

Date: January 8th, 2015

RemoteLaunch® | Automated Testing
Integration & User Guide
Inflectra Corporation

Page 1 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Contents

Introduction ... 1

1. RemoteLaunch Guide 2

2. QuickTestPro Engine 17

3. SmarteScript Engine 24

4. TestComplete Engine 29

5. Selenium Engine 37

6. Squish Engine 48

7. Command-Line Engine 57

8. LoadRunner 11 Engine 66

9. SoapUI Engine 72

10. FitNesse Engine 80

11. NeoLoad Engine 86

12. TestPartner Engine 93

13. BadBoy Engine 98

14. JMeter Engine 105

15. Ranorex Engine 112

16. Rational Functional Tester 119

17. TestingAnywhere 126

Introduction
SpiraTest® provides an integrated, holistic
Quality Assurance (QA) management solution
that manages requirements, tests and incidents
in one environment, with complete traceability
from inception to completion.

SpiraTeam® is an integrated Application
Lifecycle Management (ALM) system that
manages your project's requirements, releases,
test cases, issues and tasks in one unified
environment. SpiraTeam® contains all of the
features provided by SpiraTest® - our highly
acclaimed quality assurance system and
SpiraPlan® - our agile-enabled project
management solution.

This guide outlines how to use the
RemoteLaunch® add-on for SpiraTest® or
SpiraTeam® to remotely schedule and launch
automated tests using a variety of commercial
and open-source test automation engines.

For information regarding how to use SpiraTest
itself, please refer to the SpiraTest User Manual.

The first section outlines how to use the
RemoteLaunch® application, and the
subsequent sections describe each of the
plugins that support a different test automation
tool.

Page 2 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

1. RemoteLaunch Guide
There are actually two separate versions of RemoteLaunch® that are available from Inflectra:

1. The Microsoft Windows® compatible Spira RemoteLaunch® application that provides a graphic
user interface application for executing automated tests on remote computers using various
plugins for different testing technologies and have the results be sent to the configured
SpiraTest/SpiraTeam server.

2. The cross-platform Spira RemoteLaunchX™ Java application that provides a lightweight
console application that can execute simple command line scripts on the target computer and
send the results back to the configured SpiraTest/SpiraTeam server. This application can be used
in Microsoft Windows®, Linux or Apple MacOS X® computers provided that they have the
Java 1.7 (or later) runtime installed.

The first part of this section will describe how to use the Windows-only RemoteLaunch® GUI application
and the second part will describe how to use the cross-platform RemoteLaunchX™ console application.

1.1. Installing RemoteLaunch
It is required that you install the program before copying or installing any test extensions for the program.
Testing applications, like Selenium and QuickTest Pro can be installed with no regards to the client
application – if they are not installed by the time a test requiring them needs to be executed, the test
extension will simply report an error or block for the specified test set.

There are no options to the installer except for installation path. If you do not use the default installation
path (typically C:\Program Files\Inflectra\Spira RemoteLaunch\), then make a note of where
the installation path is, because it will be needed to install test extensions later.

1.1.1 Installing a Test Extension
A test extension is a single or a set of DLLs that the program will read upon startup and provides a link in
which testing applications (like TestComplete and Squish) to report test information and status back to
SpiraTeam.

When you download a test extension, the ZIP file should contain at least one DLL file. Unless otherwise
specified by a readme.txt file included in the compressed file, copy the DLL file to the \extension directory
located within Spira RemoteLaunch installation directory. (If no such folder exists, you must create it.)

If an extension is removed or added, the program must be restarted for the any changes to take effect.
The program will only load up to the first number of extensions that the license allows. Additional
extensions will not be loaded or used during testing.

1.1.2 Registration
Spira RemoteLaunch has its own License
key needed for using the program. You
cannot use your existing
SpiraTest/Plan/Team key in Spira
RemoteLaunch. Upon the first launch of the
program, you will be asked to update your
license information. Enter in your
organization name and license key in the
email that was sent when you purchased the
license, or as listed on your customer
information page at http://inflectra.com.

http://inflectra.com/

Page 3 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Trial licenses are good until the 28th day of the listed month. The next time the program is run after the
28th of the month, you will be prompted to re-enter a new permanent license key, or the program will be
unusable.

The license key can be updated at any time by going to the Tray Menu and select Help -> About. Once
the About screen opens up, click the Update button in the license details section to update or change
license information.

1.2. Using RemoteLaunch

1.2.1 Basic Unattended Operation
When run, the program will start minimized to the system tray and will start its polling of the server. Polling
will occur every ‘x’ minutes (60 by default) for any automated test sets that are scheduled to be run. When
time comes for a test to be launched, it will start the test extension. The installed test extension will then
perform the test and report results back to SpiraTeam. At the end of the test, the program will go back
and resume scanning for tests that need to be executed.

No user input is ever needed from the application itself. However, testing applications may pop up dialogs
needing user input. For existing Inflectra testing extensions, effort was put in to avoid as much user-
interaction as possible, but in some cases it is unavoidable.

1.2.2 Client Configuration
By right clicking on the system tray icon and selecting “Configuration”, the application’s window will open
to the configuration panel. The panel has the following options:

• SpiraTeam Server Configuration:

o Server URL: This is the URL of the SpiraTeam installation. Be sure to not put /Login.aspx
or any other page in the string, this should be just the root URL of the application’s install.

o Login Username: This is the SpiraTeam login id of the user that you want the tests
reported as. Note that while the application is polling and updating test results, if the user
is logged into a web browser session, they will get kicked out.

o Login Password: The password to the Username above.

Page 4 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

o Test: Clicking this will test the login to make sure the application can connect to the
server properly.

• Server Polling:

o Automation Host Token: This field is required, and uniquely identifies the local testing
machine. Any scheduled tests assigned to the Automation Host on SpiraTeam will get
polled for this machine. Except in special circumstances, this ID should be unique among
all testing machines.

Important: This field must match the string that is entered into the
Automation Host Details screen in the Token: field, or scheduled tests
will not be recognized.

o Automatically Run Overdue Tests: When this is checked, any tests that are pulled from
the SpiraTest server that has a scheduled date in the past will be marked as Overdue.
Normally, overdue tests will not be executed. With this check, they will be executed as
soon as the poll is finished.

o Continue polling server after a connect error: When this is checked, if RemoteLaunch
receives an error connecting to the SpiraTest server, it will continue polling in the future.
If this is unchecked, RemoteLaunch will switch to the error status upon encountering a
connection error. It is important to check this option if your SpiraTest server will be
periodically unavailable for server maintenance.

o Polling Frequency: How often in minutes the application will poll the SpiraTeam server
for updates to the automation host’s schedule. The default is 60 (1 hour), and should be
fine for most installations. Note that tests will still be executed on their scheduled time,
this is simply how often the program will talk to the SpiraTeam server to detect schedule
changes. Updating the polling frequency will reset the currently running timers.

o Polling Read Ahead: How far ahead in minutes the program should read the schedule
for the Automation host. Tests that are scheduled farther in advance will not show up as
a pending test on the status screen.

1.2.3 Extension Configuration
If an extension has custom configuration options, they will appear as separate tabs located after the
Client Setup tab. The contents of each tab will vary depending on the extension. View the extension’s
documentation for options given in those extensions.

1.2.4 Status Screen
The status screen is usually hidden, but can be brought up for display by double-clicking on the system
tray icon. The top of the screen shows the current status, whether it’s running a test or waiting to poll the
server for an update. It will also show any errors present on the application, like a registration error or
configuration issue. Under the status bar is a list of any pending or executing tests that are scheduled for
this testing machine. The list will get cleared at every poll, so tests that have executed since the previous
poll will still be on the list, and will show their execution status:

Page 5 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

• Green Arrow: A green arrow indicates that the test is still running, or RemoteLaunch is waiting
for a reply from the testing engine / test application.

• Blue Checkbox: A blue checkbox indicates that the test is completed, regardless of status of the
individual test steps in the scheduled test set.

• Red Error: A red error indicator indicates that the test extension or the testing application ran into
an issue (outside of test results). In this case, any further tests that require the extension will be
marked as blocked, as the issue needs to be corrected within the extension settings or testing
application.

• No Indication: No indication means that the test is currently awaiting for its scheduled date to
start. Note that only one test will be launched at a time, so that if two tests are scheduled at the
same time, the one with the lower TestSet ID will be executed first, then as soon as it’s finished,
the second scheduled test will be run.

By highlighting a test that has not been executed yet, you can click the Force Execute button. This will
cause the selected test to have its scheduled date to the current time, causing it to be immediately
executed (or, if another test is already running, next in line for execution).

At any time the Force Poll button can be clicked, causing RemoteLaunch to initiate an immediate poll of
the SpiraTeam server to check for pending runs. The timers for the next server poll will be reset when the
button is clicked.

1.2.5 Tray Icon Menu
Instead of operating from the application window, all functions exist on the tray icon menu as well, as well
as some additional commands:

Page 6 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

• Pause / Resume: The Pause/Resume option pauses or resumes the timers for polling and
executing tests. If a test or server poll is already in progress, it will not cancel these. However,
after they are finished, no further polls or tests will be run.

• Poll Now: This will force a server poll for upcoming tests, and reset the poll timer.

• Configuration: Opens the main window to the Configuration page.

• Help -> About: Opens the About window, which displays the current license information and any
loaded extensions.

• Help -> View Help: Opens this PDF file in a browser.

• Exit: Will completely exit the program. Doing this will cancel any tests currently running and shut
down the program. Any tests that were waiting to be executed will not execute until the program
is restarted and the polling is resumed.

You can double-click the try icon to bring up the main window on the Status page.

1.3 Test Execution and Reporting
All test handling is performed by the extension that the automated tests are configured for. Test Sets that
have multiple Test Cases, the Test Cases will all be executed in order, sequentially. (No parallel
executing.)

At the start of execution for a Test Set, the test set will be updated in SpiraTeam as “In Progress”. As
tests are performed, the Test Cases will be updated with their status. The Test Set on the status screen
will be marked with the executing icon.

Once the Test Set is completed, the status of the Test Set will be changed to “Completed”, and will be
marked on the status screen with a completed icon.

In case of an uncaught exception that is thrown by the testing extension, the Test Set will be marked
“Blocked”, and the Test Case will be recorded as Blocked. All other following tests will not be run and
remain as Not Run. The Test Set must be reset to be executed again, and it is recommended to look into
the cause of the error (recorded in the Blocked Test Case results) and correct it before rescheduling the
test. This Test Set will be marked with and error icon.

The same results are applied in the case where a Test Set contains a Test Case that references a testing
extension that is not installed. Install the extension and re-run the Test Set.

Executing , Completed , and Error Test Sets are marked with the icons next to their scheduled
date in the Status screen. They will stay in the list until the next scheduled server poll. You cannot
manually re-run them.

1.4. Running RemoteLaunch from a Build Script
Normally you schedule tests in SpiraTeam using the Planned Date field of the test sets and let the various
instances of RemoteLaunch poll SpiraTeam for upcoming tests. In addition (as described in the
SpiraTeam User Manual) you can execute a test set on the local machine immediately by clicking the
“Execute” button within SpiraTeam.

However there are situations where you want to be able to launch an automated test script using one of
the supported engines from an external batch file or build script (e.g. as part of a continuous integration
environment) and have those tests report their results back into SpiraTeam. You can achieve this by
using the special command-line argument –testset which is passed to RemoteLaunch. For more details
on this parameter see the next section.

Page 7 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

1.5 Command line arguments
For debugging and additional options when running the program, the following command-line arguments
are available:

-status Shows the Status screen upon startup. (Normal
action is to run minimized to the system tray.

-paused Starts the application with timers Paused
instead of active.

-poll Forces the program to do an initial poll upon
startup. (Normal action is to wait the pending
time before doing the initial poll.)

-trace Enables tracelogging to the EventLog for
debugging and watching tests execute.

-logfile Forces events to be written to a text file instead
of the Application EventLog. This option
enables –trace as well. Files are located in the
Local Application Data folder.
(C:\Users\<user>\AppData\Local on
Vista/Win7).

-testset:[Test Set ID] Allows you to tell RemoteLaunch to execute a
specific test set on the remote computer
(e.g. -testset:45 runs test set TX00045)

<filename> Must be the last item on the command line.
This is a TST file downloaded from SpiraTeam
to start immediate execution on.

Page 8 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

1.6. Using RemoteLaunchX
When you need to run automated tests on a variety of different platforms (Windows, MacOS X, Linux,
Unix, etc.) the RemoteLaunchX cross-platform automated testing agent is a better choice than the
standard RemoteLaunch® GUI application.

To start using RemoteLaunchX, please go to the Customer Area of the Inflectra website and download
the latest version of the RemoteLaunchX application. It will be packaged as a simple .zip compressed
folder that you can extract onto the target computer:

The following four files are included:

• RemoteLaunchX.jar – this is the main application, packaged as a Java JAR file. This version of
RemoteLaunch requires Java 1.7 SE or later to be installed.

• config.properties – this contains all the settings used by RemoteLaunchX. You will need to edit
this file in a text editor to configure RemoteLaunchX for use.

• RemoteLaunchX.bat – this is a sample Windows® batch file that can be used to simplify running
RemoteLaunchX on Windows® systems.

• RemoteLaunchX.sh – this is a sample UNIX/Linux/MacOS X shell script that can be used to run
RemoteLaunchX on UNIX, Linux or Mac OS X.

1.6.1. Configuring RemoteLaunchX
Once you have extracted the files listed above, open up the config.properties file in a text editor:

#This file contains the configuration data used by the RemoteLaunch-X
application

#Spira connection information
server-url = http://vm-win2012r2/SpiraTeam
server-login = fredbloggs
server-password = PleaseChange

#The automation host token
host-token = MyHost1

#The license key
license-organization: TBD
license-key: TBD

#The regular expressions for each of the possible execution statuses
pass-regex = .*
fail-regex = .*(Error|Fail|Fatal).*
caution-regex = .*(Warning|Caution).*
blocked-regex = .*(Blocked).*

The following changes need to be made to this configuration file:

Page 9 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

• server-url – This is the URL of the SpiraTest or SpiraTeam installation (hereafter referred to as
just SpiraTest). Be sure to not put /Login.aspx or any other page in the string, this should be just
the root URL of the application’s install.

• server-login – This is the SpiraTest login id of the user that you want the tests reported as. Note
that while the application is polling and updating test results, if the user is logged into a web
browser session, they will get kicked out.

• server-password – The password of the SpiraTest login listed above.

• host-token – This field is required, and uniquely identifies the local testing machine. Any
scheduled tests assigned to the Automation Host on SpiraTest will get polled for this machine.
Except in special circumstances, this ID should be unique among all testing machines.

Important: This field must match the string that is entered into the
Automation Host Details screen in the Token: field, or scheduled tests
will not be recognized.

• license-organization – The name of the “Organization” that your RemoteLaunch license key was
issued to. This is listed in the Customer Area of the Inflectra website alongside the license key.
Note: RemoteLaunch and RemoteLaunchX use the same license keys, so you don’t need to have
a separate RemoteLaunchX one.

• license-key – The RemoteLaunch license key that is listed in the secure Customer Area of the
Inflectra website

You should leave the four regex settings alone for now, they can be changed when you start executing
tests and need to fine-tune how RemoteLaunchX interprets the results.

Now that you have configured the plugin, you can execute the RemoteLaunchX console application by
either running the provided batch / shell command or just executing the JAR file directly:

 Java –jar RemoteLaunchX.jar
When you run the application, the following should be output to the console:

Starting RemoteLaunch...
========================
Server URL: http://localhost/Spira
Server Login: fredbloggs
Automation Host: MyHost1
Checking License Key for: Inflectra Corporation
Production License Key in Use.
Testing connection to Spira...
Successfully connected to Spira.
WARNING: Unable to retrieve test runs for SpiraTest project PR2, so skipping
this project - Automation Host with token 'MyHost1' doesn't exist in project
PR2.
WARNING: Unable to retrieve test runs for SpiraTest project PR3, so skipping
this project - Automation Host with token 'MyHost1' doesn't exist in project
PR3.
Retrieved 0 test run(s) from SpiraTest.
Exiting RemoteLaunch...
========================

The system will report back zero Test Runs at this point because nothing has been scheduled in
SpiraTest. In the next section we shall setup an automated test set that contains an automated test case.

Page 10 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

1.6.2. Setting up Automated Tests in SpiraTest
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunchX on the various test automation hosts following the instructions above. Once
those prerequisites are in place, please follow these steps:

 Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

 Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is

meaningful to your users.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For
Command-Line this should be simply “CommandLine”.

Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with Command-Line listed as an available automation engine.

Next you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

Page 11 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

You need to enter the following fields:

 Automation Engine - Choose the Command-Line Automation Engine that you created in the
previous section from the drop-down list.

