
425

Chapter 13

Control of Stand-Alone Instruments

HARDWARE REQUIREMENTS FOR THIS CHAPTER

To perform the exercises in this chapter, you must have a National Instruments General
Purpose Interface Bus (GPIB) device connected to your computer. This device might be
a PCI-GPIB board plugged into a PCI expansion slot or a GPIB-USB device attached
to a USB connector. A stand-alone instrument equipped with an IEEE 488.2 compliant
interface (ideally the Agilent 34401A Digital Multimeter) is also needed. This instru-
ment is connected to a PCI-GPIB board using a GPIB cable; a GPIB-USB device con-
nects directly to the instrument.

If, while performing the chapter exercises, the communication between the GPIB
device and instrument breaks down (e.g., caused by an accidental error in your pro-
gramming), communication can often be restored either by turning the instrument off
and then on again, or by restarting your computer.

In previous chapters, you have used LabVIEW software to transform a personal com-
puter (connected to an appropriate National Instruments DAQ device) into several handy
laboratory instruments. In particular, you programmed this system to become a DC volt-
meter, digital oscilloscope, spectrum analyzer, waveform generator, and digital thermom-
eter. Pause to consider the following tantalizing prospect: Perhaps the only instrument
required in a modern-day laboratory is a DAQ device-equipped computer controlled
by LabVIEW software. That is, by simply writing a collection of appropriate VIs, it
might be possible for you—the contemporary scientific researcher—to satisfy all of your
laboratory instrumentation needs with this single LabVIEW-based data acquisition and
generation system. This system’s tremendous flexibility would then obviate the need to
purchase an expensive collection of stand-alone electronic equipment such as power sup-
plies, function generators, picoammeters, spectrum analyzers, and oscilloscopes.
The functioning VIs that you have written in previous chapters demonstrate that the
above “tantalizing prospect” can, at least in certain situations, be realized. But don’t
discard your stand-alone instruments just yet. The timing, speed, sensitivity, and

13-Essick-Chap13.indd 42513-Essick-Chap13.indd 425 9/9/2008 9:03:25 PM9/9/2008 9:03:25 PM

426

Chapter 13 Control of Stand-Alone Instruments

simultaneous data-taking requirements of many contemporary research experiments are
beyond the capabilities of your DAQ device. For instance, while the LabVIEW-based
digital oscilloscope we constructed worked well for observing audio-range frequen-
cies (less than 20 kHz), it would prove miserably inadequate at displaying the several
nanosecond-wide voltage pulses emanating from a photomultiplier tube. In this latter
situation, a stand-alone digital scope with a very fast analog-to-digital converter (on the
time scale of several gigasamples per second) would do the job nicely. Thus stand-alone
instruments play a central role in state-of-the-art research, and so it might not surprise
you to find that they, too, fall under the scope of LabVIEW.

Over the past few decades, a message-based communications standard has evolved
by which stand-alone instruments can be software-controlled using a personal com-
puter. In this communications scheme, a particular instrument obeys an array of man-
ufacturer-defined ASCII character commands that represent all the possible ways of
manually pressing buttons, turning dials, and viewing output data on its front panel.
While the hardware conduit (called an interface bus) through which these ASCII mes-
sages are passed between the PC and laboratory instrument can take on various guises
(including RS-232, GPIB, Ethernet, and USB), there is a single set of LabVIEW icons
available to control this communication process. This icon set is named VISA (short for
Virtual Instrument Software Architecture) and is found in Functions>>Instrument I/

O>>VISA.
In this chapter, you will learn how to use VISA icons to control the message-based
communication between a stand-alone instrument and your computer. You will explore
generic features of this communication process such as the Standard Commands for
Programmable Instruments (SCPI) language and various synchronization methods
while writing code that controls a particular stand-alone instrument—the Agilent
34401A Digital Multimeter—using a particular interface bus—the General Purpose
Interface Bus.

13.1 THE VISA SESSION

When using VISA icons to facilitate message-based communication between a com-
puter and a particular stand-alone instrument, the instrument is termed a VISA resource
and the communication activity is called a VISA session. To “query” a VISA resource
(i.e., send it a command, then receive back its response), the required VISA session
consists of the following four steps: open the session, write the command message to
the resource, read the response from the resource, close the session. In Functions>>

Instrument I/O>>VISA (and its subpalette VISA Advanced), the following four icons
are available to perform the four given steps—VISA Open, VISA Write, VISA Read,
and VISA Close. To understand how to wire these four icons together to query an instru-
ment, we will first briefly describe the function of each individual icon.

The Help Window for VISA Open is shown in the following illustration. The job of
this icon is to begin a VISA session between your computer and the resource defined at

13-Essick-Chap13.indd 42613-Essick-Chap13.indd 426 9/9/2008 9:03:26 PM9/9/2008 9:03:26 PM

427

THE VISA SESSION

its VISA resource name input. The VISA resource name consists of text that specifies
the interface type being used (e.g., GPIB or USB), the address of the resource (a number
we’ll discuss in a few minutes), and the resource type. For our work, the resource type
will be a stand-alone instrument denoted by INSTR. To pass the VISA resource name
to other VISA icons, this quantity is available at the VISA resource name out output
terminal.

VISA Write, whose Help Window follows below, performs the actual ASCII mes-
sage transfer from your computer to the stand-alone instrument. Once presented with
the open session’s VISA resource name, this icon writes the ASCII string at its write

buffer input to the instrument. This string is one of the commands recognized by the
instrument and, when received by the instrument, configures it properly for a desired
data-taking measurement. Additionally, the VISA resource name is available at the
VISA resource name out output terminal.

13-Essick-Chap13.indd 42713-Essick-Chap13.indd 427 9/9/2008 9:03:26 PM9/9/2008 9:03:26 PM

428

Chapter 13 Control of Stand-Alone Instruments

Next, the Help Window for VISA Read is shown. This icon transfers the response
message from the stand-alone instrument into your computer’s memory. When given
the open session’s VISA resource name, this icon receives the ASCII response string
consisting of (a maximum of) byte count number of bytes and outputs this string at its
read buffer terminal. This string typically contains the results of a data-taking measure-
ment performed by the instrument. Additionally, the VISA resource name is available at
the VISA resource name out output terminal.

Finally, VISA Close’s Help Window is given below. This icon closes the VISA ses-
sion specified at its VISA resource name input.

Note that all four of these VISA icons include error reporting via an error cluster, which
is appears at the error in and error out terminals.

The four-step VISA session to query an instrument is accomplished by wiring these
four VISA icons together as follows.

13-Essick-Chap13.indd 42813-Essick-Chap13.indd 428 9/9/2008 9:03:26 PM9/9/2008 9:03:26 PM

429

THE IEEE 488.2 STANDARD

In this example, the message *IDN? is sent over a GPIB interface to an instrument at
address 22. *IDN?, a command recognized by most instruments, instructs the instru-
ment to identify itself. After receiving this command, the instrument’s response (which
is an ASCII string consisting of identification information) is received by the computer
over the GPIB and displayed in the read buffer front-panel string indicator.

Similar to the File I/O and DAQmx icons that you have studied previously, the wiring
scheme of VISA icons takes advantage of the principle of LabVIEW programming called
data dependency. Simply stated, data dependency means that an icon cannot execute until
data is available at all of its inputs. In the previous diagram, all of VISA Open’s required
inputs (given in bold on the Help Window) are wired. So, when this diagram is run, VISA

Open executes immediately. Upon completion, VISA Open outputs a VISA resource
name at its VISA resource name out terminal, which is passed through the wiring to
VISA Write’s VISA resource name input. Because of data dependency, VISA Write can-
not execute until it receives the VISA resource name from VISA Open. In a similar way,
VISA Read cannot execute until VISA Write completes, and so on. Thus, through this
programming scheme, we are assured that the icons will execute in the desired sequence:
VISA Open followed by VISA Write followed by VISA Read followed by VISA Close.

Also the correct manner of chaining together VISA icons for error reporting is
shown above. If an error does occur at one point in the chain, subsequent icons will not
execute and the error message will be passed to the error out indicator cluster.

Because VISA-based programming is so robust, you can write highly dependable
data-taking programs with just the information already presented. However, with a bit
more grounding in the message-based communication scheme, you’ll be able to create
programs in which you can have near-total confidence. The following paragraphs will
take you to the next level of sophistication in stand-alone instrument control.

13.2 THE IEEE 488.2 STANDARD

When remote control of laboratory instruments first became possible, there was a cha-
otic period during which, more or less, each instrument manufacturer defined its own
communications protocol through a unique blend of parallel and serial modes, positive

13-Essick-Chap13.indd 42913-Essick-Chap13.indd 429 9/9/2008 9:03:26 PM9/9/2008 9:03:26 PM

430

Chapter 13 Control of Stand-Alone Instruments

and negative polarities, and assorted handshaking signals. In 1965, Hewlett-Packard
(now named Agilent) ended this cacophony by designing a universal instrument inter-
face called the Hewlett-Packard Interface Bus (HP-IB) and offered it as the only option
on all of its new computer-programmable instruments. Because of its high transfer rates,
HP-IB quickly gained popularity with other instrument manufacturers and, in 1975,
was accepted as an industry-wide standard known as IEEE 488 or, more commonly, the
General Purpose Interface Bus (GPIB). In 1987, an improved version of this standard
called IEEE 488.2 was adopted, which enhanced and strengthened message-based com-
munication by specifically defining an instrument’s minimally required communica-
tion capabilities, a protocol for message exchange, a generic set of commonly needed
commands, and a status reporting system. Today, most computer-controlled laboratory
instruments are IEEE 488.2 compliant, even those that communicate over interface
buses other than the GPIB (such as Ethernet and USB).

13.3 COMMON COMMANDS

One important innovation of the IEEE 488.2 standard was the introduction of a stan-
dardized set of “common commands” for the many generic operations that all instru-
ments must perform. The mnemonics for these common commands begin with asterisks
to delineate them from the other device-specific commands recognized by a particular
instrument. All IEEE 488.2 compliant instruments, at the very least, are required to
recognize the subset of 13 common commands given in the following table. Many of
these commands are related to the reporting of events using two status registers called
the SBR and SESR, which will described in detail starting in the next paragraph.

Table 13.1 Common Commands for IEEE 488.2 Compliant Instruments

MANDATORY COMMON
COMMANDS

FUNCTION

*IDN? Reports instrument identi� cation string.

*RST Resets instrument to known state.

*TST? Performs self-test and reports results.

*OPC Sets operation complete (OPC) bit in SESR upon completion
of command.

*OPC? Returns “1” to the output bu- er upon completion of command.

