
On the Performance of Lazy Matching in Production Systems

Daniel I? Miranker*, David A. Brant**, Bernie Lofaso**, David Gadbois*

*Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712

ABSTRACT
Production systems are an established method for encoding
knowledge in an expert system. The semantics of produc-
tion system languages and the concomitant algorithms for
their evaluation, RETE and TREAT, enumerate the set of
rule instantiations and then apply a strategy that selects a
single instantiation for firing. Often rule instantiations are
calculated and never fired. In a sense, the time and space re-
quired to eagerly compute these unfired instantiations is
wasted. This paper presents preliminary results about a new
match technique, lazy matching. The lazy match algorithm
folds the selection strategy into the search for instantiations,
such that only one instantiation is computed per cycle. The
algorithm improves the worst-case asymptotic space com-
plexity of incremental matching. Moreover, empirical and
analytic results demonstrate that lazy matching can substan-
tially improve the execution time of production system pro-
gr-*

I.0 Introduction
There is a large and growing body of research directed to-
ward the integration of relational database and expert sys-
tem technologies (Kerschberg 1987, Kerschberg 1988).
Our work focuses on the problem of using the production
system paradigm as the deductive component of an expert
database system. The use of simple rules in databases is
well known for enforcing integrity constraints and sponta-
neously triggering daemons if certain patterns appear in
the data (Bunemann 1979, Astrhan 1976). The database
problem of maintaining a view in the presence of updates
to a database is very similar to the problem of incremental-
ly evaluating the rules in a production system (Blakeley
1986). Even though some database systems incorporate a
portion of the power of pattern directed inference systems,
the number and form of the rules that can be effectively in-
cluded in these systems is very limited. On the other side
of the problem, expert systems that require information
from existing databases do not access the data directly but
maintain a small separate subset of the data by periodically
issuing queries. Rule systems on the scale of an accredited
expert system have not been tightly integrated with large
databases. This is due to the extraordinary time and space
demands one can expect Tom inferencing on large data-
bases.

One of the fundamental issues is the exponential worst-
case time and space requirements inherent in existing pro-
duction system match algorithms (Raschid 1988, Miranker

**Applied Research Laboratories
The University of Texas at Austin
PO. Box 8029, Austin, TX 787 13

1987, Forgy 1982). The worst-case asymptotic time and
space requirements of both the RETE (Forgy 1982) and
TREAT (Miranker 1987) match algorithms are O(wm’)
where wm is the size of the working memory and c is the
maximum number of condition elements. While the aver-
age space requirements do not approach worst case, the
variance in both time and space demonstrated over the life
of a system is very volatile. Figure 1 shows rule firings (x-
axis) versus number of instantiations (y-axis) for four
OPS5 test applications’. These test programs have previ-
ously appeared in the literature (Gupta, Forgy & New-
e111989, Miranker 198, Lofaso 1989). Some summary
statistics about these systems are presented in Table 1. The
erratic behavior seen in these graphs illustrates the time
and space wasted in the eager evaluation of rules. Al-
though the worst case is rarely achieved, it is clear from
the graphs that very bad behavior may appear at any time.
For database applications it is entirely possible for such al-
gorithms to unexpectedly exhaust all of the available stor-
age in large virtual memory computer systems (Bein, King
& Kamel 1987).

TABLE 1.OPS5 Program Statistics

Avg. WM Inst- Rule Unused Inst- %
Program Rules Size antiations Firings antiations Unused --
WALTZ
TOURNEY :?

42 151 81 54
123 2324 5;: 1796

JIG25
WEAVER 63; 1;;

205 58 147 7’;
1331 751 580 44

Therefore, we have developed an algorithmic basis for
matching that is fundamentally better than current match
algorithms in its space requirements. The first obstacle we
observed is that all presently used algorithms for evaluat-
ing production systems enumerate the entire conflict set.
The conflict set consists of rule instantiations where an in-
stantiation is a rule name and an ordered set of working
memory elements that satisfy that rule. The conflict set by
itself has worst-case space complexity of O(wm’). Thus, to

1. The applications used in our study are:
(a) JIG25 - solves a simple jigsaw puzzle,
(b) TOURNEY - schedules a bridge tournament,
(c) WALn - interprets three-dimensional line drawings, and
(d) WEAVER - routes a VLSI channel.

