The Soar User’s Manual
Version 8.2

Edition 1

John E. Laird, Clare Bates Congdon and Karen J. Coulter
Electrical Engineering and Computer Science Department
University of Michigan

Draft of: June 23, 1999

Draft: Do not quote or distribute.
Errors may be reported to John E. Laird (laird@umich.edu)

Copyright (©) 1998, J. E. Laird, C. B. Congdon and K. J. Coulter

Development of earlier versions of this manual were supported under contract N00014-
92-K-2015 from the Advanced Systems Technology Office of the Advanced Research
Projects Agency and the Naval Research Laboratory, and contract N66001-95-C-6013
from the Advanced Systems Technology Office of the Advanced Research Projects
Agency and the Naval Command and Ocean Surveillance Center, RDT&E division.

comment:

Contents

List of Figures

Preface
1 Introduction
1.1 Using this Manual
1.2 Other Soar Documentation
1.3 Contacting the Soar Group
1.4 A Note on Different Platforms and Operating Systems
1.5 A Noteon Soarand Tel
2 The Soar Architecture
2.1 An Overview of Soar
2.1.1 Problem-Solving Functions in Soar
2.1.2 An Example Task: The Blocks-World
2.1.3 Representation of States, Operators, and Goals
2.1.4 Proposing candidate operators
2.1.5 Comparing candidate operators: Preferences
2.1.6 Selecting a single operator
2.1.7 Applying the operator
2.1.8 Making inferences about the state
2.1.9 Problem Spaces oL
2.2 Working memory: The Current Situation
2.3 Productions: Long-term Knowledge
2.3.1 The structure of a production
2.3.2 Architectural roles of productions
2.3.3 Production Actions and Persistence
2.4 Preference memory: Selection Knowledge
2.4.1 Preference semantics
2.5 Soar’s Execution Cycle: Without Substates
2.6 Impasses and Substates L.

2.6.1 Impasse Types
2.6.2 Creating New States
263 Results.
2.6.4 Removal of Substates: Impasse Resolution
2.6.5 Soar’s Execution Cycle: With Substates

vil

1x

Tt W W -

i

CONTENTS

2.7 Learning 33
2.8 Input and Output 34
The Syntax of Soar Programs 35
3.1 Working Memory 35
3.1.1 Symbols 36
3.1.2 Objects e 36
3.1.3 Timetags 37
3.1.4 Acceptable preferences in working memory 38
3.1.5 Working Memory as a Graph 39

3.2 Preference Memory oo 40
3.3 Production Memory 40
3.3.1 Production Names 42
3.3.2 Documentation string (optional) 42
3.3.3 Production type (optional) L. 42
3.3.4 Comments (optional) 43
3.3.5 The condition side of productions (or LHS) 43
3.3.5.1 Conditions oL 44

3.3.5.2 Variables in productions 44

3.3.5.3 Predicates for values 45

3.3.5.4 Disjunctions of values 46

3.3.5.5 Conjunctions of values 47

3.3.5.6 Negated conditions 48

3.3.5.7 Negated conjunctions of conditions 49

3.3.5.8 Multi-valued attributes. 49

3.3.5.9 Acceptable preferences for operators 50

3.3.5.10 Attribute tests L. 51

3.3.5.11 Attribute-path notation 53

3.3.5.12 Structured-value notation 57

3.3.6 The action side of productions (or RHS) 58
3.3.6.1 Variables in Actions 59

3.3.6.2 Creating Working Memory Elements 59

3.3.6.3 Removing Working Memory Elements 60

3.3.6.4 The syntax of preferences 60

3.3.6.5 Shorthand notations for preference creation 61

3.3.6.6 Righthand-side Functions 61

3.3.6.7 Stopping and pausing Soar 62

3.3.6.8 Text input and output 62

3.3.6.9 Mathematical functions 63

3.3.6.10 Generating and manipulating symbols 65

3.3.6.11 Tecl functions as RHS actions 67

3.3.6.12 Controlling learning 67

3.4 Impasses in Working Memory and in Productions 68
3.4.1 Impasses in working memory 68
3.4.2 Testing for impasses in productions 70

3.5 Soar I/O: Input and Output in Soar 70

CONTENTS iii

3.5.1 Overview of Soar I/O 71
3.5.2 Input and output in working memory 71
3.5.3 Input and output in production memory 74

4 Learning 77
4.1 Chunk Creation 77
4.2 Determining Conditions and Actions 78
4.2.1 Determining a chunk’s actions 79
4.2.2 Tracing the creation and reference of working memory elements 79
4.2.3 Determining a chunk’s conditions 80

4.3 Variablizing Identifiers oo 81
4.4 Ordering Conditions 81
4.5 Inhibition of Chunks oo 81
4.6 Problems that May Arise with Chunking 82
4.6.1 Using search control to determine correctness 82
4.6.2 Testing for local negated conditions 82
4.6.3 Testing for the substate 83

5 Soar and Tcl: The Soar Application Interface 85
6 The Soar User Interface 87
6.1 Basic Commands for Running Soar 88
6.1.1 d[nl e 89
6.1.2 e [n] 89
6.1.3 excise 89
6.1.4 exit 90
6.1.5 help ,? . . . 91
6.1.6 init-soar 92
6.1.7 quit 92
6.1.8 run ... 93
6.1.9 SP ... 95
6.1.10 Stop-soar . ..o .. e 97

6.2 Examining Memory L o 98
6.2.1 gds_print 98

6.2.2 internal-symbols 99
6.2.3 matches 100
6.2.3.1 Printing the match set 101

6.2.3.2 Printing partial matches for productions 102

6.2.4 mMemories 104
6.2.5 preferences L 106
6.2.6 print ... 107
6.2.6.1 Printing items in production memory. 108

6.2.6.2 Printing items in working memory. 109

6.2.6.3 Printing the current subgoal stack. 112

6.2.7 production-find 113

6.2.8 default-wme-depth 114

iv

6.3

6.4

6.5

6.6

6.7

CONTENTS

6.2.9 WMeS. L 115
Configuring Trace Information and Debugging 115
6.3.1 chunk-name-format 116
6.3.2 firing-counts 117
6.3.3 format-watch 118
6.3.4 monitor 122
6.3.5 pwatch 125
6.3.6 stats 126

6.3.6.1 System Stats L. 126

6.3.6.2 Memory Stats 128

6.3.6.3 Rete Stats., 130
6.3.7 Warnings 131
6.3.8 watch 132

6.3.8.1 Basic Watch Settings 132

6.3.8.2 Watching Productions 135

6.3.8.3 Watching working memory elements 136

6.3.8.4 Watching learning 138

6.3.8.5 Watching other functions 138
Configuring Soar’s Runtime Parameters 138
6.4.1 explain-backtraces L. 139
6.4.2 indifferent-selection 142
6.4.3 learn 143
6.4.4 max-chunks 144
6.4.5 max-elaborations oL 145
6.4.6 multi-attributeso 145
6.4.7 o-support-mode 146
6.4.8 save backtraces L. 147
6.4.9 soar8 148
6.4.10 waitsnc 148
File System I/O Commands 148
6.5.1 command-to-file L 149

6.5.2 Directory/Folder functions: chdir , cd, dirs ,
popd, pushd , pwd, topd . . 150

6.5.3 echo 150
6.5.4 log 151
6.5.5 output-strings-destinationo 152
6.0.6 rete-net L 153
6.5.7 SOUICE 154
Soar I/O Commands 155
6.6.1 add-wme 155
6.6.2 00 156

6.6.2.1 Adding I/O functions. 157

6.6.2.2 Deleting I/O functions. 157

6.6.2.3 Listing I/O functions. 157
6.6.3 remove-wme 157

Miscellaneous 158

CONTENTS

6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.7
6.7.8

\'
alias . .. 158
Defining command aliases 160
source $default 160
predefined aliases, 160
SOAMEWS . . . o it e 160
The $soar _library/soar.tcl file 161
unalias 161
VEISION 161

vi

CONTENTS

List of Figures

2.1
2.2
2.3

24

2.5

2.6

2.7

2.8
2.9
2.10

3.1
3.2
3.3
3.4

Soar is continually trying to select and apply operators.
The initial state and goal of the “blocks-world” task.
An abstract illustration of the initial state of the blocks world as working
memory objects. At this stage of problem solving, no operators have been
proposed or selected.o o
An abstract illustration of working memory in the blocks world after the
first operator has been selected.
The six operators proposed for the initial state of the blocks world each
move one block to a new location.o
The problem space in the blocks-world includes all operators that move
blocks from one location to another and all possible configurations of the
three blocks. oo
An abstract view of production memory. The productions are not related
toone another.o oL
A detailed illustration of Soar’s decision cycle: out of date
A simplified version of the Soar algorithm.
A simplified illustration of a subgoal stack.