*WAI Waits until all pending operations complete execution.

*CLS Clears status registers.

*ESE Enables event-recording bits in SESR.

*ESE? Reports enabled event-recording bits in SERS.

*ESR? Reports value of SESR.

*SRE Enables a SBR bit to assert the SRQ line.

*SRE? Reports SBR bits that are enabled to assert the SRQ line.

*STB? Reports the contents of the SBR.

13-Essick-Chap13.indd 43013-Essick-Chap13.indd 430 9/9/2008 9:03:27 PM9/9/2008 9:03:27 PM

431

STATUS REPORTING

13.4 STATUS REPORTING

Another IEEE 488.2 innovation is a standardized scheme for status reporting. This status
reporting system is available to inform you of significant events that occur within each
instrument connected to an interface bus. In this scheme, each instrument is equipped
with two status registers, called the Standard Event Status Register (SESR) and the Status
Byte Register (SBR). Each bit in these registers records a particular type of event that
may occur while the instrument is in use, such as an execution error or the completion of
an operation. When the event of a given type occurs, the instrument sets the associated
status register bit to a value of one, if that bit has previously been enabled (see the follow-
ing). Thus by reading the status registers, you can tell what events have transpired.

The Standard Event Status Register, which is schematically shown here, records
eight types of events that can occur within a data-taking instrument.

Standard Event Status Register (SESR)

7 6 5 4 3 2 1 0

PON URQ CME EXE DDE QYE RQC OPC

The eight events associated with the eight bits of the SESR are described in the following
table. In our work, the OPC bit will be most useful.

Table 13.2 Eight SESR Events

BIT ASSOCIATED EVENTS OF SESR

7 (MSB) PON (Power On): Instrument was powered o- and on since the
last time the event register was read or cleared.

6 URQ (User Request): Front-panel button was pressed.

5 CME (Command Error): Instrument received a command with
improper syntax.

4 EXE (Execution Error): Error occurred while instrument was
executing a command.

3 DDE (Device Error): Instrument is malfunctioning.

2 QYE (Query Error): Attempt was made to read the instrument’s
output bu- er when no data was present, or a new command was
received before previously requested data had been read from the
output bu- er.

1 RQC (Request Control): Instrument requests to be controller.

0 (LSB) OPC (Operation Complete): All commands prior to and
including an *OPC command have been executed.

13-Essick-Chap13.indd 43113-Essick-Chap13.indd 431 9/9/2008 9:03:27 PM9/9/2008 9:03:27 PM

432

Chapter 13 Control of Stand-Alone Instruments

The SESR exists as an event-signaling tool for you to use in your programs. However,
this status register completely lacks initiative and will not perform any work unless you
request it to do so. Thus, when initiating communications with an instrument, one of the
messages that you may wish to send is an instruction that activates the subset of event-
reporting SESR bits that are of interest to you. For instruments that conform to the IEEE
488.2 standard, this activation process is accomplished via the *ESE (Event Status Enable)
command. For example, supposed you wished the QYE bit to be activated and thus record
any execution errors in the SESR’s bit 2. Since 000001002 = 410, the QYE bit can be
activated by performing a VISA Write of the ASCII command *ESE 4 to the instrument.
In our work to come, we will activate the OPC bit with the command *ESE 1.

The Status Byte Register, which is schematically shown next, records whether data
is available in the instrument’s output buffer, whether the instrument requests service,
and whether the SESR has recorded any events.

Status Byte Register (SBR)

7 6 5 4 3 2 1 0

— RQS ESB MAV — — — —

The functions of the eight bits of the SBR are described in the following table. The SBR bits
are studious, performing their status reporting duties without need of a request from you.

Table 13.3 Functions of the Eight SBR Bits

Bit Function of SBR Bit

7 (MSB) May be de� ned for use by instrument manufacturer.

6 RQS (Request Service): The instrument has asserted the SRQ
line because it requires service from the GPIB controller.

5 ESB (Event Status Bit): An event associated with an enabled
SESR bit has occurred.

4 MAV (Message Available): Data is available in the instrument’s
output bu- er.

3—0 May be de� ned for use by instrument manufacturer.

An instrument can be configured to assert a Service Request (SRQ), which is a digi-
tal signal carried on a dedicated wire within the 24-wire GPIB cable, in response to either
of two events—an event detected by the Standard Event Status Register or the presence
of previously requested data in the instrument’s output buffer (that is, the assertion of

13-Essick-Chap13.indd 43213-Essick-Chap13.indd 432 9/9/2008 9:03:27 PM9/9/2008 9:03:27 PM

433

STATUS REPORTING

the ESB or MAV bit, respectively). This configuration process is accomplished on IEEE
488.2 instruments by using the *SRE (Service Request Enable) command. For example,
if you wish an event detection by the SESR to trigger a request for service by the instru-
ment, initialize the instrument by writing the ASCII command *SRE 32 to the instrument.
Since 3210 = 001000002, the setting of the SBR’s fifth (ESB) bit will then be the criterion
for the instrument asserting a SRQ. If, instead, you wish the presence of data in the
output buffer (signaled by the MAV bit being set) to trigger a SRQ, then write *SRE 16.
Finally, *SRE 0 will disable the instrument ability to assert a SRQ.

The relationship between the Standard Event Status Register, the instrument’s out-
put buffer, and the Status Byte Register (along with the common commands that con-
figure and query each) is illustrated in the following diagram.

Standard Event

Status Byte

Power On

Event Register Enable

OR

OR

+

+

User Request
Command Error
Execution Error
Device Error
Query Error
Request Control
Operation Complete

*ESR?

Byte
Byte
Byte

Output Buffer

*ESE <value> Status Byte Register

Request Service
Event Status Bit
Message Available

Enable
*ESE?

Read STB *SRE <value>
*SRE?*STB?

7
6
5
4
3
2
1
0

As an alternative to the use of the SRQ, serial polling is a common method for determin-
ing the status of an instrument. In a serial poll process, the interface bus queries an instru-
ment and the instrument responds by returning the value of the bits in its Status Byte
Register. A serial poll is easily accomplished in LabVIEW using VISA Read STB, found
in Functions>>Instrument I/O>>VISA. This icon’s Help Window is shown here.

13-Essick-Chap13.indd 43313-Essick-Chap13.indd 433 9/9/2008 9:03:27 PM9/9/2008 9:03:27 PM

434

Chapter 13 Control of Stand-Alone Instruments

13.5 DEVICE-SPECIFIC COMMANDS

Finally, each stand-alone instrument is designed for a specialized purpose and has its
own idiosyncratic methods for accomplishing its objectives. Thus, every programmable
instrument comes with a set of device-specific commands that allow the user to control its
functions remotely and to transfer the information it produces into a computer’s memory.
The array of device-specific commands for an instrument is listed in its user manual.
This set of commands is defined by the instrument’s maker . . . and therein lies a problem.
When surveying the user manuals for programmable instruments of varying models and
manufacturers, you will find a great diversity in the style of the various command sets.
Some (especially those associated with older model instruments) are an alphabetized
collection of cryptic one- or two-character strings (the designers’ thinking was obviously
“shorter commands yield quicker and, therefore, better computer-instrument communi-
cation”). At the other extreme are the user-friendly sets, with similar commands logically
grouped, each represented by an easy-to-read-and-remember mnemonic.

As programmable instruments have come into wider use, it has become apparent
that development costs and unscheduled delays can be diminished markedly by simpli-
fying the instrument programmers’ task whenever possible. Thus, user-friendly device-
specific command sets are the rule, rather than the exception, for instruments being
currently manufactured. Commonly, these command sets are organized in a hierarchical
tree structure, similar to the file system used in computers. Each of an instrument’s
major functions, such as TRIGger, SENSe (alternately, MEASure), CALCulate, and
DISPlay, define a root and all commands associated with that root form its subsystem.
So, for example, to configure the Agilent 34401A Digital Multimeter to measure a DC
voltage whose value is expected to fall within the range of ±10 Volts (an action within
its SENSe subsystem), the appropriate command is as follows:

SENSe:VOLTage:DC:RANGe 10

13-Essick-Chap13.indd 43413-Essick-Chap13.indd 434 9/9/2008 9:03:27 PM9/9/2008 9:03:27 PM

435

DEVICE-SPECIFIC COMMANDS

Here, SENSe is the root keyword and colons (:) represent the descent to the lower-level
VOLTage, then DC, then lowest-level RANGe keywords. Finally, 10 is a parameter asso-
ciated with RANGe. While the full command mnemonic given here can be sent to the
instrument, it is only absolutely necessary to send the capitalized characters.

In 1990, a consortium of equipment manufacturers defined the Standard Commands
for Programmable Instruments (SCPI) in an effort to standardize the device-specific
command sets of computer-controlled instrumentation. While this standard has not
been universally adopted, it is not uncommon to discover that your post-1990 instru-
ment is SCPI-compliant. As a means of categorizing generally applicable command
groups, the SCPI standard posits the following model for a generic programmable
instrument. An instrument that performs measurements on an input signal is assumed
to have the root functions shown in the next diagram. Here, for example, SENSe
includes any action involved in the actual conversion of an incoming signal to internal
data, such as setting the range, resolution, and integration time, while INPut consists
of actions that condition the signal prior to its conversion, such as filtering, biasing,
and attenuation.

SIGNAL MEASUREMENT INSTRUMENT

Signal
Routing

INPut SENSe CALCulate FORMat
Bus

TRIGger MEMory DISPlay

Alternately, an instrument that generates signals is modeled by the following diagram.

SIGNAL GENERATION INSTRUMENT

Signal
Routing

OUTput SOURce CALCulate FORMat
Bus

TRIGger MEMory

The SCPI command set is organized in a hierarchical tree structure using the syntax
illustrated above by the Agilent 34401A Multimeter command. You’ll learn more about

13-Essick-Chap13.indd 43513-Essick-Chap13.indd 435 9/9/2008 9:03:27 PM9/9/2008 9:03:27 PM

436

Chapter 13 Control of Stand-Alone Instruments

the SCPI command syntax as you work your way through this chapter. But maybe now
is a good time to dive in and actually control a stand-alone instrument.