 Script Type – This can be set to Attached or Linked (see below for the difference).

 Filename – This needs to consist of the following three sections separated by a pipe (|)
character:

1. The full path to the command-line tool being executed.

2. Any arguments for the command-line tool. In addition, you can use the following
additional tokens for some of the special RemoteLaunchX values:

 [TestCaseId] – the ID of the test case

 [TestSetId] – the ID of the test set

 [ReleaseId] – the ID of the release (if specified)

 [Filename] - This special token will be replaced by the actual filename of the test
script when RemoteLaunchX downloads it from SpiraTeam.

3. The mask for converting any parameter values from SpiraTeam into valid command line
arguments. If parameters are not accepted by the command-line tool, you can leave this
section out.

 The mask can include any symbols together with “name” to refer to the
parameter name and “value” to refer to the parameter value.

 Example 1: If you want parameters to be provided in the form:
-param1=value1 –param2=value2
you would use the following mask:
-name=value

 Example 2: If you want parameters to be provided in the form:
/param1:value1 /param2:value2
you would use the following mask:
/name:value

 Some example filenames would be:
C:\Temp\TestApp.exe|-arg1 -arg2|-name=value
C:\Temp\TestApp.exe|-arg1 -arg2 "-arg3=[Filename]"|

where the first one is for a Linked test and the second one is for an Attached test.

 Document Type – You can choose which document type the automated test script will be
categorized under.

 Document Folder – You can choose which document folder the automated test script will be
stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – For Attached test scripts, this needs to contain the complete test script in whatever
language and syntax is being expected by the command-line application. For Linked test scripts,
you should leave this blank.

 If you would like to have SpiraTeam pass any parameter values to this test script you can
specify them by using the syntax ${parameterName} inside the test script.

Page 12 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 here is an advanced feature of SpiraTest/Team and RemoteLaunch that lets you pass
parameters from SpiraTeam to your command-line automated testing tool. This is very useful if
you want to have a data-driven test script that be executed multiple times with different parameter
values.

 To setup the automated test case for parameters, click on the “Edit Parameters” hyperlink above
the “Test Script” box:


 The name of the parameter ${login} needs to match the name of a parameter accepted by the

command-line tool.

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunchX application on that specific
machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case. Note: Unlike manual test cases, automated test cases must be
executed within a test set – they cannot be executed directly from the test case.

Create a new Test Set to hold the Command-Line automated test cases and click on its hyperlink to
display the test set details page:

Page 13 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

If you have parameterized test cases inside the automated test set you need to set their values by right-
clicking on the test case and choosing “Edit Parameters”:

Enter the parameter values and click “Update” to commit the change. This allows you to have the same
test case in the test set multiple times with different data for each instance.

Page 14 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

1.6.3. Running RemoteLaunchX
Once you have set the various test set fields (as described above), you are now ready to execute
RemoteLaunchX. You can execute the RemoteLaunchX console application by either running the
provided batch / shell command or just executing the JAR file directly:

 Java –jar RemoteLaunchX.jar
When you run the application, the following should be output to the console:

Starting RemoteLaunch...
========================
Server URL: http://localhost/Spira
Server Login: fredbloggs
Automation Host: MyHost1
Checking License Key for: Inflectra Corporation
Production License Key in Use.
Testing connection to Spira...
Successfully connected to Spira.
WARNING: Unable to retrieve test runs for SpiraTest project PR2, so skipping
this project - Automation Host with token 'MyHost1' doesn't exist in projec
PR2.
WARNING: Unable to retrieve test runs for SpiraTest project PR3, so skipping
this project - Automation Host with token 'MyHost1' doesn't exist in projec
PR3.
Retrieved 1 test run(s) from SpiraTest.
Executing test case TC18 with filename 'C:\Windows\System32\ipconfig.exe|/all'
This is a Linked test script
Executing command 'C:\Windows\System32\ipconfig.exe' with arguments '/all'
Execution Status = Passed
Exiting RemoteLaunch...
========================

The console output will indicate which test sets are being executed and what the final result was. Inside
SpiraTest, once execution begins the status of the test set will change from “Not Started” to “In Progress”,
and once test execution is done, the status of the test set will change to either “Completed” – the
automation engine could be launched and the test has completed (passed or failed) – or “Blocked” –
RemoteLaunchX was not able to execute the test.

In addition, the individual test cases in the set will display a status based on the results of the command-
line test that was executed:

 Passed – The automated test ran successfully and matched the PASS regular expression.

 Failed – The automated test ran successfully, and matched the FAIL regular expression.

 Caution – The automated test ran successfully, and matched the CAUTION regular expression.

 Blocked – The automated test did not run successfully or it matched the BLOCKED regular
expression.

If you receive the “Blocked” status for either the test set or the test cases you should open up the Test
Run that was recorded and the Console output section will contain the underlying error message(s).

Once the tests have completed, you can log back into SpiraTest and see the execution status of your test
cases. If you click on a Test Run that was generated by the command-line tool, you will see the following
information:

Page 15 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

This screen indicates the status of the test run that was reported back from command-line tool together
with any messages or other information. The execution status will be set according to the rules described
above, the Message field will contain the first line of console output and the large details box will contain
the full console output from the command-line tool.

Congratulations… You are now able to run a custom command-line test and have the results be
recorded within SpiraTest / SpiraTeam.

1.6.4. Scheduling RemoteLaunchX
Unlike the main RemoteLaunch application, RemoteLaunchX does not have a built-in timer and so when
executed it will run once, check for pending test sets and then exit. If you want to have it run on a periodic
basis, you will need to schedule it externally. If you are using Microsoft Windows® you would use the
Windows Task Scheduler and in other operating systems you would setup a CRON job. We recommend
scheduling RemoteLaunchX to run every 5 minutes.

1.6.5. Customizing the Reporting
By default, RemoteLaunchX will use the following rules to determine if a test has passed, failed, blocked
or passed with warnings (caution):

 Passed – The test completed and the console output didn’t contain any of the error phrases listed
in the other rules (below).

 Failed – The test completed and the console output contained the phrases “Error”, “Fail” or
“Fatal”.

 Caution – The test completed and the console output contained the phrases “Warning”, or
“Caution”.

 Blocked – The automated test did not run successfully or the console output contained the
phrase “Blocked”.

Page 16 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

You can customize the reporting by changing the Regular Expressions (Regex) stored in the
config.properties files:

#The regular expressions for each of the possible execution statuses
pass-regex = .*
fail-regex = .*(Error|Fail|Fatal).*
caution-regex = .*(Warning|Caution).*
blocked-regex = .*(Blocked).*

Page 17 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

2. QuickTestPro Engine
HP® QuickTest Professional® (hereafter QTP) is an automated functional test automation system that
lets you record application operations and generate VBA test automation scripts that can be used to
playback the test script against the test application.

HP® Unified Functional Testing® (hereafter UFT) is an updated version of QTP that also includes
functionality for web service testing.

This section describes how you can use SpiraTest / SpiraTeam (hereafter SpiraTeam) together with
RemoteLaunch to schedule and remotely launch instances of QTP and UFT on different computers and
have the testing results be transmitted back to SpiraTeam. This allows you to extend your SpiraTeam’s
test management capabilities to include automated QTP and UFT tests.

Note: This integration requires at least version 3.0 of SpiraTest/Team and version 9.0 of Quick Test
Professional. For accessing UFT, you’d need at least version 4.0 of SpiraTest/Team and version 11.0 of
UFT.

2.1. Installing the QTP/UFT Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the QuickTestProAutomationEngine.zip file from the Inflectra website and
locate the appropriate QuickTestProX.dll or UftX.dll for the version of QTP or UFT that you are
using.

o If you don’t see the version listed, just use the nearest version that is lower than your
current version.

 Copy the file “QuickTestProX.dll” or “UftX.dll” (where X is the appropriate version) into the
“extensions” sub-folder of the RemoteLaunch installation.

 Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

 Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is

meaningful to your users.

Page 18 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case.

 For QTP this should be QuickTestProX where ‘X’ is the version number of the
DLL file that you are using.

 For UFT this should be UftX where ‘X’ is the version number of the DLL file that
you are using.

 Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with QTP listed as an available automation engine.

2.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and linking it to
an automated QTP or UFT test script.

First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

You need to enter the following fields:

 Automation Engine - Choose the QTP/UFT Automation Engine that you created in the previous
section from the drop-down list.

 Script Type – This should be set to Linked as the integration with QTP/UFT only supports
referencing QTP/UFT test script folder paths and not physically uploading the test scripts into
SpiraTeam.

 Filename – This needs to be the full path to the QTP/UFT test script folder (i.e. the folder that you
open in QTP/UFT to run the test). To make this easier across different machines, you can use
several constants for standard Windows locations (see example in screenshot):

 [MyDocuments] – The user’s “My Documents” folder. The user indicated is the user that
ran RemoteLaunch.

 [CommonDocuments] – The Public Document’s folder.

 [DesktopDirectory] – The user’s Desktop folder. The user indicated is the user that ran
RemoteLaunch.

Page 19 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 [ProgramFiles] – Translated to the Program Files directory. For 64-bit machines, it’s the
64-bit directory.

 [ProgramFilesX86] – Translated to the 32-bit Program Files directory.

 Document Type – If using SpiraTeam (not SpiraTest) you can choose which document type the
automated test script will be categorized under.

 Document Folder – If using SpiraTeam (not SpiraTest) you can choose which document folder
the automated test script will be stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This is not used with the QTP/UFT Engine since it only supports linked test scripts.

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

2.2.1. Using Parameterized Test Cases
There is an advanced feature of SpiraTest/Team and RemoteLaunch that lets you pass parameters from
SpiraTeam to your QTP/UFT automated test script. This is very useful if you have a data-driven QTP/UFT
test script that accepts input parameters from an external data source.

To setup the automated test case for parameters, click on the “Test Steps” tab and click on “Edit
Parameters”:

The name of the parameter ${login} needs to match the name of the input parameter defined within the
QTP/UFT script in its input parameters configuration.

2.3. Executing the QTP/UFT Test Sets from SpiraTeam
There are two ways to execute automated test cases in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

2. Execute the test cases right now on the local computer.

We shall outline both of these two scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

2.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Page 20 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunch application on that specific
machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the QTP/UFT automated test cases and click on its hyperlink to display the
test set details page:

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

Page 21 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

If you have parameterized test cases inside the automated test set you need to set their values by right-
clicking on the test case and choosing “Edit Parameters”:

Enter the parameter values and click “Update” to commit the change. This allows you to have the same
test case in the test set multiple times with different data for each instance.

2.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be execute. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the QTP/UFT test:

 Passed – The QTP/UFT automated test ran successfully and all the test conditions in the test
script passed

 Failed – The QTP/UFT automated test ran successfully, but at least one test condition in the test
script failed.

 Blocked – The QTP/UFT automated test did not run successfully

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you may see browser or application windows launch as QuickTest Pro
(QTP) or Unified Functional Testing (UFT) executes the appropriate tests.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by QTP/UFT, you will see the following
information:

Page 22 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

This screen indicates the status of the test run that was reported back from QTP/UFT together with any
messages or other information. The Test Name indicates the name of the test inside QTP/UFT, and the
execution status corresponds the matching status inside QTP/UFT as illustrated below:

QTP/UFT Status SpiraTeam Status

Passed Passed

Failed Failed

Warning Caution

Stopped Blocked

Not Applicable N/A

(Any other status) Not Run

In addition, the detailed test report from QTP/UFT is available in the large text-box below. It will contain
messages such as:

QuickTest Professional
 Test: Test1
 Results Name: Res21
 Run Started: 10/22/2010 - 11:49:06
 Run Ended: 10/22/2010 - 11:49:10

 Summary Results
 ======= =======
 Passed: 0
 Failed: 0
 Warnings: 0

 Detailed Results
 ======= =======

 Iteration: 1
 =============

 Action: Log In To Flight
 =============

Page 23 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 Step: Login: Dialog
 Step: Agent Name:.SetText: "Bobba Fett"
 Step: Agent Name:.Type: "<__MicTab>"
 Step: Password:.SetSecureText:
"4cc08e88683135b35bb8a7dab8442c69b8441f3e"
 Step: OK.Click:
 Step: Flight Reservations: Dialog
 Step: OK.Click:

Congratulations… You are now able to run QTP/UFT automated functional tests and have the results be
recorded within SpiraTest / SpiraTeam.

Page 24 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

3. SmarteScript Engine
SmarteSoft™ SmarteScript™ (hereafter SmarteScript) is a Graphic User Interface (GUI) script-free
functional test automation system that lets you record application operations by capturing the various
testable objects of the application and then playback the operations to automatically test the application.

This section describes how you can use SpiraTest / SpiraTeam (hereafter SpiraTeam) together with
RemoteLaunch to schedule and remotely launch instances of SmarteScript on different computers and
have the testing results be transmitted back to SpiraTeam. This allows you to extend your SpiraTeam’s
test management capabilities to include automated SmarteScript tests.

Note: This integration requires at least version 3.0 of SpiraTest/Team and version 5.0 of SmarteScript.

3.1. Installing the SmarteScript Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the SmarteScriptAutomationEngine.zip file from the Inflectra website and
locate the appropriate SmarteScriptX.dll for the version of SmarteScript that you are using.

 If you don’t see the version listed, just use the nearest version that is lower than your
current version.

• Copy the file “SmarteScriptX.dll” (where X is the appropriate version) into the “extensions” sub-
folder of the RemoteLaunch installation.

• Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

• Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is

meaningful to your users.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For

Page 25 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

SmarteScript this should be SmarteScriptX where ‘X’ is the version number of the DLL
file that you are using.

• Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with SmarteScript listed as an available automation engine.

3.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and linking it to
an automated SmarteScript test script.

First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

You need to enter the following fields:

 Automation Engine - Choose the SmarteScript Automation Engine that you created in the
previous section from the drop-down list.

 Script Type – This should be set to Linked as the integration with SmarteScript only supports
referencing SmarteScript test script file (.ses) and not physically uploading the test scripts into
SpiraTeam.

 Filename – This needs to be the full path to the SmarteScript test script (i.e. the .ses file that you
open in SmarteScript to run the test). To make this easier across different machines, you can use
several constants for standard Windows locations (see example in screenshot):

 [MyDocuments] – The user’s “My Documents” folder. The user indicated is the user that
ran RemoteLaunch.

 [CommonDocuments] – The Public Document’s folder.

 [DesktopDirectory] – The user’s Desktop folder. The user indicated is the user that ran
RemoteLaunch.

 [ProgramFiles] – Translated to the Program Files directory. For 64-bit machines, it’s the
64-bit directory.

 [ProgramFilesX86] – Translated to the 32-bit Program Files directory.

 Document Type – If using SpiraTeam (not SpiraTest) you can choose which document type the
automated test script will be categorized under.

 Document Folder – If using SpiraTeam (not SpiraTest) you can choose which document folder
the automated test script will be stored in.

 Version – The version of the test script (1.0 is used if no value specified)

Page 26 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 Test Script – This is not used with the SmarteScript Engine since it only supports linked test
scripts.

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

3.2.1. Using Parameterized Test Cases
SmarteScript does not support the passing of input test parameters so the SmarteScript automation
engine does not support this feature of SpiraTeam or RemoteLaunch.

3.3. Executing the SmarteScript Test Sets from SpiraTeam
There are two ways to execute automated test cases in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

2. Execute the test cases right now on the local computer.

We shall outline both of these two scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

3.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunch application on that specific
machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the SmarteScript automated test cases and click on its hyperlink to display
the test set details page:

Page 27 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

3.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be execute. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the SmarteScript test:

 Passed – The SmarteScript automated test ran successfully and all the test conditions in the test
script passed

 Failed – The SmarteScript automated test ran successfully, but at least one test condition in the
test script failed.

 Blocked – The SmarteScript automated test did not run successfully

Page 28 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you may see browser or application windows launch as SmarteScript
executes the appropriate tests.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by SmarteScript, you will see the following
information:

This screen indicates the status of the test run that was reported back from SmarteScript together with
any messages or other information. The Test Name indicates the name of the test inside SmarteScript,
and the execution status corresponds the matching status inside SmarteScript.

Congratulations… You are now able to run SmarteScript automated functional tests and have the results
be recorded within SpiraTest / SpiraTeam.

Page 29 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

4. TestComplete Engine
SmarteBear™ TestComplete™ (hereafter TestComplete) is an automated functional test automation
system that lets you record application operations and generate test automation scripts in a variety of
languages (JavaScript, C#, VBScript). These test scripts can then be used to playback the test script
against the test application and verify that it works correctly.

This section describes how you can use SpiraTest / SpiraTeam (hereafter SpiraTeam) together with
RemoteLaunch to schedule and remotely launch instances of TestComplete on different computers and
have the testing results be transmitted back to SpiraTeam. This allows you to extend your SpiraTeam’s
test management capabilities to include automated TestComplete tests.

