
®

Programmer’s GuideEm
b
ed

d
ed

 S
ol

ut
io

ns

Nios®-CompactPCI® Open
Platform FPGA
Development Package
F206N – 3U CompactPCI® Intelligent Nios® Slave Board

21F206N00 E1 – 2006-03-14

About this Document

MEN Mikro Elektronik GmbH 2
21F206N00 E1 – 2006-03-14

About this Document

This manual describes how to use the the F206N Nios Slave Board as an open
FPGA development platform by means of the MEN FPGA development package.

It describes how to create a configuration table with a list of the IP Cores included in
the design as well as how to create the Wishbone bus logic.

In addition it contains a tutorial on how to install a program on the board.

For a detailed description of the Quartus II development software see the respective
documentation from Altera. See Chapter 7.1 Literature and Web Resources on page
28.

History

Conventions

This sign marks important notes or warnings concerning proper functionality of the
product described in this document. You should read them in any case.

Folder, file and function names are printed in italics.

Bold type is used for emphasis.

A monospaced font type is used for listings, C function descriptions or wherever
appropriate.

Hyperlinks are printed in blue color.

The globe will show you where hyperlinks lead directly to the Internet, so you can
look for the latest information online.

Signal names followed by "#" or preceded by a slash ("/") indicate that this signal is
either active low or that it becomes active at a falling edge.

Edition Comments Technical Content Date of Issue

E1 First edition M.Ernst 2006-03-14

!
italics

bold

monospace

hyperlink

IRQ#
/IRQ

About this Document

MEN Mikro Elektronik GmbH 3
21F206N00 E1 – 2006-03-14

Copyright Information

MEN Mikro Elektronik reserves the right to make changes without further notice to any products herein. MEN makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does MEN assume
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
"Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be
validated for each customer application by customer's technical experts.
MEN does not convey any license under its patent rights nor the rights of others.
Unless agreed otherwise, MEN products are not designed, intended, or authorized for use as components in systems intended
for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the MEN product could create a situation where personal injury or death may occur. Should Buyer purchase or
use MEN products for any such unintended or unauthorized application, Buyer shall indemnify and hold MEN and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that MEN was negligent regarding the design or manufacture of the part.

Unless agreed otherwise, the products of MEN Mikro Elektronik are not suited for use in nuclear reactors and for application
in medical appliances used for therapeutical purposes. Application of MEN products in such plants is only possible after the
user has precisely specified the operation environment and after MEN Mikro Elektronik has consequently adapted and
released the product.

ESM™, MDIS™, MDIS4™, MENMON™, M-Module™, M-Modules™, SA-Adapter™, SA-Adapters™ and UBox™ are
trademarks of MEN Mikro Elektronik GmbH. PC-MIP® is a registered trademark of MEN Micro, Inc. and SBS Technologies,
Inc. MEN Mikro Elektronik® and the MEN logo are registered trademarks of MEN Mikro Elektronik GmbH.

Altera®, Avalon®, Cyclone™, Nios® and Quartus® are trademarks or registered trademarks of Altera Corp.
CompactPCI® is a registered trademark of PCI Industrial Computer Manufacturers Group.
Microsoft® and Windows® are registered trademarks of Microsoft Corp.
Tornado® and VxWorks® are registered trademarks of Wind River Systems, Inc.
All other products or services mentioned in this publication are identified by the trademarks, service marks, or product names
as designated by the companies who market those products. The trademarks and registered trademarks are held by the
companies producing them. Inquiries concerning such trademarks should be made directly to those companies. All other brand
or product names are trademarks or registered trademarks of their respective holders.

Information in this document has been carefully checked and is believed to be accurate as of the date of publication; however,
no responsibility is assumed for inaccuracies. MEN Mikro Elektronik accepts no liability for consequential or incidental
damages arising from the use of its products and reserves the right to make changes on the products herein without notice to
improve reliability, function or design. MEN Mikro Elektronik does not assume any liability arising out of the application or
use of the products described in this document.

Copyright © 2006 MEN Mikro Elektronik GmbH. All rights reserved.