MIRANKERETAL. 685

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

0 11 10 21 20 31 56 41 46

000

100

wo

wo

4w

Dw

l

1 w

0
1 I* 101 lS1 PO* PS8 301 351 409 451 SO1

TOURNEY
180

100

940

(SO

too

80

.OD

40

IO

0

* 0 il 10 Sl PO

JIG;;
30 41 46 II

Figure 1. Conflict Set Instability

asymptotically improve the space complexity of the
matching problem, it is necessary to avoid enumerating the
conflict set. We have developed a new incremental match
algorithm, the lazy match, that computes a single rule in-
stantiation per cycle, yet may maintain the present execu-
tion semantics of existing production system languages.
The lazy match is described in section 3 and has worst-
case space complexity that is O(max(ts)*c). Where ts is a
timestamp and max(ts) is therefore bounded by the total
number of updates to working memory. Further, it is often
the case that instantiations are computed and placed in the
conflict set and never fired (see Table 1). The lazy match
never computes these “wasted” instantiations. Time is
wasted not only in the eager computation of unused instan-
t&ions, but recent results have also shown that memory
management is a dominant factor in the performance of
these systems (Lofaso 1989). If memory requirements can
be reduced then we might also expect performance to im-
prove. Section 4 presents preliminary results of an OPS5
implementation based on the lazy match. These results
show that the lazy match may substantially improve the
performance of a production system program and elimi-
nate the need to avoid certain troublesome constructs when
writing rules. In section 2 we define production systems.
Throughout the a paper we will draw examples using the
OPS5 production system language. It is assumed that the
reader is familiar with either the RETE of TREAT incre-
mental match algorithms.

2.0 Production Systems and Eager Matching
In general, a production system is defined by a set of rules,
or productions, that form the production memory, together
with a database of current assertions, called the working
memory (WM). Each production has two parts, the Zeft-
hand side (LHS) and the right-hand side (RIB). The LHS
contains a conjunction of pattern elements, or condition el-
ements (CEs), that are matched against the working mem-
ory. The RHS contains directives that update the working
memory by adding or deleting facts, and directives that
carry out external side effects such as I/O. In operation, a
production system interpreter repeats the following recog-
&e-act cycle:
1. Match. For each rule, compare the LHS against the cur-

rent WM. Each subset of WM elements satisfying a
rule’s LHS is called an instantiation. All instantiations
are enumerated to form the conflict set.

2. Select. From the conflict set, chose a subset of instanti-
ations according to some predefined criteria. In practice
a single instantiation is selected from the conflict set on
the basis of the recency, specificity, and/or rule priority
of the matched data in the WM.

3. Act. Execute the actions in the RHS of the rules indi-
cated by the selected instantiations.

An OPS5 working memory element (WME) forms the
user’s conceptual view of an object and consists of a class
name followed by a list of attribute-value pairs (Forgy
1981). A class name identifies an object and the attribute-
value pairs describe a particular instance of that object.
Each WME has a unique identifier (ID) associated with it.

686 KNOWLEDOEREPRESE~ATION

IDS are often implemented as a strictly increasing se-
quence of integers-assigned when the WME was created or
last modified. They may be construed as timestamps or as
logical pointers to individual WMEs. In most production
systems, IDS are used in the conflict set resolution criteria.
Consider the WMF, shown below, used to describe a red
cube named c-l, with a mass of 100, and having a length
of 10 (attributes names are distinguished by a preceding h
operator).

(cube *name c-1 “color red *mass 100 *len 10)
A production’s LHS consists of a conjunction of CEs. It

contains one or more non-negated CEs and zero or more
negated CEs. Negated CEs are distinguished by a preced-
ing negative sign. The LHS is said to be satisfied when:
1. for each non-negated CE, there exists at least one

matching WME, and,
2. for all negated CEs, there do not exist any matching

WMES.
Each CE consists of a class name and one or more

terms. Each term specifies an attribute within the class and
a predicate to be evaluated against the values of that at-
tribute. A CE need not reference all of the attributes con-
tained in its corresponding class. The class is projected
onto the named attributes in the CE. Those not named do
not affect the match criteria. Predicates consist of a com-
parison operator (c,>,= ,<, , or#) followed by a constant or
variable. A predicate containing a constant is true with re-
spect to a WME if the corresponding attribute value in the
WME matches the predicate. For example, consider the
CEs and corresponding WMEs shown in Fig. 2. CE (a)
matches WMEs (1) and (3), while CE (b) matches only
WME (1).

