
RATSY
Requirements Analysis Tool with Synthesis

Version 2.1

Authors
Roderick Bloem, Roberto Cavada, Alessandro Cimatti, KarinGreimel,
Georg Hofferek, Robert Koenighofer, Alessandro Mariotti,Ingo Pill,
Marco Pensallorto, Marco Roveri, Viktor Schuppan, RichardSeeber,

Simone Semprini, Andrei Tchaltsev, and Martin Weiglhofer

c©2005, 2009, 2010 by FBK-irst and Graz University of Technology

Notices

For information, contactRATSY (ratsy@list.fbk.eu) .

The first version of this tool (RAT) has been developed withinthe PROSYD European project,
contract number 507219 (http://www.prosyd.org). The current version (RATSY) has been
created within the COCONUT European project, contract number 217069 (http://www.
coconut-project.eu), within the DIAMOND European project, contract number 248613
(http://www.fp7-diamond.eu/), and within the Provincia Autonoma di Trento project
EMTELOS.

The information in this document is provided ”as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the information at
its sole risk and liability.

c© Copyright 2005, 2009, 2010 FBK-irst and Graz University of Technology. All rights
reserved.

ii • RATSY — Requirements Analysis Tool
with Synthesis

Contents
Contents ... iii

Table of Figures .. iv

List of Tables ..vi

1 RATSY Users Manual.. 1

1.1 Running RATSY .. 1

1.2 Property Assurance in RATSY ... 3

The Main Window ... 4

Traces and their management... 6

An Example .. 9

1.3 Property Simulation in RATSY .. 12

The Main Window ... 14

The Analysis Window... 15

An example ... 16

1.4 Property Realizability and Synthesis in RATSY 20

Realizability Problem ... 21

Specifying a Realizability Problem... 22

The Main Window ... 22

Synthesis... 24

The Automaton Editor .. 26

1.5 Simulating and Debugging Specifications using Games 30

How to play a Game ... 30

The Game Log Window .. 32

Integration with the Automaton Editor .. 32

Specifying Design Intent ... 33

Additional Features for the Normal Game 34

Additional Features for the Countergame 34

Example.. 35

2 RATSY Architecture.. 41

2.1 Architecture and Implementation Notes 41

2.2 Architectural Patterns .. 42

The Model-View-Controller pattern.. 43

The Observer pattern .. 44

2.3 Software Structure... 44

Tools Stubs.. 45

A vertical view over the Software Structure................................... 46

3 RATSY Installation and Distribution.. 49

3.1 Installing the Binary Distribution .. 49

3.2 Installing the Source Distribution .. 49

3.3 Running MARDUK .. 50

3.4 Licensing ... 50

4 References... 53

RATSY — Requirements Analysis Tool
with Synthesis

Contents • iii

Table of Figures

Figure 1 - RATSY- Main window. .. 2

Figure 2 - RATSY- New project wizard. .. 2

Figure 3 - RATSY- New project wizard, project data. 3

Figure 4 - Property Assurance main window. 4

Figure 5 - Creating signals, requirements. .. 5

Figure 6 - Creating possibilities and assertions. 6

Figure 7 - Verification panels.. 7

Figure 8 - An example of trace visualization. 7

Figure 9 - An example of trace visualization. 8

Figure 10 - Editing a category... 9

Figure 11 - Editing a trace.. 9

Figure 12 - Counter - initial specification. .. 10

Figure 13 - Counter - checking an assertion.. 11

Figure 14 - Counter - fixing the specification. 12

Figure 15 - Counter - checking a possibility. 13

Figure 16 - Counter - traces of the session.. 13

Figure 17 - Property Simulation Main Window................................... 14

Figure 18 - Property Simulation Evaluation Analysis Window. 16

Figure 19 - Create a project for Property Simulation. 17

Figure 20 - Property Simulation Start Window.................................... 17

Figure 21 - Witness for propertyG(r 7→ F(a)). 18

Figure 22 - Analysis of trace for propertyG(r 7→ F(a)). 18

Figure 23 - Ask for a request on signal r. ... 19

Figure 24 - Witness with request for propertyG(r 7→ F(a)). 19

Figure 25 - Witness for propertyG(r 7→ F(a))&& F(r). 20

Figure 26 - Witness for property(G(r 7→ F(a)))&& (F(r)). 20

Figure 27 - Shaping the trace.. 21

Figure 28 - Witness for shaped trace request....................................... 21

Figure 29 - Specification of an environment signal in RATSY. 22

Figure 30 - Specification of a system guarantee property in RATSY. 23

Figure 31 - The Realizability window in RATSY. 23

Figure 32 - The Realizability window in RATSY. 24

Figure 33 - Create a new automaton. ... 27

Figure 34 - Edit the properties of a state in the automaton. 27

iv • Table of Figures RATSY — Requirements Analysis Tool
with Synthesis

Figure 35 - Specify the transition condition for an edge. 28

Figure 36 - The main window of the automaton editor. 29

Figure 37 - The Game window in RATSY... 31

Figure 38 - The specification used for Game demo.............................. 36

Figure 39 - A possible simulation run. ... 36

Figure 40 - The specified design intent. ... 37

Figure 41 - The new specification containing the desired behavior. 37

Figure 42 - The countergame containing the countertrace. 38

Figure 43 - The state of the play in an automaton................................ 39

Figure 44 - RATSY- Software parts and collocation 42

Figure 45 - RATSY- Software Structure ... 44

Figure 46 - RATSY- Hierarchy of main software entities 46

RATSY — Requirements Analysis Tool
with Synthesis

Table of Figures • v

List of Tables

vi • List of Tables RATSY — Requirements Analysis Tool
with Synthesis

RATSY — Requirements Analysis Tool
with Synthesis

List of Tables • vii

viii • List of Tables RATSY — Requirements Analysis Tool
with Synthesis

1 RATSY Users Manual
The tool RATSY fulfills the need for a proper technological support to formal
methods in the setting of requirements analysis and synthesis by providing its users
with the integration of four sets of functionalities: Property Simulation, Property
Assurance, Property Realizability and Synthesis, and Property Debugging using
Games. In this section we show how to interact with RATSY in order to accom-
plish the tasks related to these four methodologies.

All the examples in the following sections are written in theVerilog flavor of PSL
as from [12], the language supported by the verification engines VIS and NUSMV.

Some of the screenshots in this manual (especially in the sections about Property
Assurance and Property Simulation) were taken from a previous version of the
tool (RAT). Thus, they might look slightly different than what you will see in the
current version (RATSY). This should, however, not affect understanding of the
respective sections.

1.1 Running RATSY
RATSY can be executed from the command line by the following command

ratsy - Launches the python interpreter to execute the
RATSY program

Command

ratsy [-h|--help] [-v|--version]
[-f <FILE.rat> | --project = <FILE.rat>]

Command Options:

-h Prints the command usage.
-v Prints the program version.
-f <FILE.rat> Loads the given project file

Figure 1 shows the start-up screen-shot of RATSY when the tool is launched with-
out any project as argument.

The unit of interaction with RATSY is theproject, i.e. a collection of formal pro-
perties and results of verification checks. The relevance ofthe role of a project,
as an object with a state that can be saved and reloaded is clear as far as Prop-
erty Assurance and Property Realizability are regarded: the user that builds formal
specifications and inspects their quality, must have the possibility to work in dif-
ferent sessions and of saving the results of the work performed from session to

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 1

Figure 1: RATSY- Main window.

session. With Property Simulation, such a feature could seem less relevant, but the
value of having the possibility of saving simulation sessions (i.e. the properties
simulated and the connected traces) shows clearly if we think of long time con-
suming work sessions and of the importance of having a quick reference to their
results.

Through the menuFile or the commandNew in the tool bar it is possible to access
the wizard for the creation of new projects, shown in Figure 2, select the kind of
project, and specify the details of the project entering thedata in the fields shown
in Figure 3.

Figure 2: RATSY- New project wizard.

As a result of the integration of Property Simulation, Assurance and Realizability
into RATSY (rather than simply juxtaposing them), it is possible to shift between
these three kinds of projects at any time, and to load properties, for example, from
Property Assurance into Property Simulation or Property Realizability. A project
hence sums up all the history of a design development process, from the initial ex-
plorations of properties prototypes, to the definition of a set of requirements, from
the inspection of requirements adherence to the intended meaning, to the possi-

2 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Figure 3: RATSY- New project wizard, project data.

ble use of simulation to perform a fine grained inspection of properties coming
from Property Assurance, and to checking the interplay between controlled and
uncontrolled signals and their requirements with Realizability.

Once a project has been created, the user can proceed as described in Sections 1.2,
1.3 and 1.4.

1.2 Property Assurance in RATSY
RATSY enacts the Property Assurance Methodology (see [2] Section 2.2) by sup-
porting the users in Property Assurance related tasks; RATSY provides a proper
framework for managing set of properties, a user-friendly interface towards ver-
ification engines, and a proper framework for managing the results of Property
Assurance proof obligations. In this section we describe how to interact with the
tool by following a typical use case, which encompasses the following steps:

• editing of a project;

– editing of signals

– editing of requirements

– editing of possibilities

– editing of assertions

• verification

– activation of the checks

– management of traces

In the setting of Property Assurance,Projectsare the entities that correspond to
the ensemble of a specification together with the results obtained by the connected
proof obligations. The building blocks of a specification inthe Property Assurance
Methodology arerequirements, possibilitiesandassertion, all of which are proper-
ties formally expressed on a set of atomic symbols calledsignals. Following the

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 3

methodology, given a specification, some proof obligation need to be discharged;
in [2] Section 2.2 it has been shown how these proof obligations can be mapped
onto SAT technology: the tool provides an interface towardsthis technology and
communicates the results of the performed verification checks by means of ex-
tended waveforms calledtracesthat show the evolution of the values of signals in
possible models of the system under specification.

The Main Window

RATSY main window when in Property Assurance mode is shown inFigure 4. In
the upper part of the body of the window there are the tables for the management
of signals and requirements; in the middle the are the tabbedtables for the man-
agement of possibilities and assertions (on the left), and the control panel for the
verification tasks (on the right); the bottom of the window isoccupied by a text
box showing the output of the verification activity.