Please recycle

Germany
MEN Mikro Elektronik GmbH
Neuwieder Straße 5-7
90411 Nuremberg
Phone +49-911-99 33 5-0
Fax +49-911-99 33 5-901
E-mail info@men.de
www.men.de

France
MEN Mikro Elektronik SA
18, rue René Cassin
ZA de la Châtelaine
74240 Gaillard
Phone +33 (0) 450-955-312
Fax +33 (0) 450-955-211
E-mail info@men-france.fr
www.men-france.fr

UK
MEN Micro Ltd
Whitehall, 75 School Lane
Hartford, Northwich
Cheshire UK, CW8 1PF
Phone +44 (0) 1606 781105
Fax +44 (0) 1606 784566
E-mail info@menmicro.co.uk
www.menmicro.co.uk

USA
MEN Micro, Inc.
PO Box 4160
Lago Vista, TX 78645-4160
Phone (512) 267-8883
Fax (512) 267-8803
E-mail sales@menmicro.com
www.menmicro.com

mailto: info@men.de
http://www.men.de
mailto: info@men-france.fr
http://www.men-france.fr
mailto: info@menmicro.co.uk
http://www.menmicro.co.uk
mailto: sales@menmicro.com
http://www.menmicro.com

Contents

MEN Mikro Elektronik GmbH 4
21F206N00 E1 – 2006-03-14

Contents

1 General. 5

2 Getting Started . 7

3 Contents of Package . 8

4 Programming Interface . 9
4.1 Wishbone Basics . 9

4.1.1 Wishbone Signals . 9
4.1.2 Wishbone Access . 10

4.2 Configuration Table . 10
4.3 Creation of the Wishbone Bus. 11

4.3.1 Connections at the Wishbone Bus. 13
4.4 Interrupt Controller . 13

4.4.1 Interrupt Map . 13
4.4.2 Address Map . 14
4.4.3 Register Description . 14

4.5 Reset Controller. 16
4.5.1 Address Map . 16
4.5.2 Reset Cause Register RCR (0x00) (read/write) 16
4.5.3 Reset Mask Register RMR (0x04) (read/write) 16
4.5.4 Reset Request Register RRR (0x08) (read/write) 17
4.5.5 Watchdog Timer Register WDTR (0x10) (read/write). 17
4.5.6 Watchdog Value Register WDVR (0x14) (read/write) 18

4.6 Standard Factory FPGA Configuration . 19
4.6.1 IP Cores. 19
4.6.2 FPGA Configuration Table . 19

5 FPGA/PLD Integration . 20
5.1 Synthesis Constraints. 20

6 Programming the Nios Soft Processor . 22
6.1 Overview . 22
6.2 Creating the Project . 22
6.3 Editing the Source Code . 26
6.4 Compiling and Downloading the Program . 26

7 Appendix . 28
7.1 Literature and Web Resources . 28

General

MEN Mikro Elektronik GmbH 5
21F206N00 E1 – 2006-03-10

1 General

The Nios II-CompactPCI Open Platform FPGA Development Package includes a
sample design with an internal PCI system unit, integrating the standard Wishbone
and the Altera Avalon bus.

The PCI to Wishbone bridge forms the interface to the PCI bus, where the F206N
can then be addressed as a PCI slave. It connects to the Wishbone bus where an
SDRAM and a Flash controller are already implemented. The user can now add any
kind and number of IP cores to the Wishbone bus by using MEN's Wishbone Bus
Maker tool, which is part of the package and which can be used to generate the
Wishbone bus. The Wishbone Bus Maker can generate multi-master and multi-
slave bus systems.

A Wishbone-to-Avalon-bridge and vice versa, an Avalon-to-Wishbone-bridge -
both developed by MEN - allow the additional integration of Avalon-based IP cores
and especially of the Nios II soft processor from Altera. Nios connects to the
Avalon bus, where a GPIO module for user LED control is already implemented as
well. The user can now also add any kind and number of IP cores to the Avalon bus
by using the SOPC Builder tool from Altera. The SOPC builder is a part of the
Quartus II development package of Altera - see Chapter 7.1 Literature and Web
Resources on page 28. It is not part of MEN's Nios-CompactPCI Open Platform
FPGA Development Package.

You can find an overview of all available FPGA IP cores on MEN’s website. You
can find a detailed description of each FPGA IP core in the respective user manual
also available on MEN’s website.

Chapter 4.6 Standard Factory FPGA Configuration on page 19 gives an example
configuration, including a configuration table.

http://www.men.de

General

MEN Mikro Elektronik GmbH 6
21F206N00 E1 – 2006-03-10

Figure 1. FPGA — Block Diagram

Note that with regard to the FPGA resources such as available logic elements or pins
it is not possible to grant all possible combinations of the FPGA IP cores. Chapter
4.6 Standard Factory FPGA Configuration on page 19 describes the configuration of
the FPGA the F206N is delivered with.

W
ishbone Bus

Configuration
Table

User Module

GPIO for LEDs

PCI bus

FPGA

A
valon Bus

PCI-to-
Wishbone

Bridge

PCI
Master

PCI
Slave

Avalon-
to-

Wishbone
Bridge

Reset
Controller Nios

Interrupt
Controller CPU

Interrupt
Controller Nios

Flash

UART

SDRAM

Wishbone
-to-

Avalon
Bridge

Nios

Performance
Counter

Timer

JTAG UART

Avalon IP Core

Getting Started

MEN Mikro Elektronik GmbH 7
21F206N00 E1 – 2006-03-10

2 Getting Started

Install the F206N board as is described in the F206N user manual.