“cube” WMEs
CEs name color mass len

a) (cube *mass<lO) 1) c-1 red 6 8
b) (cube Amass<10 *len>5) 2) c-2 blue 11 5

3) .c-3 red 1 3

Figure 2. Predicate Matching
The scope of a variable is the production in which it ap-

pears, and, therefore, all occurrences of a variable within a
given LHS must be bound to the same value in working
memory for the LHS to be satisfied. For condition ele-
ments containing variables, a mapping can be made to a
relational join operation. The join operator will ensure that
a given variable is consistently bound for all of its occur-
rences within a LHS.

2.1 Eager Matching
A critical component of any
match algorithm that computes

production system is the
the instantiations. Current-

ly used match algorithms are cager in nature. If a new
WME is entered into the system they will perform a search
for all instantiations containing that WME. These instanti-
ations are then added to the conflict set (CS). Thus, from
one rule firing to the next, the set of all valid instantiations
is preserved by making incremental changes to the CS. In
order to analyze the behavior of production systems and
their match algorithms we have- characterized them in
terms of events that can change the conflict set and the op-

erations performed by the system in response to those
events. There are five events that may result in changes to
the conflict set. Two may add instantiations. They are:2
1. make(WME+) add a WME to a class corresponding to

a non-negated CE
2. remove(WME-) remove a WME from a class corre-

sponding to a negated CE
Three events may remove instantiations from the CS.

They are:
3. make(WME-) add a WME to a class corresponding to a

negated CE
4. remove(WIVIE+) remove a WME from a class corre-

sponding to a non-negated CE
5. fire(I) fire instantiation I.

Current implementations of production systems perform
several basic operations in response to these five events.
For events that involve the computation of new instantia-
tions,i.e., (1) and (2), the match algorithm effectively com-
putes a relational database join for each rule containing the
class associated with the specified WME. The WME is
used as a seed to root the join and the join path branches
out from the seed to the other classes of the CEs for that
rule based on its join query graph. Nodes in the graph rep-
resent classes and arcs prescribe the join order. A failed
search results in a backtrack to the previous class. The
searches that succeed at the lowest level (leaf nodes of the
query graph) indicate that an instantiation was found. A
given instantiation can be represented by the timestamps
of the WMEs along the path leading from the root to the
leaf.

As new instantiations are produced the conflict set must
be resorted according to the resolution strategy. Event (3)
also results in a seed join, the results of which are removed
from the CS. Event (4) produces a search of the conflict set
for instantiations containing the specified WME, which are
then removed. Event (5) simply removes the fired instanti-
ation from the CS.

3.0 A Lazy Matching Algorithm
The following describes a method for computing produc-
tion instantiations in a lazy manner. This is accomplished
by executing a best-first search for instantiations. After
one instantiation is found, the search pauses to allow the
corresponding rule to be fired. Since the rule firing may
change WM, the best-first search must be capable of re-
sponding to a dynamic search space. This is accomplished
by maintaining a stack of best-first search pointers. As
searches are superceded by changes to the WM, their state
is pushed onto the stack. When a search is exhausted, the
next set of pointers is removed from the stack. The top of

2. Note that these events do not necessarily have a one-to-one
correspondence to the makes and removes specified in an OPS5
rule’s RI-IS, e.g., a given WME may be applicable to many CEs
and therefore an OPS5 “make” could result in numerous
make(WME+) events.

MIRANKERETAL. 687

stack always contains the state information for the next
search.

The correctness of lazy match is dependent upon being
able to enforce a total ordering in the generation of instan-
t&ions. If this is not done, duplicate instantiations may be
computed and fired. If the total ordering is by timestamp
(i.e. ID), a search heuristic based upon firing the produc-
tion with the most recent instantiation (McDermott & For-
gy 1978) can be employed. However, it is important to
note that any total ordering of instantiations for a given
rule will work. Adding additional criteria for instantiations
of different rules, such as specificity and/or rule priority,
can also be accommodated in a straightforward manner?.

3.1 Conflict Set Resolution and Lazy Matching
The challenge of the lazy matching algorithm is in control-
ling a best-first search for instant&ions through a WM that
may change after each instantiation is found and fired. The
criteria for “best” in this case is based upon the conflict set
resolution strategies.