13.6 SPECIFIC HARDWARE USED IN THIS CHAPTER

In designing this chapter, I faced the following problem. There are thousands of computer-
controllable stand-alone instruments available for purchase from the myriad of worldwide
scientific instrument makers. Each of these instruments communicates using one (or many
times, a few) of the handful of available interface buses. I have a small subset of these
instruments in my laboratory and I can use them there to practice the art of message-based
communication. You also, hopefully, have a small subset of such instruments available to
practice with in your own laboratory. What’s the problem? Well, because of the high cost
and specialized nature of such equipment, the probability that my subset and your subset
have some common instrument is most likely very small. The unfortunate thing about this
situation is that each stand-alone instrument is designed to take specialized measurements
and understands its own unique set of ASCII commands (which are defined by its maker
and are listed in its user manual). Thus, before attempting to control a particular instru-
ment using an interface bus, the programmer must have a detailed understanding of the
measurement that that instrument is designed to take, the procedure that it implements in
doing its work, and the command list that it recognizes. All of these considerations greatly
constrain the writing of a set of generic laboratory exercises that everyone can perform.

That said, I still was faced with the fact that I had to choose a particular instru-
ment and interface bus to work with in this chapter’s exercises. For the interface bus, I
chose the GPIB because it is the interface you will almost certainly encounter in your
computer-based laboratory work. Although USB and Ethernet are gaining in popularity
with scientific instrument makers (due to the fact that most PCs come equipped with
these interfaces), GPIB is currently (by far) the most widely used interface bus for labo-
ratory equipment. With an estimated 10 million GPIB-equipped instruments in use in
research and industry worldwide, the GPIB most likely retain its popularity for many
years to come. For the instrument used in this chapter’s exercises, I chose the Agilent
34401A Digital Multimeter for the following reasons. First of all, this instrument mea-
sures voltage, current, and resistance—vanilla-flavored quantities that require no spe-
cialized knowledge to understand (unlike, for instance, the control of grating angle and
slit size in a spectrometer). Second, for such a high-quality and useful GPIB-equipped
instrument, its price tag of approximately $1000 makes it extremely affordable. Every
lab should have one and many do! Third, this instrument is both IEEE 488.2 and SCPI
compliant. Thus, the following exercises, rather than being narrowly tied to one specific
device, can be much more universally applicable by demonstrating the generic features
of these widely used standards, such as command syntax and status reporting.

In the best circumstance, an Agilent 34401A (earlier purchased units of this same
instrument are named the Hewlett-Packard 34401A) is already available for your use
or, with a modest investment, you can purchase this worthwhile instrument. Then, with-
out need for modification, you can straightforwardly work your way through the given

13-Essick-Chap13.indd 43613-Essick-Chap13.indd 436 9/9/2008 9:03:28 PM9/9/2008 9:03:28 PM

437

MEASUREMENT & AUTOMATION EXPLORER (MAX)

exercises to learn the basics of message-based communication. If, instead, you have
some other interface-equipped instrument available, try reading the following pages to
understand the generic issues being investigated. Then, by consulting the user manual,
it may be fairly easy, for instance, to use the interface-appropriate VISA resource name
and substitute an ASCII command string here and there in order to adapt the exercises to
your particular instrument and interface bus. If neither of the above describes your situ-
ation, simply read through the following pages. I believe you will learn some valuable
features of instrument control that will serve you well in future work.

13.7 MEASUREMENT & AUTOMATION EXPLORER (MAX)

To carry out the exercises in this chapter, you must have a National Instruments GPIB device
connected properly to your computer, which in turn is connected (e.g., by a GPIB cable) to
a GPIB-equipped stand-alone instrument. Also the GPIB device’s driver software (called
NI-488.2) must be correctly installed. To verify that these conditions are met, we will use the
handy utility Measurement & Automation Explorer, which is nicknamed MAX.

To open MAX, either select Tools>>Measurement & Automation Explorer . . .

(if you have an open VI or Getting Started window), or else double-click on MAX’s
desktop icon (if available). After MAX opens, double-click on Devices and Interfaces
in the Configuration box. This action will command MAX to determine all of the
National Instrument devices present within your computing system.

MAX will list the findings of its device survey in hierarchical tree fashion as shown next.
If a GPIB device is connected correctly to your computer, a folder labeled GPIB0 will
appear in the resulting list (your system may have a different number than 0 in the fold-
er’s label). To find all of the stand-alone instruments properly connected to this device,
right-click on the GPIB0 folder and select the Scan for Instruments option. Alternately,
you can click on the Scan for Instruments button near the top of the window.

13-Essick-Chap13.indd 43713-Essick-Chap13.indd 437 9/9/2008 9:03:28 PM9/9/2008 9:03:28 PM

438

Chapter 13 Control of Stand-Alone Instruments

In a few moments, MAX will complete the scan. To view its results, double-click on
the GPIB0 folder. For the case shown below, one stand-alone instrument was found and
information about it is stored in the folder labeled Instrument 0.

Because up to 15 instruments can be connected to a single GPIB device, each instru-
ment has an identification number called its GPIB address. A GPIB address can be
any integer from 0 to 30 and is typically defined via a hardware DIP switch setting
within the instrument or a sequence of button-pressing and/or knob turning on its
front panel. The instrument’s user manual will describe the method for setting its
address.

The GPIB address of the instrument found in the Scan for Instruments operation
is found by double-clicking on the Instrument 0 folder. After the double-click, in the
box associated with the Attributes tab, we find that the instrument’s GPIB address is

13-Essick-Chap13.indd 43813-Essick-Chap13.indd 438 9/9/2008 9:03:28 PM9/9/2008 9:03:28 PM

439

MEASUREMENT & AUTOMATION EXPLORER (MAX)

22 (the address of your instrument may be different). A text description identifying the
instrument also appears.

Clicking on the VISA Properties tab, we find that the correct VISA resource name for
this instrument is GPIB0::22:INSTR and also are told (under Device Status) that the
instrument is working (i.e., communicating) properly.

To verify that the instrument is indeed properly communicating over the GPIB,
right-click on the Instrument 0 folder and select Communicate with Instrument.
Alternately, you can click on the Communicate with Instrument button near the top
of the window.

13-Essick-Chap13.indd 43913-Essick-Chap13.indd 439 9/9/2008 9:03:28 PM9/9/2008 9:03:28 PM

440

Chapter 13 Control of Stand-Alone Instruments

An interactive dialog box will appear. Here, after typing an ASCII message in the Send

String: box, a mouse-click on the Query button will carry out a write-then-read action.
That is, the message in Send String: will be written over the GPIB to the selected
instrument, and then the instrument’s ASCII response will be read back over the GPIB
to the computer and displayed in the String Received: box. When the dialog window
opens, its Send String: box is preloaded with *IDN?, the IEEE 488.2 common com-
mand for an instrument to identify itself.

13-Essick-Chap13.indd 44013-Essick-Chap13.indd 440 9/9/2008 9:03:29 PM9/9/2008 9:03:29 PM

441

SIMPLE VISA-BASED QUERY OPERATION

Click on the Query button. If your GPIB communication is configured properly, the
identification string received from the instrument will appear in the String Received:
box. For the Agilent 34401A Digital Multimeter used here, this identification string
identifies the instrument’s manufacturer and model number followed by some integers
that denote the version numbers of installed firmware that controls the multimeter’s
three internal microprocessors.

For future reference, this interactive dialog window is a handy tool for use in determin-
ing correct command syntax when developing message-based communication programs
for a new instrument.

Exit this dialog window and then close MAX.

13.8 SIMPLE VISA-BASED QUERY OPERATION

Let’s begin by writing a VISA-based program that carries out the query (i.e., write-then-
read) action that you just completed using MAX.

On the front panel of a blank VI, place a String Control and a String Indicator,
then label them Command and Response, respectively. As shown in the next diagram,
you’ll want to resize these objects so that they can display strings much larger than their
default sizes allow. Using File>>Save, first create a new folder named Chapter 13 within
the YourName folder, then save this VI under the name Simple VISA Query in YourName\
Chapter 13.

13-Essick-Chap13.indd 44113-Essick-Chap13.indd 441 9/9/2008 9:03:30 PM9/9/2008 9:03:30 PM

442

Chapter 13 Control of Stand-Alone Instruments

Switch to the block diagram and place a VISA Open icon (found in Functions>>

Instrument I/O>>VISA>>VISA Advanced) there. Pop up on its VISA resource

name input and create a VISA Resource Name Constant using Create>>Constant.

You must now load the VISA Resource Name Constant with the VISA resource

name of the instrument with which you wish to communicate. By clicking on the

Constant’s menu button with the , you will be presented with the list of VISA
resources that MAX found when it performed the Scan for Instruments operation. You
can then simply choose the desired instrument from this list. Alternately, you can manu-
ally enter the appropriate VISA resource name for your instrument (as found using

MAX) into the . The syntax for a VISA resource name is Interface Bus
Name::Resource Address::Resource Type.

Complete the block diagram as shown next using the VISA icons found in Functions>>

Instrument I/O>>VISA (and its subpalette VISA Advanced). Wire the Command con-
trol terminal to VISA Write’s write buffer input and the Response indicator terminal
to VISA Read’s read buffer terminal. When executed, VISA Read will read up to N
bytes from the selected resource, where N is equal to the integer wired to its byte count

13-Essick-Chap13.indd 44213-Essick-Chap13.indd 442 9/9/2008 9:03:30 PM9/9/2008 9:03:30 PM

443

SIMPLE VISA-BASED QUERY OPERATION

input. In a moment, we will read the Agilent 34401A identification string. According
to this instrument’s user manual, its identification string can be up to 35 characters
long. Thus, wire the byte count input to an integer (U32) greater than or equal to 35
(I used 50) as shown. Create the error out indicator cluster using the pop-up menu
option Create>>Indicator.

Return to the front panel, arrange the objects as you wish, and then save your work.

Enter *IDN? into Command, then run your VI. If all goes well, Response will display the
instrument’s identification string upon completion of the VI execution, as shown.

13-Essick-Chap13.indd 44313-Essick-Chap13.indd 443 9/9/2008 9:03:32 PM9/9/2008 9:03:32 PM

444

Chapter 13 Control of Stand-Alone Instruments

Simple VISA Query will leave the multimeter in remote mode with its triggering circuitry
“idled.” You can return to local mode, which continuously “triggers” measurements, by
pressing the instrument’s front-panel SHIFT/LOCAL key.

13.9 MESSAGE TERMINATION

At the conclusion of a message-transfer process, some method must be used to sig-
nal that the complete message has been passed. The IEEE 488.2 standard appoints the
ASCII LF (line feed, also called new line) as its special end of string (EOS) character.
That is, when receiving a message string, the LF character is always interpreted by the
receiver as the last byte of a message. Thus, appending LF to a command string is one
method of signaling message termination in IEEE 488.2 communication. Alternately,
the IEEE 488.2 standard allows the assertion of an end or identify (EOI) while the last
character in the string is being passed as another acceptable termination method. The
EOI is a digital signal on a dedicated wire within the GPIB cable. When using VISA
icons to control an IEEE 488.2 compliant instrument, message termination is taken care
of automatically, allowing you to remain blissfully ignorant of this lower-level activ-
ity. If you’d like to view an example of this (usually invisible) message termination
activity, pop up on the Response indicator on the front panel of Simple VISA Query, then
select ‘\’ Code Display. The \n character you see at the end of the identification string
is the backslash code for LF. The multimeter appended this termination character to
its identification string to the alert the receiver (in this case, the GPIB device) that the
message has ended.

