
Text categorization using lexical chains

Tue Haste Andersen

Supervisor: L�aszl�o B�ela Kov�acs

Department of Computer Science,

Copenhagen University

February 28, 2000

Abstract

In this report I present a prototype system for use in dynamic text categorization research.

The system implements lexical chaining, as described in recent literature. On top of this

is built a simple extension to use for automatically identifying one or several categories to

place a given text in. The initial tests presented in this report does not give any useful

results, however, it give rise to new questions and possible directions for future research

of lexical chaining and its uses in text categorization. Along with the implementation,

previous research and the lexicographic database WordNet are discussed.

Keywords: Text categorization, dynamic, lexical chaining, WordNet, text retrieval.

1

Contents

Introduction 3

1 Background 5

1.1 WordNet . 6

1.2 Previous research . 8

1.2.1 Text Retrieval . 8

1.2.2 Text Categorization . 10

2 Categorization 11

2.1 Lexical chaining . 11

2.2 Categorization . 14

3 Implementation 16

3.1 Accessing the WordNet database . 16

3.2 Morphologic analysis . 17

3.3 Lexical chainer . 18

3.4 Lexical chain linker . 19

3.5 Front-end . 19

3.6 Testing . 20

4 Discussion 22

Bibliography 24

A Source code 26

B Test results 48

2

Introduction

Categorization is of importance when large amount of information needs to be stored in

some way, for later retrieval. Examples of uses are categorization of books and articles,

web pages, email messages and message routing. Today it is of growing importance to �nd

good ways to do this automatically, as the amount of information available electronically

is growing fast.

Automatic categorization of text can be done in many ways, depending on the use of the

categorized texts. Below is listed three approaches, grouped by what kind of information

is available prior to categorization:

Pre-categorized texts. If pre-categorized material is available, it is possible to deduce

simple, yet fast and e�ective rules, to use for categorizing new material of same type.

Studies in rule induction have been done by Quinlan [Qui96] and Cohen [Coh95a]

primary focusing on e�ciency, in terms of speed.

Semantic networks. When a semantic network relating word to actions, concepts, etc.,

is available, material can be categorized in a number of ways, relying on the network.

User model. In a system based on a user model, it is possible to use the information

collected about the users behavior, preferences etc., for categorizing data. This

approach could be made far more dynamic than that of the rule induction.

In this report, I will focus on a browsable hypertext system, similar to those present on

Internet portals like the \WWW virtual library"1. Here the presented links are selected

and categorized by humans. Therefore it will be necessary to employ more people to �nd,

select and categorize the information, as the Internet grows. If part of this process could be

automated, enormous amounts of resources could be saved. It might be di�cult to make a

system that ensures high quality in the selected documents, but to categorize documents

automatically seems more reasonable, because a complete knowledge of the documents is

not required. Instead a rather coarse grained view of the topics present in the documents

will do.
1http://vlib.org/

3

The categories on a typical Internet portal are stored in a hierarchy or network struc-

ture of topic labels. Today documents are manually placed in these categories, and the

whole structure of category labels is also extended manually. The problem is therefore

not only to assign a prede�ned label to a given document, but also to place a document

into a hierarchy or network of topic labels, and to extend this structure whenever needed.

For this purpose, the semantic network approach mentioned above, can provide the nec-

essary background information. The fact that such background information bases are

public available, makes it possible to rapidly develop systems that can be used for exper-

imentation on real life data. Furthermore, the learning phase is not limited to symbol

manipulation of known data, as is the case of the two other examples mentioned above

(in the �rst case pre-categorized texts; in the user model, recorded user actions.)

In the following chapters I will proceed by introducing background information on

the lexicographic database WordNet2, along with an overview of research in text retrieval

problems. This is followed by a description of the theory of lexical chaining, which is used

to disambiguate meanings of words, as represented in WordNet. Finally a method for

categorizing texts is presented, along the implementation of the prototype system3 and

experiments, showing initial results. The main goal is to examine if a good method for

text categorization using lexical chaining can be found, and to test the usability of the

lexical chaining technique in practice.

2WordNet can be downloaded from http://www.cogsci.princeton.edu/~wn/
3The system will soon be made available for download from http://www.diku.dk/students/

haste/textcat/

4

Chapter 1

Background

The system described in this project heavily relies on a lexicographic database, called

WordNet [Fel98]. Other databases are available which contains information about lan-

guage and semantics, but WordNet is unique in that it covers a large part of the target

language, English, and has well de�ned concepts and relations.

Another database that probably contains more information than WordNet, is Cyc

available from Cycorp1. However, this database has been criticized for not being well-

structured, and therefore di�cult to use in text retrieval problems [KMF96]. In [KMF96]

it is demonstrated that a number of problems exists when Cyc is used in the solving of

classic text retrieval problems. These includes:

� Incomplete and non-uniform coverage of knowledge concepts. WordNet has also

been criticized for incomplete coverage, but has a uniform structure, where Cyc

lacks selectional constraints on the knowledge.

� Ine�cient accessibility of knowledge, because the whole database has to be searched

to �nd everything about a given concept.

There are other electronically available ontologies including Pangloss, Mikrokosmos

and EDR [KMF96]. However, none of these have as wide coverage of a language as

WordNet or Cyc.

Among other, these are the reasons why I have chosen to base this project on WordNet.

In this chapter I will give an overview of what WordNet contains, and how it is structured.

Secondly I will present an overview of the �eld of text retrieval in the context of text

categorization.

1See http://www.cycorp.com/

5

Word Synset id Synset gloss

Orange 103880945 Any of a range of colors between red and yellow.

105783752 Round yellow to orange fruit of any of several

citrus trees.

109007985 Any citrus tree bearing oranges.

110758147 Any pigment producing the orange color.

Table 1.1: Example of the synsets representing the di�erent senses of the word \Orange."

1.1 WordNet

In WordNet every word is represented by a set of synonyms, called synsets (see table

1.1.) Each synonym represents a meaning of the word. Each synset have a unique id,

most of them have a gloss phrase assigned to them, which is some informal English text,

describing the meaning of the synonym. But apart from this phrase, the synonyms are

de�ned in terms of links to other synsets. This means that the information in WordNet

is build around sets of synonyms, as they are the primary keys to represent the semantics

of words.

Figure 1.1 shows a search on the word \orange" in WordNet. In the left window we

see that the word both can be used as an adjective, and as a noun. Furthermore it shows

di�erent types of links to the word { E.g. following \... is a kind of orange (hyponyms)",

will show the synsets which are specialization's of orange. The right window shows the

four di�erent senses found of the word, and displays the gloss phrase associated with each.

A number of di�erent relations exist between synsets in WordNet. They are listed

in table 1.2, along with their type. A semantic relation means that the relation holds

between meanings of words (more speci�cally, synsets), and a lexical relation means that

its between word forms, not meanings of words.

The most important relation of table 1.2 is synonymy. Of other important relations

represented in WordNet is antonymy, which is a lexical relation describing relations be-

tween words of opposite meaning, e.g. ascend and descend are antonyms. Hyponymy and

hypernymy is a semantic relation describing a hierarchy between word meanings. Here

tool is a hypernym of fork, and fork is a hyponym of tool. Meronymy and holonymy can be

described by the has-a or part-of relation: E.g. a motor is part of a car, therefore motor is

a meronym of car and car is a hypernym of motor. In WordNet the actual representation

of the car-motor relation, consists of several intermediate levels: motor is a hypernym of

engine, which is a hypernym of automobile engine, which is a part meronym of car. Fur-

thermore meronymy is divided into three types of relations in WordNet, namely member,

6

Figure 1.1: Screen shot from WordNet TreeWalk showing a search on \Orange." WordNet

TreeWalk is available for download from http://www.ac-toulouse.fr/wordnet/

7

Name Abbreviation Type Word forms

Attribute at Semantic Adjectives-nouns

Synonymy sim Semantic Adjectives

Antonymy ant Lexical

Hyponymy/Hypernymy hyp Semantic Nouns and verbs

Meronymy/Holonymy mm,ms,mp Semantic Nouns

Entailment ent Semantic Verbs

See also sa Lexical Adjectives and verbs

Cause cs Semantic Verbs

Participle ppl Lexical Verbs-adjectives

Pertain per Lexical Adjectives-adverbs,

adjectives-nouns

Group vgp Semantic Verbs

Table 1.2: Relations in WordNet. The column \Abbreviation" show the relation names,

as they are called in the Prolog distribution of the WordNet database �les. \Type" shows

the type of relation, and \Word Forms" tells possible constraints on which word forms the

relation holds between.

substance and part meronymy.

