

Join-In
Senior Citizens Overcoming
Barriers by Joining Fun Activities

AAL Joint Programme: Project No. 031121

Deliverable: 4.2

Design and Implementation of the
Join-In platform

Date of deliverable: 31-10-12 / Version: 1.0

Lead contractor for this deliverable:
Norut

Contributors:
PAS, HMGU, VAL, ITC, NST

Dissemination Level:
Public

Project Duration: Nov. 2010 – Oct. 2013

Project co-founded by

D4.2 Design and Implementation of the Join-In platform Page 2 of 63

Table of Content
1 About Join-In .. 3

2 Introduction ... 5

3 Join_in social networking architecture .. 7

4 Social Network .. 8

4.1 Functions .. 9

4.1.1 Social Contacts .. 9

4.1.2 Calendar and activities ... 12

4.1.3 Games and Exergames ... 12

4.1.4 Avatar selection .. 14

4.1.5 Exercising ... 14

4.1.6 Help .. 14

4.2 Security and authentication issues ... 15

4.2.1 Authentication .. 15

5 User environment devices .. 16

5.1 Set-top boxes.. 16

5.2 All-in-one multi-touch PC .. 17

5.3 Tablets & Smartphones .. 18

5.4 PC / Laptops ... 18

5.5 Microsoft Kinect .. 18

5.6 Exerbike sensors .. 19

5.7 Scoop pointing device ... 19

5.8 The Join-in controller .. 19

6 Game software components and services .. 22

6.1 Game Servers... 22

6.2 Game Software Clients ... 22

6.3 Motion-sensor and controllers servers .. 22

6.4 A cross-platform application library for controllers and motion sensing input
devices - SANDRA ... 23

6.5 Valentia Kinection ... 26

7 Summary .. 28

D4.2 Design and Implementation of the Join-In platform Page 3 of 63

1 About Join-In
Join-In aims at providing the methodology and the technologies for elderly persons to
participate in social activities and have fun via digital media.

Loneliness in the elderly is a major problem in elderly care. Studies in Britain show that
more than half of the people over the age of 75 live by themselves. Many of these suffer
from loneliness and social isolation1. Activities offered by social services do, however,
often not reach those most in need. Challenges for the elderly include: social deprivation,
low self-esteem or physical inability. Social isolation and health are closely related and
may lead to a variety of physical disorders and even depression. Studies have shown the
correlation between loneliness and poor health. Especially the effects on immune system,
the cardiovascular system and the onset of Alzheimer’s disease could be shown234.

The Join-In project aims at counteracting loneliness in the elderly by providing a concept,
the methodology and technologies for elderly persons to participate in social activities.

Fig.1 Join-In Platform

1 Office of National Statistics: Older people,. Living arrangements. At:
http://www.statistics.gov.uk/cci/nugget.asp?id=1264
2 CARMA – Care for the Aged at Risk of Marginalization (QLK6-CT-2002-03421) - Recommendations and Guidelines to
Policy Makers. (2005). http://www.egga.ee/RecommendationsFinalwCoverTOC.pdf Last accessed:2/10
3 Sorkin D, Rook KS, Lu JL: Loneliness, lack of emotional support, lack of companionship, and the likelihood of having a
heart condition in an elderly sample. Ann Behav Med. 2002 Fall; 24(4):290-8
4 Tomaka J, Thompson S, Palacios R: The relation of social isolation, loneliness, and social support to disease outcomes
among the elderly. JAging Health.2006 Jun; 18(3):359-84

D4.2 Design and Implementation of the Join-In platform Page 4 of 63

Join-In is setting up a social platform for the elderly; it allows communication by TV, Tablet
and PC. A multi-player serious game for the elderly is being developed. The interest in
gaming is high in seniors: In a survey performed in Germany with 1200 participants, age
above 61, two out of three PC users stated that they enjoy playing games regularly on the
internet5. Studies6 could demonstrate the increase of cognitive skills, reaction times, self-
esteem and the sense of well-being in the elderly when playing computer games. Another
positive effect is that gaming is multigenerational and enables the elder generation
socialising with the younger one, e.g. grandchildren. The concept includes exercising
either by exergames or by moderated exercises as physical activity -besides supporting
good health- counteracts the feeling of loneliness, while loneliness leads to less physical
activity7. Recent results indicate that exergames create physical benefits and counteract
loneliness8. Join-In encourages contacts with peers in the region and with family and
friends living further afield - if necessary facilitated by an assistant.

Active participation is vital if the individual is to profit from the Join-In developments. Yet
motivation for participation among the elderly is a challenge. One of the problems is the
heterogeneity of the elderly, among other things regarding interests and health. Join-In is
developing a methodology for elderly persons to participate in social activities. This is
based on a thorough user requirement analysis. User groups are set up in Germany,
Hungary, Ireland and Norway. The lead user group is based in Munich. Based on the
results of the user requirement analysis and the analysis of relevant studies and related
work a methodology for setting up a social networking platform which will encourage and
enable involving homebound senior persons in social networking activities being
developed. Digital inclusion and factors hampering its acceptance -such as accessibility,
motivation, lack of skills and confidence- will be tackled and form part of the methodology.
The involvement of user groups in four different countries will help us to achieve a
European solution which will also be useful in other countries.

The Join-In project web-page:

 http://www.join-in-for-all.eu

5 OE24.at. Deutsche Studie - Sechs von zehn Senioren spielen am Computer.
http://www.oe24.at/zeitung/digital/article318942.ece. Last accessed: 2/10

6 Basak C, Boot WR, Voss MW, Kramer AF: Can training in a real-time strategy video game attenuate cognitive decline
in older adults? Psychol Aging. 2008 Dec; 23(4): 765-77).OE24.at

7 Hawkley LC, Thisted RA, Cacioppo JT: Loneliness predicts reduced physical activity: Cross-sectional & longitudinal
analyses. Health Psychol. 2009 May; 28(3):354-63

8 http://www.theatlantic.com/technology/archive/2011/02/physical-video-games-may-help-the-elderly-
psychologically/71184

http://www.join-in-for-all.eu/
http://www.theatlantic.com/technology/archive/2011/02/physical-video-games-may-help-the-elderly-psychologically/71184
http://www.theatlantic.com/technology/archive/2011/02/physical-video-games-may-help-the-elderly-psychologically/71184

D4.2 Design and Implementation of the Join-In platform Page 5 of 63

2 Introduction
In this report we present the design and implementation of the Join-In platform. However,
since most of the effort has gone into the implementation of the platform and its
components, the best description of the platform is to be found in the documented APIs
and in the many lines of programming code on the Join-In source code account.

Fig shows the overall Join-in system with the components both at the user and system
environment.

Fig.2 The Join-in user and system environment

The user environment is where the user accesses the Join-In services. The user
environment will have various user devices; a hardware platform, and the software running
on it, and game controllers and motion sensors. The system environment run the Join-In
social network and portal and provides on-line services to the games and applications of
Join-In.

In Join-In we have has designed and implemented a social network and social portal using
the components of the Join-In platform. We have designed and implemented computer
games and exercise games that can be accessed through the social network, and

D4.2 Design and Implementation of the Join-In platform Page 6 of 63

developed special wireless controllers and interfaced commercial controllers and motion
sensors to this platform.

Chapter 2 presents briefly the Join-In Connector, which provides an API for integration of
the Join-In games, the social network portal, and existing social networks. Appendix A
describes the detailed of the Join-In Connector API, while the source code is managed
and shared on the Join-In source code account.

Chapter 3 presents briefly the Join-In social network server, and Chapter 3.1 presents the
functionality supported and implemented on the portal. The server is based on ELGG. The
source code of the functions is managed and shared on the Join-In source code account.

Chapter 4 presents briefly the user devices that will be supported by Join-In. They all run
standard operating systems and browsers. Special attention is given to the Join-In
controller.

Chapter 5 presents the architecture of the game servers, and describes the software
components and drivers that have been developed by Join-In. The source code is
managed and shared on the Join-In source code account.

