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Chapter 13 

Control of Stand-Alone Instruments

HARDWARE REQUIREMENTS FOR THIS CHAPTER

To perform the exercises in this chapter, you must have a National Instruments General 
Purpose Interface Bus (GPIB) device connected to your computer. This device might be 
a PCI-GPIB board plugged into a PCI expansion slot or a GPIB-USB device attached 
to a USB connector. A stand-alone instrument equipped with an IEEE 488.2 compliant 
interface (ideally the Agilent 34401A Digital Multimeter) is also needed. This instru-
ment is connected to a PCI-GPIB board using a GPIB cable; a GPIB-USB device con-
nects directly to the instrument.

If, while performing the chapter exercises, the communication between the GPIB 
device and instrument breaks down (e.g., caused by an accidental error in your pro-
gramming), communication can often be restored either by turning the instrument off 
and then on again, or by restarting your computer.

In previous chapters, you have used LabVIEW software to transform a personal com-
puter (connected to an appropriate National Instruments DAQ device) into several handy 
laboratory instruments. In particular, you programmed this system to become a DC volt-
meter, digital oscilloscope, spectrum analyzer, waveform generator, and digital thermom-
eter. Pause to consider the following tantalizing prospect: Perhaps the only instrument 
required in a modern-day laboratory is a DAQ device-equipped computer controlled 
by LabVIEW software. That is, by simply writing a collection of appropriate VIs, it 
might be possible for you—the contemporary scientific researcher—to satisfy all of your 
laboratory instrumentation needs with this single LabVIEW-based data acquisition and 
generation system. This system’s tremendous flexibility would then obviate the need to 
purchase an expensive collection of stand-alone electronic equipment such as power sup-
plies, function generators, picoammeters, spectrum analyzers, and oscilloscopes.
The functioning VIs that you have written in previous chapters demonstrate that the 
above “tantalizing prospect” can, at least in certain situations, be realized. But don’t 
discard your stand-alone instruments just yet. The timing, speed, sensitivity, and 
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simultaneous data-taking requirements of many contemporary research experiments are 
beyond the capabilities of your DAQ device. For instance, while the LabVIEW-based 
digital oscilloscope we constructed worked well for observing audio-range frequen-
cies (less than 20 kHz), it would prove miserably inadequate at displaying the several 
nanosecond-wide voltage pulses emanating from a photomultiplier tube. In this latter 
situation, a stand-alone digital scope with a very fast analog-to-digital converter (on the 
time scale of several gigasamples per second) would do the job nicely. Thus stand-alone 
instruments play a central role in state-of-the-art research, and so it might not surprise 
you to find that they, too, fall under the scope of LabVIEW.

Over the past few decades, a message-based communications standard has evolved 
by which stand-alone instruments can be software-controlled using a personal com-
puter. In this communications scheme, a particular instrument obeys an array of man-
ufacturer-defined ASCII character commands that represent all the possible ways of 
manually pressing buttons, turning dials, and viewing output data on its front panel. 
While the hardware conduit (called an interface bus) through which these ASCII mes-
sages are passed between the PC and laboratory instrument can take on various guises 
(including RS-232, GPIB, Ethernet, and USB), there is a single set of LabVIEW icons 
available to control this communication process. This icon set is named VISA (short for 
Virtual Instrument Software Architecture) and is found in Functions>>Instrument I/

O>>VISA.
In this chapter, you will learn how to use VISA icons to control the message-based 
communication between a stand-alone instrument and your computer. You will explore 
generic features of this communication process such as the Standard Commands for 
Programmable Instruments (SCPI) language and various synchronization methods 
while writing code that controls a particular stand-alone instrument—the Agilent 
34401A Digital Multimeter—using a particular interface bus—the General Purpose 
Interface Bus.

13.1 THE VISA SESSION

When using VISA icons to facilitate message-based communication between a com-
puter and a particular stand-alone instrument, the instrument is termed a VISA resource 
and the communication activity is called a VISA session. To “query” a VISA resource 
(i.e., send it a command, then receive back its response), the required VISA session 
consists of the following four steps: open the session, write the command message to 
the resource, read the response from the resource, close the session. In Functions>> 

Instrument I/O>>VISA (and its subpalette VISA Advanced), the following four icons 
are available to perform the four given steps—VISA Open, VISA Write, VISA Read, 
and VISA Close. To understand how to wire these four icons together to query an instru-
ment, we will first briefly describe the function of each individual icon.

The Help Window for VISA Open is shown in the following illustration. The job of 
this icon is to begin a VISA session between your computer and the resource defined at 
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its VISA resource name input. The VISA resource name consists of text that specifies 
the interface type being used (e.g., GPIB or USB), the address of the resource (a number 
we’ll discuss in a few minutes), and the resource type. For our work, the resource type 
will be a stand-alone instrument denoted by INSTR. To pass the VISA resource name 
to other VISA icons, this quantity is available at the VISA resource name out output 
terminal.

VISA Write, whose Help Window follows below, performs the actual ASCII mes-
sage transfer from your computer to the stand-alone instrument. Once presented with 
the open session’s VISA resource name, this icon writes the ASCII string at its write 

buffer input to the instrument. This string is one of the commands recognized by the 
instrument and, when received by the instrument, configures it properly for a desired 
data-taking measurement. Additionally, the VISA resource name is available at the 
VISA resource name out output terminal.
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Next, the Help Window for VISA Read is shown. This icon transfers the response 
message from the stand-alone instrument into your computer’s memory. When given 
the open session’s VISA resource name, this icon receives the ASCII response string 
consisting of (a maximum of) byte count number of bytes and outputs this string at its 
read buffer terminal. This string typically contains the results of a data-taking measure-
ment performed by the instrument. Additionally, the VISA resource name is available at 
the VISA resource name out output terminal.

Finally, VISA Close’s Help Window is given below. This icon closes the VISA ses-
sion specified at its VISA resource name input.

Note that all four of these VISA icons include error reporting via an error cluster, which 
is appears at the error in and error out terminals.

The four-step VISA session to query an instrument is accomplished by wiring these 
four VISA icons together as follows.
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In this example, the message *IDN? is sent over a GPIB interface to an instrument at 
address 22. *IDN?, a command recognized by most instruments, instructs the instru-
ment to identify itself. After receiving this command, the instrument’s response (which 
is an ASCII string consisting of identification information) is received by the computer 
over the GPIB and displayed in the read buffer front-panel string indicator.

Similar to the File I/O and DAQmx icons that you have studied previously, the wiring 
scheme of VISA icons takes advantage of the principle of LabVIEW programming called 
data dependency. Simply stated, data dependency means that an icon cannot execute until 
data is available at all of its inputs. In the previous diagram, all of VISA Open’s required 
inputs (given in bold on the Help Window) are wired. So, when this diagram is run, VISA 

Open executes immediately. Upon completion, VISA Open outputs a VISA resource 
name at its VISA resource name out terminal, which is passed through the wiring to 
VISA Write’s VISA resource name input. Because of data dependency, VISA Write can-
not execute until it receives the VISA resource name from VISA Open. In a similar way, 
VISA Read cannot execute until VISA Write completes, and so on. Thus, through this 
programming scheme, we are assured that the icons will execute in the desired sequence: 
VISA Open followed by VISA Write followed by VISA Read followed by VISA Close.

Also the correct manner of chaining together VISA icons for error reporting is 
shown above. If an error does occur at one point in the chain, subsequent icons will not 
execute and the error message will be passed to the error out indicator cluster.

Because VISA-based programming is so robust, you can write highly dependable 
data-taking programs with just the information already presented. However, with a bit 
more grounding in the message-based communication scheme, you’ll be able to create 
programs in which you can have near-total confidence. The following paragraphs will 
take you to the next level of sophistication in stand-alone instrument control.

13.2 THE IEEE 488.2 STANDARD

When remote control of laboratory instruments first became possible, there was a cha-
otic period during which, more or less, each instrument manufacturer defined its own 
communications protocol through a unique blend of parallel and serial modes, positive 
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and negative polarities, and assorted handshaking signals. In 1965, Hewlett-Packard 
(now named Agilent) ended this cacophony by designing a universal instrument inter-
face called the Hewlett-Packard Interface Bus (HP-IB) and offered it as the only option 
on all of its new computer-programmable instruments. Because of its high transfer rates, 
HP-IB quickly gained popularity with other instrument manufacturers and, in 1975, 
was accepted as an industry-wide standard known as IEEE 488 or, more commonly, the 
General Purpose Interface Bus (GPIB). In 1987, an improved version of this standard 
called IEEE 488.2 was adopted, which enhanced and strengthened message-based com-
munication by specifically defining an instrument’s minimally required communica-
tion capabilities, a protocol for message exchange, a generic set of commonly needed 
commands, and a status reporting system. Today, most computer-controlled laboratory 
instruments are IEEE 488.2 compliant, even those that communicate over interface 
buses other than the GPIB (such as Ethernet and USB).