Note: This integration requires at least version 3.0 of SpiraTest/Team and version 8.0 of TestComplete.

4.1. Installing the TestComplete Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the TestCompleteAutomationEngine.zip file from the Inflectra website and
locate the appropriate TestCompleteX.dll or TestExecuteX.dll for the version of TestComplete or
TestExecute that you are using.

 If you don’t see the version listed, just use the nearest version that is lower than your
current version.

• Copy the file “TestCompleteX.dll” or “TestExecuteX.dll” (where X is the appropriate version) into
the “extensions” sub-folder of the RemoteLaunch installation.

• Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

• Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is

meaningful to your users.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

Page 30 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For
TestComplete this should be TestCompleteX where ‘X’ is the version number of the DLL
file that you are using. For TestExecute this should be TestExecuteX where ‘X’ is the
version number of the DLL file that you are using.

Note: We only use the major version numbers for the token name. So the DLLs
TestComplete9.0.dll and TestComplete9.1.dll would both use Token = “TestComplete9”.

• Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with TestComplete listed as an available automation engine.

4.1.1. Advanced Settings
You can modify the TestComplete configuration for each of the specific automation hosts, by right-clicking
on the RemoteLaunch icon in the system tray and choosing “Configuration”. That will bring up the
RemoteLaunch configuration page.

The TestComplete engine adds its own tab to this page which allows you to configure how TestComplete
operates:

The following fields can be specified on this screen:

 Wait Time – This should be set to the amount of time TestComplete needs on this workstation to
close the currently open test. The default value is 10000ms (10 seconds). If you get error
messages that TestComplete is still open, you need to increase this value.

 Application Visible – This allows you to configure whether the TestComplete application is
displayed during test execution or is kept hidden. The default is for it to be hidden.

 Close TC After Each Test – When this is selected, the plugin will close the TestComplete
application after each test executes. We generally recommend leaving this disabled as the
startup and closedown of TestComplete can sometimes interfere with the tests being executed.

Page 31 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

4.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and linking it to
an automated TestComplete test script.

First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

You need to enter the following fields:

 Automation Engine - Choose the TestComplete Automation Engine that you created in the
previous section from the drop-down list.

 Script Type – This should be set to Linked as the integration with TestComplete only supports
referencing TestComplete test project/suite file paths and not physically uploading the test scripts
into SpiraTeam.

 Filename – This is actually a compound of several different components that need to be entered,
separated by the pipe (|) symbol. The syntax depends on whether we want to associate the
SpiraTeam test case with a specific project item or with a specific test routine. If you want to use
parameterized test cases, you need to link it with a specific routine (see below for more details on
parameters).

 If you want to execute a specific project item, the filename should consist of

Suite Filename|Project Name|Project Item Name

(e.g. [CommonDocuments]\TestComplete 7 Samples\Open
Apps\OrdersDemo\C#\TCProject\Orders.pjs|Orders_C#_C#Script|Projec
tTestItem1)

 If you want to execute a specific test routine, the filename should consist of

Suite Filename|Project Name|Unit Name|Routine Name

(e.g. [CommonDocuments]\TestComplete 7
Samples\Scripts\Hello\Hello.pjs|Hello_C#Script|hello_cs|Hello)

 In the case of executing a specific test routine, the last component (the routine name) is
actually the name of the function in the test script itself.

 As illustrated in the examples, for the Test Suite filename, you can use several constants
for standard Windows locations to make things easier:

 [MyDocuments] – The user’s “My Documents” folder. The user indicated is the user that
ran RemoteLaunch.

 [CommonDocuments] – The Public Document’s folder.

Page 32 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 [DesktopDirectory] – The user’s Desktop folder. The user indicated is the user that ran
RemoteLaunch.

 [ProgramFiles] – Translated to the Program Files directory. For 64-bit machines, it’s the
64-bit directory.

 [ProgramFilesX86] – Translated to the 32-bit Program Files directory.

 Document Type – If using SpiraTeam (not SpiraTest) you can choose which document type the
automated test script will be categorized under.

 Document Folder – If using SpiraTeam (not SpiraTest) you can choose which document folder
the automated test script will be stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This is not used with the TestComplete Engine since it only supports linked test
scripts.

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

4.2.1. Using Parameterized Test Cases
There is an advanced feature of SpiraTest/Team and RemoteLaunch that lets you pass parameters from
SpiraTeam to your TestComplete automated test script. This is very useful if you have a data-driven
TestComplete test script that accepts input parameters. To use this feature you need to use the option
described above to link the SpiraTest test case to an explicit test routine inside TestComplete. If you
choose the option to link to a Project Item, any parameters passed will be ignored.

To setup the automated test case for parameters, click on the “Test Steps” tab and click on “Edit
Parameters”:

Since the parameters in SpiraTeam map to the function arguments inside a TestComplete test script the
parameter names need to match the order of the arguments inside TestComplete (i.e. they are matched
by position/order not by name).

Therefore we recommend using numbers for the parameter names so that it’s easy to see which
parameter value will be passed to which argument in the test script function.

4.3. Executing the TestComplete Test Sets from SpiraTeam
There are two ways to execute automated test cases in SpiraTeam:

Page 33 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

3. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

4. Execute the test cases right now on the local computer.

We shall outline both of these two scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

4.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunch application on that specific
machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the TestComplete automated test cases and click on its hyperlink to
display the test set details page:

Page 34 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

If you have parameterized test cases inside the automated test set you need to set their values by right-
clicking on the test case and choosing “Edit Parameters”:

Enter the parameter values and click “Update” to commit the change. This allows you to have the same
test case in the test set multiple times with different data for each instance.

Page 35 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

4.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be execute. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the TestComplete test:

 Passed – The TestComplete automated test ran successfully and all the test conditions in the
test script passed

 Failed – The TestComplete automated test ran successfully, but at least one test condition in the
test script failed.

 Blocked – The TestComplete automated test did not run successfully

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you may see browser or application windows launch as TestComplete
executes the appropriate tests.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by TestComplete, you will see the following
information:

This screen indicates the status of the test run that was reported back from TestComplete together with
any messages or other information. The Test Name indicates the name of the test inside TestComplete,
and the execution status corresponds to the matching status inside TestComplete as illustrated below:

Page 36 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

TestComplete Status SpiraTest Status

Passed Passed

Failed Failed

Warning Caution

In addition, the detailed test report from TestComplete is available in the “Console Output” text-box below.
It will contain messages such as:

For the most detail, the “Test Steps” section will contain a step-by-step breakdown of each action taken in
the automated test:

4.3.3. Screenshot Capture
During the execution of the test, TestComplete will capture screenshots of the application being tested.
These screenshots are uploaded to SpiraTest so that you have a complete record of the testing activities:

Congratulations… You are now able to run TestComplete automated functional tests and have the results
be recorded within SpiraTest / SpiraTeam.

Page 37 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

5. Selenium Engine
Selenium Remote Control (RC) is a test tool that allows you to write automated web application user
interface tests in any programming language against any HTTP website using any mainstream
JavaScript-enabled browser1. Selenium RC comes in two parts.

 A server which can automatically launch and kill supported browsers, and acts as a HTTP proxy
for web requests from those browsers.

 Client applications that send commands to the Selenium-RC server in a special language (called
Selenese) that tell it what operations to perform on the launched web browser.

This section describes how you can use SpiraTest / SpiraTeam (hereafter SpiraTeam) together with
RemoteLaunch to schedule and remotely launch instances of Selenium-RC (hereafter just referred to as
Selenium) on different computers and have the testing results be transmitted back to SpiraTeam. This
allows you to extend your SpiraTeam’s test management capabilities to include automated Selenium web
tests.

Note: This integration requires at least version 3.0 of SpiraTest/Team and version 1.0 of Selenium-
Remote Control.

5.1. Installing the Selenium Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the SeleniumAutomationEngine.zip file from the Inflectra website and
locate the appropriate SeleniumX.dll for the version of Selenium that you are using.

 If you don’t see the version listed, just use the nearest version that is lower than your
current version.

 Copy the file “SeleniumX.dll” (where X is the appropriate version) into the “extensions” sub-folder
of the RemoteLaunch installation.

 Also copy the ThoughtWorks.Selenium.Core.dll from the zipfile into the “extensions” sub-folder.

 Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

1 Selenium RC Home Page. OpenQA. 2010 <http://selenium-rc.openqa.org>

Page 38 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

• Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is

meaningful to your users.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For
Selenium this should be SeleniumX where ‘X’ is the version number of the DLL file that
you are using.

• Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with Selenium listed as an available automation engine.

5.1.1. Advanced Settings
You can modify the Selenium configuration for each of the specific automation hosts, by right-clicking on
the RemoteLaunch icon in the system tray and choosing “Configuration”. That will bring up the
RemoteLaunch configuration page.

a) Selenium-RC 1.0

The Selenium 1.0 engine adds its own tab to this page which allows you to configure how Selenium
operates:

Page 39 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

The following fields can be specified on this screen:

 Server Host – This should be the name / IP address of the Selenium server. Typically this will be
localhost because RemoteLaunch is usually installed on the Selenium server itself.

 Server Port – This should be set to the custom port that the Selenium server uses as a proxy
when intercepting requests to the browser. The default value is 4444.

 Browser String – This needs to be the name of the browser that the Selenium server will launch.
Common values include:

 *firefox – This will launch the Firefox web browser

 *iexplore – This will launch the Microsoft Internet Explorer web browser

 *safari – This will launch the Apple Safari web browser

 Browser URL – This needs to be the initial URL that you want the browser to open to

a) Selenium WebDriver 2.x

The Selenium 2.x engine adds its own tab to this page which allows you to configure how Selenium
operates:

Page 40 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

The following fields can be specified on this screen:

 Browser Type – This needs to be set to the type of browser that the Selenium webdriver will
launch.

 Browser URL – This needs to be the initial URL that you want the browser to open to

5.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and either
linking it to an existing Selenium test script file or entering a Selenium test script directly into SpiraTeam.

5.2.1. Attaching a Selenium Test Script
First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

You need to enter the following fields:

 Automation Engine - Choose the Selenium Automation Engine that you created in the previous
section from the drop-down list.

 Script Type – This should be set to Attached for this case

 Filename – Since the test script is going to be entered directly into SpiraTeam you can enter any
name you like for the filename as long as it’s logical and memorable.

 Document Type – If using SpiraTeam (not SpiraTest) you can choose which document type the
automated test script will be categorized under.

 Document Folder – If using SpiraTeam (not SpiraTest) you can choose which document folder
the automated test script will be stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This needs to contain the complete Selenium test script written in Selenium IDE
Selenese. Selenium IDE test scripts consist of three parts:

 The command

 The target of the command

 The data to be used

Page 41 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 You should enter the three components on each line separated by the Pipe (|) character. If you
need to use a pipe character inside any of the components you can escape it with a backslash
(\|).

 An example command would be type|q|hello

 If the command doesn’t need all three components, you can simply leave it out (for
example open||http://www.inflectra.com)

 If you would like to have SpiraTeam pass any parameter values to this test script (this will be
discussed in more detail later) you can specify them by using the syntax ${parameterName}.

 An example parameterized command would be open||${url}

A complete sample script is illustrated below:
open||http://www.google.com/webhp
assertTitle||Google
type|q|${query}
click|btnG
waitForPageToLoad||5000
isTextPresent||${matchtext}

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

5.2.2. Linking a Selenium Test Script
First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

You need to enter the following fields:

 Automation Engine - Choose the Selenium Automation Engine that you created in the previous
section from the drop-down list.

 Script Type – This should be set to Linked for this case

 Filename – This needs to be the full path to the Selenium IDE test script file. To make this easier
across different machines, you can use several constants for standard Windows locations:

 [MyDocuments] – The user’s “My Documents” folder. The user indicated is the user that
ran RemoteLaunch.

 [CommonDocuments] – The Public Document’s folder.

 [DesktopDirectory] – The user’s Desktop folder. The user indicated is the user that ran
RemoteLaunch.

Page 42 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 [ProgramFiles] – Translated to the Program Files directory. For 64-bit machines, it’s the
64-bit directory.

 [ProgramFilesX86] – Translated to the 32-bit Program Files directory.

 Document Type – If using SpiraTeam (not SpiraTest) you can choose which document type the
automated test script will be categorized under.

 Document Folder – If using SpiraTeam (not SpiraTest) you can choose which document folder
the automated test script will be stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This is not used when you are using the linked test script option

The linked test script needs to be an HTML document that contains a table with three columns. Each row
corresponds to a single Selenium action. Each of the columns in the row corresponds to the three
Selenium command components:

 The command

 The target of the command

 The data to be used

An example Selenium test script is illustrated below:
<html>
 <body>
 <table>
 <tr>
 <td>
 open
 </td>
 <td>
 </td>
 <td>
 http://www.google.com/webhp
 </td>
 </tr>
 <tr>
 <td>
 assertTitle</td>
 <td>
 </td>
 <td>
 Google</td>
 </tr>
 <tr>
 <td>
 type</td>
 <td>
 q</td>
 <td>
 ${query}</td>
 </tr>
 <tr>
 <td>
 click</td>
 <td>
 btnG</td>
 <td>
 </td>
 </tr>
 <tr>

Page 43 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 <td>
 waitForPageToLoad</td>
 <td>
 </td>
 <td>
 5000</td>
 </tr>
 <tr>
 <td>
 isTextPresent</td>
 <td>
 </td>
 <td>
 ${matchtext}</td>
 </tr>
 </table>
 </body>
</html>

When opened in an HTML editing tool it looks like:

open http://www.google.com/webhp
assertTitle Google
type q ${query}
click btnG
waitForPageToLoad 5000
isTextPresent ${matchtext}

 If you would like to have SpiraTeam pass any parameter values to this test script (this will be
discussed in more detail later) you can specify them by using the syntax ${parameterName}.

 An example parameterized command is displayed in the third and sixth rows of the table
above (${query} and ${matchtext}).

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

5.2.1. Using Parameterized Test Cases
There is an advanced feature of SpiraTest/Team and RemoteLaunch that lets you pass parameters from
SpiraTeam to your Selenium automated test script. This is very useful if you want to have a data-driven
Selenium test script that be executed multiple times with different parameter values.

To setup the automated test case for parameters, click on the “Test Steps” tab and click on “Edit
Parameters”:

Page 44 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

The name of the parameter ${login} needs to match the name of the input parameter defined within the
Selenium script.

5.3. Executing the Selenium Test Sets from SpiraTeam
There are two ways to execute automated test cases in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

2. Execute the test cases right now on the local computer.

We shall outline both of these two scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

5.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunch application on that specific
machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Page 45 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the Selenium automated test cases and click on its hyperlink to display the
test set details page:

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

If you have parameterized test cases inside the automated test set you need to set their values by right-
clicking on the test case and choosing “Edit Parameters”:

Enter the parameter values and click “Update” to commit the change. This allows you to have the same
test case in the test set multiple times with different data for each instance.

Page 46 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

5.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be execute. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the Selenium test:

 Passed – The Selenium automated test ran successfully and all the test conditions in the test
script passed

 Failed – The Selenium automated test ran successfully, but at least one test condition in the test
script failed.

 Blocked – The Selenium automated test did not run successfully

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you may see browser windows launch as the Selenium server
executes the appropriate tests.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by Selenium, you will see the following
information:

Page 47 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

This screen indicates the status of the test run that was reported back from Selenium together with any
messages or other information. The execution status will be set to PASSED if all the Selenium commands
report back OK and all the tests passed. If any of the commands failed or the tests don’t pass, the overall
execution status will be listed as FAILED.

The Message field will contain a summary of the number of commands executed and the number of failed
commands, with the large details box containing the full command execution log as reported back from
Selenium:

open (, http://www.google.com/webhp) - OK
assertTitle (, Google) - OK
type (q, Philomene Long) - OK
click (btnG,) - OK
waitForPageToLoad (, 5000) - OK
isTextPresent (, Philomene Long) - OK,true

Congratulations… You are now able to run Selenium automated web tests and have the results be
recorded within SpiraTest / SpiraTeam.

Page 48 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

6. Squish Engine
Froglogic® Squish® (hereafter Squish) is a functional test automation system that lets you record
application operations and generate test automation scripts in a variety of different scripting languages
(JavaScript, Tcl, Python) that can be used to playback the test script against the test application.

This section describes how you can use SpiraTest / SpiraTeam (hereafter SpiraTeam) together with
RemoteLaunch to schedule and remotely launch instances of Squish on different computers and have the
testing results be transmitted back to SpiraTeam. This allows you to extend your SpiraTeam’s test
management capabilities to include automated Squish tests.

Note: This integration requires at least version 3.0 of SpiraTest/Team and version 4.0 of Squish running
on a Windows® platform.

