
Proceedings
6° ConTEXt meeting, Breskens, The Netherlands

1 1

1 1

contextgroup > context meeting 2012

Imprint

President
Taco Hoekwater
cg-president@contextgarden.net

Secretary
Willi Egger
cg-secretary@contextgarden.net

Treasurer
Mojca Miklavec
cg-treasurer@contextgarden.net

Boardmembers
John Haltiwanger
Jano Kula
Thomas A. Schmitz
Peter Münster

Journal editors
John Haltiwanger
Taco Hoekwater

Postal address
Maasstraat 2
5836 BB Sambeek
The Netherlands

Bank connection
La Banque Postale
FR86 2004 1010 1308 3104 6H03 464
PSSTFRPPREN
Centre de Rennes
35900 Rennes Cedex 9
France

Bank account owner
Context Group
La Roche Blanche
35190 Québriac
France

Website
http://group.contextgarden.net

Design
Adrian Egger

Copyright
© 2013 Context Group

At the fourth ConTEXt meeting in the Czech Republic, the idea came up to create an or-
ganisation that would foster ConTEXt development and act as a showcase to attract new
users and support the old ones, much like TUG and the local user groups helped shaping
and promoting TEX in the 1980s.

That group now exists formally with the name Context Group, as a non-profit organisation
in French law (“association loi 1901”). A number of people have volunteered to be on the
board, which held its first meeting during the 5th ConTEXt Meeting. We hope to set up an
organisation that will inspire people to contribute even more to the ConTEXt community,
and we need your help!

The Context Group offers its members:

• A yearly multi-day ConTEXt meeting somewhere in Europe.

• This journal, which also doubles as the proceedings of that meeting.

• An easy to install and update ConTEXt installation.

• A discount to other TEX related conferences.

Becoming a member is possible by filling in the form on the Context Group website (URL
on the left) and paying the membership fee via paypal or bank transfer. The yearly mem-
bership fee is currently 40 € for regular individuals and 20 € for students.

Articles can be sent to cg-journal@contextgarden.net, preferably using the cgjmod-
ule which can be found in the ConTEXt distribution.

This journal is typeset using the latest ConTEXt beta at the time of production, using the
latest version of LuaTEX. The used fonts are the commercial ‘Alwyn New’ family by Chris
Dickinson ofmoretype for the running text, the freeware font ‘Inconsolata’ for code blocks,
and ‘TEX Gyre Pagella math’ for mathematics.

2 2

2 2

contents

Contents

5 Dayplan

7 CrafTEX —Mari Voipio

8 MetaPost: PNG Output — Taco Hoekwater

10 Database publishing with the speedata Publisher — Patrick Gundlach

11 Minutes of the 2nd ConTEXt Group membership meeting —Willi Egger

14 MetaPost path resolution isolated — Taco Hoekwater

20 Parsing PDF content streams with LuaTEX — Taco Hoekwater

25 MFLua: Instrumentation of MF with Lua — Luigi Scarso

37 Conference portfolio —Willi Egger

42 Simple Spreadsheets — Hans Hagen

53 Oriental TEX: optimizing paragraphs — Hans Hagen & Idris Samawi Hamid

83 MlbibTEX and Its New Extensions — Jean-Michel Hufflen

93 Demonstration of the ‘mlbibcontext’ Program — Jean-Michel Hufflen

95 Abstracts without papers

97 Participant list of the 6th ConTEXt meeting

3 3

3 3

contextgroup > context meeting 2012

4

4 4

4 4

dayplan > 5th context meeting

5

Dayplan

Monday, 8 October 2012

09:00 Conference opening

09:15 Kees van der Laan Recreational TEX&Co - with a serious undertone

10:15 Jano Kula Run for Fun

11:30 Mari Voipio TEXtile crafts

14:00 Kees van der Laan Julia fractals in PostSCript

14:45 Taco Hoekwater MetaClock

16:00 Patrick Gundlach Database publishing with LuaTEX and the speedata Publisher

16:45 Patrick Gundlach A journey to the land of LuaLATEX

17:30 Dante membership meeting

20:30 CG membership meeting

Tuesday, 9 October 2012

09:00 Uwe Ziegenhagen Professional Business Reports with LATEX

09:45 Leo Arnold Many versions from one source - LATEX for lecturers and teachers

11:00 Taco Hoekwater MetaPost path resolution isolated

11:45 Taco Hoekwater Parsing PDF content streams with LuaTEX

14:00 Hans Hagen context: the script

14:45 Hans Hagen context: after the cleanup

16:00 Luigi Scarso MFLua

16:45 Mari Voipio Metapost workshop

20:30 Willi Egger Conference folder workshop

Wednesday, 10 October 2012

09:00 Excursion

19:30 Conference Dinner

5 5

5 5

contextgroup > context meeting 2012

6

Thursday, 11 October 2012

09:00 Bogusłav Jackowski OTF math fonts: GUST e-foundry’s workbench

09:45 Jerzy Ludwichowski Present and future of the TG Math Project: the report and some
questions

11:00 Piotr Strzelczyk Is backward compatibility of LM Math and CM math sensible?

11:45 Gust Foundry BOF session: ‘The future of math fonts’

14:00 Hans Hagen xml

14:45 Hans Hagen a couple of styles

16:00 Hans Hagen lexing

16:45 Hans Hagen (visual) debugging

Friday, 12 October 2012

09:00 Yamamoto Munehiro TEX Typesetting Circumstances for Japanese Publishing

09:45 Kitagawa Hironori Japanese Typesetting with LuaTEX

11:00 Hans Hagen Tricks with the parbuilder (Arabic typesetting)

11:45 Ivo Geradts Typesetting Sanskrit with LuaTEX
Kai Eigner

14:00 Hans Hagen mixed columns

14:45 Tomás Hála Differences in typesetting rules between Czech and Slovak languages
(in the context of ConTEXt)

16:00 Jean-Michel Hufflen MlBibTEX and Its New Extensions

16:45 Jean-Michel Hufflen Demonstration of the mlbibcontext Program

17:45 Sietse Brouwer Bof session: Context Wiki

18:30 2013 Announcements

18:45 Conference closing

6 6

6 6

craftex > mari voipio

7

CrafTEX
Applying TEX and friends in crafts
Mari Voipio

Everything started at my job as Documentation
manager in hi-tech industry: when the word
processor gave up on our big fat instruction
manual and the purpose-built software wasn’t
within budget, we ended up with ConTEXt. The
transit period wasn’t easy, but in time I learned
to appreciate this software that does not make
assumptions on what I’m attempting to do.
Thus, when I suddenly found myself with a tex-
tile craft book to be translated and prepared for
printing, I thought of ConTEXt. Life happened
and the booklet is still sitting onmy desk waiting
for its turn, but in the meanwhile I have learned
many other things about TEX based systems and
started to exploit their potential in crafts.
The experience has been mind-blowing! I come
up with new implementations almost weekly,
although I don’t usually try things out until I have
a real need for them. I amnot a programmer, but
I realize that a computer is especially useful in
reducing the tedious repetitiveness of the plan-
ning stages. Nothing can ever prepare a crafter

to what happens when you play with real yarn
and real paper and glue, but the "what if that’s
lighter blue" and "I guess this really is wrong font
here" process can be speeded up significantly by
computer simulation.
I don’t feel complete until I’ve shared my
knowledge with others. I don’t get that many
face-to-face opportunities to that, so I decided
to go online instead, http://www.lucet.fi/. I
haven’t had the energy to fight with WordPress
about the printing styles, so instead I’m planning
to do printer-friendly pdf instructions with
ConTEXt and MetaPost.
Besides enhancing my creativity, I also use
ConTEXt to deal with the boring but necessary
parts of having my own little craft business,
e.g. for creating price lists and business cards.
This migration is still very much in process, but
eventually everything will be done with ConTEXt
and possibly MetaPost and with as few different
style definitions as possible.

7 7

7 7

contextgroup > context meeting 2012

8

MetaPost: PNG Output
Taco Hoekwater

The latest version of Metapost (1.80x) has a third output backend: it is now possible to
generate PNG bitmaps directly from within Metapost.

Introduction
For one of my presentations at EuroTEX2012 in
Breskens, I wanted to create an animation in or-
der to demonstrate a Metapost macro that uses
timer variables to progress through a scene.
While working on that presentation, it quickly
became obvious that the ‘traditional’ method of
creating an animation with Metapost by using
ImageMagick’s convert to turn EPS images into
PNG images was very time consuming. So much
so, that I actually managed to write a new back-
end forMetapost while waiting for ImageMagick
to complete the conversion.

Simple usage
Metapostwill create a PNG image (instead of En-
capsulated PostScript or Scalable Vector Graph-
ics) by setting outputformat to the string png:

outputformat := "png";

outputtemplate := "%j-%c.%o";

beginfig(1);

fill fullcircle scaled 100

withcolor red;

endfig;

end.

This input generates a bitmap file with dimen-
sions 100 x 100 pixels, with 8-bit/color RGBA. It
shows a red dot on a transparent background.

Adjusting the bitmap size
In the simple example given above, Metapost
has used the default conversion ratio where one

point equals one pixel. This is not always de-
sired, and it is tedious to have to scale the pic-
turewhenever a different output size is required.
To allow easy modification of the bitmap size
independent of the actual graphic, two new in-
ternal parameters have been added: hppp and
vppp (the names come from Metafont, but the
actual meaning is specific to Metapost).
In Metapost, ‘hppp’ stands for ‘horizontal points
per pixel’, and similarly for ‘vppp’. Adding

hppp := 2.0;

to the example above changes the bitmap into
50 x 100 pixels. Specifying values less than 1.0
(but above zero!) makes the bitmap larger.

Adjusting the output options
Metapost creates a 32-bit RGBA bitmap image,
unless the user alters the value of another new
internal parameter: outputformatoptions.
The syntax for outputformatoptions is a
space-separated list of settings. Individual
settings are keyword + = + value. The only
currently allowed ones are:

format=[rgba|rgb|graya|gray]

antialias=[none|fast|good|best]

No spaces are allowed on the left, nor on the
right, of the equals sign inside a setting.
The assignment that would match the com-
piled-in default setup is:

8 8

8 8

metapost: png output > taco hoekwater

9

outputformatoptions :=

"format=rgba antialias=fast";

however, outputformatoptions is initially the
empty string, because that makes it easier to
test whether a user-driven change has already
been made.

Some notes on the different PNG output for-
mats:

• The rgb and gray subformats have a
white background. The rgba and graya
subformats have a transparent back-
ground.

• The bitdepth is always 8 bits per pixel
component.

• In all cases, the current picture is ini-
tially created in 8-bit RGB mode. For
the gray and graya subformats, the RGB
colors are reduced just before the actual
PNG file is written, using a standard rule:

𝑔 = 0.2126∗ 𝑟+0.7152∗𝑔+0.0722∗ 𝑏

• CMYK colors are always converted to
RGB during generation of the output
image using:

𝑟 = 1 − (𝑐 + 𝑘 > 1?1 : 𝑐 + 𝑘);
𝑔 = 1 − (𝑚 + 𝑘 > 1?1 : 𝑚 + 𝑘);
𝑏 = 1 − (𝑦 + 𝑘 > 1?1 : 𝑦 + 𝑘);

If you care about color conversions, you
should be doing a within <pic> loop
inside extra_endfig. The built-in con-
versions are more of a fallback.

What you should also know
Metapost uses cairo (http://cairographics.org)
to do the bitmap creation, and then uses libpng
(http://www.libpng.org) to create the actual file.
Any prologues setting is always ignored: the
internal equivalent of the glyph of operator is
used to draw characters onto the bitmap di-
rectly.
If there are points in the current picture with
negative coordinates, then the whole picture is
shifted upwards to prevent things from falling
outside the generated bitmap.

9 9

9 9

contextgroup > context meeting 2012

10

Database publishing with LuaTEX and the speedata Publisher
Patrick Gundlach

Database Publishing is the repetitive (semi) au-
tomatic transformation from a data source to
some kind of output (HTML, PDF, epub,...). A
common task is to have an excel sheet, a
product information management system or a
webshop database and generate reports, data
sheets, product catalogs or other kind of PDF
documents out of it. Database publishing is
often equal to "InDesign Publishing" with the
help of some plugin that automates the task of
pulling data from the database into the docu-
ment. The user can (and must) make the result-
ing document more beautiful.
There are several alternatives to this approach,
especially when you need 100% unattended
workflows. Each alternative has advantages and
of course drawbacks. 1) ConTEXt fills this gap
nicely, but requires a very knowledgable pro-
grammer. 2) Many times users write some perl
or python scripts that reads the database con-
tents and produces some kind of output, per-
haps LaTEX code thatmust be runwith PdfLaTEX.
This is a fast approach, but tend to get very
hackerish after some time. 3) There is a stan-
dardized way of transforming XML to PDF called
XSL-FO. This w3c standard has the big advan-
tage that many tools exist to help the user in the
task of publishing. But XSL-FO is very limited
in its capabilities to produce reasonable docu-
ments.
A common demand in high volume output is to
optimize page usage. As an example: image you
have six products in a group but a page only
fits five. The software system should be able
to re-arrange the products and change a few

parameters (image size, text size, text length),
so that all six products fit on the same page
and thus a whole page saved. The aforemen-
tioned systems are either very demanding on
the programming side or just not capable of
optimizations like these.
The product of our company is filling in this
gap. It provides a way to transform XML (and
thus any data) to PDF. It has a specialized input
language designed for the purpose of laying out
elements on a page, and it has all functionality
of a modern programming language (variables,
loops, if-then-else switches). It can put text and
graphical elements on a virtual page that is used
for any kind of layout optimization. These vir-
tual pages can be removed and re-typeset with
different parameters and only the ‘best’ page
will make it to the PDF. As there is no control
language for this kind of application yet, the
system is inspired by the standards HTML (table
layout), XPath (accessing the data and running
specialized functions) and XSLT (accessing doc-
ument nodes, programming constructs).
The software (called ‘speedata Publisher’) is
written in Lua and makes heavy use of the
LuaTEX engine. We use TEX to break paragraphs
into lines, arrange the programmatically created
boxes and glue for layout of complex tables and
to write clean PDF. The publisher is open source
software (AGPL) and runs under the three major
operating systems (Linux, Windows, Mac OS X).
The documentation is mostly still in German,
although we are currently translating the doc-
umentation into english.

10 10

10 10

minutes of the membership meeting > willi egger

11

Minutes of the 2nd ConTEXt Group membership meeting
Willi Egger

Present Bernd Militzer, Frans Goddijn, Hans
Hagen, Harald König, JanoKula, Jean-
Michel Hufflen, Luigi Scarso, Mari
Voipio, Martin Schröder, ThomášHala,
Taco Hoekwater, Willi Egger,

Excused John Haltiwanger, Mojca Miklavec,
Thomas Schmitz, Wolfgang Schuster

Absent Adelheid Grob, Peter Münster
Guest Yusuke Kuroki

1. Opening

The meeting started at 20:33.

2. Agenda

1. Opening
2. Agenda
3. Activities since last meeting
4. Board
5. Financials
6. Design of the corporate identity
7. Journal/Proceedings
8. Next projects
9. Questions by members
10. Closing

3. Activities since last year

The main things achieved during the past pe-
riod is the setup and make running of the bank
account. We have now a bank account opened
in France. The treasurer and the president have
access to it and can perform actions through a
web-interface. There is also a PayPal account to
ease payment with foreign currencies. In order
to get the bank affairs right we were obliged to
open the account in France after having tried to
do so in Germany, The Netherlands and Slove-
nia.

Another activity is the development of a corpo-
rate identity for the CG-group. We come back to
this in Agenda point 6.

4. Board
Shortly after the last meeting the board has
changed. As discussed during the last meeting
Sébastien Mengin is followed up by Peter Mün-
ster. The reason is due to the requirements for
opening a bank account in France. The best is
that this is at the address of the association and
therefore Peterwas askedwhether he could take
up this duty.
Arthur Reutenauer resigned from the board on
his own request.
Our formal treasurer does not respond to the
board-mailing list. We found Mojca Miklavec
prepared to take the function of treasurer. The
collectedmoney at CM5 is handed over toMojca
and after opening the account transferred to the
bank. The gathering agrees to ask Adelheid to
resign form the group’s board.
None of the present members is willing to join
the board at this moment.

Action Description
Willi Since the board has changed

an announcement to the French
authorities is required.

Willi Ask Adelheid whether she wants
to stay/resign from the board.

5. Financials
The treasurer has made up a summation of the
financial situation, which is handed out at the
meeting. There is a wrong figure in the to-
tals-section. – This will be corrected.
Invoices over 2011 are submitted to the mem-
bers. Still not all of them are payed. The invoices
over 2012 are to be sent soon.

11 11

11 11

contextgroup > context meeting 2012

12

Overall the financial situation is ok, though we
need to build on making some more capital. We
will however easily be able to pay the expenses
to come.
The financial report will be available from the
CG-website.

Action Description
Willi, Mojca Fix the amount in the summa-

tion section.

6. Corporate Identity

We can proudly announce that we have found
Adrian Egger (art-director in the graphic indus-
try) willing to help us in establishing a corporate
identity. We have styles made in ConTEXt for
invoices, formal letters, reports like minutes of
gatherings, and two types of envelopes.
In due time the style-guide will be released.
There is also a design for our journal. This style
is not finalized completely, but will be finalized
for the production of our first journal.

Action Description
Willi, Adrian Finalize the style-guide.

7. Journal/Proceedings

Due to the circumstances we have not yet our
first journal containing the proceedings of CM5.
The board decided during the board-meeting
before the members meeting to make our first
journal a combination of 5CM and 6CM. The
gathering seconds this idea.

Action Description
Adrian, board Finalize the journal design and

cover by 1st of november 2012.
Writers, Collect all articles by 1st of no-
redaction vember 2012.

The planning is that the journal will go for pro-
duction by the end of november. This will allow
that the journal is sent to the members before
X-mas.

8. Next projects
− Website: We need to ask Adrian to

make a design of our new website,
where all material concerning the
GC-group is presented in a coherent
way.

− Archive for cartoonsWe will implement
an electronic archive for the cartoon
coming from Duane Bibbi. We have al-
ready a couple of them and we want to
install a tradition that the most active
member of the group will be awarded
with a cartoon for his work.

− This year’s user of the year will be Sietse
Brouwer, who invested a great effort in
revisiting the wiki.

− Next year’s meeting: Jano confirms,
that the meeting will be held again in
Czech Republic in combination with
TEXperience. The place will be Brejlov.
At the end of the EuroTEX 2012 the date
is confirmed for week 39 which is the
last full week of september.

− Patricks’s machine is phased out within
one month (end of oktober). First
steps to safe the still running services
have been already started up. The do-
main-server is moved to a machine at
elvenkind (Taco) and Taco will be the re-
sponsible person for it.
From november onwards the group is
going to pay also the involved fees.

− ConTEXt-suite: Taco and Mojca make
sure that there is a mirroring-system so
that the suite is always available.

Action Description
Taco Take care of the shutdown of

Patrick’smachine, domain server
moving.

Taco, Mojca Setup a mirroring system for the
ConTEXt-suite.

9. Questions by members
Mari thinks that it is correct to add the costs of a
PayPal payment to the fee of membership. The
gathering seconds this.

12 12

12 12

minutes of the membership meeting > willi egger

13

Action Description
Mojca Find out the average fee for

transactionswith PayPal and add
it to the membership fee ac-
cordingly.

10. Closing

The meeting is closed at 21:22

13 13

13 13

contextgroup > context meeting 2012

14

MetaPost path resolution isolated
Taco Hoekwater

A new interface in MPLib version 1.800 allows one to resolve path
choices programmatically, without the need to go through theMetaPost
input language.

Metapost path solving
As we all know, MetaPost is pretty good at finding pleasing control points for paths.
What all of you may know is that besides drawing on a picture, MetaPost can also
display the found control points in the log file.
Some illustration at this point is useful. Here is the MetaPost path input source of a
very simple path (as well as a visualisation of the path):

tracingchoices := 1;

path p;

p := (0,0) ..(10,10) ..(10,-5) ..cycle;

And here is what MetaPost outputs in the log file:

Path at line 5, before choices:

(0,0)

..(10,10)

..(10,-5)

..cycle

Path at line 5, after choices:

(0,0)..controls (-1.8685,6.35925) and (4.02429,12.14362)

..(10,10)..controls (16.85191,7.54208) and (16.9642,-2.22969)

..(10,-5)..controls (5.87875,-6.6394) and (1.26079,-4.29094)

..cycle

14 14

14 14

metapost path resolution isolated > taco hoekwater

15

A more complex path of course creates more output, so:

p := (0,0)..(2,20){curl1}..{curl1}(10, 5)..controls (2,2) and

(9,4.5)..

(3,10)..tension 3 and atleast 4 .. (1, 14){2,0} .. {0,1}(5,-4) ;

end.

produces:

Path at line 7, before choices:

(0,0){curl 1}

..{curl 1}(2,20){curl 1}

..{curl 1}(10,5)..controls (2,2) and (9,4.5)

..(3,10)..tension 3 and atleast4.5

..{4096,0}(1,14){4096,0}

..{0,4096}(5,-4)

Path at line 7, after choices:

(0,0)..controls (0.66667,6.66667) and (1.33333,13.33333)

..(2,20)..controls (4.66667,15) and (7.33333,10)

..(10,5)..controls (2,2) and (9,4.5)

..(3,10)..controls (2.34547,10.59998) and (0.48712,14)

..(1,14)..controls (13.40117,14) and (5,-35.58354)

..(5,-4)

But what if…
But what if you want to use that functionality outside of MetaPost, for instance in a
C program?

You will have to compile MPLib into your program; then create a Metapost
language input string; execute it; and parse the log result.

All of that is not very appealing. It would be much better…

if you could compile MPLib into your program; create a path programmatically;
and then run theMetapost path solver directly; automatically updating the original
path.

And that is what the current version of MPLib will allow you to do.

15 15

15 15

contextgroup > context meeting 2012

16

How it works
Once again, it is easiest to show you what to do by using a source code example:

#include "mplib.h"

int main (int argc, char ** argv) {

MP mp ;

MP_options * opt = mp_options () ;

opt -> command_line = NULL;

opt -> noninteractive = 1 ;

mp = mp_initialize (opt) ;

my_try_path(mp);

mp_finish (mp) ;

free(opt);

return 0;

}

Most of the example code above is exactly what one needs to do anything with MPlib
programmatically. The only new line is the line calling my_try_path(mp):

void my_try_path(MP mp) {

mp_knot first, p, q;

first = p = mp_append_knot(mp,NULL,0,0);

q = mp_append_knot(mp,p,10,10);

p = mp_append_knot(mp,q,10,-5);

mp_close_path_cycle(mp, p, first);

if (mp_solve_path(mp, first)) {

mp_dump_solved_path(mp, first);

}

mp_free_path(mp, first);

}

This function uses a new type (mp_knot) as well as a bunch of new library functions in
MPlib that exist since version 1.800.

• mp_append_knot() creates a new knot, appends it to the path that is being
built, and returns it as the new tail of the path.

• mp_close_path_cycle() mimics cycle in the Metapost language.
• mp_solve_path() finds the control points of the path. solve_path does not

alter the state of the used MPlib instance in away, it only modifies its argu-
ment path.

• mp_dump_solved_path() user defined function, see below for its definition
• mp_free_path() releases the used memory.

16 16

16 16

metapost path resolution isolated > taco hoekwater

17

mp_dump_solved_path uses even more new functions. First let us look at its definition:

#define SHOW(a,b) mp_number_as_double(mp,mp_knot_##b(mp,a))

void mp_dump_solved_path (MP mp, mp_knot h) {

mp_knot p, q;

p = h;

do {

q = mp_knot_next(mp,p);

printf ("(%g,%g)..controls (%g,%g) and (%g,%g)",

SHOW(p,x_coord), SHOW(p,y_coord), SHOW(p,right_x),

SHOW(p,right_y), SHOW(q,left_x), SHOW(q,left_y));

p = q;

if (p != h || mp_knot_left_type(mp,h) != mp_endpoint)

printf ("\n ..");

} while (p != h);

if (mp_knot_left_type(mp,h) != mp_endpoint)

printf("cycle");

printf ("\n");

}

Somewhat hidden in the source above is that there is another new type: mp_number,
the data structure representing a numerical value inside MPlib.

The used MPlib library functions are as follows:

• mp_knot_next() move to the next knot in the path.
• mp_knot_x_coord(), mp_knot_y_coord(), mp_knot_right_x(),

mp_knot_right_y(), mp_knot_left_x(), mp_knot_left_y()
return the value of a knot field, as a mp_number object (the calls to these func-
tions are hidden inside the definition of the SHOWmacro).

• mp_knot_left_type() returns the type of a knot, normally either
mp_endpoint or mp_open.

• mp_number_as_double() converts a mp_number to double.

To satisfy our curiosity, here is the actual output of the example program listed above:

(0,0)..controls (-1.8685,6.35925) and (4.02429,12.1436)

..(10,10)..controls (16.8519,7.54208) and (16.9642,-2.22969)

..(10,-5)..controls (5.87875,-6.6394) and (1.26079,-4.29094)

..cycle

17 17

17 17

contextgroup > context meeting 2012

18

And that is almost exactly the same as in the log file:

(0,0)..controls (-1.8685,6.35925) and (4.02429,12.14362)

..(10,10)..controls (16.85191,7.54208) and (16.9642,-2.22969)

..(10,-5)..controls (5.87875,-6.6394) and (1.26079,-4.29094)

..cycle

The output is not perfectly the same because MetaPost itself does not use
mp_number_as_double and %g for printing the scaled values that are by default used
to represent numerical values.
The difference is not really relevant, since any programmatic use of the path solver
should not have to be 100% compatible with the MetaPost programming language.

More complex paths
Of course there are also new functions to the create more complex paths that make
use of curl, tension and/or direction specifiers.
Here is how to encode the second MetaPost path from the earlier example:

first = p = mp_append_knot(mp,NULL,0,0);

q = mp_append_knot(mp,p,2,20);

p = mp_append_knot(mp,q,10,5);

if (!mp_set_knotpair_curls(mp, q,p, 1.0, 1.0))

exit (EXIT_FAILURE) ;

q = mp_append_knot(mp,p,3,10);

if (!mp_set_knotpair_controls(mp, p,q, 2.0, 2.0, 9.0, 4.5))

exit (EXIT_FAILURE) ;

p = mp_append_knot(mp,q,1,14);

if (!mp_set_knotpair_tensions(mp,q,p, 3.0, -4.0))

exit (EXIT_FAILURE) ;

q = mp_append_knot(mp,p,5,-4);

if (!mp_set_knotpair_directions(mp, p,q, 2.0, 0.0, 0.0, 1.0))

exit (EXIT_FAILURE) ;

mp_close_path(mp, q, first);

Elaborate documentation for these extra functions (and a fewmore) is in mplibapi.tex
which is included in the MetaPost distribution.

18 18

18 18

metapost path resolution isolated > taco hoekwater

19

Lua interface
There is also a Lua interface for use in LuaTEX, which is a bit higher-level

<boolean> success = mp.solve_path(<table> knots, <boolean> cyclic)

This modifies the knots table (which should contain an array of points in a path, with
the substructure explained below) by filling in the control points. The boolean cyclic
is used to determine whether the path should be the equivalent of --cycle. If the
return value is false, there is an extra return argument containing the error string.
On entry, the individual knot tables can contain the six knot field values mentioned
above (but typically the left_{x,y} and right_{x,y} will be missing). {x,y}_coord
are both required. Also, some extra values are allowed:

left_tension number A tension specifier
right_tension number like left_tension
left_curl number A curl specifier
right_curl number like left_curl
direction_x number 𝑥 displacement of a direction specifier
direction_y number 𝑦 displacement of a direction specifier

Issues to watch out for
All the ‘normal’ requirements for MetaPost paths still apply using this new interface.
In particular

• A knot has either a direction specifier, or a curl specifier, or a tension specifica-
tion, or explicit control points, with the additional note that tensions, curls and
control points are split in a left and a right side (directions apply to both sides
equally).

• The absolute value of a tension specifier should be more than 0.75 and less
than 4096.0, with negative values indicating ‘atleast’.

• The absolute value of a direction or curl should be less than 4096.0.
• If a tension, curl, or direction is specified, any existing control points will be

replaced by the newly computed value.

19 19

19 19

contextgroup > context meeting 2012

20

Parsing PDF content streams with LuaTEX
Taco Hoekwater

The new pdfparser library in LuaTEX allows parsing of external pdf content streams
directly from within a LuaTEX document. This paper explains its origin and usage.

Background
Docwolves main product is an infrastructure to
facilitate paperless meetings. One part of the
functionality is handling meeting documents,
and to do so it offers the meeting participants
a method to distribute, share, and comment
on such documents by means of an intranet
application as well as an iPad App.
Meeting documents typically consist of a meet-
ing agenda, followed by included appendices,
combined into a single pdf file. Such docu-
ments can have various revisions, for example
if a change has been made to the agenda or if
an appendix has to be added or removed. After
such a change, a newly combined pdf document
is re-distributed.
Annotations can be made on these documents
and these can then be shared with other meet-
ing participants, or just communicated to the
server for save keeping. Like documents, anno-
tations can be updated as well.
All annotations are made on the iPad, with an
(implied) author and an intended audience. An-
notations apply to a specific part of the source
text, and come in a few types (highlight, sticky
note, freehand drawing). The iPad App com-
municates with a network server to synchronize
shared annotations between meeting partici-
pants.

The annotation update problem
The server-client protocol aims to be as efficient
as possible, especially in the case of communi-
cation with the iPad app, since bandwidth and
connection costs can be an issue.
This means that for any annotation on a refer-
enced document, only the document’s internal
identification, the (pdf) page number, and the

beginning and end word indices on the page and
are communicated back and forth. This is quite
efficient, but gives rise to the following problem:

When a document changes, e.g. if an ex-
tra meeting item is added, all annotations
following that new item have to be updated
because their placement is off.

The actual update process is quite complicated,
but the issue this paper deals with is that the
server software needs to know what words are
on any pdf page, as well as their location on that
page, and therefore its text extraction process
has to agree with the same process on the iPad.

pdf text extraction
Text extraction is a two-step process. The actual
drawing of a pdf page is handled by PostScript-
style postfix operators. These are contained in
objects that are called page content streams.
After decompression of the pdf, the beginning of
a content stream could look like this:

59 0 obj

<< /Length 4013 >>

stream

0 g 0 G

1 g 1 G

q

0 0 597.7584 448.3188 re f

Q

0 g 0 G

1 0 0 1 54.7979 44.8344 cm

...