A semantic net illustration of four objects in working memory.
An example production from the example blocks-world task.
An example portion of the input link for the blocks-world task.
An example portion of the output link for the blocks-world task.

vil

11

12

12

viii LIST OF FIGURES

PREFACE ix

Preface

Soar is an integrated architecture for knowledge-based problem solving, learning, and
interaction with external environments. The authors of this manual assume a ba-
sic understanding of artificial intelligence, and/or information processing psychology.
For further background on Soar, we recommend The Soar Papers: Readings on In-
tegrated Intelligence, Rosenbloom, Laird, and Newell (1993), and Unified Theories of
Cognition, Newell (1990).

This manual is specific to Version 8 of Soar, which is significantly different from
previous versions of Soar.

Acknowledgements

Special thanks to Erik Altmann and Robert Doorenbos who helped author previous
versions of the manual, which made this version considerably easier to create, and
to Gary Pelton and Scott Huffman, who contributed text for previous versions of
the manual. We would also like to thank Karl Schwamb for extensive comments and
technical advice, and the Soar group for their patient support.

PREFACE

Chapter 1

Introduction

Soar has been developed to be an architecture for constructing general intelligent
systems. It has been in use since 1983, and has evolved through many different
versions. This manual documents the most current of these: Soar, version 8.0.

Our goals for Soar include that it is to be an architecture that can:

be used to build systems that work on the full range of tasks expected of an
intelligent agent, from highly routine to extremely difficult, open-ended prob-
lems;

represent and use appropriate forms of knowledge, such as procedural, declara-
tive, episodic, and possibly iconic;

employ the full range of problem solving methods;
interact with the outside world; and

learn about all aspects of the tasks and its performance on them.

In other words, our intention is for Soar to support all the capabilities required of a
general intelligent agent. Below are the major principles that are the cornerstones of
Soar’s design:

1.

The number of distinct architectural mechanisms should be minimized. In Soar
there is a single representation of permanent knowledge (productions), a single
representation of temporary knowledge (objects with attributes and values),
a single mechanism for generating goals (automatic subgoaling), and a single
learning mechanism (chunking).

. All decisions are made through the combination of relevant knowledge at run-

time. In Soar, every decision is based on the current interpretation of sensory
data and any relevant knowledge retrieved from permanent memory. Decisions
are never precompiled into uninterruptible sequences.

2 CHAPTER 1. INTRODUCTION

1.1 Using this Manual

We expect that novice Soar users will read the manual in the order it is presented
(perhaps skipping Chapter 5):

Chapter 2 and Chapter 3 describe Soar from different perspectives: Chapter 2
describes the Soar architecture, but avoids issues of syntax, while Chapter
3 describes the syntax of Soar, including the specific conditions and actions
allowed in Soar productions.

Chapter 4 describes chunking, Soar’s learning mechanism. Not all users will make
use of chunking, but it is important to know that this capability exists.

Chapter 5 briefly describes advanced features of Soar, such as using input and out-
put to interface with a real or simulated world, writing Tcl/Tk routines, and
running Soar with multiple agents. Again, not all users will make use of these
capabilities, but it is important to know that they exist.

Chapter 6 describes the Soar user interface — how the user interacts with Soar.
The user-interface commands are presented in “beginning”, “intermediate”, and
“advanced” functionality to assist new users in identifying those commands that
are expected to be most useful to them. The commands in the user interface are
listed in alphabetical order on the back cover of the manual for quick reference.

Advanced users will refer most often to Chapter 6, flipping back to Chapters 2 and 3
to answer specific questions.

There are several appendices included with this manual:

Appendix ?7 is a glossary of terminology used in this manual.

Appendix ?7? contains an example Soar program for a simple version of the blocks
world. This blocks-world program is used as an example throughout the manual.

Appendix ?? is an overview of example programs currently available (provided with
the Soar distribution) with explanations of how to run them, and pointers to
other help sources available for novices.

Appendix ?? describes Soar’s default knowledge, which can be used (or not) with
any Soar task.

Appendix 7?7 provides a grammar for Soar productions.
Appendix 7?7 provides a formal description of how o-support is determined.

Appendix 7?7 provides a detailed explanation of the preference resolution process.

1.2. OTHER SOAR DOCUMENTATION 3
Additional Back Matter

The appendices are followed by a brief bibliography and an index; the last two pages
of this manual contain a summary and index of the user-interface functions for quick
reference.

Not Described in This Manual

Some of the more advanced features of Soar are not described in this manual, such as
how to interface with a simulator, or how to create Soar applications using multiple
interacting agents. Detailed discussion of these topics are in a separate document,
The Soar Advanced Applications Manual; see Section 1.2 for more information.

1.2 Other Soar Documentation

In addition to this manual, there are other documents that you may want to obtain
for more information about different aspects of Soar:

The Soar 8 Tutorial is written for novice Soar users, and guides the reader through
several example tasks and exercises.

The Soar Advanced Applications Manual is written for advanced Soar users.
This guide describes how to add input and output routines to Soar programs,
how to run multiple Soar “agents” from a single Soar process, and how to extend
Soar by adding your own user-interface functions, simulators, or graphical user
interfaces. It also includes some discussion of the Tcl-Soar Interface, or TSI.

See the Soar Home Page, http://ai.eecs.umich.edu/soar, and Section 1.3 for
information about obtaining Soar documentation.

Users who need to know more about Tcl should consult a Tcl reference, many of
which are listed on the Tcl Web Site, http://www.scriptics.com

1.3 Contacting the Soar Group

The Soar project supports several internet mailing lists. These include:

soar-requests@umich.edu — For requests for copies of Soar.
soar-doc@isi.edu — For requests for documentation (including this manual).

soar-bugs@umich.edu — For reporting Soar bugs, and for asking questions about
Soar. (Novice-level questions can be sent to this address.)

4 CHAPTER 1. INTRODUCTION

We also maintain an electronic mailing list for researchers actively involved in Soar re-
search. If you would like to join this group, send email to soar-requests@umich.edu.

World-Wide Web sites

There are many institutions throughout the world working on Soar research, and
similarly, there are numerous pages on the world-wide web concerning Soar. The
primary site is:

http://ai.eecs.umich.edu/soar

The page listed above provides links to information about specific Soar research
projects and researchers, as well as a FAQ (list of frequently asked questions) about
Soar.

The online FAQ will usually contain the most current information on Soar. It is
available at:

http://www.nottingham.ac.uk/pub/soar/nottinghame/soar-faq.html

For Those Without Internet Access

If you cannot reach us on the internet, please write to us at the following address:

The Soar Group

Artificial Intelligence Laboratory
University of Michigan

1101 Beal Ave.

Ann Arbor, MI 48109-2110

USA

1.4 A Note on Different Platforms and Operating
Systems

Soar runs on a wide variety of computers, including Unix (and Linux) machines,
PowerPC Macintoshes, and PCs running the Windows (95, 98, NT) operating system.

This manual documents Soar generally, although all references to files and directories
use Unix format rather than Macintosh or Windows folders.

1.5. A NOTE ON SOAR AND TCL 5

1.5 A Note on Soar and Tcl

Soar uses Tcl, which is a simple interpreted shell language, to implement the Soar
user interface. Tcl stands for “Tool Command Language”, and is pronounced “tickle”.
Tcl was originally written by John Ousterhout. It is a simple scripting language that
allows a Soar user to write extensions to Soar without having to recompile Soar. Tcl
also allows the addition of Tk (pronounced “tee-KAY”), a toolkit for writing graphical
interfaces. More information on Tcl/Tk is available at http://www.scriptics.com.

The addition of Tcl to Soar allows Soar users to add their own routines without the
need to recompile all of Soar. Tcl also makes it easier for users to interface Soar with
external programs and simulators, and makes it possible for users to write simple
simulators and simple programs to monitor problem solving in Soar.