An ER diagram of WordNet is show in �gure 1.2. Even though the participle relation

connects verbs and adjectives, it only consists of 90 relations. This makes it di�cult to use

all the information stored in WordNet, because of this weak connection between di�erent

syntactic categories.

1.2 Previous research

1.2.1 Text Retrieval

In Information Retrieval, many underlying techniques have been tried on a wide variety

of applications. Most commons are models based on symbol manipulation [Yan99, MSS].

This type of models relies on a correlation between words as symbols and their meaning,

which only to some extend is present. In other words, the models do not take into ac-

count the di�erent meanings of the words, which also is reected in the results of their

performance.

The problem of text retrieval is traditionally viewed as matching a query string against

a set of texts, and thereby �nding the documents that are relevant to the query [Voo98].

One common way of doing this is by using a vector space model [Voo98]. Here each text

8

Nouns

Adjectives

Verbs

Adverbs

at per

per

ppl

Figure 1.2: ER diagram showing relations between di�erent syntactic categories in Word-

Net.

is represented by a T -dimensional vector, where T is the number of di�erent words in the

text. The length of the vector in a given direction, is given by the number of times a

particular word occurs in the text. Given a query, the vector for that query is calculated,

and matched against each vector of the text collection. Now only the text vectors that

are similar to the query vector, is returned as results. Obvious advantages of using simple

symbol-based approaches like this are:

� They are fast, robust, and well-known [Coh95a, Coh95b, Qui96].

� They can be made general, i.e. they do not need supervised con�guration for use in

di�erent areas [MSS].

The biggest disadvantage of this kind of model, is that no better than half of the

searched documents can be found. The best results of this kind of model, has achieved

to �nd about half of the relevant documents. Using a precision/recall evaluation scheme,

this means that no more than 50% of the found articles of a test set is in fact relevant,

and no more than 50% of the truly relevant documents are found [Voo98].

A way to enable the vector space model to take into account the di�erent senses of

words, is to apply WordNet for resolving the senses of the Words. George Miller has done

exactly that, by adding a new WordNet construct called a hood [Voo98]. The idea is to

assign a number of categories to each word, and then to disambiguate the categories, so

only one is left for each word. The category labeling is de�ned by the hood, which itself

9

is de�ned by the hyponymy relation. A hood is the synset that the word synset is a

descendant of, as long as no other relations exists from the hood and down to the word

synset. By assigning and disambiguating hoods automatically, the vector space model can

be applied on the hood categories instead of the word symbols.

Unfortunately the results are at best, no better than the symbol based approach. For

this reason I have chosen to base the developed system on another technique for automatic

word sense resolution, namely lexical chains.

1.2.2 Text Categorization

In the previous section a system using hoods derived from WordNet as categories was

discussed. These category labels was used for matching queries against texts, to �nd

documents related to the query. The prototype system I am developing, is to be used for

a category browsing system, which is quite di�erent from the use of the hoods. Finding

a hood of a word or synset does not indicate anything about the structure or the context

the word is used in.

An attempt to use WordNet and lexical chaining for categorization, is Al-Halimi and

Kazman's lexical trees [AHK98]. These trees are build in a manner like lexical chains, but

instead of �nding several chains, only one is build, preserving a tree structure between the

words.

Another algorithm is QUESCOT by Stairmand [Sta97] also based on lexical chains.

The chains are identi�ed using Morris and Hirst's algorithm, but a new additional concept

is introduced, namely lexical clusters, which should correspond to the context at �xed

points in the analyzed documents. Here they de�ne context as \context can be speci�ed

by a word set consisting of keywords of the context." This is done by considering the

distribution of the terms found in the lexical chains throughout a document. It is assumed

that there exists a tight relation between the contexts in the document, and the main topic.

Therefore the most dominant context is selected as the topic of the document.

A system for categorization of email messages is described in [Tak95]. It is not based

on WordNet, but describes a dynamic system, based on the semantic distance of the

documents in a given category. When the distance becomes too big, the category is split

into several sub categories. In this way the system is able to extend its structure while

adding new documents. Unfortunately the paper only covers a preliminary study.

10

Chapter 2

Categorization

As the �eld of automatic categorization is very limited on published research, I have

chosen to select techniques successfully applied to other applications of text retrieval,

namely lexical chaining. I have then made some initial experiments on how to use it for

text categorization.

The general idea is �rst to identify all lexical chains by using an adapted version

of Morris and Hirst's original algorithm [MH91, SO95]. Hereafter I will try to identify

relations between the found chains, to �nd out which are general/speci�c in meaning.

Finally it may be possible to place the article in one or several sub categories, see �gure

2.1.

I will start with a description of lexical chaining, and then continue with how the

identi�ed chains can be used for categorizing text.

2.1 Lexical chaining

The lexical chaining algorithm was developed by Morris and Hirst. The algorithm group

the words of a given text, so that the words of each group has a close semantic relation.

The purpose of the algorithms was to correctly disambiguate meanings of words, but also

to give an indication of the text structure [SO95]. Because chains are limited in scope,

they tend to indicate the structure of the text [MH91]. However, as stated by Stairmand,

it is not clear whether or not there is a relation between the identi�ed chains and the

concept of text structure [Sta97].

The algorithm was developed by Morris and Hirst [MH91] based on Roget's Interna-

tional Thesaurus, which is a classi�cation of words and phrases into ideas and concept.

However, at the time of development, Roget's was not available electronically, and there-

fore the algorithm was never implemented. This was later done by St-Onge [SO95, HSO98]

and Stairmand [Sta97], both adapted for WordNet.

11

Text

Linked
Chains

Lexical chainer

Lexical linker

Chains

Categorizer

Inference engine

WordNet

Category heirarcy

Information and
knowledge:

Figure 2.1: Overview of the prototype system. The lexical chainer and linker are the

modules that are already developed, and presented in section 3.

St-Onge's algorithm is based on the original algorithm, along with the notion of

salience, which was introduced by Okumura and Honda (see [SO95] for further refer-

ence.) Salience means that both recency and length of a chain is taken into account when

building chains.

The algorithm works by looking up a word at a time, and then try to establish relations

between the word and one of the chains. The relations can either be between the word

symbols, or the synsets assigned to the words.

- Read word

- Skip word if found in stop list.

- Find semantically equal term in WordNet, by performing

morphologic analysis

- Find relation between word and one of the words in the

already initialized chains.

- If none is found, make a new chain, and initialize it with

the new word.

- If relation is found, disambiguate synset senses of words

in chain, by pruning all senses not used to find the

relations between the words.

This continues until no more words is available. To use the salience concept, the chains

12

are searched in order of recency, i.e. the read word, is compared to the words in the chains

most recently updated. If a chain has not been updated according to a special threshold

value, the chain is not updated any more. Finding relations between words is done by

applying one of several rules, each assigned a weight. Here each relation in WordNet has

been given a direction, see table 3.1.

Extra strong The words are equal.

Strong There exists one or more direct horizontal relations between the synsets of the

two words.

Medium A relation can be made using the following rules:

� The number of relations between the two synset pairs must be no greater than

�ve.

� No more than one change in direction is allowed, unless it is horizontal.