13.3 COMMON COMMANDS

One important innovation of the IEEE 488.2 standard was the introduction of a stan-
dardized set of “common commands” for the many generic operations that all instru-
ments must perform. The mnemonics for these common commands begin with asterisks 
to delineate them from the other device-specific commands recognized by a particular 
instrument. All IEEE 488.2 compliant instruments, at the very least, are required to 
recognize the subset of 13 common commands given in the following table. Many of 
these commands are related to the reporting of events using two status registers called 
the SBR and SESR, which will described in detail starting in the next paragraph.

Table 13.1 Common Commands for IEEE 488.2 Compliant Instruments

MANDATORY COMMON 
COMMANDS

FUNCTION

*IDN? Reports instrument identi� cation string.

*RST Resets instrument to known state.

*TST? Performs self-test and reports results.

*OPC Sets operation complete (OPC) bit in SESR upon completion 
of command.

*OPC? Returns “1” to the output bu- er upon completion of command.

*WAI Waits until all pending operations complete execution.

*CLS Clears status registers.

*ESE Enables event-recording bits in SESR.

*ESE? Reports enabled event-recording bits in SERS.

*ESR? Reports value of SESR.

*SRE Enables a SBR bit to assert the SRQ line.

*SRE? Reports SBR bits that are enabled to assert the SRQ line.

*STB? Reports the contents of the SBR.
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13.4 STATUS REPORTING

Another IEEE 488.2 innovation is a standardized scheme for status reporting. This status 
reporting system is available to inform you of significant events that occur within each 
instrument connected to an interface bus. In this scheme, each instrument is equipped 
with two status registers, called the Standard Event Status Register (SESR) and the Status 
Byte Register (SBR). Each bit in these registers records a particular type of event that 
may occur while the instrument is in use, such as an execution error or the completion of 
an operation. When the event of a given type occurs, the instrument sets the associated 
status register bit to a value of one, if that bit has previously been enabled (see the follow-
ing). Thus by reading the status registers, you can tell what events have transpired.

The Standard Event Status Register, which is schematically shown here, records 
eight types of events that can occur within a data-taking instrument.

Standard Event Status Register (SESR)

7 6 5 4 3 2 1 0

PON URQ CME EXE DDE QYE RQC OPC

The eight events associated with the eight bits of the SESR are described in the  following 
table. In our work, the OPC bit will be most useful.

Table 13.2 Eight SESR Events

BIT ASSOCIATED EVENTS OF SESR

7 (MSB) PON (Power On): Instrument was powered o-  and on since the 
last time the event register was read or cleared.

6 URQ (User Request): Front-panel button was pressed.

5 CME (Command Error): Instrument received a command with 
improper syntax.

4 EXE (Execution Error): Error occurred while instrument was 
executing a command.

3 DDE (Device Error): Instrument is malfunctioning.

2 QYE (Query Error): Attempt was made to read the instrument’s 
output bu- er when no data was present, or a new command was 
received before previously requested data had been read from the 
output bu- er.

1 RQC (Request Control): Instrument requests to be controller.

0 (LSB) OPC (Operation Complete): All commands prior to and 
including an *OPC command have been executed.
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The SESR exists as an event-signaling tool for you to use in your programs. However, 
this status register completely lacks initiative and will not perform any work unless you 
request it to do so. Thus, when initiating communications with an instrument, one of the 
messages that you may wish to send is an instruction that activates the subset of event-
reporting SESR bits that are of interest to you. For instruments that conform to the IEEE 
488.2 standard, this activation process is accomplished via the *ESE (Event Status Enable) 
command. For example, supposed you wished the QYE bit to be activated and thus record 
any execution errors in the SESR’s bit 2. Since 000001002 = 410, the QYE bit can be 
activated by performing a VISA Write of the ASCII command *ESE 4 to the instrument. 
In our work to come, we will activate the OPC bit with the command *ESE 1.

The Status Byte Register, which is schematically shown next, records whether data 
is available in the instrument’s output buffer, whether the instrument requests service, 
and whether the SESR has recorded any events.

Status Byte Register (SBR)

7 6 5 4 3 2 1 0

— RQS ESB MAV — — — —

The functions of the eight bits of the SBR are described in the following table. The SBR bits 
are studious, performing their status reporting duties without need of a request from you.

Table 13.3 Functions of the Eight SBR Bits

Bit Function of SBR Bit

7 (MSB) May be de� ned for use by instrument manufacturer.

6 RQS (Request Service): The instrument has asserted the SRQ 
line because it requires service from the GPIB controller.

5 ESB (Event Status Bit): An event associated with an enabled 
SESR bit has occurred.

4 MAV (Message Available): Data is available in the instrument’s 
output bu- er.

3—0 May be de� ned for use by instrument manufacturer.

An instrument can be configured to assert a Service Request (SRQ), which is a digi-
tal signal carried on a dedicated wire within the 24-wire GPIB cable, in response to either 
of two events—an event detected by the Standard Event Status Register or the presence 
of previously requested data in the instrument’s output buffer (that is, the assertion of 
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the ESB or MAV bit, respectively). This configuration process is accomplished on IEEE 
488.2 instruments by using the *SRE (Service Request Enable) command. For example, 
if you wish an event detection by the SESR to trigger a request for service by the instru-
ment, initialize the instrument by writing the ASCII command *SRE 32 to the instrument. 
Since 3210 = 001000002, the setting of the SBR’s fifth (ESB) bit will then be the criterion 
for the instrument asserting a SRQ. If, instead, you wish the presence of data in the 
output buffer (signaled by the MAV bit being set) to trigger a SRQ, then write *SRE 16. 
Finally, *SRE 0 will disable the instrument ability to assert a SRQ.

The relationship between the Standard Event Status Register, the instrument’s out-
put buffer, and the Status Byte Register (along with the common commands that con-
figure and query each) is illustrated in the following diagram.

Standard Event

Status Byte

Power On

Event Register Enable

OR

OR

+

+

User Request
Command Error
Execution Error
Device Error
Query Error
Request Control
Operation Complete

*ESR?

Byte
Byte
Byte

Output Buffer

*ESE <value> Status Byte Register

Request Service
Event Status Bit
Message Available

Enable
*ESE?

Read STB *SRE <value>
*SRE?*STB?

7
6
5
4
3
2
1
0

As an alternative to the use of the SRQ, serial polling is a common method for determin-
ing the status of an instrument. In a serial poll process, the interface bus queries an instru-
ment and the instrument responds by returning the value of the bits in its Status Byte 
Register. A serial poll is easily accomplished in LabVIEW using VISA Read STB, found 
in Functions>>Instrument I/O>>VISA. This icon’s Help Window is shown here.
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13.5 DEVICE-SPECIFIC COMMANDS

Finally, each stand-alone instrument is designed for a specialized purpose and has its 
own idiosyncratic methods for accomplishing its objectives. Thus, every programmable 
instrument comes with a set of device-specific commands that allow the user to control its 
functions remotely and to transfer the information it produces into a computer’s memory. 
The array of device-specific commands for an instrument is listed in its user manual. 
This set of commands is defined by the instrument’s maker . . . and therein lies a problem. 
When surveying the user manuals for programmable instruments of varying models and 
manufacturers, you will find a great diversity in the style of the various command sets. 
Some (especially those associated with older model instruments) are an alphabetized 
collection of cryptic one- or two-character strings (the designers’ thinking was obviously 
“shorter commands yield quicker and, therefore, better computer-instrument communi-
cation”). At the other extreme are the user-friendly sets, with similar commands logically 
grouped, each represented by an easy-to-read-and-remember mnemonic.

As programmable instruments have come into wider use, it has become apparent 
that development costs and unscheduled delays can be diminished markedly by simpli-
fying the instrument programmers’ task whenever possible. Thus, user-friendly device-
specific command sets are the rule, rather than the exception, for instruments being 
currently manufactured. Commonly, these command sets are organized in a hierarchical 
tree structure, similar to the file system used in computers. Each of an instrument’s 
major functions, such as TRIGger, SENSe (alternately, MEASure), CALCulate, and 
DISPlay, define a root and all commands associated with that root form its subsystem. 
So, for example, to configure the Agilent 34401A Digital Multimeter to measure a DC 
voltage whose value is expected to fall within the range of ±10 Volts (an action within 
its SENSe subsystem), the appropriate command is as follows:

SENSe:VOLTage:DC:RANGe 10
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Here, SENSe is the root keyword and colons (:) represent the descent to the lower-level 
VOLTage, then DC, then lowest-level RANGe keywords. Finally, 10 is a parameter asso-
ciated with RANGe. While the full command mnemonic given here can be sent to the 
instrument, it is only absolutely necessary to send the capitalized characters.

In 1990, a consortium of equipment manufacturers defined the Standard Commands 
for Programmable Instruments (SCPI) in an effort to standardize the device-specific 
command sets of computer-controlled instrumentation. While this standard has not 
been universally adopted, it is not uncommon to discover that your post-1990 instru-
ment is SCPI-compliant. As a means of categorizing generally applicable command 
groups, the SCPI standard posits the following model for a generic programmable 
instrument. An instrument that performs measurements on an input signal is assumed 
to have the root functions shown in the next diagram. Here, for example, SENSe 
includes any action involved in the actual conversion of an incoming signal to internal 
data, such as setting the range, resolution, and integration time, while INPut consists 
of actions that condition the signal prior to its conversion, such as filtering, biasing, 
and attenuation.