Although from the Soar perspective, we have added Tcl (and Tk) to Soar, technically
speaking, we have added Soar to Tcl. This may seem to be a pedantic distinction, but
it has implications for all Soar users, and not just those who want to write their own
functions. Most significantly, because Soar is added to Tcl (and not vice versa), we
are restricted by some Tcl syntax and naming conventions. These will be discussed
more thoroughly in Chapter 5.

CHAPTER 1. INTRODUCTION

Chapter 2

The Soar Architecture

This chapter describes the Soar architecture. It covers all aspects of Soar except
for the specific syntax of Soar’s memories and descriptions of the Soar user-interface
commands.

This chapter gives an abstract description of Soar. It starts by giving an overview
of Soar and then goes into more detail for each of Soar’s main memories (working
memory, production memory, and preference memory) and processes (the decision
procedure, learning, and input and output).

2.1 An Overview of Soar

The design of Soar is based on the hypothesis that all deliberate goal-oriented behavior
can be cast as the selection and application of operators to a state. A state is a
representation of the current problem-solving situation; an operator transforms a
state (makes changes to the representation); and a goal is a desired outcome of the
problem-solving activity.

As Soar runs, it is continually trying to apply the current operator and select the
next operator (a state can have only one operator at a time), until the goal has been
achieved. The selection and application of operators is illustrated in Figure 2.1.

Soar has separate memories (and different representations) for descriptions of its cur-
rent situation and its long-term knowledge. In Soar, the current situation, including
data from sensors, results of intermediate inferences, active goals, and active opera-
tors is held in working memory. Working memory is organized as objects. Objects are
described in terms of their attributes; the values of the attributes may correspond to
sub-objects, so the description of the state can have a hierarchical organization. (This
need not be a strict hierarchy; for example, there’s nothing to prevent two objects
from being “substructure” of each other.)

The long-term knowledge, which specifies how to respond to different situations in

8 CHAPTER 2. THE SOAR ARCHITECTURE

Soar execution

select apply select apply select apply

Figure 2.1: Soar is continually trying to select and apply operators.

working memory, can be thought of as the program for Soar. The Soar architecture
cannot solve any problems without the addition of long-term knowledge. (Note the
distinction between the “Soar architecture” and the “Soar program”: The former
refers to the system described in this manual, common to all users, and the latter
refers to knowledge added to the architecture.)

A Soar program contains the knowledge to be used for solving a specific task (or set
of tasks), including information about how to select and apply operators to transform
the states of the problem, and a means of recognizing that the goal has been achieved.

2.1.1 Problem-Solving Functions in Soar

All of Soar’s long-term knowledge is organized around the functions of operator selec-
tion and application. These functions are composed of four distinct types of knowl-
edge:

Knowledge to select an operator

1. Operator Proposal: Knowledge that an operator is appropriate for the
current situation.

2. Operator Comparison: Knowledge to compare candidate operators.
3. Operator Selection: Knowledge to select a single operator, based on the
comparisons.
Knowledge to apply an operator

4. Operator Application: Knowledge of how a specific operator modifies the
state.

In addition, there is a fifth type of knowledge in Soar that is indirectly connected to
both operator selection and application:

5. Knowledge of monotonic inferences that can be made about the state (state
elaboration).

2.1. AN OVERVIEW OF SOAR 9

State elaborations indirectly affect operator selection and application by creating
new descriptions of the current situation that can cue the selection and application
of operators.

These problem-solving functions are the primitives for generating behavior in Soar.
Four of the functions require retrieving long-term knowledge that is relevant to the
current situation: elaborating the state, proposing candidate operators, comparing
the candidates, and applying the operator by modifying the state. These functions are
driven by the knowledge encoded in a Soar program. Soar represents that knowledge
as production rules. Production rules are similar to “if-then” statements in conven-
tional programming languages. (For example, a production might say something like
“if there are two blocks on the table, then suggest an operator to move one block
ontop of the other block”). The “if” part of the production is called its conditions
and the “then” part of the production is called its actions. When the conditions are
met in the current situation as defined by working memory, the production is matched
and it will fire, which means that its actions are executed, making changes to working
memory. Some productions retract their actions when the conditions are no longer
met; this will be discussed later.

The other function, selecting the current operator, involves making a decision once
sufficient knowledge has been retrieved. This is performed by Soar’s decision proce-
dure, which is a fixed procedure that interprets preferences that have been created
by the retrieval functions. The knowledge-retrieval and decision-making functions
combine to form Soar’s decision cycle.

When the knowledge to perform the problem-solving functions is not directly available
in productions, Soar is unable to make progress and reaches an impasse. There are
three types of possible impasses in Soar:

1. An operator cannot be selected because none are proposed.

2. An operator cannot be selected because multiple operators are proposed and
the comparisons are insufficient to determine which one should be selected.

3. An operator has been selected, but there is insufficient knowledge to apply it.

In response to an impasse, the Soar architecture creates a substate in which operators
can be selected and applied to generate or deliberately retrieve the knowledge that was
not directly available; the goal in the substate is to resolve the impasse. For example,
in a substate, a Soar program may do a lookahead search to compare candidate
operators if comparison knowledge is not directly available. Impasses and substates
are described in more detail in Section 2.6.

2.1.2 An Example Task: The Blocks-World

We will use a task called the blocks-world as an example throughout this manual. In
the blocks-world task, the initial state has three blocks named A, B, and C on a table;

10 CHAPTER 2. THE SOAR ARCHITECTURE

O || >

AlllBIl]C /

Initial State Goal

-

Figure 2.2: The initial state and goal of the “blocks-world” task.

the operators move one block at a time to another location (on top of another block
or onto the table); and the goal is to build a tower with A on top, B in the middle,
and C on the bottom. The initial state and the goal are illustrated in Figure 2.2.

The Soar code for this task is included in Appendix ?7; it is also included with the
Soar release (along with other example programs), in the file manual-blocks.soar.
You do not need to look at the code at this point.

The operators in this task move a single block from its current location to a new
location; each operator is represented with the following information:

e the name of the block being moved
e the current location of the block (the “thing” it is on top of)
e the destination of the block (the “thing” it will be on top of)

The goal in this task is to stack the blocks so that C is on the table, with block B on
block C, and block A on top of block B.

2.1.3 Representation of States, Operators, and Goals

The initial state in our blocks-world task — before any operators have been proposed
or selected — is illustrated in Figure 2.3.

A state can have only one operator at a time, and the operator is represented as
substructure of the state. A state may also have as substructure a number of potential
operators that are in consideration; however, these suggested operators should not be
confused with the current operator.

Figure 2.4 illustrates working memory after the first operator has been selected. There
are six operators proposed, and only one of these is actually selected.

Goals are either represented explicitly as substructure of the state with general rules
that recognize when the goal is achieved, or are implicitly represented in the Soar
program by goal-specific rules that test the state for specific features and recognize

2.1. AN OVERVIEW OF SOAR 11

B2 B3
B2 is a block B3 is a block
B2is named B| | B3 is named C
B1 B2 is clear B3 is clear

B1is a block T1
B1is named A -
B1is clear Tlis atable
T1 is named table
S1 - T1is clear
Sl is a state

S1 has a problem-—spaceé blocks

S1 has a thing B1 01 has-a top-block B1

S1 has a thing B2 01 01 has a bottom-block T1
S1 has a thing B3

S1 has a thing T1 02 | 92 has a‘top—block'B2

S1 has an ontop O1
S1 has an ontop 02
S1 has an ontop O3 03 03 has a top—block'B3

(S1 has no operator) 03 has a bottom-block T1

02 has a boitom-block T1

An Abstract View of Working Memory

Figure 2.3: An abstract illustration of the initial state of the blocks world as working
memory objects. At this stage of problem solving, no operators have been proposed or
selected.

when the goal is achieved. The point is that sometimes a description of the goal will
be available in the state for focusing the problem solving, whereas other times it may
not. Although representing a goal explicitly has many advantages, some goals are
difficult to explicitly represent on the state.

The goal in our blocks-world task is represented implicitly in the Soar program. A
single production rule monitors the state for completion of the goal and halts Soar
when the goal is achieved.