Download the Quartus II Development Software including the SOPC Builder
and the Nios II Integrated Development Environment (IDE). See Chapter 7.1
Literature and Web Resources on page 28.

Download the MEN Nios-CompactPCI Open Platform FPGA Development
Package. See Chapter 7.1 Literature and Web Resources on page 28.

Create the Configuration Table as is described in Chapter 4.2 Configuration
Table on page 10.

Create the Wishbone bus logic as is described in Chapter 4.3 Creation of the
Wishbone Bus on page 11.

http://www.men.de/default.asp?prod=02F206N

Contents of Package

MEN Mikro Elektronik GmbH 8
21F206N00 E1 – 2006-03-10

3 Contents of Package

The development package contains the following files:

Bus Maker

This folder contains the files needed for the creation of the Wishbone bus logic.

Configuration Table

The folder Chameleon contains the files needed for the creation of the file
chameleon.hex. This file contains the configuration table with a list of the IP Cores
included in the FPGA.

Quartus Project Archive

The F206n00IC001C01.qar file contains all sources and the bridge modules needed
to connect the Wishbone bus to the Avalon bus. MEN cores are included as vqm
files.

Program File

The file F206n00IC001C01.sof is the tested program file which contains the
original MEN FPGA configuration.

+busmaker
| |-busmaker.exe
| |-cygwin1.dll
|
+Chameleon
| |-chameleon.hex
| |-chameleon.xls
| |-Chameleon_V2.exe
|
|-F206n00IC001C01.qar
|-F206n00IC001C01.sof

Programming Interface

MEN Mikro Elektronik GmbH 9
21F206N00 E1 – 2006-03-10

4 Programming Interface

4.1 Wishbone Basics

The Wishbone bus is an open source system-on-chip (SoC) interconnection
architecture. It was developed to provide a standard internal bus interface. This
enables the user to reuse designs and avoid interconnection problems.

The Wishbone bus is a master/slave bus which supports multiple masters and
multiple slaves. While creating the Wishbone master bus, the user can decide which
master has access to which slave. A slave can be accessed by more than one master.
The arbitration is done inside the Wishbone bus module. MEN designs are based on
the Wishbone bus. So in order to understand the integration of IP Cores inside an
MEN system, the user needs to know the basics of the Wishbone bus and its
connection prerequisites. Though the Wishbone bus can be created using the bus
maker, the connections to the PCI core cannot be altered. The PCI core needs to be
created at MEN.

4.1.1 Wishbone Signals

The Wishbone bus uses a standard handshake which requires a chip select (cycle), a
strobe and acknowledge as response. Furthermore there are data in/out and address
in.

Table 1. Wishbone bus signal mnemonics (slave side)

In addition to above signals there can be an error signal and burst signals. For a
detailed description please refer to the Wishbone specification. See Chapter 7.1
Literature and Web Resources on page 28.

The MEN Wishbone system supports bursts only with an address increment of 4.
Any other increments will probably result in an error.

There is a Wishbone monitor which can survey all signals on the bus. It can be used
while simulating the design. It can be integrated in synthesis too, but at the moment
it is recommended to use it in simulation only.

Signal Direction Function

clk in Master clock

rst in Reset

adr [31:0] in Address bits

dat_i [31:0] in Data towards the core

dat_o [31:0] out Data from the core

sel [3_0] in Byte select signals

we in Write enable

stb in Strobe signal

cyc in Valid bus cycle

ack out Bus cycle acknowledge

int out Interrupt request

Programming Interface

MEN Mikro Elektronik GmbH 10
21F206N00 E1 – 2006-03-10

4.1.2 Wishbone Access

A basic read access looks like this (n= slave number at Wishbone bus):

Figure 2. Wishbone Read Cycle

Cycle and strobe are set to one. The address needs to be a valid address for the IP
Core during the access. The IP Core prepares the data and asserts acknowledge.
While acknowledge is asserted, the data on the output port needs to be valid.
Acknowledge is asserted for one clock cycle. Strobe is reset immediately after
assertion of acknowledge. If strobe is set to zero, it will be interpreted as the next
access.

Note: All outputs of the Wishbone IP Cores should be registered. Having non regis-
tered output generates long signal paths and should be avoided. Problems
arising out of non registered IP Core outputs may result in timing problems
all over the Wishbone bus.

