayed in the form of a matrix:

PREDICTED

ACTUAL mammal �sh reptil bird amphib Accuracy

mammal 3 0 0 0 0 100 %

�sh 0 1 0 0 0 100 %

reptile 0 0 1 0 0 100 %

bird 1 0 1 2 0 50 %

amphibia 0 0 0 0 1 100 %

Overall accuracy: 80 %

Default accuracy: 40 %

The entry in row i, column j of the matrix is the number of examples classi�ed by

the rules as class j which were really of class i. (So, in the sample matrix above,

there was 1 example which the rules classi�ed as a mammal, but which was really

a bird.) Fractional values may arise if the examples include \Unknown" or \Don't

Care" values.

The \Default accuracy" is only applicable to unordered rule sets; it is the accuracy

resulting from classifying all examples according to the majority class (which is what

the default rule does).

13

4.3.2 \Individual" rule evaluation

This mode of evaluation is currently available only for unordered rule sets, though a

similar facility for ordered rule sets may be provided in future.

For each rule, a matrix similar to the above is calculated, but in this case, the class

values are reduced to \class predicted by rule" and \other classes". For example:

||||| Rule 2 |||||

IF 7.50 < number of legs < 25.00

THEN class = spider [0.25 2 0 0]

FIRED?

ACTUAL CLASS Yes No Accuracy

spider 2.00 0.00 100.0 %

Not spider 0.25 7.75 96.9 %

Overall accuracy: 97.5 %

4.4 Inducing and testing rules

To create and test a set of rules, you will need to carry out the following operations

(the actual commands required are described in the next section).

1. Load some attributes and examples

2. Induce some rules

3. Load some more examples

4. Evaluate the rules

In future releases, I shall probably provide commands for (e.g.) partitioning example

sets, and selecting sub-sets, within the program, thus simplifying the above sequence.

14

5 Using CN

5.1 Interactive use

Note: in specimens of terminal interaction user input appears underlined, and \."

represents the use of the `Return' key. For example:

READ> Both, Atts, or Examples? Both

READ> Filename? Data/animals .

In the �rst line, the user typed the single character `B' (and did not hit the return

key), and the program expanded the command to `Both'. In the second line, the user

typed the �le name `Data/animals', and then hit `Return'.

When you start cn2, you will see this friendly greeting:

* *

* Welcome to CN2! *

* *

followed by the prompt:

CN>

This is the top-level prompt. If you now type `h' or `?' (for help), the program will

display a list of the commands that may be entered at this point, and then re-display

the top-level prompt, ready for another command.

Some operations require several commands to perform. For example, if you want cn2

to read in a �le, you have to tell it what sort of thing the �le contains, and the name

of the �le. In this case, your initial `read' command will cause cn2 to change from

top-level mode to �le-reading mode, and it will display a di�erent prompt, thus:

READ>

When the �le-reading has been completed, cn2 redisplays its top-level prompt, so

the whole sequence might appear as follows:

15

CN> Read

READ> Both, Atts, or Examples? Both

READ> Filename? Data/animals .
Reading attributes and examples : : :

10 examples!

Finished reading attribute and example file!

CN>

5.1.1 Top-level commands

Note that this section assumes an understanding of the cn2 algorithm as speci�ed in
[Clark, 1989], and you should refer to this document if you are unsure of the meaning

of \star size", \signi�cance threshold", \ordered rules", etc.

Each of these commands is invoked by typing its initial letter (upper or lower case),

except for \Execute", which is invoked by \x".

Read: Read an attribute, example, attribute-and-example or rule �le. When loading

several �les in succession, you should bear in mind that cn2 can only retain

in memory one set of attributes, and one set of examples, at any one time.

Consequently:

1. Before loading an example or rule �le, you must load the appropriate

attributes.

2. Loading a �le of any type overwrites any data of that type which you may

have loaded previously (even if the load fails|for example, because of a

syntax error in the new �le).

3. In addition, loading a set of attributes causes any previously-loaded exam-

ples to be lost.

The entry of �le-names is facilitated by the following features:

1. As in emacs, \<tab>" invokes �le-name completion. If the pre�x you

have typed is ambiguous, the program will show you a list of the possible

completions.

2. As in emacs, \<esc> h" is bound to \delete-word-backwards".

3. Each time you type a `/' as part of a UNIX path-name, the program checks

that the directory referred to exists and is readable. If not, it will prevent

you from typing further (you must delete back and correct the invalid

path).

