RATSY

Requirements Analysis Tool with Synthesis

Version 2.1

Authors
Roderick Bloem, Roberto Cavada, Alessandro Cimatti, K&raimel,
Georg Hofferek, Robert Koenighofer, Alessandro Maridttgo Pill,
Marco Pensallorto, Marco Roveri, Viktor Schuppan, Richaegber,
Simone Semprini, Andrei Tchaltsev, and Martin Weiglhofer

(©2005, 2009, 2010 by FBK-irst and Graz University of Techaglo

Notices
For information, contadRATSY (ratsy@list.fbk.eu)

The first version of this tool (RAT) has been developed withmPROSYD European project,
contract number 50721 8t(p://www.prosyd.org). The current version (RATSY) has been
created within the COCONUT European project, contract rem#i7069 Ifttp://www.
coconut-project.eu), within the DIAMOND European project, contract number 848
(http://www.fp7-diamond.eu/), and within the Provincia Autonoma di Trento project
EMTELOS.

The information in this document is provided "as is”, and n@@ntee or warranty is given
that the information is fit for any particular purpose. Thernhereof uses the information at
its sole risk and liability.

(© Copyright 2005, 2009, 2010 FBK-irst and Graz University @chinology. All rights
reserved.

ie RATSY — Requirements Analysis Tool
with Synthesis

Contents

(0] (=] €S iii
Table Of FIQUIES ...iveie e e e iv
IS A0 IF=] [P Vi
1 RATSY Users Manual..........ooooiiiiiiiie e 1
1.1 RUNNING RATSY Lot erm e 1
1.2 Property Assurance in RATSY ...o.oiiiiiiiiiiimmmm e 3
The Main WINAOW ... e e 4
Traces and their management.............coeviiiveeeii i, 6
AN EXAMPIE Lo e 9
1.3 Property Simulation in RATSY ... 12
The Main WINAOW ... e e ee e 14
The ANalysisS WINQOW..ccuuiiiiiiiiie e 15
AN EXamMPle ... 16
1.4 Property Realizability and Synthesis in RATSY ...weeeveenne.. 20
Realizability Problemcooiuiiiii e 21
Specifying a Realizability Problem............cccoceeiiiiiiiinnn, 22
The Main WINAOWovviiiii e e, 22
SYNINESIS. . e ———— 24
The Automaton EditOrcocviiiiiiii e 26
1.5 Simulating and Debugging Specifications using Games......... 30
How to play @ Gameovuiniiiii e i e e e e e e ae e 30
The Game Log WINAOWcvuniiiiiiiieiceemm e 32
Integration with the Automaton Editor.............coeeevvveiiiiiinnnnnnnn. 32
Specifying Design INteNt..........c.iiiiiiiiieee e 33
Additional Features for the Normal Game...........cccceeieeiennen. 34
Additional Features for the Countergamecceeccevevevvenennnnns 34
EXAMIPIE. 35
2 RATSY ArChItECIUIE . ..o e 41
2.1 Architecture and Implementation Notescccoeevveniinnnnnnn. 41
2.2 Architectural Patternsc.ooouiint e 42
The Model-View-Controller pattern...............cueeereeniennennn. 43
The Observer Patterncc.vviiii e 44
2.3 SOftWAre SITUCIUIE.......iieiiii et s e e e e e e e eeas 44
TOOIS STUDS ... e 45
A vertical view over the Software Structure.........ccccccooeeeieennen.. 46
3 RATSY Installation and Distribution..............ccoeiiiiiiiiia 49
3.1 Installing the Binary Distributionccccooiiiiiiiiiiniineeenn, 49
3.2 Installing the Source Distributioncccoceiiiiiiiiiiiii, 49
3.3 RUNNING MARDUK ..tuiiiiiiieiiit e e e e e e et e e e e et i e e e e e 50
3i4 LICENSING . otueineiie ettt e 50
A REIBIENCES ... e 53
RATSY — Requirements Analysis Tool Contents e iii

with Synthesis

Table of Figures

Figure 1 - RATSY-Main WiNdOW.c.ovvuiiiiiiiiiiineieiieeineeeenn 2
Figure 2 - RATSY- New project Wizard.coummmmeeeenneineennns 2
Figure 3 - RATSY- New project wizard, project data. ...cccecevvvenen.. 3
Figure 4 - Property Assurance main Window.ccccevvvvvenennnnnn. 4
Figure 5 - Creating signals, requiremMents. e eeeneeuneennennnes
Figure 6 - Creating possibilities and assertions.coovvveieennne.
Figure 7 - Verification panels............ccooviiiiiiiiiniiiice e 7
Figure 8 - An example of trace visualization.ceoieieniiennnnnn.
Figure 9 - An example of trace visualization.cmeeeeieeiiivennn. 8
Figure 10 - Editing @ CategOrY......cccviiuiein s s e e ee e eneaveaeaneneanas 9
Figure 11 - Editing @ traCe.c.ovvuiiiiiiiiemmee e 9
Figure 12 - Counter - initial specification.ccccceoiiiiiiiiiiiiiinn. 10
Figure 13 - Counter - checking an assertion........cccceecvvvvivineennnnnn. 11
Figure 14 - Counter - fixing the specification.........emmmeveevvenennnn... 12
Figure 15 - Counter - checking a possibility.cummeeeieiniiennnn. 13
Figure 16 - Counter - traces of the Session..........ccc.ccoviviiiiiiiiniinnnns 13
Figure 17 - Property Simulation Main Window.ccccccocevviennnn. 14
Figure 18 - Property Simulation Evaluation Analysis Window......... 16
Figure 19 - Create a project for Property Simulation. 17
Figure 20 - Property Simulation Start Window........cccceeviviviiininnns. 17
Figure 21 - Witness for propert@(r — F(@)). «.c.oovevvieiiiieiiniiiiieiins 18
Figure 22 - Analysis of trace for proper§(r — F(a))...........coeeervnenn 18
Figure 23 - Askforarequestonsignalr.cocoveeeeiiiniiiiiinninnnns 19
Figure 24 - Witness with request for prope@yr — F(a)). 19
Figure 25 - Witness for proper@(r — F(a))&& F(r). ..coovvviiiinnennnn. 20
Figure 26 - Witness for propertyG(r — F(a)))&& (F(r))....ccooveevnnnens 20
Figure 27 - Shaping the trace.covvuiiiieereee e 21
Figure 28 - Witness for shaped trace request...... ..o eevvienveeneenn.. 21
Figure 29 - Specification of an environment signal in RATSY......... 22
Figure 30 - Specification of a system guarantee property if®A 23
Figure 31 - The Realizability window in RATSYccocoveviiviiennnnn. 23
Figure 32 - The Realizability window in RATSYccovvviiiiiiinnnnns 24
Figure 33 - Create a new automaton.cc.veevenrenneenneenneenenn 27
Figure 34 - Edit the properties of a state in the automaton............. 27

iv e Table of Figures

RATSY — Requirements Analysis Tool
with Synthesis

Figure 35 - Specify the transition condition for an edge.................. 28
Figure 36 - The main window of the automaton editor. 29
Figure 37 - The Game window in RATSYccocoiiiiiivicecinceeen, 31
Figure 38 - The specification used for Game demo.......c..cc........... 36
Figure 39 - A possible simulation run............ccoceceeiiiiiiiiiieneeene, 36
Figure 40 - The specified design intent.ccceeiiiiiiiiiiiininnnns 37
Figure 41 - The new specification containing the desired\deha...... 37
Figure 42 - The countergame containing the countertrace............. 38
Figure 43 - The state of the play in an automaton........c................ 39
Figure 44 - RATSY- Software parts and collocationccec........... 42
Figure 45 - RATSY- Software Structurecccceciveeevieinennnnns 44
Figure 46 - RATSY- Hierarchy of main software entities 46
RATSY — Requirements Analysis Tool Table of Figures e v

with Synthesis

List of Tables

vi e List of Tables RATSY — Requirements Analysis Tool
with Synthesis

RATSY — Requirements Analysis Tool List of Tables e vii
with Synthesis

viii e List of Tables RATSY — Requirements Analysis Tool
with Synthesis

1 RATSY Users Manual

The tool RATSY fulfills the need for a proper technologicappart to formal

methods in the setting of requirements analysis and syisthgproviding its users
with the integration of four sets of functionalities: PragyeSimulation, Property
Assurance, Property Realizability and Synthesis, and dé*tpDebugging using
Games. In this section we show how to interact with RATSY ideorto accom-
plish the tasks related to these four methodologies.

All the examples in the following sections are written in Wexilog flavor of PSL
as from [12], the language supported by the verificationreergMs and NUSMV.

Some of the screenshots in this manual (especially in th@ésscabout Property
Assurance and Property Simulation) were taken from a pusviersion of the
tool (RAT). Thus, they might look slightly different than wahyou will see in the
current version (RATSY). This should, however, not affestierstanding of the
respective sections.

1.1 Running RATSY

RATSY can be executed from the command line by the followiogumand

ratsy - Launches the python interpreter to execute Command
RATSY program

ratsy [-h|--help] [-v|--version]
[-f <FILE.rat> | --project = <FILE.rat>]

Command Options:

-h Prints the command usage.
-V Prints the program version.
-f <FILE.rat> Loads the given project file

Figure 1 shows the start-up screen-shot of RATSY when tHagdemunched with-
out any project as argument.

The unit of interaction with RATSY is thproject, i.e. a collection of formal pro-
perties and results of verification checks. The relevandhefole of a project,
as an object with a state that can be saved and reloaded isasldar as Prop-
erty Assurance and Property Realizability are regardeslugier that builds formal
specifications and inspects their quality, must have theipitisy to work in dif-

ferent sessions and of saving the results of the work peddrfrom session to

RATSY — Requirements Analysis Tool RATSY Users Manual e 1
with Synthesis

X -+ [, - O ¥
File Edit View Help

* New Open

RATv. 1.2

A tool for Requirements Analysis

Copyright (€) 2005 by ITC-irst
Copyright (c) 2005 by Graz University of Technology

@ Quick Start
To start a New Project click New
To load an Existing Project click Open

Figure 1: RATSY- Main window.

session. With Property Simulation, such a feature coulthdess relevant, but the
value of having the possibility of saving simulation sessigi.e. the properties
simulated and the connected traces) shows clearly if wé thidong time con-
suming work sessions and of the importance of having a qufdeence to their
results.

Through the mengile or the commandlewin the tool bar it is possible to access
the wizard for the creation of new projects, shown in Figuree2ect the kind of

project, and specify the details of the project enteringdéu in the fields shown
in Figure 3.

b & Create aNewProject [RNE
Specify the initial project type:

() Property Simulation

() Realizability

Property Assurance allows for ...

~ Note:
It will be possible to switch among the
project types at any time.

| 3¢ Cancel | | <& | | bﬁurward‘ | o Finish |

Figure 2: RATSY- New project wizard.

As a result of the integration of Property Simulation, Assure and Realizability
into RATSY (rather than simply juxtaposing them), it is pibss to shift between
these three kinds of projects at any time, and to load priggerfor example, from
Property Assurance into Property Simulation or PropertgliRability. A project

hence sums up all the history of a design development protessthe initial ex-

plorations of properties prototypes, to the definition oéadf requirements, from
the inspection of requirements adherence to the intendehimg; to the possi-

2 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool

with Synthesis

€51 Create a New Project s

Other optional project information:

Project File: |Ccunter | IZI

Project Notes: |The specification of a counter
modulo 5.

| ¥ cancel H <] Back H&s || o Finish |

Figure 3: RATSY- New project wizard, project data.

ble use of simulation to perform a fine grained inspection rofpprties coming
from Property Assurance, and to checking the interplay beiwcontrolled and
uncontrolled signals and their requirements with Reallitgb

Once a project has been created, the user can proceed abett#tiSections 1.2,
1.3and 1.4.

1.2 Property Assurance in RATSY

RATSY enacts the Property Assurance Methodology (see [@j@e2.2) by sup-
porting the users in Property Assurance related tasks; RAApI®vides a proper
framework for managing set of properties, a user-friendbgriface towards ver-
ification engines, and a proper framework for managing tiselte of Property
Assurance proof obligations. In this section we describe twinteract with the
tool by following a typical use case, which encompassesdheifing steps:

e editing of a project;

editing of signals
editing of requirements

editing of possibilities

editing of assertions
e verification

— activation of the checks
— management of traces

In the setting of Property Assurandetojectsare the entities that correspond to
the ensemble of a specification together with the result@indd by the connected
proof obligations. The building blocks of a specificatioritie Property Assurance
Methodology areequirementspossibilitiesandassertion all of which are proper-
ties formally expressed on a set of atomic symbols callgdals Following the

RATSY — Requirements Analysis Tool RATSY Users Manual e 3
with Synthesis

methodology, given a specification, some proof obligatieachto be discharged;
in [2] Section 2.2 it has been shown how these proof obligatioan be mapped
onto SAT technology: the tool provides an interface towahits technology and
communicates the results of the performed verification kfidxy means of ex-
tended waveforms calledacesthat show the evolution of the values of signals in
possible models of the system under specification.

The Main Window

RATSY main window when in Property Assurance mode is showFiguare 4. In
the upper part of the body of the window there are the tablethfomanagement
of signals and requirements; in the middle the are the takddglds for the man-
agement of possibilities and assertions (on the left), Arccontrol panel for the
verification tasks (on the right); the bottom of the windowoixupied by a text
box showing the output of the verification activity.

p& raT - counter Ry
File Edit View Help

4 = E M 1 B

° Mew Open | Traces “ | Assurance | Simulation Realizability
signals % & Requirements + B &
IName |Type |Kind |Nutes ‘ ‘alName |Kmd |Property |Nme; ‘

Property Assurance

8 8

Sat Technology |BDD Technalogy
Solver: | MinisaT |+ | [l inc [1SNF
[[] semcC

Tl

Depth: |30 E0

Loop: | All Loops | ¥ |7

‘alName |5tatui |Prcperry |Notes

[» Checking outcomes

Figure 4: Property Assurance main window.