20 20

20 20

parsing pdf content streams with luatex > taco hoekwater

21

Here g, G, q, re, f, Q, and cm are all (postfix)
operators, and the numeric quantities are all
arguments. As you see, not all operators take
the same amount of arguments (g takes one, q
zero, and re four). Other operators may take
for instance string-valued arguments instead of
numeric ones. There are a little over half a dozen
different types.
To process such a stream easily, it is best to
separate the task (at least conceptually) into two
separate tasks. First there is a the lexing stage,
which entails converting the actual bytes into
combinations of values and types (tokens) that
can be acted upon.
Separate from that, there is the interpretation
stage, where the operators are actually exe-
cuted with the tokenized arguments that have
preceded it.

pdf text extraction on the iPad

It is very easy on an iPad to display a represen-
tation of a pdf page, and Apple also provides
a convenient interface to do the actual lexing
of pdf content streams that is the first step in
getting the text from the page. But to find out
where the actual pdf objects are, one has to
interpret the pdf document stream oneself, and
that is the harder part of the text extraction
operation.

pdf text extraction on the server

On the server side, there is a similar problem at
a different stage: displaying a pdf is easy, and
even literal text extraction is easy (with tools like
pdftotext). However, that does not give you
the location of the text on the page. On the
server, Apple’s lexing interface is not available,
and the available pdf library (libpoppler) does
not offer similar functionality.

Our solution
Weneeded to write text extraction software that
can be used on both platforms, to ensure that
the same releases of server and iPad software
always agreed perfectly on the what and where
of the text on the pdf page.
Both platforms use a stream interpreter written
by ourselves in C, with the iPad sofware starting

from the Apple lexer, and the server software
starting from a new lexer written from scratch.
The prototype and first version of the newly
created stream interpreter as well as the
server-side lexer were written in Lua. LuaTEX’s
epdf libpoppler bindings to Lua were a very
handy tool at that stage (see below). The code
was later converted back to C for compilation
into a server-side helper application as well as
the iPad App, but originally it was written als a
TEXLua script.
A side effect of this development process is
that the lexer could be offered as a new LuaTEX
extension, and that is exactly what we did.

About the ‘epdf’ library
This library is written by Hartmut Henkel, and
it provides Lua access to the poppler library
included in LuaTEX. For instance, it is used by
ConTEXt for keeping links in external pdf figures.
The library is fairly extensive, but a bit low-level,
because it closely mimics the libpoppler in-
terface. It is fully documented in the LuaTEX
reference manual, but here is a small example
that extracts the page cropbox information from
a pdf document:

local function run (filename)

local doc = epdf.open(filename)

local cat = doc:getCatalog()

local numpages = doc:getNumPages()

local pagenum = 1

print ('Pages: ' .. numpages)

while pagenum <= numpages do

local page = cat:getPage(pagenum)

local cbox = page:getCropBox()

print (string.format(

'Page %d: [%g %g %g %g]',

pagenum, cbox.x1, cbox.y1,

cbox.x2, cbox.y2))

pagenum = pagenum + 1

end

end

run(arg[1])

21 21

21 21

contextgroup > context meeting 2012

22

Lexing via poppler
As said, a lexer converts bytes in the input text
stream into tokens, and such tokens have types
and values. libpoppler provides a way to get
one byte from a stream using the getChar()
method, and it also applies any stream filters
beforehand, but it does not create actual tokens.

Poppler limitations

There is no way to get the full text of a stream
immediately, it has to be read byte by byte.
Also, if the page content consists of an array of
content streams instead of a single entry, the
separate content streams have to be manually
concatenated.
And content streams have to be ‘reset’ before
the first use.
Here is a bit of example code for reading a
stream, using the epdf library:

function parsestream(stream)

local self = { streams = {} }

local thetype = type(stream)

if thetype == 'userdata' then

self.stream = stream:getStream()

elseif thetype == 'table' then

for i,v in ipairs(stream) do

self.streams[i] = v:getStream()

end

self.stream = table.remove(

self.streams,1)

end

self.stream:reset()

local byte = getChar(self)

while byte >= 0 do

...

byte = getChar(self)

end

if self.stream then

self.stream:close()

end

end

In the code above, any interesting things you
want to happen have to inserted at the ... line.

The example makes use of one helper function
(getChar) and that looks like this:

local function getChar(self)

local i = self.stream:getChar()

if (i<0) and (#self.streams>0) then

self.stream:close()

self.stream = table.remove(

self.streams, 1)

self.stream:reset()

i = getChar(self)

end

return i

end

Our own lexer: ‘pdfscanner’
The new lexer we wrote does create actual to-
kens. Its Lua interface accepts either a poppler
stream, or an array of such streams. It puts pdf
operands on an internal stack and then executes
user-selected operators.
The library pdfscanner has only one function,
scan(). Usage looks like this:

require 'pdfscanner'

function scanPage(page)

local stream = page:getContents()

local ops = createOperatorTable()

local info = createParserState()

if stream then

if stream:isStream()

or stream:isArray() then

pdfscanner.scan(stream, ops,

info)

end

end

end

The functions createOperatorTable() and
createParserState() are helper functions that
create arguments of the proper types.

22 22

22 22

parsing pdf content streams with luatex > taco hoekwater

23

The scan() function

As you can see, the function takes three argu-
ments:
The first argument should be either a pdf
stream object, or a pdf array of pdf stream
objects (those options comprise the possible
return values of <Page>:getContents() and
<Object>:getStream() in the epdf library).
The second argument should be a Lua table
where the keys are pdf operator name strings
and the values are Lua functions (defined by
you) that are used to process those operators.
The functions are called whenever the scanner
finds one of these pdf operators in the content
stream(s).
Here is a possible definition of the helper func-
tion createOperatorTable():

function createOperatorTable()

local ops = {}

-- handlecm is listed below

ops['cm'] = handlecm

return ops

end

The third argument is a Lua variable that is
passed on to provide context for the processing
functions. This is needed to keep track of the
state of the pdf page since pdf operators, and
especially those that change the graphics state,
can be nested.1

In its simplest form, its creation looks like this:

function createParserState()

local stack = {}

stack[1] = {}

stack[1].ctm =

AffineTransformIdentity()

return stack

end

Internally, pdfscanner.scan() loops over the
input stream content bytes, creating tokens and
collecting operands on an internal stack until
it finds a pdf operator. If that pdf operator’s
name exists in the given operator table, then the
associated Lua function is executed. After that
function has run (or when there is no function to
execute) the internal operand stack is cleared in
preparation for the next operator, and process-
ing continues.
The processing functions are called with two ar-
guments: the scanner object itself, and the info
table that was passed are the third argument to
pdfscanner.scan.
The scanner argument to the processing func-
tions is needed because it offers various meth-
ods to get the actual operands from the internal
operand stack.

Extracting tokens from the scanner

The most low-level function in scanner is
scanner:pop() which pops the top operand of
the internal stack, and returns a lua table where
the object at index one is a string representing
the type of the operand, and object two is its
value.
The list of possible operand types and associated
lua value types is:

integer <number>
real <number>
boolean <boolean>
name <string>
operator <string>
string <string>
array <table>
dict <table>

In case of integer or real, the value is always a
Lua (floating point) number.
In case of name, the leading slash is always
stripped.
In case of string, please bear in mind that
pdf actually supports different types of strings
(with different encodings) in different parts of

1 In Lua this could actually have been handled by upvalues or global variables. The third argument was initially a concession made

to the planned conversion to C.

23 23

23 23

contextgroup > context meeting 2012

24

the pdf document, so youmay need to reencode
some of the results; pdfscanner always outputs
the byte stream without reencoding anything.
pdfscanner does not differentiate between lit-
eral strings and hexidecimal strings (the hexa-
decimal values are decoded), and it treats the
stream data for inline images as a string that is
the single operand for EI.
In case of array, the table content is a list of pop
return values.
In case of dict, the table keys are pdf name
strings and the values are pop return values.

While parsing a pdf document that is known to
be valid, one usually knows beforehandwhat the
types of the arguments will be. For that reason,
there are few more scannermethods defined:

• popNumber() takes a number object off
the operand stack.

• popString() takes a string object off
the operand stack.

• popName() takes a name object off
the operand stack.

• popArray() takes an array object off
the operand stack.

• popDict() takes a dictionary object
off the operand stack.

• popBool() takes a boolean object off
the operand stack.

A simple operator function could therefore look
like this (The Affine... functions are left as an
exercise to the reader):

function handlecm (scanner, info)

local ty = scanner:popNumber()

local tx = scanner:popNumber()

local d = scanner:popNumber()

local c = scanner:popNumber()

local b = scanner:popNumber()

local a = scanner:popNumber()

local t =

AffineTransformMake(a,b,c,d,tx,ty)

local stack = info.stack

local state = stack[#stack]

state.ctm =

AffineTransformConcat(state.ctm,t)

end

Finally, there is also the scanner:done() func-
tion which allows you to abort processing of a
stream once you have learned everything you
want to learn. This comes in handywhile parsing
/ToUnicode, because there usually is trailing
garbage that you are not interested in. Without
done, processing only ends at the end of the
stream, wasting CPU cycles.

Summary
The new pdfparser library in LuaTEX allows
parsing of external pdf content streams directly
from within a LuaTEX document. While this
paper explained its usage, the formal documen-
tation of the new library is the LuaTEX reference
manual. Happy LuaTEX-ing!

24 24

24 24

mflua: instrumentation of mf with Lua > luigi scarso

25

MFLua: Instrumentation of MF with Lua
Luigi Scarso

We present MFLua, a MetaFont version which is capable of code in-
strumentation and has an embedded Lua interpreter that allows glyphs
curves extraction and post-processing. We also show and discuss
an example of a MetaFont source processed by MFLua to output an
OpenType font.

1. Introduction

MFLua is a version of MetaFont, Knuth’s program (Knuth, 1986b) designed to draw
fonts. MFLua has an embedded Lua interpreter, as well as the capability of the
Pascal-WEB code instrumentation to output information about bitmaps and curves
used in glyphs drawing. The latest capability is known as code tracing. MFLua’s main
goal is to ease the production of vector fonts which source code is a MetaFont code.
MFLua doesn’t extend the MetaFont language in any way (i.e., it’s not possible to
embed Lua code in a MetaFont source file), so that a MetaFont source file is fully
compatible with MFLua and vice versa. MFLua won’t be extended like LuaTEX extends
pdfLATEX. The code instrumentation is a facility to gather and manage information
collected in the log file when MetaFont tracing instructions are enabled. MFLua
automatically saves data into Lua tables using external Lua scripts. Therefore a
programmer can manage these tables according to his needs, i.e. extracting a glyph
vector outline(s). Rephrasing the previous statements, MFLua is a (bitmap) tracing
program that knows curves in advance instead of determining them from the bitmap.
Please notice that this is only possible when the data have been gathered.
The paper has the following structure: after explaining what code instrumentation is
(section 8.2.), it shows the components used to trace a glyph (section 8.3.) and finally
two different approaches to manage curves (section 8.4.).
As a final remark, we consider MFLua as being in a state between a proof of concept
and alpha and it’s not (yet) too user-friendly. Its code is hosted at https://github.com
/luigiScarso/mflua.

2. Code instrumentation

MetaFont is written in Pascal-WEB (a programming language by Donald Knuth to
have a real literate programming tool. As the name suggests, it’s a subset of Pascal)
and is automatically translated into C by tangle and web2c. Instrumentation is
the capability to add trace statements (a.k.a. sensors) in strategic points of the
code to register current state information and pass it to the Lua interpreter. A
typical sensor has the mflua prefix. We can see some sensors in the following
chunk of code, the main body of MetaFont (slightly refolded to fit the printing
area).

25 25

25 25

contextgroup > context meeting 2012

26

@p begin @!{|start_here|}
mflua_begin_program;
{in case we quit during initialization}
history:=fatal_error_stop;
t_open_out; {open the terminal for output}
if ready_already=314159 then goto start_of_MF;
@<Check the ``constant'' values...@>@;
if bad>0 then
begin wterm_ln('Ouch---my internal constants

have been clobbered!',
'---case ',bad:1);

@.Ouch...clobbered@>
goto final_end;
end;

{set global variables to their starting values}
initialize;
@!init if not get_strings_started then
goto final_end;

init_tab; {initialize the tables}
init_prim; {call |primitive| for each primitive}
init_str_ptr:=str_ptr; init_pool_ptr:=pool_ptr;@/
max_str_ptr:=str_ptr; max_pool_ptr:=pool_ptr;
fix_date_and_time;
tini@/
ready_already:=314159;
mfluaPRE_start_of_MF;
start_of_MF: @<Initialize the output routines@>;
@<Get the first line of input and prepare
to start@>;

history:=spotless; {ready to go!}
mflua_initialize;
if start_sym>0 then
{insert the `\&{everyjob}' symbol}
begin cur_sym:=start_sym; back_input;
end;

mfluaPRE_main_control;
main_control; {come to life}
mfluaPOST_main_control;
final_cleanup; {prepare for death}
mfluaPOST_final_cleanup;
end_of_MF: close_files_and_terminate;
final_end: ready_already:=0;
end.

We’re going to examine the role of the mflua_begin_program sensor. The Pas-
cal-into-C translator, web2c, is smart enough to distinguish a symbol already present in
the Pascal source from an external symbol (i.e., a symbol defined in another file). In the
latter case, the programmer has to register that symbol into the file texmf.defines if
the symbol is related to an argumented procedure: the translator will manage properly
the arguments translation. The translated code will contain the C form of the sensor
symbol, which will be resolved at compile-time — i.e., we need an object file that
contains that symbol. Each sensor is stored into mflua.h and mflua.c. The first one
lists the symbol:

26 26

26 26

mflua: instrumentation of mf with Lua > luigi scarso

27

#include "lua51/lua.h"
#include "lua51/lualib.h"
#include "lua51/lauxlib.h"
#include <kpathsea/c-proto.h>
#include <web2c/config.h>

extern lua_State* Luas[];
extern int mfluabeginprogram();

while the second one contains the corresponding function source code:

int mfluabeginprogram()
{
lua_State *L = luaL_newstate();
luaL_openlibs(L);
Luas[0] = L;
/* execute Lua external "begin_program.lua" */
const char* file = "begin_program.lua";
int res = luaL_loadfile(L, file);
if (res==0) {

res = lua_pcall(L, 0, 0, 0);
}

priv_lua_reporterrors(L, res);
return 0;

}

The above function initializes the Lua interpreter, stores its state in the array Luas[]
(it would be possible to have more than one interpreter but this feature is cur-
rently neglected) and then executes the external script begin_program.lua call-
ing lua_pcall(L, 0, 0, 0). This call protects the interpreter from errors. Every
time we run mf (the MetaFont program), it loads and executes the Lua script
begin_program.lua, customizable by programmers.
We surely need to pay attention to some issues. The first one is that literate
programming style allows to collect every changes we make in a source file into a
change file (mf.ch in our case), which is then merged into a Pascal program by tangle.
This means that inserting a sensor can interfere with the change file. In this case
we also have to insert the sensor into the change file as we do, for instance, with
mfluaPRE_make_ellipse(major_axis, minor_axis,theta,tx,ty,0). Of course the
right solution is directly inserting the sensors in the change file. Unfortunately it’s
usually faster discovering where to insert a sensor in the source file and thenmanaging
conflicts in the change file: source files have a context — the source itself — that
change file don’t. The second issue is the need to export some MetaFont variables and
constants to the Lua interpreter. An easy way to accomplish this task is inspecting the
translated C code to realize how those variables and constants are managed (e.g., to
make Lua read the charcode variable, which contains the index of the current glyph,
we need to know that it’s stored into the internal array at index 18 (the index is from
the MetaFont WEB source) so that we can write a wrapper function like the following
one:

27 27

27 27

contextgroup > context meeting 2012

28

#define roundunscaled(i) (((i>>15)+1)>>1)
EXTERN scaled internal[maxinternal + 1] ;
static int
priv_mfweb_LUAGLOBALGET_char_code(lua_State *L)
{
integer char_code=18;
integer p=roundunscaled(internal[char_code])%256;
lua_pushnumber(L,p);
return 1;

}

and then make it available to the Lua interpreter as the LUAGLOBALGET_char_code
variable:

int mfluainitialize()
{
/* execute Lua external "mfluaini.lua" */
lua_State *L = Luas[0];
/* register lua functions */

:
lua_pushcfunction(L,

priv_mfweb_LUAGLOBALGET_char_code);
lua_setglobal(L,"LUAGLOBALGET_char_code");
:

/* execute Lua external "mfluaini.lua" */
const char* file = "mfluaini.lua";
int res = luaL_loadfile(L, file);
if (res==0) {

res = lua_pcall(L, 0, 0, 0);
}
priv_lua_reporterrors(L, res);
return 0;

}

Users can read and set this variable though the set value won’t be passed to MetaFont
in order to interfere as little as possible with its state. That’s why we prefer to
inspect the translated C code, which quality depends on the translation performed at
compile-time. A clean solution should only depend on the WEB source. For historical
reasons, translating code from Pascal into C outputs two files (mf0.c and mf1.c).
Finding a symbol implies searching in two files, which hardens the process.
There are currently 24 sensors, 33 global variables and 15 scripts, though it’s possible to
increase these quantities if we discover that tracing a specific function insideMetaFont
is better than reimplementing it in Lua. While it’s easy to implement the algorithm to
draw a curve in Lua, it’s slightly harder to implement the algorithm to fill a region.
Whatever, the main goal is to keep the number of sensors as low as possible. Notice
thatMFLua currently reads scripts from the current folder and doesn’t use the standard
TEX folders.

28 28

28 28

mflua: instrumentation of mf with Lua > luigi scarso

29

p

q

c1

c2

Figure 1: A cubic Bézier curve and its convex hull.

The counterpart of mflua_begin_program is mflua_end_program, which calls the
end_program.lua script. It contains all the functions used to transform the compo-
nents of a glyph, the subject of the next section.

3. The components of a glyph

MetaFont mainly manages Bézier cubic curves (see fig. 1).1 This curve is completely
described by four controls points: 𝐩 (called the starting point), 𝐜𝟏, 𝐜𝟐 and 𝐪 (known as
the ending point). The MetaFont command to draw such a curve is

draw p .. controls c1 and c2 .. q;

This curve lies on the 𝑋𝑌 plane and its parametric form is quite simple:

𝐁(𝐭) = (𝟏 − 𝐭)𝟑𝐩 + 𝟑(𝟏 − 𝐭)𝟐𝐭𝐜𝟏 + 𝟑(𝟏 − 𝐭)𝐭𝟐𝐜𝟑 + 𝐭𝟑𝐪 ∀𝐭 ∈ [𝟎, 𝟏] (1)

The corresponding algebraic expression, the closed form, is more complex but it’s
useful to quickly test whether a point belongs to the curve or not.
Equation 1 has first derivatives 𝐁′(𝟎) = 𝟑(𝐜𝟏 − 𝐩) and 𝐁′(𝟏) = 𝟑(𝐪 − 𝐜𝟐) respectively
when 𝑡 = 0 and 𝑡 = 1. We can easily calculate them when we know 𝐩, 𝐜𝟏, 𝐜𝟐 and 𝐪. An
important property is that a Bézier cubic curve is completely contained in the polygon
𝐩 𝐜𝟏 𝐜𝟐 𝐪𝐩 (the convex hull) and this immediately leads to the conclusion that the
intersection of two curves is empty if and only if the intersection of their convex hulls
is empty. Another important property is the existence of the De Casteljau’s algorithm,
very easy to implement: given the four control points of a curve and a time 𝑡1, it returns
the point (𝑥1, 𝑦1) = 𝐁(𝐭𝟏) on the curve and the two series of control points, one for the
curve𝐁𝐥(𝐭) = 𝐁(𝐭), 𝐭 ∈ [𝟎, 𝐭𝟏] (the left side) and one for the curve𝐁𝐫(𝐭) = 𝐁(𝐭), 𝐭 ∈ [𝐭𝟏, 𝟏]
(the right side). It recursively reduces the curve 𝐁(𝐭), 𝐭 ∈ [𝟎, 𝟏] tracing to the tracing
of the left side 𝐁𝐥(𝐭) = 𝐁(𝐭), 𝐭 ∈ [𝟎, 𝟏⁄𝟐] and the right side 𝐁𝐫(𝐭) = 𝐁(𝐭), 𝐭 ∈ [𝟏⁄𝟐, 𝟏]
(the recursion ends when the distance between two points (𝑥𝑗, 𝑦𝑗) and (𝑥𝑗+1, 𝑦𝑗+1) is less
than a pixel).
The De Casteljau’s algorithm is useful because it estimates how long a curve is counting
the number of pixels covered by the curve. It also finds intersections of two curves
𝐁(𝐭) and 𝐂(𝐭) reducing this problem to the problem of calculating the intersection of
four curves: left and right side of 𝐁(𝐭) and left and right side of 𝐂(𝐭) for 𝑡 = 1⁄2. The
algorithm keeps working when one curve degenerates into a segment (i.e., if 𝐩 = 𝐜𝟏
and 𝐜𝟐 = 𝐪) or when it degenerates into a point (𝐩 = 𝐜𝟏 = 𝐜𝟐 = 𝐪). Therefore it can be
used to find an intersection between a line and a curve and to test if a point belongs
to a curve. A set of curves {𝐁𝟏, 𝐁𝟐…𝐁𝐧} where 𝐪𝐣−𝟏 = 𝐩𝐣 and 𝐪𝐧 = 𝐩𝟎 is a simple cycle

1 I borrow notation fromMarsh (2005), where points and functions in the Bézier curves section are represented

by bold, upright letters.

29 29

29 29

contextgroup > context meeting 2012

30

if the only intersection is (𝑥, 𝑦) = 𝐪𝐧 = 𝐩𝟎. Simple cycles are the building blocks of
a glyph: a simple cycle can be filled or unfilled and, according to MetaFont’s point of
view, a glyph is a set of cycles filled and/or unfilled at the right moment.
A normal MetaFont designer doesn’t care about these details because MetaFont has
a high level language to describe curves, points, lines, intersections, filled and unfilled
cycles and, most important, pens. The listed entities produce a combination of two
different basic draws: regions (un)filled by a contour and regions (un)filled by the stroke
of a pen, i.e., the envelope of a pen. Both are simple cycles, but their origin is very
different.

Figure 2: The glyph of the numeral 0
in xmssdc10.mf font.

Let’s consider the code of the glyph 0 from the file xmssdc10.mf:

cmchar "The numeral 0";
beginchar("0",9u#,fig_height#,0);
italcorr fig_height#*slant-.5u#;
adjust_fit(0,0);
penpos1(vair,90);
penpos3(vair,-90);
penpos2(curve,180);
penpos4(curve,0);
if not monospace:
interim superness:=sqrt(more_super*hein_super);
fi
x2r=hround max(.7u,1.45u-.5curve);
x4r=w-x2r; x1=x3=.5w;
y1r=h+o; y3r=-o;
y2=y4=.5h-vair_corr;
y2l:=y4l:=.52h;
penstroke pulled_arc.e(1,2) & pulled_arc.e(2,3)
& pulled_arc.e(3,4)
& pulled_arc.e(4,1) & cycle; % bowl
penlabels(1,2,3,4);
endchar;

Fig. 2 shows a glyph only made by two contours which are the result of penpos and
penstroke macros. Of course we could obtain the same result drawing 24 curve
sections (12 for the outer contour, 12 for the inner one) but it should be clear that the
MetaFont description is much more straight or, at least, ‘typographic’.
Things completely change when we consider the numeral 2:

cmchar "The numeral 2";
beginchar("2",9u#,fig_height#,0);
italcorr fig_height#*slant-.5u#;
adjust_fit(0,0);
numeric arm_thickness, hair_vair;
hair_vair=.25[vair,hair];
arm_thickness= Vround(if hefty:slab+2stem_corr else:.4[stem,cap_stem] fi);
pickup crisp.nib;
pos7(arm_thickness,-90); pos8(hair,0);
bot y7r=0; lft x7=hround .9u; rt x8r=hround(w-.9u);
y8=good.y(y7l+beak/2)+eps;
arm(7,8,a,.3beak_darkness,beak_jut);%arm and beak

30 30

30 30

mflua: instrumentation of mf with Lua > luigi scarso

31

pickup fine.nib; pos2(slab,90);
pos3(.4[curve,cap_curve],0);
top y2r=h+o; x2=.5(w-.5u);
rt x3r=hround(w-.9u); y3+.5vair=.75h;
if serifs:
numeric bulb_diam;
bulb_diam=hround(flare+2/3(cap_stem-stem));
pos0(bulb_diam,180); pos1(cap_hair,180);
lft x1r=hround .9u; y1-.5bulb_diam=2/3h;
(x,y2l)=whatever[z1l,z2r];
x2l:=x; bulb(2,1,0); % bulb and arc
else: x2l:=x2l-.25u; pos1(flare,angle(-9u,h));
lft x1r=hround .75u; bot y1l=vround .7h;
y1r:=good.y y1r+eps; x1l:=good.x x1l;
filldraw stroke term.e(2,1,left,.9,4);
fi % terminal and arc
pos4(.25[hair_vair,cap_stem],0);
pos5(hair_vair,0);
pos6(hair_vair,0);
y5=arm_thickness; y4=.3[y5,y3];
top y6=min(y5,slab,top y7l);
lft x6l=crisp.lft x7;
z4l=whatever[z6l,(x3l,bot .58h)];
z5l=whatever[z6l,z4l];
erase fill z4l--
z6l--lft z6l--
(lft x6l,y4l)--cycle;%erase excess at left
filldraw stroke z2e{right}..tension
atleast .9 and atleast 1

..z3e{down}..{z5e-z4e}z4e--z5e--z6e;%stroke
penlabels(0,1,2,3,4,5,6,7,8);
endchar;

As we can see in fig. 3, there are both a contour and envelopes of more than a pen;
there are intersections between the contour the envelopes and the pens, and some
curves are outside the glyph (some of these curves are used to delete unwanted black
pixels). There are also some unexpected straight lines and small curves. The number
of curves looks quite large, which is not what we desire as we want to obtain the outline
depicted in fig. 4.
Unfortunately, things are even different and it’s necessary to describe how MetaFont
calculates pen envelopes to go on. This is explained in the book ‘MetaFont: The
Program’ (Knuth, 1986a) at the ‘Polygonal pens’ part, chapter 469, that we briefly quote
with a slightly modified notation:

“Given a convex polygon with vertices𝐰𝟎, 𝐰𝟏,…,𝐰𝐧−𝟏, 𝐰𝐧 = 𝐰𝟎 a in counterclockwise order…(and a

curve 𝐁(𝐭)) the envelope is obtained if we offset 𝐁(𝐭) by𝐰𝐤 when the curve is travelling in a direction

𝐁′(𝐭) lying between the directions 𝐰𝐤 − 𝐰𝐤−𝟏 and 𝐰𝐤+𝟏 − 𝐰𝐤. At times 𝑡 when the curve direction
𝐁′(𝐭) increases past𝐰𝐤+𝟏−𝐰𝐤, we temporarily stop plotting the offset curve and we insert a straight

line from 𝐁(𝐭) +𝐰𝐤 to 𝐁(𝐭) +𝐰𝐤+𝟏; notice that this straight line is tangent to the to the offset curve.

Similarly, when the curve direction decreases past𝐰𝐤 −𝐰𝐤−𝟏, we stop plotting and insert a straight

line from 𝐁(𝐭) + 𝐰𝐤 to 𝐁(𝐭) + 𝐰𝐤+𝟏; the latter line is actually a ‘retrograde’ step which will not be

part of the final envelope under the MetaFont’s assumptions. The result of this construction is a

continuous path that consist of alternating curves and straight line segments.”

31 31

31 31

contextgroup > context meeting 2012

32

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

Figure 3: The glyph of the numeral 2 in xmssdc10 font.
We can see envelopes and pens (thick curves) and a
contour (thin curve).

Figure 4: An outline of the numeral 2
in xmssdc10.mf font.

This explains why the number of the curves is large and why there are small curves,
but says nothing about those circular curves that we can see in fig. 4: MetaFont indeed
converts an elliptical pen into a polygonal one and then applies the algorithm. The
conversion is accurate enough to guarantee that the envelope is correctly filled with
the right pixels. This is a key point to understand: MetaFont’s main task is to produce
the best bitmap of a glyph, not the best outline.
The role of the sensors is to gather as much information as possible about pixels,
contours, the polygonal version of the pens, envelopes and their straight lines and
then store these information (basically the edge structure of the pixels and Bézier
curves with an eventual offset) into appropriate Lua tables. As MetaFont halts,
the Lua interpreter calls end_program.lua and let the programmer manage these
tables: sometimes, as we have seen in the numeral 0 case, the post-process can be
quite simple, sometimes not. MFLua doesn’t automatically output a glyph outline
because it’s the programmer who has to implement the best strategy according to
his experience.