4.2 Configuration Table

The FPGA contains a configuration table, also called chameleon table, which
provides the information which IP Cores are implemented (device number) in the
current configuration. Furthermore the revision, the instance number (one module
can be instantiated more than one time), the interrupt routing and the base address of
the IP Core are stored. At initialization time, the CPU has to read the chameleon
table to get the information of the base addresses of the included IP Cores.

The chameleon table is stored in an internal RAM at address 0x0000 of the FPGA.
The Magic Word is used by software to identify the chameleon table.

The chameleon table is created out of the Excel sheet provided as part of the
development package. To create a hex file out of the chameleon.xls file you need to
use the Perl script Chameleon_V2.exe also included in the development package.

To start the compilation process, start cham.exe with parameter -i=infile. The Excel
file will be converted into a file called chameleon.hex. This file needs to be inside
the synthesis folder to make sure it is compiled correctly. A path can be defined as

wbsi_n_cyc

wbsi_n.stb

wbso_n.ack

wbsi_n.adr

wbsi_n.dat

wbsi_n.we

valid

valid

clk

!

Programming Interface

MEN Mikro Elektronik GmbH 11
21F206N00 E1 – 2006-03-10

generic for the system module, but in a precompiled system module the standard
path (inside the synthesis folder) will be used.

If you have problems to find the chameleon table after the compilation process,
make sure it is included in the design. The existence of the hex file in the design and
the path to the hex file can be checked inside the Quartus Design Software. Check
the compilation report in the fitter section and check for RAM summary. Also make
sure that the write enable on the IRAM module is tied to ‘0’.

You can find the MEN standard FPGA configuration table in Chapter 4.6 Standard
Factory FPGA Configuration on page 19.

4.3 Creation of the Wishbone Bus

The PCI Bus is created at MEN and distributed as a precompiled core. The
Wishbone Bus is created by using the Wishbone bus maker. The bus maker can be
found inside the PCI Core Module work directory and is a simple command line
based creation tool for a Wishbone bus.

In order to create a Wishbone bus you will be prompted to enter the number of
masters and slaves.

The following dialog will define the interconnections between each master and
slave. Every single connection possibility inside the system (master/slave) will be
asked and a connection can either be set or not set. A connection is set by entering
‘1’ when asked, no connection is reflected by ‘0’.

To avoid errors while entering the connections, it is recommended to create a table
with all connections before creating the bus.

Number of Wishbone-Master Interfaces: 2
Number of Wishbone-Slave interfaces: 7

Is master 0 with slave 0 connected (1=yes/0=no)? 1
Is master 0 with slave 1 connected (1=yes/0=no)? 1
Is master 0 with slave 2 connected (1=yes/0=no)? 1
Is master 0 with slave 3 connected (1=yes/0=no)? 0
Is master 0 with slave 4 connected (1=yes/0=no)? 0
Is master 0 with slave 5 connected (1=yes/0=no)? 0
Is master 0 with slave 6 connected (1=yes/0=no)? 1
Is master 1 with slave 0 connected (1=yes/0=no)? 0
Is master 1 with slave 1 connected (1=yes/0=no)? 0
Is master 1 with slave 2 connected (1=yes/0=no)? 0
Is master 1 with slave 3 connected (1=yes/0=no)? 1
Is master 1 with slave 4 connected (1=yes/0=no)? 1
Is master 1 with slave 5 connected (1=yes/0=no)? 1
Is master 1 with slave 6 connected (1=yes/0=no)? 1

Programming Interface

MEN Mikro Elektronik GmbH 12
21F206N00 E1 – 2006-03-10

Table 2. Exemplary setup of Wishbone connections

After entering all connections, the program will close and two files will be edited
inside the bus maker directory. wb_bus.vhd and wb_bus_inst.vhd will contain the
new bus configuration now. wb_bus.vhd will contain the Wishbone bus and should
be copied to the source directory. wb_bus_inst.vhd contains an instantiation and
signal declaration of the Wishbone bus. All standard signals are defined in this file.

Note that one slave can be accessed by up to four masters. If more masters are
needed for a single slave, a new arbitration unit needs to be created.

S0 S1 S2 S3 S4 S5 S6

M0 1 1 1 0 0 0 1

M1 0 0 0 1 1 1 1

Programming Interface

MEN Mikro Elektronik GmbH 13
21F206N00 E1 – 2006-03-10

4.3.1 Connections at the Wishbone Bus

In the current configuration five masters and nine slaves are connected via the
Wishbone bus. The following table shows which master has access to which slave.

Table 3. Connections at the Wishbone bus

4.4 Interrupt Controller

Interrupts can be created in three different ways: Parallel, sequential and with
regular PCI Interrupts.

In the current design, the interrupt controller is an individual module. It has to be
defined which type of interrupt is used. The interrupts are routed into the module as
a vector.

Interrupts can be set and reset by writing to a register. Note that a ‘1’ will toggle the
interrupt requests. Interrupts can only be reset when the interrupt inputs from the
modules are not ‘1’.

4.4.1 Interrupt Map

Table 4. Interrupt Map

C
h

am
el

eo
n

IR
Q

 C
P

U

IR
Q

 N
io

s

R
es

et
 N

io
s

U
A

R
T

G
P

IO

F
la

sh
 C

o
n

tr
o

lle
r

S
D

R
A

M

U
se

r
M

o
d

u
le

PCI x x x x x x x x x

User Master x

Avalon BAR0 x x x x x x x

Avalon SDRAM x

Avalon User Module x

Interrupt Module

1 UART

2 GPIO

3 User Module

4 SoftIRQ CPU

5 SoftIRQ Nios

Programming Interface

MEN Mikro Elektronik GmbH 14
21F206N00 E1 – 2006-03-10

4.4.2 Address Map

Table 5. FPGA — Address Map

4.4.3 Register Description

There are some registers which can be accessed via the FPGA-internal Wishbone
bus. Note that any module’s interrupt request must be enabled or disabled in the
module which generates the interrupt. Interrupt signaling for each request can be
enabled or disabled.

For interrupt requests from FPGA-internal modules (e.g. on Wishbone or Avalon
bus) the default for interrupt enable should be generally enabled.

Interrupt requests cannot be reset in the 16z052_GIRQ interrupt controller. Interrupt
acknowledge must be done in the module which is the source of the interrupt. The
Interrupt Request Register (IRQR) only indicates the state of the interrupt requests.

4.4.3.1 Interrupt Request Register IRQR (0x00) (read/write)

Default value: 0x0 (all bits)

The interrupt request register can be used to set a software interrupt. If no external
signal is set at the input, then the interrupt request register can be toggled by writing
‘1’ to the specific register bit.

4.4.3.2 Interrupt Enable Register IREN (0x08) (read/write)

Default value: depending on GENERIC IRQ_EN_DFLT

Address (x-1)..0

0x00 Interrupt Request Register (IRQR) (r/w)

0x08 Interrupt Enable Register (IRER) (r/w)

0x10 reserved Interrupt Method Register
(IMTHD) [7..0](r)

x-1 x-2 3 2 1 0

IRQR (x-1) IRQR (x-2) ... IRQR(3) IRQR(2) IRQR(1) IRQR(0)

IRQRx Interrupt request for input x
0 = No interrupt pending for source (module) x
1 = Interrupt pending for source (module) x

x-1 x-2 3 2 1 0

IREN (x-1) IREN (x-2) ... IREN(3) IREN(2) IREN(1) IREN(0)

IRENx Interrupt enable for input x
0 = No interrupt will be generated for source (module) x
1 = Interrupt generated for source (module) x

Programming Interface

MEN Mikro Elektronik GmbH 15
21F206N00 E1 – 2006-03-10

4.4.3.3 Interrupt Method Register (0x10) (read only)

Default value: as GENERIC

7 6 5 4 3 2 1 0

IRQ Method

IRQ Method Interrupt signaling method to CPU
0x00 = Interrupt signaling via single PCI interrupt
0x01 = Interrupt signaling via serial interrupt stream to EPIC
0x02 = Interrupt signaling via parallel interrupt
0x03..0xFF
=

Reserved for future use

Programming Interface

MEN Mikro Elektronik GmbH 16
21F206N00 E1 – 2006-03-10

4.5 Reset Controller

4.5.1 Address Map

Table 6. FPGA — Address Map

4.5.2 Reset Cause Register RCR (0x00) (read/write)

This register stores every reset which is not masked by the corresponding bit in
RMR.

Default Value: 0x00000000 (after power up)

4.5.3 Reset Mask Register RMR (0x04) (read/write)

This register supplies a mask bit for every reset input and is used to decide whether
a reset has to be generated or not. The designer can preset the reset mask.

Default Value: depends on DEFAULT_RESET_MASK (after power up)

Address D15..D0

0x00 Reset Cause Register RCR (r/w)

0x04 Reset Mask Register RMR (r/w)

0x08 Reset Request Register RRR (r/w)

0x10 Watchdog Timer Register WDTR (r/w)

0x14 Watchdog Value Register WDVR (r/w)

x-1 x-2 3 2 1 0

RST (x-1) RST (x-2) ... RST(3) RST(2) RST(1) RST(0)

RST Reset input x
0 = Read: reset x not occurred

Write: do not clear reset cause
1 = Read: reset x occurred

Write: clear reset cause

x-1 x-2 3 2 1 0

MRST (x-1) MRST (x-2) ... MRST(3) MRST(2) MRST(1) MRST(0)

MRST Mask for reset input x
0 = Mask for reset input x is not set
1 = Mask for reset input x is set

Programming Interface

MEN Mikro Elektronik GmbH 17
21F206N00 E1 – 2006-03-10

4.5.4 Reset Request Register RRR (0x08) (read/write)

This register shows the status of each reset input and is used together with the reset
mask register to generate the reset controller reset output. When activating the mask
bit for some reset input, this input can be monitored without a reset being generated.

Default Value: 0x00000000 (after power up)

4.5.5 Watchdog Timer Register WDTR (0x10) (read/write)

This register is used to set the watchdog expiration time and to activate the
watchdog.

Default Value: 0x0000

x-1 x-2 3 2 1 0

MRST (x-1) MRST (x-2) ... MRST(3) MRST(2) MRST(1) MRST(0)

RSTR Reset request on input x
0 = Read: reset x not occurred

Write: do not clear reset cause
1 = Read: reset x occurred

Write: clear reset cause

15 14..0

WDEN WDET

WDEN Watchdog enable
0 = Internal watchdog is disabled
1 = Internal watchdog is enabled

WDET Watchdog expiration time value

(is multiplied by the period time of CLK_500)

Programming Interface

MEN Mikro Elektronik GmbH 18
21F206N00 E1 – 2006-03-10

4.5.6 Watchdog Value Register WDVR (0x14) (read/write)

This register has to be used to trigger the watchdog.

When no trigger occurs after the watchdog has been activated the internal watchdog
counter times out and a watchdog reset is generated.

Default value: 0xFFFF

15..0

Watchdog trigger value

WDTV Watchdog trigger value
0x5555 Valid trigger value

(must be set when previous watchdog trigger value =
0xAAAA)

0xAAAA Valid trigger value

(must be set when previous watchdog trigger value =
0x5555)

Programming Interface

MEN Mikro Elektronik GmbH 19
21F206N00 E1 – 2006-03-10

4.6 Standard Factory FPGA Configuration

4.6.1 IP Cores

The factory FPGA configuration for standard boards comprises the following FPGA
IP cores:

• 16Z052_GIRQ — Interrupt Controller CPU

• 16Z052_GIRQ — Interrupt Controller Nios

• 16Z069_RST — Reset Controller Nios

• 16Z025_UART — UART Controller (controls COM10)

• 16Z045_FLASH — Flash Controller

• 16Z043_SDRAM — SDRAM Controller

4.6.2 FPGA Configuration Table

The resulting chameleon table of the standard FPGA is as follows:

Table 7. FPGA — Factory Standard Configuration Table for F206N

Name Device Variant Revision Interrupt Group Instance BAR Offset Size
Chameleon Table 24 1 1 3F 0 0 0 0 200
16Z052_GIRQ 52 0 2 4 0 0 0 200 100
16Z052_GIRQ 52 0 2 5 1 1 0 300 100
16Z069_RST 69 0 2 3F 1 1 0 400 100
16Z025_UART 25 0 A 1 0 0 0 500 100
16Z045_FLASH 45 0 2 3F 0 0 0 600 100
16Z043_SDRAM
prefetchable 43 0 8 3F 0 0 1 0 2E+06
16Z043_SDRAM 43 0 8 3F 0 1 2 0 2E+06
User Module 62 0 0 2 0 0 3 0 2E+06
Avalon Bus 46 0 0 6 1 0 4 0 2E+06

Magic Word
Variant
Revision

Name Device Variant Revision Interrupt Group Instance
Nios 78 0 0 3 1 0

Boot address
0

General Descriptors

All values are given in
hexadecimal notation.

ABCE
2
1

CPU Descriptors

FPGA/PLD Integration

MEN Mikro Elektronik GmbH 20
21F206N00 E1 – 2006-03-10

5 FPGA/PLD Integration

5.1 Synthesis Constraints

The synthesis constraints for the F206N FPGA are:

Analysis & Synthesis Assignments
================================
set_global_assignment -name DEVICE_FILTER_PACKAGE FBGA
set_global_assignment -name DEVICE_FILTER_PIN_COUNT 324
set_global_assignment -name DEVICE_FILTER_SPEED_GRADE 6
set_global_assignment -name EDA_DESIGN_ENTRY_SYNTHESIS_TOOL "<None>"
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name ALLOW_POWER_UP_DONT_CARE OFF
set_global_assignment -name TOP_LEVEL_ENTITY f206_top
set_global_assignment -name AUTO_ENABLE_SMART_COMPILE ON