13-Essick-Chap13.indd 44413-Essick-Chap13.indd 444 9/9/2008 9:03:32 PM9/9/2008 9:03:32 PM

445

GETTING AND SETTING COMMUNICATION PROPERTIES USING A PROPERTY NODE

To deactivate backslash coding, pop up on Response and select Normal Display.

13.10 GETTING AND SETTING COMMUNICATION PROPERTIES

USING A PROPERTY NODE

In addition to message termination, there are other low-level functions connected with
message-based communication. Many of these low-level functions have an associated
parameter setting, which is termed a VISA property. VISA assigns default values for
these properties and, as long as the VISA-based programs that you write fall within
the scope of these default settings, the VISA icons will automatically take care of these
low-level functions without any programming effort needed by you (as demonstrated
by the message termination example shown above). At times, however, you will most
likely write programs that fall outside the scope of the default VISA property settings
and so you will need to assign nondefault values to these quantities. Reading (“getting”)
and writing (“setting”) VISA property values can be done within your programs using a
Property Node (and also can often be done in MAX).

As a concrete example of a VISA property, consider VISA Read’s timeout, which
is a fail-safe feature of VISA Read that prevents a program from running endlessly if
an error occurs. If, for example, an instrument which is being queried doesn’t seem to
be responsive (perhaps a nameless experimenter forgot to flip on the instrument’s power
switch), VISA Read will only wait for the instrument’s response for a certain number of
milliseconds (given by the value of the VISA property named Timeout) before aborting
the read operation and issuing an error message.

13-Essick-Chap13.indd 44513-Essick-Chap13.indd 445 9/9/2008 9:03:32 PM9/9/2008 9:03:32 PM

446

Chapter 13 Control of Stand-Alone Instruments

The default timeout value for VISA Read on your system can be determined
using a Property Node. The Help Window for a Property Node, which is found in
Functions>>Instrument I/O>>VISA>>VISA Advanced, is shown next.

Write the following VI, which reads the current Timeout value on your system.
Open a new VI, and save it under the name Get Timeout Value in YourName\Chapter 13. On
a new block diagram, place a Property Node and then, using Create>>Constant, wire
the VISA resource name for your instrument to the Property Node’s reference input
as shown.

Next, using the , click on the Property terminal and select General Settings>>Timeout

Value. You might explore what other Properties appear in this menu, many of which are
specific to a particular interface bus.

13-Essick-Chap13.indd 44613-Essick-Chap13.indd 446 9/9/2008 9:03:33 PM9/9/2008 9:03:33 PM

447

GETTING AND SETTING COMMUNICATION PROPERTIES USING A PROPERTY NODE

Note that, within the Timeout terminal, a small arrow at the right points outward from
the terminal’s interior. This outward-directed arrow indicates that the Timeout terminal
is configured as an indicator, that is, it reads (“gets”) the current Timeout value. Using
Create>>Indicator, create a front-panel indicator to display the value of Timeout.

Switch to the front panel, change the indicator label to Timeout Value (ms), then save
your work. Run the VI. As shown below, the (default) Timeout value for my system
is 3000 ms = 3 seconds.

13-Essick-Chap13.indd 44713-Essick-Chap13.indd 447 9/9/2008 9:03:33 PM9/9/2008 9:03:33 PM

448

Chapter 13 Control of Stand-Alone Instruments

You can also use a Property Node to set the value of a VISA property. To
demonstrate this procedure, with Get Timeout Value open, use Save As . . . to create a
new program called Set Timeout Value, and store it in YourName\Chapter 13. When run,
Set Timeout Value will change VISA Read’s Timeout to a value input from its front
panel.

On the block diagram of Set Timeout Value, pop up on the Timeout terminal and
select Change To Write.

Note that, within the Timeout terminal, the small arrow is now at the left pointing inward
toward the terminal’s interior. This inward-directed arrow indicates that the Timeout

terminal is configured as a control, that is, it writes (“sets”) the Timeout value. Delete
the Timeout Value (ms) indicator terminal, then using Create>>Control, create a front-
panel control labeled Timeout Value (ms).

13-Essick-Chap13.indd 44813-Essick-Chap13.indd 448 9/9/2008 9:03:34 PM9/9/2008 9:03:34 PM

449

PERFORMING A MEASUREMENT OVER THE GPIB

Return to the front panel and save your work. Set Timeout Value (ms) to be 10000,
and then run Set Timeout Value. Next, run Get Timeout Value. Is Timeout now equal to
10000 ms = 10 seconds? Try setting Timeout equal to 8000. You will find that only
 certain values for Timeout are allowed. LabVIEW takes the value you input to Set
Timeout Value as a suggestion (rather than an order) and sets Timeout to the nearest
allowed value.

13.11 PERFORMING A MEASUREMENT OVER THE GPIB

Now that Simple VISA Query has given us a template for the VISA query process, let’s try
controlling a real measurement. Hook up some known DC voltage difference, say 5 or
6 Volts, between the HI and LO Voltage Inputs of the Agilent 34401A Multimeter. This
instrument’s user manual instructs us that delivering the following sequence of ASCII
commands will result in one DC voltage sample being acquired, and then loaded into
the instrument’s output buffer (which is part of its interface circuitry):

CONF:VOLT:DC<Space>10,0.000001
INIT
FETC?

Here is the meaning of this secret code. First, the Agilent 34401A can be programmed
to perform 11 different types of measurement functions, including DC voltage, AC volt-
age, DC current, AC current, resistance, and frequency. Given these options, the first
command instructs the instrument that we desire to take a DC voltage measurement.
The full command is CONFigure:VOLTage:DC <Space><Range>,<Resolution> (this
command actually executes a collection of commands drawn from the Agilent 34401A’s
INPut, SENSe, TRIGger, and CALCulate root subsystems). The command mnemonic
CONFigure:VOLTage:DC is constructed in the hierarchical tree structure, typical of
SCPI-compliant instruments. CONFigure is the root-level keyword and colons (:) rep-
resent the descent to the lower-level VOLTage, then lowest-level DC keywords. While
the full command mnemonic can be sent to the instrument, it is only absolutely nec-
essary to send the capitalized characters. Separated from the command mnemonic
CONF:VOLT:DC by a <Space>, the numerical values for two measurement parameters—
<Range> and <Resolution>—are specified. <Range> selects among the instrument’s
five available voltage measurement scales. Each scale offers a different sensitivity
with <Range> giving the maximum measurable value on a particular scale. The five

13-Essick-Chap13.indd 44913-Essick-Chap13.indd 449 9/9/2008 9:03:34 PM9/9/2008 9:03:34 PM

450

Chapter 13 Control of Stand-Alone Instruments

available ranges are 100 mV, 1V, 10 V, 100 V, and 1000 V. In our situation of measuring
a signal of approximately 5 V, the 10 V scale is appropriate. <Resolution> specifies the
precision of the measurement, with the options of three levels of accuracy—4½, 5½,
and 6½ digits (the ½ digit means that the most significant decimal place can only take
on a value of “1” or “0”). Thus on the 10 V scale, voltages can either be resolved at the
level of 0.001, 0.0001, or 0.00001 Volts. The trade-off in requesting higher accuracy is
that the measurement takes a longer time. In the command sequence above, the high-
est resolution of 6½ digits is selected by setting <Resolution> equal to 0.00001 when
<Range> equals 10. Note the syntax of the CONF command, which obeys the conven-
tions of the SCPI language: A comma (,) separates the parameters from each other and
a <Space> separates the mnemonic from the parameters.

Once the multimeter has been configured for the desired measurement function
as described in the previous paragraph, the data-taking process is begun by sending
the INITiate command (from the TRIGger root subsystem). Upon receipt of INIT, the
multimeter will acquire the requested voltage sample, and then store this value in its
internal memory. Finally, the FETCh? command (from the MEMory root subsystem)
instructs the instrument to transfer the reading in its internal memory to its interface-
related output buffer.

We’d like now to place this command sequence into Simple VISA Query. Since there
are three commands to be sent, it appears that we must modify the VI to include a
sequence of three successive implementations of VISA Write. While you are free to do
so, a much easier solution is available. The SCPI language allows the programmer to
concatenate several commands into one long multicommand string that can be sent in a
single VISA Write statement. The syntax for this concatenation process is as follows:

Use a semicolon (;) to separate two commands within the string.•
Begin a command with a colon (:), if it has a different root-level than the command •
preceding it. The first command in the concatenated string and IEEE 488.2 common
commands (which begin with an asterisk) do not require a leading colon.

Since each of our three commands has a different root-level, applying the above rules
results in the following concatenated string:

CONF:VOLT:DC<Space>10,0.00001;:INIT;:FETC?

Type this command into the Command control on the front panel of Simple VISA Query as
shown next. Run the VI. Your computer will instruct the multimeter to acquire a 6½
digit voltage reading, retrieve this value, and then display it on the front panel in the
Response indicator. Cool, eh?

13-Essick-Chap13.indd 45013-Essick-Chap13.indd 450 9/9/2008 9:03:34 PM9/9/2008 9:03:34 PM

451

PERFORMING A MEASUREMENT OVER THE GPIB

Note that, while extra digits are displayed, the value within Response is only accurate to
the fifth decimal place.

As shown above, the Agilent 34401A reports its data samples in the form of an ASCII
character string using the exponential format SD.DDDDDDDDESDD, where S is a positive
or negative sign, D is a numeric digit, and E is an exponent. For future reference, note that
the string that represents a data sample is 15 bytes long. If you want to use this reading as
input to a mathematical calculation (a common situation), you will need to convert the string
representation into a numerical format. Such conversion operations can be easily accom-
plished in LabVIEW using the array of conversion icons found in Functions>>String.
In the present case, use Fract/Exp String To Number in Functions>>Programming>>

String>>String/Number Conversion. The Help Window for this icon is given next.

13-Essick-Chap13.indd 45113-Essick-Chap13.indd 451 9/9/2008 9:03:34 PM9/9/2008 9:03:34 PM

452

Chapter 13 Control of Stand-Alone Instruments

Place a Numeric Indicator on the front panel of Simple VISA Query and label it Numeric
Voltage. Use Display Format . . . in this indicator’s pop-up menu to make its Digits of

precision equal to 5, and disable Hide trailing zeros. Then modify the block diagram
as follows.

