L.ente

Looking for Equal or Near Text Efficiently

Grado en Ingenieria Informatica

Departamento de Sistemas Informaticos y Computacion

By:

Miguel Collado Segura
David Serrano Arce
Directed by:

Rafael Caballero Roldan

Authorization of diffusion and use

The signatories below, enrolled in the Grado en Ingenieria Informatica of the Faculty of Computer
Sciences, hereby authorize the Universidad complutense de Madrid (UCM) the right to use and
diffuse this work for non-commercial, academic purposes, provided that said uses expressely
quote the work’s authors.

The UCM Library is also authorized by this document to deposit a copy of this work in the Archivo
Institucional de E-Prints Complutense, with the purpose of increasing the diffusion, use and

impact of the work in the web, and also to guarantee its access and preservation.

Date: June 19th, 2014

Miguel Collado Segura David Serrano Arce

Thanks to Rafael for guiding us through this project and bearing with us during the process. To

Victor for his help when we had almost given up on a part of the software.

Index

ADSIACT. . . 5
INErOAUCTION. ... 6
State Of the Art. ... 6
(@] o] [=Tor 1)Y= TP 8
Project DEevelOpMENt.o 10
Program StrUCTUIE. ... 10
WK PlaN. .. e e 15
TeChNOIOGIES USEA. et aaeaeas 15
Related COUISES. e 17
Encountered Issues & hardShips...........ccooiiiiii i 17
APl CaAtION. . 21
INSTAllAtiON. e e 21
REQUITEMENTES. .. 21
USEr ManUaL. ... 21
EXamPIEs Of USE. ... e 25
RESUIS. . 28
MaiN OUECOMIE. 28
LIMIAtIONS . ..o 28
SUP PO . .o e e 28
Conclusions and fUtUre WOTK...........ouiuii e 30
SPANISN SECHION. ... 32
RESUMBN. . 32
INErOAUCCION. . .. 32
Conclusiones y trabajo fUtUrO..........o.iii e 35

Addendum: Each StUdent’'s WOTK.oooe e e, 38

Abstract

Lente is a software capable of searching and detecting (by using the Internet) possible document
plagiarisms. This program is able to analyze multiple types of plain text or PDF documents. It
searches through the Internet, using a concurrent approach, for sentences and similar content to
that of the document and allows the user to consult the results in real-time, before finishing. The
results are web pages that can be opened from the very program, giving information about the

exact content that is suspected of copy.

It is also able to work with multiple documents at the same time and show the individual progress
of each one. There are different configurable search profiles, in order to optimize the time and
resources used, based on simple parameters. This software manages a maximum number of

simultaneous connections, and automatizes the use of proxies to boost the searching and avoid

the limitations of use of the search engines used: Google and Yahoo.

Keywords:

Documents, text analysis, plagiarism, concurrent, web search, internet, real time results,

proxies, Google, Yahoo.

1. Introduction

There are many free text-based search engines, like Google or Yahoo, that are the main way of
interacting with the internet for a lot of people. These engines are free for a reason, they make a
profit from data obtained during the search process. However, if one tries to find similar, more
advanced services, such as looking for full documents instead of just a line (specially if we are
looking for features like finding related, similar, or plagiarized texts), the set of free tools available
becomes much smaller. Furthermore, the software available online is neither well-known nor
effective in most cases. This is so because most of them rely on methods like using popular
search engines to find some phrases from the document, which carries a lot of limitations, such
as the terms of use of said engines, including their policies against bots. Another take on this
issue would be to create a search engine devoted to this task, but the investment required to be
able to compete with the better known ones makes it an almost impossible work considering the
tool would be free.

With the motivation of having found only a scant amount of software that was both free and
effective for this task, we decided to create a tool with all the features mentioned. Searching for
document similarities on the internet has multiple uses: finding actual plagiarisms or quotations,
texts with related topics or keywords, or finding the original source of a certain text from the
internet. The limitation for all this is that the scope of the software will be the part of the internet

that is indexed in the search engine chosen for each search.

State of the art:

The following are some of the free tools available on the internet in the scope mentioned, as of
October, 2013:

- Grammarly (http.//www.grammarly.com, in English): Checks for spelling mistakes and looks for

possible plagiarisms. Allows a free revision of a document, but it only shows a very description of

the results obtained without paying, displaying only the type of possible spelling mistakes and if

http://www.google.com/url?q=http%3A%2F%2Fwww.grammarly.com&sa=D&sntz=1&usg=AFQjCNHRS7eaujMb-b8u59ZrAq8sGnyQDA

the text has been detected as a plagiarism of another source, but without giving any proof of it.
The input can be provided by copying the text into a panel or uploading a file (doc or docx, only,
does not support pdf files).

- The plagiarism Checker (http.//www.dustball.com/cs/plagiarism.checker, in English): Checks
phrases from the text provided on Google, showing them and wether possible proof of plagiarism
has been found for each of them, showing the link of the relevant documents. It has a Piremium,
paid version, which is advertised to be up to 3 times more accurate than the free one. A quick
search using the free version and a text from the Wikipedia as imput (the day featured article) to
test the software revealed that it could not identify the plagiarism, saying that the text was
original. The document types allowed are .doc, and there is also the possibility to copy text

directly into a panel.

Plagiarism Checker (http./smallseotools.com/plagiarism-checker, in English): Analizes

phrases from a given text, and provides links to the Google search used in each case to check
wether each one is a plagiarism. It is completely free, without a paid version of any sort. Doing
the same test as in the last tool, the software analyzed 28 phrases, out of which only two turned
out as a false negative, stating that they were original. This tool does not support uploading files,
using a “copy to text box” method.

- Plagiarism detect (htip./plagiarism-detect.com, in English): Free to use. Allows searching by

categories (essay, article, web page or other) Permite busquedas por categorias (ensayos,
articulos, paginas web u otros). Once the text is analyzed, the page shows the sources for the
possibly plagiarized lines (as links). This detector looks for different sources for each phrase, in
order to reduce the chance of outputting a false positive (stating that there is an unauthorized
copy when there is not) to the user. However, doing the Wikipedia article test, the output was of
only a 18% of copied text, saying that most of it was original. The allowed file types are .doc,

.docx, .odt and .txt.

- Plagium (http.//www.plagium.com, Multilingual): Searches using this program can be done in

various languages separatedly, or even at the same time. It also provides the user with options
like similarity threshold, search depth (quick or deep), or the scope (web pages, social notworks

or news articles). The application requires a register to use, allowing each user to save the

7

http://www.google.com/url?q=http%3A%2F%2Fwww.dustball.com%2Fcs%2Fplagiarism.checker%2F&sa=D&sntz=1&usg=AFQjCNHc7RXZYPGIR3MuwbW2G-G13vbCVA
http://www.google.com/url?q=http%3A%2F%2Fsmallseotools.com%2Fplagiarism-checker%2F&sa=D&sntz=1&usg=AFQjCNEepE7EwKPfLepY-4FhS54DwqiSCA
http://www.google.com/url?q=http%3A%2F%2Fplagiarism-detect.com%2F&sa=D&sntz=1&usg=AFQjCNGfhnvScvp9FCjviljsjfPhSfAG9Q
http://www.google.com/url?q=http%3A%2F%2Fwww.plagium.com%2F&sa=D&sntz=1&usg=AFQjCNEtOiwMvlGvwK-vobUdYTfPGGDj7Q

results of their queries. The drawback to this software is that it uses a credit system. Thus, each
search spends some credits, and in order to continue making use of this page one is required to
buy more credits. Furthermore, these credits expire within a year of their purchase. The
Wikipedia test returned a list of very complete and self-explaining results, with a 100% correct
analysis, providing multiple web pages and quoting a part of the matching test for each result.

The inputs allowed are raw text, webpage URLs and .txt and .pdf files.