Lazy matching uses the selection strategy as an evaluat-
ing function to direct the search for a fireable instance.
This is done by using that criteria to direct the search for
matching WMEs from the alpha-memories4. On any given
cycle, the search for an instantiation will stop after the first
one is found, with the search being conducted so as to pre-
serve recency. Of course, additions to, and deletions from,
the WM will affect the search, and we must ensure that a
given instantiation is fired at most once. To do so, state in-
formation is saved on a stack in order to continue the cor-
rect computation of instantiations.

3.2 Computing Instantiations Using Lazy
Matching
Elements of the stack consist of a sets of pointers repre-
senting the state of a best-first search for instantiations. For
convenience we use the timestamps of the WMEs to repre-
sent both an instantiation and the search state. For simplic-
ity of presentation we assume a single rule system. We
define an instantiation as a tuple containing one timestamp
from each non-negated CE. Thus for a rule containing n-l
non-negated CEs, stack entries and instant&ions have the
form &3(+...,t%-l >), where tsi is a timestamp. As each
WME is entered into the an alpha-memory, a correspond-
ing initial search state is pushed onto the stack. The initial
state is <<tsg-l,...,tsi,...,ts,_1- l>>, where t% is the timestamp
of the newly added WME.

The concept of a dominant timestamp (DT) is intro-
duced to control the lazy computation of instantiations.
For any stack entry, the DT is the most recent timestamp.
Figure 4(a) shows the initial system state for the produc-

3. In general, the only form of conflict set resolution strategies
that cannot be done lazily are those that demand an enumeration
of the conflict set, e.g., fire the rule having the most instantia-
tiOIlS.

4. Same as the alpha-memories described by Forgy and used in
both RETE and TREAIY

688 KNOWLEDGEREPRESENTATION

tion appearing at the top of the figure. Note that the times-
tamp is denoted as the attribute “ts”.

The computation of an instantiation begins with pop-
ping the top of stack and selecting the DT. This is followed
by a best-first search for an instantiation rooted at the
WME referenced by the DT. To ensure that instantiations
are produced only once, alpha-memories have a fixed or-
dering (by timestamp in this example), and the best-first
search computation restricts the WMEs joining with DT to

Co (ts,A) Cl O-,&B

2,a,c
I 1 Lard 7,b,c

1 C, (ts,B)

60

Co (ts,A) Cl (ts,A,B) C2 (ts,B) STACK

(W

Cn(ts,A) Cl (ts,A,B) C?(ts,B)
&arc 4,c
Lad
Lbrc q 6,~

co (

Cc)

ts,A) Cl(ts,A,E
Lal-rr2,a,c

(d)

Co (ts,A) Cl

Figure 3. Lazy

C2 (ts,B)

(ts,A,B) C7(ts,B)

STACK

6,7,6
5,5,6
4,5,4
3,3,4
32,~
1,2,1
l,O,O

5,5,6
4,5,4 1 3,3,4
3,w
1,2,1 LO,0
STACK
5,5,6
4,5,4
3,3,4
322
vu
LO,0

STACK

4,5,4
3,3,4
3,2,2
L&1
LO,0

STACK . .
3,3,4
3,w

0 L&1 l,O,O (e)
Computations of Instantiations

those having timestamps less than DT. As soon as a match-
ing set of WMEs (i.e., an instantiation) for DT is found,
the computation pauses and the result is fired. If an instan-
tiation containing DT cannot be found, then the next stack
element is popped, and a new best-first search is begun.
When an attempt is made to pop from an empty stack the
system halts.