16

Induce: Run cn2 on the most recently read set of examples. The behaviour of cn2

can be modi�ed by changing various parameters (see the commands below).

However, all these parameters have default values set at start-up, so there is no

need to set them before processing data.

Write: Write a set of rules to �le. (You must �rst have read in some examples and

run cn2 on them). File-name entry works as for Read, above.

Ckrl: Write data in CKRL format. Either the current set of attributes and examples

(together) or the current decision-tree may be written. Note that the former

option allows cn2 to be used as a translator from cn2 format to CKRL.

eXecute: Enter \evaluation" mode, in which the performance of the current rules

may be assessed with respect to the current examples. (See x 4.3). In evaluation

mode, valid commands are:

All: Evaluate the set as a whole.

Individual: Evaluate rules individually.

Help/?: Display a menu of commands.

<RET>: Return to the CN> prompt.

Algorithm: Specify whether cn2 is to produce ordered or unordered sets of rules.

Error estimate: Specify whether cn2 is to use the Laplacian or the na��ve estimate

to assess the accuracy of a rule.

The formulae for the two estimates are as follows:

Laplacian: #Correct+1 / #Examples + #Classes

Na��ve: #Correct / #Examples

Preciesly which example sets these formulae are applied to depends on whether

the rule set being induced is ordered or unordered (see the discussion of \counts"

in x 4.2).

Star size: Query or alter the star size.

Threshold: Query or alter the signi�cance threshold.

Display: Provide further information about the search. By default, the program

just displays each rule as it �nds it, but if required it can, for example, indi-

cate whenever a new \best node" is found, or which node is currently being

specialised. (Type `h' at the \SET TRACE FLAGS>" prompt for a list of

options.)

This facility can be used to clarify what the algorithm is doing, particularly if

it is generating unexpected answers.

17

Help/?: Display a menu of commands.

Quit: Quit

5.2 Non-interactive use

It is possible to run cn2 non-interactively by supplying it with a sequence of com-

mands in a �le. In this case, cn2 will write a trace of its activities to the standard

output, so if you want to run it in the background, you should redirect its output

either to a log �le or to /dev/null. For example:

% cn < cn.commands > cn.log &

Commands should be listed in the command �le more or less as they would be typed

in answer to cn2's prompt. In the case of single-character commands, the complete

command may be used, to make the �le more readable (the program will ignore all

but the �rst character of the word): each such command should be separated from

the next item by some form of whitespace, but not necessarily a newline. Filenames

must be followed by a newline.

Characters from `#' to the next end-of-line will be regarded as comments and ignored

(c.f. shell scripts).

For example:

read atts Data/animals.atts

read exs Data/animals.exs

alg unordered

star 7

display none quit

induce

write

Data/animals.rules

quit

References

[Boswell, 1990] R.A. Boswell. Manual for NewID version 2.0. Technical Report

TI/P2154/RAB/4/, Turing Institute, January 1990.

[Clark, 1989] P.E. Clark. Functional speci�cation of CN and AQ. Technical Report

TI/P2154/PC/4/1, Turing Institute, September 1989.

18

A Getting Started

To read the contents of your release tape, load the tape into your tape-drive, cd to

the directory where you want the sources and data to be installed, and type:

tar xvf tape-device-name

This should create a directory Release, with sub-directories NewId, CN2, Sim-

ple Data, and Docs.

Next, cd to Release/CN2, where you should �nd the sources for cn2, and aMake-

�le.

If you are using SunOS 3, then you will need to change the de�nition of \OS" in

\mdep.h". Replace the line:

#define OS (4)

with

#define OS (3)

Now type:

make cn

This will cause cn to be compiled.

You will �nd some example and attribute �les in the directory Re-

lease/Simple Data.

B Example run

This section records a terminal session in which cn2 is applied to a small example

�le called `animals'. This �le has been included on your release tape, so that you can

experiment with it without having to type it in.

As in x 5.1, user input is underlined, and carriage-return denoted by ..

19

Points to Note

� You will notice that in response to the �rst `Induce' command, cn2 prints out

the resulting rule set twice. This is because, at the default level of tracing, the

program prints out each rule as it �nds it, and then prints out the complete

set of rules when it has �nished. In the case of unordered rules, the rules

are not accompanied by class distributions when �rst calculated, since it is

more convenient to delay calculation of these distributions until the rule-set is

complete.

x 4.2 discusses the precise meaning of the class distributions.