2.1.4 Proposing candidate operators

As a first step in selecting an operator, one or more candidate operators are proposed.
Operators are proposed by rules that test features of the current state. When the
blocks-world task is run, the Soar program will propose six different (but similar)
operators for the initial state as illustrated in Figure 2.5. These operators correspond
to the six different actions that are possible given the initial state.

12 CHAPTER 2. THE SOAR ARCHITECTURE

(links from operators to blocks
are omitted for simplicity)

B2 B3
B2 is a block B3 is a block
04 is named move-block B2 is named B | | B3 is named C
+Q4 | 04 has movigg-block B2 Bl B2 is clear B3 is clear
04 has destiffation B1 BLis a block T1
o 05 is named n\pve-block E% is nlamed A T1isatabie
+(0O5 | O5 has moving\block B3 is clear I
oo T1is named table
05 has desWnatiyn B1 S1_ T1is clear
06 is named Yiovg-block Slis a state
+0O6 | 06 has movingyblyck B1 S1 has a problem-space blocks
06 has dwgtination §2 S1 has a thing B1 01 [O1 hasa top-block B |
\ \ g% p'g: gm:ﬂg Bg 01 has a bottom-block T1 -]
08 is named myye-Xlogk S1 has athing T1 02 | 02 has a'top-block B2
08 has mgving-Moc S1 has an ontop O1 02 has a boitom-block T1
08 has destigation' R3 S1 has an ontop 02
o7 amec I RN\ S i 7 03 [O hes s o e |
09 has ngs\tme@ B3 \S1 has gix proposedopm‘{)rs

g

o7 O7 is named move-block
O7 has moving-block B3
+Q7 | O7 has destination B2

An Abstract View of Working Memory

Figure 2.4: An abstract illustration of working memory in the blocks world after the first
operator has been selected.

Alll B[] C
Initial State
move A move B move C
on top on top

gPéOpﬁ Al B <\ofA . Cll "N\ ofA

| B[] C A | C A [l B |
move A — move B £— —
on top on top move C
ofC / I A _Ofcf B - C \ong?g

| B ([C A | C Al B |

Figure 2.5: The six operators proposed for the initial state of the blocks world each move
one block to a new location.

2.1. AN OVERVIEW OF SOAR 13

2.1.5 Comparing candidate operators: Preferences

The second step Soar takes in selecting an operator is to evaluate or compare the
candidate operators. In Soar, this is done via rules that test the proposed operators,
the current state, and then create preferences. Preferences assert the relative or
absolute merits of the candidate operators. For example, a preference may say that
operator A is a “better” choice than operator B at this particular time, or a preference
may say that operator A is the “best” thing to do at this particular time.

2.1.6 Selecting a single operator

Soar attempts to select a single operator based on the preferences available for the
candidate operators. There are four different situations that may arise:

1. The available preferences unambiguously prefer a single operator.

2. The available preferences suggest multiple operators, and prefer a subset that
can be selected from randomly.

3. The available preferences suggest multiple operators,but neither case 1 or 2
above hold.

4. The available preferences do not suggest any operators.

In the first case, the preferred operator is selected. In the second case, one of the
subset is selected randomly. In the third and fourth cases, Soar has reached an
“impasse” in problem solving, and a new substate is created. Impasses are discussed
in Section 2.6.

In our blocks-world example, the second case holds, and Soar can select one of the
operators at random.

2.1.7 Applying the operator

An operator applies by making changes to the state; the specific changes that are
appropriate depend on the operator and the current state.

There are two primary approaches to modifying the state: indirect and direct. Indirect
changes are used in Soar programs that interact with an external environment: The
Soar program sends motor commands to the external environment and monitors the
external environment for changes. The changes are reflected in an updated state
description, garnered from sensors. Soar may also make direct changes to the state;
these correspond to Soar doing problem solving “in its head”. Soar programs that do
not interact with an external environment can make only direct changes to the state.

Internal and external problem solving should not be viewed as mutually exclusive
activities in Soar. Soar programs that interact with an external environment will
generally have operators that make direct and indirect changes to the state: The

14 CHAPTER 2. THE SOAR ARCHITECTURE

motor command is represented as substructure of the state. Also, a Soar program
may maintain an internal model of how it expects an external operator will modify
the world; if so, the operator must update the internal model (which is substructure
of the state).

When Soar is doing internal problem solving, it must know how to modify the state
descriptions appropriately when an operator is being applied. If it is solving the
problem in an external environment, it must know what possible motor commands it
can issue in order to affect its environment.

The example blocks-world task shown here does not interact with an external en-
vironment. Therefore, the Soar program directly makes changes to the state when
operators are applied. There are four changes that may need to be made when a
block is moved in our task:

1. The block that is being moved is no longer where it was (it is no longer “on
top” of the same thing).

2. The block that is being moved is now in a new location (it is “on top” of a new
thing).
3. The place that the block used to be is now clear.

4. The place that the block is moving to is no longer clear — unless it is the table,

which is always considered “clear”!.

The blocks-world task could also be implemented using an external simulator (as is
done in the examples in The Soar Coloring Book). In this case, the Soar program
does not update all the “on top” and “clear” relations; the updated state description
comes from the simulator.

2.1.8 Making inferences about the state

Making monotonic inferences about the state is the other role that Soar long-term
knowledge may fulfill. Such elaboration knowledge can simplify the encoding of oper-
ators because entailments of a set of core features of a state do not have to be explicitly
included in application of the operator. In Soar, these inferences will be automati-
cally retracted when the situation changes, such as through operator applications or
changes in sensory data.

Our example blocks-world task does not use elaborations. However, keeping track of
whether a block is “clear” or not could be done with elaborations instead of operator
applications. If it were implemented this way, an elaborations would test for the
absence of a block that is “on top” of a particular block; if there is no such “on top”,
the block is “clear”.

'In this blocks-world task, the table always has room for another block, so it is represented as
always being “clear”.

2.2. WORKING MEMORY: THE CURRENT SITUATION 15

2.1.9 Problem Spaces

If we were to construct a Soar system that worked on a large number of different
types of problems, we would need to include large numbers of operators in our Soar
program. For a specific problem and a particular stage in problem solving, only a
subset of all possible operators are actually relevant. For example, if our goal is to
count the blocks on the table, operators having to do with moving blocks are probably
not important, although they may still be “legal”. The operators that are relevant
to current problem-solving activity define the space of possible states that might be
considered in solving a problem, that is, they define the problem space.

Soar programs are implicitly organized in terms of problem spaces because the con-
ditions for proposing operators will restrict an operator to be considered only when
it is relevant. The complete problem space for the blocks world is show in Figure 2.6.
Typically, when Soar solves a problem in this problem space, it does not explicitly
generate all of the states, examine them, and then create a path. Instead, Soar is in a
specific state at a given time (represented in working memory), attempting to select
an operator that will move it to a new state. It uses whatever knowledge it has about
selecting operators given the current situation, and if its knowledge is sufficient, it
will move toward its goal. The same problem could be recast in Soar as a planning
problem, where the goal is to develop a plan to solve the problem, instead of just solv-
ing the problem. In that case, a state in Soar would consist of a plan, which in turn
would have representations of Blocks World states and operators from the original
space. The operators would perform editing operations on the plan, such as adding
new Blocks World operators, simulating those operators, etc. In both formulations
of the problem, Soar is still applying operators to generate new states, it is just that
the states and operators have different content.

The following sections describe the memories and processes of Soar: working memory,
production memory, preference memory, the decision procedure, learning, and input
and output.

2.2 Working memory: The Current Situation

Soar represents the current problem-solving situation in its working memory. Thus,
working memory holds the current state and operator (as well as any substates and
operators generated because of impasses) and is Soar’s “short-term” knowledge, re-
flecting the current knowledge of the world and the status in problem solving.