6.1. Installing the Squish Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the SquishAutomationEngine.zip file from the Inflectra website and locate
the appropriate SquishX.dll for the version of Squish that you are using.

 If you don’t see the version listed, just use the nearest version that is lower than your
current version.

 Copy the file “SquishX.dll” (where X is the appropriate version) into the “extensions” sub-folder of
the RemoteLaunch installation.

 Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

• Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is

meaningful to your users.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

Page 49 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For Squish
this should be SquishX where ‘X’ is the version number of the DLL file that you are
using.

• Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with Squish listed as an available automation engine.

6.1.1. Squish RemoteLaunch Settings
You will need to modify the Squish configuration for each of the specific automation hosts, by right-
clicking on the RemoteLaunch icon in the system tray and choosing “Configuration”. That will bring up the
RemoteLaunch configuration page. The Squish engine adds its own tab to this page which allows you to
configure how Squish operates:

The following fields can be specified on this screen:

 Squish Location – This should be folder containing the “SquishRunner” executable that will be
used to actually run the automated tests.

 Server Host – This field can be set to the name of a remote Squish server if you did not install
RemoteLaunch on the machine running the Squish server (optional).

 Server Port – This field can be set to the port being used by a remote Squish server if you did
not install RemoteLaunch on the machine running the Squish server (optional).

 Trace Logging – This checkbox can be selected if you need to provide debugging information to
Inflectra support personnel. Normally this should remain unchecked

Note: In most cases, the second and third fields can be left empty.

6.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and either
linking it to an existing Squish test suite, test case or entering a Squish test script directly into SpiraTeam.

Note: that the Squish engine only supports passing parameters to an attached test script and not to a
linked test script.

Page 50 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

6.2.1. Attaching a Squish Test Script
First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

You need to enter the following fields:

 Automation Engine - Choose the Squish Automation Engine that you created in the previous
section from the drop-down list.

 Script Type – This should be set to Attached for this case

 Filename – Since the test script is going to be entered directly into SpiraTeam you can enter any
filename you like as long as the file extension matches the scripting language that you’re using.
After that you need to add any command-line parameters after the filename, separated by a pipe
(|) symbol.

 For example, to launch a web test using Javascript, you’d use:
address_test.js|--wrapper Web

 For example, to launch an application test using Python, you’d use:
address_test.py|--aut <application>

 Document Type – If using SpiraTeam (not SpiraTest) you can choose which document type the
automated test script will be categorized under.

 Document Folder – If using SpiraTeam (not SpiraTest) you can choose which document folder
the automated test script will be stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This needs to contain the complete Squish test script. Squish test scripts can be
written in JavaScript, Python or TCL.

 If you would like to have SpiraTeam pass any parameter values to this test script (this will
be discussed in more detail later) you can specify them by using the syntax
${parameterName}.

Page 51 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

A complete sample script (illustrating the use of parameters) is illustrated below:
function main()
{
 // open URL
 loadUrl(":http://address.icefaces.org/address/");

 // wait for the first entry object to be available
 waitForObject(":_id0:title_select-one");

 // check that the submit button is disabled
 test.compare(findObject(":_id0:Submit_image").disabled, true);

 // enter data
 selectOption(":_id0:title_select-one", "${title}");
 setText(":_id0:firstName_text", "${firstname}");
 setText(":_id0:lastName_text", "${lastname}");
 setText(":_id0:city_text", "${city}");

 // check that after entering city, the state is automatically chosen correctly
 var state = "${state}";
 setFocus(":_id0:state_text");
 if (!test.verify(waitFor("findObject(':_id0:state_text').value == state", 10000)))
 {
 clickButton(":_id0:Reset_image");
 continue;
 }

 // input ZIP
 selectOption(":_id0:zipSelect_select-one", "${zip}");

 // check that submit button is enabled now
 setFocus(":_id0:lastName_text");
 if (!test.verify(waitFor("findObject(':_id0:Submit_image').disabled == false", 10000)))
 {
 clickButton(":_id0:Reset_image");
 }

 // submit
 clickButton(":_id0:Submit_image");

 // wait for results page
 waitForContextExists(":response.iface");
 waitForObject(":_id1:_id3_SPAN");

 // verify that data is stored and displayed correctly
 test.compare(findObject(":_id1:_id3_SPAN").innerText, firstName);
 test.compare(findObject(":_id1:_id6_SPAN").innerText, state);

 // close browser
 closeWindow(":[Window]");
}

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

6.2.2. Linking a Squish Test Script
First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

Page 52 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

You need to enter the following fields:

 Automation Engine - Choose the Squish Automation Engine that you created in the previous
section from the drop-down list.

 Script Type – This should be set to Linked for this case

 Filename – This needs to be the full path to the Squish test case or test suite folder.

 If specifying a test case folder, you need to also provide the configuration command-line
parameters after the filename, separated by a pipe (|) symbol. These are not needed if
executing a test suite, since they are contained in the suite.conf file instead.

 For example, to launch a web test case you’d use:
[ProgramFiles]\Froglogic\squish-4.0.1-web-
win32\examples\web\suite_examples\tst_icefaces_addressbook_
datadriven|--wrapper Web

 For example, to launch a web test suite you’d simply use:
[ProgramFiles]\Froglogic\squish-4.0.1-web-
win32\examples\web\suite_examples

 For example, to launch a web test case within a test suite you’d use the path of
the test suite, followed by the pipe (|) symbol, followed by the test case name:
[ProgramFiles]\Froglogic\squish-4.0.1-web-
win32\examples\web\suite_examples|tst_icefaces

 To make this easier across different machines, you can use several constants for
standard Windows locations:

 [MyDocuments] – The user’s “My Documents” folder. The user indicated is the
user that ran RemoteLaunch.

 [CommonDocuments] – The Public Document’s folder.

 [DesktopDirectory] – The user’s Desktop folder. The user indicated is the user
that ran RemoteLaunch.

 [ProgramFiles] – Translated to the Program Files directory. For 64-bit machines,
it’s the 64-bit directory.

 [ProgramFilesX86] – Translated to the 32-bit Program Files directory.

 Document Type – If using SpiraTeam (not SpiraTest) you can choose which document type the
automated test script will be categorized under.

 Document Folder – If using SpiraTeam (not SpiraTest) you can choose which document folder
the automated test script will be stored in.

Page 53 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This is not used when you are using the linked test script option

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

6.2.1. Using Parameterized Test Cases
There is an advanced feature of SpiraTest/Team and RemoteLaunch that lets you pass parameters from
SpiraTeam to your attached (not linked) Squish automated test script. This is very useful if you want to
have a data-driven Squish test script that be executed multiple times with different parameter values.

To setup the automated test case for parameters, click on the “Test Steps” tab and click on “Edit
Parameters”:

The name of the parameter ${city} needs to match the name of the parameter defined within the attached
Squish script.

6.3. Executing the Squish Test Sets from SpiraTeam
There are two ways to execute automated test cases in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

2. Execute the test cases right now on the local computer.

We shall outline both of these two scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

6.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Page 54 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunch application on that specific
machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the Squish automated test cases and click on its hyperlink to display the
test set details page:

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

If you have parameterized test cases inside the automated test set you need to set their values by right-
clicking on the test case and choosing “Edit Parameters”:

Page 55 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Enter the parameter values and click “Update” to commit the change. This allows you to have the same
test case in the test set multiple times with different data for each instance.

6.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be execute. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the Squish test:

 Passed – The Squish automated test ran successfully and all the test conditions in the test script
passed

 Failed – The Squish automated test ran successfully, but at least one test condition in the test
script failed.

 Blocked – The Squish automated test did not run successfully

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you may see application or browser windows launch as the Squish
server executes the appropriate tests.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by Squish, you will see the following
information:

Page 56 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

This screen indicates the status of the test run that was reported back from Squish together with any
messages or other information. The execution status will be set according to the worst-case assessment
reported back from Squish. The various Squish statuses are mapped to their nearest equivalent
SpiraTeam statuses as illustrated below:

Squish Status SpiraTeam Status

PASS Passed

FAIL Failed

WARNING Caution

FATAL Blocked

ERROR Failed

In addition, the Message field will contain a summary of the number of tests completed and the number of
tests that reported an error, fatal, fail, pass or warning status.

2010-11-02T16:50:01-04:00 START_TEST suite_examples
2010-11-02T16:50:01-04:00 START_TEST tst_icefaces_addressbook_datadriven
2010-11-02T16:50:05-04:00 PASS Comparison 'true' and 'true' are equal
2010-11-02T16:50:25-04:00 PASS Verified True expression
2010-11-02T16:50:30-04:00 PASS Verified True expression
2010-11-02T16:50:32-04:00 PASS Comparison 'Reginald' and 'Reginald' are equal
2010-11-02T16:50:33-04:00 PASS Comparison 'CA' and 'CA' are equal
2010-11-02T16:50:40-04:00 PASS Comparison 'true' and 'true' are equal
2010-11-02T16:50:59-04:00 PASS Verified True expression
2010-11-02T16:51:09-04:00 PASS Verified True expression
2010-11-02T16:51:12-04:00 PASS Comparison 'Tanja' and 'Tanja' are equal
2010-11-02T16:51:12-04:00 PASS Comparison 'NY' and 'NY' are equal

Congratulations… You are now able to run Squish automated web tests and have the results be recorded
within SpiraTest / SpiraTeam.

Page 57 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

7. Command-Line Engine
In addition to the various pre-built plug-ins for different test automation engines, there is a generic
command-line engine available that lets RemoteLaunch execute an arbitrary command-line program,
capture the console output and send the output back to SpiraTeam as the test results. This is useful when
you want to be able to use SpiraTeam to manage the scheduling and execution of automated testing
using an in-house tool or a third-party tool that Inflectra has not yet built a plug-in for.

This section describes how you can use SpiraTest / SpiraTeam (hereafter SpiraTeam) together with
RemoteLaunch to schedule and remotely launch instances of a command-line application on different
computers and have the “testing” results be transmitted back to SpiraTeam. This allows you to extend
your SpiraTeam’s test management capabilities to include automation

Note: This integration requires at least version 4.0 of SpiraTest/Team and RemoteLaunch.

7.1. Installing the Command-Line Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the CommandLineAutomationEngine.zip file from the Inflectra website and
locate the CommandLine.dll

 Copy the file “CommandLine.dll” into the “extensions” sub-folder of the RemoteLaunch
installation.

 Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

• Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is

meaningful to your users.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For
Command-Line this should be simply “CommandLine”.

Page 58 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

• Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with Command-Line listed as an available automation engine.

7.1.1. Command-Line RemoteLaunch Settings
You may need to modify the Command-Line configuration for some of the specific automation hosts, by
right-clicking on the RemoteLaunch icon in the system tray and choosing “Configuration”. That will bring
up the RemoteLaunch configuration page. The Command-Line engine adds its own tab to this page
which allows you to configure how the Command-Line engine operates:

The following fields can be specified on this screen:

 RunAs Administrator – This normally should not be checked. However if your automation tool
requires Windows UAC elevation to operate, you will need to select this option. We recommend
initially trying your tool with the value unchecked. Then, if you get an error message “requires
elevation” in the test results you will need to select the option.

 Log Results – Normally the command-line engine will capture the output results from the
command-line and send the results back to SpiraTeam as the test result. When you are executing
a tool that directly integrates with SpiraTeam (e.g. a NUnit test suite that is already integrated with
SpiraTeam) you don’t want two different results to be sent back. In such a scenario, deselecting
this option will prevent the command-line engine from sending back its own test result.

 Default Status – This specifies the execution status that will be returned to SpiraTeam in the
event that none of the regular expressions (Regex) specified match the results returned from the
test application. By default, the system will return “Passed” if none of the other regular
expressions match correctly.

 Pass Regex – This is the regular expression that is used to match a passed test result. By
default the system will search for the phrase “Pass” in the test output and return a Passed status
if the match is successful.

 Fail Regex – This is the regular expression that is used to match a failed test result. By default
the system will search for the phrases “Fail”, “Error” and “Fatal” in the test output and return a Fail
status if any of the matches are successful.

Page 59 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 Caution Regex – This is the regular expression that is used to match a caution test result. By
default the system will search for the phrases “Warning” and “Caution” in the test output and
return a Caution status if any of the matches are successful.

 Blocked Regex – This is the regular expression that is used to match a blocked test result. By
default the system will search for the phrase “Blocked” in the test output and return a Blocked
status if the match is successful.

 Test Regular Expressions – This text box lets you enter in some sample text and see how the
Command-Line extension would interpret it. Once you have entered in the text, click “Test
Regular Expression…” and the system will display a popup message box letting you know what
the outcome of such a test would be interpreted as:

7.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and either
linking it to an existing test script file or entering a test script directly into SpiraTeam.

7.2.1. Attaching a Command-Line Test Script
First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

You need to enter the following fields:

 Automation Engine - Choose the Command-Line Automation Engine that you created in the
previous section from the drop-down list.

 Script Type – This should be set to Attached for this case

 Filename – This needs to consist of the following sections separated by a pipe (|) character:

 The full path to the command-line tool. To make this easier across different machines,
you can use several constants for standard Windows locations:

 [MyDocuments] – The user’s “My Documents” folder. The user indicated is the
user that ran RemoteLaunch.

Page 60 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 [CommonDocuments] – The Public Document’s folder.

 [DesktopDirectory] – The user’s Desktop folder. The user indicated is the user
that ran RemoteLaunch.

 [ProgramFiles] – Translated to the Program Files directory. For 64-bit machines,
it’s the 64-bit directory.

 [ProgramFilesX86] – Translated to the 32-bit Program Files directory.

 Any arguments for the command-line tool, with the filename specified as ${filename}.
This special token will be replaced by the actual filename of the test script when
RemoteLaunch downloads it from SpiraTeam. In addition, you can use the following
additional tokens for some of the special SpiraTeam ID values:

 [TestCaseId] – the ID of the test case

 [TestSetId] – the ID of the test set

 [ReleaseId] – the ID of the release (if specified)

 [ProjectId] – the ID of the project

 An example filename would be:
C:\Temp\TestApp.exe|-arg1 -arg2 "-arg3=${filename}"|

 Document Type – If using SpiraTeam (not SpiraTest) you can choose which document type the
automated test script will be categorized under.

 Document Folder – If using SpiraTeam (not SpiraTest) you can choose which document folder
the automated test script will be stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This needs to contain the complete test script in whatever language and syntax is
being expected by the command-line application

 If you would like to have SpiraTeam pass any parameter values to this test script (this will be
discussed in more detail later) you can specify them by using the syntax ${parameterName}
inside the test script.

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

7.2.2. Linking a Command-Line Test Script
First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

You need to enter the following fields:

Page 61 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 Automation Engine - Choose the Command-Line Automation Engine that you created in the
previous section from the drop-down list.

 Script Type – This should be set to Linked for this case

 Filename – This needs to consist of the following sections separated by a pipe (|) character:

 The full path to the command-line tool. To make this easier across different machines,
you can use several constants for standard Windows locations:

 [MyDocuments] – The user’s “My Documents” folder. The user indicated is the
user that ran RemoteLaunch.

 [CommonDocuments] – The Public Document’s folder.

 [DesktopDirectory] – The user’s Desktop folder. The user indicated is the user
that ran RemoteLaunch.

 [ProgramFiles] – Translated to the Program Files directory. For 64-bit machines,
it’s the 64-bit directory.

 [ProgramFilesX86] – Translated to the 32-bit Program Files directory.

 Any arguments for the command-line tool, including the filepath of the test script file that
the command-line tool will be executing. In addition, you can use the following additional
tokens for some of the special SpiraTeam ID values:

 [TestCaseId] – the ID of the test case

 [TestSetId] – the ID of the test set

 [ReleaseId] – the ID of the release (if specified)

 [ProjectId] – the ID of the project

 The mask for converting any parameter values from SpiraTeam into valid command line
arguments. If parameters are not accepted by the command-line tool, you can leave this
section out.

 The mask can include any symbols together with “name” to refer to the
parameter name and “value” to refer to the parameter value.

 Example 1: If you want parameters to provided in the form:
-param1=value1 –param2=value2
you would use the following mask:
-name=value

 Example 2: If you want parameters to provided in the form:
/param1:value1 /param2:value2
you would use the following mask:
/name:value

 An example filename would be:
C:\Temp\TestApp.exe|-arg1 -arg2|-name=value

 Document Type – If using SpiraTeam (not SpiraTest) you can choose which document type the
automated test script will be categorized under.

 Document Folder – If using SpiraTeam (not SpiraTest) you can choose which document folder
the automated test script will be stored in.

 Version – The version of the test script (1.0 is used if no value specified)

Page 62 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 Test Script – This is not used when you are using the linked test script option

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

7.2.1. Using Parameterized Test Cases
There is an advanced feature of SpiraTest/Team and RemoteLaunch that lets you pass parameters from
SpiraTeam to your command-line automated testing tool. This is very useful if you want to have a data-
driven test script that be executed multiple times with different parameter values.

