SCH1

C Compiler for 8051

User’'s Manual

SPJ Systems
101, Beaver Grandeur
Baner Road
Pune - 411045
Tel. (92) (20) 7293002
Fax. (91) (20) 7293003
http://www.spj systems.com

Terms and Conditionsfor use of the software

For the purposes of this document, the term THE PRODUCT shall be used to refer to
SC51 (C compiler for 8051).

Terms and Conditions:

1)

2)

3)

4)

5)

You may make a backup copy of THE PRODUCT, and you may install THE
PRODUCT on your computer systems hard disk, but only one copy of THE
PRODUCT may bein use at any one time.

If you make any modifications to THE PRODUCT, the modified code shall,
regardiess of the extent of modification, remain the property of SPJ Systems. You
may not remove or alter any copyright notices contained in the source files,
documentation, executables or any part of THE PRODUCT.

You may not re-distribute any part of THE PRODUCT, or any materials which are
based on, or otherwise derived from any portion of THE PRODUCT. Any and all
copies of THE PRODUCT must be retained in your possession at all times.

You are granted permission to distribute any programs that you develop with THE
PRODUCT, provided that they are not based on, or otherwise derived from any
source code contained in THE PRODUCT.

You agree to use THE PRODUCT entirely at your own risk, and assume all
responsibility for such use. The author and distributors of THE PRODUCT do not
warrant it fit or suitable for any particular purpose.

SC51 User’s manual 2 http://www.spj systems.com

CONTENTS:

L INTRODUCTION. . ..ciiiiiieiesies ettt sttt s ae bbb s ne e 9
2. INSTALLATION ettt st s nsentessesbessensennennees 10
3. LANGUAGE REFERENCE ..ottt 11
3.1 I COMMENTS : ctieieeetee et e eee e st e be e s se e e se e sseeebeesaeeebeesaeeebeeemseeseesmneeneesnneanseesnneenns 11
I 0] = N T 1= ST PRPRTRPRPRR 12
3.3 I KEYWORDS | .ttt ettt ettt ettt e s s e e e s ae e e be e e me e e ne e saneeabeeenneenneesare e e 12
34 I DATA TYPES ttiuiiieeeste sttt st sttt ettt a et sb e b bbbt st et e b et e sb et e sbesbenbeeneeneeneas 13
3.5 I TYPE CONVERSIONS [..uttiitiesieeeteasseeesteesseeeseessseasseesasesseessseaaseesaseeaseesnsesssessnsesnns 14
GO0 NS YN S SR PRTRURPRPRR 15
3.7 I OPERATORS . ..utiiiteieteaaueeaseesseeeseasseeaaseesaeeabeeasseaseesaeeabeeaaseaseesaneeabeesnseaseesaseenns 15
3.8 1 FUNCTION PROTOTYPES : ...vititisuesuesiesseeeessestessestessessessessesssessessessessessessessessessesnens 16
3.9 1 COMPILER CONTROL LINES: ...ueiitieaueeaateasueeeaseessseassesseesssesssseessessssssssesssesssessseenns 17
3.10 : ADDITIONAL FEATURES . ..ivtitiruerueeueseeseessessessessessessessessesnsensessessessessessessessessesens 18
3.10.1: Using Special Function RegISters (SFR) ...oovvieeierie e 18
3.10.2 : Assembly language interface :coecvveeveeiese e 19
3.10.3: The @SMKEYWOI D : ...ceeeieeeeeieee ettt enne e 19
3.10.4: TREBIT KEYWOIT : ..ottt 20
3.10.5: Memory area specifiers (data, idata, bdata, xdata, pdata, code). 21
3.10.6 : Memory specific and generic POINLEIS:ccccuveererierreerienieesieeseeseeseeeeenne 22
3.10.7 : Declaring variables at specific address (in Internal / External RAM) : 23
3.10.8 : interrupt functions and the using dir€Ctive:ccccveeveniineeneneenee e 24
3.10.9 : Absolute Register AdAreSSING:ccveiuereereerseeseesee e e eee e see e sree e 26

4. SC51 LIBRARY FUNCTIONS REFERENCE.........ccccoiiiiirieerenese e 27
LIST OF FUNCTIONS IN ALPHABETICAL ORDER ...cuvitiriestesiessesiesesesssessessesseseessessessessens 27

=] 0 F SRR RPR 31
BICOS ... ettt etee et e et e st R R e R e Re R e AR e e R e e e Re e e Re e e Re e e Re e Re e eneenneenre e nneenns 31

=TS o SRR 31

LU0 TSP 32

= (o SRR 32

1o TSP 32
000 12 | o | SRR 33

(00 TP 33
CIr_double DaUdooiee e 33

(o1 S o OSSR PSP 33

(o PSRRI 34

SC51 User’s manual 3 http://www.spj systems.com

00 TS 34
(01 = SRR 35
(01 =1 S 35
(021 o] TSP 36
(0 1= o LT 1 O RRPRORR 36
ISADIE EXO ... et 37
(01 o L= = O PRR PR PR 37
(01152 o [SRR 37
(0 1= o LTS = SO PSP 38
ISADIE 10 et ne e 38
(0 1= o) 1= T 0 OSSR PSPRR 38
ISADIE 12 et 39
< 7= o] = S 39
ENADIE A1 e 39
ENADIE EXO ... e re e re e re e e reenaeeeanas 40
ENADIE EXTL ...t b e e ne e 40
(< gT= o [T O OSSR PSR 40
ENADIE SEN ..t ettt re e e ne e 41
(< gT= o [T (O TSP RRPSPRR 41
< Tz o] = o USRS 41
ENADIE 12, . e e e e e sae e e r e e nreeenns 42
LS O o [0[RP 42
Lo (O L=, = IO PSP 42
Lo I o [0[RP 43
EXL TBVEL ..o e r e e reeeanas 43
LS PSPPSR 43
L1 SRS 44
110760 SR 44
L= 1SS 45
(6110, (SRR 45
0= (o o S 45
01 (0 7= | SRR 46
(01 (0 7= SO 46
0T TN o =SSP 46
I 1 o TSR 47
L PP PP 47
] 70 1 oSS 47
] 192 o PSR 438
12 1 L0 PSS 48

SC51 User’s manual 4 http://www.spj systems.com

15 TS o | TP 49
1S o[1 PSS 49
1S [0 < ST P PR SR 49
ISSPIAICE. ...t euteee ettt e et e e et e st e e st e e b e e e e b e e e s R e e e e abe e e e R e e e enRe e e Rne e e Re e e e Ree e s neeenne e e aneeea 49
1S 0o o PSPPSR SUSROPRROPRN 50
1557 [1 SRR 50
] (0= T o 1 OSSPSR 50
P> SRR 51
0 1= o S 51
oo SRR 51
oo 1 0 S 51
0] 76 124 oo o OSSR 52
Fo T 111 o] ISP 52
1072 T o SRR 52
L0010 = PR PR PR 53
10700 | SRR 53
0070770107 0 PP PR PR 53
(0111 oo 1 o J SRR 53
0122 o TS 54
81610 o SRR 54
16 USRI SURROPRROPRN 54
81071V 0 0111 o 1SRRI 55
01 S 55
O18 [= SRR 57
11 1SRRI SUSROPRROPRN 58
S 0= | SRR 58
S 100/ (=SS 60
S = S (0| SRR 60
S o0 4 T 110700 L= O RRPRPR 61
Set double DAUTcc.oiiee e 61
S V= (O IO PSPRR 61
K = O [T > SRR 62
S A T = GO PS PR 62
<. 0 O S 62
SEL NI TL. e et b e et enes 63
<. 0 22 63
S O L T =0 IO 63
K < O (O T > SRR 64
S A [T = GO PRPRR 64

SC51 User’s manual 5 http://www.spj systems.com

S <] [0 T (OSSR 64

.S A o 1 o OSSP RRPSPRR 65

S <] [0 T V22 PSRRI 65
(S A (O 1100 (= T OSSPSR 65

S < O 0 070 [SRR 66
S I (O | RSP PUPR 66

S 66

S] T 67
S 011 SRR UP 67
S0 | SRR 67

S 0= || 68
Stz LA (111 = OSSPSR 68
Stz (1 107 0 SRR 68
S0 T 1] 107 OSSR 69
S0 I (] 107 5 USRS 69

S 07| RSP PUPRR 69

S (01 0 TSRS 70

S 0! oSSR 70

S 1= o O 70

S LT 71

S 0702 0 ORI 71

S 1 o SO SPPR 71
L= [P RPRRRRRRRE 72

1= 11| R 72
L00) £ < O 72

100 1] 0] o S TSSO PP TP 73
02 R o SRR 73
U124 oo 1RO 73

5. ADVANCED PROGRAMMING TECHNIQUES. ..o 74
5.1 WRITING SIMPLE ASSEMBLY LANGUAGE SUB-ROUTINES : ...vveeeeiiureeeeeirreeeeenvneeennns 74
5.2 ASSEMBLY LANGUAGE FUNCTION'SRETURN VALUE &...uuvviiiriiee e issniirreee e e sessanens 75
5.3 ASSEMBLY LANGUAGE FUNCTIONS WITH PARAMETERS:uvveeeeeireeeeeinreeesennneeenns 76
5.3.1 Accessing parameters in assembler Program:........cooeeceveereeieeseesieseeseeeseenns 76
5.4 CALLING C FUNCTIONS FROM ASSEMBLY LANGUAGE:cccoiitveeeeeitreeeeesnreeeeserseeenns 77
5.4.1 PASSING PArAIMELEr'S:ccueeiuerierieeieeeesieeiesreesseeeesseestesessseessesseessesssessesssesssens 77
APPENDIX A : ERROR AND WARNING MESSAGES.......coocooo i, 79
HoOWw CAN | SEE ALL OF THE ERROR / WARNING MESSAGES ?.....coviiiiuieieeiiireeeeesveeeeeenens 79
WARNING IMESSAGES :uttiieiiittieeeiiitreeesaiteeeessitseeessssseeesassseessssssseeessssssesssasssesessnssnes 79

SC51 User’s manual 6 http://www.spj systems.com

Parameter ‘paraname’ NEVEN USEO |ccociieeiiriirneesieeie et 80

Local variable ‘localname’ declared but never used :ccocevevininenenencneens 80
No declaration for function ‘fuNCNAME’ :ccoeiiiereeee s 80
ERROR IMESSAGES : ...c.uiiuiiiieieiesie st st sttt sie s see st st bbbt st e b et e st e sbesbesbesnesneeneens 80
Declaration SYNtaX ErTOr :©o..eoiiiireeeeesee e 80
Redeclaration of identifier ORfUNCHION &ccoviiiiiinineeeee e 80
TOO MaNY [AENTITIErS ..o ee s 80
UNKNOWN TABNEITIEN = ...t 80
INVAlTA TABNLITIEN ..o e 81
TOO MANY EITOIS .ieieitieeeteeesiee e stee e ssee e e ssr e e e nse e e s bt e e srbee e sbee e sabeeesabeeesabeeesnreeennreeennes 81
INVAlTA SEALEMENT & ... et re e nre s 81
1= = o] SRS 81
MiISMALCN DFACKELS : ...t st 81
TOO MaANY BraCKeLS :ooiieieeieeie ettt sreeaeeneenne s 81
SAEMENE MISSING ; & oottt st b et esre e re e e e 81
VTS o] = ot o I o 111 1= 82
MISPIACEA Bl S ... et e ns 82
MiISPlaced Break :ooeeieeeeeec e s 82
do statement MiSSING "WHITE & ... 82
CASE OULSIAE OF SWITCN & ... b 82
(000 Fo] 0 1Y 1SS] oo ISR 82
Too Many Default Satements OR default May be Outside of switch : 82
TYPE MISIMALICH ..ot ne s 83
Too many 'goto’ statements! (Max. 10) & ..oveeveeeeeeereee e 83
UNEfiNEA [ADE] ..o e 83
UNEfINEA MACTO © ...ttt st 83
MacCro ParameterSIMISSINGcooeeiuereereeieseesieeeesreessesseesseesseseesseessesessseessessessees 83
Too many/few parameters Passed t0 MACTO &ccveveeriereereere e re e eeseeneens 83
Macro definition SYNEAX EITOF :......ccciieeieeieeie e e 83
Unexpected #elSe or #ENIT :........c.oooe i s 84
Too many Macro defiNITIONS ©ooeeiieiie e 84
Too big Macro defiNitioN &coov e 84
Syntax error in include statement (or filenot found) :cccoveeiiniineneeeeee 84
Macro hastoo Many ParamELErS :ccvveiereereereesee e e e eee e e e reenreeneeens 84
INVAlTA STALEMENT & ...t r e e ae e 84
(I V= oo J o o 84
TOO MANY TS Lttt se e be e eesseesbeeneesneenbeas 84
Toomany (> 128) SFRAECIarationS :cccceevueeeereeie e 85
'bit' type local var/para/array : not allowed : ... 85
pointer to bit variable: Not alloOwed :ccoeeiieie e 85

SC51 User’s manual 7 http://www.spj systems.com

APPENDIX B: LIMITATIONSOF THE COMPILERccocoiiiiiiiieeeceecs 86
APPENDIX C: 10WAYSTO IMPROVE CODE EFFICIENCYccccoiiniiniis 87

SC51 User’s manual 8 http://www.spj systems.com

1. Introduction

Thank you for purchasing SC51. Now you can write 8051 applicationsin C and debug
(smulate) those without the target hardware.

How to use this manual:

This manual isintended to be read from start to end, so you learn about all the features of
this compiler. However, the library functions description may be skipped initially, and it
can be referred to when you actually start writing applications.

