[Top] [Contents] [Index] [2]

Festival Speech Synthesis System

This file documents the Festival Speech Synthesis System 1.4.3. This document contains many gaps and is still in the
process of being written.

1. Abstract initial comments

2. Copying How you can copy and share the code
3. Acknowledgements List of contributors

4. What is new Enhancements since last public release

5. Overview Generalities and Philosophy

6. Installation Compilation and Installation

7. Quick start Just tell me what to type

8. Scheme A quick introduction to Festival's scripting language

Text methods for interfacing to Festival

9.TTS Text to speech modes
10. XML/SGML mark-up XML/SGML mark-up Language
11. Emacsinterface Using Festival within Emacs

Internal functions
12. Phonesets Defining and using phonesets

13. Lexicons Building and compiling Lexicons
14. Utterances Existing and defining new utterance types

Modules

15. Text analysis Tokenizing text

16. POS tagging Part of speech tagging

17. Phrase breaks Finding phrase breaks

18. Intonation Intonations modules

19. Duration Duration modules

20. UniSyn synthesizer The UniSyn waveform synthesizer

21. Diphone synthesizer Building and using diphone synthesizers
22. Other synthesis methods other waveform synthesis methods
23. Audio output Getting sound from Festival

24.Voices Adding new voices (and languages)
25.Tools CART, Ngrams etc

26. Building models from databases

Adding new modules and writing C++ code
27. Programming Programming in Festival (Lisp/C/C++)

28. API Using Festival in other programs
29. Examples Some simple (and not so simple) examples

30. Problems Reporting bugs.
31. References Other sources of information
32. Feature functions List of builtin feature functions.

33. Variablelist Short descriptions of al variables
34. Function list Short descriptions of al functions
Index Index of concepts.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

1. Abstract

This document provides a user manual for the Festival Speech Synthesis System, version 1.4.3.

Festival offers a general framework for building speech synthesis systems as well as including examples of various
modules. Asawhole it offersfull text to speech through a number APIs: from shell level, though a Scheme command
interpreter, asa C++ library, and an Emacs interface. Festival is multi-lingual, we have develeoped voicesin many
languages including English (UK and US), Spanish and Welsh, though English is the most advanced.

The system iswritten in C++ and uses the Edinburgh Speech Tools for low level architecture and has a Scheme
(SIOD) based command interpreter for control. Documentation is given in the FSF texinfo format which can generate
aprinted manual, info filesand HTML.

The latest details and a full software distribution of the Festival Speech Synthesis System are available through its
home page which may be found at

http://ww.cstr. ed. ac. uk/ projects/festival.htnl

T

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

2. Copying

Aswe feed the core system has reached an acceptable level of maturity from 1.4.0 the basic system is released under
afree lience, without the commercial restrictions we imposed on early versions. The basic system has been placed
under an X11 type licence which as free licences go is pretty free. No GPL code isincluded in festival or the speech
tools themselves (though some auxiliary files are GPL'd e.g. the Emacs mode for Festival). We have deliberately
choosen alicence that should be compatible with our commercial partners and our free software users.

However although the codeis free, we still offer no warranties and no maintenance. We will continue to endeavor to
fix bugs and answer queries when can, but are not in a position to guarantee it. We will consider maintenance
contracts and consultancy if desired, please contacts us for details.

Also note that not al the voices and lexicons we distribute with festival are free. Particularly the British English
lexicon derived from Oxford Advanced Learners Dictionary is free only for non-commercial use (we will release an
alternative soon). Also the Spanish diphone voice werelase is only free for non-commercial use.

If you are using Festival or the speech toolsin commercial environment, even though no licence is required, we
would be grateful if you let us know asit helpsjustify ourselves to our various sponsors.

The current copyright on the core system is

http://www.cstr.ed.ac.uk/projects/festival.html

The Festival Speech Synthesis System version 1.4.3
Centre for Speech Technol ogy Research
Uni versity of Edi nburgh, UK
Copyright (c) 1996-2002
Al'l Rights Reserved.

Perm ssion is hereby granted, free of charge, to use and distribute
this software and its docunmentation w thout restriction, including
without linmtation the rights to use, copy, nodify, nerge, publish,
di stribute, sublicense, and/or sell copies of this work, and to
permit persons to whomthis work is furnished to do so, subject to
the follow ng conditions:
1. The code nust retain the above copyright notice, this list of
conditions and the follow ng disclainer.
2. Any nodifications nust be clearly marked as such.
3. Oiginal authors' names are not del eted.
4. The authors' nanes are not used to endorse or pronote products
derived fromthis software without specific prior witten
per m ssi on.

THE UNI VERSI TY OF EDI NBURGH AND THE CONTRI BUTORS TO THI S WORK

DI SCLAI M ALL WARRANTI ES W TH REGARD TO THI S SOFTWARE, | NCLUDI NG
ALL | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS, | N NO EVENT
SHALL THE UN VERSI TY OF EDI NBURGH NOR THE CONTRI BUTORS BE LI ABLE
FOR ANY SPECI AL, | NDI RECT OR CONSEQUENTI AL DAMAGES OR ANY DAMACES
VHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N
AN ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON,

ARI SI NG QUT OF OR I N CONNECTI ON W TH THE USE OR PERFORVANCE OF

TH S SOFTWARE.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

3. Acknowledgements

The code in this system was primarily written by Alan W Black, Paul Taylor and Richard Caley. Festival sits on top
of the Edinburgh Speech Tools Library, and uses much of its functionality.

Amy Isard wrote a synthesizer for her MSc project in 1995, which first used the Edinburgh Speech Tools Library.
Although Festival doesn't contain any code from that system, her system was used as a basic model.

Much of the design and philosophy of Festival has been built on the experience both Paul and Alan gained from the
development of various previous synthesizers and software systems, especially CSTR's Osprey and Polyglot systems
taylor91 and ATR's CHATR system blacko4.

However, it should be stated that Festival isfully developed at CSTR and contains neither proprietary code or ideas.

Festival contains a number of subsystems integrated from other sources and we acknowledge those systems here.

[<1[>] [<<][Up][>>] [Top] [Contents] [Index] [7]

3.1 SIOD

The Scheme interpreter (SIOD -- Scheme In One Defun 3.0) was written by George Carrett (gjc@mitech.com,
gjc@paradigm.com) and offers a basic small Scheme (Lisp) interpreter suitable for embedding in applications such

as Festival as a scripting language. A number of changes and improvements have been added in our development but
it till remains that basic system. We are grateful to George and Paradigm Associates Incorporated for providing such
a useful and well-written sub-system.

Scheme I n One Defun (SICD)
COPYRI GHT (c) 1988-1994 BY
PARADI GM ASSOCI ATES | NCORPORATED, CAMBRI DGE, MASSACHUSETTS.
ALL RI GHTS RESERVED

Permi ssion to use, copy, nodify, distribute and sell this software
and its docunmentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all copies
and that both that copyright notice and this perm ssion notice appear
i n supporting docunentation, and that the nane of Paradi gm Associ ates
Inc not be used in advertising or publicity pertaining to distribution
of the software without specific, witten prior perm ssion.

PARADI GM DI SCLAI M5 ALL WARRANTI ES W TH REGARD TO TH S SOFTWARE, | NCLUDI NG
ALL | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS, I N NO EVENT SHALL
PARADI GM BE LI ABLE FOR ANY SPECI AL, | NDI RECT OR CONSEQUENTI AL DAMAGES OR
ANY DAMAGES WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS,
VHETHER | N AN ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON,

ARI SING QUT OF OR I N CONNECTI ON W TH THE USE OR PERFORMANCE OF THI S
SOFTWARE.

[<1[>] [<<][Up][>>] [Top] [Contents] [index] [2]

3.2 editline

Because of conflicts between the copyright for GNU readline, for which an optional interface wasincluded in earlier
versions, we have replace the interface with a complete command line editing system based on “ edi t | i ne' .
“Editline' wasposted to the USENET newsgroup * conp. sour ces. nmi sc' in 1992. A number of
modifications have been made to make it more useful to us but the original code (contained within the standard
speech tools distribution) and our modifications fall under the following licence.

Copyright 1992 Simmule Turner and Rich Salz. Al rights reserved.

This software is not subject to any license of the American Tel ephone
and Tel egraph Conpany or of the Regents of the University of California.

Permission is granted to anyone to use this software for any purpose on
any conputer system and to alter it and redistribute it freely, subject
to the followi ng restrictions:
1. The authors are not responsible for the consequences of use of this
software, no matter how awful, even if they arise fromflaws in it.
2. The origin of this software nust not be m srepresented, either by
explicit claimor by onmission. Since few users ever read sources,
credits nust appear in the docunentation.
3. Altered versions nmust be plainly narked as such, and nust not be
m srepresented as being the original software. Since few users
ever read sources, credits must appear in the docunentation.
4. This notice may not be renoved or altered.

I

[<1[>] [<<]1[Up][>>] [Top] [Contents] [Index] [?]

3.3 Edinburgh Speech Tools Library

The Edinburgh Speech Tools lies at the core of Festival. Although developed separately, much of the development of
certain parts of the Edinburgh Speech Tools has been directed by Festival's needs. In turn those who have contributed
to the Speech Tools make Festival a more usable system.

See section "Acknowledgements' in Edinburgh Speech Tools Library Manual.

Online information about the Edinburgh Speech Toolslibrary is available through

http://ww. cstr. ed. ac. uk/ proj ects/speech_tool s. htni

[(<1[>=] [<<][Up][>>] [Top] [Contents] [Index] [2]

3.4 Others

Many others have provided actual code and support for Festival, for which we are grateful. Specificaly,

. Alistair Conkie: various low level code points and some design work, Spanish synthesis, the old diphone
synthesis code.

. Stevelsard: directorship and LPC diphone code, design of diphone schema.

. EPSRC: who fund Alan Black and Paul Taylor.

. Sun Microsystems Laboratories; for supporting the project and funding Richard.

. AT&T Labs - Research: for supporting the project.

. Paradigm Associates and George Carrett: for Scheme in one defun.

. Mike Macon: Improving the quality of the diphone synthesizer and LPC analysis.

. Kurt Dusterhoff: Tilt intonation training and modelling.

. Amy lsard: for her SSML project and related synthesizer.

. Richard Taobin: for answering al those difficult questions, the socket code, and the XML parser.

. Simmule Turner and Rich Salz: command line editor (editline)

. BorjaEtxebarria: Help with the Spanish synsthesis

. Briony Williams: Welsh synthesis

. JacquesH. deVilliers. " j acques@se. ogi . edu' from CSLU at OGI, for the TCL interface, and other
usability issues

. KevinLenzo: " | enzo@s. cnu. edu’ from CMU for the PERL interface.

. Rob Clarke: for support under Linux.

. Samuel Audet " guar di a@am or g' : OS/2 support

. Mari Ostendorf: For providing access to the BU FM Radio corpus from which some modul es were trained.

. Meéelvin Hunt: from whose work we based our residual L PC synthesis model on

. Oxford Text Archive: For the computer users version of Oxford Advanced Learners Dictionary (redistributed
with permission).

. Reading University: for access to MARSEC from which the phrase break model was trained.

. LDC & Penn Tree Bank: from which the POS tagger was trained, redistribution of the models iswith
permission from the LDC.

. Roger Burroughes and Kurt Dusterhoff: For letting us capture their voices.

. ATR and Nick Campbell: for first getting Paul and Alan to work together and for the experience we gained.

. FSF: for G++, make,

. Center for Spoken Language Understanding: CSLU at OGlI, particularly Ron Cole and Mike Macon, have
acted as significant users for the system giving significant feedback and allowing us to teach courses on
Festival offering valuable real-use feedback.

. Our betatesters: Thanksto all the people who put up with previous versions of the system and reported bugs,
both big and small. These comments are very important to the constant improvements in the system. And
thanks for your quick responses when | had specific requests.

. And our users... Many people have downloaded earlier versions of the system. Many have found problems
with installation and use and have reported it to us. Many of you have put up with multiple compilations

http://www.cstr.ed.ac.uk/projects/speech_tools.html

trying to fix bugs remotely. We thank you for putting up with us and are pleased you've taken the time to help
us improve our system. Many of you have come up with uses we hadn't thought of, which is aways
rewarding.

Even if you haven't actively responded, the fact that you use the system at al makesit worthwhile.

[<][>] [=<<][Up][>>] [Top] [Contents] [Index] [?]

4. What is new

Compared to the the previous major release (1.3.0 release Aug 1998) 1.4.0 is not functionally so different fromits
previous versions. Thisrelease is primarily a consolidation release fixing and tidying up some of the lower level
aspects of the system to allow better modularity for some of our future planned modules.

. Copyright change: The system is now free and has no commercia restriction. Note that currently on the US
voices (ked and kal) are also now unrestricted. The UK English voices depend on the Oxford Advanced
Learners Dictionary of Current English which cannot be used for commercial use without permission from
Oxford University Press.

. Architecture tidy up: the interfaces to lower level part parts of the system have been tidied up deleting some of
the older code that was supported for compatibility reasons. Thisisamuch higher dependence of features and
easier (and safer) waysto register new objects as feature values and Scheme objects. Scheme has been tidied
up. Itisno longer "in one defun” but "in one directory".

. New documentation system for speech tools: A new dochbook based documentation system has been added to
the speech tools. Festival's documentation will will move over to this sometime soon too.

. initial JSAPI support: both JISAPI and JISML (somewhat similar to Sable) now have initia impelementations.
They of course depend on Java support which so far we have only (successfully) investgated under Solaris and
Linux.

. Generalization of statistical models: CART, ngrams, and WFSTs are now fully supported from Lisp and can
be used with a generalized viterbi function. This makes adding quite complex statistical models easy without
adding new C++.

. Tilt Intonation modelling: Full support is now included for the Tilt intomation models, both training and use.
. Documentation on Bulding New Voices in Festival: documentation, scripts etc. for building new voices and

languages in the system, see
http://ww.cstr.ed. ac. uk/ projects/festival/docs/festvox/

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

5. Overview

Festival is designed as a speech synthesis system for at |east three levels of user. First, those who simply want high
quality speech from arbitrary text with the minimum of effort. Second, those who are devel oping language systems
and wish to include synthesis output. In this case, a certain amount of customization is desired, such as different
voices, specific phrasing, dialog types etc. The third level isin developing and testing new synthesis methods.

Thismanual is not designed as atutorial on converting text to speech but for documenting the processes and use of
our system. We do not discuss the detailed algorithms involved in converting text to speech or the relative merits of

http://www.cstr.ed.ac.uk/projects/festival/docs/festvox/

multiple methods, though we will often give references to relevant papers when describing the use of each module.

For more general information about text to speech we recommend Dutoit's™ An i nt roduction to Text-to-
Speech Synt hesi s' dutoit97. For more detailed research issuesin TTS see sproat98 or vansanten96.

5.1 Philosophy Why wedid it likeitis
5.2 Future How much better its going to get

[<][>] [<<][Up][>>] [Top] [Contents] [Index][?]

5.1 Philosophy

One of the biggest problems in the devel opment of speech synthesis, and other areas of speech and language
processing systems, is that there are alot of simple well-known techniques lying around which can help you realise
your goal. But in order to improve some part of the whole system it is necessary to have a whole system in which you
can test and improve your part. Festival isintended as that whole system in which you may simply work on your
small part to improve the whole. Without a system like Festival, before you could even start to test your new module
you would need to spend significant effort to build awhole system, or adapt an existing one before you could start
working on your improvements.

Festival is specifically designed to allow the addition of new modules, easily and efficiently, so that development
need not get bogged down in re-implementing the wheel.

But there is another aspect of Festival which makesit more useful than simply an environment for researching into
new synthesis techniques. It is afully usable text-to-speech system suitable for embedding in other projects that
require speech output. The provision of afully working easy-to-use speech synthesizer in addition to just atesting
environment is good for two specific reasons. First, it offers a conduit for our research, in that our experiments can
quickly and directly benefit users of our synthesis system. And secondly, in ensuring we have afully working usable
system we can immediately see what problems exist and where our research should be directed rather where our
whims take us.

These concepts are not unique to Festival. ATR's CHATR system (black94) follows very much the same philosophy
and Festival benefits from the experiences gained in the development of that system. Festival benefits from various
pieces of previous work. Aswell as CHATR, CSTR's previous synthesizers, Osprey and the Polyglot projects
influenced many design decisions. Also we are influenced by more general programs in considering software
engineering issues, especially GNU Octave and Emacs on which the basic script model was based.

Unlike in some other speech and language systems, software engineering is considered very important to the
development of Festival. Too often research systems consist of random collections of hacky little scripts and code.
No one person can confidently describe the algorithms it performs, as parameters are scattered throughout the system,
with tricks and hacks making it impossible to really evaluate why the system is good (or bad). Such systems do not
help the advancement of speech technology, except perhaps in pointing at ideas that should be further investigated. If
the algorithms and techniques cannot be described externally from the program such that they can reimplemented by
others, what is the point of doing the work?

Festival offers acommon framework where multiple techniques may be implemented (by the same or different
researchers) so that they may be tested more fairly in the same environment.

Asafina word, we'd like to make two short statements which both achieve the same end but unfortunately perhaps
not for the same reasons:

Good software engineering makes good research easier
But the following seemsto be true also

If you spend enough effort on something it can be shown to be better than its competitors.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

5.2 Future

Festival is still very much in development. Hopefully this state will continue for along time. It is never possible to
complete software, there are aways new things that can make it better. However as time goes on Festival's core
architecture will stabilise and little or no changes will be made. Other aspects of the system will gain greater attention
such as waveform synthesis modules, intonation techniques, text type dependent analysers etc.

Festival will improve, so don't expected it to be the same six months from now.

A number of new modules and enhancements are already under consideration at various stages of implementation.
The following is a non-exhaustive list of what we may (or may not) add to Festival over the next six months or so.

. Selection-based synthesis: Moving away from diphone technology to more generalized selection of units for
speech database.

. New structure for linguistic content of utterances: Using techniques for Metrical Phonology we are building
more structure representations of utterances reflecting there linguistic significance better. Thiswill allow
improvementsin prosody and unit selection.

. Non-prosodic prosodic control: For language generation systems and custom tasks where the speech to be
synthesized is being generated by some program, more information about text structure will probably exist,
such as phrasing, contrast, key items etc. We are investigating the relationship of high-level tags to prosodic
information through the Sole project http://www.cstr.ed.ac.uk/projects/sole.html

. Dialect independent lexicons: Currently for each new dialect we need a new lexicon, we are currently
investigating aform of lexical specification that is dialect independent that allows the core form to be mapped
to different dialects. Thiswill make the generation of voicesin different dialects much easier.

[<1[>] [=<<][Up][>>] [Top] [Contents] [Index] [2]

6. Installation

This section describes how to install Festival from source in a new |ocation and customize that installation.

6.1 Requirements Software/Hardware requirements for Festival
6.2 Configuration Setting up compilation
6.3 Siteinitialization Settings for your particular site

6.4 Checking an installation But doesit work ...

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

6.1 Requirements

In order to compile Festival you first need the following source packages

festival-1.4.3-rel ease.tar.gz
Festival Speech Synthesis System source
speech_tools-1.2.3-release.tar.gz
The Edinburgh Speech Tools Library
festl ex NAME. tar. gz
The lexicon distribution, where possible, includes the lexicon input file as well as the compiled form, for your
convenience. The lexicons have varying distribution policies, but are all free except OALD, which isonly free

http://www.cstr.ed.ac.uk/projects/sole.html

for non-commercial use (we are working on afree replacement). In some cases only a pointer to an ftp'able
file plus a program to convert that file to the Festival format isincluded.

festvox_NAME. tar. gz
You'll need a speech database. A humber are available (with varying distribution policies). Each voice may
have other dependencies such as requiring particular lexicons

festdoc_1.4.3.tar.gz
Full postscript, info and html documentation for Festival and the Speech Tools. The source of the
documentation is available in the standard distributions but for your conveniences it has been pre-generated.

In addition to Festival specific sources you will aso need

A UNIX machine
Currently we have compiled and tested the system under Solaris (2.5(.1), 2.6, 2.7 and 2.8), SunOS (4.1.3),
FreeBSD 3.x, 4.x Linux (Redhat 4.1, 5.0, 5.1, 5.2, 6.[012], 7.[01], 8.0 and other Linux distributions), and it
should work under OSF (Dec Alphas) SGI (Irix), HPs (HPUX). But any standard UNIX machine should be
acceptable. We have now successfully ported this version to Windows NT nad Windows 95 (using the Cygnus
GNU win32 environment). Thisis still ayoung port but seems to work.
A C++ compiler
Note that C++ is not very portable even between different versions of the compiler from the same vendor.
Although we've tried very hard to make the system portable, we know it is very unlikely to compile without
change except with compilers that have already been tested. The currently tested systems are
o Sun Sparc Solaris 2.5, 2.5.1, 2.6, 2.7, 2.9: GCC 2.95.1, GCC 3.2
o FreeBSD for Intel 3.x and 4.x GCC 2.95.1, GCC 3.0
o Linux for Intel (RedHat 4.1/5.0/5.1/5.2/6.0/7.x/8.0): GCC 2.7.2, GCC 2.7.2/egcs-1.0.2, egcs 1.1.1, eges-
1.1.2, GCC 2.95.[123], GCC "2.96", GCC 3.0, GCC 3.0.1 GCC 3.2GCC 3.2.1
o Windows NT 4.0: GCC 2.7.2 plus egcs (from Cygnus GNU win32 b19), Visual C++ PRO v5.0, Visual
C++v6.0
Note if GCC works on one version of Unix it usually works on others.

We have compiled both the speech tools and Festival under Windows NT 4.0 and Windows 95 using the GNU
tools available from Cygnus.

ftp://ftp.cygnus. cont pub/ gnu-wi n32/.

GNU make
Due to there being too many different make programs out there we have tested the system using GNU make
on all systemswe use. Others may work but we know GNU make does.

Audio hardware
Y ou can use Festival without audio output hardware but it doesn't sound very good (though admittedly you
can hear less problems with it). A number of audio systems are supported (directly inherited from the audio
support in the Edinburgh Speech Tools Library): NCD's NAS (formerly called netaudio) a network
transparent audio system (which can be found at ftp:/ftp.x.org/contrib/audio/nas/); * / dev/ audi o' (at 8k
ulaw and 8/16hit linear), found on Suns, Linux machines and FreeBSD; and a method allowing arbitrary
UNIX commands. See section 23. Audio output.

Earlier versions of Festival mistakenly offered a command line editor interface to the GNU package readline, but due
to conflicts with the GNU Public Licence and Festival's licence this interface was removed in version 1.3.1. Even
Festival's new free licence would cause problems as readline support would restrict Festival linking with non-free
code. A new command line interface based on editline was provided that offers similar functionality. Editline remains
acompilation option asit is probably not yet as portable as we would like it to be.

In addition to the above, in order to process the documentation you will need ™ TeX' , " dvi ps' (or similar), GNU's
“makei nf o' (part of the texinfo package) and " t exi 2ht ml ' which isavailable from
http://wwwen.cern.ch/dci/texi2html/.

However the document files are also available pre-processed into, postscript, DVI, info and html as part of the
distributionin” f est doc-1. 4. X. tar. gz'.

ftp://ftp.cygnus.com/pub/gnu-win32/
ftp://ftp.x.org/contrib/audio/nas/
http://wwwcn.cern.ch/dci/texi2html/

Ensure you have afully installed and working version of your C++ compiler. Most of the problems people have had
ininstalling Festival have been due to incomplete or bad compiler installation. It might be worth checking if the
following program works if you don't know if anyone has used your C++ installation before.

#i ncl ude <i ostream h>
int min (int argc, char **argv)

{
}

cout << "Hello world\n";

Unpack all the source filesin anew directory. The directory will then contain two subdirectories

speech_t ool s/
festival/

T

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

6.2 Configuration

First ensure you have a compiled version of the Edinburgh Speech Tools Library. See
“speech_t ool s/ I NSTALL' for instructions.

The system now supports the standard GNU * conf i gur e' method for set up. In most cases thiswill automatically
configure festival for your particular system. In most cases you need only type

gmake

and the system will configure itself and conpile, (note you need to have compiled the Edinburgh Speech Tools
“speech_t ool s-1.2.2" first.

In some case hand configureisrequire. All of the configuration choise are held inthefile ™ confi g/ confi g
For the most part Festival configuration inherits the configuration from your speech tools config file

(C../speech_tool s/config/config').Additiona optional modules may be added by adding them to the
end of your config file e.g.

ALSO | NCLUDE += clunits

Adding and new module here will treat is asanew directory inthe ™ sr ¢/ nbdul es/' and compileit into the
system in the same way the OTHER DI RS feature was used in previous versions.

If the compilation directory being accessed by NFS or if you use an automounter (e.g. amd) it is recommend to
explicitly set the variable FESTI VAL_HOVE in " confi g/ confi g' . The command pwd is not reliable when a
directory may have multiple names.

Thereisasimple test suite with Festival but it requires the three basic voices and their respective lexiconsinstall
before it will work. Thus you need to install

festlex CMJ. tar.gz
festlex_ OALD.tar. gz

festl ex POSLEX tar.gz
festvox_don. tar. gz
festvox_kedl pcl6k.tar. gz
festvox_rabl pcl6k.tar. gz

If these are installed you can test the installation with
ghake test

To simply make it run with amale US Ebglish voiuce it is sufficient to install just

festlex CMJ. tar.gz
festl ex POSLEX tar. gz
festvox_kal | pcl6k.tar. gz

Note that the single most common reason for problems in compilation and linking found amongst the beta testers was
abad installation of GNU C++. If you get many strange errorsin G++ library header filesor link errorsit isworth
checking that your system has the compiler, header files and runtime libraries properly installed. This may be
checked by compiling a simple program under C++ and also finding out if anyone at your site has ever used the
installation. Most of these installation problems are caused by upgrading to a newer version of libg++ without
removing the older version so amixed version of the . h' filesexist.

Although we have tried very hard to ensure that Festival compiles with no warnings thisis not possible under some
systems.

Under SunOS the system include files do not declare a number of system provided functions. Thisabug in Sun's
include files. Thiswill causes warnings like "implicit definition of fprintf". These are harmless.

Under Linux awarning at link time about reducing the size of some symbols often is produced. Thisis harmless.
There is often occasiona warnings about some socket system function having an incorrect argument type, thisis also
harmless.

The speech tools and festival compile under Windows95 or Windows NT with Visual C++ v5.0 using the Microsoft
“nmake' make program. We've only done this with the Professonal edition, but have no reason to believe that it
relies on anything not in the standard edition.

In accordance to VC++ conventions, object files are created with extension .obj, executables with extension .exe and
libraries with extension .lib. This may mean that both unix and Win32 versions can be built in the same directory
tree, but | wouldn't rely oniit.

To do this you require nmake Makefiles for the system. These can be generated from the gnumake Makefiles, using
the command

gnurmake VCMakefil e

in the speech_tools and festival directories. | have only done this under unix, it's possible it would work under the
Cygnus gnuwin32 system.

If * nmake. depend' filesexist (i.e. if you havedone ™ gnunmake depend' inunix) equivalent

“vc_make. depend' fileswill be created, if not the VCMakefiles will not contain dependency information for the
*. cc' files. Theresult will be that you can compile the system once, but changes will not cause the correct things to
be rebuilt.

In order to compile from the DOS command line using Visual C++ you need to have a collection of environment
variables set. In Windows NT thereis an instalation option for Visual C++ which sets these globally. Under

Windows95 or if you don't ask for them to be set globally under NT you need to run
vcvar s32. bat

See the VC++ documentation for more details.

Once you have the source trees with V CMakefiles somewhere visible from Windows, you need to copy
“peech_t ool s\config\vc _config-dist' to speech_tools\config\vc config' andedititto
suit your local situation. Then do the ssmewith ™ f esti val \ confi g\vc_confi g-di st'.

The thing most likely to need changing is the definition of FESTI VAL_HOVE in
“festival\config\vc _config make rul es' which needsto point to where you have put festival.

Now you can compile. cd to the speech_tools directory and do
nmake / nol ogo /fVCMvakefile

and the library, the programs in main and the test programs should be compiled.

The tests can't be run automatically under Windows. A simple test to check that things are probably OK is:
mai n\ na_pl ay testsuite\data\ch wave. wav

which reads and plays awaveform.

Next go into the festival directory and do
nmake /nol ogo /fVCWvakefile

to build festival. When it's finished, and assuming you have the voices and lexicons unpacked in the right place,
festival should run just as under unix.

We should remind you that the NT/95 ports are till young and there may yet be problems that we've not found yet.
We only recommend the use the speech tools and Festival under Windows if you have significant experiencein C++
under those platforms.

Most of the modules ™ sr ¢/ nodul es' are actually optional and the system could be compiled without them. The
basic set could be reduced further if certain facilities are not desired. Particularly: * donovan' whichisonly
required if the donovan voiceisused; " r xp' if no XML parsing isrequired (e.g. Sable); and ™ par ser' if no
stochastic paring is required (this parser isn't used for any of our currently released voices). Actually even

“Uni Syn' and ™ Uni Syn_di phone' could be removed if some external waveform synthesizer is being used (e.g.
MBROLA) or some alternative onelike " OGd r esLPC' . Removing unused modules will make the festival binary
smaller and (potentially) start up faster but don't expect too much. Y ou can delete these by changing the

BASE DI RSvariablein ™ sr ¢/ nodul es/ Makefil e'.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

6.3 Site initialization

Once compiled Festival may be further customized for particular sites. At start up time Festival loads the file
“init.scm fromitslibrary directory. Thisfile further loads other necessary files such as phoneset descriptions,
duration parameters, intonation parameters, definitions of voices etc. It will also load thefiles™ si t evar s. scni
and siteinit.scm iftheyexist. sitevars. scm isloaded after the basic Scheme library functions are
loaded but before any of the festival related functions are loaded. Thisfileisintended to set various path names
before various subsystems are loaded. Typically variables such as| exdi r (the directory where the lexicons are

held), and voi ces_di r (pointing to voice directories) should be reset here if necessary.

The default installation will try to find its lexicons and voices automatically based on the value of | oad- pat h (this
is derived from FESTI VAL _HOVE at compilation time or by using the- - | i bdi r at run-time). If the voices and
lexicons have been unpacked into subdirectories of the library directory (the default) then no site specific
initialization of the above pathnames will be necessary.

The second site specific fileis " sit ei ni t. scm . Typical examples of local initialization are asfollows. The
default audio output method is NCD's NAS system if that is supported as that's what we use normally in CSTR. If it
is not supported, any hardware specific mode is the default (e.g. sunl6audio, freebasl6audio, linux16audio or
mplayeraudio). But that default isjust asettingin " i ni t. scni . If for example in your environment you may wish
the default audio output method to be 8k mulaw through ™ / dev/ audi o' you should add the following line to your
“siteinit.scm file

(Paramet er.set ' Audi o_Method ' sunaudi 0)

Note the use of Par amet er . set rather than Par anet er . def the second function will not reset the valueif itis
already set. Remember that you may use the audio methods sunl6audi o. | i nux16audi o or

freebsdl6audi o only if NATI VE_AUDI Owas selected in * speech_t ool s/ confi g/ confi g' andyour
are on such machines. The Festival variable * nodul es* containsalist of all supported functions/modulesin a
particular installation including audio support. Check the value of that variable if things aren't what you expect.

If you areinstalling on a machine whose audio is not directly supported by the speech tools library, an external
command may be executed to play awaveform. The following exampleisfor an imaginary machine that can play
audio files through aprogram called * adpl ay' with arguments for sample rate and file type. When playing
waveforms, Festival, by default, outputs as unheadered waveform in native byte order. In this example you would set
up the default audio playing mechanismin " sitei nit.scm asfollows

(Paramet er.set ' Audi o_Method ' Audi o_Comand)
(Paranet er.set ' Audi o_Conmand "adplay -raw -r $SR $FI LE")

For Audi o_Comrand method of playing waveforms Festival supports two additional audio parameters.

Audi o_Requi r ed_Rat e alowsyou to use Festivalsinternal sample rate conversion function to any desired rate.
Note this may not be as good as playing the waveform at the samplerateit isoriginally created in, but as some
hardware devices are restrictive in what sample rates they support, or have naive resample functions this could be
optimal. The second addition audio parameter is Audi o_Requi r ed_For mat which can be used to specify the
desired output forms of the file. The default is unheadered raw, but this may be any of the values supported by the
speech tools (including nist, esps, snd, riff, aiff, audlab, raw and, if you really want it, ascii).

For example suppose you run Festival on a remote machine and are not running any network audio system and want
Festival to copy files back to your local machine and simply cat themto " / dev/ audi o' . The following would do
that (assuming permissions for rsh are alowed).

(Paraneter.set 'Audi o_Mthod ' Audi o_Comrand)
;7 Make output file ulaw 8k (format ulaw inplies 8k)
(Paramet er.set ' Audi o_Required Fornat 'ul aw)
(Paramet er. set ' Audi o_Conmand
"userhost="echo $DI SPLAY | sed 's/:.*$//'"; rcp $FI LE $userhost: $FI LE; \
rsh $userhost \"cat $FILE >/dev/audio\" ; rsh $userhost \"rm $FILE\"")

Note there are limits on how complex acommand you want to put in the Audi o_Conmmand string directly. It can get
very confusing with respect to quoting. It is therefore recommended that once you get past a certain complexity
consider writing asimple shell script and calling it from the Audi o_Command string.

A second typical customization is setting the default speaker. Speakers depend on many things but due to various
licence (and resource) restrictions you may only have some diphone/nphone databases available in your installation.
The function name that isthe value of voi ce_def aul t iscaled immediately after “ si tei ni t. scnl isloaded
offering the opportunity for you to change it. In the standard distribution no change should be required. If you
download all the distributed voicesvoi ce_r ab_di phone isthe default voice. Y ou may change thisfor asite by

adding thefollowingto ~ si t ei nit. scm or per person by changing your ~ . f esti val rc' . For exampleif you
wish to change the default voice to the American onevoi ce_ked_di phone

(set! voice_default 'voice_ked_di phone)

Note the single quote, and note that unlikein early versionsvoi ce_def aul t isnot afunction you can call
directly.

A second level of customization is on a per user basis. After loading " i ni t . scni , which includes
“sitevars.scm and siteinit.scm forlocal installation, Festival loadsthefile™ . f esti val rc' from
the user's home directory (if it exists). Thisfile may contain arbitrary Festival commands.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

6.4 Checking an installation

Once compiled and site initialization is set up you should test to see if Festival can speak or not.

Start the system

$ bin/festival

Festival Speech Synthesis System 1.4.3:rel ease Jan 2003

Copyright (C) University of Edinburgh, 1996-2003. Al rights reserved.
For details type “(festival _warranty)'

festival > ~D

If errors occur at this stage they are most likely to do with pathname problems. If any error messages are printed
about non-existent files check that those pathnames point to where you intended them to be. Most of the (default)
pathnames are dependent on the basic library path. Ensure that is correct. To find out what it has been set to, start the
system without loading the init files.

$ bin/festival -q

Festival Speech Synthesis System 1.4.3:rel ease Jan 2003

Copyright (C) University of Edi nburgh, 1996-2003. Al rights reserved.

For details type "(festival _warranty)'

festival> libdir

"/projects/festival/lib/"

festival > ~D

This should show the pathname you set inyour * confi g/ config'.
If the system starts with no errors try to synthesize something
festival > (SayText "hello world")

Some files are only accessed at synthesis time so this may show up other problem pathnames. If it talks, you'rein
business, if it doesn't, here are some possible problems.

If you get the error message
Can't access NAS server

Y ou have selected NAS as the audio output but have no server running on that machine or your DI SPLAY or
AUDI OSERVER environment variable is not set properly for your output device. Either set these properly or change
the audio output devicein ™| i b/ si tei nit.scm asdescribed above.

Ensure your audio device actually works the way you think it does. On Suns, the audio output device can be switched
into a number of different output modes, speaker, jack, headphones. If thisis set to the wrong one you may not hear
the output. Use one of Sun'stoolsto changethis(try ~ / usr/ deno/ SOUNDY bi n/ soundt ool '). Try to find an
audio file independent of Festival and get it to play on your audio. Once you have done that ensure that the audio
output method set in Festival matches that.

Once you have got it talking, test the audio spooling device.
festival> (intro)

This plays a short introduction of two sentences, spooling the audio output.

Finally exit from Festival (by end of fileor (qui t)) and test the script mode with.

$ exanpl es/ saytine

A test suite isincluded with Festival but it makes certain assumptions about which voices are installed. It assumes
that voi ce_r ab_di phone (" f est vox_r abxxxx. tar. gz') isthe default voice and that

voi ce_ked_di phone andvoi ce_don_di phone (" f est vox_kedxxxx.tar.gz' and
“festvox_don. tar.gz')areinstalled. Alsoloca settingsinyour " festival /lib/siteinit.scm may
affect these tests. However, after installation it may be worth trying

ghurake t est

fromthe festival /"' directory. Thiswill do varioustests including basic utterance tests and tokenization tests. It
also checks that voices are installed and that they don't interfere with each other. These tests are primarily regression
tests for the developers of Festival, to ensure new enhancements don't mess up existing supported features. They are
not designed to test an installation is successful, though if they run correctly it is most probable the installation has
worked.

I

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

7. Quick start

This section is for those who just want to know the absolute basics to run the system.

Festival works in two fundamental modes, command mode and text-to-speech mode (tts-mode). In command mode,
information (in files or through standard input) is treated as commands and is interpreted by a Scheme interpreter. In
tts-mode, information (in files or through standard input) is treated as text to be rendered as speech. The default mode
is command mode, though this may change in later versions.

