
CodeIgniter User Guide : Welcome to CodeIgniter

Search User Guide

Welcome to CodeIgniter

CodeIgniter is an Application Development Framework - a toolkit -
for people who build web sites using PHP. Its goal is to enable you
to develop projects much faster than you could if you were writing
code from scratch, by providing a rich set of libraries for commonly
needed tasks, as well as a simple interface and logical structure to
access these libraries. CodeIgniter lets you creatively focus on your
project by minimizing the amount of code needed for a given task.

Please read the Introduction section of the User Guide to learn the
broad concepts behind CodeIgniter, then read the Getting Started
page.

Who is CodeIgniter For?

CodeIgniter is right for you if:

● You want a framework with a small footprint.

● You need exceptional performance.

● You need broad compatibility with standard hosting accounts that
run a variety of PHP versions and configurations.

● You want a framework that requires nearly zero configuration.

● You want a framework that does not require you to use the
command line.

● You want a framework that does not require you to adhere to

file:///D:/_darkhorse/websites/codeigniter/user_guide/index.html (1 of 2) [12/20/2007 11:00:10 PM]

CodeIgniter User Guide : Welcome to CodeIgniter

restrictive coding rules.

● You are not interested in large-scale monolithic libraries like PEAR.

● You do not want to be forced to learn a templating language
(although a template parser is optionally available if you desire one).

● You eschew complexity, favoring simple solutions.

● You need clear, thorough documentation.

Top of Page

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/index.html (2 of 2) [12/20/2007 11:00:10 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Getting Started With CodeIgniter

Search User Guide

Getting Started With CodeIgniter

Any software application requires some effort to learn. We've done
our best to minimize the learning curve while making the process as
enjoyable as possible.

The first step is to install CodeIgniter, then read all the topics in the
Introduction section of the Table of Contents.

Next, read each of the General Topics pages in order. Each topic
builds on the previous one, and includes code examples that you are
encouraged to try.

Once you understand the basics you'll be ready to explore the Class
Reference and Helper Reference pages to learn to utilize the
native libraries and helper files.

Feel free to take advantage of our Community Forums if you have
questions or problems, and our Wiki to see code examples posted by
other users.

Previous Topic: Architectural Goals · Top of Page · User Guide Home · Next Topic: CodeIgniter URLs

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/index.html [12/20/2007 11:00:12 PM]

http://www.codeigniter.com/forums/
http://www.codeigniter.com/wiki/
http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Installation Instructions

Search User Guide

Installation Instructions

CodeIgniter is installed in four steps:

1. Unzip the package.

2. Upload the CodeIgniter folders and files to your server. Normally the
index.php file will be at your root.

3. Open the application/config/config.php file with a text editor and
set your base URL.

4. If you intend to use a database, open the application/config/
database.php file with a text editor and set your database settings.

If you wish to increase security by hiding the location of your
CodeIgniter files you can rename the system folder to something more
private. If you do rename it, you must open your main index.php file
and set the $system_folder variable at the top of the page with the
new name you've chosen.

That's it!

If you're new to CodeIgniter, please read the Getting Started section of
the User Guide to begin learning how to build dynamic PHP applications.
Enjoy!

Previous Topic: Credits · Top of Page · User Guide Home · Next Topic: Upgrading from a Previous Version

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/index.html [12/20/2007 11:00:12 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Design and Architectural Goals

Search User Guide

Design and Architectural Goals

Our goal for CodeIgniter is maximum performance, capability,
and flexibility in the smallest, lightest possible package.

To meet this goal we are committed to benchmarking, re-factoring,
and simplifying at every step of the development process, rejecting
anything that doesn't further the stated objective.

From an technical and architectural standpoint, CodeIgniter was
created with the following objectives:

● Dynamic Instantiation. In CodeIgniter, components are loaded
and routines executed only when requested, rather than globally. No
assumptions are made by the system regarding what may be
needed beyond the minimal core resources, so the system is very
light-weight by default. The events, as triggered by the HTTP
request, and the controllers and views you design will determine
what is invoked.

● Loose Coupling. Coupling is the degree to which components of a
system rely on each other. The less components depend on each
other the more reusable and flexible the system becomes. Our goal
was a very loosely coupled system.

● Component Singularity. Singularity is the degree to which
components have a narrowly focused purpose. In CodeIgniter, each
class and its functions are highly autonomous in order to allow
maximum usefulness.

CodeIgniter is a dynamically instantiated, loosely coupled system
with high component singularity. It strives for simplicity, flexibility,
and high performance in a small footprint package.

Previous Topic: Model-View-Controller · Top of Page · User Guide Home · Next Topic: Getting Started

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/overview/goals.html [12/20/2007 11:00:13 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : CodeIgniter URLs

Search User Guide

CodeIgniter URLs

By default, URLs in CodeIgniter are designed to be search-engine
and human friendly. Rather than using the standard "query string"
approach to URLs that is synonymous with dynamic systems,
CodeIgniter uses a segment-based approach:

www.your-site.com/news/article/my_article

Note: Query string URLs can be optionally enabled, as described
below.

URI Segments

The segments in the URL, in following with the Model-View-
Controller approach, usually represent:

www.your-site.com/class/function/ID

1. The first segment represents the controller class that should be
invoked.

2. The second segment represents the class function, or method,
that should be called.

3. The third, and any additional segments, represent the ID and any
variables that will be passed to the controller.

The URI Class and the URL Helper contain functions that make it
easy to work with your URI data. In addition, your URLs can be
remapped using the URI Routing feature for more flexibility.

Removing the index.php file

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/urls.html (1 of 3) [12/20/2007 11:00:13 PM]

CodeIgniter User Guide : CodeIgniter URLs

By default, the index.php file will be included in your URLs:

www.your-site.com/index.php/news/article/my_article

You can easily remove this file by using a .htaccess file with some
simple rules. Here is an example of such a file, using the "negative"
method in which everything is redirected except the specified items:

RewriteEngine on
RewriteCond $1 !^(index\.php|images|robots\.txt)
RewriteRule ^(.*)$ /index.php/$1 [L]

In the above example, any HTTP request other than those for index.
php, images, and robots.txt is treated as a request for your index.
php file.

Adding a URL Suffix

In your config/config.php file you can specify a suffix that will be
added to all URLs generated by CodeIgniter. For example, if a URL is
this:

www.your-site.com/index.php/products/view/shoes

You can optionally add a suffix, like .html, making the page appear
to be of a certain type:

www.your-site.com/index.php/products/view/shoes.html

Enabling Query Strings

In some cases you might prefer to use query strings URLs:

index.php?c=products&m=view&id=345

CodeIgniter optionally supports this capability, which can be enabled

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/urls.html (2 of 3) [12/20/2007 11:00:13 PM]

CodeIgniter User Guide : CodeIgniter URLs

in your application/config.php file. If you open your config file
you'll see these items:

$config['enable_query_strings'] = FALSE;
$config['controller_trigger'] = 'c';
$config['function_trigger'] = 'm';

If you change "enable_query_strings" to TRUE this feature will
become active. Your controllers and functions will then be accessible
using the "trigger" words you've set to invoke your controllers and
methods:

index.php?c=controller&m=method

Please note: If you are using query strings you will have to build
your own URLs, rather than utilizing the URL helpers (and other
helpers that generate URLs, like some of the form helpers) as these
are designed to work with segment based URLs.

Previous Topic: Getting Started · Top of Page · User Guide Home · Next Topic: Controllers

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/urls.html (3 of 3) [12/20/2007 11:00:13 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Credits

Search User Guide

Credits

CodeIgniter was developed by Rick Ellis, who in his other life is CEO
of Ellislab, Inc. The core framework was written specifically for this
application, while many of the class libraries, helpers, and sub-
systems borrow from the code-base of ExpressionEngine, a Content
Management System written by Rick Ellis and Paul Burdick.

A hat tip goes to Ruby on Rails for inspiring us to create a PHP
framework, and for bringing frameworks into the general
consciousness of the web community.

The CodeIgniter logo and icons were created by Rick Ellis.

The pull-down table of contents was created with the use of the moo.
fx library.

Previous Topic: Change Log · Top of Page · User Guide Home · Next Topic: Downloading CodeIgniter

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/credits.html [12/20/2007 11:00:14 PM]

http://www.ellislab.com/
http://ellislab.com/
http://www.ellislab.com/ee/
http://www.reedmaniac.com/
http://moofx.mad4milk.net/
http://moofx.mad4milk.net/
file:///D:/_darkhorse/websites/codeigniter/user_guide/general/changelog.html
http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Upgrading From a Previous Version

Search User Guide

Upgrading From a Previous Version

Please read the upgrade notes corresponding to the version you are upgrading
from.

● Upgrading from 1.5.3 to 1.5.4

● Upgrading from 1.5.2 to 1.5.3

● Upgrading from 1.5.0 or 1.5.1 to 1.5.2

● Upgrading from 1.4.1 to 1.5.0

● Upgrading from 1.4.0 to 1.4.1

● Upgrading from 1.3.3 to 1.4.0

● Upgrading from 1.3.2 to 1.3.3

● Upgrading from 1.3.1 to 1.3.2

● Upgrading from 1.3 to 1.3.1

● Upgrading from 1.2 to 1.3

● Upgrading from 1.1 to 1.2

● Upgrading from Beta 1.0 to Beta 1.1

Previous Topic: Installation Instructions · Top of Page · User Guide Home · Next Topic: Troubleshooting

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrading.html [12/20/2007 11:00:14 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Model-View-Controller

Search User Guide

Model-View-Controller

CodeIgniter is based on the Model-View-Controller development
pattern. MVC is a software approach that separates application logic
from presentation. In practice, it permits your web pages to contain
minimal scripting since the presentation is separate from the PHP
scripting.

● The Model represents your data structures. Typically your model
classes will contain functions that help you retrieve, insert, and
update information in your your database.

● The View is the information that is being presented to a user. A
View will normally be a web page, but in CodeIgniter, a view can
also be a page fragment like a header or footer. It can also be an
RSS page, or any other type of "page".

● The Controller serves as an intermediary between the Model, the
View, and any other resources needed to process the HTTP request
and generate a web page.

CodeIgniter has a fairly loose approach to MVC since Models are not
required. If you don't need the added separation, or find that
maintaining models requires more complexity than you want, you
can ignore them and build your application minimally using
Controllers and Views. CodeIgniter also enables you to incorporate
your own existing scripts, or even develop core libraries for the
system, enabling you to work in a way that makes the most sense
to you.

Previous Topic: Application Flow Chart · Top of Page · User Guide Home · Next Topic: Architectural Goals

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/overview/mvc.html [12/20/2007 11:00:15 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : URI Class

Search User Guide

URI Class

The URI Class provides functions that help you retrieve information
from your URI strings. If you use URI routing, you can also retrieve
information about the re-routed segments.

Note: This class is initialized automatically by the system so there
is no need to do it manually.

$this->uri->segment(n)

Permits you to retrieve a specific segment. Where n is the segment
number you wish to retrieve. Segments are numbered from left to
right. For example, if your full URL is this:

http://www.your-site.com/index.php/news/local/metro/crime_is_up

The segment numbers would be this:

1. news

2. local

3. metro

4. crime_is_up

By default the function returns FALSE (boolean) if the segment does
not exist. There is an optional second parameter that permits you to
set your own default value if the segment is missing. For example,
this would tell the function to return the number zero in the event of
failure:

$product_id = $this->uri->segment(3, 0);

It helps avoid having to write code like this:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/uri.html (1 of 5) [12/20/2007 11:00:16 PM]

CodeIgniter User Guide : URI Class

if ($this->uri->segment(3) === FALSE)
{
 $product_id = 0;
}
else
{
 $product_id = $this->uri->segment(3);
}

$this->uri->rsegment(n)

This function is identical to the previous one, except that it lets you
retrieve a specific segment from your re-routed URI in the event you
are using CodeIgniter's URI Routing feature.

$this->uri->slash_segment(n)

This function is almost identical to $this->uri->segment(), except
it adds a trailing and/or leading slash based on the second
parameter. If the parameter is not used, a trailing slash added.
Examples:

$this->uri->slash_segment(3);
$this->uri->slash_segment(3, 'leading');
$this->uri->slash_segment(3, 'both');

Returns:

1. segment/

2. /segment

3. /segment/

$this->uri->slash_rsegment(n)

This function is identical to the previous one, except that it lets you
add slashes a specific segment from your re-routed URI in the event
you are using CodeIgniter's URI Routing feature.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/uri.html (2 of 5) [12/20/2007 11:00:16 PM]

CodeIgniter User Guide : URI Class

$this->uri->uri_to_assoc(n)

This function lets you turn URI segments into and associative array
of key/value pairs. Consider this URI:

index.php/user/search/name/joe/location/UK/gender/male

Using this function you can turn the URI into an associative array
with this prototype:

[array]
(
 'name' => 'joe'
 'location' => 'UK'
 'gender' => 'male'
)

The first parameter of the function lets you set an offset. By default
it is set to 3 since your URI will normally contain a controller/
function in the first and second segments. Example:

$array = $this->uri->uri_to_assoc(3);

echo $array['name'];

The second parameter lets you set default key names, so that the
array returned by the function will always contain expected indexes,
even if missing from the URI. Example:

$default = array('name', 'gender', 'location', 'type', 'sort');

$array = $this->uri->uri_to_assoc(3, $default);

If the URI does not contain a value in your default, an array index
will be set to that name, with a value of FALSE.

Lastly, if a corresponding value is not found for a given key (if there
is an odd number of URI segments) the value will be set to FALSE
(boolean).

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/uri.html (3 of 5) [12/20/2007 11:00:16 PM]

CodeIgniter User Guide : URI Class

$this->uri->ruri_to_assoc(n)

This function is identical to the previous one, except that it creates
an associative array using the re-routed URI in the event you are
using CodeIgniter's URI Routing feature.

$this->uri->assoc_to_uri()

Takes an associative array as input and generates a URI string from
it. The array keys will be included in the string. Example:

$array = array('product' => 'shoes', 'size' => 'large', 'color' => 'red');

$str = $this->uri->assoc_to_uri($array);

// Produces: product/shoes/size/large/color/red

$this->uri->uri_string()

Returns a string with the complete URI. For example, if this is your
full URL:

http://www.your-site.com/index.php/news/local/345

The function would return this:

/news/local/345

$this->uri->ruri_string(n)

This function is identical to the previous one, except that it returns
the re-routed URI in the event you are using CodeIgniter's URI
Routing feature.

$this->uri->total_segments()

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/uri.html (4 of 5) [12/20/2007 11:00:16 PM]

CodeIgniter User Guide : URI Class

Returns the total number of segments.

$this->uri->total_rsegments(n)

This function is identical to the previous one, except that it returns
the total number of segments in your re-routed URI in the event you
are using CodeIgniter's URI Routing feature.

$this->uri->segment_array()

Returns an array containing the URI segments. For example:

$segs = $this->uri->segment_array();

foreach ($segs as $segment)
{
 echo $segment;
 echo '
';
}

$this->uri->rsegment_array(n)

This function is identical to the previous one, except that it returns
the array of segments in your re-routed URI in the event you are
using CodeIgniter's URI Routing feature.

Previous Topic: Unit Testing Class · Top of Page · User Guide Home · Next Topic: User Agent Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/uri.html (5 of 5) [12/20/2007 11:00:16 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : URL Helper

Search User Guide

URL Helper

The URL Helper file contains functions that assist in working with
URLs.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('url');

The following functions are available:

site_url()

Returns your site URL, as specified in your config file. The index.php
file (or whatever you have set as your site index_page in your
config file) will be added to the URL, as will any URI segments you
pass to the function.

You are encouraged to use this function any time you need to
generate a local URL so that your pages become more portable in
the event your URL changes.

Segments can be optionally passed to the function as a string or an
array. Here is a string example:

echo site_url("news/local/123");

The above example would return something like: http://www.your-
site.com/index.php/news/local/123

Here is an example of segments passed as an array:

$segments = array('news', 'local', '123');

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/url_helper.html (1 of 6) [12/20/2007 11:00:17 PM]

CodeIgniter User Guide : URL Helper

echo site_url($segments);

base_url()

Returns your site base URL, as specified in your config file. Example:

echo base_url();

index_page()

Returns your site "index" page, as specified in your config file.
Example:

echo index_page();

anchor()

Creates a standard HTML anchor link based on your local site URL:

Click Here

The tag has three optional parameters:

anchor(uri segments, text, attributes)

The first parameter can contain any segments you wish appended to
the URL. As with the site_url() function above, segments can be a
string or an array.

Note: If you are building links that are internal to your application
do not include the base URL (http://...). This will be added
automatically from the information specified in your config file.
Include only the URI segments you wish appended to the URL.

The second segment is the text you would like the link to say. If you

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/url_helper.html (2 of 6) [12/20/2007 11:00:17 PM]

CodeIgniter User Guide : URL Helper

leave it blank, the URL will be used.

The third parameter can contain a list of attributes you would like
added to the link. The attributes can be a simple string or an
associative array.

Here are some examples:

echo anchor('news/local/123', 'My News');

Would produce: <a href="http://www.your-site.com/index.php/
news/local/123" title="My News">My News

echo anchor('news/local/123', 'My News', array('title' => 'The best news!'));

Would produce: <a href="http://www.your-site.com/index.php/
news/local/123" title="The best news!">My News

anchor_popup()

Nearly identical to the anchor() function except that it opens the
URL in a new window. You can specify JavaScript window attributes
in the third parameter to control how the window is opened. If the
third parameter is not set it will simply open a new window with
your own browser settings. Here is an example with attributes:

$atts = array(
 'width' => '800',
 'height' => '600',
 'scrollbars' => 'yes',
 'status' => 'yes',
 'resizable' => 'yes',
 'screenx' => '0',
 'screeny' => '0'
);

echo anchor_popup(news/local/123, 'Click Me!', $atts);

Note: The above attributes are the function defaults so you only
need to set the ones that are different from what you need. If you
want the function to use all of its defaults simply pass an empty

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/url_helper.html (3 of 6) [12/20/2007 11:00:17 PM]

CodeIgniter User Guide : URL Helper

array in the third parameter:

echo anchor_popup('news/local/123', 'Click Me!', array());

mailto()

Creates a standard HTML email link. Usage example:

echo mailto('me@my-site.com', 'Click Here to Contact Me');

As with the anchor() tab above, you can set attributes using the
third parameter.

safe_mailto()

Identical to the above function except it writes an obfuscated
version of the mailto tag using ordinal numbers written with
JavaScript to help prevent the email address from being harvested
by spam bots.

auto_link()

Automatically turns URLs and email addresses contained in a string
into links. Example:

$string = auto_link($string);

The second parameter determines whether URLs and emails are
converted or just one or the other. Default behavior is both if the
parameter is not specified

Converts only URLs:

$string = auto_link($string, 'url');

Converts only Email addresses:

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/url_helper.html (4 of 6) [12/20/2007 11:00:17 PM]

CodeIgniter User Guide : URL Helper

$string = auto_link($string, 'email');

The third parameter determines whether links are shown in a new
window. The value can be TRUE or FALSE (boolean):

$string = auto_link($string, 'both', TRUE);

url_title()

Takes a string as input and creates a human-friendly URL string.
This is useful if, for example, you have a blog in which you'd like to
use the title of your entries in the URL. Example:

$title = "What's wrong with CSS?";

$url_title = url_title($title);

// Produces: whats-wrong-with-css

The second parameter determines the word delimiter. By default
dashes are used. Options are: dash, or underscore:

$title = "What's wrong with CSS?";

$url_title = url_title($title, 'underscore');

// Produces: whats_wrong_with_css

prep_url()

This function will add http:// in the event it is missing from a URL.
Pass the URL string to the function like this:

$url = "www.example.com";

$url = prep_url($url);

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/url_helper.html (5 of 6) [12/20/2007 11:00:17 PM]

CodeIgniter User Guide : URL Helper

redirect()

Does a "header redirect" to the local URI specified. Just like other
functions in this helper, this one is designed to redirect to a local
URL within your site. You will not specify the full site URL, but
rather simply the URI segments to the controller you want to direct
to. The function will build the URL based on your config file values.

The second parameter allows you to choose between the "location"
method (default) or the "refresh" method. Location is faster, but on
Windows servers it can sometimes be a problem. Example:

if ($logged_in == FALSE)
{
 redirect('/login/form/', 'refresh');
}

Note: In order for this function to work it must be used before
anything is outputted to the browser since it utilizes server headers.

Previous Topic: Typography Helper · Top of Page · User Guide Home · Next Topic: XML Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/url_helper.html (6 of 6) [12/20/2007 11:00:17 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : URI Routing

Search User Guide

URI Routing

Typically there is a one-to-one relationship between a URL string
and its corresponding controller class/method. The segments in a
URI normally follow this pattern:

www.your-site.com/class/function/id/

In some instances, however, you may want to remap this
relationship so that a different class/function can be called instead of
the one corresponding to the URL.

For example, lets say you want your URLs to have this prototype:

www.your-site.com/product/1/
www.your-site.com/product/2/
www.your-site.com/product/3/
www.your-site.com/product/4/

Normally the second segment of the URL is reserved for the function
name, but in the example above it instead has a product ID. To
overcome this, CodeIgniter allows you to remap the URI handler.

Setting your own routing rules

Routing rules are defined in your application/config/routes.php
file. In it you'll see an array called $route that permits you to
specify your own routing criteria. Routes can either be specified
using wildcards or Regular Expressions

Wildcards

A typical wildcard route might look something like this:

$route['product/:num'] = "catalog/product_lookup";

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/routing.html (1 of 4) [12/20/2007 11:00:18 PM]

CodeIgniter User Guide : URI Routing

In a route, the array key contains the URI to be matched, while the
array value contains the destination it should be re-routed to. In the
above example, if the literal word "product" is found in the first
segment of the URL, and a number is found in the second segment,
the "catalog" class and the "product_lookup" method are instead
used.

You can match literal values or you can use two wildcard types:

:num
:any

:num will match a segment containing only numbers.
:any will match a segment containing any character.

Note: Routes will run in the order they are defined. Higher routes
will always take precedence over lower ones.

Examples

Here are a few routing examples:

$route['journals'] = "blogs";

Any URL containing the word "journals" in the first segment will be
remapped to the "blogs" class.

$route['blog/joe'] = "blogs/users/34";

Any URL containing the segments blog/joe will be remapped to the
"blogs" class and the "users" method. The ID will be set to "34".

$route['product/:any'] = "catalog/product_lookup";

Any URL with "product" as the first segment, and anything in the
second will be remapped to the "catalog" class and the
"product_lookup" method.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/routing.html (2 of 4) [12/20/2007 11:00:18 PM]

CodeIgniter User Guide : URI Routing

Important: Do not use leading/trailing slashes.

Regular Expressions

If you prefer you can use regular expressions to define your routing
rules. Any valid regular expression is allowed, as are back-
references.

Note: If you use back-references you must use the dollar syntax
rather then the double backslash syntax.

A typical RegEx route might look something like this:

$route['products/([a-z]+)/(\d+)'] = "$1/id_$2";

In the above example, a URI similar to products/shirts/123
would instead call the shirts controller class and the id_123
function.

You can also mix and match wildcards with regular expressions.

Reserved Routes

There are two reserved routes:

$route['default_controller'] = 'welcome';

This route indicates which controller class should be loaded if the
URI contains no data, which will be the case when people load your
root URL. In the above example, the "welcome" class would be
loaded. You are encouraged to always have a default route
otherwise a 404 page will appear by default.

$route['scaffolding_trigger'] = 'scaffolding';

This route lets you set a secret word, which when present in the
URL, triggers the scaffolding feature. Please read the Scaffolding

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/routing.html (3 of 4) [12/20/2007 11:00:18 PM]

CodeIgniter User Guide : URI Routing

page for details.

Important: The reserved routes must come before any wildcard or
regular expression routes.

Previous Topic: Scaffolding · Top of Page · User Guide Home · Next Topic: Error Handling

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/routing.html (4 of 4) [12/20/2007 11:00:18 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Controllers

Search User Guide

Controllers

Controllers are the heart of your application, as they determine how
HTTP requests should be handled.

● What is a Controller?

● Hello World

● Functions

● Passing URI Segments to Your Functions

● Defining a Default Controller

● Remapping Function Calls

● Controlling Output Data

● Private Functions

● Organizing Controllers into Sub-folders

● Class Constructors

● Reserved Function Names

What is a Controller?

A Controller is simply a class file that is named in a way that
can be associated with a URI.

Consider this URI:

www.your-site.com/index.php/blog/

In the above example, CodeIgniter would attempt to find a
controller named blog.php and load it.

When a controller's name matches the first segment of a
URI, it will be loaded.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/controllers.html (1 of 9) [12/20/2007 11:00:19 PM]

CodeIgniter User Guide : Controllers

Let's try it: Hello World!

Let's create a simple controller so you can see it in action. Using
your text editor, create a file called blog.php, and put the following
code in it:

Then save the file to your application/controllers/ folder.

Now visit the your site using a URL similar to this:

www.your-site.com/index.php/blog/

If you did it right, you should see Hello World!.

Note: Class names must start with an uppercase letter. In other
words, this is valid:

<?php
class Blog extends Controller {

}
?>

This is not valid:

<?php
class blog extends Controller {

}
?>

Also, always make sure your controller extends the parent
controller class so that it can inherit all its functions.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/controllers.html (2 of 9) [12/20/2007 11:00:19 PM]

CodeIgniter User Guide : Controllers

Functions

In the above example the function name is index(). The "index"
function is always loaded by default if the second segment of the
URI is empty. Another way to show your "Hello World" message
would be this:

www.your-site.com/index.php/blog/index/

The second segment of the URI determines which function in
the controller gets called.

Let's try it. Add a new function to your controller:

Now load the following URL to see the comment function:

www.your-site.com/index.php/blog/comments/

You should see your new message.

Passing URI Segments to your Functions

If your URI contains more then two segments they will be passed to
your function as parameters.

For example, lets say you have a URI like this:

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/controllers.html (3 of 9) [12/20/2007 11:00:19 PM]

CodeIgniter User Guide : Controllers

www.your-site.com/index.php/products/shoes/sandals/123

Your function will be passed URI segments 3 and 4 ("sandals" and
"123"):

<?php
class Products extends Controller {

 function shoes($sandals, $id)
 {
 echo $sandals;
 echo $id;
 }
}
?>

Important: If you are using the URI Routing feature, the
segments passed to your function will be the re-routed ones.

Defining a Default Controller

CodeIgniter can be told to load a default controller when a URI is
not present, as will be the case when only your site root URL is
requested. To specify a default controller, open your application/
config/routes.php file and set this variable:

$route['default_controller'] = 'Blog';

Where Blog is the name of the controller class you want used. If
you now load your main index.php file without specifying any URI
segments you'll see your Hello World message by default.

Remapping Function Calls

As noted above, the second segment of the URI typically determines
which function in the controller gets called. CodeIgniter permits you
to override this behavior through the use of the _remap() function:

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/controllers.html (4 of 9) [12/20/2007 11:00:19 PM]

CodeIgniter User Guide : Controllers

function _remap()
{
 // Some code here...
}

Important: If your controller contains a function named _remap
(), it will always get called regardless of what your URI contains. It
overrides the normal behavior in which the URI determines which
function is called, allowing you to define your own function routing
rules.

The overridden function call (typically the second segment of the
URI) will be passed as a parameter the _remap() function:

function _remap($method)
{
 if ($method == 'some_method')
 {
 $this->$method();
 }
 else
 {
 $this->default_method();
 }
}

Processing Output

CodeIgniter has an output class that takes care of sending your final
rendered data to the web browser automatically. More information
on this can be found in the Views and Output class pages. In some
cases, however, you might want to post-process the finalized data in
some way and send it to the browser yourself. CodeIgniter permits
you to add a function named _output() to your controller that will
receive the finalized output data.

Important: If your controller contains a function named _output
(), it will always be called by the output class instead of echoing
the finalized data directly. The first parameter of the function will
contain the finalized output.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/controllers.html (5 of 9) [12/20/2007 11:00:19 PM]

CodeIgniter User Guide : Controllers

Here is an example:

function _output($output)
{
 echo $output;
}

Please note that your _output() function will receive the data in its
finalized state. Benchmark and memory usage data will be
rendered, cache files written (if you have caching enabled), and
headers will be sent (if you use that feature) before it is handed off
to the _output() function. If you are using this feature the page
execution timer and memory usage stats might not be perfectly
accurate since they will not take into acccount any further
processing you do. For an alternate way to control output before
any of the final processing is done, please see the available
methods in the Output Class.

Private Functions

In some cases you may want certain functions hidden from public
access. To make a function private, simply add an underscore as the
name prefix and it will not be served via a URL request. For
example, if you were to have a function like this:

function _utility()
{
 // some code
}

Trying to access it via the URL, like this, will not work:

www.your-site.com/index.php/blog/_utility/

Organizing Your Controllers into Sub-folders

If you are building a large application you might find it convenient to

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/controllers.html (6 of 9) [12/20/2007 11:00:19 PM]

CodeIgniter User Guide : Controllers

organize your controllers into sub-folders. CodeIgniter permits you
to do this.

Simply create folders within your application/controllers directory
and place your controller classes within them.

Note: When using this feature the first segment of your URI must
specify the folder. For example, lets say you have a controller
located here:

application/controllers/products/shoes.php

To call the above controller your URI will look something like this:

www.your-site.com/index.php/products/shoes/123

Each of your sub-folders may contain a default controller which will
be called if the URL contains only the sub-folder. Simply name your
default controller as specified in your application/config/routes.
php file

CodeIgniter also permits you to remap your URIs using its URI
Routing feature.

Class Constructors

If you intend to use a constructor in any of your Controllers, you
MUST place the following line of code in it:

parent::Controller();

The reason this line is necessary is because your local constructor
will be overriding the one in the parent controller class so we need
to manually call it.

If you are not familiar with constructors, in PHP 4, a constructor is
simply a function that has the exact same name as the class:

<?php
class Blog extends Controller {

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/controllers.html (7 of 9) [12/20/2007 11:00:19 PM]

CodeIgniter User Guide : Controllers

 function Blog()
 {
 parent::Controller();
 }
}
?>

In PHP 5, constructors use the following syntax:

<?php
class Blog extends Controller {

 function __construct()
 {
 parent::Controller();
 }
}
?>

Constructors are useful if you need to set some default values, or
run a default process when your class is instantiated. Constructors
can't return a value, but they can do some default work.

Reserved Function Names

Since your controller classes will extend the main application
controller you must be careful not to name your functions identically
to the ones used by that class, otherwise your local functions will
override them. The following is a list of reserved names. Do not
name your controller functions any of these:

● Controller

● CI_Base

● _ci_initialize

● _ci_scaffolding

If you are running PHP 4 there are some additional reserved names.
These ONLY apply if you are running PHP 4.

● CI_Loader

● config

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/controllers.html (8 of 9) [12/20/2007 11:00:19 PM]

CodeIgniter User Guide : Controllers

● database

● file

● helper

● helpers

● language

● library

● model

● plugin

● plugins

● scaffolding

● script

● view

● vars

● _ci_assign_to_models

● _ci_autoloader

● _ci_init_class

● _ci_init_scaffolding

● _ci_is_instance

● _ci_load

● _ci_load_class

● _ci_object_to_array

That's it!

That, in a nutshell, is all there is to know about controllers.

Previous Topic: CodeIgniter URLs · Top of Page · User Guide Home · Next Topic: Views

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/controllers.html (9 of 9) [12/20/2007 11:00:19 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Downloading CodeIgniter

Search User Guide

Downloading CodeIgniter

● CodeIgniter V 1.5.4 (Current version)

● CodeIgniter V 1.5.3

● CodeIgniter V 1.5.2

● CodeIgniter V 1.5.1

● CodeIgniter V 1.4.1

● CodeIgniter V 1.3.3

● CodeIgniter V 1.3.2

● CodeIgniter V 1.3.1

● CodeIgniter V 1.3

● CodeIgniter V 1.2

● CodeIgniter V 1.1

● CodeIgniter V 1.0

Subversion Server

Public subversion access is now available via http://dev.ellislab.com/svn/
CodeIgniter/trunk please note that while every effort is made to keep this
codebase functional, we cannot guarantee the functionality of code taken
from the repository.

Subversion is a version control system.

Previous Topic: Credits · Top of Page · User Guide Home · Next Topic: Installation Instructions

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/downloads.html [12/20/2007 11:00:20 PM]

http://www.codeigniter.com/download.php
http://www.codeigniter.com/downloads/CodeIgniter_1.5.3.zip
http://www.codeigniter.com/downloads/CodeIgniter_1.5.2.zip
http://www.codeigniter.com/downloads/CodeIgniter_1.5.1.zip
http://www.codeigniter.com/downloads/CodeIgniter_1.4.1.zip
http://www.codeigniter.com/downloads/CodeIgniter_1.3.3.zip
http://www.codeigniter.com/downloads/CodeIgniter_1.3.2.zip
http://www.codeigniter.com/downloads/CodeIgniter_1.3.1.zip
http://www.codeigniter.com/downloads/CodeIgniter_1.3.zip
http://www.codeigniter.com/downloads/CodeIgniter_1.2.zip
http://www.codeigniter.com/downloads/CodeIgniter_1.1b.zip
http://www.codeigniter.com/downloads/CodeIgniter_1.0b.zip
http://dev.ellislab.com/svn/CodeIgniter/trunk
http://dev.ellislab.com/svn/CodeIgniter/trunk
http://subversion.tigris.org/
http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Upgrading from 1.5.3 to 1.5.4

Search User Guide

Upgrading from 1.5.3 to 1.5.4

Before performing an update you should take your site offline by replacing
the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your "system" folder with the new
versions:

● system/application/config/mimes.php

● system/codeigniter

● system/database

● system/helpers

● system/libraries

● system/plugins

Note: If you have any custom developed files in these folders please make
copies of them first.

Step 2: Add charset to your config.php

Add the following to system/application/config/config.php

/*
|--
Default Character Set
This determines which character set is used by default in various methods
that require a character set to be provided.
*/
$config['charset'] = "UTF-8";

Step 3: Autoloading language files

If you want to autoload any language files, add this line to system/

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_154.html (1 of 2) [12/20/2007 11:00:20 PM]

CodeIgniter User Guide : Upgrading from 1.5.3 to 1.5.4

application/config/autoload.php

$autoload['language'] = array();

Step 4: Update your user guide

Please also replace your local copy of the user guide with the new version.

Previous Topic: Installation Instructions · Top of Page · User Guide Home · Next Topic: CodeIgniter at a Glance

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_154.html (2 of 2) [12/20/2007 11:00:20 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide

Search User Guide

Upgrading from 1.5.2 to 1.5.3

Before performing an update you should take your site offline by replacing
the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your "system" folder with the new
versions:

● system/database/drivers

● system/helpers

● system/libraries/Input.php

● system/libraries/Loader.php

● system/libraries/Profiler.php

● system/libraries/Table.php

Note: If you have any custom developed files in these folders please make
copies of them first.

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new version.

Previous Topic: Installation Instructions · Top of Page · User Guide Home · Next Topic: CodeIgniter at a Glance

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_153.html [12/20/2007 11:00:21 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide

Search User Guide

Upgrading from 1.5.0 to 1.5.2

Note: The instructions on this page assume you are running version 1.5.0 or
1.5.1. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by replacing
the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your "system" folder with the new
versions:

● system/helpers/download_helper.php

● system/helpers/form_helper.php

● system/libraries/Table.php

● system/libraries/User_agent.php

● system/libraries/Exceptions.php

● system/libraries/Input.php

● system/libraries/Router.php

● system/libraries/Loader.php

● system/libraries/Image_lib.php

● system/language/english/unit_test_lang.php

● system/database/DB_active_rec.php

● system/database/drivers/mysqli/mysqli_driver.php

● codeigniter/

Note: If you have any custom developed files in these folders please make
copies of them first.

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new version.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_152.html (1 of 2) [12/20/2007 11:00:21 PM]

CodeIgniter User Guide

Previous Topic: Installation Instructions · Top of Page · User Guide Home · Next Topic: CodeIgniter at a Glance

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_152.html (2 of 2) [12/20/2007 11:00:21 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide

Search User Guide

Upgrading from 1.4.1 to 1.5.0

Note: The instructions on this page assume you are running version 1.4.1. If
you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by replacing
the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your "system" folder with the new
versions:

● application/config/user_agents.php (new file for 1.5)

● application/config/smileys.php (new file for 1.5)

● codeigniter/

● database/ (new folder for 1.5. Replaces the "drivers" folder)

● helpers/

● language/

● libraries/

● scaffolding/

Note: If you have any custom developed files in these folders please make
copies of them first.

Step 2: Update your database.php file

Open your application/config/database.php file and add these new items:

$db['default']['cache_on'] = FALSE;
$db['default']['cachedir'] = '';

Step 3: Update your config.php file

Open your application/config/config.php file and ADD these new items:

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_150.html (1 of 3) [12/20/2007 11:00:22 PM]

CodeIgniter User Guide

/*
|--
Class Extension Prefix
This item allows you to set the filename/classname prefix when extending
native libraries. For more information please see the user guide:
http://www.codeigniter.com/user_guide/general/core_classes.html
http://www.codeigniter.com/user_guide/general/creating_libraries.html
*/
$config['subclass_prefix'] = 'MY_';

/*
|--
Rewrite PHP Short Tags
If your PHP installation does not have short tag support enabled CI
can rewrite the tags on-the-fly, enabling you to utilize that syntax
in your view files. Options are TRUE or FALSE (boolean)
*/
$config['rewrite_short_tags'] = FALSE;

In that same file REMOVE this item:

/*
|--
Enable/Disable Error Logging
If you would like errors or debug messages logged set this variable to
TRUE (boolean). Note: You must set the file permissions on the "logs" folder
such that it is writable.
*/
$config['log_errors'] = FALSE;

Error logging is now disabled simply by setting the threshold to zero.

Step 4: Update your main index.php file

If you are running a stock index.php file simply replace your version with
the new one.

If your index.php file has internal modifications, please add your
modifications to the new file and use it.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_150.html (2 of 3) [12/20/2007 11:00:22 PM]

CodeIgniter User Guide

Step 5: Update your user guide

Please also replace your local copy of the user guide with the new version.

Previous Topic: Installation Instructions · Top of Page · User Guide Home · Next Topic: CodeIgniter at a Glance

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_150.html (3 of 3) [12/20/2007 11:00:22 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide

Search User Guide

Upgrading from 1.4.0 to 1.4.1

Note: The instructions on this page assume you are running version 1.4.0. If
you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by replacing
the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your "system" folder with the new
versions:

Note: If you have any custom developed files in these folders please make
copies of them first.

● codeigniter

● drivers

● helpers

● libraries

Step 2: Update your config.php file

Open your application/config/config.php file and add this new item:

/*
|--
Output Compression
Enables Gzip output compression for faster page loads. When enabled,
the output class will test whether your server supports Gzip.
Even if it does, however, not all browsers support compression
so enable only if you are reasonably sure your visitors can handle it.
VERY IMPORTANT: If you are getting a blank page when compression is enabled it
means you are prematurely outputting something to your browser. It could
even be a line of whitespace at the end of one of your scripts. For
compression to work, nothing can be sent before the output buffer is called

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_141.html (1 of 2) [12/20/2007 11:00:23 PM]

CodeIgniter User Guide

| by the output class. Do not "echo" any values with compression enabled.
|
*/
$config['compress_output'] = FALSE;

Step 3: Rename an Autoload Item

Open the following file: application/config/autoload.php

Find this array item:

$autoload['core'] = array();

And rename it to this:

$autoload['libraries'] = array();

This change was made to improve clarity since some users were not sure
that their own libraries could be auto-loaded.

Step 4: Update your user guide

Please also replace your local copy of the user guide with the new version.

Previous Topic: Installation Instructions · Top of Page · User Guide Home · Next Topic: CodeIgniter at a Glance

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_141.html (2 of 2) [12/20/2007 11:00:23 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide

Search User Guide

Upgrading from 1.3.3 to 1.4.0

Note: The instructions on this page assume you are running version 1.3.3. If
you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by replacing
the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your "system" folder with the new
versions:

Note: If you have any custom developed files in these folders please make
copies of them first.

● application/config/hooks.php

● application/config/mimes.php

● codeigniter

● drivers

● helpers

● init

● language

● libraries

● scaffolding

Step 2: Update your config.php file

Open your application/config/config.php file and add these new items:

/*
|--
Enable/Disable System Hooks
If you would like to use the "hooks" feature you must enable it by

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_140.html (1 of 2) [12/20/2007 11:00:23 PM]

CodeIgniter User Guide

| setting this variable to TRUE (boolean). See the user guide for details.
|
*/
$config['enable_hooks'] = FALSE;

/*
|--
Allowed URL Characters
This lets you specify which characters are permitted within your URLs.
When someone tries to submit a URL with disallowed characters they will
get a warning message.
As a security measure you are STRONGLY encouraged to restrict URLs to
as few characters as possible. By default only these are allowed: a-z 0-9~%.:_-
Leave blank to allow all characters -- but only if you are insane.
DO NOT CHANGE THIS UNLESS YOU FULLY UNDERSTAND THE REPERCUSSIONS!!
*/
$config['permitted_uri_chars'] = 'a-z 0-9~%.:_-';

Step 3: Update your user guide

Please also replace your local copy of the user guide with the new version.

Previous Topic: Installation Instructions · Top of Page · User Guide Home · Next Topic: CodeIgniter at a Glance

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_140.html (2 of 2) [12/20/2007 11:00:23 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide

Search User Guide

Upgrading from 1.3.2 to 1.3.3

Note: The instructions on this page assume you are running version 1.3.2. If
you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by replacing
the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your "system" folder with the new
versions:

Note: If you have any custom developed files in these folders please make
copies of them first.

● codeigniter

● drivers

● helpers

● init

● libraries

Step 2: Update your Models

If you are NOT using CodeIgniter's Models feature disregard this step.

As of version 1.3.3, CodeIgniter does not connect automatically to your
database when a model is loaded. This allows you greater flexibility in
determining which databases you would like used with your models. If your
application is not connecting to your database prior to a model being loaded
you will have to update your code. There are several options for connecting,
as described here.

Step 3: Update your user guide

Please also replace your local copy of the user guide with the new version.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_133.html (1 of 2) [12/20/2007 11:00:24 PM]

CodeIgniter User Guide

Previous Topic: Installation Instructions · Top of Page · User Guide Home · Next Topic: CodeIgniter at a Glance

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_133.html (2 of 2) [12/20/2007 11:00:24 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide

Search User Guide

Upgrading from 1.3.1 to 1.3.2

Note: The instructions on this page assume you are running version 1.3.1. If
you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by replacing
the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your "system" folder with the new
versions:

Note: If you have any custom developed files in these folders please make
copies of them first.

● drivers

● init

● libraries

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new version.

Previous Topic: Installation Instructions · Top of Page · User Guide Home · Next Topic: CodeIgniter at a Glance

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_132.html [12/20/2007 11:00:24 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide

Search User Guide

Upgrading from 1.3 to 1.3.1

Note: The instructions on this page assume you are running version 1.3. If
you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by replacing
the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your "system" folder with the new
versions:

Note: If you have any custom developed files in these folders please make
copies of them first.

● drivers

● init/init_unit_test.php (new for 1.3.1)

● language/

● libraries

● scaffolding

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new version.

Previous Topic: Installation Instructions · Top of Page · User Guide Home · Next Topic: CodeIgniter at a Glance

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_131.html [12/20/2007 11:00:25 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide

Search User Guide

Upgrading from 1.2 to 1.3

Note: The instructions on this page assume you are running version 1.2.
If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by replacing
the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your "system" folder with the new
versions:

Note: If you have any custom developed files in these folders please
make copies of them first.

● application/models/ (new for 1.3)

● codeigniter (new for 1.3)

● drivers

● helpers

● init

● language

● libraries

● plugins

● scaffolding

Step 2: Update your error files

Version 1.3 contains two new error templates located in application/
errors, and for naming consistency the other error templates have been
renamed.

If you have not customized any of the error templates simply replace this
folder:

● application/errors/

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_130.html (1 of 3) [12/20/2007 11:00:26 PM]

CodeIgniter User Guide

If you have customized your error templates, rename them as follows:

● 404.php = error_404.php

● error.php = error_general.php

● error_db.php (new)

● error_php.php (new)

Step 3: Update your index.php file

Please open your main index.php file (located at your root). At the very
bottom of the file, change this:

require_once BASEPATH.'libraries/Front_controller'.EXT;

To this:

require_once BASEPATH.'codeigniter/CodeIgniter'.EXT;

Step 4: Update your config.php file

Open your application/config/config.php file and add these new items:

/*
|--
URL suffix
This option allows you to add a suffix to all URLs.
For example, if a URL is this:
www.your-site.com/index.php/products/view/shoes
You can optionally add a suffix, like ".html",
making the page appear to be of a certain type:
www.your-site.com/index.php/products/view/shoes.html
*/
$config['url_suffix'] = "";

/*
|--
| Enable Query Strings

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_130.html (2 of 3) [12/20/2007 11:00:26 PM]

CodeIgniter User Guide

|--
|
| By default CodeIgniter uses search-engine and
| human-friendly segment based URLs:
|
| www.your-site.com/who/what/where/
|
| You can optionally enable standard query string
| based URLs:
|
| www.your-site.com?who=me&what=something&where=here
|
| Options are: TRUE or FALSE (boolean)
|
| The two other items let you set the query string "words"
| that will invoke your controllers and functions:
| www.your-site.com/index.php?c=controller&m=function
|
*/
$config['enable_query_strings'] = FALSE;
$config['controller_trigger'] = 'c';
$config['function_trigger'] = 'm';

Step 5: Update your database.php file

Open your application/config/database.php file and add these new
items:

$db['default']['dbprefix'] = "";
$db['default']['active_r'] = TRUE;

Step 6: Update your user guide

Please also replace your local copy of the user guide with the new version.