Figure 3(b) shows the initial state of the best-first search
pointers (pi) after the top stack entry has been popped and
the corresponding search has found an instantiation. The
best-first search is rooted at ts=7 in alpha-memory Cl and
proceeds outward in join order, most recent to least recent
WME in each alpha-memory. Thus, for Fig. 3(b) the
search state is <<3,7,6>>. These WMEs satisfy the produc-
tion and become the first instantiation. Next, the rule is
fired, and, assuming for now that no WMEs are added to,
or removed from, the WM by firing the rule, the search re-
sumes to find the next instantiation. Figure 3(c) shows the
state of the search after finding the next instantiation -
<x3,7,41>. Before finding <<3,7,4>> the search would have
tried << 1,7,&, failed, backtracked, advanced the P2 pointer,
and succeeded (we arbitrarily chose to search the left al-
pha-memory first). The next time the search is performed
<x1,7,4>> will be tried and will fail. That will exhaust the
search rooted at the DT with ts=7. At that time the next
stack entry is popped. In this case it is the WME with ts=6.
The shaded area in Fig. 3(d) contains WMEs that have
timestamps greater than that of the DT and therefore are
not considered in the search. The next instantiation to be
found is ~1,2,6>>, after unsuccessfully trying <<3,5,6>>,
<<1,5,6>>, and <x3,2,6>>. After that, the stack is again popped
with DT=5. Since no instantiations can be found for DT=5,
another pop is performed and the WME with ts=4 is cho-
sen as DT. The instantiation <X 1,2,4>> is found (Fig. 3(e)) af-
ter trying <<3,2,4>>. <<1,2,4>> is the final instantiation that can
be produced. After it is fired, all the remaining stack en-
tries are popped and their searches exhausted. Finally an
attempt is made to pop from the empty stack and the sys-
tem halts.

We now consider the effects of adding and deleting
WMEs after each rule firing. When a new element is added
to the WM a set of initial pointers is pushed onto the stack,
but first, the current search is suspended and its state
pushed onto the stack. That search may be resumed at a
later time when it is popped off the top of stack. Since de-
letions may affect the state of a suspended search by re-
moving WMEs that have pointers to them on the stack,
each time a search state is popped from the stack, its point-
ers must be verified by the best-first search, backtracking if
necessary. Figure 4(a) is the same as Fig. 3(b). Assume
that the instantiation referenced by <x3,7,6>> ties and adds
the WME c8,d> to C2. This causes
1. the search state <<3,7,6>> to be pushed to the stack,
2. <<7,7,8>> is pushed onto the stack and subsequently

popped*
3. a best-first search is started with DT=8, and
4. the next instantiation is found. i.e.. <<1.5.8>> IFig. 4(b)).

Co(ts,A) Cl (ts,A,B) C7(ts,B)

(a)
Co(ts,A) Cl(ts,A,B) C2 (ts,B)

(b)

co (ts,A) Cl (ts,A,B) C7(ts,B) STACK

L

STACK
5,5,6
4,5,4
3,3,4
3,w
L&1
LO,0

STACK
3,7,6
5,5,6
4,5,4
3,3,4
322
L2J
l,O,O

5,5,6
4,5,4
3,3,4

- 3,w
123

(c) L- LW
Figure 4. Dynamic Search Space

Assume that firing ~1,5,8>> does not change the WM. On
the next cycle the search rooted at DT=8 will be exhausted
and the top of stack popped. Thus the search that was sus-
pended, <x3,7,6>>, is resumed. The next instantiation found
will be <x3,7,4>>. The pseudocode in Fig. 5 should help elu-
cidate the algorithm.
program Lazy Match;
Plr - l .rPn-1: WME timestamps;
begin

initialize stack;
{The top level makes that form the ini-
tial WM are added here. An entry for
each is placed on the stack.}

loop while stack not empty
pop-stack(~~, . . .,p,-lrempty);
if not empty then
best-first(pl,...,p,-l,found);
if found then
push-stack (pl, . . . , pnwl 1;
fire(pl,pn-l).

end loop;
end Lazy Match;
function pop-stack(pl,...,p,-l,empty);

{If the stack is not empty it returns
the top element and sets empty-FALSE,
else empty=TRUE}

function best-first(pl,...,p,-l,found);
{Performs a best-first search for an in-
stantiation by working backwards from an
ordered list of timestamps. The search
first validates the pointers then searches
using the DT as the root. If an instanti-
ation is found then found=TRUE and the

MIRANKERETAL. 689

new instantiation is returned in the
Plr - - *rPn-lr else found=FALSE.)

function push-stack(pl,p.-1);
{Pushes the pointers onto the stack.}

function fire(pI,...,p,-l) ;
{Fires the instantiation referenced by
the ~1, -..rP*-1. This may alter the WM. A
make will place an entry on top of the
stack. A remove may delete an entry from
the stack.)