7.1 Basic command line options
7.2 Sample command driven session
7.3 Getting some help

I

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

7.1 Basic command line options

Festival's basic calling method is as

festival [options] filel file2 ...

Options may be any of the following

-q
start Festival without loading " i nit. scm oruser's™ . festivalrc'

-b

--bat ch
After processing any file arguments do not become interactive

-1

--interactive
After processing file arguments become interactive. This option overrides any batch argument.

--tts
Treat file argumentsin text-to-speech mode, causing them to be rendered as speech rather than interpreted as
commands. When selected in interactive mode the command line edit functions are not available

- - command
Treat file arguments in command mode. Thisis the default.

- -l anguage LANG
Set the default language to LANG. Currently LANG may be one of engl i sh, spani sh orwel sh
(depending on what voices are actually available in your installation).

--server
After loading any specified files go into server mode. Thisis a mode where Festival waitsfor clientson a
known port (the value of ser ver _port, default is 1314). Connected clients may send commands (or text)
to the server and expect waveforms back. See section 28.3 Server/client API. Note server mode may be unsafe
and allow unauthorised access to your machine, be sure to read the security recommendationsin 28.3
Server/client API

--script scriptfile
Run scriptfile as a Festival script file. Thisissimilar to to - - bat ch but it encapsulates the command line
arguments into the Scheme variablesar gv and ar gc, so that Festival scripts may process their command
line arguments just like any other program. It aso does not load the the basic initialisation files as sometimes
you may not want to do this. If you wish them, you should copy the loading sequence from an example
Festival script like™ f esti val / exanpl es/ sayt ext' .

- - heap NUMBER
The Scheme heap (basic number of Lisp cells) is of afixed size and cannot be dynamically increased at run
time (this would complicate garbage collection). The default size is 210000 which seems to be more than
adequate for most work. In some of our training experiments where very large list structures are required it is
necessary to increase this. Note there is atrade off between size of the heap and time it takes to garbage
collect so making this unnecessarily big isnot agood idea. If you don't understand the above explanation you
almost certainly don't need to use the option.

In command mode, if the file name starts with aleft parenthesis, the name itself is read and evaluated asa Lisp
command. Thisis often convenient when running in batch mode and a simple command is necessary to start the
whole thing off after loading in some other specific files.

[(<1[>] [=<][Up]l[>>] [Top] [Contents] [Index] [?]

7.2 Sample command driven session

Here is a short session using Festival's command interpreter.

Start Festival with no arguments

$ festival

Festival Speech Synthesis System 1.4.3:rel ease Dec 2002

Copyright (C) University of Edinburgh, 1996-2002. Al rights reserved.
For details type “(festival _warranty)'

festival >

Festival uses the acommand line editor based on editline for terminal input so command line editing may be done
with Emacs commands. Festival also supports history as well as function, variable name, and file name compl etion
viathe TAB key.

Typing hel p will give you more information, that ishel p without any parenthesis. (It is actually a variable name
whose value is a string containing help.)

Festival offerswhat is called a read-eval-print loop, because it reads an s-expression (atom or list), evaluatesit and
prints the result. As Festival includes the SIOD Scheme interpreter most standard Scheme commands work

festival> (car '(a d))
a

festival > (+ 34 52)
86

In addition to standard Scheme commands a number of commands specific to speech synthesis are included.
Although, as we will see, there are smpler methods for getting Festival to speak, here are the basic underlying
explicit functions used in synthesizing an utterance.

Utterances can consist of various types See section 14.2 Utterance types, but the simplest form is plain text. We can
create an utterance and save it in avariable

festival > (set! uttl (Utterance Text "Hello world"))
#<Ut terance 1d08a0>
festival >

The (hex) number in the return value may be different for your installation. That is the print form for utterances.
Their internal structure can be very large so only atoken form is printed.

Although this creates an utterance it doesn't do anything else. To get awaveform you must synthesizeit.

festival > (utt.synth uttl)
#<Ut t er ance 1d08a0>
festival >

This calls various modules, including tokenizing, duration,. intonation etc. Which modules are called are defined with
respect to the type of the utterance, in this case Text . It is possible to individually call the modules by hand but you
just wanted it to talk didn't you. So

festival > (utt.play uttl)

#<Utterance 1d08a0>

festival >

will send the synthesized waveform to your audio device. Y ou should hear "Hello world" from your machine.

To makethisal easier asmall function doing these three steps exists. Say Text simply takes a string of text,
synthesizesit and sendsit to the audio device.

festival > (SayText "Good norning, welconme to Festival™")
#<U terance 1d8fdO>
festival >

Of course as history and command line editing are supported c- p or up-arrow will allow you to edit the aboveto
whatever you wish.

Festival may also synthesize from files rather than simply text.

festival > (tts "nyfile" nil)
nil
festival >

The end of file character c- d will exit from Festival and return you to the shell, aternatively the command qui t
may be called (don't forget the parentheses).

Rather than starting the command interpreter, Festival may synthesize files specified on the command line

uni x$ festival --tts nyfile
uni x$

Sometimes a simple waveform is required from text that isto be kept and played at some later time. The simplest
way to do thiswith festival isby using the ™ t ext 2wave' program. Thisisafestival script that will take afile (or
text from standard input) and produce a single waveform.

Anexampleuseis
text2wave nyfile.txt -o nyfile.wav

Options exist to specify the waveform file type, for example if Sun audio format is required
text2wave nyfile.txt -otype snd -o nyfile.wav

Use -h' on"text2wave' toseeall options.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [2]

7.3 Getting some help

If no audio is generated then you must check to seeif audio is properly initialized on your machine. See section 23.
Audio output.

In the command interpreter m h (meta-h) will give you help on the current symbol before the cursor. Thiswill be a
short description of the function or variable, how to use it and what its arguments are. A listing of al such help
strings appears at the end of this document. m s will synthesize and say the same information, but this extra function
isredly just for show.

Thelisp function manual will send the appropriate command to an already running Netscape browser process. I
ni | isgiven asan argument the browser will be directed to the tables of contents of the manual. If anon-nil valueis
given it is assumed to be a section title and that section is searched and if found displayed. For example

festival > (nmanual "Accessing an utterance")

Another related function is manual - symwhich given a symbol will check its documentation string for a cross

reference to a manual section and request Netscape to display it. Thisfunction is bound to m mand will display the
appropriate section for the given symbol.

Note also that the TAB key can be used to find out the name of commands available as can the function Hel p
(remember the parentheses).

For more up to date information on Festival regularly check the Festival Home Page at

http://ww. cstr. ed. ac. uk/ projects/festival.htmnl

Further help is available by mailing questions to
festival -hel p@str. ed. ac. uk

Although we cannot guarantee the time required to answer you, we will do our best to offer help.

Bug reports should be submitted to

festival -bug@str. ed. ac. uk

If thereis enough user traffic ageneral mailing list will be created so al users may share comments and receive
announcements. In the mean time watch the Festival Home Page for news.

T

[<1[>] [<<][Upl[>>] [Top| [Contents] [Index] [2]

8. Scheme

Many people seem daunted by the fact that Festival uses Scheme as its scripting language and feel they can't use
Festival because they don't know Scheme. However most of those same people use Emacs everyday which also has
(amuch more complex) Lisp system underneath. The number of Scheme commands you actually need to know in
Festival isreally very small and you can easily just find out as you go along. Also people use the Unix shell often but
only know a small fraction of actual commands available in the shell (or in fact that there even isadistinction
between shell builtin commands and user definable ones). So take it easy, you'll learn the commands you need fairly
quickly.

8.1 Scheme references Places to learn more about Scheme
8.2 Scheme fundamentals Syntax and semantics

8.3 Scheme Festival specifics

8.4 Scheme 1/O

I

[<][>] [=<<][Up][>>] [Top] [Contents] [Index] [?]

8.1 Scheme references

If you wish to learn about Scheme in more detail | recommend the book abel son85.

The Emacs Lisp documentation is reasonable asit is comprehensive and many of the underlying uses of Schemein
Festival were influenced by Emacs. Emacs Lisp however is not Scheme so there are some differences.

http://www.cstr.ed.ac.uk/projects/festival.html

Other Scheme tutorials and resources available on the Web are

. The Revised Revised Revised Revised Scheme Report, the document defining the language is available from
http://tinuviel.cs.weu.edu/res/ldp/rdrs-htm/r4rs_toc. htnl

. aScheme tutorials from the net:

o http://www.cs.uoregon.edu/classes/cis425/schemeT utorial .html
. the Scheme FAQ

o http://www.landfield.com/fags/scheme-fag/part1/

[<]1[>] [<<][Up]l[>>] [Top] [Contents] [Index] [?]

8.2 Scheme fundamentals

But you want more now, don't you, not just be referred to some other book. OK here goes.

Syntax: an expression isan atomor alist. A list consists of aleft paren, anumber of expressions and right paren.
Atoms can be symbols, numbers, strings or other special types like functions, hash tables, arrays, etc.

Semantics: All expressions can be evaluated. Lists are evaluated as function calls. When evaluating alist al the
members of thelist are evaluated first then the first item (afunction) is called with the remaining itemsin thelist as
arguments. Atoms are evaluated depending on their type: symbols are evaluated as variables returning their values.
Numbers, strings, functions, etc. evaluate to themselves.

Comments are started by a semicolon and run until end of line.

And that'sit. There is nothing more to the language that. But just in case you can't follow the consequences of that,
here are some key examples.

festival> (+ 2 3)

5

festival > (set! a 4)
4

festival> (* 3 a)
12

festival > (define (add a b) (+ a b))

#<CLOSURE (a b) (+ a b)>

festival > (add 3 4)

-

festival > (set! alist '(apples pears bananas))
(appl es pears bananas)

festival > (car alist)

appl es

festival > (cdr alist)

(pear s bananas)

festival > (set! blist (cons 'oranges alist))
(oranges appl es pears bananas)

festival > (append alist blist)

(appl es pears bananas oranges appl es pears bananas)
festival > (cons alist blist)

((appl es pears bananas) oranges appl es pears bananas)
festival > (length alist)

3

festival > (Il ength (append alist blist))

-

http://tinuviel.cs.wcu.edu/res/ldp/r4rs-html/r4rs_toc.html
http://www.cs.uoregon.edu/classes/cis425/schemeTutorial.html
http://www.landfield.com/faqs/scheme-faq/part1/

T

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

8.3 Scheme Festival specifics

There anumber of additions to SIOD that are Festival specific though still part of the Lisp system rather than the
synthesis functions per se.

By convention if the first statement of afunction isastring, it is treated as a documentation string. The string will be
printed when help is requested for that function symbol.

In interactive mode if the function : backt r ace iscalled (within parenthesis) the previous stack trace is displayed.
Cdlling : backt r ace with anumeric argument will display that particular stack framein full. Note that any
command other than : backt r ace will reset the trace. Y ou may optionally call

(set_backtrace t)

Which will cause a backtrace to be displayed whenever a Scheme error occurs. This can be put in your
“.festivalrc' if youwish. Thisisespecially useful when running Festival in non-interactive mode (batch or
script mode) so that more information is printed when an error occurs.

A hook in Lisp termsis a position within some piece of code where a user may specify their own customization. The
notion is used heavily in Emacs. In Festival there a number of places where hooks are used. A hook variable contains
either afunction or list of functionsthat are to be applied at some point in the processing. For example the

aft er _synt h_hooks are applied after synthesis has been applied to allow specific customization such as
resampling or modification of the gain of the synthesized waveform. The Scheme function appl y_hooks takesa
hook variable as argument and an object and applies the function/list of functionsin turn to the object.

When an error occursin either Scheme or within the C++ part of Festival by default the system jumps to the top
level, resetsitself and continues. Note that errors are usually serious things, pointing to bugsin parameters or code.
Every effort has been made to ensure that the processing of text never causes errorsin Festival. However when using
Festival as a development system it is often that errors occur in code.

Sometimes in writing Scheme code you know there is a potential for an error but you wish to ignore that and
continue on to the next thing without exiting or stopping and returning to the top level. For example you are
processing a number of utterances from a database and some files containing the descriptions have errorsin them but
you want your processing to continue through every utterance that can be processed rather than stopping 5 minutes
after you gone home after setting a big batch job for overnight.

Festival's Scheme provides the function unwi nd- pr ot ect which allows the catching of errors and then continuing
normally. For example suppose you have the function pr ocess_ut t which takes afilename and does things which
you know might cause an error. Y ou can write the following to ensure you continue processing even in an error
OCCUrs.

(unwi nd- pr ot ect
(process_utt fil enane)
(begin
(format t "Error found in processing %\n" filenane)
(format t "continuing\n")))

Theunwi nd- pr ot ect function takes two arguments. Thefirst is evaluated and if no error occurs the value
returned from that expression is returned. If an error does occur while evaluating the first expression, the second
expression is evaluated. unwi nd- pr ot ect may be used recursively. Note that al files opened while evaluating the
first expression are closed if an error occurs. All global variables outside the scope of the unwi nd- pr ot ect will
be left as they were set up until the error. Care should be taken in using this function but its power is necessary to be
able to write robust Scheme code.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

8.4 Scheme I/O

Different Scheme's may have quite different implementations of filei/o functions so in this section we will describe
the basic functions in Festival SIOD regarding i/o.

Simple printing to the screen may be achieved with the function pr i nt which prints the given s-expression to the
screen. The printed form is preceded by anew line. Thisis often useful for debugging but isn't really powerful
enough for much else.

Files may be opened and closed and referred to file descriptorsin adirect analogy to C's stdio library. The SIOD
functionsf open and f cl ose work in the exactly the same way as their equivalently named partnersin C.

Thef or mat command follows the command of the same name in Emacs and a number of other Lisps. C
programmers can think of it asf pri nt f . f or mat takes afile descriptor, format string and arguments to print. The
file description may be afile descriptor as returned by the Scheme function f open, it may also bet which means
the output will be directed as standard out (cf. pri nt f). A third possibility isni | which will cause the output to
printed to a string which is returned (cf. spri nt f).

The format string closely follows the format stringsin ANSI C, but it is not the same. Specifically the directives
currently supported are, %84 %d, %, %8, % , %g and %¢. All modifiers for these are also supported. In addition % is
provided for printing of Scheme objects as objects.

For example
(format t "9%03d 93.4f % B % %\n" 23 23 "abc" "abc" '(a b d) uttl)

will produce
023 23.0000 abc "abc" (a b d) #<Uterance 32f228>

on standard output.

When large lisp expressions are printed they are difficult to read because of the parentheses. The function ppri nt f
prints an expression to afile description (or t for standard out). It prints so the s-expression is nicely lined up and
indented. Thisis often called pretty printing in Lisps.

For reading input from terminal or file, there is currently no equivalent to scanf . Items may only be read as Scheme
expressions. The command

(1 oad FI LENAME t)

will load all s-expressionsin FI LENANME and return them, unevaluated as a list. Without the third argument the
| oad function will load and evaluate each s-expression in thefile.

Toread individual s-expressionsuser eadf p. For example

(let ((fd (fopen trainfile "r"))
(entry)
(count 0))
(while (not (equal? (set! entry (readfp fd)) (eof-val)))
(if (string-equal (car entry) "hone")
(set! count (+ 1 count))))
(fclose fd))

To convert asymbol whose print name is a number to a number use par se- nunber . Thisisthe equivaent to
at of inC.

Note that, all i/o from Scheme input filesis assumed to be basically some form of Scheme data (though can be just
numbers, tokens). For more elaborate analysis of incoming data it is possible to use the text tokenization functions
which offer afully programmable method of reading data.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

9.TTS

Festival supports text to speech for raw text files. If you are not interested in using Festival in any other way except
as black box for rendering text as speech, the following method is probably what you want.

festival --tts nyfile

Thiswill say the contentsof * myfi | ' . Alternatively text may be submitted on standard input

echo hello world | festival --tts
cat nyfile | festival --tts

Festival supports the notion of text modes where the text file type may be identified, allowing Festival to process the
file in an appropriate way. Currently only two types are considered stable: STML and r aw, but other types such as
emai | , HTM,, Lat ex, etc. are being developed and discussed below. This follows the idea of buffer modesin
Emacs where afile's type can be utilized to best display the text. Text mode may also be selected based on a
filename's extension.

Within the command interpreter the functiont t s isused to render files astext; it takes a filename and the text mode
as arguments.

9.1 Utterance chunking From text to utterances
9.2 Text modes Mode specific text analysis
9.3 Example text mode An example mode for reading email

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

9.1 Utterance chunking

Text to speech works by first tokenizing the file and chunking the tokens into utterances. The definition of utterance
breaks is determined by the utterance treein variable eou_t r ee. A default versionisgivenin " i b/tts. scmi .
This uses a decision tree to determine what signifies an utterance break. Obviously blank lines are probably the most
reliable, followed by certain punctuation. The confusion of the use of periods for both sentence breaks and
abbreviations requires some more heuristics to best guess their different use. The following tree is currently used
which works better than simply using punctuation.

(defvar eou_tree

"((n.whitespace matches ".*\n.*\mM\\ (.\\[\n\\)*") ;5 2 or nore new ines
((1))
((punc in ("2" ":" "1I"))
((1))

((punc is ".")
;7 This is to distinguish abbreviations vs periods
;; These are heuristics
((name matches "\\ (. *\\..*\\|[A-Z][A-Za-z] ?[A-Za-z] ?\\ | etc\\) ")
((n.whitespace is " ")
((0)) ;; I f abbrev single space isn't enough for break
((n.nane matches "[A-Z].*")
((1))
((0))))

((n.whitespace is " ") ;; if it doesn't |ook like an abbreviation
((n.name matches "[A-Z].*") ;; single space and non-cap i s no break
((1))
((0)))
((1))))
((0)))))

The token itemsthisis applied to will always (except in the end of file case) include one following token, so ook
ahead is possible. The"n." and "p." and "p.p." prefixes alow access to the surrounding token context. The features
nanme, whi t espace and punc allow access to the contents of the token itself. At present there is no way to access
the lexicon form this tree which unfortunately might be useful if certain abbreviations were identified as such there.

Note these are heuristics and written by hand not trained from data, though problems have been fixed as they have
been observed in data. The above rules may make mistakes where abbreviations appear at end of lines, and when
improper spacing and capitalization is used. Thisis probably worth changing, for modes where more casual text
appears, such as email messages and USENET news messages. A possible improvement could be made by analysing
atext to find out its basic threshold of utterance break (i.e. if no full stop, two spaces, followed by a capitalized word
sequences appear and the text is of areasonable length then look for other criteria for utterance breaks).

Ultimately what we are trying to do is to chunk the text into utterances that can be synthesized quickly and start to
play them quickly to minimise the time someone has to wait for the first sound when starting synthesis. Thus it would
be better if this chunking were done on prosodic phrases rather than chunks more similar to linguistic sentences.
Prosodic phrases are bounded in size, while sentences are not.

T

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

9.2 Text modes

We do not believe that all texts are of the same type. Often information about the general contents of file will aid
synthesis greatly. For examplein Latex files we do not want to here "left brace, backslash e m" before each
emphasized word, nor do we want to necessarily hear formating commands. Festival offers a basic method for
specifying customization rules depending on the mode of the text. By type we are following the notion of modesin
Emacs and eventually will alow customization at asimilar level.

Modes are specified as the third argument to the function t t s. When using the Emacs interface to Festival the buffer
mode is automatically passed as the text mode. If the mode is not supported a warning message is printed and the raw
text modeis used.

Our initial text mode implementation allows configuration both in C++ and in Scheme. Obviously in C++ almost
anything can be done but it is not as easy to reconfigure without recompilation. Here we will discuss those modes
which can be fully configured at run time.

A text mode may contain the following

filter
A Unix shell program filter that processes the text file in some appropriate way. For example for email it
might remove uninteresting headers and just output the subject, from line and the message body. If not
specified, an identity filter is used.

init_function
This (Scheme) function will be called before any processing will be done. It allows further set up of
tokenization rules and voices etc.

exit_function
This (Scheme) function will be called at the end of any processing allowing reseting of tokenization rules etc.

analysis mode
If analysismodeisxmni thefileisread through the built in XML parser r xp. Alternatively if anaysismodeis
xxml thefilter should an SGML normalising parser and the output is processed in away suitable for it. Any
other valueisignored.

These mode specific parameters are specified inthe a-list heldint t s_t ext _nodes.
When using Festival in Emacs the emacs buffer mode is passed to Festival as the text mode.
Note that above mechanism is not really designed to be re-entrant, this should be addressed in later versions.

Following the use of auto-selection of mode in Emacs, Festival can auto-select the text mode based on the filename
given when no explicit modeis given. The Lisp variable aut o- t ext - node- al i st isalist of dotted pairs of
regular expression and mode name. For example to specify that theemai | modeisto be used for filesending in
“.email ' wewould add to the current aut o- t ext - node- al i st asfollows

(set! auto-text-node-alist
(cons (cons "\\.email$" 'emil)
aut o-text-node-alist))

If thefunctiont t s iscaled with amode other than ni | that mode overrides any specified by the aut o- t ext -
node- al i st. Themodef undanent al isthe explicit "null" mode, it is used when no mode is specified in the
functiont t s, and match isfound in aut o- t ext - node- al i st or the specified mode is not found.

By convention if arequested text model isnot foundintt s_t ext _nodes thefile” MODENAME- mode' will be
requi r ed. Therefore if you have the file ™ MODENAME- node. scmi inyour library then it will be automatically
loaded on reference. Modes may be quite large and it is not necessary have Festival 1oad them all at start up time.

Because of the aut o-t ext - node- al i st and the auto loading of currently undefined text modes you can use
Festival like

festival --tts exanple. emil

Festival with automatically synthesize ™ exanpl e. emai | ' intext modeenai | .

If you add your own personal text modes you should do the following. Suppose you've written an HTML mode. Y ou
havenamedit ™ ht m - node. scmi andputitin™/ hone/ awb/ i b/ festival /"' .Inyour . festivalrc'
first identify you're personal Festival library directory by addingittol i b- pat h.

(set! lib-path (cons "/honme/awb/Ilib/festival/" |ib-path))

Then add the definition to the aut o- t ext - nbde- al i st that filenamesending ™. ht Ml ' or * . ht M should be
read in HTML mode.

(set! auto-text-node-alist
(cons (cons "\\.htm ?$" "htnm)
aut o-t ext - node-al i st))

Then you may synthesize an HTML file either from Scheme

(tts "exanple.htm " nil)

Or from the shell command line
festival --tts exanple. htnl

Anyone familiar with modes in Emacs should recognise that the process of adding a new text mode to Festival is very
similar to adding a new buffer mode to Emacs.

[<]1[>] [=<<][Up][>>] [Top] [Contents] [Index] [?]

9.3 Example text mode

Here is a short example of atts mode for reading email messages. It is by no means complete but is a start at showing
how you can customize tts modes without writing new C++ code.

Thefirst task isto define afilter that will take a saved mail message and remove extraneous headers and just leave
the from line, subject and body of the message. The filter program is given afile name asits first argument and
should output the result on standard out. For our purposes we will do this as a shell script.

#!/ bin/ sh

Email filter for Festival tts node

wusage: emmil filter mail_message >tidied mail _nmessage
grep "“From " $1

echo

grep "~Subject: " $1

echo

delete up to first blank line (i.e. the header)

sed '1,/7$/ d' $1

Next we define the email init function, which will be called when we start this mode. What we will do is save the
current token to words function and slot in our own new one. We can then restore the previous one when we exit.
(define (email _init_func)
"Called on starting enail text node."
(set! enmil _previous_t2w func token_to words)
(set! english_token_to_words email _token_to_words)
(set! token_to_words emmil _token_to_words))

Note that both engl i sh_t oken_t o_wor ds andt oken_t o_wor ds should be set to ensure that our new token
to word function is still used when we change voices.

The corresponding end function puts the token to words function back.

(define (emil _exit_func)
"Called on exit email text node."
(set! english_token_to_words email _previous_t2w_ func)
(set! token_to _words enmil _previous_t2w func))

Now we can define the email specific token to words function. In this example we deal with two specific cases. First
we deal with the common form of email addresses so that the angle brackets are not pronounced. The second points
are to recognise quoted text and immediately change the the speaker to the alternative speaker.

(define (emmil _token_to_words token nane)
"Email specific token to word rules.”
(cond

Thisfirst condition identifies the token as a bracketed email address and removes the brackets and splits the token

into name and | P address. Note that we recursively call the functionerrai | _pr evi ous_t 2w_f unc on the email
name and | P address so that they will be pronounced properly. Note that because that function returns alist of words
we need to append them together.
((string-matches nane "<. *. *>")
(append
(emai |l _previous_t2w func token
(string-after (string-before name "@) "<"))
(cons
"at
(emai | _previous_t2w func token
(string-before (string-after nane "@) ">")))))

Our next condition deals with identifying a greater than sign being used as a quote marker. When we detect thiswe
select the alternative speaker, even though it may already be selected. We then return no words so the quote marker is
not spoken. The following condition finds greater than signs which are the first token on aline.
((and (string-nmatches nane ">"
(string-matches (itemfeat token "whitespace")
"I \t\n]*\n *"))
(voi ce_don_di phone)
nil ;; return nothing to say

)

If it doesn't match any of these we can go ahead and use the builtin token to words function Actually, we call the
function that was set before we entered this mode to ensure any other specific rules still remain. But before that we
need to check if we've had a newline with doesn't start with a greater than sign. In that case we switch back to the
primary speaker.
(t ;; for all other cases
(if (string-matches (itemfeat token "whitespace")
".*\n[\t\n]*")
(voi ce_rab_di phone))
(emai |l _previous_t2w func token nane))))

In addition to these we have to actually declare the text mode. This we do by adding to any existing modes as
follows.

(set! tts_text _nodes

(cons

(list
"emai | ;; node nane
(list ;; email node parans
(list "init_func email _init_func)

(list "exit_func email _exit_func)
"(filter "email filter")))
tts_text nodes))

Thiswill now allow simple email messages to be dealt with in a mode specific way.

An example mail messageisincludedin ™ exanpl es/ ex1. enmi | ' . To hear the result of the above text mode
start Festival, load in the email mode descriptions, and call TTS on the examplefile.

(tts ".../exanples/exl.email" 'enail)
The aboveisvery short of areal email mode but does illustrate how one might go about building one. It should be

reiterated that text modes are new in Festival and their most effective form has not been discovered yet. Thiswill
improve with time and experience.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

10. XML/SGML mark-up

Theideas of ageneral, synthesizer system nonspecific, mark-up language for labelling text has been under discussion
for some time. Festival has supported an SGML based markup language through multiple versions most recently
STML (sproat97). Thisis based on the earlier SSML (Speech Synthesis Markup Language) which was supported by
previous versions of Festival (taylor96). With this version of Festival we support Sable a similar mark-up language
devised by a consortium from Bell Labls, Sub Microsystems, AT& T and Edinburgh, sable98. Unlike the previous
versions which were SGML based, the implementation of Sablein Festival is now XML based. To the user they
different is negligable but using XML makes processing of files easier and more standardized. Also Festival now
includes an XML parser thus reducing the dependencies in processing Sable text.

Raw text has the problem that it cannot always easily be rendered as speech in the way the author wishes. Sable
offers awell-defined way of marking up text so that the synthesizer may render it appropriately.

The definition of Sableis by no means settled and is till in development. In this release Festival offers people
working on Sable and other XML (and SGML) based markup languages a chance to quickly experiment with
prototypes by providing a DTD (document type descriptions) and the mapping of the elementsin the DTD to Festival
functions. Although we have not yet (personally) investigated facilities like cascading style sheets and generalized
SGML specification languages like DSSSL we believe the facilities offer by Festival allow rapid prototyping of
speech output markup languages.

Primarily we see Sable markup text as alanguage that will be generated by other programs, e.g. text generation
systems, dialog managers etc. therefore a standard, easy to parse, format is required, even if it seems overly verbose
for human writers.

For more information of Sable and accessto the mailing list see

http://ww. cstr. ed. ac. uk/ proj ects/sabl e. htnd

10.1 Sable example an example of Sable with descriptions

10.2 Supported Sable tags Currently supported Sable tags

10.3 Adding Sable tags Adding new Sable tags

10.4 XML/SGML requirements Software environment requirements for use
10.5 Using Sable Rendering Sable files as speech

[<]1[>] [<<][Up][>>] [Top] [Contents [Indeq] [?]

10.1 Sable example

Here is a simple example of Sable marked up text

http://www.cstr.ed.ac.uk/projects/sable.html

<?xm version="1.0"7?>

<! DOCTYPE SABLE PUBLIC "-//SABLE// DTD SABLE speech nmark up//EN'
"Sabl e. vO_2.dtd"

[1>

<SABLE>

<SPEAKER NAME="nml el" >

The boy saw the girl in the park <BREAK/ > with the tel escope.
The boy saw the girl <BREAK/> in the park with the tel escope.

Good norning <BREAK /> My nane is Stuart, which is spelled
<RATE SPEED="-40% >

<SAYAS MODE="Ilit eral ">st uart </ SAYAS> </ RATE>

t hough some peopl e pronounce it

<PRON SUB="st oo art">stuart</PRON>. M tel ephone nunber

i s <SAYAS MODE="Iliteral ">2787</ SAYAS>.

| used to work in <PRON SUB="Buckl 00" >Buccl euch</ PRON> Pl ace,
but no one can pronounce that.

By the way, ny tel ephone nunber is actually

<AUDI O SRC="htt p://ww. cstr. ed. ac. uk/ ~awb/ sounds/ t oucht one. 2. au"/ >
<AUDI O SRC="http://wwv. cstr. ed. ac. uk/ ~awb/ sounds/ t oucht one. 7. au"/ >
<AUDI O SRC="htt p://ww. cstr. ed. ac. uk/ ~awb/ sounds/ t oucht one. 8. au"/ >
<AUDI O SRC="htt p://wwmv. cstr. ed. ac. uk/ ~awb/ sounds/ t oucht one. 7. au"/ >.

</ SPEAKER>
</ SABLE>

After theinitia definition of the SABLE tags, through thefile” Sabl e. vO_2. dt d' , whichis distributed as part of
Festival, the body is given. There are tags for identifying the language and the voice. Explicit boundary markers may
be given in text. Also duration and intonation control can be explicit specified as can new pronunciations of words.
The last sentence specifies some external filenamesto play at that point.

I

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

10.2 Supported Sable tags

There is not yet a definitive set of tags but hopefully such alist will form over the next few months. As adding
support for new tagsis often trivial the problem lies much more in defining what tags there should be than in actually
implementing them. The following are based on version 0.2 of Sable as described in
http://www.cstr.ed.ac.uk/projects/sable spec2.html, though some aspects are not currently supported in this
implementation. Further updates will be announces through the Sable mailing list.

LANGUACE
Allows the specification of the language through the | D attribute. Valid valuesin Festival are, engl i sh,
enl, spani sh, en, and others depending on your particular installation. For example

<LANGUAGE id="english"> ... </LANGUAGE>

If the language isn't supported by the particualr installation of Festival "Sometextin.." issaid instead and the
section is ommitted.
SPEAKER
Select avoice. Accepts a parameter NAME which takesvalues mal el, mal e2, f enal el, etc. Thereis
currently no definition about what happens when a voice is selected which the synthesizer doesn't support. An
exampleis
<SPEAKER nanme="mal el"> ... </ SPEAKER>

AUDI O

http://www.cstr.ed.ac.uk/projects/sable_spec2.html

This allows the specification of an external waveform that is to be included. There are attributes for specifying
volume and whether the waveform isto be played in the background of the following text or not. Festival as
yet only supportsinsertion.

My tel ephone nunber is

<AUDI O SRC="htt p://wwv. cstr. ed. ac. uk/ ~awb/ sounds/ t oucht one. 2. au"/ >

<AUDI O SRC="htt p://ww. cstr. ed. ac. uk/ ~awb/ sounds/ t oucht one. 7. au"/ >

<AUDI O SRC="htt p://www. cstr. ed. ac. uk/ ~awb/ sounds/ t oucht one. 8. au"/ >

<AUDI O SRC="http://wwmv. cstr. ed. ac. uk/ ~awb/ sounds/ t oucht one. 7. au"/ >.

MARKER
This allows Festival to mark when a particalur part of the text has been reached. At present the simply the
value of the MARK attribute is printed. This is done some when that piece of text is analyzed. not wheniitis
played. To use thisin any real application would require changes to this tags implementation.

Move the <MARKER MARK="nopuse" /> nouse to the top.

BREAK
Specifies aboundary at some LEVEL. Strength may be values Lar ge, Medi um Snal | or anumber. Note
that this thistag is an emtpy tag and must include the closing part within itsefl specification.
<BREAK LEVEL="LARGE"/ >

DV
Thissignals an division. In Festival this causes an utterance break. A TYPE attribute may be specified but it is
ignored by Festival.
PRON
Allows pronunciation of enclosed text to be explcitily given. It supports the attributes | PA for an IPA
specification (not currently supported by Festival); SUB text to be substituted which can be in some form of
phonetic spelling, and ORI G Nwhere the linguistic origin of the enclosed text may be identified to assist in
etymologically sensitive letter to sound rules.
<PRON SUB="t 0e mma toe" >t omat o</ PRON>
SAYAS
Allows indeitnfication of the enclose tokens/text. The attribute MODE cand take any of the following avalues:
literal ,date,tine,phone,net,postal,currency,math,fraction,neasure,ordinal,
car di nal , or name. Further specification of type for dates (MDY, DMY etc) may be speficied through the
MODETYPE attribute.
As a test of marked-up nunbers. Here we have
a year <SAYAS MODE="dat e">1998</ SAYAS>,
an ordinal <SAYAS MODE="or di nal ">1998</ SAYAS>,
a cardi nal <SAYAS MODE="car di nal ">1998</ SAYAS>,
a literal <SAYAS MODE="Iliteral ">1998</ SAYAS>,
and phone nunber <SAYAS MODE="phone" >1998</ SAYAS>.
EMPH
To specify enclose text should be emphasized, a LEVEL attribute may be specified but its valueis currently
ignored by Festival (besides the emphasis Festival generatesisn't very good anyway).
The | eaders of <EMPH>Denmar k</ EMPH> and <EMPH>I| ndi a</ EMPH> neet on
Fri day.
PI TCH
Allows the specification of pitch range, mid and base points.
Wt hout his penguin, <PlITCH BASE="-20% > which he |eft at hone, </PlITCH>
he could not enter the restaurant.
RATE

Allows the specification of speaking rate
The address is <RATE SPEED="-40% > 10 Main Street </RATE>.

VOLUME
Allows the specification of volume. Note in festival this causes an utetrance break before and after thistag.
Pl ease speak nore <VOLUME LEVEL="I oud" >l oudl y</ VOLUME>, except
when | ask you to speak <VOLUME LEVEL="quiet">n a quiet voi ce</VO.UVE>.

ENG NE
This allows specification of engine specific commands
An example is <ENG NE I D="festival" DATA="our own festival speech
synt hesi zer"> the festival speech synthesizer</ENG NE> or
the Bell Labs speech synthesi zer.

These tags may change in name but they cover the aspects of speech mark up that we wish to express. Later additions
and changes to these are expected.

Seethefiles” f est i val / exanpl es/ exanpl e. sabl e' and
“festival / exanpl es/ exanpl e2. sabl e' for working examples.

Note the definition of Sable ison going and there are likely to be later more complete implementations of sable for
Festival asindependent releasesconsult “ur | : // www. cstr. ed. ac. uk/ proj ects/ sabl e. ht ml ' for the
most recent updates.

I

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

10.3 Adding Sable tags

We do not yet claim that thereis afixed standard for Sable tags but we wish to move towards such a standard. In the
mean time we have made it easy in Festival to add support for new tags without, in general, having to change any of
the core functions.

Two changes are necessary to add a new tags. First, change the definitionin ™ | i b/ Sabl e. vO_2. dt d' , so that
Sable files may useit. The second stage is to make Festival sensitive to that new tag. The examplein
festival/lib/sabl e-node. scmshowshow anew text mode may be implemented for an XML/SGML-based
markup language. The basic point is that an identified function will be called on finding a start tag or end tags in the
document. It is the tag-function's job to synthesize the given utterance if the tag signals an utterance boundary. The
return value from the tag-function is the new status of the current utterance, which may remain unchanged or if the
current utterance has been synthesized ni | should be returned signalling a new utterance.

Note the hierarchical structure of the document is not available in this method of tag-functions. Any hierarchical state
that must be preserved has to be done using explicit stacksin Scheme. Thisis an artifact due to the cross relationship
to utterances and tags (utterances may end within start and end tags), and the desire to have all specification in
Scheme rather than C++.

The tag-functions are defined in an elements list. They are identified with names such as"(SABLE" and ")SABLE"
denoting start and end tags respectively. Two arguments are passed to these tag functions, an assoc list of attributes
and values as specified in the document and the current utterances. If the tag denotes an utterance break, call

xxm _synthonUTT and return ni | . If atag (start or end) is found in the document and there is no corresponding
tag-function it isignored.

New features may be added to words with a start and end tag by adding features to the global
xxm _wor d_f eat ur es. Any featuresin that variable will be added to each word.

Note that this method may be used for both XML based lamnguages and SGML based markup languages (though
and external normalizing SGML parser isrequired in the SGML case). The type (XML vs SGML) isidentified by the
anal ysi s_t ype parameter in the tts text mode specification.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

10.4 XML/SGML requirements

Festival is distributed with r xp an XML parser developed by Richard Tobin of the Language Technology Group,
University of Edinburgh. Sableis set up asan XML text mode so no further requirements or external programs are
required to synthesize from Sable marked up text (unlike previous releases). Note that r xp is not afull validation
parser and hence doesn't check some aspects of the file (tags within tags).