To setup the automated test case for parameters, click on the “Edit Parameters” hyperlink above the “Test
Script” box:

The name of the parameter ${login} needs to match the name of a parameter accepted by the command-
line tool.

7.3. Executing the Command-Line Test Sets from SpiraTeam
There are two ways to execute automated test cases in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

2. Execute the test cases right now on the local computer.

We shall outline both of these two scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

7.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunch application on that specific
machine.

Page 63 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the Command-Line automated test cases and click on its hyperlink to
display the test set details page:

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

If you have parameterized test cases inside the automated test set you need to set their values by right-
clicking on the test case and choosing “Edit Parameters”:

Page 64 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Enter the parameter values and click “Update” to commit the change. This allows you to have the same
test case in the test set multiple times with different data for each instance.

7.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be execute. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the command-line test:

 Passed – The automated test ran successfully and the results output to the console did not
include any of the phrases – FAIL, ERROR, FATAL, WARNING, CAUTION

 Failed – The automated test ran successfully, but one of the phrases – FAIL, ERROR, FATAL –
was included in the console output

 Caution – The automated test ran successfully, but one of the phrases – WARNING, CAUTION –
was included in the console output

 Blocked – The automated test did not run successfully

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you may see application windows launch as the command-line tool
server executes the appropriate tests.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by the command-line tool, you will see the
following information:

Page 65 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

This screen indicates the status of the test run that was reported back from command-line tool together
with any messages or other information. The execution status will be set according to the rules described
above, the Message field will contain the first line of console output and the large details box will contain
the full console output from the command-line tool.

Congratulations… You are now able to run a custom command-line run tests and have the results be
recorded within SpiraTest / SpiraTeam.

Page 66 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

8. LoadRunner 11 Engine
HP® LoadRunner is a load testing system that lets you record application performance by a number of
‘virtual users’.

This section covers installing and using the Engine to report back statistics of run scenarios.

Note: This integration requires at least version 3.0 of SpiraTest/Team and version 11 of LoadRunner. The
extension has not been tested on previous versions of LoadRunner due to lack of availability of previous
released versions.

8.1. Installing the LoadRunner11 Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the LoadRunner11Engine.zip file from the Inflectra website.

 Copy the files in the ZIP file into the “extensions” sub-folder of the RemoteLaunch installation.

 Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

 Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is
meaningful to your users, and will be displayed in the dropdown when the user selects
the Tester.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For
LoadRunner, it needs to be “LoadRunner11”.

 Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with LoadRunner listed as an available automation engine.

Page 67 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

8.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and linking it to
a Load Runner Scenario.

First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

You need to enter the following fields:

 Automation Engine - Choose the LoadRunner Automation Engine that you created in the
previous section from the drop-down list.

 Script Type – For LoadRunner, all scenarios must be stored on the local testing machine so
‘Linked’ must be selected. If you select ‘Attached’, when the scenario is attempted to be executed
it will be marked as blocked and skipped.

 Filename – This needs to be the full path to the LoadRunner Scenario (*.lrs) file. Certain tokens
are allowed to be able to specify common locations across different operating systems. Note that
the tokens are case-sensitive, and there are no spaces in them. A list of tokens are:

o [MyDocuments] – The user’s “My Documents” folder. The user indicated is the user that
ran RemoteLaunch.

o [CommonDocuments] – The Public Document’s folder.

o [DesktopDirectory] – The user’s Desktop folder. The user indicated is the user that ran
RemoteLaunch.

o [ProgramFiles] – Translated to the Program Files directory. For 64-bit machines, it’s the
64-bit directory.

o [ProgramFilesX86] – Translated to the 32-bit Program Files directory.

 Document Type – If using SpiraTeam (not SpiraTest) you can choose which document type the
automated scenario will be categorized under.

 Document Folder – If using SpiraTeam (not SpiraTest) you can choose which document folder
the automated scenario will be stored in.

 Version – The version of the scenario (1.0 is used if no value specified)

 Test Script – Not used.

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

Page 68 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

8.2.1. Using Parameterized Test Cases
There is an advanced feature of SpiraTest/Team and RemoteLaunch that lets you pass parameters from
SpiraTeam to your LoadRunner scenario. This is very useful if you have a data-driven LoadRunner
scenario that has custom parameters used that you would like to change based on the test.

To setup the automated test case for parameters, click on the “Test Steps” tab and click on “Edit
Parameters”:

The name of the parameter ${login} needs to match the name of the custom parameter defined in the
LoadRunner scenario. Invalid parameters will be silently ignored by the LoadRunner engine. Parameters
must have a unique name.

8.3. Executing the LoadRunner Scenario from SpiraTeam
There are two ways to execute a scenario in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

2. Execute the test cases right now on the local computer.

We shall outline both of these two scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

8.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field

Page 69 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

must be set to the same token that is specified as the Host name in the RemoteLaunch application
on that specific machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the LoadRunner test cases and click on its hyperlink to display the test set
details page:

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

If you have parameterized test cases inside the automated test set you need to set their values by right-
clicking on the test case and choosing “Edit Parameters”.

Enter the parameter values and click “Update” to commit the change. This allows you to have the same
test case in the test set multiple times with different data for each instance.

Page 70 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

8.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be executed. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the LoadRunner execution:

 Passed – The Scenario ran and reported no error messages. Warning, Debug, and Informational
messages may have been logged, however.

 Failed – The Scenario ran and at least one error message was reported.

 Blocked – There was an error with the Test Set or LoadRunner application.

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you may see browser or application windows launch as LoadRunner
runs the scenario and connects VUsers to their tasks.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by LoadRunner, you will see the following
information:

Page 71 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

This screen indicates the status of the scenario that was reported back from LoadRunner together with
any messages or other information. Because LoadRunner only reports statistics on the scenarios that
was run, the test set will always be marked as passed – regardless of how long it took, unless there were
errors reported. If any errors are reported, the test will be marked as Failed.

The Message of the test will report the duration the scenario took, along with the count of VUsers that
reported an error, the number that reported a pass, and the hits per minute on the application.

A more detailed report will be included in the test run’s details – the information above, and then any
added Execution Messages and messages logged by the script in time order.

Note: LoadRunner’s engine is very basic at this stage. If you have issues with a scenario not reporting or
executing properly, please let Inflectra’s support team know.

Page 72 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

9. SoapUI Engine
SmartBear SoapUI (hereafter SoapUI) is an open source Web Service testing tool for Service Oriented
Architectures (SOAs). There is also a Pro version that is released as a commercial product. Its
functionality mainly covers Web Service Inspection, Invoking, Development, Simulation and Mocking,
Functional testing, Load and Compliance testing. Productivity enhancement features can be found in the
soapUI pro version.2

This section describes how you can use SpiraTest / SpiraTeam (hereafter SpiraTeam) together with
RemoteLaunch to schedule and remotely launch instances of soapUI on different computers and have
the testing results be transmitted back to SpiraTeam. This allows you to extend your SpiraTeam’s test
management capabilities to include automated web service testing.

Note: This integration requires at least version 4.0 of SpiraTest/Team and an instance of SoapUI or
SoapUI Pro running on a Windows® platform.

9.1. Installing the SoapUI Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the SoapUIEngine.zip file from the Inflectra website.

 Extract the file “soapUIEngine.dll” from the compressed archive into the “extensions” sub-folder of
the RemoteLaunch installation.

 Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

• Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is

meaningful to your users. Description: This is the long description of the automation
engine. It can be anything that is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

2 http://en.wikipedia.org/wiki/SoapUI

Page 73 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For soapUI
this should be SoapUI.

• Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with SoapUI listed as an available automation engine.

9.1.1. SoapUI RemoteLaunch Settings
You will need to modify the SoapUI configuration for each of the specific automation hosts, by right-
clicking on the RemoteLaunch icon in the system tray and choosing “Configuration”. That will bring up the
RemoteLaunch configuration page. The SoapUI engine adds its own tab to this page which allows you to
configure how SoapUI operates:

The following fields can be specified on this screen:

 SOAP-UI Location – This should be SOAP-UI Bin folder that contains the “TestRunner.bat”
batch file that will be used to actually run the automated tests.

 Installation Type – This allows you to take advantage of the enhanced reporting available in the
commercial “Pro” edition of SoapUI. Check the “SOAP-UI Pro Installation” box only if you are
using the commercial version of SoapUI (known as SoapUI Pro).

 Execution Type – If this is a LoadUI performance test rather than a standard SoapUI functional
test, check the box and RemoteLaunch will know to parse the load-test report format.

 Trace Logging – Normally this can be left unchecked unless you are diagnosing configuration
issues and need additional logging.

9.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and linking it to
an existing SoapUI test suite and test case.

Page 74 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

9.2.1. Linking a SoapUI Test Script
First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and expand the “Automation”
section of the Test Case Overview tab:

You need to enter the following fields:

 Automation Engine - Choose the SoapUI Automation Engine that you created in the previous
section from the drop-down list.

 Script Type – This should be set to Linked for this case

 Filename – This needs to be the full path to the SoapUi test project XML file together with the
test suite name and test case name separated by the pipe (|) symbol.

 I.e. you use the format:

Project XML File|Test Suite Name|Test Case Name

 For example if the test suite was named “Requirements Testing” and the test case was
named “Get Requirements” you’d use:
[MyDocuments]\SpiraTest-4-0-Web-Service-soapui-
project.xml|Requirements Testing|Get Requirements

 To make this easier across different machines, you can use several constants for
standard Windows locations:

 [MyDocuments] – The user’s “My Documents” folder. The user indicated is the
user that ran RemoteLaunch.

 [CommonDocuments] – The Public Document’s folder.

 [DesktopDirectory] – The user’s Desktop folder. The user indicated is the user
that ran RemoteLaunch.

 [ProgramFiles] – Translated to the Program Files directory. For 64-bit machines,
it’s the 64-bit directory.

 [ProgramFilesX86] – Translated to the 32-bit Program Files directory.

 Document Type – You can choose which document type the automated test script will be
categorized under.

 Document Folder – You can choose which document folder the automated test script will be
stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This is not used when you are using the linked test script option

Page 75 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Note: The example filename shown above was taken from a test project in SoapUI that has the following
structure:

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

9.2.1. Using Parameterized Test Cases
There is an advanced feature of SpiraTest/Team and RemoteLaunch that lets you pass parameters from
SpiraTeam to your SoapUI automated test. This is very useful if you have a data-driven SoapUI test that
has custom project properties used that you would like to change based on the test.

To setup the automated test case for parameters, click on the “Test Steps” tab and click on “Edit
Parameters”:

The name of the parameter ${login} needs to match the name of the custom parameter defined in the
SoapUI project properties. Invalid parameters will be silently ignored by the SoapUI engine. Parameters
must have a unique name. Note that the plugin currently only supports “Project Properties” and not Global
or System Properties.

9.3. Executing the SoapUI Test Sets from SpiraTeam
There are three ways to execute automated test cases in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

2. Execute the test cases right now on the local computer.

Page 76 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

3. Execute the test cases from the command-line or a build script

We shall outline each of these three scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

9.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunch application on that specific
machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the SoapUI automated test cases and click on its hyperlink to display the
test set details page:

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

Page 77 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

If you have parameterized test cases inside the automated test set you need to set their values by right-
clicking on the test case and choosing “Edit Parameters”:

Enter the parameter values and click “Update” to commit the change. This allows you to have the same
test case in the test set multiple times with different data for each instance.

9.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be execute. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

If you want to run the tests as part of a build script, just call RemoteLaunch.exe with the appropriate test
set id passed into the command-line:

RemoteLaunch.exe –testset:18

In all cases, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the SoapUI test:

 Passed – The SoapUI automated test ran successfully and all the assertions in the test script
passed

 Failed – The SoapUI automated test ran successfully, but at least one assertion in the test script
failed.

 Blocked – The SoapUI automated test did not run successfully

Page 78 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you may see application or browser windows launch as the SoapUI
server executes the appropriate tests.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by SoapUI, you will see the following
information:

This screen indicates the status of the test run that was reported back from SoapUI together with any
messages or other information. The execution status will be set according to the worst-case assessment
reported back from SoapUI. If you have zero(0) failures, then the status will display as Passed, otherwise
it will display as Failed.

Under Console Output section you will see more detailed logging information (in both SoapUI and
SoapUI Pro):

The Message field will contain a summary of the number of test steps completed, the number of
assertions and the number of failed assertions. The Details field will contain the detailed trace of what
happened, captured from the summary output log that is generated by SoapUI.

SoapUI Pro

If you have the commercial SoapUI Pro product and have configured RemoteLaunch so that it knows to
use SoapUI Pro, in addition, the Test Steps section of the test run will contain more detailed reporting:

Page 79 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Where each test step corresponds to a step recorded in the SoapUI Pro results file.

Congratulations… You are now able to run SoapUI automated web-service tests and have the results be
recorded within SpiraTest / SpiraTeam.

Page 80 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

10. FitNesse Engine
FitNesse is a lightweight, open-source automated software testing framework that uses web-based Wikis
to define the inputs and expected results from different combinations of input values and then compare
the results with what is actually generated during testing. For more details on FitNesse, please refer to
the FitNesse website: http://fitnesse.org

This section describes how you can use SpiraTest / SpiraTeam (hereafter SpiraTeam) together with
RemoteLaunch to schedule and remotely launch instances of FitNesse on different computers and have
the testing results be transmitted back to SpiraTeam. This allows you to extend your SpiraTeam’s test
management capabilities to include automated FitNesse acceptance tests.

Note: This integration requires at least version 4.0 of SpiraTest/Team and RemoteLaunch.

10.1. Installing the FitNesse Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the FitNesseEngine.zip file from the Inflectra website and copy the file
“FitNesseEngine.dll” into the “extensions” sub-folder of the RemoteLaunch installation.

 You may also need to verify that you have the full Microsoft .NET Framework 4.0 installed since
that is needed by the FitNesse engine. RemoteLaunch itself only needs the .NET 4.0 Client
Profile, so make sure you have the .NET 4.0 Framework Extended entry listed in the Program &
Features section of the Windows Control Panel.

 Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

• Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is

meaningful to your users.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For
FitNesse this should be simply FitNesse.

http://fitnesse.org/

Page 81 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

• Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with FitNesse listed as an available automation engine.

10.1.1. Advanced Settings
You can modify the FitNesse configuration for each of the specific automation hosts, by right-clicking on
the RemoteLaunch icon in the system tray and choosing “Configuration”. That will bring up the
RemoteLaunch configuration page. The FitNesse engine adds its own tab to this page which allows you
to configure how FitNesse operates:

The following fields can be specified on this screen:

 Server Host – This should be the base URL for accessing the installation of FitNesse. Each of
the FitNesse test cases will be a URL relative to this base URL.

 Server Port – This should be set to the TCP port that the FitNesse web server uses for
displaying the FitNesse wiki web pages.

 FitNesse Timeout – This allows you to extend the timeout for executing FitNesse tests. This is
useful if you find that the FitNesse tests take a long time to execute and RemoteLaunch is
aborting the execution before they are finished.

10.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and linking it to
an existing FitNesse test case wiki page. Note: The FitNesse automation engine only supports Linked test
scripts in SpiraTeam (not Attached).

First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and go to the “Automation”
section located in the “Overview” tab:

Page 82 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

You need to enter the following fields:

 Automation Engine - Choose the FitNesse Automation Engine that you created in the previous
section from the drop-down list.

 Script Type – This should be set to Linked for FitNesse tests.

 Filename – This needs to be the relative URL of the FitNesse test case. I.e. if the FitNesse URL
is http://myserver/FitNesse.UserGuide.TwoMinuteExample and the base URL setup in
RemoteLaunch is http://myserver then the “filename” would be just
FitNesse.UserGuide.TwoMinuteExample.

 Document Type – You can choose which document type the automated test script will be
categorized under.

 Document Folder – You can choose which document folder the automated test script will be
stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This is not used when you are using the linked test script option

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

10.2.1. Using Parameterized Test Cases
The FitNesse automation engine does not currently support the passing of parameter values from
SpiraTeam to the FitNesse test.

10.3. Executing the FitNesse Test Sets from SpiraTeam
There are three ways to execute automated test cases in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

2. Execute the test cases right now on the local computer.

3. Execute the test cases from the command-line or a build script

We shall outline each of these three scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

10.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

http://myserver/FitNesse.UserGuide.TwoMinuteExample
http://myserver/

Page 83 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunch application on that specific
machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the FitNesse automated test cases and click on its hyperlink to display the
test set details page:

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

Page 84 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

10.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be executed. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the FitNesse test:

 Passed – The FitNesse automated test ran successfully and all the test conditions in the test
script passed

 Failed – The FitNesse automated test ran successfully, but at least one test condition in the test
script failed.