Previous Topic: Installation Instructions · Top of Page · User Guide Home · Next Topic: CodeIgniter at a Glance

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_130.html (3 of 3) [12/20/2007 11:00:26 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide

Search User Guide

Upgrading From Beta 1.0 to Final 1.2

To upgrade to Version 1.2 please replace the following directories with the new
versions:

Note: If you have any custom developed files in these folders please make copies
of them first.

● drivers

● helpers

● init

● language

● libraries

● plugins

● scaffolding

Please also replace your local copy of the user guide with the new version.

Previous Topic: Installation Instructions · Top of Page · User Guide Home · Next Topic: CodeIgniter at a Glance

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_120.html [12/20/2007 11:00:26 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide

Search User Guide

Upgrading From Beta 1.0 to Beta 1.1

To upgrade to Beta 1.1 please perform the following steps:

Step 1: Replace your index file

Replace your main index.php file with the new index.php file. Note: If you have
renamed your "system" folder you will need to edit this info in the new file.

Step 2: Relocate your config folder

This version of CodeIgniter now permits multiple sets of "applications" to all share
a common set of backend files. In order to enable each application to have its
own configuration values, the config directory must now reside inside of your
application folder, so please move it there.

Step 3: Replace directories

Replace the following directories with the new versions:

● drivers

● helpers

● init

● libraries

● scaffolding

Step 4: Add the calendar language file

There is a new language file corresponding to the new calendaring class which
must be added to your language folder. Add the following item to your version:
language/english/calendar_lang.php

Step 5: Edit your config file

The original application/config/config.php file has a typo in it Open the file
and look for the items related to cookies:

$conf['cookie_prefix'] = "";
$conf['cookie_domain'] = "";
$conf['cookie_path'] = "/";

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_b11.html (1 of 2) [12/20/2007 11:00:27 PM]

CodeIgniter User Guide

Change the array name from $conf to $config, like this:

$config['cookie_prefix'] = "";
$config['cookie_domain'] = "";
$config['cookie_path'] = "/";

Lastly, add the following new item to the config file (and edit the option if
needed):

/*
|--
URI PROTOCOL
This item determines which server global
should be used to retrieve the URI string. The
default setting of "auto" works for most servers.
If your links do not seem to work, try one of
the other delicious flavors:
'auto' Default - auto detects
'path_info' Uses the PATH_INFO
'query_string' Uses the QUERY_STRING
*/

$config['uri_protocol'] = "auto";

Previous Topic: Installation Instructions · Top of Page · User Guide Home · Next Topic: CodeIgniter at a Glance

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/upgrade_b11.html (2 of 2) [12/20/2007 11:00:27 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Troubleshooting

Search User Guide

Troubleshooting

If you find that no matter what you put in your URL only your default
page is loading, it might be that your server does not support the
PATH_INFO variable needed to serve search-engine friendly URLs. As a
first step, open your application/config/config.php file and look for
the URI Protocol information. It will recommend that you try a couple
alternate settings. If it still doesn't work after you've tried this you'll
need to force CodeIgniter to add a question mark to your URLs. To do
this open your application/config/config.php file and change this:

$config['index_page'] = "index.php";

To this:

$config['index_page'] = "index.php?";

Previous Topic: Upgrading Instructions · Top of Page · User Guide Home · Next Topic: CodeIgniter at a Glance

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/troubleshooting.html [12/20/2007 11:00:27 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Application Flow Chart

Search User Guide

Application Flow Chart

The following graphic illustrates how data flows throughout the system:

1. The index.php serves as the front controller, initializing the base resources needed to run
CodeIgniter.

2. The Router examines the HTTP request to determine what should be done with it.

3. If a cache file exists, it is sent directly to the browser, bypassing the normal system
execution.

4. Security. Before the application controller is loaded, the HTTP request and any user
submitted data is filtered for security.

5. The Controller loads the model, core libraries, plugins, helpers, and any other resources
needed to process the specific request.

6. The finalized View is rendered then sent to the web browser to be seen. If caching is
enabled, the view is cached first so that on subsequent requests it can be served.

Previous Topic: CodeIgniter Features · Top of Page · User Guide Home · Next Topic: Model-View-Controller

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/overview/appflow.html [12/20/2007 11:00:28 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Unit Testing Class

Search User Guide

Unit Testing Class

Unit testing is an approach to software development in which tests
are written for each function in your application. If you are not
familiar with the concept you might do a little googling on the
subject.

CodeIgniter's Unit Test class is quite simple, consisting of an
evaluation function and two result functions. It's not intended to be
a full-blown test suite but rather a simple mechanism to evaluate
your code to determine if it is producing the correct data type and
result.

Initializing the Class

Like most other classes in CodeIgniter, the Unit Test class is
initialized in your controller using the $this->load->library
function:

$this->load->library('unit_test');

Once loaded, the Unit Test object will be available using: $this-
>unit

Running Tests

Running a test involves supplying a test and an expected result to
the following function:

$this->unit->run(test, expected result, 'test name');

Where test is the result of the code you wish to test, expected
result is the data type you expect, and test name is an optional
name you can give your test. Example:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/unit_testing.html (1 of 4) [12/20/2007 11:00:29 PM]

CodeIgniter User Guide : Unit Testing Class

$test = 1 + 1;

$expected_result = 2;

$test_name = 'Adds one plus one';

$this->unit->run($test, $expected_result, $test_name);

The expected result you supply can either be a literal match, or a
data type match. Here's an example of a literal:

$this->unit->run('Foo', 'Foo');

Here is an example of a data type match:

$this->unit->run('Foo', 'is_string');

Notice the use of "is_string" in the second parameter? This tells the
function to evaluate whether your test is producing a string as the
result. Here is a list of allowed comparison types:

● is_string

● is_bool

● is_true

● is_false

● is_int

● is_numeric

● is_float

● is_double

● is_array

● is_null

Generating Reports

You can either display results after each test, or your can run
several tests and generate a report at the end. To show a report
directly simply echo or return the run function:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/unit_testing.html (2 of 4) [12/20/2007 11:00:29 PM]

CodeIgniter User Guide : Unit Testing Class

echo $this->unit->run($test, $expected_result);

To run a full report of all tests, use this:

echo $this->unit->report();

The report will be formatted in an HTML table for viewing. If you
prefer the raw data you can retrieve an array using:

echo $this->unit->result();

Strict Mode

By default the unit test class evaluates literal matches loosely.
Consider this example:

$this->unit->run(1, TRUE);

The test is evaluating an integer, but the expected result is a
boolean. PHP, however, due to it's loose data-typing will evaluate
the above code as TRUE using a normal equality test:

if (1 == TRUE) echo 'This evaluates as true';

If you prefer, you can put the unit test class in to strict mode, which
will compare the data type as well as the value:

if (1 === TRUE) echo 'This evaluates as FALSE';

To enable strict mode use this:

$this->unit->use_strict(TRUE);

Enabling/Disabling Unit Testing

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/unit_testing.html (3 of 4) [12/20/2007 11:00:29 PM]

CodeIgniter User Guide : Unit Testing Class

If you would like to leave some testing in place in your scripts, but
not have it run unless you need it, you can disable unit testing using:

$this->unit->active(FALSE)

Creating a Template

If you would like your test results formatted differently then the
default you can set your own template. Here is an example of a
simple template. Note the required pseudo-variables:

$str = '
<table border="0" cellpadding="4" cellspacing="1">
 {rows}
 <tr>
 <td>{item}</td>
 <td>{result}</td>
 </tr>
 {/rows}
</table>';

$this->unit->set_template($str);

Note: Your template must be declared before running the unit test
process.

Previous Topic: Template Parser Class · Top of Page · User Guide Home · Next Topic: URI Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/unit_testing.html (4 of 4) [12/20/2007 11:00:29 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : User Agent Class

Search User Guide

User Agent Class

The User Agent Class provides functions that help identify
information about the browser, mobile device, or robot visiting your
site. In addition you can get referrer information as well as language
and supported character-set information.

Initializing the Class

Like most other classes in CodeIgniter, the User Agent class is
initialized in your controller using the $this->load->library
function:

$this->load->library('user_agent');

Once loaded, the object will be available using: $this->agent

User Agent Definitions

The user agent name definitions are located in a config file located
at: application/config/user_agents.php. You may add items to
the various user agent arrays if needed.

Example

When the User Agent class is initialized it will attempt to determine
whether the user agent browsing your site is a web browser, a
mobile device, or a robot. It will also gather the platform
information if it is available.

$this->load->library('user_agent');

if ($this->agent->is_browser())
{
 $agent = $this->agent->browser().' '.$this->agent->version();

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/user_agent.html (1 of 5) [12/20/2007 11:00:30 PM]

CodeIgniter User Guide : User Agent Class

}
elseif ($this->agent->is_robot())
{
 $agent = $this->agent->robot();
}
elseif ($this->agent->is_mobile())
{
 $agent = $this->agent->mobile();
}
else
{
 $agent = 'Unidentified User Agent';
}

echo $agent;

echo $this->agent->platform(); // Platform info (Windows, Linux, Mac, etc.)

Function Reference

$this->agent->is_browser()

Returns TRUE/FALSE (boolean) if the user agent is a known web
browser.

$this->agent->is_mobile()

Returns TRUE/FALSE (boolean) if the user agent is a known mobile
device.

$this->agent->is_robot()

Returns TRUE/FALSE (boolean) if the user agent is a known robot.

Note: The user agent library only contains the most common robot
definitions. It is not a complete list of bots. There are hundreds of
them so searching for each one would not be very efficient. If you
find that some bots that commonly visit your site are missing from
the list you can add them to your application/config/
user_agents.php file.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/user_agent.html (2 of 5) [12/20/2007 11:00:30 PM]

CodeIgniter User Guide : User Agent Class

$this->agent->is_referral()

Returns TRUE/FALSE (boolean) if the user agent was referred from
another site.

$this->agent->browser()

Returns a string containing the name of the web browser viewing
your site.

$this->agent->version()

Returns a string containing the version number of the web browser
viewing your site.

$this->agent->mobile()

Returns a string containing the name of the mobile device viewing
your site.

$this->agent->robot()

Returns a string containing the name of the robot viewing your site.

$this->agent->platform()

Returns a string containing the platform viewing your site (Linux,
Windows, OS X, etc.).

$this->agent->referrer()

The referrer, if the user agent was referred from another site.
Typically you'll test for this as follows:

if ($this->agent->is_referral())
{
 echo $this->agent->referrer();

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/user_agent.html (3 of 5) [12/20/2007 11:00:30 PM]

CodeIgniter User Guide : User Agent Class

}

$this->agent->agent_string()

Returns a string containing the full user agent string. Typically it will
be something like this:

Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.0.4) Gecko/20060613
Camino/1.0.2

$this->agent->accept_lang()

Lets you determine if the user agent accepts a particular language.
Example:

if ($this->agent->accept_lang('en'))
{
 echo 'You accept English!';
}

Note: This function is not typically very reliable since some
browsers do not provide language info, and even among those that
do, it is not always accurate.

$this->agent->accept_charset()

Lets you determine if the user agent accepts a particular character
set. Example:

if ($this->agent->accept_charset('utf-8'))
{
 echo 'You browser supports UTF-8!';
}

Note: This function is not typically very reliable since some

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/user_agent.html (4 of 5) [12/20/2007 11:00:30 PM]

CodeIgniter User Guide : User Agent Class

browsers do not provide character-set info, and even among those
that do, it is not always accurate.

Previous Topic: URI Class · Top of Page · User Guide Home · Next Topic: Validation Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/user_agent.html (5 of 5) [12/20/2007 11:00:30 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Typography Helper

Search User Guide

Typography Helper

The Typography Helper file contains functions that help your format
text in semantically relevant ways.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('typography');

The following functions are available:

auto_typography()

Formats text so that it is semantically and typographically correct
HTML. Takes a string as input and returns it with the following
formatting:

● Surrounds paragraphs within <p></p> (looks for double line breaks
to identify paragraphs).

● Single line breaks are converted to
, except those that appear
within <pre> tags.

● Block level elements, like <div> tags, are not wrapped within
paragraphs, but their contained text is if it contains paragraphs.

● Quotes are converted to correctly facing curly quote entities, except
those that appear within tags.

● Apostrophes are converted to curly apostrophy entities.

● Double dashes (either like -- this or like--this) are converted to em—
dashes.

● Three consecutive periods either preceding or following a word are
converted to ellipsis…

● Double spaces following sentences are converted to non-breaking
spaces to mimic double spacing.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/typography_helper.html (1 of 2) [12/20/2007 11:00:30 PM]

CodeIgniter User Guide : Typography Helper

Usage example:

$string = auto_typography($string);

Note: Typographic formatting can be processor intensive, particularly
if you have a lot of content being formatted. If you choose to use this
function you may want to consider caching your pages.

nl2br_except_pre()

Converts newlines to
 tags unless they appear within <pre>
tags. This function is identical to the native PHP nl2br() function,
except that it ignores <pre> tags.

Usage example:

$string = nl2br_except_pre($string);

Previous Topic: Text Helper · Top of Page · User Guide Home · Next Topic: URL Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/typography_helper.html (2 of 2) [12/20/2007 11:00:30 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : XML Helper

Search User Guide

XML Helper

The XML Helper file contains functions that assist in working with
XML data.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('xml');

The following functions are available:

xml_convert('string')

Takes a string as input and converts the following reserved XML
characters to entities:

Ampersands: &
Less then and greater than characters: < >
Single and double quotes: ' "
Dashes: -

This function ignores ampersands if they are part of existing
character entities. Example:

$string = xml_convert($string);

Previous Topic: URL Helper · Top of Page · User Guide Home

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/xml_helper.html [12/20/2007 11:00:31 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Scaffolding

Search User Guide

Scaffolding

CodeIgniter's Scaffolding feature provides a fast and very
convenient way to add, edit, or delete information in your database
during development.

Very Important: Scaffolding is intended for development use only.
It provides very little security other than a "secret" word, so anyone
who has access to your CodeIgniter site can potentially edit or
delete your information. If you use scaffolding make sure you
disable it immediately after you are through using it. DO NOT leave
it enabled on a live site. And please, set a secret word before you
use it.

Why would someone use scaffolding?

Here's a typical scenario: You create a new database table during
development and you'd like a quick way to insert some data into it
to work with. Without scaffolding your choices are either to write
some inserts using the command line or to use a database
management tool like phpMyAdmin. With CodeIgniter's scaffolding
feature you can quickly add some data using its browser interface.
And when you are through using the data you can easily delete it.

Setting a Secret Word

Before enabling scaffolding please take a moment to set a secret
word. This word, when encountered in your URL, will launch the
scaffolding interface, so please pick something obscure that no one
is likely to guess.

To set a secret word, open your application/config/routes.php
file and look for this item:

$route['scaffolding_trigger'] = '';

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/scaffolding.html (1 of 3) [12/20/2007 11:00:31 PM]

CodeIgniter User Guide : Scaffolding

Once you've found it add your own unique word.

Note: The scaffolding word can not start with an underscore.

Enabling Scaffolding

Note: The information on this page assumes you already know how
controllers work, and that you have a working one available. It also
assumes you have configured CodeIgniter to auto-connect to your
database. If not, the information here won't be very relevant, so
you are encouraged to go through those sections first. Lastly, it
assumes you understand what a class constructor is. If not, read the
last section of the controllers page.

To enable scaffolding you will initialize it in your constructor like this:

<?php
class Blog extends Controller {

 function Blog()
 {
 parent::Controller();

 $this->load->scaffolding('table_name');
 }
}
?>

Where table_name is the name of the table (table, not database)
you wish to work with.

Once you've initialized scaffolding, you will access it with this URL
prototype:

www.your-site.com/index.php/class/secret_word/

For example, using a controller named Blog, and abracadabra as
the secret word, you would access scaffolding like this:

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/scaffolding.html (2 of 3) [12/20/2007 11:00:31 PM]

CodeIgniter User Guide : Scaffolding

www.your-site.com/index.php/blog/abracadabra/

The scaffolding interface should be self-explanatory. You can add,
edit or delete records.

A Final Note:

The scaffolding feature will only work with tables that contain a
primary key, as this is information is needed to perform the various
database functions.

Previous Topic: Auto-loading Resources · Top of Page · User Guide Home · Next Topic: URI Routing

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/scaffolding.html (3 of 3) [12/20/2007 11:00:31 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Error Handling

Search User Guide

Error Handling

CodeIgniter lets you build error reporting into your applications
using the functions described below. In addition, it has an error
logging class that permits error and debugging messages to be
saved as text files.

Note: By default, CodeIgniter displays all PHP errors. You might
wish to change this behavior once your development is complete.
You'll find the error_reporting() function located at the top of
your main index.php file. Disabling error reporting will NOT prevent
log files from being written if there are errors.

Unlike most systems in CodeIgniter, the error functions are simple
procedural interfaces that are available globally throughout the
application. This approach permits error messages to get triggered
without having to worry about class/function scoping.

The following functions let you generate errors:

show_error('message')

This function will display the error message supplied to it using the
following error template:

application/errors/error_general.php

show_404('page')

This function will display the 404 error message supplied to it using
the following error template:

application/errors/error_404.php

The function expects the string passed to it to be the file path to the
page that isn't found. Note that CodeIgniter automatically shows
404 messages if controllers are not found.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/errors.html (1 of 3) [12/20/2007 11:00:32 PM]

CodeIgniter User Guide : Error Handling

log_message('level', 'message')

This function lets you write messages to your log files. You must
supply one of three "levels" in the first parameter, indicating what
type of message it is (debug, error, info), with the message itself in
the second parameter. Example:

if ($some_var == "")
{
 log_message('error', 'Some variable did not contain a value.');
}
else
{
 log_message('debug', 'Some variable was correctly set');
}

log_message('info', 'The purpose of some variable is to provide some value.');

There are three message types:

1. Error Messages. These are actual errors, such as PHP errors or
user errors.

2. Debug Messages. These are messages that assist in debugging.
For example, if a class has been initialized, you could log this as
debugging info.

3. Informational Messages. These are the lowest priority messages,
simply giving information regarding some process. CodeIgniter
doesn't natively generate any info messages but you may want to
in your application.

Note: In order for the log file to actually be written, the "logs"
folder must be writable. In addition, you must set the "threshold"
for logging. You might, for example, only want error messages to be
logged, and not the other two types. If you set it to zero logging will
be disabled.

Previous Topic: URI Routing · Top of Page · User Guide Home · Next Topic: Page Caching

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/errors.html (2 of 3) [12/20/2007 11:00:32 PM]

CodeIgniter User Guide : Error Handling

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/errors.html (3 of 3) [12/20/2007 11:00:32 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Views

Search User Guide

Views

A view is simply a web page, or a page fragment, like a header,
footer, sidebar, etc. In fact, views can flexibly be embedded within
other views (within other views, etc., etc.) if you need this type of
hierarchy.

Views are never called directly, they must be loaded by a controller.
Remember that in an MVC framework, the Controller acts as the
traffic cop, so it is responsible for fetching a particular view. If you
have not read the Controllers page you should do so before
continuing.

Using the example controller you created in the controller page, let's
add a view to it.

Creating a View

Using your text editor, create a file called blogview.php, and put
this in it:

Then save the file in your application/views/ folder.

Loading a View

To load a particular view file you will use the following function:

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/views.html (1 of 5) [12/20/2007 11:00:33 PM]

CodeIgniter User Guide : Views

$this->load->view('name');

Where name is the name of your view file. Note: The .php file
extension does not need to be specified unless you use something
other then .php.

Now, open the controller file you made earlier called blog.php, and
replace the echo statement with the view loading function:

If you visit the your site using the URL you did earlier you should
see your new view. The URL was similar to this:

www.your-site.com/index.php/blog/

Storing Views within Sub-folders

Your view files can also be stored within sub-folders if you prefer
that type of organization. When doing so you will need to include
the folder name loading the view. Example:

$this->load->view('folder_name/file_name');

Adding Dynamic Data to the View

Data is passed from the controller to the view by way of an array or
an object in the second parameter of the view loading function.
Here is an example using an array:

$data = array(
 'title' => 'My Title',

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/views.html (2 of 5) [12/20/2007 11:00:33 PM]

CodeIgniter User Guide : Views

 'heading' => 'My Heading',
 'message' => 'My Message'
);

$this->load->view('blogview', $data);

And here's an example using an object:

$data = new Someclass();
$this->load->view('blogview', $data);

Note: If you use an object, the class variables will be turned into
array elements.

Let's try it with your controller file. Open it add this code:

Now open your view file and change the text to variables that
correspond to the array keys in your data:

Then load the page at the URL you've been using and you should
see the variables replaced.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/views.html (3 of 5) [12/20/2007 11:00:33 PM]

CodeIgniter User Guide : Views

Note: You'll notice that in the example above we are using PHP's
alternative syntax. If you are not familiar with it you can read about
it here.

Creating Loops

The data array you pass to your view files is not limited to simple
variables. You can pass multi dimensional arrays, which can be
looped to generate multiple rows. For example, if you pull data from
your database it will typically be in the form of a multi-dimensional
array.

Here's a simple example. Add this to your controller:

Now open your view file and create a loop:

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/views.html (4 of 5) [12/20/2007 11:00:33 PM]

CodeIgniter User Guide : Views

Previous Topic: Controllers · Top of Page · User Guide Home · Next Topic: Models

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/views.html (5 of 5) [12/20/2007 11:00:33 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Output Class

Search User Guide

Output Class

The Output class is a small class with one main function: To send
the finalized web page to the requesting browser. It is also
responsible for caching your web pages, if you use that feature.

Note: This class is initialized automatically by the system so there
is no need to do it manually.

Under normal circumstances you won't even notice the Output class
since it works transparently without your intervention. For example,
when you use the Loader class to load a view file, it's automatically
passed to the Output class, which will be called automatically by
CodeIgniter at the end of system execution. It is possible, however,
for you to manually intervene with the output if you need to, using
either of the two following functions:

$this->output->set_output();

Permits you to manually set the final output string. Usage example:

$this->output->set_output($data);

Important: If you do set your output manually, it must be the last
thing done in the function you call it from. For example, if you build
a page in one of your controller functions, don't set the output until
the end.

$this->output->get_output();

Permits you to manually retrieve any output that has been sent for
storage in the output class. Usage example:

$string = $this->output->get_output();

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/output.html (1 of 3) [12/20/2007 11:00:34 PM]

CodeIgniter User Guide : Output Class

Note that data will only be retrievable from this function if it has
been previously sent to the output class by one of the CodeIgniter
functions like $this->load->view().

$this->output->set_header();

Permits you to manually set server headers, which the output class
will send for you when outputting the final rendered display.
Example:

$this->output->set_header("HTTP/1.0 200 OK");
$this->output->set_header("HTTP/1.1 200 OK");
$this->output->set_header('Last-Modified: '.gmdate('D, d M Y H:i:s',
$last_update).' GMT');
$this->output->set_header("Cache-Control: no-store, no-cache, must-
revalidate");
$this->output->set_header("Cache-Control: post-check=0, pre-check=0",
false);
$this->output->set_header("Pragma: no-cache");

$this->output->enable_profiler();

Permits you to enable/disable the Profiler, which will display
benchmark and other data at the bottom of your pages for
debugging and optimization purposes.

To enable the profiler place the following function anywhere within
your Controller functions:

$this->output->enable_profiler(TRUE);

When enabled a report will be generated and inserted at the bottom
of your pages.

To disable the profiler you will use:

$this->output->enable_profiler(FALSE);

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/output.html (2 of 3) [12/20/2007 11:00:34 PM]

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/controllers.html

CodeIgniter User Guide : Output Class

Previous Topic: Language Class · Top of Page · User Guide Home · Next Topic: Pagination Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/output.html (3 of 3) [12/20/2007 11:00:34 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : CodeIgniter at a Glance

Search User Guide

CodeIgniter at a Glance

CodeIgniter is an Application Framework

CodeIgniter is a toolkit for people who build web application using PHP.
Its goal is to enable you to develop projects much faster than you
could if you were writing code from scratch, by providing a rich set of
libraries for commonly needed tasks, as well as a simple interface and
logical structure to access these libraries. CodeIgniter lets you
creatively focus on your project by minimizing the amount of code
needed for a given task.

CodeIgniter is Free

CodeIgniter is licensed under an Apache/BSD-style open source license
so you can use it however you please. For more information please
read the license agreement.

CodeIgniter Runs on PHP 4

CodeIgniter is written to be compatible with PHP 4. Although we would
have loved to take advantage of the better object handling in PHP 5
since it would have simplified some things we had to find creative
solutions for (looking your way, multiple inheritance), at the time of
this writing PHP 5 is not in widespread use, which means we would be
alienating most of our potential audience. Major OS vendors like
RedHat have yet to support PHP 5, and they are unlikely to do so until
2007, so we felt that it did not serve the best interests of the PHP
community to write CodeIgniter in PHP 5.

Note: CodeIgniter will run on PHP 5. It simply does not take advantage
of any native features that are only available in that version.

CodeIgniter is Light Weight

Truly light weight. The core system requires only a few very small

file:///D:/_darkhorse/websites/codeigniter/user_guide/overview/at_a_glance.html (1 of 4) [12/20/2007 11:00:35 PM]

CodeIgniter User Guide : CodeIgniter at a Glance

libraries. This is in stark contrast to many frameworks that require
significantly more resources. Additional libraries are loaded
dynamically upon request, based on your needs for a given process, so
the base system is very lean and quite fast.

CodeIgniter is Fast

Really fast. We challenge you to find a framework that has better
performance than CodeIgniter.

CodeIgniter Uses M-V-C

CodeIgniter uses the Model-View-Controller approach, which allows
great separation between logic and presentation. This is particularly
good for projects in which designers are working with your template
files, as the code these file contain will be minimized. We describe MVC
in more detail on its own page.

CodeIgniter Generates Clean URLs

The URLs generated by CodeIgniter are clean and search-engine
friendly. Rather than using the standard "query string" approach to
URLs that is synonymous with dynamic systems, CodeIgniter uses a
segment-based approach:

www.your-site.com/news/article/345

Note: By default the index.php file is included in the URL but it can be
removed using a simple .htaccess file.

CodeIgniter Packs a Punch

CodeIgniter comes with full-range of libraries that enable the most
commonly needed web development tasks, like accessing a database,
sending email, validating form data, maintaining sessions,
manipulating images, working with XML-RPC data and much more.

CodeIgniter is Extensible

file:///D:/_darkhorse/websites/codeigniter/user_guide/overview/at_a_glance.html (2 of 4) [12/20/2007 11:00:35 PM]

CodeIgniter User Guide : CodeIgniter at a Glance

The system can be easily extended through the use of plugins and
helper libraries, or through class extensions or system hooks.

CodeIgniter Does Not Require a Template Engine

Although CodeIgniter does come with a simple template parser that
can be optionally used, it does not force you to use one. Template
engines simply can not match the performance of native PHP, and the
syntax that must be learned to use a template engine is usually only
marginally easier than learning the basics of PHP. Consider this block
of PHP code:

<?php foreach ($addressbook as $name):?>

<?=$name?>

<?php endforeach; ?>

Contrast this with the pseudo-code used by a template engine:

{foreach from=$addressbook item="name"}

{$name}

{/foreach}

Yes, the template engine example is a bit cleaner, but it comes at the
price of performance, as the pseudo-code must be converted back into
PHP to run. Since one of our goals is maximum performance, we opted
to not require the use of a template engine.

CodeIgniter is Thoroughly Documented

Programmers love to code and hate to write documentation. We're no
different, of course, but since documentation is as important as the
code itself, we are committed to doing it. Our source code is extremely

file:///D:/_darkhorse/websites/codeigniter/user_guide/overview/at_a_glance.html (3 of 4) [12/20/2007 11:00:35 PM]

CodeIgniter User Guide : CodeIgniter at a Glance

clean and well commented as well.

CodeIgniter has a Friendly Community of Users

Our growing community of users can be seen actively participating in
our Community Forums.

Previous Topic: Upgrading from an Older Version · Top of Page · User Guide Home · Next Topic: CodeIgniter
Features

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/overview/at_a_glance.html (4 of 4) [12/20/2007 11:00:35 PM]

http://www.codeigniter.com/forums/
http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Models

Search User Guide

Models

Models are optionally available for those who want to use a more
traditional MVC approach.

● What is a Model?

● Anatomy of a Model

● Loading a Model

● Auto-Loading a Model

● Connecting to your Database

What is a Model?

Models are PHP classes that are designed to work with information
in your database. For example, let's say you use CodeIgniter to
manage a blog. You might have a model class that contains
functions to insert, update, and retrieve your blog data. Here is an
example of what such a model class might look like:

class Blogmodel extends Model {

 var $title = '';
 var $content = '';
 var $date = '';

 function Blogmodel()
 {
 // Call the Model constructor
 parent::Model();
 }

 function get_last_ten_entries()
 {
 $query = $this->db->get('entries', 10);
 return $query->result();
 }

 function insert_entry()

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/models.html (1 of 5) [12/20/2007 11:00:36 PM]

CodeIgniter User Guide : Models

 {
 $this->title = $_POST['title'];
 $this->content = $_POST['content'];
 $this->date = time();

 $this->db->insert('entries', $this);
 }

 function update_entry()
 {
 $this->title = $_POST['title'];
 $this->content = $_POST['content'];
 $this->date = time();

 $this->db->update('entries', $this, array('id', $_POST['id']));
 }

}

Note: The functions in the above example use the Active Record
database functions.

Anatomy of a Model

Model classes are stored in your application/models/ folder. They
can be nested within sub-folders if you want this type of
organization.

The basic prototype for a model class is this:

class Model_name extends Model {

 function Model_name()
 {
 parent::Model();
 }
}

Where Model_name is the name of your class. Class names must
be capitalized. Make sure your class extends the base Model class.

The file name will be a lower case version of your class name. For
example, if your class is this:

class User_model extends Model {

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/models.html (2 of 5) [12/20/2007 11:00:36 PM]

CodeIgniter User Guide : Models

 function User_model()
 {
 parent::Model();
 }
}

Your file will be this:

application/models/user_model.php

Loading a Model

Your models will typically be loaded and called from within your
controller functions. To load a model you will use the following
function:

$this->load->model('Model_name');

If you model is located in a sub-folder, include the relative path
from your models folder. For example, if you have a model located
at application/models/blog/queries.php you'll load it using:

$this->load->model('blog/queries');

Once loaded, you will access your model functions using an object
with the same name as your class:

$this->load->model('Model_name');

$this->Model_name->function();

If you would like your model assigned to a different object name
you can specify it via the second parameter of the loading function:

$this->load->model('Model_name', 'fubar');

$this->fubar->function();

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/models.html (3 of 5) [12/20/2007 11:00:36 PM]

CodeIgniter User Guide : Models

Here is an example of a controller, that loads a model, then serves a
view:

class Blog_controller extends Controller {

 function blog()
 {
 $this->load->model('Blog');

 $data['query'] = $this->Blog->get_last_ten_entries();

 $this->load->view('blog', $data);
 }
}

Auto-loading Models

If you find that you need a particular model globally throughout
your application, you can tell CodeIgniter to auto-load it during
system initialization. This is done by opening the application/config/
autoload.php file and adding the mdoel to the autoload array.

Connecting to your Database

When a model is loaded it does NOT connect automatically to your
database. The following options for connecting are available to you:

● You can connect using the standard database methods described
here, either from within your Controller class or your Model class.

● You can tell the model loading function to auto-connect by passing
TRUE (boolean) via the third parameter, and connectivity settings,
as defined in your database config file will be used:

$this->load->model('Model_name', '', TRUE);

● You can manually pass database connectivity settings via the third
parameter:

$config['hostname'] = "localhost";

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/models.html (4 of 5) [12/20/2007 11:00:36 PM]

CodeIgniter User Guide : Models

$config['username'] = "myusername";
$config['password'] = "mypassword";
$config['database'] = "mydatabase";
$config['dbdriver'] = "mysql";
$config['dbprefix'] = "";
$config['pconnect'] = FALSE;
$config['db_debug'] = TRUE;
$config['active_r'] = TRUE;

$this->load->model('Model_name', '', $config);

Previous Topic: Views · Top of Page · User Guide Home · Next Topic: Helpers

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/models.html (5 of 5) [12/20/2007 11:00:36 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : CodeIgniter Features

Search User Guide

CodeIgniter Features

Features in and of themselves are a very poor way to judge an
application since they tell you nothing about the user experience, or
how intuitively or intelligently it is designed. Features don't reveal
anything about the quality of the code, or the performance, or the
attention to detail, or security practices. The only way to really
judge an app is to try it and get to know the code. Installing
CodeIgniter is child's play so we encourage you to do just that. In
the mean time here's a list of CodeIgniter's main features.

● Model-View-Controller Based System

● PHP 4 Compatible

● Extremely Light Weight

● Full Featured database classes with support for several platforms.

● Active Record Database Support

● Form and Data Validation

● Security and XSS Filtering

● Session Management

● Email Sending Class. Supports Attachments, HTML/Text email,
multiple protocols (sendmail, SMTP, and Mail) and more.

● Image Manipulation Library (cropping, resizing, rotating, etc.).
Supports GD, ImageMagick, and NetPBM

● File Uploading Class

● FTP Class

● Localization

● Pagination

● Data Encryption

● Benchmarking

● Full Page Caching

● Error Logging

● Application Profiling

file:///D:/_darkhorse/websites/codeigniter/user_guide/overview/features.html (1 of 2) [12/20/2007 11:00:36 PM]

file:///D:/_darkhorse/websites/codeigniter/user_guide/installation/

CodeIgniter User Guide : CodeIgniter Features

● Scaffolding

● Calendaring Class

● User Agent Class

● Zip Encoding Class

● Template Engine Class

● Trackback Class

● XML-RPC Library

● Unit Testing Class

● Search-engine Friendly URLs

● Flexible URI Routing

● Support for Hooks, Class Extensions, and Plugins

● Large library of "helper" functions

Previous Topic: CodeIgniter At a Glance · Top of Page · User Guide Home · Next Topic: Application Flow
Chart

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/overview/features.html (2 of 2) [12/20/2007 11:00:36 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Template Parser Class

Search User Guide

Template Parser Class

The Template Parser Class enables you to parse pseudo-variables
contained within your view files. It can parse simple variables or
variable tag pairs. If you've never used a template engine, pseudo-
variables look like this:

<html>
<head>
<title>{blog_title}</title>
</head>
<body>

<h3>{blog_heading}</h3>

{blog_entries}
<h5>{title}</h5>
<p>{body}</p>
{/blog_entries}
</body>
</html>

These variables are not actual PHP variables, but rather plain text
representations that allow you to eliminate PHP from your templates
(view files).

Note: CodeIgniter does not require you to use this class since using
pure PHP in your view pages lets them run a little faster. However,
some developers prefer to use a template engine if they work with
designers who they feel would find some confusion working with PHP.

Also Note: The Template Parser Class is not not a full-blown template
parsing solution. We've kept it very lean on purpose in order to
maintain maximum performance.

Initializing the Class

Like most other classes in CodeIgniter, the Parser class is initialized in
your controller using the $this->load->library function:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/parser.html (1 of 4) [12/20/2007 11:00:37 PM]

CodeIgniter User Guide : Template Parser Class

$this->load->library('parser');

Once loaded, the Parser library object will be available using: $this-
>parser

The following functions are available in this library:

$this->parser->parse()

This variable accepts a template name and data array as input, and it
generates a parsed version. Example:

$this->load->library('parser');

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading'
);

$this->parser->parse('blog_template', $data);

The first parameter contains the name of the view file (in this example
the file would be called blog_template.php), and the second parameter
contains an associative array of data to be replaced in the template. In
the above example, the template would contain two variables:
{blog_title} and {blog_heading}

There is no need to "echo" or do something with the data returned by
$this->parser->parse(). It is automatically passed to the output
class to be sent to the browser. However, if you do want the data
returned instead of sent to the output class you can pass TRUE
(boolean) to the third parameter:

$string = $this->parser->parse('blog_template', $data, TRUE);

Variable Pairs

The above example code allows simple variables to be replaced. What if
you would like an entire block of variables to be repeated, with each
iteration containing new values? Consider the template example we
showed at the top of the page:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/parser.html (2 of 4) [12/20/2007 11:00:37 PM]

CodeIgniter User Guide : Template Parser Class

<html>
<head>
<title>{blog_title}</title>
</head>
<body>

<h3>{blog_heading}</h3>

{blog_entries}
<h5>{title}</h5>
<p>{body}</p>
{/blog_entries}
</body>
</html>

In the above code you'll notice a pair of variables: {blog_entries}
data... {/blog_entries}. In a case like this, the entire chunk of data
between these pairs would be repeated multiple times, corresponding
to the number of rows in a result.

Parsing variable pairs is done using the identical code shown above to
parse single variables, except, you will add a multi-dimensional array
corresponding to your variable pair data. Consider this example:

$this->load->library('parser');

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading',
 'blog_entries' => array(
 array('title' => 'Title 1', 'body' => 'Body 1'),
 array('title' => 'Title 2', 'body' => 'Body 2'),
 array('title' => 'Title 3', 'body' => 'Body 3'),
 array('title' => 'Title 4', 'body' => 'Body 4'),
 array('title' => 'Title 5', 'body' => 'Body 5')
)
);

$this->parser->parse('blog_template', $data);

If your "pair" data is coming from a database result, which is already a
multi-dimensional array, you can simply use the database result
function:

$query = $this->db->query("SELECT * FROM blog");

$this->load->library('parser');

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/parser.html (3 of 4) [12/20/2007 11:00:37 PM]

CodeIgniter User Guide : Template Parser Class

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading',
 'blog_entries' => $query->result_array()
);

$this->parser->parse('blog_template', $data);

Previous Topic: Trackback Class · Top of Page · User Guide Home · Next Topic: Unit Testing Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/parser.html (4 of 4) [12/20/2007 11:00:37 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Form Validation

Search User Guide

Form Validation

Before explaining CodeIgniter's approach to data validation, let's
describe the ideal scenario:

1. A form is displayed.

2. You fill it in and submit it.

3. If you submitted something invalid, or perhaps missed a required
item, the form is redisplayed containing your data along with an
error message describing the problem.

4. This process continues until you have submitted a valid form.

On the receiving end, the script must:

1. Check for required data.

2. Verify that the data is of the correct type, and meets the correct
criteria. (For example, if a username is submitted it must be
validated to contain only permitted characters. It must be of a
minimum length, and not exceed a maximum length. The
username can't be someone else's existing username, or perhaps
even a reserved word. Etc.)

3. Sanitize the data for security.

4. Pre-format the data if needed (Does the data need to be
trimmed? HTML encoded? Etc.)

5. Prep the data for insertion in the database.

Although there is nothing complex about the above process, it
usually requires a significant amount of code, and to display error
messages, various control structures are usually placed within the
form HTML. Form validation, while simple to create, is generally
very messy and tedious to implement.

CodeIgniter provides a comprehensive validation framework
that truly minimizes the amount of code you'll write. It also
removes all control structures from your form HTML, permitting

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (1 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

it to be clean and free of code.

Overview

In order to implement CodeIgniter's form validation you'll need
three things:

1. A View file containing the form.

2. A View file containing a "success" message to be displayed upon
successful submission.

3. A controller function to receive and process the submitted data.

Let's create those three things, using a member sign-up form as the
example.

The Form

Using a text editor, create a form called myform.php. In it, place
this code and save it to your applications/views/ folder:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (2 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

The Success Page

Using a text editor, create a form called formsuccess.php. In it,
place this code and save it to your applications/views/ folder:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (3 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

The Controller

Using a text editor, create a controller called form.php. In it, place
this code and save it to your applications/controllers/ folder:

Try it!

To try your form, visit your site using a URL similar to this one:

www.your-site.com/index.php/form/

If you submit the form you should simply see the form
reload. That's because you haven't set up any validation rules
yet, which we'll get to in a moment.

Explanation

You'll notice several things about the above pages:

The form (myform.php) is a standard web form with a couple
exceptions:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (4 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

1. It uses a form helper to create the form opening. Technically,
this isn't necessary. You could create the form using standard
HTML. However, the benefit of using the helper is that it
generates the action URL for you, based on the URL in your
config file. This makes your application more portable and flexible
in the event your URLs change.

2. At the top of the form you'll notice the following variable:

<?=$this->validation->error_string; ?>

This variable will display any error messages sent back by the
validator. If there are no messages it returns nothing.

The controller (form.php) has one function: index(). This function
initializes the validation class and loads the form helper and URL
helper used by your view files. It also runs the validation routine.
Based on whether the validation was successful it either presents
the form or the success page.

Since you haven't told the validation class to validate
anything yet, it returns "false" (boolean false) by default.
The run() function only returns "true" if it has successfully
applied your rules without any of them failing.

Setting Validation Rules

CodeIgniter lets you set as many validation rules as you need for a
given field, cascading them in order, and it even lets you prep and
pre-process the field data at the same time. Let's see it in action,
we'll explain it afterwards.

In your controller (form.php), add this code just below the
validation initialization function:

$rules['username'] = "required";
$rules['password'] = "required";
$rules['passconf'] = "required";
$rules['email'] = "required";

$this->validation->set_rules($rules);

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (5 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

Your controller should now look like this:

Now submit the form with the fields blank and you should
see the error message. If you submit the form with all the
fields populated you'll see your success page.

Note: The form fields are not yet being re-populated with the data
when there is an error. We'll get to that shortly, once we're through
explaining the validation rules.

Changing the Error Delimiters

By default, the system adds a paragraph tag (<p>) around each
error message shown. You can easily change these delimiters with
this code, placed in your controller:

$this->validation->set_error_delimiters('<div class="error">', '</div>');

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (6 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

In this example, we've switched to using div tags.

Cascading Rules

CodeIgniter lets you pipe multiple rules together. Let's try it.
Change your rules array like this:

$rules['username'] = "required|min_length[5]|max_length[12]";
$rules['password'] = "required|matches[passconf]";
$rules['passconf'] = "required";
$rules['email'] = "required|valid_email";

The above code requires that:

1. The username field be no shorter than 5 characters and no longer
than 12.

2. The password field must match the password confirmation field.

3. The email field must contain a valid email address.

Give it a try!

Note: There are numerous rules available which you can read about
in the validation reference.

Prepping Data

In addition to the validation functions like the ones we used above,
you can also prep your data in various ways. For example, you can
set up rules like this:

$rules['username'] = "trim|required|min_length[5]|max_length[12]|
xss_clean";
$rules['password'] = "trim|required|matches[passconf]|md5";
$rules['passconf'] = "trim|required";
$rules['email'] = "trim|required|valid_email";

In the above, we are "trimming" the fields, converting the password
to MD5, and running the username through the "xss_clean"

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (7 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

function, which removes malicious data.

Any native PHP function that accepts one parameter can be
used as a rule, like htmlspecialchars, trim, MD5, etc.

Note: You will generally want to use the prepping functions after
the validation rules so if there is an error, the original data will be
shown in the form.

Callbacks: Your own Validation Functions

The validation system supports callbacks to your own validation
functions. This permits you to extend the validation class to meet
your needs. For example, if you need to run a database query to see
if the user is choosing a unique username, you can create a callback
function that does that. Let's create a simple example.

In your controller, change the "username" rule to this:

$rules['username'] = "callback_username_check";

Then add a new function called username_check to your
controller. Here's how your controller should look:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (8 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

Reload your form and submit it with the word "test" as the
username. You can see that the form field data was passed to your
callback function for you to process.

To invoke a callback just put the function name in a rule,
with "callback_" as the rule prefix.

The error message was set using the $this->validation-

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (9 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

>set_message function. Just remember that the message key (the
first parameter) must match your function name.

Note: You can apply your own custom error messages to any rule,
just by setting the message similarly. For example, to change the
message for the "required" rule you will do this:

$this->validation->set_message('required', 'Your custom message here');

Re-populating the form

Thus far we have only been dealing with errors. It's time to
repopulate the form field with the submitted data. This is done
similarly to your rules. Add the following code to your controller,
just below your rules:

$fields['username'] = 'Username';
$fields['password'] = 'Password';
$fields['passconf'] = 'Password Confirmation';
$fields['email'] = 'Email Address';

$this->validation->set_fields($fields);

The array keys are the actual names of the form fields, the value
represents the full name that you want shown in the error message.

The index function of your controller should now look like this:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (10 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

Now open your myform.php view file and update the value in each
field so that it has an object corresponding to its name:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (11 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

Now reload your page and submit the form so that it triggers an
error. Your form fields should be populated and the error messages
will contain a more relevant field name.