Festival still supports SGML based markup but in such cases requires an external SGML normalizing parser. We
havetested " nsgnl s- 1. 0' whichisavailable as part of the SGML toolsset " sp-1. 1. tar. gz' whichis
available from http://www.jclark.com/sp/index.html. This seems portable between many platforms.

[<]1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

10.5 Using Sable

Support in Festival for Sable is as atext mode. In the command mode use the following to process an Sablefile

(tts "file.sable" 'sable)

Also the automatic selection of mode based on file type has been set up such that filesending * . sabl e' will be
automatically synthesized in this mode. Thus

festival --tts fred.sable

Will render * f r ed. sabl e' as speech in Sable mode.

Another way of using Sable is through the Emacs interface. The say-buffer command will send the Emacs buffer
mode to Festival asitstts-mode. If the Emacs modeis stml or sgml thefile istreated as an sablefile. See section 11.

Emacs interface.

Many people experimenting with Sable (and TTS in general) often want all the waveform output to be saved to be
played at alater date. The simplest way to do thisisusingthe ™ t ext 2wave' script, It respects the audo mode
selection so

t ext 2wave fred.sable -o fred. wav

Note this renders the file a single waveform (done by concatenating the waveforms for each utterance in the Sable
file).

If you wish the waveform for each utterance in afile saved you can cause the tts process to save the waveforms
during synthesis. A call to

festival > (save_waves_during_tts)

Any futurecall tot t s will causethewaveformstobesavedinafile tts_fil e_xxx.wav' where” xxx' isa
number. A call to (save_waves_during_tts_STOP) will stop saving the waves. A message is printed when
the waveform is saved otherwise people forget about this and wonder why their disk hasfilled up.

Thisisdone by inserting afunctionint t s_hooks which saves the wave. To do other things to each utterances
during TTS (such as saving the utterance structure), try redefining the function save_tts_out put (see

http://www.jclark.com/sp/index.html

festival/lib/tts.scm.

[<]1[>] [=<<][Up]l[>>] [Top] [Contents] [Index] [?]

11. Emacs interface

One easy method of using Festival is viaan Emacs interface that allows selection of text regions to be sent to Festival
for rendering as speech.

“festival.el' offersanew minor mode which offers an extramenu (in emacs-19 and 20) with options for
saying a selected region, or awhole buffer, aswell as various general control functions. To use this you must install
“festival.el' inadirectory where Emacs can find it, then add to your . enacs' inyour home directory the
following lines.

(aut ol oad 'say-m nor-node "festival" "Menu for using Festival." t)
(say-m nor-node t)

Successive callsto say- m nor - node will toggle the minor mode, switching the ™ say' menu on and off.

Note that the optional voice selection offered by the language sub-menu is not sensitive to actual voices supported by
the your Festival installation. Hand customization isrequireinthe” f esti val . el ' file. Thus some voices may
appear in your menu that your Festival doesn't support and some voices may be supported by your Festival that do
not appear in the menu.

When the Emacs Lisp function f est i val - say- buf f er or the menu equivalent is used the Emacs major mode is
passed to Festival as the text mode.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

12. Phonesets

The notion of phonesets isimportant to a number of different subsystems within Festival. Festival supports multiple
phonesets simultaneously and allows mapping between sets when necessary. The lexicons, letter to sound rules,
waveform synthesizers, etc. al require the definition of a phoneset before they will operate.

A phoneset is a set of symbols which may be further defined in terms of features, such as vowel/consonant, place of
articulation for consonants, type of vowel etc. The set of features and their values must be defined with the phoneset.
The definition is used to ensure compatibility between sub-systems as well as allowing groups of phonesin various
prediction systems (e.g. duration)

A phoneset definition has the form

(def PhoneSet
NANMVE
FEATUREDEFS
PHONEDEFS)

The NAME is any unique symbol used e.g. nt pa, dar pa, etc. FEATUREDEFSisalist of definitions each
consisting of afeature name and its possible values. For example

(

(ve + -) ;; vowel consonant
(vl ength short 1ong di phthong schwa 0) ;; vowel Iength

Thethird section is alist of phone definitions themselves. Each phone definition consists of a phone name and the
values for each feature in the order the features were defined in the above section.

A typical example of a phoneset definition can befoundin ™| i b/ ntr pa_phones. scni .

Note the phoneset should aso include a definition for any silence phones. In addition to the definition of the set the
silence phone(s) themselves must also be identified to the system. Thisis done through the command
PhoneSet . si | ences. Inthe mrpa set this is done by the command

(PhoneSet . sil ences ' (#))

There may be more than one silence phone (e.g. breath, start silence etc.) in any phoneset definition. However the
first phone in this set is treated special and should be canonical silence. Among other things, it is this phone that is
inserted by the pause prediction module.

In addition to declaring phonesets, alternate sets may be selected by the command PhoneSet . sel ect .

Phones in different sets may be automatically mapped between using their features. This mapping is not yet as
genera asit could be, but is useful when mapping between various phonesets of the same language. When a phone
needs to be mapped from one set to another the phone with matching featuresis selected. This alows, at least to
some extent, lexicons, waveform synthesizers, duration modules etc. to use different phonesets (though in general
thisis not advised).

A list of currently defined phonesetsis returned by the function
(PhoneSet . |ist)

Note phonesets are often not defined until avoice is actually loaded so thislist is not the list of of setsthat are
distributed but the list of setsthat are used by currently loaded voices.

The name, phones, features and silences of the current phoneset may be accessedwith the function
(PhoneSet . description nil)
If the argument to this function is alist, only those parts of the phoneset description named are returned. For example

(PhoneSet . description ' (silences))
(PhoneSet . description ' (silences phones))

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

13. Lexicons

A Lexicon in Festival is a subsystem that provides pronunciations for words. It can consist of three distinct parts: an
addenda, typically short consisting of hand added words; a compiled lexicon, typically large (10,000s of words)
which sits on disk somewhere; and a method for dealing with words not in either list.

13.1 Lexical entries Format of lexical entries

13.2 Defining lexicons Building new lexicons

13.3 L ookup process Order of significance

13.4 L etter to sound rules Dealing with unknown words
13.5 Building letter to sound rules Building rules from data

13.6 L exicon requirements What should be in the lexicon
13.7 Available lexicons Current available lexicons

13.8 Post-lexical rules Modification of wordsin context

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

13.1 Lexical entries

Lexical entries consist of three basic parts, a head word, a part of speech and a pronunciation. The headword is what
you might normally think of asaword e.g. “wal k' , " chai rs' etc. but it might be any token.

The part-of-speech field currently consist of asimple atom (or nil if noneis specified). Of course there are many part
of speech tag sets and whatever you mark in your lexicon must be compatible with the subsystems that use that
information. Y ou can optionally set a part of speech tag mapping for each lexicon. The value should be areverse
assoc-list of the following form

(1 ex. set. pos. map
"(((punc fpunc) punc)
((nn nnp nns nnps) n)))

All part of speech tags not appearing in the left hand side of a pos map are left unchanged.

The third field contains the actual pronunciation of the word. Thisis an arbitrary Lisp S-expression. In many of the
lexicons distributed with Festival this entry has internal format, identifying syllable structure, stress markigns and of
course the phones themselves. In some of our other lexicons we simply list the phones with stress marking on each
vowel.

Some typical example entries are

("walkers" n (((woo) 1) ((k @z) 0)))
("present” v (((pre)0) ((z@nt) 1))
("monument” n (((mo) 1) ((nyu) 0) ((m@nt) 0)))

Note you may have two entries with the same headword, but different part of speech fields allow differentiation. For
example
("lives" Il ai vz) 1))

n (((
("lives" v (((I i vz) 1))

See section 13.3 Lookup process, for a description of how multiple entries with the same headword are used during
lookup.

By current conventions, single syllable function words should have no stress marking, while single syllable content
words should be stressed.

NOTE: the POS field may change in future to contain more complex formats. The same lexicon mechanism (but
different lexicon) is used for holding part of speech tag distributions for the POS prediction module.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

13.2 Defining lexicons

As stated above, lexicons consist of three basic parts (compiled form, addenda and unknown word method) plus
some other declarations.

Each lexicon in the system has a name which allows different lexicons to be selected from efficiently when switching
between voices during synthesis. The basic steps involved in alexicon definition are as follows.

First a new lexicon must be created with a new name
(lex.create "cstrlex")
A phone set must be declared for the lexicon, to allow both checks on the entries themselves and to allow phone
mapping between different phone sets used in the system
(1 ex. set. phoneset "nrpa")
The phone set must be already declared in the system.

A compiled lexicon, the construction of which is described below, may be optionally specified

(lex.set.conpile.file "/projects/festival/lib/dicts/cstrlex.out")

The method for dealing with unknown words, See section 13.4 L etter to sound rules, may be set

(lex.set.lts.method '"Its_rules)
(lex.set.lts.ruleset '"nrl)

In this case we are specifying the use of a set of letter to sound rules originally developed by the U.S. Naval Research
Laboratories. The default method isto give an error if aword is not found in the addenda or compiled lexicon. (This
and other options are discussed more fully below.)

Finally addendaitems may be added for words that are known to be common, but not in the lexicon and cannot
reasonably be analysed by the letter to sound rules.

(lex.add. entry

“("awb” n (((ei) 1) ((d uh) 1) ((b @I) 0) ((y uu) 0) ((bii) 1))))
(lex.add. entry

(testrt on ((Csii) 1) ((es) 1) (Ctii) 1) ((aa) 1))))
(lex.add.entry

"("Edinburgh® n (((em) 1) ((br @) 0)))))

Using | ex. add. ent ry again for the same word and part of speech will redefine the current pronunciation. Note
these add entries to the current lexicon so its a good idea to explicitly select the lexicon before you add addenda
entries, particularly if you are doing thisinyour own ™. f esti val rc' file

For large lists, compiled lexicons are best. The function | ex. conpi | e takestwo filename arguments, afile name
containing alist of lexical entries and an output file where the compiled lexicon will be saved.

Compilation can take some time and may require lots of memory, as all entries are loaded in, checked and then sorted
before being written out again. During compilation if some entry is malformed the reading process halts with a not so
useful message. Note that if any of your entries include quote or double quotes the entries will probably be misparsed
and cause such aweird error. In such cases try setting

(debug_out put t)

before compilation. Thiswill print out each entry asit is read in which should help to narrow down where the error
is.

[<]1[>] [=<<][Up][>>] [Top] [Contents] [Index] [?]

13.3 Lookup process

When looking up aword, either through the C++ interface, or Lisp interface, aword isidentified by its headword and
part of speech. If no part of speech is specified, ni | isassumed which matches any part of speech tag.

Thelexicon look up process first checks the addenda, if thereis afull match (head word plus part of speech) it is
returned. If there is an addenda entry whose head word matches and whose part of speechisni | that entry is
returned.

If no match isfound in the addenda, the compiled lexicon, if present, is checked. Again a match is when both head
word and part of speech tag match, or either the word being searched for has a part of speech ni | or an entry hasits
tagasni | . Unlike the addenda, if no full head word and part of speech tag match isfound, the first word in the
lexicon whose head word matchesis returned. The rationale is that the letter to sound rules (the next defence) are
unlikely to be better than an given alternate pronunciation for athe word but different part of speech. Even more so
given that asthereis an entry with the head word but a different part of speech this word may have an unusual
pronunciation that the letter to sound rules will have no chance in producing.

Finally if the word is not found in the compiled lexicon it is passed to whatever method is defined for unknown
words. Thisis most likely aletter to sound module. See section 13.4 L etter to sound rules.

Optional pre- and post-lookup hooks can be specified for alexicon. Asasingle (or list of) Lisp functions. The pre-
hooks will be called with two arguments (word and features) and should return a pair (word and features). The post-
hooks will be given alexical entry and should return alexical entry. The pre- and post-hooks do nothing by default.

Compiled lexicons may be created from lists of lexical entries. A compiled lexicon is much more efficient for look up
than the addenda. Compiled lexicons use a binary search method while the addendais searched linearly. Also it
would take a prohibitively long time to load in atypical full lexicon as an addenda. If you have more than a few
hundred entriesin your addenda you should seriously consider adding them to your compiled lexicon.

Because many publicly available lexicons do not have syllable markings for entries the compilation method supports
automatic syllabification. Thus for lexicon entries for compilation, two forms for the pronunciation field are
supported: the standard full syllabified and stressed form and a simpler linear form found in at least the BEEP and
CMU lexicons. If the pronunciation field is aflat atomic list it is assumed syllabification is required.

Syllabification is done by finding the minimum sonorant position between vowels. It is not guaranteed to be accurate
but does give a solution that is sufficient for many purposes. A little work would probably improve this significantly.
Of course syllabification requires the entry's phones to be in the current phone set. The sonorant values are calculated
from the vc, ctype, and cvox features for the current phoneset. See

“src/arch/festival/Phone. cc: ph_sonority()" foractual definition.

Additionally in thisflat structure vowels (atoms starting with a, €, i, 0 or u) may have 1 2 or 0 appended marking
stress. Thisis again following the form found in the BEEP and CMU lexicons.

Some example entries in the flat form (taken from BEEP) are

("table" nil (t eil bl))
("suspicious" nil (s @s p il sh @s))

Alsoif syllabification is required there is an opportunity to run a set of "letter-to-sound"-rules on the input (actually
an arbitrary re-write rule system). If thevariablel ex_| t s_set isset, theltsruleset of that nameis applied to the
flat input before syllabification. This allows simple predictable changes such as conversion of final r into longer
vowel for English RP from American labelled lexicons.

A list of all matching entries in the addenda and the compiled lexicon may be found by the function
| ex. | ookup_al | . Thisfunction takes aword and returns all matching entries irrespective of part of speech.

Y ou can optionall intercept the words as they are lookup up, and after they have been found through pr e_hooks
and post _hooks for each lexicon. Thisalows afunction or list of functionsto be applied to an word and feature
shefore lookup or to the resulting entry after lookup. The following example shows how to add voice specific entries
to ageneral lexicon without affecting other voices that use that lexicon.

For example suppose we were trying to use a Scottish English voice with the US English (cmu) lexicon. A number of
entgries will be inapporpriate but we can redefine some entries thus

(set! cnu_us_awb: : | exi con_addenda

(
("edinburgh” n (((eh d) 1) ((ax n) 0) ((b r ax) 0)))

("poemt n (((p ow 1) ((y ax m 0)))

("usual™ n (((y uw) 1) ((zh ax 1) 0)))
("air" n (((ey r) 1)))

("hair" n (((hh ey r) 1)))

("fair" n (((f ey r) 1)))

("chair™ n (((ch ey r) 1)))))

We can the define afunction that chesk to see if the word looked up isin the speaker specific exception list and use
that entry instead.

(define (cmu_us_awb::cnmu_| ookup_post entry)

"(cmu_us_awb: : crmu_| ookup_post entry)
Speaker specific | exicon addeda."

(let ((ne
(assoc_string (car entry) crmu_us_awb: : | exi con_addenda)))
(if ne
ne
entry)))

And then for the particualr voice set up we need to add both a selection part and areset part. Thuis following the
FestV ox vonventions for voice set up.

(define (cmu_us_awb: :sel ect | exicon)

(lex.select "cnmu")
;7 Get old var for reset and to append our function to is
(set! cmu_us_awb:: ol d_cru_post _hooks
(1 ex.set.post_hooks nil))
(1 ex.set. post _hooks
(append cnu_us_awb: : ol d_crmu_post hooks
(l'ist cnu_us_awb::cnu_Il ookup _post)))

(define (cnu_us_awb::reset_| exicon)

; reset CMJ s post_hooks back to original
(1 ex.set.post _hooks cnmu_us_awb: : ol d_cmu_post _hooks)

The aboveisn't the most efficient way as the word is looked up first then it is checked with the speaker specific list.

Thepr e_hooks function are called with two arguments, the word and features, they should return a pair of word
and features.

T

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

13.4 Letter to sound rules

Each lexicon may define what action to take when aword cannot be found in the addenda or the compiled lexicon.
There are anumber of options which will hopefully be added to as more general |etter to sound rule systems are
added.

The method is set by the command
(lex.set.lts. met hod METHOD)

Where METHOD can be any of the following

“Error'
Throw an error when an unknown word is found (default).

“Its_rul es'
Use externally specified set of letter to sound rules (described below). The name of therule set to useis
defined withthel ex. I t s. rul eset function. This method runs one set of rules on an exploded form of the
word and assumes the rules return alist of phonemes (in the appropriate set). If multiple instances of rules are
required usethef unct i on method described next.

“none'
This returns an entry with ani | pronunciation field. Thiswill only be valid in very special circumstances.

" FUNCTI ONNAME'
Call thisas a L ISP function function name. This function is given two arguments: the word and the part of
speech. It should return avalid lexical entry.

The basic letter to sound rule system is very ssmple but is powerful enough to build reasonably complex letter to
sound rules. Although we've found trained LTS rules better than hand written ones (for complex languages) where no
datais available and rules must be hand written the following rule formalism is much easier to use than that
generated by the LTS training system (described in the next section).

The basic form of aruleis asfollows
(LEFTCONTEXT [I TEMS]| RI GHTCONTEXT = NEW TEMS)

Thisinterpretation isthat if ITEMS appear in the specified right and left context then the output string is to contain
NEWITEMS Any of LEFTCONTEXT, RIGHTCONTEXT or NEWITEMS may be empty. Note that NEWITEMSis
written to adifferent "tape" and hence cannot feed further rules (within this ruleset). An exampleis

(#[ch] C=k)

The special character # denotes aword boundary, and the symbol C denotes the set of all consonants, sets are
declared before rules. Thisrule statesthat ach at the start of aword followed by a consonant is to be rendered as the
k phoneme. Symbolsin contexts may be followed by the symbol * for zero or more occurrences, or + for one or
more OCCcurrences.

The symbolsin the rules are treated as set names if they are declared as such or as symbols in the input/output
alphabets. The symbols may be more than one character long and the names are case sensitive.

Therules aretried in order until one matches the first (or more) symbol of the tape. The rule is applied adding the
right hand side to the output tape. The rules are again applied from the start of the list of rules.

The function used to apply a set of rulesif given an atom will explodeit into alist of single characters, while if given
alist will useit asis. This reflects the common usage of wishing to re-write the individual lettersin aword to
phonemes but without excluding the possibility of using the system for more complex manipulations, such as multi-
pass LTS systems and phoneme conversion.

From lisp there are three basic access functions, there are corresponding functionsin the C/C++ domain.

(I'ts.rul eset NAME SETS RULES)
Define anew set of Itsrules. Where NAME is the name for thisrule, SETSisalist of set definitions of the
form (SETNAME e0 el ...) and RULES arealist of rules as described above.

(I'ts.apply WORD RULESETNAME)
Apply the set of rules named RULESETNANME to WORD. If WORD isa symbol it is exploded into alist of the
individual charactersin its print name. If WORDisalist it isused asis. If the rules cannot be successfully
applied an error is given. The result of (successful) application isreturned in alist.

(I'ts. check_al pha WORD RULESETNANME)
The symbolsin WORD are checked against the input al phabet of the rules named RULESETNAME. If they are
all contained in that alphabet t isreturned, else ni | . Note this does not necessarily mean the rules will
successfully apply (contexts may restrict the application of the rules), but it allows general checking like
numerals, punctuation etc, allowing application of appropriate rule sets.

The letter to sound rule system may be used directly from Lisp and can easily be used to do relatively complex
operations for analyzing words without requiring modification of the C/C++ system. For example the Welsh letter to
sound rule system consists or three rule sets, first to explicitly identify epenthesis, then identify stressed vowels, and
finally rewrite this augmented letter string to phonemes. Thisis achieved by the following function

(define (welsh_ Its word features)
(let (epen str wel)

(set! epen (Its.apply (downcase word) 'newepen))

(set! str (Its.apply epen 'newel str))

(set! wel (lts.apply str 'newwel))

(list word
nil
(lex.syllabify.phstress wel))))

The LTS method for the Welsh lexiconisset towel sh_| t s, so thisfunction is called when aword is not found in

the lexicon. The above function first downcases the word and then applies the rulesetsin turn, finally calling the
syllabification process and returns a constructed lexically entry.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

13.5 Building letter to sound rules

Aswriting letter to sound rules by hand is hard and very time consuming, an aternative method is also available
where a latter to sound system may be built from alexicon of the language. This technique has successfully been
used from English (British and American), French and German. The difficulty and appropriateness of using letter to
sound rulesis very language dependent,

The following outlines the processes involved in building aletter to sound model for alanguage given alarge lexicon
of pronunciations. This technique islikely to work for most European languages (including Russian) but doesn't seem
particularly suitable for very language al phabet languages like Japanese and Chinese. The process described hereis
not (yet) fully automatic but the hand intervention required is small and may easily be done even by people with only
avery little knowledge of the language being dealt with.

The process involves the following steps

. Pre-processing lexicon into suitable training set

. Defining the set of allowable pairing of letters to phones. (Weintend to do this fully automatically in future
versions).

. Constructing the probabilities of each letter/phone pair.

. Aligning lettersto an equal set of phones/_epsilons .

. Extracting the data by |etter suitable for training.

. Building CART models for predicting phone from letters (and context).

. Building additional lexical stress assignment model (if necessary).

All except the first two stages of this are fully automatic.

Before building a model its wise to think alittle about what you want it to do. Ideally the model is an auxiluary to the
lexicon so only words not found in the lexicon will require use of the letter to sound rules. Thus only unusual forms
are likely to require the rules. More precisely the most common words, often having the most non-standard
pronunciations, should probably be explicitly listed always. It is possible to reduce the size of the lexicon (sometimes
drastically) by removing al entries that the training LTS model correctly predicts.

Before starting it is wise to consider removing some entries from the lexicon before training, | typically will remove
words under 4 letters and if part of speech information isavailable | remove all function words, ideally only training
from nouns verbs and adjectives as these are the most likely forms to be unknown in text. It is useful to have
morphologically inflected and derived formsin the training set asit is often such variant forms that not found in the
lexicon even though their root morpheme is. Note that in many forms of text, proper names are the most common
form of unknown word and even the technique presented here may not adequately cater for that form of unknown
words (especially if they unknown words are non-native names). Thisisall stating that this may or may not be
appropriate for your task but the rules generated by this learning process have in the examples we've done been much
better than what we could produce by hand writing rules of the form described in the previous section.

First preprocess the lexicon into afile of lexical entries to be used for training, removing functions words and
changing the head words to all lower case (may be language dependent). The entries should be of the form used for
input for Festival's lexicon compilation. Specifical the pronunciations should be simple lists of phones (no
syllabification). Depending on the language, you may wish to remve the stressing--for examples here we have though
later tests suggest that we should keep it in even for English. Thus the training set should look something like

("table" nil (t ei bl))
("suspicious" nil (s @s pi sh @s))

It is best to split the datainto atraining set and atest set if you wish to know how well your training has worked. In
our tests we remove every tenth entry and put it in atest set. Note this will mean our test results are probably better
than if we removed say the last ten in every hundred.

The second stage is to define the set of alowable letter to phone mappings irrespective of context. This can
sometimes be initially done by hand then checked against the training set. Initially constract afile of the form

(require '"lts_build)
(set! all owabl es
"((a _epsilon)
(b _epsilon_)
(c _epsilon))

(y _epsilon)
(z _epsilon))

(##))

All letters that appear in the alphabet should (at least) mapto _epsi | on_, including any accented characters that
appear in that language. Note the last two hashes. These are used by to denote beginning and end of word and are
automatically added during training, they must appear in the list and should only map to themselves.

To incrementally add to this allowable list run festival as
festival allowabl es.scm

and at the prompt type
festival > (cunmul ate-pairs "oald.train")

with your train file. Thiswill print out each lexical entry that couldn't be aligned with the current set of allowables.
At the start thiswill be every entry. Looking at these entries add to the allowables to make alignment work. For
exampleif the following word fails

("abate" nil (ah b ey t))

Add ah to the allowablesfor letter a, b tob, ey toa andt toletter t . After doing that restart festival and call
cuntmul at e- pai r s again. Incrementally add to the allowable pairs until the number of failures becomes
accceptable. Often there are entries for which there is no real relationship between the letters and the pronunciation
such as in abbreviations and foreign words (e.g. "aad" as"t rih p ax | ey"). For the lexicons |'ve used the technique on
less than 10 per thousand fail in thisway.

It is worth while being consistent on defining your set of allowables. (At least) two mappings are possible for the
letter sequence ch---having letter ¢ go to phone ch and letter h goto _epsi | on_ and also letter ¢ go to phone
epsi | on and letter h goesto ch. However only one should be allowed, we preferred ¢ to ch.

It may also be the case that some |etters give rise to more than one phone. For example the letter x in English is often
pronunced as the phone combination k and s. To allow this, use the multiphone k- s. Thus the multiphone k- s will
be predicted for x in some context and the model will separate it into two phones while it also ignoring any predicted
epsi | ons. Note that multiphone units are relatively rare but do occur. In English, letter X giveriseto afew, k-
sintaxi,g-s inexanpl e, and sometimesg- zh and k- sh inl uxury. Othersarew ah inone,t - s in

pi zza, y- uwin new (British), ah- min - i smetc. Three phone multiphone are much rarer but may exist, they are
not supported by this code asis, but such entries should probably be ignored. Note the - sign in the multiphone
examplesis significant and is used to indentify multiphones.

The allowables for OALD end up being

(set! all owabl es

((a _epsilon_ei aa a e@@o0 au o i ou ai uh e)
(b _epsilon_b)
(c _epsilon_k s
(d _epsilon_d dht jh)
(e _epsilon_ @ii e e@i @i@uu y-uu ou ei aa oi y y-u@ o)
(f _epsilon_f v
(g _epsilon_ g
(h _epsilon_ h @)
[
h
k

(i _epsilon_ i@i @ii ai @@y ai-@aa a)
(j _epsilon_ zh jhi y)

(k _epsilon_ ch)

(I _epsilon_ 1 @I 1I-1)

I
(m _epsilon_ m
(n _epsilon_n
(o _epsilon_ @ou 0 00 uu u au oi i @e uh wu@w uh y-@
(p _epsilon_ f
(g _epsilon_ k
(r _epsilon_r @@ @r)

(s _epsilon_z s sh zh)

(t _epsilon_t th sh dh ch d)

(u _epsilon_ uu @w @u uh y-uu U@Y-u@y-u i y-uh y-@e)
(v _epsilon_v f)

(w _epsilon_ wuu v f u)

(x _epsilon_ k-s g-z sh z k-sh z g-zh)

(y _epsilon_i ii i@ai uhy @ai-@
(z _epsilon_z t-s s zh)

(# #)

))

Note thisis an exhaustive list and (deliberately) says nothing about the contexts or frequency that these letter to
phone pairs appear. That information will be generated automatically from the training set.

Once the number of failed matchesis signficantly low enough let cummul at e- pai r s run to completion. This
counts the number of times each letter/phone pair occursin allowable alignments.

Next cal

festival > (save-table "oal d-")
with the name of your lexicon. This changes the cummulation table into probabilities and savesiit.
Restart festival loading this new table

festival allowables.scmoald-pl-table.scm

Now each word can be aligned to an equally-lengthed string of phones, epsilon and multiphones.
festival > (aligndata "oald.train" "oald.train.align")

Do thisalso for you test set.

Thiswill produce entries like

aaronson _epsilon_aar ah n s ah n
abandon ah b ae n d ah n

abate ah b ey t _epsilon_

abbe ae b _epsilon_ iy

The next stage isto build features suitable for * wagon' to build models. Thisis done by

festival > (build-feat-file "oald.train.align" "oald.train.feats")

Again the same for the test set.

Now you need to constructrure adescription filefor “ wagon' for the given data. The can be done using the script
“make_wgn_desc' provided with the speech tools

Here is an example script for building the models, you will need to modify it for your particualr database but it shows
the basic processes

for i inabcdefghij k|l mnopgrstuvwxyz
do
Stop val ue for wagon
STOP=2
echo letter $i STOP $STOP
Find training set for letter $i
cat oald.train.feats |
ank '{if ($6 == "'"$i'") print $0}' >ltsdataTRAIN. $i.feats
split training set to get heldout data for stepw se testing
traintest [tsdataTRAIN. $i.feats
Extract test data for letter $i
cat oald.test.feats |
awk '{if ($6 == "'$i'") print $0}' >ltsdataTEST.$i.feats
run wagon to predict nodel
wagon -data |ltsdataTRAIN. $i.feats.train -test ItsdataTRAIN. $i.feats.test \
-stepwi se -desc |tsQALD. desc -stop $STOP -output Its.$i.tree
Test the resulting tree against
wagon_t est -heap 2000000 -data |tsdataTEST. $i.feats -desc |tsOALD. desc \
-tree Its. $i.tree
done

Thescript " trai ntest' splitsthegivenfile™ X' into” X. train' and™ X. test"' withevery tenthlinein
"X.test' andtherestin™ X.train'.

This script can take a significnat amount of time to run, about 6 hours on a Sun Ultra 140.

Once the models are created the must be collected together into asingle list structure. The trees generated by
“wagon' contain fully probability distributions at each leaf, at this time this information can be removed as only the
most probable will actually be predicted. This substantially reduces the size of the tress.

(merge_nodels 'oald Its rules "oald Its_rules.scn')

(mer ge_nodel s isdefined within“ 1 t s_bui | d. scmi) Thegivenfilewill containaset ! for the given variable
name to an assoc list of letter to trained tree. Note the above function naively assumes that the lettersin the al phabet
are the 26 lower case letters of the English alphabet, you will need to edit this adding accented lettersif required.
Note that adding "™ (single quote) as a letter is alittle tricky in scheme but can be done--the command (i nt er n

"' ") will give you the symbol for single quote.

To test a set of Its models |oad the saved model and call the following function with the test align file

festival oald-table.scmoald Its rules.scm
festival> (Its testset "oald.test.align" oald Its rules)

The result (after showing all the failed ones), will be a table showing the results for each letter, for all |etters and for
complete words. The failed entries may give some notion of how good or bad the result is, sometimes it will be
simple vowel diferences, long versus short, schwa versus full vowel, other timesit may be who consonants missing.
Remember the ultimate quality of the letter sound rulesis how adequate they are at providing acceptable
pronunciations rather than how good the numeric scoreis.

For some languages (e.g. English) it is necessary to also find a stree pattern for unknown words. Ultimately for thisto
work well you need to know the morphological decomposition of the word. At present we provide a CART trained
system to predict stress patterns for English. If does get 94.6% correct for an unseen test set but that isn't really very
good. Later tests suggest that predicting stressed and unstressed phones directly is actually better for getting whole
words correct even though the models do dlightly worse on a per phone basis black98.

Asthe lexicon may be alarge part of the system we have also experimented with removing entries from the lexicon if
the letter to sound rules system (and stree assignment system) can correct predict them. For OALD this alows usto
half the size of the lexicon, it could possibly allow more if a certain amount of fuzzy acceptance was allowed (e.g.
with schwa). For other languages the gain here can be very signifcant, for German and French we can reduce the

lexicon by over 90%. The functionr educe_| exi conin festival /lib/lts_build.scm wasusedtodo
this. A diccussion of using the above technique as a dictionary compression method is discussed in pagel98. A
morphological decomposition algorithm, like that described in black91, may even help more.

The technique described in this section and its relative merits with respect to a number of languages/lexicons and
tasksis dicussed more fully in black98.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

13.6 Lexicon requirements

For English there are a number of assumptions made about the lexicon which are worthy of explicit mention. If you
are basically going to use the existing token rules you should try to include at |east the following in any lexicon that
isto work with them.

. Theletters of the alphabet, when atoken isidentified as an acronym it is spelled out. The tokenization
assumes that the individual |etters of the alphabet are in the lexicon with their pronunciations. They should be
identified as nouns. (Thisisto distinguish a as a determiner which can be schwad from a as aletter which
cannot.) The part of speech should be nn by default, but the value of the variablet oken. | ett er _pos is
used and may be changed if thisis not what is required.

. One character symbols such as dollar, at-sign, percent etc. Its difficult to get a complete list and to know what
the pronunciation of some of these are (e.g hash or pound sign). But the letter to sound rules cannot deal with
them so they need to be explicitly listed. Seethelist in the function nt pa_addend in
“festival/lib/dicts/oal d/ oal dl ex.scnm . Thislist should aso contain the control characters
and eight bit characters.

. Thepossessive' s should bein your lexicon as schwa and voiced fricative (z). It should be in twice, once as
part speech type pos and once as n (used in plurals of numbers acronyms etc. e.g 1950's). ' s istreated asa
word and is separated from the tokens it appears with. The post-lexical rule (the function
post | ex_apos_s_check) will delete the schwa and devoice the z in appropriate contexts. Note this post-
lexical rule brazenly assumes that the unvoiced fricative in the phoneset is s. If it is not in your phoneset copy
thefunction (itisin~ festival /1 i b/ post| ex. scm) and changeit for your phoneset and use your
version as a post-lexical rule.

. Numbersasdigits (e.g. "1", "2", "34", etc.) should normally not be in the lexicon. The number conversion
routines convert numbers to words (i.e. "one", "two", "thirty four", etc.).

. Theword "unknown" or whatever isin thevariablet oken. unknown_wor d_nane. Thisisused in afew
obscure cases when there just isn't anything that can be said (e.g. single characters which aren't in the lexicon).
Some people have suggested it should be possible to make this a sound rather than aword. | agree, but
Festival doesn't support that yet.

[<1[>] [=<<][Up][>>] [Top] [Contents] [Index] [2]

13.7 Available lexicons

Currently Festival supports a number of different lexicons. They are all defined inthefile™ i b/ | exi cons. scni
each with a number of common extrawords added to their addendas. They are

" CUVQALD
The Computer Users Version of Oxford Advanced Learner's Dictionary is available from the Oxford Text
Archive ftp://ota.ox.ac.uk/pub/ota/public/dicts/710. It contains about 70,000 entries and is a part of the BEEP
lexicon. It is more consistent in its marking of stress though its syllable marking is not what works best for our
synthesis methods. Many syllabic ™1 ' 's, " n' 's,and * m 's, mess up the syllabification a gorithm, making
results sometimes appear over reduced. It is however our current default lexicon. It is aso the only lexicon
with part of speech tags that can be distributed (for non-commercial use).

ey
Thisis automatically constructed from ™ cru_di ct - 0. 4' available from many places on the net (see

ftp://ota.ox.ac.uk/pub/ota/public/dicts/710

conp. speech archives). It is not in the mrpa phone set because it is American English pronunciation.
Although mappings exist between its phoneset (" dar pa') and ™ nr pa' theresultsfor British English
speakers are not very good. However thisis probably the biggest, most carefully specified lexicon available. It
contains just under 100,000 entries. Our distribution has been modified to include part of speech tags on
words we know to be homographs.

“nr pa’
A version of the CSTR lexicon which has been floating about for years. It contains about 25,000 entries. A
new updated free version of thisis due to be released soon.

" BEEP'
A British English rival for the ™ cnu_I| ex' . BEEP has been made available by Tony Robinson at Cambridge
and is available in many archives. It contains 163,000 entries and has been converted to the ™ nr pa' phoneset
(which was atrivial mapping). Although large, it suffers from a certain randomness in its stress markings,
making use of it for synthesis dubious.

All of the above lexicons have some distribution restrictions (though mostly pretty light), but as they are mostly
freely available we provide programs that can convert the originals into Festival's format.

The MOBY lexicon has recently been released into the public domain and will be converted into our format soon.

T

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

13.8 Post-lexical rules

It isthe lexicon's job to produce a pronunciation of a given word. However in most languages the most natural
pronunciation of aword cannot be found in isolation from the context in which it is to be spoken. Thisincludes such
phenomena as reduction, phrase final devoicing and r-insertion. In Festival thisis done by post-lexical rules.

Post Lex isamodule which is run after accent assignment but before duration and FO generation. Thisis because
knowledge of accent position is necessary for vowel reduction and other post lexical phenomena and changing the
segmental items will affect durations.

The Post Lex first appliesa set of built in rules (which could be done in Scheme but for historical reasons are till in
C++). It then applies the functions set in the hook post | ex_r ul es_hook. These should be a set of functions that
take an utterance and apply appropriate rules. This should be set up on a per voice basis.

Although arule system could be devised for post-lexical sound rulesit is unclear what the scope of them should be,
so we have left it completely open. Our vowel reduction model uses a CART decision tree to predict which syllables
should be reduced, whilethe"'s" ruleisvery simple (shownin " festi val /| i b/ post| ex. scm).

The' s in English may be pronounced in a number of different ways depending on the preceding context. If the
preceding consonant is africative or affricative and not a palatal labio-dental or dental a schwaisrequired (e.g.
bench' s) otherwise no schwaisrequired (e.g. John' s). Also if the previous phonemeis unvoiced the"s" is
rendered asan "'s' whilein al other casesitisrendered asa"z".

For our English voices we have alexical entry for "'s" as a schwa followed by a"z". We use a post lexical rule
function called post | ex_apos_s_check to modify the basic given form when required. After lexical lookup the
segment relation contains the concatenation of segments directly from lookup in the lexicon. Post lexical rules are
applied after that.

In the following rule we check each segment to seeif it is part of aword labelled "'s", if so we check to seeif arewe
currently looking at the schwa or the z part, and test if modification is required

(define (postlex_apos_s_check utt)
"(postl ex_apos_s_check UTT)
Deal with possesive s for English (Arerican and British). Delete
schwa of 's if previous is not a fricative or affricative, and
change voiced to unvoiced s if previous is not voiced."
(mapcar
(lanbda (segq)
(if (string-equal "'s" (item feat
seg "R Syl Structure. parent. parent.nane"))
(if (string-equal "a" (itemfeat seg 'ph_vlng))
(if (and (menber_string (itemfeat seg 'p.ph_ctype)
"(f a))
(not (nenber_string
(itemfeat seg "p.ph_cplace")
"(dbg))))
t;; don't delete schwa
(itemdel ete seq))
(if (string-equal "-" (itemfeat seg "p.ph_cvox"))
(itemset_nanme seg "s")))));; from"z"
(utt.relation.itens utt 'Segment))
utt)

[<]1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

14. Utterances

The utterance structure lies at the heart of Festival. This chapter describes its basic form and the functions available
to manipulate it.