Adding and modifying elements of a project. The activities of adding, edit-
ing and removing items from the sets of signals, requiremgmissibilities and
assertions follow the same pattern regardless the classethe belong to. The
screen-shots in Figure 5 and 6 show the windows for creatimgnasignal, a new
requirement, a new possibility and a new assertion resmdgtiall of which are
accessible by clicking on the first one among the buttons ertdp right of the
table of the proper class.

4 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Note that in Property Realizability signals are distinpeid of being System or
Environment. Similarly, requirements are distinguishéd&ng Assumption or
Guarantee. For Property Assurance and Property Simuldtese distinctions are
of no importance and therefore ignored.

X -« [- - X

Create a new signal

Name: iinc |

Kind: @ Environment
() System

Type: (@ Boolean
() Other:

[Editor

Notes: ;‘fhe input signal for
imcremem:ing the value of the
\counter

‘Igancel” o oK |

X -« T - O X

| Create a new requirement

Name: |Fl1

Property. |always (forall Min {-6:5}
((v=M && inc) —> next (v = (M + 1))))

£ Indent

Kind: (@ Guarantee
() Assumption

Notes: Eea(h inc is immediately
ifuliuwed by
\an increment of v

|ﬂgance\H o oK |

Figure 5: Creating signals, requirements.

Once an item is created, it is shown in the table of its claskiais possible to
modify or to delete it by clicking on the proper button on thble of the class of
the item. A window similar to the one used for creation is ugdediting, and a
warning window will ask for the user’s confirmation befordeding an item. Mul-
tiple selection is allowedGtrl keyboard button pressed when left-clicking with
the mouse on the desired items) and hence is possible to lopedliting windows
of several items at one time, or to delete more than one itemeatime. Multi-row
editing and parenthesis highlighting are provided to easéiput of properties and
to make more effective their visualization. Notice thaltita tasks that can be per-
formed on signals, requirements, possibilities, assertiaces and categories are
accessible also through pop-up menus that shows when theigiseclick with
the mouse on an item; the pop-up menus offer also selectailitiés like “select
all”, “deselect all” and “invert selection”.

Since, as pointed out in [2] Section 2, it may be of great usgniolate a property
when the results of a Property Assurance check are not ofaessprehension,

RATSY — Requirements Analysis Tool RATSY Users Manual o5
with Synthesis

X -+ N © X
Create a new possibility
Name: |F'1 ‘
Property: |always (forall N in {-5:5}:
(fv=N) —> eventually! (v 1= N))}
£ Indent
Notes: Can it be the case the counter changes value
‘ 8 Cancel | | o oK ‘
X B X
Create a new assertion
Name: !Al |
Property: |always (forall M in{-5:5}:
(v = M) == ((v=M) until (inc || dec))))
£ Indent
Notes: does not change if
there are no inc and dec
‘ 8 Cancel ‘ | o oK |

Figure 6: Creating possibilities and assertions.

the user is provided with the possibility of loading an itehatt belongs to re-
quirements, possibilities or assertions into Propertyusation mode; this can be
accomplished by selecting the desired items and clickinidpetast one among the
four buttons on the top right corner of the proper table, osélecting the voice
Load into Simulation from the pop-up menu accessible by right clicking on
the selected items. The logical conjunction of the seleittads is copied in the
Property text box in the Property Simulation mode (See Section 1.3).

Verification ~ The verification tabbed panel, on the middle right of the wind
provides the user with control on the execution of the vezifan engine used to
perform Property Assurance related checks. The two talesyrsin Figure 7, al-
low to chose among SAT-based BMC techniques or BDD-based édiiniques,
and to set the respective options. As far as SAT-based BM&y&rded, it is pos-
sible to choose which SAT solver to use, whether incremeatdiniques should
be used, the depth of the BMC problem generated, and the faaltiee loop back.
With regard to BDD-based MC, the user can define the partitiethod, whether
using Cone of Influence techniques, and which kind of dynaewtedering should
be used, if any. For more details on the meaning of theseraptibe user can refer
to the user manual of BISMV [8].

6 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

[[] Consistency @ Check [] Consistency

Sat Technology |HDD Technology ‘ Sat Technologv| BDD Technology
Solver: | MinisaT | | [JInc] SNF Partition

[] semc

Depth 0 [[] Cone of Influence
[] Dynamic Reordering
Loop: | All Loops |+ H |

Figure 7: Verification panels.

Traces and their management

The results of verification checks are shown as traces, wdmetshown as new
tabs beside th@utput tab as depicted in Figure 8.

X+ [C X
File Edit Wiew Help
B d @ 2 ©
" New Open Save | Traces Assurance | Simulation Realizahility
Signals % ¥ Requirements ¢ 8 2
JName |Tvpe |K1'nd |the5 ‘ |a |Name |Klnd |P‘ru|::er’wr |Nute5 ‘
| a boolean 5 i always (
I <0 G
b boolean S | {a;blnext c))
o boolear S Mri G eventually! ((a && Ib) && next b)

Property Assurance

+ B2

&1 |Name |status |Property |Notes | |Sat Techno]ogv|EBDTedmalugy|

Sposd 5 solver: | MinisaT | w | Cline []sNF

Depth: |30 !:!

Loop: | All Loops | v I!

= Checking outcomes

Name |5tep1 |vstep2 |5ten3 Name: Trace_6
a [1 Dep: 10, rl, poss0
b I | Cat! New
c [|
| QTrash
Qutput | Trace_6

2

Figure 8: An example of trace visualization.

Each trace has a name and is connected to the requirementheapodssibili-
ties/assertions it has been generated from, i.e. thoseviratselected to perform
the check of which the trace is the result. These data allavatk the dependen-
cies among the traces and the other elements of the proje@x&mple, knowing
which requirements a trace depends on allows the systengnalsit as out of
date or no longer meaningful if some changes have been petbto one of the
requirements the trace depends on.

In Figure 8, the trace shown is composed by an initial stdpv@d by an infinite
repetition of the second step, i.e. a loop. Loops are signbjea little black

RATSY — Requirements Analysis Tool RATSY Users Manual e 7
with Synthesis

arrow close to the name of the step they start from. Coloregssthanges to help
depicting the finite prefix and the infinite loop in traceshtigray for the former,
dark gray for the latter.

To ease their management and to reflect the typical use c&semdrty Assurance,
traces are organized in differenategoriesamong which the following system
categories are provided:

New. the category where traces generated in the current sessostaed by
default;

Def aul t : the category where up to date traces that have been generates
vious sessions are stored;

Qut of dat e: the category where out of date traces are stored (a trace @ ou
date when some element in its dependencies have been deletedlified);

Tr ash: the category of traces the user scheduled for deletion.

A simple way of managing traces with respect to categorigwasided by the
buttonsTrash andMove on the right of each trace in the main window, as shown
in Figure 8.

Clicking on the buttorTraces in the tool-bar, it is possible to access the window
of thetrace manageras shown in Figure 9, which allows the user to manage traces
by editing the associated data, moving them from a categoanother category,
deleting them, creating new categories and editing theatataected to categories.

&€l 1race varager =
Categories & i Selected Traces
ShowlCategarv | New This is the category of those traces that have been just created
7 Trace
N 5 R Pmcaeper B
Th Notes: (This trace has no notes) |
Dependencies are: r0, rl, poss0 %
History:
00: Added to category 'New' \F
IName |Stepl |VStep2 |Step3
| a2 T}
b
L
Contains the traces that
have been deleted
| |
Traces » @ Trash contains the traces that have been deleted
Trace 0
ShowlName |Categarv I b
] IName |Step1 |vstep2 |5[ep3
Trace_0 Trash | a 1
Trace_1 Trash - ——
[Trace 2 Trash | ol
[Trace_3 Trash |
[Trace_4 Trash | BT 1
B Trace 5 Trash Lo
| IName |Step1 |vstep2 |5[ep3
| a 1
b
S ———

Figure 9: An example of trace visualization.

At the top left corner of the trace manager window the listategories is shown,
where each category has a name alasgription ; it is possible to select more
than one category and, on selection, the contained traeefiawn on the right part
of the window grouped under the name of the category theyngdio. In the left

8 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

bottom corner of the window there is the list of the names efttaces contained
in the selected categories, by selecting or de-selectintggdt is possible to show
or hide traces in the right part. As shown, each trace is limdtogether with its

complete data that comprise a brief description, the naoteered by the user, the
list of dependences and the history (when the trace wasaedeletc.). Categories
and traces tables on the left part of the window, allow thesuse edit, delete or

add items, in Figure 10 and Figure 11 the editing dialog feegaries and traces
are shown.

X -+ [- o %

Add a new Category
Name: ENew |

Description: [This is a category
those traces that have
iUt dated

|

Figure 10: Editing a category.

b &%) Trace 6 - O X

Edit Trace Information

General

Name: ”Tra(e_s Category: | New |v

Notes

Other information

|Description
This trace contains 3 steps, and has one loop at step 2.

[+]

Dependencies
ro, rl, posso

Originating formula
I(Calways ({a;b}(next c))) & (eventuallyl ((a && lh) && ||/

Creation information
Created by 'MuSMV' on Thu Dec 14 16:59:46 2006
Checking command was: "check_pslspec -b -k 30 -1 #*°

|History
00: Added to category "New'

-

[l I [2]

Figure 11: Editing a trace.

An Example

In this section we work out a simple but meaningful exampég ttovers the most
relevant Property Assurance features of RATSY, and linletiogr in a cohesive
view the usage information given in the previous section.

The example we are going to tackle is the specification of antbed counter (an
instantiation of what described in [2] Section 2.2); a firgivié specification could
be the one shown in Figure 12.

The specification is based on the following signals:

RATSY — Requirements Analysis Tool RATSY Users Manual e 9
with Synthesis

x#l RAT - DemoPropAssurance o [E)

File Edit View Help

B Q@ e &

"~ New Open Save | Traces | Assurance | Simulation Realizability
Signals % - [Requirements + B8 2
IName |Tvpe |Kmd |Note§ | ‘a |Name |Klnd |Pmpenv |Nmes

The input signal for
inc boolean E incrementing the value R1 G
of the counter

each inc is immediately
™+ 1) followed by
an increment of v
each dec is immediately
" followed by
a decrement of v

always (forall M in {-6:5}
((v=M && inc) —> next (v =

The input signal far

always (forall M in {-5:6}:

dec boolean E decrementing the | [¥Ir2 G (lv=M && dec) —> next (v = (M- 1)

value of the counter |
v -6.6] The value of the counter R3 A

inc and dec never occur
simultaneausly

never (inc && dec)

[e] z I [] [||

* 8z

Property Assurance

& |Name |Status |Prcpertv Notes Sat Technology |BDD Technology

Solver: | MinisaT | | Clinc []SNF

I semc
Depth: |30 |
| |Loop: | All Loops |+ l J:;

il [I3]
<7 Checking outcomes
F> Staer 1.2 <- 7
Destroying a SAT solver instance 'MiniSat'
Done
Quitting the BMC package... [~
) Z =

Output

Figure 12: Counter - initial specification.

i nc: the signal that models the issuing of increment operations
dec: the signal that models the issuing of decrement operations

v: the signal (integer valued) that models the value of the t@wun

this signals are shown in ti&ignals table together with their type and notes.

TheRequirements table collects three requirements that constitute aralrspec-
ification of the functional behavior of the counter, and af #issumptions on the
environment

R1: prescribes that any increment operation is immediatelipvi@d by a unit
increment in the value of the counter

R2: prescribes that any decrement operation is immediatelgweld by a unit
decrement in the value of the counter

R3: states that increment and decrement operations must nat staultane-
ously (this is a constraint on the environment)

Once this initial specification is entered by the user, itdsgible to proceed and
check it for consistency, i.e. checking that the requiretsia@ane not mutually con-
tradictory. This can be achieved by selecting all the regpents, by ticking the
check boxConsistency check , and by clicking on th&€heck button in the con-
trol panel at the top. Figure 12 shown the result of this chisgiositive: the
output from the verification engine, shown in the @ddput , reports that the run
of the engine has completed successfully and no warningagess issued by
RATSY. As shown in the control panel, this check has beeropsidd using SAT
technology with a depth of the problem equal to 30, and cimgctar all possible
loop-backs.

10 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool

with Synthesis

Now that we have an initial consistent specification, we ¢art analyzing it and
check if it describes exactly the behavior we have in mind.

The first step can be that of checking that the value of our tesus always coher-
ent with the inputs received. In particular, we want to beeghat if no operation
is issued, the value of the counter does not change, whatevefalue is; this is
the meaning of assertiokl shown in theAssertions table in Figure 13.

x#l RAT - DemoPropAssurance = B XK
File Edit View Help
: = ;[&
"~ New Open Save | Traces “|Assurance | Simulation Realizability
signals % {§ Requirements 85 0
IName |Tvpe |Klnd |Nc[e§ ‘ Iﬁ |Name |>(1nd |Prcper‘rv |Nates ‘
The input signal for each inc is immediately
. always (forall M in {-6:5}:
7
inc boolean E incrementing the value | R1 G ((v=M && inc) —> next (v = (M + 1)) followed by
of the counter an increment of v
The input signal for 3 each dec is immediately
i always (forall M in {-5:6}
7
dec boolean E decrementing the R2 G ((v=M && dec) -> next (v = (M — 19))) followed by
value of the counter a decrement of v
v -6.6 § The value of the counter R3 A never (Inc && dac) inc and dec never occur
simultaneausly
Property Assurance
Possibilities Assertions
4 @ Check [] Consistency
+ 2 @2
o |Name |Status |Property Notes Sat Technulugy‘ﬂDD'T chnal ‘
A - 4 does no g solver: | MinisaT | | L1Ine [ISNF (2]
d e a] d de | £ ‘_IDSEMC el
Menth: |30 ot = Bl
=7 Checking outcomes
Name |Stepl |VS[ep2 |5te::3 i Mame: Trace_1
inc Dep: R1,R2 R3, A1
I - v
v —2 4 % i
'
Output| Trace_1

Figure 13: Counter - checking an assertion.