� Upward relations is only allowed if no other direction changes has been made

before.

The medium relations are further weighted, by their length and number of changes in

direction. When a relation is found, synsets that are not directly connected to other synsets

in the chain are pruned. In this way disambiguation is done incrementally whenever new

words is added, and more information about what senses of the words is available.

As mentioned earlier, it can be di�cult to make tight relations between lexical chains

and other semantic entities. The word disambiguation might be coarse grained, but

still lexical chaining has many useful purposes in information retrieval. Compared to

other methods in this �eld, lexical chaining has with success been applied to detection

of malapropisms [HSO98], and also initial experiments in categorization has been applied

[Sta97].

St-Onge's implementation is based on version 1.4 of WordNet. The most important

di�erence between this version and version 1.6, at least when lexical chaining is considered,

is that the 1.4 lacks relations between verbs and nouns. This lead St-Onge to limit the

analysis to nouns { When a word was found that could not be looked up in WordNet's

noun database it was skipped. With the use of version 1.6 it may therefore be possible to

improve performance of the output.

Another aspect of the algorithm is the running time { It is not discussed in the literature

I know of. It is important when comparing application based on other IR methods, also to

compare the running time. Many of these tools are used where large amount of information

needs to be processed, and therefore the performance matters. The issue is discussed in

section 3.3 and 3.6.

13

2.2 Categorization

The idea is to match lexical chains against a network of categories. As an example this

could be the network of categories you can browse through at Yahoo's portal. Instead of

representing the nodes by words the system should use synsets from WordNet.

When the chains of a document has been identi�ed, they can be matched against the

category network in several ways (see �gure 2.2):

� Find relations between chains and category nodes. Hereafter try to �nd a path in

the matched categories, and thereby selecting the one that is semantically close to

the text.

� Find a path of relations between chains, and then search for a similar path in the

category network.

Both methods gives the possibility to add new categories to the network. This can be

done whenever a chain cannot be matched against a node in the network. Of course it is

not a trivial process to connect the chain to the right nodes in the network.

A way to examine weather this is a good idea or not, could be to extract the category

networks from e.g. Yahoo or the Open Directory Project1, and then search for links be-

tween the categories. The lexical chaining implementation from this system could easily

be adapted for this use. In this way it may be possible to discover properties of the rela-

tional structure in the network. This information could then be used to insert new nodes

automatically.

However, due to time limitations, I have chosen to do another test. By implementing

the lexical linker from �gure 2.1, it will be possible to examine if links between the chains

can be found. However, since the lexical chainer already have found relations between the

words of the individual chains, the relation paths between chains are probably exhibiting

a di�erent structure. In the prototype system I will allow longer path, and path only

containing upward or horizontal directions. In this way, I hope to �nd a path which have

some resemblance to a category hierarchy.

1See http://www.yahoo.com and http://dmoz.org respectively.

14

c1

c2 c3

c4

c5
c6

Chains with relations

c7c8

Category network

Figure 2.2: The categorization system surrounding the lexical chaining and linking system

is searching for a path in the category hierarchy similar to the one found between the

chains. An alternative could be to �nd relations between chains and category labels, and

hereafter search for a path through the identi�ed labels.

15

Chapter 3

Implementation

The prototype system implements the following components:

� Database access to WordNet.

� Morphologic analysis

� Lexical chainer

� Lexical chain linker

� Front-end

The system is developed in Sicstus Prolog [Swe98], using the Object Prolog extension of

Sicstus. Object Prolog is an object oriented extension of the Edinburgh dialect of Prolog.

Object Prolog is very similar to Prolog++ [Swe98]. The reason why I choose to develop

the system in Object Prolog is primary because the description of the lexical chaining

made by St-Onge relied on object oriented concepts. Futhermore I wanted to develop a

program in an object oriented extension to Prolog, as I have never tried this before.

The source code for the lexical chainer developed by St-Onge and Stairmand is not

public available. My implementation is primary based on [SO95], although some relations

used in the chaining process might be di�erent. The following description of the imple-

mentation is primary discussing implementation details, only important for the developed

system.

3.1 Accessing the WordNet database

WordNet is distributed both as databases with native browsing interfaces for Windows,

Unix and MacOS, and as Prolog readable �les. I used the Prolog distribution for this

16

project, along with some �les from the native distribution which were not included in the

Prolog distribution. The total size of the �les are about 19 Mb. To load and compile

this, requires heavy computation. To avoid this I converted the �les to external Prolog

database �les. In this way the programs using the database loads faster, and I could easily

adjust the indexing mechanism to my needs.

The convert program relies on the �les from the WordNet distribution to be available

in the same directory as the program runs from. Also some of the �les from the native

distribution requires preprocessing, before they can be read by the converter program.

For accessing the WordNet database from Prolog, I have written a static class called

wordnet, appendix A. References to the databases are opened when the �le containing

the class de�nition is loaded. The class contains two specialized methods:

dbc This method takes as argument a WordNet relation (see table 1.2 for predicate names)

and instantiates its parameters.

synsets Given a word, returns a list of valid synset for that particular word. If the word

cannot be found in the database, the method fails.

Furthermore it contains template descriptions and de�nitions of the relations used in

lexical chaining.

3.2 Morphologic analysis

Morphologic analysis is in general divided in two di�erent processes [Cov94]:

� Inection which is the processes of transforming between di�erent forms of a word,

and

� Derivation which is a transformation between words of di�erent syntactic categories.

For practical implementation purposes, it is always a tradeo�, of how much you want

to list in the dictionary, and how much should be handled by a program. In the case of

English, there are many regular inections of words, and therefore it would be possible to

write an inection algorithm that can handle a large part of the morphologic transforma-

tion. On the other hand it would be hard to cover all inections without listing some of

them in lexicon. For example, there is no rule telling that the plural of child is children

[Cov94].

The front-end of the native distribution of WordNet, handles the problem by doing

inection, and if that fails it tries to look the word up in a list of irregular word forms. This

list is not supplied in the Prolog distribution, but I have chosen to convert the �les from

17

the native version to Prolog, and then implementing my own inectional transformation

system. This is done in the morph object. Sending a checkword message to the morph

object with a word as input, instantiates the second parameter with the same word, but

in a possible di�erent form, which can be found in the WordNet database. validate is

used by checkword to ensure that the derivation can be found in WordNet's noun index.

Furthermore it searches for compound words, and transform words from upper to lower

case when needed.

3.3 Lexical chainer

The lexical chainer is implemented using the two dynamic classes chain and lexchain.

When used, lexchain fetches a sentence at a time, and then try to add each word to one

of the chains. The lexical chaining is done in chain and lexchain, by performing the

morphologic analysis on the words, and allocating chain objects, containing the actual

chains. By sending an add message to a chain object, the object responds by either

accepting the word, or failing. If it fails the lexchain object backtrack and tries another

chain object. If no chain will accept the word, a new chain is created, by sending a new

message to the chain class.

The implementation di�ers from St-Onge's, in the way medium strength relations are

found. Instead of �nding all of them, then calculating a weight, and selecting the optimal,

I perform a breath �rst search to �nd the relation with shortest path �rst. When the �rst

relation is found it is selected, and the search is not continued.

The disambiguation is done in chain by �rst removing superuous relations between

synsets prune synrel/2, and then removing the unconnected synsets, prune synsets/2.

The class uses assert and retract to store the relations between the words and synset.

As described in section 2.1 extra strong relations are sought throughout all chains

before seeking for strong or medium relations. Therefore the running time must at least

be O(N logN) where N is the size of the text. Strong and medium relations are only

sought in a limited scope of chains. However, as will be seen from the next section, a

typical analysis have one or two longer chains, which continues to be updated throughout

the whole analysis. Therefore the running time of the strong and medium analysis will

probably be somewhere near to that of the extra strong search. It is quite di�cult to give

an average time analysis, since it depends on which of the WordNet relations is used for

constructing the medium relation search.