14.1 Utterance structure internal structure of utterances
14.2 Utterance types Type defined synthesis actions
14.3 Example utterance types Some example utterances

14.4 Utterance modules

14.5 Accessing an utterance getting the data from the structure
14.6 Features Features and features names

14.7 Utterance |/O Saving and loading utterances

T

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

14.1 Utterance structure

Festival's basic object for synthesisis the utterance. An represents some chunk of text that isto be rendered as
speech. In general you may think of it as a sentence but in many cases it wont actually conform to the standard
linguistic syntactic form of a sentence. In general the process of text to speech is to take an utterance which contaisn
asimple string of characters and convert it step by step, filling out the utterance structure with more information until
awaveform is built that says what the text contains.

The processes involved in convertion are, in general, asfollows
Tokenization

Converting the string of charactersinto alist of tokens. Typically this means whitespace separated tokesn of
the original text string.

Token identification
identification of general types for the tokens, usually thisistrivial but requires some work to identify tokens
of digits as years, dates, numbers etc.

Token to word
Convert each tokens to zero or more words, expanding numbers, abbreviations etc.

Part of speech
I dentify the syntactic part of speech for the words.

Prosodic phrasing
Chunk utterance into prosodic phrases.

Lexical lookup
Find the pronucnation of each word from a lexicon/letter to sound rule system including phonetic and syllable
structure.

Intonational accents
Assign intonation accents to approrpiate syllables.

Assign duration
Assign duration to each phone in the utterance.

Generate FO contour (tune)
Generate tune based on accents etc.

Render waveform
Render waveform from phones, duration and F) target values, thisitself may take several stepsincluding unit
selection (be they diphones or other sized units), imposition of dsesired prosody (duration and FO) and
waveform reconstruction.

The number of steps and what actually happens may vary and is dependent on the particular voice selected and the
utterance's type, see below.

Each of these stepsin Festival is achived by a module which will typically add new information to the utterance
structure.

An utterance structure consists of a set of items which may be part of one or more relations. Items represent things
like words and phones, though may a so be used to represent less concrete objects like noun phrases, and nodesin
metrical trees. Anitem contains a set of features, (name and value). Relations are typically simple lists of items or
trees of items. For example the the Wor d relation isasimplelist of items each of which represent aword in the
utternace. Those words will also be in other relations, such as the Syl Sructure relation where the word will be the top
of atree structure containing its syllables and segments.

Unlike previous versions of the system items (then called stream items) are not in any particular relations (or stream).
And are merely part of the relations they are within. Importantly this allows much more genera relations to be made
over items that was allowed in the previous system. This new architecture is the continuation of our goal of providing
ageneral efficient structure for representing complex interrelated utterance objects.

The architectureis fully general and new items and relations may be defined at run time, such that new modules may
use any relations they wish. However within our standard English (and other voices) we have used a specific set of
relations ass follows.

Token
alist of trees. Thisisfirst formed asalist of tokens found in a character text string. Each root's daughters are
the Word's that the token is related to.
Word
alist of words. Theseitems will also appear as daughters (Ieaf nodes) of the Token relation. They may also
appear in the Synt ax relation (asleafs) if the parser is used. They will also be leafs of the Phr ase relation.
Phrase
alist of trees. Thisisalist of phrase roots whose daughters are the Wor d' s within those phrases.
Syntax
asingletree. This, if the probabilistic parser is called, is a syntactic binary branching tree over the members of
the Wor d relation.
SylStructure
alist of trees. Thislinksthe Wor d, Syl | abl e and Segnent relations. Each Wor d istheroot of atree
whose immediate daughters are its syllables and their daughtersin turn asits segments.
Sllable

alist of syllables. Each member will also bein athe Syl St r uct ur e relation. In that relation its parent will
be theword it isin and its daughters will be the segmentsthat areinit. Syllablesareasointhel nt onati on
relation giving links to their related intonation events.

Segment
alist of segments (phones). Each member (except silences) will be leaf nodesin the Syl St r uct ur e
relation. These may also beinthe Tar get relation linking them to FO target points.

IntEvent
alist of intonation events (accents and bounaries). These are related to syllables through the | nt onat i on
relation as leafs on that relation. Thustheir parent inthe | nt onat i on relation isthe syllable these events are
attached to.

Intonation
alist of trees relating syllables to intonation events. Roots of thetreesin | nt onat i on are Syl | abl es and
their daughtersare | nt Event s.

Wave
asingleitem with afeature called wave whose value is the generated waveform.

Thisis anon-exhaustive list some modules may add other relations and not all utterance may have all these relations,
but the above is the general case.

T

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

14.2 Utterance types

The primary purpose of typesis to define which modules are to be applied to an utterance. Ut t Types aredefined in
“lib/synthesis.scn . Thefunctiondef Ut t Type defines which modules are to be applied to an utterance of
that type. Thefunction ut t . synt h iscalled appliesthislist of module to an utterance before waveform synthesisis
called.

For example when a Segnent type Utterance is synthesized it needs only have its values loaded into a Segnent
relation and a Tar get relation, then the low level waveform synthesis module Wave _Synt h iscalled. Thisis
defined as follows

(def Utt Type Segments
(Initialize utt)
(Wave_Synth utt))

A more complex typeis Text type utterance which requires many more modules to be called before awaveform can
be synthesized

(def Utt Type Text
(Initialize utt)
(Text utt)
(Token utt)
(PGS utt)
(Phrasify utt)
(Word utt)
(I'ntonation utt)
(Duration utt)
(I'nt_Targets utt)
(Wave_Synth utt)

Thel ni tial i ze module should normally be called for al types. It loads the necessary relations from the input
form and deletes al other relations (if any exist) ready for synthesis.

Modules may be directly defined as C/C++ functions and declared with a Lisp name or simple functionsin Lisp that
check some global parameter before calling a specific module (e.g. choosing between different intonation modules).

These types are used when calling the function ut t . synt h and individual modules may be called explicitly by
hand if required.

Because we expect waveform synthesis methods to themselves become complex with a defined set of functions to
select, join, and modify units we now support an addition notion of Synt hTypes like Ut t Types these define a set
of functions to apply to an utterance. These may be defined using the def Synt hType function. For example

(def Synt hType Festi val
(print "synth nethod Festival")

(print "select")
(si npl e_di phone_sel ect utt)

(print "join")
(cut_unit_join utt)

(print "inpose")
(sinple_inpose utt)
(sinple_power utt)

(print "synthesis")
(frames_| pc_synthesis utt)

)

A Synt hType is selected by naming as the value of the parameter Synt h_Met hod.

Duration the application of the function ut t . synt h there are three hooks applied. This allows addition control of
the synthesis process. bef or e_synt h_hooks is applied before any modules are applied.

after _anal ysi s_hooks isapplied at the start of Wave_Synt h when all text, linguistic and prosodic
processing have been done. af t er _synt h_hooks isapplied after all modules have been applied. These are useful
for things such as, altering the volume of avoice that happens to be quieter than others, or for example outputing
information for atalking head before waveform synthesis occurs so preparation of the facial frames and synthesizing
the waveform may bedonein parallel. (see” f esti val / exanpl es/ t h- node. scm for an example use of
these hooks for atalking head text mode.)

I

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

14.3 Example utterance types

A number of utterance types are currently supported. It is easy to add new ones but the standard distribution includes
the following.

Text
Raw text as a string.

(Utterance Text "This is an exanple")

Wor ds
A list of words

(Uterance Wrds (this is an exanple))

Words may be atomic or listsif further features need to be specified. For example to specify aword and its
part of speech you can use

(Uterance Wrds (I (live (pos v)) in (Reading (pos n) (tone HH%)))

Note: the use of the tone feature requires an intonation mode that supportsit.

Any feature and value named in the input will be added to the Word item.

Phr ase
This allows explicit phrasing and features on Tokens to be specified. The input consists of alist of phrases
each contains alist of tokens.

(Utterance
Phr ase
((Phrase ((nane B))
| saw the man
(in ((EMPH 1)))
t he park)
(Phrase ((nanme BB))
with the tel escope)))

ToBI tones and accents may also be specified on Tokens but these will only take effect if the selected
intonation method uses them.

Segnent s
This allows specification of segments, durations and FO target values.

(Utterance
Segnent s
((# 0.19)
(h 0.055 (0 115))
(@0.037 (0.018 136))
(I 0.064)
(ou 0.208 (0.0 134) (0.100 135) (0.208 123))
(# 0.19)))

Note the times are in seconds NOT milliseconds. The format of each segment entry is segment name, duration
in seconds, and list of target values. Each target value consists of a pair of point into the segment (in seconds)
and FO valuein Hz.

Phones
This allows asimple specification of alist of phones. Synthesis specifies fixed durations (specified in
FP_dur at i on, default 100 ms) and monotone intonation (specified in FP_FO, default 120Hz). This may be
used for simple checks for waveform synthesizers etc.

(Utterance Phones (# h @1 ou #))

Note the function Say Phones alows synthesis and playing of lists of phones through this utterance type.
Wave
A waveform file. Synthesis here simply involves loading thefile.

(Uterance Wave fred. wav)

Others are supported, asdefinedin * | i b/ synt hesi s. scm but are used internally by various parts of the
system. These include Tokens usedin TTSand SegF0 used by ut t . r esynt h.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

14.4 Utterance modules

The module is the basic unit that does the work of synthesis. Within Festival there are duration modules, intonation
modules, wave synthesis modules etc. As stated above the utterance type defines the set of modules which are to be
applied to the utterance. These modulesin turn will create relations and items so that ultimately awaveformis
generated, if required.

Many of the chaptersin this manual are solely concerned with particular modulesin the system. Note that many
modules have internal choices, such as which duration method to use or which intonation method to use. Such
general choices are often done through the Par anet er system. Parameters may be set for different featureslike
Dur ati on_Met hod, Synt h_Met hod etc. Formerly the values for these parameters were atomic val ues but now

they may be the functions themselves. For example, to select the Klatt duration rules
(Parameter.set 'Duration_Method Duration_Klatt)

This alows new modules to be added without requiring changes to the central Lisp functions such as Dur at i on,
I nt onat i on, and Wave_Synt h.

[<]1[>] [=<<][Up]l[>>] [Top] [Contents] [Index] [?]

14.5 Accessing an utterance

There are anumber of standard functions that allow one to access parts of an utterance and traverse through it.
Functions exist in Lisp (and of course C++) for accessing an utterance. The Lisp access functions are

“(utt.relationnames UTT)'
returns alist of the names of the relations currently created in UTT.
“(utt.relation.itens UTT RELATI ONNAME) '
returnsalist of al itemsin RELATI ONNAME in UTT. Thisisnil if no relation of that name exists. Note for
tree relation will give theitemsin pre-order.
“(utt.relation_tree UTT RELATI ONNAME)'
A Lisp tree presentation of the items RELATI ONNAME in UTT. The Lisp bracketing reflects the tree structure
in the relation.
“(utt.relation.leafs UTT RELATI ONNAME) '
A list of all the leafs of theitemsin RELATI ONNAME in UTT. Leafs are defined as those items with no
daughters within that relation. For simplelist relationsut t . rel ati on. | eaf s and
utt.rel ation.itens will returnthe same thing.
“(utt.relation.first UTT RELATI ONNAME)'
returnsthe first item in RELATI ONNAME. Returnsni | if thisrelation contains no items
“(utt.relation.last UTT RELATI ONNAME)'
returns the last (the most next) item in RELATI ONNAME. Returns ni | if this relation contains no items
“(itemfeat | TEM FEATNAME)'
returns the value of feature FEATNAME in | TEM FEATNAME may be a feature name, feature function name,
or pathname (see below). alowing reference to other parts of the utterance thisitemisin.
“(itemfeatures ITEM'
Returns an assoc list of feature-value pairs of all local features on this item.
“(itemnanme | TEM'
Returns the name of this| TEM This could also be accessedas(item feat | TEM ' nane).
“(item set_name | TEM NEWNAME) '
Sets name on | TEMto be NEWNAME. Thisisequivalentto (i tem set _feat | TEM ' name NEWNAME)
“(itemset_feat | TEM FEATNAME FEATVALUE)'
set the value of FEATNAME to FEATVALUE in | TEM FEATNAME should be a simple name and not refer to
next, previous or other relations vialinks.
“(itemrelation | TEM RELATI ONNAME)
Return the item as viewed from RELATI ONNAME, or ni | if | TEMisnot in that relation.
“(itemrelationnames | TEM'
Return alist of relation names that thisitemisin.
“(itemrelationnane | TEM'
Return the relation name that thisitem is currently being viewed as.
“(itemnext ITEM'
Return the next item in | TEMs current relation, or ni | if thereis no next.
“(itemprev I TEM'
Return the previousitem in | TEMs current relation, or ni | if thereisno previous.
“(itemparent I TEM'
Return the parent of | TEMin | TEMSs current relation, or ni | if thereis no parent.
“(item daughterl I TEM'
Return the first daughter of | TEMin | TEMs current relation, or ni | if there are no daughters.

“(item daughter2 ITEM'
Return the second daughter of | TEMin | TEMSs current relation, or ni | if there is no second daughter.
“(item daughtern I TEM'
Return the last daughter of | TEMin | TEMs current relation, or ni | if there are no daughters.
“(itemleafs ITEM'
Return alist of all lefsitems (those with no daughters) dominated by this item.
“(itemnext _leaf ITEM'
Find the next item in this relation that has no daughters. Note this may traverse up the tree from this point to
search for such an item.

Asfrom 1.2 the utterance structure may be fully manipulated from Scheme. Relations and items may be created and
deleted, aseasily asthey canin C++;

“(utt.relation.present UTT RELATI ONNAME)'
returnst if relation named RELATI ONNAME is present, ni | otherwise.
“(utt.relation.create UTT RELATI ONNAME)'
Createsanew relation called RELATI ONNAME. If thisrelation already existsit is deleted first and itemsin the
relation are derefenced from it (deleting the items if they are no longer referenced by any relation). Thus
create relation guarantees an empty relation.
“(utt.relation.delete UTT RELATI ONNAME)'
Deletestherelation called RELATI ONNAME in utt. All itemsin that relation are derefenced from the relation
and if they are no longer in any relation the items themselves are deleted.
“(utt.relation.append UTT RELATI ONNAME | TEM'
Append | TEMto end of relation named RELATI ONNAME in UTT. Returns ni | if there is not relation named
RELATI ONNANME in UTT otherwise returns the item appended. This new item becomes the last in the top list.
| TEMitem may be an item itself (in this or another relation) or a L1SP description of an item, which consist of
alist containing a name and a set of feature vale pairs. It | TEMisni | or inspecified an new empty itemis
added. If | TEMis aready in thisrelation it is dereferenced from its current position (and an emtpy item re-
inserted).
“(iteminsert |ITEML | TEM2 DI RECTI ON)*
Insert | TEM? into | TEML's relation in the direction specified by DI RECTI ON. DI RECTI ON may take the
value, bef or e, af t er, above and bel ow. If unspecified, af t er isassumed. Note it is not recommended
to insert above and below and the functionsi t em i nsert _parent andi t em append_daught er
should normally be used for tree building. Inserting using bef or e and af t er within daughtersis perfectly
safe.
“(item append_daught er PARENT DAUCHTER)'
Append DAUGHTER, an item or a description of an item to the item PARENT in the PARENT's relation.
“(iteminsert_parent DAUGHTER NEWPARENT)'
Insert anew parent above DAUGHTER. NEWPARENT may be aitem or the description of an item.
“(itemdelete I TEM'
Delete thisitem from al relationsit isin. All daughters of thisitem in each relations are also removed from
the relation (which may in turn cause them to be deleted if they cease to be referenced by any other relation.
“(itemrelation.remove | TEM'
Remove thisitem from this relation, and any of its daughters. Other relations thisitem arein remain
untouched.
“(itemnove tree FROM TO'
Move the item FROMto the position of TOin TOs relation. FROMwill often be in the same relation as TO but
that isn't necessary. The contents of TOare dereferenced. its daughters are saved then descendants of FROM
are recreated under the new TO, then TOs previous daughters are derefenced. The order of thisisimportant as
FROMmay be part of TOs descendants. Note that if TOis part of FROMs descendants no moving occurs and
ni | isreturned. For exampleto remove al punction terminal nodesin the Syntax relation the call would be
something like
(define (syntax_relation_punc p)
(if (string-equal "punc" (itemfeat (item daughter2 p) "pos"))
(itemnove_tree (item daughterl p) p)
(mapcar syntax_renove_punc (item daughters p))))

“(item exchange_trees | TEML | TEMR)'
Exchange | TEML and | TEM2 and their descendantsin | TEMR'srelation. If | TEML iswithin | TEM2's
descendents or vice versani | isreturns and no exchange takes place. If | TEML isnotin| TEMR'srelation,

no exchange takes place.

Daughters of anode are actually represented as a list whose first daughter is double linked to the parent. Although
being aware of this structure may be useful it is recommended that all access go through the tree specific functions
_ parent and. daught er * which properly deal with the structure, thusisthe internal structure ever changesin
the future only these tree access function need be updated.

With the above functions quite elaborate utterance manipulations can be performed. For example in post-lexical rules
where modifications to the segments are required based on the words and their context. See section 13.8 Post-lexical
rules, for an example of using various utterance access functions.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

14.6 Features

In previous versions items had a number of predefined features. Thisis no longer the case and al features are
optional. Particularly the st art and end features are no longer fixed, though those names are still used in the
relations where yjeu are appropriate. Specific functions are provided for the nane feature but they are just short hand
for normal feature access. Simple features directly access the features in the underlying EST_Feat ur e classin an
item.

In addition to simple features there is a mechanism for relating functions to names, thus accessing a feature may
actually call afunction. For example the featuresnum syl s isdefined as a feature function which will count the
number of syllablesin the given word, rather than simple access a pre-existing feature. Feature functions are usually
dependent on the particular realtion the item isin, e.g. some feature functions are only appropriate for itemsin the
Wor d relation, or only appropriate for thoseinthel nt Event relation.

The third aspect of feature namesis a path component. These are parts of the name (preceding in .) that indicated
some trversal of the utterance structure. For example the features namre will access the name feature on the given
item. The feature n. name will return the name feature on the next item (in that item's relation). A number of basic
direction operators are defined.

next
p. .

previous
nn.

next next
pp. .

previous
parent .
daught er 1.

first daughter
daught er 2.

second daughter
daught ern.

last daughter
first.

most previousitem
| ast .

most next item

Also you may specific traversal to another relation relation, though the R: <r el at i oname>. operator. For
example given an Item in the syllablerelation R: Syl St r uct ur e. par ent . nane would give the name of word
the syllableisin.

Some more complex examples are as follows, assuming we are starting form an item in the Syl | abl e relation.

“stress'
Thisitem'slexical stress
‘n.stress’
The next syllable's lexical stress
" p.stress'
The previous syllable'slexical stress
"R Syl Structure. parent. nane'
The word this syllableisin
"R Syl Structure. parent. R Wrd. n. nane'
The word next to the word this syllableisin
“n. R Syl Structure. parent. nang'
The word the next syllableisin
"R Syl Structure. daught ern. ph_vc'
The phonetic feature vc of the final segment in this syllable.

A list of all feature functionsis given in an appendix of this document. See section 32. Feature functions. New
functions may also be added in Lisp.

In C++ feature values are of class EST_Val which may be astring, int, or afloat (or any arbitrary object). In Scheme
this distinction cannot not always be made and sometimes when you expect an int you actually get a string. Care
should be take to ensure the right matching functions are use in Scheme. It is recommended you use st ri ng-
append or st ri ng- mat ch asthey will alwayswork.

If a pathname does not identify a valid path for the particular item (e.g. thereis no next) " 0" isreturned.

When collecting data from speech databases it is often useful to collect awhole set of features from all utterancesin a
database. These features can then be used for building various models (both CART tree models and linear regression
modules use these feature names),

A number of functions exist to help in this task. For example
(utt.features uttl 'Word ' (nane pos p.pos n.pos))

will return alist of word, and part of speech context for each word in the utterance.

See section 26.2 Extracting features, for an example of extracting sets of features from a database for use in building
stochastic models.

[<]1[>] [=<<][Up][>>] [Top] [Contents] [Index] [2]

14.7 Utterance |I/O

A number of functions are available to allow an utterance's structure to be made available for other programs.

The whole structure, all relations, items and features may be saved in an ascii format using the function ut t . save.
Thisfile may be reloaded using the ut t . | oad function. Note the waveform is not saved using the form.

Individual aspects of an utterance may be selectively saved. The waveform itself may be saved using the function
utt.save. wave. Thiswill save the waveform in the named file in the format specified in the Par anet er
Wavefi | et ype. All formats supported by the Edinburgh Speech Tools are valid including ni st , esps, sun,
riff,aiff,rawandul aw. Notethefunctionsutt.wave.rescal eandutt. wave. resanpl e may beused
to change the gain and sample frequency of the waveform before saving it. A waveform may be imported into an
existing utterance with the functionut t . i nport . wave. Thisis specifically designed to allow external methods of
waveform synthesis. However if you just wish to play an external wave or make it into an utterance you should
consider the utterance Wave type.

The segments of an utterance may be saved in afile using the function ut t . save. segs which saves the segments
of the named utterance in xlabel format. Any other stream may also be saved using the more general

utt. save. rel ati on which takesthe additional argument of arelation name. The names of each item and the
end feature of each item are saved in the named file, again in Xlabel format, other features are saved in extrafields.
For more elaborated saving methods you can easily write a Scheme function to save datain an utterance in whatever
format isrequired. Seethefile™ | i b/ nbr ol a. scm for an example.

A simple function to allow the displaying of an utterance in Entropic's Xwavestool is provided by the function
di spl ay. It simply saves the waveform and the segments and sends appropriate commands to (the already running)
Xwaves and xlabel programs.

A function to synthesize an externally specified utterance is provided for by ut t . r esynt h which takes two
filename arguments, an xlabel segment file and an FO file. This function loads, synthesizes and plays an utterance
synthesized from these files. The loading is provided by the underlying functionut t . | oad. segf 0.

[<][>] [=<<][Up][>>] [Top] [Contents] [Index] [2]

15. Text analysis

15.1 Tokenizing Splitting text into tokens
15.2 Token to word rules
15.3 Homograph disambiguation "Wed 5 may wind US Sen up"

[<I[>] [=<<][Up][>>] [Top] [Contents] [Index] [?]

15.1 Tokenizing

A crucid stage in text processing istheinitial tokenization of text. A token in Festival is an atom separated with
whitespace from atext file (or string). If punctuation for the current language is defined, characters matching that
punctuation are removed from the beginning and end of atoken and held as features of the token. The default list of
characters to be treated as white space is defined as

(defvar token.whitespace " \t\n\r")

While the default set of punctuation charactersis

(defvar token.punctuation "\"' " ., :;!'?20{}}1")
(defvar token. prepunctuation "\"' " ({[")

Thesearedeclaredin " | i b/ t oken. scm but may be changed for different languages, text modes etc.

I

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

15.2 Token to word rules

Tokens are further analysed into lists of words. A word is an atom that can be given a pronunciation by the lexicon
(or letter to sound rules). A token may give rise to a number of words or none at all.

For example the basic tokens

Thi s pocket-watch was made in 1983.

would give aword relation of
this pocket watch was made in nineteen eighty three

Becuase the rel ationship between tokens and word in some cases is complex, a user function may be specified for
translating tokens into words. Thisis designed to deal with things like numbers, email addresses, and other non-
obvious pronunciations of tokens as zero or more words. Currently a builtin function
builtin_english_token_to words offers much of the necessary functionality for English but a user may
further customize this.

If the user definesafunctiont oken_t o_wor ds which takes two arguments: a token item and atoken name, it will
be called by the Token_Engl i sh and Token_Any modules. A substantial exampleis given as
english _token to wordsin festival/lib/token.scm.

An example of thisfunctionisin™ | i b/t oken. scmi . It is quite elaborate and covers most of the common multi-
word tokensin English including, numbers, money symbols, Roman numerals, dates, times, plurals of symbols,
number ranges, telephone number and various other symbols.

Let uslook at the treatment of one particular phenomena which shows the use of these rules. Consider the expression
"$12 million" which should be rendered as the words "twelve million dollars'. Note the word "dollars" which is
introduced by the "$" sign, ends up after the end of the expression. There are two cases we need to deal with asthere
aretwo tokens. The first condition in the cond checksif the current token name is amoney symbol, while the
second condition check that following word is a magnitude (million, billion, trillion, zillion etc.) If that is the case the
"$" isremoved and the remaining numbers are pronounced, by calling the builtin token to word function. The second
condition deals with the second token. It confirms the previous is a money value (the same regular expression as
before) and then returns the word followed by the word "dollars’. If it is neither of these forms then the builtin
function is called.

(define (token_to words token nane)
"(token_to _words TOKEN NAME)
Returns a list of words for NAME from TOKEN. "
(cond
((and (string-matches name "\\$[0-9,] H\\(\\.[0-9]H\\)?")
(string-matches (itemfeat token "n.name") ".*illion.?"))
(builtin_english token to words token (string-after name "$")))
((and (string-matches (itemfeat token "p.nane")
"\AB[0-9,] NN\ [0-9]H\\)?M)
(string-matches nane ".*illion.?"))
(list
name
"dol lars"))
(t

(builtin_english token to words token nane))))

It isvalid to make some conditions return no words, though some care should be taken with that, as punctuation
information may no longer be available to later processing if there are no words related to a token.

[<]1[>] [<<][Up][>>] [Top] [Contents] [Index] [2]

15.3 Homograph disambiguation

Not all tokens can be rendered as words easily. Their context may affect the way they are to be pronounced. For
example in the utterance

On May 5 1985, 1985 people noved to Livingston.

the tokens "1985" should be pronounced differently, the first as ayear, "nineteen eighty five" while the second as a
guantity "one thousand nine hundred and eighty five'. Numbers may aso be pronounced as ordinals asin the "5"
above, it should be "fifth" rather than "five".

Also, the pronunciation of certain words cannot simply be found from their orthographic form alone. Linguistic part
of speech tags help to disambiguate alarge class of homographs, e.g. "lives'. A part of speech tagger isincluded in
Festival and discussed in 16. POS tagging. But even part of speech isn't sufficient in a number of cases. Words such
as"bass', "wind", "bow" etc cannot by distinguished by part of speech alone, some semantic information is also
required. Asfull semantic analysis of text is outwith the realms of Festival's capabilities some other method for
disambiguation is required.

Following the work of yarowsky96 we have included a method for identified tokens to be further labelled with extra
tagsto help identify their type. Y arowsky uses decision lists to identify different types for homographs. Decision lists
are arestricted form of decision trees which have some advantages over full trees, they are easier to build and

Y arowsky has shown them to be adequate for typical homograph resolution.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

15.3.1 Using disambiguators

Festival offersamethod for assigning at oken_pos feature to each token. It does so using Y arowsky-type
disambiguation techniques. A list of disambiguators can be provided in the variablet oken_pos_cart _trees.
Each disambiguator consists of aregular expression and a CART tree (which may be adecision list as they have the
same format). If atoken matches the regular expression the CART treeis applied to the token and the resulting class
is assigned to the token viathe featuret oken_pos. Thisis done by the Token_ PGS module.

For example, the follow disambiguator distinguishes"St" (street and saint) and "Dr" (doctor and drive).

("\\([dD [Rr]\ [Ss][tT]I\V) "
((n.nanme is 0)
((p.cap is 1)
((street))
((p.-nane matches "[0-9]*\\ (1[sS][tT]\\|2[nN][dD]\\ | 3[rRI [dD]\\| [O-
91 [tTI[hH\\)™)
((street))
((title))))
((punc matches ".*,.*")
((street))
((p.punc matches ".*,.*")
((title))
((n.cap is 0)
((street))
((p.cap is 0)
((p.nanme matches "[0-9]1 *\\ (1[sS][tTI\\ | 2[nN][dDI\\ | 3[rR [dD]\\| [O-
[t TI[hH\\)™)
((street))
((title)))
((pp. name nmatches "[1-9][0-9]+")
((street))

((title)))))))))

Note that these only assign values for the featuret oken_pos and do nothing more. Y ou must have a related token
to word rule that interprets this feature value and does the required translation. For example the corresponding token
to word rule for the above disambiguator is

((string-matches name "\\([dD][Rr]\\|[Ss][tT]\\)")
(if (string-equal (itemfeat token "token_pos") "street")
(if (string-matches name "[dD|[rR ")
(list "drive")
(list "street"))
(if (string-matches nanme "[dD][rR]")
(list "doctor")
(list "saint"))))

[<]1[>] [<<][Up][>>] [Top] [Contents| [Indeq] [?]

15.3.2 Building disambiguators

Festival offers some support for building disambiguation trees. The basic method isto find all occurrences of a
homographic token in alarge text database, label each occurrence into classes, extract appropriate context features
for these tokens and finally build an classification tree or decision list based on the extracted features.

The extraction and building of treesis not yet afully automated processin Festival but the file
“festival / exanmpl es/t oksear ch. scm shows some basic Scheme code we use for extracting tokens from
very large collections of text.

Thefunction ext r act _t okens doesthe real work. It reads the given file, token by token into a token stream.
Each token is tested against the desired tokens and if there is a match the named features are extracted. The token
stream will be extended to provide the necessary context. Note that only some features will make any sensein this
situation. Thereisonly atoken relation so referring to words, syllables etc. is not productive.

In this example databases are identified by afile that lists all the filesin the text databases. Its name is expected to be
“bi n/ DBNAME. fi | es' where DBNAME isthe name of the database. The file should contain alist of filenamesin
the database e.g for the Gutenberg textsthefile ™ bi n/ Gut enber g. fil es' contains

gut enber g/ et ext 90/ bi || 11. t xt
gut enber g/ et ext 90/ const 11. t xt
gut enber g/ et ext 90/ getty11. t xt
gut enber g/ et ext 90/ j f k11. t xt

Extracting the tokens is typically done in two passes. The first pass extracts the context (1've used 5 tokens either
side). It extracts the file and position, so the token isidentified, and the word in context.

Next those examples should be labelled with a small set of classes which identify the type of the token. For example
for atoken like"Dr" whether it is a person'stitle or a street identifier. Note that hand-labelling can be laborious,
though it is surprising how few tokens of particular types actually exist in 62 million words.

The next task is to extract the tokens with the features that will best distinguish the particular token. In our "Dr" case
thiswill involve punctuation around the token, capitalisation of surrounding tokens etc. After extracting the
distinguishing tokens you must line up the labels with these extracted features. It would be easier to extract both the
context and the desired features at the same time but experience shows that in labelling, more appropriate features
come to mind that will distinguish classes better and you don't want to have to label twice.

Once a set of features consisting of the label and featuresis created it is easy to use * wagon' to create the
corresponding decision tree or decision list. * wagon' supports both decision trees and decision lists, it may be
worth experimenting to find out which give the best results on some held out test data. It appears that decision trees
aretypically better, but are often much larger, and the size does not always justify the the sometimes only dightly
better results.

[<][>] [=<<][Up][>>] [Top] [Contents] [Index] [2]

16. POS tagging

Part of speech tagging is afairly well-defined process. Festival includes a part of speech tagger following the HMM-
type taggers as found in the Xerox tagger and others (e.g. DeRose88). Part of speech tags are assigned, based on the
probability distribution of tags given aword, and from ngrams of tags. These models are externally specified and a
Viterbi decoder is used to assign part of speech tags at run time.

So far this tagger has only been used for English but there is nothing language specific about it. The module POS
assigns the tags. It accesses the following variables for parameterization.

pos_| ex_name
The name of a"lexicon" holding reverse probabilities of words given atag (indexed by word). If thisis unset
or hasthe value NI L no part of speech tagging takes place.

pos_ngr am namne
The name of aloaded ngram model of part of speech tags (loaded by ngr am | oad).

pos_p_start_tag
The name of the most likely tag before the start of an utterance. Thisistypically the tag for sentence final
punctuation marks.

pos_pp_start _tag
The name of the most likely tag two before the start of an utterance. For English theistypically asimple
noun, but for other languages it might be averb. If the ngram model is bigger than three thistag is effectively
repeated for the previous left contexts.

pos_map
We have found that it is often better to use arich tagset for prediction of part of speech tags but that in later
use (phrase breaks and dictionary lookup) a much more constrained tagset is better. Thus mapping of the
predicted tagset to a different tagset is supported. pos_map should be aalist of pairs consisting of alist of
tags to be mapped and the new tag they are to be mapped to.

Note isit important to have the part of speech tagger match the tags used in later parts of the system, particularly the
lexicon. Only two of our lexicons used so far have (mappable) part of speech labels.

An example of the part of speech tagger for English can befoundin | i b/ pos. scni .

[<]1[>] [=<<][Up]l[>>] [Top] [Contents] [Index] [2]

17. Phrase breaks

There are two methods for predicting phrase breaksin Festival, one simple and one sophisticated. These two methods
are selected through the parameter Phr ase_Met hod and phrasing is achieved by the module Phr asi fy.

Thefirst method is by CART tree. If parameter Phr ase_Met hod iscart _tr ee, the CART treein the variable
phrase_cart _tree isappliedto each word to seeif abreak should be inserted or not. The tree should predict
categories BB (for big break), B (for break) or NB (for no break). A simple example of atree to predict phrase breaks
isgiveninthefile 1i b/ phrase. scni .

(set! sinmple_phrase_cart_tree

((R Token. parent.punc in ("?" "." ":"))
((BB))
((R Token. parent.punc in (""" "\"" ", " ":"))
((B))
((n.nanme is 0)
((BB))

((NB))))))

The second and more elaborate method of phrase break prediction is used when the parameter Phr ase_Met hod is
pr ob_nodel s. Inthis case a probabilistic model using probabilities of a break after aword based on the part of
speech of the neighbouring words and the previous word. Thisis combined with a ngram model of the distribution of
breaks and non-breaks using a Viterbi decoder to find the optimal phrasing of the utterance. The results using this
technique are good and even show good results on unseen data from other researchers phrase break tests (see
black97b). However sometimes it does sound wrong, suggesting there is still further work required.

Parameters for this module are set through the feature list held in the variable phr _br eak _par ans, and example
of which for Englishissetinengl i sh_phr_break_par ans inthefile” I i b/ phrase. scni . The features
names and meaning are

pos_ngr am nane
The name of aloaded ngram that gives probability distributions of B/NB given previous, current and next part
of speech.
pos_ngram fil enane
The filename containing pos_ngr am nane.
br eak_ngram nane
The name of aloaded ngram of B/NB distributions. Thisistypically a6 or 7-gram.
break_ngram fil enane
The filename containing br eak_ngr am nane.
gram scal e_s
A weighting factor for breaksin the break/non-break ngram. Increasing the value insertes more bresks,
reducing it causes less breaks to be inserted.
phrase_type_tree
A CART treethat is used to predict type of break given the predict break position. This (rather crude)
techniqueis current used to distinguish major and minor breaks.
break_tags
A list of the break tags (typically (B NB)).
pos_nmap
A part of speech map used to map the pos feature of words into a smaller tagset used by the phrase predictor.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [2]

18. Intonation

A number of different intonation modules are available with varying levels of control. In general intonation is
generated in two steps.

1. Prediction of accents (and/or end tones) on a per syllable basis.
2. Prediction of FO target values, this must be done after durations are predicted.

Reflecting this split there are two main intonation modules that call sub-modules depending on the desired intonation
methods. Thel nt onati onand| nt _Tar get s modulesaredefinedinLisp (' |i b/ i ntonati on. scm)and
call sub-modules which are (so far) in C++.

18.1 Default intonation Effectively none at all.

18.2 Simpleintonation Accents and hats.

18.3 Tree intonation Accents and Tones, and FO prediction by LR
18.4 Tilt intonation Using the Tilt intonation model

18.5 General intonation A programmable intonation module

18.6 Using ToBI A ToBI by rule example

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

18.1 Default intonation

Thisisthe simplest form of intonation and offersthe modules| nt onat i on_Def aul t and

I ntonati on_Tar gets_Def aul t. Thefirst of which actually does nothing at all.

I ntonati on_Targets_Def aul t simply creates atarget at the start of the utterance, and one at the end. The
values of which, by default are 130 Hz and 110 Hz. These values may be set through the parameter

duf fi nt _par ans for example the following will general a monotone at 150Hz.

(set! duffint_parans '((start 150) (end 150)))
(Parameter.set 'Int_Method 'Dufflnt)
(Parameter.set 'Int_Target _Method Int_Targets Default)

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

18.2 Simple intonation

Thismodule usesthe CART treeini nt _accent _cart _tr ee to predict if each syllableis accented or not. A
predicted value of NONE means no accent is generated by the corresponding | nt _Tar get s_Si npl e function.
Any other predicted value will cause a “hat' accent to be put on that syllable.

A defaulti nt _accent _cart _treeisavalableinthevaluesi npl e_accent _cart _treein
“lib/intonation. scn . Itsimply predicts accents on the stressed syllables on content words in poly-syllabic
words, and on the only syllable in single syllable content words. Itsform is

(set! sinple_accent _cart_tree

((R Syl Structure. parent.gpos is content)
((stress is 1)
((Accented))
((position_type is single)
((Accented))
((NONE))))
((NONE))))

Thefunction| nt _Tar get s_Si npl e uses parametersin the a-listin variablei nt _si npl e_par ans. Thereare
two interesting parametersf 0_nean which gives the mean FO for this speaker (default 110 Hz) and f 0_st d isthe
standard deviation of FO for this speaker (default 25 Hz). This second value is used to determine the amount of
variation to be put in the generated targets.