SIGNAL MEASUREMENT INSTRUMENT

Signal
Routing

INPut SENSe CALCulate FORMat
Bus

TRIGger MEMory DISPlay

Alternately, an instrument that generates signals is modeled by the following diagram.

SIGNAL GENERATION INSTRUMENT

Signal
Routing

OUTput SOURce CALCulate FORMat
Bus

TRIGger MEMory

The SCPI command set is organized in a hierarchical tree structure using the syntax 
illustrated above by the Agilent 34401A Multimeter command. You’ll learn more about 
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the SCPI command syntax as you work your way through this chapter. But maybe now 
is a good time to dive in and actually control a stand-alone instrument.

13.6 SPECIFIC HARDWARE USED IN THIS CHAPTER

In designing this chapter, I faced the following problem. There are thousands of computer-
controllable stand-alone instruments available for purchase from the myriad of worldwide 
scientific instrument makers. Each of these instruments communicates using one (or many 
times, a few) of the handful of available interface buses. I have a small subset of these 
instruments in my laboratory and I can use them there to practice the art of message-based 
communication. You also, hopefully, have a small subset of such instruments available to 
practice with in your own laboratory. What’s the problem? Well, because of the high cost 
and specialized nature of such equipment, the probability that my subset and your subset 
have some common instrument is most likely very small. The unfortunate thing about this 
situation is that each stand-alone instrument is designed to take specialized measurements 
and understands its own unique set of ASCII commands (which are defined by its maker 
and are listed in its user manual). Thus, before attempting to control a particular instru-
ment using an interface bus, the programmer must have a detailed understanding of the 
measurement that that instrument is designed to take, the procedure that it implements in 
doing its work, and the command list that it recognizes. All of these considerations greatly 
constrain the writing of a set of generic laboratory exercises that everyone can perform.

That said, I still was faced with the fact that I had to choose a particular instru-
ment and interface bus to work with in this chapter’s exercises. For the interface bus, I 
chose the GPIB because it is the interface you will almost certainly encounter in your 
computer-based laboratory work. Although USB and Ethernet are gaining in popularity 
with scientific instrument makers (due to the fact that most PCs come equipped with 
these interfaces), GPIB is currently (by far) the most widely used interface bus for labo-
ratory equipment. With an estimated 10 million GPIB-equipped instruments in use in 
research and industry worldwide, the GPIB most likely retain its popularity for many 
years to come. For the instrument used in this chapter’s exercises, I chose the Agilent 
34401A Digital Multimeter for the following reasons. First of all, this instrument mea-
sures voltage, current, and resistance—vanilla-flavored quantities that require no spe-
cialized knowledge to understand (unlike, for instance, the control of grating angle and 
slit size in a spectrometer). Second, for such a high-quality and useful GPIB-equipped 
instrument, its price tag of approximately $1000 makes it extremely affordable. Every 
lab should have one and many do! Third, this instrument is both IEEE 488.2 and SCPI 
compliant. Thus, the following exercises, rather than being narrowly tied to one specific 
device, can be much more universally applicable by demonstrating the generic features 
of these widely used standards, such as command syntax and status reporting.

In the best circumstance, an Agilent 34401A (earlier purchased units of this same 
instrument are named the Hewlett-Packard 34401A) is already available for your use 
or, with a modest investment, you can purchase this worthwhile instrument. Then, with-
out need for modification, you can straightforwardly work your way through the given 
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exercises to learn the basics of message-based communication. If, instead, you have 
some other interface-equipped instrument available, try reading the following pages to 
understand the generic issues being investigated. Then, by consulting the user manual, 
it may be fairly easy, for instance, to use the interface-appropriate VISA resource name 
and substitute an ASCII command string here and there in order to adapt the exercises to 
your particular instrument and interface bus. If neither of the above describes your situ-
ation, simply read through the following pages. I believe you will learn some valuable 
features of instrument control that will serve you well in future work.

13.7 MEASUREMENT & AUTOMATION EXPLORER (MAX)

To carry out the exercises in this chapter, you must have a National Instruments GPIB device 
connected properly to your computer, which in turn is connected (e.g., by a GPIB cable) to 
a GPIB-equipped stand-alone instrument. Also the GPIB device’s driver software (called 
NI-488.2) must be correctly installed. To verify that these conditions are met, we will use the 
handy utility Measurement & Automation Explorer, which is nicknamed MAX.

To open MAX, either select Tools>>Measurement & Automation Explorer . . . 

(if you have an open VI or Getting Started window), or else double-click on MAX’s 
desktop icon (if available). After MAX opens, double-click on Devices and Interfaces 
in the Configuration box. This action will command MAX to determine all of the 
National Instrument devices present within your computing system.

MAX will list the findings of its device survey in hierarchical tree fashion as shown next. 
If a GPIB device is connected correctly to your computer, a folder labeled GPIB0 will 
appear in the resulting list (your system may have a different number than 0 in the fold-
er’s label). To find all of the stand-alone instruments properly connected to this device, 
right-click on the GPIB0 folder and select the Scan for Instruments option. Alternately, 
you can click on the Scan for Instruments button near the top of the window.
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In a few moments, MAX will complete the scan. To view its results, double-click on 
the GPIB0 folder. For the case shown below, one stand-alone instrument was found and 
information about it is stored in the folder labeled Instrument 0.

Because up to 15 instruments can be connected to a single GPIB device, each instru-
ment has an identification number called its GPIB address. A GPIB address can be 
any integer from 0 to 30 and is typically defined via a hardware DIP switch setting 
within the instrument or a sequence of button-pressing and/or knob turning on its 
front panel. The instrument’s user manual will describe the method for setting its 
address.

The GPIB address of the instrument found in the Scan for Instruments operation 
is found by double-clicking on the Instrument 0 folder. After the double-click, in the 
box associated with the Attributes tab, we find that the instrument’s GPIB address is 
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22 (the address of your instrument may be different). A text description identifying the 
instrument also appears.

Clicking on the VISA Properties tab, we find that the correct VISA resource name for 
this instrument is GPIB0::22:INSTR and also are told (under Device Status) that the 
instrument is working (i.e., communicating) properly.

To verify that the instrument is indeed properly communicating over the GPIB, 
right-click on the Instrument 0 folder and select Communicate with Instrument. 
Alternately, you can click on the Communicate with Instrument button near the top 
of the window.
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An interactive dialog box will appear. Here, after typing an ASCII message in the Send 

String: box, a mouse-click on the Query button will carry out a write-then-read action. 
That is, the message in Send String: will be written over the GPIB to the selected 
instrument, and then the instrument’s ASCII response will be read back over the GPIB 
to the computer and displayed in the String Received: box. When the dialog window 
opens, its Send String: box is preloaded with *IDN?, the IEEE 488.2 common com-
mand for an instrument to identify itself.

13-Essick-Chap13.indd   44013-Essick-Chap13.indd   440 9/9/2008   9:03:29 PM9/9/2008   9:03:29 PM



441

SIMPLE VISA-BASED QUERY OPERATION

Click on the Query button. If your GPIB communication is configured properly, the 
identification string received from the instrument will appear in the String Received: 
box. For the Agilent 34401A Digital Multimeter used here, this identification string 
identifies the instrument’s manufacturer and model number followed by some integers 
that denote the version numbers of installed firmware that controls the multimeter’s 
three internal microprocessors.

For future reference, this interactive dialog window is a handy tool for use in determin-
ing correct command syntax when developing message-based communication programs 
for a new instrument.

Exit this dialog window and then close MAX.

13.8 SIMPLE VISA-BASED QUERY OPERATION

Let’s begin by writing a VISA-based program that carries out the query (i.e., write-then-
read) action that you just completed using MAX.

On the front panel of a blank VI, place a String Control and a String Indicator, 
then label them Command and Response, respectively. As shown in the next diagram, 
you’ll want to resize these objects so that they can display strings much larger than their 
default sizes allow. Using File>>Save, first create a new folder named Chapter 13 within 
the YourName folder, then save this VI under the name Simple VISA Query in YourName\
Chapter 13.
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Switch to the block diagram and place a VISA Open icon (found in Functions>> 

Instrument I/O>>VISA>>VISA Advanced) there. Pop up on its VISA resource 

name input and create a VISA Resource Name Constant using Create>>Constant.

You must now load the VISA Resource Name Constant  with the VISA resource 

name of the instrument with which you wish to communicate. By clicking on the 

Constant’s menu button  with the , you will be presented with the list of VISA 
resources that MAX found when it performed the Scan for Instruments operation. You 
can then simply choose the desired instrument from this list. Alternately, you can manu-
ally enter the appropriate VISA resource name for your instrument (as found using 

MAX) into the . The syntax for a VISA resource name is Interface Bus 
Name::Resource Address::Resource Type.