18

Name Direction

Antonymy Horizontal

Attribute Horizontal

Cause Down

Entailment Down

Group Horizontal

Holonymy Down

Hypernymy Up

Hyponymy Down

Meronymy Up

Participle Horizontal

Pertain Horizontal

See also Horizontal

Synonymy Horizontal

Table 3.1: Directions assigned to the WordNet relation, as it is done by St-Onge.

3.4 Lexical chain linker

The linking of the identi�ed chains is done in the lexlink class. The process is very

similar to what is done in the chain class, only the relation types allowed is di�erent.

Each synset of a chain is matched against the synsets of the other chains using the

relation method. relation is only allowed to use upward or horizontal links to �nd a

path between the two synsets. The path must be no longer than ten relations.

It is important to note that the object identity of both the lexchain and the chain

classes are of crucial importance for its success. Both classes use value assignment by

specialized version of the get/set predicates. Another solution could be to pass the

object values as parameters to the objects in a frame-like manner. This would keep the

declarative semantics intact, but instead it might be confusing to keep passing long lists

of parameters between the objects.

3.5 Front-end

The front-end consists of the predicate test. The article to be analyzed should be placed

in the �le article.pl before loading. The system gives a progression indication while

searching for the chains, and �nally prints out the chains and their interrelations.

19

No Heading Source No./words

1 China warns Taiwan about making CNN (web), Jan. 31. 2000 383

two states theory legal

2 Bananas - Cultural directions From www.plants.com 330

3 Tae kwon do Encyclopedia Britannica, 224

1999 electronic edition

Table 3.2: The table show the four articles used in the testing of the developed prototype.

3.6 Testing

The testing of the system is done by applying three di�erent articles as input to the system.

A description of the articles are show in table 3.2. The results is printed in appendix B.

An initial test of the chainer was �rst done using the following words: Pear, apple,

carrot, melon, tree, apples, blue, red, green and yellow. Here we would expect two chains

as result, one containing fruits and vegetables, and one containing colors. In fact the result

is:

[apple,melon_tree,carrot,apple,pear]

[yellow,green,red,blue]

Furthermore we see that the morph class seems to work in that the word 'apples' has

been transformed to 'apple', and 'melon' and 'tree' has been made a compound word.

Looking at the chains produced from the example texts, also shows that the words of the

chains have good relations to each other.

However, the most crucial parameter for its success, I have found to be which re-

lations is used. In the tests presented here I have restricted the analysis to the use

of meronymy/holonymy, hypernymy/hyponymy and antonyms. When trying to include

some of the other upward/downward relations, the search time was dramatically increased,

without any better results. Also when trying to relax the constraints of the use of hor-

izontal relations it was found that only one or two chains was found, containing words

without any close semantic relations. These experiments indicate that the restrictions on

the medium strength relation search, is of crucial importance for the algorithms success.

The results of the experiments shows that a number of lexical chains is found for each

article. In all three tests one chain grows very big (covers about 30% of the article).

However the words in the chains are all naturally related somehow. It is of course not an

objective measure, weather my personal opinion is that they are naturally related or not.

A better measure could be to make a large number of English speaking persons group the

20

words of the documents. By comparing the results with the lexical chains found by the

developed system, a better measure of its success may be found.

Applying the lexical linker to the chains found for each article, showed that no relations

between the chains could be found. In the lexical linker it is allowed to construct chains of

length 10. However, if it is not at all possible to construct chains of that length using the

selected relations, it is likely that no relations is found. This is because relations of length

5 have already been sought when constructing the chains. This problem could maybe be

solved by using other relations than in the chaining process. An examination of which

ones should be used, along with which constraints could be a possible continuation of this

project.

21

Chapter 4

Discussion

Compared to the traditional ways of analyzing natural language, the use of lexical chains

can be described as a hackers approach. Instead of trying to analyze a whole sentence by

some prede�ned rules, everything which immediately can be assigned a meaning is used,

and everything else is thrown away. The structure of sentences is not considered and only

nouns are used. However, as the testing of the prototype system shows, the model is in

fact quite robust, identifying words of similar meaning. In text categorization, the only

thing of interest is to assign one, maybe two labels to the text, thereby placing it in a

network of category labels. For this purpose, it is not needed to understand every single

sentence of the text to be analyzed. Instead the rather coarse grained view of the lexical

chains might be adequate.

An interesting property is the chaining algorithm's ability of specialization when an-

alyzing a text. A text describing animals, humans, and plants, may be able to place all

these references in the same chain, whereas a document describing humans in one context

and animals in another, may be able to distinguish these things by placing the words in

di�erent chains. Although not tested here, this should be possible because of the dynamic

word sense resolution. In other words this means that a system based on this resolution

mechanism can be applied to many di�erent areas without further adaption, because it is

able to set a level of detail.

The system show robustness in the quality of output, but another aspect is the running

time. As discussed in the tests the result is dependent on the number of relations used

to �nd medium strength relations. However, I believe the running time can be reduced

by better knowledge, on which combinations is likely to give a valid relation, and also the

inclusion of verbs in the analysis. To give a better understanding of which paths are worth

searching for, a statistical analysis could be performed.

The lexical linking process, is obvious not a success in its present implementation.

However, I believe that experiments on �nding relations in an existing category network,

22

will give more insight to what constraints should be used, when searching for relations

between chains. But a better lexical linker is not the only thing that is needed. Also a

matching against the existing network is not a trivial process to implement. This part

should preferably also include feedback to the category network, in form of added cate-

gories.

An overall view of the subject shows that there are great possibilities in a database

like WordNet, covering a wide variety of the English language. Although extension of the

database is needed to include better connections of the di�erent syntactic categories, more

knowledge on how to use these relations is also needed. The developed prototype makes

it possible to investigate these properties of WordNet. I think that what is done today

using lexicographic databases like WordNet, is only the top of the iceberg. By using a

system based on e.g. lexical chaining, I believe it is possible to make advanced language

based interfaces, without a complete knowledge on the theory of natural language.

23

Bibliography

[AHK98] Reem Al-Halimi and Rick Kazman. Temporal indexing through lexical chains.

In Fellbaum [Fel98], chapter 14, pages 333{351.

[Coh95a] William W. Cohen. Fast e�ective rule induction. In Machine Learning: Pro-

ceedings of the Twelfth International Conference, 1995.

[Coh95b] William W. Cohen. Text categorization and relational learning. In Machine

Learning: Proceedings of the Twelfth International Conference, 1995.

[Cov94] Michael A. Covington. Natural Language Processing for Prolog Programmers.

Prentice Hall, 1994.

[Fel98] Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT

Press, 1998.

[Hir00] Graeme Hirst. Context as a spurious concept. In Alexander F. Gelbukh, editor,

CICLing-2000, pages 273{285, 2000.

[HSO98] Graeme Hirst and David St-Onge. Lexical chains as representations of context

for the detection and correction of malapropisms. In Fellbaum [Fel98], chap-

ter 13, pages 305{332.

[KMF96] Jim Cowie Kavi Mahesh, Sergei Nirenburg and David Farwell. An assessment

of cyc for natural language processing. Technical Report MCCS-96-302, Com-

puting Research Laboratory, New Mexico State University, 1996.

[MH91] J. Morris and Graeme Hirst. Lexical cohesion computed by thesaural relations

as an indicator of the structure of text. Computational Linguistics, 17(1):21{48,

1991.

[MSS] Marti Hearst Mehran Sahami and Eric Saund. Applying the multiple cause

mixture model to text categorization. ?, ?

24

[Qui96] J. R. Quinlan. Learning �rst-order de�nitions of functions. Journal of Arti�cial

Intelligence Research, (5):139{161, 1996.

[SO95] David St-Onge. Detecting and correcting malapropisms with lexical chains.

Master's thesis, Department of Computer Science, University of Toronto, 1995.