For each Phrase in the given utterance an FO is generated starting at f 0_code+(f 0_st d*0. 6) and declines
f 0_st d Hz over the length of the phrase until the last syllablewhoseendissettof O_code-f 0_st d. An
imaginary line called basel i ne isdrawn from start to the end (minus the final extrafall), For each syllablethat is

accented (i.e. has an IntEvent related to it) three targets are added. One at the start, one in mid vowel, and one at the
end. The start and end are at position basel i ne Hz (as declined for that syllable) and the mid vowel is set to
basel i ne+f 0_std.

Note this model is not supposed to be complex or comprehensive but it offers avery quick and easy way to generate
something other than a fixed line FO. Something similar to this has been for Spanish and Welsh without (too many)
people complaining. However it is not designed as a serious intonation module.

I

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

18.3 Tree intonation

This module is more flexible. Two different CART trees can be used to predict “accents and “endtones. Although at
present this module is used for an implementation of the ToBI intonation labelling system it could be used for many
different types of intonation system.

The target module for this method uses a Linear Regression model to predict start mid-vowel and end targets for each
syllable using arbitrarily specified features. This follows the work described in black96. The LR models are held as
as described below See section 25.5 Linear regression. Three models are used in the variablesf 0 _| r_start,

fOIr_ mdandfO_Ilr_end.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

18.4 Tilt intonation

Tilt description to be inserted.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

18.5 General intonation

Asthere seems to be a number of intonation theories that predict FO contours by rule (possibly using trained
parameters) this module aids the external specification of such rules for awide class of intonation theories (through
primarily those that might be referred to asthe ToBI group). Thisis designed to be multi-lingual and offer a quick
way to port often pre-existing rules into Festival without writing new C++ code.

The accent prediction part uses the same mechanisms as the Simpl e intonation method described above, a decision
tree for accent prediction, thusthe treein thevariablei nt _accent _cart _tree isused on each syllableto
predict an | nt Event .

The target part calls a specified Scheme function which returns alist of target points for a syllable. In thisway any
arbitrary tests may be done to produce the target points. For example here is afunction which returns three target
points for each syllable with an | nt Event related to it (i.e. accented syllables).

(define (targ_funcl utt syl)
"(targ_funcl UTT STREAM TEM
Returns a list of targets for the given syllable."”
(let ((start (itemfeat syl 'syllable start))
(end (itemfeat syl 'syllable end)))
(if (equal? (itemfeat syl "R Intonation.daughterl.name") "Accented")
(Iist
(list start 110)
(list (/ (+ start end) 2.0) 140)
(list end 100)))))

This function may be identified as the function to call by the following setup parameters.

(Parameter.set 'Int_Method ' General)
(Parameter.set 'Int_Target Method Int_Targets General)

(set! int_general parans
(list
(list "targ_func targ_funcl)))

[<]1[>] [=<<][Up][>>] [Top] [Contents] [Index] [?]

18.6 Using ToBlI

An example implementation of a ToBI to FO target moduleisincludedin™ | i b/ t obi _rul es. scm based onthe
rules described in jilka96. This uses the general intonation method discussed in the previous section. Thisis designed
to be useful to people who are experimenting with ToBI (silverman92), rather than general text to speech.

To use thismethod you needtoload " | i b/ t obi _rul es. scm andcal set up_t obi _f 0_net hod. The
default isin amal€e's pitch range, i.e. for voi ce_rab_di phone. You can changeit for other pitch ranges by
changing the folwoing variables.

(Parameter.set 'Default_Topline 110)

(Parameter.set 'Default_Start_Basel i ne 87)

(Parameter.set 'Default End_Basel i ne 83)

(Paranmeter.set 'Current_Topline (Paraneter.get 'Default_Topline))
(Parameter.set 'Valley Dip 75)

An example using thisfrom STML isgivenin " exanpl es/ t obi . st ml ' . But it can also be used from Scheme.
For example before defining an utterance you should execute the following either from teh command line on in some
setup file

(voi ce_rab_di phone)
(require 'tobi _rules)
(setup_tobi_ fO_net hod)

In order to allow specification of accents, tones, and break levels you must use an utterance type that allows such
specification. For example

(Utterance

Wor ds
(boy
(saw ((accent H*)))
t he
(girl ((accent Hv)))
in the
(park ((accent H7) (tone H)))
with the

(tel escope ((accent H) (tone HH®))))

(Utterance Words
(The
(boy ((accent L*)))
saw
t he
(girl ((accent H7) (tone L-)))
with
t he
(tel escope ((accent H*) (tone HH%)))))

Y ou can display the the synthesized form of these utterance in Xwaves. Start an Xwaves and an Xlabeller and call the
function di spl ay on the synthesized utterance.

I

[<]1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

19. Duration

A number of different duration prediction modules are available with varying levels of sophistication.

Segmental duration prediction is done by the module Dur at i on which calls different actual methods depending on
the parameter Dur at i on_Met hod.

All of the following duration methods may be further affected by both a global duration stretch and a per word one.

If the parameter Dur at i on_St r et ch isset, all absolute durations predicted by any of the duration methods
described here are multiplied by the parameter's value. For example

(Paranmeter.set 'Duration_Stretch 1.2)

will make everything speak more slowly.

In addition to the global stretch method, if the feature dur _st r et ch ontherelated Token is set it will also be
used as a multiplicative factor on the duration produced by the selected method. That is

R Syl | abl e. parent. parent. R Token. parent. dur_stretch. Thereisalisp function
duration_find_stretch wchi will return the combined gloabel and local duration stretch factor for agiven
segment item.

Note these global and local methods of affecting the duration produced by models are crude and should be considered
hacks. Uniform modification of durationsis not what happens in real speech. These parameters are typically used
when the underlying duration method is lacking in some way. However these can be useful.

Note it is quite easy to implement new duration methods in Scheme directly.

19.1 Default durations Fixed length durations
19.2 Average durations

19.3 Klatt durations Klatt rules from book.
19.4 CART durations Tree based durations

T

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

19.1 Default durations

If parameter Dur at i on_Met hod isset to Def aul t, the simplest duration model is used. All segments are 100
milliseconds (this can be modified by Dur at i on_St r et ch, and/or the localised Token related dur _stret ch
feature).

I

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

19.2 Average durations

If parameter Dur at i on_Met hod isset to Aver ages then segmental durations are set to their averages. The
variable phonene_dur at i ons should be an alist of phones and averagesin seconds. The file
“lib/mrpa_durs. scm hasan example for the mrpa phoneset.

If asegment is found that does not appear in the list a default duration of 0.1 seconds is assigned, and awarning
message generated.

T

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

19.3 Klatt durations

If parameter Dur at i on_Met hod issetto Kl at t the duration rules from the Klatt book (allen87, chapter 9). This
method requires minimum and inherent durations for each phoneme in the phoneset. Thisinformationisheld in the

variabledur ati on_kl att _par ans. Each member of thislist is athree-tuple, of phone name, inherent duration

and minimum duration. An example for the mrpa phonesetisin " | i b/ kl att _durs. scni .

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

19.4 CART durations

Two very similar methods of duration prediction by CART tree are supported. The first, used when parameter
Dur ati on_Met hod isTr ee simply predicts durations directly for each segment. Thetreeis set in the variable
duration_cart _tree.

The second, which seems to give better results, is used when parameter Dur at i on_Met hod isTr ee_ZScor es.
In this second model the tree predicts zscores (number of standard deviations from the mean) rather than duration
directly. (Thisfollows campbell91, but we don't deal in syllable durations here.) This method requires means and
standard deviations for each phone. The variabledur at i on_cart _t r ee should contain the zscore prediction tree
and the variabledur at i on_ph_i nf o should contain alist of phone, mean duration, and standard deviation for
each phone in the phoneset.

An example tree trained from 460 sentences spoken by Gordonisin ™ | i b/ gswdurtreeZ' . Phone means and
standard deviationsarein " | i b/ gsw_durs. scmi .

After prediction the segmental duration is calculated by the simple formula

duration = nean + (zscore * standard devi ati on)

For some other duration models that affect an inherent duration by some factor this method has been used. If the tree
predicts factors rather than zscores and the dur at i on_ph_i nf o entries are phone, 0.0, inherent duration. The
above formulawill generate the desired result. Klatt and Klatt-like rules can be implemented in the this way without
adding a new method.

T

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

20. UniSyn synthesizer

Since 1.3 anew general synthesizer module has been included. This designed to replace the older diphone
synthesizer described in the next chapter. A redesign was made in order to have a generalized waveform synthesizer,
singla processing module that could be used even when the units being concatenated are not diphones. Also at this
stage the full diphone (or other) database pre-processing functions were added to the Speech Tooal library.

[<1[>] [<<][Up][>>] [Top] [Contents] [index] [2]

20.1 UniSyn database format

The Unisyn synthesis modules can use databases in two basic formats, separate and grouped. Separate is when all
files (signal, pitchmark and coefficient files) are accessed individually during synthesis. Thisisthe standard use
during databse development. Group format is when a database is collected together into a single special file
containing al information necessary for waveform synthesis. Thisformat is designed to be used for distribution and
genera use of the database.

A database should consist of a set of waveforms, (which may be translated into a set of coefficientsif the desired the
signal processing method requiresit), a set of pitchmarks and an index. The pitchmarks are necessary as most of our
current signal processing are pitch synchronous.

[<1[>] [<<][Up][>>] [Top] [Contents] [index] [2]

20.1.1 Generating pitchmarks

Pitchmarks may be derived from laryngograph files using the our proved program ™ pi t chmar k' distributed with
the speech tools. The actual parameters to this program are still abit of an art form. The first magjor issue iswhich
direction the lar files. We have seen both, though it does seem to be CSTR's ones are most often upside down while
others (e.g. OGl's) are theright way up. The- i nv argumentto ™ pi t chrmar k' isspecifically provided to cater for
this. There other issuesin getting the pitchmarks aligned. The basic command for generating pitchmarksis

pitchmark -inv lar/fileOOl.lar -o pm fil e001. pm -otype est \
-mn 0.005 -nmax 0.012 -fill -def 0.01 -wave_end

The -mn', -max' and " - def' (fill valuesfor unvoiced regions), may need to be changed depending on the
speaker pitch range. The above is suitable for amale speaker. The™ - fi | | ' option states that unvoiced sections
should be filled with equally spaced pitchmarks.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

20.1.2 Generating LPC coefficients

LPC coefficients are generated using the * si g2f v' command. Two stages are required, generating the LPC
coefficients and generating the residual. The prototypical commands for these are

sig2fv wav/file00l.wav -o | pc/file00l.lpc -otype est -l1pc_order 16 \
-coefs "l pc" -pmpmfile00l. pm-preenph 0.95 -factor 3\
-wi ndow_type hamm ng

sigfilter wav/file00l.wav -0 I pc/file00l.res -otype nist \
-lpcfilter Ipc/fileOOl.lpc -inv_filter

For some databases you may need to normalize the power. Properly normalizing power is difficult but we provide a
simple function which may do the jobs acceptably. Y ou should do this on the waveform before |pc analysis (and
ensure you also do the residual extraction on the normalized waveform rather than the original.

ch_wave -scaleN 0.5 wav/file001.wav -o fil e001. Nwav

This normalizes the power by maximizing the signal first then multiplying it by the given factor. If the database
waveforms are clean (i.e. no clicks) this can give reasonable results.

[<][>] [<<]1[Up][>>] [Top] [Contents] [Index] [2]

20.2 Generating a diphone index

The diphone index consists of a short header following by an ascii list of each diphone, the file it comes from
followed by its start middle and end times in seconds. For most databases this files needs to be generated by some
database specific script.

An example header is

EST Fil e index

Dat aType asci i

NunEnt ri es 2005

I ndexNane rab_di phone
EST Header End

The most notable part is the number of entries, which you should note can get out of sync with the actual number of
entries if you hand edit entries. |.e. if you add an entry and the system still can't find it check that the number of
entriesisright.

The entries themselves may take on one of two forms, full entries or index entries. Full entries consist of a diphone
name, where the phones are separated by "-"; afile name which is used to index into the pitchmark, LPC and
waveform file; and the start, middle (change over point between phones) and end of the phonein the file in seconds
of the diphone. For example

r-uh edx_1001 0. 225 0. 261 0. 320
r-e edx_1002 0. 224 0.273 0. 326
r-i edx_1003 0. 240 0. 280 0.321
r-o edx_1004 0.212 0. 253 0. 320

The second form of entry is an index entry which ssimply states that reference to that diphone should actually be made
to another. For example

aa- || &aa- |

This states that the diphone aa- | | should actually use the diphone aa- | . Note they are a number of ways to specify
alternates for missing diphones an this method is best used for fixing single or small classes of missing or broken
diphones. Index entries may appear anywhere in the file but can't be nested.

Some checks are made one reading thisindex to ensure times etc are reasonable but multiple entries for the same
diphone are not, in that case the later one will be selected.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

20.3 Database declaration

There two major types of database grouped and ungrouped. Grouped databases come as a single file containing the
diphone index, coeficinets and residuals for the diphones. Thisis the standard way databases are distributed as voices
in Festoval. Ungrouped access diphones from individual files and is designed as a method for debugging and testing
databases before distribution. Using ungrouped dataabse is slower but allows quicker changes to the index, and
associated coefficient files and residuals without rebuilding the group file.

A database is declared to the system through the command us_di phone_i ni t . Thisfunction takes a parameter
list of various features used for setting up a database. The features are

name
An atomic name for this database, used in selecting it from the current set of laded database.

i ndex_file
A filename name containing either a diphone index, as descripbed above, or agroup file. The feature
gr ouped defines the distinction between this being a group of smple index file.

gr ouped
Takesthevaue"true" or"fal se". Thisdefined simpleindex or if the index fileis agrouped file.

coef _dir
The directory containing the coefficients, (LPC or just pitchmarksin the PSOLA case).

sig dir
The directory containing the signal files (residual for LPC, full waveforms for PSOLA).

coef _ext
The extention for coefficient files, typically " . | pc" for LPCfileand" . pni' for pitchmark files.

si g_ext
The extention for signal files, typically " . r es” for LPC residual filesand " . wav" for waveform files.

def aul t _di phone
The diphone to be used when the requested one doesn't exist. No matter how careful you are you should
always include a default diphone for distributed diphone database. Synthesis will throw an error if no diphone
isfound and thereis no default. Although it isusually an error when thisis required its better tofill in
something than stop synthesizing. Typical values for this are silence to silence or schwato schwa.

alternates | eft
A list of pairs showing the alternate phone names for the left phone in adiphone pair. Thisislist isused to
rewrite the diphone name when the directly requested one doesn't exist. This is the recommended method for
dealing with systematic holes in a diphone database.

alternates_right
A list of pairs showing the alternate phone names for the right phone in adiphone pair. Thisislist is used to
rewrite the diphone name when the directly requested one doesn't exist. This is the recommended method for
dealing with systematic holes in a diphone database.

An example database definitionis

(set! rab_di phone_dir "/projects/festival/lib/voices/english/rab_di phone")
(set! rab_I pc_group
(list
"(nane "rab_I| pc_group")
(list "index_file
(pat h-append rab_di phone_dir "group/rabl pcl6k. group"))
"(alternates_left ((i ii) (Il 1) (uwuu) (i@ii) (uh @ (a aa)
(u@uu) (W@ (o o0) (e@ei) (e ei)
(r @))
"(alternates_right ((i ii) (I 1) (uwuu) (i@ii)
(y i) (uh @ (r @ (w@))
' (defaul t_di phone @ @@
"(grouped "true")))
(us_di pohone_init rab_| pc_group)

T

[<]1[>] [<<][Up]l[>>] [Top] [Contents] [Index] [2]

20.4 Making groupfiles

Thefunctionus_rmake_gr oup_fi | e will make agroup file of the currently selected US diphone database. It
loadsin all diphone sin the dtabaase and saves them in the named file. An optional second argument allows
specification of how the group file will be saved. These options are as a feature list. There are three possible options

track _file_ formt
The format for the coefficient files. By default thisisest _bi nary, currently the only other alternativeis
est_ascii.

sig file_format
The format for the signal parts of the of the database. By default thisissnd (Sun's Audio format). This was
choosen as it has the smallest header and supports various sample formats. Any format supported by the
Edinburgh Speech Toolsis allowed.

si g_sanpl e_f or mat
The format for the samplesin the signal files. By default thisis nmul aw. Thisis suitable when the signal files
are LPC residuals. LPC residuals have a much smaller dynamic range that plain PCM files. Because nul aw
representation is half the size (8 bits) of standard PCM files (16hits) this significantly reduces the size of the
group file while only marginally altering the quality of synthesis (and from experiments the effect is not
perceptible). However when saving group files where the signals are not LPC residuals (e.g. in PSOLA) using
this default mul awis not recommended and shor t should probably be used.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

20.5 UniSyn module selection
In avoice selection a Uni Syn database may be selected as follows

(set! Uni Syn_nodul e_hooks (list rab_di phone const _clusters))
(set! us_abs_offset 0.0)

(set! window factor 1.0)

(set! us_rel _offset 0.0)

(set! us_gain 0.9)

(Parameter.set 'Synth_Method ' Uni Syn)
(Parameter.set 'us_sigpr 'lpc)
(us_db_sel ect rab_db_nane)

TheUni Syn_nodul e_hooks arerun before synthesis, see the next selection about diphone name selection. At
present only | pc is supported by the UniSyn module, though potentially there may be others.

An optional implementation of TD-PSOLA moulines90 has been written but fear of legal problems unfortunately
prevents it being in the public distribution, but this policy should not be taken as acknowledging or not
acknowledging any alleged patent violation.

[<1[>] [<<]1[Up][>>] [Top] [Contents] [Index] [?]

20.6 Diphone selection

Diphone names are constructed for each phone-phone pair in the Segment relation in an utterance. If a segment has
the feature in forming a diphone name UniSyn first checks for the featureus_di phone_| ef t (or

us_di phone_ri ght for theright hand part of the diphone) then if that doesn't exist the featureus_di phone
then if that doesn't exist the feature nane. Thusisis possible to specify diphone names which are not simply the
concatenation of two segment names.

Thisfeature is used to specify consonant cluster diphone names for our English voices. The hook

Uni Syn_nodul e_hooks isrun before selection and we specify afunctionto add us_di phone_* featuresas
appropriate. Seethe functionr ab_di phone_fi x_phone_nane in

“lib/voi ces/english/rab_di phone/ festvox/rab_di phone. scm for an example.

Once the diphone name is created it is used to select the diphone from the database. If it is not found the name is
converted using thelistof al ternates_| eft andal t er nat es_ri ght asspecified in the database
declaration. If that doesn't specify a diphonein the database. Thedef aul t _di phone isselected, and awarning is
printed. If no default diphoneis specified or the default diphone doesn't exist in the database an error is thrown.

I

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

21. Diphone synthesizer

NOTE: use of this diphone synthesisis depricated and it will probably be removed from future versions, all of its
functionality has been replaced by the UniSyn synthesizer. It is not compiled by default, if required add
ALSO_|I NCLUDE += di phonetoyour festival/config/config' file

A basic diphone synthesizer offers a method for making speech from segments, durations and intonation targets. This
module was mostly written by Alistair Conkie but the base diphone format is compatible with previous CSTR
diphone synthesizers.

The synthesizer offersresidual excited L PC based synthesis (hunt89) and PSOLA (TM) (moulines90) (PSOLA is not
available for distribution).

21.1 Diphone database format Format of basic dbs

21.2 L PC databases Building and using LPC files.

21.3 Group files Efficient binary formats

21.4 Diphone_Init Loading diphone databases

21.5 Access strategies Various access methods

21.6 Diphone selection Mapping phonesto special diphone names

[<]1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

21.1 Diphone database format

A diphone database consists of adictionary file, a set of waveform files, and a set of pitch mark files. Thesefiles are
the same format as the previous CSTR (Osprey) synthesizer.

The dictionary file consist of one entry per line. Each entry consists of five fields: a diphone name of the form P1-P2,
afilename (without extension), afloating point start position in the file in milliseconds, amid positionin
milliseconds (change in phone), and an end position in milliseconds. Lines starting with a semi-colon and blank lines
areignored. Thelist may bein any order.

For example a partial list of phones may look like.

rozil 412. 035 463.009 518.23
d747 305.841 382.301 446.018
h-1 d748 356. 814 403.54 437.522
#-@ d404 233.628 297.345 331.327
doo1 836. 814 938.761 1002.48

Waveform files may bein any form, aslong as every file is the same type, headered or unheadered as long as the
format is supported the speech tools wave reading functions. These may be standard linear PCM waveform filesin
the case of PSOLA or LPC coefficients and residual when using the residual LPC synthesizer. 21.2 L PC databases

Pitch mark files consist asimplelist of positions in milliseconds (plus places after the point) in order, one per line of
each pitch mark in the file. For high quality diphone synthesis these should be derived from laryngograph data.
During unvoiced sections pitch marks should be artificially created at reasonable intervals (e.g. 10 ms). In the current
format thereis no way to determine the "real" pitch marks from the "unvoiced" pitch marks.

Itis normal to hold a diphone database in a directory with a number of sub-directoriesnamely ™ di ¢/ ' contain the
dictionary file, " wave/ ' for the waveform files, typically of whole nonsense words (sometimes this directory is
caled " vox/' for historical reasons) and * pni ' for the pitch mark files. The filename in the dictionary entry
should be the same for waveform file and the pitch mark file (with different extensions).

T

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

21.2 LPC databases

The standard method for diphone resynthesis in the released system isresidual excited LPC (hunt89). The actual
method of resynthesisisn't important to the database format, but if residual LPC synthesisisto be used thenitis
necessary to make the LPC coefficient files and their corresponding residuals.

Previous versions of the system used a "host of hacky little scripts' to this but now that the Edinburgh Speech Tools
supports LPC analysis we can provide awalk through for generating these.

We assume that the waveform file of nonsense words arein a directory called “ wave/ ' . The LPC coefficients and
residualswill be, in thisexample, storedin” | pc16k/ "' withextensions™ . | pc' and ™. res' respectively.

Before starting it is worth considering power normalization. We have found thisimportant on all of the databases we
have collected so far. The ch_wave program, part of the speech tools, with the optional - scal eN 0. 4 may be
used if amore complex method is not available.

The following shell command generates the files

for i in wavel/*.wav

do
f nanme="basenanme $i .wav’
echo $i
| pc_analysis -reflection -shift 0.01 -order 18 -o | pcl6k/ $fnane.| pc \
-r | pcl6k/ $fnane.res -otype htk -rtype nist $i
done

It is said that the LPC order should be sample rate divided by one thousand plus 2. This may or may not be
appropriate and if you are particularly worried about the database size it is worth experimenting.

The program " | pc_anal ysi s' ,foundin speech_t ool s/ bi n' , can be used to generate the Ipc coefficients
and residual. Note these should be reflection coefficients so they may be quantised (as they arein group files).

The coefficients and residual files produced by different LPC analysis programs may start at different offsets. For
exampl e the Entropic's ESPS functions generate L PC coefficients that are offset by one frame shift (e.g. 0.01
seconds). Our own ™ | pc_anal ysi s' routine hasno offset. The Di phone_I ni t parameter list allows these
offsets to be specified. Using the above function to generate the L PC files the description parameters should include

(I pc_frame_offset 0)
(I'pc_res_offset 0.0)

While when generating using ESPS routines the description should be

(I pc_franme_offset 1)
(I pc_res_offset 0.01)

The defaults actually follow the ESPS form, that is| pc_f rame_of f set islandl pc_res_of f set isequa to
the frame shift, if they are not explicitly mentioned.

Note the biggest problem we have in implementing the residual excited LPC resynthesizer was getting the right part
of the residual to line up with the right L PC coefficients describing the pitch mark. Making errors in this degrades the
synthesized waveform notably, but not seriously, making it difficult to determine if it is an offset problem or some
other bug.

Although we have started investigating if extracting pitch synchronous L PC parameters rather than fixed shift
parameters gives better performance, we haven't finished thiswork. * | pc_anal ysi s' supports pitch synchronous
analysis but the raw "ungrouped" access method does not yet. At present the LPC parameters are extracted at a
particular pitch mark by interpolating over the closest L PC parameters. The "group” files hold these interpolated
parameters pitch synchronously.

The American English voice ™ kd' was created using the speechtools ™ | pc_anal ysi s' program and its set up
should be looked at if you are going to copy it. The British English voice " r b' was constructed using ESPS
routines.

[<][>] [<<][Up][>>] [Top] [Contents] [Index][?]

21.3 Group files

Databases may be accessed directly but thisis usually too inefficient for any purpose except debugging. It is expected
that group files will be built which contain a binary representation of the database. A group fileis a compact efficient
representation of the diphone database. Group files are byte order independent, so may be shared between machines
of different byte orders and word sizes. Certain information in agroup file may be changed at load time so a database
name, access strategy etc. may be changed from what was set originally in the group file.

A group file contains the basic parameters, the diphone index, the signal (original waveform or LPC residual), LPC
coefficients, and the pitch marks. It isal you need for a run-time synthesizer. Various compression mechanisms are

supported to allow smaller databasesif desired. A full English LPC plus residual database at 8k ulaw is about 3
megabytes, while afull 16 bit version at 16k is about 8 megabytes.

Group files are created with the Di phone. gr oup command which takes a database name and an output filename
as an argument. Making group files can take some time especialy if they arelarge. The gr oup_t ype parameter
specifiesr awor ul awfor encoding signal files. This can significantly reduce the size of databases.

Group files may be partially loaded (see access strategies) at run time for quicker start up and to minimise run-time
memory requirements.

T

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

21.4 Diphone_Init

The basic method for describing a database is through the Di phone_I ni t command. This function takes asingle
argument, alist of pairs of parameter name and value. The parameters are

name

An atomic name for this database.
group_file

The filename of a group file, which may itself contain parameters describing itself
type

The default value is pcm but for distributed voicesthisisaways| pc.

index_file

A filename containing the diphone dictionary.
signal _dir

A directory (slash terminated) containing the pcm waveform files.
si gnal _ext

A dot prefixed extension for the pcm waveform files.
pitch_dir

A directory (slash terminated) containing the pitch mark files.
pi t ch_ext

A dot prefixed extension for the pitch files
[pc_dir

A directory (slash terminated) containing the LPC coefficient files and residua files.
| pc_ext
A dot prefixed extension for the LPC coefficient files
| pc_type
The type of LPC file (as supported by the speech tools)
| pc_frane_ offset
The number of frames"missing" from the beginning of the file. Often LPC parameters are offset by one
frame.
| pc_res_ext
A dot prefixed extension for the residual files
| pc_res_type
The type of the residual files, thisis a standard waveform type as supported by the speech tools.
| pc_res_of fset
Number of seconds "missing" from the beginning of the residual file. Some LPC analysis technique do not
generate aresidual until after one frame.
samp_freq
Sample frequency of signa files
phoneset
Phoneset used, must already be declared.
num di phones
Total number of diphonesin database. If specified this must be equal or bigger than the number of entriesin
theindex file. If it is not specified the square of the number of phonesin the phoneset is used.
si g_band
number of sample points around actual diphone to take from file. This should be larger than any windowing

used on the signal, and/or up to the pitch marks outside the diphone signal.

alternates_after
List of pairs of phones stating replacements for the second part of diphone when the basic diphone is not
found in the diphone database.

al ternates_bhefore
List of pairs of phones stating replacements for the first part of diphone when the basic diphoneis not found in
the diphone database.

def aul t _di phone
When unexpected combinations occur and no appropriate diphone can be found this diphone should be used.
This should be specified for all diphone databases that are to be robust. We usually us the silence to silence
diphone. No mater how carefully you designed your diphone set, conditions when an unknown diphone occur
seem to always happen. If thisis not set and a diphone is requested that is not in the database an error occurs
and synthesis will stop.

Examples of both general set up, making group files and general use arein

“lib/voices/english/rab_di phone/festvox/rab_di phone. scm

I

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

21.5 Access strategies

Three basic accessing strategies are available when using diphone databases. They are designed to optimise access
time, start up time and space requirements.

di rect
Load al signals at database init time. Thisisthe slowest startup but the fastest to access. Thisisideal for
servers. Itisaso useful for small databases that can be loaded quickly. It is reasonable for many group files.
dynani c
Load signals as they are required. This has much faster start up and will only gradually use up memory asthe
diphones are actually used. Useful for larger databases, and for non-group file access.
ondemand
Load the signals as they are requested but free them if they are not required again immediately. Thisis slower
access but requires low memory usage. In group files the re-reads are quite cheap as the database is well
cached and afile description is aready open for thefile.

Note that in group files pitch marks (and LPC coefficients) are always fully loaded (cf. di r ect), asthey are
typically smaller. Only signals (waveform files or residuals) are potentially dynamically loaded.

[<1[>] [=<<][Up][>>] [Top] [Contents] [Index] [?]

21.6 Diphone selection

The appropriate diphone is sel ected based on the name of the phone identified in the segment stream. However for
better diphone synthesisit is useful to augment the diphone database with other diphones in addition to the ones
directly from the phoneme set. For example dark and light I's, distinguishing consonants from their consonant cluster
form and their isolated form. There are however two methods to identify this modification from the basic name.

When the diphone module is called the hook di phone_nodul e_hooks isapplied. That isafunction of list of
functions which will be applied to the utterance. Its main purpose is to allow the conversion of the basic name into an
augmented one. For example converting abasic| into adark |, denoted by | | . The functions givenin

di phone_nodul e_hooks may set the feature di phone_phone_nane which if set will be used rather than the
nane of the segment.

For example suppose we wish to useadark | (I |) rather than anormal | for all I's that appear in the coda of a
syllable. First we would define a function to which identifies this condition and adds the addition feature
di phone_phone_nane identify the name change. The following function would achieve this

(define (fix_dark Is utt)
"(fix_dark_ls UTT)
Identify Is in coda position and rel abel themas II."

(mapcar
(lanmbda (segq)

(if (and (string-equal "I" (item nane seg))
(string-equal "+" (itemfeat seg "p.ph_vc"))
(itemrelation.prev seg "Syl Structure"))

(itemset_feat seg "di phone_phone_nane" "11")))
(utt.relation.itens utt 'Segment))
utt)

Then when we wish to use this for a particular voice we need to add
(set! di phone_nodul e_hooks (list fix dark Is))

in the voice selection function.

For amore complex example including consonant cluster identification see the American English voice ™ ked' in
“festival/lib/voices/english/ked/festvox/kd_di phone. scm . Thefunction
ked_di phone_fi x_phone_nane carries out a number of mappings.

The second method for changing aname is during actual look up of adiphone in the database. The list of alternatesis
given by the Di phone_I ni t function. These are used when the specified diphone can't be found. For example we
often allow mappings of dark I, I | to| assometimesthe dark | diphone doesn't actually exist in the database.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

22. Other synthesis methods

Festival supports a number of other synthesis systems

22.1 LPC diphone synthesizer A small LPC synthesizer (Donovan diphones)
22.2 MBROLA Interface to MBROLA
22.3 Synthesizersin development

[<]1[>] [<<][Up]l[>>] [Top] [Contents] [Index] [?]

22.1 LPC diphone synthesizer

A very simple, and very efficient LPC diphone synthesizer using the "donovan" diphonesis also supported. This
synthesis method is primarily the work of Steve Isard and later Alistair Conkie. The synthesis quality is not as good
asthe residual excited LPC diphone synthesizer but has the advantage of being much smaller. The donovan diphone
database is under 800k.

The diphones are loaded through the Donovan_1 ni t function which takes the name of the dictionary file and the
diphone file as arguments, see the following for details

I'i b/voi ces/english/don_di phone/festvox/don_di phone. scm

[<]1[>] [<<][Up][>>] [Top] [Contents| [IndeX] [?]

22.2 MBROLA

As an example of how Festival may use acompletely external synthesis method we support the free system
MBROLA. MBROLA is both a diphone synthesis technique and an actual system that constructs waveforms from
segment, duration and FO target information. For details see the MBROLA home page at
http://tcts.fpms.ac.be/synthesigymbrola.html. MBROLA already supports a number of diphone sets including French,
Spanish, German and Romanian.

Festival support for MBROLA isinthefile™ Ii b/ nbr ol a. scni . Itisall in Scheme. The function

MBROLA Synt h iscalled when parameter Synt h_Met hod is MBROLA. The function simply saves the segment,
duration and target information from the utterance, calls the external * mbr ol a' program with the selected diphone
database, and reloads the generated waveform back into the utterance.

An MBROLA-ized version of the Roger diphoneset is available from the MBROLA site. The simple Festival end is
distributed as part of the systemin” f est vox_enl. tar. gz' . Thefollowing variables are used by the process

nbr ol a_pr ognane
the pathname of the mbrola executable.
nbr ol a_dat abase
the name of the database to use. This variable is switched between different speakers.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

22.3 Synthesizers in development

In addition to the above synthesizers Festival also supports CSTR's older PSOLA synthesizer written by Paul Taylor.
But as the newer diphone synthesizer produces similar quality output and is a newer (and hence a cleaner)
implementation further development of the older moduleis unlikely.

An experimental unit seleciton synthesis moduleisincluded in ™ nodul es/ cl uni t s/ "' itisanimplementation of
black97c. It isincluded for people wishing to continue reserach in the area rather than as afully usable waveform
synthesis engine. Although it sometimes gives excellent results it also sometimes gives amazingly bad ones too. We
included this as an example of one possible framework for selection-based synthesis.

Asone of our funded projectsisto specifically develop new selection based synthesis algorithms we expect to
include more models within later versions of the system.

Also, now that Festival has been released other groups are working on new synthesis techniques in the system. Many
of these will become available and where possible we will give pointers from the Festival home page to them.
Particularly there is an aternative residual excited L PC module implemented at the Center for Spoken Language
Understanding (CSLU) at the Oregon Graduate Institute (OGI).

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

23. Audio output

http://tcts.fpms.ac.be/synthesis/mbrola.html

If you have never heard any audio ever on your machine then you must first work out if you have the appropriate
hardware. If you do, you also need the appropriate software to drive it. Festival can directly interface with a number
of audio systems or use external methods for playing audio.

The currently supported audio methods are

" NAS'

NCD's NAS, is anetwork transparent audio system (formerly called netaudio). If you already run servers on
your machines you simply need to ensure your AUDI OSERVER environment variable is set (or your

DI SPLAY variable if your audio output device is the same as your X Windows display). You may set NAS as
your audio output method by the command

(Paranet er.set 'Audi o_Method ' netaudi o)

*/ dev/ audi o'

On many systems ™ / dev/ audi o' offersasimple low level method for audio output. It islimited to mu-law
encoding at 8K Hz. Some implementations of * / dev/ audi o' allow other sample rates and sample types but
asthat is non-standard this method only uses the common format. Typical systemsthat offer these are Suns,
Linux and FreeBSD machines. You may set direct * / dev/ audi o' access as your audio method by the
command

(Parameter.set 'Audi o_Method ' sunaudi 0)

*/dev/audio (16bit)’

Later Sun Microsystems workstations support 16 bit linear audio at various sample rates. Support for thisform
of audio output is supported. It is a compile time option (asit requires include files that only exist on Sun
machines. If your installation supports it (check the members of the list * nodul es*) you can select 16 hit
audio output on Suns by the command

(Paramet er.set ' Audi o_Method ' sunl6audi 0)

Note thiswill send it to the local machine where the festival binary is running, this might not be the one you
are sitting next to--that's why we recommend netaudio. A hacky solution to playing audio on alocal machine
from a remote machine without using netaudio is described in 6. Installation

“/dev/dsp (voxware)'

Both FreeBSD and Linux have avery similar audio interface through * / dev/ dsp' . Thereis compiletime
support for these in the speech tools and when compiled with that option Festival may utilise it. Check the
value of the variable * nodul es* to see which audio devices are directly supported. On FreeBSD, if
supported, you may select local 16 bit linear audio by the command

(Parameter.set ' Audi o_Met hod ' freebsdl6audi o)

While under Linux, if supported, you may use the command
(Parameter.set ' Audi o_Method 'Iinuxl6audi o)

Some earlier (and smaller machines) only have 8hit audio even though they includea ™ / dev/ dsp'
(Soundblaster PRO for example). This was not dealt with properly in earlier versions of the system but now
the support automatically checks to see the sample width supported and uses it accordingly. 8 bit at higher
frequencies that 8K sounds better than straight 8k ulaw so this featureis useful.