Figure 5. Lazy Match Pseudocode.
There are pathological cases where the best-first search

strategy will not produce the identical sequence of instanti-
ations as OPS5. It is possible to avoid these cases by im-
posing a strict LEX ordering on lazy match, but doing so is
computationally expensive. Nevertheless, the criteria used
in lazy matching is in keeping with the general concept of
recency as presented in (McDermott Jz Forgy1978), and
has not yet posed a problem.

3.3 Handling Negated Condition Elements
We have discovered three different methods of lazily han-
dling negated condition elements (NCEs). Only one will
be described here. The methods for dealing with NCEs are
closely related to the method developed for the TREAT
match algorithm (Miranker 1987). If a search for an in-
stantiation consistently binds with a WME that matches an
NCE, then the search fails at that point and must back-
track. We say that that WME blocked the search. When a
blocking WME is removed from the system, some instan-
t&ions may become unblocked and allowed to compete
for firing. Those instantiations that become unblocked are
those that would have been computed had the condition el-
ement been positive instead of negative, and had the WME
been added to the system instead of removed.

To handle NCEs, for each negated condition add a sec-
ond alpha-memory which will shadow the first. Rename
the original alpha-memory from Ci to Ci . Call the shadow
alpha-memory e. When a WME that has blocked a
search is removed from a C; alpha-memory it is inserted
into Cs i , given the next available timestamp, and an entry
is pushed onto the stack. Note that this requires the stack to
accommodate another timestamp in its elements, one for
each shadow alpha-memory. The newly added WMEs to
CT can then be allowed to root a best-first search for those
instantiations that they had blocked.

A problem arises when a search leads to an instantiation
that has already been derived from a search rooted by a
WME in Cs . This is solved by requiring best-first search
to examine all of Ci and the portion of Ct such that a
search that starts with a DT=tst and binds consistently
with a WME in c with timestamp ts+sl fails. The idea
is that once a WME enters CSi, only it may generate in-
stantiations with older WMEs. Such a WME will be able
to root the search for all instantiations older than itself,
whether they were blocked or not.

We can now summarize the operations performed by
lazy match and TREAT in response to the five conflict set
events (see Table 2).

TABLE 2. Events and Operations

Event TREAT Operation Lazy Otxration
make(WME+) Seed Join Stack Push

remove(WME-) Seed Join Stack Push
make(WME-) Seed Join & Delete from CS None

remove(WME+) Delete from CS None
fie(T) Delete from CS Best-first Search

4.0 Preliminary Results

4.1 Space and Time Complexity
Each alpha-memory is proportional to the size of the

WM. In the most adversarial scenario, every WME can be
added to a shadow-memory and never removed. Thus, in
the worst-case the shadow-memories are bounded by the
maximum timestamp and the worst-case space complexity
of the lazy match is O(max(ts)*c). Although the worst-
case space requirements for a nonterminating program
based on this version of the lazy match are unbounded, the
worst-case is very unlikely and the space requirements of
the lazy match are not at all volatile.

We have identified several techniques that filter and re-
duce the size of the shadow-memories. The most aggres-
sive of these filtering techniques bounds the size of the
shadow memories to O(wm”) where v is the number dis-
tinct positive condition elements needed to bind the vari-
ables in the shadow memory. This filter results in a worst-
case space complexity of O(Min(wm’, Max(ts))*c).

A simple filter, invoked when a rule becomes inactive,
completely purges a rule’s shadow memory. A rule is ac-
tive when each of its positive alpha-memories contains at
least one entry. The first filter is expensive, but effective.
The second is very inexpensive, but for some rules in a
nonterminating program it may never be invoked. Since
the shadow memories must be searched as well as the ne-
gated alpha-memories, and since there is no analog of
shadow memories in either RETE or TREAT, the actual
execution time of the lazy match must be evaluated empir-
ically.

4.2 Implementation
To evaluate the effectiveness and the trade-off’s with re-

spect to the variants of the lazy match we have reworked
the back-end of the OPSSc compiler to use the lazy match.
OPSSc is a portable C/Unix based OPS5 compiler origi-
nally based on the TREAT match algorithm (Miranker et
al. 1990). OPSSc produces in-line matching code for each
rule. Its target is C code which must then be compiled for
the target machine.

The recently completed current version only imple-
ments the simple purging filter on the shadow memories.
The above presentation of the lazy match considered the
generation of an instantiation by the best-first search as a
computation involving a single rule. The current imple-
mentation was extended to multiple rules by first selecting
the DT and then considering each rule/alpha-memory that
contained that DT in the order determined by the remain-
ing conditions of the OPS5 lex strategy.