 Blocked – The FitNesse automated test did not run successfully

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you may see command windows appear as the FitNesse server
executes the appropriate tests.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by FitNesse, you will see the following
information:

Page 85 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

This screen indicates the status of the test run that was reported back from FitNesse together with any
messages or other information. The execution status will be set to PASSED if all the FitNesse rows report
back OK and all the tests passed. If any of the rows failed or the tests don’t pass, the overall execution
status will be listed as FAILED.

You can see a step-by-step record of what happened by scrolling down to the “Test Steps” section:

In addition, you can scroll down to the “Console Output” section to get the FitNesse specific information:

The Message field will contain a summary of the number of tests executed and the number of wrong
results and exceptions. The large details box contains the full command execution log as reported back
from FitNesse:

Congratulations… You are now able to run FitNesse automated acceptance tests and have the results be
recorded within SpiraTest / SpiraTeam.

Page 86 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

11. NeoLoad Engine
Neotys NeoLoad is a performance and load testing system that lets you record application performance
by a number of ‘virtual users’ and measure the performance against specified Service Level Agreement
(SLA) metrics for the application. When you use NeoLoad with SpiraTest you can report back
pass/fail/caution by comparing the actual results against the specified SLA metrics.

This section covers installing and using the Engine to report back statistics of run scenarios as well as the
results of the test compared to the required SLAs.

Note: This integration requires at least version 4.0 of SpiraTest/Team and has been tested against
version 5.0 of NeoLoad.

11.1. Installing the NeoLoad Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the NeoLoadEngine.zip file from the Inflectra website.

 Copy the files in the ZIP file into the “extensions” sub-folder of the RemoteLaunch installation.

 Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

 Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is

meaningful to your users, and will be displayed in the dropdown when the user selects
the Tester.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For
NeoLoad, it needs to be simply “NeoLoad”.

Page 87 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with NeoLoad listed as an available automation engine.

11.1.1. NeoLoad RemoteLaunch Settings
You will need to modify the NeoLoad configuration for each of the specific automation hosts, by right-
clicking on the RemoteLaunch icon in the system tray and choosing “Configuration”. That will bring up the
RemoteLaunch configuration page. The NeoLoad engine adds its own tab to this page which allows you
to configure how NeoLoad operates:

The following fields can be specified on this screen:

 NeoLoad Location – This should be folder containing the “NeoLoadCmd.exe” executable that
will be used to actually run the automated tests.

 Attach PDF Report – NeoLoad has a built-in report generator that can create detailed Acrobat
(PDF) format reports. Enabling this option will attach these reports to the test runs recorded in
SpiraTeam.

11.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and linking it to
a NeoLoad project and scenario.

First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and go to the “Automation”
section in the main “Overview” tab:

Page 88 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

You need to enter the following fields:

 Automation Engine - Choose the NeoLoad Automation Engine that you created in the previous
section from the drop-down list.

 Script Type – For NeoLoad, all scenarios must be stored on the local testing machine so ‘Linked’
must be selected. If you select ‘Attached’, when the scenario is attempted to be executed it will be
marked as blocked and skipped.

 Filename – This needs to be the full path to the NeoLoad project file (*.nlp) file followed by the
name of the NeoLoad scenario. The two components need to be separated by a pipe (|)
character.

Certain tokens are allowed to be able to specify common locations across different operating
systems. Note that the tokens are case-sensitive, and there are no spaces in them. A list of
tokens are:

o [MyDocuments] – The user’s “My Documents” folder. The user indicated is the user that
ran RemoteLaunch.

o [CommonDocuments] – The Public Document’s folder.

o [DesktopDirectory] – The user’s Desktop folder. The user indicated is the user that ran
RemoteLaunch.

o [ProgramFiles] – Translated to the Program Files directory. For 64-bit machines, it’s the
64-bit directory.

o [ProgramFilesX86] – Translated to the 32-bit Program Files directory.

 Document Type – You can choose which document type the automated scenario will be
categorized under.

 Document Folder – You can choose which document folder the automated scenario will be
stored in.

 Version – The version of the scenario (1.0 is used if no value specified)

 Test Script – Not used.

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

11.2.1. Using Parameterized Test Cases
Currently the NeoLoad automation engine does not support the passing of parameter values from
SpiraTeam to NeoLoad.

Page 89 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

11.3. Executing the NeoLoad Scenario from SpiraTeam
There are three ways to execute automated test cases in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

2. Execute the test cases right now on the local computer.

3. Execute the test cases from the command-line or a build script

We shall outline each of these three scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

11.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified as the Host name in the RemoteLaunch application
on that specific machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the NeoLoad test cases and click on its hyperlink to display the test set
details page:

Page 90 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

11.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be executed. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the NeoLoad execution:

 Passed – The scenario ran and reported no error messages and all SLAs were passed.

 Caution – The scenario ran and at least one SLA reported back as acceptable

 Failed – The scenario ran and at least one error message was reported or at least one SLA was
reported back as failed.

 Blocked – There was an error with the Test Set or NeoLoad application.

Page 91 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you may see browser or application windows launch as NeoLoad
runs the scenario and connects VUsers to their tasks.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by NeoLoad, you will see the following test run
summary information:

This section of the screen indicates how long the test took to execute, the overall status, which release
was being executed, which test set it was a part of and each of the key summary statistics, together with
information on how they compared to the defined SLA:

 N/A – There was no SLA defined for this metric

 Passed – There is an SLA defined for this metric and it was passed.

 Caution – There is an SLA defined for this metric and it was considered less than a pass, but still
acceptable.

 Failed – There is an SLA defined for this metric and it was not met successfully.

In addition, if you scroll down, in the “Console Output” section of the report there is more detailed
information:

Page 92 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

The Message of the test will report the number of total pages, number of total hits, number of total users,
number of errors as well as the total count of virtual users.

In addition, more detailed information is displayed in the test run details:

 Top 5 errors by page

 Top 5 alerts by page

 Top 5 average response times by page

 Top 5 maximum response times by page

Finally, if you have chosen the option to attach the NeoLoad PDF report, in the Attachments section of
the Test Run, that will be listed:

Congratulations… You are now able to run automated NeoLoad performance scenarios and have the
results be recorded within SpiraTest / SpiraTeam.

Page 93 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

12. TestPartner Engine
Micro Focus™ TestPartner™ (hereafter TestPartner) is a Graphic User Interface (GUI) functional test
automation system that lets you record application operations by capturing the various testable objects of
the application and then playback the operations to automatically test the application.

This section describes how you can use SpiraTest / SpiraTeam (hereafter SpiraTeam) together with
RemoteLaunch to schedule and remotely launch instances of TestPartner on different computers and
have the testing results be transmitted back to SpiraTeam. This allows you to extend your SpiraTeam’s
test management capabilities to include automated TestPartner tests.

Note: This integration requires at least version 3.0 of SpiraTest/Team and version 6.0 of TestPartner.

12.1. Installing the TestPartner Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the TestPartnerAutomationEngine.zip file from the Inflectra website and
locate the TestPartner.dll inside the zip archive.

 Copy the file “TestPartner.dll” into the “extensions” sub-folder of the RemoteLaunch installation.

• Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

• Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is

meaningful to your users.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For
TestPartner this should just be TestPartner.

• Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with TestPartner listed as an available automation engine.

Page 94 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

12.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and linking it to
an automated TestPartner test script.

First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

You need to enter the following fields:

 Automation Engine - Choose the TestPartner Automation Engine that you created in the
previous section from the drop-down list.

 Script Type – This should be set to Linked as the integration with TestPartner only supports
referencing TestPartner test scripts (stored in the internal database) and not physically uploading
the test scripts into SpiraTeam.

 Filename – This needs contain the project and test name from TestPartner with the appropriate
parameter name describing which is the project name and which is the test name. The test name
can be either a test script of a visual test. The syntax is:

 -visualtest <test name> -project <project name> or

 -testscript <script name> -project <project name>

 Document Type – If using SpiraTeam (not SpiraTest) you can choose which document type the
automated test script will be categorized under.

 Document Folder – If using SpiraTeam (not SpiraTest) you can choose which document folder
the automated test script will be stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This is not used with the TestPartner Engine since it only supports linked test
scripts.

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

12.2.1. Using Parameterized Test Cases
TestPartner does not support the passing of input test parameters so the TestPartner automation engine
does not support this feature of SpiraTeam or RemoteLaunch.

Page 95 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

12.3. Executing the TestPartner Test Sets from SpiraTeam
There are three ways to execute automated test cases in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

2. Execute the test cases right now on the local computer.

3. Execute the test cases from the command-line or a build script

We shall outline each of these three scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

12.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunch application on that specific
machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the TestPartner automated test cases and click on its hyperlink to display
the test set details page:

Page 96 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

12.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be execute. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the TestPartner test:

 Passed – The TestPartner automated test ran successfully and all the test conditions in the test
script passed

 Failed – The TestPartner automated test ran successfully, but at least one test condition in the
test script failed.

 Blocked – The TestPartner automated test did not run successfully

Page 97 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you may see browser or application windows launch as TestPartner
executes the appropriate tests.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by TestPartner, you will see the following
information:

This screen indicates the status of the test run that was reported back from TestPartner together with any
messages or other information. The Test Name indicates the name of the test inside TestPartner, and the
execution status corresponds the matching status inside TestPartner.

Congratulations… You are now able to run TestPartner automated functional tests and have the results
be recorded within SpiraTest / SpiraTeam.

Page 98 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

13. BadBoy Engine
Badboy is an automated website functional test automation system that lets you record website
operations in Internet Explorer and generate test automation scripts that can be used to playback the test
script against the website.

This section describes how you can use SpiraTest / SpiraTeam (hereafter SpiraTeam) together with
RemoteLaunch to schedule and remotely launch instances of Badboy on different computers and have
the testing results be transmitted back to SpiraTeam. This allows you to extend your SpiraTeam’s test
management capabilities to include automated Badboy tests.

Note: This integration requires at least version 3.0 of SpiraTest/Team and version 2.1 of Badboy.

13.1. Installing the Badboy Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the BadboyAutomationEngine.zip file from the Inflectra website and locate
the appropriate BadboyX.dll for the version of Badboy that you are using.

o If you don’t see the version listed, just use the nearest version that is lower than your
current version.

 Copy the file “BadboyX.dll” (where X is the appropriate version) into the “extensions” sub-folder of
the RemoteLaunch installation.

 Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

 Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is
meaningful to your users.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For

Page 99 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Badboy this should be BadboyX where ‘X’ is the version number of the DLL file that you
are using.

 Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with Badboy listed as an available automation engine.

13.1.1. Advanced Settings
You can modify the Badboy configuration for each of the specific automation hosts, by right-clicking on
the RemoteLaunch icon in the system tray and choosing “Configuration”. That will bring up the
RemoteLaunch configuration page.

The Badboy 2.x engine adds its own tab to this page which allows you to configure how Badboy operates:

The following fields can be specified on this screen:

 Trace Logging – When selected, this will log additional trace and debugging information to the
Windows Event Log. This should not be selected in a production environment.

13.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and linking it to
an automated Badboy test script.

First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

Page 100 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

You need to enter the following fields:

 Automation Engine - Choose the Badboy Automation Engine that you created in the previous
section from the drop-down list.

 Script Type – This should be set to Linked as the integration with Badboy only supports
referencing Badboy test script files and not physically uploading the test scripts into SpiraTeam.

 Filename – This needs to be the full path to the Badboy test script. To make this easier across
different machines, you can use several constants for standard Windows locations (see example
in screenshot):

 [MyDocuments] – The user’s “My Documents” folder. The user indicated is the user that
ran RemoteLaunch.

 [CommonDocuments] – The Public Document’s folder.

 [DesktopDirectory] – The user’s Desktop folder. The user indicated is the user that ran
RemoteLaunch.

 [ProgramFiles] – Translated to the Program Files directory. For 64-bit machines, it’s the
64-bit directory.

 [ProgramFilesX86] – Translated to the 32-bit Program Files directory.

 Document Type – This allows you to choose which document type the automated test script will
be categorized under.

 Document Folder –This allows you to choose which document folder the automated test script
will be stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This is not used with the Badboy Engine since it only supports linked test scripts.

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

13.2.1. Using Parameterized Test Cases
There is an advanced feature of SpiraTest/Team and RemoteLaunch that lets you pass parameters from
SpiraTeam to your Badboy automated test script. This is very useful if you have a data-driven Badboy
test script that defines input variables from an external data source.

Page 101 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

To setup the automated test case for parameters, click on the “Test Steps” tab and click on “Edit
Parameters”:

The name of the parameter ${login} needs to match the name of the variable defined within the Badboy
script in its variables configuration.

13.3. Executing the Badboy Test Sets from SpiraTeam
There are two ways to execute automated test cases in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

2. Execute the test cases right now on the local computer.

We shall outline both of these two scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

13.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunch application on that specific
machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Page 102 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the Badboy automated test cases and click on its hyperlink to display the
test set details page:

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

If you have parameterized test cases inside the automated test set you need to set their values by right-
clicking on the test case and choosing “Edit Parameters”:

Page 103 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Enter the parameter values and click “Update” to commit the change. This allows you to have the same
test case in the test set multiple times with different data for each instance.

13.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be execute. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the Badboy test:

 Passed – The Badboy automated test ran successfully and all the test steps in the test script
passed and no assertions were thrown.

 Failed – The Badboy automated test ran successfully, but at least one test step failed or at least
one assertion failed.

 Caution – The Badboy automated test run successfully, but at least one warning was logged in
one of the test steps.

 Blocked – The Badboy automated test did not run successfully or at least one timeout error was
recorded.

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you will see browser windows launch as Badboy executes the
appropriate tests.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by Badboy, you will see the following
information:

Page 104 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

This screen indicates the status of the test run that was reported back from Badboy together with any
messages or other information. The Test Name indicates the name of the test inside Badboy and the
execution status corresponds the matching status inside Badboy as illustrated below:

Badboy Status SpiraTeam Status

Succeeded Passed

Failure Failed

Warning Caution

Assertion Failed

Timeout Blocked

In addition, the detailed test report from Badboy is available in the large text-box below. It will contain
messages such as:

Suite: Test Suite 1
==

Test: Test 3
--
12 played, 12 succeeded, 0 failures, 0 assertions, 0 warnings, 0 timeouts
--

Step: Step 2
--
12 played, 12 succeeded, 0 failures, 0 assertions, 0 warnings, 0 timeouts
--

Congratulations… You are now able to run Badboy automated functional tests and have the results be
recorded within SpiraTest / SpiraTeam.

Page 105 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

14. JMeter Engine
Apache JMeter is a free, open source Java desktop application designed to load test functional behavior
and measure performance. It was originally designed for testing Web Applications but has since
expanded to other test functions.

This section describes how you can use SpiraTest / SpiraTeam (hereafter SpiraTeam) together with
RemoteLaunch to schedule and remotely launch instances of JMeter on different computers and have the
testing results be transmitted back to SpiraTeam. This allows you to extend your SpiraTeam’s test
management capabilities to include automated JMeter performance tests.

Note: This integration requires at least version 3.0 of SpiraTest/Team and version 2.5 of JMeter.

14.1. Installing the JMeter Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the JMeterEngine.zip file from the Inflectra website and locate the
appropriate JMeterX.dll for the version of JMeter that you are using.

o If you don’t see the version listed, just use the nearest version that is lower than your
current version.

 Copy the file “JMeterX.dll” (where X is the appropriate version) into the “extensions” sub-folder of
the RemoteLaunch installation.

 Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

 Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is
meaningful to your users.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For JMeter
this should be JMeterX where ‘X’ is the version number of the DLL file that you are using.

Page 106 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with JMeter listed as an available automation engine.

14.1.1. Advanced Settings
You can modify the JMeter configuration for each of the specific automation hosts, by right-clicking on the
RemoteLaunch icon in the system tray and choosing “Configuration”. That will bring up the
RemoteLaunch configuration page.

The JMeter 2.x engine adds its own tab to this page which allows you to configure how JMeter operates:

The following fields can be specified on this screen:

 JMeter Location – This should point to the location on the host computer where JMeter is
installed. You can click on the browse button and navigate to the location of the JMeter.bat file.

 Trace Logging – When selected, this will log additional trace and debugging information to the
Windows Event Log. This should not be selected in a production environment.

14.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and linking it to
an automated JMeter test script.

First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

Page 107 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

You need to enter the following fields:

 Automation Engine - Choose the JMeter Automation Engine that you created in the previous
section from the drop-down list.

 Script Type – This should be set to Linked as the integration with JMeter only supports
referencing JMeter test script files and not physically uploading the test scripts into SpiraTeam.

 Filename – This consists of the following elements:

 The full path to the JMeter test script. To make this easier across different machines, you
can use several constants for standard Windows locations (see example in screenshot):

 [MyDocuments] – The user’s “My Documents” folder. The user indicated is the
user that ran RemoteLaunch.