D4.2 Design and Implementation of the Join-In platform Page 7 of 63

3 Join-in social networking architecture

The social networking architecture of Join-In is according to Fig. 3 and depicts how the
Join-In social network integrates the Join-In games, Join-In social portal and other
applications, the , and how it can connect to existing social networks (e.g. Facebook,
Google+, twitter).

Fig.3 Join-In social networking architecture

The Join-In Connector contains:

• Game profile manager that will provide API for registering new games other
applications.

• Player profiler manager that will provide an API to administrate the player’s profile,
for example adding profile, registering profile, listing profile etc.

• Social media connector that will enable the integration with other social media’s and
other AAL platforms.

The Join-In Connector is integrated with an ELGG platform which provides the portal.

The API of the Join-In Connector is described in further detail in Appendix A.

Exerbiking Memofix

Join-In Connector

Social
Media

Connector
 Player
Profile

Manager
Game
Profile

Manager Social Media New Games /
Applications

Tablet + Bicycle TV + Set-top Box PC / All-in-One

Users (Elderly, Family, Friends)

Join-In – Interactive
Portal for Senior Citizens

E L G G

 Walking Game Antique Hunt Exerbiking Memofix

New Games
/

Applications

D4.2 Design and Implementation of the Join-In platform Page 8 of 63

4 Social Network
In order to motivate and to socially connect elderly people to their friends, family and other
people, the Join-In project builds a social network. The functionalities and content of the
social network are defined based on requirements gathered from users groups and
stakeholders.

The social network has to handle the different “Social Contact Functionalities” (e.g. user
communication and profile setting), and to provide an easy way for adding or linking to the
applications. These are

• Computer games

• Exercise games

• Exercising

At the same time, a graphical user interface that is suitable for the elderly users is
required.

The social network has to take care of the special needs of the target group. This means

• Simple access for the elderly users as many have limited knowledge in new
technologies

• Accessibility for users with physical impairments

• Multilingualism support for the users in the Join-In partner countries.

Based on user involvement we have identified a set of requirements for the social network,
and the Join-In platform and social network portal will be adapted to the needs of the
various user groups.

We have created 4 different roles that a user of the platform can have:

• System Administrator: The role of system administrator has full administrative rights
on the platform. A system administrator controls the administration part and plug-ins
and the usual responsibilities of a system administrator.

• User support: The role of user support covers several tasks: it allows you to
manage the user registration and supports the users locally. In addition to the
assistance by phone, a user supporter can also access the machine remotely - if
the user has agreed to this option - and support him/her directly via remote access.

• Moderator: The moderator role allows inviting other users for exercises. It enables
you to guide and moderate the different activities. Moderators may initiate an
exercising session and connect users to jointly take part in an exercise session.

D4.2 Design and Implementation of the Join-In platform Page 9 of 63

• User: The users have the right to change the default settings of their personal data
and manage their own profile.

Having all this in mind, it was decided to use the ELGG framework for building the social
network platform. ELGG is an Open Source and free project, based on a modular
structure, allowing for the addition of new plugins on demand. Another reason for choosing
this framework was the extensive library of add-ons and plugins already developed by the
ELGG Community.

The Join-In social network support functions for

• Social contacts

• Tools for communicating and sharing

• Local and regional information

• Calendar and appointments

• Games and exergames

• Choosing avatars

• Exercising

• Help functionality

• Security and authentication issues

4.1 Functions
This section explains in more detail the different functionalities that the Join-In social
network provides.

4.1.1 Social Contacts

User Profile

The User Profile contains the information that defines the user. It works within the social
network as identification.

Additionally to the name, the User Profile includes:

• Photo

• Avatar

• Gamer profile

D4.2 Design and Implementation of the Join-In platform Page 10 of 63

o Skill level (per game)
o High score (per game)
o Favourite games

• Exercise profile
o Favourite exercise

• Interests and hobbies

• Group memberships

• Restrictions (due to e.g. physical limitation)

All the information will be given on a voluntary basis.

User Settings

In addition to the User Profile - that captures the social profile - there are further details to
be entered by the administrator when a new Join-In user is registered in the social
network.

The User Settings include:

• First Name and Family Name

• User Name / Gamer tag

• User Id

• Contact details: Email and/or Telephone number

Friends

The user can add or delete friends and search new contacts.

Videoconferencing

Videoconferencing allows the users to have live video and audio chat as communication
channel with their contacts.

The user will be able to invite his/her friends to a videoconference, making it more private.

It will allow the user to play a game while videoconferencing, adding a new social value to
the game.

D4.2 Design and Implementation of the Join-In platform Page 11 of 63

Text Chat

A chat plugin is provided. Some layout modifications in this ELGG community plugin are
needed to improve the user’s accessibility.

Messages

With the help of a keyboard (physical or virtual) the users will be able to send and receive
written messages (similar to emails) to/from their contacts.

The messages optionally can be forwarded to an email account.

Exchange

The users are able to upload, share, search and comment, and tag different types of
information, e.g.

• Photos

• Videos

• Web Links

• Texts: News, Histories, Poetry, etc…

The user may want to find in the history of files some precise content. For that purpose, a
search engine is introduced and it will be used to index the content exchanged. The need
of this functionality has to be evaluated by users.

Regional information

The regional information is a special set of user content: videos, stories and news from the
local senior groups, stories from the neighbourhood, philosophy, theology, history, etc….
The major differences with the normal user content are:

• Open information: The information posted as regional information is accessible to
all users or at least to all those users who are members of a defined region.

• Supervised: All the data posted as regional information is approved by a regional
moderator to avoid misuse of the functionality.

This information helps the elderly to stay informed with the activities of their region, get in
touch with new people, share photos, videos or opinions with their neighbourhood, etc...

D4.2 Design and Implementation of the Join-In platform Page 12 of 63

4.1.2 Calendar and activities

Managing a user’s appointments and schedule are functionality strongly related to users
taking part in activities like games, exercises or even groups – thus helping the users to
coordinate their social activities.

Calendar

The user can access a calendar to check personal appointments, events, and group or
regional meetings.

Appointments and events

The user is able to add, delete or modify appointments or events within a graphical
interface. This interface is a plugin for managing the users’ calendar.

A specific date can be shared between friends or group members. That is helpful when, for
example, an activity moderator wants to schedule that time and date for the next
(exer)game or exercise. The moderator can set up an exercise goal, by adding
a sequence of dates containing a set of exercise games and also video exercising. The
users may also be able to see their progress in achieving the exercise goals in the
calendar interface.

Reminders

A reminder is a special functionality that works directly with the calendar and helps the
user to remember appointments and events.

The user will get an additional notification (e.g. by integrated messaging or email) for an
upcoming appointment or event.

4.1.3 Games and Exergames

The games are an important part of the Join-In Platform and their integration with the
Social Network is a major issue. The user can play the (exer)games with other users with
or without the supervision of a Moderator, which will show how to play, observe the users
movements and/or help and give feedback to the users.

Game registration

D4.2 Design and Implementation of the Join-In platform Page 13 of 63

When a game has been developed, it has to be made available to the user. The social
network is a really good tool for this purpose.

In order to offer game information to the users, there is a need of a plugin to implement the
game information acquisition and of its integration in the social network. This plugin is the
Game Registration. Once the game is registered, it will be accessible to the users in the
game lists.

Games listing and gamer profile

There is a plugin to manage the lists of games offered and the list of games that the user
already played. These lists are reachable by the Join-In Connector

Game launcher

It is necessary to provide easy access to the games. The game launcher gets information
from the registered games on the game and gamer list.

Game metrics performance viewer

Both the cognitive games and exercise games (exergames) will collect performance data
from the player over time. Each game that collects such data will allow the player to view
their in-game progress for a defined period of time. This data will be readable by the Join-
In Connector, so it can be stored and retrieved by the game servers. Read access may
also be granted to other applications, e.g. for care providers who might have an interest in
monitoring the performance and progress of the participants.