“npl ayer'

T sd

Under Windows NT or 95 you can usethe ™ npl ayer' command which we have found requires special
treatement to get its parameters right. Rather than using Audi o_Conmrand you can select this on Windows
machine with the following command

(Paranet er.set 'Audi o_Method ' npl ayer audi 0)

Alternatively built-in audio output is available with
(Paranet er.set ' Audi o_Method 'w n32audi 0)

I RI X
Builtin audio output is now available for SGI's IRIX 6.2 using the command

(Parameter.set 'Audio_Method 'irixaudio)

" Audi o Comand'
Alternatively the user can provide a command that can play an audio file. Festival will execute that command
in an environment where the shell variables SR is set to the sample rate (in Hz) and FI LE which, by default,
is the name of an unheadered raw, 16bit file containing the synthesized waveform in the byte order of the
machine Festival is running on. Y ou can specify your audio play command and that you wish Festival to
execute that command through the following command

(Paraneter.set 'Audi o_Command "sunl6éplay -f $SR $FILE")
(Paraneter.set 'Audi o_Mthod ' Audi o_Comrand)

On SGI machines under IRIX the equivaent would be

(Paranet er. set ' Audi o_Conmand
"sfplay -i integer 16 2sconp rate $SR end $FILE")
(Paranet er.set 'Audi o_Method ' Audi o_Comand)

The Audi o_Conmand method of playing waveforms Festival supports two additional audio parameters.
Audi o_Requi r ed_Rat e allowsyou to use Festival'sinternal sample rate conversion function to any desired rate.
Note this may not be as good as playing the waveform at the sasmplerateit isoriginaly created in, but as some
hardware devices are restrictive in what sample rates they support, or have naive resample functions this could be
optimal. The second additional audio parameter is Audi o_Requi r ed_For mat which can be used to specify the
desired output forms of the file. The default is unheadered raw, but this may be any of the values supported by the
speech tools (including nist, esps, snd, riff, aiff, audlab, raw and, if you really want it, ascii). For example suppose
you have a program that only plays sun headered files at 16000 KHz you can set up audio output as

(Paramet er.set 'Audi o_Method ' Audi o_Comand)

(Paraneter.set 'Audi o_Required Rate 16000)

(Paramet er.set ' Audi o_Required_Fornmat 'snd)

(Par anet er.set 'Audi o_Command "sunpl ay $FILE")

Where the audio method supportsit, you can specify alternative audio device for machine that have more than one
audio device.

(Paraneter.set 'Audi o_Device "/dev/dsp2")

If Netaudio is not available and you need to play audio on a machine different from teh one Festival is running on we
have had reportsthat ~ snack' (http://www.speech.kth.se/snack/) is a possible solution. It alows remote play but

importnatly also supports Windows 95/NT based clients.

Because you do not want to wait for awhole file to be synthesized before you can play it, Festival also offers an
audio spooler that allows the playing of audio files while continuing to synthesize the following utterances. On
reasonable workstations this allows the breaks between utterances to be as short as your hardware allows them to be.

The audio spooler may be started by selecting asynchronous mode

(audi o_node ' async)
Thisis switched on by default be the functiont t s. Y ou may put Festival back into synchronous mode (i.e. the
ut t . pl ay command will wait until the audio has finished playing before returning). by the command

(audi o_nopde ' sync)

Additional related commands are

(audi o_node ' cl ose)

http://www.speech.kth.se/snack/

Close the audio server down but wait until it is cleared. Thisis useful in scripts etc. when you wish to only
exit when al audio is complete.

(audi o_node ' shut up)
Close the audio down now, stopping the current file being played and any in the queue. Note that this may
take some time to take effect depending on which audio method you use. Sometimes there can be 100s of
milliseconds of audio in the device itself which cannot be stopped.

(audi o_node ' query)
Lists the size of each waveform currently in the queue.

[<1[>] [=<<][Up][>>] [Top] [Contents] [Index] [2]

24. Voices

This chapter gives some general suggestions about adding new voices to Festival. Festival attemptsto offer an
environment where new voices and languages can easily be slotted in to the system.

24.1 Current voices Currently available voices
24.2 Building anew voice
24.3 Defining a new voice

[<][>] [=<<][Up][>>] [Top] [Contents] [Index][?]

24.1 Current voices

Currently there are a number of voices available in Festival and we expect that number to increase. Each is elected
viaafunction of thename ™ voi ce_*"' which sets up the waveform synthesizer, phone set, lexicon, duration and
intonation models (and anything else necessary) for that speaker. These voice setup functions are defined in
“lib/voices.scn.

The current voice functions are

voi ce_rab_di phone
A British English male RP speaker, Roger. This uses the UniSyn residual excited LPC diphone synthesizer.
The lexicon is the computer users version of Oxford Advanced Learners Dictionary, with letter to sound rules
trained from that lexicon. Intonation is provided by a ToBl-like system using a decision tree to predict accent
and end tone position. The FO itself is predicted as three points on each syllable, using linear regression
trained from the Boston University FM database (f2b) and mapped to Roger's pitch range. Duration is
predicted by decision tree, predicting zscore durations for segments trained from the 460 Timit sentence
spoken by another British male speaker.

voi ce_ked_di phone
An American English male speaker, Kurt. Again this uses the UniSyn residual excited LPC diphone
synthesizer. This uses the CMU lexicon, and letter to sound rules trained from it. Intonation as with Roger is
trained from the Boston University FM Radio corpus. Duration for this voice also comes from that database.

voi ce_kal _di phone
An American English male speaker. Again this uses the UniSyn residual excited L PC diphone synthesizer.
And like ked, uses the CMU lexicon, and letter to sound rules trained from it. Intonation as with Roger is
trained from the Boston University FM Radio corpus. Duration for this voice also comes from that database.
This voice was built in two days work and is at least as good as ked due to us understanding the process better.
The diphone labels were autoaligned with hand correction.

voi ce_don_di phone
Steve Isard's LPC based diphone synthesizer, Donovan diphones. The other parts of this voice, lexicon,
intonation, and duration are the sameasvoi ce_r ab_di phone described above. The quality of the
diphonesis not as good as the other voices because it uses spike excited LPC. Although the quality is not as
good it is much faster and the database is much smaller than the others.

voi ce_el _di phone
A male Castilian Spanish speaker, using the Eduardo Lopez diphones. Alistair Conkie and Borja Etxebarria
did much to make this. It hasimproved recently but is not as comprehensive as our English voices.

voi ce_gsw_di phone
This offers amale RP speaker, Gordon, famed for many previous CSTR synthesizers, using the standard
diphone module. Its higher levels are very similar to the Roger voice above. Thisvoiceis not in the standard
distribution, and is unlikely to be added for commercial reasons, even though it sounds better than Roger.

voi ce_enl nbrol a
The Roger diphone set using the same front end asvoi ce_r ab_di phone but usesthe MBROLA diphone
synthesizer for waveform synthesis. The MBROLA synthesizer and Roger diphone database (called enl) is
not distributed by CSTR but is available for non-commercial use for free from
http://tcts.fpms.ac.be/synthesis'mbrola.html. We do however provide the Festival part of the voicein
“festvox_enl.tar.gz'.

voi ce_usl _nbrol a
A female Amercian English voice using our standard US English front end and the us 1 database for the
MBROLA diphone synthesizer for waveform synthesis. The MBROLA synthesizer and the us1 diphone
database is not distributed by CSTR but is available for non-commercial use for free from
http://tcts.fpms.ac.be/synthesis/mbrola.html. We provide the Festival part of the voicein
“festvox_usl.tar.gz'.

voi ce_us2_nbrol a
A male Amercian English voice using our standard US English front end and the us 2 database for the
MBROLA diphone synthesizer for waveform synthesis. The MBROLA synthesizer and the us 2 diphone
database is not distributed by CSTR but is available for non-commercial use for free from
http://tcts.fpms.ac.be/synthesis'mbrola.html. We provide the Festival part of the voicein
“festvox _us2.tar.gz'.

voi ce_us3_nbrol a
Another male Amercian English voice using our standard US English front end and the us 2 database for the
MBROLA diphone synthesizer for waveform synthesis. The MBROLA synthesizer and the us 2 diphone
database is not distributed by CSTR but is available for non-commercial use for free from
http://tcts.fpms.ac.be/synthesis'mbrola.html. We provide the Festival part of the voicein
“festvox_usl.tar.gz'.

Other voices will become available through time. Groups other than CSTR are working on new voices. Particularly
OGI's CSLU have release a number of American English voices, two Mexican Spanish voices and two German
voices. All use OGl's their own residual excited LPC synthesizer which is distributed as a plug-in for Festival. (see
http://www.cse.ogi.edu/CSL U/research/TTS for details).

Other languages are being worked on including German, Basgue, Welsh, Greek and Polish aready have been
developed and could be release soon. CSTR has a set of Klingon diphones though the text anlysis for Klingon still
requires some work (If anyone has access to a good Klingon continous speech corpora please let us know.)

Pointers and examples of voices developed at CSTR and elsaewhere will be posted on the Festival home page.

I

[<]1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

24.2 Building a new voice

This section runs through the definition of a new voice in Festival. Although thisvoiceissimple (it isasimplified
version of the distributed spanish voice) it shows all the mgjor parts that must be defined to get Festival to speak in a
new voice. Thanks go to Alistair Conkie for helping me define this but as | don't speak Spanish there are probably
many mistakes. Hopefully its pedagogical use is better than its ability to be understood in Castille.

A much more detailed document on building voicesin Festival has been written and is recommend reading for any
one attempting to add a new voice to Festival black99. The information here is alittle sparse though gives the basic
requirements.

The general method for defining a new voice is to define the parameters for all the various sub-parts e.g. phoneset,

http://tcts.fpms.ac.be/synthesis/mbrola.html
http://tcts.fpms.ac.be/synthesis/mbrola.html
http://tcts.fpms.ac.be/synthesis/mbrola.html
http://tcts.fpms.ac.be/synthesis/mbrola.html
http://www.cse.ogi.edu/CSLU/research/TTS

duration parameter intonation parameters etc., then defined a function of the form voi ce_ NAME which when called
will actualy select the voice.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

24.2.1 Phoneset

For most new languages and often for new dialects, a new phoneset isrequired. It isreally the basic building block of
avoice and most other parts are defined in terms of this set, so defining it first isagood start.

(def PhoneSet

spani sh

;;: Phone Features

(;; vowel or consonant

(ve + -)

7, vowel length: short |ong di phthong schwa

(ving s I d a 0)

7, vowel height: high md |ow

(vheight 1 2 3 -)

;; vowel frontness: front m d back

(vfront 1 2 3 -)

i p roundi ng

(vrnd + -)

;; consonant type: stop fricative affricative nasal |iquid
(ctype s f anl 0)

;; place of articulation: |abial alveolar palatal |abio-denta
- dental vel ar

(cplace | a p b dv 0)

consonant voi ci ng
(cvox + -)

)

;; Phone set nenbers (features are not! set properly)
(

(# - 0---00-)
(a +1 31-00-)
(e +1 21-00-)
(i +1 11-00-)
(o +1 33-00-)
(u +1 13+00-)
(b - 0--+s1 4
(ch- 0- - +aa-)
(d - 0- - +sat)
(f -0--+1fb-)
(g -0--+spH+)
(j -0--+1 aH+)
(k - 0--+sp-)
(r -0--+1d+)
(rr-0--4+14d+4
(m - 0- - +nl +)
(n -0--+ndH+)
(ny - 0- - +nv +)
(p -0--+s1 -)
(r -0--+1pH+
(rr - 0- - +1 p+)
(s -0--+f at+)
(t - 0- - +st +)
(th - 0- - +f d+)
(x - 0--+aa-)

)
(PhoneSet . sil ences ' (#))

Note some phonetic features may be wrong.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [2]

24.2.2 Lexicon and LTS

Spanish is alanguage whose pronunciation can almost completely be predicted from its orthography so in this case
we do not need alist of words and their pronunciations and can do most of the work with letter to sound rules.

Let usfirst make alexicon structure as follows

(I ex.create "spanish")
(1 ex. set. phoneset "spani sh")

However if we did just want afew entriesto test our system without building any letter to sound rules we could add
entries directly to the addenda. For example

(lex.add. entry
"("amigos” nil (((a) 0) ((mi) 1) (g o0 s))))

A letter to sound rule system for Spanish is quite ssmple in the format supported by Festival. The following is a good
start to afull set.

(I'ts.rul eset

Nanme of rule set
spani sh
; Sets used in the rules

(
(LNSI ns)
(AEQU a e 0 u)
(AEO a e 0)
(EI ei)
(BDALMN b d gl mn)
)
; Rules
(
([a] =a)
([e] =¢e)
(i] =1i)
([o] =0)
([u] =u)
([""" a] =al) stressed vowel s
(I e] =el)
(" "i]=1i1)
(I 0] =o0l1)
([""u] =ul)
([b] =b)
([v] =b)
([c] "™ E =th)
([c] EI =th)
([ch] =ch)
([c] =k)
([d] =d)
([F1=1)
(gl """ E =x)
([g] Bl =x)

([gul] """ B =9)
([gu] B =9)
(gl =9)

([hue] =ue)
([hie] =i e)
(L h] =)
(L1 1=x)

([k] =k)

([1rr]#=1)
([1rry1=11)
(rr1p=1)
([m] =m)

([~n] =ny)
([n] =n)

([p]l=p)
([lgu] =k)
([rr]=r1r)
(#[r] =r1r)
(LNS[r] =7rr)
([r]=1r)

([s] BDGLM = th)
([s] =s)
(#[] s] C=¢e s)
([t] =t)
([w] =u)

([x] =ks)
(AEO[vy] =1i)
(#[yl #=1)
(Lyl]l=11)
([z] =th)

))

We could simply set our lexicon to use the above letter to sound system with the following command
(lex.set.lts.rul eset 'spanish)

But this would not deal with upper case letters. Instead of writing new rules for upper case letters we can define that a
Lisp function be called when looking up aword and intercept the lookup with our own function. First we state that
unknown words should call afunction, and then define the function we wish called. The actual link to ensure our
function will be called is done below at lexicon selection time
(define (spanish_Its word features)
"(spani sh_|Its WORD FEATURES)
Using letter to sound rules build a spani sh pronunci ati on of WORD."
(list word
nil
(lex.syllabify.phstress (Its.apply (downcase word) 'spanish))))
(lex.set.lts. method spanish_Its)

In the function we downcase the word and apply the LTS rule to it. Next we syllabify it and return the created lexical
entry.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

24.2.3 Phrasing

Without detailed |abelled databases we cannot build statistical models of phrase breaks, but we can simply build a
phrase break model based on punctuation. The following isa CART treeto predict simple breaks, from punctuation.

(set! spani sh_phrase cart _tree

((l'isp_token_end punc in ("?" "." ":"))
((BB))
((l'isp_token_end_punc in (""" "\"" " " ";"))
((B))
((n.name is 0) ;; end of utterance
((BB))
((NB))))))

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [2]

24.2.4 Intonation

For intonation there are number of simple options without requiring training data. For this example we will simply
use a hat pattern on all stressed syllables in content words and on single syllable content words. (i.e. Si npl e) Thus
we need an accent prediction CART tree.

(set! spanish_accent cart _tree

((R Syl Structure. parent.gpos is content)
((stress is 1)
((Accented))
((position_type is single)
((Accented))
((NONE))))
((NONE))))

We also need to specify the pitch range of our speaker. We will be using a male Spanish diphone database of the
follow range
(set! spanish_el int_sinple_ parans
"((fO_mean 120) (fO_std 30)))

[<]1[>] [<<][Up][>>] [Top] [Contents] [Index] [?]

24.2.5 Duration

We will use the trick mentioned above for duration prediction. Using the zscore CART tree method, we will actually
use it to predict factors rather than zscores.

The tree predicts longer durations in stressed syllables and in clause initial and clause final syllables.

(set! spanish _dur_tree

((R Syl Structure.parent. R Syl lable.p.syl _break > 1) ;; clause initial
((R Syl Structure. parent.stress is 1)

((1.5))

((1.2)))
((R Syl Structure. parent.syl _break > 1) ;; clause final

((R Syl Structure. parent.stress is 1)

((2.0))

((1.5)))

((R Syl Structure. parent.stress is 1)

((1.2))

((1.0))))))

In addition to the tree we need durations for each phone in the set
(set! spanish_el phone_data

(
(# 0.0 0.250)
(a 0.0 0.090)
(e 0.0 0.090)
(i 0.0 0.080)
(o 0.0 0.090)
(u 0.0 0.080)
(b 0.0 0.065)
(ch 0.0 0.135)
(d 0.0 0.060)
(f 0.0 0.100)
(g 0.0 0.080)
(j 0.0 0.100)
(k 0.0 0.100)
(I 0.0 0.080)

(I'l 0.0 0.105)
(m 0.0 0.070)
(n 0.0 0.080)
(ny 0.0 0.110)
(p 0.0 0.100)
(r 0.0 0.030)
(rr 0.0 0.080)
(s 0.0 0.110)
(t 0.0 0.085)
(th 0.0 0.100)
(x 0.0 0.130)

))

[<]1[>] [<<][Up]l[>>] [Top] [Contents] [Index] [2]

24.2.6 Waveform synthesis

There are anumber of choices for waveform synthesis currently supported. MBROLA supports Spanish, so we could
use that. But their Spanish diphones in fact use a dlightly different phoneset so we would need to change the above
definitions to use it effectively. Here we will use a diphone database for Spanish recorded by Eduardo L opez when he
was a Masters student some years ago.

Here we simply load our pre-built diphone database

(us_di phone_init

(list
"(nane "el _| pc_group")
(list "index_file

(pat h-append spanish_el _dir "group/ellpcllk.group"))

"(grouped "true")
' (defaul t_di phone "#-#")))

I

[<1[>] [<<][Up]l[>>] [Top][Contents] [Index] [?]

24.2.7 Voice selection function

The standard way to define avoice in Festival isto define afunction of the form voi ce_ NAME which selects al the
appropriate parameters. Because the definition below follows the above definitions we know that everything
appropriate has been loaded into Festival and hence we just need to select the appropriate a parameters.

(define (voice_spanish_el)
"(voi ce_spani sh_el)

Set up synthesis for Ml e Spani sh speaker: Eduardo Lopez"

)

(voi ce_reset)
(Paramet er. set 'Language 'spani sh)
Phone set
(Paraneter.set 'PhoneSet 'spanish)
(PhoneSet . sel ect ' spani sh)
(set! pos_|lex _name nil)
;; Phrase break prediction by punctuation
(set! pos_supported nil)
Phr asi ng
(set! phrase_cart_tree spanish_phrase_cart_tree)
(Parameter.set 'Phrase _Method 'cart_tree)
;; Lexicon selection
(1 ex.sel ect "spanish")
;7 Accent prediction
(set! int_accent_cart_tree spani sh_accent_cart_tree)
(set! int_sinple_paranms spanish_el int_sinple_parans)
(Paraneter.set 'Int_Method 'Sinple)
;; Duration prediction
(set! duration_cart_tree spanish_dur_tree)
(set! duration_ph_info spanish_el phone_data)
(Paraneter.set 'Duration_Method ' Tree_ZScores)
Wavef or m synt hesi zer: di phones
(Paramet er.set 'Synth_Method ' Uni Syn)
(Parameter.set 'us_sigpr 'lpc)
(us_db_select 'el | pc_group)

(set! current-voice 'spanish_el)

(provi de 'spanish_el)

[<1[>] [<<][Upl[>>] [Top| [Contents] [Index] [2]

24.2.8 Last remarks

We save the above definitionsin afile” spani sh_el . scm . Now we can declare the new voice to Festival. See
section 24.3 Defining a new voice, for a description of methods for adding new voices. For testing purposes we can
explciitly load thefile ™ spani sh_el . scmi

The voiceis now available for usein festival.

festival > (voi ce_spanish_el)
spani sh_el

festival > (SayText "hola am gos")
<Utterance 0x04666>

Asyou can see adding anew voiceis not very difficult. Of course there is quite alot more than the above to add a
high quality robust voice to Festival. But as we can see many of the basic tools that we wish to use aready exist. The
main difference between the above voice and the English voices already in Festival are that their models are better
trained from databases. This produces, in general, better results, but the concepts behind them are basically the same.
All of those trainable methods may be parameterized with data for new voices.

As Festival develops, more modules will be added with better support for training new voices so in the end we hope
that adding in high quality new voicesis actualy as simple as (or indeed simpler than) the above description.

[<]1[>] [<<][Up]l[>>] [Top] [Contents] [Index] [2]

24.2.9 Resetting globals

Because the version of Scheme used in Festival only has asingle flat name space it is unfortunately too easy for
voices to set some global which accidentally affects all other voices selected after it. Because of this problem we
have introduced a convention to try to minimise the possibility of this becoming a problem. Each voice function
defined should always call voi ce_r eset at the start. Thiswill reset any globals and also call atidy up function
provided by the previous voice function.

Likewisein your new voice function you should provide atidy up function to reset any non-standard global variables
you set. The function cur r ent _voi ce_r eset will becalled by voi ce_r eset . If the value of

current _voi ce_reset isnil thenitisnot caled. voi ce_reset setscurrent _voi ce_reset tonil,
after caling it.

For example suppose some new Vvoice requires the audio device to be directed to a different machine. In this example
we make the giant's voice go through the netaudio machine bi g_speaker s while the standard voice go through
smal | _speakers.

Although we can easily select the machine bi g_speaker s as out when our voi ce_gi ant iscalled, weaso
need to set it back when the next voice is selected, and don't want to have to modify every other voice defined in the
system. Let usfirst define two functions to selection the audio output.

(define (select _big)
(set! giant_previous_audi o (getenv "AUDI CSERVER"))
(setenv "AUDI OSERVER' "bi g _speakers"))

(define (select_normal)
(setenv "AUDI OSERVER' gi ant _previ ous_audi 0))

Note we save the previous value of AUDI OSERVER rather than simply assuming it wassmal | _speakers.

Our definition of voi ce_gi ant definition of voi ce_gi ant will look something like

(define (voice_giant)

"comment coment
(voice_reset) ;; get into a known state
(sel ect _bi Q)
;;; Other giant voice paraneters

(set! current _voice_rest select _nornmal)
(set! current-voice 'giant))

The obvious question is which variables should a voice reset. Unfortunately thereis not a definitive answer to that.
To acertain extent | don't want to define that list as there will be many variables that will by various peoplein
Festival which are not in the original distribution and we don't want to restrict them. The longer term answer is some
for of partitioning of the Scheme name space perhaps having voice local variables (cf. Emacs buffer local variables).
But ultimately a voice may set global variables which could redefine the operation of later selected voices and there
seems no real way to stop that, and keep the generality of the system.

Note the convention of setting the global cur r ent - voi ce asthe end of any voice definition file. We do not
enforce this but probabaly should. The variable cur r ent - voi ce at any time should identify the current voice, the
voice description information (described below) will relate this name to properties identifying it.

[<][>] [=<<][Up][>>] [Top] [Contents] [Index] [?]

24.3 Defining a new voice

Asthere are anumber of voices available for Festival and they may or may not existsin different installations we
have tried to make it as simple as possible to add new voices to the system without having to change any of the basic
distribution. In fact if the voices use the following standard method for describing themselvesit is merely a matter of
unpacking them in order for them to be used by the system.

The variablevoi ce- pat h conatinsalist of directories where voices will be automatically searched for. If thisis
not set it is set automatically by appending * / voi ces/ ' toal pathsin festival | oad- pat h. You may add new
directories explicitly to thisvariablein your " si t evars. scm fileor yourown ™. festi val rc' asyouwish.

Each voice directory is assumed to be of the form
LANGUAGE/ VO CENAME/

Within the VO CENAME/ directory itself it isassumed thereisafile” f est vox/ VO CENAME. scm which when
loaded will define the voiceitself. The actua voice function should be called voi ce_VO CENAME.

For example the voices distributed with the standard Festival distribution all unpack in
“festival/lib/voices'.TheAmercanvoice ked_di phone' unpacksinto

festival/lib/voices/english/ked di phone/

Its actual definition fileisin
festival/lib/voices/english/ked di phone/festvox/ked_di phone. scm

Note the name of the directory and the name of the Scheme definition file must be the same.

Alternative voices using perhaps a different encoding of the database but the same front end may be defined in the
same way by using symbolic links in the langauge directoriy to the main directory. For example a PSOLA version of
the ked voice may be defined in

festival/lib/voices/english/ked diphone/festvox/ked psol a.scm

Adding asymbolelinkin” festival /lib/voi ces/english/' ro" ked_di phone' caled ked_psol a'
will allow that voice to be automatically registered when Festival starts up.

Note that this method doesn't actually load the voicesit finds, that could be prohibitively time consuming to the start
up process. It blindly assumes that thereisafile™ VO CENAME/ f est vox/ VO CENAME. scni toload. An
autoload definitionis given for voi ce_ VO CENAME which when called will load that file and call the real
definition if it existsin thefile.

Thisis only arecommended method to make adding new voices easier, it may be ignored if you wish. However we
still recommend that even if you use your own convetions for adding new voices you consider the autoload function
to definethemiin, for example, the” sitei nit. scm fileor . festi val rc' . Theautoload function takes three
arguments: a function name, afile containing the actual definiton and a comment. For example a definition of voice
can be done explicitly by

(aut ooad voice_f2b "/ hone/awb/ dat a/f 2b/ ducs/f2b_ducs"
"Anerican English female f2b")))

Of course you can aso load the definition file explicitly if you wish.

In order to allow the system to start making intellegent use of voices we recommend that all voice definitionsinclude
acall tothefunction voi ce_pr ocl ai mthisallows the system to know some properties about the voice such as
language, gender and dialect. The pr ocl ai m voi ce function taks two arguments aname (e.g. r ab_di phone
and an assoc list of features and names. Currently werequirel anguage, gender , di al ect anddescri pti on.
The last being atextual description of the voiceitself. An example proclaimation is

(procl ai mvoice
'rab_di phone
"((language english)
(gender mal e)
(dialect british)
(description
"This voice provides a British RP English male voice using a
resi dual excited LPC di phone synthesis nethod. It uses a
nmodi fi ed Oxford Advanced Learners' Dictionary for pronunciations.
Prosodi ¢ phrasing is provided by a statistically trained nodel
using part of speech and l|ocal distribution of breaks. |Intonation
is provided by a CART tree predicting ToBl accents and an FO
contour generated froma nodel trained fromnatural speech. The
duration nodel is also trained fromdata using a CART tree.")))

There are functions to access a description. voi ce. descri pt i on will return the description for a given voice and
will load that voiceif it isnot aready loaded. voi ce. descr i be will describe the given given voice by
synthesizing the textual description using the current voice. It would be nice to use the voice itself to give a self
introduction but unfortunately that introduces of problem of decide which language the description should bein, we
are not all asfluent in welsh aswed liketo be.

Thefunctionvoi ce. | i st will list the potential voicesin the system. These are the names of voices which have
been found in thevoi ce- pat h. Asthey have not actaully been loaded they can't actually be confirmed as usable
voices. One solution to thiswould be to load all voices at start up time which would allow confirmation they exist
and to get their full description through pr ocl ai m voi ce. But start up is aready too slow in festival so we have
to accept this stat for the time being. Splitting the description of the voice from the actual definition is a possible
solution to this problem but we have not yet looked in to this.

[<][>] [=<<][Up][>>] [Top] [Contents] [Index] [2]

25. Tools

A number of basic data manipulation tools are supported by Festival. These often make building new modules very
easy and are already used in many of the existing modules. They typically offer a Scheme method for entering data,
and Scheme and C++ functions for evaluating it.

25.1 Regular expressions

25.2 CART trees Building and using CART
25.3 Ngrams Building and using Ngrams

25.4 Viterbi decoder Using the Viterbi decoder
25.5 Linear regression Building and using linear regression models

I

[<]1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

25.1 Regular expressions

Regular expressions are aformal method for describing a certain class of mathematical languages. They may be
viewed as patterns which match some set of strings. They are very common in many software tools such as scripting
languages like the UNIX shell, PERL, awk, Emacs etc. Unfortunately the exact form of regualr expressions often
differs dightly between different applications making their use often alittle tricky.

Festival support regular expressions based mainly of the form used in the GNU libg++ Regex class, though we have
our own implementation of it. Our implementation (EST_Regex) is actually based on Henry Spencer's
“regex. c' asdistributed with BSD 4.4.

Regular expressions are represented as character strings which are interpreted as regular expressions by certain
Scheme and C++ functions. Most charactersin aregular expression are treated as literals and match only that
character but a number of others have special meaning. Some characters may be escaped with preceeding backs ashes
to change them from operators to literals (or sometime literals to operators).

Matches any character.

$

matches end of string
N

matches beginning of string
X*

matches zero or more occurrences of X, X may be a character, range of parenthesized expression.
X+

matches one or more occurrences of X, X may be a character, range of parenthesized expression.
X?

matches zero or one occurrence of X, X may be a character, range of parenthesized expression.

[...]
aranges matches an of the valuesin the brackets. The range operator "-" allows specification of rangese.g. a-
z for al lower case characters. If the first character of therangeis” then it matches anything character except
those specificed in the range. If you wish - to bein the range you must put that first.

W(...\\)
Treat contents of parentheses as single object allowing operators * , +, ? etc to operate on more than single
characters.

X\ Y
matches either X or Y. X or Y may be single characters, ranges or parenthesized expressions.

Note that actuall only one backd ash is heeded before a character to escape it but becuase these expressions are most
often contained with Scheme or C++ strings, the escpae mechanaism for those strings requires that backslash itself be
escaped, hence you will most often be required to type two backslashes.

Some example may help in enderstanding the use of regular expressions.

a.b
matches any three |etter string starting with an a and ending with ab.
.*a
matches any string endingin an a
raut
matches any string containing an a
[A-Z2].*
matches any string starting with a capital letter
[0-9] +
matches any string of digits
-?[0-9] N\ (V. [0-9]H\\)?
matches any positive or negative real number. Note the optional preceeding minus sign and the optional part
contain the point and following numbers. The point itself must be escaped as dot on its own matches any
character.
[~aei ouAElI QU] +
mathes any non-empty string which doesn't conatin a vowel
\V([Ss]at\\ (urday\\)\ V) AN [\ ([Ss]un\\ (day\\)\\)
matches Saturday and Sunday in various ways

The Scheme function st r i ng- mat ches takesastring and aregular expression and returnst if the regular
expression macthes the string and ni | otherwise.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

25.2 CART trees

One of the basic tools available with Festival isa system for building and using Classification and Regression Trees
(breiman84). This standard statistical method can be used to predict both categorical and continuous data from a set
of feature vectors.

The treeitself contains yes/no questions about features and ultimately provides either a probability distribution, when
predicting categorical values (classification tree), or amean and standard deviation when predicting continuous
values (regression tree). Well defined techniques can be used to construct an optimal tree from a set of training data.
The program, developed in conjunction with Festival, called ™~ wagon' , distributed with the speech toals, provides a
basic but ever increasingly powerful method for constructing trees.

A tree need not be automatically constructed, CART trees have the advantage over some other automatic training
methods, such as neural networks and linear regression, in that their output is more readable and often understandable
by humans. Importantly this makesit possible to modify them. CART trees may also be fully hand constructed. This
isused, for example, in generating some duration models for languages we do not yet have full databases to train
from.

A CART tree has the following syntax

CART ::= QUESTI ON- NODE || ANSVEER- NODE

QUESTI ON- NODE :: = (QUESTI ON YES- NODE NO- NODE)
YES- NODE : : = CART

NO- NODE :: = CART

QUESTION ::= (FEATURE in LIST)

QUESTION ::= (FEATURE is STRVALUE)

QUESTI ON ::= (FEATURE = NUWALUE)

QUESTION ::= (FEATURE > NUWALUE)

QUESTION :: = (FEATURE < NUWALUE)

QUESTI ON ::= (FEATURE natches REGEX)

ANSVEER- NODE : : = CLASS- ANSVER || REGRESS- ANSVEER
CLASS- ANSVER ::= ((VALUEO PROB) (VALUEL PROB) ... MOST-PROB- VALUE)
REGRESS- ANSVER :: = ((STANDARD- DEVI ATI ON MEAN))

Note that answer nodes are distinguished by their car not being atomic.

Theinterpretation of atreeiswith respect to a Stream_Item The FEATURE in atree is a standard feature (see section
14.6 Features).

The following example tree is used in one of the Spanish voicesto predict variations from average durations.

(set! spanish dur_tree

(set! spanish dur _tree

((R Syl Structure. parent. R Syl |l able. p.syl _break > 1) ;; clause initial
((R Syl Structure. parent.stress is 1)

((1.5))

((1.2)))
((R Syl Structure. parent.syl _break > 1) ;; clause final

((R Syl Structure. parent.stress is 1)

((2.0))

((1.5)))

((R Syl Structure. parent.stress is 1)

((1.2))

((1.0))))))

It isapplied to the segment stream to give a factor to multiply the average by.

wagon is constantly improving and with version 1.2 of the speech tools may now be considered fairly stable for its
basi c operations. Experimental features are described in help it gives. See the Speech Tools manual for amore
comprehensive discussion of using ~ wagon' .

However the above format of treesis similar to those produced by many other systems and henceit is reasonable to
translate their formats into one which Festival can use.

T

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

25.3 Ngrams

Bigram, trigrams, and general ngrams are used in the part of speech tagger and the phrase break predicter. An Ngram
C++ Classis defined in the speech tools library and some simple facilities are added within Festival itself.

Ngrams may be built from files of tokens using the program ngr am bui | d which is part of the speech tools. See
the speech tools documentation for details.

Within Festival ngrams may be named and loaded from files and used when required. The L1SP function
| oad_ngr amtakes a name and a filename as argument and loads the Ngram from that file. For an example of its
use once loaded see ” sr ¢/ nodul es/ base/ pos. cc' or” src/ nodul es/ base/ phrasify.cc'.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

25.4 Viterbi decoder

Another common tool isa Viterbi decoder. This C++ Classis defined in the speech toolslibrary

“speech_t ooks/include/ EST viterbi.h' and speech_tool s/stats/EST viterbi.cc'.A
Viterbi decoder requires two functions at declaration time. The first constructs candidates at each stage, while the
second combines paths. A number of options are available (which may change).

The prototypical example of useisin the part of speech tagger which using standard Ngram models to predict
probabilities of tags. See ™ sr ¢/ nodul es/ base/ pos. cc' for an example.

The Viterbi decoder can also be used through the Scheme function Gen_ Vi t er bi . Thisfunction respects the
parameters defined in the variableget _vi t _par ans. Like other modules this parameter list is an assoc list of
feature name and value. The parameters supported are:

Rel ati on
The name of the relation the decoeder isto be applied to.
cand_function
A function that isto be called for each item that will return alist of candidates (with probilities).
return_feat
The name of afeature that the best candidate is to be returned in for each item in the named relation.
p_word
The previous word to the first item in the named relation (only used when ngrams are the "language model").
pp_wor d
The previous previous word to the first item in the named relation (only used when ngrams are the "language
model").
ngr amane
the name of an ngram (loaded by ngr am | oad) to be used as a"language model".
wf st arne
the name of aWFST (loaded by wf st . | oad) to be used as a"language model", thisisignored if an
ngr amane isalso specified.
debug
If specified more debug features are added to the itemsin the relation.
gscale p
Grammar scaling factor.

Here is a short example to help make the use of thisfacility clearer.

There are two parts required for the Viterbi decode a set of candidate observations and some "language model". For

the math to work properly the candidate observations must be reverse probabilities (for each candidiate as given what
is the probability of the observation, rather than the probability of the candidate given the observation). These can be
calculated for the probabilties candidate given the observation divided by the probability of the candidate in isolation.

For the sake of simplicity let us assume we have alexicon of words to distribution of part of speech tags with reverse
probabilities. And an tri-gram called pos-t ri - gr amover ngram sequences of part of speech tags. First we must
define the candidate function

(define (pos_cand_function w)
sel ect the appropriate |exicon
(lex.select 'pos_Iex)
;; return the list of cands with rprobs
(cadr
(lex.l ookup (itemname w) nil)))

The returned candidate list would look somthing like
((ij -9.872) (vbd -6.284) (vbn -5.565))

Our part of speech tagger function would look something like this

(define (pos_tagger utt)
(set! get_vit_parans
(list
(list 'Relation "Wrd")
(list 'return_feat 'pos_tag)
(list "p_word "punc")
(list "pp_word "nn")
(list 'ngrammane "pos-tri-grani)
(l'ist 'cand_function 'pos_cand_function)))
(Gen_Viterbi utt)
utt)

thiswill assign the optimal part of speech tagsto each word in utt.

T

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

25.5 Linear regression

The linear regression model takes models built from some external package and finds coefficients based on the
features and weights. A model consists of alist of features. The first should be the atom | nt er cept plusavalue.
Thefollowing in the list should consist of a feature (see section 14.6 Features) followed by aweight. An optional
third element may be alist of atomic values. If the result of the feature is a member of thislist the feature'svalueis
treated as 1 elseit is 0. Thisthird argument allows an efficient way to map categorical values into numeric values.
For example, from the FO prediction model in " | i b/ f 2bf Ol r. scm . Thefirst few parameters are

(set! f2b_fO_Ir_start

" (
(Intercept 160.584956)

Wor d. Token. EMPH 36.0)

pp.tobi _accent 10.081770 (H*))

pp.tobi _accent 3.358613 (!H))

pp.tobi _accent 4.144342 (*? X*? H*!H * L+H* L+ H))

pp.tobi _accent -1.111794 (L*))

LN e e)

)

Note the feature pp. t obi _accent returnsan atom, and is hence tested with the map groups specified as third
arguments.

Models may be built from feature data (in the same format as™ wagon' usingthe ™ ol s' program distributed with
the speech toolslibrary.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

26. Building models from databases

Because our research interests tend towards creating statistical models trained from real speech data, Festival offers
various support for extracting information from speech databases, in away suitable for building models.

Models for accent prediction, FO generation, duration, vowel reduction, homograph disambiguation, phrase break
assignment and unit selection have been built using Festival to extract and process various databases.

26.1 Labelling databases Phones, syllables, words etc.
26.2 Extracting features Extraction of model parameters.
26.3 Building models Building stochastic models from features

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

26.1 Labelling databases

In order for Festival to use adatabase it is most useful to build utterance structures for each utterance in the database.
Asdiscussed earlier, utterance structures contain relations of items. Given such a structure for each utterancein a
database we can easily read in the utterance representation and access it, dumping information in a normalised way
allowing for easy building and testing of models.