OnceAl has been entered, we can check it against all the requirsrandtget the
result shown in Figure 13: the assertion is signalefhiéed by a red bullet next to
its name in thé\ssertions table, and a trace showing a counterexampl<cs

created and shown at the bottom of the main window. Note teatramary of the
information related to the trace is provided close to thedrigself. By examining
the trace, we notice that the counterexample shown hastél 8tepin which the

value of the counter is -2 and no operation is issued, and@ndestep in which
the value of the counter is changed to 4. Note that the lagt stactually the first
and only one of an infinite loop, as signaled by the little klacrow close to the
name of the step in the header of the trace. A review of theinements reveals
that actually nothing is said about the evolution of sign&hen no operation is
issued, and this leads us to the definition of a new requirésribat fills this hole

R4: prescribes that if no operation is issued the value of thetesuemains un-
changed

Figure 14 illustrates the new state of the specification &ows that ifR4is added,
the check forAl passes, as signaled by the green bullet inAfsertions table.
Note that in this case the check has been performed using BBfhology with

RATSY — Requirements Analysis Tool RATSY Users Manual e 11
with Synthesis

x% RAT - DemoPropAssurance .0 K

File Edit View Help

B A @ | @
New Open Save | Traces Assurance | Simulation Realizability
Signals ¢ - 5 Requirements + 8 2
JName |Tvpe |Kmd |No{e§ || ia |Name |Kind |Proper‘tv |Note§ |
The input signal for o always (Forall M in {-5:6}: each dec is immediately I
inc boolean E incrementing the value followed by

of the counter
The input signal for
dec boolean E decrementing the

value of the counter

| “Rr2

(lv=M && dec) -> next (v = (M - 1))}

never (inc && dec)

always (forall M in {-6:6}:

a decrement of v

inc and dec never occur
simultaneausly

v does not change if no

| v -6.6 S The value of the counter (fv=M && linc && Ide inc and dec commands
next (v = Mj)) are issued
Property Assurance
Possibilities Assertions

@ Check [Consistency

*+ 282
& |Name |Status |Property Notes Sat Technology | BDD Tedmuiogv|
" A o 0es no ge Partition: Threshold :
0 dd By
| T cona af inflienca =
= Checking outcomes
....done
[Flattening the generated tableau........ done
Creating LTL tableau variables...
—— specification ({{(always ((forall M in {-6:5} : ({v = M & inc) —> next (v = M + 1)))) & always ((forall M in {-5:6} : (v = M & de | BQEEI
[There are no traces currently available. ‘

Quitting the BMC package...
Done

E-

< 7

Output |Trace_1

Figure 14: Counter - fixing the specification.

the Sift dynamic reordering method. In this case no trace is showausecno
counterexamples has been found.

Once the check foAl is passed, we gained more confidence on how the counter
reacts to the stimuli of the environment. Now we can check tia system ex-
hibits desired behaviors, i.e. that it is possible that gbing happens, even if not
mandatory. For example, we may want to check that it is dgttizé case that the
value of the counter may change, this means looking for aaswem which the
system evolves reacting to the stimuli of the environmerstiuich a way to modify

the initial value of the counter. This check can be performmgthe possibilityP1
shown in Figure 15.

The possibility is signaled gsassedn the Possibilities table, and a trace cor-
responding to a witness of the desired system behavior i8rsthbe trace exhibits
a five step loop in which initially is 1 and two consecutiviac operations are
issued (the value of changes accordingly) and then tdetr operations are issued
making the value of going back to 1 in the fifth step.

The result of a work session is a specification, a set of pitiisif a set of as-
sertions and a set of traces corresponding to the resulteafhtecks performed.
Figure 16 shows the trace manager window with the tracesrgiukeduring this
session (actually other traces are shown that we do notideddsut that have been
generated within this section).

12 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool

with Synthesis

x#l RAT - DemoPropAssurance = B XK

File Edit View Help

B A B ; B

Traces *| Assurance | Simulation Realizability

© New Open Save
Signals % {§ Requirements + B2
Name |Tvpe |K1nd |Nc(e§ ‘ a |Nan1e |Kind |Pmpem' |Nnte; et
) The input signal for R2 G a‘mﬂa‘;’;m{;x,"lr;:f =M= 1) followed by
inc boolean E incrementing the value a decrement of v
of the et g R3 A never (inc && dec) inic:antl deceverocqur

The input signal for
dec boolean E decrementing the always (forall M in {-6 v does not change if

value of the counter ((v=M && linc && Idec) — inc and dec commands
v -6.6 § The value of the counter next (v = are issued

simultaneausly

Property Assurance

Possibilities

L
& |Name |Status |Property Notes Sat Technology | BDD Technalagy‘
. | [+]
o ool b St - ‘ Partiion: | Threshold I
i [[] Cone of Influence 7
=7 Checking outcomes
Name |v§[epi |Smp2 |Ete;:3 |Step4 |Step5 Name: Trace_4
14 1 Dep: R1, R2 R3, R4, P1
dec______ —— ean

Output | Trace_1 [Trace_2 [Trace_3| Trace_4 |

i

Figure 15: Counter - checking a possibility.

&l 1ace varager ___[E=By

Categories > B Selected Traces

on |Categu(v New This is the category of those traces that have been just created

> Trace_1
New (5 traces)
This is the category of Name |Stepl | ¥ Step2 |Step3
those tr hat have been
Just created
Default (empty)
This Is the default
category for traces

Out of Date (empty) b Trace 3
Contains the traces whose Name |v Stepl |5tepz
dependencies might be no
inc
dec
ins the traces that v Esh -6
fesed
[> Trace 4
Name |V5(enl |S(epz Step3 |S[en4 |S(ep’5 Z
z inc | 1 I
Traces + @ dec — T 1
Vot 1 2 3 2 1
|Shnw|Name |Ca[egm’v |
Trace_1 Mew i b Trace 5
2 New Name |VS(epi |Step2
Trace_3 New inc
Trace_4 New dec
Trace_5 New v h -6

Trace_0 Trash

Default This is the default category for traces
Out of Date contains the traces whaose dependencies might be no longer consistent

Trash contains the traces that have been deleted
P Trace_o

[

Figure 16: Counter - traces of the session.

RATSY — Requirements Analysis Tool RATSY Users Manual e 13
with Synthesis

1.3 Property Simulation in RATSY

This section illustrates the RATSY Property Simulationtfieas. Some general
GUI features will be introduced, followed by explanatiotist main and analysis
windows and an example scenario for a simple standard pyoper

The Main Window

When enacting Property Simulation in RATSY you will see thATSY main
window to change to Property Simulation mode as illustradeigure 17. Please
note that the user is able to switch the mode at any time uemgwitch controls
in the upper right of the main window.

b &1 RAT - Unnamed Project

Eile Edit View Help

B [} @ o}
open | Traces * Assurance | Simulation | Realizability
T L |[sanais ic

T u
Signals Stepl [Step2 |step3 [i
a _-1

[evatuation |Stepl Step2 [Step3

¥ Gln > (Fl@))
() -> (F@)
r

¥ Fla)

il

Witness | ‘ Counterexample Status/Result: Witness Analysis

Figure 17: Property Simulation Main Window.

In the figure you see the three main sections of the Propentyl&tion interface.
On the upper left you can see a multi-row text entry window rghgu can enter
your property. The various lines are combined to a singl@gnty, thus you may
split your property to several lines for a better overview.

The middle section of the Property Simulation window catssif two widgets

showing waveforms. The upper one illustrates the derivedngke behavior using
waveforms. The different waveforms illustrate the sigradlies for every time step
in the trace. The whole trace is determined by the finite gaprafix completed by
an infinite repetition of the infinite parts. The backgroumdbc indicates whether
the value is in the finite or infinite part of the trace. Lightgrcorresponds to
the finite part and dark grey to the infinite part. You may setesingle signal

to highlight its waveform, there is no further impact of suzlselection. The
trace/signal view offers the possibility to request feasufor the next trace. A
click on the right button of your mouse on a step of the tracelpces a pop-up
window offering the following requests:

14 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

e Insert timestep: Another time-step is entered just before the one you have
clicked on. The default value is ‘Do not care’, which mearst tyou don't
have any preference for the value in the next trace.

e Remove timestep:A given time-step is removed in the next trace.
e Fix value to False:In the next trace this value shall be false.
e Fix value to True: In the next trace this value shall be true.

e Set to ‘Do not care’: You do not care about the signals value at this time
step in the next trace. This option can be used to unset eshualues.

When you establish requests you will notice that the colotheftrace for this

signal and time step changes to red. Red parts in the tragetbhbthese parts are
requested to be fixed to the current values for the next tregeest. You'll also

notice that the status Value at the bottom changes to “Cedtiaind the waveform

color of the formula evaluation changes to black. This melaaisthe tree-view for

the Formula/Property evaluation does not correspond ttrélse anymore.

The tree-view for the Formula/Property evaluation bendaghTrace/Signal view
is not editable, so you cannot shape the waveform here.u#itiites and corre-
lates the single parts of the property to the trace. For eautr$tep of the trace
the property and all its sub-formulae are evaluated to trualee, visualized by
waveforms organized in a tree. The tree structure is definged the property to

illustrate the dependencies between the parts of the fyopése the tree-view to
make sure that the formula has been parsed the way you edpdrtdating the

waveforms to each other shows how the different parts of tbeguty interact with

each other interpreted on the trace.

The last part of the Property Simulation main window is thetoad and status bar
located at the bottom. It includes the following contents:

e Witness Button: Pressing this button you can ask RATSY to derive a trace
living up to the property and the feature requests you mag ktated.

e Counterexample Button: With a click on this button you can ask RATSY
to provide a trace contradicting the property or possibéduiee requests.

e Status: At this location you can always see what RATSY is up to when
doing a computation and the status of the trace and evatuaien idle.
Examples ar&Vitness, CounterexampM,s Error,

e Analysis Button A click on this button raises another second analysis win-
dow offering coverage information and controls as disadigs¢he very next
section.

The Analysis Window

The analysis window completes the information and contwbtbe main window.
For each sub-formula of the property the window containsecage statistics and

RATSY — Requirements Analysis Tool RATSY Users Manual e 15
with Synthesis

offers controls to request for the next trace that this paould evaluate globally
or finally to true or false.

The coverage statistics tell how often a properties pafuates to true and false,
and how often this evaluation change during the evaluatfotne trace. These
statistics are derived for the finite and infinite parts oftilage, complemented by
numbers for the entire trace including possible changekeainterconnection of
the trace and the transition from the last state to the fiase sif the infinite part.

The graphical concept uses a tree-view for organizatiornefvisualization and
offers a ‘close’ button at the bottom to close the window. Trke-view shows the
coverage statistics for each part of the property and thiasrio request features.
The first column contains the name of the part, followed b miolumns to illus-
trate the coverage information. For each part there arerouabeled0’ ,'1’, and
‘C’, corresponding to the numbers for fals@'), true (1') and evaluation result
changesC’). The three sections for the finite, infinite parts, and thelelrace
are distinguished by the used background colors. The sectar the finite and
infinite parts use the same colors used for the waveformis; digey and dark grey.
The section for the whole trace uses a very dark grey.

Additional four columns offer the option to request featui@ the next trace. You
can request a sub-formula to evaluate a property eventtaliyue (F(==1)"),
globally to true (G(==1)"), finally to false (F(==0)"), or (G(==0)"). A green
zero for a request indicates that there is no request for éketrace, whereas a
red one indicates a desired request. Pressing the rightenrfmuiton on a value
produces a pop-up window enabling to set or unset a request.

Considering the tree structure and the coverage informatm be of great help
in exploring the behavior of a property. Considering thenagle of a property
requiring an request to be acknowledged the coverage iaftsmmay show that
there is no request happening (columns labeled ‘1’ show va&lges for request)
for a vacuous trace. So by setting the request to be eventuadl you can ask for
a more interesting trace for example. When a part of the ptppeesn’t evaluate
to a specific value at any time you may ask for an illustratibwiwat happens if it
does by seating the corresponding request.

b €51 Evaluation Analysis .

Formula coverage -> request features

Signal/Formula

¥ G(r) -= (Fa)) 0020030
= () -> (Fa)
r
~ Fla)

Close

Figure 18: Property Simulation Evaluation Analysis Window

16 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

An example

This section illustrates RATSY Property Simulation funatility with a simple
example. For this example scenario we will consider therméd property that a
request should be eventually acknowledged .

First we have to start a new project. This is done by callingaral clicking the
“New” button at the top of the window. As for this example weidie to do Prop-
erty Simulation only we can skip the step of entering progthils at this stage;
Property Simulation extracts the information it needs fecomputations directly
from the property itself. With a click on the finish button @bre 19) we are pre-
sented with the main window of Property Simulation (Figuf®.2Please note
that if you would like to perform Property Simulation in anging requirements
engineering project for a device under construction, yau saitch to Property
Simulation by clicking the control button at the top righttbé main window.

). €] Create a New Project =k

Specify the initial project type:

() Realizabhility

Property Simulation allows for ...

Note:
It will be possible to switch among the
project types at any time.

| # cancel | | E | | Dﬁorward| | o Finish |

Figure 19: Create a project for Property Simulation.

b &1 RAT - Unnamed Project N EL

File Edit View Help

B il N - Y
Open | Traces Assurance | Simulation | Realizability

Property

Signals ire Fossibilities | Assertians

nals | ssibi it :
| Name |Tvue |and |Nu[es ‘

Property Simulation
signals

|3

[2] [¢]

|Evaluation

-

Bl =

Witness ‘ ‘ Counterexample status/Result: Initialized Analysis

Figure 20: Property Simulation Start Window.