For each game the metrics list contains:

• total number of times the player have played a game

• total time spent on a game

• scores of single gaming sessions (including the high-score)

• total game score of a game

• level reached - if applicable

• goal to be reached: future appointments in the calendar

The nature of the data collected will vary between the different games, for example, the
walking game may capture the following metrics per gaming session:

• Total number of steps taken

• Average number of steps taken per minute

D4.2 Design and Implementation of the Join-In platform Page 14 of 63

• Number of obstacles avoided

• Time to complete the walking challenge

4.1.4 Avatar selection

An external application - similar to a game - enables the user to select and potentially even
to modify the look of the avatar.

The avatar that the user chooses will be used in the (exercise) games the user plays, and
possibly even when exercising. It can be used in the social network’s user interface as an
alternative to the user's photo.

4.1.5 Exercising

Join-In offers the users a variety of exergames for improving their physical fitness. In
addition to these exergames, the elderly can participate in a remote gymnastic program,
which can be with or without a moderator. For this purpose, the video sharing and the
videoconferencing are helpful functionalities, as well as the calendar for organizing the
exercise sessions.

4.1.6 Help

There will be a user manual consisting of several chapters.

One part describes the social platform, the way the social network is organised and how its
features and tools are used.

An additional guideline explains step-by-step the course of action (for example: “enter your
first name now”- click -using the mouse- the large blue button “Confirm” at the bottom of
the screen). Thus the user can easily get acquainted with the platform. Screenshots and
pictures will lead to a better understanding. This part will also be available as a printed
manual.

Another part is directed at those persons that are regularly using digital media, e.g.
grandchildren. It explains in detail all the tools, functions and functionalities of the platform
and how to manage these.

A support centre will provide additional help. The “Help”-Menu provides a telephone
number that can be called at a certain period of time. A person at the Call centre will
answer the questions of the users. He/she will also be able to remotely access the user's

D4.2 Design and Implementation of the Join-In platform Page 15 of 63

computer over the network– if the user has activated this option in the user setting- to
resolve any technical problems.

4.2 Security and authentication issues

The Join-In social network is designed as a private network, which allows access for
registered users only. To achieve acceptance of the users obeying the users right on
privacy and data protection is vital. This policy is addressed in the Join-In Social Media
Privacy Policy which is being developed within the Join-In project.

4.2.1 Authentication

The user has different options to get authenticated to the Social Network:

• Paper form: A user can register in the Join-In Platform filling a form in one of the
regional user centres. Here the User Support will give the login data to the user and
help the user with the registration.

• Email: For users who own an email account. The user can access to a registration
form within the Join-In Portal, where he will be asked for “User Name”, “Email” and
“Password”. Once the User Admin has confirmed the registration process, the user
will get a confirmation email, allowing him/her to access the portal.

The user need to login on to the portal using “User Name” and “Password”. To avoid
inserting the login every time, the information can be stored in the user’s machine.

This option allows the user to use different devices to access the web-based portal.

• Pen Drive Security / Dongle: The credentials are stored in this physical device. The
user connects it to the client machine and the Dongle launches a client browser and
proceeds to add the access information.

• MAC: The registration can take place when the user buys the device (STBs, All-In-
One, etc…). The MAC address is registered additionally to the user information.
This address can work as user identification, avoiding the need of inserting the login
information every time, but not allowing the client to access the platform from
different computers.

This last option is not secure, because hostile users can mask the MAC, replacing
the legit owner of the account. It does, therefore, not provide an option for Join-In.

D4.2 Design and Implementation of the Join-In platform Page 16 of 63

5 User environment devices
This chapter describes the hardware devices to be used by the users at home in order to
take part in the Join-In social network and on-line games and services.

Join-In offers various user device options depending on the requirements of the end-users.
Some users may use a simple-to-use set-top box and a robust controller, while others
more experienced user or peers can access the Join-In social network using a multi-touch
All-in-One PC, tablet or a PC.

5.1 Set-top boxes
Two set-top box approaches were defined. One focuses on
embedded solutions with DVB reception capabilities and
Web access, so called hybrid set-top boxes. The second
approach, the streaming set-top box, is with mere Web
access and optimized streaming capabilities. TV content is
accessible via portals like zattoo.com.

No special measures are taken into account for digital rights (DRM) or conditional access
(CA) management of general media content. The user can access free to air (FTA) and
free Web content. Upgrades to the reception of protected media are available by end-
users’ requests.

Set-top box specification:

Common Features

• WLAN and wired network connection

• Bluetooth

• HDMI, SCART and video/audio connectors

• Supported resolutions Full HD 1920x1080 and PAL 720x576 (DV) 768x576 (DVB)

• Internal or external web socket server for motion data access from the embedded
browser

• External Webcam

• Virtual keyboard (wireless keyboard optionally);

• Wireless mouse or Join-In controller

D4.2 Design and Implementation of the Join-In platform Page 17 of 63

Streaming Set-top box

• Pentium dual core or AMD E450 with graphics for DirextX support,

• Windows 7 performance index ≥ 3.9

• Operating System

• Windows 7 with DirectX 11 or Ubuntu 12.04

• Browser with HbbTV add-on

Hybrid Set-top box (optionally hybrid TV)

• DVB-tuner (S, C or T)

• Linux kernel version 3.2

• Embedded HTLM5 Browser based on Webkit, Opera or others

• Standard HID mouse driver

• HbbTV ≥ Version 1.5

• OpenGL ES 2.0 (WebGL) support (expected in next gnereration)

5.2 All-in-one multi-touch PC
Join-In is also accessible with all-in-one touch-screen PC as
end-user devices. These are all-in-one devices integrating
the processing unit in the screen itself. It is fully possible to
dedicate the usage of such a PC for special purpose
applications (like Join-In) and having the user control the
functionality using only the touch-screen or another dedicated
controller. The touch-screen PCs are supported by Linux and
Windows, and have multiple input/output possibilities making
it feasible to connect to other devices.

The minimum requirements for Join-In will be

• All-in-One multi-touch Pentium dual core or AMD E450 with graphics for DirectX
and WebGL support

• Windows 7 performance index ≥ 4

• Windows 7 with DirectX 11, or Ubuntu 12.04

D4.2 Design and Implementation of the Join-In platform Page 18 of 63

5.3 Tablets & Smartphones
Join-In will to some extend support Tablet and Smartphone as end-
user devices. However, for some Join-In services the specification of
a Tablet or Smartphone may not meet the minimum requirements by
that game or service. There may also be issue regarding processor
speed, graphical acceleration, operating system, web browser
characteristics, and screen size.

Though, some games and services, like the biking exergame of Join-
In, will be designed and implemented specially for Tablet devices. The candidate tablets
are the Android tablet or Apple iPad.

5.4 PC / Laptops
Join-In will also be accessible and support with standard PC’s
and laptop computers as end-user devices. However, it is not
envisioned that this will be the primary user-device of choice
for the Join-in target group.

5.5 Microsoft Kinect
In Join-In we will use the Microsoft Kinect for detecting the user
movements in several of the games and exergames that are
being developed.

Kinect for Xbox 360 and Kinect PC is a game controller
launched by Microsoft. Using advanced artificial vision
technologies it is capable to recognize 3D movements with the highest precision by just
using its camera.

Microsoft has not made any attempt to limit the use of the technology for other purposes,
and the open source community has already developed open source APIs for the device.

In Join-In we will access the Kinect data and functionality by using either;

• Valentia Kinection open source community project. The service currently employs
Microsoft Kinect SDK and is thus restricted to end-user devices running MS
Windows.

• SANDRA cross-platform application library for controllers and motion sensing input
devices.

D4.2 Design and Implementation of the Join-In platform Page 19 of 63

5.6 Exerbike sensors
The exerbiking game will be designed and implemented so that it both works with and
without external activity sensors. Candidate external sensors can be: simple step counters,
the exerbike built-in speedometer, a dedicated bike-attached sensor, or even the users
Smartphone strapped to their leg. The choice of activity sensor will depend on the need for
the actual biking game of getting detailed up-to-data data on the performance of the biker.