Showing Errors Individually

If you prefer to show an error message next to each form field,
rather than as a list, you can change your form so that it looks like
this:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (12 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

If there are no errors, nothing will be shown. If there is an error, the
message will appear, wrapped in the delimiters you have set (<p>
tags by default).

Note: To display errors this way you must remember to set your
fields using the $this->validation->set_fields function described
earlier. The errors will be turned into variables that have "_error"
after your field name. For example, your "username" error will be
available at:
$this->validation->username_error.

Rule Reference

The following is a list of all the native rules that are available to use:

Rule Parameter Description Example

required No Returns FALSE if the form
element is empty.

matches Yes
Returns FALSE if the form
element does not match the
one in the parameter.

matches[form_item]

min_length Yes
Returns FALSE if the form
element is shorter then the
parameter value.

min_length[6]

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (13 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

max_length Yes
Returns FALSE if the form
element is longer then the
parameter value.

max_length[12]

exact_length Yes
Returns FALSE if the form
element is not exactly the
parameter value.

exact_length[8]

alpha No

Returns FALSE if the form
element contains anything
other than alphabetical
characters.

alpha_numeric No

Returns FALSE if the form
element contains anything
other than alpha-numeric
characters.

alpha_dash No

Returns FALSE if the form
element contains anything
other than alpha-numeric
characters, underscores or
dashes.

numeric No

Returns FALSE if the form
element contains anything
other than numeric
characters.

valid_email No
Returns FALSE if the form
element does not contain a
valid email address.

valid_ip No Returns FALSE if the
supplied IP is not valid.

Note: These rules can also be called as discreet functions. For
example:

$this->validation->required($string);

Note: You can also use any native PHP functions that permit one
parameter.

Prepping Reference

The following is a list of all the prepping functions that are available
to use:

Name Parameter Description

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (14 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

xss_clean No
Runs the data through the XSS filtering
function, described in the Input Class page.

prep_for_form No Converts special characters so that HTML data
can be shown in a form field without breaking it.

prep_url No Adds "http://" to URLs if missing.

strip_image_tags No Strips the HTML from image tags leaving the
raw URL.

encode_php_tags No Converts PHP tags to entities.

Note: You can also use any native PHP functions that permit one
parameter, like trim, htmlspecialchars, urldecode, etc.

Setting Custom Error Messages

All of the native error messages are located in the following
language file: language/english/validation_lang.php

To set your own custom message you can either edit that file, or use
the following function:

$this->validation->set_message('rule', 'Error Message');

Where rule corresponds to the name of a particular rule, and Error
Message is the text you would like displayed.

Dealing with Select Menus, Radio Buttons, and Checkboxes

If you use select menus, radio buttons or checkboxes, you will want
the state of these items to be retained in the event of an error. The
Validation class has three functions that help you do this:

set_select()

Permits you to display the menu item that was selected. The first
parameter must contain the name of the select menu, the second
parameter must contain the value of each item. Example:

<select name="myselect">
<option value="one" <?= $this->validation->set_select('myselect',

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (15 of 16) [12/20/2007 11:00:39 PM]

CodeIgniter User Guide : Form Validation

'one'); ?> >One</option>
<option value="two" <?= $this->validation->set_select('myselect',
'two'); ?> >Three</option>
<option value="three" <?= $this->validation->set_select('myselect',
'three'); ?> >Three</option>
</select>

set_checkbox()

Permits you to display a checkbox in the state it was submitted. The
first parameter must contain the name of the checkbox, the second
parameter must contain its value. Example:

<input type="checkbox" name="mycheck" value="1" <?= $this->validation-
>set_checkbox('mycheck', '1'); ?> />

set_radio()

Permits you to display radio buttons in the state they were
submitted. The first parameter must contain the name of the radio
button, the second parameter must contain its value. Example:

<input type="radio" name="myradio" value="1" <?= $this->validation-
>set_radio('myradio', '1'); ?> />

Previous Topic: User Agent Class · Top of Page · User Guide Home · Next Topic: XML-RPC Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/validation.html (16 of 16) [12/20/2007 11:00:39 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Web Page Caching

Search User Guide

Web Page Caching

CodeIgniter lets you cache your pages in order to achieve maximum
performance.

Although CodeIgniter is quite fast, the amount of dynamic
information you display in your pages will correlate directly to the
server resources, memory, and processing cycles utilized, which
affect your page load speeds. By caching your pages, since they are
saved in their fully rendered state, you can achieve performance
that nears that of static web pages.

How Does Caching Work?

Caching can be enabled on a per-page basis, and you can set the
length of time that a page should remain cached before being
refreshed. When a page is loaded for the first time, the cache file
will be written to your system/cache folder. On subsequent page
loads the cache file will be retrieved and sent to the requesting
user's browser. If it has expired, it will be deleted and refreshed
before being sent to the browser.

Note: The Benchmark tag is not cached so you can still view your
page load speed when caching is enabled.

Enabling Caching

To enable caching, put the following tag in any of your controller
functions:

$this->output->cache(n);

Where n is the number of minutes you wish the page to remain
cached between refreshes.

The above tag can go anywhere within a function. It is not affected

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/caching.html (1 of 2) [12/20/2007 11:00:40 PM]

CodeIgniter User Guide : Web Page Caching

by the order that it appears, so place it wherever it seems most
logical to you. Once the tag is in place, your pages will begin being
cached.

Warning: Because of the way CodeIgniter stores content for
output, caching will only work if you are generating display for your
controller with a view.

Note: Before the cache files can be written you must set the file
permissions on your system/cache folder such that it is writable.

Deleting Caches

If you no longer wish to cache a file you can remove the caching tag
and it will no longer be refreshed when it expires. Note: Removing
the tag will not delete the cache immediately. It will have to expire
normally. If you need to remove it earlier you will need to manually
delete it from your cache folder.

Previous Topic: Error Handling · Top of Page · User Guide Home · Next Topic: Profiling Your Application

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/caching.html (2 of 2) [12/20/2007 11:00:40 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Text Helper

Search User Guide

Text Helper

The Text Helper file contains functions that assist in working with
text.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('text');

The following functions are available:

word_limiter()

Truncates a string to the number of words specified. Example:

$string = "Here is a nice text string consisting of eleven words.";

$string = word_limiter($string, 4);

// Returns: Here is a nice…

The third parameter is an optional suffix added to the string. By
default it add an ellipsis.

character_limiter()

Truncates a string to the number of characters specified. It
maintains the integrity of words so the character count may be
slightly more or less then what you specify. Example:

$string = "Here is a nice text string consisting of eleven words.";

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/text_helper.html (1 of 4) [12/20/2007 11:00:41 PM]

CodeIgniter User Guide : Text Helper

$string = character_limiter($string, 20);

// Returns: Here is a nice text string…

The third parameter is an optional suffix added to the string. By
default it add an ellipsis.

ascii_to_entities()

Converts ASCII values to character entities, including high ASCII
and MS Word characters that can cause problems when used in a
web page, so that they can be shown consistently regardless of
browser settings or stored reliably in a database. There is some
dependence on your server's supported character sets, so it may not
be 100% reliable in all cases, but for the most part it should
correctly identify characters outside the normal range (like accented
characters). Example:

$string = ascii_to_entities($string);

entities_to_ascii()

This function does the opposite of the previous one; it turns
character entities back into ASCII.

word_censor()

Enables you to censor words within a text string. The first parameter
will contain the original string. The second will contain an array of
words which you disallow. The third (optional) parameter can
contain a replacement value for the words. If not specified they are
replaced with pound signs: ####. Example:

$disallowed = array('darn', 'shucks', 'golly', 'phooey');

$string = word_censor($string, $disallowed, 'Beep!');

highlight_code()

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/text_helper.html (2 of 4) [12/20/2007 11:00:41 PM]

CodeIgniter User Guide : Text Helper

Colorizes a string of code (PHP, HTML, etc.). Example:

$string = highlight_code($string);

The function uses PHP's highlight_string() function, so the colors
used are the ones specified in your php.ini file.

highlight_phrase()

Will highlight a phrase within a text string. The first parameter will
contain the original string, the second will contain the phrase you
wish to highlight. The third and fourth parameters will contain the
opening/closing HTML tags you would like the phrase wrapped in.
Example:

$string = "Here is a nice text string about nothing in particular.";

$string = highlight_phrase($string, "nice text", '<span style="color:
#990000">', '');

The above text returns:

Here is a nice text string about nothing in particular.

word_wrap()

Wraps text at the specified character count while maintaining
complete words. Example:

$string = "Here is a simple string of text that will help us demonstrate this
function.";

echo word_wrap($string, 25);

// Would produce:

Here is a simple string
of text that will help
us demonstrate this
function

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/text_helper.html (3 of 4) [12/20/2007 11:00:41 PM]

CodeIgniter User Guide : Text Helper

Previous Topic: String Helper · Top of Page · User Guide Home · Next Topic: Typography Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/text_helper.html (4 of 4) [12/20/2007 11:00:41 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : The Database Class

Search User Guide

The Database Class

CodeIgniter comes with a full-featured and very fast abstracted
database class that supports both traditional structures and Active
Record patterns. The database functions offer clear, simple syntax.

● Quick Start: Usage Examples

● Database Configuration

● Connecting to a Database

● Running Queries

● Generating Query Results

● Query Helper Functions

● Active Record Class

● Transactions

● Table MetaData

● Field MetaData

● Custom Function Calls

● Query Caching

● Database Utilities Class

Previous Topic: Config Class · Top of Page · User Guide Home · Next Topic: Quick Start: Usage Examples

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/index.html [12/20/2007 11:00:41 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Auto-loading Resources

Search User Guide

Auto-loading Resources

CodeIgniter comes with an "Auto-load" feature that permits libraries,
helpers, and plugins to be initialized automatically every time the system
runs. If you need certain resources globally throughout your application
you should consider auto-loading them for convenience.

The following items can be loaded automatically:

● Core classes found in the "libraries" folder

● Helper files found in the "helpers" folder

● Plugins found in the "plugins" folder

● Custom config files found in the "config" folder

● Language files found in the "system/language" folder

● Models found in the "models" folder

To autoload resources, open the application/config/autoload.php file
and add the item you want loaded to the autoload array. You'll find
instructions in that file corresponding to each type of item.

Note: Do not include the file extension (.php) when adding items to the
autoload array.

Previous Topic: Hooks - Extending the Core · Top of Page · User Guide Home · Next Topic: Scaffolding

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/autoloader.html [12/20/2007 11:00:42 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Alternate PHP Syntax for View Files

Search User Guide

Alternate PHP Syntax for View Files

If you do not utilize CodeIgniter's template engine, you'll be using pure
PHP in your View files. To minimize the PHP code in these files, and to
make it easier to identify the code blocks it is recommended that you
use PHPs alternative syntax for control structures and short tag echo
statements. If you are not familiar with this syntax, it allows you to
eliminate the braces from your code, and eliminate "echo" statements.

Automatic Short Tag Support

Note: If you find that the syntax described in this page does not work
on your server it might be that "short tags" are disabled in your PHP ini
file. CodeIgniter will optionally rewrite short tags on-the-fly, allowing
you to use that syntax even if your server doesn't support it. This
feature can be enabled in your config/config.php file.

Please note that if you do use this feature, if PHP errors are
encountered in your view files, the error message and line number
will not be accurately shown. Instead, all errors will be shown as eval
() errors.

Alternative Echos

Normally to echo, or print out a variable you would do this:

<?php echo $variable; ?>

With the alternative syntax you can instead do it this way:

<?=$variable?>

Alternative Control Structures

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/alternative_php.html (1 of 2) [12/20/2007 11:00:42 PM]

CodeIgniter User Guide : Alternate PHP Syntax for View Files

Controls structures, like if, for, foreach, and while can be written in
a simplified format as well. Here is an example using foreach:

<?php foreach($todo as $item): ?>

<?=$item?>

<?php endforeach; ?>

Notice that there are no braces. Instead, the end brace is replaced with
endforeach. Each of the control structures listed above has a similar
closing syntax: endif, endfor, endforeach, and endwhile

Also notice that instead of using a semicolon after each structure
(except the last one), there is a colon. This is important!

Here is another example, using if/elseif/else. Notice the colons:

<?php if ($username == 'sally'): ?>

 <h3>Hi Sally</h3>

<?php elseif ($username == 'joe'): ?>

 <h3>Hi Joe</h3>

<?php else: ?>

 <h3>Hi unknown user</h3>

<?php endif; ?>

Previous Topic: Managing Applications · Top of Page · User Guide Home · Next Topic: Security

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/alternative_php.html (2 of 2) [12/20/2007 11:00:43 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Loader Class

Search User Guide

Loader Class

Loader, as the name suggests, is used to load elements. These
elements can be libraries (classes) View files, Helpers, Plugins, or
your own files.

Note: This class is initialized automatically by the system so there
is no need to do it manually.

The following functions are available in this class:

$this->load->library('class_name')

This function is used to load core classes. Where class_name is the
name of the class you want to load. Note: We use the terms "class"
and "library" interchangeably.

For example, if you would like to send email with CodeIgniter, the
first step is to load the email class within your controller:

$this->load->library('email');

Once loaded, the library will be ready for use, using $this->email-
>some_function(). Each library is described in detail in its own
page, so please read the information regarding each one you would
like to use.

Parameters can be passed to the library via an array in the second
parameter.

$this->load->view('file_name', $data, true/false)

This function is used to load your View files. If you haven't read the
Views section of the user guide it is recommended that you do since
it shows you how this function is typically used.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/loader.html (1 of 3) [12/20/2007 11:00:43 PM]

CodeIgniter User Guide : Loader Class

The first parameter is required. It is the name of the view file you
would like to load. Note: The .php file extension does not need to
be specified unless you use something other then .php.

The second optional parameter can take an associative array or an
object as input, which it runs through the PHP extract function to
convert to variables that can be used in your view files. Again, read
the Views page to learn how this might be useful.

The third optional parameter lets you change the behavior of the
function so that it returns data as a string rather than sending it to
your browser. This can be useful if you want to process the data in
some way. If you set the parameter to true (boolean) it will return
data. The default behavior is false, which sends it to your browser.
Remember to assign it to a variable if you want the data returned:

$string = $this->load->view('myfile', '', true);

$this->load->database('options', true/false)

This function lets you load the database class. The two parameters
are optional. Please see the database section for more info.

$this->load->scaffolding('table_name')

This function lets you enable scaffolding. Please see the scaffolding
section for more info.

$this->load->vars($array)

This function takes an associative array as input and generates
variables using the PHP extract function. This function produces the
same result as using the second parameter of the $this->load-
>view() function above. The reason you might want to use this
function independently is if you would like to set some global
variables in the constructor of your controller and have them
become available in any view file loaded from any function. You can
have multiple calls to this function. The data get cached and merged
into one array for conversion to variables.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/loader.html (2 of 3) [12/20/2007 11:00:43 PM]

http://www.php.net/extract
file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/database/index.html
http://www.php.net/extract

CodeIgniter User Guide : Loader Class

$this->load->helper('file_name')

This function loads helper files, where file_name is the name of the
file, without the _helper.php extension.

$this->load->plugin('file_name')

This function loads plugins files, where file_name is the name of
the file, without the _plugin.php extension.

$this->load->file('filepath/filename', true/false)

This is a generic file loading function. Supply the filepath and name
in the first parameter and it will open and read the file. By default
the data is sent to your browser, just like a View file, but if you set
the second parameter to true (boolean) it will instead return the
data as a string.

$this->load->lang('file_name')

This function is an alias of the language loading function: $this-
>lang->load()

$this->load->config('file_name')

This function is an alias of the config file loading function: $this-
>config->load()

Previous Topic: Input Class · Top of Page · User Guide Home · Next Topic: Language Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/loader.html (3 of 3) [12/20/2007 11:00:43 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Profiling Your Application

Search User Guide

Profiling Your Application

The Profiler Class will display benchmark results, queries you have run,
and $_POST data at the bottom of your pages. This information can be
useful during development in order to help with debugging and
optimization.

Initializing the Class

Important: This class does NOT need to be initialized. It is loaded
automatically by the Output Class if profiling is enabled as shown below.

Enabling the Profiler

To enable the profiler place the following function anywhere within your
Controller functions:

$this->output->enable_profiler(TRUE);

When enabled a report will be generated and inserted at the bottom of
your pages.

To disable the profiler you will use:

$this->output->enable_profiler(FALSE);

Setting Benchmark Points

In order for the Profiler to compile and display your benchmark data you
must name your mark points using specific syntax. Please read the
information on setting Benchmark points in Benchmark Class page.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/profiling.html (1 of 2) [12/20/2007 11:00:44 PM]

CodeIgniter User Guide : Profiling Your Application

Previous Topic: Caching · Top of Page · User Guide Home · Next Topic: Managing Applications

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/profiling.html (2 of 2) [12/20/2007 11:00:44 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Language Class

Search User Guide

Language Class

The Language Class provides functions to retrieve language files and
lines of text for purposes of internationalization.

In your CodeIgniter system folder you'll find one called language
containing sets of language files. You can create your own language
files as needed in order to display error and other messages in other
languages.

Language files are typically stored in your system/language
directory. Alternately you can create a folder called language inside
your application folder and store them there. CodeIgniter will look
first in your system/application/language directory. If the
directory does not exist or the specified language is not located
there CI will instead look in your global system/language folder.

Note: Each language should be stored in its own folder. For
example, the English files are located at: system/language/
english

Creating Language Files

Language files must be named with _lang.php as the file extension.
For example, let's say you want to create a file containing error
messages. You might name it: error_lang.php

Within the file you will assign each line of text to an array called
$lang with this prototype:

$lang['language_key'] = "The actual message to be shown";

Note: It's a good practice to use a common prefix for all messages
in a given file to avoid collisions with similarly named items in other
files. For example, if you are creating error messages you might
prefix them with error_

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/language.html (1 of 3) [12/20/2007 11:00:45 PM]

CodeIgniter User Guide : Language Class

$lang['error_email_missing'] = "You must submit an email address";
$lang['error_url_missing'] = "You must submit a URL";
$lang['error_username_missing'] = "You must submit a username";

Loading A Language File

In order to fetch a line from a particular file you must load the file
first. Loading a language file is done with the following code:

$this->lang->load('filename', 'language');

Where filename is the name of the file you wish to load (without
the file extension), and language is the language set containing it
(ie, english). If the second parameter is missing, the default
language set in your application/config/config.php file will be
used.

Fetching a Line of Text

Once your desired language file is loaded you can access any line of
text using this function:

$this->lang->line('language_key');

Where language_key is the array key corresponding to the line
you wish to show.

Note: This function simply returns the line. It does not echo it for
you.

Auto-loading Languages

If you find that you need a particular language globally throughout
your application, you can tell CodeIgniter to auto-load it during
system initialization. This is done by opening the application/config/
autoload.php file and adding the language(s) to the autoload array.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/language.html (2 of 3) [12/20/2007 11:00:45 PM]

CodeIgniter User Guide : Language Class

Previous Topic: Loader Class · Top of Page · User Guide Home · Next Topic: Output Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/language.html (3 of 3) [12/20/2007 11:00:45 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Pagination Class

Search User Guide

Pagination Class

CodeIgniter's Pagination class is very easy to use, and it is 100%
customizable, either dynamically or via stored preferences.

If you are not familiar with the term "pagination", it refers to links
that allows you to navigate from page to page, like this:

« First < 1 2 3 4 5 > Last »

Example

Here is a simple example showing how to create pagination in one of
your controller functions:

$this->load->library('pagination');

$config['base_url'] = 'http://www.your-site.com/index.php/test/page/';
$config['total_rows'] = '200';
$config['per_page'] = '20';

$this->pagination->initialize($config);

echo $this->pagination->create_links();

Notes:

The $config array contains your configuration variables. It is
passed to the $this->pagination->initialize function as shown
above. Although there are some twenty items you can configure, at
minimum you need the three shown. Here is a description of what
those items represent:

● base_url This is the full URL to the controller class/function
containing your pagination. In the example above, it is pointing to a
controller called "Test" and a function called "page". Keep in mind
that you can re-route your URI if you need a different structure.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/pagination.html (1 of 5) [12/20/2007 11:00:46 PM]

CodeIgniter User Guide : Pagination Class

● total_rows This number represents the total rows in the result set
you are creating pagination for. Typically this number will be the
total rows that your database query returned.

● per_page The number of items you intend to show per page. In the
above example, you would be showing 20 items per page.

The create_links() function returns an empty string when there is
no pagination to show.

Setting preferences in a config file

If you prefer not to set preferences using the above method, you
can instead put them into a config file. Simply create a new file
called the pagination.php, add the $config array in that file. Then
save the file in: config/pagination.php and it will be used
automatically. You will NOT need to use the $this->pagination-
>initialize function if you save your preferences in a config file.

Customizing the Pagination

The following is a list of all the preferences you can pass to the
initialization function to tailor the display.

$config['uri_segment'] = 3;

The pagination function automatically determines which segment of
your URI contains the page number. If you need something different
you can specify it.

$config['num_links'] = 2;

The number of "digit" links you would like before and after the
selected page number. For example, the number 2 will place two
digits on either side, as in the example links at the very top of this
page.

Adding Enclosing Markup

If you would like to surround the entire pagination with some
markup you can do it with these two prefs:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/pagination.html (2 of 5) [12/20/2007 11:00:46 PM]

CodeIgniter User Guide : Pagination Class

$config['full_tag_open'] = '<p>';

The opening tag placed on the left side of the entire result.

$config['full_tag_close'] = '</p>';

The closing tag placed on the right side of the entire result.

Customizing the First Link

$config['first_link'] = 'First';

The text you would like shown in the "first" link on the left.

$config['first_tag_open'] = '<div>';

The opening tag for the "first" link.

$config['first_tag_close'] = '</div>';

The closing tag for the "first" link.

Customizing the Last Link

$config['last_link'] = 'Last';

The text you would like shown in the "last" link on the right.

$config['last_tag_open'] = '<div>';

The opening tag for the "last" link.

$config['last_tag_close'] = '</div>';

The closing tag for the "last" link.

Customizing the "Next" Link

$config['next_link'] = '>';

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/pagination.html (3 of 5) [12/20/2007 11:00:46 PM]

CodeIgniter User Guide : Pagination Class

The text you would like shown in the "next" page link.

$config['next_tag_open'] = '<div>';

The opening tag for the "next" link.

$config['next_tag_close'] = '</div>';

The closing tag for the "next" link.

Customizing the "Previous" Link

$config['prev_link'] = '<';

The text you would like shown in the "previous" page link.

$config['prev_tag_open'] = '<div>';

The opening tag for the "previous" link.

$config['prev_tag_close'] = '</div>';

The closing tag for the "previous" link.

Customizing the "Current Page" Link

$config['cur_tag_open'] = '';

The opening tag for the "current" link.

$config['cur_tag_close'] = '';

The closing tag for the "current" link.

Customizing the "Digit" Link

$config['num_tag_open'] = '<div>';

The opening tag for the "digit" link.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/pagination.html (4 of 5) [12/20/2007 11:00:46 PM]

CodeIgniter User Guide : Pagination Class

$config['num_tag_close'] = '</div>';

The closing tag for the "digit" link.

Previous Topic: Output Class · Top of Page · User Guide Home · Next Topic: Session Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/pagination.html (5 of 5) [12/20/2007 11:00:46 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : CodeIgniter License Agreement

Search User Guide

CodeIgniter License Agreement

Copyright (c) 2006, EllisLab, Inc.
All rights reserved.

This license is a legal agreement between you and EllisLab Inc. for
the use of CodeIgniter Software (the "Software"). By obtaining the
Software you agree to comply with the terms and conditions of this
license.

Permitted Use

You are permitted to use, copy, modify, and distribute the Software
and its documentation, with or without modification, for any purpose,
provided that the following conditions are met:

1. A copy of this license agreement must be included with the
distribution.

2. Redistributions of source code must retain the above copyright
notice in all source code files.

3. Redistributions in binary form must reproduce the above copyright
notice in the documentation and/or other materials provided with
the distribution.

4. Any files that have been modified must carry notices stating the
nature of the change and the names of those who changed them.

5. Products derived from the Software must include an
acknowledgment that they are derived from CodeIgniter in their
documentation and/or other materials provided with the
distribution.

6. Products derived from the Software may not be called
"CodeIgniter", nor may "CodeIgniter" appear in their name,
without prior written permission from EllisLab, Inc.

Indemnity

file:///D:/_darkhorse/websites/codeigniter/user_guide/license.html (1 of 2) [12/20/2007 11:00:46 PM]

CodeIgniter User Guide : CodeIgniter License Agreement

You agree to indemnify and hold harmless the authors of the
Software and any contributors for any direct, indirect, incidental, or
consequential third-party claims, actions or suits, as well as any
related expenses, liabilities, damages, settlements or fees arising
from your use or misuse of the Software, or a violation of any terms
of this license.

Disclaimer of Warranty

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF QUALITY, PERFORMANCE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Limitations of Liability

YOU ASSUME ALL RISK ASSOCIATED WITH THE INSTALLATION AND
USE OF THE SOFTWARE. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS OF THE SOFTWARE BE LIABLE FOR CLAIMS,
DAMAGES OR OTHER LIABILITY ARISING FROM, OUT OF, OR IN
CONNECTION WITH THE SOFTWARE. LICENSE HOLDERS ARE SOLELY
RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USE
AND ASSUME ALL RISKS ASSOCIATED WITH ITS USE, INCLUDING
BUT NOT LIMITED TO THE RISKS OF PROGRAM ERRORS, DAMAGE
TO EQUIPMENT, LOSS OF DATA OR SOFTWARE PROGRAMS, OR
UNAVAILABILITY OR INTERRUPTION OF OPERATIONS.

Previous Topic: Server Requirements · Top of Page · User Guide Home · Next Topic: Change Log

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/license.html (2 of 2) [12/20/2007 11:00:46 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Active Record

Search User Guide

Active Record Class

CodeIgniter uses a modified version of the Active Record Database Pattern. This
pattern allows information to be retrieved, inserted, and updated in your
database with minimal scripting. In some cases only one or two lines of code are
necessary to perform a database action. CodeIgniter does not require that each
database table be its own class file. It instead provides a more simplified
interface.

Beyond simplicity, a major benefit to using the Active Record features is that it
allows you to create database independent applications, since the query syntax
is generated by each database adapter. It also allows for safer queries, since the
values are escaped automatically by the system.

Note: If you intend to write your own queries you can disable this class in your
database config file, allowing the core database library and adapter to utilize
fewer resources.

● Selecting Data

● Inserting Data

● Updating Data

● Deleting Data

● Method Chaining

Selecting Data

The following functions allow you to build SQL SELECT statements.

Note: If you are using PHP 5 you can use method chaining for more
compact syntax. This is described at the end of the page.

$this->db->get();

Runs the selection query and returns the result. Can be used by itself to retrieve
all records from a table:

$query = $this->db->get('mytable');

// Produces: SELECT * FROM mytable

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/active_record.html (1 of 14) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Active Record

The second and third parameters enable you do set a limit and offset clause:

$query = $this->db->get('mytable', 10, 20);

// Produces: SELECT * FROM mytable LIMIT 20, 10 (in MySQL. Other databases have slightly
different syntax)

You'll notice that the above function is assigned to a variable named $query,
which can be used to show the results:

$query = $this->db->get('mytable');

foreach ($query->result() as $row)
{
 echo $row->title;
}

Please visit the result functions page for a full discussion regarding result
generation.

$this->db->get_where();

Identical to the above function except that it permits you to add a "where"
clause in the second parameter, instead of using the db->where() function:

$query = $this->db->get_where('mytable', array('id' => $id), $limit, $offset);

Please read the about the where function below for more information.

Note: get_where() was formerly known as getwhere(), which has been
deprecated

$this->db->select();

Permits you to write the SELECT portion of your query:

$this->db->select('title, content, date');

$query = $this->db->get('mytable');

// Produces: SELECT title, content, date FROM mytable

Note: If you are selecting all (*) from a table you do not need to use
this function. When omitted, CodeIgniter assumes you wish to SELECT *

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/active_record.html (2 of 14) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Active Record

$this->db->from();

Permits you to write the FROM portion of your query:

$this->db->select('title, content, date');
$this->db->from('mytable');

$query = $this->db->get();

// Produces: SELECT title, content, date FROM mytable

Note: As shown earlier, the FROM portion of your query can be specified
in the $this->db->get() function, so use whichever method you prefer.

$this->db->join();

Permits you to write the JOIN portion of your query:

$this->db->select('*');
$this->db->from('blogs');
$this->db->join('comments', 'comments.id = blogs.id');

$query = $this->db->get();

// Produces:
// SELECT * FROM blogs
// JOIN comments ON comments.id = blogs.id

Multiple function calls can be made if you need several joins in one query.

If you need something other than a natural JOIN you can specify it via the third
parameter of the function. Options are: left, right, outer, inner, left outer, and
right outer.

$this->db->join('comments', 'comments.id = blogs.id', 'left');

// Produces: LEFT JOIN comments ON comments.id = blogs.id

$this->db->where();

This function enables you to set WHERE clauses using one of four methods:

Note: All values passed to this function are escaped automatically, producing
safer queries.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/active_record.html (3 of 14) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Active Record

1. Simple key/value method:

$this->db->where('name', $name);

// Produces: WHERE name = 'Joe'

Notice that the equal sign is added for you.

If you use multiple function calls they will be chained together with AND
between them:

$this->db->where('name', $name);
$this->db->where('title', $title);
$this->db->where('status', $status);

// WHERE = 'Joe' AND title = 'boss' AND status = 'active'

2. Custom key/value method:

You can include an operator in the first parameter in order to control the
comparison:

$this->db->where('name !=', $name);
$this->db->where('id <', $id);

// Produces: WHERE name != 'Joe' AND id < 45

3. Associative array method:

$array = array('name' => $name, 'title' => $title, 'status' => $status);

$this->db->where($array);

// Produces: WHERE name = 'Joe' AND title = 'boss' AND status = 'active'

You can include your own operators using this method as well:

$array = array('name !=' => $name, 'id <' => $id, 'date >' => $date);

$this->db->where($array);

4. Custom string:

You can write your own clauses manually:

$where = "name='Joe' AND status='boss' OR status='active'";

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/active_record.html (4 of 14) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Active Record

$this->db->where($where);

$this->db->or_where();

This function is identical to the one above, except that multiple instances are
joined by OR:

$this->db->where('name !=', $name);
$this->db->or_where('id >', $id);

// Produces: WHERE name != 'Joe' OR id > 50

Note: or_where() was formerly known as orwhere(), which has been deprecated.

$this->db->where_in();

Generates a WHERE field IN ('item', 'item') SQL query joined with AND if
appropriate

$names = array('Frank', 'Todd', 'James');
$this->db->where_in('username', $names);
// Produces: AND WHERE username IN ('Frank', 'Todd', 'James')

$this->db->or_where_in();

Generates a WHERE field IN ('item', 'item') SQL query joined with OR if
appropriate

$names = array('Frank', 'Todd', 'James');
$this->db->where_in_or('username', $names);
// Produces: OR WHERE username IN ('Frank', 'Todd', 'James')

$this->db->where_not_in();

Generates a WHERE field NOT IN ('item', 'item') SQL query joined with AND if
appropriate

$names = array('Frank', 'Todd', 'James');
$this->db->where_not_in('username', $names);
// Produces: AND WHERE username NOT IN ('Frank', 'Todd', 'James')

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/active_record.html (5 of 14) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Active Record

$this->db->or_where_not_in();

Generates a WHERE field NOT IN ('item', 'item') SQL query joined with OR if
appropriate

$names = array('Frank', 'Todd', 'James');
$this->db->where_in('username', $names);
// Produces: OR WHERE username NOT IN ('Frank', 'Todd', 'James')

$this->db->like();

This function enables you to generate LIKE clauses, useful for doing searches.

Note: All values passed to this function are escaped automatically.

1. Simple key/value method:

$this->db->like('title', 'match');

// Produces: WHERE title LIKE '%match%'

If you use multiple function calls they will be chained together with AND
between them:

$this->db->like('title', 'match');
$this->db->like('body', 'match');

// WHERE title LIKE '%match%' AND body LIKE '%match%

If you want to control where the wildcard (%) is placed, you can use an
optional third argument. Your options are 'before', 'after' and 'both' (which is
the default).

$this->db->like('title', 'match', 'before');
// Produces: WHERE title LIKE '%match'

$this->db->like('title', 'match', 'after');
// Produces: WHERE title LIKE 'match%'

$this->db->like('title', 'match', 'both');
// Produces: WHERE title LIKE '%match%'

2. Associative array method:

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/active_record.html (6 of 14) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Active Record

$array = array('title' => $match, 'page1' => $match, 'page2' => $match);

$this->db->like($array);

// WHERE title LIKE '%match%' AND page1 LIKE '%match%' AND page2 LIKE '%match
%'

$this->db->or_like();

This function is identical to the one above, except that multiple instances are
joined by OR:

$this->db->like('title', 'match');
$this->db->or_like('body', $match);

// WHERE title LIKE '%match%' OR body LIKE '%match%'

Note: or_like() was formerly known as orlike(), which has been deprecated.

$this->db->not_like();

This function is identical to like(), except that it generates NOT LIKE
statements:

$this->db->not_like('title', 'match');

// WHERE title NOT LIKE '%match%

$this->db->or_not_like();

This function is identical to not_like(), except that multiple instances are joined
by OR:

$this->db->like('title', 'match');
$this->db->or_not_like('body', 'match');

// WHERE title LIKE '%match% OR body NOT LIKE 'match'

$this->db->group_by();

Permits you to write the GROUP BY portion of your query:

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/active_record.html (7 of 14) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Active Record

$this->db->group_by("title");

// Produces: GROUP BY title

You can also pass an array of multiple values as well:

$this->db->group_by(array("title", "date"));

// Produces: GROUP BY title, date

Note: group_by() was formerly known as groupby(), which has been
deprecated.

$this->db->having();

Permits you to write the HAVING portion of your query:

$this->db->having('user_id = 45');

// Produces: HAVING 'user_id = 45'

You can also pass an array of multiple values as well:

$this->db->having(array('title =' => 'My Title', 'id <' => $id));

// Produces: HAVING title = 'My Title', 'id < 45'

$this->db->order_by();

Lets you set an ORDER BY clause. The first parameter contains the name of the
column you would like to order by. The second parameter lets you set the
direction of the result. Options are asc or desc, or random.

$this->db->order_by("title", "desc");

// Produces: ORDER BY title DESC

You can also pass your own string in the first parameter:

$this->db->order_by('title desc, name asc');

// Produces: ORDER BY title DESC, name ASC

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/active_record.html (8 of 14) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Active Record

Or multiple function calls can be made if you need multiple fields.

$this->db->order_by("title", "desc");
$this->db->order_by("name", "asc");

// Produces: ORDER BY title DESC, name ASC

Note: order_by() was formerly known as orderby(), which has been deprecated.

Note: random ordering is not currently supported in Orcacle or MSSQL drivers.

$this->db->limit();

Lets you limit the number of rows you would like returned by the query:

$this->db->limit(10);

// Produces: LIMIT 10

The second parameter lets you set a result offset.

$this->db->limit(10, 20);

// Produces: LIMIT 20, 10 (in MySQL. Other databases have slightly different syntax)

$this->db->count_all_results();

Permits you to determine the number of rows in a particular Active Record
query. Queries will accept Active Record restrictors such as where(), or_where
(), like(), or_like(), etc. Example:

echo $this->db->count_all_results('my_table');
// Produces an integer, like 25

$this->db->like('title', 'match');
$this->db->from('my_table');
echo $this->db->count_all_results();
// Produces an integer, like 17

$this->db->count_all();

Permits you to determine the number of rows in a particular table. Submit the

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/active_record.html (9 of 14) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Active Record

table name in the first parameter. Example:

echo $this->db->count_all('my_table');

// Produces an integer, like 25

Inserting Data

$this->db->insert();

Generates an insert string based on the data you supply, and runs the query.
You can either pass an array or an object to the function. Here is an example
using an array:

$data = array(
 'title' => 'My title' ,
 'name' => 'My Name' ,
 'date' => 'My date'
);

$this->db->insert('mytable', $data);

// Produces: INSERT INTO mytable (title, name, date) VALUES ('My title', 'My name', 'My
date')

The first parameter will contain the table name, the second is an associative
array of values.

Here is an example using an object:

/*
 class Myclass {
 var $title = 'My Title';
 var $content = 'My Content';
 var $date = 'My Date';
 }
*/

$object = new Myclass;

$this->db->insert('mytable', $object);

// Produces: INSERT INTO mytable (title, content, date) VALUES ('My Title', 'My Content', 'My
Date')

The first parameter will contain the table name, the second is an associative
array of values.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/active_record.html (10 of 14) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Active Record

Note: All values are escaped automatically producing safer queries.

$this->db->set();

This function enables you to set values for inserts or updates.

It can be used instead of passing a data array directly to the insert or
update functions:

$this->db->set('name', $name);
$this->db->insert('mytable');

// Produces: INSERT INTO mytable (name) VALUES ('{$name}')

If you use multiple function called they will be assembled properly based on
whether you are doing an insert or an update:

$this->db->set('name', $name);
$this->db->set('title', $title);
$this->db->set('status', $status);
$this->db->insert('mytable');

You can also pass an associative array to this function:

$array = array('name' => $name, 'title' => $title, 'status' => $status);

$this->db->set($array);
$this->db->insert('mytable');

Or an object:

/*
 class Myclass {
 var $title = 'My Title';
 var $content = 'My Content';
 var $date = 'My Date';
 }
*/

$object = new Myclass;

$this->db->set($object);
$this->db->insert('mytable');

Updating Data

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/active_record.html (11 of 14) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Active Record

$this->db->update();

Generates an update string and runs the query based on the data you supply.
You can pass an array or an object to the function. Here is an example using
an array:

$data = array(
 'title' => $title,
 'name' => $name,
 'date' => $date
);

$this->db->where('id', $id);
$this->db->update('mytable', $data);

// Produces:
// UPDATE mytable
// SET title = '{$title}', name = '{$name}', date = '{$date}'
// WHERE id = $id

Or you can supply an object:

/*
 class Myclass {
 var $title = 'My Title';
 var $content = 'My Content';
 var $date = 'My Date';
 }
*/

$object = new Myclass;

$this->db->where('id', $id);
$this->db->update('mytable', $object);

// Produces:
// UPDATE mytable
// SET title = '{$title}', name = '{$name}', date = '{$date}'
// WHERE id = $id

Note: All values are escaped automatically producing safer queries.

You'll notice the use of the $this->db->where() function, enabling you to set
the WHERE clause. You can optionally pass this information directly into the
update function as a string:

$this->db->update('mytable', $data, "id = 4");

Or as an array:

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/active_record.html (12 of 14) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Active Record

$this->db->update('mytable', $data, array('id' => $id));

You may also use the $this->db->set() function described above when
performing updates.

Deleting Data

$this->db->delete();

Generates a delete SQL string and runs the query.

$this->db->delete('mytable', array('id' => $id));

// Produces:
// DELETE FROM mytable
// WHERE id = $id

The first parameter is the table name, the second is the where clause. You can
also use the where() or or_where() functions instead of passing the data to
the second parameter of the function:

$this->db->where('id', $id);
$this->db->delete('mytable');

// Produces:
// DELETE FROM mytable
// WHERE id = $id

An array of table names can be passed into delete() if you would like to delete
data from more then 1 table.

$tables = array('table1', 'table2', 'table3');
$this->db->where('id', '5');
$this->db->delete($tables);

Note: All values are escaped automatically producing safer queries.

Method Chaining

Method chaining allows you to simplify your syntax by connecting multiple
functions. Consider this example:

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/active_record.html (13 of 14) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Active Record

$this->db->select('title')->from('mytable')->where('id', $id)->limit(10, 20);

$query = $this->db->get();

Note: Method chaining only works with PHP 5.

Previous Topic: Query Helper Functions · Top of Page · User Guide Home · Next Topic: Transactions

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/active_record.html (14 of 14) [12/20/2007 11:00:49 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Connecting to your Database

Search User Guide

Connecting to your Database

There are two ways to connect to a database:

Automatically Connecting

The "auto connect" feature will load and instantiate the database class with
every page load. To enable "auto connecting", add the word database to the
core array, as indicated in the following file:

application/config/autoload.php

Manually Connecting

If only some of your pages require database connectivity you can manually
connect to your database by adding this line of code in any function where it is
needed, or in your class constructor to make the database available globally in
that class.

$this->load->database();

If the above function does not contain any information in the first parameter
it will connect to the group specified in your database config file. For most
people, this is the preferred method of use.

The first parameter of this function can optionally be used to specify a
particular database group from your config file, or you can even submit
connection values for a database that is not specified in your config file.
Examples:

To choose a specific group from your config file you can do this:

$this->load->database('group_name');

Where group_name is the name of the connection group from your config file.

To connect manually to a desired database you can pass an array of values:

$config['hostname'] = "localhost";

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/connecting.html (1 of 3) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Connecting to your Database

$config['username'] = "myusername";
$config['password'] = "mypassword";
$config['database'] = "mydatabase";
$config['dbdriver'] = "mysql";
$config['dbprefix'] = "";
$config['pconnect'] = FALSE;
$config['db_debug'] = TRUE;
$config['active_r'] = TRUE;

$this->load->database($config);

For information on each of these values please see the configuration page.

Or you can submit your database values as a Data Source Name. DSNs must
have this prototype:

$dsn = 'dbdriver://username:password@hostname/database';

$this->load->database('$dsn');

Note that if you use a DSN you will not be able to specify some of the default
values like you can if you use a connection array.

Connecting to Multiple Databases

If you need to connect to more than one database simultaneously you can do
so as follows:

$DB1 = $this->load->database('group_one', TRUE);
$DB2 = $this->load->database('group_two', TRUE);

Note: Change the words "group_one" and "group_two" to the specific group
names you are connecting to (or you can pass the connection values as
indicated above).

By setting the second parameter to TRUE (boolean) the function will return the
database object.

When you connect this way, you will use your object name to issue commands
rather than the syntax used throughout this guide. In other words, rather
than issuing commands with:

$this->db->query();
$this->db->result();
etc...

You will instead use:

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/connecting.html (2 of 3) [12/20/2007 11:00:49 PM]

CodeIgniter User Guide : Connecting to your Database

$DB1->query();
$DB1->result();
etc...

Previous Topic: Database Configuration · Top of Page · User Guide Home · Next Topic: Queries

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/connecting.html (3 of 3) [12/20/2007 11:00:49 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Helper Functions

Search User Guide

Helper Functions

Helpers, as the name suggests, help you with tasks. Each helper file
is simply a collection of functions in a particular category. There are
URL Helpers, that assist in creating links, there are Form Helpers
that help you create form elements, Text Helpers perform various
text formatting routines, Cookie Helpers set and read cookies, File
Helpers help you deal with files, etc.

Unlike most other systems in CodeIgniter, Helpers are not written in
an Object Oriented format. They are simple, procedural functions.
Each helper function performs one specific task, with no dependence
on other functions.

CodeIgniter does not load Helper Files by default, so the first step in
using a Helper is to load it. Once loaded, it becomes globally
available in your controller and views.

Helpers are typically stored in your system/helpers directory.
Alternately you can create a folder called helpers inside your
application folder and store them there. CodeIgniter will look first
in your system/application/helpers directory. If the directory
does not exist or the specified helper is not located there CI will
instead look in your global system/helpers folder.

Loading a Helper

Loading a helper file is quite simple using the following function:

$this->load->helper('name');

Where name is the file name of the helper, without the .php file
extension or the "helper" part.

For example, to load the URL Helper file, which is named
url_helper.php, you would do this:

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/helpers.html (1 of 3) [12/20/2007 11:00:50 PM]

CodeIgniter User Guide : Helper Functions

$this->load->helper('url');

A helper can be loaded anywhere within your controller functions (or
even within your View files, although that's not a good practice), as
long as you load it before you use it. You can load your helpers in
your controller constructor so that they become available
automatically in any function, or you can load a helper in a specific
function that needs it.

Note: The Helper loading function above does not return a value, so
don't try to assign it to a variable. Just use it as shown.

Loading Multiple Helpers

If you need to load more than one helper you can specify them in an
array, like this:

$this->load->helper(array('helper1', 'helper2', 'helper3'));

Auto-loading Helpers

If you find that you need a particular helper globally throughout
your application, you can tell CodeIgniter to auto-load it during
system initialization. This is done by opening the application/
config/autoload.php file and adding the helper to the autoload
array.

Using a Helper

Once you've loaded the Helper File containing the function you
intend to use, you'll call it the way you would a standard PHP
function.

For example, to create a link using the anchor() function in one of
your view files you would do this:

<?=anchor('blog/comments', 'Click Here');?>

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/helpers.html (2 of 3) [12/20/2007 11:00:50 PM]

CodeIgniter User Guide : Helper Functions

Where "Click Here" is the name of the link, and "blog/comments" is
the URI to the controller/function you wish to link to.

Now What?

In the Table of Contents you'll find a list of all the available Helper
Files. Browse each one to see what they do.

