Engineer To Engineer Note

EE-62

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: fip.analog.com, WEB: www.analog.com/dsp

Copyright 1999, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective
holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is
assumed by Analog Devices regarding the technical accuracy of the content provided in all Analog Devices' Engineer-to-Engineer Notes.

Accessing Short Word Memory In C
Last modified: July 20, 1999

Introduction

The ADSP-2106x SHARC family processors C runtime
environment natively processes 32-bit datatypes. The DSP
hardware can be configured to process 48, 40, 32, and 16-
bit data, although the C runtime environment only natively
deals with 32-bit data. This EE note will explain how to
place variables (and other datatypes) into 16-bit, or short-
word memory, to allow for a more efficient use of memory
and allows for tighter granularity of the data as well.

As mentioned earlier, short word memory addressing is
used to access 16-bit data located in the internal memory
of the SHARC. The short word address spaceis an alias of
the normal word address space. Each single 32-bit memory
address in normal word space becomes two 16-bit words
in short word address space. See page 5-12 of the SHARC
User's Manua for the respective memory map. Each
memory address in Normal word memory space can be
accessed as two short words by doubling the address.
For example, say we had a value of 0x12345678 stored at
memory address 0x28000. This is the first location of
memory block 1 on a 21062. A read memory location
0x56000 would return the LSW of the value stored at
0x28000 (0x5678) and an access to location 0x56001 would
return the MSW of the value stored at 0x28000 (0x1234).
For more information on this concept, read sections 5.2
and 5.3.4 of the SHARC User’s Manual .

The C compiler does not directly support short word
memory space, so we need to take care of a few things
manually. Fortunately for us, the development tools for
the SHARC family compiler allow us to place variables
(and other datatypes) into whichever memory segment
you choose.

VisualDSP Development Tools Example

The VisualDSP development tools allow you to easily
place variables into an explicit memory segment that you
declarein your linker description file (LDF), using the

“segment” qualifier. For example, in your C source, you
would include the following statement:

Static segment("alt_dmda) int

The above statement will tell the compiler (and linker) to
place the array labeled “shortArray” into the memory
segment “alt_dmda” whichisdeclared in your LDF file.

Setting Up Your LDF

Setting up aternate segments in your LDF file is a very
straightforward procedure. Here is an excerpt from the LDF
used for this EE note (a complete version of thisfileand all
of the sources used for the project are included in the
appendix at the rear of this document.)

MEMORY
{

alt_dmda { TYPE(DM RAM) START(0x0007c000) END(0x0007ffff)
WIDTH(16) }

PROCESSOR p0
{
LINK_AGAINST (SCOMMAND_LINE_LINK_AGAINST)
OUTPUT ($COMMAND_LINE_OUTPUT_FILE)

SECTIONS
{

alt_dmda
{

INPUT_SECTIONS($OBJECTS(alt_dmda))
} >alt_dmda

From this LDF example, we see that our segment is
declared in a short-word segment in the “memory” field of

command specifies the
physical memory of the target system, with the “sections”
portion of the LDF corresponding to each memory
segment declared. For more information on these linker
description file commands, please refer to pages 5-33

ANALOG
DEVICES

through 5-35 of the Visua DSP User's Guide & Reference
Manual, first edition.

V3.3 210xx Family Development Tools Example

For the v3.3 version of our development tools, the
placement of variables into alternate memory segments is
performed in a different manner. Unfortunately for us, the
“static segment” qualifier which we used for the Visual DSP
development tools example is not available for the v3.3
tools. To accommodate this, we therefore need to do
things in a more tedious manner. There is one main
difference to our approach here; we must compile the
source file separately to place it in the desired segment by
using the “-mpmdata=" compiler switch. For more
information on this compiler switch, please refer to
sections 3.2.5 and 3.2.6, on pages 3-8 and 3-9 of the ADSP-
21000 Family C Tools Manual, third edition.

g21k short-33.c -c -mpmdata=alt_dmda -a 21060c.ach -save-temps -g

For the above example, we see that we have compiled our
source file named short-33.c, which will reside in the
segment named “alt_dmda’ which we have declared in our
architecture file. Here is an excerpt of thisfile below:

.SEGMENT/RAM/BEGIN=0x0007c000 /END=0x0007ffff /IDM/WIDTH=16
alt_dmda;

(For our configuration, our short-word memory space
begins at 2* 0x3E000 and ends at 2* Ox3FFFF, or 0x7C000 to
OX7FFFF.)