Run the VI to verify that the string-to-number conversion icon performs as expected.

13.12 SYNCHRONIZATION METHODS

Although most ASCII commands are completed quickly after being received by a pro-
grammable instrument, some commands start a process that requires a significant amount

13-Essick-Chap13.indd 45213-Essick-Chap13.indd 452 9/9/2008 9:03:35 PM9/9/2008 9:03:35 PM

453

SYNCHRONIZATION METHODS

of time (such as acquiring a large amount of data or moving an object from Point A to
Point B). The time required for such processes must be taken into account when writing
a data acquisition program, else, upon execution, the program may request data before
it is available, induce undesirable motion, or cause some other chaotic outcome.

As an example, in its default configuration, the Agilent 34401A multimeter acquires
one data sample after receipt of the INITiate command, then stores this measured value
in its internal memory. However, through use of the SAMPle:COUNt <Space><Value>
command, the multimeter can be instructed to take and store multiple data samples
upon receiving INITiate. The Agilent 34401A is configured to acquire 100 DC voltage
samples with 6½-digit resolution via the following concatenated string of commands:

CONF:VOLT:DC<Space>10,0.00001;:SAMP:COUN<Space>100;:INIT;:FETC?

The FETCh? command will load the 100 acquired samples from the multimeter’s inter-
nal memory (which, by the way, can hold up to a maximum number of 512 measured
values) into the instrument’s interface-related output buffer.

Let’s write a VI that uses the given command string to gather a sequence of 100
voltage samples. Open Simple VISA Query, then use Save As . . . to create a new VI called
Simple VISA Query (Long Delay). Delete Numeric Voltage from the front panel and enlarge
Response so that it can display a very long string (which is the concatenation of 100
voltage values). Type the command given above into the Command control. Once entered
into Command, you can keep this command permanently loaded there by selecting
Edit>>Make Current Values Default.

13-Essick-Chap13.indd 45313-Essick-Chap13.indd 453 9/9/2008 9:03:35 PM9/9/2008 9:03:35 PM

454

Chapter 13 Control of Stand-Alone Instruments

Switch to the block diagram. Delete Fract/Exp String To Number. After the given
command string is written to the multimeter by VISA Write, VISA Read will receive
a string containing the 100 voltage samples. Since each voltage sample is reported as a
15-byte string and a (single) delimiting ASCII character will be needed to separate each
sample, this 100-sample string is expected to be about (100 � 15) � 100 � 1600 bytes
long. Input an integer larger than 1600 to byte count as shown.

Run Simple VISA Query (Long Delay). Count down the seconds 3. ..2. ..1. .. Disappointed?
You will find that your VI does not display even one voltage sample (let alone the
expected 100 values), but rather produces an error.

13-Essick-Chap13.indd 45413-Essick-Chap13.indd 454 9/9/2008 9:03:36 PM9/9/2008 9:03:36 PM

455

SYNCHRONIZATION METHODS

To find out what produced this error, pop up on the code indicator within the error out
cluster and select Explain Error.

A dialog box appears, where we are told that a “timeout expired” at VISA Read before
the requested operation (i.e., take 100 data samples) could be completed.

13-Essick-Chap13.indd 45513-Essick-Chap13.indd 455 9/9/2008 9:03:36 PM9/9/2008 9:03:36 PM

456

Chapter 13 Control of Stand-Alone Instruments

After some head scratching and checking of the Agilent 34401A user manual, the fol-
lowing explanation then emerges for the error we observed when running Simple VISA
Query (Long Delay). Simply stated, voltage sampling takes time. In its default configura-
tion, it takes the Agilent 34401A multimeter 10 power line cycles (PLC) for each volt-
age sample. Additionally, the Agilent 34401A has an autozero feature, which is enabled
by default. This feature operates as follows: After each voltage measurement, the mul-
timeter internally disconnects the input signal and takes a zero reading. The instrument
then subtracts the zero reading from the preceding measured value to prevent offset
voltages in the multimeter’s internal circuitry from affecting measurement accuracy.
Since the zero reading also takes 10 PLC, each complete voltage sample by the multim-
eter takes 20 PLC. Assuming this instrument is plugged into a 60 Hz power source (that
is, 60 PLC per second), 100 voltage samples will take about

100
20

60
33 3� �

PLC

PLC sec
. sec











There’s the problem! A few moments ago, we found that the default timeout value for
VISA Read is 3 seconds, but the measurement we have initiated takes over 30 seconds.

13-Essick-Chap13.indd 45613-Essick-Chap13.indd 456 9/9/2008 9:03:37 PM9/9/2008 9:03:37 PM

457

SYNCHRONIZATION METHODS

Thus, long before the requested data is available, VISA Read terminates the execution
of Simple VISA Query (Long Delay).

There are a couple of crude solutions to this dilemma. First, on the block diagram of
Simple VISA Query (Long Delay), you can insert a single-frame Sequence Structure into the
VISA execution chain that simply contains a Wait (ms) icon, wired to produce a delay of
about 33 seconds between the issuance of the data-taking command and the order to read
the gathered data samples. The resulting diagram would appear as follows.

Second, for a slightly more elegant fix, you can use a Property Node to change the
Timeout value for VISA Read from its default value (on my system) of 3000 ms to
something larger than 33 seconds. Use this approach to modify the block diagram of
Simple VISA Query (Long Delay) as shown below. Here, the Timeout value is chosen to be
60 seconds.

Return to the front panel of Simple VISA Query (Long Delay). With the command to perform
100 samples programmed into Command, run the VI. About 33 seconds later you should
see something like the following front panel. Note that the delimiter used by the Agilent
34401A to separate neighboring data values is a comma.

13-Essick-Chap13.indd 45713-Essick-Chap13.indd 457 9/9/2008 9:03:37 PM9/9/2008 9:03:37 PM

458

Chapter 13 Control of Stand-Alone Instruments

In the preceding example, we found that with a detailed knowledge of the measure-
ment process being implemented, it was possible to troubleshoot a malfunctioning
VISA-based VI. Please note that lack of communication (in particular, the GPIB device
not correctly knowing when the instrument’s data will be available) is the root problem
that led to the malfunction.

Fortunately, powerful tools exist that allow one to monitor the status of tasks being
performed by a programmable instrument. For IEEE 488.2 compliant instruments,
these tools are the Standard Event Status Register (SESR) and Status Byte Register
(SBR) that were discussed at the beginning of this chapter. With proper use of the
SESR and SBR, many potential data-taking glitches, such as the one just experienced,
can be avoided.

The status reporting capabilities of the SESR and SBR can be employed in several
ways. We will explore two commonly used techniques—the Serial Poll and Service
Request Methods. The core operation for both of these methods is the same––the com-
pletion of an assigned task triggers the Operation Complete (OPC) bit in the Standard
Event Status Register to be set, which in turn sets the Event Status Bit (ESB) of the
Status Byte Register.

In the Serial Poll Method, the setting of ESB is detected by directly checking the
Status Byte Register, whose state is obtained by serial polling the instrument. The com-
plete step-by-step process of this method is shown in the following diagram.

13-Essick-Chap13.indd 45813-Essick-Chap13.indd 458 9/9/2008 9:03:37 PM9/9/2008 9:03:37 PM

459

MEASUREMENT VI BASED ON THE SERIAL POLL METHOD

Standard Event Status Byte

Serial Poll Method

Power On

Event Register Enable

OR
+

User Request
Command Error
Execution Error
Device Error
Query Error
Request Control
Operation Complete

*ESE 1

Status Byte Register

Request Service
Event Status Bit No

No
No
No
No
No
No
No
Yes

NoMessage Available

Enable

Read STB
(Check Bit 5)

*SRE 0

7
6
5
4
3
2
1
0

In the Service Request Method, the Status Byte Register is configured such that, when
its ESB is set, the Request Service bit is induced to be set also. This action then causes
the instrument to assert a SRQ, which alerts the GPIB device that the assigned operation
is complete. This method is pictured here.

Standard Event Status Byte

Service Request Method

Power On

Event Register Enable

OR

+

OR
+

User Request
Command Error
Execution Error
Device Error
Query Error
Request Control
Operation Complete

*ESE 1

Status Byte Register

Request Service
Event Status Bit Yes

No
No
No
No
No
No
No
Yes

NoMessage Available

Enable

*SRE 32

7
6
5
4
3
2
1
0

We’ll write VIs that implement both of these approaches to status reporting.

13.13 MEASUREMENT VI BASED ON THE SERIAL POLL METHOD

Let’s try the Serial Poll Method first. To configure the Agilent 34401A for status report-
ing using the Serial Poll Method, write the following VI called Status Confi g (Serial Poll)
and save it in YourName\Chapter 13. First, code the VI’s block diagram as shown next.
Use the autocreation feature in pop-up menus to create all of the constants, controls,
and indicators.

13-Essick-Chap13.indd 45913-Essick-Chap13.indd 459 9/9/2008 9:03:38 PM9/9/2008 9:03:38 PM

460

Chapter 13 Control of Stand-Alone Instruments

Switch to the front panel and arrange the object logically. Design an icon and assign the
connector terminals consistent with the Help Window shown.

13-Essick-Chap13.indd 46013-Essick-Chap13.indd 460 9/9/2008 9:03:38 PM9/9/2008 9:03:38 PM

461

MEASUREMENT VI BASED ON THE SERIAL POLL METHOD

Here’s how the VI works, assuming that the instrument referenced by VISA resource

name is the Agilent 34401A multimeter. Within the chain of VISA icons, VISA Clear
(found in Functions>>Instrument I/O>>GPIB) executes first. The Help Window for
this icon is shown below.

Although not an absolute necessity for inclusion in Status Confi g (Serial Poll), this VI per-
forms the precautionary action of “clearing” the Agilent 34401A. VISA Clear instructs
the multimeter to abort all measurements in progress, disable its triggering circuitry,
clear its interface-related output buffer, and prepare to accept a new command string.

Next, VISA Write sends the concatenated command string *CLS;*ESE 1;*SRE 0;*OPC?
to configure the Agilent 34401A for status reporting using the Serial Poll Method. Note that
since the component strings are all IEEE 488.2 common commands, leading colons are not
required in the concatenation. In this sequence of commons, *CLS clears the contents of the
SESR and SBR. As described in the beginning of this chapter, *ESE 1 enables the SESR’s
OPC bit to set the ESB in the Status Byte Register and *SRE 0 disables the instrument from
asserting a SRQ. Then, *OPC? requests the instrument to return a “1” to the instrument’s
output buffer after this command is completed. This last command is included simply as a
method of checking that the entire sequence of commands has been executed.

Finally, VISA Read reads the contents of the instrument’s output buffer. If all goes
well, there should be a single ASCII character 1 read into the computer.

13-Essick-Chap13.indd 46113-Essick-Chap13.indd 461 9/9/2008 9:03:38 PM9/9/2008 9:03:38 PM

462

Chapter 13 Control of Stand-Alone Instruments

Test drive your VI as follows. Click on VISA resource name control’s menu button

with the .

Then, from the list presented, select the VISA resource name for your computer-
 controlled instrument.

Then, run Status Confi g (Serial Poll). Upon completion, does the Buffer Reading string indi-
cator display an ASCII character 1?

Next, construct a VI called Serial Poll which continuously reads the Status Byte
Register of an instrument until a given bit is set. A suggested coding of Serial Poll is
shown in the following diagrams, and explanations of the unfamiliar icons are in the
subsequent paragraphs. Save Serial Poll in YourName\Chapter 13.

13-Essick-Chap13.indd 46213-Essick-Chap13.indd 462 9/9/2008 9:03:39 PM9/9/2008 9:03:39 PM

463

MEASUREMENT VI BASED ON THE SERIAL POLL METHOD

VISA Read STB, found in Functions>>Instrument I/O>>VISA, is the workhorse of
this VI. With each iteration of the While Loop, its status byte output returns the current
values of the SBR’s eight bits in the form of an integer. For example, if the SBR’s fifth
bit (ESB) is set, then status byte outputs the integer 32, since 001000002 � 3210. The
Help Window for VISA Read STB is shown next.

13-Essick-Chap13.indd 46313-Essick-Chap13.indd 463 9/9/2008 9:03:40 PM9/9/2008 9:03:40 PM

464

Chapter 13 Control of Stand-Alone Instruments

The individual bits of status byte can be checked through the use of Number To Boolean

Array (found in Functions>>Programming>>Boolean with its Help Window shown
next). This VI creates an array of TRUE and FALSE values that mirror the sequence
of zeros and ones (starting from the least-significant bit) in the binary representation of
the integer input number. For example, if number equals the decimal integer 48, then
the Boolean array output will be [F, F, F, F, T, T, F, F], since 4810 = 001100002. Index

Array can then be used to ascertain the value of a particular element in this array. Serial
Poll’s While Loop will continue to iterate until Which Bit? becomes TRUE.

Run Serial Poll under Highlight Execution and, through your observations, gain a bet-
ter understanding of its operation. Remember to input values for VISA resource name
and Which Bit? on the front panel. When run in this isolated manner, the VI will most
likely never be able to exit the While Loop, so you’ll have to stop it using the Abort

Execution button in the toolbar.
We’re finally ready to write VISA Query (Serial Poll). This top-level program imple-

ments serial polling to synchronize the GPIB activities necessary in acquiring 100 volt-
age samples using an Agilent 34401A multimeter.

13-Essick-Chap13.indd 46413-Essick-Chap13.indd 464 9/9/2008 9:03:40 PM9/9/2008 9:03:40 PM

465

MEASUREMENT VI BASED ON THE SERIAL POLL METHOD

Open Simple VISA Query (Long Delay), then use Save As . . . to create VISA Query (Serial
Poll). The front panel can remain unchanged. If it’s not already there by default, type the
following command into the Command control.

CONF:VOLT:DC<Space>10,0.00001;:SAMP:COUN<Space>100;:INIT;*OPC;:
FETC?

Switch to the block diagram and modify it as shown below with Status Confi g (Serial
Poll) and Serial Poll used as subVIs.

Here is how this diagram works: The concatenated command string is sent to the instru-
ment by VISA Write. After configuring the multimeter for the desired DC Voltage measure-
ment function, the acquisition process is begun by the INIT command. The succession
of 100 samples is acquired and temporarily stored in the multimeter’s internal memory.
After the hundredth sample is obtained, *OPC instructs the instrument to set its SESR’s
OPC bit (which, in turn, sets the SBR’s ESB), then FETC? loads the contents of the inter-
nal memory into the instrument’s output buffer. At that point, Serial Poll detects the setting
of ESB, which then triggers the instrument’s output buffer to be read by VISA Read. One
might be tempted to write the concatenated command with *OPC after FETC?, rather
than sandwiched between INIT and FETC?, as above. It is best, however, to avoid send-
ing *OPC after a query (a query is a command like FETC? that ends in a question mark)
as such commands cause a message to be loaded into an instrument’s output buffer. If the
message exceeds the finite size of the output buffer, as happens in our present situation,
the query must be immediately followed by VISA Read as the program executes in order
to read the long message string over the bus successfully.

Return to the front panel, save your work, and then run VISA Query (Serial Poll). Does
the VI obtain the requested 100 DC voltage samples successfully? If so, try running it
again with Highlight Execution activated for both VISA Query (Serial Poll) and its subVI
Serial Poll. This exercise will illustrate the weakness of the Serial Poll Method, namely,
the large volume of interface bus traffic required by this technique. During the 30-odd
seconds while the 100 data samples are being gathered, the instrument is polled count-
less times by the GPIB device so that its status can be continuously monitored. While
effective, the Serial Poll Method is rather inefficient because of its excessive use of the
interface bus and processor time.

13-Essick-Chap13.indd 46513-Essick-Chap13.indd 465 9/9/2008 9:03:41 PM9/9/2008 9:03:41 PM

466

Chapter 13 Control of Stand-Alone Instruments

13.14 MEASUREMENT VI BASED ON THE SERVICE REQUEST METHOD

The Service Request Method provides status reporting with a minimum of interface
bus activity. To configure the 34401A for status reporting using the Service Request
Method, open Status Confi g (Serial Poll), then create Status Confi g (SRQ) using Save As . . .
and save it in YourName\Chapter 13. The front panel and terminal assignments can remain
as is, but the icon should be redesigned as shown here.

Only two modifications of the block diagram are needed. First, by changing *SRE 0 to
*SRE 32 in the command string sent to the instrument, the Agilent 34401A will assert the

13-Essick-Chap13.indd 46613-Essick-Chap13.indd 466 9/9/2008 9:03:41 PM9/9/2008 9:03:41 PM

467

MEASUREMENT VI BASED ON THE SERVICE REQUEST METHOD

SRQ line when the SBR’s fifth (ESB) bit is set. The already present *ESE 1 command
configures the instrument to set the ESB in response to the SESR’s OPC (Operation
Complete) bit being set. Second, in order for VISA icons to detect service request
(SRQ) events during this VISA session, VISA Enable Event, with Service Request
wired to its event type input, must be included in the diagram as shown. VISA Enable

Event is found in Functions>>Instrument I/O>>VISA>>VISA Advanced>>Event

Handling.

Save your work as you close this VI.
Open VISA Query (Serial Poll), then use Save As . . . to create a new VI named VISA

Query (SRQ), and store it in YourName\Chapter 13. The front panel is fine as is.

Switch to the block diagram and modify it as shown next.

13-Essick-Chap13.indd 46713-Essick-Chap13.indd 467 9/9/2008 9:03:42 PM9/9/2008 9:03:42 PM

468

Chapter 13 Control of Stand-Alone Instruments

Here, VISA Disable Event, found in Functions>>Instrument I/O>>VISA>>VISA

Advanced>>Event Handling, must be included in order disable VISA servicing of
SRQ events before the VISA session is closed.

Wait for RQS.vi, also found in Functions>>Instrument I/O>>VISA>>VISA

Advanced>>Event Handling (Help Window shown below), sits idly until the instru-
ment denoted by VISA resource name asserts a SRQ. However, there is a limit to
the patience of this icon. It will only wait up to a total time of timeout, with a default
value of 25000 ms = 25 seconds. Because our measurement requires over 33 seconds, a
constant larger than 33,000 must be wired to the timeout input of Wait for RQS.vi, as
shown in the above diagram.

Save your work, then run VISA Query (SRQ). Does it successfully acquire the requested
100 DC voltage samples? Do you understand the operation of this program and how the
Service Request Method manages to work with a minimum of interface bus activity?

To simplify the block diagram of VISA Query (SRQ), you might consider packaging
VISA Disable Event and VISA Close together in a subVI called Close (SRQ), since both
of these icons are involved in closing down the service request–based VISA session. To
accomplish this feat easily, simply create a highlighting box around the two icons using
the .

13-Essick-Chap13.indd 46813-Essick-Chap13.indd 468 9/9/2008 9:03:42 PM9/9/2008 9:03:42 PM

469

MEASUREMENT VI BASED ON THE SERVICE REQUEST METHOD

Then select Edit>>Create subVI. A new subVI icon will appear wired on your diagram.

Double-click on this new icon to open it. Then, relabel the front-panel objects appropri-
ately, design an icon, and assign the connector consistent with the Help Window shown
(using the 4 � 2 � 2 � 4 pattern). Save this VI under the name Close (SRQ) in YourName\
Chapter 13.

13-Essick-Chap13.indd 46913-Essick-Chap13.indd 469 9/9/2008 9:03:42 PM9/9/2008 9:03:42 PM

470

Chapter 13 Control of Stand-Alone Instruments

Switch to the block diagram of Close (SRQ). It should appear as follows.

Close Close (SRQ), and return to the block diagram of VISA Query (SRQ). You may have
to delete the originally created subVI and load a new copy of Close (SRQ) there using
Functions>>Select a VI . . . After that, the finished block of VISA Query (SRQ) will appear
as shown next. Try running this VI to verify that it functions correctly.

13.15 CREATING AN INSTRUMENT DRIVER

An instrument driver is a collection of modular software routines that perform the oper-
ations required in the computer control of a programmable instrument. These operations
include configuring, triggering, status checking, and sending data to and receiving data

13-Essick-Chap13.indd 47013-Essick-Chap13.indd 470 9/9/2008 9:03:43 PM9/9/2008 9:03:43 PM

471

CREATING AN INSTRUMENT DRIVER

from the instrument. Above, Status Confi g (Serial Poll) and Status Confi g (SRQ) are examples
of configuration VIs that would be useful to include as part of the Agilent 34401A soft-
ware driver. You will now write another configuration VI, this time one that prepares the
multimeter for taking a desired measurement.

The Agilent 34401A is capable of implementing 11 types of measurement func-
tions: DC and AC voltage, DC voltage ratio (ratio of voltage at two different inputs), DC
and AC current, 2- and 4-wire resistance (2-wire is the “normal” method for measuring
resistance; the more involved 4-wire technique is necessary only when measuring very
small resistance samples), frequency and period of an AC signal, continuity, and diode
check. To gain experience with some of the LabVIEW tools available for developing
instrument drivers, let’s write a driver that offers the choice of configuring the Agilent
34401A for either a DC voltage, AC voltage, or 2-wire resistance measurement. You, of
course, can be more ambitious and write your VI to control up to all 11 possible mea-
surement functions.