Our first guess on PSL syntax for our informal propertgis — F(a)). G (“Glob-
ally”) is the short form of the PSL operator “always”, and E{entually, Finally”)

RATSY — Requirements Analysis Tool RATSY Users Manual e 17
with Synthesis

is the short form of the “eventually!” operator. We enterttheoperty into the en-
try widget of the Property Simulation main window and prées"Witness” button

to ask for an example trace fulfilling and illustrating theperty. We're presented
with the trace illustrated in Figure 21.

b €51 RAT - Unnamed Project <0 X

Eile Edit View Help

B = @ ;@ =)
Open | Traces Assurance | Simulation | Realizability

Property Signals

0 e Iﬁg;gniﬁnx
[Gr->F@)

Name [type [kind [Notes

Property Simulation

Signals |Slen1 Step2 |Step3

r

a z
Evaluation |5(ep1 Step2 |step3 |1=
& G -> (F@)

¥ (0 > (F@) z

r
~ F@)
a

< Z 2]

Witness | ‘ Counterexample Status/Result: Witness Analysis

7

Figure 21: Witness for proper@(r — F(a)).

The trace is vacuous because there is no request, but gdhele are acknowl-
edges. We see that the property does neither need a requegbgen, nor that
there is a request for an acknowledge to occur. Althoughxtheele is very sim-
ple and we can obtain that information by judging and intetipg the waveforms
we now press the analysis button to show the coverage infmmalustrated by
Figure 22.

X—N Evaluation Analysis - 0O X

Formula coverage -> request features
Signal /Formula Cclo|l|C |0 |l |C|Fi=1) |Gi=1) |F(=0) |G{=0)

T Gl -> (F(a)) 0020030
= r) -> (F(a)
r
~ Fla)

N

Figure 22: Analysis of trace for proper§(r — F(a)).

A check of the analysis reassures our preliminary conahssido gain a more in-
teresting trace we request a request to eventually happlusasited in Figure 23.
We keep the analysis window opened and ask for a new witnegsdsging the
corresponding button in the main window.

We are presented with the trace illustrated in Figure 24. Asave satisfied with
the trace and want a request to happen for future examplebange our property

18 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

X—N Evaluation Analysis - O X

Formula coverage -> request features

Signal fFormula [o]t]c]o]t]c]or]c[ren [[Feo) Jaor |14]
~ Gllr) -> (F(a))) 010 0 0 0 0
= (r) -> (F(a) 010 0 0 0 y
r Loo 0 0 0 -
~ F(a) 010 0 0 0
a 100 0 0 0]
[«] 2 [¥]

Close

Figure 23: Ask for a request on signal .

to G(r — F(a))&& F(r). By asking for a new witness we want to recheck this
change.Please note that the requests are reset for eveey @ you might not
include a forgotten request forever resulting in the misgtdresting behaviors
during property exploration.

b €21 RAT - Unnamed Project AEE

FEile Edit View Help

B] Y
Open | Traces Assurance | Simulation | Realizability

Property signals | Requin
G(r->F(a) | Name |T\me |Kmd |Nntes ‘

Property Simulation

signals |5tea1 |Stepz |sten3 Step# |Steps
r
a 7

|Step1|5tep2 |Slep3 Step4 [StepS

|Evaluation
¥ G -> (F@))
(1) -> (F(a)
r
¥ Fla)
a

D]

Witness ‘ ‘ Counterexample Status/Result: Withess Analysis

7

Kl

Figure 24: Witness with request for propefdyr — F(a)).

The derived trace illustrated in Figure 25 however, unvibidg we have got some-
thing wrong, as the tree structure does not fit our intenti®y.the investigation
of the tree structure we uncover that we have forgotten tackats. We have to
put theG() part of the property into brackets, otherwise lbgical andbinds the
F(r) to the implication part and not to the globally part. We addigdnal brack-
ets to the property to gaifG(r — F(a)))&& (F(r)). By asking for a new witness
we recheck the property and are satisfied with the preserded &nd evaluation
(Figure 26).

Now we want to check if a single of the two acknowledges canoto the prop-
erty. Again this might be obvious for our example, but it ntigbt be obvious for
a more complex one. Thus we shape the trace by editing thefovaveWe fix the
values of signat to the values of the trace and sigrelo true for time-step one
and false for the remaining time-steps (Figure 27).

RATSY — Requirements Analysis Tool RATSY Users Manual e 19
with Synthesis

b €71 RAT - Unnamed Project AEl
File Edit View Help

Thale 2 - §
Open Traces Assurance | Simulation | Realizahility

Property Signals | : Possibilities | Assertions
G(r->F(a)
&&F() Name |Tvue |Kmd |Na(es
Property Si i
Signals |itep1 |StE;=2 |Step3 Step4 |Step’
r
a o
|Evaluation |Stepl |Steaz |ste93 step4 [steps |*
TG -> (F@)) && (F())
V) -> (F@))) && (F(r))
) > (F@)
r
~ Fa)
| Zs r
Witness | ‘ Counterexample Status/Result: Witness Analysis

7

Figure 25: Witness for proper@(r — F(a))&& F(r).

b €71 RAT - Unnamed Project AEl
File Edit View Help
Bram - ¢ @ q
Open Traces Assurance | Simulation | Realizahility

Property Signals |Requirer Possibilities | Assertions

Glr—>F

g&(rm:)) @b Name |Tvue |Kmd |Na(es
Property Si

Signals |§tepl |StEpZ |Step3 Step4 [Steps
r
a &

|SteDl |Steaz |ste93 Step4 |Step5

|Evaluation
¥ (GU) -> (F@N)) && (Fr))
¥ Gl -> F@)
~Ar) -> (F(@))
r
~ Fa)

Witness | ‘ Counterexample Status/Result: Witness Analysis

7

Figure 26: Witness for propertyG(r — F(a)))&& (F(r)).

Asking for a new witness produces a trace illustrating thatrequests are satisfi-
able (Figure 28).

We have used all elements of the Property Simulation interfo far, and now it
is up to you to explore the property and the potential of Prigp&imulation on
your own. To give you some initial direction we would like taggest to enhance
the property to allow an acknowledge only on a request, oini the length of
an acknowledge to one time-step.

1.4 Property Realizability and Synthesis in RATSY

This section illustrates the RATSY Property Realizabitityd Synthesis features.

20 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool

with Synthesis

P € 1 RAT - Unnamed Project
File Edit View Help

B B ‘]

G Open Traces

Property Sionals Assertions
Gir—>F@ T T
(&&((F(r)) @n Name [Type [Kind [Notes

FELR

Assurance | Simulation | Realizability

Property Simulation

signals

i
a

|Steol |Sten2 |Steb] Step4 |Step3>

|Evaluation

T G((r) -> (F@)) && (F(r)
¥ Gl -> (Fa))
) > F@)
r
¥ Fla)
a
~ F()
v

I}

Witness ‘ ‘ Counterexample

Status/Result: Qutdated

o

Figure 27: Shaping the trace.

P € 1 RAT - Unnamed Project
File Edit View Help

B B ‘]

G Open Traces

Property Sionals Assertions
Gir—>F@ T T
(&&((F(r)) @n Name [Type [Kind [Notes

FELR

Assurance | Simulation | Realizability

Property Simulation

signals

|Steol |Sten2 |Steb] Step4 |Step3> 2

i
a

|Evaluation

|Stepl |Slen2 |S(ep3 Step4 |Step5

T G((r) -> (F@)) && (F(r)
¥ Gl -> (Fa))
¥ 0 -> F@y
r
¥ Fla)
a
~ F()
v

I}

Witness ‘ ‘ Counterexample

Status/Result: Witness Analysis

o

Figure 28: Witness for shaped trace request.

For using the Realizability feature the enhanced versioNoEMV [5] is re-
quired. For using the Synthesis feature the command lineMotRDUK is re-
quired. See Section 3 for details.

Realizability Problem

Informally, the Property Realizability problem can be désed as follows. All

signals are divided into two disjoint sets — uncontrolleav{onment) signals and
controlled (system) signals. Similarly, every requireinieelongs to one of two
sets — the assumptions and the guarantees. At every timéhstemvironment
variables are set to some unknown-beforehand values andhteeystem decides

RATSY — Requirements Analysis Tool

with Synthesis

RATSY Users Manual e 21

values for its variables. Assuming that the assumptiong tina task of the system
is to satisfy the guarantees. If the system is able to do tnaviery possible behav-
ior of the environment the specification is Realizable. @tliwe the specification
is Unrealizable. For a detailed definition of the Realizgbjproblem see [5].

Specifying a Realizability Problem

As was told in Section 1.2 the distinction of signals in Sgstnd Environment as
well as the distinction of requirements in Assumption an@faatee is important
only for Property Realizability. Thus now, a user has to gpexplicitly whether a

signal is an environment signal or a system signal. For el@mgure 29 shows
the wizard to specify an environment sigried of type boolean. Similarly, a

p@alinc [EEER
Create a new signal

Name: inc

Kind: @ Environment
() System

Type: (@ Boolean
(") Other:

|» Editor

Notes: "Thé 'in'pilf Vsrwrgrmil for
incrementing the value of the
‘counter

|I§ance||| o oK |

Figure 29: Specification of an environment signal in RATSY.

requirement describes an assumption on the behavior ofrtvieoement, or a
guarantee on the behavior of the system. For instance,d-8fushow the RATSY
wizard to specify the system guaraneigays(forall M in {-65 }. ((v=M
&& inc) -> next(v=(M+1))))

The Main Window

Once all the signals and all the requirements have beentédsir the RATSY
project, it is possible to move to the Realizability windovineve the button that
performs the check of realizability for the selected préipsrcan be pressed to
start the check for realizability. Figure 31 shows the Rediility window with an
example of realizability problem.

The Check Realizability button on the right in the Realizability window of
RATSY activates the realizability checks. The result of¢heck is shown in the
left text area. In this particular example the specificat®uanrealizable because

22 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

oS

Edit an existing requirement

|r1 |

always (forall Min {-6-5}-
{(v=M && inc) -> next (v=(M +
mm

Name:

Property:

_:= Indentrl

Automaton Name: |

Kind: ® Guarantee
Assumption
Notes: ‘each inc is immediately

[followed by an increment of v

|
|_°gancel-! ok |

Figure 30: Specification of a system guarantee property i ®A

+
]
&

4

|Name |Type Kind Notes i

Signals Requirements.

& MName Kind |Automaton Property Notes

1 7 4;‘

The input signal for A always (forall Min {-6:5} each inc is immediately
inc boolean € incrementing the value | (V=M && inc) > next (v= (M + 1)) followed by an Increment of v
| afithe couriter =28 o always (forall Min {-5:6} each dec is immediately
| The input signal for el : (V=M && dec) -> next (v=(M - 1)))) Tollowed by an decrement of v =

Automata

|Name Notes

Realizability

'Num Realizable |Requirements ‘

| 32 check Realizability |
1 @ no RLR2)

Partition: | Threshold v |

Realizability number 1

Selected requirements were found not realizable
Requirements were: R1, R2

/| Dynamic Reordering

| sift

[> synthesize ‘

Synthesis mode:

. Reorder BOD after

BLIF

' reading configuration

_ Reorder BOD after
| synthesis
Kill strategy when no

/| longer needed and
reorder BDD

| Transfer output functions to new BDD mananger

Reorder method for | % ‘

forced reordering: | o COTVerge

Encoding of Jx state vars
© Binary

One-Hot

P Checking outcomes

Figure 31: The Realizability window in RATSY.

the system may force the violation of the guarantee req@ntsnby setting both
signalsinc anddec up. ! To avoid such behavior we can add an assumption re-
quirementnever(inc && dec) . With this assumption the specification becomes

1The cause of unrealizability may not always be so obvious.SRtion 1.5 to learn how to debug
an unrealizable specification.

RATSY — Requirements Analysis Tool RATSY Users Manual e 23

with Synthesis

realizable (Figure 32).

Signals E Requirements + 5 @ @
Name |Type Kind Notes [& |name Kind |Automaton Property Notes |5
always (1oraN M {0 V UBES 0L CHIENgE It 1o e ang

THE fput sigrial Tor | s s (v = M && linc && Idec) -> next (v = M)} dec commands are issued |
inc boolean E incrementing the value]

of the counter ¥IR5 G v=0 Initally the counter is 0
The input signal for | Wifaimess sys G G(F(TRUE) |
dec boolean® decrementing the value =i N TairGae B A G(F(TRUE)) -
Automata

|Name |Notes

Realizability

|Num Realizable Requirements

n @® o RLR2 L
2 @ yes RLR2RS

Check Realizability

| Partition: | Threshold v
I3 @ yes RL R2 R3.R4. RS, faimess sys. faimess_env i e
|Synthesis number 3 | Dynamic Reordering
|Selected requirements were found realizable =

| si v

|Requirements were: R1, R2, R3, R4, RS, fairness_sys, fairness_env
|synthesis result stored to jusers/12398/ghofferek/work/devel RAST/rat/counter blif.
|Synthesis options were: ['--dyn", "-dyn_reorder_method=sift’, "--rl', "--r2", "-kill, 'transfer-functions', *--reorder_method=sift_converge',

[> Synthesize

Synthesis mode: | BLIF v |

Reorder BDD after
* reading configuration

Reorder BDD after
synthesis

Kill strategy when no
/ longer needed and
reorder BDD

~/ Transfer output functions to new BDD mananger

Reorder method for L cnnverda: <
forced reordering: - 9 g
Encoding of jx state vars

 Binary One-Hot

Figure 32: The Realizability window in RATSY.

A set of assumptions and guarantees is internally conventiedan equivalent
NuUSMV game structure, and depending on the generated ganctusé tthe cor-
responding check algorithms are invoked (with the help efethhanced version of
NUSMYV [5]). The generated game structure is printed in the &y &s to allow

the user to inspect it. Note that, such a game structure may finash variables
introduced during conversion. If the tool is not able to amtha RATSY speci-
fication into a NUSMV game structure an error message with the subexpression
causing the problem is printed out.

Synthesis

For realizable specifications an implementation can benaatically synthesized.
Synthesis works according to the algorithm presented ih [I® perform synthe-
sis, RATSY relies on the command line toolAdDUK, which it calls as an exter-
nal process. Since synthesis can take a very long time (fgelapecifications),
it might be preferable to invoke the MRDUK tool directly from the command
line, in order to have it run in background and independerthefgraphical user
interface. MARDUK is able to read and process RATSY project files. Also, the
command line tool provides some advanced and experimeaalres and options,

24 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

which are not available via the graphical user interface ATRY. If you want
to start synthesis directly from inside RATSY, click tBenthesize button and
select a file to store the synthesis results. The followintgpap for controlling the
synthesis process are available on the lower right-harel gfidhe window. The
synthesis process will also respect the options for dynaetodering, which can
be set right below th€heck Realizability button? Before starting the synthe-
sis process, the desired mode should be selected. At prédsemvllowing modes
are available.

1. COFACTOR: A cofactor-based approach, presented in [3], and the BDD-
Restrict operation of the CUDD package is used to computaubfiinctions
from the strategy.

2. IRRSOP: This mode is based on the Minato-Morreale algorithm for com-
puting irredundant sums-of-produc{g], combined with a cache of already
implemented subfunctions, to find deterministic outputtions.

3. FACTOR: This mode is a generalization of the IRRSOP mode. Instead of
single literals, arbitrary Boolean functions are used iche@cursive step.
This mode is experimental!

4. OLD: This mode is a legacy mode from a previous release. It is @iisibe
same as the COFACTOR mode, except that the output file istifichemped
from the CUDD package. This might save a little computatiomet but it
limits the output format to BLIF.

After setting the mode, one of three different output lamgasacan be selected:
BLIF (Berkeley Logic Interchange Format), Verilog, and HIHDL Intermedi-
ate Format). Below the mode and language selection box, some more sption
about BDDs are available. The first checkbox lets you enfar@ordering of the
BDDs after reading the specification and creating BDDs fbaséumptions and
guarantees. It is recommended to leave this option turnedsit usually short-
ens synthesis time. The next option enforces a reorderitey thfe strategy has
been synthesized. The third option will delete the straBDY and also trigger
a reordering, once the output functions have been detedmihés recommended
to turn the latter two option on in BLIF mode, and turn themiofthe IRRSOP
modes. In IRRSOP mode, output functions are not represastBidDs any more,
so reordering will not improve synthesis results, but jagettime. The next op-
tion enforces a transfer of all BDDs that represent outpattions to a new DD
manager, before they are dumped into the output. Experigmaseed that turning
this option on slightly improves synthesis results, at Métle extra time. This
option is only available in BLIF mode. The reorder methodffoced reordering
may differ from the one used for dynamic reordering. Expergeshows that using
one of the “converging” methods is preferable. Finally,sitpiossible to choose
between two different encodings of the state variables. These variables store
which fairness condition the system is going to fulfill nest. ([10] for details).
The default value i8inary .

2|t is highly recommended to use dynamic reordering, as itgvééatly reduce memory and CPU
time usage.
3Seehttp:/hifsuite.edalab.it/ for detalils.

RATSY — Requirements Analysis Tool RATSY Users Manual e 25
with Synthesis

Caveats There are two very common scenarios which can cause theesysith
process to terminate abnormally. Due to limitations of thgplementation the
current version of RATSY does not specifically report thesemsuof abnormal
termination in these cases. Thus, if RATSY reports that yimhesis process ter-
minated abnormally, you should check whether one of the dNoving scenarios
applies to your project. First, RATSY can only synthesizec#cations inGen-
eralized Reactivity(1jormat. That means that (at least) one assumption and (at
least) one guarantee must be a fairness/liveness corsttayour specification
violates this restriction you will see a message similahwfollowing at the end

of the Checking Outcomes window. Error: The given specification is

not a 'GenReactivity’ specification. The game type is 'Avoi dDeadlock'.
If you see such a message you should augment your specificgitio a guaran-
tee/assumption of the for@(F(TRUE)) , to make it a GR(1) specification.

Second, if one of your requirements causes a parse errosytitbesis process
will also terminate abnormally. Unfortunately the syniegsrocess can not give
information about which of the requirements is malformede Brror message
in the Checking Outcomes window will look like this: ERROR! Encountered

an exception! Error: could not parse the input file! If you click
the Check Realizability button without changing your specification, the real-
izability check will report in more detail which of your regements is malformed.
These information will be displayed in ti@hecking Outcomes window.

The Automaton Editor

Specifications for reactive systems are often easily egfiriesas a set of deter-
ministic and complete Biichi word automata, where the edgegespond to safety
constraints, and the accepting states correspond to $aitiveness constraints.
RATSY provides a graphical tool to create and edit such aatanThe automata
are automatically converted into PSL formulas, which camtbe used as require-
ments. The following example illustrates the use of the mation editor. Think
of a very simple arbiter, with just one request limeg() and one acknowledge
line (ack). We want to model a property that captures the fact thatyenaguest
should eventually be acknowledged. We will do so by means sifrgle Biichi
automaton with 2 statésFirst click the plus sign above the automata list to add a
new automaton. In the dialog window that opens (Fig. 33)ciépa name for this
automaton. Then click thEdit button to actually create/edit the automaton. In
the main automaton editor window, click the buttdtesv State and then click on
an empty spot in the editor pane to add a state to the automtmrble-click the
state to edit its properties (Fig. 34). You can specify a nonéhe state, whether
or not it is the initial state of the automaton, and whethemairthis state is one of
the accepting states. Name the s&fteand make it initial and accepting. Create
a second state, which should not be accepting, and lagiel ¥ou will notice that
the new states have a dangling edge labéled . Dangling edges lead to an im-

4This example is included in the RATSY distribution. The @sponding project file is
examples/demo/DemoAutomaton.rat

26 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

&' arbiter E]@

@ Create a new automaton

Narne: [arbiter |

Automaton: |

/| Generate dead state formula | @Edit

Notes:

:égancel-.: _ é}fjg(

Figure 33: Create a new automaton.

i od
Name: |50| I
| Final
1| Initial
. anncel | | QEQK

Figure 34: Edit the properties of a state in the automaton.

plicit, non-acceptinglead state, which has a self-loop labelede . For reasons
of clarity thisdead state is not drawn explicitly. The editor keeps the automato
deterministic and complete at all times. Since we have netifpd any transi-
tions yet, all transitions (hence the lalek) lead to thedead state. In order to
specify transitions of our own, we must first add signal nank&ght-click in the
list of signal names in the lower-right part of the editor ddmw and selecEreate .
Specify a name for the signal and click. The signal names that you specify here
will be used to create the PSL formula representing the aattmm Thus, make
sure that you only use names of signals that you created inngain project. Oth-
erwise the resulting formulas will not work. After you haweated signals named
req andack, you are ready to add the edges to the automaton. First, wetwan
create an edge fros0 to s1. Thus, first click theNew Edge button, then click on
s0, and finally onsl. A new edge frons0 to sl will be displayed. Notice that
the new edge is labelddie , and that the dangling edge sff has disappeared, to
keep the automaton deterministic and complete. We willllti® newly created
edge later, after we have created all the edges we need. dleate an edge back
from sl to sO. Note that you can add way points to edges. After you clicked
click on an empty spot in the editor pane, before you dditk The new edge will
pass through the point you clicked. You can of course movevinepoint at any
later time. You can also add new way points to an edge, by fiettng it with

a left-click and then clicking the middle mouse button sorexe on the edge.

RATSY — Requirements Analysis Tool RATSY Users Manual e 27
with Synthesis

Way points can also be deleted by selecting them (left-chekd using th®elete
button on the right-hand side. Next, add loop edges to &bt#ndsl. Doing so is
straight forward. Just clickew Edge, and then click twice on the state you want
to have a loop edge.

After you have created all the states and edges, we are goisgetify the tran-
sition condition for the edges. The idea is that s&ités the state in which there
are no outstanding requests. Thus, it is an accepting statestzould be visited
infinitely often. On the other hand is the state in which there is a request which
has not yet been acknowledged. So the transition §orto s1 should be taken
whenevereq=1 andack=0. Double-click the edge to edit its properties (cf. Fig.
35). In theMinterm field enter10, meaningreq=1 andack=0.° If there is no

2 A=

MName:

; i 0-
Minterms: 11

Qcancel | | Hok

Figure 35: Specify the transition condition for an edge.

request 1eg=0), we don'’t care about the value afk , and stay irs0. Also, if a
request is immediately answeredgEl , ack=1), we stay ins0. These two cases
correspond to the minternfs and11. Enter them for the loop edge @A, one
minterm per line. For the statd, we want to stay there as long as we do not an-
swer the outstanding request. Thus, set the minterm forothie édge te0 . You
will notice that the edge frorsl to sO is automatically updated frotrue to ack,
because the automaton is always kept deterministic. Thaigrevalready finished.
Your automaton should now look like in Fig. 36. Cli€k to close the editor. You
will see the formula that has been automatically generatéiole remaining dialog
window. There are two ways in which the formula can be geedravhich differ
in the way in which they handle the implicit dead state tha been mentioned
before. If the checkboenerate dead state formula is ticked, the implicit
dead state will be treated just like any other state. It wélldncoded using state
variables, it will be a non-accepting state, and it will hawelf-loop labelettue .

If this checkbox is not ticked, the dead state will not betedas a real state of its
own. No state encoding will be assigned to it. Instead, wienman edge which
would lead to the dead state is traversed, a special siigadlis asserted. How-
ever, the formula contains also a conjunct staGfdpad=0) . Note that both types
of formulas define the same-regular language. Choose whatever suits your needs
or your liking better, but don't forget to create the sigaedd in your main project
if you decide to use the latter case. Finally, cligkagain to save the automaton.

On a side note: The labels on the edges can also be moved. Dofilstsselect the
edge with a left-click. Then press and hold the left mouséobubn an arbitrary
position along the edge. If you now move the mouse to the (ightle still holding

>The order of signals for specifying minterms correspondsoorder on the lower-right side of
the automaton editor window.

28 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

&' Automaton Editor: arbiter

New State |

| New Edge

| Align to grid |

'req i
req ack lack |7P_|

:Name Notes

req

Iagancel l Q‘EQK

Figure 36: The main window of the automaton editor.

down the left mouse button), the label of the edge will be nlaadeng the edge,
towards the target state. If you move the mouse to the ledt)ahel will move
towards the source state. If necessary, you can also zooeditue pane at any
time, by using the scroll wheel of your mouse.

Once the automaton has been saved, you can use it as a regutirdimdo so, type
the name of the automaton in the corresponding field in theirements dialog
(cf. Fig. 30). After you typed in the automaton name, the falancorresponding
to the automaton will be automatically inserted into thepeirdy field. Note that in
this case you cannot manually edit the formula. With thea&dittons below, you
can choose whether the automaton represents a guaranteassumption. Click
Ok to save the requirement. Note that if you do changes to thmraibn at a later
time, the PSL formula in the requirement will be automaticalpdated to match
the latest version. Furthermore you may use template-peteamto reuse the same
automaton several times. Parameters have the 9§mame} and may be used in
the signal names of the automaton. Parameter names mayansistof letters,
numbers and underscores and must start with a letter or agrsewe. If you
use an automaton with parameters as a requirement, anoaddlifield will appear
where you can assign values to the parameters. Note thatilfdiage to create the

RATSY — Requirements Analysis Tool RATSY Users Manual e 29
with Synthesis

signals, that are finally used, in your main project, inahgdihose used to encode
the current state of the automaton. To facilitate the aveatif these signals a
refresh button is provided above the signal list which adidsiasing signals used
by automata. The signals created in this way will be markedwsmatically
generated, which means that if their names change or thent®obsolete, for
example because the requirement using them was deleteaiayoeasily update
them by clicking refresh again. You may edit an automatiaaicgas well, for
example to change its type, but in this case it loses its aatioratatus and has to
be maintained manually.

1.5 Simulating and Debugging Specifications using Games

The game part of RATSY provides three main features. It algau

1. to play a normal game in order to test the specified system,

2. to play a countergame in order to understand why a cerpanification is
unrealizable, and

3. to specify desired behavior if undesired behavior wasesl during a play.

In the normal game, you are in the role of the environmentewtié tool is in the
role of the system. In every time step, you first choose vdioethe inputs. Then
the system responds with outputs that conform to the spatdit In order to find
such outputs, a winning strategy for the system is synthdsiz

In the countergame, you are in the role of the system whilédblds in the role of
the environment. In every time step, the tool first providgaut values. You are
then asked to choose the values of the outputs in such a wathéhapecification
is fulfilled. You win if you manage to fulfill the specificatioryou lose otherwise.
The tool uses a counterstrategy to find problematic inpus, inputs for which
no behavior of the system can fulfill the specification. Henai will lose for
sure. However, while losing, you will understand where thec#ication is too
restrictive to be realizable. This knowledge can then be tseorrect the specifi-
cation in order to obtain a realizable specification. Moferimation on debugging
unrealizable specifications with countergames can be fouf&].

As within Property Realizability, signals are distingueshof being under the con-
trol of the system or the environment. Furthermore, requingts can be assump-
tions or guarantees. The specification requires the sysiduifill all guarantees
if all assumptions are fulfilled by the environment. Similarthe synthesis fea-
ture of RATSY, the game part requires the specification taktbe Generalized
Reactivity(1)format, i.e., at least one assumption and at least one gearamust
be a fairness/liveness constraint. Otherwise an accogtimg message is printed
when trying to start a game.

30 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

How to play a Game

Figure 37 shows the Game window in action. Initially, the&aiews labeled with

Game

Inputs
hready
hbusreg
hlocko
hbusreql
hlock1

Outputs
hmastero
hmastlock
start
decide

Options for unrealizable specs: ./ =at Check /| Minimize | Compute Graph

RATSY — Requirements Analysis Tool

iame | og = Stepl | Step2 'Step3 |
Dumping the specification into tmp xml .. ~ P i i |
Starting Marduk with the file ... L‘ - |
Checking for realizability (may take some time) ... - |
The spec is realizable.
l.e., there is a system that implements the specification. | will now synthesize
such a system.
Synthesizing the strategy (may take some time) .. ~
Starting the game .. Fix value to False A
With thle interactive‘game, cou can Fest the system | synt‘hesized. The game is '~ Fix value to True ‘tep3 L.a
played in the following way: You are in the role of the environment and |l am inthe « ot to 06 neticare’ i
+| Show Results | Show Operations + Show Help Remove time step from loop i
.
v
Start Stop Clear Prev. Step Done Export Show Subviews Hide Subviews * Play Game

Figure 37: The Game window in RATSY.

“Inputs” and “Outputs” are empty. The butt@tart starts the game. First, the
tool checks the specification for realizability. If it is teable, a normal game is
started, otherwise a countergame is started.

In either case, the current time step of the game is markddradt letters. You are
only allowed to modify signal values in the current time st8fgnal values can be
modified by right clicking onto the according position in thace. A pop-up menu
appears that allows to set the value to 0, 1, or “don’t careé (Sigure 37). In the
normal game, you are only allowed to modify input signalsth@ countergame,
you can only modify the output signals.

Different waveform colors are used to mark different origgof signal values.

e Black is used if the signal value is the only possibility fililiig the safety
requirements.

e Red is used for user selections.

e Blue is used if the signal value is a consequence of some aktion for
other signals.

e Green is used if the signal value was chosen completelyraribyt

During the play the tool enforces that all safety requiret®emne met. When your
choice violates some safety requirement, an error messagated.

After setting all signals to their desired values in the entitime step, clickNext
Step and the next time step can be edited. By click@igar , all user selections
for the current time step are cleared again, i.e., set to’'tdame”. If some signal
values are still “don’t care” when thigext Step button is clicked, these signals
will be chosen arbitrarily by the tool. With the butt®nev. Step , the previous
time step of the play can be edited again. This is useful winerwant to change
some selection in some previous time step. Note, that thesasections for the
current time step are lost when going back to the previoys ste

You can put time steps into the infinite loop or put them bad the finite part by
right clicking onto any signal in that time step and choodimg according menu
item. Only the last time step before the loop can be put inkddbp and only the

RATSY Users Manual e 31

with Synthesis

Specify Design Intent

first time step of the loop can be removed from the loop. Tresriction avoids
that you end up with more than one infinite loop or that the lsopot located at
the end of the trace. Time steps within the finite part are ethskith light gray
background. Time steps with dark gray background belongeartfinite loop.

You can finish a play by clicking thBone button. This causes the tool to analyze
the play in order to find out the winner. Furthermore, expli@mns to this verdict
are printed to make you accept that you have indeed lost #ye YWhen you finally
click the Stop button, the play engine is reset and a new game can be stgrged b
subsequently clickin@tart . Changes of the specification that are made during a
play do not affect the play. One has to cligkp followed byStart to start a new
game using the modified specification.

Game traces can be exported by clicking the bufgport . You can choose
between three formatgpeg , png andved (Value Change Dump). Exporting the
game traces gpeg or png improves over a simple screenshot in that no part of
the trace is hidden due to scroll bars. Game traces expasterd aan be opened
by most waveform viewers. However, the colors in the traceelkas the position

of the infinite loop are lost when exporting tracesvess. This is due to a lack of
support of such elements in the Value Change Dump formate,Nbéat there is
(currently) no way to save the current state of a play. Inipalgr, exported game
traces cannot be loaded again to continue a play.

There are two sub-windows related to the Game window: thee&Samy window
and the Automata window. Both can be shown or hidden with titeobs Show
Subviews andHide Subviews , respectively. These sub-windows are described in
the next sections.

The Game Log Window

The Game Log window is also shown in Figure 37. It containeehypes of log
messages:

e Results: Written in red, they contain the main results olgtdiby the tool
during the play.

e Operations: Such messages show what the tool is currerithg.ddhey are
written in black.

e Help Messages: These messages guide you through a gamearéheytten
in blue.

All types of messages can be enabled or disabled with thesmonding check-
boxes. Information will be stored in the background, eveilend particular mes-
sage type is disabled. When re-enabling it later, the messadl be displayed as
if the message type was never disabled.

32 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Integration with the Automaton Editor

The following features are only available if the specificaticontains automata
constructed with the automaton editor (see Section 1.4).

Figure 43 shows an example for the Automata sub-window ofgémme. The
names of all automata of the specification are shown on thesitdd (in case of
Figure 43 there is only one). One such name can be selectddhanselected
automaton is shown on the right side. The current state gbltneis marked with
yellow in the automaton. Also, all edges that are still poigsivith the current
user selection in the Game window are marked yellow. If yomtwa traverse
a certain (yellow) edge of the automaton in the game, you taplg select this
edge with a mouse click. The restrictions imposed by trangrhis edge are then
added as additional user selections to the signals thatnaier gontrol of the user
in the game. User selections obtained by selecting edgebecaleared again by
clicking the Clear button in the Game window or by setting the corresponding
signal values to “don't care”.

Not only the current state of the play but arbitrary time stepn be displayed
in the automata. Simply right click onto any signal in theidestime step and
selects the menu iteBhow step in automata

Specifying Design Intent

When you observe undesired behavior of the system whilémqgaynormal game,
you can switch into th&pecify Design Intent - mode by selecting the corre-
sponding radio button in the Game window (on the bottom ofridpet-hand side
in Figure 37). The game trace can be used as a starting paipetify the desired
behavior of the system. You can change the value of any s{gmaits and out-
puts) in any time step to 0, 1, or “don’t care”. This is done Ight clicking onto
the signal in that time step and selecting the correspondiiagu item. It is also
possible to set a certain signal in all time steps to a ceualime by right clicking
onto the signal name in the trace. The waveform color blaaksed for signal
values that came from the game. The waveform is colored iif thd signal value
was changed by you. The finite part and the infinite loop of theet can be edited
in the same way as in the game. Unlike in the game, new time stapbe inserted
and existing time steps can be removed from the trace, agaight clicking onto
the desired position and choosing the corresponding menu it

In the end, the input trace and the output trace should reptéise desired behav-
ior in the following way: If the behavior of the environmentatohes the specified
input trace, then the behavior of the system must match thefsgd output trace.
Finally, click Done and an automaton that accepts only the desired behavia-is cr
ated automatically and added to the table of automata in thiegs. It can be
added as an additional guarantee to the specification aslbbin Section 1.4.
This eliminates the undesired behavior originally obsemering the play. Click-
ing Stop clears all data from the traces.

RATSY — Requirements Analysis Tool RATSY Users Manual e 33
with Synthesis

Once theSpecify Design Intent - mode is activated, you cannot return to the
Game mode again. You have to cliop followed by Start to start a new
game. Specifying design intent is only possible from a nbigame but not from

a countergame.

Additional Features for the Normal Game

There is a special waveforix in the output trace that does not correspond to an
output signal. It contains the memory content of the stsategrording to [10].
This memory content is the index of the fairness constrditit@system that will

be fulfilled next. You can simply ignore this row if you are riamiliar with the
work of [10].

Additional Features for the Countergame

Following [6], the countergame is integrated with addiéibfeatures that make it
easier for you to find out why the specification is unrealigabl

SAT-check: Unrealizable specifications are checked for satisfiabfiist. The
result is written to the Game Log window. If a specificatiomiiout to be unsat-
isfiable, you do not have to play a game in order to understa@gtoblem. You
can also use Property Simulation to learn why no trace céill the specification.
This may lead to simpler explanations. However, as unsathi$ify is just a special
case of unrealizability, the countergame can also be usexptain unsatisfiability.
If undesired, the SAT-check can be deactivated with theesponding checkbox
in the Game window.

Minimization: All output signals and guarantees that are irrelevant ferutre-
alizability problem are removed from the specification lbefa counterstrategy is
computed. A guarantee is irrelevant if you cannot fulfill 8pecification even if
you would not have to fulfill this guarantee. A signal is ieent if you cannot
fulfill the specification even if you could choose the valu¢haf signal completely
arbitrarily in every time step without any consequence®ftber signals. Irrelevant
guarantees and signals are not included in the game. Thds fiet focus on the
actual problem. The irrelevant guarantees are deactivatdte table of require-
ments of the project. Which signals are irrelevant can be 8een the Game Log
window. Minimization can be deactivated with the correging checkbox in the
Game window.

Countertraces: A counterstrategys a strategy for the environment to find prob-
lematic inputs, i.e., inputs for which no behavior of theteys can fulfill the spec-
ification. The inputs suggested by the counterstrategyrikpa the outputs pre-
viously chosen by the user. On the other handpoantertraceis a fixed trace

34 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

of inputs for which no behavior of the system can fulfill theesification. It is
independent of the moves of the system and thus easier tostadé. RATSY
heuristically searches for a countertrace. If it could fime othis countertrace is
used instead of the counterstrategy in the countergamecdrhplete countertrace
is shown right from the beginning of the play, so you know iwvatte how the
environment will behave. This makes it easier for you to liaeathe problem in
the specification.

Summarizing Graph: A graph is computed that summarizes all plays that are
possible when the environment adheres to the counteigpjrédethe countertrace).

Its vertices correspond to states in the game, edges coredp state transitions
which are possible in the game. This graph can be seen as at“sheet” for
the interactive game. It allows you to see how the envirorimélhreact to your
outputs. Thus, you may discard some choices a priori. Thisaes the number of
plays necessary to understand the cause of unrealizability

The graph is written in two version into the filgame_data/graph.dot and
game_data/graph_with_signals.dot . The latter contains the signal values that
make a certain state transition possible, the former doesPictures of the graph
can be produced with the DOT program by typing for example:

dot -Tpdf ./graph_with_signals.dot -0 ./graph_with_sign als.pdf

in a shell opened in the directoggme_data . Detailed information to the graphs is
written into the filegame_data/graph.info . This file contains the signal values
corresponding to the different vertices of the graph.

The current state of the play in the graph is displayed in theeform labeled with
state in graph of the input trace. For larger specifications, the graphddnd
become huge. Huge graphs are no real help for the user, sactmeputation is
aborted if they exceed 100 vertices. With the checkbox irttame window, graph
computation can be disabled completely.

Special Waveforms: The input trace in the Game window contains some wave-
forms that do not represent input signals. The special voanestate in graph
contains the current state of the play in the graph as alrerghained in the previ-
ous paragraph. The waveforms labeled visithandjx show the memory content
of the counterstrategy as defined in [6]. The valuexofgives the index of the
fairness constraint of the environment that will be fulfilleext. The value ofk
gives the index of the fairness constraint of the system kwtiie environment tries
to evade. Thus, you can concentrate on fulfilling this fasmmeonstraint only. The
environment can change this index a finite number of times. fliximal number
of changes ojx is contained in the waveforir changes . All these values are
addressed to advanced users, they can also be ignored.

RATSY — Requirements Analysis Tool RATSY Users Manual e 35
with Synthesis

Example

This section illustrates on a concrete example how the geateres can be used.
We will use the specification depicted in Figure 38t defines a simple arbiter
for some resource shared by two entities. With the inplitandrl , access to
the resource can be requested by entity 0 and entity 1, bsggc With the out-
putsg0 andgl, the resource is granted to the entities. The ougpot signals
an error. Forget abowtartup _failed for a moment. All signals are initialized
to O (env init andsys init). There is a guarantee that enforces that the re-
source is not granted to both entities at the same teye tfan 0). There is
a guarantee that ensures that no grant is given in case of@n(®ss tran 1).
Finally, there are guarantees that state that every requestbe granted eventu-
ally (sys fair 0 andsys far 1). The assumptioenv fair is added so that
NUSMYV identifies the specification as@eneralized Reactivity(19pecification
and not as a Bichi game specification. (Remember that gaanesnty be played
on Generalized Reactivity(I9pecifications).

Signals 4 [® Requirements 4+ 0 X o
Name Type Kind ' Notes & Name Kind Automaton ' Property Notes

resource request by entity 0 Benvint A 0=0 && 0 &b s o] initial condition
rl boolean E resource request by entity 1 lvsysinit G q0=0 && gl error=0 inftial condition
startup_failed boolean E environment could not start up lvsystran0 G never(g0=1 && gl=1) never more than one grant
go boolean S resource granted to entity 0 lvsystran 1 G always(error=1 > (g0=0 && g1=0)) no grant on error
gl boolean S resource granted to entity 1 lvsysfairo G always(eventually!(ro=0 || g0=1)) eventually a grant for entity 0
error boolean S something went wrong lvsysfairl G always(eventually!(r1=0 || g1=1)) eventually a grant for entity 1

|

venvfar A always(eventually (TRUE)) no environment assumption

Figure 38: The specification used for Game demo.

When the buttorstart is clicked, the tool first checks if the specification is reali
able. This specification is indeed realizable, so the t@tsta normal game. You
can define values for the inputs and the tool responds withubsithat conform to
the specification. A possible simulation run is depictediguFe 39.

Game
Inputs Stepl ‘Step? 'Step3 | o
ro =

r
startup_failed

Outputs Stepl ‘Step2 Step3
g0 3
gl
error
jx

Figure 39: A possible simulation run.

Suppose now that you are not satisfied with the behavior ofyiséem during
simulation. Suppose that the original, informal desigertwas that the output
signalerror has to be set indefinitely dtartup _failed is always set after the
first time step. This behavior cannot be observed in Figuré/8@ can now switch
into the Specify Design Intent - mode in order to use the simulation trace as
starting point for the definition of the desired behavior.

6This example is included in the RATSY distribution. The @sponding project file is
examples/demo/DemoGamel.rat

36 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Signals

Automata & m ®
Name Notes

design_intentd Created automatically from a simulation run.

Game

?

Inputs Stepl Step2
ro
rl
startup_failed

<> o> <>

Outputs Stepl Step2
Qo
gl
error

Figure 40: The specified design intent.

Figure 40 shows the result of the specification of the dedieduavior. When
startup _failled = 1 right after the initial state until infinity, then so must et
output signakrror

Click the Done button, and an automaton is created automatically whickpsc
only the desired behavior. Add the automaton to the spetiditand obtain the
specification depicted in Figure 41.

4 [® Reguirements + O X o

Name

Tvpe Kind Motes & Name Kind : Automaton Property

resource request by entity 0 venwinit A ro0=0 && r1=0 && startup_falled=0
g boolean E resource request by entity 1 vsysint G g0=0 && gl=0 && error=0
startup_failed boclean E envirenment could not start up vsystran0G never(g0=1 && gl=1)
g0 boclean S resource granted to entity 0 vsystran1G always(error=1 -> (g0=0 && g1=0))
gl booclean S resource granted to entity 1 vsysfair0 G always(eventually!(r0=0 [| g0=1))
error booclean s something went wrong vsysfairl G always(eventually!(ri=0 || g1=1))
di_state0 boolean s venvfar A always(eventually!(TRUE))
di_statel boolean S G design_intent0 (C (di_state0 = 1) && (di_statel = 1)) && [TRUE)) -> (x(((di_state
dead boolean S
Automata
Name Notes

design_intent0 Created automatically from a simulation run.

Figure 41: The new specification containing the desired\ieha

The play engine is reset with the buttStop and a new game with the enhanced
specification can be started by clickiSgrt again. The tool finds out that the en-
hanced specification is unrealizable, so it starts a cogeuee in order to illustrate
the cause of unrealizability. It first minimizes the speaificn. The tool says that
the specification is still unrealizable if the system canoseothe value afl com-
pletely arbitrarily in every time step. It furthermore gmthat the specification is
still unrealizable if the system does not have to fuliyls fair 1 (eventually a
grant for entity 1) andys tran 0 (never more than one grant). The countergame
is played on this simplified specification, whete sys far 1 andsys tran 0

have been removed.

Next, the tool computes a counterstrategy and attemptstginob countertrace
from it. Our heuristic is able to find such a countertrace.sauntertrace is used
in the countergame as depicted in Figure 42. It siettup _failed = 1 andr0

"This e

xample is included in the RATSY distribution. The @&sponding project file is

examples/demo/DemoGame2.rat

RATSY — Requirements Analysis Tool

with Synthesis

RATSY Users Manual e 37

= 1 forever. Due to our design intergiror must be raised. Due &ys tran 1

(no grant on error), no grant can be given. Additionally,= 1 forever, so the
guaranteesys fair 0 cannot be fulfilled. This explanation is also given by the
tool in the Game Log of Figure 42.

Game

X Game Log ——— ¥ X
BRYE We are now in step 3. | already selected input values for this step. o SIGDLSIEpS SBIERG SLEp L aEeD
ro error setto 1.
ri We are now in step 4. | already selected input values for this step.
startup_failed ErorseLto 1 5 ;
= \We are now in step 5. | already selected input values for this step.
ix errorsetto 1.
jx Step 5 is now part of the infinite loop.
S You lose! "
Why? | can tell you:
state in graph All safety constraints are enforced during the play. :
| For the faimess constraints, the situation is as following: A
Outputs faimess_assumption[0] is fulfilled in the step(s): 5 Stepl 'Step2 Step3 Step4 StepS | g
faimess_guarantee[0]is not fulfilled in any step of the loop
90 faimess_guarantee[1]is fulfilled in the step(s): 5 u -
FigE > all assumptions are fulfilled, but not all guaratees 2
di_state0 . '
x + Show Results +| Show Operations + Show Help
di_statel = = c

Figure 42: The countergame containing the countertrace.

Figure 43 shows the Automata window in Step 2 of the play. ttams only the
automaton representing the design intent which we specifalier. In Step 2,
we are in the stat®2. We have thastartup _failed = 1 , so we can only set
error = 1 in order to stay inv2, which is accepting. Settingrror = 0 would
bring us to the statB2. This step is non-accepting and it cannot be left any more
if not the environment sewartup _failed = 0 (which it does not, following its
countertrace). Clicking on one of the yellow edges in theofndata window makes
error = 1 orerror = 0 in the Game window.

The countergame helps you to understand the conflict bettheespecified design
intent and the rest of the specification, that is, why the robd specification is
unrealizable. The elimination of the problem is up to youthese are typically
various solution. You could allow grants to be given on eryou could restrict
the fairness guaranteegs fair 0 andsys fair 1 to cases whererror = 0
you could add an assumption that forbids ttattup _failed = 1 forever, etc.

38 ¢ RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

A Automata: Step 2

Name Notes

. D
&)

Istartup_failed

Totartup_fatled

Figure 43: The state of the play in an automaton.

RATSY — Requirements Analysis Tool RATSY Users Manual e 39
with Synthesis

40 e RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

2 RATSY Architecture

In the following the design and implementation of RATSY viné discussed. The
general information about RATSY implementation and ruretimvironment will
be described in Section 2.1. Section 2.2 explains archit@cpatterns used dur-
ing RATSY development. The hierarchy of the RATSY softwareéscribed in
Section 2.3.

2.1 Architecture and Implementation Notes

RATSY is a stand-alone multi-platform application thatsumone process. Even
if multi-threading is used to run external verification erag, the GUI part fits into
a single main thread.

RATSY has been fully developed with thgythonobject-oriented programming
language, and the GUI part relies on G TK graphical toolkit to draw itself to
the screen, and to handle the interaction with the user.

The coding followed a few standards "de facto”. Classeshods and functions
names followPyGTKs convention (sedttp://mww.pygtk.org), that derives
from the GTK’s one (sehttp://www.gtk.org). Style and indentation are strictly
Pythoncompliant. Packages and filenames are java style, butIgligiss restric-
tive: e.g. afilefoo _and _foo.py contains definition of clasBooAndFoo, but may
contain the definitions of other classes if convenient.

RATSY uses external tools to check properties for Propeggutance, Simula-
tion, Realizability, and Synthesis. In particular curtgiit relies on the NUSMV
and Vis model checkers that are written in Posix C language. Furtbes it uses
the MARDUK tool, written in Python, which in turn uses some functionsiir
NUSMYV via a wrapper. The tools are called and used by RATSY aseat pro-
cesses, and are kept separated from RATSY by an abstraatien dalledStub
that exports a standard interface. Tha®buk tool is partially tighter integrated
with RATSY, since both are written in Python. Especially Game features rely
on this integration.

RATSY is based on several other software entities, thataife software archi-
tecture. The picture in Figure 44 shows the main set of lalyecdtware entities
which RATSY relies on. The layers depict the dependenciesngnthe entities,
as higher parts depend on lower parts.

At the top is positioned the RATSY Application, gray shadedrtake it clearly
distinguishable from the other parts.

The single parts are described in the following from thediutto the top.

RATSY — Requirements Analysis Tool RATSY Architecture e 41
with Synthesis

RATSY Application

MVC & Observer jmmmmmmmmmmmaaaa
Infrastructure ' Tool

PyGTK Bindings Marduk

GTK Toolkit Python Library NuSMV VIS

Operating System & Runtime System Libraries

Figure 44: RATSY- Software parts and collocation

Operating System & Runtime System Libraries Those depend on the specific
architecture implemented on the host computer. Currerdy RY has been
tested undeGNU/Linuxwith a 2.4 and 2.6 kernel.

GTK Toolkit GTK is a set of libraries that provide a pretty platform indagent
support for drawing and handling graphical widgets like daws, buttons,
text entries, fonts, etc. Sdwtp://www.gtk.org for further information
about GTK and its components.

Python Library This is a general multi-platform runtime environment pd®d
by the Python environment. It provides a large set of features and data
structures to be used from aRythorrbased application. It also provides a
portable abstraction layer over the underlying Operatiygte&3n, making the
application platform independent. Setp://www.python.org for further
information.

NUSMV and Vis These are the Model Checkers RATSY is currently based on.

MARDUK is a command-line Python program for synthesis and spetiificde-

bugging.
PyGTK Bindings This is aPythonbinding that allowsPythonprograms to use
the GTK Toolkit. See alttp://www.pygtk.org for further information.

MVC & Observer Infrastructure This is aPythonpackage that helps to design
and develop GUI applications. Itimplements Medel-View-Controllerand
the Observerpatterns developed specifically fByGTK

RATSY Application Thisis the set oPythonpackages thatimplement the RATSY
application. The underlying layers make RATSY platformdapdndent,
and the internal sub-pafbol Stubdnsulates RATSY even from the model
checkers.

2.2 Architectural Patterns

RATSY has a pretty complex structure, as it currently fitsixnmackages, about
68 modules and 21400 linesBfthoncode (including comments, excluding blank

42 e RATSY Architecture RATSY — Requirements Analysis Tool
with Synthesis

lines). RATSY is characterized by strongly interconnedieatures, and by the
need of horizontal communication among independent pBrtghermore, it pro-

vides many different independent views over the same ahjent those views are
often potentially editable by the user. Whenever one oféhasw is changed by
the user or by RATSY itself, all the other should react accwig.

To reduce the structural complexity, to keep a clean desigd,to minimize the
development and maintenance costs, two architecturadrpativere considered:
The Model View Controller MVC) and theObserverpatterns, see [4].

The Model-View-Controller pattern

MVCis an architectural pattern that forces the designer tdkiupdhe application
being designed among three main parts: a Model, a View andr@len. The
traditional implementation of this pattern reflects themakdata flow of non-GUI
applications: data input, data processing, and resuleptagon. Historically, the
MVC pattern is an attempt to map this natural data flow to the Geibghe In fact,
it associates the data input to the Controller, the datagssing to the Model, and
the result presentation to the View.

In RATSY this pattern is implemented in thdVC and Observer Infrastructure
This implementation wanted to be different from the trawfitil one, as it is spe-
cific for the underlying graphical toolkiByGTK) and languageRythor) to exploit
their peculiarities and features. In particular, a parthef traditional View's fea-
tures have been moved to the Controller, and the model hashage not aware of
the existence of any Controller or View. In combination wiitle Observerpattern
(see next section), this allows for a real separation of ipdi@ation logic from the
presentation layer.

Model Contains the logic of the program, intended as data and datgpeiation
routines. Models can communicate with other models (eafigavith mod-
els that they contain), but do not know the other parts ofMhW&C pattern,
namely the Controller and the View. This limitation guaesed the insulation
between the application logic and presentation.

View Contains the presentation layer. The View constituted bstafgraphical
widgets organized as a forest (typically a single tree). Wyglsi widgetis
one atomic GUI element, like a button, a text label, a windete, Often
widgets are containers for other widgets, hence widgetsoayanized in
trees, where vertices represents the containment retathsifor the models,
views do not know the models they are connected to, as theectian is
delegated to the controllers. This is another variatiorhwitspect to the
original MVC pattern, as this implementation is intended to fit bettehwit
the PyGTKtoolkit.

Controller Contains the actions that must be carried out when a viewt eeen
quires the interaction with the model’s logic. The Contplls always con-
nected to a single Model, and to a single View, making a solihkfamong

RATSY — Requirements Analysis Tool RATSY Architecture e 43
with Synthesis

these two separated parts of the pattern. If a Controllebeatbnnected to
one Model, the same model can connect more controllers &ea gme.

The Observer pattern

The Observerpattern connects the application logic to the presentdéiger, by
allowing the latter to be notified when the former changes.

The Observerpattern is ofter used together with th&/C pattern, and to a certain
extent it may be considered as complementary, as it harttdedata flow from the
model to the view, whereas in tihéVC pattern the communication goes generally
from the View to the Model through the Controller.

This communication is carried out without making the modereknow the exis-
tence of the view, by using observable properties withimtioglel, and by defining
observers over those properties. The observers will béewhtif any changing that
occur to the observable properties.

In RATSY theMVC and Observer Infrastructurgrovides an implementation for
both the patterns. In particular, any Model can contain olagge properties, and
any Controller is by default an Observer for the Model it iswected to.

2.3 Software Structure

The software structure of RATSY is strongly affected by tladtgrns it is based
on, and by the other software entities it relies on, that limen already shown in
Figure 44.

The main part of RATSY is represented by its core, fully basedheMVC &
Observer InfrastructureAt the core sides, there exist services and resources, that
are available transversally to the core. Figure 45 providese details about the
core and the provided services.

Ulllltl}eS and Views
Services clade

(©
J

Tool Stubs Controllers Resources —
Images

Model
Checkers |

Threading .. D)
Control

Models =
XML
Schemata

MVC & Observer Infrastructure

Figure 45: RATSY- Software Structure

44 e RATSY Architecture RATSY — Requirements Analysis Tool
with Synthesis

At the leftmost side of Figure 45 are depicted the most ingmirservices that are
available to models, controllers and views. These sendoasot fit well with the
MVC andObserverpatterns as they do not have any associated view, or any user
interaction.

Utilities and Services Contains general utilities, globally accessible data, etc

Tool Stubs Stubs are those entities that isolate RATSY from the extdvivalel
Checkers. Stubs export an interface known to RATSY, and eaotiel
checker has an associated stub. The result is that RATSYatka model
checker careless of the specific Model Checker it is actualljng.

Threading Control Provides fine-grained portable control over threads. Tdis s
vice is used for example in stubs invocation, for runningrtiealel checkers
in background, for controlling the associated process,fandapturing its
output.

At the rightmost side of Figure 45 are depicted those ressuttat are exclusively
used by the RATSY Views. Noticeable resources are:

Glade Files As already mentioned, a Views is a forest of widgets. The eifslg
can be build and connected each other by hand, or by usinggmnoging
tools like glade (seehttp://glade.gnome.org). This tool can be used to
visually design a forest of widgets representing the viewidgets. With
very few limitations, this tool can be used then to set theperties of all
widgets, and to associate action to be carried out when aicevents oc-
cur (signals). For example a widget like a button can be #@smutwith a
function name to be called when clicked. The result of thésation and set-
ting process is a glade file, that can be loaded at runtime &¥¥C and
Observer Infrastructurghat provides the needed support for Views creation
based on glade files, and to connect the associated Corgrtii provide
the implementation of signals actions.

Images Contains icons, and other images to be shown by the views.

Tools Stubs

As already mentioned, the interaction with the model checkke NUSMV and

Vis is managed by &tuh a software entity that provides platform and Operating
System independent support for running generic externalecheckers. The
execution of a model checker is restricted to a stand-allorgad that controls the
model checker within @ession The session is monitored, and can be stopped at
any time if the underlying Operating System supports preaaterruption. Also,

the stub provides access to the session I/O, allowing taioaihe model checker
standard output and error, and to control its standard input

A stub execution is a sequence of events:
1. The stub is initialized.

RATSY — Requirements Analysis Tool RATSY Architecture e 45
with Synthesis

A session is initialized.

The session is prepared (setting of session options).
The session is run.

Session results are processed.

The session is de-initialized.

N o o bk~ w Db

The stub is de-initialized.

The phases from 2 to 6 may be possibly repeated indefinitely.

A generic stub might control a model checker in any way, eithéatch mode,

in interactive mode or through its library. In RATSY the stuihat control both
NUSMYV and Vis use the model checkers in batch mode, launching their respec
tive executable files. This is achieved by specializing theegic stub classes, by
implementing some interfaces and overloading some clagisoa that handles
the execution of a single session in batch mode.

A vertical view over the Software Structure

The RATSY software structure has been split horizontallybing theMVC and
Observer Infrastructure There exists also a vertical splitting that breaks the- soft
ware structure up through a hierarchy of software entities.

Application

Options Project

Property Property Property

ons Property Traces
Synthesis Realizability Assurance

Automata Requiremen ts
a Simulation Manager

Possibilities Assertions

Marduk I
Stub Property Trace signal

Realizability Assurance
NuSMV Stub NuSMV Stub

Marduk VIS Stub

Figure 46: RATSY- Hierarchy of main software entities

Figure 46 depicts the hierarchy of the main software estiti@t occur within

RATSY. Each of the boxes represents a software entity, aok eertex of the

hierarchy tree is a containment relation, where cardinainot expressed. That
means for example that an Application contains one (or menffjvare entities to

represent a Project and the Options of the Application.

The way each software entity is implemented depends on titg’emole. Those
entities that need to be shown, will follow tihdVC pattern, and will be mapped

46 ¢ RATSY Architecture RATSY — Requirements Analysis Tool
with Synthesis

down to three object-oriented classes (or to a triple of @didhset of classes) to as-
sociate to each entity a Model, a View and a Controller. Fangxe, the entity ap-
plication’s Options has a model to hold the options, and aleoMiew/Controller
to present the options to the user, and to allow the user tafyntiee options.
Those entities that instead do not need to be shown (e.gtubg) swill be mapped
directly down to one class, or to a set of classes.

In the following the software entities depicted in Figuread6 detailed.

Application The application is the top-level entity. When the RATSY exable
file is run, a triple Model, View and Controller of this entiyill be instan-
tiated and connected each other, and RATSY will finally eitdhe main
event loop to handle user interaction and events.

Application Options This entity is a container for application’s options. For ex
ample tools paths, and other general purpose options stoauldcalized
within this entity. At the moment this entity is empty, ancté is not an
associated View for it.

Project This entity represents a RATSY project. The project’s manteitains
most of the application logic, meaning that most of the agpion’s models
are contained within this model. The view is embedded withanapplica-
tion’s main window whenever a project is created, and it isstituted by a
large number of sub-views corresponding to the containétiesn

Project Options This entity is a container for the project’s options. Simijlao
the Application Options entity, this entity is currently pty, and there is no
associated view.

Signals This entity contains the set of signals used by Property rasse, Real-
izability, Synthesis, and the Games.

Requirements This entity contains the set of requirements used by Prppgest
surance, Realizability, Synthesis, and the Games.

Automata This entity contains the set of automata. Automata can laritiated
to Requirements.

Property Assurance This is the entity for Property Assurance. Its view is shown
when the Property Assurance feature is selected at thecapphi level.

Property Simulation This is the entity for Property Simulation. Its view is shown
when the Property Simulation feature is selected at thacgtjan level.

Property Realizability & Synthesis This is the entity for Property Realizability
& Synthesis. Its view is shown when the Property Realizgb#li Synthesis
feature is selected at the application level.

Games This is the entity for playing games. Its view is shown whea @Game
feature is selected at application level. This entity igejinterweaved with
MARDUK, and hence, accessesARDUK directly and not via a stub.

Traces Manager This entity handles the set of traces that have been gederate
in the project. Also, this entity organizes the set of tragéthin a set of
categories that traces belong to.

RATSY — Requirements Analysis Tool RATSY Architecture e 47
with Synthesis

Assurance NUSMV Stub The Property AssurancelNMYV stub handles the in-
teraction of RATSY with the NSMV model checker when Property As-
surance is run. This entities has no associated View andr@lent and it
is implemented by a single class. This class is the speaializ of a more
generic classes hierarchy that provides support for imetgimg specific
tool stubs.

Realizability NUSMV Stub The Property Realizability NSMV stub handles
the interaction of RATSY with the enhanced version af$MV [5] when
Property Realizability is run. This entities has no asdedid/iew and Con-
troller, and it is implemented by a single class. Similadythie Property
Assurance NSMV Stub already available in RATSY, this class is the spe-
cialization of a more generic classes hierarchy that pes/glpport for im-
plementing specific tool stubs.

MARDUK The MARDUK tool handles synthesis as well as strategy computation
for the Game features.

MARDUK Stub Like the NuSMV Stubs entities, but specific for MRDUK.

Possibilities Contained within the Property Assurance entity, this gntipre-
sents the set of possibilities for Property Assurance.

Assertions Contained within the Property Assurance entity, this gmépresents
the set of assertions for Property Assurance.

Signal This entity represent a single signal. The model contaifasrimation about
the signal, like the name and type information. The view mahwhen the
user wants to create or edit a signal.

Vis Stub Like the NUSMYV Stubs entities, but specific for tha&/model checker.

Trace A trace is the result of model checking, and can represemereit withess
or a counter-example. In RATSY there exist several view @avéace, as
they can occur within the main application window, and witkiie Trace
Manager window. In general a trace can be shown as a graptéeaform,
with some associated information like the category it bgéoto, the number
of steps, the loop information, etc.

Property This entity represent a single property, like a requirenoera possibil-
ity. The model contains information about the propertye lthke name and
formula. The view is shown when the user wants to create draegiop-
erty. There exist a dependency between a property and thasestthere
were generated from it. Whenever a property’s formula is\gkd, the cor-
responding traces will be invalidated.

More information about RATSY implementation details carobéain in [2].

48 e RATSY Architecture RATSY — Requirements Analysis Tool
with Synthesis

3 RATSY Installation and Dis-
tribution

This section gives information on installation and digitibn related issues. RATSY
can be downloaded in the form of binaries for 32-bit and @4-iniux systems, and
also as a source tree.

3.1 Installing the Binary Distribution

To start RATSY from the binary distribution, simply extraleé downloaded archive
into any directory and start the scrigtsy/ratsy . For more convenience, you
can add theatsy folder to yourPATHenvironment variable.

The archive contains binaries of all external tools suchhasriodel checkers g
and NUSMV. You do not need to download and install them separatdlge
one exception is the tooliLy, which is needed to perform realizability checks
on full LTL specifications (not only on specifications givemGeneralized Re-
activity(1) format). If you do not need this feature, then you do not have t
install LiLy. If you do, simply download LLy®, extract the archive, patch it
with NuSMV-game/nugat/contrib/Lily-1.0.2.patch , and include it into your
PATH and PERL5LIB environment variables.

3.2 Installing the Source Distribution

To build RATSY and all the external tools such as the modetkdes s and
NuSMYV from source, simply extract the downloaded source aechito any di-
rectory and execute thiuild.sh script in the top-level directory. Follow the
instructions of this script. As for the binary distributioif you need support for
full LTL realizability checking, you have to installiLy (see Section 3.1). When
the build process has finished, the scrity/ratsy starts up RATSY.

Known issues:

8http://www.iaik.tugraz.at/content/research/design_v erification/lily/

RATSY — Requirements Analysis Tool RATSY Installation and Distribution e 49
with Synthesis

e The NuSMV wrapper does not compile with Swig Version 1.3.8@lmove
installed. The reason is that Swig changed interface naseshtfp:/
www.swig.org/Release/CHANGES at date 2008-12-04) without backward
compatibility. As a workaround you could

— use the binary distribution,
— downgrade Swig to Version 1.3.38 or below, or
— use the patchédile NuSMV-game/NuSMVWrap/dd.ini.swig.1.3.39

3.3 Running M ARDUK

No matter whether you use the binary distribution or the seulistribution, in
order to run the MRDUK tool stand-alone, go to thmarduk/src folder and
launch the filemarduk.py with your Python interpreter. Make sure to set your
environment variable D_LIBRARY_PATH such that it also includes the directory
NuSMV-game/NuSMVWrap/nusmv/clib . This is necessary for MRDUK to find
and use the NSMV wrapper. Rumpython marduk.py -h to display a help mes-
sage, detailing the options and arguments efRdUK. In order to test whether the
installation was successful, you can run the scnigrduk/src/test _marduk.sh .

3.4 Licensing

RATSY and MarRDUK are distributed under GNU LESSER GENERAL PUBLIC
LICENSE Version 2.1, February 1999 (LGPL) with the copytidield by Graz
University of Technology and FBK-irst. Seatsy/License for a copy of this
license.

NUSMV (http://nusmv.fok.eu) is distributed under the same license with the
copyright held by FBK-irst only. SeBuSMV-game/nusmv/README for details.
Since the same licence applies, NuSMV sources are includdgkisource distri-
bution of RATSY for convenience.

Vis is available under a different (and even less restrictednke. Sedttp:
IIVIsi.colorado.edu/ ~vis/ for details. The Vs sources are not included in
the source distribution of RATSY. For convenience, thedsitript of RATSY
automatically downloads thel¥ sources, however.

Note that the license for RATSY, I¥ sources and NSMV sources allows for
commercial use (currently the use ofsvand NUSMYV takes place in commercial

settings).
Shttps://swig.svn.sourceforge.net/svnroot/swig/trunk [Tools/pyname_patch.py
50 e RATSY Installation and Distribution RATSY — Requirements Analysis Tool

with Synthesis

The development of the first version of this tool (RAT) hasrbsepported in part
by the European Union under contract 507219 (PROS%he current version
(RATSY) has been supported by the European Union underaxir2d 7069 (CO-

CONUT)! and 248613 (DIAMOND??, as well as by the Provincia Autonoma di
Trento (project EMTELOS).

LOnttp://www.prosyd.org/
Hhttp://www.coconut-project.eu/
hitp:/fwww.fp7-diamond.eu/

RATSY — Requirements Analysis Tool RATSY Installation and Distribution e 51
with Synthesis

52 e RATSY Installation and Distribution RATSY — Requirements Analysis Tool
with Synthesis

A

[1]
[2]
[3]
[4]

[5]

[6]

[7]
[8]
[9]
[10]
[11]
[12]

[13]

References

R. Bloem, R. Cavada, A. Cimatti, I. Pill, M. Roveri, S. Sprini, and A. Tchaltsev.
RAT: A tool for formal analysis of requirements. Demo Session of the ®European
Conference on Artificial Intelligen¢&Riva del Garda, Italy, 2006.

R. Bloem, R. Cavada, C. Eisner, I. Pill, M. Roveri, and 8n%rini. Manual for property
simulation and property assurance tool, November 2005y@rDelivarable D1.2/4-5.

R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnaad M. Weiglhofer. Specify,
compile, run: Hardware form PSL. Bth International Workshop on Compiler Opti-
mization Meets Compiler Verificatip007. Electronic Notes in Theoretical Computer
Science http://www.entcs.org/.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, an&tdl. Pattern-Oriented
Software Architecture: A System Of Patternkohn Wiley & Sons Ltd., West Sussex,
England, 1996.

A. Cimatti, M. Roveri, and A. Tchaltsev. Manual for praperealizability tool, Decem-
ber 2006. Prosyd Delivarable D1.2/8.

R. Konighofer, G. Hofferek, and R. Bloem. Debuggingrf@l specifications using
simple counterstrategies. Formal Methods in Computer-Aided Design (FMCAD’09)
2009. To appear.

S. Minato. Zero-suppressed BDDs and their applicatiofrggernational Journal on
Software Tools for Technology Transfer (ST, 13(2):156—170, 2001.

NuUSMV home pagehttp://nusmv.fbk.eu/

l. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and@imatti. Formal analysis
of hardware requirements. In Ellen Sentovich, ediesign Automation Conference
(DAC), pages 821-826. ACM, 2006.

N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of rea€l) designs. In E. A. Emer-
son and K. S. Namjoshi, editord MCAI, volume 3855 of_ecture Notes in Computer
Sciencepages 364—-380. Springer, 2006.

PROperty based SYstem Design PROS Yilip://www.prosyd.org/ , 2006.
Accellera, Property Specification Language - Refegedanual - Version 1.01http:
Ilwww.eda.org/vividocs/psl_Irm-1.01.pdf , April 2003.

RAT — Requirements Analysis Toohttp://rat.fbk.eu/

RATSY — Requirements Analysis Tool References e 53
with Synthesis