Working memory contains elements called working memory elements, or WME’s for
short. Each WME contains a very small piece of information; for example, a WME
might say that “B1 is a block”. Several WME’s collectively may provide more infor-
mation about the same object, for example, “B1 is a block”, “B1 is named A”, “Bl is
on the table”, etc. These WME’s are related because they are all contributing to the
description of something that is internally known to Soar as “B1”. Bl is called an

16 CHAPTER 2. THE SOAR ARCHITECTURE

B]
5] B
(block (move-block
move-bloc|
(move- (move- B A) BC) A
block block (move-block
CA) CT)
(move-block
BT)
A (move-block
E B cA E
(move-block (move- (move—
T) block block (move-block
AC) AT) cn
(move-block
(move-block CB) C
" AL[B
A
E (move—
(move-block (move-block C T) Rl%c)k
(move-block
BT)
(move- (move-block E
block AT)
BT) (move—
E block E’
BC)
(move-
block (move-block
CB) (move- (move— AB)
block block
cT) AT) = states

= operators

Figure 2.6: The problem space in the blocks-world includes all operators that move blocks
from one location to another and all possible configurations of the three blocks.

identifier; the group of WME’s that share this identifier are called an object in work-
ing memory. Each WME describes a different attribute of the object, for example, its
name or type or location; each attribute has a value associated with it, for example,
the name is A, the type is block, and the position is on the table. Therefore, each
WME is an identifier-attribute-value triple, and all WME’s with the same identifier
are part of the same object.

Objects in working memory are linked to other objects: The value of one WME may
be an identifier of another object. For example, a WME might say that “B1 is ontop of
T1”, and another collection of WME’s might describe the object T1: “T1 is a table”,
“T1 is brown”, and “T1 is ontop of F1”. And still another collection of WME’s might
describe the object F1: “F1 is a floor”, etc. All objects in working memory must be
linked to a state, either directly or indirectly (through other objects). Objects that
are not linked to a state will be automatically removed from working memory by the
Soar architecture.

WME'’s are also often called augmentations because they “augment” the object, pro-

2.2. WORKING MEMORY: THE CURRENT SITUATION 17

viding more detail about it. While these two terms are somewhat redundant, WME
is a term that is used more often to refer to the contents of working memory, while
augmentation is a term that is used more often to refer to the description of an object.
Working memory is illustrated at an abstract level in Figure 2.3 on page 11.

The attribute of an augmentation is usually a constant, such as name or type, because
in a sense, the attribute is just a label used to distinguish one link in working memory
from another.?

The value of an augmentation may be either a constant, such as red, or an identifier,
such as 06. When the value is an identifier, it refers to an object in working memory
that may have additional substructure. In semantic net terms, if a value is a constant,
then it is a terminal node with no links; if it is an identifier it is a nonterminal node.

Working memory is a set, which means that there can never be two elements in
working memory at the same time that have the same identifier-attribute-value triple
(this is prevented by the architecture). However, it is allowed to have multiple working
memory elements that have the same identifier and attribute, but that each have
different values. When this happens, we say the attribute is a multi-valued attribute,
which is often shortened to be multi-attribute.

An object is, in a sense, defined by its augmentations and not by its identifier. On
subsequent runs of the same Soar program, there may be an object with exactly the
same augmentations, but a different identifier, and the program will still reason about
the object appropriately. Identifiers are internal markers for Soar, so they can appear
in working memory, but they never appear in a production.

There is no predefined relationship between objects in working memory and “real
objects” in the outside world. Objects in working memory may refer to real objects,
such as block A; a feature of an object, such as the color red; a relation between
objects, such as ontop; classes of objects, such as blocks; etc. The names of attributes
and values have no meaning to the Soar architecture (aside from a few WME’s created
by the architecture itself). For example, Soar doesn’t care whether the things in the
blocks world are called “blocks” or “cubes” or “chandeliers”. It is up to the Soar
programmer to pick suitable names and to use them consistently.

The elements in working memory come from one of four sources:

1. The actions of productions create most working memory elements. The actions
of productions must not create or modify the working memory elements created
by the decision procedure or the I/O system (described below).

2. The decision procedure automatically creates some special state augmentations
(type, superstate, impasse, ...) when a state is created. States are created
during initialization (the first state) or because of an impasse (a substate).

3. The decision procedure creates the operator augmentation of the state based
on preferences. This records the selection of the current operator.

2Tn order to allow these links to have some substructure, the attribute name may be an identifier,
which means that the attribute may itself have attributes and values, as specified by additional
working memory elements.

18 CHAPTER 2. THE SOAR ARCHITECTURE

4. The I/O system creates working memory elements on the input-link for sensory
data.

The elements in working memory are removed in six different ways:

1. The decision procedure automatically removes all state augmentations it creates
when the impasse that led to their creation is resolved.

2. The decision procedure removes the operator augmentation of the state when
that operator is no longer selected as the current operator.

3. Production actions that use reject preferences remove working memory ele-
ments.

4. i-supported working memory elements are removed when the productions that
created them no longer match.

5. The I/O system removes sensory data from the input-link when it is no longer
valid.

6. The architecture automatically removes WME’s that are no longer linked to a
state (because some other WME has been removed).

For the most part, the user is free to use any attributes and values that are appropriate
for the task. However, states have special augmentations that cannot be directly
created, removed, or modified by rules. These include the augmentations created
when a state is created, and the state’s operator augmentation that signifies the
current operator (and is created based on preferences). The specific attributes that
Soar automatically creates are listed in Section 3.4. Productions may create any other
attributes for states.

Preferences are held in preference memory where they cannot be tested by produc-
tions; however, acceptable preferences are held in both preference memory and in
working memory. By making the acceptable preferences available in working mem-
ory, the acceptable preferences can be tested for in productions allowing the candi-
dates operators to be compared before they are selected.

2.3 Productions: Long-term Knowledge

Soar represents long-term knowledge as productions that are stored in production
memory, illustrated in Figure 2.7. Each production has a set of conditions and a set
of actions. If the conditions of a production match working memory, the production
fires, and the actions are performed.

2.3.1 The structure of a production

In the simplest form of a production, conditions and actions refer directly to the
presence (or absence) of objects in working memory. For example, a production
might say:

2.3. PRODUCTIONS: LONG-TERM KNOWLEDGE 19

production-name

conditionl N
(maybe some more conditions) \
—_— A
actionl
(Maybe some more actions) \

An Abstract View of Production Memory

Figure 2.7: An abstract view of production memory. The productions are not related to
one another.

CONDITIONS: block A is clear
block B is clear
ACTIONS: suggest an operator to move block A ontop of block B

This is not the literal syntax of productions, but a simplification. The actual syntax
is presented in Chapter 3.

The conditions of a production may also specify the absence of patterns in working
memory. For example, the conditions could also specify that “block A is not red”
or “there are no red blocks on the table”. But since these are not needed for our
example production, there are no examples of negated conditions for now.

The order of the conditions of a production do not matter to Soar except that the
first condition must directly test the state. Internally, Soar will reorder the conditions
so that the matching process can be more efficient. This is a mechanical detail that
need not concern most users. However, you may print your productions to the screen
or save them in a file; if they are not in the order that you expected them to be, it is
likely that the conditions have been reordered by Soar.

2.3.1.1 Variables in productions and multiple instantiations

In the example production above, the names of the blocks are “hardcoded”, that
is, they are named specifically. In Soar productions, variables are used so that a

20 CHAPTER 2. THE SOAR ARCHITECTURE

production can apply to a wider range of situations.

The variables are bound to specific symbols (identifiers, attributes, or values) in
working memory elements by Soar’s matching process. A production along with a
specific and consistent set of variable bindings is called an instantiation. A production
instantiation is consistent only if every occurrence of a variable is bound to the same
value. Since the same production may match multiple times, each with different
variable bindings, several instantiations of the same production may match at the
same time and, therefore, fire at the same time. If blocks A and B are clear, the first
production (without variables) will suggest one operator. However, if a production
was created that used variables to test the names, this second production will be
instantiated twice and therefore suggest two operators: one operator to move block
A ontop of block B and a second operator to move block B ontop of block A.

Because the identifiers of objects are determined at runtime, literal identifiers cannot
appear in productions. Since identifiers occur in every working memory element,
variables must be used to test for identifiers, and multiple occurrences of the same
variable is used to link conditions together.

Just as the elements of working memory must be linked to a state in working memory,
so must the objects referred to in a production’s conditions. That is, one condition
must test a state object and all other conditions must test that same state or objects
that are linked to that state.

2.3.2 Architectural roles of productions

Soar productions can fulfill four different roles, including the three knowledge-retrieval
problem-solving functions and state elaboration function, as described on page 8:

1. Operator proposal

2. Operator comparison

3. (Operator selection is not an act of knowledge retrieval)
4. Operator application

5. State elaboration

A single production should not fulfill more than one of these roles (except for propos-
ing an operator and creating an absolute preference for it). Although productions
are not declared to be of one type or the other, Soar examines the structure of each
production and classifies the rules automatically based on whether they propose and
compare operators, apply operators, or elaborate the state.