Figure 4: Property Assurance main window.

Adding and modifying elements of a project. The activities of adding, edit-
ing and removing items from the sets of signals, requirements, possibilities and
assertions follow the same pattern regardless the class theitems belong to. The
screen-shots in Figure 5 and 6 show the windows for creating anew signal, a new
requirement, a new possibility and a new assertion respectively, all of which are
accessible by clicking on the first one among the buttons on the top right of the
table of the proper class.

4 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Note that in Property Realizability signals are distinguished of being System or
Environment. Similarly, requirements are distinguished of being Assumption or
Guarantee. For Property Assurance and Property Simulationthese distinctions are
of no importance and therefore ignored.

Figure 5: Creating signals, requirements.

Once an item is created, it is shown in the table of its class and it is possible to
modify or to delete it by clicking on the proper button on the table of the class of
the item. A window similar to the one used for creation is usedfor editing, and a
warning window will ask for the user’s confirmation before deleting an item. Mul-
tiple selection is allowed (Ctrl keyboard button pressed when left-clicking with
the mouse on the desired items) and hence is possible to open the editing windows
of several items at one time, or to delete more than one item atone time. Multi-row
editing and parenthesis highlighting are provided to ease the input of properties and
to make more effective their visualization. Notice that, all the tasks that can be per-
formed on signals, requirements, possibilities, assertion, traces and categories are
accessible also through pop-up menus that shows when the user right-click with
the mouse on an item; the pop-up menus offer also selection facilities like “select
all”, “deselect all” and “invert selection”.

Since, as pointed out in [2] Section 2, it may be of great use tosimulate a property
when the results of a Property Assurance check are not of easecomprehension,

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 5

Figure 6: Creating possibilities and assertions.

the user is provided with the possibility of loading an item that belongs to re-
quirements, possibilities or assertions into Property Simulation mode; this can be
accomplished by selecting the desired items and clicking onthe last one among the
four buttons on the top right corner of the proper table, or byselecting the voice
Load into Simulation from the pop-up menu accessible by right clicking on
the selected items. The logical conjunction of the selecteditems is copied in the
Property text box in the Property Simulation mode (See Section 1.3).

Verification The verification tabbed panel, on the middle right of the window,
provides the user with control on the execution of the verification engine used to
perform Property Assurance related checks. The two tabs, shown in Figure 7, al-
low to chose among SAT-based BMC techniques or BDD-based MC techniques,
and to set the respective options. As far as SAT-based BMC is regarded, it is pos-
sible to choose which SAT solver to use, whether incrementaltechniques should
be used, the depth of the BMC problem generated, and the valuefor the loop back.
With regard to BDD-based MC, the user can define the partitionmethod, whether
using Cone of Influence techniques, and which kind of dynamicreordering should
be used, if any. For more details on the meaning of these options, the user can refer
to the user manual of NUSMV [8].

6 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Figure 7: Verification panels.

Traces and their management

The results of verification checks are shown as traces, whichare shown as new
tabs beside theOutput tab as depicted in Figure 8.

Figure 8: An example of trace visualization.

Each trace has a name and is connected to the requirements andthe possibili-
ties/assertions it has been generated from, i.e. those thatwere selected to perform
the check of which the trace is the result. These data allow totrack the dependen-
cies among the traces and the other elements of the project; for example, knowing
which requirements a trace depends on allows the system to signal it as out of
date or no longer meaningful if some changes have been performed to one of the
requirements the trace depends on.

In Figure 8, the trace shown is composed by an initial step followed by an infinite
repetition of the second step, i.e. a loop. Loops are signaled by a little black

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 7

arrow close to the name of the step they start from. Color of steps changes to help
depicting the finite prefix and the infinite loop in traces, light gray for the former,
dark gray for the latter.

To ease their management and to reflect the typical use case ofProperty Assurance,
traces are organized in differentcategoriesamong which the following system
categories are provided:

New: the category where traces generated in the current session are stored by
default;

Default: the category where up to date traces that have been generatedin pre-
vious sessions are stored;

Out of date: the category where out of date traces are stored (a trace is out of
date when some element in its dependencies have been deletedor modified);

Trash: the category of traces the user scheduled for deletion.

A simple way of managing traces with respect to categories isprovided by the
buttonsTrash andMove on the right of each trace in the main window, as shown
in Figure 8.

Clicking on the buttonTraces in the tool-bar, it is possible to access the window
of thetrace manager, as shown in Figure 9, which allows the user to manage traces
by editing the associated data, moving them from a category to another category,
deleting them, creating new categories and editing the dataconnected to categories.

Figure 9: An example of trace visualization.

At the top left corner of the trace manager window the list of categories is shown,
where each category has a name and aDescription ; it is possible to select more
than one category and, on selection, the contained traces are shown on the right part
of the window grouped under the name of the category they belong to. In the left

8 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

bottom corner of the window there is the list of the names of the traces contained
in the selected categories, by selecting or de-selecting names it is possible to show
or hide traces in the right part. As shown, each trace is visualized together with its
complete data that comprise a brief description, the notes entered by the user, the
list of dependences and the history (when the trace was generated, etc.). Categories
and traces tables on the left part of the window, allow the users to edit, delete or
add items, in Figure 10 and Figure 11 the editing dialog for categories and traces
are shown.

Figure 10: Editing a category.

Figure 11: Editing a trace.

An Example

In this section we work out a simple but meaningful example that covers the most
relevant Property Assurance features of RATSY, and link together in a cohesive
view the usage information given in the previous section.

The example we are going to tackle is the specification of a bounded counter (an
instantiation of what described in [2] Section 2.2); a first naivë specification could
be the one shown in Figure 12.

The specification is based on the following signals:

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 9

Figure 12: Counter - initial specification.

inc: the signal that models the issuing of increment operations

dec: the signal that models the issuing of decrement operations

v: the signal (integer valued) that models the value of the counter

this signals are shown in theSignals table together with their type and notes.

TheRequirements table collects three requirements that constitute an initial spec-
ification of the functional behavior of the counter, and of the assumptions on the
environment

R1: prescribes that any increment operation is immediately followed by a unit
increment in the value of the counter

R2: prescribes that any decrement operation is immediately followed by a unit
decrement in the value of the counter

R3: states that increment and decrement operations must not occur simultane-
ously (this is a constraint on the environment)

Once this initial specification is entered by the user, it is possible to proceed and
check it for consistency, i.e. checking that the requirements are not mutually con-
tradictory. This can be achieved by selecting all the requirements, by ticking the
check boxConsistency check , and by clicking on theCheck button in the con-
trol panel at the top. Figure 12 shown the result of this checkis positive: the
output from the verification engine, shown in the tabOutput , reports that the run
of the engine has completed successfully and no warning message is issued by
RATSY. As shown in the control panel, this check has been performed using SAT
technology with a depth of the problem equal to 30, and checking for all possible
loop-backs.

10 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Now that we have an initial consistent specification, we can start analyzing it and
check if it describes exactly the behavior we have in mind.

The first step can be that of checking that the value of our counter is always coher-
ent with the inputs received. In particular, we want to be sure that if no operation
is issued, the value of the counter does not change, whateverthe value is; this is
the meaning of assertionA1 shown in theAssertions table in Figure 13.

Figure 13: Counter - checking an assertion.

OnceA1 has been entered, we can check it against all the requirements and get the
result shown in Figure 13: the assertion is signaled asfailed by a red bullet next to
its name in theAssertions table, and a trace showing a counterexample toA1 is
created and shown at the bottom of the main window. Note that asummary of the
information related to the trace is provided close to the trace itself. By examining
the trace, we notice that the counterexample shown has an initial stepin which the
value of the counter is -2 and no operation is issued, and a second step in which
the value of the counter is changed to 4. Note that the last state is actually the first
and only one of an infinite loop, as signaled by the little black arrow close to the
name of the step in the header of the trace. A review of the requirements reveals
that actually nothing is said about the evolution of signalv when no operation is
issued, and this leads us to the definition of a new requirements that fills this hole

R4: prescribes that if no operation is issued the value of the counter remains un-
changed

Figure 14 illustrates the new state of the specification and shows that ifR4 is added,
the check forA1 passes, as signaled by the green bullet in theAssertions table.
Note that in this case the check has been performed using BDD technology with

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 11

Figure 14: Counter - fixing the specification.

the Sift dynamic reordering method. In this case no trace is shown because no
counterexamples has been found.

Once the check forA1 is passed, we gained more confidence on how the counter
reacts to the stimuli of the environment. Now we can check that the system ex-
hibits desired behaviors, i.e. that it is possible that something happens, even if not
mandatory. For example, we may want to check that it is actually the case that the
value of the counter may change, this means looking for a scenario in which the
system evolves reacting to the stimuli of the environment insuch a way to modify
the initial value of the counter. This check can be performedby the possibilityP1
shown in Figure 15.

The possibility is signaled aspassedin thePossibilities table, and a trace cor-
responding to a witness of the desired system behavior is shown; the trace exhibits
a five step loop in which initiallyv is 1 and two consecutiveinc operations are
issued (the value ofv changes accordingly) and then twodec operations are issued
making the value ofv going back to 1 in the fifth step.

The result of a work session is a specification, a set of possibilities, a set of as-
sertions and a set of traces corresponding to the results of the checks performed.
Figure 16 shows the trace manager window with the traces generated during this
session (actually other traces are shown that we do not described but that have been
generated within this section).

12 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Figure 15: Counter - checking a possibility.

Figure 16: Counter - traces of the session.

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 13

1.3 Property Simulation in RATSY
This section illustrates the RATSY Property Simulation features. Some general
GUI features will be introduced, followed by explanations of the main and analysis
windows and an example scenario for a simple standard property.

The Main Window

When enacting Property Simulation in RATSY you will see the RATSY main
window to change to Property Simulation mode as illustratedin Figure 17. Please
note that the user is able to switch the mode at any time using the switch controls
in the upper right of the main window.

Figure 17: Property Simulation Main Window.

In the figure you see the three main sections of the Property Simulation interface.
On the upper left you can see a multi-row text entry window where you can enter
your property. The various lines are combined to a single property, thus you may
split your property to several lines for a better overview.