The default setting for exerbiking will be to use the tablets internal activity sensor to detect
the vibration of the exerbike as a measure of biking activity.

5.7 Scoop pointing device
The Scoop is an air-pointing device available
from Hillcrest Labs9 that will be used as
reference device for comparison with the Join-In
controller.

5.8 The Join-in controller
Navigating through all of the functions and applications offered in a Browsers environment
requires more than the traditional remote control buttons. The keyboard and mouse
commonly used with PCs are not suited if the user is sitting on a couch or moving in the
room. A multi-touch screen offers additional comfort but does not give the freedom of
moving around. The CE industry is now offering controllers with different options to
overcome the drawbacks of the classical controllers in a hybrid media environment. A lot
of research has been done but feedback from use by users in the real world is just starting
to emerge.

For example the Kinect and WiiMote perform well in a gaming environment but are not
suited for complex menus. Also the approach of using smartphones and tablets as remote
controllers based on suited Apps brings added complexity to the home of the elderly,
requiring experience with such devices and installation knowledge. Currently such devices
are seen as an additional option but will not fully substitute the need for dedicated remote
controllers.

Remote control functions offered are based on different methods

• Classical Key input

• Scroll wheel, wobbling knob, touchpad or touch slider for improved cursor control

• Gyro based motion sensing for cursor control (scoop, Google remote)

9 http://hillcrestlabs.com

http://hillcrestlabs.com/

D4.2 Design and Implementation of the Join-In platform Page 20 of 63

• IR camera based motion sensing (leap motion, Kinect)

• Additional keyboard on the back side for text input

• Voice recognition mainly as substitution for text input (ruwido r117, etc)

• Gesture recognition based on gyro or IR camera data processing

• Special forms of gestures are switching through turning the device and shaking
gestures

Join-In will therefore in addition to the functionality available with the Kinect also develop a
gyro based approach for browser control.

For initial research on gyro-based controller the Scoop Remote Pointer with an USB-
wireless adapter was used. Optimal shape, weight, location of tactile switches and sliders
was evaluated with the user groups. The result will be a Join-In controller for browser
navigation suited for the elderly, where future extensions for voice recognition are taken
into account.

The Join-in controller will be an air-pointing device with wireless motion data transfer.

• Proprietary wireless connection with usb-adapter without pairing requirements or
Bluetooth connection

• Gyro sensor with at least 6 axis for linear xyz acceleration and orientation (pitch ,
roll, yaw)

• No recalibration requirements, magnetometer for drift compensation

• 360° of freedom

• Low latency feedback

• Tremor cancellation

• Multiple device operation supported

• HID mouse device function supported

• Low weight

• Optimized power management

• Adaptable control buttons allow adjustment to different skill levels via
press buttons, rocker switches and others

• Provided with reference kit and websocket server for access through HTML5
browser applications

D4.2 Design and Implementation of the Join-In platform Page 21 of 63

Fig. 4 Demo Module Websocket Server/ Basic Sensor

Fig. 5 Preliminary example of controller design

D4.2 Design and Implementation of the Join-In platform Page 22 of 63

6 Game software components and services

6.1 Game Servers
The game servers are written in Node.js (http://nodejs.org), which is a server-side software
system for developing scalable network applications. Node.js is both a runtime
environment and a library. The runtime environment is written in C and provides a context
that enables a developer to run JavaScript code outside of a web browser environment.
The library features modules that provide APIs for network I/O, file system I/O, process I/O
and other services relevant for writing web applications.

The game servers also use a framework for Node.js called Socket.IO (http://socket.io),
which enables the creation of real-time web applications. Socket.IO runs on both the
server side on Node.js and also on the client side in the web browser. Socket.IO provides
an abstraction layer over Web Sockets and other communication schemes, depending on
the browser capabilities.

Together, Node.js and Socket.IO provide a scalable solution for building non-blocking
HTTP servers with the advantage of using a dynamic scripting language for rapid
prototyping.

6.2 Game Software Clients
The game software clients are written in JavaScript and run inside a web browser
environment. The Socket.IO library as discussed above handles Client/server
communication.

6.3 Motion-sensor and controllers servers
In order to input a users' movement data into the games, we exploit sensors such as the
Microsoft Kinect, the Nintendo WiiMote and the Scoop Remote Pointer from Hillcrest Labs.
In addition a Join-In controller is being developed.

The data from these sensors has to be gathered locally in the end user device, and then
made available to the game client or game server. This is done by running a local server
that handles the data produced by the motion sensor devices and controllers, and then
make the information available to game clients, games servers or social services using
web sockets.

D4.2 Design and Implementation of the Join-In platform Page 23 of 63

6.4 A cross-platform application library for controllers and
motion sensing input devices - SANDRA

We can exploit sensors such as the Microsoft Kinect or the Nintendo WiiMote in order to
input a users' movement data into the games. The following section describes the
structure and dependencies of the SANDRA application library, which provides access to
these sensor devices locally and sends the data to a remote game server or social server.

SANDRA is an easy-to-use facade exploiting a multi-threaded event-based Java library
called CommModule. The CommModule contains the logic for;

• Communications with the remote game- or social server.

• Handling of the data produced by the motion sensor devices and controllers

• Upper-level functionalities which goes beyond the pure raw data detection

SANDRA currently supports the following devices: Microsoft Kinect, WiiMote, WiiMotion
Plus, Nunchuk, WiiBalanceBoard, and Pulsioximeter Nonin 9650. For instance, the
CommModule library can process a user's Kinect skeleton joint data to detect whether that
user is standing still, walking or running.

On the picture above we can see a simplified example of how this library works. Let's say
we have a WiiMote and its Nunchuk. When the WiiMote is connected (1), the
DeviceManager creates a new virtual object (2). This object will provide acceleration
events (3) and button pressed service events (4) both belonging to the WiiMote sensors.

D4.2 Design and Implementation of the Join-In platform Page 24 of 63

Later on, the Nunchuk is connected (5). Then, the DeviceManager creates a new Nunchuk
virtual object (6). This object will throw acceleration events (7) and analogic joystick events
(8) belonging to the Nunchuk itself. Next, another application requires acceleration data
from the WiiMote and, therefore, a new WiiMote acceleration event thrower is linked to the
virtual device (9). Finally, another application wants to get data from the Nunchuk analogic
joystic, so a new event thrower of that type is added (10).

We use web sockets to perform all the communications between CommModule and the
external server. Particularly, we use a thread wich uses the java.net.socket library to
handle the input-output operations. It connects to a given IP+Port address and keeps an
open channel for data streams. All information, which is sent to the server, is encoded in
the JSON format. Therefore, each packet containing the provided service data is a single
form-variable JSON string.

SANDRA libraries

There is a set of libraries, which CommModule depends on. We are going to go through
them one by one:

KinectLibrary

This library provides the users' skeleton joint data and the Kinect motor and LED control. It
uses libusbjava and OpenNI to access, control and retrieve the Kinect data. The libusbjava
is a Java wrapper for the libusb 0.1 and libusb-win32 library. It is the responsible for
granting easy access to the Kinect through the USB port on any platform. The OpenNI
multi-language cross-platform framework which we use is a home-modified version of the
latest Java unstable release, making it thread-safe. It is worth saying that the OpenNI
framework needs three different modules to be installed before it can be used. The first
one is the OpenNI module itself. It has all the interfaces to interact with both the Kinect and
the middleware components (e.g. body tracking). The sencond one is the avin2
SensorKinect, which is the driver of the Kinect. The third one is the NITE middleware
which contains the algorithmic for the OpenNI functionality in terms of skeleton
segmentation, tracking and machine vision. KinectLibrary also uses the j3dcore library and
vecmath for the skeleton joint tracking algorithm defintion.

WiiboardSimple

It is a library which enables users to utilise the Nintendo Wii Balance Board providing the
weight that is applied on each of the four areas of the board. It uses the bluecove Blotooth
protocol to communicate with the device.