Complete the block diagram as shown next using the VISA icons found in Functions>> 

Instrument I/O>>VISA (and its subpalette VISA Advanced). Wire the Command con-
trol terminal to VISA Write’s write buffer input and the Response indicator terminal 
to VISA Read’s read buffer terminal. When executed, VISA Read will read up to N 
bytes from the selected resource, where N is equal to the integer wired to its byte count 
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input. In a moment, we will read the Agilent 34401A identification string. According 
to this instrument’s user manual, its identification string can be up to 35 characters 
long. Thus, wire the byte count input to an integer (U32) greater than or equal to 35 
(I used 50) as shown. Create the error out indicator cluster using the pop-up menu 
option Create>>Indicator.

Return to the front panel, arrange the objects as you wish, and then save your work.

Enter *IDN? into Command, then run your VI. If all goes well, Response will display the 
instrument’s identification string upon completion of the VI execution, as shown.
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Simple VISA Query will leave the multimeter in remote mode with its triggering circuitry 
“idled.” You can return to local mode, which continuously “triggers” measurements, by 
pressing the instrument’s front-panel SHIFT/LOCAL key.

13.9 MESSAGE TERMINATION

At the conclusion of a message-transfer process, some method must be used to sig-
nal that the complete message has been passed. The IEEE 488.2 standard appoints the 
ASCII LF (line feed, also called new line) as its special end of string (EOS) character. 
That is, when receiving a message string, the LF character is always interpreted by the 
receiver as the last byte of a message. Thus, appending LF to a command string is one 
method of signaling message termination in IEEE 488.2 communication. Alternately, 
the IEEE 488.2 standard allows the assertion of an end or identify (EOI) while the last 
character in the string is being passed as another acceptable termination method. The 
EOI is a digital signal on a dedicated wire within the GPIB cable. When using VISA 
icons to control an IEEE 488.2 compliant instrument, message termination is taken care 
of automatically, allowing you to remain blissfully ignorant of this lower-level activ-
ity. If you’d like to view an example of this (usually invisible) message termination 
activity, pop up on the Response indicator on the front panel of Simple VISA Query, then 
select ‘\’ Code Display. The \n character you see at the end of the identification string 
is the backslash code for LF. The multimeter appended this termination character to 
its identification string to the alert the receiver (in this case, the GPIB device) that the 
message has ended.
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To deactivate backslash coding, pop up on Response and select Normal Display.

13.10 GETTING AND SETTING COMMUNICATION PROPERTIES 

USING A PROPERTY NODE

In addition to message termination, there are other low-level functions connected with 
message-based communication. Many of these low-level functions have an associated 
parameter setting, which is termed a VISA property. VISA assigns default values for 
these properties and, as long as the VISA-based programs that you write fall within 
the scope of these default settings, the VISA icons will automatically take care of these 
low-level functions without any programming effort needed by you (as demonstrated 
by the message termination example shown above). At times, however, you will most 
likely write programs that fall outside the scope of the default VISA property settings 
and so you will need to assign nondefault values to these quantities. Reading (“getting”) 
and writing (“setting”) VISA property values can be done within your programs using a 
Property Node (and also can often be done in MAX).

As a concrete example of a VISA property, consider VISA Read’s timeout, which 
is a fail-safe feature of VISA Read that prevents a program from running endlessly if 
an error occurs. If, for example, an instrument which is being queried doesn’t seem to 
be responsive (perhaps a nameless experimenter forgot to flip on the instrument’s power 
switch), VISA Read will only wait for the instrument’s response for a certain number of 
milliseconds (given by the value of the VISA property named Timeout) before aborting 
the read operation and issuing an error message.
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The default timeout value for VISA Read on your system can be determined 
using a Property Node. The Help Window for a Property Node, which is found in 
Functions>>Instrument I/O>>VISA>>VISA Advanced, is shown next.

Write the following VI, which reads the current Timeout value on your system. 
Open a new VI, and save it under the name Get Timeout Value in YourName\Chapter 13. On 
a new block diagram, place a Property Node and then, using Create>>Constant, wire 
the VISA resource name for your instrument to the Property Node’s reference input 
as shown.

Next, using the , click on the Property terminal and select General Settings>>Timeout 

Value. You might explore what other Properties appear in this menu, many of which are 
specific to a particular interface bus.
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Note that, within the Timeout terminal, a small arrow at the right points outward from 
the terminal’s interior. This outward-directed arrow indicates that the Timeout terminal 
is configured as an indicator, that is, it reads (“gets”) the current Timeout value. Using 
Create>>Indicator, create a front-panel indicator to display the value of Timeout.

Switch to the front panel, change the indicator label to Timeout Value (ms), then save 
your work. Run the VI. As shown below, the (default) Timeout value for my system 
is 3000 ms = 3 seconds.
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You can also use a Property Node to set the value of a VISA property. To 
demonstrate this procedure, with Get Timeout Value open, use Save As . . . to create a 
new program called Set Timeout Value, and store it in YourName\Chapter 13. When run, 
Set Timeout Value will change VISA Read’s Timeout to a value input from its front 
panel.

On the block diagram of Set Timeout Value, pop up on the Timeout terminal and 
select Change To Write.

Note that, within the Timeout terminal, the small arrow is now at the left pointing inward 
toward the terminal’s interior. This inward-directed arrow indicates that the Timeout 

terminal is configured as a control, that is, it writes (“sets”) the Timeout value. Delete 
the Timeout Value (ms) indicator terminal, then using Create>>Control, create a front-
panel control labeled Timeout Value (ms).
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Return to the front panel and save your work. Set Timeout Value (ms) to be 10000, 
and then run Set Timeout Value. Next, run Get Timeout Value. Is Timeout now equal to 
10000 ms = 10 seconds? Try setting Timeout equal to 8000. You will find that only 
 certain values for Timeout are allowed. LabVIEW takes the value you input to Set 
Timeout Value as a suggestion (rather than an order) and sets Timeout to the nearest 
allowed value.

13.11 PERFORMING A MEASUREMENT OVER THE GPIB

Now that Simple VISA Query has given us a template for the VISA query process, let’s try 
controlling a real measurement. Hook up some known DC voltage difference, say 5 or 
6 Volts, between the HI and LO Voltage Inputs of the Agilent 34401A Multimeter. This 
instrument’s user manual instructs us that delivering the following sequence of ASCII 
commands will result in one DC voltage sample being acquired, and then loaded into 
the instrument’s output buffer (which is part of its interface circuitry):

CONF:VOLT:DC<Space>10,0.000001
INIT
FETC?

Here is the meaning of this secret code. First, the Agilent 34401A can be programmed 
to perform 11 different types of measurement functions, including DC voltage, AC volt-
age, DC current, AC current, resistance, and frequency. Given these options, the first 
command instructs the instrument that we desire to take a DC voltage measurement. 
The full command is CONFigure:VOLTage:DC <Space><Range>,<Resolution> (this 
command actually executes a collection of commands drawn from the Agilent 34401A’s 
INPut, SENSe, TRIGger, and CALCulate root subsystems). The command mnemonic 
CONFigure:VOLTage:DC is constructed in the hierarchical tree structure, typical of 
SCPI-compliant instruments. CONFigure is the root-level keyword and colons (:) rep-
resent the descent to the lower-level VOLTage, then lowest-level DC keywords. While 
the full command mnemonic can be sent to the instrument, it is only absolutely nec-
essary to send the capitalized characters. Separated from the command mnemonic 
CONF:VOLT:DC by a <Space>, the numerical values for two measurement parameters—
<Range> and <Resolution>—are specified. <Range> selects among the instrument’s 
five available voltage measurement scales. Each scale offers a different sensitivity 
with <Range> giving the maximum measurable value on a particular scale. The five 
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available ranges are 100 mV, 1V, 10 V, 100 V, and 1000 V. In our situation of measuring 
a signal of approximately 5 V, the 10 V scale is appropriate. <Resolution> specifies the 
precision of the measurement, with the options of three levels of accuracy—4½, 5½, 
and 6½ digits (the ½ digit means that the most significant decimal place can only take 
on a value of “1” or “0”). Thus on the 10 V scale, voltages can either be resolved at the 
level of 0.001, 0.0001, or 0.00001 Volts. The trade-off in requesting higher accuracy is 
that the measurement takes a longer time. In the command sequence above, the high-
est resolution of 6½ digits is selected by setting <Resolution> equal to 0.00001 when 
<Range> equals 10. Note the syntax of the CONF command, which obeys the conven-
tions of the SCPI language: A comma (,) separates the parameters from each other and 
a <Space> separates the mnemonic from the parameters.

Once the multimeter has been configured for the desired measurement function 
as described in the previous paragraph, the data-taking process is begun by sending 
the INITiate command (from the TRIGger root subsystem). Upon receipt of INIT, the 
multimeter will acquire the requested voltage sample, and then store this value in its 
internal memory. Finally, the FETCh? command (from the MEMory root subsystem) 
instructs the instrument to transfer the reading in its internal memory to its interface-
related output buffer.

We’d like now to place this command sequence into Simple VISA Query. Since there 
are three commands to be sent, it appears that we must modify the VI to include a 
sequence of three successive implementations of VISA Write. While you are free to do 
so, a much easier solution is available. The SCPI language allows the programmer to 
concatenate several commands into one long multicommand string that can be sent in a 
single VISA Write statement. The syntax for this concatenation process is as follows:

Use a semicolon (;) to separate two commands within the string.• 
Begin a command with a colon (:), if it has a different root-level than the command • 
preceding it. The first command in the concatenated string and IEEE 488.2 common 
commands (which begin with an asterisk) do not require a leading colon.