32 32

32 32

mflua: instrumentation of mf with Lua > luigi scarso

33

4. Two different strategies for post-processing the curves

4.1 The Concrete Roman 10 pt

The first use ofMFLua has been the post-processing of Concrete Roman 10 pt to obtain
an OpenType version of it. This font is described in the file ccr10.mf. As we previously
said, sensors collect the data into Lua tables and end_program.lua post-processes
them at the end of the execution (we could even choose to execute the no-more
post-process during the execution). The script end_program.lua defines the global
array chartable[index] that contains the data for the glyph with char code index:
we have the edge structure that allows the program to calculate the pixels of the glyph
as well as the three arrays valid_curves_c, valid_curves_e and valid_curves_p
that gather the data of contours, envelopes and the polygonal version of the pens.
Each array contains the array of the control points {p,c1,c2,q} stored as a string
"(<x>,<y>)", where <x> and <y> are the coordinates of the point. With fig. 3 as a
reference, we can see that when we draw a glyph with a pen it usually has overlapping
strokes. Along with the curves of the pen(s), these overlaps create curves inside or
outside the glyph that must be deleted. Having the pixels of the glyph, we can use the
parametric form 1 to check if a point (𝑥, 𝑦) (or better, a neighborhood with center (𝑥, 𝑦))
is inside or outside. If all the points of the curve are inside or outside, we can delete
them. The drawback is that while time 𝑡 goes linearly in 𝐁(𝐭), the points (𝑥(𝑡), 𝑦(𝑡))
follow a cubic (i.e., not linear) law in case the curve is not a straight line. Hence, they
are not equally spaced— this means that we can jump over some critical points. Using
the same time interval steps for each curve means that short curves are evaluated in
times where the points can differ less than a pixel— a useless evaluation. Of course not
all the curves are inside the glyph: there are curves on the border and curves partially
lying on the border and partially inside (or outside). In the latter case the result of
evaluation is an array of time intervals where the curve crosses the border.
Once we have deleted the curves that are completely inside (or outside) the glyph,
the next step is to merge all the curves and split them using the previously seen time
interval (this is done by a Lua implementation of the De Casteljau’s algorithm). Now we
have a set of curves that are on the border or ‘near’ it (i.e., partially on the border). We
can delete those curves having only one intersection (a pending curve), supposing that
each curve of the final outline has exactly 2 intersections at times 𝑡0 = 0 and 𝑡1 = 1.
To calculate all the intersections we use the following trick: if we have 𝑛 curves, we
produce aMetaFont file that contains the code that calculates the intersection between
𝑝𝑖 and 𝑝𝑗 for 1 ≤ 𝑗 ≤ 𝑛 and 𝑗 < 𝑖 ≤ 𝑛 (given that 𝑝𝑗 ∩ 𝑝𝑖 = 𝑝𝑖 ∩ 𝑝𝑗) and then we parse
the log file with Lua. For example if

p1={"(57.401,351.877)", "(57.401,351.877)",
"(57.901,349.877)", "(57.901,349.877)"}

and

p2={"(56.834,356.5)", "(56.834,354.905)",
"(57.031,353.356)", "(57.401,351.877)"}

33 33

33 33

contextgroup > context meeting 2012

34

then we have

batchmode;
message "BEGIN i=2,j=1";
path p[];
p1:=(57.401,351.877) ..
controls (57.401,351.877) and (57.901,349.877) ..
(57.901,349.877);

p2:=(56.834,356.5) ..
controls (56.834,354.905) and (57.031,353.356) ..
(57.401,351.877);

numeric t,u;
(t,u) = p1 intersectiontimes p2;
show t,u;
message "" ;

and the log

BEGIN i=2,j=1
>> 0
>> 0.99998

If the result is (−1,−1) the intersection is empty. There are two problems with this
approach: the first one shows when a curve crosses the border and time intervals
can generate two curves, one completely outside and one completely inside — hence
deleting an intersection. To avoid this issue we must adjust the intervals moving the
extremes a bit. We have the second problem when there can be curves with three or
more intersections — i.e., we can have loops. Opening a loop can be a difficult task:
e.g., if the curve 𝑝𝑎 intersects {𝑝𝑏, 𝑝𝑐, 𝑝𝑑} at the same time 𝑡𝑎 and 𝑝𝑏 intersects {𝑝𝑎, 𝑝𝑐, 𝑝𝑑}
at 𝑡𝑏 then 𝐼𝑎 = {𝑝𝑎} ∪ {𝑝𝑏, 𝑝𝑐, 𝑝𝑑} is equal to 𝐼𝑏 = {𝑝𝑏} ∪ {𝑝𝑎, 𝑝𝑐, 𝑝𝑑} and we can delete
𝑝𝑎 and 𝑝𝑏 because 𝑝𝑐 and 𝑝𝑑 stay connected. But with more than three intersections
things become more complex.
To solve these cases, end_program.lua has a series of filters. A filter acts on a specific
glyph and typically removes unwanted curves and/or adjusts the control points to
ensure that a curve joins properly with its predecessors and successor. Of course this
means that the programmer inspects each glyph separately, which is reasonable when
we are designing the font — less reasonable when we convert it.
We can call this approach per-font and per-glyph: end_program.lua is a Lua script
valid only for a specific font and which has filters for each glyph.
The script end_program.lua also has some functions to convert the outlines (with the
correct turning number) of each glyph into a SVG font: this font format can be imported
into FontForge and, usually after re-editing the glyphs (tipically simplifying the curves),
it can be saved as an OpenType CFF. In fig. 5 we can see an example of this font.

4.2 The Computer Modern Sans Serif Demibold Condensed 10 pt

We now approach a more ‘geometric’ strategy. We don’t want to output an OpenType
font but to find an end_program.lua more universal and per-glyph and less per-font
and per-glyph. Our experience with ccr10.mfmake us believe that is always possibile

34 34

34 34

mflua: instrumentation of mf with Lua > luigi scarso

35

ff fi fl ffi ffl Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam nisl urna,
eleifend vel mollis quis, facilisis vel dolor. Sed auctor nibh eu magna vulputate vulputate.
Curabitur ante mauris, pretium eu laoreet at, venenatis et neque. Vestibulum ante quam,
tristique in posuere eu, pulvinar vel neque. Nam faucibus, neque ut commodo luctus, lacus
risus accumsan felis, a feugiat lorem justo venenatis dui. Aenean bibendum tincidunt enim
ac cursus. Vivamus a arcu a augue auctor consectetur nec sed augue. Quisque dignissim felis
imperdiet mi lacinia suscipit. Maecenas nunc tortor, congue nec posuere sit amet, ultricies
vel diam. In aliquam arcu eu lacus congue eget rutrum justo volutpat. Quisque ac nisi vitae
leo fringilla lobortis.

Curabitur rhoncus lobortis ante, eget euismod magna blandit nec. Praesent non sem
nulla. Sed congue magna sit amet libero sodales eu ultrices orci posuere. Suspendisse sed
nibh a tortor fermentum ornare. Suspendisse vel felis eget tellus gravida rhoncus. Ut vel
magna lacus, placerat semper enim. Vestibulum rutrum condimentum neque et adipiscing.
Duis nulla enim, euismod a cursus id, ornare vel tellus. Vestibulum lobortis metus egestas
velit euismod pellentesque. Praesent elit ante, consequat at posuere a, rhoncus id magna.
Phasellus ut nisl orci, ac molestie eros. Suspendisse potenti. Suspendisse ac porttitor lorem.
Curabitur eu elit sed neque placerat accumsan. Cras eu odio diam. Nunc lorem ligula,
interdum eget consequat non, laoreet eget magna.

Maecenas consequat ultrices est, vitae rutrum nulla egestas sed. Proin rutrum lorem in
sem posuere pretium. Cras accumsan euismod quam eget pulvinar. Maecenas eget posuere
sem. Nulla sit amet luctus elit. Nulla vel ligula velit. Nunc consectetur orci a odio venenatis
facilisis. Integer venenatis commodo nibh sed gravida. Ut ornare arcu in mi eleifend convallis.
Quisque tincidunt, tellus et sodales interdum, nulla massa suscipit ante, non tincidunt ligula
diam id nunc. In eu justo at lectus pulvinar accumsan. Vivamus convallis sodales ligula, ut
gravida elit consectetur at. Ut in augue nec tortor vehicula vehicula eu eu lorem. Vivamus
tristique neque ut tellus tristique aliquet.

Proin quis augue a elit convallis venenatis. Quisque scelerisque dictum augue condimen-
tum rutrum. Integer nec dignissim nisl. Aenean vitae justo lectus, eu vulputate ipsum. Sed
porttitor dapibus arcu sed faucibus. Sed vitae arcu eu quam ultrices ornare. In in est nec pu-
rus consequat vehicula. Integer ut fermentum dolor. Vivamus neque quam, cursus at viverra

1Figure 5: The ConcreteOT font produced by MFLua from ccr10.mf.

towrite aMetaFont program that outputs a nice bitmap of a glyph using a very complex
set of curves. This is especially truewhenwe use pens and the need tomanually correct
every error arises. Up to now we only made few outlines of numerals.
There are new functions to trace a curve and to calculate the intersections between two
cubics (both based on De Casteljau’s bisection algorithm, an application of De Castel-
jau’s algorithm) so the parametric form and the trick to calculate the intersections
are not needed anymore. We also keep contours, envelopes and pens apart almost
until the end of the process, when we first merge envelopes and pens and then, at
last, contours. The most important enhancement is probably the replacement of the
polygonal version of a pen with an elliptical one. MetaFont generates a polygonal
getting an ideal ellipse with major axis, minor axis and the angle of rotation from the
pen specifications and then calls make_ellipse. Putting a sensor around helps us store
the axis and theta into a Lua table, to be read later from end_program.lua. The next
step is a trick again: we call MFLua with the following file:

batchmode;
fill fullcircle

xscaled (majoraxis)
yscaled (minoraxis)
rotated (theta) shifted (0,0);

shipit;
bye.

35 35

35 35

contextgroup > context meeting 2012

36

where majoraxis, minoraxis and theta get the ellipse data. MFLua then saves the
outlines of the filled ellipse into another file, from which they can be read by end_pro-
gram.lua. This script then saves each elliptical pen in a table, with p..c1..c2..q as
a key to be reused later, instead of the polygonal one. We can see the result in fig. 6:
the approximation is quite good. This reduces the total number of curves and gives the
glyph a more natural look.

Figure 6: Real polygonal pen (black) vs. calculated elliptical pen (gray). Square
boxes are the pixels. It’s the bottom right part of fig. 3 .

5. Conclusion

We believe that MFLua is an interesting tool for font designers because too many fonts
(if not all) are currently designed using contours. In this case end_program.lua should
be simple (less or even no intersections, compared to the MetaFont technique, see the
numeral 0 of xmssdc10.mf). On the other side, using the pens shows that extracting
an outline is a difficult task. It’s almost impossible to find an always valid script. The
outlines from an envelope usually have a large number of curves, which is not a good
feature, and this is a MetaFont property: we can always implement routines to simplify
them, though FontForge already does it.
The work will continue on xmssdc10.mf to find an end_program.lua modular and
flexible enough for a wide application.

6. References

Knuth, D. E. (1986a). MetaFont: The Program. Addison-Wesley, Massachusetts,
1st edition.

Knuth, D. E. (1986b). The MetaFontbook. Addison-Wesley, Massachusetts, 1st edition
— with final correction made in 1995 —.

Marsh, D. (2005). Applied Geometry for Computer Graphics and CAD. Springer, London,
2nd edition.

36 36

36 36

conference portfolio > willi egger

37

Conference portfolio
(Workshop)
Willi Egger

In accordance to the conference's theme, a workshop for making a portfolio binder has
been held. The portfolio was made so it could carry the papers for the conference, such
as preprints of the proceedings, additional papers and the carpenter's pencil given to
each participant. The construction is made from a single sheet of cardboard with folded
flaps along three sides, so that it completely envelopes the content. The portfolio is held
closed by a black elastic band.

1. Introduction

A portfolio is a practical solution to keep all
information gathered during a meeting or con-
ference neatly in one place. Most portfolios
are made from strong material, for instance
manilla cardboard. Normally they are built from
several pieces, i.e. the flaps are glued onto
the back-cover. In this workshop an intriguing
design is used, which allows to prepare the com-
plete portfolio from a single sheet of cardboard
without the need for glueing.

2. Basic design

In order to understand the mechanics of this
type of construction, it is a good idea to make
a blueprint first. Although the same principles
apply to the version made with cardboard, it is
important to understand that the drawing is only
in two dimensions. In other words, it does not
include compensation for the thickness of the
content and the material used for the protfolio.
When making the actual portfolio, we will have
to compensate for this.
The size of your portfolio is dictated by it’s in-
tended content. Therefor, the height of your
blank cardboard sheet should be height (h) +
width (w) of the content. The width is calculated
by adding twice the width of the content (w) to
the width of the fold-in flap (f).
For the real world portfolio, we will take into

account the thickness of the content. This adds
2 × the spine width to the width of the sheet.

3. The conference portfolio

In order to determine the size of the portfolio,
one first needs to know the dimensions of the
content which it should be able to carry.
For the preprints of the proceedings these di-
mensions are:

• Height = 265 mm
• Width = 210 mm
• Thickness = 9 mm

The space inside the portfolio should always be
slightly larger than the actual dimensions of the
content, not to mention we have to leave room
for our carpenter’s pencil.
The final dimensions of the portfolio are set to:

• Height = 275 mm
• Width = 225 mm
• Spine width = 10 mm

When choosing a material for the portfolio, it is
important to check that the grain of thematerial
is in the directionwidth axis of the material. The
cardboard size should be 500 × 700 mm (width
× length).

37 37

37 37

contextgroup > context meeting 2012

38

f w w

h ff

h

w

A BC D

E

F

G

Figure 1: The blueprint for the portfolio

4. Making the portfolio
In order to get good results, make sure to mea-
sure and mark precisely ("measure twice, cut
once"). For creasing the folds a fairly sharp
bone-folder is advised. For cutting, a cutter
with snap-off blade is most suitable. The ruler
used should be made of steel. Ones made from
hard woods such as beechwood are also usable,
however one should be careful not to cut into
the wood. To make rulers more steady when
drawing and cutting, a strip of sandpaper may
be glued to the back of them.

When looking at the blueprint discussed earlier,
we see we need to compensate for the thickness
of the content (in our case, 10mm). In addition
to that, we also have to take into account the
thickness of the material. The latter is reflected
by the fact that point C in the drawing 2 ismoved
to the right from the inner line of the spine by
about 2 mm. Thickness of the material affects
overall thickness of the portfolio, and also things
such as corner radii, as stiffer materials do not
fold as easily.

38 38

38 38

conference portfolio > willi egger

39

30 227 22710 10

275 10 3031 10

275 mm

225 mm

A BC D

E

F

G

Figure 2: Conference portfolio layout

Correctly creasing the line between points E and
G is crucial. This line must be made at an angle
of exactly 45∘.
After folding, folds E – G and D – F should be
sharpened with a bone-folder.
For folding narrow spines, it is easiest to put a
ruler on the inside along the line youwish to fold.
Use a bone-folder to follow the edge of the ruler
on the outside. As you drag it along the ruler,
you push the material upwards into a straight,
clean fold.
The spines are just wide enough to place an-

other crease between the outer spine folds. It
is a little more work, but allows the spine to flex
if the portfolio contains less paper than the spine
width allows for. This guarantees a tight fit when
the elastic band is used.
To make the slots used to insert a postcard into
the front cover, it is best to prepare a template.
The template should be 210 × 160 mm and can
be made from a piece of discarded cardboard.
Draw a rectangle of 150 × 100 mm, which is
offset by 40 mm from the bottom and the right
edge. Mark at each angle two points e.g. 15

39 39

39 39

contextgroup > context meeting 2012

40

mm offset along the rectangle’s frame. Cut the
drawn triangles out of the template or mark the
8 points by punching little holeswith a sharp awl.
By cutting the triangle a fraction of a millimeter
larger than drawn, you can then insert a 150 ×
100 mm postcard with ease.
For best results, make your pencil marks as
lightly as possible or alternatively use the tip of
the bone-folder.
When the portfolio is finished, you could cut the
short edges of the fold-in flaps with a bevelled
edge.

5. The steps for making the porfolio

• Place the sheet in front of you so the
widest side is parallel to the edge of the
working table.

• Mark and crease a horizontal line at
275 mm from the bottom of the sheet
(A – B).

• Mark and crease a vertical line 30 mm
from the left edge extending to the al-
ready creased horizontal line (A – B).

• Mark and crease a vertical line 40 mm
from the left edge extending up to the
already creased horizontal line (A – B).

• Point C is 2 mm right of the last creased
line. Draw a line upwards at an angle of
45∘starting from C.

• Draw a vertical line 80 mm from the left
edge on the horizontally creased line
(A – B) (D), until it intersects with the di-
agonal. This intersection point is point E.

• Draw a line starting 210 mm from the
left edge on the horizontally creased
line (A – B) (F) upwards until it intersects
with the diagonal (the angle is not im-
portant) (G).

• Cut lines A – D, D – E, F – B and F – G.
• Crease E – G on the outside of the cover.

Be very careful when doing this crease,
or the portfolio will not fold correctly.

• Fold D – F precisely and sharpen the fold
with the bone-folder.

• Fold E – G while turning the strip, fold
down after precise positioning of the
strip with the bone-folder.

• Mark the fold-in flaps at the bottom and
top so that they are approximately 2
mm inside the cover after folding.
Mark two lines 2 and 12 mm to the right
of the fold-in (direction of the height of
the portfolio).

• Completely unfold the portfolio.
Mark and crease a line 10 mm to the
left of the bottom turn in. Mark and
crease a line 10 mm to the right of the
top fold-in.
Crease also the two lines in direction of
the height of the portfolio.

• Cut the top fold-in to the width of the
bottom fold-in flap (30 mm).

• There are now four small strips of 10
mm marked by creases. Place another
crease between the creased lines if
you want to give the portfolio rounded
spines.

• All creased lines need to be folded now.
Use the ruler and the bone-folder for
this task.

• Refold the portfolio and fold the flaps
towards the inside.

• Close the portfolio. Mark the width of
the cover. Open the cover and check
that the marks are at equal distance
from the front edge.

• Cut the front cover to size. Alternatively
you can also fold the oversized flap to-
ward the inside of the front cover. By
glueing the edges it forms a pouch.

Making the closing:
For the closing an elastic band is fixed to the
portfolio with two eyelets.

• Punch two holes in the back, approx-
imately 70 mm from the left edge of
the cardboard sheet (this is where the
longest fold-in flap is).

• Insert the elastic band from the outside
inward. Make sure you have about 10
mm of elastic band to spare on the in-
side.

• Insert an eyelet into the pliers and in-
sert the pin with eyelet from the outside
through the hole. Arrange the elastic

40 40

40 40

conference portfolio > willi egger

41

band so it aligns with the long side of
the portfolio. Press firmly in place with
pliers.

• Repeat the procedure for the other hole.

Make the cuts for fixing a postcard (150 × 100
mm)

• Open the front cover and flip the portfo-
lio outside up, the front cover being on
the right side.

• Place the template on the lower right
edge of the front cover.

• Mark the 4 short diagonal lines. It works
best with a sharp awl.

• Remove the template and cut the lines
precisely.

• Insert the corners of the card.

6. Consideration

The article provides two drawings which enable
you to make such portfolios in other sizes. Con-
sider e.g. making a nice wrapping for a present
or an invitation. It is also fine to experiment with
closings. E.g. a cord could be fixed to the front
cover instead of the elastic band and turned
around the portfolio. The end is just tucked
under the turns of the cord…

The workshop with the participants was a lot of
fun, and very recreational as intended by the
theme of this year’s EuroTEX.

41 41

41 41

contextgroup > context meeting 2012

42

Simple Spreadsheets
Hans Hagen

1. Introduction

Occasionally a question pops up on the ConTEXt mailing list where answering it
becomes a nice distraction from a boring task at hand. The spreadsheet module is
the result of such a diversion. As with more support code in ConTEXt, this is not a
replacement for ‘the real thing’ but just a nice feature for simple cases. Of course
some useful extensions might appear in the future.

2. Spreadsheet tables

We can use Lua in each cell, because under the hood it is all Lua. There is some basic
parsing applied so that we can use the usual A..Z variables to access cells.

\startspreadsheettable[test]

\startrow

\startcell 1.1 \stopcell

\startcell 2.1 \stopcell

\startcell A[1] + B[1] \stopcell

\stoprow

\startrow

\startcell 2.1 \stopcell

\startcell 2.2 \stopcell

\startcell A[2] + B[2] \stopcell

\stoprow

\startrow

\startcell A[1] + B[1] \stopcell

\startcell A[2] + B[2] \stopcell

\startcell A[3] + B[3] \stopcell

\stoprow

\stopspreadsheettable

1.1 2.1 3.2

2.1 2.2 4.3

3.2 4.3 7.5

Figure 1: A simple spreadsheet.

The rendering is shown in figure 1. Keep in mind that in Lua all calculations are done
using floats.
The last cell can also look like this:

\startcell

function()

local s = 0

42 42

42 42

simple spreadsheets > hans hagen

43

for i=1,2 do

for j=1,2 do

s = s + dat[i][j]

end

end

return s

end

\stopcell

The content of a cell is either a number or a function. In this example we just loop over
the (already set) cells and calculate their sum. The dat variable accesses the grid of
cells.

\startcell

function()

local s = 0

for i=1,2 do

for j=1,2 do

s = s + dat[i][j]

end

end

tmp.total = s

end

\stopcell

In this variant we store the sum in the table tmp which is local to the current sheet.
Another table is fnc where we can store functions. This table is shared between all
sheets. There are two predefined functions:

sum(sometable,firstindex,lastindex)

fmt(specification,n)

Let’s see this in action:

\startspreadsheettable[test]

\startrow

\startcell 1.1 \stopcell

\startcell 2.1 \stopcell

\stoprow

43 43

43 43

contextgroup > context meeting 2012

44

\startrow

\startcell 2.1 \stopcell

\startcell 2.2 \stopcell

\stoprow

\startrow

\startcell

function()

local s = 0

for i=1,2 do

for j=1,2 do

s = s + dat[i][j]

end

end

context.bold(s)

end

\stopcell

\startcell

function()

local s = 1

for i=1,2 do

for j=1,2 do

s = s * dat[i][j]

end

end

context.bold(fmt("@.1f",s))

end

\stopcell

\stoprow

\stopspreadsheettable

The result is shown in figure 2. Watch the fmt call: we use an at sign instead of a
percent to please TEX.

1.1 2.1

2.1 2.2

7.5 10.7

Figure 2: Cells can be (complex)
functions.

Keep in mind that we’re typesetting and that doing complex calculations is not our
main objective. A typical application of this module is in making bills, for which you
can combine it with the correspondence modules. We leave that as an exercise for the
reader and stick to a simple example.

\startspreadsheettable[test]

\startrow

\startcell[align=flushleft,width=8cm] "item one" \stopcell

\startcell[align=flushright,width=3cm] @ "0.2f EUR" 3.50 \stopcell

\stoprow

44 44

44 44

simple spreadsheets > hans hagen

45

\startrow

\startcell[align=flushleft] "item two" \stopcell

\startcell[align=flushright] @ "0.2f EUR" 8.45 \stopcell

\stoprow

\startrow

\startcell[align=flushleft] "tax 19\percent" \stopcell

\startcell[align=flushright] @ "0.2f EUR" 0.19 * (B[1]+B[2])

\stopcell

\stoprow

\startrow

\startcell[align=flushleft] "total 1" \stopcell

\startcell[align=flushright] @ "0.2f EUR" sum(B,1,3) \stopcell

\stoprow

\startrow

\startcell[align=flushleft] "total 2" \stopcell

\startcell[align=flushright] @ "0.2f EUR" B[1] + B[2] + B[3]

\stopcell

\stoprow

\startrow

\startcell[align=flushleft] "total 3" \stopcell

\startcell[align=flushright] @ "0.2f EUR" sum(B) \stopcell

\stoprow

\stopspreadsheettable

Here (and in figure 3) you see a quick and more readable way to format cell content.
The @ in the template is optional, but needed in cases like this:

@ "(@0.2f) EUR" 8.45

A @ is only prepended when no @ is given in the template.

item one 3.50 EUR

item two 8.45 EUR

tax 19% 2.27 EUR

total 1 14.22 EUR

total 2 14.22 EUR

total 3 42.66 EUR

Figure 3: Cells can be formatted by using Q directives.

45 45

45 45

contextgroup > context meeting 2012

46

item one 3.50 EUR

item two 8.45 EUR

tax 19% 2.27 EUR

total 1 14.22 EUR

total 2 14.22 EUR

total 3 42.66 EUR

Figure 4: The sum function accumulated stepwise.

In practice this table can be simplified (see figure 4) and made a bit nicer looking.

\startspreadsheettable[test][frame=off]

\startrow

\startcell[align=flushleft,width=8cm] "The first item" \stopcell

\startcell[align=flushright,width=3cm] @ "0.2f EUR" 3.50 \stopcell

\stoprow

\startrow

\startcell[align=flushleft] "The second item" \stopcell

\startcell[align=flushright] @ "0.2f EUR" 8.45 \stopcell

\stoprow

\startrow

\startcell[align=flushleft] "The third item" \stopcell

\startcell[align=flushright] @ "0.2f EUR" 5.90 \stopcell

\stoprow

\startrow[topframe=on]

\startcell[align=flushleft] "VAT 19\percent" \stopcell

\startcell[align=flushright] @ "0.2f EUR" 0.19 * sum(B) \stopcell

\stoprow

\startrow[topframe=on]

\startcell[align=flushleft] "\bf Grand total" \stopcell

\startcell[align=flushright] @ "0.2f EUR" sum(B) \stopcell

\stoprow

\stopspreadsheettable

There are a few more special start characters. This is demonstrated in figure 5.
An = character is equivalent to no character and for those who are using regular
spreadsheets.1 When we start with a !, the content is not typeset. Strings can be
surrounded by single or double quotes and are not really processed.

1 I must admit that I never used spreadsheets myself, and Taco suggested to support this. However, in the

time that we didn’t use TEX but used simple ascii based editing we did have summation features built in and

they even were part of the early day ConTEXt formats.

46 46

46 46

simple spreadsheets > hans hagen

47

The first item 3.50 EUR

The second item 8.45 EUR

The third item 5.90 EUR

VAT 19% 3.39 EUR

Grand total 21.24 EUR

Figure 5: Cells can be hidden by ! and can contain strings only.

\startspreadsheettable[test][offset=1ex]

\startrow

\startcell[align=flushleft] "first" \stopcell

\startcell[align=flushleft,width=3cm] '\type{@ "[@i]" 1}'

\stopcell

\startcell[align=flushright,width=3cm] @ "[@i]" 1 \stopcell

\stoprow

\startrow

\startcell[align=flushleft] "second" \stopcell

\startcell[align=flushleft] '\type{= 2}' \stopcell

\startcell[align=flushright] = 2 \stopcell

\stoprow

\startrow

\startcell[align=flushleft] "third" \stopcell

\startcell[align=flushleft] '\type{! 3}' \stopcell

\startcell[align=flushright] ! 3 \stopcell

\stoprow

\startrow

\startcell[align=flushleft] "fourth" \stopcell

\startcell[align=flushleft] '\type{4}' \stopcell

\startcell[align=flushright] 4 \stopcell

\stoprow

\startrow

\startcell[align=flushleft] "\bf total one" \stopcell

\startcell[align=flushleft] '\type{sum(C)}' \stopcell

\startcell[align=flushright] sum(C) \stopcell

\stoprow

\startrow

\startcell[align=flushleft] "\bf total two" \stopcell

\startcell[align=flushleft] '\type{= sum(C)}' \stopcell

\startcell[align=flushright] = sum(C) \stopcell

\stoprow

\stopspreadsheettable

The sum function is clever enough not to include itself in the summation. Only
preceding cells are taken into account, given that they represent a number.

47 47

47 47

contextgroup > context meeting 2012

48

3. Normal tables

In the previous examples we used TEX commands for structuring the sheet but the
content of cells is Lua code. It is also possible to stick to a regular table and use specific
commands to set and get cell data.

first @ "[@i]" 1 [1]

second = 2 2

third ! 3

fourth 4 4

total one sum(C) 10

total two = sum(C) 20

Figure 6: A sheet can be filled and accessed from regular tables.

\bTABLE[align=middle]

\bTR

\bTD \getspr{100} \eTD \bTD test \setspr{30} \eTD

\eTR

\bTR

\bTD \getspr{20} \eTD \bTD \getspr{4+3} \eTD

\eTR

\bTR

\bTD \getspr{A[1] + A[2]} \eTD

\bTD \getspr{B1 + B2} \eTD

\eTR

\bTR

\bTD[nx=2] \bf \getspr{(A[3] + B[3]) /100} \eTD

\eTR

\bTR

\bTD[nx=2] \bf \getspr{fmt("@0.3f",(A[3] + B[3]) /100)} \eTD

\eTR

\bTR

\bTD[nx=2] \bf \getspr{fmt("@0.3f",(sum(A,1,2)) / 10)} \eTD

\eTR

\eTABLE

What method you use depends on the complexity of the table. Of there is more text
than data then this method is probably more comfortable.

48 48

48 48

simple spreadsheets > hans hagen

49

4. A few settings

It’s possible to influence the rendering. The following example demonstrates this:

\bTABLE[align=middle]

\bTR

\bTD \getspr{100} \eTD \bTD test \setspr{30} \eTD

\eTR

\bTR

\bTD \getspr{20} \eTD \bTD \getspr{4+3} \eTD

\eTR

\bTR

\bTD \getspr{A[1] + A[2]} \eTD

\bTD \getspr{B1 + B2} \eTD

\eTR

\bTR

\bTD[nx=2] \bf \getspr{(A[3] + B[3]) /100} \eTD

\eTR

\bTR

\bTD[nx=2] \bf \getspr{fmt("@0.3f",(A[3] + B[3]) /100)} \eTD

\eTR

\bTR

\bTD[nx=2] \bf \getspr{fmt("@0.3f",(sum(A,1,2)) / 10)} \eTD

\eTR

\eTABLE

123456.78

1234567.89

1358024.67

Figure 7: Formatting (large) numbers.

Figure figure 7 demonstrates how this gets rendered by default. However, often you
want numbers to be split in parts separated by periods and commas. This can be done
as follows:

\definehighlight[BoldAndRed] [style=bold,color=darkred]

\definehighlight[BoldAndGreen][style=bold,color=darkgreen]

\setupspreadsheet

[test]

[period={\BoldAndRed{.}},

comma={\BoldAndGreen{,}},

split=yes]

49 49

49 49

contextgroup > context meeting 2012

50

5. The Lua end

123,456.78

1,234,567.89

1,358,024.67

Figure 8: Formatting (large) numbers
with style and color.

You can also use spreadsheets from within Lua. The following example is rather
straightforward:

\startluacode

context.startspreadsheettable { "test" }

context.startrow()

context.startcell() context("123456.78") context.stopcell()

context.stoprow()

context.startrow()

context.startcell() context("1234567.89") context.stopcell()

context.stoprow()

context.startrow()

context.startcell() context("A[1] + A[2]") context.stopcell()

context.stoprow()

context.stopspreadsheettable()

\stopluacode

However, even more Lua-ish is the next variant:

\startluacode

local set = moduledata.spreadsheets.set

local get = moduledata.spreadsheets.get

moduledata.spreadsheets.start("test")

set("test",1,1,"123456.78")

set("test",2,1,"1234567.89")

set("test",3,1,"A[1] + A[2]")

moduledata.spreadsheets.stop()

context.bTABLE()

context.bTR()

context.bTD() context(get("test",1,1)) context.eTD()

context.eTR()

context.bTR()

context.bTD() context(get("test",2,1)) context.eTD()

context.eTR()

context.bTR()

context.bTD() context(get("test",3,1)) context.eTD()

context.eTR()

context.eTABLE()

\stopluacode

50 50

50 50

simple spreadsheets > hans hagen

51

Of course the second variant does not make much sense as we can do this way more
efficient by not using a spreadsheet at all:

\startluacode

local A1, A2 = 123456.78, 1234567.89

context.bTABLE()

context.bTR()

context.bTD() context(A1) context.eTD()

context.eTR()

context.bTR()

context.bTD() context(A2) context.eTD()

context.eTR()

context.bTR()

context.bTD() context(A1+A2) context.eTD()

context.eTR()

context.eTABLE()

\stopluacode

As expected and shown in figure 9, only the first variant gets the numbers typeset
nicely.

123,456.78

1,234,567.89

1,358,024.67

123456.78

1234567.89

1358024.67

123456.78

1234567.89

1358024.67

Figure 9: Spreadsheets purely done as ConTEXt Lua
Document.