D4.2 Design and Implementation of the Join-In platform Page 25 of 63

IRGlanceLibrary

This library measures the frecuency of apparerances of infrared points which enter in the
WiiMote camera scope. It can be used with different WiiMote controller libraries, but it
currently works with the wiigee-plugin-wiimote & wiigee-lib libraries. IRGlanceLibrary
allows “computerising” common fitness machines which have cyclical movements: just add
some IR Leds to the moving pieces and point the WiiMote camera towars that element.

In addition, the wiigee-plugin-wiimote & wiigee-lib libraries are also used for CommModule
WiiMote handling functions. This wiigee-lib library is an Java open-source gesture
recognition library for accelerometer-based gestures specifically developed for the
Nintendo Wii remote controller. The wiigee-plugin-wiimote is a complement for wiigee-lib
providing interfaces to handle the acceleration, rotations, and button events of a WiiMote
and the Nunchuck. However, the version we use is a tweaked version for our own project
and it is not available anywhere else. Combining these two libraries, we can retrieve the
following data: the acceleration along the 3 axes for the WiiMote and Nunchuk, the state of
their buttons, the gyroscope events of the WiiMotion Plus, the analogic joistic position and
the IR point’s position in the IR camera.

gson-2.1

Gson is a Java library, which can be used to convert Java Objects into their JSON
representation. It can also be used to convert a JSON string to an equivalent Java object.
Gson can work with arbitrary Java objects including pre-existing objects that you do not
have source-code of.

NoninLibrary

This library uses a BTSPP communication protocol over the Bluetooth stack vluecove and
it provides continuous sampling of the Nonin 9650 pulsioximiter. The most useful data
provided are: blood oxygenation, pulse, whether the finger is properly introduced in the
device or not and the state of the battery.

All the previous libraries dependencies are showed in the following image.

D4.2 Design and Implementation of the Join-In platform Page 26 of 63

6.5 Valentia Kinection
Valentia Kinection is open source community project. Purpose of Kinection is to provide
user ability to publish Kinect data on socket, which then can be utilised on remote clients
or HTML5 web pages using socket.

Valentia Kinection serves as a pathway for transmission of data from Kinetic device to the
web client. The service extracts data from the device and helps publish it on web sockets,
which can then be accessed on web clients via HTML 5 supporting browser such as
Safari. Kinect Service Manager operates as a client/server application that provides a
platform to the three basic components of the service to communicate with each other,
which are:

• Kinect device

• Kinection utility

• Web client

Kinection first utilizes the attached Kinect sensor to accumulate image, depth and skeleton
data, then filters this data and publishes it on web sockets. The service employs Microsoft
Kinect SDK, which offers drivers and rich APIs for raw sensor streams and human motion
tracking, to extract the image, depth and skeletal data from the sensor and publishes this

D4.2 Design and Implementation of the Join-In platform Page 27 of 63

data on the web using the SuperWebSocket. The web client caters for viewing Kinect data
both in the form of Raw Data (joints ID) and Visual Skeleton (skeletal image).

Kinection allows you to stream Kinect color, depth and skeleton from one PC to another
PC or a Windows Phone or iPhone/iPad or any other compatible device via websockets.
Please review the client sample page for more details on how to use Kinection.

• Project Information URL: http://kinection.codeplex.com/

• Project Download URL: http://kinection.codeplex.com/releases/view/86924

• Project Source URL: http://kinection.codeplex.com/SourceControl/list/changesets

http://kinection.codeplex.com/releases/view/86924

D4.2 Design and Implementation of the Join-In platform Page 28 of 63

7 Summary
This document has presented the technology components that make up the platform for
implementation of the Join-In social network, and described how these components are
integrated with each other according to the Join-In social architecture.

The source code of all the components is available on the Join-In source code accounts.

D4.2 Design and Implementation of the Join-In platform Page 29 of 63

Appendix A- Join-In Connector API

Join-In Connector APIs are REST based, and any client that can send HTTP GET and
POST requests can easily consume the API.

How you test the API simply using browser?

Join-In Connector APIs are REST based and it use two HTTP verbs including GET and
POST. Using the address bar any browser can be used to test the GET request. Testing
the POST request is a bit tricky but there are free open source applications like Curl and
Fiddler to test the POST request. For testing the API on windows platform Fiddler is
recommended tool.

Fig. 6 Fiddler Post Request.

http://www.fiddler2.com/fiddler2/
http://www.fiddler2.com/fiddler2/

D4.2 Design and Implementation of the Join-In platform Page 30 of 63

Follow the steps below to send a POST request to Social Dolphin API using Fiddler.

1. Chose “POST” as HTTP verb beside address bar.
2. Enter the URL of the API URL in the address bar.
3. Enter “Content-Type: application/json; charset=utf-8” in the Request Headers

textbox as Join-In Connector API returns JSON and Enter “Content-Type:
application/xml; charset=utf-8” API returns XML.

4. Enter the request body in the “Request Body” textbox.

D4.2 Design and Implementation of the Join-In platform Page 31 of 63

Provider Authentication

Every API call needs an access token. To get an access token a user needs to
authenticate first.

URL /provider/GetAuthenticate?username={username}&password={password}

Request Type GET

Parameters Required Parameters
username: User name of the user
password: Password of the user

Request Body N/A

JSON Result {
 “Data”:
 {
 “access_token”:””, // A valid access token
 “Id”: , // user id
 “ticks”: , // No of seconds the access token is valid till.
 “username”:”” , // Username of the user
 “displayname”:””
 }
 Message:”” // A message in case any exception/Error
}

XML Result <Data>
 <access_token></access_token>
 <id></id>
 <ticks></ticks>
 <username> </username>
<displayname></ displayname>
</Data>
<Message></Message>

Example

Request /provider/GetAuthenticate?username=peter&password=123456

Request Body N/A

JSON Result {

http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin

D4.2 Design and Implementation of the Join-In platform Page 32 of 63

 “Data”:
 {
 “access_token”: "ca4e0bdf-1e29-4f54-b015-49351bc8a0ae",
 “id”: 7,
 “ticks”: 6000,
 “username”: "peter",
 “displayname”:”Peter Nilson”
 }
 “Message”: null
}

XML Result <Data>
 <access_token>ca4e0bdf-1e29-4f54-b015-
49351bc8a0ae</access_token>
 <id>7</id>
 <ticks>6000</ticks>
 <username>peter</username>
<displayname>Peter Nilson</ displayname>
</Data>
<Message></message>

Comments: It returns the given information if the user is authenticated, if not error
message is returned.

D4.2 Design and Implementation of the Join-In platform Page 33 of 63

Register a Game Provider

This API allows registering of a new games provider. Each game provider will have their own
account and they can use their account detail to login and add new game e.g. Carlow-IT, Valentia.

URL /Provider/PostAddGameProvider

Request Type POST

Parameters Required Parameters
username:
password:
access_token: A valid access token

Request Body {
 "access_token":"",
 "Data":
 {
 "name": "", // Name of the Provider
 "username": "", // User name for the Provider
 "password": "", // Password of the Provider
 "description": "" // Description of the Provider
 }
}

JSON Result {
 "Data":
 {
 "id": // Returns ID of the newly registered
provider
 },
 "Message": “” // Message in case of any exceptions/error
}

XML Result <Data>
 <id></id>
</Data>
<Message></Message>

Example:

Request /Provider/PostAddGameProvider

Request Body {

D4.2 Design and Implementation of the Join-In platform Page 34 of 63

 "access_token":"ca4e0bdf-1e29-4f54-b015-49351bc8a0ae",
 "Data":
 {
 "name": "Peter Nilson",
 "username": "peter",
 "password": "password",
 "description": "This is some description about the provider"
 }
}

JSON Result {
 "Data":
 {
 "id":20
 },
 "Message":null
}

XML Result <Data>
 <id>20</id>
</Data>
<Message></Message>

D4.2 Design and Implementation of the Join-In platform Page 35 of 63

Register a Game

This API allows game providers to register a new game e.g. Bubble Break, Walking Game.
URL /Games/PostAddGame