Since each of our three commands has a different root-level, applying the above rules 
results in the following concatenated string:

CONF:VOLT:DC<Space>10,0.00001;:INIT;:FETC?

Type this command into the Command control on the front panel of Simple VISA Query as 
shown next. Run the VI. Your computer will instruct the multimeter to acquire a 6½ 
digit voltage reading, retrieve this value, and then display it on the front panel in the 
Response indicator. Cool, eh?
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Note that, while extra digits are displayed, the value within Response is only accurate to 
the fifth decimal place.

As shown above, the Agilent 34401A reports its data samples in the form of an ASCII 
character string using the exponential format SD.DDDDDDDDESDD, where S is a positive 
or negative sign, D is a numeric digit, and E is an exponent. For future reference, note that 
the string that represents a data sample is 15 bytes long. If you want to use this reading as 
input to a mathematical calculation (a common situation), you will need to convert the string 
representation into a numerical format. Such conversion operations can be easily accom-
plished in LabVIEW using the array of conversion icons found in Functions>>String. 
In the present case, use Fract/Exp String To Number in Functions>>Programming>> 

String>>String/Number Conversion. The Help Window for this icon is given next.
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Place a Numeric Indicator on the front panel of Simple VISA Query and label it Numeric 
Voltage. Use Display Format . . . in this indicator’s pop-up menu to make its Digits of 

precision equal to 5, and disable Hide trailing zeros. Then modify the block diagram 
as follows.

Run the VI to verify that the string-to-number conversion icon performs as expected.

13.12 SYNCHRONIZATION METHODS

Although most ASCII commands are completed quickly after being received by a pro-
grammable instrument, some commands start a process that requires a significant amount 
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of time (such as acquiring a large amount of data or moving an object from Point A to 
Point B). The time required for such processes must be taken into account when writing 
a data acquisition program, else, upon execution, the program may request data before 
it is available, induce undesirable motion, or cause some other chaotic outcome.

As an example, in its default configuration, the Agilent 34401A multimeter acquires 
one data sample after receipt of the INITiate command, then stores this measured value 
in its internal memory. However, through use of the SAMPle:COUNt <Space><Value> 
command, the multimeter can be instructed to take and store multiple data samples 
upon receiving INITiate. The Agilent 34401A is configured to acquire 100 DC voltage 
samples with 6½-digit resolution via the following concatenated string of commands:

CONF:VOLT:DC<Space>10,0.00001;:SAMP:COUN<Space>100;:INIT;:FETC?

The FETCh? command will load the 100 acquired samples from the multimeter’s inter-
nal memory (which, by the way, can hold up to a maximum number of 512 measured 
values) into the instrument’s interface-related output buffer.

Let’s write a VI that uses the given command string to gather a sequence of 100 
voltage samples. Open Simple VISA Query, then use Save As . . . to create a new VI called 
Simple VISA Query (Long Delay). Delete Numeric Voltage from the front panel and enlarge 
Response so that it can display a very long string (which is the concatenation of 100 
voltage values). Type the command given above into the Command control. Once entered 
into Command, you can keep this command permanently loaded there by selecting 
Edit>>Make Current Values Default.
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Switch to the block diagram. Delete Fract/Exp String To Number. After the given 
command string is written to the multimeter by VISA Write, VISA Read will receive 
a string containing the 100 voltage samples. Since each voltage sample is reported as a 
15-byte string and a (single) delimiting ASCII character will be needed to separate each 
sample, this 100-sample string is expected to be about (100 � 15) � 100 � 1600 bytes 
long. Input an integer larger than 1600 to byte count as shown.

Run Simple VISA Query (Long Delay). Count down the seconds 3. ..2. ..1. .. Disappointed? 
You will find that your VI does not display even one voltage sample (let alone the 
expected 100 values), but rather produces an error.
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To find out what produced this error, pop up on the code indicator within the error out 
cluster and select Explain Error.

A dialog box appears, where we are told that a “timeout expired” at VISA Read before 
the requested operation (i.e., take 100 data samples) could be completed.
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After some head scratching and checking of the Agilent 34401A user manual, the fol-
lowing explanation then emerges for the error we observed when running Simple VISA 
Query (Long Delay). Simply stated, voltage sampling takes time. In its default configura-
tion, it takes the Agilent 34401A multimeter 10 power line cycles (PLC) for each volt-
age sample. Additionally, the Agilent 34401A has an autozero feature, which is enabled 
by default. This feature operates as follows: After each voltage measurement, the mul-
timeter internally disconnects the input signal and takes a zero reading. The instrument 
then subtracts the zero reading from the preceding measured value to prevent offset 
voltages in the multimeter’s internal circuitry from affecting measurement accuracy. 
Since the zero reading also takes 10 PLC, each complete voltage sample by the multim-
eter takes 20 PLC. Assuming this instrument is plugged into a 60 Hz power source (that 
is, 60 PLC per second), 100 voltage samples will take about

100
20

60
33 3� �

PLC

PLC sec
. sec











There’s the problem! A few moments ago, we found that the default timeout value for 
VISA Read is 3 seconds, but the measurement we have initiated takes over 30 seconds. 
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Thus, long before the requested data is available, VISA Read terminates the execution 
of Simple VISA Query (Long Delay).

There are a couple of crude solutions to this dilemma. First, on the block diagram of 
Simple VISA Query (Long Delay), you can insert a single-frame Sequence Structure into the 
VISA execution chain that simply contains a Wait (ms) icon, wired to produce a delay of 
about 33 seconds between the issuance of the data-taking command and the order to read 
the gathered data samples. The resulting diagram would appear as follows.

Second, for a slightly more elegant fix, you can use a Property Node to change the 
Timeout value for VISA Read from its default value (on my system) of 3000 ms to 
something larger than 33 seconds. Use this approach to modify the block diagram of 
Simple VISA Query (Long Delay) as shown below. Here, the Timeout value is chosen to be 
60 seconds.

Return to the front panel of Simple VISA Query (Long Delay). With the command to perform 
100 samples programmed into Command, run the VI. About 33 seconds later you should 
see something like the following front panel. Note that the delimiter used by the Agilent 
34401A to separate neighboring data values is a comma.
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In the preceding example, we found that with a detailed knowledge of the measure-
ment process being implemented, it was possible to troubleshoot a malfunctioning 
VISA-based VI. Please note that lack of communication (in particular, the GPIB device 
not correctly knowing when the instrument’s data will be available) is the root problem 
that led to the malfunction.

Fortunately, powerful tools exist that allow one to monitor the status of tasks being 
performed by a programmable instrument. For IEEE 488.2 compliant instruments, 
these tools are the Standard Event Status Register (SESR) and Status Byte Register 
(SBR) that were discussed at the beginning of this chapter. With proper use of the 
SESR and SBR, many potential data-taking glitches, such as the one just experienced, 
can be avoided.

The status reporting capabilities of the SESR and SBR can be employed in several 
ways. We will explore two commonly used techniques—the Serial Poll and Service 
Request Methods. The core operation for both of these methods is the same––the com-
pletion of an assigned task triggers the Operation Complete (OPC) bit in the Standard 
Event Status Register to be set, which in turn sets the Event Status Bit (ESB) of the 
Status Byte Register.

In the Serial Poll Method, the setting of ESB is detected by directly checking the 
Status Byte Register, whose state is obtained by serial polling the instrument. The com-
plete step-by-step process of this method is shown in the following diagram.
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Standard Event Status Byte

Serial Poll Method

Power On
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OR
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User Request
Command Error
Execution Error
Device Error
Query Error
Request Control
Operation Complete

*ESE 1

Status Byte Register

Request Service
Event Status Bit No

No
No
No
No
No
No
No
Yes

NoMessage Available

Enable

Read STB
(Check Bit 5)
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7
6
5
4
3
2
1
0

In the Service Request Method, the Status Byte Register is configured such that, when 
its ESB is set, the Request Service bit is induced to be set also. This action then causes 
the instrument to assert a SRQ, which alerts the GPIB device that the assigned operation 
is complete. This method is pictured here.

Standard Event Status Byte

Service Request Method

Power On

Event Register Enable

OR

+

OR
+

User Request
Command Error
Execution Error
Device Error
Query Error
Request Control
Operation Complete

*ESE 1

Status Byte Register

Request Service
Event Status Bit Yes

No
No
No
No
No
No
No
Yes

NoMessage Available

Enable

*SRE 32

7
6
5
4
3
2
1
0

We’ll write VIs that implement both of these approaches to status reporting.

13.13 MEASUREMENT VI BASED ON THE SERIAL POLL METHOD

Let’s try the Serial Poll Method first. To configure the Agilent 34401A for status report-
ing using the Serial Poll Method, write the following VI called Status Confi g (Serial Poll) 
and save it in YourName\Chapter 13. First, code the VI’s block diagram as shown next. 
Use the autocreation feature in pop-up menus to create all of the constants, controls, 
and indicators.
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Switch to the front panel and arrange the object logically. Design an icon and assign the 
connector terminals consistent with the Help Window shown.
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Here’s how the VI works, assuming that the instrument referenced by VISA resource 

name is the Agilent 34401A multimeter. Within the chain of VISA icons, VISA Clear 
(found in Functions>>Instrument I/O>>GPIB) executes first. The Help Window for 
this icon is shown below.