Of coursethe level of labelling that exists, or that you are willing to do by hand or using some automatic tool, for a
particular database will vary. For many purposes you will at least need phonetic labelling. Hand labelled dataiis still
better than auto-labelled data, but that could change. The size and consistency of the datais important too.

For this discussion we will assume labels for: segments, syllables, words, phrases, intonation events, pitch targets.
Some of these can be derived, some need to be labelled. Thiswould not fail with less|abelling but of course you
wouldn't be able to extract as much information from the resullt.

In our databases these labels are in Entropic's Xlabel format, though it isfairly easy to convert any reasonable format.

Segment
These give phoneme labels for files. Note the these labels must be members of the phoneset that you will be
using for this database. Often phone label files may contain extralabels (e.g. beginning and end silence)
which are not really part of the phoneset. Y ou should remove (or re-label) these phones accordingly.

Word
Again these will need to be provided. The end of the word should come at the last phone in the word (or just
after). Pauses/silences should not be part of the word.

Syllable
There is a chance these can be automatically generated from Word and Segment files given alexicon. |deally
these should include lexical stress.

IntEvent
These should ideally mark accent/boundary tone type for each syllable, but this aimost definitely requires
hand-labelling. Also given that hand-1abelling of accent typeis harder and not as accurate, it is arguable that
anything other than accented vs. non-accented can be used reliably.

Phrase
This could just mark the last non-silence phone in each utterance, or before any silence phones in the whole
utterance.

Target
This can be automatically derived from an FO file and the Segment files. A marking of the mean FO in each
voiced phone seem to give adequate results.

Once these files are created an utterance file can be automatically created from the above data. Note it is pretty easy
to get the streams right but getting the relations between the streams is much harder. Firstly labelling is rarely
accurate and small windows of error must be allowed to ensure things line up properly. The second problem is that

some label filesidentify point type information (IntEvent and Target) while others identify segments (e.g. Segment,
Words etc.). Relations have to know thisin order to get it right. For exampleis not right for all syllables between two
IntEvents to be linked to the IntEvent, only to the Syllable the IntEvent is within.

Thescript * f esti val / exanpl es/ make_utts' isanexample Festival script which automatically builds the
utterance files from the above labelled files.

The script, by default assumes, a hierarchy in an database directory of the following form. Under a directory
“festival /' whereall festival specific database ifnromation can be kept, adirectory “r el ati ons/' containsa
subdirectory for each basic relation (e.g. ~ Segnent /', " Syl | abl e/ ', etc.) Each of which contains the basic
label filesfor that relation.

The following command will build a set of utterance structures (including building hte relations that link between
these basic relations).

make_utts -phoneset radi o festival/relation/ Segnent/*. Segrment

Thiswill create utterancesin ™ f esti val / utt s/ ' . There are anumber of optionsto " make _utts' use -h' to
find them. The ™ - eval ' option allows extra scheme code to be loaded which may be called by the utterance
building process. The function make_utts_user _functi on will be called on al utterance created. Redefining
that in database specific loaded code will allow database specific fixed to the utterance.

[<]1[>] [=<<][Up]l[>>] [Top] [Contents] [Index] [?]

26.2 Extracting features

The easiest way to extract features from alabelled database of the form described in the previous section is by
loading in each of the utterance structures and dumping the desired features.

Using the same mechanism to extract the features as will eventually be used by models built from the features has the
important advantage of avoiding spurious errors easily introduced when collecting data. For example afeature such
asn. accent inaFestival utterance will be defined as 0 when there is no next accent. Extracting al the accents and
using an external program to calculate the next accent may make a different decision so that when the generated
model is used a different value for this feature will be produced. Such mismatchesin training models and actual use
are unfortunately common, so using the same mechanism to extract data for training, and for actual useis
worthwhile.

The recommedn method for extracting features is using the festival script * dunpf eat s' . It basically takes alist of
feature names and a list of utterance files and dumps the desired features.

Features may be dumped into asinglefile or into separate files one for each utterance. Feature names may be
specified on the command line or in a separate file. Extar code to define new features may be loaded too.

For example suppose we wanted to save the features for a set of utterances include the duration, phone name,
previous and next phone names for all segments in each utterance.

dumpfeats -feats "(segnment_durati on name p.nanme n.name)" \
-out put feats/%.dur -relation Segnment \
festival /utts/*.utt

Thiswill save these features in files named for the utterances they come from in the directory “ f eat s/ ' . The
argumentto " - f eat s' istreated asliteral list only if it starts with aleft parenthesis, otherwiseit istreated as a
filename contain named features (unbracketed).

Extra code (for new feature definitions) may be loaded throughthe ™ - eval ' option. If theargumentto ™ - eval '
starts with aleft parenthesisit is trated as an s-expression rather than afilename and is evaluated. If argument ™ -

out put ' contains"%s" it will befilled in with the utterance's filename, if it is a simple filename the features from
all utterances will be saved in that same file. The features for each item in the named relation are saved on asingle
line.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

26.3 Building models

This section describes how to build models from data extracted from databases as described in the previous section. It
uses the CART building program, ~ wagon' which isavailable in the speech tools distribution. But the dataiis
suitable for many other types of model building techniques, such as linear regression or neural networks.

Wagon is described in the speech tools manual, though we will cover simple use here. To use Wagon you need a
datefile and a data description file.

A datafile consists of anumber of vectors one per line each containing the same number of fields. This, not
coincidentally, is exactly the format produced by ~ dunpf eat s' described in the previous section. The data
description file describes the fields in the datafile and their range. Fields may be of any of the following types: class
(alist of symbals), floats, or ignored. Wagon will build a classification treeif the first field (the predictee) is of type
class, or aregression tree if thefirst field isafloat. An example data description file would be

(duration float)

(name # @@»a aa ai au b ch d dh e e@ei f ghi i@ii jh kI mn
ng ooi oooupr ssht thuu@uhuuvwyz zh)

(nnamre # @@a aa ai au b ch d dh e e@ei f ghi i@ii jh kIl mn
ng ooi cooupr sshtthuu@uhuuvwy z zh)

p.nane # @@®»a aa ai au b ch d dh e e@ei f ghi i@ii jh k1 mn

ng ooi oooupr ssht thuu@uhuuvwyz zh)

R Syl Structure. parent.position_type 0 final initial md single)

pos_in_syl float)

syl initial 0 1)

syl final 0 1)

R Syl Structure. parent. R Syl l able.p.syl _break 0 1 3)

R Syl Structure. parent.syl_break 0 1 3 4)

R Syl Structure. parent. R Syllable.n.syl _break 0 1 3 4)

R Syl Structure. parent. R Syllable.p.stress 0 1)

R Syl Structure. parent.stress 0 1)

R Syl Structure. parent. R Syllable.n.stress 0 1)

—~

R N e e e N e N e

Thescript * speech_t ool s/ bi n/ make_wagon_desc' goessome way to helping. Given adatafile and afile
containing the field names, it will construct an approximation of the description file. Thisfile should still be edited as
all fields are treated as of type classby * nake_wagon_desc' and you may want to change them some of them to
float.

The data file must be a single file, although we created a number of feature files by the process described in the
previous section. From alist of file ids select, say, 80% of them, as training data and cat them into a single datafile.
The remaining 20% may be catted together as test data.

To build atree use acommand like
wagon -desc DESCFI LE -data TRAINFILE -test TESTFILE

The minimum cluster size (default 50) may be reduced using the command line option - st op plus a number.

Varying the features and stop size may improve the results.

Building the models and getting good figures is only one part of the process. Y ou must integrate this model into
Festival if its going to be of any use. In the case of CART trees generated by Wagon, Festival supports these directly.
In the case of CART trees predicting zscores, or factors to modify duration averages, ees can be used asis.

Note there are other options to Wagon which may help build better CART models. Consult the chapter in the speech
tools manua on Wagon for more information.

Other parts of the distributed system use CART trees, and linear regression models that were training using the
processes described in this chapter. Some other parts of the distributed system use CART trees which were written by
hand and may be improved by properly applying these processes.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

27. Programming

This chapter covers aspects of programming within the Festival environment, creating new modules, and modifying
existing ones. It describes basic Classes available and gives some particular examples of things you may wish to add.

27.1 The source code A walkthrough of the source code
27.2 Writing anew module Example access of an utterance

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

27.1 The source code

The ultimate authority on what happens in the system lies in the source code itself. No matter how hard we try, and
how automatic we make it, the source code will always be ahead of the documentation. Thusif you are going to be
using Festival in a serious way, familiarity with the source is essential.

Thelowest level functions are catered for in the Edinburgh Speech Tools, a separate library distributed with Festival.
The Edinburgh Speech Tool Library offers the basic utterance structure, waveform file access, and other various
useful low-level functions which we share between different speech systems in our work. See section "Overview' in
Edinburgh Speech Tools Library Manual.

The directory structure for the Festival distribution reflects the conceptual split in the code.

. /bin/'
The user-level executable binaries and scripts that are part of the festival system. These are simple symbolic
linksto the binaries or if the system is compiled with shared libraries small wrap-around shell scripts that set
LD _LI BRARY_PATH appropriately

*./doc/'
This contains the texinfo documentation for the whole system. The ™ Makefi | ' constructs the info and/or
html version as desired. Note that thef est i val binary itself is used to generate the lists of functions and
variables used within the system, so must be compiled and in place to generate a new version of the
documentation.

“ ./ exanpl es/'
This contains various examples. Some are explained within this manual, others are there just as examples.

VARN JA
The basic Scheme parts of the system, including " i nit. scm thefirst fileloaded by f est i val at start-up
time. Depending on your installation, this directory may also contain subdirectories containing lexicons,
voices and databases. This directory and its sub-directories are used by Festival at run-time.

./libletcl’

Executables for Festival's internal use. A subdirectory containing at least the audio spooler will be

automatically created (one for each different architecture the system is compiled on). Scripts are added to this
top level directory itself.

“./liblvoices/'

By default this contains the voices used by Festival including their basic Scheme set up functions as well as
the diphone databases.

“./1lib/dicts/’

This contains various lexicon files distributed as part of the system.

“.lconfig/'

Thiscontainsthe basic * Makefi | e' configuration files for compiling the system (run-time configuration is
handled by Schemeinthe ™ | i b/ " directory). Thefile” confi g/ confi g' created asacopy of the
standard * confi g/ confi g-di st' istheinstalation specific configuration. In most cases a simpel copy
of the distribution file will be sufficient.

“./srcl’

The main C++/C source for the system.

“.lsrc/libl!

Wherethe ™ | i bFestival . a' isbuilt.

./src/include/’

Where include files shared between various parts of the system live. Thefile™ f esti val . h' provides
access to most of the parts of the system.

“./src/min/'

Contains the top level C++ filesfor the actual executables. Thisis directory where the executable binary
“festival' iscreated.

“./srclarch/'

The main core of the Festival system. At present everything is held in a single sub-directory
“./srclarc/festival/'.Thiscontainsthe basic core of the synthesis system itself. This directory
contains lisp front ends to access the core utterance architecture, and phonesets, basic toolslike, client/server
support, ngram support, etc, and an audio spooler.

./ src/ modul es/'’

Incontrast tothe ™ ar ch/ ' directory this contains the non-core parts of the system. A set of basic example
modules are included with the standard distribution. These are the parts that do the synthesis, the other parts
are just there to make module writing easier.

./ src/ nmodul es/ base/"

This contains some basic simple modules that weren't quite big enough to deserve their own directory. Most
importantly it includesthel ni ti al i ze module called by many synthesis methods which sets up an
utterance structure and loads in initial values. This directory also contains phrasing, part of speech, and word
(syllable and phone construction from words) modules.

*./src/nodul es/ Lexi con/'

Thisis not really amodule in the true sense (the Wor d module is the main user of this). This contains
functions to construct, compile, and access lexicons (entries of words, part of speech and pronunciations).
This also contains a | etter-to-sound rule system.

*./src/nodul es/ I ntonation/'

This contains various intonation systems, from the very simple to quite complex parameter driven intonation
systems.

./ src/ modul es/ Duration/'

This contains various duration prediction systems, from the very simple (fixed duration) to quite complex
parameter driven duration systems.

*./src/ nodul es/ Uni Syn/'

A basic diphone synthesizer system, supporting a simple database format (which can be grouped into amore
efficient binary representation). It is multi-lingual, and alows multiple databases to be loaded at once. It offers
achoice of concatenation methods for diphones: residual excited LPC or PSOLA (TM) (which is not
distributed)

*./src/ nodul es/ Text /'

Varioustext analysis functions, particularly the tokenizer and utterance segmenter (from arbitrary files). This
directory also contains the support for text modes and SGML.

*./src/ nodul es/ donovan/'

An LPC based diphone synthesizer. Very small and neat.

“.Isrc/ nmodul es/ rxp/'

The Festival/Scheme front end to An XML parser written by Richard Tobin from University of Edinburgh's
Language Technology Group.. rxp is now part of the speech tools rather than just Festival.

./ src/ modul es/ par ser'

A simple interface the the Stochastic Context Free Grammar parser in the speech tools library.

*./src/ nodul es/ di phone'
An optional module contain the previousity used diphone synthsizer.

“./src/nodul es/clunits'
A partial implementation of a cluster unit selection algorithm as described in black97c.

*./src/nodul es/ Dat abase rjc_synthesis'
This consist of anew set of modules for doing waveform synthesis. They are inteneded to unit size
independent (e.g. diphone, phone, non-uniform unit). Also selection, prosodic modification, joining and signal
processing are separately defined. Unfortunately this code has not really been exercised enough to be
considered stable to be used in the default synthesis method, but those working on new synthesis techniques
may be interested in integration using these new modules. They may be updated before the next full release of
Festival.

./src/ nmodul es/!
Other optional directories may be contained here containing various research modules not yet part of the
standard distribution. See below for descriptions of how to add modules to the basic system.

Oneintended use of Festival is offer a software system where new modules may be easily tested in a stable
environment. We have tried to make the addition of new modules easy, without requiring complex modificationsto
the rest of the system.

All of the basic modules should really be considered merely as example modules. Without much effort all of them
could be improved.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

27.2 Writing a new module

This section gives a simple example of writing a new module. showing the basic steps that must be done to creste and
add anew module that is available for the rest of the system to use. Note many things can be done solely in Scheme
now and really only low-level very intensive things (like waveform synthesizers) need be coded in C++.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [2]

27.2.1 Example 1: adding new modules

The example hereis a duration module which sets durations of phones for agiven list of averages. To make this
example more interesting, all durations in accented syllables are increased by 1.5. Note that thisis just an example for
the sake of one, this (and much better techniques) could easily done within the system asit is at present using a hand-
crafted CART tree.

Our knew module, called Dur at i on_Si npl e can most easily be addedtothe™ . / src/ Durati on/ " directory
inafile” si ndur. cc' . You can worry about the copyright notice, but after that you'll probably need the following
includes

#i ncl ude <festival.h>

The module itself must be declared in afixed form. That is receiving asingle LISP form (an utterance) as an
argument and returning that L1SP form at the end. Thus our definition will start

LI SP FT _Duration_Sinple(LISP utt)

{

Next we need to declare an utterance structure and extract it from the LISP form. We also make a few other variable
declarations

EST Utterance *u = get_c_utt(utt);
EST Item *s;

float end=0.0, dur;

LI SP ph_avgs, | dur;

We cannot list the average durations for each phone in the source code as we cannot tell which phoneset we are using
(or what modifications we want to make to durations between speakers). Therefore the phone and average duration
information is held in a Scheme variable for easy setting at run time. To use the information in our C++ domain we
must get that value from the Scheme domain. Thisis done with the following statement.

ph_avgs = siod_get | val ("phonene_averages", "no phonene durations");

Thefirst argument to si od_get _I val isthe Scheme name of avariable which has been set to an assoc list of
phone and average duration before thismoduleis called. Seethe variable phone_dur ati ons in
“lib/nrpa_durs. scm fortheformat. The second argument to si od_get _| val . isan error message to be
printed if the variable phone_aver ages isnot set. If the second argument to si od_get _| val isNULL then no
error isgiven and if the variable is unset this function simply returns the Scheme valueni | .

Now that we have the duration data we can go through each segment in the utterance and add the duration. The loop
looks like

for (s=u->relation("Segnent")->head(); s != 0; s = next(s))

{

We can lookup the average duration of the current segment name using the functionsi od_assoc_str.As
arguments, it takes the segment name s- >nane() and the assoc list of phones and duration.

| dur = siod_assoc_str(s->nane(), ph_avgs);

Note the return value is actually a LI1SP pair (phone name and duration), or ni | if the phoneisn't in thelist. Here we
check if the segment isin the list. If it is not we print an error and set the duration to 100 ms, if it isin thelist the
floating point number is extracted from the LISP pair.

if (Idur == NIL)

{
cerr << "Phonene: " << s->nanme() << " no duration "
<< endl;
dur = 0.100;
}
el se

dur = get_c_float(car(cdr(ldur)));

If this phone isin an accented syllable we wish to increase its duration by afactor of 1.5. To find out if it is accented
we use the feature system to find the syllable this phone is part of and find out if that syllable is accented.

if (ffeature(s,"R Syl Structure. parent.accented") == 1)
dur *= 1.5;

Now that we have the desired duration we increment the end duration with our predicted duration for this segment
and set the end of the current segment.

end += dur;
s->fset ("end", end);

Finally we return the utterance from the function.
return utt;

}

Once amoduleis defined it must be declared to the system so it may be called. To do this one must call the function
festival def_utt_ nodul e whichtakesallSP name, the C++ function name and a documentation string
describing what the module does. Thiswill automatically be available at run-time and added to the manual. The call

to this function should be added to the initialization function in the directory you are adding the module too. The
functioniscaledf esti val _DI RNAME i nit (). If onedoesn't exist you'll need to create it.

In"./src/Duration/' thefunctionfestival Duration_init() isattheendof thefile
“dur_aux. cc' . Thuswe can add our new modules declaration at the end of that function. But first we must
declare the C++ function in that file. Thus above that function we would add

LI SP FT_Duration_Si npl e(LI SP args);

While at the end of the functionf est i val _Durati on_i nit () wewould add

festival def _utt_rnodul e("Duration_Sinple", FT_Duration_Si npl e,
"(Duration_Sinple UTT)\ n\
Label all segments with average duration ... ");

In order for our new file to be compiled we must add it to the ™ Makef i | ' inthat directory, to the SRCS variable.
Then when wetypenmake in™ ./ src/"' our new module will be properly linked in and available for use.

Of course we are not quite finished. We still have to say when our new duration module should be called. When we
set

(Paramet er.set 'Duration_Method Duration_Sinple)

for avoiceit will use our new module, callsto the function ut t . synt h will use our new duration module.

Notein earlier versions of Festival it was necessary to modify the duration calling function in
“lib/duration.scm butthatisnolonger necessary.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

27.2.2 Example 2: accessing the utterance

In this example we will make more direct use of the utterance structure, showing the gory details of following
relations in an utterance. This time we will create amodule that will name all syllables with a concatenation of the
names of the segments they are related to.

As before we need the same standard includes

#i ncl ude "festival.h"

Now the definition the function
LI SP FT_Nane_ Syl s(LISP utt)
{

Aswith the previous example we are called with an utterance LISP object and will return the same. Thefirst task is
to extract the utterance object from the LISP object.

EST Utterance *u = get_c_utt(utt);
EST Item *syl, *seg;

Now for each syllable in the utterance we want to find which segments are related to it.
for (syl=u->relation("Syllable")->head(); syl != 0; syl = next(syl))
{

Here we declare a variable to cummulate the names of the segments.

EST String sylname = "";

Now we iterate through the Syl St r uct ur e daughters of the syllable. These will be the segments in that syllable.
for (seg=daughterl(syl,"Syl Structure"); seg; seg=next(seg))
syl nanme += seg->nane();

Finally we set the syllables name to the concatenative name, and loop to the next syllable.
syl - >set _nane(syl nane) ;

}

Finally we return the LISP form of the utterance.
return utt;

}

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

27.2.3 Example 3: adding new directories

In this example we will add a whole new subsystem. This will often be acommon way for people to use Festival. For
example let us assume we wish to add a formant waveform synthesizer (e.g likethat inthefree " r synt h'
program). In this case we will add awhole new sub-directory to the modules directory. Let uscall it " rsynth/ ' .

In the directory weneed a™ Makefi | e' of the standard form so we should copy one from one of the other
directories, eg. " | nt onat i on/ ' . Standard methods are used to identify the source code filesina™ Makefi | e’
sothatthe™ . o' filesare properly added to the library. Following the other examples will ensure your codeis
integrated properly.

WEe'l just skip over the bit where you extract the information from the utterance structure and synthesize the
waveform (see * donovan/ donovan. cc' or " di phone/ di phone. cc' for examples).

To get Festival to use your new module you must tell it to compile the directory's contents. Thisisdonein
“festival/config/config'.Addtheline

ALSO | NCLUDE += rsynth

to the end of that file (there are simialr ones mentioned). Simply adding the name of the directory here will add that
as a new module and the directory will be compiled.

What you must provide in your codeisafunctionf esti val _DI RNAVE i ni t () which will be called at
initialization time. In this function you should call any further initialization regquire and define and new Lisp functions
you with to made available to the rest of the system. For exampleinthe ™ r synt h' case we would definein some
filein" rsynth/'

#i ncl ude "festival.h"

static LISP utt _rtsynth(LISP utt)

{
EST Utterance *u = get_c_utt(utt);
/1 Do format synthesis
return utt;
}
void festival _rsynth_init()
{
procl ai m nodul e("rsynth");
festival def _utt nmodul e("Rsynth_Synth",utt _rsynth,
"(Rsynt h_Synth UTT)
A simple formant synthesizer");
}

Integration of the code in optional (and standard directories) is done by automatically creating
“src/ nmodul es/init_nodul es. cc' forthelist of standard directories plus those defined as
ALSO _| NCLUDE. A cal to afunction called f est i val _DI RNAME_i ni t () will be made.

This mechanism is specifically designed so you can add modules to the system without changing anything in the
standard distribution.

[<]1[>] [=<<][Up][>>] [Top] [Contents] [Index] [2]

27.2.4 Example 4: adding new LISP objects

This third examples shows you how to add a new Object to Scheme and add wraparounds to allow manipulation
within the the Scheme (and C++) domain.

Like example 2 we are assuming thisis done in a new directory. Suppose you have a new object called W dget that
can transduce a string into some other string (with some optional continuous parameter. Thus, here we create a new
file” wi dget . cc' likethis

#include "festival.h"
#include "widget.h" // definitions for the w dget class

In order to register the widgets as Lisp objects we actually need to register them as EST_Val 's aswell. Thus we now
need

VAL_REG STER CLASS(w dget, W dget)

SI OD_REG STER _CLASS(w dget, W dget)

The first names given to these functions should be a short mnenomic name for the object that will be used in the
defining of a set of access and construction functions. It of course must be unique within the whole systems. The
second name is the name of the object itself.

To understand its usage we can add a few simple widget maniplutation functions

LI SP wi dget | oad(LISP fil enane)

{
EST _String fname = get_c_string(filenane);
W dget *w = new W dget; /1 build a new wi dget
if (w>load(fname) == 0) // successful |oad
return siod(w;
el se
{
cerr << "widget load: failed to load \"" << fpame << "\"" << endl;
festival _error();
}
return NIL; // for conpilers that get confused
}

Note that the function si od constructs a LI1SP object from awi dget , the class register macro defines that for you.
Also note that when giving an object to aL| SP object it then owns the object and is responsibile for deleting it when
garbage collection occurs on that L1 SP object. Care should be taken that you don't put the same object within
different L1 SP objects. The macros VAL_RESG STER CLASS NODEL should be called if you do not want your
give object to be deleted by the LISP system (this may cause leaks).

If you want refer to these functions in other files within your models you can use

VAL _REG STER CLASS DCLS(w dget, W dget)
SI OD_REG STER _CLASS DCLS(wi dget, W dget)

inacommon " . h' file

The following defines a function that takes a L1SP object containing a widget, aplies some method and returns a
string.

LI SP wi dget _appl y(LI SP | wi dget, LISP string, LISP param
{

W dget *w = widget (lw dget);

EST _String s = get_c_string(string);

float p = get_c_float(param;

EST _String answer;

answer = w >appl y(s, p);

return strintern(answer);

Thefunctionwi dget , defined by the regitration macros, takesa Ll SP object and returns a pointer to thewi dget
insideit. If the L1 SP object does not contain awi dget an error will be thrown.

Finally you wish to add these functions to the Lisp system

voi d festival _w dget_init()
{
init_subr_1("w dget.| oad", wi dget | oad,
"(wi dget. | oad FI LENAME)\ n\
Load in widget from FILENAME. ");
init_subr_ 3("w dget.apply",w dget _apply,
"(wi dget.apply WDGET | NPUT VAL)\n\
Returns widget applied to string i NPUT with float VAL.");

Inyout * Makefil e' for thisdirectory you'll need to add the include directory where ™ wi dget . h' is, if itis not
contained within the directory itself. This done through the make variable LOCAL_| NCLUDES as

LOCAL | NCLUDES = -1/usr/local /w dget/include
And for the linker you 'll need to identify where your widget library is. Inyour " f est i val / confi g/ confi g’

file at the end add
COWPI LERLIBS += -L/usr/local /wi dget/lib -1w dget

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

28. API

If you wish to use Festival within some other application there are a number of possible interfaces.

28.1 Scheme API Programming in Scheme

28.2 Shell AP From Unix shell

28.3 Server/client APl Festival as a speech synthesis server
28.4 C/C++ API Through function calls from C++.
28.5 Conly API Small independent C client access

28.6 Javaand JSAPI Sythesizing from Java

[<]1[>] [=<<][Up][>>] [Top] [Contents] [Index] [2]

28.1 Scheme API

Festival includes afull programming language, Scheme (a variant of Lisp) as a powerful interface to its speech
synthesis functions. Often this will be the easiest method of controlling Festival's functionality. Even when using
other API'sthey will ultimately depend on the Scheme interpreter.

Scheme commands (as s-expressions) may be simply written in files and interpreted by Festival, either by
specification as arguments on the command line, in the interactive interpreter, or through standard input as a pipe.
Suppose we have afile ™ hel | 0. scm containing

;7 A short exanple file with Festival Schene comrands

(voi ce_rab_di phone) ;; select Gordon
(SayText "Hello there")
(voi ce_don_di phone) ;; select Donovan

(SayText "and hello from me")

From the command interpreter we can execute the commands in this file by loading them

festival > (load "hello.scnt)
nil

Or we can execute the commands in the file directly from the shell command line
uni x$ festival -b hello.scm

The ™ - b" option denotes batch operation meaning the fileis loaded and then Festival will exit, without starting the

command interpreter. Without thisoption ™ - b' Festival will load * hel | 0. scmi and then accept commands on
standard input. This can be convenient when some initial set up is required for a session.

Note one disadvantage of the batch method is that timeis required for Festival's initialisation every time it starts up.
Although thiswill typically only be afew seconds, for saying short individual expressions that lead in time may be
unacceptable. Thus simply executing the commands within an aready running system is more desirable, or using the
server/client mode.

Of courseits not just about strings of commands, because Scheme is a fully functional language, functions, loops,
variables, file access, arithmetic operations may all be carried out in your Scheme programs. Also, accessto Unix is
available through the sy st emfunction. For many applications directly programming them in Scheme is both the
easiest and the most efficient method.

A number of example Festival scriptsareincluded in ™ exanpl es/ ' . Including a program for saying the time, and
for telling you the latest news (by accessing a page from the web). Also see the detailed discussion of a script
example in See section 29.1 POS Example.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

28.2 Shell API

The simplest use of Festival (though not the most powerful) is simply using it to directly render text files as speech.
Suppose we have afile ™ hel | 0. t xt' containing

Hello world. Isn't it excellent weather
t hi s norning.

We can simply call Festival as
uni x$ festival --tts hello.txt

Or for even simpler one-off phrases
uni x$ echo "hello " | festival --tts

Thisiseasy to use but you will need to wait for Festival to start up and initialise its databases before it starts to render
the text as speech. This may take several seconds on some machines. A socket based server mechanism is provided in
Festival which will allow asingle server process to start up once and be used efficiently by multiple client programs.

Note also the use of Sable for marked up text, see section 10. XML/SGML mark-up. Sable alows various forms of
additional information in text, such as phrasing, emphasis, pronunciation, as well as changing voices, and inclusion
of external waveform files (i.e. random noises). For many application thiswill be the preferred interface method.
Other text modes too are available through the command line by using aut o- t ext - nbde- al i st.

I

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

28.3 Server/client API

Festival offersaBSD socket-based interface. This alows Festival to run as a server and allow client programs to
access it. Basically the server offers a new command interpreter for each client that attachesto it. The server isforked
for each client but thisis much faster than having to wait for a Festival process to start from scratch. Also the server
can run on a bigger machine, offering much faster synthesis.

Note: the Festival server isinherently insecure and may allow arbitrary users access to your machine.

Every effort has been made to minimise the risk of unauthorised access through Festival and a number of levels of
security are provided. However with any program offering socket access, like ht t pd, sendmai | or f t pd thereis
arisk that unauthorised accessis possible. | trust Festival's security enough to often run it on my own machine and
departmental servers, restricting access to within our department. Please read the information below before using the
Festival server so you understand the risks.

I

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

28.3.1 Server access control

The following access control is available for Festival when running as a server. When the server startsit will usually
start by loading in various commands specific for the task it is to be used for. The following variables are used to
control access.

server _port
A number identifying the inet socket port. By default thisis 1314. It may be changed as required.

server_log file
If nil no logging takes place, if t logging is printed to standard out and if afile name log messages are
appended to that file. All connections and attempted connections are logged with atime stamp and the name
of the client. All commands sent from the client are also logged (output and data input is not logged).

server _deny i st
If non-nil it is used to identify which machines are not allowed access to the server. Thisisalist of regular
expressions. If the host name of the client matches any of the regexsin thislist the client is denied access.
This overrides all other access methods. Remember that sometimes hosts are identified as numbers not as
names.

server_access_|i st
If thisis non-nil only machines whose names match at least one of the regexsin thislist may connect as
clients. Remember that sometimes hosts are identified as numbers not as names, so you should probably
exclude the IP number of machine as well as its name to be properly secure.

server _passwd
If thisis non-nil, the client must send this passwd to the server followed by a newline before accessis given.
Thisisrequired even if the machineisincluded in the access list. Thisis designed so servers for specific tasks
may be set up with reasonable security.

(set _server_safe_functi ons FUNCNAMELI ST)
If called this can restrict which functions the client may call. Thisisthe most restrictive form of access, and
thoroughly recommended. In this mode it would be normal to include only the specific functions the client can
execute (i.e. the function to set up output, and a tts function). For example a server could call the following at
set up time, thusrestricting callsto only thosethat * f esti val _client' --ttwuses.

(set _server_safe functions
"(tts_return_to client tts text tts textall Paraneter.set))

Itsis strongly recommend that you run Festival in server mode as userid nobody to limit the access the process will
have, also running it in a chroot environment is more secure.

For example suppose we wish to allow access to all machinesin the CSTR domain except for
hol mes. cstr. ed. ac. uk andadam cstr. ed. ac. uk. Thismay be done by the following two commands

(set! server _deny list '("holnes\\.cstr\\.ed\\.ac\\.uk"
"adam\.cstr\\.ed\\.ac\\.uk"))
(set! server_access_list "("[™\.]*\\.cstr\\.ed\\.ac\\.uk"))

Thisis not complete though as when DNS is not working hol mes and adamwill still be able to access the server
(but if our DNSisn't working we probably have more serious problems). However the above is secure in that only
machinesin the domaincst r. ed. ac. uk can access the server, though there may be ways to fix machinesto
identify themselves as being in that domain even when they are not.

By default Festival in server mode will only accept client connectionsfor | ocal host .

[<]1[>] [=<<][Up]l[>>] [Top] [Contents] [Index] [?]

28.3.2 Client control

An exampleclient program called ™ f esti val _cl i ent' isincluded with the system that provides awide range of
access methods to the server. A number of options for the client are offered.

--server
The name (or |P number) of the server host. By default thisis ™ | ocal host ' (i.e. the same machine you run
the client on).

--port
The port number the Festival server isrunning on. By default thisis 1314.

--out put FI LENAMVE
If awaveform isto be synchronously returned, it will be saved in FILENAME. The - - t t woption uses this as
does the use of the Festival command ut t . send. wave. cl i ent . If an output waveform file is received by
“festival _client' andnooutput file has been given the waveform is discarded with an error message.

- - passwd PASSWD
If apasswd is required by the server this should be stated on the client call. PASSWD is sent plus a newline
before any other communication takes places. If thisisn't specified and a passwd is required, you must enter
that first, if the- - t t woption is used, a passwd is required and none specified access will be denied.

--prolog FILE
FILE isassumed to be contain Festival commands and its contents are sent to the server after the passwd but
before anything else. Thisis convenient to usein conjunction with - - t t wwhich otherwise does not offer any
way to send commands as well as the text to the server.

--otype OUTPUTTYPE
If an output waveform file isto be used this specified the output type of the file. The default isni st , but,
ul aw, ri f f, ul awand others as supported by the Edinburgh Speech Tools Library are valid. Y ou may use
raw too but note that Festival may return waveforms of various sampling rates depending on the sample rates
of the databasesits using. Y ou can of course make Festival only return one particular sample rate, by using
af t er _synt h_hooks. Notethat byte order will be native machine of the client machine if the output
format alowsit.

--ttw
Text to waveis an attempt to makef esti val _cl i ent useful in many simple applications. Although you
can connect to the server and send arbitrary Festival Scheme commands, this option automatically does what
is probably what you want most often. When specified this options takes text from the specified file (or stdin),
synthesizesit (in one go) and savesit in the specified output file. It basically does the following

(Parameter.set 'Wavefil etype ' <output type>)
(tts_textall "
<filel/stdin contents>

"))

Note that thisis best used for small, single utterance texts as you have to wait for the whole text to be
synthesized before it is returned.

- -aucommand COVVAND
Execute COMMAND of each waveform returned by the server. The variable FI LE will be set when
COMMAND is executed.

--async
So that the delay between the text being sent and the first sound being available to play, this option in
conjunction with - - t t w causes the text to be synthesized utterance by utterance and be sent back in separated
waveforms. Using - - aucommand each waveform my be played locally, and when ™ f est i val _cli ent"’
isinterrupted the sound will stop. Getting the client to connect to an audio server elsewhere means the sound
will not necessarily stopwhenthe ™ f esti val _client' processis stopped.

--withlisp
With each command being sent to Festival a Lisp return valueis sent, also Lisp expressions may be sent from
the server to the client through the command send_cl i ent . If thisoption is specified the Lisp expressions
are printed to standard out, otherwise thisinformation is discarded.

A typical exampleuseof “festival _client' is
festival _client --async --ttw --aucommand 'na_play $FILE fred.txt

Thiswill use ™ na_pl ay' to play each waveform generated for the utterancesin ™ f r ed. t xt ' . Notethe single
quotes so that the $ in $FI LE isn't expanded locally.

Note the server must be running before you can talk to it. At present Festival is not set up for automatic invocations
through " i netd' and "/ etc/ servi ces' . If youdo that yourself, notethat it is a different type of interface as
“inetd' assumesall communication goes through standard in/out.

Also note that each connection to the server starts a new session. Variables are not persistent over multiple callsto
the server so if any initiaization isrequired (e.g. loading of voices) it must be done each time the client starts or more
reasonably in the server when it is started.

A PERL festival clientisalso availablein ™ f esti val / exanpl es/festival _client.pl'

[<][>] [<<][Up][>>] [Top] [Contents] [Index][?]

28.3.3 Server/client protocol

The client talksto the server using s-expression (Lisp). The server will reply with and number of different chunks
until either OK, isreturned or ER (on error). The communicatotion is synchronous, each client request can generate a
number of waveform (WV) replies and/or Lisp replies (LP) and terminated with an OK (or ER). Lispisused asit has
its own inherent syntax that Festival can already parse.

The following pseudo-code will help defined the protocol as well as show typical use

fprintf(serverfd,"%\n", s-expression);

do
ack = read three character acknow edgemt
if (ack == "WAnN")
read a waveform
else if (ack == "LP\n")
read an s-expression
else if (ack == "ER\n")
an error occurred, break;
while ack '= "OK\n"

The server can send awaveform in an utterance to the client through the functionut t . send. wave. cl i ent ; The
server can send alisp expression to the client through the function

I

[<]1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

28.4 C/C++ API

Aswell as offerening an interface through Scheme and the shell some users may also wish to embedd Festival within
their own C++ programs. A number of simply to use high level functions are available for such uses.

In order to use Festival you must include ™ f est i val / src/i ncl ude/ festival . h' whichinturnwill include
the necessary other includefilesin ™ f esti val / src/i ncl ude' and™ speech_t ool s/ i ncl ude' you should
ensure these are included in the include path for you your program. Also you will need to link your program with
“festival/src/lib/libFestival.a', speech_tools/lib/libestools.a',

“speech_tool s/lib/libestbase.a' and speech tools/lib/libeststring.a' aswell asany

other optional libraries such as net audio.

The main externa functions available for C++ users of Festival are.

void festival _initialize(int load_init_files,int heapsize);

This must be called before any other festival functions may be called. It sets up the synthesizer system. The
first argument if true, causes the system set up files to be loaded (which is normallly what is necessary), the
second argument is the initial size of the Scheme heap, this should normally be 210000 unless you envisage
processing very large Lisp structures.
festival _say file(const EST_String & il enane);
Say the contents of the given file. Returns TRUE or FAL SE depending on where this was successful.
festival say text(const EST String &text);
Say the contents of the given string. Returns TRUE or FAL SE depending on where this was successful.
festival |load file(const EST String &fil enane);
Load the contents of the given file and evaluate its contents as Lisp commands. Returns TRUE or FALSE
depending on where this was successful.
festival eval conmand(const EST_String &expr);
Read the given string as a Lisp command and evaluate it. Returns TRUE or FAL SE depending on where this
was successful.
festival _text_to_wave(const EST_String &t ext, EST _Wave &wave);
Synthesize the given string into the given wave. Returns TRUE or FAL SE depending on where this was
successful.