The middle section of the Property Simulation window consists of two widgets
showing waveforms. The upper one illustrates the derived example behavior using
waveforms. The different waveforms illustrate the signal values for every time step
in the trace. The whole trace is determined by the finite part as prefix completed by
an infinite repetition of the infinite parts. The background color indicates whether
the value is in the finite or infinite part of the trace. Light grey corresponds to
the finite part and dark grey to the infinite part. You may select a single signal
to highlight its waveform, there is no further impact of sucha selection. The
trace/signal view offers the possibility to request features for the next trace. A
click on the right button of your mouse on a step of the trace produces a pop-up
window offering the following requests:

14 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

• Insert timestep: Another time-step is entered just before the one you have
clicked on. The default value is ‘Do not care’, which means that you don’t
have any preference for the value in the next trace.

• Remove timestep:A given time-step is removed in the next trace.

• Fix value to False: In the next trace this value shall be false.

• Fix value to True: In the next trace this value shall be true.

• Set to ‘Do not care’: You do not care about the signals value at this time
step in the next trace. This option can be used to unset required values.

When you establish requests you will notice that the color ofthe trace for this
signal and time step changes to red. Red parts in the trace show that these parts are
requested to be fixed to the current values for the next trace request. You’ll also
notice that the status Value at the bottom changes to “Outdated” and the waveform
color of the formula evaluation changes to black. This meansthat the tree-view for
the Formula/Property evaluation does not correspond to thetrace anymore.

The tree-view for the Formula/Property evaluation beneaththe Trace/Signal view
is not editable, so you cannot shape the waveform here. It illustrates and corre-
lates the single parts of the property to the trace. For each time-step of the trace
the property and all its sub-formulae are evaluated to true or false, visualized by
waveforms organized in a tree. The tree structure is derivedfrom the property to
illustrate the dependencies between the parts of the property. Use the tree-view to
make sure that the formula has been parsed the way you expected. Relating the
waveforms to each other shows how the different parts of the property interact with
each other interpreted on the trace.

The last part of the Property Simulation main window is the control and status bar
located at the bottom. It includes the following contents:

• Witness Button: Pressing this button you can ask RATSY to derive a trace
living up to the property and the feature requests you may have stated.

• Counterexample Button: With a click on this button you can ask RATSY
to provide a trace contradicting the property or possible feature requests.

• Status: At this location you can always see what RATSY is up to when
doing a computation and the status of the trace and evaluation when idle.
Examples areWitness, Counterexample,V IS Error,

• Analysis Button A click on this button raises another second analysis win-
dow offering coverage information and controls as discussed in the very next
section.

The Analysis Window

The analysis window completes the information and controlsof the main window.
For each sub-formula of the property the window contains coverage statistics and

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 15

offers controls to request for the next trace that this part should evaluate globally
or finally to true or false.

The coverage statistics tell how often a properties part evaluates to true and false,
and how often this evaluation change during the evaluation of the trace. These
statistics are derived for the finite and infinite parts of thetrace, complemented by
numbers for the entire trace including possible changes at the interconnection of
the trace and the transition from the last state to the first state of the infinite part.

The graphical concept uses a tree-view for organization of the visualization and
offers a ‘close’ button at the bottom to close the window. Thetree-view shows the
coverage statistics for each part of the property and the controls to request features.
The first column contains the name of the part, followed by nine columns to illus-
trate the coverage information. For each part there are columns labeled‘0’ ,‘1’ , and
‘C’ , corresponding to the numbers for false (‘0’), true (‘1’) and evaluation result
changes(‘C’). The three sections for the finite, infinite parts, and the whole trace
are distinguished by the used background colors. The sections for the finite and
infinite parts use the same colors used for the waveforms; light grey and dark grey.
The section for the whole trace uses a very dark grey.

Additional four columns offer the option to request features for the next trace. You
can request a sub-formula to evaluate a property eventuallyto true (‘F(==1)’),
globally to true (‘G(==1)’), finally to false (‘F(==0)’), or (‘G(==0)’). A green
zero for a request indicates that there is no request for the next trace, whereas a
red one indicates a desired request. Pressing the right mouse button on a value
produces a pop-up window enabling to set or unset a request.

Considering the tree structure and the coverage information can be of great help
in exploring the behavior of a property. Considering the example of a property
requiring an request to be acknowledged the coverage information may show that
there is no request happening (columns labeled ‘1’ show zerovalues for request)
for a vacuous trace. So by setting the request to be eventually true you can ask for
a more interesting trace for example. When a part of the property doesn’t evaluate
to a specific value at any time you may ask for an illustration of what happens if it
does by seating the corresponding request.

Figure 18: Property Simulation Evaluation Analysis Window.

16 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

An example

This section illustrates RATSY Property Simulation functionality with a simple
example. For this example scenario we will consider the informal property that a
request should be eventually acknowledged .

First we have to start a new project. This is done by calling rat and clicking the
“New” button at the top of the window. As for this example we decide to do Prop-
erty Simulation only we can skip the step of entering projectdetails at this stage;
Property Simulation extracts the information it needs for its computations directly
from the property itself. With a click on the finish button (Figure 19) we are pre-
sented with the main window of Property Simulation (Figure 20). Please note
that if you would like to perform Property Simulation in an existing requirements
engineering project for a device under construction, you can switch to Property
Simulation by clicking the control button at the top right ofthe main window.

Figure 19: Create a project for Property Simulation.

Figure 20: Property Simulation Start Window.

Our first guess on PSL syntax for our informal property isG(r 7→ F(a)). G (“Glob-
ally”) is the short form of the PSL operator “always”, and F (“Eventually, Finally”)

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 17

is the short form of the “eventually!” operator. We enter that property into the en-
try widget of the Property Simulation main window and press the ”Witness” button
to ask for an example trace fulfilling and illustrating the property. We’re presented
with the trace illustrated in Figure 21.

Figure 21: Witness for propertyG(r 7→ F(a)).

The trace is vacuous because there is no request, but actually there are acknowl-
edges. We see that the property does neither need a request tohappen, nor that
there is a request for an acknowledge to occur. Although the example is very sim-
ple and we can obtain that information by judging and interpreting the waveforms
we now press the analysis button to show the coverage information illustrated by
Figure 22.

Figure 22: Analysis of trace for propertyG(r 7→ F(a)).

A check of the analysis reassures our preliminary conclusions. To gain a more in-
teresting trace we request a request to eventually happen asillustrated in Figure 23.
We keep the analysis window opened and ask for a new witness bypressing the
corresponding button in the main window.

We are presented with the trace illustrated in Figure 24. As we are satisfied with
the trace and want a request to happen for future examples we change our property

18 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Figure 23: Ask for a request on signal r.

to G(r 7→ F(a))&& F(r). By asking for a new witness we want to recheck this
change.Please note that the requests are reset for every trace; so you might not
include a forgotten request forever resulting in the miss ofinteresting behaviors
during property exploration.

Figure 24: Witness with request for propertyG(r 7→ F(a)).

The derived trace illustrated in Figure 25 however, unveilsthat we have got some-
thing wrong, as the tree structure does not fit our intention.By the investigation
of the tree structure we uncover that we have forgotten two brackets. We have to
put theG() part of the property into brackets, otherwise thelogical andbinds the
F(r) to the implication part and not to the globally part. We add additional brack-
ets to the property to gain(G(r 7→ F(a)))&& (F(r)). By asking for a new witness
we recheck the property and are satisfied with the presented trace and evaluation
(Figure 26).

Now we want to check if a single of the two acknowledges conforms to the prop-
erty. Again this might be obvious for our example, but it might not be obvious for
a more complex one. Thus we shape the trace by editing the waveform. We fix the
values of signalr to the values of the trace and signala to true for time-step one
and false for the remaining time-steps (Figure 27).

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 19

Figure 25: Witness for propertyG(r 7→ F(a))&& F(r).

Figure 26: Witness for property(G(r 7→ F(a)))&& (F(r)).

Asking for a new witness produces a trace illustrating that our requests are satisfi-
able (Figure 28).

We have used all elements of the Property Simulation interface so far, and now it
is up to you to explore the property and the potential of Property Simulation on
your own. To give you some initial direction we would like to suggest to enhance
the property to allow an acknowledge only on a request, or to limit the length of
an acknowledge to one time-step.

1.4 Property Realizability and Synthesis in RATSY
This section illustrates the RATSY Property Realizabilityand Synthesis features.

20 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Figure 27: Shaping the trace.

Figure 28: Witness for shaped trace request.

For using the Realizability feature the enhanced version ofNUSMV [5] is re-
quired. For using the Synthesis feature the command line tool M ARDUK is re-
quired. See Section 3 for details.

Realizability Problem

Informally, the Property Realizability problem can be described as follows. All
signals are divided into two disjoint sets – uncontrolled (environment) signals and
controlled (system) signals. Similarly, every requirement belongs to one of two
sets – the assumptions and the guarantees. At every time stepthe environment
variables are set to some unknown-beforehand values and then the system decides

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 21

values for its variables. Assuming that the assumptions hold the task of the system
is to satisfy the guarantees. If the system is able to do that for every possible behav-
ior of the environment the specification is Realizable. Otherwise the specification
is Unrealizable. For a detailed definition of the Realizability problem see [5].

Specifying a Realizability Problem

As was told in Section 1.2 the distinction of signals in System and Environment as
well as the distinction of requirements in Assumption and Guarantee is important
only for Property Realizability. Thus now, a user has to specify explicitly whether a
signal is an environment signal or a system signal. For example, Figure 29 shows
the wizard to specify an environment signalinc of type boolean. Similarly, a

Figure 29: Specification of an environment signal in RATSY.

requirement describes an assumption on the behavior of the environment, or a
guarantee on the behavior of the system. For instance, Figure 30 show the RATSY
wizard to specify the system guaranteealways(forall M in {-6:5 }: ((v=M
&& inc) -> next(v=(M+1)))) .

The Main Window

Once all the signals and all the requirements have been inserted in the RATSY
project, it is possible to move to the Realizability window where the button that
performs the check of realizability for the selected properties can be pressed to
start the check for realizability. Figure 31 shows the Realizability window with an
example of realizability problem.