Referring to the Agilent 34401A user manual, we find that our driver must allow
a user to select one of the following three possible commands in order to configure the
instrument for the desired measurement function:

CONFigure:VOLTage:DC <Space> <Range>, <Resolution>
CONFigure:VOLTage:AC <Space> <Range>, <Resolution>
CONFigure:RESistance <Space> <Range>, <Resolution>

Here, the possible values of <Range> for both the DC and AC voltage measure-
ments are 0.1, 1, 10, 100, and 1000 Volts. For the resistance measurement, the allowed
<Range> values are 100, 1k, 10k, 100k, 1M, 10M, and 100M ohms. In all cases, the
measurement precision may be 4½, 5½, or 6½ digits, which corresponds to <Resolution>
being 10–4, 10–5 or 10–6 times the <Range> value, respectively.

We will write two programs called Range and Resolution Decoder and Command String,
which will allow a user to construct the desired command string using front-panel controls.
On Range and Resolution Decoder, given range and resolution choices from a user-friendly
front-panel listing of the multimeter’s available offerings, the program will convert these
choices to the double-precision floating-point numeric format needed in Command String.
Command String will construct the appropriate ASCII command string to be sent to the
Agilent 34401A, based on selections made on its front-panel controls.

Create a new VI named Range and Resolution Decoder and save it in YourName\Chapter 13.
Place four Emun controls (found in Controls>>Modern>>Ring & Emun) on the front
panel and label them Function, Voltage Range, Resistance Range, and Resolution, respec-
tively. Pop up each Enum, select Edit Items . . . and then program each with the items
given in the following list.

Function: DC Voltage, AC Voltage, Resistance
Voltage Range: 100 mV, 1 V, 10 V, 100 V, 1000 V
Resistance Range: 100 ohm, 1 kohm, 10 kohm, 100 kohm, 1 Mohm, 10 Mohm,

100 Mohm
Resolution: 4 1/2 Digits, 5 1/2 Digits, 6 1/2 Digits

13-Essick-Chap13.indd 47113-Essick-Chap13.indd 471 9/9/2008 9:03:44 PM9/9/2008 9:03:44 PM

472

Chapter 13 Control of Stand-Alone Instruments

Then place these four Enum controls in a Cluster shell (found in
Controls>>Modern>>Array, Matrix & Cluster) labeled Function Parameters as shown
next.

Switch to the block diagram, place a Case Structure there, and complete the code
shown. Pop up on the Case Structure and select Add Case for Every Value, and then
verify that it has three cases labeled DC Voltage, AC Voltage, and Resistance.

13-Essick-Chap13.indd 47213-Essick-Chap13.indd 472 9/9/2008 9:03:44 PM9/9/2008 9:03:44 PM

473

CREATING AN INSTRUMENT DRIVER

Select the DC Voltage case, and then place an Index Array icon within it. Pop up
on Index Array’s n-dimension array input and select Create>>Constant to create
an Array Constant and label it Voltage Ranges. Next, program the index-0 through
index-4 elements of this Array Constant as 0.1, 1.0, 10.0, 100.0, and 1000.0, respec-
tively. The Array Constant then will serve as a look-up table of the multimeter’s
allowed voltage ranges, given as double-precision floating-point numbers. Complete
the code for the DC Voltage case shown below. Here, the integer associated with a
selected Voltage Range on the front-panel Enum control provides the index of the desired
look-up table element. This element is then output by Index Array.

Clone the Voltage Ranges Array Constant (mouse-click, while holding down <Ctrl>),
and place the copy somewhere on the block diagram. Then switch to the AC Voltage
case and (using your cloned Voltage Ranges), write the code shown.

13-Essick-Chap13.indd 47313-Essick-Chap13.indd 473 9/9/2008 9:03:44 PM9/9/2008 9:03:44 PM

474

Chapter 13 Control of Stand-Alone Instruments

Finally, switch to the Resistance case and program it as shown. Here, the index-0
through index-6 elements of the Resistance Ranges Array Constant are 1.0E2, 1.0E3,
1.0E4, 1.0E5, 1.0E6, 1.0E7, 1.0E8, respectively.

Add a second Case Structure and complete the diagram as shown next. Remember to
pop up on the Case Structure and select Add Case for Every Value. The Range & Resolution
indicator cluster is created by popping up on Bundle and using Create>>Indicator.

13-Essick-Chap13.indd 47413-Essick-Chap13.indd 474 9/9/2008 9:03:45 PM9/9/2008 9:03:45 PM

475

CREATING AN INSTRUMENT DRIVER

Return to the front panel. Within the Range & Resolution indicator cluster, label the
top and bottom Numeric Indicator as Range and Resolution, respectively. Design an icon
and assign the connector terminals as shown. Save your work.

13-Essick-Chap13.indd 47513-Essick-Chap13.indd 475 9/9/2008 9:03:45 PM9/9/2008 9:03:45 PM

476

Chapter 13 Control of Stand-Alone Instruments

Run Range and Resolution Decoder and verify that it functions properly. For example, with
Function, Voltage Range, and Resolution equal to DC Voltage, 10 V, and 6 1/2 Digits, respec-
tively, Range and Resolution should equal 10.0 and 0.00001.

Next, open a blank VI, and save it under the name Command String in YourName\
Chapter 13. Switch to the block diagram and write the following code, which constructs
the desired ASCII command string. The Function Parameters control cluster and output
string string indicator are made using the autocreation feature in pop-up menus.

13-Essick-Chap13.indd 47613-Essick-Chap13.indd 476 9/9/2008 9:03:45 PM9/9/2008 9:03:45 PM

477

CREATING AN INSTRUMENT DRIVER

This diagram constructs the desired command string in a three-step process. First, all three
possible commands begin with the keyword CONF:, so this sequence of ASCII charac-
ters is wired to the string input of Pick Line (found in Functions>>Programming>>

String>>Additional String Functions with its Help Window given below). The
value of the line index input (an integer given by the front-panel Function Enum
control) then selects which of the three possible lines programmed into the String

Constant wired to multi-line string is to be appended to CONF :. Create the three lines
in this String Constant by the following sequence of keystrokes: VOLT:DC<Space>
<Enter>VOLT:AC<Space> <Enter>RES<Space>. Be sure to include the <Space>
character at the end of each command string. You can make the invisible space and line
feed characters visible by popping up on the String Constant and selecting “\” Codes

Display. The correct entry will then appear as VOLT:DC\s\nVOLT:AC\s\nRES\s.

13-Essick-Chap13.indd 47713-Essick-Chap13.indd 477 9/9/2008 9:03:46 PM9/9/2008 9:03:46 PM

478

Chapter 13 Control of Stand-Alone Instruments

Format Value, from Functions>>Programming>>String/Number Conversion (Help
Window shown next), then is used to attach two more string fragments, each with
embedded ASCII-coded numbers that program the <Range> and <Resolution> set-
tings of the multimeter. This icon takes the number at the value input, and converts it to
an ASCII string representation with the format defined at the format string input. This
ASCII string is appended to string and presented at output string. In the above dia-
gram, the scientific notation format %7.2e (see section 5.5) is used for both <Range>
and <Resolution> parameters. Note a comma (,) and semicolon (;) follow <Range>
and <Resolution>, respectively.

Switch to the front panel and change the label of the String Indicator from output string to
Command. Run the VI with a given choice of the controls within Function Parameters, and
verify that the correct command string appears in the Command indicator. Save your work.

13-Essick-Chap13.indd 47813-Essick-Chap13.indd 478 9/9/2008 9:03:47 PM9/9/2008 9:03:47 PM

479

CREATING AN INSTRUMENT DRIVER

Add a Push Button (found in Controls>>Modern>>Boolean) and a Numeric Control
to the front panel and label them Autozero and Sample Count, respectively. Change the rep-
resentation of Sample Count to U16.

Switch to the block diagram, then include code to control the multimeter’s autoze-
roing feature and to program the desired number of data samples to be taken. The
%5d format in the SAMPle:COUNt command specifies a five-place decimal integer
because the maximum allowed value for SAMPLe:COUNt (according to the Agilent
34401A user manual) is 50000. The format string entry for this command should be
:SAMP:COUN<Space>%5d.

Autozero can be either turned on and off with the following commands:

ZERO:AUTO<Space>ON
ZERO:AUTO<Space>OFF

Append True/False String (found in Functions>>Programming>>String>>Ad

ditional String Functions), whose Help Window follows, provides an easy way to
select which of these two choices is concatenated to the command string. Remember to
include the leading colon and final semicolon in the false string and true string entries
to assure proper command concatenation.

13-Essick-Chap13.indd 47913-Essick-Chap13.indd 479 9/9/2008 9:03:47 PM9/9/2008 9:03:47 PM

480

Chapter 13 Control of Stand-Alone Instruments

To guarantee that the instrument fully processes the sent command string before exit-
ing the configuration VI (which you will write in a moment), conclude the string with
*OPC?.

Return to the front panel. Run the VI with a given choice of the front-panel controls
to verify that the correct command string appears in the Command indicator. Then design
an icon and assign the connectors consistent with the following Help Window. Save
your work as you close the VI.

13-Essick-Chap13.indd 48013-Essick-Chap13.indd 480 9/9/2008 9:03:47 PM9/9/2008 9:03:47 PM

481

CREATING AN INSTRUMENT DRIVER

Finally, create a VI named Measurement Confi g and save it in YourName\Chapter 13. Switch
to the block diagram and code it as shown. This VI will write the command string to the
instrument. When this diagram runs, the read buffer indicator will display an ASCII “1”
if the command string was successfully read by the instrument.

Switch to the front panel, arrange the objects there as you wish. Then design an icon
and assign the connector terminals consistent with the Help Window shown below. Save
your work.

13-Essick-Chap13.indd 48113-Essick-Chap13.indd 481 9/9/2008 9:03:48 PM9/9/2008 9:03:48 PM

482

Chapter 13 Control of Stand-Alone Instruments

Input the VISA resource name for your instrument into the VISA resource name control,
and then run Measurement Confi g with front-panel control settings shown above so that
the following command is sent to the instrument:

CONF:VOLT:DC<Space>1.00E+1,1.00E-5;:ZERO:AUTO<Space>ON;:SAMP:
COUN<Space> 5;*OPC?