Although not an absolute necessity for inclusion in Status Confi g (Serial Poll), this VI per-
forms the precautionary action of “clearing” the Agilent 34401A. VISA Clear instructs 
the multimeter to abort all measurements in progress, disable its triggering circuitry, 
clear its interface-related output buffer, and prepare to accept a new command string.

Next, VISA Write sends the concatenated command string *CLS;*ESE 1;*SRE 0;*OPC? 
to configure the Agilent 34401A for status reporting using the Serial Poll Method. Note that 
since the component strings are all IEEE 488.2 common commands, leading colons are not 
required in the concatenation. In this sequence of commons, *CLS clears the contents of the 
SESR and SBR. As described in the beginning of this chapter, *ESE 1 enables the SESR’s 
OPC bit to set the ESB in the Status Byte Register and *SRE 0 disables the instrument from 
asserting a SRQ. Then, *OPC? requests the instrument to return a “1” to the instrument’s 
output buffer after this command is completed. This last command is included simply as a 
method of checking that the entire sequence of commands has been executed.

Finally, VISA Read reads the contents of the instrument’s output buffer. If all goes 
well, there should be a single ASCII character 1 read into the computer.
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Test drive your VI as follows. Click on VISA resource name control’s menu button 

with the .

Then, from the list presented, select the VISA resource name for your computer-
 controlled instrument.

Then, run Status Confi g (Serial Poll). Upon completion, does the Buffer Reading string indi-
cator display an ASCII character 1?

Next, construct a VI called Serial Poll which continuously reads the Status Byte 
Register of an instrument until a given bit is set. A suggested coding of Serial Poll is 
shown in the following diagrams, and explanations of the unfamiliar icons are in the 
subsequent paragraphs. Save Serial Poll in YourName\Chapter 13.
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VISA Read STB, found in Functions>>Instrument I/O>>VISA, is the workhorse of 
this VI. With each iteration of the While Loop, its status byte output returns the current 
values of the SBR’s eight bits in the form of an integer. For example, if the SBR’s fifth 
bit (ESB) is set, then status byte outputs the integer 32, since 001000002 � 3210. The 
Help Window for VISA Read STB is shown next.
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The individual bits of status byte can be checked through the use of Number To Boolean 

Array (found in Functions>>Programming>>Boolean with its Help Window shown 
next). This VI creates an array of TRUE and FALSE values that mirror the sequence 
of zeros and ones (starting from the least-significant bit) in the binary representation of 
the integer input number. For example, if number equals the decimal integer 48, then 
the Boolean array output will be [F, F, F, F, T, T, F, F], since 4810 = 001100002. Index 

Array can then be used to ascertain the value of a particular element in this array. Serial 
Poll’s While Loop will continue to iterate until Which Bit? becomes TRUE.

Run Serial Poll under Highlight Execution and, through your observations, gain a bet-
ter understanding of its operation. Remember to input values for VISA resource name 
and Which Bit? on the front panel. When run in this isolated manner, the VI will most 
likely never be able to exit the While Loop, so you’ll have to stop it using the Abort 

Execution button in the toolbar.
We’re finally ready to write VISA Query (Serial Poll). This top-level program imple-

ments serial polling to synchronize the GPIB activities necessary in acquiring 100 volt-
age samples using an Agilent 34401A multimeter.
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Open Simple VISA Query (Long Delay), then use Save As . . . to create VISA Query (Serial 
Poll). The front panel can remain unchanged. If it’s not already there by default, type the 
following command into the Command control.

CONF:VOLT:DC<Space>10,0.00001;:SAMP:COUN<Space>100;:INIT;*OPC;:
FETC?

Switch to the block diagram and modify it as shown below with Status Confi g (Serial 
Poll) and Serial Poll used as subVIs.

Here is how this diagram works: The concatenated command string is sent to the instru-
ment by VISA Write. After configuring the multimeter for the desired DC Voltage measure-
ment function, the acquisition process is begun by the INIT command. The succession 
of 100 samples is acquired and temporarily stored in the multimeter’s internal memory. 
After the hundredth sample is obtained, *OPC instructs the instrument to set its SESR’s 
OPC bit (which, in turn, sets the SBR’s ESB), then FETC? loads the contents of the inter-
nal memory into the instrument’s output buffer. At that point, Serial Poll detects the setting 
of ESB, which then triggers the instrument’s output buffer to be read by VISA Read. One 
might be tempted to write the concatenated command with *OPC after FETC?, rather 
than sandwiched between INIT and FETC?, as above. It is best, however, to avoid send-
ing *OPC after a query (a query is a command like FETC? that ends in a question mark) 
as such commands cause a message to be loaded into an instrument’s output buffer. If the 
message exceeds the finite size of the output buffer, as happens in our present situation, 
the query must be immediately followed by VISA Read as the program executes in order 
to read the long message string over the bus successfully.

Return to the front panel, save your work, and then run VISA Query (Serial Poll). Does 
the VI obtain the requested 100 DC voltage samples successfully? If so, try running it 
again with Highlight Execution activated for both VISA Query (Serial Poll) and its subVI 
Serial Poll. This exercise will illustrate the weakness of the Serial Poll Method, namely, 
the large volume of interface bus traffic required by this technique. During the 30-odd 
seconds while the 100 data samples are being gathered, the instrument is polled count-
less times by the GPIB device so that its status can be continuously monitored. While 
effective, the Serial Poll Method is rather inefficient because of its excessive use of the 
interface bus and processor time.
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13.14 MEASUREMENT VI BASED ON THE SERVICE REQUEST METHOD

The Service Request Method provides status reporting with a minimum of interface 
bus activity. To configure the 34401A for status reporting using the Service Request 
Method, open Status Confi g (Serial Poll), then create Status Confi g (SRQ) using Save As . . . 
and save it in YourName\Chapter 13. The front panel and terminal assignments can remain 
as is, but the icon should be redesigned as shown here.

Only two modifications of the block diagram are needed. First, by changing *SRE 0 to 
*SRE 32 in the command string sent to the instrument, the Agilent 34401A will assert the 
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SRQ line when the SBR’s fifth (ESB) bit is set. The already present *ESE 1 command 
configures the instrument to set the ESB in response to the SESR’s OPC (Operation 
Complete) bit being set. Second, in order for VISA icons to detect service request 
(SRQ) events during this VISA session, VISA Enable Event, with Service Request 
wired to its event type input, must be included in the diagram as shown. VISA Enable 

Event is found in Functions>>Instrument I/O>>VISA>>VISA Advanced>>Event 

Handling.

Save your work as you close this VI.
Open VISA Query (Serial Poll), then use Save As . . . to create a new VI named VISA 

Query (SRQ), and store it in YourName\Chapter 13. The front panel is fine as is.

Switch to the block diagram and modify it as shown next.
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Here, VISA Disable Event, found in Functions>>Instrument I/O>>VISA>>VISA 

Advanced>>Event Handling, must be included in order disable VISA servicing of 
SRQ events before the VISA session is closed.

Wait for RQS.vi, also found in Functions>>Instrument I/O>>VISA>>VISA 

Advanced>>Event Handling (Help Window shown below), sits idly until the instru-
ment denoted by VISA resource name asserts a SRQ. However, there is a limit to 
the patience of this icon. It will only wait up to a total time of timeout, with a default 
value of 25000 ms = 25 seconds. Because our measurement requires over 33 seconds, a 
constant larger than 33,000 must be wired to the timeout input of Wait for RQS.vi, as 
shown in the above diagram.

Save your work, then run VISA Query (SRQ). Does it successfully acquire the requested 
100 DC voltage samples? Do you understand the operation of this program and how the 
Service Request Method manages to work with a minimum of interface bus activity?

To simplify the block diagram of VISA Query (SRQ), you might consider packaging 
VISA Disable Event and VISA Close together in a subVI called Close (SRQ), since both 
of these icons are involved in closing down the service request–based VISA session. To 
accomplish this feat easily, simply create a highlighting box around the two icons using 
the .
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Then select Edit>>Create subVI. A new subVI icon will appear wired on your diagram.

Double-click on this new icon to open it. Then, relabel the front-panel objects appropri-
ately, design an icon, and assign the connector consistent with the Help Window shown 
(using the 4 � 2 � 2 � 4 pattern). Save this VI under the name Close (SRQ) in YourName\
Chapter 13.
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Switch to the block diagram of Close (SRQ). It should appear as follows.

Close Close (SRQ), and return to the block diagram of VISA Query (SRQ). You may have 
to delete the originally created subVI and load a new copy of Close (SRQ) there using 
Functions>>Select a VI . . . After that, the finished block of VISA Query (SRQ) will appear 
as shown next. Try running this VI to verify that it functions correctly.