Previous Topic: Models · Top of Page · User Guide Home · Next Topic: Plugins

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/helpers.html (3 of 3) [12/20/2007 11:00:50 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Trackback Class

Search User Guide

Trackback Class

The Trackback Class provides functions that enable you to send and
receive Trackback data.

If you are not familiar with Trackbacks you'll find more information
here.

Initializing the Class

Like most other classes in CodeIgniter, the Trackback class is
initialized in your controller using the $this->load->library
function:

$this->load->library('trackback');

Once loaded, the Trackback library object will be available using:
$this->trackback

Sending Trackbacks

A Trackback can be sent from any of your controller functions using
code similar to this example:

$this->load->library('trackback');

$tb_data = array(
 'ping_url' => 'http://example.com/trackback/456',
 'url' => 'http://www.my-example.com/blog/entry/123',
 'title' => 'The Title of My Entry',
 'excerpt' => 'The entry content.',
 'blog_name' => 'My Blog Name',
 'charset' => 'utf-8'
);

if (! $this->trackback->send($tb_data))
{

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/trackback.html (1 of 5) [12/20/2007 11:00:51 PM]

http://en.wikipedia.org/wiki/Trackback

CodeIgniter User Guide : Trackback Class

 echo $this->trackback->display_errors();
}
else
{
 echo 'Trackback was sent!';
}

Description of array data:

● ping_url - The URL of the site you are sending the Trackback to.
You can send Trackbacks to multiple URLs by separating each URL
with a comma.

● url - The URL to YOUR site where the weblog entry can be seen.

● title - The title of your weblog entry.

● excerpt - The content of your weblog entry. Note: the Trackback
class will automatically send only the first 500 characters of your
entry. It will also strip all HTML.

● blog_name - The name of your weblog.

● charset - The character encoding your weblog is written in. If
omitted, UTF-8 will be used.

The Trackback sending function returns TRUE/FALSE (boolean) on
success or failure. If it fails, you can retrieve the error message
using:

$this->trackback->display_errors();

Receiving Trackbacks

Before you can receive Trackbacks you must create a weblog. If you
don't have a blog yet there's no point in continuing.

Receiving Trackbacks is a little more complex than sending them,
only because you will need a database table in which to store them,
and you will need to validate the incoming trackback data. You are
encouraged to implement a thorough validation process to guard
against spam and duplicate data. You may also want to limit the
number of Trackbacks you allow from a particular IP within a given
span of time to further curtail spam. The process of receiving a
Trackback is quite simple; the validation is what takes most of the

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/trackback.html (2 of 5) [12/20/2007 11:00:51 PM]

CodeIgniter User Guide : Trackback Class

effort.

Your Ping URL

In order to accept Trackbacks you must display a Trackback URL
next to each one of your weblog entries. This will be the URL that
people will use to send you Trackbacks (we will refer to this as your
"Ping URL").

Your Ping URL must point to a controller function where your
Trackback receiving code is located, and the URL must contain the
ID number for each particular entry, so that when the Trackback is
received you'll be able to associate it with a particular entry.

For example, if your controller class is called Trackback, and the
receiving function is called receive, your Ping URLs will look
something like this:

http://www.your-site.com/index.php/trackback/receive/entry_id

Where entry_id represents the individual ID number for each of
your entries.

Creating a Trackback Table

Before you can receive Trackbacks you must create a table in which
to store them. Here is a basic prototype for such a table:

The Trackback specification only requires four pieces of information
to be sent in a Trackback (url, title, excerpt, blog_name), but to

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/trackback.html (3 of 5) [12/20/2007 11:00:51 PM]

CodeIgniter User Guide : Trackback Class

make the data more useful we've added a few more fields in the
above table schema (date, IP address, etc.).

Processing a Trackback

Here is an example showing how you will receive and process a
Trackback. The following code is intended for use within the
controller function where you expect to receive Trackbacks.

$this->load->library('trackback');
$this->load->database();

if ($this->uri->segment(3) == FALSE)
{
 $this->trackback->send_error("Unable to determine the entry ID");
}

if (! $this->trackback->receive())
{
 $this->trackback->send_error("The Trackback did not contain valid data");
}

$data = array(
 'tb_id' => '',
 'entry_id' => $this->uri->segment(3),
 'url' => $this->trackback->data('url'),
 'title' => $this->trackback->data('title'),
 'excerpt' => $this->trackback->data('excerpt'),
 'blog_name' => $this->trackback->data('blog_name'),
 'tb_date' => time(),
 'ip_address' => $this->input->ip_address()
);

$sql = $this->db->insert_string('trackbacks', $data);
$this->db->query($sql);

$this->trackback->send_success();

Notes:

The entry ID number is expected in the third segment of your URL.
This is based on the URI example we gave earlier:

http://www.your-site.com/index.php/trackback/receive/entry_id

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/trackback.html (4 of 5) [12/20/2007 11:00:51 PM]

CodeIgniter User Guide : Trackback Class

Notice the entry_id is in the third URI, which you can retrieve using:

$this->uri->segment(3);

In our Trackback receiving code above, if the third segment is
missing, we will issue an error. Without a valid entry ID, there's no
reason to continue.

The $this->trackback->receive() function is simply a validation
function that looks at the incoming data and makes sure it contains
the four pieces of data that are required (url, title, excerpt,
blog_name). It returns TRUE on success and FALSE on failure. If it
fails you will issue an error message.

The incoming Trackback data can be retrieved using this function:

$this->trackback->data('item')

Where item represents one of these four pieces of info: url, title,
excerpt, or blog_name

If the Trackback data is successfully received, you will issue a
success message using:

$this->trackback->send_success();

Note: The above code contains no data validation, which you are
encouraged to add.

Previous Topic: Session Class · Top of Page · User Guide Home · Next Topic: Template Parser Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/trackback.html (5 of 5) [12/20/2007 11:00:51 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Input Class

Search User Guide

Input Class

The Input Class serves two purposes:

1. It pre-processes global input data for security.

2. It provides some helper functions for fetching input data and pre-
processing it.

Note: This class is initialized automatically by the system so there is no
need to do it manually.

Security Filtering

The security filtering function is called automatically when a new
controller is invoked. It does the following:

● Destroys the global GET array. Since CodeIgniter does not utilize GET
strings, there is no reason to allow it.

● Destroys all global variables in the event register_globals is turned on.

● Filters the POST/COOKIE array keys, permitting only alpha-numeric (and
a few other) characters.

● Provides XSS (Cross-site Scripting Hacks) filtering. This can be enabled
globally, or upon request.

● Standardizes newline characters to \n

XSS Filtering

CodeIgniter comes with a Cross Site Scripting Hack prevention filter
which can either run automatically to filter all POST and COOKIE data
that is encountered, or you can run it on a per item basis. By default it
does not run globally since it requires a bit of processing overhead, and
since you may not need it in all cases.

The XSS filter looks for commonly used techniques to trigger Javascript
or other types of code that attempt to hijack cookies or do other
malicious things. If anything disallowed is encountered it is rendered safe

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/input.html (1 of 4) [12/20/2007 11:00:52 PM]

CodeIgniter User Guide : Input Class

by converting the data to character entities.

Note: This function should only be used to deal with data upon
submission. It's not something that should be used for general runtime
processing since it requires a fair amount of processing overhead.

To filter data through the XSS filter use this function:

$this->input->xss_clean()

Here is an usage example:

$data = $this->input->xss_clean($data);

If you want the filter to run automatically every time it encounters POST
or COOKIE data you can enable it by opening your application/config/
config.php file and setting this:

$config['global_xss_filtering'] = TRUE;

Note: If you use the form validation class, it gives you the option of XSS
filtering as well.

Using POST, COOKIE, or SERVER Data

CodeIgniter comes with three helper functions that let you fetch POST,
COOKIE or SERVER items. The main advantage of using the provided
functions rather then fetching an item directly ($_POST['something']) is
that the functions will check to see if the item is set and return false
(boolean) if not. This lets you conveniently use data without having to
test whether an item exists first. In other words, normally you might do
something like this:

if (! isset($_POST['something']))
{
 $something = FALSE;
}
else
{
 $something = $_POST['something'];
}

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/input.html (2 of 4) [12/20/2007 11:00:52 PM]

CodeIgniter User Guide : Input Class

With CodeIgniter's built in functions you can simply do this:

$something = $this->input->post('something');

The three functions are:

● $this->input->post()

● $this->input->cookie()

● $this->input->server()

$this->input->post()

The first parameter will contain the name of the POST item you are
looking for:

$this->input->post('some_data');

The function returns FALSE (boolean) if the item you are attempting to
retrieve does not exist.

The second optional parameter lets you run the data through the XSS
filter. It's enabled by setting the second parameter to boolean TRUE;

$this->input->post('some_data', TRUE);

$this->input->cookie()

This function is identical to the post function, only it fetches cookie data:

$this->input->cookie('some_data', TRUE);

$this->input->server()

This function is identical to the above functions, only it fetches server
data:

$this->input->server('some_data');

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/input.html (3 of 4) [12/20/2007 11:00:52 PM]

CodeIgniter User Guide : Input Class

$this->input->ip_address()

Returns the IP address for the current user. If the IP address is not valid,
the function will return an IP of: 0.0.0.0

echo $this->input->ip_address();

$this->input->valid_ip($ip)

Takes an IP address as input and returns TRUE or FALSE (boolean) if it is
valid or not. Note: The $this->input->ip_address() function above
validates the IP automatically.

if (! valid_ip($ip))
{
 echo 'Not Valid';
}
else
{
 echo 'Valid';
}

$this->input->user_agent()

Returns the user agent (web browser) being used by the current user.
Returns FALSE if it's not available.

echo $this->input->user_agent();

Previous Topic: Image Manipulation Class · Top of Page · User Guide Home · Next Topic: Loader Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/input.html (4 of 4) [12/20/2007 11:00:52 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : XML-RPC and XML-RPC Server Classes

Search User Guide

XML-RPC and XML-RPC Server Classes

CodeIgniter's XML-RPC classes permit you to send requests to another server, or
set up your own XML-RPC server to receive requests.

What is XML-RPC?

Quite simply it is a way for two computers to communicate over the internet using
XML. One computer, which we will call the client, sends an XML-RPC request to
another computer, which we will call the server. Once the server receives and
processes the request it will send back a response to the client.

For example, using the MetaWeblog API, an XML-RPC Client (usually a desktop
publishing tool) will send a request to an XML-RPC Server running on your site.
This request might be a new weblog entry being sent for publication, or it could be
a request for an existing entry for editing. When the XML-RPC Server receives this
request it will examine it to determine which class/method should be called to
process the request. Once processed, the server will then send back a response
message.

For detailed specifications, you can visit the XML-RPC site.

Initializing the Class

Like most other classes in CodeIgniter, the XML-RPC and XML-RPCS classes are
initialized in your controller using the $this->load->library function:

To load the XML-RPC class you will use:

$this->load->library('xmlrpc');

Once loaded, the xml-rpc library object will be available using: $this->xmlrpc

To load the XML-RPC Server class you will use:

$this->load->library('xmlrpc');
$this->load->library('xmlrpcs');

Once loaded, the xml-rpcs library object will be available using: $this->xmlrpcs

Note: When using the XML-RPC Server class you must load BOTH the XML-RPC
class and the XML-RPC Server class.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/xmlrpc.html (1 of 10) [12/20/2007 11:00:54 PM]

http://www.xmlrpc.com/

CodeIgniter User Guide : XML-RPC and XML-RPC Server Classes

Sending XML-RPC Requests

To send a request to an XML-RPC server you must specify the following information:

● The URL of the server

● The method on the server you wish to call

● The request data (explained below).

Here is a basic example that sends a simple Weblogs.com ping to the Ping-o-Matic

$this->load->library('xmlrpc');

$this->xmlrpc->server('http://rpc.pingomatic.com/', 80);
$this->xmlrpc->method('weblogUpdates.ping');

$request = array('My Photoblog', 'http://www.my-site.com/photoblog/');
$this->xmlrpc->request($request);

if (! $this->xmlrpc->send_request())
{
 echo $this->xmlrpc->display_error();
}

Explanation

The above code initializes the XML-RPC class, sets the server URL and method to
be called (weblogUpdates.ping). The request (in this case, the title and URL of your
site) is placed into an array for transportation, and compiled using the request()
function. Lastly, the full request is sent. If the send_request() method returns
false we will display the error message sent back from the XML-RPC Server.

Anatomy of a Request

An XML-RPC request is simply the data you are sending to the XML-RPC server.
Each piece of data in a request is referred to as a request parameter. The above
example has two parameters: The URL and title of your site. When the XML-RPC
server receives your request, it will look for parameters it requires.

Request parameters must be placed into an array for transportation, and each
parameter can be one of seven data types (strings, numbers, dates, etc.). If your
parameters are something other than strings you will have to include the data type
in the request array.

Here is an example of a simple array with three parameters:

$request = array('John', 'Doe', 'www.some-site.com');
$this->xmlrpc->request($request);

If you use data types other than strings, or if you have several different data

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/xmlrpc.html (2 of 10) [12/20/2007 11:00:54 PM]

http://pingomatic.com/

CodeIgniter User Guide : XML-RPC and XML-RPC Server Classes

types, you will place each parameter into its own array, with the data type in the
second position:

$request = array (
 array('John', 'string'),
 array('Doe', 'string'),
 array(FALSE, 'boolean'),
 array(12345, 'int')
);
$this->xmlrpc->request($request);

The Data Types section below has a full list of data types.

Creating an XML-RPC Server

An XML-RPC Server acts as a traffic cop of sorts, waiting for incoming requests and
redirecting them to the appropriate functions for processing.

To create your own XML-RPC server involves initializing the XML-RPC Server class
in your controller where you expect the incoming request to appear, then setting
up an array with mapping instructions so that incoming requests can be sent to the
appropriate class and method for processing.

Here is an example to illustrate:

$this->load->library('xmlrpc');
$this->load->library('xmlrpcs');

$config['functions']['new_post'] = array('function' => 'My_blog.new_entry');
$config['functions']['update_post'] = array('function' => 'My_blog.update_entry');

$this->xmlrpcs->initialize($config);
$this->xmlrpcs->serve();

The above example contains an array specifying two method requests that the
Server allows. The allowed methods are on the left side of the array. When either
of those are received, they will be mapped to the class and method on the right.

In other words, if an XML-RPC Client sends a request for the new_post method,
your server will load the My_blog class and call the new_entry function. If the
request is for the update_post method, your server will load the My_blog class
and call the update_entry function.

The function names in the above example are arbitrary. You'll decide what they
should be called on your server, or if you are using standardized APIs, like the
Blogger or MetaWeblog API, you'll use their function names.

Processing Server Requests

When the XML-RPC Server receives a request and loads the class/method for

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/xmlrpc.html (3 of 10) [12/20/2007 11:00:54 PM]

CodeIgniter User Guide : XML-RPC and XML-RPC Server Classes

processing, it will pass an object to that method containing the data sent by the
client.

Using the above example, if the new_post method is requested, the server will
expect a class to exist with this prototype:

class My_blog extends Controller {

 function new_post($request)
 {

 }
}

The $request variable is an object compiled by the Server, which contains the
data sent by the XML-RPC Client. Using this object you will have access to the
request parameters enabling you to process the request. When you are done you
will send a Response back to the Client.

Below is a real-world example, using the Blogger API. One of the methods in the
Blogger API is getUserInfo(). Using this method, an XML-RPC Client can send the
Server a username and password, in return the Server sends back information
about that particular user (nickname, user ID, email address, etc.). Here is how the
processing function might look:

class My_blog extends Controller {

 function getUserInfo($request)
 {
 $username = 'smitty';
 $password = 'secretsmittypass';

 $this->load->library('xmlrpc');

 $parameters = $request->output_parameters();

 if ($parameters['1'] != $username AND $parameters['2'] != $password)
 {
 return $this->xmlrpc->send_error_message('100', 'Invalid Access');
 }

 $response = array(array('nickname' => array('Smitty','string'),
 'userid' => array('99','string'),
 'url' => array('http://yoursite.com','string'),
 'email' => array('jsmith@yoursite.com','string'),
 'lastname' => array('Smith','string'),
 'firstname' => array('John','string')
),
 'struct');

 return $this->xmlrpc->send_response($response);
 }
}

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/xmlrpc.html (4 of 10) [12/20/2007 11:00:54 PM]

CodeIgniter User Guide : XML-RPC and XML-RPC Server Classes

Notes:

The output_parameters() function retrieves an indexed array corresponding to
the request parameters sent by the client. In the above example, the output
parameters will be the username and password.

If the username and password sent by the client were not valid, and error message
is returned using send_error_message().

If the operation was successful, the client will be sent back a response array
containing the user's info.

Formatting a Response

Similar to Requests, Responses must be formatted as an array. However, unlike
requests, a response is an array that contains a single item. This item can be an
array with several additional arrays, but there can be only one primary array index.
In other words, the basic prototype is this:

$response = array('Response data', 'array');

Responses, however, usually contain multiple pieces of information. In order to
accomplish this we must put the response into its own array so that the primary
array continues to contain a single piece of data. Here's an example showing how
this might be accomplished:

$response = array (
 array(
 'first_name' => array('John', 'string'),
 'last_name' => array('Doe', 'string'),
 'member_id' => array(123435, 'int'),
 'todo_list' => array(array('clean house', 'call mom', 'water plants'), 'array'),
),
 'struct'
);

Notice that the above array is formatted as a struct. This is the most common
data type for responses.

As with Requests, a response can be on of the seven data types listed in the Data
Types section.

Sending an Error Response

If you need to send the client an error response you will use the following:

return $this->xmlrpc->send_error_message('123', 'Requested data not available');

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/xmlrpc.html (5 of 10) [12/20/2007 11:00:54 PM]

CodeIgniter User Guide : XML-RPC and XML-RPC Server Classes

The first parameter is the error number while the second parameter is the error
message.

Creating Your Own Client and Server

To help you understand everything we've covered thus far, let's create a couple
controllers that act as XML-RPC Client and Server. You'll use the Client to send a
request to the Server and receive a response.

The Client

Using a text editor, create a controller called xmlrpc_client.php. In it, place this
code and save it to your applications/controllers/ folder:

Note: In the above code we are using a "url helper". You can find more information
in the Helpers Functions page.

The Server

Using a text editor, create a controller called xmlrpc_server.php. In it, place this
code and save it to your applications/controllers/ folder:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/xmlrpc.html (6 of 10) [12/20/2007 11:00:54 PM]

CodeIgniter User Guide : XML-RPC and XML-RPC Server Classes

Try it!

Now visit the your site using a URL similar to this:

www.your-site.com/index.php/xmlrpc_client/

You should now see the message you sent to the server, and its response back to
you.

The client you created sends a message ("How's is going?") to the server, along
with a reqest for the "Greetings" method. The Server receives the request and
maps it to the "process" function, where a response is sent back.

XML-RPC Function Reference

$this->xmlrpc->server()

Sets the URL and port number of the server to which a request is to be sent:

$this->xmlrpc->server('http://www.sometimes.com/pings.php', 80);

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/xmlrpc.html (7 of 10) [12/20/2007 11:00:54 PM]

CodeIgniter User Guide : XML-RPC and XML-RPC Server Classes

$this->xmlrpc->timeout()

Set a time out period (in seconds) after which the request will be canceled:

$this->xmlrpc->timeout(6);

$this->xmlrpc->method()

Sets the method that will be requested from the XML-RPC server:

$this->xmlrpc->method('method');

Where method is the name of the method.

$this->xmlrpc->request()

Takes an array of data and builds request to be sent to XML-RPC server:

$request = array(array('My Photoblog', 'string'), 'http://www.yoursite.com/photoblog/');
$this->xmlrpc->request($request);

$this->xmlrpc->send_request()

The request sending function. Returns boolean TRUE or FALSE based on success for
failure, enabling it to be used conditionally.

$this->xmlrpc->set_debug(TRUE);

Enables debugging, which will display a variety of information and error data
helpful during development.

$this->xmlrpc->display_error()

Returns an error message as a string if your request failed for some reason.

echo $this->xmlrpc->display_error();

$this->xmlrpc->display_response()

Returns the response from the remote server once request is received. The

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/xmlrpc.html (8 of 10) [12/20/2007 11:00:54 PM]

CodeIgniter User Guide : XML-RPC and XML-RPC Server Classes

response will typically be an associative array.

$this->xmlrpc->display_response();

$this->xmlrpc->send_error_message()

This function lets you send an error message from your server to the client. First
parameter is the error number while the second parameter is the error message.

return $this->xmlrpc->send_error_message('123', 'Requested data not available');

$this->xmlrpc->send_response()

Lets you send the response from your server to the client. An array of valid data
values must be sent with this method.

$response = array(
 array(
 'flerror' => array(FALSE, 'boolean'),
 'message' => "Thanks for the ping!")
)
 'struct');
return $this->xmlrpc->send_response($response);

Data Types

According to the XML-RPC spec there are seven types of values that you can send
via XML-RPC:

● int or i4

● boolean

● string

● double

● dateTime.iso8601

● base64

● struct (contains array of values)

● array (contains array of values)

Previous Topic: Validation Class · Top of Page · User Guide Home · Next Topic: Zip Encoding Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/xmlrpc.html (9 of 10) [12/20/2007 11:00:54 PM]

http://www.xmlrpc.com/spec
http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : XML-RPC and XML-RPC Server Classes

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/xmlrpc.html (10 of 10) [12/20/2007 11:00:54 PM]

CodeIgniter User Guide : String Helper

Search User Guide

String Helper

The String Helper file contains functions that assist in working with
strings.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('string');

The following functions are available:

random_string()

Generates a random string based on the type and length you
specify. Useful for creating passwords or generating random hashes.

The first parameter specifies the type of string, the second
parameter specifies the length. The following choices are available:

● alnum: Alpha-numeric string with lower and uppercase characters.

● numeric: Numeric string.

● nozero: Numeric string with no zeros.

● unique: Encrypted with MD5 and uniqid(). Note: The length
parameter is not available for this type. Returns a fixed length 33
character string.

Usage example:

echo random_string('alnum', 16);

alternator()

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/string_helper.html (1 of 4) [12/20/2007 11:00:55 PM]

CodeIgniter User Guide : String Helper

Allows two or more items to be alternated between, when cycling
through a loop. Example:

for ($i = 0; $i < 10; $i++)
{
 echo alternator('string one', 'string two');
}

You can add as many parameters as you want, and with each
iteration of your loop the next item will be returned.

for ($i = 0; $i < 10; $i++)
{
 echo alternator('one', 'two', 'three', 'four', 'five');
}

Note: To use multiple separate calls to this function simply call the
function with no arguments to re-initialize.

repeater()

Generates repeating copies of the data you submit. Example:

$string = "\n";
echo repeater($string, 30);

The above would generate 30 newlines.

reduce_double_slashes()

Converts double slashes in a string to a single slash, except those
found in http://. Example:

$string = "http://www.example.com//index.php";
echo reduce_double_slashes($string); // results in "http://www.example.com/
index.php"

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/string_helper.html (2 of 4) [12/20/2007 11:00:55 PM]

CodeIgniter User Guide : String Helper

trim_slashes()

Removes any leading/trailing slashes from a string. Example:

$string = "/this/that/theother/";
echo trim_slashes($string); // results in this/that/theother

reduce_multiples()

Reduces multiple instances of a particular character occuring directly
after each other. Example:

$string="Fred, Bill,, Joe, Jimmy";
$string=reduce_multiples($string,","); //results in "Fred, Bill, Joe, Jimmy"

The function accepts the following parameters:

reduce_multiples(string: text to search in, string: character to reduce,
boolean: whether to remove the character from the front and end of the
string)

The first parameter contrains the string in which you want to reduce
the multiplies. The second parameter contains the character you
want to have reduced. The third parameter is False by default. If it
it's to true it will remove occurences of the character at the
beginning and the end of the string. Example:

$string=",Fred, Bill,, Joe, Jimmy,";
$string=reduce_multiples($string,",",true); //results in "Fred, Bill, Joe,
Jimmy"

quotes_to_entities()

Converts single and double quotes in a string to the corresponding
HTML entities. Example:

$string="Joe's \"dinner\"";

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/string_helper.html (3 of 4) [12/20/2007 11:00:55 PM]

CodeIgniter User Guide : String Helper

$string=quotes_to_entities($string); //results in "Joe's "
dinner""

strip_quotes()

Removes single and double quotes from a string. Example:

$string="Joe's \"dinner\"";
$string=strip_quotes($string); //results in "Joes dinner"

Previous Topic: Smiley Helper · Top of Page · User Guide Home · Next Topic: Text Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/string_helper.html (4 of 4) [12/20/2007 11:00:55 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Database Quick Start

Search User Guide

Database Quick Start: Example Code

The following page contains example code showing how the database class is used. For
complete details please read the individual pages describing each function.

Initializing the Database Class

The following code loads and initializes the database class based on your configuration
settings:

$this->load->database();

Once loaded the class is ready to be used as described below.

Note: If all your pages require database access you can connect automatically. See the
connecting page for details.

Standard Query With Multiple Results (Object Version)

$query = $this->db->query('SELECT name, title, email FROM my_table');

foreach ($query->result() as $row)
{
 echo $row->title;
 echo $row->name;
 echo $row->email;
}

echo 'Total Results: ' . $query->num_rows();

The above result() function returns an array of objects. Example: $row->title

Standard Query With Multiple Results (Array Version)

$query = $this->db->query('SELECT name, title, email FROM my_table');

foreach ($query->result_array() as $row)
{
 echo $row['title'];
 echo $row['name'];
 echo $row['email'];
}

The above result_array() function returns an array of standard array indexes.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/examples.html (1 of 3) [12/20/2007 11:00:56 PM]

CodeIgniter User Guide : Database Quick Start

Example: $row['title']

Testing for Results

If you run queries that might not produce a result, you are encouraged to test for a
result first using the num_rows() function:

$query = $this->db->query("YOUR QUERY");

if ($query->num_rows() > 0)
{
 foreach ($query->result() as $row)
 {
 echo $row->title;
 echo $row->name;
 echo $row->body;
 }
}

Standard Query With Single Result

$query = $this->db->query('SELECT name FROM my_table LIMIT 1');

$row = $query->row();
echo $row->name;

The above row() function returns an object. Example: $row->name

Standard Query With Single Result (Array version)

$query = $this->db->query('SELECT name FROM my_table LIMIT 1');

$row = $query->row_array();
echo $row['name'];

The above row_array() function returns an array. Example: $row['name']

Standard Insert

$sql = "INSERT INTO mytable (title, name)
 VALUES (".$this->db->escape($title).", ".$this->db->escape($name).")";

$this->db->query($sql);

echo $this->db->affected_rows();

Active Record Query

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/examples.html (2 of 3) [12/20/2007 11:00:56 PM]

CodeIgniter User Guide : Database Quick Start

The Active Record Pattern gives you a simplified means of retrieving data:

$query = $this->db->get('table_name');

foreach ($query->result() as $row)
{
 echo $row->title;
}

The above get() function retrieves all the results from the supplied table. The Active
Record class contains a full compliment of functions for working with data.

Active Record Insert

$data = array(
 'title' => $title,
 'name' => $name,
 'date' => $date
);

$this->db->insert('mytable', $data);

// Produces: INSERT INTO mytable (title, name, date) VALUES ('{$title}', '{$name}', '{$date}')

Previous Topic: Database Class · Top of Page · User Guide Home · Next Topic: Database Configuration

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/examples.html (3 of 3) [12/20/2007 11:00:56 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Database Configuration

Search User Guide

Database Configuration

CodeIgniter has a config file that lets you store your database connection values
(username, password, database name, etc.). The config file is located at:

application/config/database.php

The config settings are stored in a multi-dimensional array with this prototype:

$db['default']['hostname'] = "localhost";
$db['default']['username'] = "root";
$db['default']['password'] = "";
$db['default']['database'] = "database_name";
$db['default']['dbdriver'] = "mysql";
$db['default']['dbprefix'] = "";
$db['default']['pconnect'] = TRUE;
$db['default']['db_debug'] = FALSE;
$db['default']['active_r'] = TRUE;

The reason we use a multi-dimensional array rather than a more simple one is
to permit you to optionally store multiple sets of connection values. If, for
example, you run multiple environments (development, production, test, etc.)
under a single installation, you can set up a connection group for each, then
switch between groups as needed. For example, to set up a "test" environment
you would do this:

$db['test']['hostname'] = "localhost";
$db['test']['username'] = "root";
$db['test']['password'] = "";
$db['test']['database'] = "database_name";
$db['test']['dbdriver'] = "mysql";
$db['test']['dbprefix'] = "";
$db['test']['pconnect'] = TRUE;
$db['test']['db_debug'] = FALSE;
$db['test']['active_r'] = TRUE;

Then, to globally tell the system to use that group you would set this variable
located in the config file:

$active_group = "test";

Note: The name "test" is arbitrary. It can be anything you want. By default
we've used the word "default" for the primary connection, but it too can be
renamed to something more relevant to your project.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/configuration.html (1 of 2) [12/20/2007 11:00:57 PM]

CodeIgniter User Guide : Database Configuration

Explanation of Values:

● hostname - The hostname of your database server. Often this is "localhost".

● username - The username used to connect to the database.

● password - The password used to connect to the database.

● database - The name of the database you want to connect to.

● dbdriver - The database type. ie: mysql, postgre, obdc, etc. Must be specified
in lower case.

● dbprefix - An optional table prefix which will added to the table name when
running Active Record queries. This permits multiple CodeIgniter installations to
share one database.

● pconnect - TRUE/FALSE (boolean) - Whether to use a persistent connection.

● db_debug - TRUE/FALSE (boolean) - Whether database errors should be
displayed.

● active_r - TRUE/FALSE (boolean) - Whether to load the Active Record Class. If
you are not using the active record class you can have it omitted when the
database classes are initialized in order to utilize less resources.

Note: that some CodeIgniter classes such as Sessions require Active Records
be enabled to access certain functionality.

● port - The database port number. Currently only used with the Postgre driver.

Note: Depending on what database platform you are using (MySQL, Postgre,
etc.) not all values will be needed. For example, when using SQLite you will not
need to supply a username or password, and the database name will be the
path to your database file. The information above assumes you are using
MySQL.

Previous Topic: Quck Start: Usage Examples · Top of Page · User Guide Home · Next Topic: Connecting to your Database

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/configuration.html (2 of 2) [12/20/2007 11:00:57 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Queries

Search User Guide

Queries

$this->db->query();

To submit a query, use the following function:

$this->db->query('YOUR QUERY HERE');

The query() function returns a database result object when "read" type
queries are run, which you can use to show your results. When "write" type
queries are run it simply returns TRUE or FALSE depending on success or
failure. When retrieving data you will typically assign the query to your own
variable, like this:

$query = $this->db->query('YOUR QUERY HERE');

$this->db->simple_query();

This is a simplified version of the $this->db->query() function. It ONLY
returns TRUE/FALSE on success or failure. It DOES NOT return a database
result set, nor does it set the query timer, or compile bind data, or store
your query for debugging. It simply lets you submit a query. Most users will
rarely use this function.

Escaping Queries

It's a very good security practice to escape your data before submitting it
into your database. CodeIgniter has two functions that help you do this:

1. $this->db->escape() This function determines the data type so that it
can escape only string data. It also automatically adds single quotes
around the data so you don't have to:

$sql = "INSERT INTO table (title) VALUES(".$this->db->escape($title).")";

2. $this->db->escape_str() This function escapes the data passed to it,

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/queries.html (1 of 2) [12/20/2007 11:00:57 PM]

CodeIgniter User Guide : Queries

regardless of type. Most of the time you'll use the above function rather
then this one. Use the function like this:

$sql = "INSERT INTO table (title) VALUES('".$this->db->escape_str($title)."')";

Query Bindings

Bindings enable you to simplify your query syntax by letting the system put
the queries together for you. Consider the following example:

$sql = "SELECT * FROM some_table WHERE id = ? AND status = ? AND author = ?";

$this->db->query($sql, array(3, 'live', 'Rick'));

The question marks in the query are automatically replaced with the values
in the array in the second parameter of the query function.

The secondary benefit of using binds is that the values are automatically
escaped, producing safer queries. You don't have to remember to manually
escape data; the engine does it automatically for you.

Previous Topic: Connecting to your Database · Top of Page · User Guide Home · Next Topic: Query Results

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/queries.html (2 of 2) [12/20/2007 11:00:57 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Generating Query Results

Search User Guide

Generating Query Results

There are several ways to generate query results:

result()

This function returns the query result as an array of objects, or an empty
array on failure. Typically you'll use this in a foreach loop, like this:

$query = $this->db->query("YOUR QUERY");

foreach ($query->result() as $row)
{
 echo $row->title;
 echo $row->name;
 echo $row->body;
}

The above function is an alias of result_object().

If you run queries that might not produce a result, you are encouraged to test
the result first:

$query = $this->db->query("YOUR QUERY");

if ($query->num_rows() > 0)
{
 foreach ($query->result() as $row)
 {
 echo $row->title;
 echo $row->name;
 echo $row->body;
 }
}

result_array()

This function returns the query result as a pure array, or an empty array when
no result is produced. Typically you'll use this in a foreach loop, like this:

$query = $this->db->query("YOUR QUERY");

foreach ($query->result_array() as $row)
{

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/results.html (1 of 4) [12/20/2007 11:00:58 PM]

CodeIgniter User Guide : Generating Query Results

 echo $row['title'];
 echo $row['name'];
 echo $row['body'];
}

row()

This function returns a single result row. If your query has more than one row, it
returns only the first row. The result is returned as an object. Here's a usage
example:

$query = $this->db->query("YOUR QUERY");

if ($query->num_rows() > 0)
{
 $row = $query->row();

 echo $row->title;
 echo $row->name;
 echo $row->body;
}

If you want a specific row returned you can submit the row number as a digit in
the first parameter:

$row = $query->row(5);

row_array()

Identical to the above row() function, except it returns an array. Example:

$query = $this->db->query("YOUR QUERY");

if ($query->num_rows() > 0)
{
 $row = $query->row_array();

 echo $row['title'];
 echo $row['name'];
 echo $row['body'];
}

If you want a specific row returned you can submit the row number as a digit in
the first parameter:

$row = $query->row_array(5);

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/results.html (2 of 4) [12/20/2007 11:00:58 PM]

CodeIgniter User Guide : Generating Query Results

In addition, you can walk forward/backwards/first/last through your results
using these variations:

$row = $query->first_row()
$row = $query->last_row()
$row = $query->next_row()
$row = $query->previous_row()

By default they return an object unless you put the word "array" in the
parameter:

$row = $query->first_row('array')
$row = $query->last_row('array')
$row = $query->next_row('array')
$row = $query->previous_row('array')

Result Helper Functions

$query->num_rows()

The number of rows returned by the query. Note: In this example, $query is
the variable that the query result object is assigned to:

$query = $this->db->query('SELECT * FROM my_table');

echo $query->num_rows();

$query->num_fields()

The number of FIELDS (columns) returned by the query. Make sure to call the
function using your query result object:

$query = $this->db->query('SELECT * FROM my_table');

echo $query->num_fields();

$query->free_result()

It frees the memory associated with the result and deletes the result resource
ID. Normally PHP frees its memory automatically at the end of script execution.
However, if you are running a lot of queries in a particular script you might want
to free the result after each query result has been generated in order to cut
down on memory consumptions. Example:

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/results.html (3 of 4) [12/20/2007 11:00:58 PM]

CodeIgniter User Guide : Generating Query Results

$query = $this->db->query('SELECT title FROM my_table');

foreach ($query->result() as $row)
{
 echo $row->title;
}
$query->free_result(); // The $query result object will no longer be available

$query2 = $this->db->query('SELECT name FROM some_table');

$row = $query2->row();
echo $row->name;
$query2->free_result(); // The $query2 result object will no longer be available

Previous Topic: Queries · Top of Page · User Guide Home · Next Topic: Query Helper Functions

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/results.html (4 of 4) [12/20/2007 11:00:58 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Query Helper Functions

Search User Guide

Query Helper Functions

$this->db->insert_id()

The insert ID number when performing database inserts.

$this->db->affected_rows()

Displays the number of affected rows, when doing "write" type queries (insert,
update, etc.).

Note: In MySQL "DELETE FROM TABLE" returns 0 affected rows. The database
class has a small hack that allows it to return the correct number of affected
rows. By default this hack is enabled but it can be turned off in the database
driver file.

$this->db->count_all();

Permits you to determine the number of rows in a particular table. Submit the
table name in the first parameter. Example:

echo $this->db->count_all('my_table');

// Produces an integer, like 25

$this->db->platform()

Outputs the database platform you are running (MySQL, MS SQL, Postgre,
etc...):

echo $this->db->platform();

$this->db->version()

Outputs the database version you are running:

echo $this->db->version();

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/helpers.html (1 of 3) [12/20/2007 11:00:59 PM]

CodeIgniter User Guide : Query Helper Functions

$this->db->last_query();

Returns the last query that was run (the query string, not the result). Example:

$str = $this->db->last_query();

// Produces: SELECT * FROM sometable....

The following two functions help simplify the process of writing database
INSERTs and UPDATEs.

$this->db->insert_string();

This function simplifies the process of writing database inserts. It returns a
correctly formatted SQL insert string. Example:

$data = array('name' => $name, 'email' => $email, 'url' => $url);

$str = $this->db->insert_string('table_name', $data);

The first parameter is the table name, the second is an associative array with
the data to be inserted. The above example produces:

INSERT INTO table_name (name, email, url) VALUES ('Rick', 'rick@your-site.com', 'www.your-
site.com')

Note: Values are automatically escaped, producing safer queries.

$this->db->update_string();

This function simplifies the process of writing database updates. It returns a
correctly formatted SQL update string. Example:

$data = array('name' => $name, 'email' => $email, 'url' => $url);

$where = "author_id = 1 AND status = 'active'";

$str = $this->db->update_string('table_name', $data, $where);

The first parameter is the table name, the second is an associative array with
the data to be inserted, and the third parameter is the "where" clause. The
above example produces:

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/helpers.html (2 of 3) [12/20/2007 11:00:59 PM]

CodeIgniter User Guide : Query Helper Functions

UPDATE exp_weblog SET name = 'Rick', email = 'rick@your-site.com', url = 'www.your-site.
com' WHERE author_id = 1 AND status = 'active'

Note: Values are automatically escaped, producing safer queries.

Previous Topic: Query Results · Top of Page · User Guide Home · Next Topic: Active Record Pattern

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/helpers.html (3 of 3) [12/20/2007 11:00:59 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Transactions

Search User Guide

Transactions

CodeIgniter's database abstraction allows you to use transactions with
databases that support transaction-safe table types. In MySQL, you'll need to
be running InnoDB or BDB table types rather then the more common MyISAM.
Most other database platforms support transactions natively.

If you are not familiar with transactions we recommend you find a good online
resource to learn about them for your particular database. The information
below assumes you have a basic understanding of transactions.

CodeIgniter's Approach to Transactions

CodeIgniter utilizes an approach to transactions that is very similar to the
process used by the popular database class ADODB. We've chosen that
approach because it greatly simplifies the process of running transactions. In
most cases all that is required are two lines of code.

Traditionally, transactions have required a fair amount of work to implement
since they demand that you to keep track of your queries and determine
whether to commit or rollback based on the success or failure of your
queries. This is particularly cumbersome with nested queries. In contrast, we've
implemented a smart transaction system that does all this for you automatically
(you can also manage your transactions manually if you choose to, but there's
really no benefit).

Running Transactions

To run your queries using transactions you will use the $this->db-
>trans_start() and $this->db->trans_complete() functions as follows:

$this->db->trans_start();
$this->db->query('AN SQL QUERY...');
$this->db->query('ANOTHER QUERY...');
$this->db->query('AND YET ANOTHER QUERY...');
$this->db->trans_complete();

You can run as many queries as you want between the start/complete functions
and they will all be committed or rolled back based on success or failure of any
given query.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/transactions.html (1 of 3) [12/20/2007 11:01:00 PM]

CodeIgniter User Guide : Transactions

Managing Errors

If you have error reporting enabled in your config/database.php file you'll
see a standard error message if the commit was unsuccessful. If debugging is
turned off, you can manage your own errors like this:

$this->db->trans_start();
$this->db->query('AN SQL QUERY...');
$this->db->query('ANOTHER QUERY...');
$this->db->trans_complete();

if ($this->db->trans_status() === FALSE)
{
 // generate an error... or use the log_message() function to log your error
}

Enabling Transactions

Transactions are enabled automatically the moment you use $this->db-
>trans_start(). If you would like to disable transactions you can do so using
$this->db->trans_off():

$this->db->trans_off()

$this->db->trans_start();
$this->db->query('AN SQL QUERY...');
$this->db->trans_complete();

When transactions are disabled, your queries will be auto-commited, just as
they are when running queries without transactions.

Test Mode

You can optionally put the transaction system into "test mode", which will
cause your queries to be rolled back -- even if the queries produce a valid
result. To use test mode simply set the first parameter in the $this->db-
>trans_start() function to TRUE:

$this->db->trans_start(TRUE); // Query will be rolled back
$this->db->query('AN SQL QUERY...');
$this->db->trans_complete();

Running Transactions Manually

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/transactions.html (2 of 3) [12/20/2007 11:01:00 PM]

CodeIgniter User Guide : Transactions

If you would like to run transactions manually you can do so as follows:

$this->db->trans_begin();

$this->db->query('AN SQL QUERY...');
$this->db->query('ANOTHER QUERY...');
$this->db->query('AND YET ANOTHER QUERY...');

if ($this->db->trans_status() === FALSE)
{
 $this->db->trans_rollback();
}
else
{
 $this->db->trans_commit();
}

Note: Make sure to use $this->db->trans_begin() when running manual
transactions, NOT $this->db->trans_start().

Previous Topic: Field MetaData · Top of Page · User Guide Home · Next Topic: Table Metadata

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/transactions.html (3 of 3) [12/20/2007 11:01:00 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Table Data

Search User Guide

Table Data

These functions let you fetch table information.

$this->db->list_tables();

Returns an array containing the names of all the tables in the database you
are currently connected to. Example:

$tables = $this->db->list_tables();

foreach ($tables as $table)
{
 echo $table;
}

$this->db->table_exists();

Sometimes it's helpful to know whether a particular table exists before
running an operation on it. Returns a boolean TRUE/FALSE. Usage example:

if ($this->db->table_exists('table_name'))
{
 // some code...
}

Note: Replace table_name with the name of the table you are looking for.

Previous Topic: Transactions · Top of Page · User Guide Home · Next Topic: Field Metadata

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/table_data.html [12/20/2007 11:01:00 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Field Data

Search User Guide

Field Data

$this->db->list_fields()

Returns an array containing the field names. This query can be called two ways:

1. You can supply the table name and call it from the $this->db-> object:

$fields = $this->db->list_fields('table_name')

foreach ($fields as $field)
{
 echo $field;
}

2. You can gather the field names associated with any query you run by calling
the function from your query result object:

$query = $this->db->query('SELECT * FROM some_table')

foreach ($query->list_fields() as $field)
{
 echo $field;
}

$this->db->field_exists()

Sometimes it's helpful to know whether a particular field exists before
performing an action. Returns a boolean TRUE/FALSE. Usage example:

if ($this->db->field_exists('field_name', 'table_name'))
{
 // some code...
}

Note: Replace field_name with the name of the column you are looking for, and
replace table_name with the name of the table you are looking for.

$this->db->field_data()

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/fields.html (1 of 2) [12/20/2007 11:01:01 PM]

CodeIgniter User Guide : Field Data

Returns an array of objects containing field information.

Sometimes it's helpful to gather the field names or other metadata, like the
column type, max length, etc.

Note: Not all databases provide meta-data.

Usage example:

$fields = $this->db->field_data('table_name')

foreach ($fields as $field)
{
 echo $field->name;
 echo $field->type;
 echo $field->max_length;
 echo $field->primary_key;
}

If you have run a query already you can use the result object instead of
supplying the table name:

$query = $this->db->query("YOUR QUERY")
$fields = $query->field_data()

The following data is available from this function if supported by your database:

● name - column name

● max_length - maximum length of the column

● primary_key - 1 if the column is a primary key

● type - the type of the column

Previous Topic: Table Data · Top of Page · User Guide Home · Next Topic: Custom Function Calls

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/fields.html (2 of 2) [12/20/2007 11:01:01 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Custom Function Calls

Search User Guide

Custom Function Calls

$this->db->call_function();

This function enables you to call PHP database functions that are not natively included
in CodeIgniter, in a platform independent manner. For example, lets say you want to
call the mysql_get_client_info() function, which is not natively supported by
CodeIgniter. You could do so like this:

$this->db->call_function('get_client_info');

You must supply the name of the function, without the mysql_ prefix, in the first
parameter. The prefix is added automatically based on which database driver is
currently being used. This permits you to run the same function on different database
platforms. Obviously not all function calls are identical between platforms, so there are
limits to how useful this function can be in terms of portability.

Any parameters needed by the function you are calling will be added to the second
parameter.