Fitter Assignments
==================
set_global_assignment -name DEVICE EP1C12F324C6
set_global_assignment -name CYCLONE_CONFIGURATION_SCHEME "PASSIVE
SERIAL"
set_global_assignment -name RESERVE_ALL_UNUSED_PINS "AS INPUT TRI-
STATED"
set_global_assignment -name ENABLE_INIT_DONE_OUTPUT ON
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[0]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[10]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[11]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[12]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[13]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[14]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[15]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[16]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[17]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[18]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[19]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[1]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[20]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[21]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[22]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[23]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[24]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[25]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[26]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[27]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[28]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[29]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[2]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[30]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[31]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[3]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[4]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[5]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[6]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[7]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[8]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to ad[9]

FPGA/PLD Integration

MEN Mikro Elektronik GmbH 21
21F206N00 E1 – 2006-03-10

set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to cbe_n[0]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to cbe_n[1]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to cbe_n[2]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to cbe_n[3]
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to devsel_n
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to frame_n
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to gnt_n
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to idsel
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to inta_n
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to intb_n
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to irdy_n
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to par
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to perr_n
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to req_n
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to serr_n
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to trdy_n
set_instance_assignment -name IO_STANDARD "3.3-V PCI" -to pci_rst_n
set_global_assignment -name ERROR_CHECK_FREQUENCY_DIVISOR 1
set_global_assignment -name STRATIX_DEVICE_IO_STANDARD

Timing Assignments
==================

set_instance_assignment -name TSU_REQUIREMENT "7 ns" -to ad
set_instance_assignment -name TCO_REQUIREMENT "11 ns" -to ad
set_instance_assignment -name TSU_REQUIREMENT "7 ns" -to cbe_n
set_instance_assignment -name TSU_REQUIREMENT "7 ns" -to devsel_n
set_instance_assignment -name TSU_REQUIREMENT "7 ns" -to frame_n
set_instance_assignment -name TSU_REQUIREMENT "7 ns" -to gnt_n
set_instance_assignment -name TSU_REQUIREMENT "7 ns" -to idsel
set_instance_assignment -name TCO_REQUIREMENT "11 ns" -to inta_n
set_instance_assignment -name TSU_REQUIREMENT "7 ns" -to intb_n
set_instance_assignment -name TSU_REQUIREMENT "7 ns" -to irdy_n
set_instance_assignment -name TSU_REQUIREMENT "7 ns" -to lock_n
set_instance_assignment -name TSU_REQUIREMENT "7 ns" -to par
set_instance_assignment -name TSU_REQUIREMENT "7 ns" -to perr_n
set_instance_assignment -name TCO_REQUIREMENT "11 ns" -to req_n
set_instance_assignment -name TSU_REQUIREMENT "7 ns" -to serr_n
set_instance_assignment -name TSU_REQUIREMENT "7 ns" -to stop_n
set_instance_assignment -name TSU_REQUIREMENT "7 ns" -to trdy_n
set_instance_assignment -name TCO_REQUIREMENT "11 ns" -to cbe_n
set_instance_assignment -name TCO_REQUIREMENT "11 ns" -to devsel_n
set_instance_assignment -name TCO_REQUIREMENT "11 ns" -to frame_n
set_instance_assignment -name TCO_REQUIREMENT "11 ns" -to irdy_n
set_instance_assignment -name TCO_REQUIREMENT "11 ns" -to par
set_instance_assignment -name TCO_REQUIREMENT "11 ns" -to perr_n
set_instance_assignment -name TCO_REQUIREMENT "11 ns" -to serr_n
set_instance_assignment -name TCO_REQUIREMENT "11 ns" -to stop_n
set_instance_assignment -name TCO_REQUIREMENT "11 ns" -to trdy_n
set_instance_assignment -name TSU_REQUIREMENT "2.1 ns" -to sd_d
set_instance_assignment -name TCO_REQUIREMENT "6 ns" -to sd_a
set_instance_assignment -name TCO_REQUIREMENT "6 ns" -to sd_ba
set_instance_assignment -name TCO_REQUIREMENT "6 ns" -to sd_cas_n
set_instance_assignment -name TCO_REQUIREMENT "6 ns" -to sd_cs_n
set_instance_assignment -name TCO_REQUIREMENT "6 ns" -to sd_d
set_instance_assignment -name TCO_REQUIREMENT "6 ns" -to sd_dqm
set_instance_assignment -name TCO_REQUIREMENT "6 ns" -to sd_ras_n
set_instance_assignment -name TCO_REQUIREMENT "6 ns" -to sd_we_n

Programming the Nios Soft Processor

MEN Mikro Elektronik GmbH 22
21F206N00 E1 – 2006-03-10

6 Programming the Nios Soft Processor

6.1 Overview

This is a small tutorial on how to create and download a simple example for the
F206N Nios CPU. It requires the Nios II integrated development environment (IDE)
installed on your PC and a JTAG connection to the F206N board. Alternatively the
program can be downloaded directly into the SDRAM at offset address 0x0.