 [CommonDocuments] – The Public Document’s folder.

 [DesktopDirectory] – The user’s Desktop folder. The user indicated is the user
that ran RemoteLaunch.

 [ProgramFiles] – Translated to the Program Files directory. For 64-bit machines,
it’s the 64-bit directory.

 [ProgramFilesX86] – Translated to the 32-bit Program Files directory.

 Optionally you can include JMeter command-line arguments by separating them with a
pipe (|) character.

 Examples of Filenames you can enter in SpiraTeam include:

 [MyDocuments]JMeter\JMeter-SampleScript.jmx

 [MyDocuments]JMeter\JMeter-SampleScript.jmx|-P 81

 [MyDocuments]JMeter\JMeter-SampleScript.jmx|-P 81 -H
192.168.117.25

 Document Type – This allows you to choose which document type the automated test script will
be categorized under.

Page 108 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 Document Folder –This allows you to choose which document folder the automated test script
will be stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This is not used with the JMeter Engine since it only supports linked test scripts.

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

14.2.1. Using Parameterized Test Cases
There is an advanced feature of SpiraTest/Team and RemoteLaunch that lets you pass parameters from
SpiraTeam to your JMeter automated test script. This is very useful if you have a data-driven JMeter test
script that expects specific JMeter properties to be passed to the test script.

To setup the automated test case for parameters, click on the “Test Steps” tab and click on “Edit
Parameters”:

The name of the parameter ${login} needs to match the name of the property defined within the JMeter
script.

14.3. Executing the JMeter Test Sets from SpiraTeam
There are two ways to execute automated test cases in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

2. Execute the test cases right now on the local computer.

We shall outline both of these two scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

14.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Page 109 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunch application on that specific
machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the JMeter automated test cases and click on its hyperlink to display the
test set details page:

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

If you have parameterized test cases inside the automated test set you need to set their values by right-
clicking on the test case and choosing “Edit Parameters”:

Page 110 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Enter the parameter values and click “Update” to commit the change. This allows you to have the same
test case in the test set multiple times with different data for each instance.

14.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be executed. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the JMeter test:

 Passed – The JMeter automated test ran successfully and no failures or errors were logged.

 Failed – The JMeter automated test ran successfully, but at least one error or failure was logged.

 Blocked – The JMeter automated test did not run successfully.

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you will see a Windows command prompt open as JMeter executes
the appropriate tests.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by JMeter, you will see the following
information:

Page 111 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

This screen indicates the status of the test run that was reported back from JMeter together with any
messages or other information. The Test Name indicates the name of the test inside JMeter and the
execution status corresponds the rules described above.

In addition, the detailed test report from JMeter is available in the large text-box below. It will contain
messages such as:

Response Assertion (http://www.inflectra.com/): failure=true, error=false,
message='Test failed: text expected to contain /(?i)Purchase Our Products Online/'
Response Assertion (http://www.inflectra.com/SpiraTest/Default.aspx): failure=true,
error=false, message='Test failed: text expected to contain /(?i)Purchase Our Products
Online/'
Response Assertion (http://www.inflectra.com/Purchase/Default.aspx): failure=false,
error=false, message=''
Response Assertion (https://www.inflectra.com/Purchase/Default.aspx): failure=false,
error=false, message=''

Congratulations… You are now able to run JMeter automated functional tests and have the results be
recorded within SpiraTest / SpiraTeam.

Page 112 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

15. Ranorex Engine
Ranorex is an automated functional test automation system that lets you record application operations
and generate .NET language (C#, VB.NET) test automation scripts that can be used to playback the test
script against the test application.

This section describes how you can use SpiraTest / SpiraTeam (hereafter SpiraTeam) together with
RemoteLaunch to schedule and remotely launch instances of Ranorex on different computers and have
the testing results be transmitted back to SpiraTeam. This allows you to extend your SpiraTeam’s test
management capabilities to include automated Ranorex tests.

This plugin was developed by one of our partners (step2IT GmbH) but has been formally tested by
Inflectra and is fully supported by Inflectra.

Note: This integration requires at least version 3.0 of SpiraTest/Team and version 3.0 of Ranorex.

15.1. Installing the Ranorex Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the RanorexAutomationEngine.zip file from the Inflectra website and locate
the appropriate RanorexAutomationEngine.dll for the version of Ranorex that you are using.

o If you don’t see the version listed, just use the nearest version that is lower than your
current version.

 Copy the file “RanorexAutomationEngine.dll” into the “extensions” sub-folder of the
RemoteLaunch installation.

 Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

 Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is

meaningful to your users.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

Page 113 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For
Ranorex this should always be RanorexEngine.

 Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with Ranorex listed as an available automation engine.

15.1.1. Advanced Settings
You can modify the Ranorex configuration for each of the specific automation hosts, by right-clicking on
the RemoteLaunch icon in the system tray and choosing “Configuration”. That will bring up the
RemoteLaunch configuration page.

The Ranorex engine adds its own tab to this page which allows you to configure how Ranorex operates:

The following fields can be specified on this screen:

 Result Path – This is the folder where the results of Ranorex tests will be stored. The currently
logged-in user needs to have Read/Write permissions over this folder.

 Trace Logging – When selected, this will log additional trace and debugging information to the
Windows Event Log. This should not be selected in a production environment.

15.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and linking it to
an automated Ranorex test script.

Page 114 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

You need to enter the following fields:

 Automation Engine - Choose the Ranorex Automation Engine that you created in the previous
section from the drop-down list.

 Script Type – This should be set to Linked as the integration with Ranorex only supports
referencing Ranorex test script files and not physically uploading the test scripts into SpiraTeam.

 Filename – This needs to be the full path to the Ranorex test suite.

 To make this easier across different machines, you can use several constants for
standard Windows locations (see example in screenshot):

 [MyDocuments] – The user’s “My Documents” folder. The user indicated is the
user that ran RemoteLaunch.

 [CommonDocuments] – The Public Document’s folder.

 [DesktopDirectory] – The user’s Desktop folder. The user indicated is the user
that ran RemoteLaunch.

 [ProgramFiles] – Translated to the Program Files directory. For 64-bit machines,
it’s the 64-bit directory.

 [ProgramFilesX86] – Translated to the 32-bit Program Files directory.

 If you’d like to pass parameters to Ranorex you can specify them by separating them
from the filename with a pipe (“|”) character. For example to run a specific Ranorex test
case you can use the following “filename”:

 c:\test\mytestsuit.exe|/testcase:addDataTest

 Document Type – This allows you to choose which document type the automated test script will
be categorized under.

 Document Folder –This allows you to choose which document folder the automated test script
will be stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This is not used with the Ranorex Engine since it only supports linked test scripts.

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

Page 115 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

15.2.1. Using Parameterized Test Cases
There is an advanced feature of SpiraTest/Team and RemoteLaunch that lets you pass parameters from
SpiraTeam to your Ranorex automated test suite. This is very useful if you have a data-driven Ranorex
test suite that defines input variables from an external data source.

To setup the automated test case for parameters, click on the “Test Steps” tab and click on “Edit
Parameters”:

The name of the parameter ${login} needs to match the name of the variable defined within the Ranorex
script in its variables configuration.

15.3. Executing the Ranorex Test Sets from SpiraTeam
There are two ways to execute automated test cases in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

2. Execute the test cases right now on the local computer.

We shall outline both of these two scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

15.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunch application on that specific
machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Page 116 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the Ranorex automated test cases and click on its hyperlink to display the
test set details page:

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

If you have parameterized test cases inside the automated test set you need to set their values by right-
clicking on the test case and choosing “Edit Parameters”:

Page 117 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Enter the parameter values and click “Update” to commit the change. This allows you to have the same
test case in the test set multiple times with different data for each instance.

15.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be execute. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the Ranorex test:

 Passed – The Ranorex automated test ran successfully and all the test steps in the test script
passed and no assertions were thrown.

 Failed – The Ranorex automated test ran successfully, but at least one test step failed or at least
one assertion failed.

 Caution – The Ranorex automated test run successfully, but at least one warning was logged in
one of the test steps.

 Blocked – The Ranorex automated test did not run successfully or at least one timeout error was
recorded.

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you will see browser windows launch as Ranorex executes the
appropriate tests.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by Ranorex, you will see the following
information:

Page 118 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

This screen indicates the status of the test run that was reported back from Ranorex together with any
messages or other information. The Test Name indicates the name of the test inside Ranorex and the
execution status corresponds the matching status inside Ranorex as illustrated below:

Ranorex Status SpiraTeam Status

Success Passed

Failed Failed

In addition, the detailed test report from Ranorex is available in the large text-box below. It will contain
messages such as:

[2011/10/14 14:08:32.795][Debug][Logger]: Console logger starting.
[2011/10/14 14:08:32.874][Info][Test]: Test Suite 'WinForms Test' started.
[2011/10/14 14:08:32.889][Info][Test]: Test Case 'VS2005_Application_Test' started.
 [2011/10/14 14:08:33.467][Success][Test]: Test Module 'StartWinformsSample' completed
with status 'Success'.
[2011/10/14 14:08:33.467][Info][Test]: Test Module 'CheckIfApplicationAlive'
started.
[2011/10/14 14:08:33.608][Info][Validation]: Validating Exists on item
'WinFormsApp.ButtonTest_PushButton'.
 [2011/10/14 14:09:55.718][Failure][Test]: Test Case 'VS2005_Application_Test'
completed with status 'Failed'.
[2011/10/14 14:09:55.718][Failure][Test]: Test Suite 'WinForms Test' completed with
status 'Failed'.

Congratulations… You are now able to run Ranorex automated functional tests and have the results be
recorded within SpiraTest / SpiraTeam.

Page 119 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

16. Rational Functional Tester
IBM Rational Functional Tester (hereafter RFT) is software test automation tool used by quality assurance
teams to perform automated regression testing. Testers create scripts by using a test recorder which
captures a user's actions against their application under test. The recording mechanism creates a test
script from the actions. The test script is produced as either a Java or Visual Basic.net application.

This section describes how you can use SpiraTest / SpiraTeam (hereafter SpiraTeam) together with
RemoteLaunch to schedule and remotely launch instances of RFT on different computers and have the
testing results be transmitted back to SpiraTeam. This allows you to extend your SpiraTeam’s test
management capabilities to include automated RFT tests.

Note: This integration requires at least version 3.0 of SpiraTest/Team.

16.1. Installing the RFT Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the RFTEngine.zip file from the Inflectra website and locate the appropriate
RFTAutomationEngine.dll for the version of RFT that you are using.

o If you don’t see the version listed, just use the nearest version that is lower than your
current version.

 Copy the file “RFTAutomationEngine.dll” into the “extensions” sub-folder of the RemoteLaunch
installation.

 Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

 Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is

meaningful to your users.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

Page 120 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For RFT
this should always be RFTAutomationEngine.

 Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with RFT listed as an available automation engine.

16.1.1. Advanced Settings
You can modify the RFT configuration for each of the specific automation hosts, by right-clicking on the
RemoteLaunch icon in the system tray and choosing “Configuration”. That will bring up the
RemoteLaunch configuration page.

The RFT engine adds its own tab to this page which allows you to configure how RFT operates:

The following fields can be specified on this screen:

 RFT Location – this is where the installation of RFT can be found. Typically it’s C:\Program
Files\IBM\SDP\FunctionalTester\bin

 Workspace Location – This is the folder where the RFT test scripts and generated log files will
be stored. The currently logged-in user needs to have Read/Write permissions over this folder.
Typically it’s:

Page 121 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 C:\Documents and Settings\[User Name]\IBM\rationalsdp\workspace on
a Windows XP workstation or Windows 2003 server.

 C:\Users\[User Name]\IBM\rationalsdp\workspace on a Windows Vista, 7,
2008 or 2008 R2 computer.

 Trace Logging – When selected, this will log additional trace and debugging information to the
Windows Event Log. This should not be selected in a production environment.

16.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and linking it to
an automated RFT test script.

First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Automation” tab:

You need to enter the following fields:

 Automation Engine - Choose the RFT Automation Engine that you created in the previous
section from the drop-down list.

 Script Type – This should be set to Linked as the integration with RFT only supports referencing
RFT test script files and not physically uploading the test scripts into SpiraTeam.

 Filename – This needs to consist of the following three components separated by a pipe (|)
character (see the screenshot for an example):

 The name of the RFT project that the test is mapped to

 The name of the RFT script in the project that the test is mapped to

 Either “java” or “net” depending on whether you have a Java or .NET test script

 Document Type – This allows you to choose which document type the automated test script will
be categorized under.

 Document Folder –This allows you to choose which document folder the automated test script
will be stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This is not used with the RFT Engine since it only supports linked test scripts.

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

Page 122 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

16.2.1. Using Parameterized Test Cases
There is an advanced feature of SpiraTest/Team and RemoteLaunch that lets you pass parameters from
SpiraTeam to your RFT automated test suite. This is very useful if you have a data-driven RFT test suite
that defines input variables from an external data source.

To setup the automated test case for parameters, click on the “Test Steps” tab and click on “Edit
Parameters”:

The name of the parameter ${login} is actually not used when passing the data to RFT, only the values
are passed. Therefore it’s important that the parameters are stored in the order they are expected by your
RFT test script.

16.3. Executing the RFT Test Sets from SpiraTeam
There are two ways to execute automated test cases in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

2. Execute the test cases right now on the local computer.

We shall outline both of these two scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

16.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunch application on that specific
machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Page 123 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the RFT automated test cases and click on its hyperlink to display the test
set details page:

You need to add at least one automated test case to the test set and then configure the following fields:

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

If you have parameterized test cases inside the automated test set you need to set their values by right-
clicking on the test case and choosing “Edit Parameters”:

Page 124 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Enter the parameter values and click “Update” to commit the change. This allows you to have the same
test case in the test set multiple times with different data for each instance.

16.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be execute. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the RFT test:

 Passed – The RFT automated test ran successfully and all the test steps in the test script passed
and no assertions were thrown.

 Failed – The RFT automated test ran successfully, but at least one test step failed or at least one
assertion failed.

 Caution – The RFT automated test run successfully, but at least one warning was logged in one
of the test steps.

 Blocked – The RFT automated test did not run successfully.

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you will see browser windows launch as RFT executes the
appropriate tests.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by RFT, you will see the following information:

Page 125 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

This screen indicates the status of the test run that was reported back from RFT together with any
messages or other information. The Test Name indicates the name of the test inside RFT and the
execution status corresponds the matching status inside RFT as illustrated below:

RFT Status SpiraTeam Status

PASS Passed

FAIL Failed

WARNING Caution

In addition, the detailed test report from RFT is available in the large text-box below. It will contain
messages such as:

07-Nov-2011 03:00:05.004 PM: Script Start - INFORMATION - Script start [Script1]
07-Nov-2011 03:00:05.035 PM: Simplified Script Group - INFORMATION - firefox.exe: self
improvement - QuickStart Tutorials for Rational Functional Tester (RFT) - Stack
Overflow - Mozilla Firefox
07-Nov-2011 03:00:05.035 PM: Timer Start - INFORMATION - Start timer:
firefoxexeselfimprovementQuickSta_1
07-Nov-2011 03:00:25.535 PM: General - WARNING - Object Recognition is weak (above the
warning threshold)
07-Nov-2011 03:00:49.488 PM: General - FAIL - Script1.testMain had an unhandled
exception.
07-Nov-2011 03:00:49.488 PM: Script End - FAIL - Script end [Script1]
Exception occurred during playback of script [Script1] [CRFCN0019E:
RationalTestScriptException on line 49 of script Script1 -
com.rational.test.ft.ObjectNotFoundException: CRFCN0661W: The recognition score of the
found object does not qualify the object as a match.
 Looking for [GuiSubitemTestObject(Name: goToAWebSitetext, Map: GoToAWebSite)], best
failing candidate score was [22500] with best failing description [{.class=.Text,
.name=Go to a Web Site, .classIndex=0}].].

Congratulations… You are now able to run RFT automated functional tests and have the results be
recorded within SpiraTest / SpiraTeam.

Page 126 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

17. TestingAnywhere
TestingAnywhere is a powerful and easy to use automated software testing tool that allows users to
automate any type of testing. Powerful GUI based recording capabilities and a no-programming required
user interface allows testers to quickly set up even complex test cases. A built-in editor allows users to
build tests that can be easily edited to allow for changes in the test cases.

This section describes how you can use SpiraTest / SpiraTeam (hereafter SpiraTeam) together with
RemoteLaunch to schedule and remotely launch instances of TestingAnywhere on different computers
and have the testing results be transmitted back to SpiraTeam. This allows you to extend your
SpiraTeam’s test management capabilities to include automated TestingAnywhere tests.

Note: This integration requires at least version 4.0 of SpiraTest/Team and RemoteLaunch.