$this->db->call_function('some_function', $param1, $param2, etc..);

Often, you will either need to supply a database connection ID or a database result ID.
The connection ID can be accessed using:

$this->db->conn_id;

The result ID can be accessed from within your result object, like this:

$query = $this->db->query("SOME QUERY");

$query->result_id;

Previous Topic: Field MetaData · Top of Page · User Guide Home · Next Topic: Query Caching

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/call_function.html [12/20/2007 11:01:01 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Database Caching Class

Search User Guide

Database Caching Class

The Database Caching Class permits you to cache your queries as text files for reduced
database load.

Important: This class is initialized automatically by the database driver when caching
is enabled. Do NOT load this class manually.

Also note: Not all query result functions are available when you use caching. Please
read this page carefully.

Enabling Caching

Caching is enabled in three steps:

● Create a writable directory on your server where the cache files can be stored.

● Set the path to your cache folder in your application/config/database.php file.

● Enable the caching feature, either globally by setting the preference in your
application/config/database.php file, or manually as described below.

Once enabled, caching will happen automatically whenever a page is loaded that
contains database queries.

How Does Caching Work?

CodeIgniter's query caching system happens dynamically when your pages are viewed.
When caching is enabled, the first time a web page is loaded, the query result object
will be serialized and stored in a text file on your server. The next time the page is
loaded the cache file will be used instead of accessing your database. Your database
usage can effectively be reduced to zero for any pages that have been cached.

Only read-type (SELECT) queries can be cached, since these are the only type of
queries that produce a result. Write-type (INSERT, UPDATE, etc.) queries, since they
don't generate a result, will not be cached by the system.

Cache files DO NOT expire. Any queries that have been cached will remain cached until
you delete them. The caching system permits you clear caches associated with
individual pages, or you can delete the entire collection of cache files. Typically you'll to
use the housekeeping functions described below to delete cache files after certain
events take place, like when you've added new information to your database.

Will Caching Improve Your Site's Performance?

Getting a performance gain as a result of caching depends on many factors. If you have
a highly optimized database under very little load, you probably won't see a

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/caching.html (1 of 3) [12/20/2007 11:01:02 PM]

CodeIgniter User Guide : Database Caching Class

performance boost. If your database is under heavy use you probably will see an
improved response, assuming your file-system is not overly taxed. Remember that
caching simply changes how your information is retrieved, shifting it from being a
database operation to a file-system one.

In some clustered server environments, for example, caching may be detrimental since
file-system operations are so intense. On single servers in shared environments,
caching will probably be beneficial. Unfortunately there is no single answer to the
question of whether you should cache your database. It really depends on your
situation.

How are Cache Files Stored?

CodeIgniter places the result of EACH query into its own cache file. Sets of cache files
are further organized into sub-folders corresponding to your controller functions. To be
precise, the sub-folders are named identically to the first two segments of your URI
(the controller class name and function name).

For example, let's say you have a controller called blog with a function called
comments that contains three queries. The caching system will create a cache folder
called blog+comments, into which it will write three cache files.

If you use dynamic queries that change based on information in your URI (when using
pagination, for example), each instance of the query will produce its own cache file. It's
possible, therefore, to end up with many times more cache files than you have queries.

Managing your Cache Files

Since cache files do not expire, you'll need to build deletion routines into your
application. For example, let's say you have a blog that allows user commenting.
Whenever a new comment is submitted you'll want to delete the cache files associated
with the controller function that serves up your comments. You'll find two delete
functions described below that help you clear data.

Not All Database Functions Work with Caching

Lastly, we need to point out that the result object that is cached is a simplified version
of the full result object. For that reason, some of the query result functions are not
available for use.

The following functions ARE NOT available when using a cached result object:

● num_fields()

● field_names()

● field_data()

● free_result()

Also, the two database resources (result_id and conn_id) are not available when
caching, since result resources only pertain to run-time operations.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/caching.html (2 of 3) [12/20/2007 11:01:02 PM]

CodeIgniter User Guide : Database Caching Class

Function Reference

$this->db->cache_on() / $this->db->cache_off()

Manually enables/disables caching. This can be useful if you want to keep certain
queries from being cached. Example:

// Turn caching on
$this->db->cache_on();
$query = $this->db->query("SELECT * FROM mytable");

// Turn caching off for this one query
$this->db->cache_off();
$query = $this->db->query("SELECT * FROM members WHERE member_id = '$current_user'");

// Turn caching back on
$this->db->cache_on();
$query = $this->db->query("SELECT * FROM another_table");

$this->db->cache_delete()

Deletes the cache files associated with a particular page. This is useful if you need to
clear caching after you update your database.

The caching system saves your cache files to folders that correspond to the URI of the
page you are viewing. For example, if you are viewing a page at www.your-site.com/
index.php/blog/comments, the caching system will put all cache files associated
with it in a folder called blog+comments. To delete those particular cache files you
will use:

$this->db->cache_delete('blog', 'comments');

If you do not use any parameters the current URI will be used when determining what
should be cleared.

$this->db->cache_delete_all()

Clears all existing cache files. Example:

$this->db->cache_delete_all();

Previous Topic: Custom Function Calls · Top of Page · User Guide Home · Next Topic: Database Utilities Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/caching.html (3 of 3) [12/20/2007 11:01:02 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Database Utility Class

Search User Guide

Database Utility Class

The Database Utility Class contains functions that help you manage your database.

Table of Contents

● Initializing the Utility Class

● Creating a Database

● Dropping a Database

● Listing your Databases

● Optimizing your Tables

● Repairing your Databases

● Optimizing your Database

● CSV Files from a Database Result

● XML Files from a Database Result

● Backing up your Database

Initializing the Utility Class

Important: In order to initialize the Utility class, your database driver must already
be running, since the utilities class relies on it.

Load the Utility Class as follows:

$this->load->dbutil()

Once initialized you will access the functions using the $this->dbutil object:

$this->dbutil->some_function()

$this->dbutil->create_database('db_name')

Permits you to create the database specified in the first parameter. Returns TRUE/
FALSE based on success or failure:

if ($this->dbutil->create_database('my_db'))
{
 echo 'Database created!';

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/utilities.html (1 of 5) [12/20/2007 11:01:03 PM]

CodeIgniter User Guide : Database Utility Class

}

$this->dbutil->drop_database('db_name')

Permits you to drop the database specified in the first parameter. Returns TRUE/
FALSE based on success or failure:

if ($this->dbutil->drop_database('my_db'))
{
 echo 'Database deleted!';
}

$this->dbutil->list_databases()

Returns an array of database names:

$dbs = $this->dbutil->list_databases();

foreach($dbs as $db)
{
 echo $db;
}

$this->dbutil->optimize_table('table_name');

Note: This features is only available for MySQL/MySQLi databases.

Permits you to optimize a table using the table name specified in the first parameter.
Returns TRUE/FALSE based on success or failure:

if ($this->dbutil->optimize_table('table_name'))
{
 echo 'Success!';
}

Note: Not all database platforms support table optimization.

$this->dbutil->repair_table('table_name');

Note: This features is only available for MySQL/MySQLi databases.

Permits you to repair a table using the table name specified in the first parameter.
Returns TRUE/FALSE based on success or failure:

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/utilities.html (2 of 5) [12/20/2007 11:01:03 PM]

CodeIgniter User Guide : Database Utility Class

if ($this->dbutil->repair_table('table_name'))
{
 echo 'Success!';
}

Note: Not all database platforms support table repairs.

$this->dbutil->optimize_database();

Note: This features is only available for MySQL/MySQLi databases.

Permits you to optimize the database your DB class is currently connected to. Returns
an array containing the DB status messages or FALSE on failure.

$result = $this->dbutil->optimize_database();

if ($result !== FALSE)
{
 print_r($result);
}

Note: Not all database platforms support table optimization.

$this->dbutil->csv_from_result($db_result)

Permits you to generate a CSV file from a query result. The first parameter of the
function must contain the result object from your query. Example:

$this->load->dbutil();

$query = $this->db->query("SELECT * FROM mytable");

echo $this->dbutil->csv_from_result($query);

The second and third parameters allows you to set the delimiter and newline
character. By default tabs are used as the delimiter and "\n" is used as a new line.
Example:

$delimiter = ",";
$newline = "\r\n";

echo $this->dbutil->csv_from_result($query, $delimiter, $newline);

Important: This function will NOT write the CSV file for you. It simply creates the
CSV layout. If you need to write the file use the File Helper.

$this->dbutil->xml_from_result($db_result)

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/utilities.html (3 of 5) [12/20/2007 11:01:03 PM]

CodeIgniter User Guide : Database Utility Class

Permits you to generate an XML file from a query result. The first parameter expects a
query result object, the second may contain an optional array of config parameters.
Example:

$this->load->dbutil();

$query = $this->db->query("SELECT * FROM mytable");

$config = array (
 'root' => 'root',
 'element' => 'element',
 'newline' => "\n",
 'tab' => "\t"
);

echo $this->dbutil->xml_from_result($query, $config);

Important: This function will NOT write the XML file for you. It simply creates the
XML layout. If you need to write the file use the File Helper.

$this->dbutil->backup()

Permits you to backup your full database or individual tables. The backup data can be
compressed in either Zip or Gzip format.

Note: This features is only available for MySQL/MySQLi databases.

Note: Due to the limited execution time and memory available to PHP, backing up
very large databases may not be possible. If your database is very large you might
need to backup directly from your SQL server via the command line, or have your
server admin do it for you if you do not have root privileges.

Usage Example

// Load the DB utility class
$this->load->dbutil();

// Backup your entire database and assign it to a variable
$backup =& $this->dbutil->backup();

// Load the file helper and write the file to your server
$this->load->helper('file');
write_file('/path/to/mybackup.gz', $backup);

// Load the download helper and send the file to your desktop
$this->load->helper('download');
force_download('mybackup.gz', $backup);

Setting Backup Preferences

Backup preferences are set by submitting an array of values to the first parameter of
the backup function. Example:

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/utilities.html (4 of 5) [12/20/2007 11:01:03 PM]

CodeIgniter User Guide : Database Utility Class

$prefs = array(
 'tables' => array('table1', 'table2'), // Array of tables to backup.
 'ignore' => array(), // List of tables to omit from the backup
 'format' => 'txt', // gzip, zip, txt
 'filename' => 'mybackup.sql', // File name - NEEDED ONLY WITH ZIP FILES
 'add_drop' => TRUE, // Whether to add DROP TABLE statements to backup file
 'add_insert' => TRUE, // Whether to add INSERT data to backup file
 'newline' => "\n" // Newline character used in backup file
);

$this->dbutil->backup($prefs);

Description of Backup Preferences

Preference Default Value Options Description

tables empty array None An array of tables you want backed up. If left
blank all tables will be exported.

ignore empty array None An array of tables you want the backup routine
to ignore.

format gzip gzip, zip, txt The file format of the export file.

filename the current date/time None The name of the backed-up file. The name is
needed only if you are using zip compression.

add_drop TRUE TRUE/FALSE Whether to include DROP TABLE statements in
your SQL export file.

add_insert TRUE TRUE/FALSE Whether to include INSERT statements in your
SQL export file.

newline "\n" "\n", "\r", "\r\n" Type of newline to use in your SQL export file.

Previous Topic: DB Caching Class · Top of Page · User Guide Home · Next Topic: Email Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/database/utilities.html (5 of 5) [12/20/2007 11:01:03 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Config Class

Search User Guide

Config Class

The Config class provides a means to retrieve configuration
preferences. These preferences can come from the default config file
(application/config/config.php) or from your own custom config
files.

Note: This class is initialized automatically by the system so there
is no need to do it manually.

Anatomy of a Config File

By default, CodeIgniter has a one primary config file, located at
application/config/config.php. If you open the file using your
text editor you'll see that config items are stored in an array called
$config.

You can add your own config items to this file, or if you prefer to
keep your configuration items separate (assuming you even need
config items), simply create your own file and save it in config
folder.

Note: If you do create your own config files use the same format as
the primary one, storing your items in an array called $config.
CodeIgniter will intelligently manage these files so there will be no
conflict even though the array has the same name (assuming an
array index is not named the same as another).

Loading a Config File

Note: CodeIgniter automatically loads the primary config file
(application/config/config.php), so you will only need to load a
config file if you have created your own.

There are two ways to load a config file:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/config.html (1 of 4) [12/20/2007 11:01:04 PM]

CodeIgniter User Guide : Config Class

1. Manual Loading

To load one of your custom config files you will use the following
function within the controller that needs it:

$this->config->load('filename');

Where filename is the name of your config file, without the .php
file extension.

If you need to load multiple config files normally they will be
merged into one master config array. Name collisions can occur,
however, if you have identically named array indexes in different
config files. To avoid collisions you can set the second parameter
to TRUE and each config file will be stored in an array index
corresponding to the name of the config file. Example:

// Stored in an array with this prototype: $this->config['blog_settings']
= $config
$this->config->load('blog_settings', TRUE);

Please see the section entitled Fetching Config Items below to
learn how to retrieve config items set this way.

The third parameter allows you to suppress errors in the event
that a config file does not exist:

$this->config->load('blog_settings', FALSE, TRUE);

2. Auto-loading

If you find that you need a particular config file globally, you can
have it loaded automatically by the system. To do this, open the
autoload.php file, located at application/config/autoload.
php, and add your config file as indicated in the file.

Fetching Config Items

To retrieve an item from your config file, use the following function:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/config.html (2 of 4) [12/20/2007 11:01:04 PM]

CodeIgniter User Guide : Config Class

$this->config->item('item name');

Where item name is the $config array index you want to retrieve.
For example, to fetch your language choice you'll do this:

$lang = $this->config->item('language');

The function returns FALSE (boolean) if the item you are trying to
fetch does not exist.

If you are using the second parameter of the $this->config->load
function in order to assign your config items to a specific index you
can retrieve it by specifying the index name in the second
parameter of the $this->config->item() function. Example:

// Loads a config file named blog_settings.php and assigns it to an index
named "blog_settings"
$this->config->load('blog_settings', 'TRUE');

// Retrieve a config item named site_name contained within the blog_settings
array
$site_name = $this->config->item('site_name', 'blog_settings');

// An alternate way to specify the same item:
$blog_config = $this->config->item('blog_settings');
$site_name = $blog_config['site_name'];

Setting a Config Item

If you would like to dynamically set a config item or change an
existing one, you can so using:

$this->config->set_item('item_name', 'item_value');

Where item_name is the $config array index you want to change,
and item_value is its value.

Helper Functions

The config class has the following helper functions:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/config.html (3 of 4) [12/20/2007 11:01:04 PM]

CodeIgniter User Guide : Config Class

$this->config->site_url();

This function retrieves the URL to your site, along with the "index"
value you've specified in the config file.

$this->config->system_url();

This function retrieves the URL to your system folder.

Previous Topic: Calendaring Class · Top of Page · User Guide Home · Next Topic: Database Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/config.html (4 of 4) [12/20/2007 11:01:04 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Hooks

Search User Guide

Hooks - Extending the Framework Core

CodeIgniter's Hooks feature provides a means to tap into and modify the inner
workings of the framework without hacking the core files. When CodeIgniter runs it
follows a specific execution process, diagramed in the Application Flow page. There
may be instances, however, where you'd like to cause some action to take place at
a particular stage in the execution process. For example, you might want to run a
script right before your controllers get loaded, or right after, or you might want to
trigger one of your own scripts in some other location.

Enabling Hooks

The hooks feature can be globally enabled/disabled by setting the following item in
the application/config/config.php file:

$config['enable_hooks'] = TRUE;

Defining a Hook

Hooks are defined in application/config/hooks.php file. Each hook is specified
as an array with this prototype:

$hook['pre_controller'] = array(
 'class' => 'MyClass',
 'function' => 'Myfunction',
 'filename' => 'Myclass.php',
 'filepath' => 'hooks',
 'params' => array('beer', 'wine', 'snacks')
);

Notes:
The array index correlates to the name of the particular hook point you want to use.
In the above example the hook point is pre_controller. A list of hook points is
found below. The following items should be defined in your associative hook array:

● class The name of the class you wish to invoke. If you prefer to use a procedural
function instead of a class, leave this item blank.

● function The function name you wish to call.

● filename The file name containing your class/function.

● filepath The name of the directory containing your script. Note: Your script must
be located in a directory INSIDE your application folder, so the file path is relative
to that folder. For example, if your script is located in application/hooks, you will

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/hooks.html (1 of 3) [12/20/2007 11:01:05 PM]

CodeIgniter User Guide : Hooks

simply use hooks as your filepath. If your script is located in application/hooks/
utilities you will use hooks/utilities as your filepath. No trailing slash.

● params Any parameters you wish to pass to your script. This item is optional.

Multiple Calls to the Same Hook

If want to use the same hook point with more then one script, simply make your
array declaration multi-dimensional, like this:

$hook['pre_controller'][] = array(
 'class' => 'MyClass',
 'function' => 'Myfunction',
 'filename' => 'Myclass.php',
 'filepath' => 'hooks',
 'params' => array('beer', 'wine', 'snacks')
);

$hook['pre_controller'][] = array(
 'class' => 'MyOtherClass',
 'function' => 'MyOtherfunction',
 'filename' => 'Myotherclass.php',
 'filepath' => 'hooks',
 'params' => array('red', 'yellow', 'blue')
);

Notice the brackets after each array index:

$hook['pre_controller'][]

This permits you to the same hook point with multiple scripts. The order you define
your array will be the execution order.

Hook Points

The following is a list of available hook points.

● pre_system
Called very early during system execution. Only the benchmark and hooks class
have been loaded at this point. No routing or other processes have happened.

● pre_controller
Called immediately prior to any of your controllers being called. All base classes,
routing, and security checks have been done.

● post_controller_constructor
Called immediately after your controller is instantiated, but prior to any method calls
happening.

● post_controller
Called immediately after your controller is fully executed.

● display_override

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/hooks.html (2 of 3) [12/20/2007 11:01:05 PM]

CodeIgniter User Guide : Hooks

Overrides the _display() function, used to send the finalized page to the web
browser at the end of system execution. This permits you to use your own display
methodology. Note that the finalized data will be available by calling $this-
>output->get_output()

● cache_override
Enables you to call your own function instead of the _display_cache() function in
the output class. This permits you to use your own cache display mechanism.

● scaffolding_override
Permits a scaffolding request to trigger your own script instead.

● post_system
Called after the final rendered page is sent to the browser, at the end of system
execution after the finalized data is sent to the browser.

Previous Topic: Creating Core Classes · Top of Page · User Guide Home · Next Topic: Auto-loading Resources

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/hooks.html (3 of 3) [12/20/2007 11:01:05 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Managing your Applications

Search User Guide

Managing your Applications

By default it is assumed that you only intend to use CodeIgniter to manage
one application, which you will build in your system/application/
directory. It is possible, however, to have multiple sets of applications that
share a single CodeIgniter installation, or even to rename or relocate your
application folder.

Renaming the Application Folder

If you would like to rename your application folder you may do so as long
as you open your main index.php file and set its name using the
$application_folder variable:

$application_folder = "application";

Relocating your Application Folder

It is possible to move your application folder to a different location on
your server than your system folder. To do so open your main index.php
and set a full server path in the $application_folder variable.

$application_folder = "/Path/to/your/application";

Running Multiple Applications with one CodeIgniter Installation

If you would like to share a common CodeIgniter installation to manage
several different applications simply put all of the directories located inside
your application folder into their own sub-folder.

For example, let's say you want to create two applications, "foo" and "bar".
You will structure your application folder like this:

system/application/foo/
system/application/foo/config/
system/application/foo/controllers/
system/application/foo/errors/

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/managing_apps.html (1 of 2) [12/20/2007 11:01:06 PM]

CodeIgniter User Guide : Managing your Applications

system/application/foo/libraries/
system/application/foo/models/
system/application/foo/views/
system/application/bar/
system/application/bar/config/
system/application/bar/controllers/
system/application/bar/errors/
system/application/bar/libraries/
system/application/bar/models/
system/application/bar/views/

To select a particular application for use requires that you open your main
index.php file and set the $application_folder variable. For example, to
select the "foo" application for use you would do this:

$application_folder = "application/foo";

Note: Each of your applications will need its own index.php file which
calls the desired application. The index.php file can be named anything you
want.

Previous Topic: Profiling Your Application · Top of Page · User Guide Home · Next Topic: Alternative PHP Syntax

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/managing_apps.html (2 of 2) [12/20/2007 11:01:06 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Security

Search User Guide

Security

This page describes some "best practices" regarding web security,
and details CodeIgniter's internal security features.

URI Security

CodeIgniter is fairly restrictive regarding which characters it allows
in your URI strings in order to help minimize the possibility that
malicious data can be passed to your application. URIs may only
contain the following:

● Alpha-numeric text

● Tilde: ~

● Period: .

● Colon: :

● Underscore: _

● Dash: -

GET, POST, and COOKIE Data

GET data is simply disallowed by CodeIgniter since the system
utilizes URI segments rather than traditional URL query strings
(unless you have the query string option enabled in your config file).
The global GET array is unset by the Input class during system
initialization.

Register_globals

During system initialization all global variables are unset, except
those found in the $_POST and $_COOKIE arrays. The unsetting
routine is effectively the same as register_globals = off.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/security.html (1 of 3) [12/20/2007 11:01:07 PM]

CodeIgniter User Guide : Security

magic_quotes_runtime

The magic_quotes_runtime directive is turned off during system
initialization so that you don't have to remove slashes when
retrieving data from your database.

Best Practices

Before accepting any data into your application, whether it be POST
data from a form submission, COOKIE data, URI data, XML-RPC
data, or even data from the SERVER array, you are encouraged to
practice this three step approach:

1. Filter the data as if it were tainted.

2. Validate the data to ensure it conforms to the correct type,
length, size, etc. (sometimes this step can replace step one)

3. Escape the data before submitting it into your database.

CodeIgniter provides the following functions to assist in this process:

● XSS Filtering

CodeIgniter comes with a Cross Site Scripting filter. This filter looks
for commonly used techniques to embed malicious Javascript into
your data, or other types of code that attempt to hijack cookies or
do other malicious things. The XSS Filter is described here.

● Validate the data

CodeIgniter has a Validation Class that assists you in validating,
filtering, and prepping your data.

● Escape all data before database insertion

Never insert information into your database without escaping it.
Please see the section that discusses queries for more information.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/security.html (2 of 3) [12/20/2007 11:01:07 PM]

CodeIgniter User Guide : Security

Previous Topic: Alternative PHP · Top of Page · User Guide Home · Next Topic: Benchmarking Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/security.html (3 of 3) [12/20/2007 11:01:07 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Plugins

Search User Guide

Plugins

Plugins work almost identically to Helpers. The main difference is
that a plugin usually provides a single function, whereas a Helper is
usually a collection of functions. Helpers are also considered a part
of the core system; plugins are intended to be created and shared
by our community.

Plugins should be saved to your system/plugins directory or you
can create a folder called plugins inside your application folder
and store them there. CodeIgniter will look first in your system/
application/plugins directory. If the directory does not exist or
the specified plugin is not located there CI will instead look in your
global system/plugins folder.

Loading a Plugin

Loading a plugin file is quite simple using the following function:

$this->load->plugin('name');

Where name is the file name of the plugin, without the .php file
extension or the "plugin" part.

For example, to load the Captcha plugin, which is named
captcha_pi.php, you will do this:

$this->load->plugin('captcha');

A plugin can be loaded anywhere within your controller functions (or
even within your View files, although that's not a good practice), as
long as you load it before you use it. You can load your plugins in
your controller constructor so that they become available
automatically in any function, or you can load a plugin in a specific
function that needs it.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/plugins.html (1 of 2) [12/20/2007 11:01:07 PM]

CodeIgniter User Guide : Plugins

Note: The Plugin loading function above does not return a value, so
don't try to assign it to a variable. Just use it as shown.

Loading Multiple Plugins

If you need to load more than one plugin you can specify them in an
array, like this:

$this->load->plugin(array('plugin1', 'plugin2', 'plugin3'));

Auto-loading Plugins

If you find that you need a particular plugin globally throughout
your application, you can tell CodeIgniter to auto-load it during
system initialization. This is done by opening the application/
config/autoload.php file and adding the plugin to the autoload
array.

Using a Plugin

Once you've loaded the Plugin, you'll call it the way you would a
standard PHP function.

Previous Topic: Helpers · Top of Page · User Guide Home · Next Topic: Using Libraries

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/plugins.html (2 of 2) [12/20/2007 11:01:07 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Benchmarking Class

Search User Guide

Benchmarking Class

CodeIgniter has a Benchmarking class that is always active, enabling
the time difference between any two marked points to be calculated.

Note: This class is initialized automatically by the system so there is
no need to do it manually.

In addition, the benchmark is always started the moment the
framework is invoked, and ended by the output class right before
sending the final view to the browser, enabling a very accurate timing
of the entire system execution to be shown.

Table of Contents

● Using the Benchmark Class

● Profiling Your Benchmark Points

● Displaying Total Execution Time

● Displaying Memory Consumption

Using the Benchmark Class

The Benchmark class can be used within your controllers, views, or
your Models. The process for usage is this:

1. Mark a start point

2. Mark an end point

3. Run the "elapsed time" function to view the results

Here's an example using real code:

$this->benchmark->mark('code_start');

// Some code happens here

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/benchmark.html (1 of 4) [12/20/2007 11:01:08 PM]

CodeIgniter User Guide : Benchmarking Class

$this->benchmark->mark('code_end');

echo $this->benchmark->elapsed_time('code_start', 'code_end');

Note: The words "code_start" and "code_end" are arbitrary. They are
simply words used to set two markers. You can use any words you
want, and you can set multiple sets of markers. Consider this example:

$this->benchmark->mark('dog');

// Some code happens here

$this->benchmark->mark('cat');

// More code happens here

$this->benchmark->mark('bird');

echo $this->benchmark->elapsed_time('dog', 'cat');
echo $this->benchmark->elapsed_time('cat', 'bird');
echo $this->benchmark->elapsed_time('dog', 'bird');

Profiling Your Benchmark Points

If you want your benchmark data to be available to the Profiler all of
your marked points must be set up in pairs, and each mark point
name must end with _start and _end. Each pair of points must
otherwise be named identically. Example:

$this->benchmark->mark('my_mark_start');

// Some code happens here...

$this->benchmark->mark('my_mark_end');

$this->benchmark->mark('another_mark_start');

// Some more code happens here...

$this->benchmark->mark('another_mark_end');

Please read the Profiler page for more information.

Displaying Total Execution Time

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/benchmark.html (2 of 4) [12/20/2007 11:01:08 PM]

CodeIgniter User Guide : Benchmarking Class

If you would like to display the total elapsed time from the moment
CodeIgniter starts to the moment the final output is sent to the
browser, simply place this in one of your view templates:

<?=$this->benchmark->elapsed_time();?>

You'll notice that it's the same function used in the examples above to
calculate the time between two point, except you are not using any
parameters. When the parameters are absent, CodeIgniter does not
stop the benchmark until right before the final output is sent to the
browser. It doesn't matter where you use the function call, the timer
will continue to run until the very end.

An alternate way to show your elapsed time in your view files is to use
this pseudo-variable, if you prefer not to use the pure PHP:

{elapsed_time}

Note: If you want to benchmark anything within your controller
functions you must set your own start/end points.

Displaying Memory Consumption

If your PHP installation is configured with --enable-memory-limit, you
can display the amount of memory consumed by the entire system
using the following code in one of your view file:

<?=$this->benchmark->memory_usage();?>

Note: This function can only be used in your view files. The
consumption will reflect the total memory used by the entire app.

An alternate way to show your memory usage in your view files is to
use this pseudo-variable, if you prefer not to use the pure PHP:

{memory_usage}

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/benchmark.html (3 of 4) [12/20/2007 11:01:08 PM]

CodeIgniter User Guide : Benchmarking Class

Previous Topic: Security · Top of Page · User Guide Home · Next Topic: Calendaring Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/benchmark.html (4 of 4) [12/20/2007 11:01:08 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide

CodeIgniter User Guide Version 1.5.3
Search User Guide

Session Class

The Session class permits you maintain a user's "state" and track
their activity while they browse your site. The Session class stores
session information for each user as serialized (and optionally
encrypted) data in a cookie. It can also store the session data in a
database table for added security, as this permits the session ID in
the user's cookie to be matched against the stored session ID. By
default only the cookie is saved. If you choose to use the database
option you'll need to create the session table as indicated below.

Note: The Session class does not utilize native PHP sessions. It
generates its own session data, offering more flexibility for
developers.

Initializing a Session

Sessions will typically run globally with each page load, so the
session class must either be initialized in your controller
constructors, or it can be auto-loaded by the system. For the most
part the session class will run unattended in the background, so
simply initializing the class will cause it to read, create, and update
sessions.

To initialize the Session class manually in your controller
constructor, use the $this->load->library function:

$this->load->library('session');

Once loaded, the Sessions library object will be available using:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/sessions.html (1 of 8) [12/20/2007 11:01:10 PM]

javascript:void(0);

CodeIgniter User Guide

$this->session

How do Sessions work?

When a page is loaded, the session class will check to see if valid
session data exists in the user's session cookie. If sessions data
does not exist (or if it has expired) a new session will be created
and saved in the cookie. If a session does exist, its information will
be updated and the cookie will be updated. With each update, the
session_id will be regenerated.

It's important for you to understand that once initialized, the
Session class runs automatically. There is nothing you need to do to
cause the above behavior to happen. You can, as you'll see below,
work with session data or even add your own data to a user's
session, but the process of reading, writing, and updating a session
is automatic.

What is Session Data?

A session, as far as CodeIgniter is concerned, is simply an array
containing the following information:

● The user's unique Session ID (this is a statistically random string
with very strong entropy, hashed with MD5 for portability, and
regenerated (by default) every five minutes)

● The user's IP Address

● The user's User Agent data (the first 50 characters of the browser
data string)

● The "last activity" and "last visit" time stamps.

The above data is stored in a cookie as a serialized array with this
prototype:

[array]
(
 'session_id' => random hash,
 'ip_address' => 'string - user IP address',
 'user_agent' => 'string - user agent data',
 'last_activity' => timestamp,
 'last_visit' => timestamp
)

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/sessions.html (2 of 8) [12/20/2007 11:01:10 PM]

CodeIgniter User Guide

If you have the encryption option enabled, the serialized array will
be encrypted before being stored in the cookie, making the data
highly secure and impervious to being read or altered by someone.
More info regarding encryption can be found here, although the
Session class will take care of initializing and encrypting the data
automatically.

Note: Session cookies are only updated every five minutes by
default to reduce processor load. If you repeatedly reload a page
you'll notice that the "last activity" time only updates if five minutes
or more has passed since the last time the cookie was written. This
time is configurable my changing the $config['time_to_update'] line
in your system/config/config.php file.

Retrieving Session Data

Any piece of information from the session array is available using
the following function:

$this->session->userdata('item');

Where item is the array index corresponding to the item you wish
to fetch. For example, to fetch the session ID you will do this:

$session_id = $this->session->userdata('session_id');

Note: The function returns FALSE (boolean) if the item you are
trying to access does not exist.

Adding Custom Session Data

A useful aspect of the session array is that you can add your own
data to it and it will be stored in the user's cookie. Why would you
want to do this? Here's one example:

Let's say a particular user logs into your site. Once authenticated,
you could add their username and email address to the session
cookie, making that data globally available to you without having to

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/sessions.html (3 of 8) [12/20/2007 11:01:10 PM]

CodeIgniter User Guide

run a database query when you need it.

To add your data to the session array involves passing an array
containing your new data to this function:

$this->session->set_userdata($array);

Where $array is an associative array containing your new data.
Here's an example:

$newdata = array(
 'username' => 'johndoe',
 'email' => 'johndoe@some-site.com',
 'logged_in' => TRUE
);

$this->session->set_userdata($newdata);

If you want to add userdata one value at a time, set_userdata() also
supports this syntax.

$this->session->set_userdata('some_name', 'some_value');

Note: Cookies can only hold 4KB of data, so be careful not to
exceed the capacity. The encryption process in particular produces a
longer data string than the original so keep careful track of how
much data you are storing.

Removing Session Data

Just as set_userdata() can be used to add information into a
session, unset_userdata() can be used to remove it, by passing the
session key. For example, if you wanted to remove 'some_name'
from your session information:

$this->session->unset_userdata('some_name');

This function can also be passed an associative array of items to

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/sessions.html (4 of 8) [12/20/2007 11:01:10 PM]

CodeIgniter User Guide

unset.

$array_items = array('username' => '', 'email' => '');

$this->session->unset_userdata($array_items);

Flashdata

CodeIgniter supports "flashdata", or session data that will only ba
available for the next server request, and are then automatically
cleared. These can be very useful, and are typically used for
informational or status messages (for example: "record 2 deleted").

Note: Flash variables are prefaced with "flash_" so avoid this prefix
in your own session names.

To add flashdata:

$this->session->set_flashdata('item', 'value');

You can also pass an array to set_flashdata(), in the same manner
as set_userdata().

To read a flashdata variable:

$this->session->flashdata('item');

If you find that you need to preserve a flashdata variable through an
additional request, you can do so using the keep_flashdata()
function.

$this->session->keep_flashdata('item');

Saving Session Data to a Database

While the session data array stored in the user's cookie contains a
Session ID, unless you store session data in a database there is no
way to validate it. For some applications that require little or no

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/sessions.html (5 of 8) [12/20/2007 11:01:10 PM]

CodeIgniter User Guide

security, session ID validation may not be needed, but if your
application requires security, validation is mandatory.

When session data is available in a database, every time a valid
session is found in the user's cookie, a database query is performed
to match it. If the session ID does not match, the session is
destroyed. Session IDs can never be updated, they can only be
generated when a new session is created.

In order to store sessions, you must first create a database table for
this purpose. Here is the basic prototype (for MySQL) required by
the session class:

Note: By default the table is called ci_sessions, but you can name
it anything you want as long as you update the application/
config/config.php file so that it contains the name you have
chosen. Once you have created your database table you can enable
the database option in your config.php file as follows:

$config['sess_use_database'] = TRUE;

Once enabled, the Session class will store session data in the DB.

Make sure you've specified the table name in your config file as well:

$config['sess_table_name'] = 'ci_sessions";

Note: The Session class has built-in garbage collection which clears
out expired sessions so you do not need to write your own routine
to do it.

Destroying a Session

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/sessions.html (6 of 8) [12/20/2007 11:01:10 PM]

CodeIgniter User Guide

To clear the current session:

$this->session->sess_destroy();

Session Preferences

You'll find the following Session related preferences in your
application/config/config.php file:

Preference Default Options Description

sess_cookie_name ci_session None
The name you world
the session cookie
saved as.

sess_expiration 7200 None

The number of
seconds you would
like the session to
last. The default value
is 2 hours (7200
seconds). If you
would like a non-
expiring session set
the value to zero: 0

sess_encrypt_cookie FALSE TRUE/FALSE
(boolean)

Whether to encrypt
the session data.

sess_use_database FALSE TRUE/FALSE
(boolean)

Whether to save the
session data to a
database. You must
create the table
before enabling this
option.

sess_table_name ci_sessions Any valid SQL
table name

The name of the
session database
table.

sess_match_ip FALSE TRUE/FALSE
(boolean)

Whether to match the
user's IP address
when reading the
session data. Note
that some ISPs
dynamically changes
the IP, so if you want
a non-expiring session
you will likely set this
to FALSE.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/sessions.html (7 of 8) [12/20/2007 11:01:10 PM]

CodeIgniter User Guide

sess_match_useragent TRUE TRUE/FALSE
(boolean)

Whether to match the
User Agent when
reading the session
data.

Previous Topic: Pagination Class · Top of Page · User Guide Home · Next Topic: Trackback Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/sessions.html (8 of 8) [12/20/2007 11:01:10 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Server Requirements

Search User Guide

Server Requirements

● PHP version 4.3.2 or newer

● A Database. Supported databases are MySQL, MySQLi, MS SQL,
Postgre, Oracle, SQLite, and ODBC

Top of Page · User Guide Home · Next Topic: License Agreement

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/requirements.html [12/20/2007 11:01:10 PM]

http://www.php.net/
http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Change Log

Search User Guide

Change Log

Version 1.5.5

Release Date: -- still in development

● Added Flashdata variables, session_id regeneration and configurable
session update times to the Session class.

● Added the ability to auto-load Models

● Added $this->DB->save_queries variable to DB driver, enabling
queries to get saved or no. Previously they were always saved.

● Added $assign_to_controller variable in the main index.php file.
Anything that this variable contains will be passed automatically to a
controller constructor when initialized.

● Reorganized the URI and Routes classes for better clarity.

● Javascript Calendar plugin now uses the months and days from the
calendar language file, instead of hard-coded values,
internationalizing it.

● Removed "rand()" as a listed option from orderby in the Active
Record, as it was MySQL only.

● Added 'random' as an order_by() option in Active Record.

● Added where_in(), where_in_or(), where_not_in(), and
where_not_in_or() to Active Record.

● Added support for limit() into update() and delete() statements
in Active Record.

● Added the ability to pass an array of tables to the delete()
statement in Active Record.

● Added titles to all user manual pages.

● Added a check for NULL fields in the MySQL database backup utility.

● Documented the timezones() function in the Date Helper.

● Documented unset_userdata in the Session class.

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (1 of 18) [12/20/2007 11:01:14 PM]

CodeIgniter User Guide : Change Log

● Changed the behaviour of custom callbacks so that they no longer
trigger the "required" rule.

● Added a few additional mime type variations for CSV.

● Added strip_quotes() function to string helper.

● Added reduce_multiples() function to string helper.

● Added quotes_to_entities() function to string helper.

● Added form_reset() function to form helper.

● Added count_all_results() function to Active Record.

● Added a language entry for valid_ip validation error.

● Added a third parameter to Active Record's like() clause to control
where the wildcard goes.

● Moved the safe mode and auth checks for the Email library into the
constructor.

● Changed the behaviour of variables submitted to the where() clause
with no values to auto set "IS NULL"

● Fixed a bug in highlight_pharse() that caused an error with
slashes.

● Fixed a bug: $field_names[] vs $Ffield_names[] in postgre and sqlite
drivers

● Fixed a bug in word_wrap() of the Text Helper that incorrectly
referenced an object.

● Fixed a bug in the Email library where some timezones were
calculated incorrectly.

● Fixed a bug in Validation where valid_ip() wasn't called properly.

● Fixed a bug in the Session library where user agent matching would
fail on user agents ending with a space.

● Fixed a bug in database driver where num_rows property wasn't
getting updated.

● Fixed a bug in captcha calling an invalid PHP function.

● Fixed a bug in _html_entity_decode_callback() when
'global_xss_filtering' is enabled.

● Fixed a bug in the cookie helper "set_cookie" function. It was not
honoring the config settings.

● Fixed a bug that was making validation callbacks required even
when not set as such.

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (2 of 18) [12/20/2007 11:01:14 PM]

CodeIgniter User Guide : Change Log

● Fixed an example of comma-separated emails in the email library
documentation.

● Fixed an example in the Calendar library for Showing Next/Previous
Month Links.

● Fixed a typo in the database language file.

● Fixed a typo in the image language file "suppor" to "support".

● Fixed an example for XML RPC.

● Fixed an example of accept_charset() in the User Agent Library.

● Fixed a missing "?>" in the smiley helper.

● Fixed a typo in the docblock comments that had CodeIgniter spelled
CodeIgnitor.

● Fixed a typo in the String Helper (uniquid changed to uniqid)

● Fixed a typo in the DocBlock comment for unset_userdata() in
Session.

● Fixed a typo in the table library docs.

● Moved part of the userguide menu javascript to an external file.

● Deprecated from Active Record; getwhere() for get_where();
groupby() for group_by(); orderby() for order_by; orwhere()
for or_where(); and orlike() for or_like().

Version 1.5.4

Release Date: July 12, 2007

● Added custom Language files to the autoload options.

● Added stripslashes() to the _clean_input_data() function in the Input
class when magic quotes is on so that data will always be un-slashed
within the framework.

● Added array to string into the profiler.

● Added some additional mime types in application/config/mimes.php.

● Added filename_security() method to Input library.

● Added some additional arguments to the Inflection helper singular()
to compensate for words ending in "s". Also added a force parameter
to pluralize().

● Added $config['charset'] to the config file. Default value is 'UTF-8',

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (3 of 18) [12/20/2007 11:01:14 PM]

CodeIgniter User Guide : Change Log

used in some string handling functions.

● Fixed MSSQL insert_id().

● Fixed a logic error in the DB trans_status() function. It was
incorrectly returning TRUE on failure and FALSE on success.

● Fixed a bug that was allowing multiple load attempts on extended
classes.

● Fixed a bug in the bootstrap file that was incorrectly attempting to
discern the full server path even when it was explicity set by the
user.

● Fixed a bug in the escape_str() function in the MySQL driver.

● Fixed a typo in the Calendar library

● Fixed a typo in rpcs.php library

● Fixed a bug in the Zip library, providing PC Zip file compatibility with
Mac OS X

● Fixed a bug in router that was ignoring the scaffolding route for
optimization

● Fixed an IP validation bug.

● Fixed a bug in display of POST keys in the Profiler output

● Fixed a bug in display of queries with characters that would be
interpreted as HTML in the Profiler output

● Fixed a bug in display of Email class print debugger with characters
that would be interpreted as HTML in the debugging output

● Fixed a bug in the Content-Transfer-Encoding of HTML emails with
the quoted-printable MIME type

● Fixed a bug where one could unset certain PHP superglobals by
setting them via GET or POST data

● Fixed an undefined function error in the insert_id() function of the
PostgreSQL driver

● Fixed various doc typos.

● Documented two functions from the String helper that were missing
from the user guide: trim_slashes() and reduce_double_slashes().

● Docs now validate to XHTML 1 transitional

● Updated the XSS Filtering to take into account the IE expression()
ability and improved certain deletions to prevent possible exploits

● Modified the Router so that when Query Strings are Enabled, the

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (4 of 18) [12/20/2007 11:01:14 PM]

CodeIgniter User Guide : Change Log

controller trigger and function trigger values are sanitized for
filename include security.

● Modified the is_image() method in the Upload library to take into
account Windows IE 6/7 eccentricities when dealing with MIMEs

● Modified XSS Cleaning routine to be more performance friendly and
compatible with PHP 5.2's new PCRE backtrack and recursion limits.

● Modified the URL Helper to type cast the $title as a string in case a
numeric value is supplied

● Modified Form Helper form_dropdown() to type cast the keys and
values of the options array as strings, allowing numeric values to be
properly set as 'selected'

● Deprecated the use if is_numeric() in various places since it allows
periods. Due to compatibility problems with ctype_digit(), making
it unreliable in some installations, the following regular expression
was used instead: preg_match("/[^0-9]/", $n)

● Deprecated: APPVER has been deprecated and replaced with
CI_VERSION for clarity.

Version 1.5.3

Release Date: April 15, 2007

● Added array to string into the profiler

● Code Igniter references updated to CodeIgniter

● pMachine references updated to EllisLab

● Fixed a bug in the repeater function of string helper.

● Fixed a bug in ODBC driver

● Fixed a bug in result_array() that was returning an empty array
when no result is produced.

● Fixed a bug in the redirect function of the url helper.

● Fixed an undefined variable in Loader

● Fixed a version bug in the Postgre driver

● Fixed a bug in the textarea function of the form helper for use with
strings

● Fixed doc typos.

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (5 of 18) [12/20/2007 11:01:14 PM]

CodeIgniter User Guide : Change Log

Version 1.5.2

Release Date: February 13, 2007

● Added subversion information to the downloads page.

● Added support for captions in the Table Library

● Fixed a bug in the download_helper that was causing Internet
Explorer to load rather then download

● Fixed a bug in the Active Record Join function that was not taking
table prefixes into consideration.

● Removed unescaped variables in error messages of Input and Router
classes

● Fixed a bug in the Loader that was causing errors on Libraries
loaded twice. A debug message is now silently made in the log.

● Fixed a bug in the form helper that gave textarea a value attribute

● Fixed a bug in the Image Library that was ignoring resizing the same
size image

● Fixed some doc typos.

Version 1.5.1

Release Date: November 23, 2006

● Added support for submitting arrays of libraries in the $this->load-
>library function.

● Added support for naming custom library files in lower or uppercase.

● Fixed a bug related to output buffering.

● Fixed a bug in the active record class that was not resetting query
data after a completed query.

● Fixed a bug that was suppressing errors in controllers.

● Fixed a problem that can cause a loop to occur when the config file
is missing.

● Fixed a bug that occurred when multiple models were loaded with
the third parameter set to TRUE.

● Fixed an oversight that was not unsetting globals properly in the
input sanitize function.

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (6 of 18) [12/20/2007 11:01:15 PM]

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/image_lib.php

CodeIgniter User Guide : Change Log

● Fixed some bugs in the Oracle DB driver.

● Fixed an incorrectly named variable in the MySQLi result driver.

● Fixed some doc typos.

Version 1.5.0.1

Release Date: October 31, 2006

● Fixed a problem in which duplicate attempts to load helpers and
classes were not being stopped.

● Fixed a bug in the word_wrap() helper function.

● Fixed an invalid color Hex number in the Profiler class.

● Fixed a corrupted image in the user guide.

Version 1.5.0

Release Date: October 30, 2006

● Added DB utility class, permitting DB backups, CVS or XML files from
DB results, and various other functions.

● Added Database Caching Class.