2.3.3 Production Actions and Persistence

The two main actions of a production are to create preferences for operator selec-
tion, and create or remove working memory elements. For operator proposal and

2.3. PRODUCTIONS: LONG-TERM KNOWLEDGE 21

comparison, a production creates preferences for operator selection. These prefer-
ences should persist only as long as the production instantiation that created them
continues to match. When the production instantiation no longer matches, the sit-
uation has changed, making the preference no longer relevant. Soar automatically
removes the preferences in such cases. These preferences are said to have I-support
(for “instantiation support”). Similarly, state elaborations are simple inferences are
valid only so long as the production matches. Working memory elements created as
state elaborations also have I-support and remain in working memory only as long
as the production instantiation that created them continues to match working mem-
ory. For example, the set of relevant operators change as the state changes, so that
the proposal of operators done with I-supported preferences. This way, the operator
proposals will be retracted when they no longer apply to the current situation.

However, the actions of productions that apply an operator, either by adding or
removing elements from working memory, need to persist even after the operator is no
longer selected and operator application production instantiation no longer matches.
For example, in placing a block on another, a condition is that the second block be
clear. However, the action of placing the first block removes the fact that the second
block is clear, so the condition will no longer be satisfied.

Thus, operator application productions do not retract their actions, even if they no
longer match working memory. This is called O-support (for “operator support”).
Working memory elements that participate in the application of operators are main-
tained throughout the existence of the state in which the operator is applied, unless
explicitly remove (or if they become unlinked). Working memory elements are re-
moved by a reject action of a operator-application rule.

Whether a working memory element receives O-support or [-support is determined by
the structure of the production instantiation that create the working memory element.
O-support is given only to working memory elements created by operator-application
productions.

An operator-application production tests the current operator of a state and modifies
the state. Thus, a working memory element receives O-support if it is for an aug-
mentation of the current state or substructure of the state, and the conditions of the
instantiation that created it test augmentations of the current operator.

When productions are matched, all productions that have their conditions met fire
creating or removing working memory elements. Also, working memory elements and
preferences that lose I-support are removed from working memory. Thus, several
new working memory elements and preferences may be created, and several existing
working memory elements and preferences may be removed at the same time. (Of
course, all this doesn’t happen literally at the same time, but the order of firings and
retractions is unimportant, and happens in parallel from a functional perspective.)

22 CHAPTER 2. THE SOAR ARCHITECTURE

2.4 Preference memory: Selection Knowledge

The selection of the current operator is determined by the preferences in preference
memory. Preferences are suggestions or imperatives about the current operator, or
information about how suggested operators compare to other operators. Preferences
refer to operators by using the identifier of a working memory element that stands for
the operator. After preferences have been created for a state, the decision procedures
evaluates them to select the current operator for that state.

For an operator to be selected, there will be at least one preference for it, specifically,
a preference to say that the value is a candidate for the operator attribute of a state
(this is done with either an “acceptable” or “require” preference). There may also
be others, for example to say that the value is “best”.

The different preferences available and the semantics of preferences are explained in
Section 2.4.1. Preferences remain in preference memory until removed for one of the
reasons previously discussed in Section 2.3.3.

2.4.1 Preference semantics

This section describes the semantics of each type of preference. More details on the
preference resolution process are provided in Appendix ?7.

Only a single value can be selected as the current operator, that is, all values are
mutually exclusive. In addition, there is no implicit transitivity in the semantics of
preferences. If A is indifferent to B, and B is indifferent to C, A and C will not be
indifferent to one another unless there is a preference that A is indifferent to C (or C
and A are both indifferent to all competing values).

Acceptable (4) An acceptable preference states that a value is a candidate for
selection. All values, except those with require preferences, must have an
acceptable preference in order to be selected. If there is only one value with
an acceptable preference (and none with a require preference), that value will
be selected as long as it does not also have a reject or a prohibit preference.

Reject (—) A reject preference states that the value is not a candidate for selection.

Better (>), Worse (<) A better or worse preference states, for the two values
involved, that one value should not be selected if the other value is a candidate.
Better and worse allow for the creation of a partial ordering between candidate
values. Better and worse are simple inverses of each other, so that A better
than B is equivalent to B worse than A.

Best (>) A best preference states that the value may be better than any competing
value (unless there are other competing values that are also “best”). If a value
is best (and not rejected, prohibited, or worse than another), it will be
selected over any other value that is not also best (or required). If two such
values are best, then any remaining preferences for those candidates (worst,

2.5. SOAR’S EXECUTION CYCLE: WITHOUT SUBSTATES 23

parallel, indifferent) will be examined to determine the selection. Note
that if a value (that is not rejected or prohibited) is better than a best
value, the better value will be selected. (This result is counter-intuitive, but
allows explicit knowledge about the relative worth of two values to dominate
knowledge of only a single value. A require preference should be used when a
value must be selected for the goal to be achieved.)

Worst (<) A worst preference states that the value should be selected only if there
are no alternatives. It allows for a simple type of default specification. The
semantics of the worst preference are similar to those for the best preference.

Indifferent (=) An indifferent preference states that there is positive knowledge
that it does not matter which value is selected. This may be a binary preference,
to say that two values are mutually indifferent, or a unary preference, to say
that a single value is as good or as bad a choice as other expected alternatives.

When indifferent preferences are used to signal that it does not matter which
operator is selected, by default, Soar chooses randomly from among the alter-
natives. (The indifferent-selection function can be used to change this
behavior as described on page 142 in Chapter 6.)

Require (!) A require preference states that the value must be selected if the goal
is to be achieved.

Prohibit (~) A prohibit preference states that the value cannot be selected if the
goal is to be achieved. If a value has a prohibit preference, it will not be
selected for a value of an augmentation, independent of the other preferences.

If there is an acceptable preference for a value of an operator, and there are no other
competing values, that operator will be selected. If there are multiple acceptable
preferences for the same state but with different values, the preferences must be
evaluated to determine which candidate is selected.

If the preferences can be evaluated without conflict, the appropriate operator aug-
mentation of the state will be are added to working memory. This can happen when
they all suggest the same operator or when one operator is preferable to the others
that have been suggested. When the preferences conflict, Soar reaches an impasse,
as described in Section 2.6.

Preferences can be confusing; for example, there can be two suggested values that are
both “best” (which again will lead to an impasse unless additional preferences resolve
this conflict); or there may be one preference to say that value A is better than value
B and a second preference to say that value B is better than value A.

2.5 Soar’s Execution Cycle: Without Substates

The execution of a Soar program proceeds through a number of cycles. Fach cycle
has five phases:

1. Input: New sensory data comes into working memory.

24 CHAPTER 2. THE SOAR ARCHITECTURE

2. Proposal: Productions fire (and retract) to interpret new data (state elabora-
tion) propose operators for the current situation (operator proposal) and com-
pare proposed operators (operator comparison). All of the actions of these
productions are I-supported. All matched productions fire in parallel (and all
retractions occur in parallel), and matching and firing continues until there are
no more additional complete matches or retractions of productions (quiescence).

3. Decision: A new operator is selected, or an impasse is detected and a new state
is created.

4. Application: Productions fire to apply the operator (operator application). The
actions of these productions will be O-supported. Because of changes from
operator application productions, other productions with I-supported actions
may also match or retract. Just as during proposal, productions fire and retract
in parallel until quiescence.

5. Output: Output commands are sent to the external environment.

The cycles continue until the halt action is issued from the Soar program (as the
action of a production) or until Soar is interrupted by the user.

During the processing of these phases, it is possible that the preferences that resulted
in the selection of the current operator could change. Whenever operator preferences
change, the preferences are re-evaluated and if a different operator selection would
be made, then the current operator augmentation of the state is immediately re-
moved. However, a new operator is not selected until the next decision phase, when
all knowledge has had a chance to be retrieved.

2.6 Impasses and Substates

When the decision procedure is applied to evaluate preferences and determine the
operator augmentation of the state, it is possible that the preferences are either
incomplete or inconsistent. The preferences can be incomplete in that no acceptable
operators are suggested, or that there are insufficient preferences to distinguish among
acceptable operators. The preferences can be inconsistent if, for instance, operator A
is preferred to operator B, and operator B is preferred to operator A. Since preferences
are generated independently, from different production instantiations, there is no
guarantee that they will be consistent.