The result of this tutorial will be a program running on your F206n board. The
LEDs will blink, so there is a visible result.

6.2 Creating the Project

The first step is the creation of a project in the Nios IDE. Start the IDE and set
up a workspace at a location on your hard disk.

Create a new project. Choose New in the file menu and select Project...

Programming the Nios Soft Processor

MEN Mikro Elektronik GmbH 23
21F206N00 E1 – 2006-03-10

Choose C/C++ Application in the window and press on Next.

Programming the Nios Soft Processor

MEN Mikro Elektronik GmbH 24
21F206N00 E1 – 2006-03-10

Choose the Hello LED template. Then in order to select a target hardware click
on Browse.

Programming the Nios Soft Processor

MEN Mikro Elektronik GmbH 25
21F206N00 E1 – 2006-03-10

Select NIOS.ptf in your synthesis folder and press Open.

Finish the project creation.

Programming the Nios Soft Processor

MEN Mikro Elektronik GmbH 26
21F206N00 E1 – 2006-03-10

6.3 Editing the Source Code

The code needs a bit of editing in order to match a 4 Bit PIO.

Open the hello_led.c file and change the direction switch condition.

The LED PIO will switch the direction when reaching the outermost LEDs
now.

6.4 Compiling and Downloading the Program

Make sure that you have activated the Avalon bus by clearing the reset. This can
be done by writing 0x02 to the Reset Mask Register RMR (0x04) of the reset
controller.

After the reset is disabled, the Nios tries to boot from SDRAM.

MenMon> cb0 80200404
80200404: 00-> 02
80200404: 02-> q
MenMon>

Programming the Nios Soft Processor

MEN Mikro Elektronik GmbH 27
21F206N00 E1 – 2006-03-10

Right click the hello_led project and choose Run As Nios II Hardware to down-
load and run the program on hardware. The project will be built if changes have
been made and downloaded to the Nios hardware via JTAG.

The Nios Console will show the following text if the download succeeded:

Appendix

MEN Mikro Elektronik GmbH 28
21F206N00 E1 – 2006-03-10

7 Appendix

7.1 Literature and Web Resources

• For up-to-date information on accessories and software for the F206N see the
F206N data sheet on MEN’s website

• WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable
IP Cores
Revision: B.3, Released: September 7, 2002
www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf

• For more information about Altera’s Nios Processor and Quartus Design Soft-
ware see www.altera.com/literature

http://www.men.de/default.asp?prod=02F206N
http://www.altera.com/literature
http://www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf

	About this Document
	History
	Conventions
	Copyright Information

	Contents
	1 General
	2 Getting Started
	3 Contents of Package
	Bus Maker
	Configuration Table
	Quartus Project Archive
	Program File

	4 Programming Interface
	4.1 Wishbone Basics
	4.1.1 Wishbone Signals
	4.1.2 Wishbone Access

	4.2 Configuration Table
	4.3 Creation of the Wishbone Bus
	4.3.1 Connections at the Wishbone Bus

	4.4 Interrupt Controller
	4.4.1 Interrupt Map
	4.4.2 Address Map
	4.4.3 Register Description
	4.4.3.1 Interrupt Request Register IRQR (0x00) (read/write)
	4.4.3.2 Interrupt Enable Register IREN (0x08) (read/write)
	4.4.3.3 Interrupt Method Register (0x10) (read only)

	4.5 Reset Controller
	4.5.1 Address Map
	4.5.2 Reset Cause Register RCR (0x00) (read/write)
	4.5.3 Reset Mask Register RMR (0x04) (read/write)
	4.5.4 Reset Request Register RRR (0x08) (read/write)
	4.5.5 Watchdog Timer Register WDTR (0x10) (read/write)
	4.5.6 Watchdog Value Register WDVR (0x14) (read/write)

	4.6 Standard Factory FPGA Configuration
	4.6.1 IP Cores
	4.6.2 FPGA Configuration Table

	5 FPGA/PLD Integration
	5.1 Synthesis Constraints

	6 Programming the Nios Soft Processor
	6.1 Overview
	6.2 Creating the Project
	6.3 Editing the Source Code
	6.4 Compiling and Downloading the Program

	7 Appendix
	7.1 Literature and Web Resources