● Added transaction support to the database classes.

● Added Profiler Class which generates a report of Benchmark
execution times, queries, and POST data at the bottom of your
pages.

● Added User Agent Library which allows browsers, robots, and mobile
devises to be identified.

● Added HTML Table Class , enabling tables to be generated from
arrays or database results.

● Added Zip Encoding Library.

● Added FTP Library.

● Added the ability to extend libraries and extend core classes, in
addition to being able to replace them.

● Added support for storing models within sub-folders.

● Added Download Helper.

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (7 of 18) [12/20/2007 11:01:15 PM]

CodeIgniter User Guide : Change Log

● Added simple_query() function to the database classes

● Added standard_date() function to the Date Helper.

● Added $query->free_result() to database class.

● Added $query->list_fields() function to database class

● Added $this->db->platform() function

● Added new File Helper: get_filenames()

● Added new helper: Smiley Helper

● Added support for and lists in the HTML Helper

● Added the ability to rewrite short tags on-the-fly, converting them to
standard PHP statements, for those servers that do not support
short tags. This allows the cleaner syntax to be used regardless of
whether it's supported by the server.

● Added the ability to rename or relocate the "application" folder.

● Added more thorough initialization in the upload class so that all
class variables are reset.

● Added "is_numeric" to validation, which uses the native PHP
is_numeric function.

● Improved the URI handler to make it more reliable when the $config
['uri_protocol'] item is set to AUTO.

● Moved most of the functions in the Controller class into the Loader
class, allowing fewer reserved function names for controllers when
running under PHP 5.

● Updated the DB Result class to return an empty array when $query-
>result() doesn't produce a result.

● Updated the input->cookie() and input->post() functions in
Input Class to permit arrays contained cookies that are arrays to be
run through the XSS filter.

● Documented three functions from the Validation class that were
missing from the user guide: set_select(), set_radio(), and
set_checkbox().

● Fixed a bug in the Email class related to SMTP Helo data.

● Fixed a bug in the word wrapping helper and function in the email
class.

● Fixed a bug in the validation class.

● Fixed a bug in the typography helper that was incorrectly wrapping

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (8 of 18) [12/20/2007 11:01:15 PM]

CodeIgniter User Guide : Change Log

block level elements in paragraph tags.

● Fixed a problem in the form_prep() function that was double
encoding entities.

● Fixed a bug that affects some versions of PHP when output buffering
is nested.

● Fixed a bug that caused CI to stop working when the PHP magic
__get() or __set() functions were used within models or controllers.

● Fixed a pagination bug that was permitting negative values in the
URL.

● Fixed an oversight in which the Loader class was not allowed to be
exteneded.

● Changed _get_config() to get_config() since the function is not a
private one.

● Deprecated "init" folder. Initialization happens automatically now.
Please see documentation.

● Deprecated $this->db->field_names() USE $this->db->list_fields()

● Deprecated the $config['log_errors'] item from the config.php
file. Instead, $config['log_threshold'] can be set to "0" to turn it
off.

Version 1.4.1

Release Date: September 21, 2006

● Added a new feature that passes URI segments directly to your
function calls as parameters. See the Controllers page for more info.

● Added support for a function named _output(), which when used in
your controllers will received the final rendered output from the
output class. More info in the Controllers page.

● Added several new functions in the URI Class to let you retrieve and
manipulate URI segments that have been re-routed using the URI
Routing feature. Previously, the URI class did not permit you to
access any re-routed URI segments, but now it does.

● Added $this->output->set_header() function, which allows you to
set server headers.

● Updated plugins, helpers, and language classes to allow your
application folder to contain its own plugins, helpers, and language

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (9 of 18) [12/20/2007 11:01:15 PM]

file:///D:/_darkhorse/websites/codeigniter/user_guide/controllers.html
file:///D:/_darkhorse/websites/codeigniter/user_guide/controllers.html
file:///D:/_darkhorse/websites/codeigniter/user_guide/routing.html
file:///D:/_darkhorse/websites/codeigniter/user_guide/routing.html

CodeIgniter User Guide : Change Log

folders. Previously they were always treated as global for your entire
installation. If your application folder contains any of these resources
they will be used instead the global ones.

● Added Inflector helper.

● Added element() function in the array helper.

● Added RAND() to active record orderby() function.

● Added delete_cookie() and get_cookie() to Cookie helper, even
though the input class has a cookie fetching function.

● Added Oracle database driver (still undergoing testing so it might
have some bugs).

● Added the ability to combine pseudo-variables and php variables in
the template parser class.

● Added output compression option to the config file.

● Removed the is_numeric test from the db->escape() function.

● Fixed a MySQLi bug that was causing error messages not to contain
proper error data.

● Fixed a bug in the email class which was causing it to ignore
explicitly set alternative headers.

● Fixed a bug that was causing a PHP error when the Exceptions class
was called within the get_config() function since it was causing
problems.

● Fixed an oversight in the cookie helper in which the config file cookie
settings were not being honored.

● Fixed an oversight in the upload class. An item mentioned in the 1.4
changelog was missing.

● Added some code to allow email attachments to be reset when
sending batches of email.

● Deprecated the application/scripts folder. It will continue to work
for legacy users, but it is recommended that you create your own
libraries or models instead. It was originally added before CI had
user libraries or models, but it's not needed anymore.

● Deprecated the $autoload['core'] item from the autoload.php
file. Instead, please now use: $autoload['libraries']

● Deprecated the following database functions: $this->db-
>smart_escape_str() and $this->db->fields().

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (10 of 18) [12/20/2007 11:01:15 PM]

CodeIgniter User Guide : Change Log

Version 1.4.0

Release Date: September 17, 2006

● Added Hooks feature, enabling you to tap into and modify the inner
workings of the framework without hacking the core files.

● Added the ability to organize controller files into sub-folders. Kudos
to Marco for suggesting this (and the next two) feature.

● Added regular expressions support for routing rules.

● Added the ability to remap function calls within your controllers.

● Added the ability to replace core system classes with your own
classes.

● Added support for % character in URL.

● Added the ability to supply full URLs using the anchor() helper
function.

● Added mode parameter to file_write() helper.

● Added support for changing the port number in the Postgre driver.

● Moved the list of "allowed URI characters" out of the Router class
and into the config file.

● Moved the MIME type array out of the Upload class and into its own
file in the applications/config/ folder.

● Updated the Upload class to allow the upload field name to be set
when calling do_upload().

● Updated the Config Library to be able to load config files silently,
and to be able to assign config files to their own index (to avoid
collisions if you use multiple config files).

● Updated the URI Protocol code to allow more options so that URLs
will work more reliably in different environments.

● Updated the form_open() helper to allow the GET method to be
used.

● Updated the MySQLi execute() function with some code to help
prevent lost connection errors.

● Updated the SQLite Driver to check for object support before
attempting to return results as objects. If unsupported it returns an
array.

● Updated the Models loader function to allow multiple loads of the

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (11 of 18) [12/20/2007 11:01:15 PM]

file:///D:/_darkhorse/websites/codeigniter/user_guide/hooks.html
file:///D:/_darkhorse/websites/codeigniter/user_guide/controllers.html
http://www.codeigniter.com/forums/viewthread/627/
file:///D:/_darkhorse/websites/codeigniter/user_guide/routing.html
file:///D:/_darkhorse/websites/codeigniter/user_guide/controllers.html
file:///D:/_darkhorse/websites/codeigniter/user_guide/core_classes.html

CodeIgniter User Guide : Change Log

same model.

● Updated the MS SQL driver so that single quotes are escaped.

● Updated the Postgre and ODBC drivers for better compatibility.

● Removed a strtolower() call that was changing URL segments to
lower case.

● Removed some references that were interfering with PHP 4.4.1
compatibility.

● Removed backticks from Postgre class since these are not needed.

● Renamed display() to _display() in the Output class to make it
clear that it's a private function.

● Deprecated the hash() function due to a naming conflict with a
native PHP function with the same name. Please use dohash()
instead.

● Fixed an bug that was preventing the input class from unsetting GET
variables.

● Fixed a router bug that was making it too greedy when matching
end segments.

● Fixed a bug that was preventing multiple discreet database calls.

● Fixed a bug in which loading a language file was producing a "file
contains no data" message.

● Fixed a session bug caused by the XSS Filtering feature
inadvertently changing the case of certain words.

● Fixed some missing prefixes when using the database prefix feature.

● Fixed a typo in the Calendar class (cal_november).

● Fixed a bug in the form_checkbox() helper.

● Fixed a bug that was allowing the second segment of the URI to be
identical to the class name.

● Fixed an evaluation bug in the database initialization function.

● Fixed a minor bug in one of the error messages in the language
class.

● Fixed a bug in the date helper timespan function.

● Fixed an undefined variable in the DB Driver class.

● Fixed a bug in which dollar signs used as binding replacement values
in the DB class would be treated as RegEx back-references.

● Fixed a bug in the set_hash() function which was preventing MD5

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (12 of 18) [12/20/2007 11:01:15 PM]

CodeIgniter User Guide : Change Log

from being used.

● Fixed a couple bugs in the Unit Testing class.

● Fixed an incorrectly named variable in the Validation class.

● Fixed an incorrectly named variable in the URI class.

● Fixed a bug in the config class that was preventing the base URL
from being called properly.

● Fixed a bug in the validation class that was not permitting callbacks
if the form field was empty.

● Fixed a problem that was preventing scaffolding from working
properly with MySQLi.

● Fixed some MS SQL bugs.

● Fixed some doc typos.

Version 1.3.3

Release Date: June 1, 2006

● Models do not connect automatically to the database as of this
version. More info here.

● Updated the Sessions class to utilize the active record class when
running session related queries. Previously the queries assumed
MySQL syntax.

● Updated alternator() function to re-initialize when called with no
arguments, allowing multiple calls.

● Fixed a bug in the active record "having" function.

● Fixed a problem in the validation class which was making
checkboxes be ignored when required.

● Fixed a bug in the word_limiter() helper function. It was cutting off
the fist word.

● Fixed a bug in the xss_clean function due to a PHP bug that affects
some versions of html_entity_decode.

● Fixed a validation bug that was preventing rules from being set twice
in one controller.

● Fixed a calendar bug that was not letting it use dynamically loaded
languages.

● Fixed a bug in the active record class when using WHERE clauses

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (13 of 18) [12/20/2007 11:01:15 PM]

CodeIgniter User Guide : Change Log

with LIKE

● Fixed a bug in the hash() security helper.

● Fixed some typos.

Version 1.3.2

Release Date: April 17, 2006

● Changed the behavior of the validation class such that if a "required"
rule is NOT explicitly stated for a field then all other tests get
ignored.

● Fixed a bug in the Controller class that was causing it to look in the
local "init" folder instead of the main system one.

● Fixed a bug in the init_pagination file. The $config item was not
being set correctly.

● Fixed a bug in the auto typography helper that was causing
inconsistent behavior.

● Fixed a couple bugs in the Model class.

● Fixed some documentation typos and errata.

Version 1.3.1

Release Date: April 11, 2006

● Added a Unit Testing Library.

● Added the ability to pass objects to the insert() and update()
database functions. This feature enables you to (among other
things) use your Model class variables to run queries with. See the
Models page for details.

● Added the ability to pass objects to the view loading function: $this-
>load->view('my_view', $object);

● Added getwhere function to Active Record class.

● Added count_all function to Active Record class.

● Added language file for scaffolding and fixed a scaffolding bug that
occurs when there are no rows in the specified table.

● Added $this->db->last_query(), which allows you to view your last
query that was run.

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (14 of 18) [12/20/2007 11:01:15 PM]

CodeIgniter User Guide : Change Log

● Added a new mime type to the upload class for better compatibility.

● Changed how cache files are read to prevent PHP errors if the cache
file contains an XML tag, which PHP wants to interpret as a short tag.

● Fixed a bug in a couple of the active record functions (where and
orderby).

● Fixed a bug in the image library when realpath() returns false.

● Fixed a bug in the Models that was preventing libraries from being
used within them.

● Fixed a bug in the "exact_length" function of the validation class.

● Fixed some typos in the user guide

Version 1.3

Release Date: April 3, 2006

● Added support for Models.

● Redesigned the database libraries to support additional RDBMs
(Postgre, MySQLi, etc.).

● Redesigned the Active Record class to enable more varied types of
queries with simpler syntax, and advanced features like JOINs.

● Added a feature to the database class that lets you run custom
function calls.

● Added support for private functions in your controllers. Any
controller function name that starts with an underscore will not be
served by a URI request.

● Added the ability to pass your own initialization parameters to your
custom core libraries when using $this->load->library()

● Added support for running standard query string URLs. These can be
optionally enabled in your config file.

● Added the ability to specify a "suffix", which will be appended to
your URLs. For example, you could add .html to your URLs, making
them appear static. This feature is enabled in your config file.

● Added a new error template for use with native PHP errors.

● Added "alternator" function in the string helpers.

● Removed slashing from the input class. After much debate we

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (15 of 18) [12/20/2007 11:01:15 PM]

file:///D:/_darkhorse/websites/codeigniter/user_guide/models.html
file:///D:/_darkhorse/websites/codeigniter/user_guide/controllers.html
file:///D:/_darkhorse/websites/codeigniter/user_guide/creating_libraries.html
file:///D:/_darkhorse/websites/codeigniter/user_guide/urls.html
file:///D:/_darkhorse/websites/codeigniter/user_guide/urls.html

CodeIgniter User Guide : Change Log

decided to kill this feature.

● Change the commenting style in the scripts to the PEAR standard so
that IDEs and tools like phpDocumenter can harvest the comments.

● Added better class and function name-spacing to avoid collisions
with user developed classes. All CodeIgniter classes are now
prefixed with CI_ and all controller methods are prefixed with _ci to
avoid controller collisions. A list of reserved function names can be
found here.

● Redesigned how the "CI" super object is referenced, depending on
whether PHP 4 or 5 is being run, since PHP 5 allows a more graceful
way to manage objects that utilizes a bit less resources.

● Deprecated: $this->db->use_table() has been deprecated. Please
read the Active Record page for information.

● Deprecated: $this->db->smart_escape_str() has been
deprecated. Please use this instead: $this->db->escape()

● Fixed a bug in the exception handler which was preventing some
PHP errors from showing up.

● Fixed a typo in the URI class. $this->total_segment() should be
plural: $this->total_segments()

● Fixed some typos in the default calendar template

● Fixed some typos in the user guide

Version 1.2

Release Date: March 21, 2006

● Redesigned some internal aspects of the framework to resolve
scoping problems that surfaced during the beta tests. The problem
was most notable when instantiating classes in your constructors,
particularly if those classes in turn did work in their constructors.

● Added a global function named get_instance() allowing the main
CodeIgniter object to be accessible throughout your own classes.

● Added new File Helper: delete_files()

● Added new URL Helpers: base_url(), index_page()

● Added the ability to create your own core libraries and store them in
your local application directory.

● Added an overwrite option to the Upload class, enabling files to be

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (16 of 18) [12/20/2007 11:01:15 PM]

file:///D:/_darkhorse/websites/codeigniter/user_guide/controllers.html
file:///D:/_darkhorse/websites/codeigniter/user_guide/ancillary_classes.html
file:///D:/_darkhorse/websites/codeigniter/user_guide/creating_libraries.html

CodeIgniter User Guide : Change Log

overwritten rather than having the file name appended.

● Added Javascript Calendar plugin.

● Added search feature to user guide. Note: This is done using Google,
which at the time of this writing has not crawled all the pages of the
docs.

● Updated the parser class so that it allows tag pars within other tag
pairs.

● Fixed a bug in the DB "where" function.

● Fixed a bug that was preventing custom config files to be auto-
loaded.

● Fixed a bug in the mysql class bind feature that prevented question
marks in the replacement data.

● Fixed some bugs in the xss_clean function

Version Beta 1.1

Release Date: March 10, 2006

● Added a Calendaring class.

● Added support for running multiple applications that share a
common CodeIgniter backend.

● Moved the "uri protocol" variable from the index.php file into the
config.php file

● Fixed a problem that was preventing certain function calls from
working within constructors.

● Fixed a problem that was preventing the $this->load->library
function from working in constructors.

● Fixed a bug that occurred when the session class was loaded using
the auto-load routine.

● Fixed a bug that can happen with PHP versions that do not support
the E_STRICT constant

● Fixed a data type error in the form_radio function (form helper)

● Fixed a bug that was preventing the xss_clean function from being
called from the validation class.

● Fixed the cookie related config names, which were incorrectly
specified as $conf rather than $config

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (17 of 18) [12/20/2007 11:01:15 PM]

file:///D:/_darkhorse/websites/codeigniter/user_guide/managing_apps.html

CodeIgniter User Guide : Change Log

● Fixed a pagination problem in the scaffolding.

● Fixed a bug in the mysql class "where" function.

● Fixed a regex problem in some code that trimmed duplicate slashes.

● Fixed a bug in the br() function in the HTML helper

● Fixed a syntax mistake in the form_dropdown function in the Form
Helper.

● Removed the "style" attributes form the form helpers.

● Updated the documentation. Added "next/previous" links to each
page and fixed various typos.

Version Beta 1.0

Release Date: February 28, 2006

First publicly released version.

Previous Topic: License Agreement · Top of Page · User Guide Home · Next Topic: Credits

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/changelog.html (18 of 18) [12/20/2007 11:01:15 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Image Manipulation Class

Search User Guide

Image Manipulation Class

CodeIgniter's Image Manipulation class lets you perform the following
actions:

● Image Resizing

● Thumbnail Creation

● Image Cropping

● Image Rotating

● Image Watermarking

All three major image libraries are supported: GD/GD2, NetPBM, and
ImageMagick

Note: Watermarking is only available using the GD/GD2 library. In
addition, even though other libraries are supported, GD is required in
order for the script to calculate the image properties. The image
processing, however, will be performed with the library you specify.

Initializing the Class

Like most other classes in CodeIgniter, the image class is initialized in
your controller using the $this->load_library function:

$this->load->library('image_lib');

Once the library is loaded it will be ready for use. The image library object
you will use to call all functions is: $this->image_lib

Processing an Image

Regardless of the type of processing you would like to perform (resizing,
cropping, rotation, or watermarking), the general process is identical. You
will set some preferences corresponding to the action you intend to
perform, then call one of four available processing functions. For example,
to create an image thumbnail you'll do this:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/image_lib.html (1 of 12) [12/20/2007 11:01:17 PM]

CodeIgniter User Guide : Image Manipulation Class

$config['image_library'] = 'GD';
$config['source_image'] = '/path/to/image/mypic.jpg';
$config['create_thumb'] = TRUE;
$config['maintain_ratio'] = TRUE;
$config['width'] = 75;
$config['height'] = 50;

$this->load->library('image_lib', $config);

$this->image_lib->resize();

The above code tells the image_resize function to look for an image
called mypic.jpg located in the source_image folder, then create a
thumbnail that is 75 X 50 pixels using the GD2 image_library. Since the
maintain_ratio option is enabled, the thumb will be as close to the
target width and height as possible while preserving the original aspect
ratio. The thumbnail will be called mypic_thumb.jpg

Note: In order for the image class to be allowed to do any processing,
the folder containing the image files must have file permissions of 777.

Processing Functions

There are four available processing functions:

● $this->image_lib->resize()

● $this->image_lib->crop()

● $this->image_lib->rotate()

● $this->image_lib->watermark()

These functions return boolean TRUE upon success and FALSE for failure.
If they fail you can retrieve the error message using this function:

echo $this->image_lib->display_errors();

A good practice is use the processing function conditionally, showing an
error upon failure, like this:

if (! $this->image_lib->resize())
{
 echo $this->image_lib->display_errors();
}

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/image_lib.html (2 of 12) [12/20/2007 11:01:17 PM]

CodeIgniter User Guide : Image Manipulation Class

Note: You can optionally specify the HTML formatting to be applied to the
errors, by submitting the opening/closing tags in the function, like this:

$this->image_lib->display_errors('<p>', '</p>');

Preferences

The 14 available preferences described below allow you to tailor the
image processing to suit your needs.

Note that not all preferences are available for every function. For
example, the x/y axis preferences are only available for image cropping.
Likewise, the width and height preferences have no effect on cropping.
The "availability" column indicates which functions support a given
preference.

Availability Legend:

● R - Image Resizing

● C - Image Cropping

● X - Image Rotation

● W - Image Watermarking

Preference Default Value Options Description Availability

image_library GD2
GD, GD2,
ImageMagick,
NetPBM

Sets the image
library to be used. R, C, X, W

library_path None None

Sets the server
path to your
ImageMagick or
NetPBM library. If
you use either of
those libraries you
must supply the
path.

R, C, X

source_image None None

Sets the source
image name/path.
The path must be
a relative or
absolute server
path, not a URL.

R, C, S, W

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/image_lib.html (3 of 12) [12/20/2007 11:01:17 PM]

CodeIgniter User Guide : Image Manipulation Class

dynamic_output FALSE TRUE/FALSE
(boolean)

Determines
whether the new
image file should
be written to disk
or generated
dynamically. Note:
If you choose the
dynamic setting,
only one image
can be shown at a
time, and it can't
be positioned on
the page. It simply
outputs the raw
image dynamically
to your browser,
along with image
headers.

R, C, X, W

quality 90% 1 - 100%

Sets the quality of
the image. The
higher the quality
the larger the file
size.

R, C, X, W

new_image None None

Sets the
destination image
name/path. You'll
use this preference
when creating an
image copy. The
path must be a
relative or absolute
server path, not a
URL.

R

width None None
Sets the width you
would like the
image set to.

R, C

height None None
Sets the height
you would like the
image set to.

R, C

create_thumb FALSE TRUE/FALSE
(boolean)

Tells the image
processing function
to create a thumb.

R

thumb_marker _thumb None

Specifies the
thumbnail
indicator. It will be
inserted just
before the file
extension, so
mypic.jpg would
become
mypic_thumb.jpg

R

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/image_lib.html (4 of 12) [12/20/2007 11:01:17 PM]

CodeIgniter User Guide : Image Manipulation Class

maintain_ratio TRUE TRUE/FALSE
(boolean)

Specifies whether
to maintain the
original aspect
ratio when resizing
or use hard values.

R

master_dim auto auto, width, height

Specifies what to
use as the master
axis when resizing
or creating
thumbs. For
example, let's say
you want to resize
an image to 100 X
75 pixels. If the
source image size
does not allow
perfect resizing to
those dimensions,
this setting
determines which
axis should be
used as the hard
value. "auto" sets
the axis
automatically
based on whether
the image is taller
then wider, or vice
versa.

R

rotation_angle None 90, 180, 270, vrt,
hor

Specifies the angle
of rotation when
rotating images.
Note that PHP
rotates counter-
clockwise, so a 90
degree rotation to
the right must be
specified as 270.

X

x_axis None None

Sets the X
coordinate in pixels
for image
cropping. For
example, a setting
of 30 will crop an
image 30 pixels
from the left.

C

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/image_lib.html (5 of 12) [12/20/2007 11:01:17 PM]

CodeIgniter User Guide : Image Manipulation Class

y_axis None None

Sets the Y
coordinate in pixels
for image
cropping. For
example, a setting
of 30 will crop an
image 30 pixels
from the top.

C

Setting preferences in a config file

If you prefer not to set preferences using the above method, you can
instead put them into a config file. Simply create a new file called the
image_lib.php, add the $config array in that file. Then save the file in:
config/image_lib.php and it will be used automatically. You will NOT
need to use the $this->image_lib->initialize function if you save your
preferences in a config file.

$this->image_lib->resize()

The image resizing function lets you resize the original image, create a
copy (with or without resizing), or create a thumbnail image.

For practical purposes there is no difference between creating a copy and
creating a thumbnail except a thumb will have the thumbnail marker as
part of the name (ie, mypic_thumb.jpg).

All preferences listed in the table above are available for this function
except these three: rotation, x_axis, and y_axis.

Creating a Thumbnail

The resizing function will create a thumbnail file (and preserve the
original) if you set this preference so TRUE:

$config['create_thumb'] = TRUE;

This single preference determines whether a thumbnail is created or not.

Creating a Copy

The resizing function will create a copy of the image file (and preserve the
original) if you set a path and/or a new filename using this preference:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/image_lib.html (6 of 12) [12/20/2007 11:01:17 PM]

CodeIgniter User Guide : Image Manipulation Class

$config['new_image'] = '/path/to/new_image.jpg';

Notes regarding this preference:

● If only the new image name is specified it will be placed in the same folder
as the original

● If only the path is specified, the new image will be placed in the
destination with the same name as the original.

● If both the path and image name are specified it will placed in its own
destination and given the new name.

Resizing the Original Image

If neither of the two preferences listed above (create_thumb, and
new_image) are used, the resizing function will instead target the original
image for processing.

$this->image_lib->crop()

The cropping function works nearly identically to the resizing function
except it requires that you set preferences for the X and Y axis (in pixels)
specifying where to crop, like this:

$config['x_axis'] = '100';
$config['y_axis'] = '40';

All preferences listed in the table above are available for this function
except these: rotation, width, height, create_thumb, new_image.

Here's an example showing how you might crop an image:

$config['image_library'] = 'imagemagick';
$config['library_path'] = '/usr/X11R6/bin/';
$config['source_image'] = '/path/to/image/mypic.jpg';
$config['x_axis'] = '100';
$config['y_axis'] = '60';

$this->image_lib->initialize($config);

if (! $this->image_lib->crop())
{
 echo $this->image_lib->display_errors();
}

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/image_lib.html (7 of 12) [12/20/2007 11:01:17 PM]

CodeIgniter User Guide : Image Manipulation Class

Note: Without a visual interface it is difficult to crop images, so this
function is not very useful unless you intend to build such an interface.
That's exactly what we did using for the photo gallery module in
ExpressionEngine, the CMS we develop. We added a JavaScript UI that
lets the cropping area be selected.

$this->image_lib->rotate()

The image rotation function requires that the angle of rotation be set via
its preference:

$config['rotation_angle'] = '90';

There are 5 rotation options:

1. 90 - rotates counter-clockwise by 90 degrees.

2. 180 - rotates counter-clockwise by 180 degrees.

3. 270 - rotates counter-clockwise by 270 degrees.

4. hor - flips the image horizontally.

5. vrt - flips the image vertically.

Here's an example showing how you might rotate an image:

$config['image_library'] = 'netpbm';
$config['library_path'] = '/usr/bin/';
$config['source_image'] = '/path/to/image/mypic.jpg';
$config['rotation_angle'] = 'hor';

$this->image_lib->initialize($config);

if (! $this->image_lib->rotate())
{
 echo $this->image_lib->display_errors();
}

Image Watermarking

The Watermarking feature requires the GD/GD2 library.

Two Types of Watermarking

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/image_lib.html (8 of 12) [12/20/2007 11:01:17 PM]

CodeIgniter User Guide : Image Manipulation Class

There are two types of watermarking that you can use:

● Text: The watermark message will be generating using text, either with a
True Type font that you specify, or using the native text output that the
GD library supports. If you use the True Type version your GD installation
must be compiled with True Type support (most are, but not all).

● Overlay: The watermark message will be generated by overlaying an
image (usually a transparent PNG or GIF) containing your watermark over
the source image.

Watermarking an Image

Just as with the other function (resizing, cropping, and rotating) the
general process for watermarking involves setting the preferences
corresponding to the action you intend to perform, then calling the
watermark function. Here is an example:

$config['source_image'] = '/path/to/image/mypic.jpg';
$config['wm_text'] = 'Copyright 2006 - John Doe';
$config['wm_type'] = 'text';
$config['wm_font_path'] = './system/fonts/texb.ttf';
$config['wm_font_size'] = '16';
$config['wm_font_color'] = 'ffffff';
$config['wm_vrt_alignment'] = 'bottom';
$config['wm_hor_alignment'] = 'center';
$config['wm_padding'] = '20';

$this->image_lib->initialize($config);

$this->image_lib->watermark();

The above example will use a 16 pixel True Type font to create the text
"Copyright 2006 - John Doe". The watermark will be positioned at the
bottom/center of the image, 20 pixels from the bottom of the image.

Note: In order for the image class to be allowed to do any processing,
the image file must have file permissions of 777.

Watermarking Preferences

This table shown the preferences that are available for both types of
watermarking (text or overlay)

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/image_lib.html (9 of 12) [12/20/2007 11:01:17 PM]

CodeIgniter User Guide : Image Manipulation Class

Preference Default Value Options Description

wm_type text type, overlay
Sets the type of
watermarking that should
be used.

source_image None None

Sets the source image
name/path. The path must
be a relative or absolute
server path, not a URL.

dynamic_output FALSE TRUE/FALSE
(boolean)

Determines whether the
new image file should be
written to disk or generated
dynamically. Note: If you
choose the dynamic setting,
only one image can be
shown at a time, and it
can't be positioned on the
page. It simply outputs the
raw image dynamically to
your browser, along with
image headers.

quality 90% 1 - 100%

Sets the quality of the
image. The higher the
quality the larger the file
size.

padding None A number

The amount of padding, set
in pixels, that will be
applied to the watermark to
set it away from the edge
of your images.

wm_vrt_alignment bottom top, middle, bottom Sets the vertical alignment
for the watermark image.

wm_hor_alignment center left, center, right
Sets the horizontal
alignment for the
watermark image.

wm_vrt_offset None None

You may specify a
horizontal offset (in pixels)
to apply to the watermark
position. The offset
normally moves the
watermark to the right,
except if you have your
alignment set to "right"
then your offset value will
move the watermark
toward the left of the image.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/image_lib.html (10 of 12) [12/20/2007 11:01:17 PM]

CodeIgniter User Guide : Image Manipulation Class

wm_hor_offset None None

You may specify a
horizontal offset (in pixels)
to apply to the watermark
position. The offset
normally moves the
watermark down, except if
you have your alignment
set to "bottom" then your
offset value will move the
watermark toward the top
of the image.

Text Preferences

This table shown the preferences that are available for the text type of
watermarking.

Preference Default Value Options Description

wm_text None None
The text you would like shown as
the watermark. Typically this will be
a copyright notice.

wm_font_path None None

The server path to the True Type
Font you would like to use. If you
do not use this option, the native
GD font will be used.

wm_font_size 16 None

The size of the text. Note: If you
are not using the True Type option
above, the number is set using a
range of 1 - 5. Otherwise, you can
use any valid pixel size for the font
you're using.

wm_font_color ffffff None

The font color, specified in hex.
Note, you must use the full 6
character hex value (ie, 993300),
rather than the three character
abbreviated version (ie fff).

wm_shadow_color None None

The color of the drop shadow,
specified in hex. If you leave this
blank a drop shadow will not be
used. Note, you must use the full 6
character hex value (ie, 993300),
rather than the three character
abbreviated version (ie fff).

wm_shadow_distance 3 None
The distance (in pixels) from the
font that the drop shadow should
appear.

Overlay Preferences

This table shown the preferences that are available for the overlay type of
watermarking.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/image_lib.html (11 of 12) [12/20/2007 11:01:17 PM]

CodeIgniter User Guide : Image Manipulation Class

Preference Default Value Options Description

wm_overlay_path None None

The server path to the image you wish
to use as your watermark. Required
only if you are using the overlay
method.

wm_opacity 50 1 - 100

Image opacity. You may specify the
opacity (i.e. transparency) of your
watermark image. This allows the
watermark to be faint and not
completely obscure the details from
the original image behind it. A 50%
opacity is typical.

wm_x_transp 4 A number

If your watermark image is a PNG or
GIF image, you may specify a color on
the image to be "transparent". This
setting (along with the next) will allow
you to specify that color. This works
by specifying the "X" and "Y"
coordinate pixel (measured from the
upper left) within the image that
corresponds to a pixel representative
of the color you want to be
transparent.

wm_y_transp 4 A number

Along with the previous setting, this
allows you to specify the coordinate to
a pixel representative of the color you
want to be transparent.

Previous Topic: HTML Table Class · Top of Page · User Guide Home · Next Topic: Input Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/image_lib.html (12 of 12) [12/20/2007 11:01:17 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Zip Encoding Class

Search User Guide

Zip Encoding Class

CodeIgniter's Zip Encoding Class classes permit you to create Zip
archives. Archives can be downloaded to your desktop or saved to a
directory.

Initializing the Class

Like most other classes in CodeIgniter, the Zip class is initialized in
your controller using the $this->load->library function:

$this->load->library('zip');

Once loaded, the Zip library object will be available using: $this->zip

Usage Example

This example demonstrates how to compress a file, save it to a folder
on your server, and download it to your desktop.

$name = 'mydata1.txt';
$data = 'A Data String!';

$this->zip->add_data($name, $data);

// Write the zip file to a folder on your server. Name it "my_backup.zip"
$this->zip->archive('/path/to/directory/my_backup.zip');

// Download the file to your desktop. Name it "my_backup.zip"
$this->zip->download('my_backup.zip');

Function Reference

$this->zip->add_data()

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/zip.html (1 of 5) [12/20/2007 11:01:18 PM]

CodeIgniter User Guide : Zip Encoding Class

Permits you to add data to the Zip archive. The first parameter must
contain the name you would like given to the file, the second
parameter must contain the file data as a string:

$name = 'my_bio.txt';
$data = 'I was born in an elevator...';

$this->zip->add_data($name, $data);

You are allowed multiple calls to this function in order to add several
files to your archive. Example:

$name = 'mydata1.txt';
$data = 'A Data String!';
$this->zip->add_data($name, $data);

$name = 'mydata2.txt';
$data = 'Another Data String!';
$this->zip->add_data($name, $data);

Or you can pass multiple files using an array:

$data = array(
 'mydata1.txt' => 'A Data String!',
 'mydata2.txt' => 'Another Data String!'
);

$this->zip->add_data($data);

$this->zip->download('my_backup.zip');

If you would like your compressed data organized into sub-folders,
include the path as part of the filename:

$name = 'personal/my_bio.txt';
$data = 'I was born in an elevator...';

$this->zip->add_data($name, $data);

The above example will place my_bio.txt inside a folder called
personal.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/zip.html (2 of 5) [12/20/2007 11:01:18 PM]

CodeIgniter User Guide : Zip Encoding Class

$this->zip->add_dir()

Permits you to add a directory. Usually this function is unnecessary
since you can place your data into folders when using $this->zip-
>add_data(), but if you would like to create an empty folder you
can do so. Example:

$this->zip->add_dir('myfolder'); // Creates a folder called "myfolder"

$this->zip->read_file()

Permits you to compress a file that already exists somewhere on
your server. Supply a file path and the zip class will read it and add it
to the archive:

$path = '/path/to/photo.jpg';

$this->zip->read_file($path);

// Download the file to your desktop. Name it "my_backup.zip"
$this->zip->download('my_backup.zip');

If you would like the Zip archive to maintain the directory structure
the file is in, pass TRUE (boolean) in the second parameter. Example:

$path = '/path/to/photo.jpg';

$this->zip->read_file($path, TRUE);

// Download the file to your desktop. Name it "my_backup.zip"
$this->zip->download('my_backup.zip');

In the above example, photo.jpg will be placed inside two folders:
path/to/

$this->zip->read_dir()

Permits you to compress a folder (and its contents) that already
exists somewhere on your server. Supply a file path to the directory
and the zip class will recursively read it and recreate it as a Zip

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/zip.html (3 of 5) [12/20/2007 11:01:18 PM]

CodeIgniter User Guide : Zip Encoding Class

archive. All files contained within the supplied path will be encoded,
as will any sub-folders contained within it. Example:

$path = '/path/to/your/directory/';

$this->zip->read_dir($path);

// Download the file to your desktop. Name it "my_backup.zip"
$this->zip->download('my_backup.zip');

$this->zip->archive()

Writes the Zip-encoded file to a directory on your server. Submit a
valid server path ending in the file name. Make sure the directory is
writable (666 or 777 is usually OK). Example:

$this->zip->archive('/path/to/folder/myarchive.zip'); // Creates a file named
myarchive.zip

$this->zip->download()

Causes the Zip file to be downloaded to your server. The function
must be passed the name you would like the zip file called. Example:

$this->zip->download('latest_stuff.zip'); // File will be named "latest_stuff.zip"

Note: Do not display any data in the controller in which you call this
function since it sends various server headers that cause the
download to happen and the file to be treated as binary.

$this->zip->get_zip()

Returns the Zip-compressed file data. Generally you will not need
this function unless you want to do something unique with the data.
Example:

$name = 'my_bio.txt';

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/zip.html (4 of 5) [12/20/2007 11:01:18 PM]

CodeIgniter User Guide : Zip Encoding Class

$data = 'I was born in an elevator...';

$this->zip->add_data($name, $data);

$zip_file = $this->zip->get_zip();

$this->zip->clear_data()

The Zip class caches your zip data so that it doesn't need to
recompile the Zip archive for each function you use above. If,
however, you need to create multiple Zips, each with different data,
you can clear the cache between calls. Example:

$name = 'my_bio.txt';
$data = 'I was born in an elevator...';

$this->zip->add_data($name, $data);
$zip_file = $this->zip->get_zip();

$this->zip->clear_data();

$name = 'photo.jpg';
$this->zip->read_file("/path/to/photo.jpg"); // Read the file's contents

$this->zip->download('myphotos.zip');

Previous Topic: XML-RPC Class · Top of Page · User Guide Home · Next Topic: Array Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/zip.html (5 of 5) [12/20/2007 11:01:18 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Smiley Helper

Search User Guide

Smiley Helper

The Smiley Helper file contains functions that let you manage
smileys (emoticons).

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('smiley');

Overview

The Smiley helper has a renderer that takes plain text simileys,

like :-) and turns them into a image representation, like

It also lets you display a set of smiley images that when clicked will
be inserted into a form field. For example, if you have a blog that
allows user commenting you can show the smileys next to the
comment form. Your users can click a desired smiley and with the
help of some JavaScript it will be placed into the form field.

Clickable Smileys Tutorial

Here is an example demonstrating how you might create a set of
clickable smileys next to a form field. This example requires that
you first download and install the smiley images, then create a
controller and the View as described.

Important: Before you begin, please download the smiley images
and put them in a publicly accessible place on your server. This
helper also assumes you have the smiley replacement array located
at application/config/smileys.php

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/smiley_helper.html (1 of 4) [12/20/2007 11:01:19 PM]

http://www.codeigniter.com/downloads/smileys.zip

CodeIgniter User Guide : Smiley Helper

The Controller

In your application/controllers/ folder, create a file called
smileys.php and place the code below in it.

Important: Change the URL in the get_clickable_smileys()
function below so that it points to your smiley folder.

You'll notice that in addition to the smiley helper we are using the
Table Class.

In your application/views/ folder, create a file called
smiley_view.php and place this code in it:

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/smiley_helper.html (2 of 4) [12/20/2007 11:01:19 PM]

CodeIgniter User Guide : Smiley Helper

When you have created the above controller and view, load it by
visiting http://www.your=site.com/index.php/smileys/

Function Reference

get_clickable_smileys()

Returns an array containing your smiley images wrapped in a
cliackable link. You must supply the URL to your smiley folder via
the first parameter:

$image_array = get_clickable_smileys("http://www.your-site.com/images/
smileys/");

js_insert_smiley()

Generates the JavaScript that allows the images to be clicked and
inserted into a form field. The first parameter must contain the
name of your form, the second parameter must contain the name of
the form field. This function is designed to be placed into the
<head> area of your web page.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/smiley_helper.html (3 of 4) [12/20/2007 11:01:19 PM]

CodeIgniter User Guide : Smiley Helper

<?php echo js_insert_smiley('blog', 'comments'); ?>

parse_smileys()

Takes a string of text as input and replaces any contained plain text
smileys into the image equivalent. The first parameter must contain
your string, the second must contain the the URL to your smiley
folder:

$str = 'Here are some simileys: :-) ;-)'; $str = parse_smileys($str, "http://
www.your-site.com/images/smileys/"); echo $str;

Previous Topic: Security Helper · Top of Page · User Guide Home · Next Topic: String Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/smiley_helper.html (4 of 4) [12/20/2007 11:01:19 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : File Helper

Search User Guide

File Helper

The File Helper file contains functions that assist in working with
files.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('file');

The following functions are available:

read_file('path')

Returns the data contained in the file specified in the path. Example:

$string = read_file('./path/to/file.php');

The path can be a relative or full server path. Returns FALSE
(boolean) on failure.

Note: The path is relative to your main site index.php file, NOT
your controller or view files. CodeIgniter uses a front controller so
paths are always relative to the main site index.

If you server is running an open_basedir restriction this function
might not work if you are trying to access a file above the calling
script.

write_file('path', $data)

Writes data to the file specified in the path. If the file does not exist

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/file_helper.html (1 of 3) [12/20/2007 11:01:20 PM]

CodeIgniter User Guide : File Helper

the function will create it. Example:

$data = 'Some file data';

if (! write_file('./path/to/file.php', $data))
{
 echo 'Unable to write the file';
}
else
{
 echo 'File written!';
}

You can optionally set the write mode via the third parameter:

write_file('./path/to/file.php', $data, 'r+');

The default mode is wb. Please see the PHP user guide for mode
options.

Note: In order for this function to write data to a file its file
permissions must be set such that it is writable (666, 777, etc.). If
the file does not already exist, the directory containing it must be
writable.

Note: The path is relative to your main site index.php file, NOT
your controller or view files. CodeIgniter uses a front controller so
paths are always relative to the main site index.

delete_files('path')

Deletes ALL files contained in the supplied path. Example:

delete_files('./path/to/directory/');

If the second parameter is set to true, any directories contained
within the supplied root path will be deleted as well. Example:

delete_files('./path/to/directory/', TRUE);

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/file_helper.html (2 of 3) [12/20/2007 11:01:20 PM]

http://php.net/fopen

CodeIgniter User Guide : File Helper

Note: The files must be writable or owned by the system in order to
be deleted.

get_filenames('path/to/directory/')

Takes a server path as input and returns an array containing the
names of all files contained within it. The file path can optionally be
added to the file names by setting the second parameter to TRUE.

Previous Topic: Directory Helper · Top of Page · User Guide Home · Next Topic: Form Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/file_helper.html (3 of 3) [12/20/2007 11:01:20 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Email Class

Search User Guide

Email Class

CodeIgniter's robust Email Class supports the following features:

● Multiple Protocols: Mail, Sendmail, and SMTP

● Multiple recipients

● CC and BCCs

● HTML or Plaintext email

● Attachments

● Word wrapping

● Priorities

● BCC Batch Mode, enabling large email lists to be broken into small
BCC batches.

● Email Debugging tools

Sending Email

Sending email is not only simple, but you can configure it on the fly
or set your preferences in a config file.

Here is a basic example demonstrating how you might send email.
Note: This example assumes you are sending the email from one of
your controllers.

$this->load->library('email');

$this->email->from('your@your-site.com', 'Your Name');
$this->email->to('someone@example.com');
$this->email->cc('another@another-example.com');
$this->email->bcc('them@their-example.com');

$this->email->subject('Email Test');
$this->email->message('Testing the email class.');

$this->email->send();

echo $this->email->print_debugger();

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/email.html (1 of 7) [12/20/2007 11:01:21 PM]

CodeIgniter User Guide : Email Class

Setting Email Preferences

There are 17 different preferences available to tailor how your email
messages are sent. You can either set them manually as described
here, or automatically via preferences stored in your config file,
described below:

Preferences are set by passing an array of preference values to the
email initialize function. Here is an example of how you might set
some preferences:

$config['protocol'] = 'sendmail';
$config['mailpath'] = '/usr/sbin/sendmail';
$config['charset'] = 'iso-8859-1';
$config['wordwrap'] = TRUE;

$this->email->initialize($config);

Note: Most of the preferences have default values that will be used
if you do not set them.

Setting Email Preferences in a Config File

If you prefer not to set preferences using the above method, you
can instead put them into a config file. Simply create a new file
called the email.php, add the $config array in that file. Then save
the file at config/email.php and it will be used automatically. You
will NOT need to use the $this->email->initialize() function if you
save your preferences in a config file.

Email Preferences

The following is a list of all the preferences that can be set when
sending email.

Preference Default Value Options Description
useragent CodeIgniter None The "user agent".

protocol mail mail, sendmail, or
smtp

The mail sending
protocol.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/email.html (2 of 7) [12/20/2007 11:01:21 PM]

CodeIgniter User Guide : Email Class

mailpath /usr/sbin/sendmail None The server path to
Sendmail.

smtp_host No Default None SMTP Server Address.
smtp_user No Default None SMTP Username.
smtp_pass No Default None SMTP Password.
smtp_port 25 None SMTP Port.

smtp_timeout 5 None SMTP Timeout (in
seconds).

wordwrap TRUE TRUE or FALSE
(boolean) Enable word-wrap.

wrapchars 76 Character count to
wrap at.

mailtype text text or html

Type of mail. If you
send HTML email you
must send it as a
complete web page.
Make sure you don't
have any relative
links or relative
image paths
otherwise they will
not work.

charset utf-8 Character set (utf-8,
iso-8859-1, etc.).

validate FALSE TRUE or FALSE
(boolean)

Whether to validate
the email address.

priority 3 1, 2, 3, 4, 5
Email Priority. 1 =
highest. 5 = lowest. 3
= normal.

newline \n "\r\n" or "\n"
Newline character.
(Use "\r\n" to comply
with RFC 822).

bcc_batch_mode FALSE TRUE or FALSE
(boolean)

Enable BCC Batch
Mode.

bcc_batch_size 200 None Number of emails in
each BCC batch.