6. Helper macros

There are two helper macros that you can use to see what is stored in a spreadsheet:

\inspectspreadsheet[test]

\showspreadsheet [test]

The first command reports the content of test to the console, and the second one
typesets it in the running text:

t={

{ 123456.78, 1234567.89, 1358024.67 },

}

51 51

51 51

contextgroup > context meeting 2012

52

Another helper function is \doifelsespreadsheetcell, You can use this one to check
if a cell is set.

(1,1): \doifelsespreadsheetcell[test]{1}{1}{set}{unset}

(2,2): \doifelsespreadsheetcell[test]{2}{2}{set}{unset}

(9,9): \doifelsespreadsheetcell[test]{9}{9}{set}{unset}

This gives:

(1,1): set
(2,2): unset
(9,9): unset

There is not much more to say about this module, apart from that it is a nice example
of a TEX and Luamix. Maybe somemore (basic) functionality will be added in the future
but it all depends on usage.

52 52

52 52

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

53

Oriental TEX: optimizing paragraphs
Hans Hagen & Idris Samawi Hamid

Introduction
One of the objectives of the Oriental TEX project has always been to play with paragraph
optimization. The original assumption was that we needed an advanced non-standard
paragraph builder to Arabic done right but in the end we found out that a more
straightforward approach is to use a sophisticated OpenType font in combination with
a paragraph postprocessor that uses the advanced font capabilities. This solution is
somewhat easier to imagine than a complex paragraph builder but still involves quite
some juggling.
At the June 2012 meeting of the ntg there was a talk about typesetting Devanagari
and as fonts are always a nice topic (if only because there is something to show) it
made sense to tell a bit more about optimizing Arabic at the same time. In fact, that
presentation was already a few years too late because a couple of years back, when
the oriental TEX project was presented at tug and Dante meetings, the optimizer was
already part of the ConTEXt core code. The main reason for not advocating is was the
simple fact that no font other than the (not yet finished) Husayni font provided the
relevant feature set.
The lack of advanced fonts does not prevent us from showing what we’re dealing with.
This is because the ConTEXt mechanisms are generic in the sense that they can also be
used with regular Latin fonts, although it does not make that much sense. Anyhow,
in the next section we wrap up the current state of typesetting Arabic in ConTEXt.
We focus on the rendering, and leave general aspects of bidirectional typesetting and
layouts for another time.
This article is written by Idris Samawi Hamid and Hans Hagen and is typeset by ConTEXt
MkIV which uses LuaTEX. This program is an extension of TEX that uses Lua to open op
the coremachinery. The LuaTEX core teamconsists of TacoHoekwater, Hartmut Henkel
and Hans Hagen.

Manipulating glyphs
When discussing optical optimization of a paragraph, a few alternatives come to mind:

• One can get rid of extensive spaces by adding additional kerns between glyphs.
This is often used by poor man’s typesetting programs (or routines) and can be
applied to non-connecting scripts. It just looks bad. Of course, for connected
scripts like Arabic, inter-glyph kerning is not an option, not even in principle.

• Glyphs can be widened a few percent and this is an option that LuaTEX inherits
from its predecessor pdfTEX. Normally this goes unnoticed although excessive
scaling makes things worse, and yes, one can run into such examples. This

53 53

53 53

contextgroup > context meeting 2012

54

strategy goes under the name hz-optimization (the hz refers to Hermann Zapf,
who first came up with this solution).1

• A real nice solution is to replace glyphs by narrower or wider variants. This is
in fact the ideal hz solution —including for Arabic-script as well— but for it
to happen one not only needs needs fonts with alternative shapes, but also a
machinery that can deal with them.

• An already old variant is the one first used by Gutenberg, who used alternative
cuts for certain combinations of characters. This is comparable with ligatures.
However, to make the look and feel optimal, one needs to analyze the text and
make decisions on what to replace without loosing consistency.

The solution described here does a bit of everything. As it is mostly meant for a
connective script, the starting point is how a scribe works when filling up a line nicely.
Depending on how well one can see it coming, the writing can be adapted to widen
or narrow following words. And it happens that in Arabic-script there are quite some
ways to squeeze more characters in a small area and/or expand some to the extreme
to fill up the available space. Shapes can be wider or narrower, they can be stacked
and they can get replaced by ligatures. Of course there is some interference with the
optional marks on top and below but even there we have some freedom. The only
condition is that the characters in a word stay connected.2

So, given enough alternative glyphs, one can imagine that excessive interword spacing
can be avoided. However, it is non-trivial to check all possible combinations. Actually,
it is not needed either, as carefully chosen aesthetic rules put some bounds on what
can be done. One should more think in terms of alternative strategies or solutions and
this is the terminology that we will therefore use.
Scaling glyphs horizontally is no problem if we keep the scale factor very small, say
percentages. This also means that we should not overestimate the impact. For the
Arabic script we can stretch more —using non-scaling methods— but again there are
some constraints, that we will discuss later on.
In the next example, we demonstrate some excessive stretching:

In practice, fonts can provide intercharacter kerning, which is demonstrated next:

W
-0.984

e are texies! W
-0.984

e are texies!

Some poor man’s justification routines mess with additional inter-character kerning.
Although this is, within reasonable bounds, ok for special purposed like titles, it looks
bad in text. The first line expands glyphs and spaces, the second line expands spaces
and add additional kerns between characters and the third line expands and add extra
kerns.

1 Sometimes hz-optimization also goes under the rubric of ‘Semitic justification’. See, e.g., Bringhurst in

pre-3rd editions of his Elements of Typographic Style. This technique does not work well for Arabic script in

general because glyphs are connected in two dimensions. On the other hand, a certain basic yet ubiquitous

Semitic justification can be achieved by using the tawīl character, commonly called the kashīdah (U+0640).

We will discuss this later in this article.
2 Much of this is handled within the GPOS features of the OpenType font itself (e.g., mark and mkmk)

54 54

54 54

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

55

We are texies!

W e a r e t e x i e s !

W e a r e t e x i e s !

Unfortunately we see quite often examples of the last method in novels and even
scientific texts. There is definitely a down side to advanced manipulation.

Applying features to Latin-script
It is easiest is to start out with Latin, if only because it’s more intuitive for most of us
to see what happens. This is not the place to discuss all the gory details so you have to
take some of the configuration options on face value. Once this mechanism is stable
and used, the options can be described. For now we stick to presenting the idea.
Let’s assume that you know what font features are. The idea is to work with combi-
nations of such features and figure out what combination suits best. In order not to
clutter a document style, these sets are defined in so called goodie files. Here is an
excerpt of demo.lfg:

return {
name = "demo",
version = "1.01",
comment = "An example of goodies.",
author = "Hans Hagen",
featuresets = {
simple = {
mode = "node",
script = "latn"

},
default = {
mode = "node",
script = "latn",
kern = "yes",

},
ligatures = {
mode = "node",
script = "latn",
kern = "yes",
liga = "yes",

},
smallcaps = {
mode = "node",
script = "latn",
kern = "yes",
smcp = "yes",

},
},
solutions = {
experimental = {
less = {
"ligatures", "simple",

},

55 55

55 55

contextgroup > context meeting 2012

56

more = {
"smallcaps",

},
},

},
}

We see four sets of features here. You can use these sets in a ConTEXt feature definition,
like:

\definefontfeature

[solution-demo]

[goodies=demo,

featureset=default]

You can use a set as follows:

\definefont

[SomeTestFont]

[texgyrepagellaregular*solution-demo at 10pt]

So far, there is nothing special or new, but we can go a step further.

\definefontsolution

[solution-a]

[goodies=demo,

solution=experimental,

method={normal,preroll},

criterium=1]

\definefontsolution

[solution-b]

[goodies=demo,

solution=experimental,

method={normal,preroll,split},

criterium=1]

Here we have defined two solutions. They refer to the experimental solution in
the goodie file demo.lfg. A solution has a less and a more entry. The featuresets

56 56

56 56

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

57

mentioned there reflect ways to make a word narrower or wider. There can be more
than one way to do that, although it comes at a performance price. Before we see how
this works out we turn on a tracing option:

\enabletrackers

[builders.paragraphs.solutions.splitters.colors]

This will color the words in the result according to what has happened. When a
featureset out of the more category has been applied, the words turn green, when less
is applied, the word becomes yellow. The preroll option in the method list makes sure
that we do a more extensive test beforehand.

\SomeTestFont \startfontsolution[solution-a]

\input zapf \par

\stopfontsolution

In Figure 1 we see what happens. In each already split line words get wider or narrower
until we’re satisfied. A criterium of 1 is pretty strict3. Keep in mind that we use some
arbitrary features here. We try removing kerns to get narrower although there is
nothing that guarantees that kerns are positive. On the other hand, using ligatures
might help. In order to get wider we use smallcaps. Okay, the result will look somewhat
strange but so does much typesetting nowadays.

Coming back t
-0.100

o t
0.150

he use of typef
-0.100

aces
in electronic publishing: man

-0.350

y of t
0.150

he
ne

-0.100

w typogr
-0.150

aphers receiv
-0.400

e t
0.150

heir kno
-0.250

w
-0.350

l-
edg

-0.200

e and inf
-0.150

ormation about t
0.150

he r
0.100

ules of
typogr

-0.150

aph
-0.350

y from book
0.100

s, from computer
magazines or t

0.150

he ins
-0.150

tr
0.100

uction manuals
which t

0.150

he
-0.150

y g
-0.200

et wit
0.150

h t
0.150

he purchase of a
PC or sof

0.100

tw
-0.300

are. There is no
-0.150

t so much
basic ins

-0.150

tr
0.100

uction, as of no
-0.250

w
-1.050

, as t
0.150

here w
-0.300

as
in t

0.150

he old da
-0.400

ys, sho
-0.250

wing t
0.150

he diff
-0.150

erences
betw

-0.400

een good and bad typog
0.150

r
-0.150

aphic de-
sign. Man

-0.350

y people are jus
-0.150

t f
-0.100

ascinated
b

-0.300

y t
0.150

heir PC's trick
0.100

s, and t
0.150

hink t
0.150

hat a
widel

-0.250

y--pr
-0.150

aised prog
0.150

r
-0.150

am, called up on
t

0.150

he screen, will mak
-0.100

e e
-0.100

v
-0.400

er
0.150

yt
0.150

hing aut
-0.100

o-
matic from no

-0.250

w on.

Coming back t
-0.150

o the use of typef
-0.650

a
-0.450

ces
in electr

-0.250

onic publishin
-0.200

g: many of the
ne

-0.100

w typographers receive their kno
-0.250

w
-0.350

l-
edg

-0.200

e and inf
-0.150

ormation about t
0.150

he r
0.100

ules of
typogr

-0.150

aph
-0.350

y from book
0.100

s, from computer
magazines or the ins

-0.150

tr
-0.350

uction manuals
whic

-0.050

h they get with the purc
-0.050

hase of a
PC or softw

-0.750

are. There is n
-0.150

o
-0.100

t so muc
-0.050

h
basic ins

-0.150

tr
0.100

uction, as of no
-0.250

w
-1.050

, as t
0.150

here w
-0.300

as
in t

0.150

he old da
-0.400

ys, sho
-0.250

wing t
0.150

he diff
-0.150

erences
betw

-0.400

een good and bad typog
0.150

r
-0.150

aphic de-
design

-0.300

. Man
-0.350

y people are jus
-0.150

t f
-0.100

ascinated
b

-0.300

y their PC’s tric
-0.050

ks, and think tha
-0.450

t a
widel

-0.250

y--pr
-0.150

aised prog
0.150

r
-0.150

am, c
-0.100

alled up on
the screen

-0.450

, will make ever
-0.350

ythin
-0.200

g aut
-0.100

o-
matic from no

-0.250

w on.
normal solution

Figure 1: Solution a.

3 This number reflects the maximum badness and future versions might have a different measure with more

granularity.

57 57

57 57

contextgroup > context meeting 2012

58

There is one pitfall here. This mechanism is made for a connective script where
hyphenation is not used. As a result a word here is actually split up when it has
discretionaries and of course this text fragment has. It goes unnoticed in the rendering
but is of course far from optimal.

\SomeTestFont \startfontsolution[solution-b]

\input zapf \par

\stopfontsolution

In this example (Figure 2) we keep words as a whole but as a side effect we skip words
that are broken across a line. This is mostly because it makes not much sense to
implement it as Latin is not our target. Future versions of ConTEXt might get more
sophisticated font machinery so then things might look better.

Coming back t
-0.100

o t
0.150

he use of typef
-0.100

aces
in electronic publishing: man

-0.350

y of t
0.150

he
ne

-0.100

w typogr
-0.150

aphers receiv
-0.400

e t
0.150

heir kno
-0.250

w
-0.350

l-
edg

-0.200

e and inf
-0.150

ormation about t
0.150

he r
0.100

ules of
typogr

-0.150

aph
-0.350

y from book
0.100

s, from computer
magazines or t

0.150

he ins
-0.150

tr
0.100

uction manuals
which t

0.150

he
-0.150

y g
-0.200

et wit
0.150

h t
0.150

he purchase of a
PC or sof

0.100

tw
-0.300

are. There is no
-0.150

t so much
basic ins

-0.150

tr
0.100

uction, as of no
-0.250

w
-1.050

, as t
0.150

here w
-0.300

as
in t

0.150

he old da
-0.400

ys, sho
-0.250

wing t
0.150

he diff
-0.150

erences
betw

-0.400

een good and bad typog
0.150

r
-0.150

aphic de-
sign. Man

-0.350

y people are jus
-0.150

t f
-0.100

ascinated
b

-0.300

y t
0.150

heir PC's trick
0.100

s, and t
0.150

hink t
0.150

hat a
widel

-0.250

y--pr
-0.150

aised prog
0.150

r
-0.150

am, called up on
t

0.150

he screen, will mak
-0.100

e e
-0.100

v
-0.400

er
0.150

yt
0.150

hing aut
-0.100

o-
matic from no

-0.250

w on.

Coming back t
-0.150

o the use of typef
-0.650

a
-0.450

ces
in electr

-0.250

onic publishin
-0.200

g: many of the
ne

-0.100

w typographers receive their kno
-0.250

w
-0.350

l-
edg

-0.200

e and inf
-0.150

ormation about t
0.150

he r
0.100

ules of
typogr

-0.150

aph
-0.350

y from book
0.100

s, from computer
magazines or the ins

-0.150

tr
-0.350

uction manuals
whic

-0.050

h they get with the purc
-0.050

hase of a
PC or softw

-0.750

are. There is n
-0.150

o
-0.100

t so muc
-0.050

h
basic ins

-0.150

tr
0.100

uction, as of no
-0.250

w
-1.050

, as t
0.150

here w
-0.300

as
in t

0.150

he old da
-0.400

ys, sho
-0.250

wing t
0.150

he diff
-0.150

erences
between good and bad typog

0.150

r
-0.150

aphic de-
sign. Many people are jus

-0.150

t f
-0.650

ascin
-0.250

a
-0.450

ted
b

-0.300

y their PC’s tric
-0.050

ks, and think tha
-0.450

t a
widel

-0.250

y--pr
-0.150

aised prog
0.150

r
-0.150

am, c
-0.100

alled up on
the screen

-0.450

, will make ever
-0.350

ythin
-0.200

g a
-0.500

ut
-0.150

o-
matic from no

-0.250

w on.
normal solution

Figure 2: Solution b.

We show two more methods:

\definefontsolution

[solution-c]

[goodies=demo,

solution=experimental,

method={reverse,preroll},

criterium=1]

58 58

58 58

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

59

\definefontsolution

[solution-d]

[goodies=demo,

solution=experimental,

method={random,preroll,split},

criterium=1]

In Figure 3 we start at the other end of a line. As we sort of mimick a scribe, we can be
one who plays safe at the start of corrects at the end.

Coming back t
-0.100

o t
0.150

he use of typef
-0.100

aces
in electronic publishing: man

-0.350

y of t
0.150

he
ne

-0.100

w typogr
-0.150

aphers receiv
-0.400

e t
0.150

heir kno
-0.250

w
-0.350

l-
edg

-0.200

e and inf
-0.150

ormation about t
0.150

he r
0.100

ules of
typogr

-0.150

aph
-0.350

y from book
0.100

s, from computer
magazines or t

0.150

he ins
-0.150

tr
0.100

uction manuals
which t

0.150

he
-0.150

y g
-0.200

et wit
0.150

h t
0.150

he purchase of a
PC or sof

0.100

tw
-0.300

are. There is no
-0.150

t so much
basic ins

-0.150

tr
0.100

uction, as of no
-0.250

w
-1.050

, as t
0.150

here w
-0.300

as
in t

0.150

he old da
-0.400

ys, sho
-0.250

wing t
0.150

he diff
-0.150

erences
betw

-0.400

een good and bad typog
0.150

r
-0.150

aphic de-
sign. Man

-0.350

y people are jus
-0.150

t f
-0.100

ascinated
b

-0.300

y t
0.150

heir PC's trick
0.100

s, and t
0.150

hink t
0.150

hat a
widel

-0.250

y--pr
-0.150

aised prog
0.150

r
-0.150

am, called up on
t

0.150

he screen, will mak
-0.100

e e
-0.100

v
-0.400

er
0.150

yt
0.150

hing aut
-0.100

o-
matic from no

-0.250

w on.

C
-0.350

omin
-0.200

g b
-0.350

a
-0.450

c
-0.050

k t
-0.150

o the use of typef
-0.100

aces
in electr

-0.250

onic publishing: many of the
new typographers receive their kno

-0.250

w
-0.350

l-
edg

-0.200

e and inf
-0.150

ormation about t
0.150

he r
0.100

ules of
typogr

-0.150

aph
-0.350

y from book
0.100

s, from computer
ma

-0.450

gazines or the ins
-0.150

tr
-0.350

uction manuals
whic

-0.050

h they get with the purc
-0.050

hase of a
PC or softw

-0.750

are. There is n
-0.150

o
-0.100

t so much
basic ins

-0.150

tr
0.100

uction, as of no
-0.250

w
-1.050

, as t
0.150

here w
-0.300

as
in t

0.150

he old da
-0.400

ys, sho
-0.250

wing t
0.150

he diff
-0.150

erences
betw

-0.400

een good and bad typographic de-
design

-0.300

. Many people are jus
-0.150

t f
-0.650

ascin
-0.250

a
-0.450

ted
b

-0.250

y their PC’s tric
-0.050

ks, and think tha
-0.450

t a
widel

-0.650

y--praised pr
-0.250

ogram, c
-0.100

alled up on
the screen

-0.450

, will mak
-0.100

e ever
-0.350

ythin
-0.200

g aut
-0.100

o-
matic from no

-0.250

w on.
normal solution

Figure 3: Solution c.

In Figure 4 we add some randomness but to what extent this works well depends on
howmany words we need to retypeset before we get the badness of the line within the
constraints.

Salient features of Arabic-script
Before applying the above to Arabic-script, let’s discuss some salient aspects of the
problem. As a cursive script, Arabic is extremely versatile and the scribal calligraphy
tradition reflects that. Digital Arabic typography is only beginning to catch up with the
possibilities afforded by the scribal tradition. Indeed, early lead-punch typography and
typesetting of Arabic-script was more advanced than most digital typography even up
to this day. In any case, let us begin to organize some of that versatility into a taxonomy
for typography purposes.

What's available?

We have to work within the following parameters:

59 59

59 59

contextgroup > context meeting 2012

60

Coming back t
-0.100

o t
0.150

he use of typef
-0.100

aces
in electronic publishing: man

-0.350

y of t
0.150

he
ne

-0.100

w typogr
-0.150

aphers receiv
-0.400

e t
0.150

heir kno
-0.250

w
-0.350

l-
edg

-0.200

e and inf
-0.150

ormation about t
0.150

he r
0.100

ules of
typogr

-0.150

aph
-0.350

y from book
0.100

s, from computer
magazines or t

0.150

he ins
-0.150

tr
0.100

uction manuals
which t

0.150

he
-0.150

y g
-0.200

et wit
0.150

h t
0.150

he purchase of a
PC or sof

0.100

tw
-0.300

are. There is no
-0.150

t so much
basic ins

-0.150

tr
0.100

uction, as of no
-0.250

w
-1.050

, as t
0.150

here w
-0.300

as
in t

0.150

he old da
-0.400

ys, sho
-0.250

wing t
0.150

he diff
-0.150

erences
betw

-0.400

een good and bad typog
0.150

r
-0.150

aphic de-
sign. Man

-0.350

y people are jus
-0.150

t f
-0.100

ascinated
b

-0.300

y t
0.150

heir PC's trick
0.100

s, and t
0.150

hink t
0.150

hat a
widel

-0.250

y--pr
-0.150

aised prog
0.150

r
-0.150

am, called up on
t

0.150

he screen, will mak
-0.100

e e
-0.100

v
-0.400

er
0.150

yt
0.150

hing aut
-0.100

o-
matic from no

-0.250

w on.

C
-0.350

omin
-0.200

g back t
-0.150

o the use of typef
-0.650

a
-0.450

ces
in electr

-0.250

onic publishin
-0.200

g: many of the
ne

-0.100

w typographers receiv
-0.400

e their kn
-0.150

o
-0.300

wl-
edg

-0.200

e and inf
-0.150

ormation about t
0.150

he r
0.100

ules of
typogr

-0.150

aph
-0.350

y from book
0.100

s, from computer
magazines or the ins

-0.150

tr
-0.350

uction manuals
whic

-0.050

h they get with the purc
-0.050

hase of a
PC or softw

-0.750

are. There is n
-0.150

o
-0.100

t so much
basic ins

-0.150

tr
0.100

uction, as of no
-0.250

w
-1.050

, as t
0.150

here w
-0.300

as
in t

0.150

he old da
-0.400

ys, sho
-0.250

wing t
0.150

he diff
-0.150

erences
betw

-0.400

een good and bad typog
0.150

r
-0.150

aphic de-
sign. Many people are jus

-0.150

t f
-0.650

ascin
-0.250

a
-0.450

ted
b

-0.250

y their PC’s tric
-0.050

ks, and think tha
-0.450

t a
widel

-0.650

y--praised pr
-0.250

ogram, c
-0.100

alled up on
the screen

-0.450

, will mak
-0.100

e ever
-0.350

ythin
-0.200

g a
-0.500

ut
-0.150

o-
matic from no

-0.250

w on.
normal solution

Figure 4: Solution d.

• No hyphenation ever (well, almost never)

It is commonly pointed out that there is no hyphenation is Arabic. This is
something of a half-truth. In the manuscript tradition one actually does find
something akin to hyphenation. In the ancient Kufic script, breaking a word
across lines is actually quite common. But even in themoremodern Naskh script,
the one most normal Arabic text fonts are based on, it does occur, albeit rarely
and presumably when the scribe is out of options for the line he is working on.
Indeed, one could regard it as a failure on the part of the scribe once he reaches
the end of the line.4

But there is still an important rule, regardless of whether we use Naskh, Kufic, or
any other Arabic script. Consider the word below:

لعاف﮲لا

It is a single word composed of two cursive strings. One could actually hyphenate
it, with our rule being to break it at the end of the first cursive string and before
the beginning of the second cursive string:

اف﮲لامسااذ﮲ه

لع

4 Indeed, even Latin hyphenation, when it occurs, can be considered a ‘failure’ of sorts.

60 60

60 60

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

61

Again, it’s a rare phenomenon and hardly ever occurs in modern typesetting,
lead-punch or digital, if at all. On the other hand, it could have some creative
uses in future Arabic-script typography.

• Macrotypography (aesthetic features)

In Arabic there are often numerous aesthetic ways of writing out the exact same
semantic string:5

دمحلادمحلادمحلا

Normally we put combine OpenType features into feature sets that are each
internally and aesthetically coherent. So in the above example we have used
three different sets, reading from right to left. We’ll call them simple, default,
and dipped.
Just as Latin typography uses separate fonts to mark off different uses of text
(bold, italic, etc.), an advancedArabic font can use aesthetic feature sets to similar
effect. This works best on distinguishing long streams of text from one another,
since the differences between feature sets are not always noticeable on short
strings. That is, two different aesthetic sets may type a given short string, such
as a single word, exactly the same way. Consider the above three sets (simple,
default, and dipped) once more:

ي﮵لعي﮵لعي﮵لع

For the above string the default and dipped aesthetic sets (middle and left) give
the exact same result, while the basic one (right) remains, well, quite basic.
Let’s go back to our earlier example:

دمحلادمحلادمحلا

Note that the simple version is wider than the default, and the dipped version
is (slightly) thinner than the default. This relates to another point: An aesthetic
feature set can serve two functions:

1. It can serve as the base aesthetic style.

2. It can serve as a resource for glyph substitution for a given string in another
base aesthetic style.

This brings us back to our main topic.

5 This five character string can be represented in Latin by the five character string ‘al-md’ (not including the

‘-’). It is pronounced ‘al-amdu’. Note that Arabic script is mainly consonantal: pure vowels are not part of

the alphabet and are, instead, represented by diacritics.

61 61

61 61

contextgroup > context meeting 2012

62

• Microtypography (paragraph optimization features)

Here our job is to optimize the paragraph for even spacing and aesthetic viewing.
It turns out that there are a number of ways to look at this issue, and we will begin
exploring these in the next subsection.

Two approaches

Let us start offwith a couple of samples. Qurānic transcription has always been the gold
standard of Arabic-script. In Figure 5 we see a nice example of scribal optimization.
The scribe here is operating under the constraint that each page ends with the end

Figure 5: Scribal Optimization. Scribe: Uthmān āhā. Qurān, circa 1997.

62 62

62 62

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

63

of a Qurānic verse (designated by the symbol U+06DD ۝). That is, no verse is broken
across pages. That constraint, which is by no means mandatory or universal, gives the
scribe lots of space for optimization, even more than normal.
In Figure 6 we have a page of the famous al-Husayni Muaf of 1919–1923, which remains
up to this day the only typeset copy of the Qurān to attain general acceptance in the
Muslim world. Indeed, it remains the standard ‘edition’ of the Qurān and even later
scribal copies, such as the one featured in Figure 5 are based on its orthography. Unlike
the scribal version, the typesetters of the al-Husayni Muaf did not try to constrain each
page to end with the end of a Qurānic verse. Again, that is a nice feature to have as it
makes recitation somewhat easier but it is by no means a mandatory one.
In any case, both samples share verses 172–176 in commmon, so there is lots to
compare and contrast. We will also use these verses as our main textual sample for
paragraph optimization.
Using Figure 5 and Figure 6 as benchmarks, we can begin by analyzing the approaches
to paragraph optimization in Arabic-script typography into two kinds:

• Alternate glyphs

Much of pre-digital Arabic typography uses this method. Generally, a wide
variant of a letter is used to take up the space which would normally get absorbed
by hyphenation in Latin. Here are examples of three of the most common
substitutions, again, reading from right to left:

ام←امب﮳ات﮴كلا←ب﮳ات﮴‍كلا‌‌‌‌ن﮲ي﮵ذ﮲لّا←ن﮲ي﮵ذ﮲لّا

Each of the six strings above occurs in Figure 6. Identifying them is an exercise
left to the reader. We call these kinds of alternate glyphs alternate-shaped glyphs.
The three substitutions above are the most common alternate-glyph substitu-
tions found in pre-digital Arabic-script typography, including some contextual
variants (initial, medial, final, and isolated) where appropriate. (The scribal
tradition contains a lot more alternate-shaped glyphs. A few lead-punch fonts
implement some of them, and we have implemented many of these in our
Husayni font.) The results generally look quite nice and much more professional
than most digital Arabic typography, which generally dispenses with these
alternates.
But one also finds attempts at extending individual characters without changing
the shape very much. One finds this already in Figure 6. We call these kinds of
alternate glyphs naturally curvedwidened glyphs, or just naturally widened glyphs
for short. Sometimes this is done for the purpose of making enough space for the
vowels (which in Arabic take the form of diacritic characters). For example:

اهَيُّ﮵أَٔيَٰۤ﮵←اهي﮵أٔي﮵

63 63

63 63

contextgroup > context meeting 2012

64

Figure 6: Alternate Fixed Glyphs. From the al-Husayni Muaf of the Qurān, 1923.

As you can see, there are two letters that have beenwidened for vowel accommo-
dation. In Figure 6 there are somegood but near-clumsy attempts at this. We say,
‘near-clumsy’ because the typographers and typesetters mix natural, curved,
widened variants of letters with flat, horizontal, extended versions. One reason
for this is that a full repertoire of naturally curved glyph alternates would be
much too unwieldy for even the best lead-punch typesetting machines and their
operators. Evenwith these limitations one can find brave examples of lead-based
typesetting that do a good job of sophisticated paragraph optimization via glyph

64 64

64 64

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

65

alternates, both widened and alternate-shaped. Figure 7 is a representative
example (in the context of columns).
Careful examination of this two-column sample will reveal the tension between
naturallywidened and horizontally extended glyphs in the execution of paragraph
optimization. On the other hand, there is one apparent ‘rule’ that one finds in this
and other examples of lead-punch Arabic-script typesetting:

Generally, there is only one naturally widened character per word or one alternate-shaped

character per word.

In Figure 5 one can see that this ‘rule’ is not always observed by scribes, see, e.g.,
the middle word in line 9 from the top, which uses two of the alternate-shaped
characters we encountered above (can you identify that word?). But we still need
some constraints for decent-looking typesetting, and the above tentative rule is a
good place to start the analysis. For widened characters in particular we see that
even the scribe (Figure 5) closely approximates this rule. So let’s begin improving
on our tentative rule somewhat, and expand it into a number of possibilities. Let’s
look at the naturally-widened-glyph case first:

Generally, there is only one naturally widened character allowed per word. However, two

extended non-consecutive characters may be allowed. (The logic of the experimental font

Husayni already has contraints that prevent consecutive curved widened characters).

For example, we prefer to get widening like the following:

لي﮵ب﮳س←لي﮵ب﮳س‍‍لي﮵ب﮳س←لي﮵ب﮳س‌‌‌‌لي﮵ب﮳س←لي﮵ب﮳س

لي﮵ب﮳س←لي﮵ب﮳س‍‍لي﮵ب﮳س←لي﮵ب﮳س‌‌‌‌لي﮵ب﮳س←لي﮵ب﮳س

But as, e.g., a last resort or for stylistic purposes we can also do

لي﮵ب﮳س←لي﮵ب﮳س‍‍لي﮵ب﮳س←لي﮵ب﮳س‌‌‌‌لي﮵ب﮳س←لي﮵ب﮳س

Or even better, we mix it up a bit. That is, if there is more than one widened
character, one should be longer than the other, e.g.:

لي﮵ب﮳س←لي﮵ب﮳س‍‍لي﮵ب﮳س←لي﮵ب﮳س‌‌‌‌لي﮵ب﮳س←لي﮵ب﮳س

One will notice that the middle substitution (where the first widened character is
longer than the second) does not look as good as the two outer ones (where the
second is longer than the first). These kinds of aesthetic issues can be formalized
for future work. In the meantime, here is a working modified version of the rule
for naturally-widened-glyphs:

65 65

65 65

contextgroup > context meeting 2012

66

Figure 7:Mixed Alternate Glyphs in Two Columns. From the classical dictionaryMukhtār al-iā.