690 KNOWLEDGEREPRESENTATION

Table 3 shows the performance of the lazy match imple-
mentation with respect to OPSSc tests for three test pro-
grams. Lazy matching generally resulted in 2-3 times
fewer WME tests.

TABLE 3. WME Tests

WME Tests
Proaram TREAT LAZY
JIG25 35,780 11,113
TOURNEY 1,107;259 513;600
WALTZ 23.890 14.967

OPS5c has reduced the match time for these programs
to below the 90%. Therefore, speed-up may not be as high
as WME tests might indicate. The test programs in Table 3
execute very quickly and do not provide a good measure of
execution time. However, the The WALTZ program can be
scaled up by inputting larger line drawings. The original
data describe a drawing consisting of 18 line segments. To
demonstrate scaling and the effectiveness of the algorithm
on large problems, we gave it a 10,000 WME waltz prob-
lem. This resulted in a 4-fold reduction in the number of
WME tests and reduced the run time by more than 50%.

These results are much better than we expected, espe-
cially when compared to the table of unused instantiations
(Table 1) which we had thought was an optimistic measure
of pruning. Detailed examination of the programs and their
performance has revealed that lazy evaluation of certain
programming constructs commonly used in rule systems
can result in improved time complexity for the evaluation
of those constructs.

We start with an illustrative example (see Fig. 6). The
rule represents a naive one rule solution to a jigsaw puzzle
problem. This rule is typical in structure of many of the
rules in all systems we tested. This rule says, “compare all
edges to all other edges and if two have the same shape
place them next to each other”. If there are n edges, then
the TREAT algorithm will perform n2 operations.

(p one-rule-jigsaw-solution
(edge "piece-id <pidl> *edge-id <eidl>
"shape <s> "matched F)

(edge ^piece-id {<Xpidl> <pid2>} "edge-
id <eid2> "shape <s> "matched F)

-->
(write "Place puzzle piece" <pidl> "next
to piece" <pid2>")

(modify 1 "matched T)
(modify 2 "matched T))

Figure 6. Jigsaw Rule

The execution of the lazy match first picks an edge
matching the first condition element and then takes an av-
erage of n/2 operations to find the matching piece. The rule
would then fire and these two pieces would be removed
from consideration. On the next cycle the lazy match
would again pick an edge matching the first condition ele-
ment and then take an average of (n-2)/2 operations to find
the matching piece. Computing the sum, from n until all
pieces are exhausted, for this rule shows that the lazy
match would execute (n2+2n)/8 operations.

We can generalize this type of problem to rules that pick
loosely restricted subsets of size k from n objects, where
loosely restricted means that oncejck objects are chosen it
will always be possible to fill the requirements for the j+l
object without backtracking. An eager evaluation of such a
rule requires O(nk) time. A lazy evaluation will take O(n)
time to pick each of k objects or O(n*k). Many systems, as
in the jigsaw puzzle, will fire such a rule until all n of the
objects have been chosen forming n/k subsets.
Theorem:
Given n WM elements. To choose n/k disjoint subsets of
size k by executing n/k cycles an eager evaluation will take
O(d) operations. A lazy evaluation will take O(n2).
Proof:
Let (r be the join selectivity. Join selectivity is the proba-
bility that the values tested for a WME will be consistent
with the values bound up to that point. For example, for
the jigsaw puzzle rule if the shape of each edge is unique
then cT= l/n.

Eagerly evaluating a rule with k conjuncts and having
each alpha-memory having n elements takes:

k

c 0 i-l,i = 0 (nk)
i = 1

A Lazy evaluation takes:

(n/k) -1 __

It s (k- 1) = O(n2)
i= 0

(EQ 1)

(EQ 2)

Notice the constants greatly favor lazy evaluation.
How common are such rules? Rules that are completely

of this type are probably not that common. But there are
rules in nearly all systems which pairs or triple of CEs rep-
resent one of the above constructs. Any rule in any pro-
gram that refers to the same class in more than one CE is a
candidate for this reduction. We have found rules of this
form in WEAVER,TOURNEY, and WALTZ. In WEAVER
there are many rules where 5 or more condition elements
refer to the same class. Our conjecture is that, using lazy
matching, there are many rules in most systems whose
time complexity will improve by one or more degrees.

5.0 Conclusions and Current Work
The idea of lazy matching is necessary to improve the as-
ymptotic space complexity of the incremental match prob-
lem. Preliminary results show that for several application
programs Lazy matching substantially improves execution
time as well as the space requirements. Investigation of the
applications revealed that Lazily matching certain com-
monly used and expensive rule constructs leads to asymp-
totic improvement in the execution time of those rules. In
the near future we will consider rule-parallel implementa-
tions that compute one instantiation $r rule. We will also
investigate other filtering techniques-for the shadow mem-
ories, including a technique that eliminates shadow memo-
ries completely but whose worst-case space complexity is

MIRANKER ET AL. 691

O(Max(wm”, ts)*c), and whose average space require-
ments are potentially volatile.

Our current goals include the development of an inte-
grated expert-database system. By an integrated expert-da-
tabase system we mean a system where working memory
encompasses a large disk resident database and conven-
tional database transactions may occur concurrently with
the inferencing tasks. As a prototype, we are integrating
the OPS5c compiler and the Genesis extensible database
management system (Batory et al. 1988). We are exploring
the use of appropriate data structures and memory hierar-
chy to support this type of system. This research is being
conducted in the context of the behavior of the Lazy match
as the size of working memory is scaled to the size typical
of existing commercial databases.

REFERENCES
Astrhan, M., et. al., “System R: A Relational Approach to

Data,” ACM-TODS, June 1976.
Batory, D., et. al., “GENESIS: An Extensible Database

Management System,” IEEE Transactions on Soft-
ware Engineering, Nov., 1988.

Bein, J., R. King, and N. Kamel, “MOBY An Architecture
for Distributed Expert Database Systems,” Proceed-
ings of the 13th VLDB Conference, Brighton, 1987.

Blakeley, J. A., et. al., “Efficiently Updating Materialized
Views,” Proceedings of the 1986 ACM-SIGMOD In-
ternational Conference on Management of Data,
Washington, DC, June 1986.

Bunemann, I? and E. Clemons, “Efficiently Monitoring
Relational Data Bases,” ACM-TODS, Sept. 1979.

Forgy, C., “OPS5 User’s Manual”, Tech Report CMU-CS-
8 1- 135, Carnegie-Mellon University, 198 1.

Forgy, C., “RETE: A Fast Match Algorithm for the Many
Pattern/Many Object Pattern Match Problem,” Artifi-
cial Intelligence, no. 19, pp. 17-37, 1982.

Gupta, A., C. Forgy, and A. Newell, “High-Speed Imple-
mentations of Rule-Based Systems,” ACM TOCS,
June, 1989.

Kerschberg, L., “Proceedings of the First International
Conference on Expert Database Systems”, Benjamin/
Cummings Publishing Company, Inc.,Menlo Park
CA, 1987.

Kerschberg, L., “Proceedings of the Second International
Conference on Expert Database Systems”, Benjamin/
Cummings Publishing Company, Inc.,Menlo Park
CA, 1988.

Lofaso, B. J., “Join Optimization in a Compiled OPS5 En-
vironment,” Tech. Report No. ARL-TR-89-19, Ap-
plied Research Laboratories, The University of Texas
at Austin, April, 1989.

McDermott J., and C. Forgy, “Production System Conflict
Resolution Strategies,” In Pattern-directed Inference
Systems, D. Waterman and F. Hayes-Roth (eds.), Aca-
demic Press, 1978.

Miranker, D., “TREAT: A Better Match Algorithm for AI
Production Systems,” Proceedings of the 1987 Na-
tional Conference on Artificial Intelligence, Seattle,
1987.

Miranker, D., “TREATA New and Efficient Match Algo-
rithm for AI Production Systems”, P&man/Morgan
Kaufman, 1989.

Miranker, D., B.J. Lofaso, G. Farmer, A. Chandra, and D.
Brant, “On a TREAT Based Production System Com-
piler”, Proceedings of the 10th International Confer-
ence on Expert Systems, Avignon, France, 1990.

Raschid, L., T. Sellis, and C-C Lin, “Exploiting Concur-
rency in a DBMS Implementation for Production Sys-
tems,” Proceedings of the International Symposium
on Databases in Parallel and Distributed Systems,
1988.

692 KNOWLEDGEREPRESENTATION