Email Function Reference

$this->email->from()

Sets the email address and name of the person sending the email:

$this->email->from('you@your-site.com', 'Your Name');

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/email.html (3 of 7) [12/20/2007 11:01:21 PM]

CodeIgniter User Guide : Email Class

$this->email->reply_to()

Sets the reply-to address. If the information is not provided the
information in the "from" function is used. Example:

$this->email->reply_to('you@your-site.com', 'Your Name');

$this->email->to()

Sets the email address(s) of the recipient(s). Can be a single email,
a comma-delimited list or an array:

$this->email->to('someone@example.com');

$this->email->to('one@example.com, two@example.com,
three@example.com');

$list = array('one@example.com', 'two@example.com', 'three@example.
com');

$this->email->to($list);

$this->email->cc()

Sets the CC email address(s). Just like the "to", can be a single
email, a comma-delimited list or an array.

$this->email->bcc()

Sets the BCC email address(s). Just like the "to", can be a single
email, a comma-delimited list or an array.

$this->email->subject()

Sets the email subject:

$this->email->subject('This is my subject');

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/email.html (4 of 7) [12/20/2007 11:01:21 PM]

CodeIgniter User Guide : Email Class

$this->email->message()

Sets the email message body:

$this->email->message('This is my message');

$this->email->set_alt_message()

Sets the alternative email message body:

$this->email->set_alt_message('This is the alternative message');

This is an optional message string which can be used if you send
HTML formatted email. It lets you specify an alternative message
with no HTML formatting which is added to the header string for
people who do not accept HTML email. If you do not set your own
message CodeIgniter will extract the message from your HTML
email and strip the tags.

$this->email->clear()

Initializes all the email variables to an empty state. This function is
intended for use if you run the email sending function in a loop,
permitting the data to be reset between cycles.

foreach ($list as $name => $address)
{
 $this->email->clear();

 $this->email->to($address);
 $this->email->from('your@your-site.com');
 $this->email->subject('Here is your info '.$name);
 $this->email->message('Hi '.$name.' Here is the info you requested.');
 $this->email->send();
}

If you set the parameter to TRUE any attachments will be cleared as
well:

$this->email->clear(TRUE);

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/email.html (5 of 7) [12/20/2007 11:01:21 PM]

CodeIgniter User Guide : Email Class

$this->email->send()

The Email sending function. Returns boolean TRUE or FALSE based
on success or failure, enabling it to be used conditionally:

if (! $this->email->send())
{
 // Generate error
}

$this->email->attach()

Enables you to send an attachment. Put the file path/name in the
first parameter. Note: Use a file path, not a URL. For multiple
attachments use the function multiple times. For example:

$this->email->attach('/path/to/photo1.jpg');
$this->email->attach('/path/to/photo2.jpg');
$this->email->attach('/path/to/photo3.jpg');

$this->email->send();

$this->email->print_debugger()

Returns a string containing any server messages, the email headers,
and the email messsage. Useful for debugging.

Overriding Word Wrapping

If you have word wrapping enabled (recommended to comply with
RFC 822) and you have a very long link in your email it can get
wrapped too, causing it to become un-clickable by the person
receiving it. CodeIgniter lets you manually override word wrapping
within part of your message like this:

The text of your email that
gets wrapped normally.

{unwrap}http://www.example.com/
a_long_link_that_should_not_be_wrapped.html{/unwrap}

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/email.html (6 of 7) [12/20/2007 11:01:21 PM]

CodeIgniter User Guide : Email Class

More text that will be
wrapped normally.

Place the item you do not want word-wrapped between: {unwrap}
{/unwrap}

Previous Topic: Database Class · Top of Page · User Guide Home · Next Topic: Encryption Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/email.html (7 of 7) [12/20/2007 11:01:21 PM]

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/database/index.html
http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Calendaring Class

Search User Guide

Calendaring Class

The Calendar class enables you to dynamically create calendars.
Your calendars can be formatted through the use of a calendar
template, allowing 100% control over every aspect of its design. In
addition, you can pass data to your calendar cells.

Initializing the Class

Like most other classes in CodeIgniter, the Calendar class is
initialized in your controller using the $this->load->library
function:

$this->load->library('calendar');

Once loaded, the Calendar object will be available using: $this-
>calendar

Displaying a Calendar

Here is a very simple example showing how you can display a
calendar:

$this->load->library('calendar');

echo $this->calendar->generate();

The above code will generate a calendar for the current month/year
based on your server time. To show a calendar for a specific month
and year you will pass this information to the calendar generating
function:

$this->load->library('calendar');

echo $this->calendar->generate(2006, 6);

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/calendar.html (1 of 5) [12/20/2007 11:01:22 PM]

CodeIgniter User Guide : Calendaring Class

The above code will generate a calendar showing the month of June
in 2006. The first parameter specifies the year, the second
parameter specifies the month.

Passing Data to your Calendar Cells

To add data to your calendar cells involves creating an associative
array in which the keys correspond to the days you wish to populate
and the array value contains the data. The array is passed to the
third parameter of the calendar generating function. Consider this
example:

$this->load->library('calendar');

$data = array(
 3 => 'http://your-site.com/news/article/2006/03/',
 7 => 'http://your-site.com/news/article/2006/07/',
 13 => 'http://your-site.com/news/article/2006/13/',
 26 => 'http://your-site.com/news/article/2006/26/'
);

echo $this->calendar->generate(2006, 6, $data);

Using the above example, day numbers 3, 7, 13, and 26 will become
links pointing to the URLs you've provided.

Note: By default it is assumed that your array will contain links. In
the section that explains the calendar template below you'll see how
you can customize how data passed to your cells is handled so you
can pass different types of information.

Setting Display Preferences

There are seven preferences you can set to control various aspects
of the calendar. Preferences are set by passing an array of
preferences in the second parameter of the loading function. Here is
an example:

$prefs = array (

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/calendar.html (2 of 5) [12/20/2007 11:01:22 PM]

CodeIgniter User Guide : Calendaring Class

 'start_day' => 'saturday',
 'month_type' => 'long',
 'day_type' => 'short'
);

$this->load->library('calendar', $prefs);

echo $this->calendar->generate();

The above code would start the calendar on saturday, use the "long"
month heading, and the "short" day names. More information
regarding preferences below.

Preference Default Value Options Description

template None None

A string containing your
calendar template. See
the template section
below.

local_time time() None
A Unix timestamp
corresponding to the
current time.

start_day sunday
Any week day
(sunday, monday,
tuesday, etc.)

Sets the day of the week
the calendar should start
on.

month_type long long, short

Determines what version
of the month name to use
in the header. long =
January, short = Jan.

day_type abr long, short, abr

Determines what version
of the weekday names to
use in the column
headers. long = Sunday,
short = Sun, abr = Su.

show_next_prev FALSE TRUE/FALSE
(boolean)

Determines whether to
display links allowing you
to toggle to next/previous
months. See information
on this feature below.

next_prev_url None A URL
Sets the basepath used in
the next/previous
calendar links.

Showing Next/Previous Month Links

To allow your calendar to dynamically increment/decrement via the
next/previous links requires that you set up your calendar code
similar to this example:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/calendar.html (3 of 5) [12/20/2007 11:01:22 PM]

CodeIgniter User Guide : Calendaring Class

$prefs = array (
 'show_next_prev' => TRUE,
 'next_prev_url' => 'http://www.your-site.com/index.php/calendar/
show/'
);

$this->load->library('calendar', $prefs);

echo $this->calendar->generate($this->uri->segment(3), $this->uri-
>segment(4));

You'll notice a few things about the above example:

● You must set the "show_next_prev" to TRUE.

● You must supply the URL to the controller containing your calendar
in the "next_prev_url" preference.

● You must supply the "year" and "month" to the calendar generating
function via the URI segments where they appear (Note: The
calendar class automatically adds the year/month to the base URL
you provide.).

Creating a Calendar Template

By creating a calendar template you have 100% control over the
design of your calendar. Each component of your calendar will be
placed within a pair of pseudo-variables as shown here:

$prefs['template'] = '

 {table_open}<table border="0" cellpadding="0" cellspacing="0">{/
table_open}

 {heading_row_start}<tr>{/heading_row_start}

 {heading_previous_cell}<th><<</
a></th>{/heading_previous_cell}
 {heading_title_cell}<th colspan="{colspan}">{heading}</th>{/
heading_title_cell}
 {heading_next_cell}<th>>></th>
{/heading_next_cell}

 {heading_row_end}</tr>{/heading_row_end}

 {week_row_start}<tr>{/week_row_start}

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/calendar.html (4 of 5) [12/20/2007 11:01:22 PM]

CodeIgniter User Guide : Calendaring Class

 {week_day_cell}<td>{week_day}</td>{/week_day_cell}
 {week_row_end}</tr>{/week_row_end}

 {cal_row_start}<tr>{/cal_row_start}
 {cal_cell_start}<td>{/cal_cell_start}

 {cal_cell_content}{day}{/
cal_cell_content}
 {cal_cell_content_today}<div class="highlight">{day}</div>{/cal_cell_content_today}

 {cal_cell_no_content}{day}{/cal_cell_no_content}
 {cal_cell_no_content_today}<div class="highlight">{day}</div>{/
cal_cell_no_content_today}

 {cal_cell_blank} {/cal_cell_blank}

 {cal_cell_end}</td>{/cal_cell_end}
 {cal_row_end}</tr>{/cal_row_end}

 {table_close}</table>{/table_close}
';

$this->load->library('calendar', $prefs);

echo $this->calendar->generate();

Previous Topic: Benchmarking Class · Top of Page · User Guide Home · Next Topic: Config Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/calendar.html (5 of 5) [12/20/2007 11:01:22 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Creating Core System Classes

Search User Guide

Creating Core System Classes

Every time CodeIgniter runs there are several base classes that are initialized
automatically as part of the core framework. It is possible, however, to swap
any of the core system classes with your own versions or even extend the
core versions.

Most users will never have any need to do this, but the option to
replace or extend them does exist for those who would like to
significantly alter the CodeIgniter core.

Note: Messing with a core system class has a lot of implications, so make
sure you know what you are doing before attempting it.

System Class List

The following is a list of the core system files that are invoked every time
CodeIgniter runs:

● Benchmark

● Input

● Config

● Hooks

● Router

● URI

● Language

● Loader

● Controller

● Output

Replacing Core Classes

To use one of your own system classes instead of a default one simply place
your version inside your local application/libraries directory:

application/libraries/some-class.php

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/core_classes.html (1 of 3) [12/20/2007 11:01:23 PM]

CodeIgniter User Guide : Creating Core System Classes

If this directory does not exist you can create it.

Any file named identically to one from the list above will be used instead of
the one normally used.

Please note that your class must use CI as a prefix. For example, if your file
is named Input.php the class will be named:

class CI_Input {

}

Extending Core Class

If all you need to do is add some functionality to an existing library - perhaps
add a function or two - then it's overkill to replace the entire library with your
version. In this case it's better to simply extend the class. Extending a class
is nearly identical to replacing a class with a couple exceptions:

● The class declaration must extend the parent class.

● Your new class name and filename must be prefixed with MY_ (this item is
configurable. See below.).

For example, to extend the native Input class you'll create a file named
application/libraries/MY_Input.php, and declare your class with:

class MY_Input extends CI_Input {

}

Note: If you need to use a constructor in your class make sure you extend
the parent constructor:

class MY_Input extends CI_Input {

 function My_Input()
 {
 parent::CI_Input();
 }
}

Tip: Any functions in your class that are named identically to the functions
in the parent class will be used instead of the native ones (this is known as
"method overriding"). This allows you to substantially alter the CodeIgniter
core.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/core_classes.html (2 of 3) [12/20/2007 11:01:23 PM]

CodeIgniter User Guide : Creating Core System Classes

Setting Your Own Prefix

To set your own sub-class prefix, open your application/config/config.
php file and look for this item:

$config['subclass_prefix'] = 'MY_';

Please note that all native CodeIgniter libraries are prefixed with CI_ so DO
NOT use that as your prefix.

Previous Topic: Creating Your Own Libraries · Top of Page · User Guide Home · Next Topic: Hooks - Extending the
Core

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/core_classes.html (3 of 3) [12/20/2007 11:01:23 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Using CodeIgniter Libraries

Search User Guide

Using CodeIgniter Libraries

All of the available libraries are located in your system/libraries folder. In
most cases, to use one of these classes involves initializing it within a
controller using the following initialization function:

$this->load->library('class name');

Where class name is the name of the class you want to invoke. For
example, to load the validation class you would do this:

$this->load->library('validation');

Once initialized you can use it as indicated in the user guide page
corresponding to that class.

Creating Your Own Libraries

Please read the section of the user guide that discusses how to create your
own libraries

Previous Topic: Plugins · Top of Page · User Guide Home · Next Topic: Creating Libraries

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/libraries.html [12/20/2007 11:01:23 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Encryption Class

Search User Guide

Encryption Class

The Encryption Class provides two-way data encryption. It uses a
scheme that pre-compiles the message using a randomly hashed
bitwise XOR encoding scheme, which is then encrypted using the
Mcrypt library. If Mcrypt is not available on your server the encoded
message will still provide a reasonable degree of security for
encrypted sessions or other such "light" purposes. If Mcrypt is
available, you'll effectively end up with a double-encrypted message
string, which should provide a very high degree of security.

Setting your Key

A key is a piece of information that controls the cryptographic
process and permits an encrypted string to be decoded. In fact, the
key you chose will provide the only means to decode data that was
encrypted with that key, so not only must you chose the key
carefully, you must never change it if you intend use it for persistent
data.

It goes without saying that you should guard your key carefully.
Should someone gain access to your key, the data will be easily
decoded. If your server is not totally under your control it's
impossible to ensure key security so you may want to think carefully
before using it for anything that requires high security, like storing
credit card numbers.

To take maximum advantage of the encryption algorithm, your key
should be 32 characters in length (128 bits). The key should be as
random a string as you can concoct, with numbers and uppercase
and lowercase letters. Your key should not be a simple text string.
In order to be cryptographically secure it needs to be as random as
possible.

Your key can be either stored in your application/config/config.
php, or you can design your own storage mechanism and pass the
key dynamically when encoding/decoding.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/encryption.html (1 of 4) [12/20/2007 11:01:24 PM]

CodeIgniter User Guide : Encryption Class

To save your key to your application/config/config.php, open
the file and set:

$config['encryption_key'] = "YOUR KEY";

Message Length

It's important for you to know that the encoded messages the
encryption function generates will be approximately 2.6 times longer
than the original message. For example, if you encrypt the string
"my super secret data", which is 21 characters in length, you'll end
up with an encoded string that is roughly 55 characters (we say
"roughly" because the encoded string length increments in 64 bit
clusters, so it's not exactly linear). Keep this information in mind
when selecting your data storage mechanism. Cookies, for example,
can only hold 4K of information.

Initializing the Class

Like most other classes in CodeIgniter, the Encryption class is
initialized in your controller using the $this->load->library
function:

$this->load->library('encrypt');

Once loaded, the Encrypt library object will be available using:
$this->encrypt

$this->encrypt->encode()

Performs the data encryption and returns it as a string. Example:

$msg = 'My secret message';

$encrypted_string = $this->encrypt->encode($msg);

You can optionally pass your encryption key via the second
parameter if you don't want to use the one in your config file:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/encryption.html (2 of 4) [12/20/2007 11:01:24 PM]

CodeIgniter User Guide : Encryption Class

$msg = 'My secret message';
$key = 'super-secret-key';

$encrypted_string = $this->encrypt->encode($msg, $key);

$this->encrypt->decode()

Decrypts an encoded string. Example:

$encrypted_string = 'APANtByIGI1BpVXZTJgcsAG8GZl8pdwwa84';

$plaintext_string = $this->encrypt->decode($encrypted_string);

$this->encrypt->set_cipher();

Permits you to set an Mcrypt cipher. By default it uses
MCRYPT_RIJNDAEL_256. Example:

$this->encrypt->set_cipher(MCRYPT_BLOWFISH);

Please visit php.net for a list of available ciphers.

If you'd like to manually test whether your server supports Mcrypt
you can use:

echo (! function_exists('mcrypt_encrypt')) ? 'Nope' : 'Yup';

$this->encrypt->set_mode();

Permits you to set an Mcrypt mode. By default it uses
MCRYPT_MODE_ECB. Example:

$this->encrypt->set_mode(MCRYPT_MODE_CFB);

Please visit php.net for a list of available modes.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/encryption.html (3 of 4) [12/20/2007 11:01:24 PM]

http://php.net/mcrypt
http://php.net/mcrypt

CodeIgniter User Guide : Encryption Class

$this->encrypt->sha1();

SHA1 encoding function. Provide a string and it will return a 160 bit
one way hash. Note: SHA1, just like MD5 is non-decodable.
Example:

$hash = $this->encrypt->sha1('Some string');

Many PHP installations have SHA1 support by default so if all you
need is to encode a hash it's simpler to use the native function:

$hash = sha1('Some string');

If your server does not support SHA1 you can use the provided
function.

Previous Topic: Email Class · Top of Page · User Guide Home · Next Topic: File Uploading Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/encryption.html (4 of 4) [12/20/2007 11:01:24 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Date Helper

Search User Guide

Date Helper

The Date Helper file contains functions that help you work with
dates.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('date');

The following functions are available:

now()

Returns the current time as a Unix timestamp, referenced either to
your server's local time or GMT, based on the "time reference"
setting in your config file. If you do not intend to set your master
time reference to GMT (which you'll typically do if you run a site that
lets each user set their own timezone settings) there is no benefit to
using this function over PHP's time() function.

mdate()

This function is identical to PHPs date() function, except that it lets
you use MySQL style date codes, where each code letter is preceded
with a percent sign: %Y %m %d etc.

The benefit of doing dates this way is that you don't have to worry
about escaping any characters that are not date codes, as you
would normally have to do with the date() function. Example:

$datestring = "Year: %Y Month: %m Day: %d - %h:%i %a";
$time = time();

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/date_helper.html (1 of 7) [12/20/2007 11:01:26 PM]

http://www.php.net/date

CodeIgniter User Guide : Date Helper

echo mdate($datestring, $time);

If a timestamp is not included in the second parameter the current
time will be used.

standard_date()

Lets you generate a date string in one of several standardized
formats. Example:

$format = 'DATE_RFC822';
$time = time();

echo standard_date($format, $time);

The first parameter must contain the format, the second parameter
must contain the date as a Unix timestamp.

Supported formats:

● DATE_ATOM

● DATE_COOKIE

● DATE_ISO8601

● DATE_RFC822

● DATE_RFC850

● DATE_RFC1036

● DATE_RFC1123

● DATE_RFC2822

● DATE_RSS

● DATE_W3C

local_to_gmt()

Takes a Unix timestamp as input and returns it as GMT. Example:

$now = time();

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/date_helper.html (2 of 7) [12/20/2007 11:01:26 PM]

CodeIgniter User Guide : Date Helper

$gmt = local_to_gmt($now);

gmt_to_local()

Takes a Unix timestamp (referenced to GMT) as input, and converts
it to a localized timestamp based on the timezone and Daylight
Saving time submitted. Example:

$timestamp = '1140153693';
$timezone = 'UM8';
$daylight_saving = TRUE;

echo gmt_to_local($timestamp, $timezone, $daylight_saving);

Note: For a list of timezones see the reference at the bottom of this
page.

mysql_to_unix()

Takes a MySQL Timestamp as input and returns it as Unix. Example:

$mysql = '20061124092345';

$unix = mysql_to_unix($mysql);

unix_to_human()

Takes a Unix timestamp as input and returns it in a human readable
format with this prototype:

YYYY-MM-DD HH:MM:SS AM/PM

This can be useful if you need to display a date in a form field for
submission.

The time can be formatted with or without seconds, and it can be
set to European or US format. If only the timestamp is submitted it
will return the time without seconds formatted for the U.S.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/date_helper.html (3 of 7) [12/20/2007 11:01:26 PM]

CodeIgniter User Guide : Date Helper

Examples:

$now = time();

echo unix_to_human($now); // U.S. time, no seconds

echo unix_to_human($now, TRUE, 'us'); // U.S. time with seconds

echo unix_to_human($now, TRUE, 'eu'); // Euro time with seconds

human_to_unix()

The opposite of the above function. Takes a "human" time as input
and returns it as Unix. This function is useful if you accept "human"
formatted dates submitted via a form. Returns FALSE (boolean) if
the date string passed to it is not formatted as indicated above.
Example:

$now = time();

$human = unix_to_human($now);

$unix = human_to_unix($human);

timespan()

Formats a unix timestamp so that is appears similar to this:

1 Year, 10 Months, 2 Weeks, 5 Days, 10 Hours, 16 Minutes

The first parameter must contain a Unix timestamp. The second
parameter must contain a timestamp that is greater that the first
timestamp. If the second parameter empty, the current time will be
used. The most common purpose for this function is to show how
much time has elapsed from some point in time in the past to now.
Example:

$post_date = '1079621429';
$now = time();

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/date_helper.html (4 of 7) [12/20/2007 11:01:26 PM]

CodeIgniter User Guide : Date Helper

echo timespan($post_date, $now);

Note: The text generated by this function is found in the following
language file: language/<your_lang>/date_lang.php

days_in_month()

Returns the number of days in a given month/year. Takes leap
years into account. Example:

echo days_in_month(06, 2005);

If the second parameter is empty, the current year will be used.

timezones()

Takes a timezone reference (for a list of valid timezones, see the
"Timezone Reference" below) and returns the number of hours
offset from UTC.

echo timezones('UM5');

This function is useful when used with timezone_menu().

timezone_menu()

Generates a pull-down menu of timezones, like this one:

This menu is useful if you run a membership site in which your users
are allowed to set their local timezone value.

The first parameter lets you set the "selected" state of the menu.
For example, to set Pacific time as the default you will do this:

echo timezone_menu('UM8');

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/date_helper.html (5 of 7) [12/20/2007 11:01:26 PM]

CodeIgniter User Guide : Date Helper

Please see the timezone reference below to see the values of this
menu.

The second parameter lets you set a CSS class name for the menu.

Note: The text contained in the menu is found in the following
language file: language/<your_lang>/date_lang.php

Timezone Reference

The following table indicates each timezone and its location.

Time Zone Location
UM12 (UTC - 12:00) Enitwetok, Kwajalien
UM11 (UTC - 11:00) Nome, Midway Island, Samoa
UM10 (UTC - 10:00) Hawaii
UM9 (UTC - 9:00) Alaska
UM8 (UTC - 8:00) Pacific Time
UM7 (UTC - 7:00) Mountain Time
UM6 (UTC - 6:00) Central Time, Mexico City
UM5 (UTC - 5:00) Eastern Time, Bogota, Lima, Quito
UM4 (UTC - 4:00) Atlantic Time, Caracas, La Paz
UM25 (UTC - 3:30) Newfoundland
UM3 (UTC - 3:00) Brazil, Buenos Aires, Georgetown, Falkland Is.
UM2 (UTC - 2:00) Mid-Atlantic, Ascention Is., St Helena
UM1 (UTC - 1:00) Azores, Cape Verde Islands
UTC (UTC) Casablanca, Dublin, Edinburgh, London, Lisbon, Monrovia
UP1 (UTC + 1:00) Berlin, Brussels, Copenhagen, Madrid, Paris, Rome
UP2 (UTC + 2:00) Kaliningrad, South Africa, Warsaw
UP3 (UTC + 3:00) Baghdad, Riyadh, Moscow, Nairobi
UP25 (UTC + 3:30) Tehran
UP4 (UTC + 4:00) Adu Dhabi, Baku, Muscat, Tbilisi
UP35 (UTC + 4:30) Kabul
UP5 (UTC + 5:00) Islamabad, Karachi, Tashkent
UP45 (UTC + 5:30) Bombay, Calcutta, Madras, New Delhi
UP6 (UTC + 6:00) Almaty, Colomba, Dhakra
UP7 (UTC + 7:00) Bangkok, Hanoi, Jakarta
UP8 (UTC + 8:00) Beijing, Hong Kong, Perth, Singapore, Taipei
UP9 (UTC + 9:00) Osaka, Sapporo, Seoul, Tokyo, Yakutsk
UP85 (UTC + 9:30) Adelaide, Darwin
UP10 (UTC + 10:00) Melbourne, Papua New Guinea, Sydney, Vladivostok
UP11 (UTC + 11:00) Magadan, New Caledonia, Solomon Islands
UP12 (UTC + 12:00) Auckland, Wellington, Fiji, Marshall Island

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/date_helper.html (6 of 7) [12/20/2007 11:01:26 PM]

CodeIgniter User Guide : Date Helper

Previous Topic: Cookie Helper · Top of Page · User Guide Home · Next Topic: Directory Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/date_helper.html (7 of 7) [12/20/2007 11:01:26 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Form Helper

Search User Guide

Form Helper

The Form Helper file contains functions that assist in working with
forms.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('form');

The following functions are available:

form_open()

Creates an opening form tag with a base URL built from your
config preferences. It will optionally let you add form attributes
and hidden input fields.

The main benefit of using this tag rather than hard coding your own
HTML is that it permits your site to be more portable in the event
your URLs ever change.

Here's a simple example:

echo form_open('email/send');

The above example would create a form that points to your base
URL plus the "email/send" URI segments, like this:

<form method="post" action="http:/www.your-site.com/index.php/email/
send" />

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/form_helper.html (1 of 8) [12/20/2007 11:01:27 PM]

CodeIgniter User Guide : Form Helper

Adding Attributes

Attributes can be added by passing an associative array to the
second parameter, like this:

$attributes = array('class' => 'email', 'id' => 'myform');

echo form_open('email/send', $attributes);

The above example would create a form similar to this:

<form method="post" action="http:/www.your-site.com/index.php/email/
send" class="email" id="myform" />

Adding Hidden Input Fields

Hidden fields can be added by passing an associative array to the
third parameter, like this:

$hidden = array('username' => 'Joe', 'member_id' => '234');

echo form_open('email/send', '', $hidden);

The above example would create a form similar to this:

<form method="post" action="http:/www.your-site.com/index.php/email/
send" class="email" id="myform" />
<input type="hidden" name="username" value="Joe" />
<input type="hidden" name="member_id" value="234" />

form_open_multipart()

This function is absolutely identical to the form_open() tag above
except that it adds a multipart attribute, which is necessary if you
would like to use the form to upload files with.

form_hidden()

Lets you generate hidden input fields. You can either submit a name/

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/form_helper.html (2 of 8) [12/20/2007 11:01:27 PM]

CodeIgniter User Guide : Form Helper

value string to create one field:

form_hidden('username', 'johndoe');

// Would produce:

<input type="hidden" name="username" value="johnodoe" />

Or you can submit an associative array to create multiple fields:

$data = array(
 'name' => 'John Doe',
 'email' => 'john@example.com',
 'url' => 'http://www.example.com'
);

echo form_hidden($data);

// Would produce:

<input type="hidden" name="name" value="John Doe" />
<input type="hidden" name="email" value="john@example.com" />
<input type="hidden" name="url" value="http://www.example.com" />

form_input()

Lets you generate a standard text input field. You can minimally
pass the field name and value in the first and second parameter:

echo form_input('username', 'johndoe');

Or you can pass an associative array containing any data you wish
your form to contain:

$data = array(
 'name' => 'username',
 'id' => 'username',
 'value' => 'johndoe',
 'maxlength' => '100',
 'size' => '50',
 'style' => 'width:50%',
);

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/form_helper.html (3 of 8) [12/20/2007 11:01:27 PM]

CodeIgniter User Guide : Form Helper

echo form_input($data);

// Would produce:

<input type="text" name="username" id="username" value="johndoe"
maxlength="100" size="50" style="width:50%" />

If you would like your form to contain some additional data, like
JavaScript, you can pass it as a string in the third parameter:

$js = 'onClick="some_function()"';

echo form_input('username', 'johndoe', $js);

form_password()

This function is identical in all respects to the form_input()
function above except that is sets it as a "password" type.

form_upload()

This function is identical in all respects to the form_input()
function above except that is sets it as a "file" type, allowing it to be
used to upload files.

form_textarea()

This function is identical in all respects to the form_input()
function above except that it generates a "textarea" type. Note:
Instead of the "maxlength" and "size" attributes in the above
example, you will instead specify "rows" and "cols".

form_dropdown()

Lets you create a standard drop-down field. The first parameter will
contain the name of the field, the second parameter will contain an
associative array of options, and the third parameter will contain the
value you wish to be selected. Example:

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/form_helper.html (4 of 8) [12/20/2007 11:01:27 PM]

CodeIgniter User Guide : Form Helper

$options = array(
 'small' => 'Small Shirt',
 'med' => 'Medium Shirt',
 'large' => 'Large Shirt',
 'xlarge' => 'Extra Large Shirt',
);

echo form_dropdown('shirts', $options, 'large');

// Would produce:

<select name="shirts">
<option value="small">Small Shirt</option>
<option value="med">Medium Shirt</option>
<option value="large" selected>Large Shirt</option>
<option value="xlarge">Extra Large Shirt</option>
</select>

If you would like the opening <select> to contain additional data,
like JavaScript, you can pass it as a string in the fourth parameter:

$js = 'onChange="some_function()"';

echo form_dropdown('shirts', $options, 'large', $js);

form_checkbox()

Lets you generate a checkbox field. Simple example:

echo form_checkbox('newsletter', 'accept', TRUE);

// Would produce:

<input type="checkbox" name="newsletter" value="accept"
checked="checked" />

The third parameter contains a boolean TRUE/FALSE to determine
whether the box should be checked or not.

Similar to the other form functions in this helper, you can also pass
an array of attributes to the function:

$data = array(
 'name' => 'newsletter',

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/form_helper.html (5 of 8) [12/20/2007 11:01:27 PM]

CodeIgniter User Guide : Form Helper

 'id' => 'newsletter',
 'value' => 'accept',
 'checked' => TRUE,
 'style' => 'margin:10px',
);

echo form_checkbox($data);

// Would produce:

<input type="checkbox" name="newsletter" id="newsletter" value="accept"
checked="checked" style="margin:10px" />

As with other functions, if you would like the tag to contain
additional data, like JavaScript, you can pass it as a string in the
fourth parameter:

$js = 'onClick="some_function()"';

echo form_checkbox('newsletter', 'accept', TRUE, $js)

form_radio()

This function is identical in all respects to the form_checkbox()
function above except that is sets it as a "radio" type.

form_submit()

Lets you generate a standard submit button. Simple example:

echo form_submit('mysubmit', 'Submit Post!');

// Would produce:

<input type="submit" name="mysubmit" value="Submit Post!" />

Similar to other functions, you can submit an associative array in
the first parameter if you prefer to set your own attributes. The third
parameter lets you add extra data to your form, like JavaScript.

form_reset()

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/form_helper.html (6 of 8) [12/20/2007 11:01:27 PM]

CodeIgniter User Guide : Form Helper

Lets you generate a standard reset button. Use is identical to
form_submit().

form_close()

Produces a closing </form> tag. The only advantage to using this
function is it permits you to pass data to it which will be added
below the tag. For example:

$string = "</div></div>";

echo form_close($string);

// Would produce:

</form>
</div></div>

form_prep()

Allows you to safely use HTML and characters such as quotes within
form elements without breaking out of the form. Consider this
example:

$string = 'Here is a string containing "quoted" text.';

<input type="text" name="myform" value="$string" />

Since the above string contains a set of quotes it will cause the form
to break. The form_prep function converts HTML so that it can be
used safely:

<input type="text" name="myform" value="<?php echo form_prep
($string); ?>" />

Note: If you use any of the form helper functions listed in this page
the form values will be prepped automatically, so there is no need
to call this function. Use it only if you are creating your own form
elements.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/form_helper.html (7 of 8) [12/20/2007 11:01:27 PM]

CodeIgniter User Guide : Form Helper

Previous Topic: File Helper · Top of Page · User Guide Home · Next Topic: HTML Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/form_helper.html (8 of 8) [12/20/2007 11:01:27 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Inflector Helper

Search User Guide

Inflector Helper

The Inflector Helper file contains functions that permits you to
change words to plural, singular, camel case, etc.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('inflector');

The following functions are available:

singular()

Changes a plural word to singular. Example:

$word = "dogs";
echo singular($word); // Returns "dog"

plural()

Changes a singular word to plural. Example:

$word = "dog";
echo plural($word); // Returns "dogs"

To force a word to end with "es" use a second "true" argument.

$word = "pass";
echo plural($word, TRUE); // Returns "passes"

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/inflector_helper.html (1 of 2) [12/20/2007 11:01:27 PM]

CodeIgniter User Guide : Inflector Helper

camelize()

Changes a string of words separated by spaces or underscores to
camel case. Example:

$word = "my_dog_spot";
echo camelize($word); // Returns "myDogSpot"

underscore()

Takes multiple words separated by spaces and underscores them.
Example:

$word = "my dog spot";
echo underscore($word); // Returns "my_dog_spot"

humanize()

Takes multiple words separated by underscores and adds spaces
between them. Each word is capitalized. Example:

$word = "my_dog_spot";
echo humanize($word); // Returns "My Dog Spot"

Previous Topic: HTML Helper · Top of Page · User Guide Home · Next Topic: Security Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/inflector_helper.html (2 of 2) [12/20/2007 11:01:27 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : HTML Table Class

Search User Guide

HTML Table Class

The Table Class provides functions that enable you to auto-generate
HTML tables from arrays or database result sets.

Initializing the Class

Like most other classes in CodeIgniter, the Table class is initialized
in your controller using the $this->load->library function:

$this->load->library('table');

Once loaded, the Table library object will be available using: $this-
>table

Examples

Here is an example showing how you can create a table from a
multi-dimensional array. Note that the first array index will become
the table heading (or you can set your own headings using the
set_heading() function described in the function reference below).

$this->load->library('table');

$data = array(
 array('Name', 'Color', 'Size'),
 array('Fred', 'Blue', 'Small'),
 array('Mary', 'Red', 'Large'),
 array('John', 'Green', 'Medium')
);

echo $this->table->generate($data);

Here is an example of a table created from a database query result.
The table class will automatically generate the headings based on
the table names (or you can set your own headings using the

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/table.html (1 of 6) [12/20/2007 11:01:29 PM]

CodeIgniter User Guide : HTML Table Class

set_heading() function described in the function reference below).

$this->load->library('table');

$query = $this->db->query("SELECT * FROM my_table");

echo $this->table->generate($query);

Here is an example showing how you might create a table using
discreet parameters:

$this->load->library('table');

$this->table->set_heading('Name', 'Color', 'Size');

$this->table->add_row('Fred', 'Blue', 'Small');
$this->table->add_row('Mary', 'Red', 'Large');
$this->table->add_row('John', 'Green', 'Medium');

echo $this->table->generate();

Here is the same example, except instead of individual parameters,
arrays are used:

$this->load->library('table');

$this->table->set_heading(array('Name', 'Color', 'Size'));

$this->table->add_row(array('Fred', 'Blue', 'Small'));
$this->table->add_row(array('Mary', 'Red', 'Large'));
$this->table->add_row(array('John', 'Green', 'Medium'));

echo $this->table->generate();

Changing the Look of Your Table

The Table Class permits you to set a table template with which you
can specify the design of your layout. Here is the template
prototype:

$tmpl = array (
 'table_open' => '<table border="0" cellpadding="4"
cellspacing="0">',

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/table.html (2 of 6) [12/20/2007 11:01:29 PM]

CodeIgniter User Guide : HTML Table Class

 'heading_row_start' => '<tr>',
 'heading_row_end' => '</tr>',
 'heading_cell_start' => '<th>',
 'heading_cell_end' => '</th>',

 'row_start' => '<tr>',
 'row_end' => '</tr>',
 'cell_start' => '<td>',
 'cell_end' => '</td>',

 'row_alt_start' => '<tr>',
 'row_alt_end' => '</tr>',
 'cell_alt_start' => '<td>',
 'cell_alt_end' => '</td>',

 'table_close' => '</table>'
);

$this->table->set_template($tmpl);

Note: You'll notice there are two sets of "row" blocks in the
template. These permit you to create alternating row colors or
design elements that alternate with each iteration of the row data.

You are NOT required to submit a complete template. If you only
need to change parts of the layout you can simply submit those
elements. In this example, only the table opening tag is being
changed:

$tmpl = array ('table_open' => '<table border="1" cellpadding="2"
cellspacing="1" class="mytable">');

$this->table->set_template($tmpl);

Function Reference

$this->table->generate()

Returns a string containing the generated table. Accepts an optional
parameter which can be an array or a database result object.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/table.html (3 of 6) [12/20/2007 11:01:29 PM]

CodeIgniter User Guide : HTML Table Class

$this->table->set_caption()

Permits you to add a caption to the table.

$this->table->set_caption('Colors');

$this->table->set_heading()

Permits you to set the table heading. You can submit an array or
discreet params:

$this->table->set_heading('Name', 'Color', 'Size');

$this->table->set_heading(array('Name', 'Color', 'Size'));

$this->table->add_row()

Permits you to add a row to your table. You can submit an array or
discreet params:

$this->table->add_row('Blue', 'Red', 'Green');

$this->table->add_row(array('Blue', 'Red', 'Green'));

$this->table->make_columns()

This function takes a one-dimensional array as input and creates a
multi-dimensional array with a depth equal to the number of
columns desired. This allows a single array with many elements to
be displayed in a table that has a fixed column count. Consider this
example:

$list = array('one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten',

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/table.html (4 of 6) [12/20/2007 11:01:29 PM]

CodeIgniter User Guide : HTML Table Class

'eleven', 'twelve');

$new_list = $this->table->make_columns($list, 3);

$this->table->generate($new_list);

// Generates a table with this prototype

<table border="0" cellpadding="4" cellspacing="0">
<tr>
<td>one</td><td>two</td><td>three</td>
</tr><tr>
<td>four</td><td>five</td><td>six</td>
</tr><tr>
<td>seven</td><td>eight</td><td>nine</td>
</tr><tr>
<td>ten</td><td>eleven</td><td>twelve</td></tr>
</table>

$this->table->set_template()

Permits you to set your template. You can submit a full or partial
template.

$tmpl = array ('table_open' => '<table border="1" cellpadding="2"
cellspacing="1" class="mytable">');

$this->table->set_template($tmpl);

$this->table->set_empty()

Let's you set a default value for use in any table cells that are
empty. You might, for example, set a non-breaking space:

$this->table->set_empty(" ");

$this->table->clear()

Lets you clear the table heading and row data. If you need to show
multiple tables with different data you should to call this function
after each table has been generated to empty the previous table

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/table.html (5 of 6) [12/20/2007 11:01:29 PM]

CodeIgniter User Guide : HTML Table Class

information. Example:

$this->load->library('table');

$this->table->set_heading('Name', 'Color', 'Size');
$this->table->add_row('Fred', 'Blue', 'Small');
$this->table->add_row('Mary', 'Red', 'Large');
$this->table->add_row('John', 'Green', 'Medium');

echo $this->table->generate();

$this->table->clear();

$this->table->set_heading('Name', 'Day', 'Delivery');
$this->table->add_row('Fred', 'Wednesday', 'Express');
$this->table->add_row('Mary', 'Monday', 'Air');
$this->table->add_row('John', 'Saturday', 'Overnight');

echo $this->table->generate();

Previous Topic: FTP Class · Top of Page · User Guide Home · Next Topic: Image Manipulation Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/table.html (6 of 6) [12/20/2007 11:01:29 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Download Helper

Search User Guide

Download Helper

The Download Helper lets you download data to your desktop.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('download');

The following functions are available:

force_download('filename', 'data')

Generates server headers which force data to be downloaded to
your desktop. Useful with file downloads. The first parameter is the
name you want the downloaded file to be named, the second
parameter is the file data. Example:

$data = 'Here is some text!';
$name = 'mytext.txt';

force_download($name, $data);

If you want to download an existing file from your server you'll need
to read the file into a string:

$data = file_get_contents("/path/to/photo.jpg"); // Read the file's contents
$name = 'myphoto.jpg';

force_download($name, $data);

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/download_helper.html (1 of 2) [12/20/2007 11:01:29 PM]

CodeIgniter User Guide : Download Helper

Previous Topic: Directory Helper · Top of Page · User Guide Home · Next Topic: File Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/download_helper.html (2 of 2) [12/20/2007 11:01:29 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : FTP Class

Search User Guide

FTP Class

CodeIgniter's FTP Class permits files to be transfered to a remote
server. Remote files can also be moved, renamed, and deleted. The
FTP class also includes a "mirroring" function that permits an entire
local directory to be recreated remotely via FTP.

Note: SFTP and SSL FTP protocols are not supported, only
standard FTP.

Initializing the Class

Like most other classes in CodeIgniter, the FTP class is initialized in
your controller using the $this->load->library function:

$this->load->library('ftp');

Once loaded, the FTP object will be available using: $this->ftp

Usage Examples

In this example a connection is opened to the FTP server, and a
local file is read and uploaded in ASCII mode. The file permissions
are set to 755. Note: Setting permissions requires PHP 5.

$this->load->library('ftp');

$config['hostname'] = 'ftp.your-site.com';
$config['username'] = 'your-username';
$config['password'] = 'your-password';
$config['debug'] = TRUE;

$this->ftp->connect($config);

$this->ftp->upload('/local/path/to/myfile.html', '/public_html/myfile.html',
'ascii', 0775);

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/ftp.html (1 of 6) [12/20/2007 11:01:30 PM]

CodeIgniter User Guide : FTP Class

$this->ftp->close();

In this example a list of files is retrieved from the server.

$this->load->library('ftp');

$config['hostname'] = 'ftp.your-site.com';
$config['username'] = 'your-username';
$config['password'] = 'your-password';
$config['debug'] = TRUE;

$this->ftp->connect($config);

$list = $this->ftp->list_files('/public_html/');

print_r($list);

$this->ftp->close();

In this example a local directory is mirrored on the server.

$this->load->library('ftp');

$config['hostname'] = 'ftp.your-site.com';
$config['username'] = 'your-username';
$config['password'] = 'your-password';
$config['debug'] = TRUE;

$this->ftp->connect($config);

$this->ftp->mirror('/path/to/myfolder/', '/public_html/myfolder/');

$this->ftp->close();

Function Reference

$this->ftp->connect()

Connects and logs into to the FTP server. Connection preferences
are set by passing an array to the function, or you can store them in
a config file.

Here is an example showing how you set preferences manually:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/ftp.html (2 of 6) [12/20/2007 11:01:30 PM]

CodeIgniter User Guide : FTP Class

$this->load->library('ftp');

$config['hostname'] = 'ftp.your-site.com';
$config['username'] = 'your-username';
$config['password'] = 'your-password';
$config['port'] = 21;
$config['passive'] = FALSE;
$config['debug'] = TRUE;

$this->ftp->connect($config);

Setting FTP Preferences in a Config File

If you prefer you can store your FTP preferences in a config file.
Simply create a new file called the ftp.php, add the $config array
in that file. Then save the file at config/ftp.php and it will be used
automatically.

Available connection options:

● hostname - the FTP hostname. Usually something like: ftp.
example.com

● username - the FTP username.

● password - the FTP password.

● port - The port number. Set to 21 by default.

● debug - TRUE/FALSE (boolean). Whether to enable debugging to
display error messages.

● passive - TRUE/FALSE (boolean). Whether to use passive mode.
Passive is set automatically by default.

$this->ftp->upload()

Uploads a file to your server. You must supply the local path and the
remote path, and you can optionally set the mode and permissions.
Example:

$this->ftp->upload('/local/path/to/myfile.html', '/public_html/myfile.html',
'ascii', 0775);

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/ftp.html (3 of 6) [12/20/2007 11:01:30 PM]

CodeIgniter User Guide : FTP Class

Mode options are: ascii, binary, and auto (the default). If auto
is used it will base the mode on the file extension of the source file.

Permissions are available if you are running PHP 5 and can be
passed as an octal value in the fourth parameter.

$this->ftp->rename()

Permits you to rename a file. Supply the source file name/path and
the new file name/path.

// Renames green.html to blue.html
$this->ftp->rename('/public_html/foo/green.html', '/public_html/foo/blue.
html');

$this->ftp->move()

Lets you move a file. Supply the source and destination paths:

// Moves blog.html from "joe" to "fred"
$this->ftp->move('/public_html/joe/blog.html', '/public_html/fred/blog.html');

Note: if the destination file name is different the file will be renamed.

$this->ftp->delete_file()

Lets you delete a file. Supply the source path with the file name.

$this->ftp->delete_file('/public_html/joe/blog.html');

$this->ftp->delete_dir()

Lets you delete a directory and everything it contains. Supply the
source path to the directory with a trailing slash.

Important Be VERY careful with this function. It will recursively

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/ftp.html (4 of 6) [12/20/2007 11:01:30 PM]

CodeIgniter User Guide : FTP Class

delete everything within the supplied path, including sub-folders
and all files. Make absolutely sure your path is correct. Try using the
list_files() function first to verify that your path is correct.

$this->ftp->delete_dir('/public_html/path/to/folder/');

$this->ftp->list_files()

Permits you to retrieve a list of files on your server returned as an
array. You must supply the path to the desired directory.