The Check Realizability button on the right in the Realizability window of
RATSY activates the realizability checks. The result of thecheck is shown in the
left text area. In this particular example the specificationis unrealizable because

22 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Figure 30: Specification of a system guarantee property in RATSY.

Figure 31: The Realizability window in RATSY.

the system may force the violation of the guarantee requirements by setting both
signalsinc anddec up. 1 To avoid such behavior we can add an assumption re-
quirementnever(inc && dec) . With this assumption the specification becomes

1The cause of unrealizability may not always be so obvious. See Section 1.5 to learn how to debug
an unrealizable specification.

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 23

realizable (Figure 32).

Figure 32: The Realizability window in RATSY.

A set of assumptions and guarantees is internally convertedinto an equivalent
NUSMV game structure, and depending on the generated game structure the cor-
responding check algorithms are invoked (with the help of the enhanced version of
NUSMV [5]). The generated game structure is printed in the log tab, as to allow
the user to inspect it. Note that, such a game structure may have fresh variables
introduced during conversion. If the tool is not able to convert a RATSY speci-
fication into a NUSMV game structure an error message with the subexpression
causing the problem is printed out.

Synthesis

For realizable specifications an implementation can be automatically synthesized.
Synthesis works according to the algorithm presented in [10]. To perform synthe-
sis, RATSY relies on the command line tool MARDUK, which it calls as an exter-
nal process. Since synthesis can take a very long time (for larger specifications),
it might be preferable to invoke the MARDUK tool directly from the command
line, in order to have it run in background and independent ofthe graphical user
interface. MARDUK is able to read and process RATSY project files. Also, the
command line tool provides some advanced and experimental features and options,

24 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

which are not available via the graphical user interface of RATSY. If you want
to start synthesis directly from inside RATSY, click theSynthesize button and
select a file to store the synthesis results. The following options for controlling the
synthesis process are available on the lower right-hand side of the window. The
synthesis process will also respect the options for dynamicreordering, which can
be set right below theCheck Realizability button.2 Before starting the synthe-
sis process, the desired mode should be selected. At present, the following modes
are available.

1. COFACTOR: A cofactor-based approach, presented in [3], and the BDD-
Restrict operation of the CUDD package is used to compute output functions
from the strategy.

2. IRRSOP: This mode is based on the Minato-Morreale algorithm for com-
puting irredundant sums-of-products[7], combined with a cache of already
implemented subfunctions, to find deterministic output functions.

3. FACTOR: This mode is a generalization of the IRRSOP mode. Instead of
single literals, arbitrary Boolean functions are used in each recursive step.
This mode is experimental!

4. OLD: This mode is a legacy mode from a previous release. It is basically the
same as the COFACTOR mode, except that the output file is directly dumped
from the CUDD package. This might save a little computation time, but it
limits the output format to BLIF.

After setting the mode, one of three different output languages can be selected:
BLIF (Berkeley Logic Interchange Format), Verilog, and HIF(HDL Intermedi-
ate Format)3. Below the mode and language selection box, some more options
about BDDs are available. The first checkbox lets you enforcea reordering of the
BDDs after reading the specification and creating BDDs for all assumptions and
guarantees. It is recommended to leave this option turned on, as it usually short-
ens synthesis time. The next option enforces a reordering after the strategy has
been synthesized. The third option will delete the strategyBDD and also trigger
a reordering, once the output functions have been determined. It is recommended
to turn the latter two option on in BLIF mode, and turn them offin the IRRSOP
modes. In IRRSOP mode, output functions are not representedas BDDs any more,
so reordering will not improve synthesis results, but just take time. The next op-
tion enforces a transfer of all BDDs that represent output functions to a new DD
manager, before they are dumped into the output. Experienceshowed that turning
this option on slightly improves synthesis results, at verylittle extra time. This
option is only available in BLIF mode. The reorder method forforced reordering
may differ from the one used for dynamic reordering. Experience shows that using
one of the “converging” methods is preferable. Finally, it is possible to choose
between two different encodings of thejx state variables. These variables store
which fairness condition the system is going to fulfill next (cf. [10] for details).
The default value isBinary .

2It is highly recommended to use dynamic reordering, as it will greatly reduce memory and CPU
time usage.

3Seehttp://hifsuite.edalab.it/ for details.

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 25

Caveats There are two very common scenarios which can cause the synthesis
process to terminate abnormally. Due to limitations of the implementation the
current version of RATSY does not specifically report the causes of abnormal
termination in these cases. Thus, if RATSY reports that the synthesis process ter-
minated abnormally, you should check whether one of the two following scenarios
applies to your project. First, RATSY can only synthesize specifications inGen-
eralized Reactivity(1)format. That means that (at least) one assumption and (at
least) one guarantee must be a fairness/liveness constraint. If your specification
violates this restriction you will see a message similar to the following at the end
of the Checking Outcomes window. Error: The given specification is

not a ’GenReactivity’ specification. The game type is ’Avoi dDeadlock’.
If you see such a message you should augment your specification with a guaran-
tee/assumption of the formG(F(TRUE)) , to make it a GR(1) specification.

Second, if one of your requirements causes a parse error, thesynthesis process
will also terminate abnormally. Unfortunately the synthesis process can not give
information about which of the requirements is malformed. The error message
in the Checking Outcomes window will look like this: ERROR! Encountered

an exception! Error: could not parse the input file! If you click
the Check Realizability button without changing your specification, the real-
izability check will report in more detail which of your requirements is malformed.
These information will be displayed in theChecking Outcomes window.

The Automaton Editor

Specifications for reactive systems are often easily expressible as a set of deter-
ministic and complete Büchi word automata, where the edgescorrespond to safety
constraints, and the accepting states correspond to fairness/liveness constraints.
RATSY provides a graphical tool to create and edit such automata. The automata
are automatically converted into PSL formulas, which can then be used as require-
ments. The following example illustrates the use of the automaton editor. Think
of a very simple arbiter, with just one request line (req) and one acknowledge
line (ack). We want to model a property that captures the fact that every request
should eventually be acknowledged. We will do so by means of asimple Büchi
automaton with 2 states.4 First click the plus sign above the automata list to add a
new automaton. In the dialog window that opens (Fig. 33), specify a name for this
automaton. Then click theEdit button to actually create/edit the automaton. In
the main automaton editor window, click the buttonsNew State and then click on
an empty spot in the editor pane to add a state to the automaton. Double-click the
state to edit its properties (Fig. 34). You can specify a namefor the state, whether
or not it is the initial state of the automaton, and whether ornot this state is one of
the accepting states. Name the states0 , and make it initial and accepting. Create
a second state, which should not be accepting, and label its1 . You will notice that
the new states have a dangling edge labeledtrue . Dangling edges lead to an im-

4This example is included in the RATSY distribution. The corresponding project file is
examples/demo/DemoAutomaton.rat .

26 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Figure 33: Create a new automaton.

Figure 34: Edit the properties of a state in the automaton.

plicit, non-acceptingdead state, which has a self-loop labeledtrue . For reasons
of clarity this dead state is not drawn explicitly. The editor keeps the automaton
deterministic and complete at all times. Since we have not specified any transi-
tions yet, all transitions (hence the labeltrue) lead to thedead state. In order to
specify transitions of our own, we must first add signal names. Right-click in the
list of signal names in the lower-right part of the editor window and selectCreate .
Specify a name for the signal and clickOk. The signal names that you specify here
will be used to create the PSL formula representing the automaton. Thus, make
sure that you only use names of signals that you created in your main project. Oth-
erwise the resulting formulas will not work. After you have created signals named
req andack , you are ready to add the edges to the automaton. First, we want to
create an edge froms0 to s1 . Thus, first click theNew Edge button, then click on
s0 , and finally ons1 . A new edge froms0 to s1 will be displayed. Notice that
the new edge is labeledtrue , and that the dangling edge ofs0 has disappeared, to
keep the automaton deterministic and complete. We will label the newly created
edge later, after we have created all the edges we need. Next,create an edge back
from s1 to s0 . Note that you can add way points to edges. After you clickeds1 ,
click on an empty spot in the editor pane, before you clicks0 . The new edge will
pass through the point you clicked. You can of course move theway point at any
later time. You can also add new way points to an edge, by first selecting it with
a left-click and then clicking the middle mouse button somewhere on the edge.

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 27

Way points can also be deleted by selecting them (left-click) and using theDelete
button on the right-hand side. Next, add loop edges to boths0 ands1 . Doing so is
straight forward. Just clickNew Edge, and then click twice on the state you want
to have a loop edge.

After you have created all the states and edges, we are going to specify the tran-
sition condition for the edges. The idea is that states0 is the state in which there
are no outstanding requests. Thus, it is an accepting state and should be visited
infinitely often. On the other hand,s1 is the state in which there is a request which
has not yet been acknowledged. So the transition froms0 to s1 should be taken
wheneverreq=1 andack=0 . Double-click the edge to edit its properties (cf. Fig.
35). In theMinterm field enter10, meaningreq=1 and ack=0 .5 If there is no

Figure 35: Specify the transition condition for an edge.

request (req=0), we don’t care about the value ofack , and stay ins0 . Also, if a
request is immediately answered (req=1 , ack=1), we stay ins0 . These two cases
correspond to the minterms0- and11. Enter them for the loop edge ons0 , one
minterm per line. For the states1 , we want to stay there as long as we do not an-
swer the outstanding request. Thus, set the minterm for the loop edge to-0 . You
will notice that the edge froms1 to s0 is automatically updated fromtrue to ack ,
because the automaton is always kept deterministic. Thus, we are already finished.
Your automaton should now look like in Fig. 36. ClickOk to close the editor. You
will see the formula that has been automatically generated in the remaining dialog
window. There are two ways in which the formula can be generated, which differ
in the way in which they handle the implicit dead state that has been mentioned
before. If the checkboxGenerate dead state formula is ticked, the implicit
dead state will be treated just like any other state. It will be encoded using state
variables, it will be a non-accepting state, and it will havea self-loop labeledtrue .
If this checkbox is not ticked, the dead state will not be treated as a real state of its
own. No state encoding will be assigned to it. Instead, whenever an edge which
would lead to the dead state is traversed, a special signaldead is asserted. How-
ever, the formula contains also a conjunct statingG(dead=0) . Note that both types
of formulas define the sameω-regular language. Choose whatever suits your needs
or your liking better, but don’t forget to create the signaldead in your main project
if you decide to use the latter case. Finally, clickOk again to save the automaton.

On a side note: The labels on the edges can also be moved. To do so, first select the
edge with a left-click. Then press and hold the left mouse button on an arbitrary
position along the edge. If you now move the mouse to the right(while still holding

5The order of signals for specifying minterms corresponds tothe order on the lower-right side of
the automaton editor window.

28 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Figure 36: The main window of the automaton editor.

down the left mouse button), the label of the edge will be moved along the edge,
towards the target state. If you move the mouse to the left, the label will move
towards the source state. If necessary, you can also zoom theeditor pane at any
time, by using the scroll wheel of your mouse.

Once the automaton has been saved, you can use it as a requirement. To do so, type
the name of the automaton in the corresponding field in the requirements dialog
(cf. Fig. 30). After you typed in the automaton name, the formula corresponding
to the automaton will be automatically inserted into the property field. Note that in
this case you cannot manually edit the formula. With the radio buttons below, you
can choose whether the automaton represents a guarantee or an assumption. Click
Ok to save the requirement. Note that if you do changes to the automaton at a later
time, the PSL formula in the requirement will be automatically updated to match
the latest version. Furthermore you may use template-parameters to reuse the same
automaton several times. Parameters have the form%{name} and may be used in
the signal names of the automaton. Parameter names may only consist of letters,
numbers and underscores and must start with a letter or an underscore. If you
use an automaton with parameters as a requirement, an additional field will appear
where you can assign values to the parameters. Note that you still have to create the

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 29

signals, that are finally used, in your main project, including those used to encode
the current state of the automaton. To facilitate the creation of these signals a
refresh button is provided above the signal list which adds all missing signals used
by automata. The signals created in this way will be marked asautomatically
generated, which means that if their names change or they become obsolete, for
example because the requirement using them was deleted, youcan easily update
them by clicking refresh again. You may edit an automatic signal as well, for
example to change its type, but in this case it loses its automatic status and has to
be maintained manually.

1.5 Simulating and Debugging Specifications using Games
The game part of RATSY provides three main features. It allows you

1. to play a normal game in order to test the specified system,

2. to play a countergame in order to understand why a certain specification is
unrealizable, and

3. to specify desired behavior if undesired behavior was observed during a play.

In the normal game, you are in the role of the environment while the tool is in the
role of the system. In every time step, you first choose valuesfor the inputs. Then
the system responds with outputs that conform to the specification. In order to find
such outputs, a winning strategy for the system is synthesized.

In the countergame, you are in the role of the system while thetool is in the role of
the environment. In every time step, the tool first provides input values. You are
then asked to choose the values of the outputs in such a way that the specification
is fulfilled. You win if you manage to fulfill the specification. You lose otherwise.
The tool uses a counterstrategy to find problematic inputs, i.e., inputs for which
no behavior of the system can fulfill the specification. Hence, you will lose for
sure. However, while losing, you will understand where the specification is too
restrictive to be realizable. This knowledge can then be used to correct the specifi-
cation in order to obtain a realizable specification. More information on debugging
unrealizable specifications with countergames can be foundin [6].

As within Property Realizability, signals are distinguished of being under the con-
trol of the system or the environment. Furthermore, requirements can be assump-
tions or guarantees. The specification requires the system to fulfill all guarantees
if all assumptions are fulfilled by the environment. Similarto the synthesis fea-
ture of RATSY, the game part requires the specification to be in theGeneralized
Reactivity(1)format, i.e., at least one assumption and at least one guarantee must
be a fairness/liveness constraint. Otherwise an accordingerror message is printed
when trying to start a game.

30 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

How to play a Game

Figure 37 shows the Game window in action. Initially, the trace views labeled with

Figure 37: The Game window in RATSY.

“Inputs” and “Outputs” are empty. The buttonStart starts the game. First, the
tool checks the specification for realizability. If it is realizable, a normal game is
started, otherwise a countergame is started.

In either case, the current time step of the game is marked with red letters. You are
only allowed to modify signal values in the current time step. Signal values can be
modified by right clicking onto the according position in thetrace. A pop-up menu
appears that allows to set the value to 0, 1, or “don’t care” (see Figure 37). In the
normal game, you are only allowed to modify input signals. Inthe countergame,
you can only modify the output signals.

Different waveform colors are used to mark different origins of signal values.

• Black is used if the signal value is the only possibility fulfilling the safety
requirements.

• Red is used for user selections.

• Blue is used if the signal value is a consequence of some user selection for
other signals.

• Green is used if the signal value was chosen completely arbitrarily.

During the play the tool enforces that all safety requirements are met. When your
choice violates some safety requirement, an error message is printed.

After setting all signals to their desired values in the current time step, clickNext
Step and the next time step can be edited. By clickingClear , all user selections
for the current time step are cleared again, i.e., set to “don’t care”. If some signal
values are still “don’t care” when theNext Step button is clicked, these signals
will be chosen arbitrarily by the tool. With the buttonPrev. Step , the previous
time step of the play can be edited again. This is useful when you want to change
some selection in some previous time step. Note, that the user selections for the
current time step are lost when going back to the previous step.

You can put time steps into the infinite loop or put them back into the finite part by
right clicking onto any signal in that time step and choosingthe according menu
item. Only the last time step before the loop can be put into the loop and only the

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 31

first time step of the loop can be removed from the loop. This restriction avoids
that you end up with more than one infinite loop or that the loopis not located at
the end of the trace. Time steps within the finite part are marked with light gray
background. Time steps with dark gray background belong to the infinite loop.

You can finish a play by clicking theDone button. This causes the tool to analyze
the play in order to find out the winner. Furthermore, explanations to this verdict
are printed to make you accept that you have indeed lost the play. When you finally
click theStop button, the play engine is reset and a new game can be started by a
subsequently clickingStart . Changes of the specification that are made during a
play do not affect the play. One has to clickStop followed byStart to start a new
game using the modified specification.

Game traces can be exported by clicking the buttonExport . You can choose
between three formats:jpeg , png andvcd (Value Change Dump). Exporting the
game traces asjpeg or png improves over a simple screenshot in that no part of
the trace is hidden due to scroll bars. Game traces exported as vcd can be opened
by most waveform viewers. However, the colors in the trace aswell as the position
of the infinite loop are lost when exporting traces asvcd . This is due to a lack of
support of such elements in the Value Change Dump format. Note, that there is
(currently) no way to save the current state of a play. In particular, exported game
traces cannot be loaded again to continue a play.

There are two sub-windows related to the Game window: the Game Log window
and the Automata window. Both can be shown or hidden with the buttonsShow
Subviews andHide Subviews , respectively. These sub-windows are described in
the next sections.

The Game Log Window

The Game Log window is also shown in Figure 37. It contains three types of log
messages:

• Results: Written in red, they contain the main results obtained by the tool
during the play.

• Operations: Such messages show what the tool is currently doing. They are
written in black.

• Help Messages: These messages guide you through a game. Theyare written
in blue.

All types of messages can be enabled or disabled with the corresponding check-
boxes. Information will be stored in the background, even while a particular mes-
sage type is disabled. When re-enabling it later, the messages will be displayed as
if the message type was never disabled.

32 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Integration with the Automaton Editor

The following features are only available if the specification contains automata
constructed with the automaton editor (see Section 1.4).

Figure 43 shows an example for the Automata sub-window of thegame. The
names of all automata of the specification are shown on the left side (in case of
Figure 43 there is only one). One such name can be selected, and this selected
automaton is shown on the right side. The current state of theplay is marked with
yellow in the automaton. Also, all edges that are still possible with the current
user selection in the Game window are marked yellow. If you want to traverse
a certain (yellow) edge of the automaton in the game, you can simply select this
edge with a mouse click. The restrictions imposed by traversing this edge are then
added as additional user selections to the signals that are under control of the user
in the game. User selections obtained by selecting edges canbe cleared again by
clicking the Clear button in the Game window or by setting the corresponding
signal values to “don’t care”.

Not only the current state of the play but arbitrary time steps can be displayed
in the automata. Simply right click onto any signal in the desired time step and
selects the menu itemShow step in automata .

Specifying Design Intent

When you observe undesired behavior of the system while playing a normal game,
you can switch into theSpecify Design Intent - mode by selecting the corre-
sponding radio button in the Game window (on the bottom of theright-hand side
in Figure 37). The game trace can be used as a starting point tospecify the desired
behavior of the system. You can change the value of any signal(inputs and out-
puts) in any time step to 0, 1, or “don’t care”. This is done by right clicking onto
the signal in that time step and selecting the correspondingmenu item. It is also
possible to set a certain signal in all time steps to a certainvalue by right clicking
onto the signal name in the trace. The waveform color black isused for signal
values that came from the game. The waveform is colored in redif the signal value
was changed by you. The finite part and the infinite loop of the trace can be edited
in the same way as in the game. Unlike in the game, new time steps can be inserted
and existing time steps can be removed from the trace, again by right clicking onto
the desired position and choosing the corresponding menu item.

In the end, the input trace and the output trace should represent the desired behav-
ior in the following way: If the behavior of the environment matches the specified
input trace, then the behavior of the system must match the specified output trace.
Finally, click Done and an automaton that accepts only the desired behavior is cre-
ated automatically and added to the table of automata in the project. It can be
added as an additional guarantee to the specification as described in Section 1.4.
This eliminates the undesired behavior originally observed during the play. Click-
ing Stop clears all data from the traces.

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 33

Once theSpecify Design Intent - mode is activated, you cannot return to the
Game mode again. You have to clickStop followed by Start to start a new
game. Specifying design intent is only possible from a normal game but not from
a countergame.

Additional Features for the Normal Game

There is a special waveformjx in the output trace that does not correspond to an
output signal. It contains the memory content of the strategy according to [10].
This memory content is the index of the fairness constraint of the system that will
be fulfilled next. You can simply ignore this row if you are notfamiliar with the
work of [10].

Additional Features for the Countergame

Following [6], the countergame is integrated with additional features that make it
easier for you to find out why the specification is unrealizable.

SAT-check: Unrealizable specifications are checked for satisfiabilityfirst. The
result is written to the Game Log window. If a specification turns out to be unsat-
isfiable, you do not have to play a game in order to understand the problem. You
can also use Property Simulation to learn why no trace can fulfill the specification.
This may lead to simpler explanations. However, as unsatisfiability is just a special
case of unrealizability, the countergame can also be used toexplain unsatisfiability.
If undesired, the SAT-check can be deactivated with the corresponding checkbox
in the Game window.

Minimization: All output signals and guarantees that are irrelevant for the unre-
alizability problem are removed from the specification before a counterstrategy is
computed. A guarantee is irrelevant if you cannot fulfill thespecification even if
you would not have to fulfill this guarantee. A signal is irrelevant if you cannot
fulfill the specification even if you could choose the value ofthe signal completely
arbitrarily in every time step without any consequences forother signals. Irrelevant
guarantees and signals are not included in the game. This helps you focus on the
actual problem. The irrelevant guarantees are deactivatedin the table of require-
ments of the project. Which signals are irrelevant can be seen from the Game Log
window. Minimization can be deactivated with the corresponding checkbox in the
Game window.

Countertraces: A counterstrategyis a strategy for the environment to find prob-
lematic inputs, i.e., inputs for which no behavior of the system can fulfill the spec-
ification. The inputs suggested by the counterstrategy depend on the outputs pre-
viously chosen by the user. On the other hand, acountertraceis a fixed trace

34 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

of inputs for which no behavior of the system can fulfill the specification. It is
independent of the moves of the system and thus easier to understand. RATSY
heuristically searches for a countertrace. If it could find one, this countertrace is
used instead of the counterstrategy in the countergame. Thecomplete countertrace
is shown right from the beginning of the play, so you know in advance how the
environment will behave. This makes it easier for you to localize the problem in
the specification.

Summarizing Graph: A graph is computed that summarizes all plays that are
possible when the environment adheres to the counterstrategy (or the countertrace).
Its vertices correspond to states in the game, edges correspond to state transitions
which are possible in the game. This graph can be seen as a “cheat sheet” for
the interactive game. It allows you to see how the environment will react to your
outputs. Thus, you may discard some choices a priori. This reduces the number of
plays necessary to understand the cause of unrealizability.

The graph is written in two version into the filesgame_data/graph.dot and
game_data/graph_with_signals.dot . The latter contains the signal values that
make a certain state transition possible, the former does not. Pictures of the graph
can be produced with the DOT program by typing for example:

dot -Tpdf ./graph_with_signals.dot -o ./graph_with_sign als.pdf

in a shell opened in the directorygame_data . Detailed information to the graphs is
written into the filegame_data/graph.info . This file contains the signal values
corresponding to the different vertices of the graph.

The current state of the play in the graph is displayed in the waveform labeled with
state in graph of the input trace. For larger specifications, the graph tends to
become huge. Huge graphs are no real help for the user, so their computation is
aborted if they exceed 100 vertices. With the checkbox in theGame window, graph
computation can be disabled completely.

Special Waveforms: The input trace in the Game window contains some wave-
forms that do not represent input signals. The special waveform state in graph

contains the current state of the play in the graph as alreadyexplained in the previ-
ous paragraph. The waveforms labeled withix andjx show the memory content
of the counterstrategy as defined in [6]. The value ofix gives the index of the
fairness constraint of the environment that will be fulfilled next. The value ofjx
gives the index of the fairness constraint of the system which the environment tries
to evade. Thus, you can concentrate on fulfilling this fairness constraint only. The
environment can change this index a finite number of times. The maximal number
of changes ofjx is contained in the waveformjx changes . All these values are
addressed to advanced users, they can also be ignored.

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 35

Example

This section illustrates on a concrete example how the game features can be used.
We will use the specification depicted in Figure 38.6 It defines a simple arbiter
for some resource shared by two entities. With the inputsr0 and r1 , access to
the resource can be requested by entity 0 and entity 1, respectively. With the out-
putsg0 andg1, the resource is granted to the entities. The outputerror signals
an error. Forget aboutstartup failed for a moment. All signals are initialized
to 0 (env init and sys init). There is a guarantee that enforces that the re-
source is not granted to both entities at the same time (sys tran 0). There is
a guarantee that ensures that no grant is given in case of an error (sys tran 1).
Finally, there are guarantees that state that every requestmust be granted eventu-
ally (sys fair 0 andsys fair 1). The assumptionenv fair is added so that
NUSMV identifies the specification as aGeneralized Reactivity(1)specification
and not as a Büchi game specification. (Remember that games can only be played
on Generalized Reactivity(1)specifications).

Figure 38: The specification used for Game demo.

When the buttonStart is clicked, the tool first checks if the specification is realiz-
able. This specification is indeed realizable, so the tool starts a normal game. You
can define values for the inputs and the tool responds with outputs that conform to
the specification. A possible simulation run is depicted in Figure 39.

Figure 39: A possible simulation run.

Suppose now that you are not satisfied with the behavior of thesystem during
simulation. Suppose that the original, informal design intent was that the output
signalerror has to be set indefinitely ifstartup failed is always set after the
first time step. This behavior cannot be observed in Figure 39. You can now switch
into theSpecify Design Intent - mode in order to use the simulation trace as
starting point for the definition of the desired behavior.

6This example is included in the RATSY distribution. The corresponding project file is
examples/demo/DemoGame1.rat .

36 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Figure 40: The specified design intent.

Figure 40 shows the result of the specification of the desiredbehavior. When
startup failed = 1 right after the initial state until infinity, then so must be the
output signalerror .

Click the Done button, and an automaton is created automatically which accepts
only the desired behavior. Add the automaton to the specification and obtain the
specification depicted in Figure 41.7

Figure 41: The new specification containing the desired behavior.

The play engine is reset with the buttonStop and a new game with the enhanced
specification can be started by clickingStart again. The tool finds out that the en-
hanced specification is unrealizable, so it starts a countergame in order to illustrate
the cause of unrealizability. It first minimizes the specification. The tool says that
the specification is still unrealizable if the system can choose the value ofg1 com-
pletely arbitrarily in every time step. It furthermore states that the specification is
still unrealizable if the system does not have to fulfillsys fair 1 (eventually a
grant for entity 1) andsys tran 0 (never more than one grant). The countergame
is played on this simplified specification, whereg1, sys fair 1 andsys tran 0
have been removed.

Next, the tool computes a counterstrategy and attempts to obtain a countertrace
from it. Our heuristic is able to find such a countertrace. This countertrace is used
in the countergame as depicted in Figure 42. It setsstartup failed = 1 andr0

7This example is included in the RATSY distribution. The corresponding project file is
examples/demo/DemoGame2.rat .

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 37

= 1 forever. Due to our design intent,error must be raised. Due tosys tran 1
(no grant on error), no grant can be given. Additionally,r0 = 1 forever, so the
guaranteesys fair 0 cannot be fulfilled. This explanation is also given by the
tool in the Game Log of Figure 42.

Figure 42: The countergame containing the countertrace.

Figure 43 shows the Automata window in Step 2 of the play. It contains only the
automaton representing the design intent which we specifiedearlier. In Step 2,
we are in the stateV2. We have thatstartup failed = 1 , so we can only set
error = 1 in order to stay inV2, which is accepting. Settingerror = 0 would
bring us to the stateR2. This step is non-accepting and it cannot be left any more
if not the environment setsstartup failed = 0 (which it does not, following its
countertrace). Clicking on one of the yellow edges in the Automata window makes
error = 1 or error = 0 in the Game window.

The countergame helps you to understand the conflict betweenthe specified design
intent and the rest of the specification, that is, why the enhanced specification is
unrealizable. The elimination of the problem is up to you, asthere are typically
various solution. You could allow grants to be given on error, you could restrict
the fairness guaranteessys fair 0 andsys fair 1 to cases whereerror = 0 ,
you could add an assumption that forbids thatstartup failed = 1 forever, etc.

38 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

Figure 43: The state of the play in an automaton.

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Users Manual • 39

40 • RATSY Users Manual RATSY — Requirements Analysis Tool
with Synthesis

2 RATSY Architecture
In the following the design and implementation of RATSY willbe discussed. The
general information about RATSY implementation and run time environment will
be described in Section 2.1. Section 2.2 explains architectural patterns used dur-
ing RATSY development. The hierarchy of the RATSY software is described in
Section 2.3.

2.1 Architecture and Implementation Notes
RATSY is a stand-alone multi-platform application that runs in one process. Even
if multi-threading is used to run external verification engines, the GUI part fits into
a single main thread.

RATSY has been fully developed with thePythonobject-oriented programming
language, and the GUI part relies on thePyGTKgraphical toolkit to draw itself to
the screen, and to handle the interaction with the user.

The coding followed a few standards ”de facto”. Classes, methods and functions
names followPyGTK’s convention (seehttp://www.pygtk.org), that derives
from the GTK’s one (seehttp://www.gtk.org). Style and indentation are strictly
Pythoncompliant. Packages and filenames are java style, but slightly less restric-
tive: e.g. a filefoo and foo.py contains definition of classFooAndFoo , but may
contain the definitions of other classes if convenient.

RATSY uses external tools to check properties for Property Assurance, Simula-
tion, Realizability, and Synthesis. In particular currently it relies on the NUSMV
and VIS model checkers that are written in Posix C language. Furthermore it uses
the MARDUK tool, written in Python, which in turn uses some functions from
NUSMV via a wrapper. The tools are called and used by RATSY as external pro-
cesses, and are kept separated from RATSY by an abstraction layer calledStub
that exports a standard interface. The MARDUK tool is partially tighter integrated
with RATSY, since both are written in Python. Especially theGame features rely
on this integration.

RATSY is based on several other software entities, that affect its software archi-
tecture. The picture in Figure 44 shows the main set of layered software entities
which RATSY relies on. The layers depict the dependencies among the entities,
as higher parts depend on lower parts.

At the top is positioned the RATSY Application, gray shaded to make it clearly
distinguishable from the other parts.

The single parts are described in the following from the bottom to the top.

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Architecture • 41

Python LibraryGTK Toolkit

Operating System & Runtime System Libraries

NuSMV VIS

PyGTK Bindings

MVC & Observer
 Infrastructure

RATSY Appl icat ion

Tool
Stubs

Marduk

Figure 44: RATSY- Software parts and collocation

Operating System & Runtime System Libraries Those depend on the specific
architecture implemented on the host computer. Currently RATSY has been
tested underGNU/Linuxwith a 2.4 and 2.6 kernel.

GTK Toolkit GTK is a set of libraries that provide a pretty platform independent
support for drawing and handling graphical widgets like windows, buttons,
text entries, fonts, etc. Seehttp://www.gtk.org for further information
about GTK and its components.

Python Library This is a general multi-platform runtime environment provided
by the Python environment. It provides a large set of features and data
structures to be used from anyPython-based application. It also provides a
portable abstraction layer over the underlying Operating System, making the
application platform independent. Seehttp://www.python.org for further
information.

NUSMV and V IS These are the Model Checkers RATSY is currently based on.

M ARDUK is a command-line Python program for synthesis and specification de-
bugging.

PyGTK Bindings This is aPythonbinding that allowsPythonprograms to use
the GTK Toolkit. See athttp://www.pygtk.org for further information.

MVC & Observer Infrastructure This is aPythonpackage that helps to design
and develop GUI applications. It implements theModel-View-Controllerand
theObserverpatterns developed specifically forPyGTK.

RATSY Application This is the set ofPythonpackages that implement the RATSY
application. The underlying layers make RATSY platform independent,
and the internal sub-partTool Stubsinsulates RATSY even from the model
checkers.

2.2 Architectural Patterns
RATSY has a pretty complex structure, as it currently fits in six packages, about
68 modules and 21400 lines ofPythoncode (including comments, excluding blank

42 • RATSY Architecture RATSY — Requirements Analysis Tool
with Synthesis

lines). RATSY is characterized by strongly interconnectedfeatures, and by the
need of horizontal communication among independent parts.Furthermore, it pro-
vides many different independent views over the same objects, and those views are
often potentially editable by the user. Whenever one of those view is changed by
the user or by RATSY itself, all the other should react accordingly.

To reduce the structural complexity, to keep a clean design,and to minimize the
development and maintenance costs, two architectural patterns were considered:
The Model View Controller (MVC) and theObserverpatterns, see [4].

The Model-View-Controller pattern

MVC is an architectural pattern that forces the designer to break up the application
being designed among three main parts: a Model, a View and Controller. The
traditional implementation of this pattern reflects the normal data flow of non-GUI
applications: data input, data processing, and result presentation. Historically, the
MVC pattern is an attempt to map this natural data flow to the GUI design. In fact,
it associates the data input to the Controller, the data processing to the Model, and
the result presentation to the View.

In RATSY this pattern is implemented in theMVC and Observer Infrastructure.
This implementation wanted to be different from the traditional one, as it is spe-
cific for the underlying graphical toolkit (PyGTK) and language (Python) to exploit
their peculiarities and features. In particular, a part of the traditional View’s fea-
tures have been moved to the Controller, and the model has been made not aware of
the existence of any Controller or View. In combination withtheObserverpattern
(see next section), this allows for a real separation of the application logic from the
presentation layer.

Model Contains the logic of the program, intended as data and data manipulation
routines. Models can communicate with other models (especially with mod-
els that they contain), but do not know the other parts of theMVC pattern,
namely the Controller and the View. This limitation guarantees the insulation
between the application logic and presentation.

View Contains the presentation layer. The View constituted by a set of graphical
widgets organized as a forest (typically a single tree). A single widget is
one atomic GUI element, like a button, a text label, a window,etc. Often
widgets are containers for other widgets, hence widgets areorganized in
trees, where vertices represents the containment relations. As for the models,
views do not know the models they are connected to, as the connection is
delegated to the controllers. This is another variation with respect to the
original MVC pattern, as this implementation is intended to fit better with
thePyGTKtoolkit.

Controller Contains the actions that must be carried out when a view event re-
quires the interaction with the model’s logic. The Controller is always con-
nected to a single Model, and to a single View, making a sort oflink among

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Architecture • 43

these two separated parts of the pattern. If a Controller canbe connected to
one Model, the same model can connect more controllers at a given time.

The Observer pattern

The Observerpattern connects the application logic to the presentationlayer, by
allowing the latter to be notified when the former changes.

TheObserverpattern is ofter used together with theMVC pattern, and to a certain
extent it may be considered as complementary, as it handles the data flow from the
model to the view, whereas in theMVC pattern the communication goes generally
from the View to the Model through the Controller.

This communication is carried out without making the model even know the exis-
tence of the view, by using observable properties within themodel, and by defining
observers over those properties. The observers will be notified of any changing that
occur to the observable properties.

In RATSY theMVC and Observer Infrastructureprovides an implementation for
both the patterns. In particular, any Model can contain observable properties, and
any Controller is by default an Observer for the Model it is connected to.

2.3 Software Structure
The software structure of RATSY is strongly affected by the patterns it is based
on, and by the other software entities it relies on, that havebeen already shown in
Figure 44.

The main part of RATSY is represented by its core, fully basedon theMVC &
Observer Infrastructure. At the core sides, there exist services and resources, that
are available transversally to the core. Figure 45 providesmore details about the
core and the provided services.

Models

MVC & Observer Infrastructure

Glade
Files

Resources

Views

Controllers
Model

Checkers

Utilities and
Services

Tool Stubs

Threading
Control

Images

XML
Schemata

Figure 45: RATSY- Software Structure

44 • RATSY Architecture RATSY — Requirements Analysis Tool
with Synthesis

At the leftmost side of Figure 45 are depicted the most important services that are
available to models, controllers and views. These servicesdo not fit well with the
MVC andObserverpatterns as they do not have any associated view, or any user
interaction.

Utilities and Services Contains general utilities, globally accessible data, etc.

Tool Stubs Stubs are those entities that isolate RATSY from the external Model
Checkers. Stubs export an interface known to RATSY, and eachmodel
checker has an associated stub. The result is that RATSY can call a model
checker careless of the specific Model Checker it is actuallycalling.

Threading Control Provides fine-grained portable control over threads. This ser-
vice is used for example in stubs invocation, for running themodel checkers
in background, for controlling the associated process, andfor capturing its
output.

At the rightmost side of Figure 45 are depicted those resources that are exclusively
used by the RATSY Views. Noticeable resources are:

Glade Files As already mentioned, a Views is a forest of widgets. The widgets
can be build and connected each other by hand, or by using programming
tools likeglade(seehttp://glade.gnome.org). This tool can be used to
visually design a forest of widgets representing the view’swidgets. With
very few limitations, this tool can be used then to set the properties of all
widgets, and to associate action to be carried out when a certain events oc-
cur (signals). For example a widget like a button can be associated with a
function name to be called when clicked. The result of this creation and set-
ting process is a glade file, that can be loaded at runtime by the MVC and
Observer Infrastructurethat provides the needed support for Views creation
based on glade files, and to connect the associated Controllers that provide
the implementation of signals actions.

Images Contains icons, and other images to be shown by the views.

Tools Stubs

As already mentioned, the interaction with the model checkers like NUSMV and
V IS is managed by aStub, a software entity that provides platform and Operating
System independent support for running generic external model checkers. The
execution of a model checker is restricted to a stand-alone thread that controls the
model checker within asession. The session is monitored, and can be stopped at
any time if the underlying Operating System supports process interruption. Also,
the stub provides access to the session I/O, allowing to capture the model checker
standard output and error, and to control its standard input.

A stub execution is a sequence of events:

1. The stub is initialized.

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Architecture • 45

2. A session is initialized.

3. The session is prepared (setting of session options).

4. The session is run.

5. Session results are processed.

6. The session is de-initialized.

7. The stub is de-initialized.

The phases from 2 to 6 may be possibly repeated indefinitely.

A generic stub might control a model checker in any way, either in batch mode,
in interactive mode or through its library. In RATSY the stubs that control both
NUSMV and VIS use the model checkers in batch mode, launching their respec-
tive executable files. This is achieved by specializing the generic stub classes, by
implementing some interfaces and overloading some class methods that handles
the execution of a single session in batch mode.

A vertical view over the Software Structure

The RATSY software structure has been split horizontally byusing theMVC and
Observer Infrastructure. There exists also a vertical splitting that breaks the soft-
ware structure up through a hierarchy of software entities.

Application

Project

Options SignalsRequirements
Property

Assurance
Property

Simulation

Options

Possibilities Assertions

Traces
Manager

Assurance
NuSMV Stub

VIS Stub

TraceProperty Signal

Property
Realizability

Realizability
NuSMV Stub

Property
Synthesis

Marduk

Games Automata

Marduk
Stub

Figure 46: RATSY- Hierarchy of main software entities

Figure 46 depicts the hierarchy of the main software entities that occur within
RATSY. Each of the boxes represents a software entity, and each vertex of the
hierarchy tree is a containment relation, where cardinality is not expressed. That
means for example that an Application contains one (or more)software entities to
represent a Project and the Options of the Application.

The way each software entity is implemented depends on the entity’s role. Those
entities that need to be shown, will follow theMVC pattern, and will be mapped

46 • RATSY Architecture RATSY — Requirements Analysis Tool
with Synthesis

down to three object-oriented classes (or to a triple of a limited set of classes) to as-
sociate to each entity a Model, a View and a Controller. For example, the entity ap-
plication’s Options has a model to hold the options, and a couple View/Controller
to present the options to the user, and to allow the user to modify the options.
Those entities that instead do not need to be shown (e.g. the stubs), will be mapped
directly down to one class, or to a set of classes.

In the following the software entities depicted in Figure 46are detailed.