The chapter 2 provides instructions to install the software. Chapter 3 gives you a genera
idea of the features of the software. After reading chapter 3, you may start actually using
this software. Chapter 4 contains detail information about ‘ Configuration’. Chapter 5
contains information about ‘ Run’ menu options.

For any questions or comments about the product, please feel free to contact us at :

SPJ SYSTEMS

101, Beaver Grandeur

Baner Road

Pune. Pin - 411 045.

Tel. +91-20-7293002 Fax. +91-20-7293003
E-mail : spj @spjsystems.com

Web-site : http://www.spjsystems.com

SC51 User’s manual 9 http://www.spj systems.com

2. Installation

The SC51 software CD includes an automatic installation program called SETUP.EXE.
Insert the SC51 software CD in your CD-ROM drive and run SETUP.EXE from the CD.
Thiswill start the installation and the setup program will ask you some questions. e.g.
where do you want to install the software (in the default path or somewhere else). Please
supply the answers to al the questions and complete installation.

Please read this manual carefully before you start using the software.

SC51 User’s manual 10 http://www.spj systems.com

3. Language Reference

This chapter describes the general syntax rules for the C language as implemented by this
compiler. In order to keep your programs portable, we have tried to stick to ANSI
standard C asfar as possible. However, we have added certain extentionsto ANSI Cin
our compiler — especially to take advantage of the special features of 8051 architecture,
such as bit addressing capability. In thisimplementation of C Compiler, there are also
some minor variations and limitations — in many cases, these are due to the limitations of
8051 architecture. This chapter provides information about such additional features.
(Please also read the appendix “Limitations of the compiler” which lists certain
limitations of this C compiler and some known bugs.) Please note, that thisisNOT an
authoritative document describing the C language in general. Many books from reputed
publishers are available to learn more about C language. This chapter describes syntax
related information applicable to thisimplementation of C Compiler —and not necessarily
of the C language in general.

3.1: Comments :

The character string "/*" marks the beginning of a comment and the string "*/" marks the
end of it. e.g.

printf("Some message\n") ;

[* This is a coment */

/[* Comrents may be spread over
mul tiple Iines

*/

However nested comments are not allowed. e.g.

/*

comrent line 1
/[* line 2 */
last |line

*/

Thiswill produce an error, because the string "*/" after 'line 2" marks the end of
comment, and hence the string "*/" appearing again after 'last line' will generate an
error.

SC51 User’s manual 11 http://www.spj systems.com

C++ style of comments (//) is aso supported. i.e. al stuff followed by “//” up to the end
of thelineistreated as comment.

eg.
printf("Some nmessage\n") ; // This is C++ style coment

3.2 : ldentifier :

Anidentifier isjust the name you give to avariable, function, or other user defined
objects. An identifier can contain letters (A...Z, a..z) and digits (0...9) as well as the
underscore character (). However an identifier can only start with aletter or an
underscore. Caseissignificant. i.e. varlisnotthe same as Varl. The maximum
length of an identifier is 20 characters.

3.3: Keywords :

Following isalist of keywords reserved by the compiler. These can not be used as
identifier names.

br eak
case
char
conti nue
def aul t
do
doubl e
el se
voi d

fl oat
for

goto

i f

i nt

i nterrupt
| ong
return
short

SC51 User’s manual 12 http://www.spj systems.com

unsi gned
asm
struct
uni on
si zeof
SFR
bi t
BIT
dat a

i dat a
bdat a
xdat a
pdat a
code
usi ng
extern

Although doubl e and si zeof are not supported in this version, still these are
reserved keyword, because these may be supported in later versions.

3.4 : Data types :

The following table lists all the data types which are supported by this C compiler, their

range of possible values, and their size (in bits) :

Type Size (Bits) | Range

bit 1 Oorl

unsigned char 8 0to 255

char 8 -128 to 127

unsigned int 16 0 to 65535

int 16 -32768 to 32767

unsigned longint | 32 0 to 4294967295

long int 32 -2147483648 to 2147483647
float 32 3.4E-38t0 3.4E+38

SC51 User’'s manual

13

http://www.spjsystems.com

Apart from these basic data types, you can declare one dimensional arraysof any of
these types except the bit type. There are some more restrictions on the use of bit data
type asfollows:
- You can not declare arrays of bit type variables.
bit type variables can not be passed as parameters.
A bit type variable must be a global variable. It can not be declared as alocal variable
or aparameter.
There can be maximum 120 variables of bit type in any program.
bit type variables always reside in Internal RAM (bit addressable memory area—
0x20 to 0x2f), regardless of which memory model you are using.
While assigning a constant value to any bit variable, you can assign only one of the
two possible values: O or 1.
In expression, you can combine variables of different datatypes. e.g. you can add an
integer variable to afloating point variable. However, the same is not applicable to bit
datatype. i.e. if one of the operandsis a bit type variable, then the other operand also
must be another bit type variable (not even a constant of some other type)
Only a certain operations can be performed on bit type variables. See the details
below in section 3.7 Operators.
Y ou can not declare a pointer to bit.
However pointers (up to one level) to other data types can be declared.

3.5: Type Conversions :

In an expression, if the two operands of a binary operator are of different types, then the
compiler will attempt to convert one of the operands into the type of the other. The
compiler uses some rulesto do thisasfollows::

If either of the operandsis of type ‘hit’, then compiler prints an error “type mis-match”,
sinceit can not convert bit type to any other type or vice versa.

Otherwise, if either of the operandsis of type ‘float’, then the other operand is converted
to float type.

Otherwise, if either of the operandsis of type ‘longint’ (or ‘unsigned long int’) then the
other operand is converted to the same type.

Otherwise, if either of the operandsis of type ‘int’ (or ‘unsigned int’) then the other
operand is converted to the same type.

SC51 User’s manual 14 http://www.spj systems.com

Thus ‘char’ type (or ‘unsigned char’ type) gets the lowest priority.

However, the compiler behaves differently for some operatorsi.e.

+= .= * = | =
% &= | = A=
<<= >>=

For these operators, the result is to be written back onto the left hand side operand (which
must be avariable). Hence, the compiler will ALWAY S convert the right hand side
operand into the type of left hand side operand. e.g. if youwrite“x *= f” wherex isof
typeint and f is of type float, then compiler will generate code to convert the value of ‘f’
into integer and then multiply the value of ‘x’ by it and finally store the result (which will
be naturally int type) back into the variable x.

3.6 : Constants :

Integer constants may be written in decimal form (e.g. 123 or 30945) or in
hexadecimal form with '0x" prefix (e.g. Oxff). Character constants must be enclosed in
single quotation marks. e.g. 'A' or '?. String constants must be enclosed in double
guotation marks. e.g. "Thisisastring constant”. Floating point constants are always
considered to be of type float. Also floating point constants must be written with a
decimal point, otherwise they may be considered as integer constants. e.g. "123" will be
considered as "the integer value 123" whereas "123.0" will be considered as "the floating
point value 123".

The suffix ‘L’ can be attached to a constant to force it to “long int” type. For example,
123L is“the long int value 123”. Without the suffix, it would have meant “the int value
123",

Similarly, the suffix ‘UL’ can attached to a constant to force it to “unsigned long int”
type.

Similarly, the suffix ‘S’ can attached to a constant to force it to “unsigned char” type. For
example, 123S means “the unsigned char value 123 — a single byte value' . However,
without the 'S’ suffix, 123 would have meant “the int value 123 — two bytes’.

3.7 : Operators :

Following operators are supported by the compiler :

~

+ - *
% ++ -- =

SC51 User’s manual 15 http://www.spj systems.com

< > <= >=

& && | []
N >> << +=
-= * = = V=
&= |: N= <<=
>>=

However, on bit type variables, some of the operators can not be used. Here isthe list of
operators which can not be used with bit type variables:
*

+ - /
% ++ -- >>
<< += -= * —
/= V= <<= >>=

3.8 : Function prototypes :

Y ou may write function prototypes to declare a function. These declarators include
information about the function parameters.

eg.
int funcl (char parl, int par2, long int par3) ;
The actual function definition may be written somewhere else as:

int funcl (char parl, int par2, long int par3) {
/*

wite sone code here

*/

} /* thisis avalid function definition */

The old style of writing function definitions is NOT supported.
e.g. this is not alowed :

int funcl (parl, par2, par3)
char parl ;

int par2 ;

long int par3 ;

{

/*

SC51 User’s manual 16 http://www.spj systems.com

sone statenents here
*/
} /* this is not a valid function definition */

3.9 : Compiler control lines :

#i ncl ude directive may be used to include another file. However nesting of include
filesisnot allowed. i.e. if file2 is #included infilel, then there may not be any
#i ncl ude statement in file2. The syntax is:
#include <fil e_nane>
or
#i nclude "fil e_nanme"
If the 'file_name' is enclosed in <>, then that file will be looked for in the folder ‘INC’ in
the path where SC51 isinstaled. If 'file_name isenclosed in ™", then it will be looked

for in the current folder.

#def i ne and #undef directives may be used to define or undefine a macro. A
macro may or may not have parameters. e.g.

#define nmax_out put 2048
This statement defines the symbol 'max_output' to the value 2048. i.e. wherever
you write the word 'max_output’, it will be replaced by 2048 by the pre-processor
before compiling. A macro with parameters can be defined as:

#define product(x,y) (x*y)

Here x and y are parameters. Whileusing the macro you can substitute the x and y
with anything else. e.qg. if you write:

val ue = product(factor, 123. 45) ;
it will be replaced by

val ue = factor*123. 45 ;

SC51 User’s manual 17 http://www.spj systems.com

#i fdef |, #i f ndef ,#el se and #endi f directives may be used for conditiona
compiling. The syntax is:

#i f def symbol_name
set of statements 1
#el se

set of statements 2
#endi f

If symbol_name is a defined macro name, then the #i f def expression evaluates
totrue and theset of statements 1 will be compiled. Otherwise the set of
statements 2 will be compiled . The#el se and set of statements 2 is optional.
The #i f ndef expression evaluates to true, if symbol name is not defined. Rest
of the syntax is same as that for #i f def .

3.10 : Additional features :

3.10.1: Using Special Function Registers (SFR) :

Y ou can access the SFRs of the micro-controller, by using the SFR declaration.
'SFR' isan additional keyword. It allowsyou to define a SFR. The syntax is:
SFR sfr_name sfr_addr

where 'sfr_name' is the name of the SFR you want to define (e.g. TMOD) and
'sfr_addr' isit'saddress (e.g. 0x89). There is no need to write a semicolon (;)
after a SFR declaration. Thus the statement :

SFR TMOD 0x89

defines the SFR 'TMOD' with an address 89 Hex. Oncea SFR is declared,
you can use it inyour C program asif it were avariable of type unsigned
char. e.g. you may write TMOD = 0x11 ; This statement will generate code
towritethe value 11 (Hex) in TMOD. In fact we have already declared most
of the SFRsfor you in different header files. e.g. the file SFR31.H containsthe
declarations for all 8031/8051/8751 SFRs. If you include thefile SFR31.H in
your C program, you can use all 8031 SFRs asvariables (of unsigned char
type). Similarly there are other header files, which define the SFRs for the
corresponding CPUs. We have supplied number of header files which contain
SFR declarations for many different 8051 derivatives. These header filesarein
the folder INC. Thereis 1 folder for each manufacturer, which contains the header

SC51 User’s manual 18 http://www.spj systems.com

filesfor all 8051 derivatives manufactured by that particular manufacturer. Y ou
may include the appropriate header file in your C program. If you are using any
other 8051 derivative (for which, no header file is supplied), you can create your
own header file and includeit in your C program.

Thus you can use declared SFRs as globa variables of unsigned char type.

Y ou can use these in any expressions, except that you can not use the & (address
of) operator with these variables, because these are not really variables, but
are pseudo-variables, and these are not indirectly accessible.

3.10.2 : Assembly language interface:

Parts of aprogram may be very time critical, e.g. you may like an interrupt
serviceroutineto finishin as small time as ispossible. For this reason, you
may like to write part of the program in assembly language. This is made
possible by providing assembly language patch-up facility. Y ou may write
part of the program in assembly languageina SEPARATE FILE. Whenyou
invoke the compiler, use the /aoption to specify the . ASM file name. i.e.
include / Aasm fi | e_nane inthe command line beforethe C file name.
You may not use ORG statement in assembly language patch file. If you must
use, the ORG statement (e.g. to Ijmp to ISR), usethese at the end of the
assembly languagefile. You can access global variables declared in C
program from assembly language. e.g. if 'varl' isdeclared asglobal variablein
C program, then you can usethe symbol ' varl' asthe address of that
variable. i.e. you must attach an underscore () to the left of thevariable
name. Please note that al variables reside in external data memory in case of
large model (unless memory area specifier or @ notation isused). On the
contrary, al variables reside in internal RAM in case of small model (unless
memory area specifier or @ notation is used).

3.10.3: Theasm keyword :

Thisisan additional keyword, which allowsyou to insert assembly language
statements directly into your C program. This keyword when used, must appear
asthefirst word of a line. Everything following this keyword - upto the end
of line-is directly copied into the .ASM output file. Please note that, no
syntax checking is done by the compiler on this assembly language statement, it
isdone later on by the assembler.

SC51 User’s manual 19 http://www.spj systems.com

3.10.4: TheBIT keyword :

The BIT keyword is an additional (non - ANSI) keyword. It can be used to define
pseudo variables of bit type. e.g. suppose you are using bit O of P1 for some
purpose - say to switch on amotor. Then you might like to assign a symbolic
name to P1.0. Exactly this can be done using the BIT keyword. The syntax for
usingitis:

BIT identifier_name value
Please note that a BIT statement isNOT followed by a semicolon. The identifier

can be any legal identifier name - which is not previously declared. The value
must take thisforms:

sfr_name.bit_addr

where sfr_name can be the name of any bit accessible SFR of 8031 and
bit_addr may be any value between 0 and 7.
Here are some examples of correct and incorrect BIT statements :

BIT motor plo
[* correct */

BIT limit_switch p3.6
/* correct */

BIT motor p3
[* wrong, because the bit_addr ismissing */

BIT something dpl.2
[* wring, because “dpl” isnot a bit accessible SFR */

Once you have defined a symbol using the BIT keyword, then onwards, you can
useit inyour program asif it were avariable of “bit” type. e.g. if you have
defined “motor” and “limit_switch” as above, you may write :

if (limit_switch) motor =0 ;
elsemotor =1;

The above two statements are equivalent to checking bit 6 of P3 and accordingly
either setting or clearing bit O of P1.

SC51 User’s manual 20 http://www.spj systems.com

3.10.5: Memory area specifiers (data, idata, bdata, xdata, pdata, code):

The 8051 architecture uses number of logically separate memory areas. The
different memory areas have been assigned names as below:

Memory Memory area description Addressrange
Areaname
data Internal data memory, directly accessible O0H-7FH
(access using direct and indirect addressing
mode)
idata Internal data memory, indirectly accessible | OOH-FFH
(access only using indirect addressing
mode)
bdata Internal data memory, bit addressable 20H-2FH

(access using direct and indirect addressing
mode, as well as bit addressing capability)

xdata External data memory (access using indirect | 0000H-FFFFH
addressing, using movx @dptr instruction).
pdata Paged External data memory (accessto only | PPOOH-PPFFH

one 256 byte page of external data memory, | where PPis
using movx @r0 or movx @r 1 instruction). | page address,
output on P2.

code (Internal or External) program memory, 000OH-FFFFH
read only access using movc instruction.

In your target hardware, the actual amount of memory available may be less than
the ranges mentioned above. In some cases, some memory areas maybe entirely
missing (for example, some designs do not use external data memory at al, which

means xdata and pdata is missing).
The compiler and linker generally assign appropriate address to al variables

(unless the address is specified by user, with @ notation). By default, all global
variables are assigned addresses in data memory areaif small memory model is

used; or in xdata memory areaif large memory model is used. It is possible to
override this default and force the compiler to keep variables in other memory
areas — regardless of the memory model selected. The keywords data, idata,
bdata, xdata, pdata, code can be used in a variable declaration, to specify the
memory area to be used for that variable. Here are some examples:

xdata int j ; // this will be stored in

[/l xdata nenory area
i data char ch ; /1 idata nenory area
pdata char arr[10] ; /1l pdata nenory area

data unsigned char uch ; // data nenory area

SC51 User’s manual 21 http://www.spj systems.com

3.10.6:

bdata char bch ; /'l bdata nenory area

code float multipliers[3] ={ 1.0, 2.0, 3.0 } ;

/'l code nmenory area

long int | ; /1 default nenory area

The usage of memory area specifiers must follow some rules:

1. Only one of these memory area specifiers maybe used: data, idata, bdata,
xdata, pdata, code

2. Since code memory areaisread only, the variables declared with code
memory area specifier, can not be assigned any value. The only way to assign
avalueto code variablesisto initialize them during declaration (asin the
above example).

3. Using the keyword const has exactly the same effect as using the code
memory area specifier. Although const is not a memory area name, the use of
const informs the compiler that thisis a“read only” variable, and hence
compiler automatically keepsit in code memory area.

4. The memory area specifier must be placed before the data type. For example,
“xdataintj ;" isavalid variable declaration, but “int xdataj ;" is not valid.
Generally the variable declarations should be of the form:

[extern] [memory_area specifier/const] data type var_name [= valug] ;
where,
extern isoptional keyword, indicating that variable is defined in another
module.
memory_area specifier is (optional) one of the valid memory area specifiers.
data type must be avalid data type.
var_name must be avalid identifier name.
Optionally, the variable maybe initialized.

5. Use of memory area specifier is alowed only on global variables and pointer
variables. (Please see next section for more about memory area specifiers on
pointers).

Memory specific and generic pointers:

Use of memory area specifier on a pointer variable has different effect than non-
pointer variables. As explained above, use of memory area specifier on non-
pointer variables forces the variable to reside in the specified memory area.
However, pointers always reside in the default memory area, even if memory area
specifier isused. If apointer is declared with memory area specifier, it becomes a
memory specific pointer —which means, it can point only to the specified memory
area. Such memory specific pointers are 1 byte or 2 byte pointers. If a pointer is
pointing to data, idata, bdata or pdata area, it is 1 byte pointer. If apointer is
pointing to xdata or code area, it is 2 byte pointer. If a pointer is declared without

SC51 User’s manual 22 http://www.spj systems.com

any memory area specifier, it becomes a generic pointer — which meansit can
point to any memory area. Generic pointers are 3 byte pointers. Here are some
examples of pointer variable declarations:
char *p_ch ; /'l generic pointer (3 byte |ength)
idata char *p_ch2 ; // pointer to idata nenory area

/1 (1 byte | ength)
xdata int *p_xi ; /'l pointer to xdata nenory area

/1 (2 byte | ength)
Local variables and parameters are aways pushed on stack —which means, they
are always stored in internal data memory (regardliess of memory model). Hence,
memory area specifier can not be used on local variables or parameters, unlessit
isapointer variable. In case of pointer variables, the memory area specifier does
not affect the location of pointer variable itself, but it restricts the pointer to point
only to the specified memory area. Hence, use of memory area specifier on
pointer variables is always allowed — even if the pointer variable islocal, global
or aparameter. All library functions of SC51, which take pointer parameter(s),
use generic pointers. User defined functions may use memory specific or generic
pointers.

3.10.7 : Declaring variables at specific address (in Internal / External RAM) :

This compiler allows the programmer to declare a variable at a specific address.
The syntax for doing so isasfollows::
var _type @ddr var _nane ;
or
var _type @ addr var_nane ;

where ‘var_type' isany legal datatype (except bi t) and ‘var_name’ isany lega
identifier name and addr isany hexadecimal constant. In the first case, the
variable ‘var_name' isassigned an address= addr in external RAM, and in the
later case, the variable ‘var_name’ is assigned an address = addr in internal
RAM. Thusin avariable declaration, if the variable type isfollowed by @
followed by a hexadecimal constant address, then the variable will reside at the
specified address in external RAM. On the other hand, if the variable typeis
followed by @I (there should not be any space between @ and 1) followed by a
hexadecimal constant address, then the variable will reside at the specified
addressin internal RAM. Thisisfurther illustrated in following example:

unsi gned char @x6000 dat_ 8279 ;

[* i.e. &Jat 8279 is 0x6000 in external RAM */

unsi gned char @x6001 cnd_8279 ;

[* i.e. &nmd_8279 is 0x6001 in external RAM/

int @0x2d varl ;

SC51 User’s manual 23 http://www.spj systems.com

[* i.e. &arl is 0x2d in Internal RAM */

unsi gned char ch ;

/* this is ordinary variable. It's address will be
deci ded by the conpiler. Also, whether it wll
reside in internal RAMor external RAM wi | |

depend
on the nenory nodel used */

void main () {
cmd_8279 = ch ;

/[* an alternative wthout using @woul d be
out port b(0x6001, ch) ; */

varl = dat_8279 ;

/* an alternative w thout using @woul d be
varl = inportb(0x6000) ; */

}

Thus declaring variables at a specific address results in a great amount of saving
in code size and also the clock cycles required. However using ‘outportb’ and
‘inportb’ functionsis also perfectly legal.

By using this feature, you can declare variables at any location in internal or
external RAM. Thus, even if you are using small memory model, still you can
forcefully keep some variablesin external RAM at any address. Also, even if you
are using large memory model, you can forcefully keep some variablesin internal
RAM at any address.

However, the compiler does NOT check whether the specified addressis used by
some other variable or temporary variable or stack or registers. Thus, it isthe
PROGRAMMER’s RESPONSIBILITY to specify avalid address, which is not
used for any other purpose.

3.10.8 : interrupt functions and the using dir ective:

The SC51 compiler supports a special type of functions—interrupt functions. As
the name implies, these are Interrupt Service Routines (I1SRs). They are different
from ordinary functions in many respects.
Interrupt functions are not called by user program, but are automatically
invoked by hardware, when the corresponding “interrupt event” occurs. Asa
result, interrupt functions must not have any parameters.
For the same reason, interrupt functions can not return a value.
All interrupt functions are associated with a vector location. A jump
instruction must be placed at the vector location, such that it will transfer
control to the interrupt function.

SC51 User’s manual 24 http://www.spj systems.com

Interrupt functions must end with aRET]I instruction, rather than RET
instruction.
At the beginning of interrupt functions, important registers such as
accumulator or flags must be saved; and these must be restored just before the
end of interrupt function. It isalso usual to change register bank. In case of
SC51 programs, al non-interrupt functions use register bank0. One another
register bank must be reserved for each priority level of interrupts.

Due to the above differences, it is necessary to use somewhat different syntax to

declare an interrupt function:

interrupt (INTR_NUM) FuncName () using N

{
}

where:
interrupt is akeyword that informs the compiler, that thisis an interrupt function
rather than ordinary function.
INTR_NUM can be a constant in the range 1 to 32, which identifies the interrupt
number — and consequently, the vector location associated with it. The vector
location address associated is ((INTR_NUM —1) * 8) + 3). ThusINTR_NUM =
1 corresponds to External InterruptO (EXTO) whose vector address is 0003H.
INTR_NUM = 2 corresponds to TimerO (TO) interrupt whose vector addressis
000BH. Symbolic constants (such as INT_EXTO, INT_TMRO) are defined in the
file STANDARD.H. We strongly recommend that you should #include
<standard.h> in your program and use the appropriate symbolic constant as
INTR_NUM.
FuncName is the name of the interrupt function — it must follow the usual rules
for identifier name.
using isthe keyword required to specify the register bank to be used for this
interrupt function.
N isthe register bank number, to be used for thisinterrupt function. It islegal to
specify any value in the range O to 3 here. However, it is strongly recommended
to use only values 1 to 3, because register bankO is used by all non-interrupt
functions (hence interrupt function must not use it). If incorrect register bank is
specified, the entire program may malfunction.
The SC51 compiler treats an interrupt function, differently than ordinary
functions:
The SC51 compiler will automatically insert ajump instruction at the vector
location, which points to this interrupt function.
At the beginning of interrupt function, the compiler automatically generates
code to save important “context” (for example accumulator, flags and so on).

I/ write your code here

SC51 User’s manual 25 http://www.spj systems.com

The compiler also generates instruction to switch register bank to the specified
value.
At the end of interrupt function, the compiler automatically generates code to
restore the saved context (and switch back to original register bank).
The compiler uses RETI instruction (rather than RET) to terminate the
interrupt function.

Please note, an interrupt function can not have any parameters.

3.10.9 : Absolute Register Addressing:

The SC51 compiler generates Assembler instructions that often use registers
RO...R7. These can be accessed as “registers’ (with the names RO...R7) or as
“direct addressesin data memory”. In the later case, the compiler uses pre-defined
register address symbols (ARO...AR7). Depending on the currently selected
register bank, the ARn symbol translates to appropriate address. For example, if
bankO is selected, then AR4 trandates into 04H. If bank1 is selected, AR2
trandates into OAH. In this case, the function will work correctly, only if the same
register bank is selected at runtime. This maybe a problem in case of some
functions. For example, consider afunction f1() which is called by main() as well
as an Interrupt function. By default, register bankO is selected for al non-interrupt
functions. But Interrupt functions must select another register bank (with the
using keyword). Thus when function f1 is called, sometimes register bank0 will
be selected, but at some other times, another register bank maybe sel ected.
Obvioudly, if “absolute register addressing” is used during function f1, it will
result in malfunctioning. The SC51 provides away to disable or enable absolute
register addressing. The controls NOAREGS and AREGS can be used in
conjunction with #pragma. The syntax is as follows:

#pragma NOAREGS

/[this point onwards, absol ute register addressing will be disabled

Il write functions like f1 here

I so that absolute register addressing will not be used

#pragma AREGS

/[this point onwards, absol ute register addressing will be enabled
By default, absolute register addressing is enabled.

SC51 User’s manual 26 http://www.spj systems.com

4. SC51 Library Functions Reference

List of functions in alphabetical order :

1) abs

2) acos

3) asin

4) atof

5) atoi

6) atol

7) bcd2int

8) cal

9) clr_double baud
10)clr_ni
11)clr_ti

12) cos

13) cosh

14) delay

15) delay_ms
16) disable
17) disable_all
18) disable_ex0
19) disable ex1
20) disable rx
21) disable ser
22) disable t0
23) disable t1
24) disable t2
25)disp_lcd
26) enable
27) enable_all
28) enable_ex0
29) enable ex1
30) enable_rx
31) enable_ser
32) enable t0
33) enable t1

SC51 User’s manual 27 http://www.spj systems.com

34) enable _t2
35) exO_edge
36) ex0_level
37)ex1 _edge
38) ex1 level
39) exp

40) floor

41) fmod

42) frexp

43) getbyte
44) getch

45) getchar
46) getchare
47)go _idle
48) hi_nibb
49)init_ser
50) inportb
51) int2bcd
52) isalnum
53) isapha
54) isascii
55) isdigit
56) islower
57) isspace
58) isupper
59) isxdigit
60) itoa_c31
61) labs

62) |dexp

63) log

64) log10

65) long2bcd
66) lo_nibb
67) Itoa_c31
68) memset
69) modf

70) movmem
71) outportb
72) peekb
73) pokeb

SC51 User’s manual 28 http://www.spj systems.com

74) pow

75) powerdown
76) printf

77) putchar

78) puts

79) scanf

80) sendbyte

81) ser_rdy

82) set_com_mode
83) set_double_baud
84) set_hi_ex0
85) set_hi_exl
86) set_hi_ser
87) set_hi_t0

88) set_hi_tl

89) set_hi_t2

90) set_lo_ex0
91) set 1o ex1
92) set o _ser
93) set 1o t0

94) set_lo t1

95) set_lo_t2

96) set_t0_mode
97) set_t1 _mode
98) set_tent
99)sin

100)sinh
101)sprintf
102)sgrt
103)sscanf
104)start_timerO
105)start_timerl
106)stop_timer0
107)stop_timerl
108)strcat
109)strcmp
110)strcpy
111)strlen
112)striwr
113)strncpy

SC51 User’s manual 29 http://www.spj systems.com

114)strupr
115)tan
116)tanh
117)tolower
118)toupper
119)ui2a c31
120)ui2bcd

SC51 User’s manual 30 http://www.spj systems.com

Function : Returns the absolute value of an integer
Syntax : #include <stdlib.h>
int abs(int x) ;
Prototype in : math.h
Remarks : abs returns the absolute value of an integer argument x.
Return value : abs returns an integer intherange of 0 to 32767, with the
exception that an argument of 32768 is returned as -32768.
Seealso : labs

Function : Returnsthe arc cosine of the argument.
Syntax : #include <math.h>
fl oat acos(float x) ;
Prototype in : math.h
Remarks : ThisfunctionisNOT included in the library, but it is given in the form of
source code. It’ s source code can be found in SOURCE\CFILES\MATH.C
Return value : acos returns the arc cosine of x.
Seealso : cos

Function : Returnsthe arc sine of the argument.
Syntax : #include <math.h>
float asin(float x) ;
Prototype in : math.h
Remarks : ThisfunctionisNOT included in the library, but it is given in the form of
source code. It’ s source code can be found in SOURCE\CFILES\MATH.C
Return value : asin returns thearc sineof x.
Seealso :sin

SC51 User’s manual 31 http://www.spj systems.com

Function : Converts ASCII string to floating point number
Syntax : #include <stdlib.h>
fl oat atof(char *str) ;
Prototype in : stdlib.h
Remarks : atof converts the ASCII string str into a floating point number.
Return value : atof returns the converted floating point value. If the string can not
be converted, returns 0.
See also : atol, atoi

Function : Converts ASCII string to integer number
Syntax : #include <stdlib.h>
int atoi (char *str) ;
Prototype in : stdlib.h
Remarks : atoi converts the ASCII string str into a integer number.
Return value : atoi returns the converted integer value. If the string can not be
converted, returns 0.
See also : atol, atof

Function : Converts ASCII string to long integer number
Syntax : #i nclude <stdlib.h>
long int atol (char *str) ;
Prototype in : stdlib.h
Remarks : atol converts the ASCII string str into a long integer number.
Return value : atol returns the long integer value. If the string can not be
converted, returns O.
See also : atoi, atof

SC51 User’s manual 32 http://www.spj systems.com

bcd2int

Function : Converts BCD string to integer number
Syntax : #i ncl ude <etc. h>
int bcd2int (char str[10], int ndigits) ;
Prototype in : etc.h
Remarks : bcd2int converts the unpacked BCD string str into an integer number.
It considers the first ‘ndigits digits of str.
Return value : bcd2int returns the integer vaue.
See also : int2bcd

Function : Rounds up.
Syntax : #i ncl ude <math. h>
float ceil (float x) ;
Prototype in : math.h
Return value : ceil returns the smallest integer greater that or equal to x.
See also : floor

Function : Clears'double baud rate
Syntax : #i ncl ude <macros31. h>
clr_doubl e _baud() ;
Prototype in : macros3l.h
Remarks : Clears bit 7 of PCON so that baud rate is not doubled.
Return value : None.
See also : set_double baud

Function : Clears receiver interrupt

SC51 User’s manual 33 http://www.spj systems.com

Syntax : #i ncl ude <macros31. h>
clr_ri() ;
Prototype in : macros3l.h
Remarks : Clears Rl bit in SCON, so that serial port's pending receiver interrupt
is cleared.
Return value : None.
See also : clr_ti

Function : Clears transmitter interrupt
Syntax : #i ncl ude <macros31. h>
clr_ti() ;
Prototype in : macros3l.h
Remarks : Clears Tl bit in SCON, so that serial port's pending transmitter
interrupt is cleared.
Return value : None.
See also : clr_ri

Function : Returnsthe arc cosine of the argument.
Syntax : #include <math.h>
float cos(float x) ;
Prototype in : math.h
Remarks : ThisfunctionisNOT included in the library, but it is given in the form of
source code. It’ s source code can be found in SOURCE\CFILES\MATH.C
Return value : cos returns the cosine of x.
Seealso : acos

Function : Returnsthe hyperbolic cosine of the argument.
SC51 User’s manual 34 http://www.spj systems.com

Syntax : #include <math.h>
fl oat cosh(float x) ;
Prototype in : math.h
Remarks : Thisfunction isNOT included in the library, but it is given in the form of
source code. It’ s source code can be found in SOURCE\CFILES\MMATH.C
Return value : cosh returns the hyperbolic cosine of x.
Seealso : cos

Function : Produces adelay
Syntax : #i ncl ude <standard. h>

voi d delay (int count) ;
Prototype in : standard.h
Remarks : Produces a certain delay. Since the crystal frequency in the target
system is not known, this function passes 'count’ number of clock cycles only.
Thus if you are using 8031 with 12 MHz crystal, you may say, that this function
produces a delay of 'count’ micro-seconds where ‘count’ is the integer parameter
you pass to it. However if you are using a different crystal frequency and / or
different CPU, it may not be so. The accuracy of this function is plus or minus
50 cycles. i.e. if you call delay function with count parameter = 20000, then it
will return after 'n' clock cycles where 'n' will be > 19050 and < 20050.
Also please note, that this functions produces a software delay. Thus, if interrupts are
enabled, then this function may produce more delay than is expected. Because, if
interrupt occurs during this function, then it will take some more time to execute but that
time will not be counted by this function. Thus, if interrupts are enabled, the acuracy and
repeatability of thisfunction will be poor.
Return value : None.

Function : Produces adelay
Syntax : #i ncl ude <standard. h>

void delay _ns (int count) ;
Prototype in : standard.h

SC51 User’s manual 35 http://www.spj systems.com

Remarks : Produces a certain delay. Since the crystal frequency in the target
system is not known, this function passes ‘count * 1000' number of clock cycles
only. Thus if you are using 8031 with 12 MHz crystal, you may say, that this
function produces a delay of 'count’ milli-seconds where ‘count’ is the integer
parameter you pass to it. However if you are using a different crystal frequency
and / or different CPU, it may not be so. The accuracy of this function is plus or
minus 2 cycles. i.e. if you cal delay function with count parameter = 20, then it
will return after 'n' clock cycles where 'n' will be >= 19998 and <= 20002.

Also please note, that this functions produces a software delay. Thus, if interrupts are
enabled, then this function may produce more delay than is expected. Because, if
interrupt occurs during this function, then it will take some more time to execute but that
time will not be counted by this function. Thus, if interrupts are enabled, the acuracy and
repeatability of this function will be poor.

Return value : None.

Function : Disables interrupts
Syntax : #i ncl ude <macros31. h>
di sabl e() ;
Prototype in : macros3l.h
Remarks : Clears only bit 7 of IE, so that al interrupts remain disabled.
Return value : None.
See also : disable all, enable

Function : Disablesinterrupts
Syntax : #i ncl ude <macros31. h>
disable_ all () ;
Prototype in : macros3l.h
Remarks : Clears al bits of IE so that al interrupts remain disabled. Please note
the subtle difference between disable() and disable al().
Return value : None.

SC51 User’s manual 36 http://www.spj systems.com

See also : disable, enable all

Function : Disables INTO externa interrupt.
Syntax : #i ncl ude <macros31. h>
di sabl e_ex0() ;
Prototype in : macros3l.h
Remarks : Clears bit 0 of IE, so that external interrupt INTO remains disabled.
Return value : None.
See also : enable ex0

Function : Disables INT1 externa interrupt.
Syntax : #i ncl ude <macros31. h>
di sabl e_ex1() ;
Prototype in : macros3l.h
Remarks : Clears bit 2 of IE, so that external interrupt INT1 remains disabled.
Return value : None.
See also : enable ex1

Function : Disables receiver of serial port
Syntax : #i ncl ude <macros31. h>
di sable_rx() ;
Prototype in : macros3l.h
Remarks : Clears bit 4 of SCON so that serial port's receiver remains disabled.
Return value : None.
See also : enable rx

SC51 User’s manual 37 http://www.spj systems.com

Function : Disables serial port interrupt.
Syntax : #include <macros31l. h>
di sabl e_ser () ;
Prototype in : macros3l.h
Remarks : Clears bit 4 of IE, so that serial port interrupt remains disabled.
Return value : None.
See also : enable ser

Function : Disables timer O interrupt.
Syntax : #i ncl ude <macros31. h>
di sable_t0() ;
Prototype in : macros3l.h
Remarks : Clears bit 1 of IE, so that Timer O interrupt remains disabled.
Return value : None.
See also : enable tO

Function : Disablestimer 1 interrupt.
Syntax : #i ncl ude <macros31. h>
di sable t1() ;
Prototype in : macros3l.h
Remarks : Clears bit 3 of IE, so that Timer 1 interrupt remains disabled.
Return value : None.
See also : enable t1

SC51 User’s manual 38 http://www.spj systems.com

Function : Disablestimer 2 interrupt.
Syntax : #i ncl ude <macros31. h>
di sable_ t2() ;
Prototype in : macros3l.h
Remarks : Clears bit 5 of IE, so that Timer 2 interrupt remains disabled.
Return value : None.
See also : enable t2

Function : Enablesinterrupts
Syntax : #i ncl ude <macros31. h>
enabl e() ;
Prototype in : macros31.h
Remarks : Sets only bit 7 of IE, so that al interrupts may be enabled.
Return value : None.
See also : enable all, disable

Function : Enables interrupts
Syntax : #i ncl ude <macros31. h>
enable_all () ;
Prototype in : macros3l.h
Remarks : Sets al bits of IE so that all interrupts are enabled. Please note the
subtle difference between enable() and enable al().
Return value : None.
See also : enable, disable all

SC51 User’s manual 39 http://www.spj systems.com

Function : Enables INTO externa interrupt.
Syntax : #i ncl ude <macros31. h>
enabl e_ex0() ;
Prototype in : macros3l.h
Remarks : Sets bit 0 of IE, so that externa interrupt INTO gets enabled.
Return value : None.
See also : disable ex0

Function : Enables INT1 externa interrupt.
Syntax : #i ncl ude <macros31. h>
enabl e_ex1() ;
Prototype in : macros3l.h
Remarks : Sets bit 2 of IE, so that externa interrupt INT1 gets enabled.
Return value : None.
See also : disable ex1

Function : Enables receiver of serial port
Syntax : #i ncl ude <macros31. h>
enabl e_rx() ;
Prototype in : macros3l.h
Remarks : Sets bit 4 of SCON so that serial port's receiver gets enabled.
Return value : None.
See also : disable rx

SC51 User’s manual 40 http://www.spj systems.com

Function : Enables serial port interrupt.
Syntax : #i ncl ude <macros31. h>
enabl e_ser () ;
Prototype in : macros3l.h
Remarks : Sets bit 4 of IE, so that seria port interrupt gets enabled.
Return value : None.
See also : disable ser

Function : Enables timer O interrupt.
Syntax : #i ncl ude <macros31. h>
enable tO() ;
Prototype in : macros3l.h
Remarks : Sets bit 1 of IE, so that Timer O interrupt gets enabled.
Return value : None.
See also : disable t0

Function : Enables timer 1 interrupt.
Syntax : #i ncl ude <macros31. h>
enable_t1() ;
Prototype in : macros3l.h
Remarks : Sets bit 3 of IE, so that Timer 1 interrupt gets enabled.
Return value : None.
See also : disable t1

SC51 User’s manual 41 http://www.spj systems.com

enable t2

Function : Enables timer 2 interrupt.
Syntax : #i ncl ude <macros31. h>
enable t2() ;
Prototype in : macros3l.h
Remarks : Sets bit 5 of IE, so that Timer 2 interrupt gets enabled.
Return value : None.
See also : disable t2

Function : Makes INTO edge sensitive.
Syntax : #i ncl ude <macros31. h>
ex0_edge() ;
Prototype in : macros3l.h
Remarks : Sets bit 0 of TCON, so that externa interrupt INTO becomes edge
sensitive.
Return value : None.
See also : ex0 level

Function : Makes INTO level sensitive.
Syntax : #i ncl ude <macros31. h>
ex0_level () ;
Prototype in : macros3l.h
Remarks : Clears bit 0 of TCON, so that externa interrupt INTO becomes level
sensitive.
Return value : None.
See also : exO _edge

SC51 User’s manual 42 http://www.spj systems.com

Function : Makes INT1 edge sensitive.
Syntax : #i ncl ude <macros31. h>
exl edge() ;
Prototype in : macros3l.h
Remarks : Sets bit 2 of TCON, so that external interrupt INT1 becomes edge
sensitive.
Return value : None.
See also : ex1 leve

Function : Makes INT1 level sensitive.
Syntax : #i ncl ude <macros31. h>
exl level () ;
Prototype in : macros3l.h
Remarks : Clears bit 2 of TCON, so that externa interrupt INT1 becomes level
sensitive.
Return value : None.
See also : ex1 edge

Function : exponential function
Syntax : #i ncl ude <math. h>
float exp (float x) ;
Related Functions:
float frexp (float value, int *eptr) ;
float |dexp (float value, int exp) ;
float log (float x) ;
float 10gl0 (float x) ;
fl oat pow (float x, float y) ;
float sqgrt (float x) ;
Prototype in : math.h

Remarks : exp calculates the exponential function €.

SC51 User’s manual 43 http://www.spj systems.com

frexp calculates the mantissa x (afloat less than 1) and n (an integer) such that value = x
. 2" frexp storesnin the integer that eptr points to.

|dexp calculates value . 2°®.

log calculates natural logarithm of x.

l0g10 calculates the base 10 logarithm of x.

pow calculates X.

sgrt calculates +Ox.

Return value : All these functions on success, return the value they calcul ated.
exp returns €.

frexp returns x (< 1) wherevalue = x . 2",

|dexp returns value . 2°%.

log returns natural logarithm of x.

l0g10 returns the base 10 logarithm of x.

pow returns X.

sqrt returns +Cx.

Function : rounds down

Syntax : float floor (float value) ;

Prototype in : math.h

Return value : floor findsthe largest integer not greater than x. It returns this integer
(asafloat value).

Seealso: cell

Function : Calculates x modulo y, the remainder of x / y.
Syntax : float frnod (float x, float y) ;
Related functions:
float nodf (float x, float *ipart) ;
Prototype in : math.h
Remarks : fmod calculates x modulo y (the remainder f where x =iy + f for some
integer l and 0 <=f <.

SC51 User’s manual 44 http://www.spj systems.com

modf breaks x into two parts: the integer and the fraction. It stores the integer in ipart and
returns the fraction.

Return value : fmod returns the remainder f where x =iy + f (as described)

modf returns the fractional part of x.

Function : Splitsafloat number into mantissa and exponent.
Syntax : float frexp (float nunber, int *power) ;
Prototype in : math.h

Remarks : Seeexp.

Function : Reads a byte from the serial port.
Syntax : #i ncl ude <standard. h>
int getbyte() ;
Prototype in : standard.h
Remarks : Waits for sometimeor until a byte is available from the on-chip serid
port of the 8031.
Return value : If abytewasavailable, returns the received byte. Otherwise returns -
1.
See also : ser_rdy, sendbyte

Function : Reads a byte from the 8279 based keyboard.
Syntax : #i ncl ude <hardware. h>

int getch() ;
Prototype in : hardware.h
Remarks : Waits till a byte is available from the keyboard which is connected to
8279. When a key is pressed, reads it's scancode from 8279. If you want to use
this function, you must declare the address of 8279 using the peri pher al

keyword. e.g.
peri pher al 8279 = 0x4000

SC51 User’s manual 45 http://www.spj systems.com

Return value : Returns the scancode read from 8279.
See also : kbhit

Function : Readsacharacter from standard input device.
Syntax : #i ncl ude <stdi o. h>
char getchar () ;
Prototype in : stdio.h
Remarks : Waits till a character is available from the standard input device (which
is on-chip seria port of 8051). When a character is available, readsit. Thisfunctionis
called by scanf function to get inpuit.
Return value : Returns the character read from standard input device.
See also : scanf, getchare

Function : Reads acharacter from standard input device.
Syntax : #i ncl ude <standard. h>

char getchare () ;
Prototype in : stdio.h
Remarks : Waits till a character is available from the standard input device (which
is on-chip serial port of 8051). When a character is available, reads it and also echoes
it back to the standard output device (which is again on-chip serial port of 8051, unless
the user redirects it by writing his own putchar function).
Return value : Returns the character read from standard input device.
See also : scanf, getchar

Function : Puts the CPU in idle mode.

Syntax : #i ncl ude <macros31. h>
go_idle() ;

Prototype in : macros3l.h

SC51 User’s manual 46 http://www.spj systems.com

Remarks : Sets bit 0 of PCON, so that the CPU goes to idle mode in which it
consumes less power.

Return value : None.

See also : powerdown

Function : Separates the high order nibble

Syntax : unsigned char hi_nibb (unsigned char ch) ;
Prototype in : standard.h

Return value : Returns the high order nibble of ch.
See also : lo _nibb

Function : Initializes the on-chip seria port

Syntax : voidinit_lcd() ;

Prototype in : standard.h

Remarks : Itinitializesthe serial port for acertain mode. If you are going to use
pri nt f function, you must first initialize the serial port. Calling thisi ni t _ser
function isjust one method of initializing the serial port.

This function putsthe Timerl in 8 bit auto-reload mode, and it puts the serial port in
mode 1 with receiver enabled. It sets the baudrate at 2400 assuming 12 Mhz crystal.
The source code of this function is available to the users.

Return value : None.

See also : printf

Function : Reads a byte from a hardware port.

Syntax : unsigned char inportb(int portid) ;

Prototype in : standard.h

Remarks : inportb reads a byte from a location in data memory whose address is
specified by portid.

Return value : inportb returns the value read.

SC51 User’s manual 47 http://www.spj systems.com

See also : peekb, outportb

Function : Converts an integer number into a BCD string.

Syntax : void int2bcd (int value, char *dest, int ndigits) ;

Prototype in : standard.h

Remarks : Converts value into an unpacked BCD string which is ‘ndigits’ digits
long and places the string in ‘dest’

Return value : None

See also : bcd2int

Function : Character classification function
Syntax : #i ncl ude <ctype. h>
bit isalnum(char c) ;
Prototype in : ctypeh
Remarks : isalnum is a function that classifies ASCII-coded character values. It
returns 1 for true and O for false.
Return value : isalnum returns 1 if c is a letter (A-Z or az) or a digit (0-9).

Function : Character classification function
Syntax : #i ncl ude <ctype. h>
bit isal pha (char c) ;
Prototype in : ctypeh
Remarks : isalpha is a function that classifies ASCIlI-coded integer values. It
returns 1 for true and O for false.
Return value : isalpha returns 1 if c is a letter (A-Z or az).

SC51 User’s manual 48 http://www.spj systems.com

Function : Character classification function
Syntax : #i ncl ude <ctype. h>
bit isascii (char c) ;
Prototype in : ctypeh
Remarks : isascii is a function that classifies ASCII-coded character values. It
returns 1 for true and O for false.
Return value : isascii returns 1 if c is in the range 32-127 (0x20-0x7F).

Function : Character classification function
Syntax : #i ncl ude <ctype. h>
bit isdigit(char c) ;
Prototypein : ctype.h
Remarks : isdigit is a function that classifies ASCII- coded character values. It
returns 1 for true and O for false.
Return value : isdigit returns 1 if ¢ is a digit (‘'0-9).

Function : Character classification function
Syntax : #i ncl ude <ctype. h>
bit islower (char c) ;
Prototype in : ctypeh
Remarks : islower is a function that classifies ASCII-coded character values. It
returns 1 for true and O for false.
Return value : islower returns 1 if c is a lower-case letter (‘a’-'z").

Function : Character classification function
Syntax : #i nclude <ctype.h>

SC51 User’s manual 49 http://www.spj systems.com

bit isspace (char «c¢) ;
Prototype in : ctypeh
Remarks : isspace is a function that classifies ASCII-coded character values. It
returns 1 for true and O for false.
Return value : isspace returns 1 if ¢ is a space, tab, carriage return, or newline.

Function : Character classification function
Syntax : #i nclude <ctype.h>
bit isupper (char «c¢) ;
Prototype in : ctypeh
Remarks : isupper is a function that classifies ASCII-coded character values. It
returns 1 for true and O for false.
Return value : isupper returns 1 if ¢ is an uppercase letter (‘A’-'Z’).

Function : Character classification function
Syntax : #i nclude <ctype.h>
bit isxdigit (char «c¢) ;
Prototype in : ctypeh
Remarks : isxdigit is a function that classifies ASCIlI-coded character values. It
returns 1 for true and O for false.
Return value : isxdigit returns 1 if ¢ is a hexadecimal digit (‘0'- 9 ,A’-'F ,'a-
‘).

Function : Converts an integer into ASCII string
Syntax : #include <stdlib.h>

void itoa_c31(int val, char *dest, int ndigits) ;
Prototype in : stdlib.h
Remarks : itoa_c31 converts an integer number 'va' into ASCII string 'dest’
containing exactly ndigits digits.

SC51 User’s manual 50 http://www.spj systems.com

Return value : None.
See also : Itoa c31

Function : Gives long absolute value.
Syntax : #i nclude <stdlib.h>
long int labs(long int x) ;
Prototype in : stdlib.h
Remarks : labs computes the absolute value of the parameter x.
Return value : On success, labs returns the absolute value of x. There is no
error return.
See also : abs

Function : Calculatesvalue* 2P,

Syntax : float |dexp (float value, int power) ;
Prototype in : math.h

Remarks : Seeexp.

Function : Calculates natural logarithm of value.
Syntax : float |log (float val ue) ;
Prototype in : math.h

Remarks : Seeexp.

Function : Calculates base 10 logarithm of value.
SC51 User’s manual 51 http://www.spj systems.com

Syntax : fl oat 10gl0 (float val ue) ;
Prototype in : math.h
Remarks : Seeexp.

Function : Converts a long int number into BCD string.

Syntax : #include <stdlib.h>

voi d |l ong2bcd (long int value, char *dest, int ndigits) ;
Prototype in : stdlib.h

Remarks : long2bcd converts value into an unpacked BCD string having ‘ndigits
digits. It puts the BCD string in ‘dest’.

Return value : None

See also : int2bcd

Function : Separates the low order nibble

Syntax : unsigned char lo_nibb (unsigned char ch) ;
Prototype in : standard.h

Return value : Returns the low order nibble of ch.
See also : hi_nibb

Function : Converts a long integer into ASCII string
Syntax : #include <stdlib.h>
void lItoa_c31(long int val, char *dest, int ndigits) ;
Prototype in : stdlib.h
Remarks : Itoa c31 converts a long integer number 'va' into ASCII string 'dest’
containing exactly ‘ndigits digits.
Return value : None.
See also : itoa c31

SC51 User’s manual 52 http://www.spj systems.com

Function : Sets n bytes a block of memory to byte c.
Syntax : #include <nmem h>
void *nmenset (void *s, int c, int n) ;
Prototype in : mem.h, string.h
Remarks : memset sets the first n bytes of the array s to the character c.
Return value : memset returns s.

Function : Splitsinto mantissa and exponent.

Syntax : fl oat nodf (float x, float *ipart) ;
Prototype in : math.h

Remarks : Seefmod.

Function : Copies a block of length bytes.
Syntax : #i ncl ude <mem h>
voi d movnem (void *src, void *dest, unsigned |ength) ;
Prototype in : mem.h
Remarks : movmem copies a block of length bytes from src to dest.
Return value : None.

Function : Outputs a byte to a hardware port.

Syntax : void outportb (int portid, unsigned int value) ;
Prototype in : standard.h

Remarks : outportb is a function that writes the byte given by vaue to the
location in data memory whose address is specified by portid.

Return value : None.

See also : inportb, pokeb

SC51 User’s manual 53 http://www.spj systems.com

Function : Returns a byte of memory.

Syntax : char peekb (unsigned addr)

Prototype in : standard.h

Remarks : peekb returns the byte at the location in program memory whose
address is specified by addr. Please note the difference between inportb and peekb
functions. inportb reads from data memory whereas peekb reads from program
memory.

Return value : peekb returns the value read.

See also : pokeb, inportb

Function : Writes a byte to a memory location

Syntax : voi d pokeb(int addr, unsigned int value) ;
Prototype in : standard.h

Remarks : pokeb is a function that writes the byte given by value to the
location in data memory whose address is specified by addr. Actudly the
functions outportb and pokeb are exactly equivaent.

Return value : None.

See also : peekb, outportb

Function : Computes x to the power of y.
Syntax : #i ncl ude <nat h. h>
float pow (float x, float vy)
Prototype in : math.h
Remarks : Seeexp.

SC51 User’s manual 54 http://www.spj systems.com

power down

Function : Puts the CPU in powerdown mode.
Syntax : #i ncl ude <macros31. h>
power down() ;
Prototype in : macros3l.h
Remarks : Sets bit 1 of PCON, so that the CPU goes to powerdown mode in
which it consumes much less power.
Return value : None.
See also : go_idle

Function : Sendsformatted output to the standard output device

Syntax : int printf(char *format, ...) ;
Related Functions:
int sprintf (char *dest, char *format, ...) ;

Prototype in : stdio.h
Remarks : Thepri nt f function sends formatted output to the standard output device
(which isthe 8051’ s on-chip serial port in case of this compiler). The sprintf function is
same as printf function, except, it sends the output to the argument dest instead of to the
standard output device. The parameter f or mat specifies how the output isto be
formatted. This parameter is mandatory. After that, there may be a variable number of
parameters.
Format specifications have the following form:
% [width] [.prec] [I/b] type

where

[fl ags] isanoptional sequence of flag characters

[Wi dt h] isan optional width specifier

[. prec] isanoptional precision specifier

[1/Db] isanoptional input size modifier

t ype isthe conversion type character
Hereisalist of conversion type characters, the type of input argument accepted by each,
and in what format the output will appear (assuming no flag characters, width specifiers,
precision specifiers, or input size modifiers were included in the format specification).
The effect of optional characters and modifiersis described later.

SC51 User’s manual 55 http://www.spj systems.com

Type Input Argument Format of output
Character
d integer(int / signed decimal integer
unsigned int or long
int / unsigned long
int)
i integer(int / signed decimal integer
unsigned int or long
int / unsigned long
int)
u integer(int / unsigned decimal integer
unsigned int or long
int / unsigned long
int)
f floating point (float) | signed value in the form dddd.ddd
C character (char) single character
S string pointer outputs characters until anull terminator is
found
% none the ‘%’ character is printed

The optional flag character - can be used to get left justified output. If thisis not
specified, the output isright justified.

How the width specifier affects the output :

Width How output width is affected
Specifier
n n characters are aways printed. If the output value has less than n

characters, the output is padded with blank. If the output value has
more than n characters, then it is truncated (not rounded) to first n
characters only.

On n characters are aways printed. If the output value has less than n
characters, the output is padded with zero. If the output value has
more than n characters, then it is truncated (not rounded) to first n
characters only.

However, please note that in this implementation of the compiler, the maximum allowed
value of the width specifier is 10.

SC51 User’s manual 56 http://www.spj systems.com

How the precision specifier affects the output : The precision specifier affects the output
of only floating point values. It determines, how many digits will be printed after the
decimal point. If the precision is not specified at all, then afloating point value will be
printed with 3 digits after the decimal point. If the precision is specified as .n then n digits
will be printed after the decimal point. If the output value has more than n digits after the
decimal point, then the output will be truncated (NOT rounded). If it haslessthan n
digits, then the output is padded with 0. However, please note that in thisimplementation
of the compiler, the maximum allowed value of the precision specifier is 6.

The optional input size modifier —| or b —appliesonly if the type character isd ori or
u. When input size modifier is not used, these type characters need a 2 byte argument
and it isinterpreted as signed or unsigned integer. If input size modifier | is specified (as
in“% d” or“% u”) then a4 byteargument (I ong i nt orunsi gned long int)is
needed. On the other hand, if input size modifier b isused (asin “%bd” or “%Hu”) then
singlebyte (char orunsi gned char) argument is needed.

In thisimplementation of the compiler, the on-chip serial port of 8051 is considered as
the standard output device. However, the user can change this with little effort. The

pri nt f function actually callsthe function put char to output each character. The
source code of the put char function is available to the users. If you want the standard
output device to be something else (say LCD), you simply need to rewrite the put char
function. If you have written afunction named as put char somewherein your C
program, then the compiler will not link the default put char function from the library.
Thenif you call pri nt f function, it eventually callsput char to send the output. In
thiscaseyour put char function will be called rather than the default put char
function (which istherein the library).

Return value : The printf functions return the number of bytes sent to the standard
output device/ to destination string.

See also : sprintf, putchar. Also, please look at the file PRINT.C in
EXAMPLES\PRINT folder.

Function : Sends a byte to the standard output device (on-chip seria port.)
Syntax : #i ncl ude <stdio.h>
char putchar (char ch) ;

SC51 User’s manual 57 http://www.spj systems.com

Prototype in : stdio.h

Remarks : Sends the character ‘ch’ to standard output device - i.e. on-chip serial
port of 8051 (i.e. SBUF). It also waits till the transmission is complete. That is, it
will wait till the TI bit in SCON is set. Before returning, it clears the Tl bit, so
that you are ready to send the next byte.

Please note, that as per conventions, it checks whether the character being sent isLine
Feed character (0x04). If so, it also sends the Carriage Return character (0x0d) to the
standard output device.

Thefunctionspri nt f and put s call thisfunction to send out each character. The
source code of this function (in assembly language) is available to the users. The users
may change this function as per their requirement, so as to direct the standard output to
something else rather than the serial port.

Return value : Returnsthe character ‘ch’.

See also : printf, puts

Function : Sends acharacter string to standard output device
Syntax : #i ncl ude <stdi o. h>

char puts (char arr[]) ;
Prototype in : stdio.h
Remarks : Sends each character of the string ‘arr’ to standard output device (i.e.
normally the on-chip serial port), until anull terminator character is found, (the null
character is NOT output), and then output a newline character. Please note, that it calls
the put char function to output each character. Thus, if put char function isre-written
by the user to send the output to some other device, the output of put s will also go to
the new device.
Return value : Returnsthe last character written.
See also : putchar

Function : Performsformatted input.
Syntax : #i ncl ude <stdi o. h>

int scanf (char *format, ...) ;
Related functions:

SC51 User’s manual 58 http://www.spj systems.com

int sscanf (char *src, char *format, ...) ;
Prototype in : stdio.h
Remarks : The scanf family of functions scan input fields, one character at atime, and
convert them according to agiven format. They accept aformat string (i.e. the format
parameter) that determines how the input fields are to be interpreted. They apply the
format string to a variable number of input fieldsin order to format the input. Then they
store the formatted input in the addresses given in arguments after the format.
When it encountersit’ s first format specification in the format string, it scans and
converts the first input field according to that specification, then stores the result in the
location given by the first address argument; it then scans, converts and stores the second
input field; then the third etc.
The scanf function gets input from the standard input devicei.e. normally the on-chip
seria port. It actualy calls the getchar function to read each character from the standard
input device. If you write your own getchar function to read one character from some
other device, then scanf takes all it’s input from this new device.
The sscanf function reads the input from the first argument src.
The format string :
The format string, present in both scanf and sscanf, controls how each function will scan,
convert and store it’ s input fields. There must be enough address arguments for the given
format specifications; if not the results are unpredictable and likely to disturb the entire
system. Excess address arguments (more than required by the format) are ignored.
The format string contains format specifications which direct it to read and convert
characters from the input field into specific types of values and store them in the
locations given by the address arguments. The format specifications have the following
form :

%[l] type_character

Each format specification begins with a percent character (%). After the percent
character, there may be an optional type modifier character (i.e. ‘I’) followed by
mandatory type character. The following table lists valid type characters, the type of
input expected by each, and in what format the input will be stored :

Type Input Type of argument
Character
d decimal integer pointer to int (int *arg)
i decimal integer pointer to int (int *arg)
u decimal integer pointer to int (int *arg)
f floating point (float) | pointer to float (float * arg)
C character (char) pointer to character (char *arg)

SC51 User’s manual 59 http://www.spj systems.com

S character string pointer to character string (char *arg)
% % character No conversion isdone, the ‘%' character is
stored

The optional type modifier character | can be used with d, | or u type characters; when
used, it forces the scanf function to convert the input field into long int value instead of
int; so the corresponding address argument must be pointer to long int.

Return value : Returnsthe last character written.
See also : putchar

Function : Sends a byte to the on-chip serial port.
Syntax : #i ncl ude <standard. h>

voi d sendbyte (unsigned char ch) ;
Prototype in : standard.h
Remarks : Sends the character ‘ch’ to on-chip serial port (i.e. SBUF). It also
waits till the transmission is complete. That is, it will wait till the TI bit in
SCON is set. Before returning, it clears the Tl bit, so that you are ready to send
the next byte.
Return value : None.
See also : getbyte, ser _rdy

Function : Checks the on-chip serial port status.
Syntax : #i ncl ude <standard. h>

int ser_rdy () ;
Prototype in : standard.h
Remarks : Checks whether a character is received on the on-chip serial port.
Return value : If a character is received, returns non-zero (but the character
remains in SBUF, you may use ‘getbyte’ to read it). Otherwise returns zero.
See also : getbyte

SC51 User’s manual 60 http://www.spj systems.com

Function : Sets the mode of seria port
Syntax : #i nclude <macros31l. h>
set _com node(node, sn2, ren) ;
Prototype in : macros3l.h
Remarks : This macro writes sets and/or clears appropriate bits in SCON. In
effect, it sets the seria port in the given 'mode, it sets the SM2 bit to 'sm2, and
if 'ren' is 1, it enables the receiver.
Return value : None.

Function : Sets 'double baud rate
Syntax : #i nclude <macros31l. h>
set _doubl e_baud() ;
Prototype in : macros3l.h
Remarks : Sets bit 7 of PCON so that baud rate is doubled.
Return value : None.
See also : clr_double baud

Function : Sets high priority for INTO
Syntax : #i nclude <macros31l. h>
set _hi_ex0() ;
Prototype in : macros3l.h
Remarks : Sets bit O of IP so that external interrupt INTO is gets a high
priority.
Return value : None.
See also : set lo ex0

SC51 User’s manual 61 http://www.spj systems.com

set_hi_ex1
Function : Sets high priority for INT1
Syntax : #i nclude <macros31l. h>
set _hi_ex1() ;
Prototype in : macros3l.h
Remarks : Sets bit 2 of IP so that external interrupt INT1 is gets a high
priority.
Return value : None.
See also : set lo exl

Function : Sets high priority for serial port interrupt
Syntax : #i nclude <macros31l. h>
set _hi_ser() ;
Prototype in : macros3l.h
Remarks : Sets bit 4 of IP so that serial port interrupt gets a high priority.
Return value : None.
See also : set lo ser

Function : Sets high priority for timer O interrupt
Syntax : #i nclude <macros31l. h>
set_hi_to() ;
Prototype in : macros3l.h
Remarks : Sets bit 1 of IP so that timer O interrupt gets a high priority.
Return value : None.
See also : set lo t0

SC51 User’s manual 62 http://www.spj systems.com

Function : Sets high priority for timer 1 interrupt
Syntax : #i nclude <macros31l. h>
set_hi t1() ;
Prototype in : macros3l.h
Remarks : Sets bit 3 of IP so that timer 1 interrupt gets a high priority.
Return value : None.
See also : set lo t1

Function : Sets high priority for timer 2 interrupt
Syntax : #i nclude <macros31l. h>
set_hi _t2() ;
Prototype in : macros3l.h
Remarks : Sets bit 5 of IP so that timer 2 interrupt gets a high priority.
Return value : None.
See also : set lo t2

Function : Sets low priority for INTO
Syntax : #i nclude <macros31l. h>
set lo_ex0() ;
Prototype in : macros3l.h
Remarks : Clears bit O of IP so that external interrupt INTO is gets a low
priority.
Return value : None.
See also : set_hi_ex0

SC51 User’s manual 63 http://www.spj systems.com

set_lo exl
Function : Sets low priority for INT1
Syntax : #i nclude <macros31l. h>
set lo_ex1() ;
Prototype in : macros3l.h
Remarks : Clears bit 2 of IP so that external interrupt INT1 is gets a low
priority.
Return value : None.
See also : set_ hi_exl

Function : Sets low priority for seria port interrupt
Syntax : #i nclude <macros31l. h>
set lo _ser() ;
Prototype in : macros3l.h
Remarks : Clears bit 4 of IP so that serial port interrupt gets a low priority.
Return value : None.
See also : set hi_ser

Function : Sets low priority for timer O interrupt
Syntax : #i nclude <macros31l. h>
set lo to() ;
Prototype in : macros3l.h
Remarks : Clears bit 1 of IP so that timer O interrupt gets a low priority.
Return value : None.
See also : set_hi t0

SC51 User’s manual 64 http://www.spj systems.com

Function : Sets low priority for timer 1 interrupt
Syntax : #i nclude <macros31l. h>
set lo t1() ;
Prototype in : macros3l.h
Remarks : Clears bit 3 of IP so that timer 1 interrupt gets a low priority.
Return value : None.
See also : set_hi tl

Function : Sets low priority for timer 2 interrupt
Syntax : #i nclude <macros31l. h>
set _ lo t2() ;
Prototype in : macros3l.h
Remarks : Clears bit 5 of IP so that timer 2 interrupt gets a low priority.
Return value : None.
See also : set_hi_t2

Function : Sets timer 0 mode
Syntax : #i nclude <macros31l. h>

set _t0_node(gate,c_t,node) ;
Prototype in : macros3l.h
Remarks : This function writes the appropriate byte in TMOD. If 'gate' is 1,
then the GATE bit in TMOD (for Timer 0) will be set, otherwise it will be
cleared. If 'c t' is 1, then Timer O will be used as a counter, otherwise it will be
used as a timer. 'mode can be either 0,1,2 or 3.
Return value : None.
See also : set t1 mode

SC51 User’s manual 65 http://www.spj systems.com

set t1 mode

Function : Sets timer 1 mode
Syntax : #i nclude <macros31l. h>

set t1 node(gate,c_t,node) ;
Prototype in : macros3l.h
Remarks : This function writes the appropriate byte in TMOD. If 'gate' is 1,
then the GATE bit in TMOD (for Timer 1) will be set, otherwise it will be
cleared. If 'c t' is 1, then Timer 1 will be used as a counter, otherwise it will be
used as a timer. 'mode can be either 0,1,0r 2.
Return value : None.
See also : set t0_mode

Function : Sets timer O or 1 count.

Syntax : void set_tent(int thum, unsigned int count) ;

Prototype in : standard.h

Remarks : This function sets the count (high and low) for timer O or 1. ‘tnum’
can be 0 or 1. 'count' is the count which will be loaded in either thO and tlO or
thl and tl1.

Return value : None.

Function : Returnsthe sine of the argument.
Syntax : #include <math.h>
float sin (float x) ;
Prototype in : math.h
Remarks : ThisfunctionisNOT included in the library, but it is given in the form of
source code. It’ s source code can be found in SOURCE\CFILES\MMATH.C
Return value : sin returns thesineof x.
Seealso : cos, asin

SC51 User’s manual 66 http://www.spj systems.com

Function : Returnsthe hyperbolic sine of the argument.
Syntax : #include <math.h>
float sinh (float x) ;
Prototype in : math.h
Remarks : ThisfunctionisNOT included in the library, but it is given in the form of
source code. It’ s source code can be found in SOURCE\CFILES\MATH.C
Return value : sinh returns the hyperbolic sine of x.
Seealso : sin

Function : Sendsformatted output to the destination string

Syntax : int sprintf(char *dest, char *format, ...) ;
Prototype in : stdio.h

Remarks : Thespri nt f function sends formatted output to the destination string (dest
parameter). The second parameter f or mat specifies how the output isto be formatted.
The first and second parameters are mandatory.

Thespri ntf function beheaves aimost the sameaspri nt f function, except the
difference in output location. The output of pri nt f goesto standard output device
(whichis generally the on-chip serial port), but the output of spri nt f goesinto a
character string pointed by the first parameter ‘dest’.

For details about the format parameter, please see the description of pri nt f .

Return value : The sprintf function returns the number of bytes copied to the
destination string.

See also : printf. Also, please look at the file PRINT.C in EXAMPLES\PRINT
directory.

Function : Returnsthe square root of the argument.
Syntax : #include <math.h>

float sqgrt (float x) ;
Prototype in : math.h

SC51 User’s manual 67 http://www.spj systems.com

Remarks : ThisfunctionisNOT included in the library, but it is given in the form of
source code. It’ s source code can be found in SOURCE\CFILES\MATH.C
Return value : sgrt returns the square root of Xx.

Function : Reads formatted input.
Syntax : #include <stdio.h>
int sscanf (char *dest, char format, ...) ;
Prototype in : stdio.h
Remarks : See scanf.

Function : Starts timer O.

Syntax : #i nclude <macros31l. h>
start _tinmer0() ;

Prototype in : macros3l.h

Remarks : Sets bit 4 of TCON to start timerOQ.

Return value : None.

See also : stop_timerO

Function : Starts timer 1.

Syntax : #i nclude <macros31l. h>
start _tinmerl() ;

Prototype in : macros3l.h

Remarks : Sets bit 6 of TCON to start timerl.

Return value : None.

See also : stop_timerl

SC51 User’s manual 68 http://www.spj systems.com

stop_timer0

Function : Stops timer O.

Syntax : #i nclude <macros31l. h>
stop_timerQO() ;

Prototype in : macros3l.h

Remarks : Clears bit 4 of TCON to stop timerOQ.

Return value : None.

See also : start_timerO

Function : Stops timer 1.

Syntax : #i nclude <macros31l. h>
stop_timerl() ;

Prototype in : macros3l.h

Remarks : Clears bit 6 of TCON to stop timerl.

Return value : None.

See also : start_timerl

Function : Appends one string to another.

Syntax : char *strcat(char *dest, char *src) ;

Prototype in : string.h

Remarks : strcat appends a copy of src to the end of dest. The length of the
resulting string is strlen(dest) + strlen(src).

Return value : strcat returns a pointer to the concatenated strings.

SC51 User’s manual 69 http://www.spj systems.com

Function : Compares one string to another.

Syntax : int strcemp(char *sl, char *s2) ;

Prototype in : string.h

Remarks : strcmp performs an unsigned comparison of sl to s2, starting with the
first character in each string and continuing with subsequent characters until the
corresponding characters differ or until the end of the strings is reached.

Return value : strcmp returns a vaue that is < 0 if sl is less than s2, = 0 if
sl is the same as s2 > O if sl is greater than s2

Function : Copies one string into another.

Syntax : char* strcpy(char *dest, char *src) ;

Prototype in : string.h

Remarks : copies string src to dest, stopping after the terminating null character
has been moved.

Return value : strcpy returns dest.

Function : Calculates the length of a string.
Syntax : #i ncl ude<string. h>
int strlen(char *s);
Prototype in : string.h
Remarks : strlen calculates the length of s.
Return value : strlen returns the number of characters in s, not counting the
null-terminating character.

SC51 User’s manual 70 http://www.spj systems.com

Function : Converts uppercase letters in a string to

lower-case.

Syntax : char* strlwr(char*s);

Prototype in : string.h

Remarks : strlwr converts uppercase letters (A-Z) in string s to lower-case (a-2).
No other characters are changed.

Return value : strlwr returns a pointer to the string s.

See also : strupr

Function : Copies a given number of bytes from one string into another,
truncating or padding as necessary.
Syntax : #i ncl ude<string. h>

char *strncpy(char*dest, char*src, int maxlen);
Prototype in : string.h
Remarks : strncpy copies up to maxlen characters from src into dest, truncating
or null-padding dest. The target string, dest, might not be null-terminated if the
length of src is maxlen or more.
Return value : strncpy returns dest.

Function : Converts lower-case letters in a string to uppercase.

Syntax : char *strupr(char*s);

Prototype in : string.h

Remarks : strupr converts lower-case letters (a-z) in string s to uppercase (A-Z).
No other characters are changed.

Return value : strupr returns s.

See also : striwr

SC51 User’s manual 71 http://www.spj systems.com

Function : Trigonometric tangent function.
Syntax : #include <math.h>
float tan (float x) ;
Prototype in : math.h
Remarks : Thisfunction isNOT included in the library, but it is given in the form of
source code. It’ s source code can be found in SOURCE\CFILES\MMATH.C
Return value : tan returns thetan of x.
See also : cos, sin, tanh

Function : Hyperbolic tangent function.
Syntax : #include <math.h>
float tanh (float x) ;
Prototype in : math.h
Remarks : Thisfunction isNOT included in the library, but it is given in the form of
source code. It’s source code can be found in SOURCE\CFILES\MATH.C
Return value : tanh returns the hyperbolic tan of x.
See also : cos, sin, tan

Function : Trandates characters to lower-case.

Syntax :char tolower (char ch);

Prototype in : ctypeh

Remarks : tolower is a function that converts a character ch (in the range O to
255) to its lower-case (‘a’-‘z’) value (if it was uppercase (‘A’-‘Z’); al others are
left unchanged.

Return value : tolower returns the converted value of ch if it is uppercase; al
others it returns unchanged.

SC51 User’s manual 72 http://www.spj systems.com

Function : Trandates characters to uppercase.

Syntax :char toupper (char ch);

Prototype in : ctypeh

Remarks : toupper is a function that converts a character ch (in the range O to
255) to its uppercase value (‘A’-'Z’) if it was lower-case (‘a-‘z’); all others are
left unchanged.

Return value : toupper returns the converted value of ch if it is lower-case; it

returns all others unchanged.

Function : Converts an unsigned integer into ASCII string

Syntax : #include <stdlib.h>

voi d ui 2a_c31(unsigned int val, char *dest, int ndigits) ;
Prototype in : stdlib.h

Remarks : ui2a c31 converts an unsigned integer number 'val' into ASCII string
'dest’ containing exactly ndigits digits.

Return value : None.

See also : itoa c31

Function : Converts an unsigned integer number into a BCD string.

Syntax : #include <stdlib.h>

voi d ui 2bcd (unsigned int value, char *dest, int ndigits);
Prototype in : stdlib.h

Remarks : Converts value into an unpacked BCD string which is ‘ndigits’ digits
long and places the string in ‘dest’

Return value : None

See also : int2bcd

SC51 User’s manual 73 http://www.spj systems.com

5. Advanced Programming Techniques

5.1 Writing Simple Assembly Language Sub-routines :

It may be sometimes very convenient to write small functions in assembly language
and call these functionsfrom C language program. This section describes exactly how
todoit. Let us takeasimple example - it may not be useful in red life, but it
nonetheless illustrates the method to be followed. This is how our example function
goes:

_exnpl _func:
Exanple function witten in assenbly |anguage

nov a, po ; read PO data

ric a ; rotate left through Carry
nov po, a ; wite back to PO

ret

In your C program, you might call thisfunction, ssimply by writing :
exnmpl _func() ;

Writing assembly language functionsis as simple asthat. You only need to remember a
few rules:

An assembly language function must start with a label, which is same as the name
of the function preceded by an underscore character ('_').

This label name must be declared as PUBLIC (for example “PUBLIC _exmpl_func”).

While calling such afunction from C language program, you must omit the
underscore character.

The assembly language function may modify the contents of any of the registers (RO
through R7) and Acc.

Never switch register bank.

Never change the contents of Stack Pointer (SP). Make sure that the PUSHs and
POPs are exactly matching.

Never write into any location in internal or external data memory.

SC51 User’s manual 74 http://www.spj systems.com

Never access any location in internal / external data memory by using hardcoded
addresses. Always define global variable in your C program, so that the required
space gets alotted to them. Use only the names of these variables asinternal /
external data memory addresses. e.g. if you want to use a byte location in external
data memory, you should declare a unsigned char type global variable in your C
program as :

xdat a unsi gned char asmvar ;
In your assembly language function, you can useit as:

nov dptr,# asmvar ; load the addr. in DPTR
nmovx a, @ptr ; read the val ue

. do sonme processing
nmovx @lptr, a ; wite back the val ue

If you stick to these rules, chances of "system crash” will be far too less!

5.2 Assembly Language Function's return value :

Suppose you want the assembly language function to return some value, follow these
guidelines. In your C program you must put the function's declaration. e.g.

unsigned char sone_func () ;

Then you may call this function as and when required. e.g.
value = sone_func() + 25 ;

In assembly language you write,

_sone_func:
;' some code here
; finally conmpute the return value in Acc,
; and then store
nov myacc, a
; the return value put in proper place
ret

SC51 User’s manual 75 http://www.spj systems.com

Note that the return value should be always put in the internal RAM location -
myacc. Depending on the type of return value, you may write 1 to 4 bytes from location
onwards. e.g. incase of int type return value, you should write the LSByte of the return
value at myacc and the M SByte should be written at (myacc + 1).

Please note that if afunction’sreturn valueis of type ‘bit’ then you should use the bit
location ‘bit_acc’ instead of internal RAM location ‘myacc’. e.g. if you want to return 1
(bit type), then you must write :

setb bit acc

ret
at the end of the function.

5.3 Assembly Language Functions with parameters:

If you want the assembly language function to take parameters, you must start and end
the function in a specific manner.

5.3.1 Accessing parametersin assembler program:
At the beginning, you must write these two lines:

push bp
nov bp, sp

At the end, you must write these three lines:

nov sp, bp
pop bp
ret

It is also necessary to declare “bp” as an external symbol, with the declaration:

EXTRN DATA (bp)
When afunction is called from C language program, it's parameters are pushed onto
stack. Thefirst parameter is pushed first. To access these parameters, you should make
use of bp. For example consider this C language statement:

sone_funcl(parl, par2) ;

SC51 User’s manual 76 http://www.spj systems.com

Let us assume that parl isof int type and par2 is of unsigned char type. The last byte of
the first parameter can be always found at the address ((bp) - 3). e.g. to load the value of
parlin R3-R2, you may write:

nmov a, bp

clr Cc

subb a, #4

nmov ro, a ; RO = (bp) - 4 = addr of parl
nov a, @0 ; read LSByte of parl

nmov rz2,a ; put it in R2

i nc 0

nov a, @0 ; read MsSByte of parl

nmov r3,a ; put it in R3

Note that 'lower byte at lower address' philosophy (or the “little endian format”) is
followed everywhere. The remaining parameters are stored at consecutive locations -
backward. e.g. par2 can be found at (bp) - 5.

Please note that you must never modify the contents of bp or sp.

5.4 Calling C functions from assembly language:

Y ou can simply call C language function from assembly language by name, but by
preceding it by an underscore character. e.g. if your C function isdefined as :

void sone_func () ;
You can cal it from assembly language as :
| call _sone_func

Please note, it is also necessary to declare _some_f unc asan externa symbol:
EXTRN CODE (_sone_func)

5.4.1 Passing par ameters:

If the C function takes any parameters, you should make use of sp to pass parameters.
For example, consider the function:

void sonme_func (int parl, unsigned char par2) ;

SC51 User’s manual 77 http://www.spj systems.com

For ssmplicity, let us assume that value of parlisin R3-R2 (MSBytein R3) and value of
par2 isin R4. The last parameter (par2 inthiscase) ispushed first. i.e. parameters are
pushed in the reverse sequence. First you should push the parameters onto stack, then
you call the function, then you should adjust the stack. For the above example, thisis

how you do it:
nmov a, r4
push acc ; par2 is pushed
nmov a, r2
push acc ; low byte of parl is pushed
nmov a, r3
push acc ; high byte of parl is pushed
lcall _sone_func
nov a, sp
clr c
subb a, #3 ; decrenent sp by total no. of
nov sp, a ; bytes required for ALL paraneters

For more information about assembler language programming, please refer to the user’s
manual of SASM51 assembler (SASM51.PDF).

SC51 User’s manual 78 http://www.spj systems.com

Appendix A : Error and Warning messages

This appendix describes all warning and error messages produced by the compiler. The
description includes possible causes and remedy or suggestion.

An Error message is produced by the compiler when the severity of the error makesiit
impossible for the compiler to produce the assembly language or machine code output.
Thusif you encounter an error message while compiling, it indicates that the compiler is
unable to produce the ROMable code file (.BIN)

On the other hand, a War ning message is produced by the compiler, when it does not
know whether it really isan error or not. It is expected that the programmer should decide
it himself, and hence the compiler also prints sufficient information in the warning
message. However, even if you encounter one or more warning messages, the compiler
still compl etes the compile process and produces the ROMable code file (provided there
are no Errors). The programmer may then analyze each warning message and then only
decide whether to use the compiler output or to make changes in the source program and
compile again.

How can | see all of the error / warning messages ?

When you run the compiler, it prints all of the warning and error messages on the
Standard Output devicei.e. generally the console. If there are too many warnings/ errors,
you may not be able to see all of them on the screen. In such a case, you may use output
redirection to catch all the warning / error messages. i.e. these can be saved in afile - say
SC51.ERR. To do this, invoke the compiler as shown below :

Sc51 [optiong] filename.c > schl.err

When you do this, you will not see any warning / error messages on the screen. Instead
these will go into the file “sc51.err”. When the compile process is over, you can view the
file“schbl.err” using any text editor.

In most cases, you will use the SIDE51 Integrated Devel opment Environment. In this
case, the error/warning messages produced by the compiler/assembler/linker are
displayed in the “error window” .

Warning Messages :

SC51 User’s manual 79 http://www.spj systems.com

Parameter ‘paraname never used :

Where paraname is the name of a parameter. Thiswarning is usually displayed with a
line number of the last line of afunction in which the said parameter was defined.

Local variable ‘localname declared but never used :

Where localname is the name of alocal variable. Thiswarning is usually displayed with a
line number of the last line of afunction in which the said loca variable was defined.

No declaration for function ‘funcname :

If afunctioniscalled in an expression and if it is not earlier defined or declared, this
warning message will be printed.

Error Messages :

Almost al of the error messages also display the source file name and the line number
which caused this error message. The meaning of all error messages are described below.
Declaration Syntax Error :

This error message is generally caused by an incorrect variable or function declaration or
definition. Check the spellings and syntax of the given line number. Also seethelist of
supported data types.

Redeclaration of identifier OR function :

If avariable or function is defined more than once, then it causes this error message.
However, 2 (or more) variables of the same name can exist, provided one of thoseisa
global variable and the other oneisalocal variable or a parameter.

Too Many ldentifiers:

If the compiler runs out of memory for the symbol table, it produces this error message.
Check for any unused variables / functions and remove them if possible.

Unknown ldentifier :

If you attempt to use a variable without declaring it, this error message will occur. Please
check the spellings.

SC51 User’s manual 80 http://www.spj systems.com

Invalid I dentifier :

If an identifier is badly defined, this error will occur. Please see the rules of defining an
identifier in “Language Reference” in this manual.

Toomany errors:

If the compiler encounters too many error messages while compiling your program, it
will print this message and stop the compile process. Please note, that this indicates that
your program has not been completely compiled. i.e. there may be more errors which are
not detected yet. Please correct the displayed errors and compile again.

Invalid Statement :

Syntax error !:

If the general syntax rules of C language are not followed, one of the above two general
error messages is printed. e.g. the “if” keyword must be followed by avalid expression
enclosed in a pair of parenthesis. If thisis missing, you may see this error message. This
isjust one example, there may be numerous situations under which you will see this

message.

Mismatch brackets:

If in an expression, the parenthesis (‘(* and *)’) or the square brackets (‘[* and ‘]’) are not
in matching pairs, this error will be printed. If, in your program the curly brackets are not
in matching pairs, then also you will see the same error message.

Too Many Brackets:

An expression may contain any number of parenthesis or square brackets - provided they
are in matching pairs. However, the more brackets in an expression, the more memory is
required by the compiler. Thus when the compiler runs out of memory while sorting out
an expression, this error message is printed.

Statement Missing ; :

In*C’ language, each statement must be followed by a semicolon. (barring afew
exceptions like the SFR statement or the BIT statement etc.) If you forget to write the
semicolon, you will see this error message.

SC51 User’s manual 81 http://www.spj systems.com

Misplaced continue:

The ‘continue’ keyword must be used inside aloop. e.g. ina‘for’ loop or a‘do - whil€
loop or ina‘while' loop. However, when the compiler encounters a‘ continue’ statement
which isNOT inside the body of aloop, it will print this error message.

Misplaced else:

The else keyword must be used in conjunction with the ‘if’ keyword. Use of ‘else’
keyword without a corresponding ‘if’ will produce this error.

Misplaced break :

The *break’ keyword must be used inside aloop - e.g. ina‘for’ loop or a‘do - while
loop or ina‘while' loop, or inside a“‘switch’ statement. However, when the compiler
encountersa ‘break’ statement which isNOT inside the body of aloop or a‘switch’
statement, it will print this error message.

do statement missing 'while' :

The‘do’ keyword must have a corresponding ‘while’ at the end of the ‘do - while’ loop.
If the ‘while’ keyword is missing, this error message is printed.

case outside of switch :

The ‘case’ keyword must be used inside a‘switch’ statement. However, when the
compiler encounters a‘case’ statement which isNOT inside a‘switch’ statement, it will
print this error message.

Colon Missing :
The‘case’ or ‘default’” keyword (inside a‘switch’ statement) must be followed by a colon
(*:') If thisis missing, the compiler prints this error message.

Too Many Default Statements OR default May be Outside of switch :

The ‘default’ keyword must be used inside a‘*switch’ statement. However, when the
compiler encounters a‘ default’ statement which isNOT inside a“switch’ statement, it
will print this error message.

Also, you may use the ‘default’ keyword only oncein asingle ‘switch’ statement. If you
tried to use more than one ‘default’ in asingle ‘switch’ statement, then also the same
error message is printed.

SC51 User’s manual 82 http://www.spj systems.com

Type Mismatch :

If the types of two operands are not * matching’ with each other, this error message will
be printed. However, this does not mean that both the operands must be of the SAME
type. Even the types are not same, the compiler generates code to convert one of the
operand into that of the other. However, this may not be always possible. e.g. a bit type
variable can not be converted to any other type. Hence, for example, if you try to add
‘bit’ type variableinto an ‘int’ type variable, it will produce this error.

Too many 'goto’ statements! (max. 10) :

In asingle function, you may not write more than 10 ‘goto’ statements. If you attempt to
use ‘goto’ more than 10 timesin afunction, this error message will be printed.

Undefined label :

If alabel corresponding to a‘goto’ statement is not defined till the end of the function,
this error message will be printed.

Undefined macro:

If you try to undefine a macro (using #undefine) which is not defined at al, this error
message will be printed.

Macro Parameters missing :

If you have defined a macro with parameters, you must pass the same number of
parameters while using the macro. If in the macro call, the parameters are missing, this
error message will be printed.

Too many/few parameters passed to macro :

If you have defined a macro with parameters, you must pass the same number of
parameters while using the macro. If in the macro call, the no. of parameters passed is not
same as the no. of parameters required, this error message will be printed.

Macr o definition syntax error :

If asyntax error is detected in amacro definition, this error message will be printed. e.g.
if you attempt to use a keyword as the macro name, this error message will be printed.

SC51 User’s manual 83 http://www.spj systems.com

Unexpected #else or #endif :

The #else or #endif must have a corresponding #ifdef or #ifndef. If #else or #endif are
found out of place, this error message will be printed.

Too many macr o definitions :

As you keep defining macros, the compiler remembers all the macro definitions. But
when the compiler runs out of memory to store any more macro definitions, this error
message will be printed.

Too big macro definition :

If amacro definition istoo big to fit in the available memory, this error message will be
printed. Please note that, multi-line macro definitions are not supported in this version of
the compiler.

Syntax error in include statement (or file not found) :

If the #include statement is not correctly written or if the compiler is unable to open the
included file, this error message will be printed.

Macr o hastoo many parameters:

A macro can not have more than 10 parameters. If you attempt to define a macro with
more than 10 parameters, this error message will be printed.

Invalid Statement :
If an invalid preprocessor directive is encountered, this error message will be printed.

LineTooLong!:

Any linein your program must not have more than 240 characters. If alineisfound to
have more than 240 characters, this error message will be printed.

Too many ifs:

The #ifdef or #ifndef statements can be nested. However, this version of the compiler
does not support a nesting level of more than 10. If you attempt to nest more than 10
#ifdef or #ifndef statements, this error message will be printed.

SC51 User’s manual 84 http://www.spj systems.com

Too many (> 128) SFR declarations:

Using the SFR keyword, you can define Special Function Registers (to be used as pseudo
variables). However, you may not declare more than 128 SFRs. If you attempt to do so,
this error message will be printed.

'bit' typelocal var/para/array : not allowed :

A ‘hit’ type variable must be declared as a global variable only. If you attempt to declare
abit variable as alocal variable or as a parameter, this error message will be printed.
Also, arrays of bit variables are not supported in this version of the compiler. If you
attempt to declare an array of bit type variable, this error message will be printed.

pointer to bit variable: not allowed :

The current version of the compiler does not support pointer to bit type variable. If you
attempt to declare a pointer to a bit type variable, this error message will be printed.

SC51 User’s manual 85 http://www.spj systems.com

Appendix B : Limitations of the compiler

There are certain areas of the compiler that have known limitations or bugs. SPJ Systems
will attempt repair these problems in future versions of the C Compiler. Until that
version is released, you should be aware of these limitations. This appendix describes all
such known limitations and known bugs which are reported and not corrected yet. Y ou
will also find some useful suggestions in order to use the compiler in a better and more
efficient way, in Appendix C.

LIMITATIONSAND BUGS:

1) Only global variables can be initialized during declaration. In case, you attempt to
initialize a local variable, the compiler will produce some "Assembler error”" during
the Assembler Pass #2. If you want to initialize a character array to a very long
constant string, then you can write the string on multiple lines. e.g.

char arr[100] = “hello”\
“world '
Please note the backslash at the end of first line. It indicates that string is continued

on next line.

2) While passing parameters to a function, the compiler checks only first 12 parameters
for type conversion.

3) Type casting is not supported.

4) Sometimes, the compiler does not recognize the unary minus operator correctly. It is
recommended to use the expression "(0 - something)" instead of just writing "-

something”. e.g.
X =-10 ; /* may produce error */
Xx =0-10; /* wll not produce error */
x =(-z) * 15 ; /* may produce error */

(0-z) * 15 ; /* will not produce error */

5) Maximum 2 dimensional arrays are supported. Arrays with more than 2 dimensions
are not supported.

6) Pointer to pointer is not supported.

7) Array of pointersis not supported.

8) A member of astruct /uni on may not be a pointer.

9) A member of ast ruct /uni on may notbeastruct /uni on.

SC51 User’s manual 86 http://www.spj systems.com

Appendix C: 10 ways to improve code efficiency

This appendix lists some useful suggestionsin order to use the compiler in a better and
more efficient way:

1

2)

3)

4)

5

Small model produces smaller code, because all (or most) variables reside in internal
RAM (data memory area). Manipulating internal RAM is much easier than external
RAM. So, if you are ableto fit all or most of your datain 128 bytes of RAM, itis
advisable to compile your program using small model. If you need more data
variables, however, you can either use large memory model or use the memory area
specifiers to force some variablesin idata, xdata, or pdata area.
Wherever possible, useunsi gned char datatypeinstead of int. e.g. the count
variable in afor loop etc. If the count does not exceed 255, you may use unsi gned
char typevariable instead of int. Since the 8051 has instructions only to manipulate
8 bit data (and bits), it is easier to handle 8 bit data el ements rather than 16 bit or 32
bits.
For the same reason, use of ‘S’ suffix on constants can produce smaller code. As an
example, consider the statement “x =y * 7 ;” where x and y are “unsigned char”
variables. The constant 7 is considered as an int constant (0007H). Dueto ANSI C
integer promotion rules, the single byte (unsigned char) value of “y” is converted to a
two byte (int) value (by appending a byte O0H to it’s left side). After that, codeis
generated to perform multiplication of two 16 bit numbers. The 8051 does not
provide any instruction for 16 bit multiplication — which means the compiler must
call alibrary sub-routine or generate lot of in-line code. Did you really expect al that
big code? In most cases, no. If you really expected a single byte multiplication, then
you should usethe ‘S suffix on 7. In other words, re-write the above statement as: “x
=y * 7S;”. Now, 7S will be considered as a single byte (unsigned char) value (07H).
Since the two operands (“y” and “07H") have same data types, no code is generated
for conversion to int. Instead, the compiler will simply generate the “mul ab”
instruction to perform the 8 bit X 8 bit multiplication, thus the generated code will be
much smaller and it will run much faster.
Generally, use as small datatype asis sufficient. Using “int” or “unsigned int” is
better than using “long int” or “unsigned long int”. Using “char” or “unsigned char”
IS even better.
Instead of using 'inportb’ and 'outportb’ functions, it is much efficient to use a variable
declared at a specific addressin external RAM. e.g. instead of writing :

out port b(0x6000, 0) ;

SC51 User’s manual 87 http://www.spj systems.com

6)

7)

8)

9)

it is better to write :

dat 8279 = 0 ;
where 'dat_8279' isavariable defined asfollows :

unsi gned char @x6000 dat_ 8279 ;
Wherever possible, use unsigned data types instead of signed. i.e. unsi gned char
instead of char , unsi gned i nt instead of i nt andunsi gned | ong i nt
instead of | ong i nt . Since the 8051 does not have any instructions to perform
signed arithmetic, it is easier to perform arithmetic operations on unsigned number.
Whenever avariable is going to hold only two possible values (0 or 1, or TRUE or
FALSE), itisefficient tousebi t variableinstead of i nt or char . Even afunction's
return value type could be bi t .
To access ahit of abit accessible SFR, you can make use of Bl T declarations. e.g. to
set bit 3 of P1, you can write either :

P1 |= 8 ;
or

BIT pl_3 pl.3 /* Define a BIT */

pl 3 =1 ; /* set the bit */
The later method is much more efficient.
If you need a software delay, it is more convenient, efficient and accurate to use the
library function ‘delay()’ or ‘delay_ms()’ instead of writing empty for loop etc. Please
refer to the chapter “Library functions reference” for details about the ‘delay()’ and
‘delay_ms()’ functions.

10) Floating point numbers are fairly complex data types and the compiler needs to

generate number of sub-routine calls for even basic arithmetic operations on floating
point numbers. Hence, the code generated for floating point arithmetic is generally
longer and runs slower. Whenever possible, avoid the use of float numbers. In many
situations, “long int” data type can be used instead of “float” datatype, to represent
even fractional numbers (if they are “fixed point”). For example, if it isrequired to
store only 3 digits after the decimal point and maximum 5 digits before the decimal
point for a certain variable, then it may be possible to use the long int data type
(instead of float). Y ou only need to remember that the value of the variable =
TheRealValue * 1000. Thusto display the value, you may use a suitable function to
convert the long int value into ASCII string (such as sprintf or Itoa_c31), and insert a
decimal point (*.”) at 3 positions from the right. “long int” arithmetic produces much
smaller and faster code, as compared to “float” arithmetic. Use the “float” datatype
only when you really need to store and process floating point numbers.

___X___X___

SC51 User’s manual 88 http://www.spj systems.com