Request Type POST

Parameters Required Parameters
name: game name
access_token: A valid access token
provider_id: provider of the game

Request Body {
 "access_token":"",
 "Data":
 { "name": "", // Name of the game
 "redirect_url": "", //url of the game
 "provider_id": "", //id of the game provider
 "Active": "", // Is game active
 "description": "" // Description of the game
 }
}

JSON Result {
 "Data":
 {
 "id": // Returns ID of the new game
 },
 "Message":”” // Message in case of any exceptions/error
}

XML Result <Data>
 <id></id>
</Data>
<Message></Message>

Example:

Request /Games/PostAddGame

Request Body {
 "access_token":"ca4e0bdf-1e29-4f54-b015-49351bc8a0ae",
 "data":

http://localhost:51287/Services/SocialMediaService.svc/Clients?access_token=ca4e0bdf-1e29-4f54-b015-49351bc8a0ae
http://localhost:51287/Services/SocialMediaService.svc/Clients?access_token=ca4e0bdf-1e29-4f54-b015-49351bc8a0ae

D4.2 Design and Implementation of the Join-In platform Page 36 of 63

 {
 "name": "My Game",
 "redirect_url": "http://mygamedomain.com",
 "provider_id": 20,
 "active": 1,
 "description": "This is some description about the game"
 }
}

JSON Result {
 "Data":
 {
 "id":20
 },
 "Message":null
}

XML Result <Data>
 <id>20</id>
</Data>
<Message></Message>

Comments:

D4.2 Design and Implementation of the Join-In platform Page 37 of 63

List Games

This API allows listing all games.

URL /Games/GetGameList?access_token={access_token}

Request
Type

Get

Parameters Required Parameters
access_token: A valid access token

Request
Body

N/A

JSON
Result

{
 "Data":
 [{
 "id":, // Id of the game
 "name":"", // name of the game
 "description":"", // description of the game
 "redirect_url":"",
 "provider_id": ,
 "Active":
 }],
 "Message": // Message in case of any exceptions/error
}

XML Result <Data>
 <id></id>
 <name></name>
 <description></description>
 <redirect_url></redirect_url>
 <provider_id></provider_id>
 <Active></Active>
<Data>
.
.
<Message></Message>

Example:

http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin
http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin
http://localhost:51287/Services/SocialMediaService.svc/Clients?access_token=ca4e0bdf-1e29-4f54-b015-49351bc8a0ae

D4.2 Design and Implementation of the Join-In platform Page 38 of 63

Request /Games/GetGameList?access_token=ca4e0bdf-1e29-4f54-b015-
49351bc8a0ae

Request
Body

N/A

JSON
Result

{
 "Data":
 [{
 "id":20, // Id of the game
 "name":"My game" , // name of the game
 "description":"this is game description", // description of the
game
 "redirect_url":"http://gamedomain.com" ,
 "provider_id": 11,
 "Active": 1
 }],
 "Message": // Message in case of any exceptions/error
}

XML Result <data>
 <id>20</id>
 <name>My Game</name>
 <description>this is game description</description>
 <redirect_url>http://gamedomain.com</redirect_url>
 <provider_id>11</provider_id>
 <Active>1</Active>
</data>
<message></message>

Comments Returns list of games as array of objects

http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin
http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin

D4.2 Design and Implementation of the Join-In platform Page 39 of 63

Play Game

URL /Games/GetPalyGame?gameid={gameid}&access_token={access_token}

Request
Type

Get

Parameters Required Parameters
access_token: A valid access token

Request
Body

N/A

JSON
Result

{
 "Data":
 {
 "text":"" // URL of the game
 },
 "Message":”” // Message in case of any exceptions/error
}

XML Result <Data>
 <text></text>
<Data>
<Message></Message>

Example:

Request /Games/GetPalyGame?gameid=20&access_token=ca4e0bdf-1e29-4f54-
b015-49351bc8a0ae

Request
Body

N/A

JSON
Result

{
 "Data":
 [{
 "text":”http://myurlofgame.com” // URL of the game
 }],
 "Message": // Message in case of any exceptions/error
}

XML Result <Data>
 <text> http://myurlofgame.com </text>

http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin
http://localhost:51287/Services/SocialMediaService.svc/Clients?access_token=ca4e0bdf-1e29-4f54-b015-49351bc8a0ae
http://localhost:51287/Services/SocialMediaService.svc/Clients?access_token=ca4e0bdf-1e29-4f54-b015-49351bc8a0ae
http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin
http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin
http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin
http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin

D4.2 Design and Implementation of the Join-In platform Page 40 of 63

</Data>
<Message></Message>

Comments Returns URL of the game

D4.2 Design and Implementation of the Join-In platform Page 41 of 63

Add a Game Player

This API allows registration of a new player.
URL /Player/PostAddGamePlayer
Request Type POST
Parameters Required Parameters

username:
password:
access_token: A valid access token

Request Body {
 "access_token": "f3f7d6ae-e696-11e1-a3a5-001cc0f96fb6",
 "data": {
 "name": "",
 "email": "",
 "username": "",
 "password": "",
 "photo": "",
 "game_tag": "",

 "active":,

 "profileoptions": [{
 "profilekey": "",
 "profilevalue": "",
 "profileaccess": ""
 }]

 }

}

JSON Result {
 "Data":
 {
 "id": // Returns ID of the player
 },
 "Message": // Message in case of any exceptions/error
}

XML Result <Data>
 <id></id>
</Data>
<Message></Message>

Example:
Request /Player/PostAddGamePlayer
Request Body {

D4.2 Design and Implementation of the Join-In platform Page 42 of 63

 "access_token": "f3f7d6ae-e696-11e1-a3a5-001cc0f96fb6",
 "data": {
 "id": 0,
 "name": "Peter Nilson",
 "email": "peter@my.web.pk",
 "username": "peter123",
 "password": "1234567",
 "photo": "http://peter.com",
 "game_tag": "adventure",

 "active":1,

 "profileoptions": [{
 "profilekey": "description",
 "profilevalue": "my Description",
 "profileaccess": "-2"
 }]

 }

}

JSON Result {
 "Data":
 {
 "id":20
 },
 "Message":null
}

XML Result <Data>
 <id>20</id>
</Data>
<Message></Message>

Comments Possible profile keys for profile options.
 'description',
 'briefdescription',
 'location',
 'interests',
 'skills',
 'contactemail',
 'phone',
 'mobile',
 'website',
 'twitter'

D4.2 Design and Implementation of the Join-In platform Page 43 of 63

Player Authentication

Every API call needs an access token. To get an access token a user needs to
authenticate first.
URL /player/GetAuthenticate?username={username}&password={password}
Request Type GET
Parameters Required Parameters

username: User name of the user
password: password of the user

Request Body N/A
JSON Result {

 Data:
 {
 “access_token”:””, // A valid access token
 “id”: , // user id
 “ticks”: , // No of seconds the access token is valid till.
 “username”:”” , // Username of the user
 “displayname”:””
 }
 Message:”” // A message in case any exception/Error
}

XML Result <Data>
 <access_token></access_token>
 <id></id>
 <ticks></ticks>
 <username> </username>
<displayname></ displayname>
</Data>
<Message></Message>

Example
Request /provider/GetAuthenticate?username=peter&password=123456
Request Body N/A
JSON Result {

 data:
 {
 “access_token": "ca4e0bdf-1e29-4f54-b015-49351bc8a0ae",
 “id”: 7,
 “ticks”: 6000,
 “username”: "peter",
 “displayname”:”Peter Nilson”
 }
 Message: null
}

http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin

D4.2 Design and Implementation of the Join-In platform Page 44 of 63

XML Result <Data>
 <access_token>ca4e0bdf-1e29-4f54-b015-
49351bc8a0ae</access_token>
 <id>7</id>
 <ticks>6000</ticks>
 <username>peter</username>
<displayname>Peter Nilson</ displayname>
</Data>
<Message></message>

Comments: It returns the given information if the user is authenticated, if not error
message is returned.

D4.2 Design and Implementation of the Join-In platform Page 45 of 63

Player List

Every API call needs an access token. To get an access token a user needs to
authenticate first.
URL /player/GetPlayerlist?access_token={access_token}
Request Type GET
Parameters N/A
Request Body N/A
JSON Result {

 Data:
 [{
 “id”: , // user id
 “email”:”” ,
 “name”:””,
 “username”:”” , // Username of the user
 }]
 “Message”:”” // A message in case any exception/Error
}

XML Result <Data>
 <id></id>
<email></email>
 <username> </username>
<name></name>
</Data>
.
.
<Message></Message>

Example
Request /provider/GetAuthenticate?username=peter&password=123456
Request Body N/A
JSON Result {

 data:
 [{
 “id”:7,
 “email”: “peter@my.web.pk”,
 username: "peter",
 name:”Peter Nilson”
 }]
 Message: null
}

http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin

D4.2 Design and Implementation of the Join-In platform Page 46 of 63

XML Result <Data>
<id>7</id>
 <email>peter@my.web.pk</ticks>
 <username>peter</username>
<name>Peter Nilson</name>
</Data>
.
.
<Message></message>

Comments: It returns the given information if the user is authenticated, if not error
message is returned.

D4.2 Design and Implementation of the Join-In platform Page 47 of 63

Get a Player

Every API call needs an access token. To get an access token a user needs to
authenticate first.
URL /player/GetPlayerInfo?access_token={access_token}&playerid={playerid}

Request Type GET

Parameters Playerid:

Request Body N/A

JSON Result {
 Data:
 {
 “id”: , // user id
 “email”:”” ,
 “name”:””,
 “username”:”” , // Username of the user
 }
 “Message”:”” // A message in case any exception/Error
}

XML Result <Data>
 <id></id>
<email></email>
 <username> </username>
<name></name>
</Data>
<Message></Message>

Example

Request /player/GetPlayerInfo?access_token= ca4e0bdf-1e29-4f54-b015-
49351bc8a0ae&playerid=43

Request Body N/A

JSON Result {
 data:
 {
 “id”:7,
 “email”: “peter@my.web.pk”,
 username: "peter",

D4.2 Design and Implementation of the Join-In platform Page 48 of 63

 name:”Peter Nilson”
 }
 Message: null
}

XML Result <Data>
<id>7</id>
 <email>peter@my.web.pk</ticks>
 <username>peter</username>
<name>Peter Nilson</name>
</Data>
<Message></message>

Comments: It returns the given information if the user is authenticated, if not error
message is returned.

D4.2 Design and Implementation of the Join-In platform Page 49 of 63

Add contact for a Player
This API allows registration of a contact of a player e.g. son, daughter, colleague etc.
URL /player/PostAddContact

Request Type POST

Parameters

Request Body
{ "access_token": "",
 "Data": {
 "contactid": , //0 for new contact
 "ProfileID": , // Id of the payer
 "elggentityid": , //if contact is elgg user
 "relationshipid": , //1---Friend, 2---Family Member,3---
Contact
 "groups": “", // comma separated group Ids
 "contactname": "",
 "address":"",
 "phone1":"",
 "phone2":"",
 "skype1":"",
 "skype2":"",
 "mobile1":"",
 "mobile2":"",
 "email1" :" ",
 "email2" :" ",
 "other1":"",
 "other2":""

 }
}

JSON Result {
 "Data":
 {
 "id":"" // Returns ID of the contact
 },
 "Message": // Message in case of any exceptions/error

D4.2 Design and Implementation of the Join-In platform Page 50 of 63

}

XML Result <Data>
 <id></id>
</Data>
<Message></Message>

Example:

Request /player/PostAddContact

Request Body
{ "access_token": "a4259ae4-f818-11e1-a64c-001cc0f96fb6",
 "data": {
 "contactid": 0,
 "ProfileID": 55,
 "elggentityid": 0,
 "relationshipid": 1,
 "groups": "1,2,3",
 "contactname": "nawaz",
 "address":"my Own Address",
 "phone1":"232323232",
 "phone2":"4444444444",
 "skype1":"nawazhi",
 "skype2":"nawazhi222",
 "mobile1":"0003333",
 "mobile2":"00044444",
 "email1" :"email1@exm.com",
 "email2" :"email1@exm.com",
 "other1":"other11111111",
 "other2":"other22222222"

 }
}

JSON Result {
 "Data":
 {
 "id":20
 },

D4.2 Design and Implementation of the Join-In platform Page 51 of 63

 "Message":null
}

XML Result <Data>
 <id>20</id>
</Data>
<Message></Message>

D4.2 Design and Implementation of the Join-In platform Page 52 of 63

List online/offline status
This API allows listing of player’s online/offline status.
URL /player/GetOnlineStatus?access_token={access_token}&playerid={playeri

d}&showfriends={showfriends}&status={status}
Request
Type

Get

Paramet
ers

Required Parameters
access_token: A valid access token
Optional Parameter
showfriends: whether show only friend
status: status of the players to show
playerid: id of the player

Request
Body

N/A

JSON
Result

{
 "Data":
 [{
 "id":"", // userid
 "name":"", // display name of user
 "username": "",
 "onlinstatus": // online status of the user “1” for offline and
“false” for online
 }],
 "Message": // Message in case of any exceptions/error
}

XML
Result

<Data>
 <id></id>
 <name></name>
 <username></username>
 < onlinstatus ></ onlinstatus >
</Data>
.
.
<Message></Message>

Example:

Request /player/GetOnlineStatus?access_token= ca4e0bdf-1e29-4f54-b015-
49351bc8a0ae &playerid=20&showfriends=1&status=1

Request
Body

N/A

JSON
Result

{
 "data":

http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin
http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin
http://localhost:51287/Services/SocialMediaService.svc/Clients?access_token=ca4e0bdf-1e29-4f54-b015-49351bc8a0ae
http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin
http://localhost:51287/Services/SocialMediaService.svc/Authenticate?username=Admin&password=admin

D4.2 Design and Implementation of the Join-In platform Page 53 of 63

 [{
 "id":20, // userid
 "name":"Peter Nilson", // display name of user
 "username": "Peter",
 "onlinstatus": 1 // online status of the user “1” for offline and
“false” for online
 }],
 "Message": // Message in case of any exceptions/error
}

XML
Result

<Data>
 <id>20</id>
 <name>peter nilson</name>
<username>peter</username>
 < onlinstatus >true</ onlinstatus >
</Data>
.
.
<Message></Message>

Commen
ts

Returns list of users as array of data

D4.2 Design and Implementation of the Join-In platform Page 54 of 63

Add player’s interested games
This API allows adding player game preference for example what games they would like to
play e.g. Bubble Breaker game etc.
URL /player/PostInterestedgame

Request Type POST

Parameters Required Parameters
playerId:
access_token: A valid access token
gameid:

Request Body {
 "access_token":"",
 "Data":
 { "playerid":,
 "gameid":
 }
}

JSON Result {
 "Data":
 [{
 "playerid":,
 "gameid":
 }]

 "Message": // Message in case of any exceptions/error
}

XML Result <Data>
 <playerid></playerid>
 <gameid></gameid>
</Data>
<Message></Message>

Example:

Request /player/ PostInterestedgame

Request Body {
 "access_token":"ca4e0bdf-1e29-4f54-b015-49351bc8a0ae",
 "Data":

http://localhost:51287/Services/SocialMediaService.svc/Clients?access_token=ca4e0bdf-1e29-4f54-b015-49351bc8a0ae

D4.2 Design and Implementation of the Join-In platform Page 55 of 63

 {
 "playerid": 20,
 "gameid": 22
 }
}

JSON Result {
 "Data":
 {
 "playerid": "20",
 "gameid": "22"
 },
 "Message":null
}

XML Result <Data>
 <player_id>20</player_id>
 <game_id>22</game_id>
</Data>
<Message></Message>

Comments:

D4.2 Design and Implementation of the Join-In platform Page 56 of 63

Add player’s Game Metrics Data
This API allows adding player game preference for example what games they would like to
play e.g. Bubble Breaker game etc.
URL /player/PostAddMetrics

Request Type POST

Parameters Required Parameters
playerId:
access_token: A valid access token
gameid:
gamemetrics:

Request Body {
 "access_token":"",
 "data":
 { "playerid":,
 "gameid":,
 “gamemetrics”:””
 }
}

JSON Result {
 "Data":
 {
 "id"://Id of the player whose metrics has been just added
 }

 "Message": // Message in case of any exceptions/error
}

XML Result <Data>
 <id></id>
</Data>
<Message></Message>

Example:

Request /player/ PostAddMetrics

Request Body {
 "access_token":"ca4e0bdf-1e29-4f54-b015-49351bc8a0ae",
 "Data":

http://localhost:51287/Services/SocialMediaService.svc/Clients?access_token=ca4e0bdf-1e29-4f54-b015-49351bc8a0ae

D4.2 Design and Implementation of the Join-In platform Page 57 of 63

 {
 "playerid": 20,
 "gameid": 22,
 “gamemetrics”:”metrics data”

 }
}

JSON Result {
 "Data":
 {
 "id":20
 },
 "Message":null
}

XML Result <Data>
 <id>20</id>
 </Data>
<Message></Message>

Comments:

D4.2 Design and Implementation of the Join-In platform Page 58 of 63

Register ELGG user as Player
This API allows registering elgg users which are not registered as game players.
URL /player/PostRegisterAsPlayer

Request Type POST

Parameters Required Parameters
playerId:
access_token: A valid access token

Request Body {
 "access_token":"",
 "data":
 { "id":

}

JSON Result {
 "Data":
 {
 "id"://Id of the player whose metrics has been just added
 }

 "Message": // Message in case of any exceptions/error
}

XML Result <Data>
 <id></id>
</Data>
<Message></Message>

Example:

Request /player/PostRegisterAsPlayer

Request Body {
 "access_token":"ca4e0bdf-1e29-4f54-b015-49351bc8a0ae",
 "Data":
 {
 "id": 20

 }

http://localhost:51287/Services/SocialMediaService.svc/Clients?access_token=ca4e0bdf-1e29-4f54-b015-49351bc8a0ae
http://localhost:51287/Services/SocialMediaService.svc/Clients?access_token=ca4e0bdf-1e29-4f54-b015-49351bc8a0ae

D4.2 Design and Implementation of the Join-In platform Page 59 of 63

}

JSON Result {
 "Data":
 {
 "id":20
 },
 "Message":null
}

XML Result <Data>
 <id>20</id>
 </Data>
<Message></Message>

Comments:

D4.2 Design and Implementation of the Join-In platform Page 60 of 63

List a Player’s Profile Images URL
Every API call needs an access token. To get an access token a user needs to
authenticate first.
URL /player/GetProfileImages?access_token={access_token}&playerid={playerid

}

Request
Type

GET

Parameter
s

Playerid:

Request
Body

N/A

JSON
Result

{
 Data:
 [{
 “imagetype”: , // user id
 “image”:””
 }]
}
 “Message”:”” // A message in case any exception/Error
}

XML
Result

<Data>
 <imagetype></imagetype>

.
.
</Data>
<Message></Message>

Example

Request /player/ GetProfileImages?access_token= ca4e0bdf-1e29-4f54-b015-
49351bc8a0ae&playerid=43

Request
Body

N/A

JSON
Result

{
 data:
 [{
 “imagetype”:”small”,

D4.2 Design and Implementation of the Join-In platform Page 61 of 63

 “image”: “http://mydomain.com/image.jpg”
 }]
 Message: null
}

XML
Result

<Data>
<imagetype>small</imagetype >
 
.
.
</Data>
<Message></message>

Comments: It returns the given information if the user is authenticated, if not error
message is returned.

D4.2 Design and Implementation of the Join-In platform Page 62 of 63

List a Player’s Profile Images
Every API call needs an access token. To get an access token a user needs to
authenticate first.
URL /player/GetProfileImagesBinary?access_token={access_token}&playerid

={playerid}

Request
Type

GET

Parameter
s

Playerid:

Request
Body

N/A

JSON
Result

{
 Data:
 [{
 “imagetype”: , // user id
 “image”:”” //base64 string of image
 }]
}
 “Message”:”” // A message in case any exception/Error
}

XML
Result

<Data>
 <imagetype></imagetype>

.
.
</Data>
<Message></Message>

Example

Request /player/GetProfileImagesBinary?access_token=ca4e0bdf-1e29-4f54-
b015-49351bc8a0ae&playerid=43

Request
Body

N/A

JSON
Result

{
 data:
 [{
 “imagetype”:”small”,

D4.2 Design and Implementation of the Join-In platform Page 63 of 63

 “image”:
“R0lGODlhGQAZAOYAAGxsbHV1dc3Nzc7OztDQ0NLS0nl5eX5+fnp6en
x8fHJycs/Pz3R0dIKCgnd3d29vb3Z2doODg3FxcdTU1Hh4eHt7e9PT02Vl
ZWNjY7e3t2BgYGZmZmhoaG1tbW5ubsvLy4uLi8fHx3BwcGRkZKSkpKq
qqq2trZiYmIGBgZ2dnXNzc8DAwJqamrCwsMrKyl9fX729vYSEhImJicjIyM
LCwqWlpb+/v4aGhoeHh5eXl11dXaysrNbW1tra2rS0tMXFxa+vr4+Pj8TEx
IyMjKenp7Ozs5CQkLm5uaCgoH9/f5GRkaurq5ycnJmZmdHR0YCAgGdn
Z2lpaWJiYmpqasbGxmtra8zMzAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AA
AAACH5BAAA
AAAALAAAAAAZABkAAAf/gFaCg4SFhoeGAk5OBIyIj1ZOLkUkKTVHBA
OQhU4wQ0+goCxWmpukITdJEaurCEgFppElFQ21tk8oNAubAgQnFaHB
FS1OvAtKBgfKywcUS7CQiicQCdXWFQYZxZsFQBAI4OEUMR+lkAUtD
BQG7OwBMrumTj4qEA739woyBLEENgEMAggMAOGBEWibBsxwIIKBw
4BVWEyIFYmIAgkKMj4wsIKfKQELegSZIqFkFRA8Fgh4NKCABQIfMgQ
A8KAmAAgrFFkosJJQgRkmmOCYWcVDh6MeAIigACKFiV6DnGRQcOH
ChihVAGjdCmAKhw0jMKAoR8qFCgxT0qpdyzbtixwTRi2U0DAlit27ePPa
3eAhxIIJMTRwgEK4sOHDhDm8IDEBBgYNUiJLnkx5so4AA5qMqMK5s+f
Pn6dc2PGDiunTqFOrpiKESiAAOw==”
 }]
 Message: null
}

	1 About Join-In
	2 Introduction
	3 Join-in social networking architecture
	4 Social Network
	4.1 Functions
	4.1.1 Social Contacts
	4.1.2 Calendar and activities
	4.1.3 Games and Exergames
	4.1.4 Avatar selection
	4.1.5 Exercising
	4.1.6 Help

	4.2 Security and authentication issues
	4.2.1 Authentication

	5 User environment devices
	5.1 Set-top boxes
	5.2 All-in-one multi-touch PC
	5.3 Tablets & Smartphones
	5.4 PC / Laptops
	5.5 Microsoft Kinect
	5.6 Exerbike sensors
	5.7 Scoop pointing device
	5.8 The Join-in controller

	6 Game software components and services
	6.1 Game Servers
	6.2 Game Software Clients
	6.3 Motion-sensor and controllers servers
	6.4 A cross-platform application library for controllers and motion sensing input devices - SANDRA
	6.5 Valentia Kinection

	7 Summary
	Appendix A- Join-In Connector API