Application The application is the top-level entity. When the RATSY executable
file is run, a triple Model, View and Controller of this entitywill be instan-
tiated and connected each other, and RATSY will finally enterin the main
event loop to handle user interaction and events.

Application Options This entity is a container for application’s options. For ex-
ample tools paths, and other general purpose options shouldbe localized
within this entity. At the moment this entity is empty, and there is not an
associated View for it.

Project This entity represents a RATSY project. The project’s modelcontains
most of the application logic, meaning that most of the application’s models
are contained within this model. The view is embedded withinthe applica-
tion’s main window whenever a project is created, and it is constituted by a
large number of sub-views corresponding to the contained entities.

Project Options This entity is a container for the project’s options. Similarly to
the Application Options entity, this entity is currently empty, and there is no
associated view.

Signals This entity contains the set of signals used by Property Assurance, Real-
izability, Synthesis, and the Games.

Requirements This entity contains the set of requirements used by Property As-
surance, Realizability, Synthesis, and the Games.

Automata This entity contains the set of automata. Automata can be instantiated
to Requirements.

Property Assurance This is the entity for Property Assurance. Its view is shown
when the Property Assurance feature is selected at the application level.

Property Simulation This is the entity for Property Simulation. Its view is shown
when the Property Simulation feature is selected at the application level.

Property Realizability & Synthesis This is the entity for Property Realizability
& Synthesis. Its view is shown when the Property Realizability & Synthesis
feature is selected at the application level.

Games This is the entity for playing games. Its view is shown when the Game
feature is selected at application level. This entity is quite interweaved with
MARDUK, and hence, accesses MARDUK directly and not via a stub.

Traces Manager This entity handles the set of traces that have been generated
in the project. Also, this entity organizes the set of traceswithin a set of
categories that traces belong to.

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Architecture • 47

Assurance NUSMV Stub The Property Assurance NUSMV stub handles the in-
teraction of RATSY with the NUSMV model checker when Property As-
surance is run. This entities has no associated View and Controller, and it
is implemented by a single class. This class is the specialization of a more
generic classes hierarchy that provides support for implementing specific
tool stubs.

Realizability NUSMV Stub The Property Realizability NUSMV stub handles
the interaction of RATSY with the enhanced version of NUSMV [5] when
Property Realizability is run. This entities has no associated View and Con-
troller, and it is implemented by a single class. Similarly to the Property
Assurance NUSMV Stub already available in RATSY, this class is the spe-
cialization of a more generic classes hierarchy that provides support for im-
plementing specific tool stubs.

M ARDUK The MARDUK tool handles synthesis as well as strategy computation
for the Game features.

M ARDUK Stub Like the NUSMV Stubs entities, but specific for MARDUK.

Possibilities Contained within the Property Assurance entity, this entity repre-
sents the set of possibilities for Property Assurance.

Assertions Contained within the Property Assurance entity, this entity represents
the set of assertions for Property Assurance.

Signal This entity represent a single signal. The model contains information about
the signal, like the name and type information. The view is shown when the
user wants to create or edit a signal.

V IS Stub Like the NUSMV Stubs entities, but specific for the VIS model checker.

Trace A trace is the result of model checking, and can represent either a witness
or a counter-example. In RATSY there exist several view overa trace, as
they can occur within the main application window, and within the Trace
Manager window. In general a trace can be shown as a graphicalwaveform,
with some associated information like the category it belongs to, the number
of steps, the loop information, etc.

Property This entity represent a single property, like a requirementor a possibil-
ity. The model contains information about the property, like the name and
formula. The view is shown when the user wants to create or edit a prop-
erty. There exist a dependency between a property and those traces there
were generated from it. Whenever a property’s formula is changed, the cor-
responding traces will be invalidated.

More information about RATSY implementation details can beobtain in [2].

48 • RATSY Architecture RATSY — Requirements Analysis Tool
with Synthesis

3 RATSY Installation and Dis-
tribution

This section gives information on installation and distribution related issues. RATSY
can be downloaded in the form of binaries for 32-bit and 64-bit Linux systems, and
also as a source tree.

3.1 Installing the Binary Distribution
To start RATSY from the binary distribution, simply extractthe downloaded archive
into any directory and start the scriptratsy/ratsy . For more convenience, you
can add theratsy folder to yourPATHenvironment variable.

The archive contains binaries of all external tools such as the model checkers VIS
and NUSMV. You do not need to download and install them separately.The
one exception is the tool LILY , which is needed to perform realizability checks
on full LTL specifications (not only on specifications given in Generalized Re-
activity(1) format). If you do not need this feature, then you do not have to
install LILY . If you do, simply download LILY 8, extract the archive, patch it
with NuSMV-game/nugat/contrib/Lily-1.0.2.patch , and include it into your
PATH and PERL5LIB environment variables.

3.2 Installing the Source Distribution
To build RATSY and all the external tools such as the model checkers VIS and
NUSMV from source, simply extract the downloaded source archive into any di-
rectory and execute thebuild.sh script in the top-level directory. Follow the
instructions of this script. As for the binary distribution, if you need support for
full LTL realizability checking, you have to install LILY (see Section 3.1). When
the build process has finished, the scriptratsy/ratsy starts up RATSY.

Known issues:

8http://www.iaik.tugraz.at/content/research/design_v erification/lily/

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Installation and Distribution • 49

• The NuSMV wrapper does not compile with Swig Version 1.3.39 or above
installed. The reason is that Swig changed interface names (seehttp://

www.swig.org/Release/CHANGES at date 2008-12-04) without backward
compatibility. As a workaround you could

– use the binary distribution,

– downgrade Swig to Version 1.3.38 or below, or

– use the patched9 file NuSMV-game/NuSMVWrap/dd.ini.swig.1.3.39 .

3.3 Running M ARDUK

No matter whether you use the binary distribution or the source distribution, in
order to run the MARDUK tool stand-alone, go to themarduk/src folder and
launch the filemarduk.py with your Python interpreter. Make sure to set your
environment variableLD LIBRARY PATH such that it also includes the directory
NuSMV-game/NuSMVWrap/nusmv/clib . This is necessary for MARDUK to find
and use the NUSMV wrapper. Runpython marduk.py -h to display a help mes-
sage, detailing the options and arguments of MARDUK. In order to test whether the
installation was successful, you can run the scriptmarduk/src/test marduk.sh .

3.4 Licensing
RATSY and MARDUK are distributed under GNU LESSER GENERAL PUBLIC
LICENSE Version 2.1, February 1999 (LGPL) with the copyright held by Graz
University of Technology and FBK-irst. Seeratsy/License for a copy of this
license.

NUSMV (http://nusmv.fbk.eu) is distributed under the same license with the
copyright held by FBK-irst only. SeeNuSMV-game/nusmv/README for details.
Since the same licence applies, NuSMV sources are included in the source distri-
bution of RATSY for convenience.

V IS is available under a different (and even less restricted) licence. Seehttp:
//vlsi.colorado.edu/ ˜ vis/ for details. The VIS sources are not included in
the source distribution of RATSY. For convenience, the build script of RATSY
automatically downloads the VIS sources, however.

Note that the license for RATSY, VIS sources and NUSMV sources allows for
commercial use (currently the use of VIS and NUSMV takes place in commercial
settings).

9https://swig.svn.sourceforge.net/svnroot/swig/trunk /Tools/pyname_patch.py

50 • RATSY Installation and Distribution RATSY — Requirements Analysis Tool
with Synthesis

The development of the first version of this tool (RAT) has been supported in part
by the European Union under contract 507219 (PROSYD)10. The current version
(RATSY) has been supported by the European Union under contract 217069 (CO-
CONUT)11 and 248613 (DIAMOND)12, as well as by the Provincia Autonoma di
Trento (project EMTELOS).

10http://www.prosyd.org/
11http://www.coconut-project.eu/
12http://www.fp7-diamond.eu/

RATSY — Requirements Analysis Tool
with Synthesis

RATSY Installation and Distribution • 51

52 • RATSY Installation and Distribution RATSY — Requirements Analysis Tool
with Synthesis

4 References

[1] R. Bloem, R. Cavada, A. Cimatti, I. Pill, M. Roveri, S. Semprini, and A. Tchaltsev.
RAT: A tool for formal analysis of requirements. InDemo Session of the 17th European
Conference on Artificial Intelligence, Riva del Garda, Italy, 2006.

[2] R. Bloem, R. Cavada, C. Eisner, I. Pill, M. Roveri, and S. Semprini. Manual for property
simulation and property assurance tool, November 2005. Prosyd Delivarable D1.2/4-5.

[3] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weiglhofer. Specify,
compile, run: Hardware form PSL. In6th International Workshop on Compiler Opti-
mization Meets Compiler Verification, 2007. Electronic Notes in Theoretical Computer
Science http://www.entcs.org/.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture: A System Of Patterns. John Wiley & Sons Ltd., West Sussex,
England, 1996.

[5] A. Cimatti, M. Roveri, and A. Tchaltsev. Manual for property realizability tool, Decem-
ber 2006. Prosyd Delivarable D1.2/8.

[6] R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal specifications using
simple counterstrategies. InFormal Methods in Computer-Aided Design (FMCAD’09),
2009. To appear.

[7] S. Minato. Zero-suppressed BDDs and their applications. International Journal on
Software Tools for Technology Transfer (STTT), 3(2):156–170, 2001.

[8] NUSMV home page.http://nusmv.fbk.eu/ .

[9] I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and A. Cimatti. Formal analysis
of hardware requirements. In Ellen Sentovich, editor,Design Automation Conference
(DAC), pages 821–826. ACM, 2006.

[10] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In E. A. Emer-
son and K. S. Namjoshi, editors,VMCAI, volume 3855 ofLecture Notes in Computer
Science, pages 364–380. Springer, 2006.

[11] PROperty based SYstem Design PROSYD.http://www.prosyd.org/ , 2006.

[12] Accellera, Property Specification Language - Reference Manual - Version 1.01.http:
//www.eda.org/vfv/docs/psl_lrm-1.01.pdf , April 2003.

[13] RAT — Requirements Analysis Tool.http://rat.fbk.eu/ .

RATSY — Requirements Analysis Tool
with Synthesis

References • 53