66 66

66 66

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

67

Generally, there is only one naturally widened character allowed per word. However, two non-

consecutive widened characters may be allowed. In that case, the second widened character

should be longer than the first.

One case where cases of two naturally widened character will be common is in
poetry, which involves wide lines. We’ll say more about this in the section on flat
extending.
Now let’s look at the alternate-shaped case:

Generally, there is only one alternate-shaped character allowed per word. However, two non-

consecutive alternate-shaped characters may be allowed.

So we prefer, e.g.,

ن﮲ومت﮴كي﮵←ن﮲ومت﮴كي﮵

‌‌ن﮲ومت﮴كي﮵←ن﮲ومت﮴كي﮵

‌‌‌ن﮲ومت﮴كي﮵←ن﮲ومت﮴كي﮵

but we could have, e.g, as a last resort or as a stylistic option,

‌‌ن﮲ومت﮴كي﮵←ن﮲ومت﮴كي﮵

‌‌‌‌‌ن﮲ومت﮴كي﮵←ن﮲ومت﮴كي﮵

Again, in poetry this kind of multiple substitution within a single word could occur
frequently. A challenge will be to develop a system of parameters where we can
almost predict which kinds of substitution will happen under a given set of values
of those parameters.

• Flat extending

In the transition from lead-punch to digital typography, alternate-glyph sub-
stitution largely vanished.6 The problem of spacing remained, and a simple yet
inelegant solution was adopted: flat, horizontal extending of characters. Now
this solution did have some precedent in pre-digital Arabic typography, as you
can see in Figure 6 and Figure 7. This solution had the advantage that it required
only a single character: a simple horizontal bar called a tawīl or more commonly

6 Indeed, as was the case with Latin typography, Arabic-script typography took a sharp turn for the worse

with the advent of digital typography. On the other hand, Latin typography recovered much more quickly,

in large part thanks to Knuth’s development of TEX.

67 67

67 67

contextgroup > context meeting 2012

68

477

�	áÓ�
�	àA
�
¿ �	à@
�

�ð ;H.� A
��m�
�Ì'
�
@ �ð �é�

�ÓA�J
 �®�
�
Ë
�
@ �Ð �ñ�K

�	à �	P �ñ
�
Ë
�
@ 	à� A

���	�B
�
��
@

�
½Ë�

�	X ú
�
Î �« ø �Q �k. , A �Ò�î �	DÓ� 15

�Ñ
�
º �k fé �Ò

�
º �k �	àñ

�
º�K
 �ð ; �Q �	k

�
B
��
@ �	¡ �	®�m��'
 A �Ó �P �Y��̄ B

��
@
�
�é�	JÓ�

���
�J. �K
 �Õ

�
Ë �ð �Q �	k

�
B
��
@ �	­ �ª �	� A �Òë� Y� �g

�

@

. ��ø
 ñ�
��®
�
Ë
�
@

�ð ��é��J
ë� A �Ü
�
Ï�@ �I�

���̄ �P �ð . É�
��® �ª
�
Ë
�
@ ��I �	k

�

@ ��I�	K A

�
¿ �ð ���	®

��	JË
�
@ �I�

��	K
�

A �Ò �£@
� ,

�Xñ �k. �ñ
�
Ë
�
@ ��ø
 ñ�

��®
�
Ë
�
@ �	àA

�
¿ �	àA
�

�	̄
�	à@
�

�ð , A �Ò�î �	D�J
�K. É�
�ª 	®�
�
Ë
�
@ ú

	̄
�

����Q�	̄ C
� �	̄ . P� A

��	JË
�
@ ú

	̄
�
�è� A
��Ò �j�Ü

�
Ï�@ �è�

�YK
Y�
�m
�Ì'
�
A
�
¿ , �Xñ �k. �ñ

�
Ë
�
@ [202] �I� �î�E. A

���
: �Q«� A

����Ë
�
@

�
ÈA��̄ . Y� K
Y�

�m
�Ì'
�
A
�
¿ , 	�� �Q �ª

�
Ë
�
AK.� A�îE.� A �Ó �	àA

�
¿ 20

�Q �Ó
�

B
��
@ �é �K. A

��� ��� �ð C
� �
¿ A ��� ��� �	̄ �Q �Ò �	m

�Ì'
�
@ �I�

���̄ �P �ð �h. A
�g.
��	Q Ë
�
@

���� �P
�Q �Ô

�	g B
� ��ð �h �Y ��̄ A �Ü

��	ß
�

A
�
¿ �ð �h �Y ��̄ B

� ��ð �Q �Ô
�	g A �Ü

��	ß
�

A
�
¾ �	̄

��YÒ�
��J ����
 A �Ü

��	ß @
� A �Ò�î �	DÓ� Y� g� @ �ð
��
É
�
¿ �ð .��

�
º �ª

�
Ë
�
@ ú

�
Î �« �Q�Ó

�

B
��
@ �	àA

�
¿ ��é��J
ë� A �Ü

�
Ï�@ ��ø
 ñ�

��®
�
Ë
�
@ �	àA

�
¿ �	à@
�

�ð
��YÒ�
��J ����
 C

� �	̄ . è�
��Y 	�� �	áÓ� �ñ �ë A �Ó ñ�

�m�
�	' �	áÓ� �Z �ú
æ

����Ë
�
@
��YÒ�
��J ����
 B

� �	X @
� é� ��
�	�k.�

�	áÓ� X�
�Y�Üß.� ø
 ñ�

��®�K
 �ð
�ñ �ë A �Ü

��	ß @
� , fé �ª �Ó Q�
�	k
�
B
��
@

�
É�J
 �Ó �ð . �½Ë�

�	Y
�
» �ñ �ë ��I�J
 �k �	áÓ� ��

�
º �ª

�
Ë
�
@ B

� �ð �é�
�Ò
�
Ê
��	¢Ë
�
@ �	áÓ� �Pñ

��	JË
�
@ 25

. A �Òî�

E�
�
A ��®�J. Ë�

¨
�
@ �ñ�	K

�

@ �	áÓ�

��YÒ�
��J ����

��é��J
ë� A �Ü
�
Ï�@ �ð . é� «� �ñ

�	K �	áÓ� A�î
��	E
�

B� �H� @

�Q��

�	m
�Ì'
�
@ ¨

�
@ �ñ�	K

�

@ �	áÓ�

��YÒ�
��J ����
 �Xñ �k. �ñ

�
Ë
�
A�	̄

A�	K A
�
¿ @ �	X @
� , A �ª�Ó é� �J

�	̄ �Q �£ �	áÓ�
��YÒ�
��J ����
 B

� �Yg� @ �ñ
�
Ë
�
@ �I.

��
»�Q�Ü

�
Ï�@ �ð . A�ê«� �ñ

�	K �	áÓ� A�î
��	E
�

B� P�ð

�Qå
����Ë
�
@

16
�é�	JÓ�]

�é�	J �« T., p. 212.

24
�	áÓ� �Z �ú
æ

����Ë
�
@
��YÒ�
��J ����
] �	áÓ�

��YÒ�
��J ����
 T., p. 214.

25
�	áÓ�] �	áÓ� �ð T., p. 214.

28 é� �J

�	̄ �Q �£] é� �J

�	̄ �Q �£ T., p. 215.

15–16 A �Òë� Y� �g
�

@] The word A �Òë� Y� �g

�

@ is a correction, by the author, in the margin. Part of the pronoun A �Òë� is

cut off in the manuscript, but from the context, as well from comparison with T., there is no doubt that

A �Òë� Y� �g
�

@ is meant.

28 é� �J

�	̄ �Q �£] In A. we find éJ
 	̄Q 	£, but from the context and the commentary, it is clear that the author meant

Figure 8: Poetry Justification in ArabTEX.

a kashidah (U+0640). This character could then be repeated as often as necessary
to fill any extra space.
Now an examination of pre-digital books shows a (rather wise) reticence to using
this method too slavishly. That reticence has now been thrown to the winds.
This can be seen by looking at the standard implementation of flat extending
as provided by Microsoft Word. This program provides three levels of extending
that it calls ‘justification’. See Figure 9 for examples of all three. The minimum
level is actually very close to the default (i.e., no-justification) level. Note that the
sample text used in Figure 9 is the same as that used in the earlier samples from
the Qurān.
Older implementations of Arabic-script within TEX, such as ArabTEX and Omega/
Aleph, also provided facilities for flat extending. The most common use was in
poetry, which requires a fixed width for each stanza.
In Omega/Aleph, a method based on \xleaders was used, based on a very
thin tawīl glyph (much thinner than U+0640) that could be used for very fine
extending optimization based on TEX’s badness parameter. One nice application
is in marginal notes: See Figure 10, where the marginal note on the right is
zoomed in. On the other hand, we see that the leaders method creates extending
that may be considered too perfectly even: Do we want to impose the rule that
only one character should be extended per word (or atmost two non-consecutive
characters)? I have seen a lot of older digital Arabic typography that does even
extending, including the poetry in the ArabTEX sample in figure 8. Compare this
with the Microsoft Word method (Figure 9). The method used in Microsoft Word,
with only one extension per word, seems to be the current standard for flat-
extending justification.
On the other hand, the justification used in Microsoft Word is not particularly
aesthetically pleasing. The answer will lie, again, in parameterization of some
sort to be determined. As TEXies, we want to be able to have fine control over
this kind of behavior in any case. In the meantime, we mirror the same rule we
arrived at for naturally-widened-glyphs:

Generally, there is only one flat extended character allowed per word. However, two non-

consecutive extended characters may be allowed. In that case, the second extended character

should be longer than the first.

68 68

68 68

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

69

يْتَ َ ٢٧١ ياَ أيَ ُّهَا الَّذِينَ آمَنُوا كُلُوا مِنْ طيَِّبَاتِ مَا رَزَقْ نَاكُمْ وَاشْكُرُوا للَِّهِ إِنْ كُنْتُمْ إيَِّاهُ تَ عْبُدُونَ َْ ََ رََّ لَلَ يْكُمُ الْ َ ا إِنََّّ
َ وَلََْمَ الْْنِْزيِرِ وَمَا أهُِلَّ بهِِ لغَِيِْْ اللَّ هِ لََ وَََ لَ الَلَ فَ مَ إِلَْ لَلَيْ هِ ۖ وَالدَّ ْْ ررَُّ يَي ْ رَ بَ ا َْ نِ ا ُُ ورر رََِ يمر ۖ فَ إِنَّ اللَّ هَ يَ

ُِ وَيَهْ تَ رُونَ بِ هِ َ نَ ا قلَِ يم ٢٧١ ُْ ونَ مَ ا ألَْ زَهَ اللَّ هُ مِ نَ الْكِتَ ا أوُلََٰئِ َ مَ ا يَ وْكُلُونَ ُِ برُُ ولَِِّمْ إََِّ ۖ إِنَّ الَّ ذِينَ يَكْتُ
رُ ألَِ يمر النَّ َِيَامَ ِ وَََ ي ُ زكَِّيهِمْ وَاَُ مْ لَ ذَا هُ مُ اللَّ هُ يَ وَْ الْ ُْ أوُلََٰئِ َ الَّ ذِينَ اشْ تَ رَوُا الةَّ مَلََ باِاُْ دَ َٰ ٢٧١ ارَ وَََ يُكَلِّ

ُِرةَِ غْ َْ َُ باِلْ ا أَصْبَ رَهُمْ لَلَى النَّارِ ۖ وَالْعَذَا َْ لَِ بوَِنَّ اللَّهَ لَ زَّ ٢٧١ فَ َُ باِلََْقِّ ذََٰ ُُ وا ُِ ۖ هَ الْكِتَا تَ لَ ْْ وَإِنَّ الَّ ذِينَ ا
ُِي شََِاقلَ بعَِيدلَ ُِ لَ ٢٧١ الْكِتَا

ََ رََّ ٢٧١ يَ ا أيَ ُّهَ ا الَّ ذِينَ آمَنُ وا كُلُ وا مِ نْ طيَِّبَ اتِ مَ ا رَزَقْ نَ اكُمْ وَاشْ كُرُوا للَِّ هِ إِنْ كُنْ تُمْ إيَِّ اهُ تَ عْبُ دُونَ َ ا إِنََّّ
َ وَلََْ مَ الْْنِْزيِ رِ وَمَ ا أهُِ لَّ بِ هِ لغَِ يِْْ اللَّ هِ لَلَ يْكُ يْتَ َ وَال دَّ َْ لََ وَََ لَ الَلَ فَ مَ إِلَْ ۖ مُ الْ ْْ ررَُّ يَي ْ رَ بَ ا َْ نِ ا فَ
ُُ ورر رََِ يمر ۖ لَلَيْ هِ ُِ وَيَهْ تَ رُونَ بِ هِ َ نَ ا ٢٧١ إِنَّ اللَّ هَ يَ ُْ ونَ مَ ا ألَْ زَهَ اللَّ هُ مِ نَ الْكِتَ ا إِنَّ الَّ ذِينَ يَكْتُ
َِيَامَ ِ وَََ ي ُ زكَِّيهِمْ ۖ قلَِ يم هُ مُ اللَّ هُ يَ وَْ الْ ُْ رُ أوُلََٰئِ َ مَ ا يَ وْكُلُونَ ُِ برُُ ولَِِّمْ إََِّ النَّ ارَ وَََ يُكَلِّ وَاَُ مْ لَ ذَا
ُِرةَِ ٢٧١ ألَِ يمر غْ َْ َُ بِ الْ َْ ا أَصْ بَ رَهُمْ لَلَ ى النَّ ارِ ۖ أوُلََٰئِ َ الَّ ذِينَ اشْ تَ رَوُا الةَّ مَلََ باِاُْ دَ َٰ وَالْعَ ذَا ٢٧١ فَ

َُ باِلََْقِّ لَِ بوَِنَّ اللَّهَ لَ زَّهَ الْكِتَا ُِي شََِاقلَ بعَِيدلَ ۖ ذََٰ ُِ لَ ُُوا ُِ الْكِتَا تَ لَ ْْ ٢٧١ وَإِنَّ الَّذِينَ ا

 ٢٧١ يَ ا أيَ ُّهَ ا الَّ ذِينَ آمَنُ وا كُلُ وا مِ نْ طيَِّبَ اتِ مَ ا رَزَقْ نَ اكُمْ وَاشْ كُرُوا للَِّ هِ إِنْ كُنْ تُمْ إيَِّ اهُ تَ عْبُ دُونَ
َ وَلََْ مَ الْْنِْزيِ رِ وَمَ ا أهُِ لَّ بِ هِ لغَِ يِْْ اللَّ هِ يْتَ َ وَال دَّ َْ ََ رََّ لَلَ يْكُمُ الْ َ ا ْْ ررَُّ ۖ إِنََّّ َْ نِ ا لََ فَ يَي ْ رَ بَ ا

ُُ ورر رََِ يمر ۖ وَََ لَ الَلَ فَ مَ إِلَْ لَلَيْ هِ ُْ ونَ مَ ا ألَْ زَهَ اللَّ هُ مِ نَ ٢٧١ إِنَّ اللَّ هَ يَ إِنَّ الَّ ذِينَ يَكْتُ
ُِ وَيَهْ تَ رُونَ بِ هِ َ نَ ا قلَِ يم هُ مُ اللَّ هُ أوُلََٰئِ َ مَ ا يَ وْكُلُونَ ُِ برُُ ولَِِّمْ إََِّ النَّ ارَ وَََ يُكَ ۖ الْكِتَ ا ُْ لِّ

رُ ألَِ يمر َِيَامَ ِ وَََ ي ُ زكَِّيهِمْ وَاَُ مْ لَ ذَا أوُلََٰئِ َ الَّ ذِينَ اشْ تَ رَوُا الةَّ مَلََ باِاُْ دَ َٰ ٢٧١ يَ وَْ الْ
ُِرةَِ غْ َْ َُ بِ الْ َْ ا أَصْ بَ رَهُمْ لَلَ ى النَّ ارِ ۖ وَالْعَ ذَا َُ بِ ٢٧١ فَ لِ َ بِ وَنَّ اللَّ هَ لَ زَّهَ الْكِتَ ا ۖ الََْقِّ ذََٰ

ُِي شََِاقلَ بعَِيدلَ ُِ لَ ُُوا ُِ الْكِتَا تَ لَ ْْ ٢٧١ وَإِنَّ الَّذِينَ ا

 Figure 9: Flat justification from Microsoft Word 2010.

For example:

لـ‍ـي﮵ب﮳س←لي﮵ب﮳س

لــ‍ـي﮵ب﮳ــ‍س←لي﮵ب﮳س

In accordance with our working rule, the top substitution uses only one flat
extended character. The bottom uses two, but the second is longer than the first.

69 69

69 69

contextgroup > context meeting 2012

70

þ¸ºþ

��R£W�7£S��§�R'¬���%§
��¬�®a§�§b���R£��e£?�ú�V�?�_§H£Üa�å�?V�K��¬V��	̈Þ

F���f����e����Y�V���"��
�����V���?��"�F�����
�R����Sz�����̀
����@R�����S����'¬�����R�����P��R�����e�����̀
������������'§����������S§����������bN�����������>̀�R¦����������hV�����������K������������Ñ�
�R����b��i�d�������Ý>�����S¦����h������'�������
�!6�������������b��!��R�������������e��������������K��������������e�������������[��������������e¬���������������
�R���¬��j�������Þ>���S��Ò��R��e���K���e��\�Ý
>������e�����\��R�����e������K������e�����\�Ýa��������L®
�R��������������������������������������e���������������������������������������K���������������������������������������e��������������������������������������\�Ü

ì��R£W§K��¬V�ú§ë�#£a�¦Þ¼´

ì���ë�Z¬?̀i��*£��Q����Y¬���Q��%£Ú£'��Y����î®"�ä���§̂b�V§K£��,¦
F�O£�
�>̀ä���Q§�î®"����R£b��i�d�ú�×�?�S°K��a��>£��K�����Ý�a£]��S°G��a��§§b���Ý�a£
W��K°K��a�a§�§b���Üa��¦á��!�Y¬�a¬Q�V�K��V��	��î®"�V�i£�F�ú§�a£�L®è×@ç
���=£S�e¬ú��R£Ð�'�e7�ú�Üa����Q§V�i£�F����̀�R�¬/£��dL§���R£?§[��a�"��R£b§®e¬ú�a��=£�eS�e¬ú�
�R£W§"�N¬��ú��R£W§[£7���K�ú�>�S�e£�̀ßN�K�b£R�[��Ý§̂b��þ§�ð¬�ci�Ü�å¦��i¬§̂b���G�§¼¹

�R£C�Ó£��a��R�¬������ß�R£W�â�§�R£K§�°a%§�R'¬j�U§�R£W§�V�\§�R£W§_�Ù£�\§�R£m��
§
�£̀��¬�!§�R£W§��O� ®§ß�b£��R�L§�R£���!�c�R£W§/�å®§éÝ��¦B�¡£��¦á����'�-��d�K£��3�e�̀
�R£ §£�̂�Y§Ü

a�¦̂ ��ì§̂b�ë�R£?�à£§�R£e�K��§Üa�R�W¬�G�£d�O§\£V�i£�F��§?̀���R£?§[£b��Y�V§b�����
ä��¬b£��e��ÝF�j��§�¬V�\£�J��V�ú��R£ §£�̂�Y�>�S�e£�̀ä���J��Q�ì>���±è=çëÝêa�½´

���Q§�R�¬/£��dL���>̀×�b£��e�§]?éäa�ìV�\£ëÚ�'£��ú��RÑ¬+��°0��R�e£�̀�§£�̂�Z��Ý�a£
ú

¼¹¼»§̂b��þ§ÜÜÜ�R���!�c�RW§/�b®!§Þ��RW§K��Ð�(§V�\��R���̄¹½Þ¶¸¶¶〈

ú
¼¸�R_S�e¬ú�ÞN� ¦R�P����!.T�Ü
‖�R_�eS�e¬ú�ÞN� ¦R�P����!.T�Ü

Figure 10:Marginal-note justification in Omega/Aleph.

In our own estimation, the smaller the type, as in, e.g., footnotes and marginal notes,
the less aesthetic variants that are needed. And the less aesthetic variants needed,
the better that flat extending will work as a solution. Consider another example of the
same word processed in three different variants:

دمحلادم‍حلادمحلا

In this case our default is on the left. The variant on the right is about as basic as one
can get; the default on the left is a sophisticated aesthetic variant. The middle one is,
well, in between. Let’s try them with flat extending, using only one extended character
per word:

دـــ‍محلادــ‍ـم‍حلادــ‍ـمحلا

On the left, we have an aesthetic combination of letters followed by a flat tawīl. This
is what Microsoft Word would give us, and the result is aesthetically distasteful. In
the word on the right, however, the flat extension fits well with the basic nature of the
feature set. As for the middle one, it could go either way and we leave it to the reader
to decide what one thinks.
Now let’s repeat with more naturally curved widening:

دمحلادم‍حلادمحلا

70 70

70 70

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

71

Here, the variant on the left comes out much nicer. The one on the right looks okay
with curved widening, although one could arguably do better with flat extending, at
least in some contexts. The middle one, again, could go either way, though we think
it does somewhat better with curved widening compared to the one on the right. The
variant on the left only works well with curved widening.

Towards a ConTEXt solution

In what follows, we will focus on a solution to the problem of paragraph optimization
via alternate glyphs (including alternately-shaped and naturally-widened variants). It
turns out that the \xleadersmethod used by Omega/Aleph does not work in LuaTEX,
so flat extending could not be naively implemented that way. At the moment flat
extending is yet to be implemented in ConTEXt.
Since flat extending is so ubiquitous in current Arabic-script typography, and since
it does have important applications (poetry and small font sizes where one prefers
simpler aesthetic variants), one could ask why this was not implemented first. In part,
this is because the immediate priority of the Oriental TEX project has been top-notch,
unparalleled aesthetic sophistication of the script. As we noted above, flat extending
does not work so well with sophisticated aesthetic variation. So although the flat-
extending problem is apparently simpler, it is understandable that we have focused on
the more difficult problem first. A clear understanding of the issues and challenges
involved with the more general alternate glyph method will help us implement a
solution to the the flat-extended problem as a special case. We will come back to
this issue towards the end.
Let us now consider the current experimental ConTEXt setup for paragraph optimiza-
tion for Arabic-script.

Applying Features to Arabic-script
We’re now ready for the real thing: Arabic script. The initial setup is not that different
from the Latin-script case.

\definefontfeature

[husayni-whatever]

[goodies=husayni,

featureset=default]

\definefontsolution

[FancyHusayni]

[goodies=husayni,

solution=experimental]

\definefont

[FancyHusayni]

[file:husayni*husayni-whatever at 24pt]

71 71

71 71

contextgroup > context meeting 2012

72

But here the definitions in the goodies file look way more complex. Here we have only
one shrink set but multiple expansion sets.

local yes = "yes"

local basics = {

analyze = yes,

mode = "node",

language = "dflt",

script = "arab",

}

local analysis = {

ccmp = yes,

init = yes, medi = yes, fina = yes,

}

local regular = {

rlig = yes, calt = yes, salt = yes, anum = yes,

ss01 = yes, ss03 = yes, ss07 = yes, ss10 = yes, ss12 = yes,

ss15 = yes, ss16 = yes, ss19 = yes, ss24 = yes, ss25 = yes,

ss26 = yes, ss27 = yes, ss31 = yes, ss34 = yes, ss35 = yes,

ss36 = yes, ss37 = yes, ss38 = yes, ss41 = yes, ss42 = yes,

ss43 = yes, js16 = yes,

}

local positioning = {

kern = yes, curs = yes, mark = yes, mkmk = yes,

}

local minimal_stretching = {

js11 = yes, js03 = yes,

}

local medium_stretching = {

js12=yes, js05=yes,

}

local maximal_stretching= {

js13 = yes, js05 = yes, js09 = yes,

}

local wide_all = {

js11 = yes, js12 = yes, js13 = yes, js05 = yes, js09 = yes,

}

local shrink = {

flts = yes, js17 = yes, ss05 = yes, ss11 = yes, ss06 = yes,

ss09 = yes,

}

local default = {

basics, analysis, regular, positioning,

}

72 72

72 72

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

73

return {

name = "husayni",

version = "1.00",

comment = "Goodies that complement the Husayni font by prof.Hamid.",

author = "Idris Samawi Hamid and Hans Hagen",

featuresets = {

default = {

default,

},

minimal_stretching = {

default,

js11 = yes, js03 = yes,

},

medium_stretching = {

default,

js12=yes, js05=yes,

},

maximal_stretching= {

default,

js13 = yes, js05 = yes, js09 = yes,

},

wide_all = {

default,

js11 = yes, js12 = yes, js13 = yes, js05 = yes, js09 = yes,

},

shrink = {

default, flts = yes,

js17 = yes,

ss05 = yes, ss11 = yes, ss06 = yes, ss09 = yes,

},

},

solutions = {

experimental = {

less = {

"shrink",

},

more = {

"minimal_stretching", "medium_stretching", "maximal_stretching",

"wide_all"

},

},

},

...

}

73 73

73 73

contextgroup > context meeting 2012

74

There are some 55 stylistic and 21 justification features. Not all make sense when
optimizing. We predefine some Lua tables to make the sets and solutions easier to
understand. The default rendering looks as follows:

\FancyHusayni

\righttoleft

\definefontfeature[rasm][script=arab,ss05=yes,js06=no,ss55=yes]

\addff{rasm}

\getbuffer[sample]

\par

مْتُ﮴ن﮲كُن﮲إِٕهِلِّٰلا۟ورُكُشْ﮶اوَمْكُنَٰ﮲قْ﮴زَ﮲رَامَتِ﮴بَٰ﮳يِّ﮵طَن﮲مِا۟ولُكُا۟ونُ﮲مَاءَنَ﮲ي﮵ذِ﮲لَّااهَيُّ﮵أَٔيَٰۤ﮵

۝١نَ﮲ودُبُ﮳عْتَ﮴هُايَّ﮵إِٕ ٧ ي﮵مَْلامُكُيْ﮵لَعَمَرَّحَامَنَّ﮲إ٢ِٕ
ْ

خ﮲لْامَحْلَوَمَدَّلاوَةَ﮴تَ﮴ يزِ﮲ن﮲ِ لَّهِأُٔاۤمَوَرِ﮵

رطُضْ﮲انِ﮲مَفَ﮲ۖهِلّٰلارِيْ﮵غَ﮲لِۦهِِب﮳
َّ

رٌوفُ﮲غَ﮲هَلّٰلانَّ﮲إِٕۚهِيْ﮵لَعَمَثْ﮶إِٕاۤلَفَ﮲دٍاعَالَوَّغٍ﮲ابَ﮳رَيْ﮵غَ﮲

۝١مٌي﮵حِرَّ ٧ ۦهِِب﮳نَ﮲ورُتَ﮴شْ﮶يَ﮵وَبِ﮳تَٰ﮴كِلْانَ﮲مِهُلّٰلالَزَ﮲ن﮲أَٔاۤمَنَ﮲ومُتُ﮴كْيَ﮵نَ﮲ي﮵ذِ﮲لَّانَّ﮲إ٣ِٕ

هِن﮲وطُبُ﮳يفِ﮲نَ﮲ولُكُأْٔيَ﮵امَكَئِٕلَٰۤو۟أُٔۙالًي﮵لِقَ﮴انً﮲مَثَ﮶ ّلكَيُ﮵الَوَرَانَّ﮲لاالَّإِٕمِْ همُِ مَوْيَ﮵هُلّٰلامُُ

۝١مٌي﮵لِأَٔبٌ﮳اذَ﮲عَمْهُلَوَمْهِي﮵كِّزَ﮲يُ﮵الَوَةِ﮴مَيَٰ﮵قِ﮴لْا ٧ ةَ﮴لَلَٰضَّ﮲لاا۟وُرَتَ﮴شْ﮶انَ﮲ي﮵ذِ﮲لَّاكَئِٕلَٰۤو۟أ٤ُٔ

رفِ﮲غْ﮲مَْلابِ﮳بَ﮳اذَ﮲عَلْاوَىٰدَهُلْابِ﮳
َ

۝١رِانَّ﮲لاىلَعَمْهُرَبَ﮳صْأَٔاۤمَفَ﮲ۚةِ﮴ ٧ نَّ﮲أَٔبِ﮳كَلِٰذَ﮲٥

قٍۭ﮴اقَ﮴شِ﮶يفِ﮲لَبِ﮳تَٰ﮴كِلْايفِ﮲ا۟وفُ﮲لَتَ﮴خْ﮲انَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕوَۗقِّ﮴حَلْابِ﮳بَ﮳تَٰ﮴كِلْالَزَّ﮲نَ﮲هَلّٰلا

۝١ۢدٍي﮵عِبَ﮳ ٧ ٦

Note that we already have a degree of widened substitution in this example. This is
all for the accommodation of vowels, and is defined entirely in the OpenType tables of
the font. We also added some special orthography (the rasm font feature to get the
Qurānic features just right). You can also do this by adding the feature to the lfg file
(local regular =). There is no paragraph optimization as yet, although the default
LuaTEX engine does a good job to start with.
Next we show a more optimized result:

74 74

74 74

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

75

\setupfontsolution

[FancyHusayni]

[method={preroll,normal},

criterium=1]

\startfontsolution[FancyHusayni]

\FancyHusayni

\righttoleft

\definefontfeature[rasm][script=arab,ss05=yes,js06=no,ss55=yes]

\addff{rasm}

\getbuffer[sample]

\par

\stopfontsolution

مْتُ﮴ن﮲كُن﮲إِٕهِلِّٰلا۟ورُكُشْ﮶اوَمْكُنَٰ﮲قْ﮴زَ﮲رَامَتِ﮴بَٰ﮳يِّ﮵طَن﮲مِا۟ولُكُا۟ونُ﮲مَاءَنَ﮲ي﮵ذِ﮲لَّااهَيُّ﮵أَٔيَٰۤ﮵