13.15 CREATING AN INSTRUMENT DRIVER

An instrument driver is a collection of modular software routines that perform the oper-
ations required in the computer control of a programmable instrument. These operations 
include configuring, triggering, status checking, and sending data to and receiving data 
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from the instrument. Above, Status Confi g (Serial Poll) and Status Confi g (SRQ) are examples 
of configuration VIs that would be useful to include as part of the Agilent 34401A soft-
ware driver. You will now write another configuration VI, this time one that prepares the 
multimeter for taking a desired measurement.

The Agilent 34401A is capable of implementing 11 types of measurement func-
tions: DC and AC voltage, DC voltage ratio (ratio of voltage at two different inputs), DC 
and AC current, 2- and 4-wire resistance (2-wire is the “normal” method for measuring 
resistance; the more involved 4-wire technique is necessary only when measuring very 
small resistance samples), frequency and period of an AC signal, continuity, and diode 
check. To gain experience with some of the LabVIEW tools available for developing 
instrument drivers, let’s write a driver that offers the choice of configuring the Agilent 
34401A for either a DC voltage, AC voltage, or 2-wire resistance measurement. You, of 
course, can be more ambitious and write your VI to control up to all 11 possible mea-
surement functions.

Referring to the Agilent 34401A user manual, we find that our driver must allow 
a user to select one of the following three possible commands in order to configure the 
instrument for the desired measurement function:

CONFigure:VOLTage:DC <Space> <Range>, <Resolution>
CONFigure:VOLTage:AC <Space> <Range>, <Resolution>
CONFigure:RESistance <Space> <Range>, <Resolution>

Here, the possible values of <Range> for both the DC and AC voltage measure-
ments are 0.1, 1, 10, 100, and 1000 Volts. For the resistance measurement, the allowed 
<Range> values are 100, 1k, 10k, 100k, 1M, 10M, and 100M ohms. In all cases, the 
measurement precision may be 4½, 5½, or 6½ digits, which corresponds to <Resolution> 
being 10–4, 10–5 or 10–6 times the <Range> value, respectively.

We will write two programs called Range and Resolution Decoder and Command String, 
which will allow a user to construct the desired command string using front-panel controls. 
On Range and Resolution Decoder, given range and resolution choices from a user-friendly 
front-panel listing of the multimeter’s available offerings, the program will convert these 
choices to the double-precision floating-point numeric format needed in Command String. 
Command String will construct the appropriate ASCII command string to be sent to the 
Agilent 34401A, based on selections made on its front-panel controls.

Create a new VI named Range and Resolution Decoder and save it in YourName\Chapter 13. 
Place four Emun controls (found in Controls>>Modern>>Ring & Emun) on the front 
panel and label them Function, Voltage Range, Resistance Range, and Resolution, respec-
tively. Pop up each Enum, select Edit Items . . . and then program each with the items 
given in the following list.

Function: DC Voltage, AC Voltage, Resistance
Voltage Range: 100 mV, 1 V, 10 V, 100 V, 1000 V
Resistance Range: 100 ohm, 1 kohm, 10 kohm, 100 kohm, 1 Mohm, 10 Mohm, 

100 Mohm
Resolution: 4 1/2 Digits, 5 1/2 Digits, 6 1/2 Digits
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Then place these four Enum controls in a Cluster shell (found in 
Controls>>Modern>>Array, Matrix & Cluster) labeled Function Parameters as shown 
next.

Switch to the block diagram, place a Case Structure there, and complete the code 
shown. Pop up on the Case Structure and select Add Case for Every Value, and then 
verify that it has three cases labeled DC Voltage, AC Voltage, and Resistance.
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Select the DC Voltage case, and then place an Index Array icon within it. Pop up 
on Index Array’s n-dimension array input and select Create>>Constant to create 
an Array Constant and label it Voltage Ranges. Next, program the index-0 through 
index-4 elements of this Array Constant as 0.1, 1.0, 10.0, 100.0, and 1000.0, respec-
tively. The Array Constant then will serve as a look-up table of the multimeter’s 
allowed voltage ranges, given as double-precision floating-point numbers. Complete 
the code for the DC Voltage case shown below. Here, the integer associated with a 
selected Voltage Range on the front-panel Enum control provides the index of the desired 
look-up table element. This element is then output by Index Array.

Clone the Voltage Ranges Array Constant (mouse-click, while holding down <Ctrl>), 
and place the copy somewhere on the block diagram. Then switch to the AC Voltage 
case and (using your cloned Voltage Ranges), write the code shown.
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Finally, switch to the Resistance case and program it as shown. Here, the index-0 
through index-6 elements of the Resistance Ranges Array Constant are 1.0E2, 1.0E3, 
1.0E4, 1.0E5, 1.0E6, 1.0E7, 1.0E8, respectively.

Add a second Case Structure and complete the diagram as shown next. Remember to 
pop up on the Case Structure and select Add Case for Every Value. The Range & Resolution 
indicator cluster is created by popping up on Bundle and using Create>>Indicator.
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Return to the front panel. Within the Range & Resolution indicator cluster, label the 
top and bottom Numeric Indicator as Range and Resolution, respectively. Design an icon 
and assign the connector terminals as shown. Save your work.
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Run Range and Resolution Decoder and verify that it functions properly. For example, with 
Function, Voltage Range, and Resolution equal to DC Voltage, 10 V, and 6 1/2 Digits, respec-
tively, Range and Resolution should equal 10.0 and 0.00001.

Next, open a blank VI, and save it under the name Command String in YourName\
Chapter 13. Switch to the block diagram and write the following code, which constructs 
the desired ASCII command string. The Function Parameters control cluster and output 
string string indicator are made using the autocreation feature in pop-up menus.
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This diagram constructs the desired command string in a three-step process. First, all three 
possible commands begin with the keyword CONF:, so this sequence of ASCII charac-
ters is wired to the string input of Pick Line (found in Functions>>Programming>> 

String>>Additional String Functions with its Help Window given below). The 
value of the line index input (an integer given by the front-panel Function Enum 
control) then selects which of the three possible lines programmed into the String 

Constant wired to multi-line string is to be appended to CONF :. Create the three lines 
in this String Constant by the following sequence of keystrokes: VOLT:DC<Space> 
<Enter>VOLT:AC<Space> <Enter>RES<Space>. Be sure to include the <Space> 
character at the end of each command string. You can make the invisible space and line 
feed characters visible by popping up on the String Constant and selecting “\” Codes 

Display. The correct entry will then appear as VOLT:DC\s\nVOLT:AC\s\nRES\s.
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Format Value, from Functions>>Programming>>String/Number Conversion (Help 
Window shown next), then is used to attach two more string fragments, each with 
embedded ASCII-coded numbers that program the <Range> and <Resolution> set-
tings of the multimeter. This icon takes the number at the value input, and converts it to 
an ASCII string representation with the format defined at the format string input. This 
ASCII string is appended to string and presented at output string. In the above dia-
gram, the scientific notation format %7.2e (see section 5.5) is used for both <Range> 
and <Resolution> parameters. Note a comma (,) and semicolon (;) follow <Range> 
and <Resolution>, respectively.

Switch to the front panel and change the label of the String Indicator from output string to 
Command. Run the VI with a given choice of the controls within Function Parameters, and 
verify that the correct command string appears in the Command indicator. Save your work.
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Add a Push Button (found in Controls>>Modern>>Boolean) and a Numeric Control 
to the front panel and label them Autozero and Sample Count, respectively. Change the rep-
resentation of Sample Count to U16.

Switch to the block diagram, then include code to control the multimeter’s autoze-
roing feature and to program the desired number of data samples to be taken. The 
%5d format in the SAMPle:COUNt command specifies a five-place decimal integer 
because the maximum allowed value for SAMPLe:COUNt (according to the Agilent 
34401A user manual) is 50000. The format string entry for this command should be 
:SAMP:COUN<Space>%5d.

Autozero can be either turned on and off with the following commands:

ZERO:AUTO<Space>ON
ZERO:AUTO<Space>OFF

Append True/False String (found in Functions>>Programming>>String>>Ad

ditional String Functions), whose Help Window follows, provides an easy way to 
select which of these two choices is concatenated to the command string. Remember to 
include the leading colon and final semicolon in the false string and true string entries 
to assure proper command concatenation.
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To guarantee that the instrument fully processes the sent command string before exit-
ing the configuration VI (which you will write in a moment), conclude the string with 
*OPC?.

Return to the front panel. Run the VI with a given choice of the front-panel controls 
to verify that the correct command string appears in the Command indicator. Then design 
an icon and assign the connectors consistent with the following Help Window. Save 
your work as you close the VI.
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Finally, create a VI named Measurement Confi g and save it in YourName\Chapter 13. Switch 
to the block diagram and code it as shown. This VI will write the command string to the 
instrument. When this diagram runs, the read buffer indicator will display an ASCII “1” 
if the command string was successfully read by the instrument.