2.6.1 Impasse Types

There are four types of impasses that can arise from the preference scheme.

Tie impasse — A tie impasse arises if the preferences do not distinguish between
two or more operators with acceptable preferences. If two operators both have

2.6. IMPASSES AND SUBSTATES 25

Decision Cycle

Decision 1
/\ Decision 2 Decision 3
Elaboration Phase Decision Phase /\/_/\

D
E
h

Quiescence

. Elaboration Ph
Elaboration Cycle aboratio ase Decision Phase

v_/\

| | : : D
| |
- d o d - d .
—p» : —p» : —p» : :
- - - '
1 1 1 '
| | | 1
| | | L]
— " /\ Decision Phase
Preference Working Memory Quiescence
Phase Phase no more 1. all operator preferences
)) roductions are considered
newly instantiated 1. all non-operator gre eligible
productions fire preferences are considered €lg 2. the preferences are
to fire or
AND retract evaluated
productions that 2. the preferences are
are no longer evaluated 3. a new operator is selected
instantiated are OR
retracted 3. elements are added and a new state is created

deleted from working memory

Figure 2.8: A detailed illustration of Soar’s decision cycle: out of date

best or worst preferences, they will tie unless additional preferences distinguish
between them.

Conflict impasse — A conflict impasse arises if at least two values have conflicting
better or worse preferences (such as A is better than B and B is better than A)
for an operator, and neither one is rejected, prohibited, or required.

Constraint-failure impasse — A constraint-failure impasse arises if there is more
than one required value for an operator, or if a value has both a require and

26 CHAPTER 2. THE SOAR ARCHITECTURE

Soar
while (HALT not true) Cycle;

Cycle
InputPhase;
ProposalPhase;
DecisionPhase;
ApplicationPhase;
OutputPhase;

ProposalPhase
while (some I-supported productions are waiting to fire or retract)
FireNewlyMatchedProductions;
RetractNewlyUnmatchedProductions;

DecisionPhase
for (each state in the stack,
starting with the top-level state)
until (a new decision is reached)
EvaluateOperatorPreferences; /* for the state being considered */
if (one operator preferred after preference evaluation)
SelectNewOperator;
else /* could be no operator available or */
CreateNewSubstate; /* unable to decide between more than one */

ApplicationPhase
while (some productions are waiting to fire or retract)
FireNewlyMatchedProductions;
RetractNewlyUnmatchedProductions;

Figure 2.9: A simplified version of the Soar algorithm.

a prohibit preference. These preferences represent constraints on the legal
selections that can be made for a decision and if they conflict, no progress can
be made from the current situation and the impasse cannot be resolved by
additional preferences.

No-change impasse — A no-change impasse arises if a new operator is not selected
during the decision procedure. There are two types of no-change impasses: state
no-change and operator no-change:

State no-change impasse — A state no-change impasse occurs when there
are no acceptable (or require) preferences to suggest operators for the
current state (or all the acceptable values have also been rejected). The

decision procedure cannot select a new operator.
Operator no-change impasse — An operator no-change impasse occurs when

2.6. IMPASSES AND SUBSTATES 27

either a new operator is selected for the current state but no additional
productions match during the application phase, or a new operator is not
selected during the next decision phase.

There can be only one type of impasse at a given level of subgoaling at a time. Given
the semantics of the preferences, it is possible to have a tie or conflict impasse and
a constraint-failure impasse at the same time. In these cases, Soar detects only the
constraint-failure impasse.

The impasse is detected during the selection of the operator, but happens because
one of the other four problem-solving functions was incomplete.

2.6.2 Creating New States

Soar handles these inconsistencies by creating a new state in which the goal of the
problem solving is to resolve the impasse. Thus, in the substate, operators will be
selected and applied in an attempt either to discover which or the tied operators
should be selected, or to apply the selected operator piece by piece. The substate is
often called a subgoal because it exists to resolve the impasse, but is sometimes called
a substate because the representation of the subgoal in Soar is as a state.

The initial state in the subgoal contains a complete description of the cause of the
impasse, such as the operators that could not be decided among (or that there were
no operators proposed) and the state that the impasse arose in. From the perspective
of the new state, the latter is called the superstate. Thus, the superstate is part of the
substructure of each state, represented by the Soar architecture using the superstate
attribute. (The initial state, created in the Oth decision cycle, contains a superstate
attribute with the value of nil — the top-level state has no superstate.)

The knowledge to resolve the impasse may be retrieved by any type of problem solving,
from searching to discover the implications of different decisions, to asking an outside
agent for advice. There is no a prior: restriction on the processing, except that it
involves applying operators to states.

In the substate, operators can be selected and applied as Soar attempts to solve
the subgoal. (The operators proposed for solving the subgoal may be similar to the
operators in the superstate, or they may be entirely different.) While problem solving
in the subgoal, additional impasses may be encountered, leading to new subgoals.
Thus, it is possible for Soar to have a stack of subgoals, represented as states: Each
state has a single superstate (except the initial state) and each state may have at
most one substate. Newly created subgoals are considered to be added to the bottom
of the stack; the first state is therefore called the top-level state.® See Figure 2.10 for
a simplified illustrations of a subgoal stack.

3The original state is the “top” of the stack because as Soar runs, this state (created first), will
be at the top of the computer screen, and substates will appear on the screen below the top-level
state.

28 CHAPTER 2. THE SOAR ARCHITECTURE

superstate O = state and operator
objects
Top-level Q = other objects
State
= operator decisions that
have not yet been made
operator Q = acceptable preferences
for operators
(@)
no—change
attribute operator
superstate
choices none
%\lelgtial This subgoal was created
. because Soar didn't know
Y how to apply operator O2
! in state S1
.
,;' No operator has been
¥ selected yet for S2
tie
attribute
operator
superstate
choices .
multiple
Subgoal
level 2

This subgoal was
created because Soar
didn’t know which

of the three operators
(04, 05, or 06)

to select in state S2

Figure 2.10: A simplified illustration of a subgoal stack.

operator

2.6. IMPASSES AND SUBSTATES 29

Soar continually attempts to retrieve knowledge relevant to all goals in the subgoal
stack, although problem-solving activity will tend to focus on the most recently cre-
ated state. However, problem solving is active at all levels, and productions that
match at any level will fire.

2.6.3 Results

In order to resolve impasses, subgoals must generate results that allow the problem
solving at higher levels to proceed. The results of a subgoal are the working memory
elements and preferences that were created in the substate, and that are also linked
directly or indirectly to a superstate (any superstate in the stack). A preference or
working memory element is said to be created in a state if the production that created
it tested that state and this is the most recent state that the production tested. Thus,
if a production tests multiple states, the preferences and working memory elements in
its actions are considered to be created in the most recent of those states (and is not
considered to have been created in the other states). The architecture automatically
detects if a preference or working memory element created in a substate is also linked
to a superstate.

These working memory elements and preferences will not be removed when the im-
passe is resolved because they are still linked to a superstate, and therefore, they
are called the results of the subgoal. A result has either I-support or O-support; the
determination of support is described below.

A working memory element or preference will be a result if its identifier is already
linked to a superstate. A working memory element or preference can also become
a result indirectly if, after it is created and still in working memory or preference
memory, its identifier becomes linked to a superstate through the creation of another
result. For example, if the problem solving in a state constructs an operator for a
superstate, it may wait until the operator structure is complete before creating an
acceptable preference for the operator in the superstate. The acceptable preference
is a result because it was created in the state and is linked to the superstate (and,
through the superstate, is linked to the top-level state). The substructures of the
operator then become results because the operator’s identifier is now linked to the
superstate. An indirect result is illustrated in Figure 77).

Justifications: Determination of support for results

Some results receive [-support, while others receive O-support. The type of support
received by a result is determined by the function it plays in the superstate, and not
the function it played in the state in which it was created. For example, a result
might be created through operator application in the state that created it; however,
it might only be a state elaboration in the superstate. The first function would be
lead to O-support, but the second would lead to I-support.