[Sta97] Mark A. Stairmand. Textual context analysis for information retrieval. In

SIGIR, Philadelphia, 1997.

[Sti99] Rune R. Stilling. Using natural language to search the internet. Master's thesis,

Computer Science, Roskilde University, 1999.

[Swe98] Swedish Institute of Computer Science. SICStus Prolog User's Manual, Septem-

ber 1998.

[Tak95] Juha Takkinen. An adaptive approach to text categorization and understanding

{ a preliminary study. Presented at the Fifth IDA Graduate Conference on

Computer and Information Science, Link�oping, November 1995.

[Voo98] Ellen M. Voorhees. Using wordnet for text retrieval. In Fellbaum [Fel98], chap-

ter 12, pages 285{303.

[Yan99] Yiming Yang. An evaluation of statistical approaches to text categorization. ?,

1999.

25

Appendix A

Source code

File: main.pl

% ==

% Main file for the lexical chainer and linker system.

%

% By Tue Haste Andersen <haste@diku.dk>, February 1999.

% Tested in Sicstus Prolog 3.7.1.

% ==

?- use_module(library(objects)).

?- consult(util).

?- consult(wordnet).

?- consult(morph).

?- consult(article).

?- consult(sentence).

?- consult(chain).

?- consult(lexchain).

?- consult(lexlink).

test :-

lexlink::new(example),

example::print_chains.

26

File: lexlink.pl

% ==

% Part of the lexical chainer and linker system.

%

% By Tue Haste Andersen <haste@diku.dk>, February 1999.

% Tested in Sicstus Prolog 3.7.1.

% ==

lexlink :: {

super(lexchain) &

dynamic chain_rel/2 &

:- :use_module(library(ordsets), [list_to_ord_set/2, ord_member/2,

ord_del_element/3, ord_union/2]) &

new(Instance) :-

super <: new(Instance) &

:write('Linking...'), :nl,

Instance::get(chain_ids(X)),

Instance::chain_synsets(X,ChainSynsets),

Instance::find_chain_rel(ChainSynsets,ChainSynsets) &

% ---

% Initiates the process of finding links between the

% lexical chains.

% ---

find_chain_rel([],_) &

find_chain_rel([X|Rest],ChainSynsets) :-

:ord_del_element(ChainSynsets,X,C1),

:ord_union(C1,C2),

::synset_rel(X,C2),

::find_chain_rel(Rest,ChainSynsets) &

% ---

% Succeeds if a relation exists between S1 and S2, where

% S1 is a synset of C1 and S2 is a synset of C2.

% ---

synset_rel([],_) &

synset_rel([C|C1],C2) :-

:member(S1,C),

::relation(S1,S2),

27

:member(S2,C2),

:write('chain_rel '), :write(S1), :write(S2), :nl,

assert(chain_rel(S1,S2)) &

synset_rel([_|C1],C2) :-

::synset_rel(C1,C2) &

% ---

% relation is true if there exists an upward link between

% the two synsets.

% ---

relation(From,To) :-

::relation(From,To,[]) &

relation(From,To,Old) :-

:length(Old,L), :(L<10),

wordnet::direction(Type,Dir), :member(Dir,[up,horizontal]),

wordnet::link(Type,From,Temp,Pred),

wordnet::dbc(Pred),

(Temp = To ;

::relation(From,To,[Temp|Old])) &

% ---

% Given a list of chain id's, returns a list of ordered

% synset sets. Only sets of lengths greater than one are

% included in the output list.

% ---

chain_synsets([],[]) &

chain_synsets([ID|R1],[S3|R2]) :-

ID::get(chain(S1)),

% :length(S1,L), :(L > 1), !,

<:chain_extract_synsets(S1,S2),

:list_to_ord_set(S2,S3),

::chain_synsets(R1,R2) &

chain_synsets([_,R1],R2) :-

::chain_synsets(R1,R2)

}.

28

File: lexchain.pl

% ==

% Part of the lexical chainer and linker system.

%

% By Tue Haste Andersen <haste@diku.dk>, February 1999.

% Tested in Sicstus Prolog 3.7.1.

% ==

% ---

% The lexchain class implements the chaining of an article, by reading

% each sentence, and construct lexical chains.

% ---

lexchain :: {

super(object) &

:- :use_module(library(lists), [delete/3]) &

attributes([chain_ids([]), % ID's of all chains.

sentences([])]) & % ID's of all sentence objects.

new(Instance) :-

super <: instance(Instance),

Instance :: chainer &

% ---

% Print out the values of the identified chains.

% ---

print_chains :-

<: get(chain_ids(IDs)),

<: print_chains(IDs) &

print_chains([]) &

print_chains([X|Rest]) :-

X::get(chain(Y)),

<: chain_words(Y,Z),

:write(Z), :nl,

<: print_chains(Rest) &

% Given a chain list, with each element being [Word,Synsets],

% returns a list of [Word,No-of-synsets] elements.

chain_words([],[]) &

chain_words([[W,S]|R1],[[W,N]|R2]) :-

29

:length(S,N),

<: chain_words(R1,R2) &

% ---

% Given a list of [Word,Synsets] pairs, returns a list

% of [Synsets] elements.

% ---

chain_extract_synsets([],[]) &

chain_extract_synsets([[_,S]|R1],[S|R2]) :-

::chain_extract_synsets(R1,R2) &

% ---

% Calls chainer/4 for each sentence in the article.

% ---

chainer :-

sentence::get_words(SentenceNo,Words), !,

get(chain_ids(C1)),

<: chainer(Words,SentenceNo,C1,C2),

set(chain_ids(C2)),

<: chainer &

chainer :-

:write('Done.'), :nl &

% Given a list of valid sentence words, updates chains.

chainer([],_,C,C) &

chainer([Word|Rest],Sentence,Cin,Cout) :-

:write('Searching relation to '), :write(Word), :write(': '),

<: addword(Word,Sentence,Cin,ID), !, :nl,

:delete(Cin,ID,CTemp),

<: chainer(Rest,Sentence,[ID|CTemp],Cout) &

chainer([Word|Rest],Sentence,Cin,Cout) :-

!,

:write('fail. '),

chain::new(ID,Word),

:write('Creating chain '), :write(ID),

:write(', '), :write(Word), :nl,

<: chainer(Rest,Sentence,[ID|Cin],Cout) &

% ---

% Given a word, sentence no, and a list of chain id's,

% addword tries to add the word to one of the chains.

30

% ---

addword(Word,Sentence,Chain,ID) :-

<: addword(Word,Sentence,Chain,ID,extrastrong) &

addword(Word,Sentence,Chain,ID) :-

<: addword(Word,Sentence,Chain,ID,strong) &

addword(Word,Sentence,Chain,ID) :-

<: addword(Word,Sentence,Chain,ID,medium) &

addword(Word,Sentence,[ID|_],ID,RelationType) :-

ID::add(Word,Sentence,RelationType),

:write('found '), :write(RelationType),

:write(' to '), :write(ID), ! &

addword(Word,Sentence,[_|Rest],ID,RelationType) :-

<: addword(Word,Sentence,Rest,ID,RelationType)

}.

31

File: chain.pl

% ==

% Part of the lexical chainer and linker system.

%

% By Tue Haste Andersen <haste@diku.dk>, February 1999.

% Tested in Sicstus Prolog 3.7.1.

% ==

% --

% This class holds the words of a chain along with the relations

% between them.

% --

chain :: {

super(wordnet) &

dynamic word_rel/3 &

dynamic syn_rel/3 &

:- :use_module(library(lists), [member/2, non_member/2]) &

:- :use_module(library(ordsets), [list_to_ord_set/2,

ord_intersection/3]) &

attributes([chain([]), % Chain, containing word id's

recency(0)]) & % Holds the sentence number of the most

% recent added word in the chain.

new(Instance,Word) :-

super <: instance(Instance),

<: synsets(Word,Synsets),

Instance :: set(chain([[Word,Synsets]])) &

% ---

% Adds the word Word to the chain and returns the

% relation type for the added word.

% ---

add(Word,SentenceNo,RelationType) :-

<: synsets(Word,Synsets),

get(chain(C1)), get(recency(RecencyNo)),

:member([W2,S2],C1),

<: relation(RelationType,RecencyNo,SentenceNo,[Word,Synsets],

[W2,S2],Rel), !,

32

% Update chain recency

chain_recency(RecencyNo,SentenceNo),

% Update chain

set(chain([[Word,Synsets]|C1])),

assert(word_rel(RelationType,Word,W2)),

assert_synrel(Rel),

prune_synrel(Word,W2),

prune_synsets([[Word,Synsets]|C1],C2),

set(chain(C2)) &

% ---

% Updates the recency of the chain if necessary.

% ---

chain_recency(RecencyNo,SentenceNo) :-

:(SentenceNo > RecencyNo),

set(recency(SentenceNo)) &

chain_recency(_,_) &

% ---

% Given a word of chain, return associated synsets. This

% method differs from wordnet::synsets in that only the

% synsets which have not been removed by the word sense

% disambiguation is returned.

% ---

chain_synsets(W,S) :-

get(chain(C)),

:member([W,S],C) &

% ---

% Asserts a list of new syn_rel's.

% ---

assert_synrel([]) &

assert_synrel([X|R]) :-

assert(X),

<: assert_synrel(R) &

% ---

% Lookup a synset relation

% ---

synset_rel(X,Y) :- <: syn_rel(_,X,Y) &

33

synset_rel(X,Y) :- <: syn_rel(_,Y,X) &

% ---

% Retract synset relation

% ---

retract_synset_rel(X,Y) :-

<: syn_rel(_,X,Y), retract(syn_rel(_,X,Y)) &

retract_synset_rel(X,Y) :-

<: syn_rel(_,Y,X), retract(syn_rel(_,Y,X)) &

% ---

% When a chain is updated with new relations,

% prune_synsets is called to remove superfluous synsets.

% ---

prune_synrel(W1,W2) :-

% Find a relation from W2 to W3, using a synset S2,

% which also connects W1 (S2a,S3a).

<: chain_synsets(W1,R1),

<: chain_synsets(W2,R2),

:member(S1a,R1),

:member(S2a,R2),

<: synset_rel(S1a,S2a),

<: chain_synsets(W3,R3), :non_member(W3,[W1,W2]),

:member(S3a,R3),

<: synset_rel(S2a,S3a),

% Find a relation between a synset in W2

% and W3 not connected to W1 (S2b,S3b)

:member(S2b,R2),

<:not((<:synset_rel(S1b,S2b), :member(S1b,R1))),

<: synset_rel(S2b,S3b), :member(S3b,R3),

% Ensure that another relation than (S2b,S3b)

% exists from W3.

: member(S3c,R3), <: synset_rel(S3c,Sx),

(:(S3c \== S3b) ; :(Sx \== S2b)),

% Delete (S2b,S3b)

<: retract_synset_rel(S2b,S3b), !,

% Try to find other relations

34

<: prune_synrel(W2,W3),

<: prune_synrel(W1,W2) &

prune_synrel(_,_) &

not(X) :- ((X, !, :fail) ; :true) &

% ---

% After prune_synrel, prune_synsets removes synsets with

% no relations to other synsets.

% ---

prune_synsets([],[]) &

prune_synsets([[W,R1]|C1],[[W,R2]|C2]) :-

<: prune_synsets1(R1,R2),

<: prune_synsets(C1,C2) &

prune_synsets1([],[]) &

prune_synsets1([X|R1],[X|R2]) :-

<: syn_rel(_,X,_),

<: prune_synsets1(R1,R2) &

prune_synsets1([X|R1],[X|R2]) :-

<: syn_rel(_,_,X),

<: prune_synsets1(R1,R2) &

prune_synsets1([X|R1],R2) :-

<: prune_synsets1(R1,R2) &

% ---

% Given two words with corresponding synsets, succedes if

% there is a relation between the two words, and return a

% list of synset relations of the form:

% rel(Weight,Synset_id1,Synset_id2).

% ---

% The words are equal

relation(extrastrong,_,_,[W,_],[W,S],Rel) :-

<: relation_list(extrastrong,S,S,Rel), ! &

% The words share one or several synsets

relation(strong,RecencyNo,SentenceNo,[_,S1],[_,S2],Rel) :-

:(Temp is RecencyNo+7), :(Temp >= SentenceNo),

:ord_intersection(S1,S2,S3),

:(S3 \== []), !,

35

<: relation_list(strong,S3,S3,Rel) &

% Horizontal link exists between the two.

relation(strong,RecencyNo,SentenceNo,[_,S1],[_,S2],Rel) :-

:(Temp is RecencyNo+7), :(Temp >= SentenceNo),

<: relation_strong(S1,S2,Rel),

:(Rel \== []), ! &

relation_strong([],_,[]) &

relation_strong([S1|R1],R2,[syn_rel(strong,S1,S2)|Rel]) :-

<: direction(Type,horizontal),

<: link(Type,S1,S2,Pred),

<: dbc(Pred),

:member(S2,R2),

<: relation_strong(R1,R2,Rel) &

relation_strong([_|R1],R2,Rel) :-

<: relation_strong(R1,R2,Rel) &

% Medium-strenght relations

relation(medium,RecencyNo,SentenceNo,[_,S1],[_,S2],Rel) :-

:(Temp is RecencyNo+3), :(Temp >= SentenceNo),

<: relation_med(S1,S2,Rel),

:(Rel \== []), ! &

relation_med([],_,[]) &

relation_med([S1|R1],R2,[syn_rel(medium,S1,S2)|Rel]) :-

<: relation_med([[S1,[]]],R2,_,S2), !,

<: relation_med(R1,R2,Rel) &

relation_med([_|R1],R2,Rel) :-

<: relation_med(R1,R2,Rel) &

% Perform breath first search, to ensure that shortest

% path is found first!

relation_med(R1,R2,Path,S3) :-

:member([_,TestPath],R1), :length(TestPath,L), :(L < 5),

self(Self), :setof(S2, Self::breath_rel(R1,S2),Set), !,

((:member(S3,R2), :member([S3,Path],Set)) ;

(<: relation_med(Set,R2,Path,S3))) &

breath_rel(R1,[S2,[Dir|Path]]) :-

:member([S1,Path],R1),

<: analyze_path(Path,Type,Dir),

36

<: link(Type,S1,S2,Pred),

<: dbc(Pred) &

% Given a weight, two lists of synsets, returns a list of

% relations for the synsets.

relation_list(_,[],[],[]) &

relation_list(Weight,[S1|R1],[S2|R2],[syn_rel(Weight,S1,S2)|Rest]) :-

relation_list(Weight,R1,R2,Rest) &

% ---

% analyze_path returns a valid relation type to apply to

% the given path (Type).

% ---

analyze_path([],Type,Dir) :-

<: direction(Type,Dir) &

analyze_path(Path,Type,Dir) :-

<: upward_direction(Path),

<: direction(Type,Dir) &

analyze_path(Path,Type,Dir) :-

<: one_direction(Path),

<: direction(Type,Dir),

:(Dir \== up) &

analyze_path([Dir|_],Type,Dir) :-

<: direction(Type,Dir) &

analyze_path([horizontal|_],Type,down) :-

<: direction(Type,down) &

% ---

% Ensures that the given path only contains upward

% directions.

% ---

upward_direction([up]) &

upward_direction([up|Rest]) :-

<: upward_direction(Rest) &

% ---

% Ensures that only one direction is taken in the given

% path.

% ---

one_direction(Path) :-

<: one_direction(Path,_) &

37

one_direction([Dir],Dir) &

one_direction([Dir|Rest],Dir) :-

<: one_direction(Rest,Dir)

}.