� Note how raising the signi�cance threshold from 1 to 10 for the second \run"

gives smaller but less accurate rules.

* *

* Welcome to CN2! *

* *

CN> Read

READ> Both, Atts, or Examples? Both

READ> Filename? Data/animals .
Reading attributes and examples : : :

10 examples!

Finished reading attribute and example file!

CN> Algorithm

Algorithm is currently set to UN ORDERED

ALGORITHM> Ordered

CN will produce an ordered rule set

CN> Induce

Running CN on current example set: : :

Best rule is:

IF milk = yes

THEN class = mammal [4 0 0 0 0]

Best rule is:

IF skin covering = feathers

THEN class = bird [0 0 0 2 0]

Best rule is:

IF skin covering = scales

AND breathing = lungs

THEN class = reptile [0 0 2 0 0]

20

Best rule is:

IF skin covering = none

THEN class = amphibian [0 0 0 0 1]

Best rule is:

ELSE (DEFAULT) class = fish [0 1 0 0 0 0]

j j

j
ORDERED RULE LIST

j

IF milk = yes

THEN class = mammal [4 0 0 0 0]

ELSE

IF skin covering = feathers

THEN class = bird [0 0 0 2 0]

ELSE

IF skin covering = scales

AND breathing = lungs

THEN class = reptile [0 0 2 0 0]

ELSE

IF skin covering = none

THEN class = amphibian [0 0 0 0 1]

ELSE

(DEFAULT) class = fish [0 1 0 0 0]

CN> Algorithm

Algorithm is currently set to ORDERED

ALGORITHM> Unordered

CN will produce an unordered rule set

CN> Threshold

Current threshold is 1.00

New threshold: 7 .
OK!

CN> Display

SET TRACE FLAGS> None

All tracing is now turned OFF

SET TRACE FLAGS> .
CN> Induce

Running CN on current example set: : :

j j

j
UN-ORDERED RULE LIST

j

21

IF milk = yes

THEN class = mammal [4 0 0 0 0]

IF skin covering = scales

THEN class = fish [0 1 2 0 0]

IF skin covering = scales

THEN class = reptile [0 1 2 0 0]

IF homeothermic = no

AND breathing = lungs

THEN class = amphibian [0 0 2 0 1]

ELSE (DEFAULT) class = mammal [4 1 2 2 1]

CN> Quit

Have a nice day!

C Handling of Unknowns and Don't Cares

C.1 Training (Learning) Phase

During rule generation, a similar policy of handling unknowns and don't cares is

followed: unknowns are split into fractional examples and dontcares are duplicated.

Strictly speaking, the counts attached to rules when writing the ruleset should be

those encountered during rule generation. However, for unordered rules, the counts

to attach are generated after rule generation in a second pass, following the execution

policy of splitting an example with unknown attribute value into equal fractions for

each value rather than the Laplace-estimated fractions used during rule generation.

C.2 Testing (Execution) Phase

When normally executing unordered CN rules without unknowns, for each rule which

�res the class distribution (ie. distribution of training examples among classes) at-

tached to the rule is collected. These are then summed. Thus a training example

22

satisfying two rules with attached class distributions [8,2] and [0,1] thus has an ex-

pected distribution [8,3] which results in C1 being predicted, or C1:C2 = 8/11:3/11

if probabilistic classi�cation is desired. The built-in rule executer follows the �rst

strategy (the example is classed simply C1).

With unordered CN rules, an attribute test whose value is unknown in the training

example causes the example to be `split'. If the attribute has three values, 1/3 of

the example is deemed to have passed the test and thus the �nal class distribution

is weighted by 1/3 when collected. A similar rule later will again cause 1/3 of the

example to pass the test. A don't care value is always deemed to have passed the

attribute test in full (ie. weight 1). The normalisation of the class counts means that

an example with a dontcare can only count as a single example during testing, unlike

NewID where it may count as representing several examples.

With ordered CN rules a similar policy is followed, except after a rule has �red

absorbing, say, 1/3 of the testing example, only the remaining 2/3s are send down

the remainder of the rule list. The �rst rule will cause 1/3 � class distribution to be

collected, but a second similar rule will cause 2/3 � 1/3 � class distribution to be

collected. Thus the `fraction' of the example gets less and less as it progresses down

the rule list. A don't care value always passes the attribute test in full, and thus no

fractional example remains to propagatete further down the rule list.

23