$list = $this->ftp->list_files('/public_html/');

print_r($list);

$this->ftp->mirror()

Recursively reads a local folder and everything it contains (including
sub-folders) and creates a mirror via FTP based on it. Whatever the
directory structure of the original file path will be recreated on the
server. You must supply a source path and a destination path:

$this->ftp->mirror('/path/to/myfolder/', '/public_html/myfolder/');

$this->ftp->mkdir()

Lets you create a directory on your server. Supply the path ending
in the folder name you wish to create, with a trailing slash.
Permissions can be set by passed an octal value in the second
parameter (if you are running PHP 5).

// Creates a folder named "bar"
$this->ftp->mkdir('/public_html/foo/bar/', 0777);

$this->ftp->chmod()

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/ftp.html (5 of 6) [12/20/2007 11:01:30 PM]

CodeIgniter User Guide : FTP Class

Permits you to set file permissions. Supply the path to the file or
folder you wish to alter permissions on:

// Chmod "bar" to 777
$this->ftp->chmod('/public_html/foo/bar/', 0777);

$this->ftp->close();

Closes the connection to your server. It's recommended that you
use this when you are finished uploading.

Previous Topic: File Uploading Class · Top of Page · User Guide Home · Next Topic: HTML Table Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/ftp.html (6 of 6) [12/20/2007 11:01:30 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Creating Libraries

Search User Guide

Creating Libraries

When we use the term "Libraries" we are normally referring to the
classes that are located in the libraries directory and described in
the Class Reference of this user guide. In this case, however, we will
instead describe how you can create your own libraries within your
application/libraries directory in order to maintain separation
between your local resources and the global framework resources.

As an added bonus, CodeIgniter permits your libraries to extend
native classes if you simply need to add some functionality to an
existing library. Or you can even replace native libraries just by
placing identically named versions in your application/libraries
folder.

In summary:

● You can create entirely new libraries.

● You can extend native libraries.

● You can replace native libraries.

The page below explains these three concepts in detail.

Note: The Database classes can not be extended or replaced with
your own classes, nor can the main Controller class. All other
classes are able to be replaced/extended.

Storage

Your library classes should be placed within your application/
libraries folder, as this is where CodeIgniter will look for them
when they are initialized.

Naming Conventions

● File names must be capitalized. For example: Myclass.php

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/creating_libraries.html (1 of 6) [12/20/2007 11:01:32 PM]

CodeIgniter User Guide : Creating Libraries

● Class declarations must be capitalized. For example: class Myclass

● Class names and file names must match.

The Class File

Classes should have this basic prototype (Note: We are using the
name Someclass purely as an example):

<?php if (!defined('BASEPATH')) exit('No direct script access allowed');

class Someclass {

 function some_function()
 {
 }
}

?>

Using Your Class

From within any of your Controller functions you can initialize your
class using the standard:

$this->load->library('someclass');

Where someclass is the file name, without the ".php" file extension.
You can submit the file name capitalized or lower case. CodeIgniter
doesn't care.

Once loaded you can access your class using the lower case
version:

$this->someclass->some_function(); // Object instances will always be lower
case

Passing Parameters When Initializing Your Class

In the library loading function you can dynamically pass data via the

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/creating_libraries.html (2 of 6) [12/20/2007 11:01:32 PM]

CodeIgniter User Guide : Creating Libraries

second parameter and it will be passed to your class constructor:

$params = array('type' => 'large', 'color' => 'red');

$this->load->library('Someclass', $params);

If you use this feature you must set up your class constructor to
expect data:

<?php if (!defined('BASEPATH')) exit('No direct script access allowed');

class Someclass {

 function Someclass($params)
 {
 // Do something with $params
 }
}

?>

You can also pass parameters stored in a config file. Simply create a
config file named identically to the class file name and store it in
your application/config/ folder. Note that if you dynamically pass
parameters as described above, the config file option will not be
available.

Utilizing CodeIgniter Resources within Your Library

To access CodeIgniter's native resources within your library use the
get_instance() function. This function returns the CodeIgniter
super object.

Normally from within your controller functions you will call any of
the available CodeIgniter functions using the $this construct:

$this->load->helper('url');
$this->load->library('session');
$this->config->item('base_url');
etc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/creating_libraries.html (3 of 6) [12/20/2007 11:01:32 PM]

CodeIgniter User Guide : Creating Libraries

$this, however, only works directly within your controllers, your
models, or your views. If you would like to use CodeIgniter's classes
from within your own custom classes you can do so as follows:

First, assign the CodeIgniter object to a variable:

$CI =& get_instance();

Once you've assigned the object to a variable, you'll use that
variable instead of $this:

$CI =& get_instance();

$CI->load->helper('url');
$CI->load->library('session');
$CI->config->item('base_url');
etc.

Note: You'll notice that the above get_instance() function is being
passed by reference:

$CI =& get_instance();

This is very important. Assigning by reference allows you to use
the original CodeIgniter object rather than creating a copy of it.

Also, please note: If you are running PHP 4 it's usually best to
avoid calling get_instance() from within your class constructors.
PHP 4 has trouble referencing the CI super object within application
constructors since objects do not exist until the class is fully
instantiated.

Replacing Native Libraries with Your Versions

Simply by naming your class files identically to a native library will
cause CodeIgniter to use it instead of the native one. To use this
feature you must name the file and the class declaration exactly the
same as the native library. For example, to replace the native Email
library you'll create a file named application/libraries/Email.php,
and declare your class with:

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/creating_libraries.html (4 of 6) [12/20/2007 11:01:32 PM]

CodeIgniter User Guide : Creating Libraries

class CI_Email {

}

Note that most native classes are prefixed with CI_.

To load your library you'll see the standard loading function:

$this->load->library('email');

Note: At this time the Database classes can not be replaced with
your own versions.

Extending Native Libraries

If all you need to do is add some functionality to an existing library -
perhaps add a function or two - then it's overkill to replace the
entire library with your version. In this case it's better to simply
extend the class. Extending a class is nearly identical to replacing a
class with a couple exceptions:

● The class declaration must extend the parent class.

● Your new class name and filename must be prefixed with MY_ (this
item is configurable. See below.).

For example, to extend the native Email class you'll create a file
named application/libraries/MY_Email.php, and declare your
class with:

class MY_Email extends CI_Email {

}

Note: If you need to use a constructor in your class make sure you
extend the parent constructor:

class MY_Email extends CI_Email {

 function My_Email()

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/creating_libraries.html (5 of 6) [12/20/2007 11:01:32 PM]

CodeIgniter User Guide : Creating Libraries

 {
 parent::CI_Email();
 }
}

Loading Your Sub-class

To load your sub-class you'll use the standard syntax normally used.
DO NOT include your prefix. For example, to load the example
above, which extends the Email class, you will use:

$this->load->library('email');

Once loaded you will use the class variable as you normally would
for the class you are extending. In the case of the email class all
calls will use:

$this->email->some_function();

Setting Your Own Prefix

To set your own sub-class prefix, open your application/config/
config.php file and look for this item:

$config['subclass_prefix'] = 'MY_';

Please note that all native CodeIgniter libraries are prefixed with
CI_ so DO NOT use that as your prefix.

Previous Topic: Using CodeIgniter Libraries · Top of Page · User Guide Home · Next Topic: Creating Core
System Classes

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/general/creating_libraries.html (6 of 6) [12/20/2007 11:01:32 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : HTML Helper

Search User Guide

HTML Helper

The HTML Helper file contains functions that assist in working with
HTML.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('html');

The following functions are available:

heading()

Lets you create HTML <h1> tags. The first parameter will contain
the data, the second the size of the heading. Example:

echo heading('Welcome!', 3);

The above would produce: <h3>Welcome!</h3>

ol() and ul()

Permits you to generate ordered or unordered HTML lists from
simple or multi-dimensional arrays. Example:

$this->load->helper('html');

$list = array(
 'red',
 'blue',
 'green',
 'yellow'

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/html_helper.html (1 of 4) [12/20/2007 11:01:32 PM]

CodeIgniter User Guide : HTML Helper

);

$attributes = array(
 'class' => 'boldlist',
 'id' => 'mylist'
);

echo ul($list, $attributes);

The above code will produce this:

<ul class="boldlist" id="mylist">
 red
 blue
 green
 yellow

Here is a more complex example, using a multi-dimensional array:

$this->load->helper('html');

$list = array(
 'colors' => array(
 'red',
 'blue',
 'green'
),
 'shapes' => array(
 'round',
 'square',
 'circles' => array(
 'ellipse',
 'oval',
 'sphere'
)
),
 'moods' => array(
 'happy',
 'upset' => array(
 'defeated' => array(
 'dejected',
 'disheartened',
 'depressed'
),
 'annoyed',
 'cross',

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/html_helper.html (2 of 4) [12/20/2007 11:01:32 PM]

CodeIgniter User Guide : HTML Helper

 'angry'
)
)
);

echo ul($list);

The above code will produce this:

<ul class="boldlist" id="mylist">
 colors

 red
 blue
 green

 shapes

 round
 suare
 circles

 elipse
 oval
 sphere

 moods

 happy
 upset

 defeated

 dejected
 disheartened
 depressed

 annoyed
 cross
 angry

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/html_helper.html (3 of 4) [12/20/2007 11:01:32 PM]

CodeIgniter User Guide : HTML Helper

nbs()

Generates non-breaking spaces () based on the number you
submit. Example:

echo nbs(3);

The above would produce:

br()

Generates line break tags (
) based on the number you
submit. Example:

echo br(3);

The above would produce:

Previous Topic: Form Helper · Top of Page · User Guide Home · Next Topic: Inflector Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/html_helper.html (4 of 4) [12/20/2007 11:01:32 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Array Helper

Search User Guide

Array Helper

The Array Helper file contains functions that assist in working with
arrays.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('array');

The following functions are available:

element()

Lets you fetch an item from an array. The function tests whether the
array index is set and whether it has a value. If a value exists it is
returned. If a value does not exist it returns FALSE, or whatever
you've specified as the default value via the third parameter.
Example:

$array = array('color' => 'red', 'shape' => 'round', 'size' => '');

// returns "red"
echo element('color', $array);

// returns NULL
echo element('size', $array, NULL);

random_element()

Takes an array as input and returns a random element from it.
Usage example:

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/array_helper.html (1 of 2) [12/20/2007 11:01:33 PM]

CodeIgniter User Guide : Array Helper

$quotes = array(
 "I find that the harder I work, the more luck I seem to have. - Thomas
Jefferson",
 "Don't stay in bed, unless you can make money in bed. - George
Burns",
 "We didn't lose the game; we just ran out of time. - Vince Lombardi",
 "If everything seems under control, you're not going fast enough. -
Mario Andretti",
 "Reality is merely an illusion, albeit a very persistent one. - Albert
Einstein",
 "Chance favors the prepared mind - Louis Pasteur"
);

echo random_element($quotes);

Previous Topic: Zip Encoding Class · Top of Page · User Guide Home · Next Topic: Cookie Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/array_helper.html (2 of 2) [12/20/2007 11:01:33 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Cookie Helper

Search User Guide

Cookie Helper

The Cookie Helper file contains functions that assist in working with
cookies.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('cookie');

The following functions are available:

set_cookie()

Sets a cookie containing the values you specify. There are two ways
to pass information this function so that a cookie can be set: Array
Method, and Discreet Parameters:

Array Method

Using this method, an associative array is passed to the first
parameter:

$cookie = array(
 'name' => 'The Cookie Name',
 'value' => 'The Value',
 'expire' => '86500',
 'domain' => '.some-domain.com',
 'path' => '/',
 'prefix' => 'myprefix_',
);

set_cookie($cookie);

Notes:

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/cookie_helper.html (1 of 3) [12/20/2007 11:01:34 PM]

CodeIgniter User Guide : Cookie Helper

Only the name and value are required.

The expiration is set in seconds, which will be added to the current
time. Do not include the time, but rather only the number of
seconds from now that you wish the cookie to be valid. If the
expiration is set to zero the cookie will only last as long as the
browser is open.

To delete a cookie set it with the expiration blank.

For site-wide cookies regardless of how your site is requested, add
your URL to the domain starting with a period, like this: .your-
domain.com

The path is usually not needed since the function sets a root path.

The prefix is only needed if you need to avoid name collisions with
other identically named cookies for your server.

Discreet Parameters

If you prefer, you can set the cookie by passing data using
individual parameters:

set_cookie($name, $value, $expire, $domain, $path, $prefix);

get_cookie()

Lets you fetch a cookie. The first parameter will contain the name of
the cookie you are looking for:

get_cookie('some_cookie');

The function returns FALSE (boolean) if the item you are attempting
to retrieve does not exist.

The second optional parameter lets you run the data through the
XSS filter. It's enabled by setting the second parameter to boolean
TRUE;

get_cookie('some_cookie', TRUE);

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/cookie_helper.html (2 of 3) [12/20/2007 11:01:34 PM]

CodeIgniter User Guide : Cookie Helper

delete_cookie()

Lets you delete a cookie. Unless you've set a custom path or other
values, only the name of the cookie is needed:

delete_cookie("name");

This function is otherwise identical to set_cookie(), except that it
does not have the value and expiration parameters. You can submit
an array of values in the first parameter or you can set discreet
parameters.

delete_cookie($name, $domain, $path, $prefix)

Previous Topic: Array Helper · Top of Page · User Guide Home · Next Topic: Date Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/cookie_helper.html (3 of 3) [12/20/2007 11:01:34 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : File Uploading Class

Search User Guide

File Uploading Class

CodeIgniter's File Uploading Class permits files to be uploaded. You
can set various preferences, restricting the type and size of the files.

The Process

Uploading a file involves the following general process:

● An upload form is displayed, allowing a user to select a file and upload
it.

● When the form is submitted, the file is uploaded to the destination you
specify.

● Along the way, the file is validated to make sure it is allowed to be
uploaded based on the preferences you set.

● Once uploaded, the user will be shown a success message.

To demonstrate this process here is brief tutorial. Afterward you'll find
reference information.

Creating the Upload Form

Using a text editor, create a form called upload_form.php. In it,
place this code and save it to your applications/views/ folder:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/file_uploading.html (1 of 9) [12/20/2007 11:01:35 PM]

CodeIgniter User Guide : File Uploading Class

You'll notice we are using a form helper to create the opening form
tag. File uploads require a multipart form, so the helper creates the
proper syntax for you. You'll also notice we have an $error variable.
This is so we can show error messages in the event the user does
something wrong.

The Success Page

Using a text editor, create a form called upload_success.php. In it,
place this code and save it to your applications/views/ folder:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/file_uploading.html (2 of 9) [12/20/2007 11:01:35 PM]

CodeIgniter User Guide : File Uploading Class

The Controller

Using a text editor, create a controller called upload.php. In it, place
this code and save it to your applications/controllers/ folder:

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/file_uploading.html (3 of 9) [12/20/2007 11:01:35 PM]

CodeIgniter User Guide : File Uploading Class

The Upload Folder

You'll need a destination folder for your uploaded images. Create a
folder at the root of your CodeIgniter installation called uploads and
set its file permissions to 777.

Try it!

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/file_uploading.html (4 of 9) [12/20/2007 11:01:35 PM]

CodeIgniter User Guide : File Uploading Class

To try your form, visit your site using a URL similar to this one:

www.your-site.com/index.php/upload/

You should see an upload form. Try uploading an image file (either a
jpg, gif, or png). If the path in your controller is correct it should work.

Reference Guide

Initializing the Upload Class

Like most other classes in CodeIgniter, the Upload class is initialized
in your controller using the $this->load->library function:

$this->load->library('upload');

Once the Upload class is loaded, the object will be available using:
$this->upload

Setting Preferences

Similar to other libraries, you'll control what is allowed to be upload
based on your preferences. In the controller you built above you set
the following preferences:

$config['upload_path'] = './uploads/';
$config['allowed_types'] = 'gif|jpg|png';
$config['max_size'] = '100';
$config['max_width'] = '1024';
$config['max_height'] = '768';

$this->load->library('upload', $config);

// Alternately you can set preferences by calling the initialize function. Useful if
you auto-load the class:
$this->upload->initialize($config);

The above preferences should be fairly self-explanatory. Below is a

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/file_uploading.html (5 of 9) [12/20/2007 11:01:35 PM]

CodeIgniter User Guide : File Uploading Class

table describing all available preferences.

Preferences

The following preferences are available. The default value indicates
what will be used if you do not specify that preference.

Preference Default Value Options Description

upload_path None None

The path to the folder where
the upload should be placed.
The folder must be writable
and the path can be
absolute or relative.

allowed_types None None

The mime types
corresponding to the types
of files you allow to be
uploaded. Usually the file
extension can be used as
the mime type. Separate
multiple types with a pipe.

overwrite FALSE TRUE/FALSE
(boolean)

If set to true, if a file with
the same name as the one
you are uploading exists, it
will be overwritten. If set to
false, a number will be
appended to the filename if
another with the same
name exists.

max_size 0 None

The maximum size (in
kilobytes) that the file can
be. Set to zero for no limit.
Note: Most PHP installations
have their own limit, as
specified in the php.ini file.
Usually 2 MB (or 2048 KB)
by default.

max_width 0 None
The maximum width (in
pixels) that the file can be.
Set to zero for no limit.

max_height 0 None
The maximum height (in
pixels) that the file can be.
Set to zero for no limit.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/file_uploading.html (6 of 9) [12/20/2007 11:01:35 PM]

CodeIgniter User Guide : File Uploading Class

encrypt_name FALSE TRUE/FALSE
(boolean)

If set to TRUE the file name
will be converted to a
random encrypted string.
This can be useful if you
would like the file saved
with a name that can not be
discerned by the person
uploading it.

remove_spaces TRUE TRUE/FALSE
(boolean)

If set to TRUE, any spaces
in the file name will be
converted to underscores.
This is recommended.

Setting preferences in a config file

If you prefer not to set preferences using the above method, you can
instead put them into a config file. Simply create a new file called the
upload.php, add the $config array in that file. Then save the file in:
config/upload.php and it will be used automatically. You will NOT
need to use the $this->upload->initialize function if you save your
preferences in a config file.

Function Reference

The following functions are available

$this->upload->do_upload()

Performs the upload based on the preferences you've set. Note: By
default the upload routine expects the file to come from a form field
called userfile, and the form must be a "multipart type:

<form method="post" action="some_action" enctype="multipart/form-data" />

If you would like to set your own field name simply pass its value to
the do_upload function:

$field_name = "some_field_name";
$this->upload->do_upload($field_name)

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/file_uploading.html (7 of 9) [12/20/2007 11:01:35 PM]

CodeIgniter User Guide : File Uploading Class

$this->upload->display_errors()

Retrieves any error messages if the do_upload() function returned
false. The function does not echo automatically, it returns the data so
you can assign it however you need.

Formatting Errors

By default the above function wraps any errors within <p> tags. You
can set your own delimiters like this:

$this->upload->display_errors('<p>', '</p>');

$this->upload->data()

This is a helper function that returns an array containing all of the
data related to the file you uploaded. Here is the array prototype:

Array
(
 [file_name] => mypic.jpg
 [file_type] => image/jpeg
 [file_path] => /path/to/your/upload/
 [full_path] => /path/to/your/upload/jpg.jpg
 [raw_name] => mypic
 [orig_name] => mypic.jpg
 [file_ext] => .jpg
 [file_size] => 22.2
 [is_image] => 1
 [image_width] => 800
 [image_height] => 600
 [image_type] => jpeg
 [image_size_str] => width="800" height="200"
)

Explanation

Here is an explanation of the above array items.

Item Description

file_name The name of the file that was uploaded including the file
extension.

file_type The file's Mime type

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/file_uploading.html (8 of 9) [12/20/2007 11:01:35 PM]

CodeIgniter User Guide : File Uploading Class

file_path The absolute server path to the file
full_path The absolute server path including the file name
raw_name The file name without the extension

orig_name The original file name. This is only useful if you use the encrypted
name option.

file_ext The file extension with period
file_size The file size in kilobytes
is_image Whether the file is an image or not. 1 = image. 0 = not.
image_width Image width.
image_heigth Image height
image_type Image type. Typically the file extension without the period.

image_size_str A string containing the width and height. Useful to put into an
image tag.

Previous Topic: Download Helper · Top of Page · User Guide Home · Next Topic: FTP Class

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/file_uploading.html (9 of 9) [12/20/2007 11:01:35 PM]

file:///D:/_darkhorse/websites/codeigniter/user_guide/libraries/download_helper.html
http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Security Helper

Search User Guide

Security Helper

The Security Helper file contains security related functions.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('security');

The following functions are available:

xss_clean()

Provides Cross Site Script Hack filtering. This function is an alias to
the one in the Input class. More info can be found there.

dohash()

Permits you to create SHA1 or MD5 one way hashes suitable for
encrypting passwords. Will create SHA1 by default. Examples:

$str = dohash($str); // SHA1

$str = dohash($str, 'md5'); // MD5

strip_image_tags()

This is a security function that will strip image tags from a string. It
leaves the image URL as plain text.

$string = strip_image_tags($string);

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/security_helper.html (1 of 2) [12/20/2007 11:01:36 PM]

CodeIgniter User Guide : Security Helper

encode_php_tags()

This is a security function that converts PHP tags to entities. Note: If
you use the XSS filtering function it does this automatically.

$string = encode_php_tags($string);

Previous Topic: Inflector Helper · Top of Page · User Guide Home · Next Topic: Smiley Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/security_helper.html (2 of 2) [12/20/2007 11:01:36 PM]

http://www.codeigniter.com/
http://ellislab.com/

CodeIgniter User Guide : Directory Helper

Search User Guide

Directory Helper

The Directory Helper file contains functions that assist in working
with directories.

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('directory');

The following functions are available:

directory_map('source directory')

This function reads the directory path specified in the first
parameter and builds an array representation of it and all its
contained files. Example:

$map = directory_map('./mydirectory/');

Note: Paths are almost always relative to your main index.php file.

Sub-folders contained within the directory will be mapped as well. If
you wish to map only the top level directory set the second
parameter to true (boolean):

$map = directory_map('./mydirectory/', TRUE);

Each folder name will be an array index, while its contained files will
be numerically indexed. Here is an example of a typical array:

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/directory_helper.html (1 of 2) [12/20/2007 11:01:37 PM]

CodeIgniter User Guide : Directory Helper

Array
(
 [libraries] => Array
 (
 [0] => benchmark.html
 [1] => config.html
 [database] => Array
 (
 [0] => active_record.html
 [1] => binds.html
 [2] => configuration.html
 [3] => connecting.html
 [4] => examples.html
 [5] => fields.html
 [6] => index.html
 [7] => queries.html
)
 [2] => email.html
 [3] => file_uploading.html
 [4] => image_lib.html
 [5] => input.html
 [6] => language.html
 [7] => loader.html
 [8] => pagination.html
 [9] => uri.html
)

Previous Topic: Date Helper · Top of Page · User Guide Home · Next Topic: Download Helper

CodeIgniter · Copyright © 2007 · Ellislab, Inc.

file:///D:/_darkhorse/websites/codeigniter/user_guide/helpers/directory_helper.html (2 of 2) [12/20/2007 11:01:37 PM]

http://www.codeigniter.com/
http://ellislab.com/

	Local Disk
	CodeIgniter User Guide : Welcome to CodeIgniter
	CodeIgniter User Guide : Getting Started With CodeIgniter
	CodeIgniter User Guide : Installation Instructions
	CodeIgniter User Guide : Design and Architectural Goals
	CodeIgniter User Guide : CodeIgniter URLs
	CodeIgniter User Guide : Credits
	CodeIgniter User Guide : Upgrading From a Previous Version
	CodeIgniter User Guide : Model-View-Controller
	CodeIgniter User Guide : URI Class
	CodeIgniter User Guide : URL Helper
	CodeIgniter User Guide : URI Routing
	CodeIgniter User Guide : Controllers
	CodeIgniter User Guide : Downloading CodeIgniter
	CodeIgniter User Guide : Upgrading from 1.5.3 to 1.5.4
	CodeIgniter User Guide
	CodeIgniter User Guide
	CodeIgniter User Guide
	CodeIgniter User Guide
	CodeIgniter User Guide
	CodeIgniter User Guide
	CodeIgniter User Guide
	CodeIgniter User Guide
	CodeIgniter User Guide
	CodeIgniter User Guide
	CodeIgniter User Guide
	CodeIgniter User Guide : Troubleshooting
	CodeIgniter User Guide : Application Flow Chart
	CodeIgniter User Guide : Unit Testing Class
	CodeIgniter User Guide : User Agent Class
	CodeIgniter User Guide : Typography Helper
	CodeIgniter User Guide : XML Helper
	CodeIgniter User Guide : Scaffolding
	CodeIgniter User Guide : Error Handling
	CodeIgniter User Guide : Views
	CodeIgniter User Guide : Output Class
	CodeIgniter User Guide : CodeIgniter at a Glance
	CodeIgniter User Guide : Models
	CodeIgniter User Guide : CodeIgniter Features
	CodeIgniter User Guide : Template Parser Class
	CodeIgniter User Guide : Form Validation
	CodeIgniter User Guide : Web Page Caching
	CodeIgniter User Guide : Text Helper
	CodeIgniter User Guide : The Database Class
	CodeIgniter User Guide : Auto-loading Resources
	CodeIgniter User Guide : Alternate PHP Syntax for View Files
	CodeIgniter User Guide : Loader Class
	CodeIgniter User Guide : Profiling Your Application
	CodeIgniter User Guide : Language Class
	CodeIgniter User Guide : Pagination Class
	CodeIgniter User Guide : CodeIgniter License Agreement
	CodeIgniter User Guide : Active Record
	CodeIgniter User Guide : Connecting to your Database
	CodeIgniter User Guide : Helper Functions
	CodeIgniter User Guide : Trackback Class
	CodeIgniter User Guide : Input Class
	CodeIgniter User Guide : XML-RPC and XML-RPC Server Classes
	CodeIgniter User Guide : String Helper
	CodeIgniter User Guide : Database Quick Start
	CodeIgniter User Guide : Database Configuration
	CodeIgniter User Guide : Queries
	CodeIgniter User Guide : Generating Query Results
	CodeIgniter User Guide : Query Helper Functions
	CodeIgniter User Guide : Transactions
	CodeIgniter User Guide : Table Data
	CodeIgniter User Guide : Field Data
	CodeIgniter User Guide : Custom Function Calls
	CodeIgniter User Guide : Database Caching Class
	CodeIgniter User Guide : Database Utility Class
	CodeIgniter User Guide : Config Class
	CodeIgniter User Guide : Hooks
	CodeIgniter User Guide : Managing your Applications
	CodeIgniter User Guide : Security
	CodeIgniter User Guide : Plugins
	CodeIgniter User Guide : Benchmarking Class
	CodeIgniter User Guide
	CodeIgniter User Guide : Server Requirements
	CodeIgniter User Guide : Change Log
	CodeIgniter User Guide : Image Manipulation Class
	CodeIgniter User Guide : Zip Encoding Class
	CodeIgniter User Guide : Smiley Helper
	CodeIgniter User Guide : File Helper
	CodeIgniter User Guide : Email Class
	CodeIgniter User Guide : Calendaring Class
	CodeIgniter User Guide : Creating Core System Classes
	CodeIgniter User Guide : Using CodeIgniter Libraries
	CodeIgniter User Guide : Encryption Class
	CodeIgniter User Guide : Date Helper
	CodeIgniter User Guide : Form Helper
	CodeIgniter User Guide : Inflector Helper
	CodeIgniter User Guide : HTML Table Class
	CodeIgniter User Guide : Download Helper
	CodeIgniter User Guide : FTP Class
	CodeIgniter User Guide : Creating Libraries
	CodeIgniter User Guide : HTML Helper
	CodeIgniter User Guide : Array Helper
	CodeIgniter User Guide : Cookie Helper
	CodeIgniter User Guide : File Uploading Class
	CodeIgniter User Guide : Security Helper
	CodeIgniter User Guide : Directory Helper

	HNJNOLNPBIBFKGCCJPGGEIMAAIOPPPFMFM:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	PCKBLAGPNMGMOHHIEBMMAIFHGJBMBIPF:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	DAAIBPGBMGFGEJMNFIJEBJBMPPIEGEAL:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	JGOHLNFHGCFKAGFHKPAODEKDPAHMCIEC:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	OEOLNLAHPPMFFKGGGCOEHNIHGPKDMMBH:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	FMFMKHEKCLLNNPGNEIOHPKFMDAONOHFMFMAIDN:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	FGOOEEFCAMABGLFFIMEOONIGPIFMAHAFAG:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	JAMJKCCGPFMOHGOPLPCKLEPBACLPCBCA:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	EOGCMOMKPDGLBPPGCPNLMFOLPKINHDDI:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	DGDLPLHGPCBMMNBEGFEAMBCMGDDAGLOP:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	DGCJCFCKFGHPJECLFHHGLEDCKEAPJONA:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	ALBPPFDJMMKLNDEGPNLOLOEAIFDDBHHG:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	form2:
	f1:

	f2:

	CKMDNCNNHEJHCAFHAOEJLHKDPKIHDBJA:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	IBJIDNBKKPFMFMHKAIKDLNLKFBOLDJMEBP:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	AHNABJHBICADKKPFCHMFDOAGGKAFGOPN:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	IBONEJHOAHPJLLNPDJHJFHMDOIKJEMIB:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	PIGGJFOPDKHGHHGAOKJFHKPKOACEAKBO:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	LEPHNLGEANNMGBEMFOFMAHBKBOCIHCPGOM:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	FMAHDLAOLEFHNJCMBLDFFKDEJNKDIFMPFN:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	BBABKMFPDGGPDPKLNDIBFJLPMDLDHBCE:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	DIKOCLLHFKFAIPJLFJMMAPMCJLAKMGLE:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	HEMCKBLAHIBNEKNMPCEBMBFOPLEOJPNP:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	NPLEBMHOBLHGIKLCKKLOJBMBAEGADMMI:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	PMLIBAOIGCKEMNJECNFMFMBPNGPDNDBHIJ:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	DJGFDBBIAPPJGBOFLLDOBHHEFCFLPHHF:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	EOBGDINGJOPCKGCBANHJGEIFIAJKBBGA:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	LOEBLFKGGFLODGHBAHABNEJDHOPLOINO:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	AGIFADJGOHAMJLLHHGJOJNFGFFCPPDAF:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	MPOKAGGJBIEJEIGFJEKDJDJGNENLEELI:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	AKCAENFGPILEMPPDAOBNEJNBKFGNLFPA:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	LBCPJNMAGKKNEDECDNEFCMIEKOAONLDP:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	EGCGAHECDJNIAJINBHLNOCDLFGOLALHH:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	GIODDLDMDFIGECIAJLIIMLPPINMDKPIG:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	ACLHFIOJIDOCNFEADNJEKALBAIIFJPDB:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	form2:
	f1: <html>
<head>
<title>My Blog</title>
</head>
<body>
	<h1>Welcome to my Blog!</h1>
</body>
</html>

	f2: load->view('blogview');
	}
}
?>

	f3: load->view('blogview', $data);
	}
}
?>

	f4: <html>
<head>
<title><?php echo $title;?></title>
</head>
<body>
	<h1><?php echo $heading;?></h1>
</body>
</html>

	f5: load->view('blogview', $data);
	}
}
?>

	f6: <html>
<head>
<title><?php echo $title;?></title>
</head>
<body>
<h1><?php echo $heading;?></h1>
	
<h3>My Todo List</h3>	

<?php foreach($todo_list as $item):?>

<?php echo $item;?>

<?php endforeach;?>

	
</body>
</html>

	DPMMDIOEEMBMGDHOIHBLCCEKDCMKIOPK:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	IHFKKILOCICAEPHFOBLJMGJIKJMMLDAE:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	POCDJMCIBJDCCBMBDCHFCPLMJOLNGLLL:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	AJCIJDKDCNHKIGCLJDKBCLJMMJICMCJB:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	NEJLOHOMOKNPMFBFELHHGMPFIEJIHNHO:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	PLNHIPNCPCJHGDHBGHGBNONHFKFIANDI:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	form2:
	f1: <html>
<head>
<title>My Form</title>
</head>
<body>

<?=$this->validation->error_string; ?>

<?=form_open('form'); ?>

<h5>Username</h5>
<input type="text" name="username" value="" size="50" />

<h5>Password</h5>
<input type="text" name="password" value="" size="50" />

<h5>Password Confirm</h5>
<input type="text" name="passconf" value="" size="50" />

<h5>Email Address</h5>
<input type="text" name="email" value="" size="50" />

<div><input type="submit" value="Submit" /></div>

</form>

</body>
</html>

	f2: <html>
<head>
<title>My Form</title>
</head>
<body>

<h3>Your form was successfully submitted!</h3>

<p><?=anchor('form', 'Try it again!'); ?></p>

</body>
</html>

	f3: <?php

class Form extends Controller {
	
	function index()
	{
		$this->load->helper(array('form', 'url'));
		
		$this->load->library('validation');
				
		if ($this->validation->run() == FALSE)
		{
			$this->load->view('myform');
		}
		else
		{
			$this->load->view('formsuccess');
		}
	}
}
?>
	f4: load->helper(array('form', 'url'));
		
		$this->load->library('validation');
			
		$rules['username']	= "required";
		$rules['password']	= "required";
		$rules['passconf']	= "required";
		$rules['email']		= "required";
		
		$this->validation->set_rules($rules);
			
		if ($this->validation->run() == FALSE)
		{
			$this->load->view('myform');
		}
		else
		{
			$this->load->view('formsuccess');
		}
	}
}
?>
	f5: load->helper(array('form', 'url'));
		
		$this->load->library('validation');
			
		$rules['username']	= "callback_username_check";
		$rules['password']	= "required";
		$rules['passconf']	= "required";
		$rules['email']		= "required";
		
		$this->validation->set_rules($rules);
			
		if ($this->validation->run() == FALSE)
		{
			$this->load->view('myform');
		}
		else
		{
			$this->load->view('formsuccess');
		}
	}
	
	function username_check($str)
	{
		if ($str == 'test')
		{
			$this->validation->set_message('username_check', 'The %s field can not be the word "test"');
			return FALSE;
		}
		else
		{
			return TRUE;
		}
	}
	
}
?>
	f6: function index()
{
	$this->load->helper(array('form', 'url'));
	
	$this->load->library('validation');
		
	$rules['username']	= "required";
	$rules['password']	= "required";
	$rules['passconf']	= "required";
	$rules['email']		= "required";
	
	$this->validation->set_rules($rules);
	
	$fields['username']	= 'Username';
	$fields['password']	= 'Password';
	$fields['passconf']	= 'Password Confirmation';
	$fields['email']	= 'Email Address';

	$this->validation->set_fields($fields);
		
	if ($this->validation->run() == FALSE)
	{
		$this->load->view('myform');
	}
	else
	{
		$this->load->view('formsuccess');
	}
}
	f7: <html>
<head>
<title>My Form</title>
</head>
<body>

<?=$this->validation->error_string; ?>

<?=form_open('form'); ?>

<h5>Username</h5>
<input type="text" name="username" value="<?=$this->validation->username;?>" size="50" />

<h5>Password</h5>
<input type="text" name="password" value="<?=$this->validation->password;?>" size="50" />

<h5>Password Confirm</h5>
<input type="text" name="passconf" value="<?=$this->validation->passconf;?>" size="50" />

<h5>Email Address</h5>
<input type="text" name="email" value="<?=$this->validation->email;?>" size="50" />

<div><input type="submit" value="Submit" /></div>

</form>

</body>
</html>

	f8: <h5>Username</h5>
<?=$this->validation->username_error; ?>
<input type="text" name="username" value="<?=$this->validation->username;?>" size="50" />

<h5>Password</h5>
<?=$this->validation->password_error; ?>
<input type="text" name="password" value="<?=$this->validation->password;?>" size="50" />

<h5>Password Confirm</h5>
<?=$this->validation->passconf_error; ?>
<input type="text" name="passconf" value="<?=$this->validation->passconf;?>" size="50" />

<h5>Email Address</h5>
<?=$this->validation->email_error; ?>
<input type="text" name="email" value="<?=$this->validation->email;?>" size="50" />

	HELIBHJEHHIELLCHNAAFJCKEPGKMCFJC:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	BLGHEEPNFGEGACGFIHHGMEKCOMJFFPFMFM:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	OLNCFJIDJHBCGEHNPPGJECIPEBCFMPLF:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	OFJPAKOKPBOAIIAPCHKGAIJPPNMHHKLB:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	PGGJFCENAIFFGHCNEHCMDIKBBCONNPJM:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	CKCJJNBFKNBCPECPAELEKFAIBEGPBIHA:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	CAKJCCIAEIFOLOAPOACMGAJLALHMNOIO:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	NOGLMKANKLIOJKGIIKAOCPHGIBMMHPJG:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	OPLJONGPCEKNFAEDFMFMKBCDNKAICIJGED:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	HLKDHPDIJDENKGGCBOEHEPFEKIGDLEPN:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	HJLFFPFOBHFONFGDIMJLJFKPJIICLBCF:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	INLDMPCHHLFPHDAPBLFDLFDGDGEGKKAL:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	HFDOJKHJMGFHEPHOPFGLBHDJFMDANDHEPF:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	NENCHBNEAFLOFNJHDIGEJCNPHBAPJCLK:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	form2:
	f1: CREATE TABLE trackbacks (
 tb_id int(10) unsigned NOT NULL auto_increment,
 entry_id int(10) unsigned NOT NULL default 0,
 url varchar(200) NOT NULL,
 title varchar(100) NOT NULL,
 excerpt text NOT NULL,
 blog_name varchar(100) NOT NULL,
 tb_date int(10) NOT NULL,
 ip_address varchar(16) NOT NULL,
 PRIMARY KEY (tb_id),
 KEY (entry_id)
);

	NBINJPCCFAJCNKNNPNICNHPEDEPBBOBI:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	JDHINEJCAHPNPBJCOHIAOOPCNLLFEAIA:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	form2:
	f1: load->helper('url');
		$server_url = site_url('xmlrpc_server');
	
		$this->load->library('xmlrpc');
		
		$this->xmlrpc->server($server_url, 80);
		$this->xmlrpc->method('Greetings');
		
		$request = array('How is it going?');
		$this->xmlrpc->request($request);	
		
		if (! $this->xmlrpc->send_request())
		{
			echo $this->xmlrpc->display_error();
		}
		else
		{
			echo '<pre>';
			print_r($this->xmlrpc->display_response());
			echo '</pre>';
		}
	}
}
?>
	f2: load->library('xmlrpc');
		$this->load->library('xmlrpcs');
		
		$config['functions']['Greetings'] = array('function' => 'Xmlrpc_server.process');
		
		$this->xmlrpcs->initialize($config);
		$this->xmlrpcs->serve();
	}
	
	
	function process($request)
	{
		$parameters = $request->output_parameters();
		
		$response = array(
							array(
									'you_said' => $parameters['0'],
									'i_respond' => 'Not bad at all.'),
							'struct');
						
		return $this->xmlrpc->send_response($response);
	}
}
?>

	OGMBPINGAFLIGJNDJHPJIDELNPOHHKDB:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	IJPDDONMPCKJNOMMJMALMDDLFMFMPLMGHD:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	MPBOBDDNIKKMKAJFAIAELFFJFMFMJLDJLF:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	CGHPKBOHIDLADLKAEIKPLJNPLFHEBABB:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	EIFFCHFHIBMDDNLHBLKKCEDMOPLDAKAE:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	PJGLIGONAHKBOFLJLPOJBPEHIJHBIHPP:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	BOCKIGAFBBAGHBKGCKDAMJNAHJCNCEHO:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	JPOBJHENEOKOLDFNEGPEBFBCABENLJPA:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	GIIPFHAHEDKHIOJJKFIIIGHKBJIGOEBK:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	MMNHJOPHAIIGMFMENCAFMPADAEGNFCJE:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	JFNCLMOMBOGOBJLIKNNHNEGBLFPGGKGL:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	PMLDDHFCABHJGPBDNKGDJMBCGFGBELLD:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	KOPEBJFAHFECEGIIKCDCKFELKKPLGPCE:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	BBEAFMFMMKBEPOMKNOIHDMMEECAEOIIEOP:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	NOPLBEOFFGMDBNIHKDNGKPGIFMFMENNPGL:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	FMDAMGIJFMDAFDLPOMJLBFOPCHABAJGAEENF:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	HKLAFDMNJNJANEBBNPEPNMKNAIDPEFKG:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	LAIILKJFAEHNHICNGIJHBKOPPNHEIMFB:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	KHKNOKFMDAGKFEMFLKPAHEIOBMFGJALKAI:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	form2:
	f1: CREATE TABLE IF NOT EXISTS `ci_sessions` (
session_id varchar(40) DEFAULT '0' NOT NULL,
ip_address varchar(16) DEFAULT '0' NOT NULL,
user_agent varchar(50) NOT NULL,
last_activity int(10) unsigned DEFAULT 0 NOT NULL,
PRIMARY KEY (session_id)
);

	MFLFEOODBGGMBPBMNCJEHKEMAMLIJGFH:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	JHBIAPKMICELKFHFNGGPKDPLOBIIKDJC:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	PMLPHBHGCJJHNHCJFAFFAOABCKBHNCOG:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	PDBKFPPNPPNAOGKKFBLKENNHFKAIDPBN:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	DJHENFMGNPGLIOGNODCIKHKOFKLKNOGC:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	form2:
	f1: load->helper('smiley');
		$this->load->library('table');
		
		$image_array = get_clickable_smileys('http://www.your-site.com/images/smileys/');

		$col_array = $this->table->make_columns($image_array, 8);		
			
		$data['smiley_table'] = $this->table->generate($col_array);
		
		$this->load->view('smiley_view', $data);
	}
	
}
?>

	f2: <html>
<head>
<title>Smileys</title>

<?php echo js_insert_smiley('blog', 'comments'); ?>

</head>
<body>

<form name="blog">
<textarea name="comments" cols="40" rows="4"></textarea>
</form>

<p>Click to insert a smiley!</p>

<?php echo $smiley_table; ?>

</body>
</html>

	GOPMMENDDNGLLKLDMHKDJDGBFIGHNANH:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	HLCAAOGGFBMHKNIFHKJGCHIBOCKKALJN:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	FCNJFMFMCFGHHBGCFMDALAFNMIIPLBPFALKO:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	BGNHANJHDFCNIBFGALGLMHMPIGKPIIFMFM:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	HPOAHHBINABHDANBBFOBJNDHJKFNOMBH:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	IDMPGBNONODODKNIGFLDLFIPAJMCDHAG:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	KDJDNJDBJKFGFHKMOOHPAHGGKNMPCELF:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	form2:
	x:
	f1: [UTC]

	DGBNKJMPOHKGGMPCDODOBIBCFIEAFGKB:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	MAOAIEDALAIMNAHDKCLIEOCMIFFFHFOH:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	EAIJMEECMBBPMEOLHEDPCBLKFNBPKDMC:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	BAELKODKGIPOKCCNIODGBBAEFIMAGPGG:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	DIIMGKLDDCFHPMCLALDKOGNFNPPDJFOD:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	FKPILMCAMCDCLBMMOCFJBMOLDJGJPDIF:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	HKJDEDGICDDMPDIGLOBIGHLGAKMHPHHM:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	DIPAMHFDHPDIAJBICFOFFOPGFPDGALKH:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	DFKKPCANEFIOKLJOFLOGALCNFJGPFJMA:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	JCGBDKKPIIFMFMJKCBHCCPIBGAPNEPDLLH:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	form2:
	f1: <html>
<head>
<title>Upload Form</title>
</head>
<body>

<?=$error;?>

<?=form_open_multipart('upload/do_upload'); ?>

<input type="file" name="userfile" size="20" />

<input type="submit" value="upload" />

</form>

</body>
</html>
	f2: <html>
<head>
<title>Upload Form</title>
</head>
<body>

<h3>Your file was successfully uploaded!</h3>

<?php foreach($upload_data as $item => $value):?>
<?=$item;?>: <?=$value;?>
<?php endforeach; ?>

<p><?=anchor('upload', 'Upload Another File!'); ?></p>

</body>
</html>
	f3: load->helper(array('form', 'url'));
	}
	
	function index()
	{	
		$this->load->view('upload_form', array('error' => ' '));
	}

	function do_upload()
	{
		$config['upload_path'] = './uploads/';
		$config['allowed_types'] = 'gif|jpg|png';
		$config['max_size']	= '100';
		$config['max_width'] = '1024';
		$config['max_height'] = '768';
		
		$this->load->library('upload', $config);
	
		if (! $this->upload->do_upload())
		{
			$error = array('error' => $this->upload->display_errors());
			
			$this->load->view('upload_form', $error);
		}	
		else
		{
			$data = array('upload_data' => $this->upload->data());
			
			$this->load->view('upload_success', $data);
		}
	}	
}
?>

	ABOOIFHCKPNJOECJJDKFMKJOJNINHNKH:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

	BAFMDAOBLLPBDABAMPCIHOJNOGNIHJLDAE:
	form1:
	x:
	f1: codeigniter.com/user_guide/
	f2:

	f3: Go
	f4:

