
                
                  Assembling & Programming a robot for pharmaceutical purposes  

 1

 
 

USER’S MANUAL 
 
 
 
TABLE OF CONTENTS: 
 
 

1- Getting started     2 
1.1- Booting the system    2 

 
2- Description of each PySection   3-38 

2.01- General Purpose Hand A   3-4 
2.02- Pipetting Hand – 0.2 to 2.0 ml   5-6 
2.03- Internal Standard Hand – 0.010 to 0.200  7-8 
2.04- Rack GC Vial (Rack 1)   9-10 
2.05- Rack 13 x 100 (Rack 2)   11-12 
2.06- Rack 16 x 100 (Rack F)   13-14 
2.07- Weighing - Liquid Transfer – 16 x 100 mm Test Tubes 15-16 
2.08- Capping – 16 x 100 mm tubes   17-18 
2.09- Dilute and Dissolve – 16 x 100 mm Tubes (Vortex) 19-20 
2.10- Evaporation    21-22 
2.11- Tumble Mixer – 16 x 100 mm Tube  23-24 
2.12- Liquid/Liquid Extraction   25-26 
2.13- Crimp capping    27-28 
2.14- Test Tube Dispenser – 16 x 100 mm test tubes 29-30 
2.15- Disposal    31-32 
2.16- Centrifuge - 16 x 100 mm Tubes   33-34 
2.17- Power and Event Controller (PEC)  35-36 
2.18- Zymate II Core System   37-38 

 
3- Advanced operations    39 

3.1- Re-teaching positions    39 
 

4- Loop, conditional & pausing commands   40-47 
4.1- DO / ENDDO    40-41 
4.2- GOTO     42-43 
4.3- IF / THEN    44-45 
4.4- TIMER (x) / WAIT FOR TIMER x   46-47 

 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 2

 
 
1 – Getting started 
 
 
� 1.1- Purpose: Booting the system. 
 
 

1. Insert the Boot Disk in the Controller. 
2. Turn ON the power of the Controller, the Robot, the PyStations and the PC. 
3. In the main menu (PC) select System V On-line and press Enter. 

 
0 If apperars an error message (“Controller not responding”), don’t panic, it’s 

normal. Just press the Enter button in the computer to continue. 
 

4. Now it’s loading the system to the Controller. After a while, we’ll access to the 
Zymark’s main menu. 

 
0 Now it’s time to load the dictionary. 
 

5. In the main menu, go to System and then Load dictionary. 
6. Select the proper dictionary (JO-CHAN.ZYD in our case) and press Enter. 

 
0 To avoid getting an error message, remove the hand from the robot (if any) 
 
0 After a while, we’ll have the system propery configured and loaded. 
 
 
 
 
 
 
 
 
0 The Original Dictionary File was 0393AP.ZYD but we used our modified one (JO-

CHAN.ZYD). 
 
0 The variable AIR.CONFIRM.SENSOR must be 0 in order to use air pressure. 
 
0 To test each command or instruction, Manual Control was used (in the main 

menu, go to Methods and then Manual Control). 
 
0 To avoid checkings and error messages, change ERROR.CHECK to value 0. 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 3

 
 
2 - Description of each PySection 
 
 
� 2.01- Purpose: General Purpose Hand A. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 4

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
The General Purpose Hand PySection provides capability to grasp and move 
containers ranging in size from 9 to 16 mm from station to station around the 
benchtop. This hand can also be used with Capping Station PySection for screw-
capping operations involving 9 to 16 mm capped containers. The hand comes 
equiped with optional grip-release wires on the finger pads for use with 11 mm vials. 
These wires must be removed when using the hand for screw-capping. If both 11 mm 
vial manipulation and capping are to be performed, there must be two “HAND.A’s” in 
the system. 
 
 

 Available commands: GET.HAND.A 
   PARK.HAND 
 

 Variables:  (none) 
 
� Testing Program:  JOOCHAN.HAND.A 
 

¾ display off 
¾ get.hand.a 
¾ prompt Inster source position (Rack 1): 1 to 50 
¾ input rack.1.index 
¾ get.from.rack.1 
¾ prompt Insert evaporator position: 1 to 6 
¾ input evaporator.index 
¾ put.into.evaporator 
¾ get.from.evaporator 
¾ prompt Insert destination position (Rack 1): 1 to 50 
¾ input rack.1.index 
¾ put.into.rack.1 
¾ park.hand 

 
 
 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 5

 
 
2 - Description of each PySection 
 
 
� 2.02- Purpose: Pipetting Hand – 0.2 to 2.0 ml. 
 
 

 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 6

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
This PySection can quantitatively transfer 0.2 to 2.0 ml of liquid using 2 ml disposable 
pipet tips between user-designated samples sources and destinations. This 
PySection includes a Syringe hand with 2.5 ml syringe, automatic tip ejector, parking 
station, rack to hold 105 pipet tips and a bag of 250, 2 ml disposable pipet tips. An 
Auxiliary Rack PySection that accomodates an additional 105, 1 ml pipet tips can 
also be supported by this PySection. It is recommended that a Disposal PySection be 
included in the PySection for convenient disposal of used tips. 
 
 

 Available commands: GET.HAND.K 
   GET.2ML.TIP 
   ASPIRATE.2ML.TIP 
   DISPENSE.2ML.TIP 
   PARK.HAND 
 

 Variables:  PIPET.VOLUME = 0.2 to 2.0 (ml) 
   NUMBER.OF.2ML.PREWETS = 0 to X 
   ASPIRATE.2ML.PAUSE.TIME = 0 to X (sec) 
   DISPENSE.2ML.PAUSE.TIME = 0 to X (sec) 
 
� Testing Program:  JOOCHAN.HAND.K 
 

¾ display off 
¾ get.hand.k 
¾ get.2ml.tip 
¾ prompt Inster source position (Rack 2): 1 to 50 
¾ input rack.2.index 
¾ move.over.rack.2 
¾ prompt Insert aspiration volume: 0.2 to 2.0 
¾ input pipet.volume 
¾ aspirate.2ml.tip 
¾ prompt Insert destination position (Rack 1): 1 to 50 
¾ input rack.1.index 
¾ move.over.rack.1 
¾ dispense.2ml.tip 
¾ dispose.to.waste 
¾ park.hand 

 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 7

 
 
2 - Description of each PySection 
 
 
� 2.03- Purpose: Internal Standard Hand – 0.010 to 0.200. 
 
 

 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 8

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
This PySection can quantitatively transfer 0.010 to 0.200 ml of liquid using a 250 µl 
syringe between the internal standard source and the sample. The PySection 
includes a Syringe Hand with a 250 µl syringe, a reusable dripping-lock needle, and a 
covered reservoir for the internal standard. 
 
 
0 NOTE: Before executing DISPENSE.ISTD, MOVE.OVER.xxxxx is required. 
 
 

 Available commands: GET.ISTD.HAND 
  ASPIRATE.ISTD 
  DISPENSE.ISTD 
  PARK.HAND 

 
 Variables:  ISTD.VOL = 0.01 to 0.24 (ml) 

 
� Testing Program:  JOOCHAN.HAND.ISTD 
 

¾ display off 
¾ get.istd.hand 
¾ prompt Insert aspiration volume: 0.01 to 0.2 
¾ input istd.vol 
¾ aspirate.istd 
¾ prompt Insert destination tube position (Rack 2): 1 to 50 
¾ input rack.2.index 
¾ move.over.rack.2 
¾ dispense.istd 
¾ park.hand 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 9

 
 
2 - Description of each PySection 
 
 
� 2.04- Purpose: Rack GC Vial (Rack 1). 
 
 

 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 10

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
This Rack PySection provides storage for 11 mm GC vials. Each container in the 
rack has an associated volume and capped status that is automatically updated as 
the container is moved around the benchtop. The rack is made by polypropylene and 
is mounted on a snap-base for easy removal and replacement. Containers are held 
upright in the rack with adecuate spacing to permit individual container access with 
Zymate Hands. 
 
 

 Available commands: GET.FROM.RACK.1 
  PUT.INTO.RACK.1 
  MOVE.OVER.RACK.1 

 
 Variables:  RACK.1.INDEX = 1 to 50 

   INITIAL.VOLUME.RACK.1 = 0 to 12 (ml) 
   CONTAINER.CAPPED.RACK.1 = YES or NO 
 
� Testing Program:  JOOCHAN.RACK.1 
 

¾ display off 
¾ get.hand.a 
¾ prompt Inster source position (Rack 1): 1 to 50 
¾ input rack.1.index 
¾ get.from.rack.1 
¾ prompt Insert destination position (Rack 1): 1 to 50 
¾ input rack.1.index 
¾ put.into.rack.1 
¾ park.hand 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 11

 
 
2 - Description of each PySection 
 
 
� 2.05- Purpose: Rack 13 x 100 (Rack 2). 
 
 

 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 12

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
This Rack PySection provides storage for 13 x 100 mm test tubes. Each container in 
the rack has an associated volume and capped status that is automaticaly updated 
as the container is moved around the benchtop. The rack is made of polypropylene 
and is mounted on a snap-base for easy removal and replacement. Containers are 
held upright in the rack with adecuate spacing to permit individual container access 
with Zymate Hands. 
 
 

 Available commands: GET.FROM.RACK.2 
  PUT.INTO.RACK.2 
  MOVE.OVER.RACK.2 

 
 Variables:  RACK.2.INDEX = 1 to 50 

   INITIAL.VOLUME.RACK.2 = 0 to 8 (ml) 
   CONTAINER.CAPPED.RACK.2 = YES or NO 
 
� Testing Program:  JOOCHAN.RACK.2 
 

¾ display off 
¾ get.hand.a 
¾ prompt Inster source position (Rack 2): 1 to 50 
¾ input rack.2.index 
¾ get.from.rack.2 
¾ prompt Insert destination position (Rack 2): 1 to 50 
¾ input rack.2.index 
¾ put.into.rack.2 
¾ park.hand 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 13

 
 
2 - Description of each PySection 
 
 
� 2.06- Purpose: Rack 16 x 100 (Rack F). 
 
 

 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 14

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
This Rack PySection provides storage for 16 x 100 mm test tubes. Each container in 
the rack has an associated volume and capped status that is automatically updated 
as the container is moved around the benchtop. The rack is made of polypropylene 
and is mounted on a snap-base for easy removal and replacement. Containers are 
held uprightin the rack with adequate spacing to permit individual container access 
with Zymate Hands. 
 
 

 Available commands: F:GET.TUBE.FROM.RACK 
  F:PUT.TUBE.IN.RACK 
  GET.FROM.CENTRIFUGE 

   PUT.INTO.CENTRIFUGE 
 

 Variables:  F:RACK.INDEX = 1 to 8 
 
� Testing Program:  (none) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 15

 
 
2 - Description of each PySection 
 
 
� 2.07- Purpose: Weighing - Liquid Transfer – 16 x 100 mm Test Tubes. 
 
 

 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 16

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
This PySection is used for analytical weighting of liquid samples and sample 
containers. The balance required by this PySection is a Mettler AE200 Series 
Analytical balance. A pneumatic Balance Door Opener included in this PySection 
allows sample containers to be top-loaded into the balance, preventing drafts from 
affecting the balance. Thansfer of liquid samples is done by pippetting. 
 
 

 Available commands: PUT.INTO.BALANCE 
   OBTAIN.WEIGHT 
   GET.FROM.BALANCE 
   MOVE.OVER.BALANCE 
   BD:OPEN.DOOR 
   BD:CLOSE.DOOR 
   BD:TARE 
 

 Variables:  WEIGHT.VALUE (gr) 
   TARGET.WEIGHT 
 
� Testing Program:  JOOCHAN.BALANCE 
 

¾ display off 
¾ get.hand.a 
¾ prompt Inster source position (Rack 1): 1 to 50 
¾ input rack.1.index 
¾ get.from.rack.1 
¾ put.into.balance 
¾ obtain.weight 
¾ prompt Weight of the tube: 
¾ printc weight.value 
¾ get.from.balance 
¾ prompt Insert destination position (Rack 1): 1 to 50 
¾ input rack.1.index 
¾ put.into.rack.1 
¾ park.hand 

 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 17

 
 
2 - Description of each PySection 
 
 
� 2.08- Purpose: Capping – 16 x 100 mm tubes. 
 
 

 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 18

 
 
2 - Description of each PySection 
 
 
0 Works well with 11 x 100 mm test tubes. 
 
 
	 Description: 
 
This Capping PySection provides automated capping and uncapping of screw-
capped 16 x 100 mm test tubes. The success of capping and uncapping operations 
is internally verified. Preset capping conditions cap containers at ½ torque. Default 
conditions also cause caps not to be discarded after uncapping operations. In the 
event that two containers are in an uncapped state at the same time, such as in 
liquid/liquid extraction operations, two cap holders are provided. The Capping 
PySection has been preset to use cap holder 1. If required, the station can act as a 
container holder. Also, an uncapped container positioned in the station can act as a 
sample source or destination for pippetting operations. 
 
 

 Available commands: PUT.INTO.CAPPER 
   CAP 
   UNCAP 
   GET.FROM.CAPPER 
   MOVE.OVER.CAPPER 
 

 Variables:  CAP.INDEX = 1 or 2 
   DISCARD.CAP = YES or NO 
 
� Testing Program:  JOOCHAN.CAPPER 
 

¾ display off 
¾ get.hand.a 
¾ get.from.centrifuge 
¾ put.into.capper 
¾ uncap 
¾ get.from.capper 
¾ put.into.capper 
¾ cap 
¾ get.from.capper 
¾ prompt Inster destination position (Rack 2): 1 to 50 
¾ input rack.2.index 
¾ put.into.rack.2 
¾ park.hand 

 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 19

 
 
2 - Description of each PySection 
 
 
� 2.09- Purpose: Dilute and Dissolve – 16 x 100 mm Tubes (Vortex). 
 
 

 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 20

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
The Dilute & Dissolve PySection is used to quantitatively dispense up to 3 discrete 
liquids into a container. Liquid addition can be followed by a vigorous vortexing action 
to speed mixing and dissolving. Liquid addition without vortexing and vortexing 
without liquid addition is also possible. This PySection may be recognized as the first 
or only Dilute & Dissolve PySection, or, as the second Dilute & Dissolve PySection 
within the bench configuration. 
 
 

 Available commands: PUT.INTO.VORTEX 
   VORTEX.ON 
   VORTEX.OFF 
   VORTEX.TIMED.RUN 
   GET.FROM.VORTEX 
   MOVE.OVER.VORTEX 
   DILUTE 
 

 Variables:  VORTEX.TIME = 0 to 5240 (sec) 
   VORTEX.SPEED.1 = 0 to 200 
 
� Testing Program:  JOOCHAN.VORTEX 
 

¾ display off 
¾ get.hand.a 
¾ prompt Insert source position (Rack 1): 1 to 50 
¾ input rack.1index 
¾ put.into.vortex 
¾ prompt Insert duration time: 
¾ input vortex.time 
¾ vortex.timed.run 
¾ get.from.vortex 
¾ prompt Insert destination position (Rack 1): 1 to 50 
¾ input rack.1.index 
¾ put.into.rack.1 
¾ park.hand 

 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 21

 
 
2 - Description of each PySection 
 
 
� 2.10- Purpose: Evaporation. 
 
 

 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 22

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
The Evaporator PySection for 16 x 100 mm test tubes provides for the evaporation of 
solvent from containers placed within its heating block. The temperature-controlled 
heating block is settable between ambient and 100 ºC. Temperature is manually set 
by user. Solvent evaporation is accelerated by gas purge tubes which are lowered 
into the containers placed in the heating block. The user-supplied purge gas is used 
to pneumaticaly operate the station as well as dry the samples. Gas is conserved by 
being turned on only while there are samples in the station. Evaporation to dryness is 
not detectable by this station. Experimentation should be performed to determine the 
evaporation time necessary of the sample. This time can vary with the sample’s 
position in the block, how many samples are in the block, block temperature, gas flow 
rate, solvent type, solvent volume container, container shape, etc. 
The heating block is normaly plugged into its own power source and remains on at its 
set temperature while its power is on. If it desired to turn the heating block on and off 
under Zymate System Control, the station may be plugged into one of the Power & 
Event Controller’s AC outlet, then commands controlling that outlet and timer 
statements to allow sufficient block warm-up may be added to the top-level program. 
 
 

 Available commands: PUT.INTO.EVAPORATOR 
   GET.FROM.EVAPORATOR 
 

 Variables:  EVAPORATOR.INDEX = 1 to 6 
 
� Testing Program:  JOOCHAN.EVAPORATOR 
 

¾ display off 
¾ get.hand.a 
¾ prompt Insert source position (Rack 1): 1 to 50 
¾ input rack.1.index 
¾ get.from.rack.1 
¾ prompt Insert evaporator position: 1 to 6 
¾ input evaporator.index 
¾ put.into.evaporator 
¾ pause5 
¾ get.from.evaporator 
¾ prompt Insert destination position (Rack 1): 1 to 50 
¾ input rack.1.index 
¾ put.into.rack.1 
¾ park.hand 

 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 23

 
 
2 - Description of each PySection 
 
 
� 2.11- Purpose: Tumble Mixer – 16 x 100 mm Tube. 
 
 

 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 24

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
This PySection provides gentle but thorough mixing of samples in 16 x 100 mm test 
tubes. The tumble mixer is typically used for liquid/liquid extraction procedures. The 
tumbling action optimizes the rate of sample partitioning between the solvent phases, 
while minimizing emulsion formation. Sample tubes with slip-on caps, held in place 
by the tumbling station via a spring-loaded mechanism, are turned end over end at a 
controlled 15 rpm. Verification techniques ensure that the sample tubes are capped 
before they are placed into the tumbling station. Included in this PySection is the four-
position tumbling station, a slip-on cap dispenser with a capacity of 150 caps and a 
cap removal station. The optional addition of a centrifuge allows quick, effective 
phase separation and breaking of residual emulsions. Th ZP710 Centrifuge fits 
behind the Tumble Mixing PySection so that no additional bench space is required. 
 
 

 Available commands: PUT.INTO.TUMBLE.MIXER 
   GET.FROM.TUMBLE.MIXER 
 

 Variables:  MIXER.INDEX = 1 to 4 
 
� Testing Program:  (none) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 25

 
 
2 - Description of each PySection 
 
 
� 2.12- Purpose: Liquid/Liquid Extraction. 
 
 

 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 26

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
This PySection performs the transfer of the desired extraction layer from an 
extraction container to a fluid-filled holding loop for subsequent dispensing into a 
collection container or waste. The extraction and collection containers are held by the 
Robot. You determine and program the depth at which the cannula goes into the 
extraction container, the volume to be extracted and the time required to extract the 
sample. The pneumatically controlled cannula wash shuttle, rinses the cannula 
internally and externally with a solvent volume specified in the application program. 
 
 

 Available commands: ASPIRATE.LL.CANNULA 
   DISPENSE.LL.CANNULA 
   WASH.LL.CANNULA 
 

 Variables:  LL.CANNULA.DEPTH = 0 to 15 (cm) 
   LL.CANNULA.VOLUME = 0 to 9.8 (ml) 
   LL.ASPIRATE.TIME = 1 to X (sec) 
   LL.WASH.VOLUME = 1 to X (ml) 
 
� Testing Program:  (none) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 27

 
 
2 - Description of each PySection 
 
 
� 2.13- Purpose: Crimp capping. 
 
 

 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 28

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
This PySection provides automated filling and capping of 11 mm vials. These vials 
are generally used with GC or HPLC autosamplers. The Crimp Capping PySection 
consists of a pneumatically-driven Crimp Capper, vial cap holder, vial holder and tip 
guide for vial filling operations. Cap presence in the holder is verified by a 
microswitch. 
 
 

 Available commands: PUT.INTO.CRIMP.CAPPER 
   CRIMP.VIAL 
   UNCAP.VIAL 
   GET.FROM.CRIMP.CAPPER 
   MOVE.OVER.CRIMP.CAPPER 
 

 Variables:  (none) 
 
� Testing Program:  (none) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 29

 
 
2 - Description of each PySection 
 
 
� 2.14- Purpose: Test Tube Dispenser – 16 x 100 mm test tubes. 
 
 

 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 30

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
The Tube Dispenser PySetcion is used to dispense 16 x 100 mm test tubes. The 
dispenser housing has slots for up to ten stainless steel trays each having a capacity 
for 35 tubes. Included with this PySection is the dispenser housing and two trays. 
Additional trays may be purchased in set of two. 
 
 

 Available commands: GET.FROM.DISPENSER.1 
 

 Variables:  (none) 
 
� Testing Program:  (none) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 31

 
 
2 - Description of each PySection 
 
 
� 2.15- Purpose: Disposal. 
 
 

 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 32

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
This PySection provides for the discarding of used disposables such as pipet tips, 
extraction columns, screw caps, and disposable filters. The PySection consists of a 
chute that may be positioned to overhang the benchtop. A waste receptacle can be 
placed under this overhang or a bag can be attached to receive the discarded items. 
 
 

 Available commands: DISPOSE.TO.WASTE 
 

 Variables:  GRIPPER.HAND.WASTE.POS = 0 to 200 
   SYRINGE.HAND.WASTE.POS = 0 to 200 
 
� Testing Program:  JOOCHAN.DISPOSAL 
 

¾ display off 
¾ get.hand.a 
¾ prompt Inster source position (Rack 1): 1 to 50 
¾ input rack.1.index 
¾ get.from.rack.1 
¾ dispose.to.waste 
¾ park.hand 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 33

 
 
2 - Description of each PySection 
 
 
� 2.16- Purpose: Centrifuge - 16 x 100 mm Tubes. 
 
 

 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 34

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
This PySection  provides automated centrifugation of samples. The electro-
mechanically-operated loading door and rotor position indexing capability of the 
centrifuge allow robotic interaction with this station. The 8-position “balancing 
container rack” provides two transfer positions for placing samples into and removing 
samples from the centrifuge, and six position for holding any balance container not in 
use during centrifugation. The sample’s position within the centrifuge and its spin 
time is automatically tracked when the aplication is serialized using EasyLab 
Program Scheduler. 
 
 

 Available commands: PUT.INTO.CENTRIFUGE 
   GET.FROM.CENTRIFUGE 
 

 Variables:  CENTRIFUGE.INDEX = 1 to 6 
   CENTRIFUGE.SPEED = 0 to 3000 
 
� Testing Program:  JOOCHAN.CENTRIFUGE 
 

¾ display off 
¾ get.hand.a 
¾ prompt Inster source position (Rack 1): 1 to 50 
¾ input rack.1.index 
¾ get.from.rack.1 
¾ prompt Inster centrifuge position: 1 to 6 
¾ input centrifuge.index 
¾ put.into.centrifuge 
¾ pause10 
¾ f:vol.output=-1 
¾ get.from.centrifuge 
¾ prompt Inster destination position (Rack 1): 1 to 50 
¾ input rack.1.index 
¾ put.into.rack.1 
¾ park.hand 

 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 35

 
 
2 - Description of each PySection 
 
 
� 2.17- Purpose: Power and Event Controller (PEC). 
 
 

 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 36

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
The Power and Event Controller (PEC) interfaces with devices that supplement the 
operation of other PySections in the Zymate System. The power & Event Controller 
provides Zymate System control for devices used in Crimp Capping, Evaporation, 
Liquid/Solid Extraction, etc. The software supports the installation and operation of 
up to 5 Power & Event Controllers in the system. Each Power & Event Controller 
provides programmable control of 8 output switches, 8 logical inputs, 2 AC On/Off 
power outlets, 1 variable AC power outlet and an analogic/digital input. A +5V, +12V 
and –12V power supply is also included. There are 8 Spare connectors also available 
for use. These are used as terminals when an internal option such as the 
Preamplifier Module is installed within the PEC. The Spare connectors can also be 
used as tie points if no option is installed. A Power & Event Controller’s facilities may 
be utilized by different PySections. The assignment of a Power & Event Controller 
and its programmable connections takes place when the PySection requiring their 
usage is installed in the system. The Power & Event Controller facilities are operated 
by the individual PySections. 
An Air Monitor Manifold that provides a confirm sensor, filter, regulator and air line 
connections manifold is included with the Power and Event Controller. Only one Air 
Monitor Manifold is required, regardless of how many ZP830’s are to be used. 
 
 

 Available commands: PEC.n.SWITCH.m.ON  (n = 1 to 5, m = 1 to 8) 
   PEC.n.SWITCH.m.OFF  (n = 1 to 5, m = 1 to 8) 
   PEC.n.ACm.ON  (n = 1 to 5, m = 1 to 2) 
   PEC.n.ACm.OFF  (n = 1 to 5, m = 1 to 2) 
   PEC.n.A.TO.D.UNSCALED  (n = 1 to 5) 
 

 Variables:  PEC.n.VAR.AC = x  (n = 1 to 5, x = 0 to 200) 
PEC.n.INPUT.m  (n = 1 to 5, m = 1 to 8) 

   CONFIRM.AIR.SENSOR = YES or NO 
 
� Testing Program:  (none) 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 37

 
 
2 - Description of each PySection 
 
 
� 2.18- Purpose: Zymate II Core System. 
 
 

 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 38

 
 
2 - Description of each PySection 
 
 
	 Description: 
 
The Zymate II Core System provides the basic functions of a PyTechnology System. 
The Controller with its EasyLab language allows you to construct application 
programs using a series of PySections commands and variables setting statements. 
The Zymate II Robot Module provides highly efficient sample handling and transfer 
between PySections. The Zymate II Robot is pre-mounted on a central locator plate 
around which the PySections are arranged. The Zymate Printer provides a hardcopy 
of system conditions and data. The EasyLab Program Scheduler Module automates 
the processing of multiple samples in a serialed manner. The Remote Robot 
Teaching Module is used for positioning the Zymate Robor without having to be at 
the keyboard. 
 
 

 Available commands: ROBOT.EXERCISE 
   INITIALIZE.SYSTEM 
   SHUTDOWN.SYSTEM 
   PRINTER.ON 
   PRINTER.OFF 
   PARK.HAND 
 

 Variables:  ERROR.CHECK = YES or NO 
   SHUTDOWN.ON.ERROR = YES or NO 
   PRINT.CONDITIONS = YES or NO 
   SPEED = 0.20 to 1.00 
 
� Testing Program:  (none) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 39

 
 
3 – Advanced operations 
 
 
� 3.1- Purpose: Re-teaching positions. 
 
 
	 Description: 
 
When a PyPlate is removed – allowing the station to be placed in a different location 
than when mounted before – the station positions must be retaught to the robot. 
 
 

 Procedures: 
 
0 Using and example for better understanding Æ Move HAND.A from position 47 
to position 21. 

 
 

1. Load the proper dictionary to the controller. 
2. Put the PySection Disk labelled “GP HAND A” in the controller. 
3. Go to System Æ PyAppend dictionary. 
4. Chose the proper dictionary (in our case named CP900-1.ZYD). 
5. Input the destination sector location number (we have chosen sector 21). 

 
0 You can find the sector number by sighting down the right-hand edge of the 
station (while facing the Robot) and determining the nearest sector number on the 
Robot locator plate). 

 
6. After a while, press Y to run the SETUP program. 
7. When asked, press Enter if the station is mounted on the PyPlate. 

 
0 You can install a PySection without having it physically installed. 

 
8. Press Enter to TEST the station. 
9. If everything goes well, the station will work properly in the new position. 

 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 40

 
 
4 – Loop, conditional & pausing commands 
 
 
� 4.1- Purpose: DO / ENDDO. 
 
 
	 Description: 
 
“DO Loops” are used within a program to execute a group of statements a specific 
number of times. 
 
 

 Format: 
 

DO x TIMES          x = number of executions to perform 
         . 
         .            program 
         . 
ENDDO 

 
0 Remarks: 
 

• The DO and ENDDO statements “frame” the section of program they 
affect. 

• All DO statements is not affected by an ENDDO statement within the 
same program. This is, they are program-level sensitive. 

• An active DO statement is not affected by an ENDDO statement 
appearing in another program. 

• If a number is calculated to specify the number of loops to execute, 
and that number is a non-integer value, that value is rounded to the 
closest integer. 

• Under DISPLAY OFF, the number of the loop being executed is still 
displayed. 

• DO Loops can be exited (using a conditional or GOTO statement) 
before the loop has completed. 

 
 
� Example Program:  JOOCHAN.DEMO.LOOP 
 

¾ display off 
¾ rack.1.index=1 
¾ evaporator.index=1 
¾ get.hand.a 
¾ do 6 times 
¾ get.from.rack.1 
¾ put.into.evaporator 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 41

 
 
4 – Loop, conditional & pausing commands 
 
 

¾ rack.1.index=rack.1.index+1 
¾ evaporator.index=evaporator.index+1 
¾ enddo 
¾ rack.1.index=rack.1.index-1 
¾ evaporator.index=evaporator.index-1 
¾ do 6 times 
¾ get.from.evaporator 
¾ put.into.rack.1 
¾ rack.1.index=rack.1.index-1 
¾ evaporator.index=evaporator.index-1 
¾ enddo 
¾ park.hand 
¾ rack.1.index=rack.1.index+1 
¾ evaporator.index=evaporator.index+1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 42

 
 
4 – Loop, conditional & pausing commands 
 
 
� 4.2- Purpose: GOTO. 
 
 
	 Description: 
 
This command is used in a EasyLab statement to branch unconditionally out of the 
normal program sequence to a specified line number. 
GOTO statements are used primarily to alter the sequence of operation. This 
involves jumping to another location in the program to execute another program or 
module action, or, pausing system operation. 
 
 

 Format: 
 

GOTO x                 x = constant or variable representing a line number 
 
0 Remarks: 
 

• This command affects the sequence of execution of EasyLab 
program statements. A GOTO statement causes program execution 
to “jump” to the statement in that the program that is labelled with the 
specified line number. Program execution continues from that 
statement. 

• EasyLab Program lines are executed in the ordeer they appear in the 
program. Although line numbers are not required to determine the 
operational flow of the program, they are used for jumping purposes. 
These numbers which can range from 1 to 65535 are used only as 
reference points for program branching. 

• GOTO statements are program-level sensitive. A GOTO statement 
must refer to a numbered statement whitin the same program. 

• The numbered statement referred to by a GOTO statement is always 
searched for from the beginning of that program. 

• GOTO statements should be programmed logically to avoid creating 
endless loops. 

• If the statement number is calculated using an EasyLab math 
expression and a non-integer value results, that calculated value is 
rounded to the nearest integer. The integer value must range 
between 1 and 65535. 

• A line number specified by a GOTO statement mus be labeled a 
statement appearing within that program. 

• The same line number may be used in several different programs. 
Branching always occurs within the same program. 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 43

 
 
4 – Loop, conditional & pausing commands 
 
 

• If the same line number appears multiple times in a single EasyLab 
program, the first occurrence of that number from the beginning of the 
program is the one referenced. 

• There are 5 spaces reserved at the beginning of each statement for 
line numbers. 

• A line number may appear before each statement in EasyLab 
program, but a program may be written without any line numbers. 

• A line number does NOT cause an EasyLab program to be excluded 
by sequential line numbers. 

• Line numbers are used as reference markers for program braching 
statements. 

 
� Example Program:  JOOCHAN.DEMO.GOTO 
 

¾ 1 display off 
¾        prompt Write “YES” to see the time or “NO” to exit 
¾        input joochan.time 
¾ 10   if joochan.time=0 then 100 
¾        ? clock 
¾        goto 1 
¾ 100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 44

 
 
4 – Loop, conditional & pausing commands 
 
 
� 4.3- Purpose: IF / THEN. 
 
 
	 Description: 
 
This command is used in an EasyLab statement to make a decision regarding 
program flow based on a result returned from an expression. The change in program 
flow can incolve jumping to another program line, executing another program or 
module action, performing a calculation, specifying a module action, or pausing 
system operation. 
Normally, EasyLab program lines are executed in the order they appear in the 
program. When the IF/THEN statement involves jumping ro another program line, a 
line number is used. Line numbers (which can range 1 to 65535) are used only as 
reference points for program branching by IF/THEN and GOTO statements. 
 
 

 Format: 
 

IF expression comparator expression THEN statement 
 

where expression is either a constant, a real data variable, or a module 
command variable (input or bi-directional only) 

 
where comparator is either  =, <>, >, <, <= or >= 

 
where statement is either a line number, module command, program, math 
expression, or an EasyLab language command (except an IF/THEN 
statement or DO LOOP) 

 
0 Remarks: 
 

• If the condition is not satisfied, the statement following “THEN” is 
ignored. Program execution continues with the next statement in the 
EasyLab program. 