۝١نَ﮲ودُبُ﮳عْتَ﮴هُايَّ﮵إِٕ ٧ ي﮵مَْلامُكُيْ﮵لَعَمَرَّحَامَنَّ﮲إ٢ِٕ
ْ

خ﮲لْامَحْلَوَمَدَّلاوَةَ﮴تَ﮴ يزِ﮲ن﮲ِ لَّهِأُٔاۤمَوَرِ﮵

رطُضْ﮲انِ﮲مَفَ﮲ۖهِلّٰلارِيْ﮵غَ﮲لِۦهِِب﮳
َّ

رٌوفُ﮲غَ﮲هَلّٰلانَّ﮲إِٕۚهِيْ﮵لَعَمَثْ﮶إِٕاۤلَفَ﮲دٍاعَالَوَّغٍ﮲ابَ﮳رَيْ﮵غَ﮲

۝١مٌي﮵حِرَّ ٧ ۦهِِب﮳نَ﮲ورُتَ﮴شْ﮶يَ﮵وَبِ﮳تَٰ﮴كِلْانَ﮲مِهُلّٰلالَزَ﮲ن﮲أَٔاۤمَنَ﮲ومُتُ﮴كْيَ﮵نَ﮲ي﮵ذِ﮲لَّانَّ﮲إ٣ِٕ

هِن﮲وطُبُ﮳يفِ﮲نَ﮲ولُكُأْٔيَ﮵امَكَئِٕلَٰۤو۟أُٔۙالًي﮵لِقَ﮴انً﮲مَثَ﮶ ّلكَيُ﮵الَوَرَانَّ﮲لاالَّإِٕمِْ همُِ مَوْيَ﮵هُلّٰلامُُ

۝١مٌي﮵لِأَٔبٌ﮳اذَ﮲عَمْهُلَوَمْهِي﮵كِّزَ﮲يُ﮵الَوَةِ﮴مَيَٰ﮵قِ﮴لْا ٧ ةَ﮴لَلَٰضَّ﮲لاا۟وُرَتَ﮴شْ﮶انَ﮲ي﮵ذِ﮲لَّاكَئِٕلَٰۤو۟أ٤ُٔ

رفِ﮲غْ﮲مَْلابِ﮳بَ﮳اذَ﮲عَلْاوَىٰدَهُلْابِ﮳
َ

۝١رِانَّ﮲لاىلَعَمْهُرَبَ﮳صْأَٔاۤمَفَ﮲ۚةِ﮴ ٧ نَّ﮲أَٔبِ﮳كَلِٰذَ﮲٥

قٍۭ﮴اقَ﮴شِ﮶يفِ﮲لَبِ﮳تَٰ﮴كِلْايفِ﮲ا۟وفُ﮲لَتَ﮴خْ﮲انَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕوَۗقِّ﮴حَلْابِ﮳بَ﮳تَٰ﮴كِلْالَزَّ﮲نَ﮲هَلّٰلا

۝١ۢدٍي﮵عِبَ﮳ ٧ ٦

Now let’s see what happens when \parfillskip = 0pt, i.e., the last line has no extra
space after the end of the paragraph. This is important for getting, e.g., the last line of
the page to end with the end of a verse as we discussed earlier:

75 75

75 75

contextgroup > context meeting 2012

76

\setupfontsolution

[FancyHusayni]

[method={preroll,normal},

criterium=1]

\startfontsolution[FancyHusayni]

\FancyHusayni

\righttoleft

\definefontfeature[rasm][script=arab,ss05=yes,js06=no,ss55=yes]

\addff{rasm}

\parfillskip=0pt

\getbuffer[sample]

\par

\stopfontsolution

ن﮲إِٕهِلِّٰلا۟ورُكُشْ﮶اوَمْكُنَٰ﮲قْ﮴زَ﮲رَامَتِ﮴بَٰ﮳يِّ﮵طَن﮲مِا۟ولُكُا۟ونُ﮲مَاءَنَ﮲ي﮵ذِ﮲لَّااهَيُّ﮵أَٔيَٰۤ﮵

۝١نَ﮲ودُبُ﮳عْتَ﮴هُايَّ﮵إِٕمْتُ﮴ن﮲كُ ٧ ي﮵مَْلامُكُيْ﮵لَعَمَرَّحَامَنَّ﮲إ٢ِٕ
ْ

خ﮲لْامَحْلَوَمَدَّلاوَةَ﮴تَ﮴ يزِ﮲ن﮲ِ رِ﮵

رطُضْ﮲انِ﮲مَفَ﮲ۖهِلّٰلارِيْ﮵غَ﮲لِۦهِِب﮳لَّهِأُٔاۤمَوَ
َّ

مَثْ﮶إِٕاۤلَفَ﮲دٍاعَالَوَّغٍ﮲ابَ﮳رَيْ﮵غَ﮲

۝١مٌي﮵حِرَّرٌوفُ﮲غَ﮲هَلّٰلانَّ﮲إِٕۚهِيْ﮵لَعَ ٧ لَزَ﮲ن﮲أَٔاۤمَنَ﮲ومُتُ﮴كْيَ﮵نَ﮲ي﮵ذِ﮲لَّانَّ﮲إ٣ِٕ

يفِ﮲نَ﮲ولُكُأْٔيَ﮵امَكَئِٕلَٰۤو۟أُٔۙالًي﮵لِقَ﮴انً﮲مَثَ﮶ۦهِِب﮳نَ﮲ورُتَ﮴شْ﮶يَ﮵وَبِ﮳تَٰ﮴كِلْانَ﮲مِهُلّٰلا

هِن﮲وطُبُ﮳ ّلكَيُ﮵الَوَرَانَّ﮲لاالَّإِٕمِْ همُِ مْهُلَوَمْهِي﮵كِّزَ﮲يُ﮵الَوَةِ﮴مَيَٰ﮵قِ﮴لْامَوْيَ﮵هُلّٰلامُُ

۝١مٌي﮵لِأَٔبٌ﮳اذَ﮲عَ ٧ بَ﮳اذَ﮲عَلْاوَىٰدَهُلْابِ﮳ةَ﮴لَلَٰضَّ﮲لاا۟وُرَتَ﮴شْ﮶انَ﮲ي﮵ذِ﮲لَّاكَئِٕلَٰۤو۟أ٤ُٔ

رفِ﮲غْ﮲مَْلابِ﮳
َ

۝١رِانَّ﮲لاىلَعَمْهُرَبَ﮳صْأَٔاۤمَفَ﮲ۚةِ﮴ ٧ بَ﮳تَٰ﮴كِلْالَزَّ﮲نَ﮲هَلّٰلانَّ﮲أَٔبِ﮳كَلِٰذَ﮲٥

۝١ۢدٍي﮵عِبَ﮳قٍۭ﮴اقَ﮴شِ﮶يفِ﮲لَبِ﮳تَٰ﮴كِلْايفِ﮲ا۟وفُ﮲لَتَ﮴خْ﮲انَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕوَۗقِّ﮴حَلْابِ﮳ ٧ ٦
Just as the effects aremore visible in the \parfillskip = 0pt case, the impact is much
larger when the available width is less. In figures 11, 12, 13, 14 and 15 we can see the
optimizer in action when that happens.
In our estimation, the current experimental solution works best for alternate-shaped
glyphs, although there is some success with naturally widened characters. Clearly,
some widened substitutions work better than others. A lot of fine tuning is needed,
both within the OpenType features as well as the optimization algorithm.

76 76

76 76

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

77

ن﮲مِا۟ولُكُا۟ونُ﮲مَاءَنَ﮲ي﮵ذِ﮲لَّااهَيُّ﮵أَٔيَٰۤ﮵

ن﮲إِٕهِلِّٰلا۟ورُكُشْ﮶اوَمْكُنَٰ﮲قْ﮴زَ﮲رَامَتِ﮴بَٰ﮳يِّ﮵طَ

۝١نَ﮲ودُبُ﮳عْتَ﮴هُايَّ﮵إِٕمْتُ﮴ن﮲كُ ٧ مَرَّحَامَنَّ﮲إ٢ِٕ

ْي﮵مَْلامُكُيْ﮵لَعَ
خ﮲لْامَحْلَوَمَدَّلاوَةَ﮴تَ﮴ يزِ﮲ن﮲ِ اۤمَوَرِ﮵

رطُضْ﮲انِ﮲مَفَ﮲ۖهِلّٰلارِيْ﮵غَ﮲لِۦهِِب﮳لَّهِأُٔ
َّ

رَيْ﮵غَ﮲

هَلّٰلانَّ﮲إِٕۚهِيْ﮵لَعَمَثْ﮶إِٕاۤلَفَ﮲دٍاعَالَوَّغٍ﮲ابَ﮳

۝١مٌي﮵حِرَّرٌوفُ﮲غَ﮲ ٧ نَ﮲ومُتُ﮴كْيَ﮵نَ﮲ي﮵ذِ﮲لَّانَّ﮲إ٣ِٕ

نَ﮲ورُتَ﮴شْ﮶يَ﮵وَبِ﮳تَٰ﮴كِلْانَ﮲مِهُلّٰلالَزَ﮲ن﮲أَٔاۤمَ

نَ﮲ولُكُأْٔيَ﮵امَكَئِٕلَٰۤو۟أُٔۙالًي﮵لِقَ﮴انً﮲مَثَ﮶ۦهِِب﮳

هِن﮲وطُبُ﮳يفِ﮲ ّلكَيُ﮵الَوَرَانَّ﮲لاالَّإِٕمِْ همُِ هُلّٰلامُُ

بٌ﮳اذَ﮲عَمْهُلَوَمْهِي﮵كِّزَ﮲يُ﮵الَوَةِ﮴مَيَٰ﮵قِ﮴لْامَوْيَ﮵

۝١مٌي﮵لِأَٔ ٧ ا۟وُرَتَ﮴شْ﮶انَ﮲ي﮵ذِ﮲لَّاكَئِٕلَٰۤو۟أ٤ُٔ

رفِ﮲غْ﮲مَْلابِ﮳بَ﮳اذَ﮲عَلْاوَىٰدَهُلْابِ﮳ةَ﮴لَلَٰضَّ﮲لا
َ

ةِ﮴

۝١رِانَّ﮲لاىلَعَمْهُرَبَ﮳صْأَٔاۤمَفَ﮲ۚ ٧ كَلِٰذَ﮲٥

ۗقِّ﮴حَلْابِ﮳بَ﮳تَٰ﮴كِلْالَزَّ﮲نَ﮲هَلّٰلانَّ﮲أَٔبِ﮳

يفِ﮲لَبِ﮳تَٰ﮴كِلْايفِ﮲ا۟وفُ﮲لَتَ﮴خْ﮲انَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕوَ

۝١ۢدٍي﮵عِبَ﮳قٍۭ﮴اقَ﮴شِ﮶ ٧ ٦

ن﮲مِا۟ولُكُا۟ونُ﮲مَاءَنَ﮲ي﮵ذِ﮲لَّااهَيُّ﮵أَٔيَٰۤ﮵

ن﮲إِٕهِلِّٰلا۟ورُكُشْ﮶اوَمْكُنَٰ﮲قْ﮴زَ﮲رَامَتِ﮴بَٰ﮳يِّ﮵طَ

۝١نَ﮲ودُبُ﮳عْتَ﮴هُايَّ﮵إِٕمْتُ﮴ن﮲كُ ٧ مَرَّحَامَنَّ﮲إ٢ِٕ

ْي﮵مَْلامُكُيْ﮵لَعَ
خ﮲لْامَحْلَوَمَدَّلاوَةَ﮴تَ﮴ يزِ﮲ن﮲ِ اۤمَوَرِ﮵

رطُضْ﮲انِ﮲مَفَ﮲ۖهِلّٰلارِيْ﮵غَ﮲لِۦهِِب﮳لَّهِأُٔ
َّ

رَيْ﮵غَ﮲

هَلّٰلانَّ﮲إِٕۚهِيْ﮵لَعَمَثْ﮶إِٕاۤلَفَ﮲دٍاعَالَوَّغٍ﮲ابَ﮳

۝١مٌي﮵حِرَّرٌوفُ﮲غَ﮲ ٧ نَ﮲ومُتُ﮴كْيَ﮵نَ﮲ي﮵ذِ﮲لَّانَّ﮲إ٣ِٕ

نَ﮲ورُتَ﮴شْ﮶يَ﮵وَبِ﮳تَٰ﮴كِلْانَ﮲مِهُلّٰلالَزَ﮲ن﮲أَٔاۤمَ

نَ﮲ولُكُأْٔيَ﮵امَكَئِٕلَٰۤو۟أُٔۙالًي﮵لِقَ﮴انً﮲مَثَ﮶ۦهِِب﮳

هِن﮲وطُبُ﮳يفِ﮲ ّلكَيُ﮵الَوَرَانَّ﮲لاالَّإِٕمِْ همُِ هُلّٰلامُُ

بٌ﮳اذَ﮲عَمْهُلَوَمْهِي﮵كِّزَ﮲يُ﮵الَوَةِ﮴مَيَٰ﮵قِ﮴لْامَوْيَ﮵

۝١مٌي﮵لِأَٔ ٧ ا۟وُرَتَ﮴شْ﮶انَ﮲ي﮵ذِ﮲لَّاكَئِٕلَٰۤو۟أ٤ُٔ

رفِ﮲غْ﮲مَْلابِ﮳بَ﮳اذَ﮲عَلْاوَىٰدَهُلْابِ﮳ةَ﮴لَلَٰضَّ﮲لا
َ

ةِ﮴

۝١رِانَّ﮲لاىلَعَمْهُرَبَ﮳صْأَٔاۤمَفَ﮲ۚ ٧ كَلِٰذَ﮲٥

ۗقِّ﮴حَلْابِ﮳بَ﮳تَٰ﮴كِلْالَزَّ﮲نَ﮲هَلّٰلانَّ﮲أَٔبِ﮳

يفِ﮲لَبِ﮳تَٰ﮴كِلْايفِ﮲ا۟وفُ﮲لَتَ﮴خْ﮲انَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕوَ

۝١ۢدٍي﮵عِبَ﮳قٍۭ﮴اقَ﮴شِ﮶ ٧ ٦

normal narrow

Figure 11: A narrower sample (a).

77 77

77 77

contextgroup > context meeting 2012

78

ن﮲مِا۟ولُكُا۟ونُ﮲مَاءَنَ﮲ي﮵ذِ﮲لَّااهَيُّ﮵أَٔيَٰۤ﮵

ن﮲إِٕهِلِّٰلا۟ورُكُشْ﮶اوَمْكُنَٰ﮲قْ﮴زَ﮲رَامَتِ﮴بَٰ﮳يِّ﮵طَ

۝١نَ﮲ودُبُ﮳عْتَ﮴هُايَّ﮵إِٕمْتُ﮴ن﮲كُ ٧ مَرَّحَامَنَّ﮲إ٢ِٕ

ْي﮵مَْلامُكُيْ﮵لَعَ
خ﮲لْامَحْلَوَمَدَّلاوَةَ﮴تَ﮴ يزِ﮲ن﮲ِ اۤمَوَرِ﮵

رطُضْ﮲انِ﮲مَفَ﮲ۖهِلّٰلارِيْ﮵غَ﮲لِۦهِِب﮳لَّهِأُٔ
َّ

رَيْ﮵غَ﮲

هَلّٰلانَّ﮲إِٕۚهِيْ﮵لَعَمَثْ﮶إِٕاۤلَفَ﮲دٍاعَالَوَّغٍ﮲ابَ﮳

۝١مٌي﮵حِرَّرٌوفُ﮲غَ﮲ ٧ نَ﮲ومُتُ﮴كْيَ﮵نَ﮲ي﮵ذِ﮲لَّانَّ﮲إ٣ِٕ

نَ﮲ورُتَ﮴شْ﮶يَ﮵وَبِ﮳تَٰ﮴كِلْانَ﮲مِهُلّٰلالَزَ﮲ن﮲أَٔاۤمَ

نَ﮲ولُكُأْٔيَ﮵امَكَئِٕلَٰۤو۟أُٔۙالًي﮵لِقَ﮴انً﮲مَثَ﮶ۦهِِب﮳

هِن﮲وطُبُ﮳يفِ﮲ ّلكَيُ﮵الَوَرَانَّ﮲لاالَّإِٕمِْ همُِ هُلّٰلامُُ

بٌ﮳اذَ﮲عَمْهُلَوَمْهِي﮵كِّزَ﮲يُ﮵الَوَةِ﮴مَيَٰ﮵قِ﮴لْامَوْيَ﮵

۝١مٌي﮵لِأَٔ ٧ ا۟وُرَتَ﮴شْ﮶انَ﮲ي﮵ذِ﮲لَّاكَئِٕلَٰۤو۟أ٤ُٔ

رفِ﮲غْ﮲مَْلابِ﮳بَ﮳اذَ﮲عَلْاوَىٰدَهُلْابِ﮳ةَ﮴لَلَٰضَّ﮲لا
َ

ةِ﮴

۝١رِانَّ﮲لاىلَعَمْهُرَبَ﮳صْأَٔاۤمَفَ﮲ۚ ٧ كَلِٰذَ﮲٥

ۗقِّ﮴حَلْابِ﮳بَ﮳تَٰ﮴كِلْالَزَّ﮲نَ﮲هَلّٰلانَّ﮲أَٔبِ﮳

يفِ﮲لَبِ﮳تَٰ﮴كِلْايفِ﮲ا۟وفُ﮲لَتَ﮴خْ﮲انَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕوَ

۝١ۢدٍي﮵عِبَ﮳قٍۭ﮴اقَ﮴شِ﮶ ٧ ٦

ن﮲مِا۟ولُكُا۟ونُ﮲مَاءَنَ﮲ي﮵ذِ﮲لَّااهَيُّ﮵أَٔيَٰۤ﮵

ن﮲إِٕهِلِّٰلا۟ورُكُشْ﮶اوَمْكُنَٰ﮲قْ﮴زَ﮲رَامَتِ﮴بَٰ﮳يِّ﮵طَ

۝١نَ﮲ودُبُ﮳عْتَ﮴هُايَّ﮵إِٕمْتُ﮴ن﮲كُ ٧ مَرَّحَامَنَّ﮲إ٢ِٕ

ْي﮵مَْلامُكُيْ﮵لَعَ
خ﮲لْامَحْلَوَمَدَّلاوَةَ﮴تَ﮴ يزِ﮲ن﮲ِ اۤمَوَرِ﮵

رطُضْ﮲انِ﮲مَفَ﮲ۖهِلّٰلارِيْ﮵غَ﮲لِۦهِِب﮳لَّهِأُٔ
َّ

رَيْ﮵غَ﮲

هَلّٰلانَّ﮲إِٕۚهِيْ﮵لَعَمَثْ﮶إِٕاۤلَفَ﮲دٍاعَالَوَّغٍ﮲ابَ﮳

۝١مٌي﮵حِرَّرٌوفُ﮲غَ﮲ ٧ نَ﮲ومُتُ﮴كْيَ﮵نَ﮲ي﮵ذِ﮲لَّانَّ﮲إ٣ِٕ

نَ﮲ورُتَ﮴شْ﮶يَ﮵وَبِ﮳تَٰ﮴كِلْانَ﮲مِهُلّٰلالَزَ﮲ن﮲أَٔاۤمَ

نَ﮲ولُكُأْٔيَ﮵امَكَئِٕلَٰۤو۟أُٔۙالًي﮵لِقَ﮴انً﮲مَثَ﮶ۦهِِب﮳

هِن﮲وطُبُ﮳يفِ﮲ ّلكَيُ﮵الَوَرَانَّ﮲لاالَّإِٕمِْ همُِ هُلّٰلامُُ

بٌ﮳اذَ﮲عَمْهُلَوَمْهِي﮵كِّزَ﮲يُ﮵الَوَةِ﮴مَيَٰ﮵قِ﮴لْامَوْيَ﮵

۝١مٌي﮵لِأَٔ ٧ ا۟وُرَتَ﮴شْ﮶انَ﮲ي﮵ذِ﮲لَّاكَئِٕلَٰۤو۟أ٤ُٔ

رفِ﮲غْ﮲مَْلابِ﮳بَ﮳اذَ﮲عَلْاوَىٰدَهُلْابِ﮳ةَ﮴لَلَٰضَّ﮲لا
َ

ةِ﮴

۝١رِانَّ﮲لاىلَعَمْهُرَبَ﮳صْأَٔاۤمَفَ﮲ۚ ٧ ٥

بَ﮳تَٰ﮴كِلْالَزَّ﮲نَ﮲هَلّٰلانَّ﮲أَٔبِ﮳كَلِٰذَ﮲

يفِ﮲ا۟وفُ﮲لَتَ﮴خْ﮲انَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕوَۗقِّ﮴حَلْابِ﮳

۝١ۢدٍي﮵عِبَ﮳قٍۭ﮴اقَ﮴شِ﮶يفِ﮲لَبِ﮳تَٰ﮴كِلْا ٧ ٦

normal no parfillskip

Figure 12: A narrower sample with no parfillskip (b).

78 78

78 78

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

79

ن﮲مِا۟ولُكُا۟ونُ﮲مَاءَنَ﮲ي﮵ذِ﮲لَّااهَيُّ﮵أَٔيَٰۤ﮵

هِلِّٰلا۟ورُكُشْ﮶اوَمْكُنَٰ﮲قْ﮴زَ﮲رَامَتِ﮴بَٰ﮳يِّ﮵طَ

۝١نَ﮲ودُبُ﮳عْتَ﮴هُايَّ﮵إِٕمْتُ﮴ن﮲كُن﮲إِٕ ٧ امَنَّ﮲إ٢ِٕ

ي﮵مَْلامُكُيْ﮵لَعَمَرَّحَ
ْ

مَحْلَوَمَدَّلاوَةَ﮴تَ﮴

خ﮲لْا يزِ﮲ن﮲ِ ۖهِلّٰلارِيْ﮵غَ﮲لِۦهِِب﮳لَّهِأُٔاۤمَوَرِ﮵

رطُضْ﮲انِ﮲مَفَ﮲
َّ

دٍاعَالَوَّغٍ﮲ابَ﮳رَيْ﮵غَ﮲

رٌوفُ﮲غَ﮲هَلّٰلانَّ﮲إِٕۚهِيْ﮵لَعَمَثْ﮶إِٕاۤلَفَ﮲

۝١مٌي﮵حِرَّ ٧ اۤمَنَ﮲ومُتُ﮴كْيَ﮵نَ﮲ي﮵ذِ﮲لَّانَّ﮲إ٣ِٕ

نَ﮲ورُتَ﮴شْ﮶يَ﮵وَبِ﮳تَٰ﮴كِلْانَ﮲مِهُلّٰلالَزَ﮲ن﮲أَٔ

امَكَئِٕلَٰۤو۟أُٔۙالًي﮵لِقَ﮴انً﮲مَثَ﮶ۦهِِب﮳

هِن﮲وطُبُ﮳يفِ﮲نَ﮲ولُكُأْٔيَ﮵ الَوَرَانَّ﮲لاالَّإِٕمِْ

ّلكَيُ﮵ همُِ الَوَةِ﮴مَيَٰ﮵قِ﮴لْامَوْيَ﮵هُلّٰلامُُ

۝١مٌي﮵لِأَٔبٌ﮳اذَ﮲عَمْهُلَوَمْهِي﮵كِّزَ﮲يُ﮵ ٧ ٤

ةَ﮴لَلَٰضَّ﮲لاا۟وُرَتَ﮴شْ﮶انَ﮲ي﮵ذِ﮲لَّاكَئِٕلَٰۤو۟أُٔ

رفِ﮲غْ﮲مَْلابِ﮳بَ﮳اذَ﮲عَلْاوَىٰدَهُلْابِ﮳
َ

ۚةِ﮴

۝١رِانَّ﮲لاىلَعَمْهُرَبَ﮳صْأَٔاۤمَفَ﮲ ٧ ٥

بَ﮳تَٰ﮴كِلْالَزَّ﮲نَ﮲هَلّٰلانَّ﮲أَٔبِ﮳كَلِٰذَ﮲

يفِ﮲ا۟وفُ﮲لَتَ﮴خْ﮲انَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕوَۗقِّ﮴حَلْابِ﮳

۝١ۢدٍي﮵عِبَ﮳قٍۭ﮴اقَ﮴شِ﮶يفِ﮲لَبِ﮳تَٰ﮴كِلْا ٧ ٦

ن﮲مِا۟ولُكُا۟ونُ﮲مَاءَنَ﮲ي﮵ذِ﮲لَّااهَيُّ﮵أَٔيَٰۤ﮵

هِلِّٰلا۟ورُكُشْ﮶اوَمْكُنَٰ﮲قْ﮴زَ﮲رَامَتِ﮴بَٰ﮳يِّ﮵طَ

۝١نَ﮲ودُبُ﮳عْتَ﮴هُايَّ﮵إِٕمْتُ﮴ن﮲كُن﮲إِٕ ٧ امَنَّ﮲إ٢ِٕ

ي﮵مَْلامُكُيْ﮵لَعَمَرَّحَ
ْ

مَحْلَوَمَدَّلاوَةَ﮴تَ﮴

خ﮲لْا يزِ﮲ن﮲ِ ۖهِلّٰلارِيْ﮵غَ﮲لِۦهِِب﮳لَّهِأُٔاۤمَوَرِ﮵

رطُضْ﮲انِ﮲مَفَ﮲
َّ

دٍاعَالَوَّغٍ﮲ابَ﮳رَيْ﮵غَ﮲

رٌوفُ﮲غَ﮲هَلّٰلانَّ﮲إِٕۚهِيْ﮵لَعَمَثْ﮶إِٕاۤلَفَ﮲

۝١مٌي﮵حِرَّ ٧ اۤمَنَ﮲ومُتُ﮴كْيَ﮵نَ﮲ي﮵ذِ﮲لَّانَّ﮲إ٣ِٕ

نَ﮲ورُتَ﮴شْ﮶يَ﮵وَبِ﮳تَٰ﮴كِلْانَ﮲مِهُلّٰلالَزَ﮲ن﮲أَٔ

امَكَئِٕلَٰۤو۟أُٔۙالًي﮵لِقَ﮴انً﮲مَثَ﮶ۦهِِب﮳

هِن﮲وطُبُ﮳يفِ﮲نَ﮲ولُكُأْٔيَ﮵ الَوَرَانَّ﮲لاالَّإِٕمِْ

ّلكَيُ﮵ همُِ الَوَةِ﮴مَيَٰ﮵قِ﮴لْامَوْيَ﮵هُلّٰلامُُ

۝١مٌي﮵لِأَٔبٌ﮳اذَ﮲عَمْهُلَوَمْهِي﮵كِّزَ﮲يُ﮵ ٧ ٤

ةَ﮴لَلَٰضَّ﮲لاا۟وُرَتَ﮴شْ﮶انَ﮲ي﮵ذِ﮲لَّاكَئِٕلَٰۤو۟أُٔ

رفِ﮲غْ﮲مَْلابِ﮳بَ﮳اذَ﮲عَلْاوَىٰدَهُلْابِ﮳
َ

ۚةِ﮴

۝١رِانَّ﮲لاىلَعَمْهُرَبَ﮳صْأَٔاۤمَفَ﮲ ٧ ٥

بَ﮳تَٰ﮴كِلْالَزَّ﮲نَ﮲هَلّٰلانَّ﮲أَٔبِ﮳كَلِٰذَ﮲

يفِ﮲ا۟وفُ﮲لَتَ﮴خْ﮲انَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕوَۗقِّ﮴حَلْابِ﮳

۝١ۢدٍي﮵عِبَ﮳قٍۭ﮴اقَ﮴شِ﮶يفِ﮲لَبِ﮳تَٰ﮴كِلْا ٧ ٦

normal narrow

Figure 13: An even narrower sample (c).

79 79

79 79

contextgroup > context meeting 2012

80

ا۟ونُ﮲مَاءَنَ﮲ي﮵ذِ﮲لَّااهَيُّ﮵أَٔيَٰۤ﮵

مْكُنَٰ﮲قْ﮴زَ﮲رَامَتِ﮴بَٰ﮳يِّ﮵طَن﮲مِا۟ولُكُ

هُايَّ﮵إِٕمْتُ﮴ن﮲كُن﮲إِٕهِلِّٰلا۟ورُكُشْ﮶اوَ

۝١نَ﮲ودُبُ﮳عْتَ﮴ ٧ مَرَّحَامَنَّ﮲إ٢ِٕ

ي﮵مَْلامُكُيْ﮵لَعَ
ْ

مَحْلَوَمَدَّلاوَةَ﮴تَ﮴

خ﮲لْا يزِ﮲ن﮲ِ رِيْ﮵غَ﮲لِۦهِِب﮳لَّهِأُٔاۤمَوَرِ﮵

رطُضْ﮲انِ﮲مَفَ﮲ۖهِلّٰلا
َّ

غٍ﮲ابَ﮳رَيْ﮵غَ﮲

ۚهِيْ﮵لَعَمَثْ﮶إِٕاۤلَفَ﮲دٍاعَالَوَّ

۝١مٌي﮵حِرَّرٌوفُ﮲غَ﮲هَلّٰلانَّ﮲إِٕ ٧ ٣

لَزَ﮲ن﮲أَٔاۤمَنَ﮲ومُتُ﮴كْيَ﮵نَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕ

نَ﮲ورُتَ﮴شْ﮶يَ﮵وَبِ﮳تَٰ﮴كِلْانَ﮲مِهُلّٰلا

امَكَئِٕلَٰۤو۟أُٔۙالًي﮵لِقَ﮴انً﮲مَثَ﮶ۦهِِب﮳

هِن﮲وطُبُ﮳يفِ﮲نَ﮲ولُكُأْٔيَ﮵ رَانَّ﮲لاالَّإِٕمِْ

ّلكَيُ﮵الَوَ همُِ ةِ﮴مَيَٰ﮵قِ﮴لْامَوْيَ﮵هُلّٰلامُُ

بٌ﮳اذَ﮲عَمْهُلَوَمْهِي﮵كِّزَ﮲يُ﮵الَوَ

۝١مٌي﮵لِأَٔ ٧ نَ﮲ي﮵ذِ﮲لَّاكَئِٕلَٰۤو۟أ٤ُٔ

بَ﮳اذَ﮲عَلْاوَىٰدَهُلْابِ﮳ةَ﮴لَلَٰضَّ﮲لاا۟وُرَتَ﮴شْ﮶ا

رفِ﮲غْ﮲مَْلابِ﮳
َ

ىلَعَمْهُرَبَ﮳صْأَٔاۤمَفَ﮲ۚةِ﮴

۝١رِانَّ﮲لا ٧ هَلّٰلانَّ﮲أَٔبِ﮳كَلِٰذَ﮲٥

نَّ﮲إِٕوَۗقِّ﮴حَلْابِ﮳بَ﮳تَٰ﮴كِلْالَزَّ﮲نَ﮲

بِ﮳تَٰ﮴كِلْايفِ﮲ا۟وفُ﮲لَتَ﮴خْ﮲انَ﮲ي﮵ذِ﮲لَّا

۝١ۢدٍي﮵عِبَ﮳قٍۭ﮴اقَ﮴شِ﮶يفِ﮲لَ ٧ ٦

ا۟ولُكُا۟ونُ﮲مَاءَنَ﮲ي﮵ذِ﮲لَّااهَيُّ﮵أَٔيَٰۤ﮵

مْكُنَٰ﮲قْ﮴زَ﮲رَامَتِ﮴بَٰ﮳يِّ﮵طَن﮲مِ

هُايَّ﮵إِٕمْتُ﮴ن﮲كُن﮲إِٕهِلِّٰلا۟ورُكُشْ﮶اوَ

۝١نَ﮲ودُبُ﮳عْتَ﮴ ٧ مَرَّحَامَنَّ﮲إ٢ِٕ

ي﮵مَْلامُكُيْ﮵لَعَ
ْ

مَحْلَوَمَدَّلاوَةَ﮴تَ﮴

خ﮲لْا يزِ﮲ن﮲ِ رِيْ﮵غَ﮲لِۦهِِب﮳لَّهِأُٔاۤمَوَرِ﮵

رطُضْ﮲انِ﮲مَفَ﮲ۖهِلّٰلا
َّ

غٍ﮲ابَ﮳رَيْ﮵غَ﮲

ۚهِيْ﮵لَعَمَثْ﮶إِٕاۤلَفَ﮲دٍاعَالَوَّ

۝١مٌي﮵حِرَّرٌوفُ﮲غَ﮲هَلّٰلانَّ﮲إِٕ ٧ ٣

لَزَ﮲ن﮲أَٔاۤمَنَ﮲ومُتُ﮴كْيَ﮵نَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕ

نَ﮲ورُتَ﮴شْ﮶يَ﮵وَبِ﮳تَٰ﮴كِلْانَ﮲مِهُلّٰلا

امَكَئِٕلَٰۤو۟أُٔۙالًي﮵لِقَ﮴انً﮲مَثَ﮶ۦهِِب﮳

هِن﮲وطُبُ﮳يفِ﮲نَ﮲ولُكُأْٔيَ﮵ رَانَّ﮲لاالَّإِٕمِْ

ّلكَيُ﮵الَوَ همُِ ةِ﮴مَيَٰ﮵قِ﮴لْامَوْيَ﮵هُلّٰلامُُ

بٌ﮳اذَ﮲عَمْهُلَوَمْهِي﮵كِّزَ﮲يُ﮵الَوَ

۝١مٌي﮵لِأَٔ ٧ نَ﮲ي﮵ذِ﮲لَّاكَئِٕلَٰۤو۟أ٤ُٔ

بَ﮳اذَ﮲عَلْاوَىٰدَهُلْابِ﮳ةَ﮴لَلَٰضَّ﮲لاا۟وُرَتَ﮴شْ﮶ا

رفِ﮲غْ﮲مَْلابِ﮳
َ

ىلَعَمْهُرَبَ﮳صْأَٔاۤمَفَ﮲ۚةِ﮴

۝١رِانَّ﮲لا ٧ هَلّٰلانَّ﮲أَٔبِ﮳كَلِٰذَ﮲٥

نَّ﮲إِٕوَۗقِّ﮴حَلْابِ﮳بَ﮳تَٰ﮴كِلْالَزَّ﮲نَ﮲

بِ﮳تَٰ﮴كِلْايفِ﮲ا۟وفُ﮲لَتَ﮴خْ﮲انَ﮲ي﮵ذِ﮲لَّا

۝١ۢدٍي﮵عِبَ﮳قٍۭ﮴اقَ﮴شِ﮶يفِ﮲لَ ٧ ٦

normal narrow

Figure 14: An even narrower sample (d).

80 80

80 80

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

81

ا۟ونُ﮲مَاءَنَ﮲ي﮵ذِ﮲لَّااهَيُّ﮵أَٔيَٰۤ﮵

امَتِ﮴بَٰ﮳يِّ﮵طَن﮲مِا۟ولُكُ

ن﮲إِٕهِلِّٰلا۟ورُكُشْ﮶اوَمْكُنَٰ﮲قْ﮴زَ﮲رَ

۝١نَ﮲ودُبُ﮳عْتَ﮴هُايَّ﮵إِٕمْتُ﮴ن﮲كُ ٧ ٢

ي﮵مَْلامُكُيْ﮵لَعَمَرَّحَامَنَّ﮲إِٕ
ْ

ةَ﮴تَ﮴

خ﮲لْامَحْلَوَمَدَّلاوَ يزِ﮲ن﮲ِ اۤمَوَرِ﮵

ۖهِلّٰلارِيْ﮵غَ﮲لِۦهِِب﮳لَّهِأُٔ

رطُضْ﮲انِ﮲مَفَ﮲
َّ

الَوَّغٍ﮲ابَ﮳رَيْ﮵غَ﮲

نَّ﮲إِٕۚهِيْ﮵لَعَمَثْ﮶إِٕاۤلَفَ﮲دٍاعَ

۝١مٌي﮵حِرَّرٌوفُ﮲غَ﮲هَلّٰلا ٧ ٣

اۤمَنَ﮲ومُتُ﮴كْيَ﮵نَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕ

بِ﮳تَٰ﮴كِلْانَ﮲مِهُلّٰلالَزَ﮲ن﮲أَٔ

ۙالًي﮵لِقَ﮴انً﮲مَثَ﮶ۦهِِب﮳نَ﮲ورُتَ﮴شْ﮶يَ﮵وَ

يفِ﮲نَ﮲ولُكُأْٔيَ﮵امَكَئِٕلَٰۤو۟أُٔ

هِن﮲وطُبُ﮳ الَوَرَانَّ﮲لاالَّإِٕمِْ

ّلكَيُ﮵ همُِ ةِ﮴مَيَٰ﮵قِ﮴لْامَوْيَ﮵هُلّٰلامُُ

بٌ﮳اذَ﮲عَمْهُلَوَمْهِي﮵كِّزَ﮲يُ﮵الَوَ

۝١مٌي﮵لِأَٔ ٧ نَ﮲ي﮵ذِ﮲لَّاكَئِٕلَٰۤو۟أ٤ُٔ

ىٰدَهُلْابِ﮳ةَ﮴لَلَٰضَّ﮲لاا۟وُرَتَ﮴شْ﮶ا

رفِ﮲غْ﮲مَْلابِ﮳بَ﮳اذَ﮲عَلْاوَ
َ

اۤمَفَ﮲ۚةِ﮴

۝١رِانَّ﮲لاىلَعَمْهُرَبَ﮳صْأَٔ ٧ ٥

بَ﮳تَٰ﮴كِلْالَزَّ﮲نَ﮲هَلّٰلانَّ﮲أَٔبِ﮳كَلِٰذَ﮲

نَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕوَۗقِّ﮴حَلْابِ﮳

يفِ﮲لَبِ﮳تَٰ﮴كِلْايفِ﮲ا۟وفُ﮲لَتَ﮴خْ﮲ا

۝١ۢدٍي﮵عِبَ﮳قٍۭ﮴اقَ﮴شِ﮶ ٧ ٦

ا۟ولُكُا۟ونُ﮲مَاءَنَ﮲ي﮵ذِ﮲لَّااهَيُّ﮵أَٔيَٰۤ﮵

مْكُنَٰ﮲قْ﮴زَ﮲رَامَتِ﮴بَٰ﮳يِّ﮵طَن﮲مِ

مْتُ﮴ن﮲كُن﮲إِٕهِلِّٰلا۟ورُكُشْ﮶اوَ

۝١نَ﮲ودُبُ﮳عْتَ﮴هُايَّ﮵إِٕ ٧ امَنَّ﮲إ٢ِٕ

ي﮵مَْلامُكُيْ﮵لَعَمَرَّحَ
ْ

مَدَّلاوَةَ﮴تَ﮴

خ﮲لْامَحْلَوَ يزِ﮲ن﮲ِ لَّهِأُٔاۤمَوَرِ﮵

نِ﮲مَفَ﮲ۖهِلّٰلارِيْ﮵غَ﮲لِۦهِِب﮳

رطُضْ﮲ا
َّ

دٍاعَالَوَّغٍ﮲ابَ﮳رَيْ﮵غَ﮲

نَّ﮲إِٕۚهِيْ﮵لَعَمَثْ﮶إِٕاۤلَفَ﮲

۝١مٌي﮵حِرَّرٌوفُ﮲غَ﮲هَلّٰلا ٧ ٣

اۤمَنَ﮲ومُتُ﮴كْيَ﮵نَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕ

بِ﮳تَٰ﮴كِلْانَ﮲مِهُلّٰلالَزَ﮲ن﮲أَٔ

ۙالًي﮵لِقَ﮴انً﮲مَثَ﮶ۦهِِب﮳نَ﮲ورُتَ﮴شْ﮶يَ﮵وَ

يفِ﮲نَ﮲ولُكُأْٔيَ﮵امَكَئِٕلَٰۤو۟أُٔ

هِن﮲وطُبُ﮳ الَوَرَانَّ﮲لاالَّإِٕمِْ

ّلكَيُ﮵ همُِ ةِ﮴مَيَٰ﮵قِ﮴لْامَوْيَ﮵هُلّٰلامُُ

بٌ﮳اذَ﮲عَمْهُلَوَمْهِي﮵كِّزَ﮲يُ﮵الَوَ

۝١مٌي﮵لِأَٔ ٧ نَ﮲ي﮵ذِ﮲لَّاكَئِٕلَٰۤو۟أ٤ُٔ

ىٰدَهُلْابِ﮳ةَ﮴لَلَٰضَّ﮲لاا۟وُرَتَ﮴شْ﮶ا

رفِ﮲غْ﮲مَْلابِ﮳بَ﮳اذَ﮲عَلْاوَ
َ

اۤمَفَ﮲ۚةِ﮴

۝١رِانَّ﮲لاىلَعَمْهُرَبَ﮳صْأَٔ ٧ ٥

بَ﮳تَٰ﮴كِلْالَزَّ﮲نَ﮲هَلّٰلانَّ﮲أَٔبِ﮳كَلِٰذَ﮲

نَ﮲ي﮵ذِ﮲لَّانَّ﮲إِٕوَۗقِّ﮴حَلْابِ﮳

يفِ﮲لَبِ﮳تَٰ﮴كِلْايفِ﮲ا۟وفُ﮲لَتَ﮴خْ﮲ا

۝١ۢدٍي﮵عِبَ﮳قٍۭ﮴اقَ﮴شِ﮶ ٧ ٦

normal narrow

Figure 15: An even narrower sample (e).

81 81

81 81

contextgroup > context meeting 2012

82

Without going into a detailed analysis at the moment, we restrict ourselves to two
critical observations.
First, in our tests one will notice that the glyph substitutions tend to take place on the
right side of the line. They should be more evenly distributed throughout each line.
Second, we can say that the current method works better for alternate-shaped glyph
substitution than it does for naturally-widened glyph substitution. This leads us to the
next step in this research project:
Within the Husayni font there is now a mapping between flat extending via tawīl and
curved widening via alternate glyphs. Consider the following manually typed utf text
using the tawīl character (U+0640):

\ARROW\

In flat-extended typography that comes out like this:

ل‍ـــ‍ي﮵عف﮲←لي﮵عف﮲

Husayni, through the optional Stylistic Alternates feature (salt) will map the flat tawīl-
extended characters to curved widened characters. So with salt=yes selected in
ConTEXt we get

لي﮵عف﮲←لي﮵عف﮲

This opens up a way to connect a forthcoming solution to the flat tawīl-extended
character method with the curved widened-glyph method. A future version of the
optimizer may be able to optimize the paragraph in terms of the tawīl character and a
set of rules along the lines we discussed earlier. Then we can simply convert the result
to curves using the tawīl character. At least this is one possibility.
In any case, the current paragraph optimizer, even in its experimental status at the
moment, represents one of the greatest and most important steps in the evolution of
digital Arabic-script typography. Its potential impact on for Arabic-script typesetting
is immense, and we excitedly look forward to its completion.

82 82

82 82

mlbibtex and its new extensions > jean-michel hufflen

83

MlbibTEX and Its New Extensions
Jean-Michel Hufflen

These last years, MlbibTEX's kernel functions have been reused and extended in order
to put new programs about bibliographies into action. Examples are the hal program,
allowing an open archive site to be populated, the mlbiblatex program, building
bibliographies suitable for the biblatex package, the mlbibcontext program, doing the
same task for ConTEXt documents. We show how all these programs are organised, and
explain how some operations can be refined or extended. For a point of view related
to efficiency, the programs mlbiblatex and mlbibcontext are written using Scheme
only, so they are more efficient than analogous programs that would interpret a .bst
bibliography style of bibTEX.

I dedicate this article to my late father
(1922–2012). When I was a child, he introduced
me to the joy of reading. He was himself an avid
reader; I surely share this feature with him.

1. Introduction

LATEX [23] is rightly viewed as a wonderful word
processor for typesetting written documents.
Besides, it is assisted by other programs like
bibTEX [24] as bibliography processors which
generate ‘References’ sections (.bbl files), or
other graphical tools [4]. As a proof that TEX’s
community of developers is very dynamic, many
programs—including LATEX itself—have evolved
and been improved for many years. Other for-
mats based on TEX or engines related to it have
come out: e.g., X ETEX [19], LuaTEX [7]. We can
observe analogous dynamism about graphical
tools: compare the two editions of The LATEX
Graphics Companion, [5] and [4].
As we mentioned in [16], bibTEX was unrivalled
as the bibliography processor usually associated
with LATEX for a long time. Besides, bibTEX is
stable for many years. In fact, some slight ex-
tensions, built out of bibTEX’s source files, have
been designed, e.g., bibTEX8 [23, § 13.1.1] and
bibTEXu [29, § 4.3] (see [16] for more details). The

difficulty of writing a new bibliography proces-
sor from scratch is mainly related to bibliog-
raphy database files. Many LATEX users have
a huge number of .bib files, according to the
format used by bibTEX. So a new bibliography
processor designed to work in conjunction with
LATEX should be able to deal with this format.
At first glance, it is not very complicated, en-
tries’ metadata are given using the syntax ‘KEY
= value’, as you can see in Fig. 1. In reality, this
format is more subtle. For example, values may
be surrounded by double quotes:

TITLE = "Villa Vortex"

in which case a double quote character used
within such a value must be surrounded by
braces:

TITLE = "Die Energiej{\"a}ger"

Values may also be surrounded what braces1:

TITLE = {Grande Jonction}

in which case a double quote character can be
used alone within such a value:

TITLE = {Murcos Verm\"achtnis}

The syntax for person names—see [10] for more
details—is accurate for simple cases, butmay be

1 Personally, we always recommend users to adopt this convention, simpler, from our point of view.

83 83

83 83

contextgroup > context meeting 2012

84

@BOOK{holmstrom2011,
AUTHOR = {Darwin Holmstrom},
TITLE = {Toxic Terrain},
SERIES = {Don Pendleton's The

Executioner},
NUMBER = 390,
PUBLISHER = {Gold Eagle},
TOTALPAGES = 192,
YEAR = 2011,
MONTH = may}

Figure 1: Example using bibTEX’s format.

surprising in such a case:

AUTHOR = {Jean {Le
Clerc de la Herverie}}

(if you remove the braces surrounding ‘Le Clerc
de la Herverie’, that causes ‘Herverie’ to be
viewed as the last name, ‘Jean Le Clerc’ as the
first name, and ‘de la’ as a particle). In addition,
many users get used to insert LATEX commands
inside values of bibTEX fields:

TITLE = {\em Babylon Babies}

what would be difficult to interpret for a con-
verter into a language used to put Web pages
into action. Moreover, such a declaration:

TITLE = {\emph{Cosmos Incorporated}}

yields a title’s specification which would be cor-
rectly interpreted by LATEX, but ConTEXt [6] would
not recognise the \emph command.
In other words, it is quite easy to transform the
syntax ‘KEY = value’ into ‘<KEY>value</KEY>’
if we adopt XML2-like syntax, or ‘(KEY value)’
if Lisp3-like syntax is preferred. On the con-
trary, destructuring fields’ values may be more
complicated. That is why you can find many
converters from .bib files into other formats, but
at the first level. Roughly speaking, only a few
programs run the risk of analysing the contents
of fields’ values.

<book id="holmstrom2011" from="mb.bib">
<author>
<name>
<personname>
<first>Darwin</first>
<last>Holmstrom</last>
</personname>

</name>
</author>
<title>Toxic Terrain</title>
<publisher>Gold Eagle</publisher>
<number>390</number>
<series>
Don Pendleton's The Executioner
</series>
<totalpages>192</totalpages>
<year>2011</year>
<month><may/></month>

</book>

(The from attribute of the book element is set to the base

name of the .bib file originally containing this entry.)

Figure 2: Fig. 1’s example given using XML syntax.

Let us recall that we have developed Ml-
bibTEX

4 [9], as a ‘better’ bibTEX with particular
focus on multilingual features. As part of this
task, we put into action an analysis of the
values associated with bibTEX fields, as deeply as
possible. We have precisely designed an internal
format for bibliographical items. Later, we were
asked for a programpopulating an open-archive
site from the entries of .bib files [14,15].Although
this program needed conventions more precise
than usually about .bib files, we succeeded in
developing it quickly. More precisely, they have
many fragments in common, and the different
parts were easily assembled. We decided to do
again this kind of experiment… and succeeded
again. First we explain how MlbibTEX can be
extended. Second we recall some advantages
of using MlbibTEX’s kernel. Then we sketch the
variants of MlbibTEX out.

2 eXtensibleMarkup Langage.
3 LISt Processor.
4 MultiLingual bibTEX.

84 84

84 84

mlbibtex and its new extensions > jean-michel hufflen

85

2. MlbibTEX's extensibility

When MlbibTEX’s parser processes a .bib file, we
can consider that it builds an XML tree of this
file. More precisely, this program written using
Scheme [18] builds expressions according to the
SXML5 format [20]. For example, Fig. 1’s entry is
translated to the XML tree given in Fig. 2. We
can see that the author’s name has been split
into these components. Likewise, LATEX com-
mands—e.g., \em or \emph—are recognised and
replaced by XML tags.

When bibTEX users begin to run MlbibTEX, the
most surprising feature is that the latter per-
forms a more precise analysis of .bib files. When
a field name is not recognised, a warning mes-
sage is emitted6. By default, the fields subject to
additional check are:

• the standard fields AUTHOR, EDITOR, MONTH,
PAGES, and YEAR;

• the field DAY, used by numerous styles7;

• the fields GENDER and TOTALPAGES, used by
the bibliography styles associated with the
jurabib package [23, § 12.5.1];

• two special fields used by MlbibTEX: LAN-
GUAGE [9] and LASTSORTKEY [12].

The second extension of MlbibTEX—as above-
mentioned, the hal program, populating an
open-archive site from the entries of .bib

files [14]—needs additional check about the
ADDRESS field of an entry being type @INPRO-
CEEDINGS: we have to extract the country of the
corresponding conference, and optionally the
town. In addition, the name of such a country is
to be checked, because we have to give its ISO8

code. Sowe have decided to accept declarations
like:

ADDRESS = {Breskens, The Netherlands}

or ‘ADDRESS = {The Netherlands}’. If the
country is not given—e.g., in ‘ADDRESS =
{New-York}’ or:

ADDRESS = {Paris, Texas}

—an error has to be reported9. So we imple-
mented a switch mechanism that allowed us
to perform ‘classical’ check about this ADDRESS
field when ‘original’ MlbibTEX was running, and
‘complete’ check when this program related to
open archives was used10. Symmetrically, dis-
abling some check procedures would be possi-
blewithin other variants. WhenMlbibTEX’s func-
tions work in interpreted mode, such switch can
be controlled by means of Scheme functions.

Later, we noticed the modus operandi of the
biblatex package [21]: .bbl files only contain
structures, and formatting ‘References’ sections
is entirely deferred to LATEX. That is why there is
no need of a \bibliographystyle command. If
bibTEX is used, there is only one suitable bibli-
ography style written using bibTEX’s language.

5 Scheme implementation of XML.
6 This is just a warning message; the corresponding information is not lost. Thismodus operandimay be viewed as an advantage: for

example, if you inadvertently type ‘EDITORS = …’ instead of ‘EDITOR = …’ inside an entry of type @INPROCEEDINGS, MlbibTEX will

warn you whereas bibTEX will silently ignore that field. This feature may also be viewed as a drawback: if you specify a MONTH field,

the associated value must be a symbol among jan, feb,…, dec. Otherwise, MlbibTEX stops with an error message. This convention

may appear as too restrictive, but MlbibTEX can sort w.r.t. month names, whereas bibTEX does not. To perform such an operation,

month names must be recognised. Likewise, when years are to be sorted, MlbibTEX applies a numerical sort whereas bibTEX sorts

years as strings, so the value associated with a YEAR field must be an integer.
7 For example, the styles ‘apa…’, used by the American Psychology Association.
8 International Standardisation Organisation.
9 We also accept declarations like: ADDRESS = {Washington, District of Columbia, United States} that is, a string of three

comma-separated components. The first is supposed to be the town, the last the city.
10 Technically, it is not very difficult since we consider that Scheme—as a functional programming language—allows functions to be

handled like any other value. MlbibTEX’s parser uses association lists whose elements look like (key . f) where f is the function

to be called to parse the value associated with key. To perform such a switch, just change the function associated with key.

85 85

85 85

contextgroup > context meeting 2012

86

Another bibliography processor, biber [1], has
come out: it builds only .bbl files suitable for
biblatex. Let us consider the example of a LATEX
document using this biblatex package given in
Fig. 3. The corresponding .bbl file looks like
Fig. 4, and the bibliography will be formatted
w.r.t. the author-date style [23, § 12.3], because
of the bibstyle option of the biblatex package.

\documentclass{article}

\usepackage[bibstyle=authoryear]{biblatex}
\addbibresource{mb.bib} % The suffix is
needed.

\begin{document}

Did you read \citetitle*{holmstrom2011}?
This is a
thriller written by \citeauthor{holmstrom2011}.

\printbibliography

\end{document}

Figure 3: Using the biblatex package.

\entry{holmstrom2011}{book}{}
\name{author}{1}{}{%
{{uniquename=0}{Holmstrom}{H.}{Darwin}%
{D.}{}{}{}{}}%

}%
\field{title}{Toxic Terrain}%
\list{publisher}{1}{{Gold Eagle}}%
\field{number}{390}%
\field{series}{Don Pendleton's The

Executioner}%
\field{totalpages}{192}%
\field{year}{2011}%
\field{month}{05}%

\endentry

Figure 4: Reference used by the biblatex package.

The biblatex package’s conceptor introduced
new entry types a bibliography processor should
be able to process. On the contrary, these
new types are unknown in standard bibliography

styles. Again, a switch mechanism allows us
to recognise these new types only when the
parser is running in a kind of ‘mlbiblatexmode’.
Another point is related to dates: in standard
bibliography styles, they are specified by a YEAR
field and optionally by a MONTH field. The bibla-
tex package allows dates to be expressed this
way, or by means of a DATE field allowing the
specification of a range of dates [21, § 2.3.8]. The
extension of our parser for biblatex has been
revised to include these points. Let us mention
that the specification of dates are crucial within
bibliographies since they are used for the sort
operation in most styles. A last point: the syntax
of the PAGES field has been refined.

A framework similar to biblatex had been put
into action by Taco Hoekwater’s bib module of
ConTEXt [8]: see Fig. 5 for a source text using a
bibliographical reference. This reference, as it
should be produced by a bibliography proces-
sor, is given in Fig. 6. The bib module can be
used with ConTEXt MkII [2], it has been reim-
plemented in ConTEXt MkIV by Hans Hagen [3].
In this last case, the switch we installed con-
siders a new @CONTEXTPREAMBLE directive when
a .bib file is parsed. This directive aims to re-
place the ‘traditional’ @PREAMBLE directive, often
used to put definitions of new LATEX commands
[23, § 13.2.4]. This @CONTEXTPREAMBLE directive
can be used to program some LATEX commands
put throughout .bib files and non-existing in
ConTEXt.

\usemodule[bib] % Needed for MkII, not for
% MkIV

\setupbibtex[database=mb]
\setuppublications[numbering=yes]

\starttext

Did you read \cite[holmstrom2011]?

\placepublications

\stoptext

Figure 5: Citations and bibliographies in ConTEXt.

86 86

86 86

mlbibtex and its new extensions > jean-michel hufflen

87

\startpublication[k=holmstrom2011,
t=book,a={{Holmstrom}},y=2011,n=2,s=Hol11]
\author[]{Darwin}[D.]{}{Holmstrom}
\pubyear{2011}
\title{Toxic Terrain}
\series{Don Pendleton's The Executioner}
\volume{390}
\pubname{Gold Eagle}
\month{5}
\stoppublication

Figure 6: Reference used by ConTEXt.

3. MlbibTEX's advantages

When the approach of biblatex and ConTEXt is
used, a bibliography processor does not have to
provide the text of successive references of a
bibliography. Since it just produces structures
whatever the bibliography style is—such a style
is put into action by customising the command
of LATEX or ConTEXt producing the final bibliog-
raphy—the idea is to build two accurate bib-
liography processors out of MlbibTEX’s kernel.
These two programs —mlbiblatex (resp. ml-
bibcontext) for biblatex (resp. ConTEXt)—are
written entirely in Scheme, in order to get more
efficiency. Even if we are not interested in
multilingual extensions ofMlbibTEX during a first
step, here are the features of interest for such
bibliography processors.

3.1 Order relations

In [11], we showed how the lexicographic order
relations handled by MlbibTEX were built. These
order relations—implemented by means of
Scheme functions—are language-dependent.
A simple use of the <english? function—for
English words—to compare two strings is
given by the first example of Fig. 7—‘#t’
(resp. ‘#f’) stands for the ‘true’ (resp. ‘false’)
value in Scheme. In reality, these functions
are more powerful since they use optional

arguments—controlling the behaviour—in
addition to the two strings to be compared:

• the third is a thunk11 that is called if the two
strings are equal;

• the fourth is < (resp. >) for an ascending
(resp. a descending) order;

• the fifth is #f for a case-insensitive com-
parison, uppercase-1st (resp. lower-
case-1st) if uppercase (resp. lowercase)
letters take precedence when two strings
are different only by the case.

Fig. 7’s second example shows the default values
of these three additional arguments. By default,
these functions implement strict order relations,
that is, irreflexive, asymmetric, and transitive; as
< for numbers. The sixth example shows that
our <english? function defaults to a case-sen-
sitive relation in which uppercase letters take
precedence over lowercase ones, the seventh
example shows how to proceed if you would like
lowercase letters to take precedence. Finally,
the last example shows how the third argument
can be used to chain order relations12: the idea
is to sort persons regarding last names, first
names, birth dates, and possibly other informa-
tion. As you can see, this feature—sketched
in [12, § 4]—makes easier a sort by means of
several successive sort keys. More details about
these order relations are given in [17].

3.2 Syntactical extensions

MlbibTEX’s syntactical extensions about multi-
linguism are explained in detail in [9]. Presently,
they are not used by the programs mlbiblatex
and mlbibcontext. On the contrary, our ex-
tensions for authors’ and editors’ names can be
directly usable by these two programs. In ad-
dition to bibTEX’s conventions, keywordsmay be
used to point to the four parts—First, von, Last,
Junior—of a name, what may be very useful:

11 A zero-argument function, w.r.t. Scheme’s terminology.
12 The arithmetical? function, used within Fig. 7’s last example is analogous to our order relations, in the sense that its third

argument is called if the two numbers given as first two arguments are equal. Otherwise it behaves like <.

87 87

87 87

contextgroup > context meeting 2012

88

(<english? "ConTeXt" "ConTeXt") ⟹ #f

(<english? "ConTeXt" "ConTeXt" (lambda () #f) < 'uppercase-1st) ⟹ #f ; Default values explicited.

(<english? "ConTeXt" "ConTeXt" (lambda () 'ok)) ⟹ ok ; Equal strings.

(<english? "ConTeSt" "ConTeXt") ⟹ #t

(<english? "ConTeSt" "ConTeXt" (lambda () 'ok) >) ⟹ #f ; Descending order.

(<english? "ConText" "ConTeXt" (lambda () 'ok)) ⟹ #f

(<english? "ConText" "ConTeXt" (lambda () 'ok) < #f) ⟹ ok ; Case-insensitive equality.

(<english? "ConText" "ConTeXt" (lambda () 'ok) < 'lowercase-1st) ⟹ #t ; Lowercase letters take

; precedence.

(<english? "ConTeXt" "ConTeSt"

(lambda ()

(<english? "Mk" "Mk" (lambda () (<arithmetical? 2 4 (lambda () …))))) ⟹ #f

Figure 7: Order relations handled by MlbibTEX.

first => Jean, last =>
Le Clerc de la Herverie

(the four keywords ‘first =>’, ‘von =>’, ‘last
=>’, ‘junior =>’ are available, the order of ap-
pearance being irrelevant). In addition, the
‘abbr =>’ keyword may be used when a first
name is not abbreviated according to the stan-
dard way, that is, retaining only the first letter.
If an organisation’s name is used as an author
or editor, you can use the keywords ‘org =>’ for
the name as it must be typeset and ‘sortingkey
=>’ for the key used for sorting:

org => Euro\TeX~2012,

sortingkey => EuroTeX 2012

It is well-known that co-authors are connected
by means of the ‘ and ’ keyword. MlbibTEX
also allows the specification of collaborators, by
means of the ‘ with ’ keyword; an example
is given in this article’s bibliography: see the
reference [23].

4. MlbibTEX's programs

MlbibTEX’s distribution is located at:
http://disc.univ-fcomte.fr/home/~jmhufflen
/texts/superreport/smlbibtex-1.3.tar.gz
The easiest way to install it is to compile

the source files by the bigloo [25] Scheme
compiler; the installation procedure [17] uses
the commands configure [28] and make
[22], well-known within GNU13 software; more
details are given in [17, § 4.2]. The executable
programs generated are described hereafter.
The complete distribution’s version number is
given ‘classically’, that is, by means of sequence
of numbers. Versions of particular variants
are labelled by geographical names. Those
demonstrated at the EuroTEX 2012 conference
are ‘Breskens versions’.

4.1 mlbibtex

This programs aims to replace bibTEX and is
described in [9]; you can use it analogously to
‘original’ bibTEX. This mlbibtex is the ‘historical’
origin of the present toolbox.

4.2 mlbibtex2xml

This program allows .bib files to be converted
into XML files, according to the format internally
used by MlbibTEX. You can run it as follows:

mlbibtex2xml ([-screen] | [-o output])\
f0.bib f1.bib …

where f0.bib, f1.bib,…—the .bib suffix can be
omitted—are .bib files. If the -screen option
is used, the result is displayed at the screen,
otherwise it is written into a file. If the -o option
is used, output gives the output file name, oth-

13 Recursive acronym: Gnu is Not Unix.

88 88

88 88

mlbibtex and its new extensions > jean-michel hufflen

89

erwise, this name defaults to f0-mlbiblio.xml,
even if several .bib files are processed. Obvi-
ously, results look like Fig. 2.

4.3 ar-style and hal

These two programs are the first two extensions
of MlbibTEX. The ar-style program can be used
for activity reports’ bibliographies, when they
have to be conformant to the classification of
the French agency AERES14 [13]. See Section
‘MlbibTEX’s extensibility’ and [14,15] about the
hal program.

4.4 mlbiblatex

The mlbiblatex program builds .bbl files suit-
able for the biblatex package. You can run it as
follows:

mlbiblatex filename.aux
key-expr lg-code

where:

filename.aux
—the .aux suffix can be omitted—is the
auxiliary file where the information about
bibliographical keys and database files has
been stored;

key-expr
gives successive sort keys, according to
the pattern (m | n | t | y)*, where ‘m’,
‘n’, ‘t’, ‘y’ respectively stand for ‘Month’15,
‘Name’ (person name as an author or ed-
itor), ‘Title’, ‘Year’; all the other signs are
ignored; there is no default order rela-
tion16: if no sign is recognised, the list of
bibliographical items is left unsorted17;

lg-code
is the code for the language to be used
for sorting strings—this information is rel-
evant whenever person names and titles

of works are compared—available values
are DE for German, EN for English, FR for
French, PO for Polish; there is no default
value.

Results look like Fig. 4. More detais are given
in [17].

4.5 mlbibcontext

The mlbibcontext program builds .bbl files
suitable for ConTEXt. The corresponding com-
mand line looks like mlbiblatex’s:

mlbibcontext filename.aux
key-expr lg-code

and filename.aux, key-expr, lg-code have
the same meaning. Results look like Fig. 6.

5. Future directions

As wemention above, the interface between the
functions of a word processor in charge of pro-
cessing ‘References’ sections—the commands
of the biblatex package or ConTEXt MkIV—could
be improved. For example, the commands
mlbiblatex and mlbibcontext only deal with
ascending orders. This is just related to the
rough interface we designed in order to propose
first experimental versions of these programs:
as shown in Section ‘MlbibTEX’s advantages’,
descending orders are provided by MlbibTEX’s
kernel. Concerning the biblatex package, we
think that an option could be added18:

\usepackage
[backend=mlbiblatex,…]%
{biblatex}

other options allowing accurate information to
be passed to MlbibTEX.

14 Agence d’Évaluation de la Recherche et de l’Enseignement Supérieur, that is, ‘agency evaluating research and university courses’.
15 … an item without month information being ranked after an item with such.
16 The default order relation used by both bibTEX and biber would be specified by ynt. Let us recall that by default, these two programs

do not use any information about month during the sort step.
17 In this case, the bibliography is unsorted, that is, the order of items is the order of first citations of these items throughout the

document.
18 Presently, the possible values for the backend option of biblatex are ‘bibtex’, ‘bibtex8’, ‘bibtexu’, ‘biber’.

89 89

89 89

contextgroup > context meeting 2012

90

Likewise, ConTEXt MkIV users should be able to
choose between bibTEX—or an ‘enriched’ bibTEX
such that bibTEX8 or bibTEXu—or MlbibTEX. In
this last case, we have to study how accurate in-
formation could be passed to the mlbibcontext
program.
Some present lack of MlbibTEX: only two en-
codings are available, for input .bib files as well
as output .bbl ones. More precisely, .bib files
are supposed to be encoded w.r.t. Latin 1. The
characters that are not included in this encod-
ing—e.g., some Polish letters, such that ‘ł’—can
be reached only by using TEX commands—like
‘\l’19. About generated .bbl files, either Ml-
bibTEX detects that the Latin 1 encoding is used
by looking into the document’s preamble20, in
which case this encoding is used for the .bbl
file produced; otherwise, this .bbl file is a pure
ASCII21 file, all the accented letters being specified
by means of TEX commands22. Such behaviour
is due to the Scheme programming language.
MlbibTEX has been written using the fifth revi-
sion of this language [18], not Unicode-compli-
ant. Most of Scheme interpreters can deal with
Latin 1, some—not all—accept other encodings,
but in a non-portable way. Besides, we want
our functions to be able to work on as many
Scheme interpreters as possible. A new revi-
sion of Scheme is in progress23 and will be Uni-
code-compliant, so a future version of MlbibTEX

should be able to deal with other encodings such
that Latin 2, UTF-8, UTF-16, etc.
Last but not at least, we plan to update the
programs mlbiblatex and mlbibcontext, in
order for them to be able to deal with MlbibTEX’s
multilingual features. From our point of view,
that should be quite easy for mlbibcontext, in
the sense that all the languages are available a
priori within ConTEXt MkIV—you do not have to
put all the languages you use throughout a text
as options of a module like the babel package
[23, Ch. 9]—but might require more work for the
texts to be processed by the commands of the
biblatex package.

6. Conclusion

We are personally an adept of functional pro-
gramming in general and Scheme in particular.
But MlbibTEX has been able to be adapted to
applications other than those initially planned,
what is a good quality for a program24. In par-
ticular, the mlbiblatex program succeded in
taking as much advantage as possible of bibla-
tex’s features25 with just slight modifications of
our kernel. We think that we have been able to
reach such adaptability and flexibility because of
the use of Scheme, even if these qualities could

19 For example, the name of the Polish city ‘Łódź’ should be written down ‘{\L }\'{o}d\'{z}’ or ‘{\L }ód\'{z}’ within a .bib file,

its internal form handled by MlbibTEX is ‘{\L }ód\'{z}’, since ‘ó’ belongs to Latin 1, whereas ‘Ł’ and ‘ź’ do not.
20 bibTEX just read .aux files and never reads a .tex file [23, § 12.1.3], whereas the mlbibtex program may look into a document’s

preamble.
21 American Standard Code for Information Interchange.
22 Let us recall that ConTEXt MkIV texts are supposed to be encoded w.r.t. UTF-8. Since MlbibTEX cannot deal with this encoding, the

output files of the mlbibcontext program are presently encoded w.r.t. pure ASCII.
23 See the Web page http://scheme-reports.org. In fact, MlbibTEX has been implemented using the conventions of R5RS, what stands

for ‘Revised5 Report on the algorithmic language Scheme’ [18]. Later, a new revision (R6RS) was designed and ratified [26][27],

including functions dealing with the whole range of Unicode and different encodings [27, §§ 1 & 2.9]—but for some reasons that

we do not give here, most Scheme implementors did not update their programs. So MlbibTEX is still R5RS-compliant. It seems that

Scheme’s next version (R7RS)—see some drafts at the Web page abovementioned—will be adopted by most Scheme implementors.

So we hope that we will be able to get a Unicode-compliant version of MlbibTEX very soon.
24 More generally, some people already announced the end of Lisp dialects, or the end of TEX & Co… and these programs are still in

action.
25 Especially the notion of field type: for example, @AUTHOR is a list of names, @TITLE is a literal, according to the biblatex package’s

terminology. Analogous notions exist within MlbibTEX.

90 90

90 90

mlbibtex and its new extensions > jean-michel hufflen

91

have been reached within other programming
paradigms26. In addition, our programs can
be used with a Scheme interpreter, but better
efficiency is reached if programs are compiled.
Even if we think that we are not in competition
with a bibliography processor like biber, it is
certain that a program written using Scheme
is more efficient than a program written using
Perl27. So we have spent much time when we
began MlbibTEX’s development, but we do not
regret anything and were happy to be able to
adapt this program to new requirements.

7. References

[1] François Charette and Philip Kime: biber. A Back-
end Bibliography Processor for biblatex. Ver-
sion biber 0.9 (biblatex 1.6). August 2011. http:/
/freefr.dl.sourceforge.net/project/biblatex-biber
/biblatex-biber/development/documentation
/biber.pdf.

[2] CONTEXTGARDEN, http://wiki.contextgarden
.net/Bibliography: Bibliographies in MkII. April
2012.

[3] CONTEXTGARDEN, http://wiki.contextgarden.net
/Bibliography_mkiv: Bibliographies in MkIV. July
2012.

[4] Michel Goossens, Frank Mittelbach, Sebastian
Rahtz, Denis B. Roegel and Herbert Voß: The LATEX
Graphics Companion. 2nd edition. Addison-Wes-
ley Publishing Company, Reading, Massachusetts.
January 2009.

[5] Michel Goossens, Sebastian Rahtz and Frank Mit-
telbach: The LATEX Graphics Companion. Illustrating
Documents with TEX and PostScript. Addison-Wes-
ley Publishing Company, Reading, Massachusetts.
March 1997.

[6] Hans Hagen: ConTEXt, the Manual. November
2001. http://www.pragma-ade.com/general
/manuals/cont-enp.pdf.

[7] Hans Hagen: ‘The Luafication of TEX and ConTEXt’.
In: Proc. BachoTEX 2008 Conference, p. 114–123.
April 2008.

[8] Taco Hoekwater: ‘The Bibliographic Module for
ConTEXt’. In: EuroTEX 2001, p. 61–73. Kerkrade
(the Netherlands). September 2001.

[9] Jean-Michel Hufflen: ‘MlbibTEX’s Version 1.3’. TUG-

boat, Vol. 24, no. 2, p. 249–262. July 2003.

[10] Jean-Michel Hufflen: ‘Names in bibTEX and Ml-
bibTEX’. TUGboat, Vol. 27, no. 2, p. 243–253. TUG
2006 proceedings, Marrakesh, Morocco. Novem-
ber 2006.

[11] Jean-Michel Hufflen: ‘Managing Order Relations
in MlbibTEX’. TUGboat, Vol. 29, no. 1, p. 101–108.
EuroBachoTEX 2007 proceedings. 2007.

[12] Jean-Michel Hufflen: ‘Revisiting Lexicographic
Order Relations on Person Names’. In: Proc. Ba-
choTEX 2008 Conference, p. 82–90. April 2008.

[13] Jean-Michel Hufflen: Classe superreport — Manuel
d’utilisation. March 2010. http://lifc.univ-fcomte
.fr/home/~jmhufflen/superreport/superreport
-readme.pdf.

[14] Jean-Michel Hufflen: ‘Using MlbibTEX to Popu-
late Open Archives’. In: Tomasz Przechlewski, Karl
Berry, Gaby Gic-Grusza, Ewa Kolsar and Jerzy B.
Ludwichowski, eds., Typographers and Program-
mers: Mutual Inspirations. Proc. BachoTEX 2010
Conference, p. 45–48. April 2010.

[15] Jean-Michel Hufflen: ‘From Bibliography Files
to Open Archives: the Sequel’. In: Karl Berry,
Jerzy B. Ludwichowski and Tomasz Przech-
lewski, eds., Proc. EuroBachoTEX 2011 Conference,
p. 61–66. Bachotek, Poland. April 2011.

[16] Jean-Michel Hufflen: ‘A Comparative Study of
Methods for Bibliographies’. TUGboat, Vol. 32, no. 3,
p. 289–301. Proc. TUG 2011 conference. October
2011.

[17] Jean-Michel Hufflen: ‘MlbibTEX and the biblatex
package’. In: Tomasz Przechlewski, Karl Berry and
Jerzy B. Ludwichowski, eds., Twenty Years After.
Proc. BachoTEX 2012 Conference, p. 91–99. Ba-
chotek, Poland. April 2012.

[18] Richard Kelsey, William D. Clinger, and Jonathan A.
Rees, with Harold Abelson, Norman I. Adams iv,
David H. Bartley, Gary Brooks, R. Kent Dybvig,
Daniel P. Friedman, Robert Halstead, Chris Hanson,
Christopher T. Haynes, Eugene Edmund Kohlbecker,
Jr, Donald Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay Sussman
and Mitchell Wand: ‘Revised5 Report on the Al-
gorithmic Language Scheme’. HOSC, Vol. 11, no. 1,
p. 7–105. August 1998.

[19] Jonathan Kew: ‘X ETEX in TEX Live and beyond’. TUG-

boat, Vol. 29, no. 1, p. 146–150. EuroBachoTEX 2007
proceedings. 2007.

[20] Oleg E. Kiselyov: XML and Scheme. September
2005. http://okmij.org/ftp/Scheme/xml.html.

[21] Philipp Lehman: The biblatex Package. Program-
mable Bibliographies and Citations. Version 1.6. 29

26 But we think that more effort would have been needed.
27 Practial Extraction and Report Language. A good introduction to this language is [30].

91 91

91 91

contextgroup > context meeting 2012

92

July 2011. ftp://ftp.tex.ac.uk/archive/Archive\
%20directory/macros/latex/exptl/biblatex/doc
/biblatex.pdf.

[22] Miki Loukides and Andy Oram: Programming with
GNU Software. O’Reilly & Associates, Inc. December
1996.

[23] Frank Mittelbach and Michel Goossens, with Jo-
hannes Braams, David Carlisle, Chris A. Rowley,
Christine Detig and Joachim Schrod: The LATEX
Companion. 2nd edition. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts. August
2004.

[24] Oren Patashnik: bibTEXing. February 1988. Part of
the bibTEX distribution.

[25] Manuel Serrano: Bigloo. A Practical Scheme Com-
piler. User Manual for Version 3.3b. March 2010.

[26] Michael Sperber, R. Kent Dybvig, Matthew Flatt,
and Anton van Straaten, with Richard Kelsey,

William Clinger, Jonathan Rees, Robert Bruce Find-
ler and Jacob Matthews: Revised6 Report on the
Algorithmic Language Scheme. September 2007.
hhtp://www.r6rs.org.

[27] Michael Sperber, R. Kent Dybvig, Matthew Flatt,
and Anton van Straaten, with Richard Kelsey,
William Clinger and Jonathan Rees: Revised6 Re-
port on the Algorithmic Language Scheme—Stan-
dard Libraries. September 2007. hhtp://www.r6rs
.org.

[28] Gary V. Vaughn, Ben Ellison, Tom Tromey and
Ian Lance Taylor: GNU Autoconf, Automake, and
Libtool. Sams. October 2000.

[29] Herbert Voß: Bibliografien mit LATEX. Lehmans Me-
dia, Berlin. 2011.

[30] Larry Wall, Tom Christiansen and Jon Orwant: Pro-
gramming Perl. 3rd edition. O’Reilly & Associates,
Inc. July 2000.

92 92

92 92

demonstration of the ‘mlbibcontext’ program > jean-michel hufflen

93

Demonstration of the ‘mlbibcontext’ Program
Jean-Michel Hufflen

This short statement aims to sketch the broad outlines of the presentation performed
at the 6th ConTEXt meeting.

Introduction
When the bibTEX bibliography processor [24]
builds a ‘Reference’ section for a source text
typeset by the LATEX word processor [23], it only
uses information stored in auxiliary (.aux) files
[23, § 12.1.3]. In particular, such an .aux file
gives the bibliography style to be used, as a
.bst file1. Such a style is monolithic, in the
sense that nothing can be customised when
bibTEX is called: for example, the order relation
used to sort bibliographical items is hard-wired
in any .bst file. The biber program [1]—often
used in cojunction with the biblatex package
[21]—is more flexible: when it runs, it uses
a configuration file (.bcf2) file—using XML3-like
syntax—as explained in [16, § 2.5]: in particular,
such a .bcf file allows the sort of bibliographical
items to be customised. However, let us recall
that biber has a drawback from a point of view
related to ConTEXt: it only builds ‘References’
sections suitable for the biblatex package. As
explained in [10], the mlbibcontext program
aims to build ‘References’ sections suitable for
the bibliography support for ConTEXt [2,3]. The
main point of the demonstration is to show
which information is needed by mlbibcontext,
in order for this program to be as powerful as
possible. In other words, we aim to help design a

nice interface between ConTEXt and mlbibcon-
text4.

Plan
Let us recall that the mlbibcontext pro-
gram—written entirely using the Scheme pro-
gramming language [18]—builds ‘References’
sections suitable for the commands of Taco
Hoekwater’s bib module [8], reimplemented
within ConTEXt MkIV by Hans Hagen [3]. The
demonstration will focus on the following points:

• its installation: the easiest way is to com-
pile the source files by the bigloo [25]
Scheme compiler5; the installation proce-
dure [17] uses the commands configure
[28] and make [22], well-known within GNU6

software; the source files are available at
the Web page http://disc.univ-fcomte.fr
/home/~jmhufflen/texts/superreport
/smlbibtex-1.3.tar.gz;

• the mlbibcontext program allows order
relations used to sort bibliographies to be
customised w.r.t. successive keys given by
bibTEX’s fields [10,11]; only ascending or-
ders can be used presently,

1 Except if the biblatex package is used [21], in which case the bibliography style applied by bibTEX is implicitly the biblatex

bibliography style.
2 Biber Configuration File.
3 eXtensibleMarkup Language.
4 Let us mention that mlbibcontext could deal with configurations described by XML files—in particular, it could process biblio-

graphical entries given using XML-like syntax—; it can also process additional definitions written using the Scheme programming

language [18].
5 Of course, it is preferable for mlbibcontext to be compiled, in order to get more efficiency. The use of other Scheme compilers or

interpreters is possible.
6 Recursive acronym: Gnu is Not Unix.

93 93

93 93

contextgroup > context meeting 2012

94

but this point could be improved by a nicer
interface: the kernel of MlbibTEX

7 also pro-
vides descending order relations;

• the mlbibcontext program allows you to
put many basic commands of LATEX inside
values of bibTEX’s fields, even if the re-
sult is processed by ConTEXt; moreover,
some commands specific to ConTEXt may
be grouped into a special preamble within
.bib files: the @CONTEXTPREAMBLE directive
instead of the traditional @PREAMBLE direc-
tive [6].

To end up, let us mention the mlbibtex2xml
program [10], part of MlbibTEX. This program
allows bibliographical items to be given using
XML-like syntax. This kind of text can be
processed by ConTEXt MkIV (cf. [7, Fig. 8]).
However, we think that mlbibtex2xml’s
outputs could be processed by programs
written using Lua [12]—as allowed by ConTEXt
MkIV [7]—rather than ConTEXt’ features related
to TEX. When .bib files are processed by
mlbibtex2xml, no sort operation is performed.

References
[1] François Charette and Philip Kime: biber. A Back-

end Bibliography Processor for biblatex. Ver-
sion biber 0.9 (biblatex 1.6). August 2011. http:/
/freefr.dl.sourceforge.net/project/biblatex-biber
/biblatex-biber/development/documentation
/biber.pdf.

[2] CONTEXTGARDEN, http://wiki.contextgarden
.net/Bibliography: Bibliographies in MkII. April
2012.

[3] CONTEXTGARDEN, http://wiki.contextgarden.net
/Bibliography_mkiv: Bibliographies in MkIV. July
2012.

[4] Hans Hagen: ‘The Luafication of TEX and ConTEXt’.
In: Proc. BachoTEX 2008 Conference, p. 114–123.
April 2008.

[5] Taco Hoekwater: ‘The Bibliographic Module for
ConTEXt’. In: EuroTEX 2001, p. 61–73. Kerkrade
(the Netherlands). September 2001.

[6] Jean-Michel Hufflen: ‘MlbibTEX Meets ConTEXt’.
TUGboat, Vol. 27, no. 1, p. 76–82. EuroTEX 2006 pro-
ceedings, Debrecen, Hungary. July 2006.

[7] Jean-Michel Hufflen: ‘Processing ‘Computed’
Texts’. MAPS, Vol. 41, p. 68–78. 2010.

[8] Jean-Michel Hufflen: ‘A Comparative Study of
Methods for Bibliographies’. TUGboat, Vol. 32, no. 3,
p. 289–301. Proc. TUG 2011 conference. October
2011.

[9] Jean-Michel Hufflen: ‘MlbibTEX and the biblatex
package’. In: Tomasz Przechlewski, Karl Berry and
Jerzy B. Ludwichowski, eds., Twenty Years After.
Proc. BachoTEX 2012 Conference, p. 91–99. Ba-
chotek, Poland. April 2012.

[10] Jean-Michel Hufflen: ‘MlbibTEX and Its New Ex-
tensions’. In: Proc. EuroTEX 2012. Breskens, The
Netherlands. October 2012.

[11] Jean-Michel Hufflen: Gestion d’ordres lexi-
cographiques multilingues avec xindy et MlbibTEX. À
paraître dans les Cahiers GUTenberg. 2012.

[12] Roberto Ierusalimschy: Programming in Lua. 2nd
edition. Lua.org. March 2006.

[13] Richard Kelsey, William D. Clinger, Jonathan A.
Rees, Harold Abelson, Norman I. Adams iv, David H.
Bartley, Gary Brooks, R. Kent Dybvig, Daniel P.
Friedman, Robert Halstead, Chris Hanson, Christo-
pher T. Haynes, Eugene Edmund Kohlbecker, Jr,
Donald Oxley, Kent M. Pitman, Guillermo J. Rozas,
Guy Lewis Steele, Jr, Gerald Jay Sussman and
Mitchell Wand: ‘Revised5 Report on the Algo-
rithmic Language Scheme’. HOSC, Vol. 11, no. 1,
p. 7–105. August 1998.

[14] Philipp Lehman: The biblatex Package. Program-
mable Bibliographies and Citations. Version 1.6. 29
July 2011. ftp://ftp.tex.ac.uk/archive/Archive
%20directory/macros/latex/exptl/biblatex/doc
/biblatex.pdf.

[15] Miki Loukides and Andy Oram: Programming with
GNU Software. O’Reilly & Associates, Inc. December
1996.

[16] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, Chris A. Rowley, Christine
Detig and Joachim Schrod: The LATEX Companion.
2nd edition. Addison-Wesley Publishing Company,
Reading, Massachusetts. August 2004.

[17] Oren Patashnik: bibTEXing. February 1988. Part of
the bibTEX distribution.

[18] Manuel Serrano: Bigloo. A Practical Scheme Com-
piler. User Manual for Version 3.3b. March 2010.

[19] Gary V. Vaughn, Ben Ellison, Tom Tromey and
Ian Lance Taylor: GNU Autoconf, Automake, and
Libtool. Sams. October 2000.

7 MultiLingual bibTEX.

94 94

94 94

abstracts

95

Abstracts without papers

Run for Fun
Jano Kula
Sports and especially long distance runs are
known for the good doses of endorphin. Instead,
we will show some adrenaline challenges while
preparing such a sport event: 10 km run through
the historic center of Prague. Plotters, tables,
layers, composition.

ConTEXt: the script
Hans Hagen
The ConTEXt runner context has inherited a few
features from its predecessor texexec. Instead
of hardcoding functionality for typesetting list-
ings and manipulating PDF files in the script
itself they are now isolated in TEX files. In this
presentation I will show some of these lesser
known features of the script.

ConTEXt: after the cleanup
Hans Hagen
After the transition fromMkII to MkIV a cleanup
stage has been started. What is involved in this
cleanup andwhat will happen afterwards. This is
more a discussion than a presentation and users
are invited to express their wishes and priorities.

Metapost workshop
Mari Voipio
‘A pragmatic approach to MetaPost’, or, ‘How to
get useful results out of MetaPost if are not a
programmer, are not a mathematician, and are
a complete beginner besides.’

A couple of styles
Hans Hagen
When you keep an eye on what modules get
added to ConTEXt, you will notice that quite
some of them are a mixture of TEX, METAPOST
and Lua. I will show a few that might have gone
unnoticed. They can often serve as an example
for your own local usage.

Lexing
Hans Hagen
As I use SciTE most of the time, there is some
mutual influence between coding and visualized
in this editor. Especially the possibility to write
more advanced lexers has lead to some changes
(for the good) in the code base. Here I will show
some of that (as it might help those who browse
the source).

(visual) debugging
Hans Hagen
Compared toMkII theMkIV code has more trac-
ing on board. At the Lua end we have trackers
and recently a start has been made to extend
that to the TEX end, where it will replace the
\trace*true likemacros. As part of the cleanup
the original visual debugger module has been
replaced by an even less intrusive variant. It
provides the usual visual clues about what goes
on the page. The new mechanism is more ad-
vanced that the old one but still assumes some
knowledge of what happens inside TEX. In this
presentation we will explain some of this.

Japanese Typesetting with LuaTEX
KITAGAWA Hironori
There are some issues for typeset Japanese
documents by LuaTEX. Some of them, such as
end-of-line rule and the value of a grouped
variable ‘at the end of a \hbox’, are (partially)
resolved by writing Lua codes. Also we can
discuss the specification of LuaTEX on vertical
typesetting, referring to that of Japanese pTEX.

Mixed columns
Hans Hagen
One of the last things to redo in MkIV is the page
builder. Although bits and pieces have been
redone, some major effort is needed to upgrade
multi columns mechanisms. We (currently)
have three mechanisms: regular columns that
can be mixed with single column mode, sim-
ple columns that can be used in a boxed way,
and columnsets. The first two have been re-

95 95

95 95

contextgroup > context meeting 2012

96

placed by a new mechanism tagged as mixed
columns. This mechanism permits instances of
multicolumns, either or not in the page flow or
in boxes, and the old mechanisms will go. Of
course we try to remain compatible as much as
possible. In this talk we can discuss some of the
issues involved and identify future needs.

Differences in typesetting rules
between Czech and Slovak languages
(in the context of ConTEXt)
Tomás Hála
During the existence of Czechoslovakia, Czech
and Slovak typesetting rules were defined by
one common norm. At present, Slovak rules

have mostly been fixed by official documents
whereas Czech rules are rather custom based.
This contribution deals with comparison of the
rules in both languages, especially with the use
of hyphen, dashes, lists etc. In addition to that,
some ot these items in Czech and Slovak differ
considerably from those in other languages. All
important items have been compared with fa-
cilities in the typesetting system ConTEXt and
it seems that some situations have not been
covered in configuration files. Therefore several
suggestions for language settings have been
made in order to make ConTEXt more general
and comfortable for ordinary users.

96 96

96 96

participant list > 6th context meeting

97

Participant list of the 6th ConTEXt meeting

Leo Arnold, Technische Universität München,
Garching bei München, Germany
latex@arney.de

Doris Behrendt, Gymnasium Marktbreit,
Biebelried, Germany
doris.behrendt@me.com

Sietse Brouwer,
The Netherlands
sbbrouwer@gmail.com

Gyöngyi Bujdosó, Faculty of Computer Science,
University of Debrecen,
Debrecen, Hungary
bujdoso.gyongyi@inf.unideb.hu

Andreas Dafferner, Heidelberger Akademie der
Wissenschaften,
Heidelberg, Germany
andreas.dafferner@adw.uni-heidelberg.de

Karin Dornacher, DANTE e.V,
Heidelberg, Germany
office@dante.de

Willi Egger, BOEDE,
Sambeek, The Netherlands
w.egger@boede.nl

Kai Eigner, Tat Zetwerk,
Utrecht, The Netherlands
eigner@tatzetwerk.nl

Ivo Geradts, Tat Zetwerk,
Utrecht, The Netherlands
geradts@tatzetwerk.nl

Frans Goddijn,
Amsterdam, The Netherlands
frans@goddijn.com

Patrick Gundlach, Dante e.V,
Berlin, Germany
patrick@gundla.ch

Hans Hagen, Pragma ADE,
Hasselt, The Netherlands
pragma@wxs.nl

Tomás Hála, Mendel University Brno,
Brno, Czech Republic
thala@mendelu.cz

Taco Hoekwater, Bittext,
Breskens, The Netherlands
taco@bittext.nl

Karel Horak,
Lety, Czech Republic
horakk@math.cas.cz

Jean-Michel Hufflen, University of Franche-
Comté,
Besançon Cedex, France
jmhuffle@femto-st.fr

Bogusłav Jackowski, GUST,
Gdañsk, Poland
jacko@bop.com.pl

Hironori KITAGAWA,
Tokyo, Japan
h_kitagawa2001@yahoo.co.jp

Harald König,
Balingen, Germany
koenig@linux.de

Reinhard Kotucha, Capical GmbH,
Hannover, Germany
reinhard.kotucha@web.de

Siep Kroonenberg, RUG,
Groningen, The Netherlands
siepo@cybercomm.nl

Silke Krumrey, Fachhochschule Stralsund,
Stralsund, Germany
silke.krumrey@fh-stralsund.de

Jan Kula,
Prague, Czech Republic
jano.kula@gmail.com

Yusuke KUROKI,
Yokohama, Japan
kuroky@users.sourceforge.jp

Johannes Küster, typoma GmbH,
Holzkirchen , Germany
info@typoma.com

97 97

97 97

contextgroup > context meeting 2012

98

Dag Langmyhr, University of Oslo,
Oslo, Norway
dag@ifi.uio.no

Lucien Lemmens,
Laakdal, Belgium
lcnlmmns@me.com

Manfred Lotz,
Frankfurt, Germany
manfred@dante.de

Jerzy Ludwichowski, GUST,
Toruñ, Poland
jerzy.ludwichowski@umk.pl

Bernd Militzer,
Kempen, Germany
bernd@militzer.net

Christina Möller, Fachhochschule Stralsund,
Stralsund, Germany
christina.moeller@fh-stralsund.de

Thomas Ratajczak, German Army,
Langenfeld, Germany
ratajczak@gmail.com

Heiner Richter, Fachhochschule Stralsund,
Stralsund, Germany
heiner.richter@fh-stralsund.de

Edgaras Šakuras, VTEX UAB,
Vilnius, Lithuania
edgaras.sakuras@vtex.lt

Luigi Scarso,
Padova, Italy
luigi.scarso@gmail.com

Volker Schaa, Dante e.V,
Darmstadt, Germany
v.r.w.schaa@gsi.de

Martin Schröder,
Duisburg, Germany
martin@oneiros.de

Robbert Schwippert, Docwolves B.V.,
Dordrecht, The Netherlands
ras@elvenkind.com

Martin Sievers, Dante e.V.,
Trier, Germany
martin@dante.de

Linas Stonys, VTEX UAB,
Vilnius, Lithuania
lstonys@vtex.lt

Piotr Strzelczyk, GUST,
Gdynia, Poland
piotr@eps.gda.pl

Sigitas Tolušis, VTEX UAB,
Vilnius, Lithuania
sigitas@vtex.lt

Kees Van der Laan,
Garnwerd, The Netherlands
kisa1@xs4all.nl

Ulrik Vieth,
Stuttgart, Germany
ulrik.vieth@arcor.de

Mari Voipio, Lucet.fi,
Vantaa, Finland
mari.voipio@lucet.fi

Herbert Voß, Freie Universität Berlin,
Berlin, Germany
herbert@dante.de

Munehiro YAMAMOTO,
Japan
munepixyz@gmail.com

Uwe Ziegenhagen, DB Private Equity,
Cologne, Germany
ziegenhagen@gmail.com

98 98

98 98