Many other commands are also available but often the above will be sufficient.

Below isasimpletop level program that uses the Festival functions

int main(int argc, char **argv)

{

EST_Wave wave;
i nt heap_size = 210000; // default scheme heap size
int load_init_files = 1; // we want the festival init files |oaded

festival initialize(load_init _files, heap_size);

/'l Say sinple file
festival _say file("/etc/notd");

festival eval command("(voi ce_ked_di phone)");
/1 Say sone text;
festival _say text("hello world");

/1 Convert to a waveform
festival _text to wave("hello world", wave);
wave. save("/tmp/ wave. wav", "riff");

/| festival_say file puts the systemin async node so we better

/1 wait for the spooler to reach the |ast waveform before exiting

[l This isn't necessary if only festival _say text is being used (and
/1 your own wave playing stuff)

festival _wait _for_spooler();

return O;

T

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

28.5 C only API

A simpler C only interface exampleisgiveninf ~ f esti val / exanpl es/festival _client.c'.Tha
interface talks to afestival server. The code does not require linking with any other EST or Festival code so is much
smaller and easier to include in other programs. The code is missing some functionality but not much consider how
much smaller it is.

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

28.6 Java and JSAPI

Initial support for talking to a Festival server from javaisincluded from version 1.3.0 and initial JSAPI support is
included from 1.4.0. At present the JSAPI talks to a Festival server elsewhere rather than as part of the Java process
itself.

A simple (Pure) Javafestival client isgiven
“festival/src/nodul es/javal/cstr/festival/dient.java' withawraparound scriptin
“festival/bin/festival _client_java'.

Seethefile festival /src/ nmodul es/javal/cstr/festival/jsapi/ReadMe' for requirementsand a
small example of using the JSAPI interface.

I

[<]1[>] [<<][Up][>>] [Top] [Contents] [Index] [?]

29. Examples

This chapter contains some simple walkthrough examples of using Festival in various ways, not just as speech
synthesizer

29.1 POS Example Using Festival as a part of speech tagger
29.2 Singing Synthesis Using Festival for singing

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

29.1 POS Example

This example shows how we can use part of the standard synthesis process to tokenize and tag afile of text. This
section does not cover training and setting up a part of speech tag set See section 16. POS tagging, only how to go

about using the standard POS tagger on text.

This example a so shows how to use Festival as a simple scripting language, and how to modify various methods
used during text to speech.

Thefile " exanpl es/ t ext 2pos' contains an executable shell script which will read arbitrary ascii text from
standard input and produce words and their part of speech (one per line) on standard output.

A Festival script, like any other UNIX script, it must start with the the characters#! followed by the name of the
“festival' executable. For scriptstheoption - scri pt isalso required. Thus our first linelooks like

#!'/usr/local /bin/festival -script

Note that the pathname may need to be different on your system
Following this we have copious comments, to keep our lawyers happy, before we get into the real script.

The basic ideawe use is that the tts process segments text into utterances, those utterances are then passed to alist of
functions, as defined by the Scheme variablet t s_hooks. Normally this variable contains alist of two function,
utt.synthandutt. pl ay whichwill synthesize and play the resulting waveform. In this case, instead, we wish
to predict the part of speech value, and then print it out.

The first function we define basically replaces the normal synthesisfunction ut t . synt h. It runs the standard
festival utterance modules used in the synthesis process, up to the point where POS is predicted. This function looks
like

(define (find-pos utt)
"Main function for processing TTS utterances. Predicts POS and
prints words with their POS"

(Token utt)

(PCS utt)

)

The normal text-to-speech process first tokenizes the text splitting it in to "sentences'. The utterance type of theseis
Token. Then we call the Token utterance module, which converts the tokens to a stream of words. Then we call the
POS module to predict part of speech tags for each word. Normally we would call other modules ultimately
generating awaveform but in this case we need no further processing.

The second function we define is one that will print out the words and parts of speech

(define (output-pos utt)
"Qut put the word/pos for each word in utt"
(mapcar
(lanbda (pair)
(format t "%/ %\n" (car pair) (car (cdr pair))))
(utt.features utt 'Word ' (name pos))))

Thisusestheut t . f eat ur es function to extract features from the itemsin a named stream of an utterance. In this
case we want the nane and pos features for each item in the Wor d stream. Then for each pair we print out the
word's name, aslash and its part of speech followed by a newline.

Our next job isto redefine the functions to be called during text to speech. Thevariablett s_hooks isdefined in
“lib/tts. scm . Herewe set it to our two newly-defined functions

(set! tts_hooks (list find-pos output-pos))

So that garbage collection messages do not appear on the screen we stop the message from being outputted by the
following command

(gc-status nil)

Thefina stage isto start the tts process running on standard input. Because we have redefined what functions are to
be run on the utterances, it will no longer generate speech but just predict part of speech and print it to standard
output.

(tts_file "-")

T

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [?]

29.2 Singing Synthesis

Asan interesting examplea” si ngi ng- node' isincluded. This offersan XML based mode for specifying songs,
both notes and duration. Thiswork was done as a student project by Dominic Mazzoni. A number of exampleswr
providedin * exanpl es/ songs' . Thismay berun as

festival> (tts "dorem .xm" 'singing)

Each note can be given anote and a beat value

<?xm version="1.0"7?>

<I DOCTYPE SI NG NG PUBLIC "-//SI NG N&/DTD SI NG NG rmar k up//EN'
"Si nging.v0_1.dtd"

[1>

<S|I N@ NG BPM=" 30" >

<Pl TCH NOTE=" G3" ><DURATI ON BEATS="0. 3" >doe</ DURATI ON></ Pl TCH>

<PI TCH NOTE=" A3" ><DURATI ON BEATS="0. 3" >r ay</ DURATI ON></ PI TCH>

<Pl TCH NOTE="B3" ><DURATI ON BEATS="0. 3" >ne</ DURATI ON></ PI TCH>

<Pl TCH NOTE=" C4" ><DURATI ON BEATS="0. 3" >f ah</ DURATI ON></ Pl TCH>

<Pl TCH NOTE="D4" ><DURATI ON BEATS="0. 3" >sew</ DURATI O\></ Pl TCH>

<Pl TCH NOTE="E4" ><DURATI ON BEATS="0. 3" >| ah</ DURATI ON></ Pl TCH>

<Pl TCH NOTE="F#4" ><DURATI ON BEATS="0. 3" >t ee</ DURATI ON></ PI TCH>

<Pl TCH NOTE=" (4" ><DURATI ON BEATS="0. 3" >doe</ DURATI ON></ Pl TCH>

</ SI NG NG

Y ou can construct multi-part songs by synthesizing each part and generating waveforms, them combining them. For
example

t ext 2wave -node singing anerical.xm -o americal.wav

t ext 2wave -node singing anerica2.xm -0 america2.wav

t ext 2wave -node singing anerica3.xm -o america3.wav

t ext 2wave -node singing anerica4.xm -o anmerica4.wav

ch_wave -0 america.wav -pc |ongest anerica?.wav

The voice used to sing is the current voice. Note that the number of syllables in the words must match that at run
time, which means thios doesn't always work cross dialect (UK voices sometimes wont work without tweaking.

Thistechnique is basically simple, though is definitely effective. However for a more serious singing synthesizer we
recommend you look at Flinger http://cslu.cse.ogi.edu/tts/flinger/, addresses the issues of synthesizing the human
singing voice in more detail.

[<][>] [=<<][Up][>>] [Top] [Contents] [Index] [2]

30. Problems

There will be many problems with Festival, both in installation and running it. It is ayoung system and thereisalot
toit. We believe the basic design is sound and problems will be features that are missing or incomplete rather than
fundamental ones.

We are always open to suggestions on how to improve it and fix problems, we don't guarantee we'll have the time to
fix problems but we are interested in hearing what problems you have.

Before you smother us with mail hereis an incomplete list of general problems we have already identified

. The more documentation we write the more we realize how much more documentation is required. Most of
the Festival documentation was written by someone who knows the system very well, and makes many
English mistakes. A good re-write by some one else would be a good start.

http://cslu.cse.ogi.edu/tts/flinger/

. Thesystemisfar too slow. Although machines are getting faster, it till takes too long to start the system and
get it to speak some given text. Even so, on reasonable machines, Festival can generate the speech several
times faster than it takesto say it. But even if it isfive time faster, it will take 2 seconds to generate a 10
second utterance. A 2 second wait istoo long. Faster machines would improve this but achangein designisa
better solution.

. The systemistoo big. It takes along time to compile even on quite large machines, and its foot print is still in
the 10s of megabytes as is the run-time reguirement. Although we have spent some time trying to fix this
(optional modules have made the possibility of building a much smaller binary) we haven't done enough yet.

. Thesignal quality of the voicesisn't very good by today's standard of synthesizers, even given the
improvement quality since the last release. Thisis partly our fault in not spending the time (or perhaps also
not having enough expertise) on the low-level waveform synthesis parts of the system. Thiswill improvein
the future with better signal processing (under development) and better synthesis techniques (also under
development).

I

[<1[>] [<<][Up][>>] [Top][Contents] [Index] [?]

31. References

allen87
Allen J., Hunnicut S. and Klatt, D. Text-to-speech: the MITalk system, Cambridge University Press, 1987.
abelson85
Abelson H. and Sussman G. Structure and Interpretation of Computer Programs, MIT Press, 1985.
blacko4
Black A. and Taylor, P. "CHATR: ageneric speech synthesis system.", Proceedings of COLING-94, Kyoto,
Japan 1994.
blacko6
Black, A. and Hunt, A. "Generating FO contours from ToBI labels using linear regression”, ICSLP96, val. 3,
pp 1385-1388, Philadelphia, PA. 1996.
black97b
Black, A, and Taylor, P. "Assigning Phrase Breaks from Part-of-Speech Sequences”, Eurospeech97, Rhodes,
Greece, 1997.
black97c
Black, A, and Taylor, P. "Automatically clustering similar units for unit selection in speech synthesis’,
Eurospeech97, Rhodes, Greece, 1997.
blacko8
Black, A., Lenzo, K. and Pagel, V., "Issuesin building general letter to sound rules.”, 3rd ESCA Workshop on
Speech Synthesis, Jenolan Caves, Australia, 1998.
black99
Black, A., and Lenzo, K., "Building Voices in the Festival Speech Synthesis System," unpublished document,
Carnegie Méellon University, available at http://www.cstr.ed.ac.uk/projects/festival/docs/festvox/
breiman84
Breiman, L., Friedman, J. Olshen, R. and Stone, C. Classification and regression trees, Wadsworth and
Brooks, Pacific Grove, CA. 1984.
campbel191
Campbell, N. and Isard, S. "Segment durationsin a syllable frame", Journal of Phonetics, 19:1 37-47, 1991.
DeRose88
DeRose, S. "Grammatical category disambiguation by statistical optimization". Computational Linguistics,
14:31-39, 1988.
dusterhoff97
Dusterhoff, K. and Black, A. "Generating FO contours for speech synthesis using the Tilt intonation theory"
Proceedings of ESCA Workshop of Intonation, September, Athens, Greece. 1997
dutoit97
Dutoit, T. Anintroduction to Text-to-Speech Synthesis Kluwer Acedemic Publishers, 1997.
hunt89
Hunt, M., Zwierynski, D. and Carr, R. "Issuesin high quality LPC analysis and synthesis', Eurospeech89,
vol. 2, pp 348-351, Paris, France. 1989.
jilka96
Jilka M. Regelbasierte Generierung natuerlich klingender Intonation des Amerikanischen Englisch,

http://www.cstr.ed.ac.uk/projects/festival/docs/festvox/

Magisterarbeit, Institute of Natural Language Processing, University of Stuttgart. 1996

moulines90
Moulines, E, and Charpentier, N. "Pitch-synchronous waveform processing techniques for text-to-speech
synthesis using diphones' Speech Communication, 9(5/6) pp 453-467. 1990.

pagel 98,
Pagel, V., Lenzo, K., and Black, A. "Letter to Sound Rules for Accented L exicon Compression™, |CSL P98,
Sydney, Australia, 1998.

ritchie92
Ritchie G, Russell G, Black A and Pulman S. Computational Morphology: practical mechanisms for the
English Lexicon, MIT Press, Cambridge, Mass.

vansanten96
van Santen, J., Sproat, R., Olive, J. and Hirschberg, J. eds, "Progressin Speech Synthesis," Springer Verlag,
1996.

silverman92
Silverman K., Beckman M., Pitrelli, J., Ostendorf, M., Wightman, C., Price, P., Pierrehumbert, J., and
Hirschberg, J"ToBl: astandard for labelling English prosody." Proceedings of ICSLP92 vol 2. pp 867-870,
1992

sproat97
Sproat, R., Taylor, P, Tanenblatt, M. and Isard, A. "A Markup Language for Text-to-Speech Synthesis’,
Eurospeech97, Rhodes, Greece, 1997.

Sproat98,
Sproat, R. eds, "Multilingual Text-to-Speech Synthesis: The Bell Labs approach”, Kluwer 1998.

sableds,
Sproat, R., Hunt, A., Ostendorf, M., Taylor, P., Black, A., Lenzo, K., and Edgington, M. "SABLE: A standard
for TTS markup." ICSLP98, Sydney, Australia, 1998.

taylor91
Taylor P., Nairn I., Sutherland A. and Jack M.. "A real time speech synthesis system”, Eurospeech9l, val. 1,
pp 341-344, Genoa, Italy. 1991.

taylor96
Taylor P. and Isard, A. "SSML: A speech synthesis markup language" to appear in Speech Communications.

wwwxml 97
World Wide Web Consortium Working Draft "Extensible Markup Language (XML)Version 1.0 Part 1:
Syntax", http://www.w3.org/pub/WWW/TR/WD-xml-lang-970630.html

yarowsky96
Y arowsky, D., "Homograph disambiguation in text-to-speech synthesis’, in "Progress in Speech Synthesis,"
eds. van Santen, J., Sproat, R., Olive, J. and Hirschberg, J. pp 157-172. Springer Verlag, 1996.

[<][>] [<<][Up][>>] [Top] [Contents] [Index] [2]

32. Feature functions

This chapter contains alist of abasic feature functions available for stream itemsin utterances. See section 14.6
Features. These are the basic features, which can be combined with relative features (such asn. for next, and
relations to follow links). Some of these features are implemented as short C++ functions (e.g. asy!l _i n) while
others are simple features on an item (e.g. pos). Note that functional feature take precidence over simple features, so
accessing and feature called " X" will always use the function called " X" even if athe simple feature call "X" exists
on theitem.

Unlike previous versions there are no features that are builtin on all items except addr (reintroduced in 1.3.1) which
returns a unique string for that item (its the hex address on teh item within the machine). Features may be defined
through Scheme too, these all have the prefix | i sp_.

The feature functions are listed in the form Relation.name where Relation is the name of the stream that the function
is appropriate to and name isits name. Note that you will not require the Relation part of the name if the stream item
you are applying the function to is of that type.

http://www.w3.org/pub/WWW/TR/WD-xml-lang-970630.html

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

33. Variable list

This chapter contains alist of variables currently defined within Festival available for general use. Thislist is
automatically generated from the documentation strings of the variables as they are defined within the system, so has
some chance in being up-to-date.

Cross references to sections el sewhere int he manual are given where appropriate.

I

[<][>] [=<][Up][>>] [Top] [Contents] [Index] [?]

34. Function list

This chapter contains alist of functions currently defined within Festival available for general use. Thislist is
automatically generated from the documentation strings of the functions as they are defined within the system, so has
some chance in being up-to-date.

Note some of the functions which have originsin the SIOD system itself arelittle used in Festival and may not work
fully, particularly, the arrays.

Cross references to sections el sewhere in the manual are given where appropriate.

[<1[>] [<<]1[Up][>>] [Top] [Contents] [Index] [?]

Index

Jumpto: . /
ABCDEFGHIJKLMNOPQRSTUVWX

Index Entry Section
“.festivalrc' 6.3 Siteinitialization

/
"/ dev/ audi o' 23. Audio output
"/ dev/ audi o' 23. Audio output
"/ dev/dsp' 23. Audio output

A
access strategies 21.5 Access strategies
accessing Lisp variables 27.2.1 Example 1: adding new modules
acknowledgements 3. Acknowledgements
addenda 13.2 Defining lexicons

adding new directories 27.2.3 Example 3: adding new directories

adding new LISP objects
adding new modules

adding new voices

after _anal ysi s_hooks

after _synth_hooks

dlternate diphones

apostrophe s
asynchronous synthesis

at of
audio command
audio command output

audio devices

audio hardware
audio output

audio output filetype
audio output rate
audio problems

audio spooler
aut o- t ext - node-al i st

automatic selection of text mode

27.2.4 Example 4: adding new L ISP objects

27.2.1 Example 1: adding new modules

24.3 Defining anew voice

14.2 Utterance types

14.2 Utterance types
20.3 Database declaration
13.8 Post-lexical rules

23. Audio output
8.4 Scheme 1/O

23. Audio output

6.3 Site initialization

23. Audio output

6.1 Requirements

23. Audio output

6.3 Site initialization

6.3 Site initialization

6.4 Checking an installation

23. Audio output
9.2 Text modes

9.2 Text modes

automounter 6.2 Configuration

backtrace 8.3 Scheme Festival specifics
batch mode 7.1 Basic command line options
BEEP |exicon 13.3 Lookup process

BEEP lexicon 13.7 Available lexicons

bef or e_synt h_hooks
bug reports

14.2 Utterance types
7.3 Getting some help

Cinterface

C++

CART trees

CART trees
Cascading style sheets

catching errors
catching errorsin Scheme

change libdir at run-time

client

client/server protocol
CMU lexicon

CMU lexicon
command line options

command mode

28.5 Conly API

6.1 Requirements
14.6 Features

25.2 CART trees

10. XML/SGML mark-up

8.3 Scheme Festival specifics
8.3 Scheme Festival specifics
6.3 Siteinitialization

28.3.2 Client control

28.3.3 Server/client protocol
13.3 Lookup process

13.7 Available lexicons

7.1 Basic command line options

7. Quick start

command mode
compiled lexicons

compiling alexicon

compressing the lexicon

“config/config'

configuration
consonant clusters

convert string to number
creating alexicon
creating utterances
CSLU

CSS

current voice
CUVOALD lexicon

7.1 Basic command line options

13.3 Lookup process

13.2 Defining lexicons

13.5 Building letter to sound rules

6.2 Configuration

6.2 Configuration
21.6 Diphone selection

8.4 Scheme I/O

13.2 Defining lexicons
26.1 Labelling databases
24.1 Current voices

10. XML/SGML mark-up
24.2.9 Resetting globals
13.7 Available lexicons

D

dark I's

database |abelling
databases

debugging Scheme errors
debugging scripts
declaring text modes
default diphone
default voice

def Synt hType
def Ut t Type
dictionary

diphone alternates

diphone group files
diphone index
diphone names
diphone selection
diphone synthesis

diphone synthesis
di phone_nodul e_hooks

di phone_phone_nane

directory structure
display
documentation
DSSSL

duff intonation

duration
duration stretch

21.6 Diphone selection
26.1 Labelling databases

26. Building models from databases

8.3 Scheme Festival specifics
8.3 Scheme Festival specifics
9.3 Example text mode

20.3 Database declaration

6.3 Siteinitialization

14.2 Utterance types

14.2 Utterance types

13. Lexicons
20.3 Database declaration
20.4 Making groupfiles

20.2 Generating adiphone index

21.6 Diphone selection
20.6 Diphone selection
20. UniSyn synthesizer

21. Diphone synthesizer
21.6 Diphone selection
21.6 Diphone selection
27.1 The source code
14.7 Utterance 1/0

6.1 Requirements

10. XML/SGML mark-up
18.1 Default intonation
19. Duration

19. Duration

Edinburgh Speech Tools Library

3.3 Edinburgh Speech Tools Library

editline

Emacs interface
email mode
eou_tree
errorsin Scheme
exiting Festival
extracting features

6.1 Requirements
11. Emacs interface

9.3 Example text mode

9.1 Utterance chunking

8.3 Scheme Festival specifics

7.2 Sample command driven session
26.2 Extracting features

FO generation
fcl ose

feature extraction
features

features

features

Festival relations
Festival script files
“festival.el'

18.2 Simple intonation
8.4 Scheme I/O

26.2 Extracting features
14.6 Fesatures

25.2 CART trees

32. Feature functions
14.1 Utterance structure

7.1 Basic command line options

11. Emacs interface

fedtival client 28.3.2 Client control
festival client.c 28.5 Conly API
filei/oin Scheme 8.4 Scheme I/O

fixed durations 19.1 Default durations
flinger 29.2 Singing Synthesis
f open 8.4 Scheme /O

f or mat 8.4 Scheme I/O
formatted output 8.4 Scheme I/O
FreeBSD 23. Audio output

g++ 6.1 Requirements

garbage collection
GC

GNU g++

GNU readline
group files

aroup files
grouped diphones

29.1 POS Example
29.1 POS Example

6.1 Requirements

6.1 Requirements

20.4 Making groupfiles

21.3 Group files
20.1 UniSyn database format

heap size
hello world
help
homographs
homographs

7.1 Basic command line options

7.2 Sample command driven session
7.3 Getting some help
13.1 Lexical entries

15.3 Homograph disambiguation

hooks

8.3 Scheme Festival specifics

i/0in Scheme

“init.scm

initialization

Initialize

installation initialization
int_accent_cart tree

interactive mode
IntEvent labelling
IntEvent labelling
intonation

IRIX

i t emfunctions

8.4 Scheme I/O

6.3 Site initialization
6.3 Siteinitialization
14.2 Utterance types
6.3 Siteinitialization
18.2 Simple intonation

7.1 Basic command line options
26.1 L abelling databases

26.1 L abelling databases

18. Intonation

23. Audio output
14.5 Accessing an utterance

Items 14.1 Utterance structure
Java 28.6 Javaand JSAPI
JSAPI 28.6 Javaand JSAPI

Klatt duration rules

19.3 Klatt durations

labelling
language specification

laryngograph
|etter to sound rules

|etter to sound rules

|etter to sound rules

|etter to sound rules

lexical entries
lexical stress
lexicon

lexicon

lexicon

lexicon addenda
lexicon compression

lexicon creation
lexicon hooks
lexicon requirements
linear regression
linear regression
Linux

Linux

26.1 Labelling databases
7.1 Basic command line options

20.1.1 Generating pitchmarks

13.2 Defining lexicons
13.4 Letter to sound rules
13.4 Letter to sound rules
24.2.2 Lexiconand LTS
13.1 Lexical entries

13.1 Lexical entries

6.1 Requirements
13. Lexicons

13.7 Available lexicons

13.2 Defining lexicons

13.5 Building letter to sound rules

24.2.2 Lexiconand LTS
13.3 Lookup process

13.6 Lexicon requirements
14.6 Features

25.5 Linear regression

6.2 Configuration

23. Audio output

| oad- pat h
loading awaveform

loading data from files
local duration stretch

lookup hooks

6.3 Siteinitialization
14.7 Utterance 1/0
8.4 Scheme I/O

19. Duration

13.3 Lookup process

LPC analysis 20.1.2 Generating L PC coefficients
LPC residua 20.1.2 Generating L PC coefficients
LTS 13.4 Letter to sound rules

manual 7.3 Getting some help

mapping between phones

MBROLA
minimal system
MOBY lexicon
modules
monotone

mrpa lexicon
multiple lexical entries

12. Phonesets
22.2 MBROLA

6.2 Configuration
13.7 Available lexicons

14.4 Utterance modules
18.1 Default intonation
13.7 Available lexicons

13.3 Lookup process

NAS 23. Audio output

netaudio 23. Audio output

new modules 27.2.1 Example 1: adding new modules
NFS 6.2 Configuration

ngrams 25.3 Ngrams

NO digits 13.6 Lexicon requirements

“nsgni s’ 10.4 XML/SGML reguirements
offlineTTS 7.2 Sample command driven session
OTHER DIRS 6.2 Configuration

output file type
output samplerate

overriding diphone names

6.3 Siteinitialization
6.3 Siteinitialization
21.6 Diphone selection

Oxford Advanced Learners Dictionary 13.7 Available lexicons

Paradigm Associates

Parameters
par se- nunber

part of speech map
part of speech tag
part of speech tagging

perl
personal text modes

3130D

14.4 Utterance modules
8.4 Scheme I/O

13.1 Lexical entries

13.1 Lexical entries

16. POS tagging
28.3.2 Client control

9.2 Text modes

phone maps
phoneme definitions

Phones utterance
phoneset definitions
phonesets

phrase breaks
pitchmarking
playing an utterance
POS

POS example

POS tagging
possessives
possessives
post-lexical rules
post_hooks

power normalisation
pre_hooks
predicting stress
pretty printing
procl ai m voi ce
programming
pronunciation
PSOLA

punctuation

12. Phonesets

12. Phonesets

14.3 Exampl e utterance types
24.2.1 Phoneset

12. Phonesets

17. Phrase breaks

20.1.1 Generating pitchmarks

7.2 Sample command driven session

13.1 Lexical entries

29.1 POS Example

16. POS tagging

13.6 Lexicon requirements

13.8 Post-lexical rules

13.8 Post-lexical rules

13.3 Lookup process

20.1.2 Generating L PC coefficients
13.3 Lookup process

13.5 Building letter to sound rules
8.4 Scheme I/O

24.3 Defining a new voice

27. Programming

13.1 Lexical entries

20.5 UniSyn module selection

15.1 Tokenizing

qui t

7.2 Sample command driven session

read-eval -print loop

reading from files
readline
redistribution
reducing the lexicon
regex

regular expressions
Relations

Relations

remote audio

reguirements
resampling
rescaling awaveform

reseting globals
residua

restrictions

7.2 Sample command driven session
8.4 Scheme |/O

6.1 Requirements

2. Copying
13.5 Building letter to sound rules

25.1 Regular expressions

25.1 Regular expressions
14.1 Utterance structure

27.2.2 Example 2: accessing the utterance

23. Audio output

6.1 Requirements
14.7 Utterance /O

14.7 Utterance /O
24.2.9 Resetting globals
20.1.2 Generating L PC coefficients

2. Copying

resynthesis
run-time configuration

run-time configuration
~xp

14.7 Utterance 1/0

6.3 Siteinitialization

6.3 Siteinitialization

10.4 XML/SGML requirements

Sable
SABLEDTD

Sabletags
Sable using
"Sabl e.v0 2.dtd'

saving relations
saving Sable waveforms

saving segments
saving the waveform

saving TTS waveforms

say- m nor - node
SayPhones

SayText
Scheme

Scheme

Scheme heap size
Scheme introduction

Scheme programming

Scheme references
script files

script programming
scripts

security

SegFO0 utterance
Segment labelling
Segnent s _utterance
selecting a phoneset
selection of diphones
selection-based synthesis

separate diphones
server mode

server security
server/client protocol
SGI

ML

SGML parser
shell programming

8

silences

silences

10. XML/SGML mark-up
10.1 Sable example

10.2 Supported Sable tags
10.5 Using Sable

10.1 Sable example

14.7 Utterance |/O

10.5 Using Sable

14.7 Utterance |/O

14.7 Utterance |/O

10.5 Using Sable
11. Emacs interface

14.3 Example utterance types

7.2 Sample command driven session
3.1 SI0D
7.2 Sample command driven session

7.1 Basic command line options
8. Scheme

28.1 Scheme API

8.1 Scheme references

7.1 Basic command line options
29.1 POS Example

28.1 Scheme AP

28.3.1 Server access control

14.3 Example utterance types
26.1 L abelling databases

14.3 Exampl e utterance types
12. Phonesets

20.6 Diphone selection

22.3 Synthesizers in development
20.1 UniSyn database format
28.3 Server/client AP

28.3.1 Server access control
28.3.3 Server/client protocol

23. Audio output

10. XML/SGML mark-up

10.4 XML/SGML reguirements
28.2 Shell API

12. Phonesets

24.2.1 Phoneset

singing

SIOD
"siteinit.scn
smaller system
snack

source

spanish voice

Spoken Text Mark-up Language

29.2 Singing Synthesis
3.1S10D

6.3 Siteinitialization
6.2 Configuration

23. Audio output
27.1 The source code

24.2 Building a new voice
10. XML/SGML mark-up

SSML
STML
stress assignment

string to number
sunl6

sunaudio

SunOS
syllabification
Syllable labelling

synthesis hooks
synthesis of natural utterances

synthesizing an utterance

10. XML/SGML mark-up

10. XML/SGML mark-up

13.5 Building letter to sound rules
8.4 Scheme I/O

23. Audio output
23. Audio output

6.2 Configuration
13.3 Lookup process

26.1 L abelling databases

14.2 Utterance types

14.7 Utterance |/O

7.2 Sample command driven session

SynthTypes 14.2 Utterance types

tagaging 16. POS tagging

talking head 14.2 Utterance types

Target labelling 26.1 Labelling databases
TD-PSOLA 20.5 UniSyn module selection
“texi2htm' 6.1 Requirements

text modes 9.TTS

text modes 9.2 Text modes

text to speech 7.2 Sample command driven session
text to wave 7.2 Sample command driven session

Text utterance
text-to-speech mode

text2wave

thanks

tokenizing

tokens to words
Tokens utterance
tools

TTS

tts mode

tts mode

TTS processes

14.3 Example utterance types
7. Quick start

7.2 Sample command driven session

3. Acknowledgements

15.1 Tokenizing
15.2 Token to word rules

14.3 Exampl e utterance types

25. Tools

7.2 Sample command driven session
7. Quick start

7.1 Basic command line options
14.1 Utterance structure

ungrouped diphones
UniSyn

unknown words

unknown words
unwi nd- pr ot ect

unwi nd- pr ot ect

us_di phone_init
user initialization
using Sable
utt.inmport.wave

utt. | oad
utt.rel ati on functions

utt.save
utt. save. segs

utt. save. wave

utt.synth
utterance

utterance
utterance
utterance chunking

utterance examples

Utterance structure
utterance types

20.1 UniSyn database format
20. UniSyn synthesizer
13.4 Letter to sound rules

13.6 L exicon requirements
8.3 Scheme Festival specifics
8.3 Scheme Festival specifics
20.3 Database declaration

6.3 Site initialization

10.5 Using Sable

14.7 Utterance 1/0

14.7 Utterance 1/0

14.5 Accessing an utterance
14.7 Utterance |/O

14.7 Utterance |/O

14.7 Utterance |/O

14.2 Utterance types

7.2 Sample command driven session

14. Utterances
14.1 Utterance structure

9.1 Utterance chunking

14.3 Example utterance types

14.1 Utterance structure

14.2 Utterance types

Visual C++
Viterbi decoder
voi ce-pat h
voi ce_reset
voices
voxware

6.2 Configuration
25.4 Viterbi decoder

24.3 Defining anew voice
24.2.9 Resetting globals
24.1 Current voices

23. Audio output

wagon
wagon

WAv e _utterance
waveform synthesis
whitespace

wild card matching
Windows 95 audio
Windows NT audio
Windows NT/95

Word labelling
Wor ds utterance

25.2 CART trees
26.3 Building models
14.3 Exampl e utterance types

20. UniSyn synthesizer

15.1 Tokenizing
25.1 Regular expressions
23. Audio output
23. Audio output

6.1 Requirements
26.1 Labelling databases

14.3 Exampl e utterance types

XML 10. XML/SGML mark-up
XML 10.4 XML/SGML requirements
Xwaves 14.7 Utterance I/O

Jumpto: . /

ABCDEFGHIJKLMNOPQRSTUVW X

[Top] [Contents] [Index] [?]

Table of Contents

1. Abstract
2. Copying
3. Acknowledgements
3.1SI0D
3.2 editline
3.3 Edinburgh Speech Tools Library
3.4 Others
4. What is new
5. Overview
5.1 Philosophy
5.2 Future
6. Installation
6.1 Requirements
6.2 Configuration
6.3 Siteinitialization
6.4 Checking an installation
7. Quick start
7.1 Basic command line options
7.2 Sample command driven session
7.3 Getting some help
8. Scheme
8.1 Scheme references
8.2 Scheme fundamentals
8.3 Scheme Festival specifics
8.4 Scheme 1/O
9.TTS
9.1 Utterance chunking
9.2 Text modes
9.3 Example text mode
10. XML/SGML mark-up
10.1 Sable example
10.2 Supported Sable tags
10.3 Adding Sable tags
10.4 XML/SGML requirements

10.5 Using Sable
11. Emacs interface

12. Phonesets

13. Lexicons
13.1 Lexical entries
13.2 Defining lexicons
13.3 L ookup process
13.4 L etter to sound rules
13.5 Building letter to sound rules
13.6 L exicon requirements
13.7 Available lexicons
13.8 Post-lexical rules

14. Utterances
14.1 Utterance structure
14.2 Utterance types
14.3 Exampl e utterance types
14.4 Utterance modules
14.5 Accessing an utterance
14.6 Features
14.7 Utterance |/O

15. Text analysis

15.1 Tokenizing
15.2 Token to word rules

15.3 Homograph disambiguation
15.3.1 Using disambiguators
15.3.2 Building disambiguators
16. POS tagging
17. Phrase breaks
18. Intonation
18.1 Default intonation
18.2 Simple intonation
18.3 Tree intonation
18.4 Tilt intonation
18.5 General intonation
18.6 Using ToBI
19. Duration
19.1 Default durations
19.2 Average durations
19.3 Klatt durations
19.4 CART durations
20. UniSyn synthesizer
20.1 UniSyn database format
20.1.1 Generating pitchmarks
20.1.2 Generating L PC coefficients
20.2 Generating a diphone index
20.3 Database declaration
20.4 Making groupfiles
20.5 UniSyn module selection
20.6 Diphone selection
21. Diphone synthesizer
21.1 Diphone database format
21.2 | PC databases
21.3 Group files
21.4 Diphone Init
21.5 Access strategies
21.6 Diphone selection
22. Other synthesis methods

22.1 LPC diphone synthesi zer
22.2 MBROLA
22.3 Synthesizers in devel opment
23. Audio output
24. Voices
24.1 Current voices
24.2 Building anew voice
24.2.1 Phoneset
2422 Lexiconand LTS
24.2.3 Phrasing
24.2.4 |ntonation
24.2.5 Duration
24.2.6 Waveform synthesis
24.2.7 Voice selection function
24.2.8 Last remarks
24.2.9 Resetting globals
24.3 Defining anew voice
25. Tools
25.1 Regular expressions
25.2 CART trees
25.3 Ngrams
25.4 Viterbi decoder
25.5 Linear regression
26. Building models from databases
26.1 L abelling databases
26.2 Extracting features
26.3 Building models
27. Programming
27.1 The source code
27.2 Writing anew module
27.2.1 Example 1: adding new modules
27.2.2 Example 2: accessing the utterance
27.2.3 Example 3: adding new directories
27.2.4 Example 4: adding new LISP objects

28. API

28.1 Scheme AP

28.2 Shell API

28.3 Server/client API
28.3.1 Server access control
28.3.2 Client control
28.3.3 Server/client protocol

28.4 C/C++ API

28.5 Conly API
28.6 Javaand JSAPI

29. Examples
29.1 POS Example
29.2 Singing Synthesis

30. Problems

31. References

32. Feature functions

33. Variablelist

34. Function list

Index

[Top] [Contents] [Index] [2]

Short Table of Contents

1. Abstract

2. Copying

3. Acknowledgements
4. What is new

5. Overview

6. Installation

7. Quick start

8. Scheme

9.TTS

10. XML/SGML mark-up
11. Emacs interface
12. Phonesets

13. Lexicons

14. Utterances

15. Text analysis

16. POS tagging
17. Phrase breaks

18. Intonation

19. Duration

20. UniSyn synthesizer

21. Diphone synthesizer

22. Other synthesis methods

23. Audio output

24. \oices

25. Tools

26. Building models from databases

27. Programming
28. API

29. Examples

30. Problems

31. References

32. Feature functions
33. Variablelist

34. Function list
Index

[Top] [Contents] [Index] [2]

About this document

This document was generated by rmannell on March, 15 2003 using texi 2html

The buttons in the navigation panels have the following meaning:

Button [Name Goto [From 1.2.3goto

’ [<]] Back]previouswctioninreadingorder ’1.2.2

. [>] | Forward |next sectionin reading order 124

http://www.mathematik.uni-kl.de/~obachman/Texi2html

[<<] | FastBack previousor up-and-previous section 1.1

|

| [Up] | Up |upsection 12
| [>>] |FastForward next or up-and-next section 13
| [Top] | Top |cover (top) of document |

[Contents] | Contents [table of contents

|
| [Index] | Index |conceptindex |
" [?] | About |thispage |

where the Example assumes that the current position is at Subsubsection One-Two-T hree of adocument of the
following structure;

. 1. Section One
o 1.1 Subsection One-One

o 1.2 Subsection One-Two
« 1.2.1 Subsubsection One-Two-One
« 1.2.2 Subsubsection One-Two-Two
« 1.2.3 Subsubsection One-Two-Three <== Current Position
« 1.2.4 Subsubsection One-Two-Four
o 1.3 Subsection One-Three

o 1.4 Subsection One-Four

This document was generated by rmannell on March, 15 2003 using texi2html

http://www.mathematik.uni-kl.de/~obachman/Texi2html