• IF/THEN statements are program-level sensitive when the statement 
following “THEN” refers to a numbered statement. When “THEN” is 
followed by a number, the numbered statement must appear within 
the same program as the IF/THEN statement and be preceded with 
the line number specified. 

• If a line number is calculated following “THEN”, and a non-integer 
value results, that value is rounded to the nearest integer. 

 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 45

 
 
4 – Loop, conditional & pausing commands 
 
 

• If a line number is calculated following “THEN”, the “THEN” must be 
followed by “GOTO”. 

• If a line number is specified following “THEN”, “GOTO” is not 
necessary if a constant is used. 

• A line number specified by an IF/THEN statement must label a 
statement apearing within THAT program. 

• The same line number may be used in several different programs. 
Branching always occurs within the same program. 

• If the same line number appears multiple times in a single EasyLab 
program, the first occurrence of that number from the beginning of the 
program is the one referenced. 

• There are 5 spaces reserved at the beginning of each statement for 
line numbers. 

• A line number may appear before each statement in EasyLab 
program, but a program may be written without any line numbers. 

• A line number does NOT cause an EasyLab program to be excluded 
by sequential line numbers. 

• Line numbers are used as reference markers for program braching 
statements. 

 
� Example Program:  JOOCHAN.DEMO.IFTHEN 
 

¾ 1       display off 
¾        get.hand.a 
¾        get.from.centrifuge 
¾        put.into.capper 
¾ 10      if c:capped = 1 then 11 
¾        cap 
¾        goto 100 
¾ 11      uncap 
¾ 100   get.from.capper 
¾          rack.2.index=1 
¾          put.into.rack.2 
¾          park.hand 

 
 
 
 
 
 
 
 
 
 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 46

 
 
4 – Loop, conditional & pausing commands 
 
 
� 4.4- Purpose: TIMER (x) / WAIT FOR TIMER x. 
 
 
	 Description: 
 
There are eight internal timers available to the operator as EasyLab Language 
Commands that may be used to delay system operation or time events during the 
running of a program. Module may operate while timers are active. More than one 
timer may be in use at the same time. 
 

 Format: 
 
To set timers: 
 
 TIMER(x) = math expression 
 

where x is equal to 1 through 4 (1 through 8 in non-PyTechnology systems) 
and math expression is any constant or variable representing time in 
seconds. 

 
  when a program line setting a timer is encountered during the running of a 
program, the following ocurrs: 

 
a) The Controller begins counting the time specified in 1 second 

increment. 
b) The Zymate System continues operating as if this program line had 

never been encountered. 
 
To wait for timers: 
 
 WAIT FOR TIMER x 
 

where x is equal to the timer set – 1 through 4 or 1 through 8 in non-
PyTechnology systems. “x” should NOT be enclosed in parentheses in this 
format. 

 
  when the WAIT FOR TIMER statement is encountered during the running of a 
program, the following ocurrs: 

 
a) The Controller checks the elapsed time of the timer specified. 
b) If the time specified has elapsed, TIMER(1) = 0, system operation 

continues with no pause. 



                
                  Assembling & Programming a robot for pharmaceutical purposes  

 47

 
 
4 – Loop, conditional & pausing commands 
 
 

c) If the time specified has NOT elapsed, TIMER(x) greater than 0: 
c1)  The module currently operating finishes its command. 
c2)  The Zymate System “pauses” until the time specified has 

counted down. 
c3)  The system continues from where it left off. 

 
0 Remarks: 
 

• Each timer can be set to a maximum of 65535 seconds 
• Current timer values (using timer array facility) may be used in math 

expression as a variable. 
• The setting of a timer as no effect on system operation. The modules 

continue to operate as if that program line was never encountered. 
• Program execution is suspended when: 

The WAIT FOR statement is encountered AND 
The time specified has not elapsed. 

• The timer value may be checked during the running of a program by 
requesting the value of the timer array. 

• A timer may be set in a program or in Manual Control. 
• When the Zymate System is actively waiting for a timer to elapse, any 

actions taken by the operator are ignored. 
• If a program has to be aborted while it is waiting for a timer, it must be 

done by turning off the Controller’s power. 
• Several program statements may appear between the TIMER(x) = 

math expression and WAIT FOR TIMER x statements in a program. 
(This allows the system to continue operating while timers are active). 

 
� Example Program:  JOOCHAN.PAUSE 
 

¾ display off 
¾ prompt Insert pause time: 
¾ input joochan.pause 
¾ timer(1)=joochan.pause 
¾ wait for timer 1 

 
 
 
 
 
 
 
 