38

File: morph.pl

% ==

% Part of the lexical chainer and linker system.

%

% By Tue Haste Andersen <haste@diku.dk>, February 1999.

% Tested in Sicstus Prolog 3.7.1.

% ==

% ---

% This class performs lookup in wordnet, by trying to make compound words,

% transform case from upper to lower, inflection and derivation.

% ---

morph :: {

super(object) &

:- :use_module(library(lists), [append/3]) &

% ---

% Given a list of words, returns a term found in

% wordnet, and the rest of the words. The term is made

% by first concatenating the first three words of the

% list, the the two first, and finally the first. If

% none is found, the first word is ignored.

% ---

get_next_word(List,Word,Rest) :-

<: compound_word(List,WordTemp,Rest),

<: checkword(WordTemp,Word), ! &

get_next_word(List,Word,Rest) :-

<: compound_word(List,WordTemp1,Rest),

:lower_case(WordTemp1,WordTemp2),

<: checkword(WordTemp2,Word), ! &

get_next_word([_|List],Word,Rest) :-

<: get_next_word(List,Word,Rest) &

% ---

% Concatenation of terms, by the way described above.

% ---

compound_word([X,Y,Z|Rest],Word,Rest) :-

:atom_concat(X,'_',T1),

:atom_concat(T1,Y,T2),

:atom_concat(T2,'_',T3),

:atom_concat(T3,Z,Word) &

39

compound_word([X,Y|Rest],Word,Rest) :-

:atom_concat(X,'_',T),

:atom_concat(T,Y,Word) &

compound_word([Word|Rest],Word,Rest) &

% ---

% checkword, takes as input a noun, and transforms it

% into the baseform. If the predicate fails it is

% either because the input word is not a noun, or it

% was not identified as such.

% ---

% Check the word as it is.

checkword(Word,Word) :-

<: validate(Word), ! &

% Try to look it up in the exception list, of irregular

% forms.

checkword(WordIn,WordOut) :-

wordnet::dbc(exc(noun,WordIn,WordOut)),

<: validate(WordOut), ! &

% Try morphing of word - remove "ful" ending before

% doing so.

checkword(WordIn,WordOut) :-

<: ending(WordIn,Base,ful),

<: morphword(Base,WordTemp),

<: ending(WordOut,WordTemp,ful),

<: validate(WordOut), ! &

% Try morphing words which is not ending on "ss".

checkword(WordIn,WordOut) :-

(<: ending(WordIn,_,ss), !, :fail) % Stop if word

; % ends on ss.

(<: morphword(WordIn,WordOut), % Otherwise try to morph

<: validate(WordOut), !) &

% Again, try morphing of word, by removing what is after

% possible "-" characters in the word.

checkword(WordIn,WordOut) :-

<: beforedelimeter(WordIn,WordTemp),

<: morphword(WordTemp,WordOut),

40

<: validate(WordOut), ! &

% ---

% Succeds if the word is a noun represented in wordnet,

% and the word is not in the stoplist.

% ---

validate(Word) :-

wordnet::dbc(stop(Word)), !, :fail &

validate(Word) :-

wordnet::dbc(s(_,_,Word,n,_,_)) &

morphword(WordIn,WordOut) :-

<: suffix(noun,EndOld,EndNew),

<: ending(WordIn,Base,EndOld),

<: ending(WordOut,Base,EndNew) &

suffix(noun,'s','') &

suffix(noun,'ses','s') &

suffix(noun,'xes','x') &

suffix(noun,'zes','z') &

suffix(noun,'ches','ch')&

suffix(noun,'shes','sh')&

ending(Word,Base,End) :-

:ground(Word), :ground(End),

:name(Word,WordList),

:name(End,EndList),

:append(BaseList,EndList,WordList),

:name(Base,BaseList) &

ending(Word,Base,End) :-

:ground(Base), :ground(End),

:name(Base,BaseList),

:name(End,EndList),

:append(BaseList,EndList,WordList),

:name(Word,WordList) &

beforedelimeter(WordIn,WordOut) :-

:ground(WordIn),

:name(WordIn,WordInList),

:append(WordOutList,['-'|_],WordInList),

:name(WordOut,WordOutList)

}.

41

File: wordnet.pl

% ==

% WordNet access for the lexical chainer and linker system.

%

% By Tue Haste Andersen <haste@diku.dk>, February 1999.

% Tested in Sicstus Prolog 3.7.1.

% ==

?- use_module(library(db)).

?- use_module(library(objects)).

databases([[s_db,s],[sim_db,sim],[ant_db,ant],[stop_db,stop],[exc_db,exc],

[mm_db,mm],[mp_db,mp],[hyp_db,hyp],[sa_db,sa],[at_db,at],

[per_db,per],[cs_db,cs],[ent_db,ent],[g_db,g],[ppl_db,ppl]]).

open_database :-

databases(DB),

open_database(DB).

open_database([]).

open_database([[DB,Name]|Rest]) :-

db_open(DB,read,_,Ref),

assert(db_ref(Name,Ref)),

open_database(Rest).

?- open_database.

% --

% wordnet is a static object containing methods for accessing the

% WordNet database in a convenient way.

% --

wordnet :: {

super(object) &

:- :use_module(library(lists), [non_member/2]) &

:- :use_module(library(ordsets), [list_to_ord_set/2]) &

% ---

% DataBase Consult. Consults the given term in the

% associated external database.

% ---

dbc(Term) :-

:functor(Term,Head,_),

:db_ref(Head,R),

42

:db_fetch(R,Term,_) &

% ---

% Given a word, return a list of corresponding synsets.

% Fails if no noun synsets is found.

% ---

synsets(Word,List) :-

<: synsets(Word,Temp,[]),

:length(Temp,X), :'>'(X,0),

:list_to_ord_set(Temp,List) &

synsets(Word,[Sid|Rest],Retreived) :-

<: dbc(s(Sid,_,Word,n,No,_)),

:non_member(No,Retreived), !,

<: synsets(Word,Rest,[No|Retreived]) &

synsets(_,[],_) &

% ---

% Specifies a direction on each WordNet relation type.

% ---

direction(ant,horizontal) &

%direction(at,horizontal) &

%direction(per,horizontal) &

%direction(sim,horizontal) &

%direction(sa,horizontal) &

%direction(per2,horizontal) &

direction(hyper,up) &

direction(mm,up) &

direction(ms,up) &

direction(mp,up) &

%direction(cs2,up) &

direction(hypo,down) &

direction(mh,down) &

direction(hs,down) &

direction(hp,down) &

%direction(cs,down) &

%direction(ent,down) &

% ---

% Templates for different relation types. Instantiating

% R1 or R2 to a synset, returns a template for use

43

% with wordnet::dbc.

% ---

link(sa,R1,R2,sa(R1,_,R2,_)) &

link(ant,R1,R2,ant(R1,_,R2,_)) &

link(at,R1,R2,at(R1,R2)) &

link(per,R1,R2,per(R1,_,R2,_)) &

link(per2,R1,R2,per(R2,_,R1,_)) &

link(sim,R1,R2,sim(R1,R2)) &

link(cs,R1,R2,cs(R1,R2)) &

link(cs2,R1,R2,cs(R2,R1)) &

link(ent,R1,R2,ent(R1,R2)) &

link(hyper,R1,R2,hyp(R1,R2)) &

link(hypo,R1,R2,hyp(R2,R1)) &

link(mm,R1,R2,mm(R1,R2)) &

link(mh,R1,R2,mm(R2,R1)) &

link(ms,R1,R2,ms(R1,R2)) &

link(hs,R1,R2,ms(R2,R1)) &

link(mp,R1,R2,mp(R1,R2)) &

link(hp,R1,R2,mp(R2,R1))

}.

44

File: sentence.pl

% ==

% Part of the lexical chainer and linker system.