- Detector de plagio (http:/detectordeplagio.com, in Spanish): Free. It only supports plain text

pasted into a textfield in the webpage, not allowing any kind of upload. No configuration options
are provided, giving no information about the type of search done. The Wikipedia test using an
article in english returned an “original text” result, stating (wrongly) that the text was original. A
second test was done with an article from the spanish version of Wikipedia, but the results were

the same, returning no found plagiarisms.

After taking a look into the available options in the field, we found two types of tools, according to
the quality of their service: the free ones, often with results that could not be trusted, and the paid
ones, which overall had a result quality relative to their price. Some of the most relevant issues
found were the absence of multilingual support for the query (the search only working correctly
for a certain language), the lack of the ability to upload text files from the computer or only

allowing a few file types and the general bad quality of the results given (poor detection).

Objectives

To solve these problems, we decided on the following objectives:

e Allow any text-based file: To do this, the best option given our limitations is to accept pdf
documents, since any text file can be converted to this format easily. Also, the software
will be able to read txt files, since they are another commonly used format.

e Multilingual search support: Make a program that is able to search for plagiarisms in any
language. Syntactic or lexical analysis will be avoided for this since the complexity of the
code would be disproportionate.

e Multi-engine: Support different search engines, in order to get a wider variety of results.

http://www.google.com/url?q=http%3A%2F%2Fdetectordeplagio.com%2F&sa=D&sntz=1&usg=AFQjCNEybd84AmAWqVkvLkMgPf7Pkh8XEQ

In the next section, we will detail the most crucial parts of the project development, including the
work model used, the requirements set, an explanation of the vital classes of the software and
the main hardships encountered in the process.

Afterwards, a brief description of the finished software, the installation process, the program
requirements and a brief user manual is presented. Also, some examples of use are described

in this section.

Finally, the last two sections show the results, as well as the conclusions drawn from the whole
project. In these parts, topics such as the required support for the software and its limitations, or

the possible future upgrades to improve the software shall be explained.

2. Project development

First, the following requirements for the software were set, taking into account the objectives

listed before:

e Accept both plain text and PDF files as input.

sites that are not relevant to the current query).

Allow simultaneous queries.

Look for web pages containing a certain text, obtaining the page link.

Browse said pages in order to achieve a better accuracy (search engines may list web

Automatize queries and make them transparent to the user.

Classify the shown output by its level of similarity to the input given.

e Let the user check for the current results of any query, even if it has not finished yet.

Program structure

The following UML diagrams show how some of the key classes from the software will operate:

Document
«Asbtracts

#fullText:String
#name:5tring

+Document()

+getFullText():5tring
+getName():5tring
+getSentences():ArrayList<Sentence>
+toString():String

A3 N
| document L. AlignedDocument , - -
| ¢ /,/ #longestAbsSelection(int):ArrayList<Sentence>
| #extractLines(String):ArrayList<Sentence> +LongestAbsoluteSelection()

(+AlignedDocument()

| -~

sentences _‘;" i
a NamesRelativeSelection
Sentence £ Py
. F : Selection #hasName(Sentence):boolean

#words:ArrayList<String> =Asbtracts | #namesRelSelection(float):ArrayList<Sentence>
+Sentencel) selected ~ | +NamesRelativeSelection()

+compareTo{Object):int —
+getWords():ArrayList<String>
+seemsConsistent():boolean

+toString():String

)
sentence| 1
/

Ranker
«Intermal»

+Ranker()
+compareTo{Object):int

CustomDocument

#extractLines(5tring, String):ArrayList<Sentence>
| +CustomDocument()

RegularDocument

#extractSentences(String):ArrayList<Sentence>
~__| +RegularDocument()

RandomAbsoluteSelection

#randomaAbsSelection(int):ArrayList<Sentence>
+RandomAbsoluteSelection()

LongestAbsoluteSelection

~ | #minWords:int

#filterMinWords(ArrayList<Sentence>):ArrayList<Sentence>
+5Selection()
+getAllDocumentSentences():ArrayList<Sentence>

+getSentences():ArrayList<Sentence>
N N

y RandomRelativeSelection

#randomRelSelection(float):ArrayList<Sentence>

+RandomRelativeSelection()

AllSelection NamesAbsoluteSelection

LongestRelativeSelection

#hasName(Sentence):boolean

+Allselection()

+NamesAbsoluteSelection()

#namesAbsSelection(int):ArrayList<Sentence>

#longestRelSelection(float):ArrayList<Sentence>
+LongestRelativeSelection()

The Document and Selection classes serve the function of saving different kinds of documents,

separating their sentences according to different criterias (the type of document), and then

selecting the best ones to use in queries according to other set criteria (the type of Selection

used).

10

Here, we will go into a more detailed description of each component:

Sentences: a list of words. It is the basic element in the extraction and selection of text
from a file. The text is split into them and then some are selected to create queries.
Document: a container of sentences, linked to a file name. It will be used by the Selection
to filter the best sentences for the queries. It also stores the full text of the file. Any
implementation of how sentences are chosen must be done by extending this class.
RegularDocument:. extends Document in order to get sentences separated by dots.
AlignedDocument. extends Document in order to get sentences separated by the newline
character.

CustomDocument: extends Document in order to get sentences separated by the given
separator.

Selection: a container for sentences selected based on any of the named criterias, and
the Document from which said sentences have been filtered. It will be used by the search
engine to get the sentences that will become queries. The kind of filter is up to the
classes that extend this one. Additionally, this class filters those sentences that do not
have a minimum number of words (which is configurable using the user interface).
AllSelection: extends Selection to allow all sentences, making all of them into valid
queries.

LongestRelativeSelection: extends Selection to allow a percentage of the longest
sentences, and discard the rest.

LongestAbosluteSelection: extends Selection to allow a given number of the longest
sentences, and discard the others.

RandomRelativeSelection: extends Selection to allow a percentage of random
sentences, and discard the others.

RandomAbsoluteSelection: extends Selection to allow a given number of random
sentences, and discard the rest.

NamesRelativeSelection: extends Selection to allow a percentage of sentences which
contain proper nouns (filled with more normal sentences if needed), and discard the
others.

NamesAbsoluteSelection: extends Selection, allowing a given number of sentences
which contain proper nouns (filled with more normal sentences if needed), and discard

the others.

11

Search engine diagram:

Ranker: a comparator used to sort sentences based on their length (humber of words).

Matchinfo ConcurrentWebAnalyzer
#ranking:ArrayList<String> «Iintemal»
#selection:Selection info _ —————[#url:string «:}-Ja::r:i:»
#urls:HashMap<String.Set<Sentence>> [pfo Frun()void -
#validRanking:boolean fplo————— +m?tscth_95:'“t
+showlInfo(boolean):String Mo T WebAnalyzer urkstring
+urlRanking():ArrayList<String> P " #numberOffopResultsint +compareTo(Object):int
. | - = T
info "1 info \1\\ 1) +analyze():Matchinfo
\ . -
\\ \\\\
. . __| ConcurrentGoogleSearch
SearchCriteria \ . «Intemal»
#depthSearching:int \ ™. - #query:Sentence
#minimumWords:int N\ S Fruni)-void
#navigation:int \ AN R -
#proxies:boolean criteria - - —
#strict:boolean e N\ YahooMatchFinder ConcurrentYahooSearch
#useYahoo:boolean 1 S #launcher:Thread «Intemal» YahooSearch
+useProxies{boolean):void N\ —_|#prog:)ProgressBar #query:Sentence
+usingProxies():boolean | criteria N\ #progressiint Srun():void :qtuerty_tseqtence
) \ #selection:Selection #5 TCA- oosag St
urls:ArrayList<String>
™\ \ +analyze():Matchinfo .y 9
\ " . +search(int, boolean):Sentence
N \ +join():void — sentry
N +relatedURLs():ArrayList<String> "stop_g_e_ﬂ — T
. % .| tresults(boolean):String = Sentry 1 W
\ stoppegl " h
N - | #value:boolean Searc
s hY 1' T «Interface»
sentry’| 1 -
GoogleMatchFinder v [+search(int, boolean):Sentence

+relatedURLs():ArrayList<String>
+results(boolean):String

#launcher:Thread

+relatedURLs():ArrayList<String>
+results(boolean):String

A

MatchFinder #prog:]ProgressBar
«Interface» #progress:int GoogleSearch
- #selection:Selection # Sent
- e query:Sentence
*a"ag'_ze“c'lmatd“"fo +analyze():Matchinfo #strict:boolean
Floint):vol +join():void #urls:ArrayList<String=

+search(int, boolean):Sentence

The Matchinfo class gathers information from the query results in the shape of phrase-link pairs.
Each MatchFinder is capable of filling a Matchinfo, according to the criteria given by the
SearchCriteria class, using multiple threads to improve the efficiency of the process (by using

the Concurrent...Search classes). Following the same multi-thread strategy, the WebAnalizer

browses the best results from a Matchinfo. To achieve this, an implementation of a MatchFinder
configured with a SearchCriteria (and adapted to a certain search engine) is launched. This
MatchFinder returns a Matchinfo which can be accessed at any time, even while the query is still

in progress.