Also note the inclusion of the “-¢” compiler switch. This
switch stops the compiler from invoking the linker, so only
an object file is created, not an executable. This important
step is needed because we need to compile our different
segment’s sources separately and then link them all
together to create the final executable. A complete example
will be provided in the appendix at the rear of this EE note.

Manipulating Signed 16-bit Data

If our 16-bit datais signed data, we can use the Short Sign
Extend mode of the SHARC which will sign-extend our 16-
bit values when they are loaded into 32-bit/40-bit the
register file.

asm("bit set MODE1 SSE:"):

One important statement to mention here is that the
SHARC family DSP processors work natively with 32-bit
datatypes. When using short-word memory accesses, you
must ensure that you deal with your signed data values
accordingly. Writes from the register file to 16-bit memory
work as desired (whether the data is a negative or a
positive value). Reading a negative value from memory
into the register file should be sign-extended to retain the
sign information otherwise undesired calculations and
valueswill result.

EE-62

Page 2

Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com

Appendix A: VisualDSP Example

/I Link for 21060 system
ARCHITECTURE(ADSP-21060)
SEARCH_DIR($ADI_DSP\21k\lib)

MAP (SUM.map)

/1 The 1ib060.dIb must come before libc.dlb because libc.dlb has some 21020 specific code and data

$LIBRARIES = 1ib060.dIb, libc.dlb;

/I Libraries from the command line are included in COMMAND_LINE_OBJECTS.

$OBJECTS = 060_hdr.doj, SCOMMAND_LINE_OBJECTS;

MEMORY
{
seg_rth { TYPE(PM RAM) START(0x00020000) END(0x000200ff) WIDTH(48) }
seg_init { TYPE(PM RAM) START(0x00020100) END(0x000217ff) WIDTH(48) }

seg_pmco { TYPE(PM RAM) START(0x00021800) END(0x00025fff) WIDTH(48) }

alt_pmco { TYPE(PM RAM) START(0x00030000) END(0x00033fff) WIDTH(48) }
seg_dmda { TYPE(DM RAM) START(0x00036000) END(0x00037fff) WIDTH(32) }
seg_heap { TYPE(DM RAM) START(0x00038000) END(0x00039fff) WIDTH(32) }
seg_stak { TYPE(DM RAM) START(0x0003a000) END(0x0003dfff) WIDTH(32) }

alt_dmda { TYPE(DM RAM) START(0x0007c000) END(0x0007ffff) WIDTH(16) }

PROCESSOR p0
{
LINK_AGAINST ($COMMAND_LINE_LINK_AGAINST)

OUTPUT ($COMMAND_LINE_OUTPUT_FILE)

SECTIONS
{
/I .text output section
seg_rth
{
INPLIT SECTIONS($ORIFCTS(cen rth) &1 IRRARIFS(een rth))
EE-62 Page 3

Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com

Example LDF file for VisualDSP Example

EE-62 Page 4

Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com

seg_init

} >seg_init

seg_pmco

{

alt_pmco

{

seg_dmda

{

alt_dmda
{

stackseg
{

heap

INPUT_SECTIONS($OBJECT S(seg_init) $LIBRARIES(seg_init))

INPUT_SECTIONS($OBJECTS(seg_pmco) $LIBRARIES(seg_pmco))

} >seg_pmco

INPUT_SECTIONS($OBJECT S(seg_pmco))

} >alt_pmco

INPUT_SECTIONS($OBJECTS(seg_dmda) $LIBRARIES(seg_dmda))