13-Essick-Chap13.indd 48213-Essick-Chap13.indd 482 9/9/2008 9:03:48 PM9/9/2008 9:03:48 PM

483

CREATING AN INSTRUMENT DRIVER

If the command is successfully sent over the GPIB, an ASCII “1” will appear in
output buffer. If the Agilent 34401A beeps, there is most likely an error in the sent com-
mand. Open the front panel of Command String, then run Measurement Confi g again. Check
that the concatenated command in the Command indicator on Command String’s front panel
has a form as given above; make sure all of the colons, semicolons, and spaces are
included. If there is an error, correct it on the block diagram of Command String.

After running Measurement Confi g, the multimeter will be left in remote mode. You
can switch to local mode by pressing the instrument’s front-panel SHIFT/LOCAL key.
The Agilent 34401A can then be triggered (equivalent to sending the INIT command
over the GPIB) with the SINGLE/TRIG button. A star (*) annunciator will blink on the
instrument’s front-panel display as it acquires each voltage sample. Does this annucia-
tor blink Sample Count times after the SINGLE/TRIG button is depressed?

Save Measurement Confi g as you close it.
Write a final modular VI for your Agilent 324401A instrument driver called Take

Data, as shown below, and save it in YourName\Chapter 13. The leading *CLS command
assures that all bits in the SESR and SBR register are set to zero, prior to each data-
taking process.

13-Essick-Chap13.indd 48313-Essick-Chap13.indd 483 9/9/2008 9:03:49 PM9/9/2008 9:03:49 PM

484

Chapter 13 Control of Stand-Alone Instruments

Note: Take Data cannot be run independently without generating an error. However, if
you first run one of the other VIs that you have written (can you figure out which one?),
then Take Data can be run successfully.

13.16 USING THE INSTRUMENT DRIVER TO WRITE

AN APPLICATION PROGRAM

Ultimately, the merit of an instrument driver is measured by the ease with which you
can use it to write an application program to fulfill some specialized need in your labo-
ratory work. Let’s quickly write an application program called Data Sampler that can be
configured to take a multisample voltage or resistance measurement.

With VISA Query (SRQ) open, use File>>Save As . . . to create Data Sampler and save it
in Your Name\Chapter 13. Rewrite the block diagram using your modular driver software
as shown below.

13-Essick-Chap13.indd 48413-Essick-Chap13.indd 484 9/9/2008 9:03:49 PM9/9/2008 9:03:49 PM

485

USING THE INSTRUMENT DRIVER TO WRITE AN APPLICATION PROGRAM

Return to the front panel and arrange the object there as desired. Save your work.

Run Data Sampler with various choices of front-panel settings, and then pat yourself on
the back for a job well done.

Now that you know some of what goes into writing an instrument driver, here’s
some very good news. In many cases, the LabVIEW instrument driver you will need
for a particular instrument in your laboratory has already been written and is available
for your use free of charge. National Instruments provides an extensive library of down-
loadable instrument drivers at http://www.natinst.com/idnet/. You can also access this
resource within LabVIEW by selecting Tools>>Instrumentation>>Find Instrument

13-Essick-Chap13.indd 48513-Essick-Chap13.indd 485 9/9/2008 9:03:49 PM9/9/2008 9:03:49 PM

486

Chapter 13 Control of Stand-Alone Instruments

Drivers . . . Most of these drivers are written using VISA icons and so, by using the
interface-appropriate VISA resource name for your instrument, can be used to com-
municate over various interface buses—RS-232, GPIB, Ethernet, and USB. LabVIEW
itself comes equipped with the VISA driver for the Agilent 34401A Digital Multimeter
in Functions>>Instrument I/O>>Instrument Drivers>>Agilent 34401. Take a look
at some of these subVIs and see if you can decipher them.

Finally, a useful Agilent 34401A instrument driver utility would perform the follow-
ing task: Take the instrument’s Data string (data samples delimited by commas and the
string terminated by a LF character) and convert it to a numeric array and a spreadsheet
format. One manifestation of that utility, called Reformat Data String, is shown next. On the
front panel, the string control and string indicator have been resized and scrollbars have
been activated by selecting Visible Items>>Vertical Scrollbar in the pop-up menus.

13-Essick-Chap13.indd 48613-Essick-Chap13.indd 486 9/9/2008 9:03:50 PM9/9/2008 9:03:50 PM

487

USING THE INSTRUMENT DRIVER TO WRITE AN APPLICATION PROGRAM

If interested, try writing Reformat Data String. It implements the Search and Replace

String icon found in Functions>>Programming>>String (Help Window shown
below) to coerce the original Data string into the spreadsheet format (by replacing
comma delimiters and the LF terminator with tabs and an EOL, respectively). Do you
understand how it works? Once written, include this program as a subVI in Data Sampler
and watch it perform its magic.

13-Essick-Chap13.indd 48713-Essick-Chap13.indd 487 9/9/2008 9:03:50 PM9/9/2008 9:03:50 PM

488

Chapter 13 Control of Stand-Alone Instruments

DO IT YOURSELF

Assume that you have a widget in your laboratory that is providing you with some interest-
ing information about X, where X might be the position of an object or the intensity of a
light source. Additionally, say, the widget provides this information about X in the form of
a “voltage-code,” that is, it produces an output voltage V that is some known function of X.
Then, with an Agilent 34401A multimeter and an appropriate application VI (called it Time
Evolution of X), you can monitor X (via measurement of V) as a function of time.
 Using your Agilent 34401A instrument driver programs as subVIs, write Time Evolution of
X. When run, this top-level VI continuously obtains a single DC voltage sample every Wait
Time seconds (where Wait Time is given by the value on the similarly named front-panel
control) until the front-panel Stop Button is clicked. While running, the VI provides real-time
graphing of the Voltage versus Time data on a Waveform Chart with the Chart’s Time
axis properly calibrated. The front panel also provides the option of storing the all of the
accumulated data in a spreadsheet fi le with Time and Voltage in the spreadsheet’s fi rst and
second column, respectively. Defi ne Time � 0 at the moment that the fi rst voltage sample is
acquired.
 The front panel of Time Evolution of X should appear as shown below. All needed parameters
without a front-panel control should be input on the block diagram. After building this VI, run
it to observe a time-dependent voltage input (e.g., from a function generator) to the multim-
eter and save the resulting Voltage versus Time data in a spreadsheet.

A helpful tip: The Time axis of the Waveform Chart can be calibrated using a Property
Node. Pop up on the Chart’s icon terminal and select Create>>Property Node>>
X Scale>>Offset and Multiplier>>Multiplier. Then set the Multiplier property
appropriately.

13-Essick-Chap13.indd 48813-Essick-Chap13.indd 488 9/9/2008 9:03:51 PM9/9/2008 9:03:51 PM

489

USING THE INSTRUMENT DRIVER TO WRITE AN APPLICATION PROGRAM

Problems

Thermocouples are widely used as temperature sensors. A thermocouple is constructed 1.
by joining the ends of two dissimilar metals, for example, a copper and a constantan
wire for a Type T thermocouple. This junction produces a millivolt-level voltage, which
has a well-documented temperature dependence, where the temperature is measured
relative to a “cold junction” reference temperature. Conveniently, this cold junction can
be provided by a compact electronic device called a Cold Junction Compensator (CJC),
which effectively makes the reference temperature equal to 0�C.

 Connect a thermocouple to a CJC and then connect the plus and minus output of
the CJC to the HI and LO Voltage Inputs of the Agilent 34401A Multimeter. Then, write
a program called Thermocouple Thermometer (VISA) that, every 250 ms until a Stop Button
is clicked, reads the thermocouple voltage, converts this value to the corresponding
temperature in Celsius, and then display this temperature in a front-panel indicator.

 To convert the thermocouple voltage to its corresponding temperature, use Convert
Thermocouple Reading.vi, which is found in Programming>>Numeric>>Scaling,
with its CJC Voltage input wired to 0 (the CJC Sensor and Type of Excitation
inputs can be left unwired). Program Thermocouple Type for your particular type of
thermocouple (e.g., T).

 Run Thermocouple Thermometer (VISA) and use it to measure room temperature as well as
the temperature of your skin.
As written in this chapter, 2. Serial Poll is fl awed in that, if the bit being monitored in the
Status Byte Register is never set, this VI will loop endlessly. With Serial Poll open, use
Save As . . . to create a new VI called Serial Poll with Timeout. Then modify the block
diagram so that, if the bit being monitored is not set within 10 seconds, the While Loop
is stopped.
When LabVIEW is installed on your computer, a driver for the Agilent 34401A 3.
Multimeter is included. This driver is found in Functions>>Instrument I/
O>>Instrument Drivers>> Agilent 34401. Use the icons from this “built-in” driver
to write a program called it Time Evolution of X (Built-In Driver), which carries out the task
described in this chapter’s Do It Yourself project. The icon VI Tree gives a helpful
overview of the “built-in” driver.
Regardless of the chosen resolution, the Agilent 34401A Multimeter always reports 4.
data sample values with eight digits to the right of the decimal point. Thus, some of
these decimal-place values are not signifi cant. With Take Data open, use File>>Save
As… to create a new VI called Take Data (Accurate Resolution). Add a Function Parameters
front-panel control to this new VI (so that the selected resolution setting can be input)
and then modify the block diagram appropriately so that the data output reports values
with the actual resolution selected (e.g., 4½ digits, if that is the selected resolution).
Use the 5. Instrument I/O Assistant Express VI to query the Agilent 34401A Multimeter.
Place an Instrument I/O Assistant (found in Functions>>Express>>Input) on the
block diagram of a VI called Simple VISA Query (Express). When this Express VI’s dialog
window opens, select the desired instrument, and then click on Add Step. In the Add
Step dialog window that appears, double click on Query and Parse. In the Enter a
command box, type

13-Essick-Chap13.indd 48913-Essick-Chap13.indd 489 9/9/2008 9:03:51 PM9/9/2008 9:03:51 PM

490

Chapter 13 Control of Stand-Alone Instruments

CONF:VOLT:DC 10,0.00001;:INIT;:FETC?

 and then click Run this step. The command will be sent to the Agilent 34401A
Multimeter and its string response will be displayed. Click the Auto parse button to
convert the response string to numeric format and then close the dialog box by clicking
the OK button. When returned to the block diagram, simply create an indicator for the
icon’s token output terminal.

 Run Simple VISA Query (Express) and demonstrate that it successfully obtains a DC
Voltage sample from the Agilent 34401A Multimeter.

13-Essick-Chap13.indd 49013-Essick-Chap13.indd 490 9/9/2008 9:03:51 PM9/9/2008 9:03:51 PM