In more detail:

e Matchinfo: The core of the search engine. It stores pairs of sentences with URLs, also
called matches This class is also capable to sort the matches to rank the URLs based on
the number of matches of that URL with different sentences.

e SearchCriteria: contains properties of the search engine (which can be different each

time), such as the minimum number of words per sentence, the number of results to

12

fetch per query or the number of best results to navigate. It also contains information
about whether the use of proxies and the strict mode are enabled.

MatchFinder: an interface whose implementations must realize a full search from a

Selection and, based on the SearchCriteria given, fill a MatchInfo that contains the results
of all the queries. Once finished, it will provide a list of URLs sorted by number of
matches. Currently, there are two implementations (using different search engines):

YahooMatchFinder and GoogleMatchFinder. Both share the same interface and the way
they search with multiple threads: ConcurrentGoogleSearch and

ConcurrentYahooSearch can resolve a query concurrently, so it is possible to run all of
them at once and just wait for them to finish, which greatly improves the software

efficiency.

Search: an interface whose implementations must be able to resolve a query. both

engines have implementations of it. Used by the Concurrent...Search classes previously

mentioned.

WebAnalyzer: navigates the best matches (a given number) concurrently, from a given

Matchinfo, to improve the quality of the results: navigating the suspicious URL will find out
the exact number of matches.

ConcurrentWebAnalyzer: navigates a given URL concurrently and updates the given
Matchinfo.

Sentry: Keeps count of the number of threads that have been started. It is used for both
the progress bar of each search and for the removal of a query threads if it is removed

before finishing.

Ranker: Comparator class to sort the results obtained.

13

Connection related classes diagram:

The connection management follows the diagram above. Since the number of queries each
search engine allows is a limited resource, this program automatically makes use of proxies to
avoid this limitation. The AnonProxy class saves the required information of one proxy and the
number of times it has been used. The ProxyManager stores a set of proxies, and can be
prompted in order to get the most promising one. It can also be programmed to automatically
search for new proxies to use. The ConnectionMonitor is in charge of managing the maximum

number of global connections available to the program (which can be altered) in order to avoid

ConcurrentProxyChecker

ConnectionMonitor

+ConcurrentProxyChecker()

+run():void

#counter:int
#limit:int

ProxyUpdater

+notifyForConnection():void
+setConnectionLimit{int):void
+waitForConnection():void

#generator:Random
#pages:int

+ProxyUpdater()
+run():void

proxy 1 1
AnonProxy
#available:boolean p M
#ip:5tring roxymanager
#port:int #addressSet:HashSet<5tring=
#timesUsed:int #proxiesQueue: PriorityQueue<AnonProxy=
+AnonProxy() +getProxy():AnonProxy

+compareTolObject):int
+increaseTimesUsed() :void
+penalize(int):void

+main(String[1):void
+randomUpdate(int) :void
+searchProxies(int):void

consuming an excessive amount of bandwidth.

Again, in a more detailed view:

AnonProxy: contains a proxy (IP and port), its availability, and times it has been used.

ConcurrentProxyChecher: checks if the given proxy is available.

ProxyManager. contains a set of proxies, sorted by the number of times they habe been
used (the less, the better), and provides the currently best proxy to be used. It updates

itself by searching for new proxies. This class can provide proxies and penalize them

concurrently.

ProxyUpdater. searches for new proxies from the internet.
ConnectionMonitor. monitor used to control the maximum number of global concurrent

connections. All classes that needs to connect to internet, should use this monitor.

Work plan

In order to develop the software, we decided on an iterative and incremental model, which was

inspired by the well-known SCRUM model:

The first stage of product backlog was done in October. From that moment, the plan was to do a
series of mini sprints (by shortening them to seven day periods), with weekly meetings with our
director (instead of everyday) in order to evaluate the current prototype and decide on the next
steps to take, as well as possible ways to tackle any issues that had arisen. By March-April, we
turned the project focus to fixing bugs and improving the interface, with weekly tests the program
and the release of new betas.

During the whole process we made a point to maintain a regular communication in order to

coordinate better and thus improve our teamwork.

Here is a brief description of the work schedule, as it went throughout the project:

[03/10/2013] First meeting, initial objectives and work strategy set.

[4/10/2013 - 17/10/2013] State of the art investigation on the free anti-plagiarism tools available.
[18/10/2013 - 28/02/2014] Incremental development of prototypes, including meetings every week
in order to ensure that the program develops as expected.

[28/02/2014 - 25/04/2014] Final iterations of the prototype. Uploading of said prototypes to
SourceForge in order to allow a wider sample of testers for the application.

[25/04/2014 - 23/05/2014] Final details and bugs polished.

[06/06/2014] Project end.

Technologies used

The following technologies were used in order to complete this project:

e Java7:

We chose Java as the programming language for this application because it allowed us

15

to port it easily to any operative system (since most of them can run .jar files from a
console), and also because of the wide array of libraries available for us to use (we will
mention some below). These two points, and the fact that the bottleneck in speed is
caused in this case by the connection times (specially when using proxies, which were
mandatory for us), made us take the decision of using this language instead of other

finer grain solutions, such as the C programming language.

e Java Swing (to build the graphic interface):
Since we were using Java, Swing was the most versatile library we could find for
creating a GUI for the project. We took advantage of this library to create the whole
graphic interface.

e JSoup (HTML parsing library):
We needed an easy-to use solution for connecting to websites and getting their content.
This provided us with the required number of samples to compare the text given to our
software as input and determine whether it could be a plagiarism. This library offered
exactly this text-fetching functionality and has proven to be both effective and

user-friendly to us.

e PDFBox (a library used for decoding PDF files):
In order to meet our objective of analyzing PDF files, we needed to find a library that
allowed us to process the text from this kind of files without having to go through the
problems of extracting it. Even though it proved to be complicated to learn to use, and
failed to extract text in some cases, they were too few to deny the raw power of this
library. While it does not support optical character recognition for pdf documents
scanned as images, we would still use this tool over any other we tried while developing

our software.

e FontBox (auxiliar library used by PDFBox to improve PDF compatibility):
FontBox is a standalone library that improves PDFBox’s font compatibility greatly, which
allowed us to extract text from a wider number of samples, improving the software

overall results.

16

Related courses

We wanted to briefly name the courses without which we would not have been able to do this

software:

e “Fundamentos de Programacion” introduced us to the main programming models and
structures.

e “Tecnologia de la Programacién” increased our knowledge in Java and the Objective
Programming paradigm, which we have based our work in.

e “Estructura de Datos y Algoritmos” showed us the most common data structures and
some of the most important programming algorithms, without which we would not have
been able to create a functional software.

e “Programaciéon Concurrente” allowed us to discover how to create multi-threaded
programs and deal with the problems that are inherent to the non-determinism they
introduce. We found this course especially helpful because of an assignment which
required us to create a simple spider software which grabbed links from websites. This
inspired us when developing the web oriented part of our code.

e ‘Ingenieria del Software” taught us effective methods of working in order to develop
functional software within a time period, choosing the best strategies and work flows in
order to achieve the set goals.

e ‘Inteligencia Artificial’ gave us an insight into natural language processing and its
complexities, allowing us to decide how we would treat the input text for the software in

order to get a sufficient set of phrases to look for possible plagiarisms.

Encountered Issues & Hardships

While in the process of creating this software, we encountered several walls we had to climb in

order to succeed. Here are some of them:

Dividing the software functionality into two parts, analyzing text and efficiently searching for
matches, the one which made us face the highest amount of issues throughout its development
was, doubtlessly, the second. This was mainly due to the first one being less dependant on

external resources, as will be explained below.

17

While we were in the text analyzing part, the main problems we encountered were caused by
trying to find the answer to the following question: How could we read any text file? What we
came up with was to make our software able to read PDF files, since any other file can be
exported to it and every OS can read it easily*. Having decided this, we needed a way to extract
the content from this kinds of files, which was solved by using the PDFBox library

(http://pdfbox.apache.org), which is both free and functional. At this point, though, the results

were still far from perfect, the problem being that many PDF files contain useless characters,
use strange codifications, or are infact an image, making it impossible for us to extract the text
from it with the tools available. To tackle this final issue, the best solution we found was defining
first the criteria which would separate phrases in the text (by using the dot or end of line
characters, or used defined separators) and then removing unnecessary characters, such as
extra spacings or line breaks. This method proved satisfactory in most cases. It must be
mentioned though, that in some cases the PDFBox library was unable to extract the text from
certain PDF’s, making us unable to analyze the text from them (this only happened on a very

small percentage out of all the cases we tested).

Having finished this part of the functionality, we moved on to the next one, in which we

encountered multiple issues, some of which we had not even thought we would encounter:

First, in order to be able to perform searches in the internet, we turned to the Google Search API

(in JSON, https://developers.google.com/web-search), which we found out had been deprecated

since November 1, 2010. The alternative provided by Google, CustomSearch

(https://developers.google.com/custom-search) only provides 100 search queries per day freely,

having to pay for larger numbers. We decided to test this limitation before actually giving up on
using the API, but the result we obtained was the following exception once we did some

searches:

Caused by: com.googleapis.ajax.services.GoogleSearchException: Suspected Terms of

Service Abuse. Please see http://code.google.com/apis/errors

Looking for the actual price (to see if it could somehow be within our limitations) of the extra

queries, we were faced with the sum of $5 for every 1000 queries, which was unthinkable in our

18

http://www.google.com/url?q=http%3A%2F%2Fpdfbox.apache.org%2F&sa=D&sntz=1&usg=AFQjCNGjiTe6qA63SmSc_-w2sM6mVJUaRA
https://developers.google.com/web-search
https://developers.google.com/custom-search
http://code.google.com/apis/errors
http://code.google.com/apis/errors

conditions (specially since our program requires a considerable amount of queries for each

document searched).

This problems forced us to take a different route in the development: searching the web directly,
as we would by using an internet browser (using the jsoup library to aid us in the process). For
this, we needed to be able to translate any phrase into search link. Since URLs are limited to
ASCII characters, we had to investigate how said URLs were created when searching (by using
a trial and error method). We solved this considerably fast, discovering that first the phrase had
to be translated to UTF-8, where each character follows the %XX or the %YYY formats, and

spaces are replaced by ‘+’ symbols. Having solved this, we still needed a way to test it.

We did not come upon the way to extract the links from Google result pages by the last stages of
the development, and so we decided to look for other alternatives, such as Yahoo (in which we
encountered the same problem as with Google, having to find a way to extract the links from their
result pages manually) or Faroo (which advertised their free web API, but offered results that
were of almost no use to our software). By this point, we managed to discover a way of getting

Yahoo results, being able to do a big amount of searches before encountering an exception like
the one below:

org.jsoup.HttpStatusException: HTTP error fetching URL. Status=999,

URL=http://search.yahoo.com/search?p=...

This became another issue in our growing list, but this engine could at least be used for testing
purposes, letting us refine the software functionality (while having to reset our computer IP

address from time to time to continue working).

By April 2014, our software was already capable of searching plagiarisms using Yahoo search
engine (and avoiding the exception mentioned before) and browsing the output to refine the
results given to the user. At this time, while we were still trying to unravel Google way of showing
its query results, we suddenly were faced with an unexpected problem: Yahoo had changed its

interface and thus we had to rewrite most of the code we used to parse it.

When we finally succeeded in getting the URLs from Google result pages (which proved
especially difficult because it used redirects instead of direct links), we had already come up with

a system to avoid both limits for the number of searches allowed. To do this, we came up with

19

the idea of using proxies, since the limitation was actually based on the computer’s IP address.
The system we created obtained said proxies in a dynamic way, getting a self-updating list of
available ones and making connections through them. To speed up the connection as much as
possible (since using proxies proved to be somewhere between 10 and 100 times slower than
direct connections), the system penalized the slower or “used up” proxies (the ones which would
not allow more connections to Google or Yahoo), so connections would always be made using
the most promising ones. Thanks to this, we could finally have a virtually unlimited amount of

queries without fear of having our search interrupted before ending.

20

3: Application

Installation

LENTE is a portable application, and so it does not require any type of installation. To run it,
simply double click the lente.jar file (on Windows), or open a console and use the “java -jar

lente.jar” command on Linux based systems.

Requirements

LENTE requires a Java Virtual Machine to run. Java can be downloaded for free at their official

website (https://www.java.com/es/download/). Also, the software needs an internet connection in

order to work.

User Manual

LENTE has a simple interface consisting of 2 main tabs (plus a third one for quick help and a last
one with contact information).
The first tab, called “Search” is where the user can make their desired queries. The process will

be explained below:

21

https://www.google.com/url?q=https%3A%2F%2Fwww.java.com%2Fes%2Fdownload%2F&sa=D&sntz=1&usg=AFQjCNEEWDF1Iuza6n9ppQ9lxQU5-b9cBg

Configurations

Input files (drag&drop files in the table or use the button) Choose a search configuration:

Add file(s) from explorer | |Quick search | -

Remove selected search(s) | Max Connections: BDE | Start selected search(s) |

Remove all searchs | | Start all searchs

File name Path Search Configuration Progress
text pdf Dworkspace\L ENTE-v3itext pdf uick search

e The user can add files to be searched by using the “Add file(s) from explorer” button or by
simply dragging & dropping the desired files into the table occupying the bottom part of
the window.

e To start searching for plagiarisms, the user can either press the “Start all searches”
button or select the desired files from the table and use the “Start selected search(s)’
button instead.

e Once a query has started, its progress bar will start advancing. At any time from that
point, the user may now double click it on the table to open the results window. Note that
said window will not refresh by itself, and so it must be closed and reopened in order to
see the changes as the search advances. An example of a “results” window can be seen

below:

22

URL Number of Matches
hitps:imx.answers yahoo.com/guestion/index?qid=2012031312062444 .
hitp:iles wikipedia.orgiwiki/Chile#Historia
hitp:iles wikipedia.orgiwiki/Chile#Toponimia
hitp:/fes wikipedia.orgiwiki/Chile#Estado
hitps:fles. answers yahoo.com/questionfindex?qid=20130205121252AA .
hitp:iles.cyclopaedia.netiwikilS0_3166-1%3ACL
hitp:iles wikipedia.orgiwiki/Chile
hitp:ifes wikipedia.orgiwiki/Chile#Geografl C3.ADa
hitp:lamericachilenp.blogspot.com/
hitp:iles.cyclopaedia.netiwikilRepublic_of_Chile
hitp:iMugaresquever.comiwiki/chile
hitp:/iwww todoenlaces. com/25467 9/es wikipedia.org-wiki-chile htm
hitp:/iiredpuentes.orglindex.php/paisesichile
hitp:iidbpedia.orgiresource/Chile
hitp:iles wikipedia.orgiwikiTurismo_en_Chile#Turismo_invernal
hitps /iwww facebook comipages/Bar-Restaurante-Trinidad-Comida-T%. ..
hitp:ilsearch.yahoo.comfaler/manage?p=%%22%00+Alcanza+un+ancho...
hitp:iles wikipedia.orgiwikiTurisma_en_Chile
hitp:iles wikipedia.orgiwikiTurismo_en_Chile#Chile_continental
hitp:ifes wikipedia.orgiwiki/Turismo_en_Chile#Territorio_Chileno_Ant.C...
hitp:ilsearch.yahoo.com/alermanage?p=%%22%00+La+segunda%2C+...
hitp:iichile.destinosdeamerica.com/
hitp:ifes wikipedia.orgiwikiTurismo_en_Chile®#Chile_insular

alalalalalalalalmMMaMw|w|ww|w |||t

View Matches | Save results into file |

e In this window, a double click on a result will open its link in the computer default browser.

Clicking the “View Matches” button will show the exact matching phrases that were found
in @ new window.

e Back in the main window, to remove an ongoing (or finished) query, the user can use the
‘Remove selected search(s)” button after having selected it on the table (multiple
selecting is allowed) or the “Remove all searches” if none of the current queries wants to
be kept.

e The “Max connections” selector allows the user to set the maximum number of
connections to the internet the software will be able to do at a given time. A bigger
number in this setting will result in a better performance, but will also make the software
consume a bigger amount of bandwidth.

e The search configuration dropdown selector on the top right lets the user choose different
configurations, as set in the “Configurations” tab (which will be explained later on). Please

note that this configuration will be applied to new searches added, and not the ones that

23

are already on the table, so it should be changed before adding a new query when

desired.

The second tab, “Configurations” lets the user change a variety of settings in order to tune the

program to their needs:

Configurations | Help | About |

Choose a configuration: |le|:k search

10 Search depth
3 | minimum words (per sentence)
20 Navigation research

Strict sentence searching Use smart proxies

Selecta Search engine:

i® Use Yahoo
) Use Google

Selection mode:

|% of random sentences | - |
% of lines: 0.2

Analysis mode:

Regular text |v|

Custom pattern:

| New configuration | | Import configuration | | Save configuration |

From the dropdown selector on the top, the user can select the configuration to be edited.
To create a new one, the button “New configuration” on the bottom left corner can be
used (which will prompt the user for a name). Then, the new configuration will be
available to be selected on the dropdown list.

The “Search depth” field refers to how many results (in the search engine) are searched
for each selected sentence from the text of the document. The “Minimum words” one
filters sentences so not one with less than the specified number of words will be
considered for searching. Finally, the “Navigation research” field refers to how many of
the results with the most matches will be browsed to obtain a better analysis of possible

plagiarisms.

24

e The “Strict sentence searching” checkbox controls whether the program will look for
exact full phrase coincidences or a more lax matching (which may be specially useful for
looking for similar texts instead of plagiarisms). Next to it, The “Use smart proxies” one
toggles the use of proxies for the search engine queries. We strongly recommend leaving
this setting on in all configurations, since deactivating it may block your computer’s IP
address temporarily from using the chosen search engine and the search is not
guaranteed to finish.

e The “Selection mode” dropdown menu lets the user select which sentences from the text
will be searched for possible plagiarisms. The number or percentage of sentences to look
for must be specified in the empty field right below it, and if the desired method is “All
sentences”, the field must be left blank. Please note that percentages must be written as
a number between 0 and 1 (for example, 0.3 would be the same as 30%).

e The last dropdown menu, “Analysis mode”, lets the user specify how sentences should
be interpreted from the input text. “Regular text” will separate sentences by each dot (“.”)
in the text, whereas the “Aligned text” will separate them by each line. A custom
separation pattern may be set by using the menu third option, and filling the field below it
with the desired separator (regular expressions are accepted). This field must be left
blank otherwise. To learn more about regular expressions, we recommend visiting this

website: http://www.regular-expressions.info/java.html

Examples of use

Here, we will explain the best configurations for some hypothetical scenarios:
Checking for possible plagiarisms in a long History essay, in pdf:
In this case, the fastest solution is to do a Quick Search (selecting it from the dropdown

menu in the Configurations tab).

A search depth of 10 to 12 results per sentence should provide enough documents to
compare to. In this case, we will set this parameter to 11.

25

Since the document is an essay, sentences with less than 3 words can be omitted, as
the more relevant ones will probably be longer. Thus, we will leave the Minimum words

parameter as-is.

Both checkboxes (strict sentence searching and smart proxies) shall be selected. This is
done in this way because of the document being long, which implies that the chances of
literal copies increase. If this method fails, a second search could be done unchecking the

strict sentence searching option.

The search engine is not really relevant, but Google often finds better results, at the cost

of taking a significant amount of time longer to finish compared to Yahoo.

Finally, we will set the selection mode to “% of longest sentences”, and set its parameter
to 0.3 to select the 30% of the lines from the text, ordered by its length. Also, the analysis

mode will be left as-is, in the “regular text” selection.

Looking for related articles to a short publication:

In this case, we will use the Deep search preset, since the text is short.

The Navigation research parameter will be set to 15, since we don’t need exact matches,

but only similar ones and thus, a smaller body of documents to compare to can be used.

The strict sentence parameter will be left unchecked, since we want to find related

articles, which do not have to necessarily have fully matching sentences.

The selection mode will be left to All sentences (since the article itself is short), and the

Analysis mode shall be left as well as regular text.

Checking a C++ code suspected of not being original:
The most important point in this case is to set the analysis mode to "Custom sentence
separation”, since in this case we want lines to be separated by the “;” character. Thus, in

the Custom pattern space, we will put a ; symbol.

26

The other parameters will depend on the length of the code, but we recommend using the

Deep search preset with the modification described above.

27

4: Results

Main outcome

The resulting program is an application available as a .jar file. Java 7 or higher is required for its
functioning, and no other dependencies are needed. The current version (as of the writing of the
document) is 0.61, adding up to a total of more than 220 downloads (from over 25 countries
around the world) as freeware on Sourceforge." Since its only requirement is Java, it can be run

in Windows, Mac OS and Linux.

Limitations

Most of the limitations explained here come from the way we solved the issues noted before, or

from the impossibility to solve them completely. They are as follows:

First, there’s a number of PDFs that we have no possibility of reading, since using optical
character recognition was out of our limitations (for the ones composed of images), and also
because PDFBox failed, as we mentioned earlier, to extract the text from a small number of

documents.

Also, the software has a strong dependence on the proxies available and having a reliable
connection (since an unstable connection affects negatively to our proxy rating system). Even
though searches can be done without the use of proxies, its number is very limited and can lead
up to the search engine blocking the user IP address from its services for some time, which is

something we could not allow.

Furthermore, as we also explained before, the program relies on the current web interface and
internal code of the supported search engines, which means that any change done in them could
stop it from working until we adapted its code. This is perhaps the strongest limitation in the

software, since we are forced to stay on the lookout for changes on said interfaces.

" The project’s page is https://sourceforge.net/projects/lente/

28

https://www.google.com/url?q=https%3A%2F%2Fsourceforge.net%2Fprojects%2Flente%2F&sa=D&sntz=1&usg=AFQjCNESNGIIGty-4JQ1SZlUtiwvCkrsFw

Finally, the search process cannot be paused, only stopped, and even this takes a considerable

amount of time since the program has to wait for the proxies to answer its queries.

Support

This software support is centered around its dependencies. If the web interface of any of the
search engines used were to change, we would be forced to rewrite or modify the code in charge
of parsing the result links. These changes can happen at any moment, and there is no actual
guarantee that they will not occur often (as we mentioned earlier, we already encountered this
issue once while developing the program). Also, there is a possibility that the systems used to
detect users evolve, forcing us to create a new mechanism to enable our program to keep doing

searches without a limit, adapting to the changes made every time.
The other strong part of the program’s support would be focused on the sources we use to get

new proxies, since any change in their format would enable our software main functionalities until

the code was patched, only allowing direct searches.

29

5: Conclusions and Future Work

During the development of this project, we strove to create a software that was, above everything
else, useful. Along the process, we faced a number of problems and challenges, which forced us
to find alternate ways of solving them in order to move forward. The process was sometimes

frustrating, but we are now proud of its results.

As we have pointed out in some parts of this document, we released our program as freeware as
soon as we felt it was ready to be used, since it would not only give us a bigger chance of finding
possible bugs, but also because our objective was always for the software to be a practical tool

available to everyone.

Given the tests we have done, we think we have succeeded in this point. By the moment of the
writing of this document, we have over 220 downloads on SourceForge, and that number is
further increased by the copies we have provided co-workers and fellow students. We have had
a very nice amount of feedback, and given the results we collected, the program was actually
useful for other students, helping them check their work and look for related material on the web.
Although the amount of teachers using our program (that we know of) was lower, the feedback in

this case was also positive, helping them in their work.

The most enriching part of this whole experience was to learn about a field that was at first
unknown to us, and getting to understand why there are so little tools capable of fulfilling the
goals we set for this project. The external resource dependencies require a constant vigilance,
as any change made by the search engines we use could potentially render the program

useless, as we mentioned in the Support section.

Also, the development plan we decided on was really helpful while constructing the software: the
weekly meetings with our director helped us point the work in the right direction, and the short
iterations helped us to center on tasks one at a time, ensuring each worked as it should before
moving on to the next one. Also, the decision to publish the program helped us find issues that

had escaped our filters, contributing to make a better software overall.

30

Finally, in order to improve the software beyond this point, we have set some upgrades that could

be done in the future:

e Accept other types of documents: .doc and .docx files are widely used and being able to
use them would help our software versatility. Another interesting input to accept would be
web pages as a whole, scanning them and looking for possible plagiarisms in their text.
This would be specially useful, for example, for a news company in order to ensure that
their articles are not being stolen.

e Search for possible plagiarisms in a closed set of documents (instead of looking for
matches on the internet). This would have direct uses in teaching, allowing teachers to
check their student works by cross-comparing them.

e Semantic searching. This might be the most important point, because it would enable the
software to do much more precise searches, instead of being limited to a search
engine’s ‘“literal” or “similar’ keyword searching. Analyzing the text and doing a natural
language interpretation, however, is a complex matter and would require a considerable
effort.

Ignore valid quotations when looking for possible plagiarisms.

The sum of all the factors explained allow us to understand why having a professional plagiarism
detector is a concept that is close to a utopy. Text analysis, language translation, syntax
interpretation and having fast yet reliable queries are all functionalities that require an enormous
effort to accomplish. If we add the fact of the software being free to this mix, we find ourselves in
front of an enormous wall to overcome. Using a paid software model, on the other hand, would
have made the querying process a lot simpler, allowing us to spend more time in other parts of

the software. An example of this is the Turnitin tool, which is a remarkable software in its field.

This, however, was incompatible with our goals (and also introduced other difficulties, as finding
an initial funding), so we decided to stay with our original idea. We believe that, with this work, we
have proven that sometimes the simplest ideas turn out to be powerful enough to be of use. A
relatively small, local piece of software that uses the strenght of well-known engines turned out to
be able to accomplish the titanic task of discovering similar documents in some corner of the

internet.

31

Spanish Section

Resumen

Lente es un software de deteccion y busqueda via internet de posibles plagios de documentos.
Puede analizar diversos tipos de documentos de texto o PDF. Busca a través de internet, de
forma concurrente, frases y contenidos similares al documento y permite consultar los
resultados en tiempo real antes de finalizar. Los resultados son paginas web que pueden ser
accedidas desde el programa, permitiendo consultar qué contenidos han sido supuestamente

plagiado.

Puede trabajar con varios documentos simultaneamente y mostrar el progreso individual de
cada uno. Ofrece diferentes perfiles de busqueda configurables, para optimizar el tiempo y
recursos utilizados, basados en parametros sencillos. Gestiona un numero maximo de
conexiones y puede gestionar proxies de forma automatica para acelerar la busqueda y evitar

las limitaciones de uso que dan los buscadores utilizados: Google y Yahoo.

Palabras clave:

Documentos, analisis de texto, plagio, concurrente, busqueda web, internet, resultados en

tiempo real, proxies, Google, Yahoo.

Introduccion

Existen muchos buscadores de texto gratuitos, como Google o Yahoo/Bing, que constituyen el
medio principal a través del cual muchos usuarios utilizan internet. Son gratuitos porque para
estos buscadores es rentable haciendo negocio de los datos obtenidos de esas busquedas. Sin
embargo, si se busca otros servicios similares, como podria ser buscar archivos enteros de
texto en internet, para buscar documentos relacionados, similares o directamente plagios, se

encontrara con que no hay muchos. O mejor dicho, los pocos que hay no son muy conocidos

32

y/o eficaces, y la mayoria se basan en buscar frases o fragmentos de texto en los buscadores
habituales, con los problemas que eso supone: depender de otros servicios y sus cambios, las
limitaciones de sus términos y condiciones, y las limitaciones reales de sus sistemas de

cortafuegos ante bots. La otra opcion es crear tu propio buscador enfocado a esta tarea, pero
para tener el poder de indexacion capaz de competir con los buscadores clasicos, requiere una

inversion en recursos que haria imposible crear una herramienta gratuita.

Con la motivacion de haber encontrado una escasa cantidad de utilidades gratuitas y eficaces
para esta tarea, creamos esta herramienta con esas cualidades. La busqueda de similaridades
en internet de archivos tiene multiples utilidades: encontrar plagios o citas (plagios parciales
hablando técnicamente), encontrar documentos relacionados por tematica o palabras y
encontrar el origen de algun documento que procede de internet. Aclaremos que el ambito real

sera la parte de internet que esta indexada en el buscador que se utilice para buscar.

Estado del arte

Estas son algunas de las aplicaciones que hay en este campo (invastigacion realizada en
Octubre de 2013):

- Grammarly (http.//www.grammarly.com, Inglés): corrige ortografia y busca posibles plagios.

Permite revisar de manera gratuita un documento, pero sélo ofrece una descripcién del
resultado del procesamiento bastante pobre de manera gratuita, simplemente indicando el tipo
de errores gramaticales posibles y si el texto es o no copiado de otra fuente, sin ofrecer pruebas
o0 explicaciones al respecto. Permite copiar el texto en una ventana para analizarlo o subir

archivos desde el ordenador (no acepta PDFs, abre DOC y DOCX).

- The plagiarism Checker (http./www.dustball.com/cs/plagiarism.checker, Inglés): busca frases

del texto introducido en Google, mostrando las frases buscadas y si se han encontrado posibles
pruebas de copia, mostrando enlaces de las coincidencias encontradas. Tiene una version
Premium de pago, que anuncia ser hasta 3 veces mas precisa que la gratuita. Una busqueda
rapida con un trozo de un articulo de Wikipedia para probar la eficacia del buscador devolvié un
resultado negativo (no se sospechaba copia alguna). Permite introducir texto plano en un cuadro

o subir archivos DOC.

33

http://www.google.com/url?q=http%3A%2F%2Fwww.grammarly.com&sa=D&sntz=1&usg=AFQjCNHRS7eaujMb-b8u59ZrAq8sGnyQDA
http://www.google.com/url?q=http%3A%2F%2Fwww.dustball.com%2Fcs%2Fplagiarism.checker%2F&sa=D&sntz=1&usg=AFQjCNHc7RXZYPGIR3MuwbW2G-G13vbCVA

- Plagiarism Checker (http://smallseotools.com/plagiarism-checker, en Inglés): analiza frases del

texto introducido para buscar posibles copias. Es completamente gratuito, y una vez finalizada la
examinacion, provee de enlaces a busquedas en Google para las frases que determina como
copiadas, permitiendo verificar si es el caso. Realizando la misma prueba que con el anterior
buscador, los resultados son los siguientes: de 28 frases analizadas, solo dos de ellas dan un
falso negativo, diciendo que no son copiadas de forma erréonea. Las demas frases son

correctamente identificadas.

- Plagiarism detect (htip./plagiarism-detect.com, en Inglés): Permite busquedas por categorias

(ensayos, articulos, paginas web u otros). Su uso es gratuito. Una vez analizado un texto,
muestra enlaces a las fuentes de los posibles plagios encontrados. Busca una misma frase en

varias fuentes, reduciendo la posibilidad de que una frase detectada como copia no lo sea.
Dicho esto, haciendo la prueba con el articulo de Wikipedia, sélo encuentra un 16% (en lugar del

100% que es) de texto copiado. Permite subir archivos .doc, .docx, .odt y .txt.

- Plagium (http.//www.plagium.com, Multilenguaje): permite hacer busquedas en varios idiomas

por separado, o incluso a la vez. También proporciona al usuario opciones de busqueda como el
umbral de similitud, la profundidad de la busqueda (rapida o profunda) o dénde buscar (web,
noticias o redes sociales). Requiere un registro para su uso, y con ello permite guardar
busquedas en la cuenta usada. Por otro lado, se asigna una cantidad de créditos a dicha
cuenta, que se gastan con cada nueva busqueda realizada y que ademas caducan tras un afo.
La unica forma de obtener mas es realizando pagos. Tras una busqueda de otro texto copiado
de Wikipedia, los resultados obtenidos son explicativos y muy completos, obteniendo un 100%
de coincidencias en varias paginas web, de las cuales el motor provee el texto con las partes

coincidentes resaltadas para facilitar la refutacion.

- Detector de plagio (http:/detectordeplagio.com, Castellano): gratuito. Unicamente acepta texto

plano pegado en un cuadro dispuesto en la pagina para tal fin. El texto en inglés usado en los
otros buscadores como prueba fue detectado como original, lo cual no aporta mucha fiabilidad a
sus resultados. Una segunda prueba con un texto espafol (el mismo que en el buscador
anterior) tampoco reporto resultados de plagio positivo. No ofrece ningun tipo de personalizacion

ni configuracién para su uso.

34

http://www.google.com/url?q=http%3A%2F%2Fsmallseotools.com%2Fplagiarism-checker%2F&sa=D&sntz=1&usg=AFQjCNEepE7EwKPfLepY-4FhS54DwqiSCA
http://www.google.com/url?q=http%3A%2F%2Fplagiarism-detect.com%2F&sa=D&sntz=1&usg=AFQjCNGfhnvScvp9FCjviljsjfPhSfAG9Q
http://www.google.com/url?q=http%3A%2F%2Fwww.plagium.com%2F&sa=D&sntz=1&usg=AFQjCNEtOiwMvlGvwK-vobUdYTfPGGDj7Q
http://www.google.com/url?q=http%3A%2F%2Fdetectordeplagio.com%2F&sa=D&sntz=1&usg=AFQjCNEybd84AmAWqVkvLkMgPf7Pkh8XEQ

Visto el panorama general de las aplicaciones existentes, encontramos basicamente dos tipos
segun la calidad de los resultados: los servicios gratuitos de dudosa eficacia y los servicios de
pago de calidad proporcional al precio. Algunos problemas generales son mas importantes son
la ausencia multilinglismo (que la busqueda sdélo funciona en algun idioma concreto y no lo
demas), la falta de compatibilidad de archivos de texto (limitacion a algunos formatos o
simplemente un cuadro de texto en el que introducir el texto, lo cual es incbmodo para grandes

volumenes de texto) y malos resultados en general (poca capacidad de deteccién de copias).
Para solucionar esos problemas, marcamos una serie de objetivos:

e Multi-formato, que pueda leer de cualquier tipo de archivo con texto. La mejor forma es
leer PDF ya que cualquier archivo se puede convertir en PDF.

e Multi-lenguaje, que pueda trabajar con cualquier idioma. Necesitara alejarse del analisis
sintactico o semantico (eso requeriria un aumento desproporcionado de la complejidad
del programa).

e Multi-buscador, dar la opcion de buscar a través de varios buscadores y tener mas

variedad de resultados.

Conclusiones y trabajo futuro

Durante el desarrollo de este proyecto, nos hemos esforzado en crear un software que fuera,
por encima de todo, util. Durante el proceso, hubo que afrontar numerosos problemas vy
desafios, que nos forzaron a buscar formas alternativas de resolverlos para poder avanzar. A

veces resultaba frustrante, pero estamos orgullosos de los resultados.

Como hemos indicado en algunas partes de esta memoria, hemos publicado nuestro programa
como freeware tan pronto como sentimos que podia ser usar, ya que no solo nos daria mayores
probabilidades de encontrar bugs, sino porque nuestro objetivo fue siempre ayudar a la

comunidad.

Dadas las pruebas que hemos realizado, creemos que hemos conseguido este objetivo. En el

momento de la escritura de este documento, nuestro software cuenta con mas de 200

35

descargas en SourceForge. Ademdas, a este numero se afaden las copias que hemos
distribuido por otros canales a compafieros de clase y conocidos. Gracias a ello, hemos
recibido una gran cantidad de feedback, y dadas las opiniones recogidas, podemos afirmar que
nuestro programa ha resultado ser una herramienta util para su trabajo, ayudando a estudiantes
con sus trabajos, por ejemplo, asistiéndoles en la busqueda de documentacion relacionada con
su estudio. Por otra parte, si bien el numero de profesores que han utilizado la herramienta (y
que tengamos constancia de ello) ha sido menor, en este caso también hemos recibido

evaluaciones positivas acerca de su utilidad.

Lo mas enriquecedor de toda esta experiencia ha sido aprender de un terreno desconocido en
un primer momento, y acabar entendiendo por qué hay muy poco software capaz de hacer
eficientemente la tarea que el nuestro hace. La dependencia de los recursos externos requiere
completa vigilancia de los cambios que puedan hacer los buscadores, y para colmo, nadie te

garantiza que podras reaccionar ante el cambio y que todo siga funcionando.

Por otra parte, el plan de trabajo que elegimos resulté ser muy util para ayudarnos durante el
desarrollo del programa: las reuniones semanales con nuestro director nos ayudaron a
mantener el rumbo del proceso en la direccidn correcta, y las iteraciones cortas a centrarnos en
una sola tarea a la vez, asegurando con ello que cada funcionalidad cumplia con lo esperado
antes de pasar a la siguiente. Ademas, la decision de publicar el resultado de nuestro trabajo
como freeware resulté ser de una gran ayuda para nosotros, puesto que expandié enormemente
nuestro banco de pruebas, permitiéndonos encontrar fallos en el software que se habian

escapado a nuestros filtros, contribuyendo con ello a conseguir crear una mejor herramienta.

Para mejorar el software mas alla de su estado actual, hemos propuesto algunas mejoras que

podrian ser hechas en el futuro:

e Aceptar otro tipo de documentos: los archivos .doc y .docx son ampliamente usados y
ser capaces de usarlos ayudaria mucho a dar versatilidad a este software. Otra forma
interesante de poder introducir documentos seria, a través de su URL, aceptar paginas
web, que podrian ser escaneadas y asi poder extraer su texto para ser analizado. Podria
ser util para editoriales, por ejemplo, ya que podrian buscar articulos que les hayan

podido plagiar.

36

e Busqueda de posibles plagios en un conjunto cerrado de documentos (en lugar de
buscar a través de internet). Tendria usos directos en la ensefianza, permitiendo a los
profesores comprobar los trabajos de sus estudiantes comparandolos directamente

e Busqueda semantica. Esta seria quiza la mejora mas importante, porque permitiria a
este software ser mucho mas preciso en sus busquedas, en lugar de verse limitado por
un motor de busqueda de palabras “literalmente iguales” o “similares”. Analizar el texto y
hacer una interpretaciéon del lenguaje es, sin embargo, una materia compleja que

requeriria un esfuerzo considerable.

La suma de todos estos factores llevan a entender por qué tener un detector de plagios
profesional es casi una utopia. El analisis del texto, la traduccion de otros idiomas, la
interpretacion sintactica, exigir rapidez a la busqueda sin perder fiabilidad... requieren un
esfuerzo enorme que de por si, cuesta mucho dinero desarrollar y mantener un software local
asi (haciendo la gratuidad de éste imposible). Es mas facil (y evita problemas legales) tener un
servicio online que haga las busquedas, como hemos visto en el caso de Turnitin, y cobrar por

él; para poder mantenerlo mas facilmente y regular su uso.

Pero con nuestro proyecto hemos demostrado que a veces lo mas simple también funciona
bien, y un sencillo software local que aprovecha la fuerza bruta de los buscadores mas potentes
que hay, a la vez que gestiona las limitaciones que nos imponen, es capaz de hacer una tarea
tan titanica como descubrir si en algun rincon de internet hay algo que se parezca a cualquier

parte de mis documentos.

37

Addendum: Each Student’s Contribution

Miguel Collado Segura:

My contribution to this work consisted in various tasks, which will be listed and briefly explained

below:

-Research on the field’s state of the art: In order to determine what we wanted our
software to do, we first needed to do an analysis of the current tools available, their strengths and
their flaws, in order to make a program that would be of use to everyone, improving the options

that they can use.

-Research in order to find possible libraries and tools to use by our program: One of the
main reasons for using Java as our development language was the wide selection of libraries we
could use. We needed to find tools that helped us in parts of the process that were already
coded, such as the parsing of PDF files by using the PDFBox library, or the JSOUP parser which

helped us get the actual links from Google and Yahoo's result pages.

-Translation, design and writing of a great part of this document: We wanted our program
to be available to as many people as possible. We decided that, in order to achieve this, this
document should be written in English, since the language is more spread world-wide than

Spanish.

-Publishing of the work on SourceForge, advertising of the software and providing
end-user support: As mentioned in the last point, we wanted this tool to be available to as many
people as possible, and so we decided to publish it in SourceForge as freeware, allowing anyone
to download, use and ask any doubts they had via this platform. This also required the setup of a
mail address dedicated to answering support questions and issues to make it easier for any user

to contact us. Also, to improve the software’s visibility, | used social media to advertise it,

38

allowing more people to get to know of the existence of this program. This last point was
specially effective, since an important number of fellow students from other fields of study used

our software and gave us feedback about it, which helped us greatly.

-Implementation of the connection via proxies: We needed to be able to use search
engines without getting the user’s ip banned because of making too many queries in a short
amount of time, so we resolved on using proxies as a channel to mask the user’s IP address,
allowing the program to run much more efficiently. This way, the program uses proxies from a
list that is updated constantly, discarding those that take too long to answer our queries or that

get banned from the search engine in use.

-Coding of the Google queries and its results parser: This task required us to rethink the
model we used for the Yahoo engine, since Google’s links were not displayed as clearly. This
made us spend a lot more time than intended on it. Even though the parser is different to the one

designed for Yahoo, the core template used to guide its development was the same.

-Implementation of the selection filters: We needed filters that would get the most relevant
information from the text parsed in a simple way in different scenarios. To do this, we decided on
implementing filters based on each sentence’s length, and also on the use of proper names,
allowing the user to choose the best fitting one for their needs. Every criteria includes a version
based on a percentage of the total number of sentences (intended for longer documents), or one

based on a given number of sentences to get.

-Design, coding and refining of the User Interface: Once we had a working software, we
needed to create an interface that would be intuitive and easy to use. With this purpose in mind, |
created one based in tabs, which most users are familiar with. | also used a design similar to
torrent programs for the main tab, with a table showing the running searches and their progress,
updated in real time (this last part was especially difficult since progress pabrs have to be
rendered separately in order to be shown correctly). In order to solve any doubts that a new user
might have, | also included a help tab with examples and explanations of the different parts of the
interface, starting with an explanation for a “quick use”, which only requires the user to drag &

drop files to the search table and click the search button. There’'s also an “about” tab with

39

information about us, and where to contact us for support. The configurations tab was designed
to be simple to understand, and to already have a set of defaults that will work for general uses.
-Testing and debugging of the main program: In order to ensure that the software worked
as intended, | did a series of tests for every release we developed, and also coordinated the
support section on a later time when we published the software, which gave us a wider sample
of testers, increasing with every new user. Even though not every one of them spent a part of
their time in giving feedback to us, we still got a considerable amount of it in the process, aiding

us to make it a better tool.

David Serrano Arce:

My contribution to this work consisted in a series of tasks, explained below:

Development of the core modules and data structures in the search engine, such as:

- System for automated classification of the results (Matchinfo): the classification of
suspicious URLs based on the number of sentences matched. It is implemented as a
thread-safe set of pairs automatically created based on the given URLs, and a ranking sorted by

number of matches.

- Interfaces and engine for searching with any kind of searcher implemented: in order to
allow the implementation of multiple web search engines, it was necessary to abstract the
searchers. They may implement any way of searching, as long as the have a start method and

another one to export their results via a MatchlInfo.

- Multi-thread navigation of the best results: direct navigation (without proxies, even if they
are enabled) of a given number of best results from the ranking of Matchlinfo, in order to get the

selection of the most accurate matches.
- Monitor to control the numbers of threads and connections: One of the downsides of
this program is its aggressiveness in terms of bandwidth consumption, even with optical fiber

LAN connections. This forced us to create a system to limit the total number of connections,

40

which turned out to be good for the software’s accuracy (proxies are unstable, and having

hundreds of connections makes it more difficult to detect which one is failing).

- Proxy manager with punctuation system: to solve the main problem of getting blocked
by web searchers, it was necessary to use proxies(in large quantities). This required
organization to use the best one available each time (least used and still working) from the proxy
list. ProxyManager provides a proxy any time is asked for it, the one with less points than any
other. Proxies obtain points each time they are used, and a lot of points (penalization) when they

fail resolving a query.

- Document and Selection system for the analysis of text files: reading .txt files, and text
in general, must be followed by analysis. Document extracts the useful information (deleting
spaces, newlines, tabulation and other format and style elements) and classifies them in
sentences (lists of words) based on a given criteria. Selection provides the most significant
sentences for querying, based on filters, the longest sentences for example. Its main task is to
filter the most relevant information from the text, but also to reduce the intensive use of the

network.

Adapting external libraries or resources:

- PDF parsing: using the PDFBox library, any document printable to PDF, can be
converted to a Document. PDF format adds more difficulties, sometimes the text is separated in

a strange way, or populated with strange characters. All of that is filtered in order to get readable

text.

- Coding of the Yahoo queries and its results parser: this was also the first
implementation of a searcher, which also served as a template for the Google searcher, in terms
of calling and managing as much threads as queries, waiting for them to finish and stopping

them if necessary.

- Getting fresh proxies from the web: having a static list of proxies would not solve the

problem of getting blocked by search engines. Sooner or later, they would be banned, even more

41

if they are used simultaneously by multiple users. So, this program needed fresh proxies. There
are web pages that offer a list of those proxies for free, and so this part of the code just reads
their newest entries. It also keeps searches for more proxies any minute (the more time the user

spends searching, the more stressed the current proxies get).

42