Switch to the front panel, arrange the objects there as you wish. Then design an icon 
and assign the connector terminals consistent with the Help Window shown below. Save 
your work.
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Input the VISA resource name for your instrument into the VISA resource name control, 
and then run Measurement Confi g with front-panel control settings shown above so that 
the following command is sent to the instrument:

CONF:VOLT:DC<Space>1.00E+1,1.00E-5;:ZERO:AUTO<Space>ON;:SAMP:
COUN<Space> 5;*OPC?
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If the command is successfully sent over the GPIB, an ASCII “1” will appear in 
output buffer. If the Agilent 34401A beeps, there is most likely an error in the sent com-
mand. Open the front panel of Command String, then run Measurement Confi g again. Check 
that the concatenated command in the Command indicator on Command String’s front panel 
has a form as given above; make sure all of the colons, semicolons, and spaces are 
included. If there is an error, correct it on the block diagram of Command String.

After running Measurement Confi g, the multimeter will be left in remote mode. You 
can switch to local mode by pressing the instrument’s front-panel SHIFT/LOCAL key. 
The Agilent 34401A can then be triggered (equivalent to sending the INIT command 
over the GPIB) with the SINGLE/TRIG button. A star (*) annunciator will blink on the 
instrument’s front-panel display as it acquires each voltage sample. Does this annucia-
tor blink Sample Count times after the SINGLE/TRIG button is depressed?

Save Measurement Confi g as you close it.
Write a final modular VI for your Agilent 324401A instrument driver called Take 

Data, as shown below, and save it in YourName\Chapter 13. The leading *CLS command 
assures that all bits in the SESR and SBR register are set to zero, prior to each data-
taking process.
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Note: Take Data cannot be run independently without generating an error. However, if 
you first run one of the other VIs that you have written (can you figure out which one?), 
then Take Data can be run successfully.

13.16 USING THE INSTRUMENT DRIVER TO WRITE 

AN APPLICATION PROGRAM

Ultimately, the merit of an instrument driver is measured by the ease with which you 
can use it to write an application program to fulfill some specialized need in your labo-
ratory work. Let’s quickly write an application program called Data Sampler that can be 
configured to take a multisample voltage or resistance measurement.

With VISA Query (SRQ) open, use File>>Save As . . . to create Data Sampler and save it 
in Your Name\Chapter 13. Rewrite the block diagram using your modular driver software 
as shown below.
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Return to the front panel and arrange the object there as desired. Save your work.

Run Data Sampler with various choices of front-panel settings, and then pat yourself on 
the back for a job well done.

Now that you know some of what goes into writing an instrument driver, here’s 
some very good news. In many cases, the LabVIEW instrument driver you will need 
for a particular instrument in your laboratory has already been written and is available 
for your use free of charge. National Instruments provides an extensive library of down-
loadable instrument drivers at http://www.natinst.com/idnet/. You can also access this 
resource within LabVIEW by selecting Tools>>Instrumentation>>Find Instrument 
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Drivers . . . Most of these drivers are written using VISA icons and so, by using the 
interface-appropriate VISA resource name for your instrument, can be used to com-
municate over various interface buses—RS-232, GPIB, Ethernet, and USB. LabVIEW 
itself comes equipped with the VISA driver for the Agilent 34401A Digital Multimeter 
in Functions>>Instrument I/O>>Instrument Drivers>>Agilent 34401. Take a look 
at some of these subVIs and see if you can decipher them.

Finally, a useful Agilent 34401A instrument driver utility would perform the follow-
ing task: Take the instrument’s Data string (data samples delimited by commas and the 
string terminated by a LF character) and convert it to a numeric array and a spreadsheet 
format. One manifestation of that utility, called Reformat Data String, is shown next. On the 
front panel, the string control and string indicator have been resized and scrollbars have 
been activated by selecting Visible Items>>Vertical Scrollbar in the pop-up menus.
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If interested, try writing Reformat Data String. It implements the Search and Replace 

String icon found in Functions>>Programming>>String (Help Window shown 
below) to coerce the original Data string into the spreadsheet format (by replacing 
comma delimiters and the LF terminator with tabs and an EOL, respectively). Do you 
understand how it works? Once written, include this program as a subVI in Data Sampler 
and watch it perform its magic.
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DO IT YOURSELF

Assume that you have a widget in your laboratory that is providing you with some interest-
ing information about X, where X might be the position of an object or the intensity of a 
light source. Additionally, say, the widget provides this information about X in the form of 
a “voltage-code,” that is, it produces an output voltage V that is some known function of X. 
Then, with an Agilent 34401A multimeter and an appropriate application VI (called it Time 
Evolution of X), you can monitor X (via measurement of V) as a function of time.
 Using your Agilent 34401A instrument driver programs as subVIs, write Time Evolution of 
X. When run, this top-level VI continuously obtains a single DC voltage sample every Wait 
Time seconds (where Wait Time is given by the value on the similarly named front-panel 
control) until the front-panel Stop Button is clicked. While running, the VI provides real-time 
graphing of the Voltage versus Time data on a Waveform Chart with the Chart’s Time 
axis properly calibrated. The front panel also provides the option of storing the all of the 
accumulated data in a spreadsheet fi le with Time and Voltage in the spreadsheet’s fi rst and 
second column, respectively. Defi ne Time � 0 at the moment that the fi rst voltage sample is 
acquired.
 The front panel of Time Evolution of X should appear as shown below. All needed parameters 
without a front-panel control should be input on the block diagram. After building this VI, run 
it to observe a time-dependent voltage input (e.g., from a function generator) to the multim-
eter and save the resulting Voltage versus Time data in a spreadsheet.

A helpful tip: The Time axis of the Waveform Chart can be calibrated using a Property 
Node. Pop up on the Chart’s icon terminal and select Create>>Property Node>>
X Scale>>Offset and Multiplier>>Multiplier. Then set the Multiplier property 
appropriately.
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Problems

Thermocouples are widely used as temperature sensors. A thermocouple is constructed 1. 
by joining the ends of two dissimilar metals, for example, a copper and a constantan 
wire for a Type T thermocouple. This junction produces a millivolt-level voltage, which 
has a well-documented temperature dependence, where the temperature is measured 
relative to a “cold junction” reference temperature. Conveniently, this cold junction can 
be provided by a compact electronic device called a Cold Junction Compensator (CJC), 
which effectively makes the reference temperature equal to 0�C.

  Connect a thermocouple to a CJC and then connect the plus and minus output of 
the CJC to the HI and LO Voltage Inputs of the Agilent 34401A Multimeter. Then, write 
a program called Thermocouple Thermometer (VISA) that, every 250 ms until a Stop Button 
is clicked, reads the thermocouple voltage, converts this value to the corresponding 
temperature in Celsius, and then display this temperature in a front-panel indicator.

  To convert the thermocouple voltage to its corresponding temperature, use Convert 
Thermocouple Reading.vi, which is found in Programming>>Numeric>>Scaling, 
with its CJC Voltage input wired to 0 (the CJC Sensor and Type of Excitation 
inputs can be left unwired). Program Thermocouple Type for your particular type of 
thermocouple (e.g., T).

  Run Thermocouple Thermometer (VISA) and use it to measure room temperature as well as 
the temperature of your skin.
As written in this chapter, 2. Serial Poll is fl awed in that, if the bit being monitored in the 
Status Byte Register is never set, this VI will loop endlessly. With Serial Poll open, use 
Save As . . . to create a new VI called Serial Poll with Timeout. Then modify the block 
diagram so that, if the bit being monitored is not set within 10 seconds, the While Loop 
is stopped.
When LabVIEW is installed on your computer, a driver for the Agilent 34401A 3. 
Multimeter is included. This driver is found in Functions>>Instrument I/
O>>Instrument Drivers>> Agilent 34401. Use the icons from this “built-in” driver 
to write a program called it Time Evolution of X (Built-In Driver), which carries out the task 
described in this chapter’s Do It Yourself project. The icon VI Tree gives a helpful 
overview of the “built-in” driver.
Regardless of the chosen resolution, the Agilent 34401A Multimeter always reports 4. 
data sample values with eight digits to the right of the decimal point. Thus, some of 
these decimal-place values are not signifi cant. With Take Data open, use File>>Save 
As… to create a new VI called Take Data (Accurate Resolution). Add a Function Parameters 
front-panel control to this new VI (so that the selected resolution setting can be input) 
and then modify the block diagram appropriately so that the data output reports values 
with the actual resolution selected (e.g., 4½ digits, if that is the selected resolution).
Use the 5. Instrument I/O Assistant Express VI to query the Agilent 34401A Multimeter. 
Place an Instrument I/O Assistant (found in Functions>>Express>>Input) on the 
block diagram of a VI called Simple VISA Query (Express). When this Express VI’s dialog 
window opens, select the desired instrument, and then click on Add Step. In the Add 
Step dialog window that appears, double click on Query and Parse. In the Enter a 
command box, type
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CONF:VOLT:DC 10,0.00001;:INIT;:FETC?

 and then click Run this step. The command will be sent to the Agilent 34401A 
Multimeter and its string response will be displayed. Click the Auto parse button to 
convert the response string to numeric format and then close the dialog box by clicking 
the OK button. When returned to the block diagram, simply create an indicator for the 
icon’s token output terminal.

  Run Simple VISA Query (Express) and demonstrate that it successfully obtains a DC 
Voltage sample from the Agilent 34401A Multimeter.
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