%

% By Tue Haste Andersen <haste@diku.dk>, February 1999.

% Tested in Sicstus Prolog 3.7.1.

% ==

% ---

% Class holding the words of a sentence. When the object is created

% a sentence number is given as paramter. The words of the sentence

% is morphologically trasformed, and verified to be represented in the

% nuon index of WordNet. All the words satisfiying these conditions are

% stored in this object.

% ---

sentence :: {

super(article) &

attributes([number(0)]) & % Sentence number

get_words(Number,Words) :-

get(number(X)),

:(Y is X+1),

<: sentence(Y,SentenceWords),

((<: normalize_words(SentenceWords,Words),

set(number(Y)),

Number = Y) ;

(set(number(Y)), get_words(Number,Words))) &

normalize_words([],[]) &

normalize_words(Words,[VerifiedWord|Rest2]) :-

morph::get_next_word(Words,VerifiedWord,Rest1),

normalize_words(Rest1,Rest2)

}.

45

File: util.pl

% ==

% Misc. predicates for the lexical chainer and linker system.

%

% By Tue Haste Andersen <haste@diku.dk>, February 1999.

% Tested in Sicstus Prolog 3.7.1.

% ==

% --

% This predicate is included in Sicstus 3.8, but to run the

% program under 3.7 it is needed.

% --

atom_concat(A,B,AB) :-

ground(A), ground(B),

name(A,Alist),

name(B,Blist),

append(Alist,Blist,ABlist),

name(AB,ABlist).

% --

% Converts the term T1 to a term T2, only consisting of lower

% cases.

% --

lower_case(T1,T2) :-

name(T1,Upcase),

convert_case(Upcase,Lowcase),

name(T2,Lowcase).

% --

% Given a list of character codes, convert those of upper case to

% lower case.

% --

convert_case([],[]).

convert_case([U|R1],[L|R2]) :-

U > 64, U <91, % Verify that the char is uppercase.

L is U + 32,

convert_case(R1,R2).

convert_case([L|R1],[L|R2]) :-

convert_case(R1,R2).

46

File: article.pl

% ==

% Test data for the lexical chainer and linker system.

%

% By Tue Haste Andersen <haste@diku.dk>, February 1999.

% Tested in Sicstus Prolog 3.7.1.

% ==

?- use_module(library(objects)).

article :: {

super(object) &

name(einstein) &

sentence(1,[pear,apple,carrot,melon,tree,apples,blue,red,green,yellow])

}.

47

Appendix B

Test results

The following shows the found lexical chains for the three examples (see table 3.2.) For each word

the number of associated synsets is shown next to it. Because the example texts are copyrighted

they are not included here.

Title: Tae kwon do (running time: 54 minutes on Intel Pentium, 100MHz)

Chains:

[[martial_art,1],[tae_kwon_do,1],[tae_kwon_do,1],[martial_art,1],

[tae_kwon_do,1],[karate,1],[tae_kwon_do,1]],

[[contact,1],[short,1],[opponent,1],[sparring,1],[free,1],[practice,1],

[student,1],[attack,1],[sequence,1],[set,1],[sparring,1],[step,1],[id,1],

[combination,1],[sparring,1],[basic,1],[practice,1],[student,1],[grade,1],

[rank,1],[series,1],[development,1],[spiritual,1],[founder,1],[principal,3],

[general,1],[South_Korean,1],[defense,1],[form,1],[art,4],[art,4]]

[[blow,1],[counter,1],[punch,1],[kick,1],[jump,1],[standing,1],[combat,1],

[kicking,1]]

[[In,1]]

[[lower,1]]

[[proficiency,2]]

[[high,7]]

[[Korean,2],[Korean,2],[Korean,2]]

Title: China warns Taiwan about making two states theory legal

(Running time: 55 minutes on Intel Pentium II).

[[democracy,1],[mainland,1],[society,1],[formula,2],[Taiwan,1],

[capitalist,1],[run,1],[Beijing,1],[system,1],[country,1],[formula,2],

[China,1],[part,1],[Taiwan,1],[state,1],[back,1],[Taiwan,1],[policy,1],

48

[official,1],[leadership,1],[senior,1],[member,1],[people,1],[people,1],

[Taiwanese,1],[safety,2],[property,1],[life,1],[fire,1],[action,1],

[people,1],[prospect,1],[Taiwan,1],[constitution,1],[state,1],[force,1],

[Taiwan,1],[China,1],[Taiwan,1],[split,1],[feature,1],[state,1],

[people,1],[state,1],[treat,1],[side,1],[President,1],[Taiwanese,1],

[China,1],[voter,1],[party,1],[moderate,1],[voter,1],[separatist,1],

[candidate,1],[threat,1],[China,1],[Taiwan,1],[people,1],[threat,1],

[premier,2],[Taiwan,1],[China,1],[threat,1],[leader,1],[Chinese,1],

[top,2],[Communist_Party,2],[people,1],[fire,1],[island,1],

[Taiwanese,1],[China,1],[Taiwan,1]]

[[embrace,3]]

[[wait,2]]

[[unification,2]]

[[Macau,1]]

[[Hong_Kong,1]]

[[autonomy,2]]

[[theory,3],[theory,3],[theory,3]]

[[editorial,1],[editorial,1],[daily,1],[daily,1],[daily,1],[daily,1],

[newspaper,1],[daily,1],[editorial,1],[separate,1]]

[[Sunday,1], [March,1],[days,1],[Sunday,1]]

[[playing,1],[election,2],[warning,1],[warning,1],[playing,1]]

[[reunification,1]]

[[basis,1],[law,1],[sentiment,1],[law,1],[claim,1]]

[[independence,1],[independence,1],[tension,2],[tension,2],

[independence,1],[scare,1],[independence,1],[status,1]]

[[put,1]]

[[attempt,2]]

[[Lee,1],[Lee,1],[Lee,1]]

[[plot,4]]

[[true,1]]

[[equal,1],[equal,1]]

[[July,1]]

[[fear,2]]

[[stance,1]]

[[Chen,1]]

[[vice,2]]

[[war,2],[ruling,1]]

[[wage,1]]

[[leaders,1]]

Title: Bananas - Cultural directions.

49

[[result,1],[leave,2],[leave,2],[leave,2],[receipt,1]]

[[blend,3],[blend,3],[blend,3]]

[[foliage,2],[fertilizer,1],[liquid,1],[green,1],[ground,1],[air,4],

[growth,1],[plant,1],[banana,2],[water,2],[production,1],[fruit,1],

[growth,1],[fall,1],[In,1],[drinker,2],[feeder,1],[plant,1],

[banana,2],[soil,1],[plant,1],[banana,2],[sun,1],[fruit,1],

[produce,1],[banana,2],[plant,1],[banana,2],[rapid,1],[growth,1],

[plant,1],[banana,2],[shoot,1],[produce,1],[corm,1],[dry,1],

[water_plant,1],[ground,1],[pot,1],[plant,1],[stem,1],[change,1],

[level,1],[plant,1],[banana,2],[plant,1],[soil,1],[peat,1],

[mixture,1],[soil,1],[soil,1],[plant,1],[plant,1],[root,2],

[plant,1],[banana,2],[plant,1]]

[[flowering,2]]

[[present,1],[long,1],[month,2],[month,2]]

[[temperature,2]]

[[winter,1]]

[[week,3]]

[[daily,1]]

[[summer,1]]

[[heavy,2],[heavy,2]]

[[normal,1]]

[[yellow,1]]

[[turn,12]]

[[resumption,1]]

[[lateral,1]]

[[times,2]]

[[soak,1],[planting,1],[shipping,1],[planting,1],[damage,1]]

[[season,3]]

[[days,1]]

[[coloration,1]]

[[growing,1]]

[[prior,1]]

[[fungicide,1]]

[[spray,6]]

[[dip,6]]

50