} > seg_dmda

INPUT_SECTIONS($OBJECTS(alt_dmda))

} >alt_dmda

/I alocate a stack for the application
Idf_stack_space = .;

Idf_stack_length = MEMORY _SIZEOF(seg_stak);

} > seg_stak

/1 alocate a heap for the application
|df_heap_space = .;
Idf_heap_end = Idf_heap_space + MEMORY _SIZEOF(seg_heap) - 1;

Idf_heap_length = Idf_heap_end - Idf_heap_space;

} > seg_heap

Example LDF file for VisualDSP example (ontinued)

EE-62

Notes on using Analog Devices' DSP components and development tools

Page 5

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com

/* Short-Word memory space in C example for VisualDSP development tools */

static segment("alt_dmda") int x;

static segment("alt_dmda") int shortArray[10]={1,2,3,4,5,6,7,8,9,10};

static segment("alt_dmda") int total;

void main (void){

inti;

for(i=0; i<10; i++)

total +=shortArray[i];

total+=x;

asm("idle;");

1 /* and nf main */

Example source code for VisualDSP short-word memory example

EE-62 Page 6

Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com

Appendix B: v3.3 Development Tools Example

.SYSTEM Example_ADSP21060_C_Architecture;

.PROCESSOR = ADSP21060;

! Internal memory Block 0

.SEGMENT/RAM/BEGIN=0x00020000 /END=0x000200ff /PM/WIDTH=48 seg_rth;
.SEGMENT/RAM/BEGIN=0x00020100 /END=0x000217ff /PM/WIDTH=48 seg_init;

.SEGMENT/RAM/BEGIN=0x00021800 /END=0x00025fff /PM/WIDTH=48 Seg_pmco;

! Internal memory Block 1

.SEGMENT/RAM/BEGIN=0x00030000 /END=0x00033fff /PM/WIDTH=48 alt_pmco;
.SEGMENT/RAM/BEGIN=0x00036000 /END=0x00037fff /DM/WIDTH=32 seg_dmda;
.SEGMENT/RAM/BEGIN=0x00038000 /END=0x00039fff /DM/WIDTH=32 /cheap seg_heap;
.SEGMENT/RAM/BEGIN=0x0003a000 /END=0x0003dfff /DM/WIDTH=32 seg_stak;

.SEGMENT/RAM/BEGIN=0x0007c000 /END=0x0007ffff /DM/WIDTH=16 alt_dmda;

[=INTa Y VAN

Example Architecture File for v3.3 Development Tools

g21k main.c -c -a 21060c.ach -save-temps -g
g21k short-33.c -c -mpmdata=alt_dmda -a 21060c.ach -save-temps -g

g21k main.o short-33.0 -a 21060c.ach -0 short-33.exe -map -g -save-temps

Example batch file for v3.3 development tools

Here we see from the above batch file, that the build process must be performed in multiple stages. The code and data
segmentsthat areto reside in alternate memory segments other than the default seg_pmco and seg_dmda segments, must be
compiled and linked separately. The use of the “-c” compiler switch stops the compiler before the linking stage for each source
file. Also, note the use of the “-mpmdata=" compiler switch, which tells the linker which alternate segment this code module
will reside. (For more information, please refer to pages 3-8 and 3-9 of the “ ADSP-21000 Family C Tools Manual”, third edition.

EE-62 Page 7
Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com

/* Main.c: Short-Word memory space in C example for v3.3 development tools*/

extern int x;
extern int shortArray[];

extern int total;

void main (void){

inti;

for(i=0; i<10; i++)

total+=shortArray[i];

total+=x;

asm("idle;");

} /* end of main */

Main source file (Main.c) for v3.3 development tools

/* Short-33.c: Short-Word memory space in C example for v3.3 development tools*/
int x;
int shortArray[10]={1,2,3,4,5,6,7,8,9,10} ;

int total;

Short-word memory segment file (Short-33.c) for v3.3 development tools

EE-62 Page 8
Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com