17.1. Installing the TestingAnywhere Engine
This section assumes that you already have a working installation of SpiraTest or SpiraTeam and have
installed RemoteLaunch on the various test automation hosts following the instructions in Section 1
(above). Once those prerequisites are in place, please follow these steps:

 Download and extract the TestingAnywhereEngine.zip file from the Inflectra website and locate
the TestingAnywhereAutomationEngine.dll file contained within.

 Copy the file “TestingAnywhereAutomationEngine.dll” into the “extensions” sub-folder of the
RemoteLaunch installation.

 Log in to SpiraTeam as a system administrator and go into SpiraTeam main Administration page
and click on the “Test Automation” link under Integration.

 Click the “Add” button to enter the new test automation engine details page. The fields required
are as follows:

o Name: This is the short display name of the automation engine. It can be anything that is

meaningful to your users.

o Description: This is the long description of the automation engine. It can be anything that
is meaningful to your users. (Optional)

o Active: If checked, the engine is active and able to be used for any project.

o Token: This needs to be the assigned unique token for the automation engine and is
used to tell RemoteLaunch which engine to actually use for a given test case. For
TestingAnywhere this should simply be TestingAnywhere.

Page 127 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 Once you have finished, click the “Insert & Close” button and you will be taken back to the Test
Automation list page, with TestingAnywhere listed as an available automation engine.

17.1.1. Advanced Settings
You can modify the TestingAnywhere configuration for each of the specific automation hosts, by right-
clicking on the RemoteLaunch icon in the system tray and choosing “Configuration”. That will bring up the
RemoteLaunch configuration page.

The TestingAnywhere engine adds its own tab to this page which allows you to configure how
TestingAnywhere operates:

The following fields can be specified on this screen:

 Player Location – this is the folder where the TestingAnywhere player (TAPlayer.exe) can be
found. Typically it’s C:\Program Files (x86)\Testing Anywhere 9.0\Testing Anywhere

 Files Location – This is the folder where the TestingAnywhere test scripts and generated log
files will be stored. The currently logged-in user needs to have Read/Write permissions over this
folder. Typically it’s:

 C:\Documents And Settings\[UserName]\My Documents\Testing
Anywhere Files on a Windows XP workstation or Windows 2003 server.

Page 128 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 C:\Users\[UserName]\Documents\Testing Anywhere Files on a Windows
Vista, 7, 2008 or 2008 R2 computer.

 Trace Logging – When selected, this will log additional trace and debugging information to the
Windows Event Log. This should not be selected in a production environment.

17.2. Setting up the Automated Test Cases
This section describes the process for setting up a test case in SpiraTeam for automation and linking it to
an automated TestingAnywhere test script.

First you need to display the list of test cases in SpiraTeam (by clicking Testing > Test Cases) and then
add a new test case. Once you have added the new test case, click on it and select the “Overview” tab,
and scroll down to the “Automation” section:

You need to enter the following fields:

 Automation Engine - Choose the TestingAnywhere Automation Engine that you created in the
previous section from the drop-down list.

 Script Type – This should be set to Linked as the integration with TestingAnywhere only
supports referencing TestingAnywhere test script files and not physically uploading the test
scripts into SpiraTeam.

 Filename – This needs to consist of the relative location of the TestingAnywhere test script to the
test script root folder.

 Document Type – This allows you to choose which document type the automated test script will
be categorized under.

 Document Folder –This allows you to choose which document folder the automated test script
will be stored in.

 Version – The version of the test script (1.0 is used if no value specified)

 Test Script – This is not used with the TestingAnywhere Engine since it only supports linked test
scripts.

Once you are happy with the values, click [Save] to update the test case. Now you are ready to schedule
the automated test case for execution.

17.3. Executing the TestingAnywhere Test Sets from SpiraTeam
There are two ways to execute automated test cases in SpiraTeam:

1. Schedule the test cases to be executed on a specific computer (local or remote) at a date/time in
the future

Page 129 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

2. Execute the test cases right now on the local computer.

We shall outline both of these two scenarios in this section. However first we need to setup the
appropriate automation hosts and test sets in SpiraTeam:

17.3.1. Configuring the Automation Hosts and Test Sets
Go to Testing > Automation Hosts in SpiraTeam to display the list of automation hosts:

Make sure that you have created an Automation Host for each computer that is going to run an
automated test case. The name and description can be set to anything meaningful, but the Token field
must be set to the same token that is specified in the RemoteLaunch application on that specific
machine.

Once you have at least one Automation Host configured, go to Testing > Test Sets to create the test sets
that will contain the automated test case:

Note: Unlike manual test cases, automated test cases must be executed within a test set – they cannot
be executed directly from the test case.

Create a new Test Set to hold the TestingAnywhere automated test cases and click on its hyperlink to
display the test set details page:

You need to add at least one automated test case to the test set and then configure the following fields:

Page 130 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

 Automation Host – This needs to be set to the name of the automation host that will be running
the automated test set.

 Planned Date – The date and time that you want the scenario to begin. (Note that multiple test
sets scheduled at the exact same time will be scheduled by Test Set ID order.)

 Status – This needs to be set to “Not Started” for RemoteLaunch to pick up the scheduled test
set. When you change the Planned Date, the status automatically switches back to “Not Started”

 Type – This needs to be set to “Automated” for automated testing

17.3.2. Executing the Test Sets
Once you have set the various test set fields (as described above), the Remote Launch instances will
periodically poll SpiraTeam for new test sets. Once they retrieve the new test set, they will add it to their
list of test sets to be executed. Once execution begins they will change the status of the test set to “In
Progress”, and once test execution is done, the status of the test set will change to either “Completed” –
the automation engine could be launched and the test has completed – or “Blocked” – RemoteLaunch
was not able to start the automation engine.

If you want to immediately execute the test case on your local computer, instead of setting the
“Automation Host”, “Status” and “Planned Date” fields, you can instead click the [Execute] icon on the test
set itself. This will cause RemoteLaunch on the local computer to immediately start executing the current
test set.

In either case, once all the test cases in the test set have been completed, the status of the test set will
switch to “Completed” and the individual test cases in the set will display a status based on the results of
the TestingAnywhere test:

 Passed – The TestingAnywhere automated test ran successfully and all the test steps in the test
script passed and no assertions were thrown.

 Failed – The TestingAnywhere automated test ran successfully, but at least one test step failed
or at least one assertion failed.

 Caution – The TestingAnywhere automated test run successfully, but at least one warning was
logged in one of the test steps.

 Blocked – The TestingAnywhere automated test did not run successfully.

If you receive the “Blocked” status for either the test set or the test cases you should open up the
Windows Application Event Log on the computer running RemoteLaunch and look in the event log for
error messages.

Note: While the tests are executing you will see browser windows launch as TestingAnywhere executes
the appropriate tests.

Once the tests have completed, you can log back into SpiraTeam and see the execution status of your
test cases. If you click on a Test Run that was generated by TestingAnywhere, you will see the following
high-level test information:

Page 131 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

This screen indicates the status of the test run that was reported back from TestingAnywhere together
with the execution date/time.

If you scroll down to the ‘Console Output’ section, you will see:

Finally, to see the detailed test steps, look under the ‘Test Steps’ section:

Congratulations… You are now able to run TestingAnywhere automated functional tests and have the
results be recorded within SpiraTest / SpiraTeam.

Page 132 of 133 © Copyright 2006-2015, Inflectra Corporation This document contains Inflectra proprietary information

Legal Notices
This publication is provided as is without warranty of any kind, either express or implied, including, but not
limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.

This publication could include technical inaccuracies or typographical errors. Changes are periodically
added to the information contained herein; these changes will be incorporated in new editions of the
publication. Inflectra Corporation may make improvements and/or changes in the product(s) and/or
program(s) and/or service(s) described in this publication at any time.

The sections in this guide that discuss internet web security are provided as suggestions and guidelines.
Internet security is constantly evolving field, and our suggestions are no substitute for an up-to-date
understanding of the vulnerabilities inherent in deploying internet or web applications, and Inflectra cannot
be held liable for any losses due to breaches of security, compromise of data or other cyber-attacks that
may result from following our recommendations.

SpiraTest®, SpiraPlan®, SpiraTeam®, RemoteLaunch®, RemoteLaunchX™ and Inflectra® are either
trademarks or registered trademarks of Inflectra Corporation in the United States of America and other
countries. Microsoft®, Windows®, Explorer® and Microsoft Project® are registered trademarks of
Microsoft Corporation. QuickTest Pro® is a registered trademark of Hewlett-Packard Development
Company, L.P. All other trademarks and product names are property of their respective holders.

Please send comments and questions to:

Technical Publications

Inflectra Corporation

8121 Georgia Ave, Suite 504

Silver Spring, MD 20910-4957

U.S.A.

support@inflectra.com

mailto:support@inflectra.com

	Contents
	Introduction
	1. RemoteLaunch Guide
	1.1. Installing RemoteLaunch
	1.1.1 Installing a Test Extension
	1.1.2 Registration

	1.2. Using RemoteLaunch
	1.2.1 Basic Unattended Operation
	1.2.2 Client Configuration
	1.2.3 Extension Configuration
	1.2.4 Status Screen
	1.2.5 Tray Icon Menu

	1.3 Test Execution and Reporting
	1.4. Running RemoteLaunch from a Build Script
	1.5 Command line arguments
	1.6. Using RemoteLaunchX
	1.6.1. Configuring RemoteLaunchX
	1.6.2. Setting up Automated Tests in SpiraTest
	1.6.3. Running RemoteLaunchX
	1.6.4. Scheduling RemoteLaunchX
	1.6.5. Customizing the Reporting

	2. QuickTestPro Engine
	2.1. Installing the QTP/UFT Engine
	 Copy the file “QuickTestProX.dll” or “UftX.dll” (where X is the appropriate version) into the “extensions” sub-folder of the RemoteLaunch installation.
	2.2. Setting up the Automated Test Cases
	2.2.1. Using Parameterized Test Cases

	2.3. Executing the QTP/UFT Test Sets from SpiraTeam
	2.3.1. Configuring the Automation Hosts and Test Sets
	2.3.2. Executing the Test Sets

	3. SmarteScript Engine
	3.1. Installing the SmarteScript Engine
	 Copy the file “SmarteScriptX.dll” (where X is the appropriate version) into the “extensions” sub-folder of the RemoteLaunch installation.
	3.2. Setting up the Automated Test Cases
	3.2.1. Using Parameterized Test Cases

	3.3. Executing the SmarteScript Test Sets from SpiraTeam
	3.3.1. Configuring the Automation Hosts and Test Sets
	3.3.2. Executing the Test Sets

	4. TestComplete Engine
	4.1. Installing the TestComplete Engine
	 Copy the file “TestCompleteX.dll” or “TestExecuteX.dll” (where X is the appropriate version) into the “extensions” sub-folder of the RemoteLaunch installation.
	4.1.1. Advanced Settings

	4.2. Setting up the Automated Test Cases
	4.2.1. Using Parameterized Test Cases

	4.3. Executing the TestComplete Test Sets from SpiraTeam
	4.3.1. Configuring the Automation Hosts and Test Sets
	4.3.2. Executing the Test Sets
	4.3.3. Screenshot Capture

	5. Selenium Engine
	5.1. Installing the Selenium Engine
	 Copy the file “SeleniumX.dll” (where X is the appropriate version) into the “extensions” sub-folder of the RemoteLaunch installation.
	5.1.1. Advanced Settings

	5.2. Setting up the Automated Test Cases
	5.2.1. Attaching a Selenium Test Script
	5.2.2. Linking a Selenium Test Script
	5.2.1. Using Parameterized Test Cases

	5.3. Executing the Selenium Test Sets from SpiraTeam
	5.3.1. Configuring the Automation Hosts and Test Sets
	5.3.2. Executing the Test Sets

	6. Squish Engine
	6.1. Installing the Squish Engine
	 Copy the file “SquishX.dll” (where X is the appropriate version) into the “extensions” sub-folder of the RemoteLaunch installation.
	6.1.1. Squish RemoteLaunch Settings

	6.2. Setting up the Automated Test Cases
	6.2.1. Attaching a Squish Test Script
	6.2.2. Linking a Squish Test Script
	6.2.1. Using Parameterized Test Cases

	6.3. Executing the Squish Test Sets from SpiraTeam
	6.3.1. Configuring the Automation Hosts and Test Sets
	6.3.2. Executing the Test Sets

	7. Command-Line Engine
	7.1. Installing the Command-Line Engine
	7.1.1. Command-Line RemoteLaunch Settings

	7.2. Setting up the Automated Test Cases
	7.2.1. Attaching a Command-Line Test Script
	7.2.2. Linking a Command-Line Test Script
	7.2.1. Using Parameterized Test Cases

	7.3. Executing the Command-Line Test Sets from SpiraTeam
	7.3.1. Configuring the Automation Hosts and Test Sets
	7.3.2. Executing the Test Sets

	8. LoadRunner 11 Engine
	8.1. Installing the LoadRunner11 Engine
	8.2. Setting up the Automated Test Cases
	8.2.1. Using Parameterized Test Cases

	8.3. Executing the LoadRunner Scenario from SpiraTeam
	8.3.1. Configuring the Automation Hosts and Test Sets
	8.3.2. Executing the Test Sets

	9. SoapUI Engine
	9.1. Installing the SoapUI Engine
	 Extract the file “soapUIEngine.dll” from the compressed archive into the “extensions” sub-folder of the RemoteLaunch installation.
	9.1.1. SoapUI RemoteLaunch Settings

	9.2. Setting up the Automated Test Cases
	9.2.1. Linking a SoapUI Test Script
	9.2.1. Using Parameterized Test Cases

	9.3. Executing the SoapUI Test Sets from SpiraTeam
	9.3.1. Configuring the Automation Hosts and Test Sets
	9.3.2. Executing the Test Sets

	10. FitNesse Engine
	10.1. Installing the FitNesse Engine
	10.1.1. Advanced Settings

	10.2. Setting up the Automated Test Cases
	10.2.1. Using Parameterized Test Cases

	10.3. Executing the FitNesse Test Sets from SpiraTeam
	10.3.1. Configuring the Automation Hosts and Test Sets
	10.3.2. Executing the Test Sets

	11. NeoLoad Engine
	11.1. Installing the NeoLoad Engine
	11.1.1. NeoLoad RemoteLaunch Settings

	11.2. Setting up the Automated Test Cases
	11.2.1. Using Parameterized Test Cases

	11.3. Executing the NeoLoad Scenario from SpiraTeam
	11.3.1. Configuring the Automation Hosts and Test Sets
	11.3.2. Executing the Test Sets

	12. TestPartner Engine
	12.1. Installing the TestPartner Engine
	12.2. Setting up the Automated Test Cases
	12.2.1. Using Parameterized Test Cases

	12.3. Executing the TestPartner Test Sets from SpiraTeam
	12.3.1. Configuring the Automation Hosts and Test Sets
	12.3.2. Executing the Test Sets

	13. BadBoy Engine
	13.1. Installing the Badboy Engine
	13.1.1. Advanced Settings

	13.2. Setting up the Automated Test Cases
	13.2.1. Using Parameterized Test Cases

	13.3. Executing the Badboy Test Sets from SpiraTeam
	13.3.1. Configuring the Automation Hosts and Test Sets
	13.3.2. Executing the Test Sets

	14. JMeter Engine
	14.1. Installing the JMeter Engine
	14.1.1. Advanced Settings

	14.2. Setting up the Automated Test Cases
	14.2.1. Using Parameterized Test Cases

	14.3. Executing the JMeter Test Sets from SpiraTeam
	14.3.1. Configuring the Automation Hosts and Test Sets
	14.3.2. Executing the Test Sets

	15. Ranorex Engine
	15.1. Installing the Ranorex Engine
	15.1.1. Advanced Settings

	15.2. Setting up the Automated Test Cases
	15.2.1. Using Parameterized Test Cases

	15.3. Executing the Ranorex Test Sets from SpiraTeam
	15.3.1. Configuring the Automation Hosts and Test Sets
	15.3.2. Executing the Test Sets

	16. Rational Functional Tester
	16.1. Installing the RFT Engine
	16.1.1. Advanced Settings

	16.2. Setting up the Automated Test Cases
	16.2.1. Using Parameterized Test Cases

	16.3. Executing the RFT Test Sets from SpiraTeam
	16.3.1. Configuring the Automation Hosts and Test Sets
	16.3.2. Executing the Test Sets

	17. TestingAnywhere
	17.1. Installing the TestingAnywhere Engine
	17.1.1. Advanced Settings

	17.2. Setting up the Automated Test Cases
	17.3. Executing the TestingAnywhere Test Sets from SpiraTeam
	17.3.1. Configuring the Automation Hosts and Test Sets
	17.3.2. Executing the Test Sets