30 CHAPTER 2. THE SOAR ARCHITECTURE

In order for the architecture to determine whether a result receives I-support or O-
support, Soar must first determine the function that the working memory element
or preference performs (that is, whether the result should be considered an operator
application or not). To do this, Soar creates a temporary production, called a justi-
fication. The justification summarizes the processing in the substate that led to the
result:

The conditions of a justification are those working memory elements that exist in
the superstate (and above) that were necessary for producing the result. This
is determined by collecting all of the working memory elements tested by the
productions that fired in the subgoal that led to the creation of the result, and
then removing those conditions that test working memory elements created in
the subgoal.

The action of the justification is the result of the subgoal.

Soar determines I-support or O-support for the justification just as it would for any
other production, as described in Section 2.3.3. If the justification is an operator
application, the result will receive O-support. Otherwise, the result gets I-support
from the justification. If a such a result loses I-support from the justification, it will
be retracted if there is no other support. Justification are not added to production

memory, but are otherwise treated as an instantiated productions that have already
fired.

Justifications include any negated conditions that were in the original productions
that participated in producing the results, and that test for the absence of superstate
working memory elements. Negated conditions that test for the absence of working
memory elements that are local to the substate are not included, which can lead to
overgeneralization in the justification (see Section 4.6 on page 82 for details).

2.6.4 Removal of Substates: Impasse Resolution

Problem solving in substates is an important part of what Soar does, and an operator
impasse does not necessarily indicate a problem in the Soar program. They are a
way to decompose a complex problem into smaller parts and they provide a context
for a program to deliberate about which operator to select. Operator impasses are
necessary, for example, for Soar to do any learning about problem solving (as will
be discussed in Chapter 4). This section describes how impasses may be resolved
during the execution of a Soar program, how they may be eliminated during execution
without being resolved, and some tips on how to modify a Soar program to prevent
a specific impasse from occurring in the first place.

Resolving Impasses

An impasse is resolved when processing in a subgoal creates results that lead to the
selection of a new operator at for the state where the impasse arose. When an operator

2.6. IMPASSES AND SUBSTATES 31

impasse is resolved, Soar has an opportunity to learn, and the substate (and all its
substructure) is removed from working memory.

Listed below are possible approaches for resolving specific types of impasses:

Tie impasse — A tie impasse can be resolved by productions that create prefer-
ences that prefer one option (better, best, require), eliminate alternatives
(worse, worst, reject, prohibit), or make the all of the objects indifferent
(indifferent).

Conflict impasse — A conflict impasse can be resolved by productions that cre-
ate preferences to require one option (require), or eliminate the alternatives
(reject, prohibit).

Constraint-failure impasse — A constraint-failure impasse cannot be resolved by
additional preferences, but may be prevented by changing productions so that
they create fewer require or prohibit preferences.

State no-change impasse — A state no-change impasse can be resolved by pro-
ductions that create acceptable or require preferences for operators.

Operator no-change impasse — An operator no-change impasse can be resolved
by productions that apply the operator, changing the state so the operator
proposal no longer matches, or other operators are proposed and preferred.

Eliminating Impasses

An impasse is resolved when results are created that allow progress to be made in the
state where the impasse arose. In Soar, impasse can be eliminated (but not resolved)
when a higher level impasse is resolved, eliminated, or regenerated. In these cases, the
impasse becomes irrelevant because higher-level processing can proceed. An impasse
can also become irrelevant if input from the outside world changes working memory
which in turn causes productions to fire that make it possible to select an operator.
In all these cases, the impasse is eliminated, but not “resolved”, and Soar does not
learn in this situation.

Regenerating Impasses

An impasse is regenerated when the problem solving in the subgoal becomes inconsis-
tent with the current situation. During problem solving in a subgoal, Soar monitors
which aspect of the surrounding situation (the working memory elements that exist in
superstates) the problem solving in the subgoal has depeneded upon. If those aspects
of the surronding situation change, either because of changes in input or because of
results, the problem solving in the subgoal is inconsistent, and the state created in
response to the original impasse is removed and a new state is created. Problem
solving will now continue from this new state. The impasse is not “resolved”, and
Soar does not learn in this situation.

The reason for regeneration is to guarantee that the working memory elements and
preferences created in a substate are consistent with higher level states. As stated

32 CHAPTER 2. THE SOAR ARCHITECTURE

above, inconsistency can arise when a higher level state changes either as a result of
changes in what is sensed in the external environment, or from results produced in
the subgoal. The problem with inconsistency is that once inconsistency arises, the
problem being solved in the subgoal may no longer be the problem that actually needs
to be solved. Luckily, not all changes to a superstate lead to inconsistency.

In order to detect inconsistencies, Soar maintains a dependency set for every sub-
goal/substate. The dependency set consists of all working memory elements that
were tested in the conditions of productions that created O-supported working mem-
ory elements that are directly or indirectly linked to the substate. Thus, whenever
such an O-supported working memory element is created, Soar records which work-
ing memory elements that exist in a superstate were tested, directly or indirectly in
creating that working memory element. dependency-set Whenever any of the work-
ing memory elements in the dependency set of a substate change, the substate is
regenerated.

Note that the creation of I-supported structures in a subgoal does not increase the
dependency set, nor do O-supported results. Thus, only subgoals that involve the
creation of internal O-support working memory elements risk regeneration, and then
only when the basis for the creation of those elements changes.

Substate Removal

Whenever a substate is removed, all working memory elements and preferences that
were created in the substate that are not results are removed from working memory.
In Figure 2.10, state S3 will be removed from working memory when the impasse that
created it is resolved. That is, when sufficient preferences have been generated so that
one of the operators for state S2 can be selected. When state S3 is removed, operator
09 and problem space P3 will also be removed, as will the acceptable preferences for
07, 08, and 09, and the impasse, attribute, and choices augmentations of state
S3. These working memory elements are removed because they are no longer linked
to the subgoal stack. The acceptable preferences for operators 04, 05, and 06 remain
in working memory. They were linked to state S3, but since they are also linked to
state S2, so they will stay in working memory until S2 is removed (or until they are
retracted or rejected).

2.6.5 Soar’s Execution Cycle: With Substates

When there are multiple substates, Soar’s cycle remains basically the same but has
a few minor changes.

The first change is that during the decision procedure, Soar will detect impasses and
create new substates. For example, following the proposal phase, the decision phase
will detect if a decision cannot be made given the current preferences. If an impasse
arises, a new substate is created and added to working memory.

2.7. LEARNING 33

The decision procedure will detect an operator no-change impasse as soon as an
operator is selected and added to working memory by checking to see whether or not
productions will create O-supported actions during the next application phae. If no
O-suppored actions will be created, the decision procedure will immediately create an
operator no-change impasse, and then proceed to output, input, and so on. In these
cases, the operator no-change is made in the same decision as the operator selection.
There will be cases where the operator no-change happens on the following decisions,
such as when there are O-supported productions that will fire, but do not lead to a
change in the selected operator.

The second change when there are multiple substates is that at each phase, Soar
goes through the substates, from oldest (highest) to newest (lowest), completing any
necessary processing at that level for that phase before doing any processing in the
next substate. When firing productions for the proposal or application phases, Soar
processes the firing (and retraction) of rules, starting from those matching the oldest
substate to the newest. Whenever a production fires or retracts, changes are made
to working memory and preference memory, possibly changing which productions
will match at the lower levels (productions firing within a given level are fired in
parallel — simulated). Productions firings at higher levels can resolve impasses and
thus eliminate lower states before the productions at the lower level ever fire. Thus,
whenever a level in the state stack is reached, all production activity is guaranteed
to be consistent with any processing that has occurred at higher levels.

2.7 Learning

When an operator impasse is resolved, it means that Soar has, through problem
solving, gained access to knowledge that was not readily available before. Therefore,
when an impasse is resolved, Soar has an opportunity to learn, by summarizing and
generalizing the processing in the substate.

Soar’s learning mechanism is called chunking; it attempts to create a new production,
called a chunk. The conditions of the chunk are the elements of the state that (through
some chain of production firings) allowed the impasse to be resolved; the action of the
production is the working memory element or preference that resolved the impasse
(the result of the impasse). The conditions and action are variablized so that this new
production may match in a similar situation in the future and prevent an impasse
from arising.

Chunks are very similar to justifications in that they are both formed via the back-
tracing process and both create a result in their actions. However, there are some
important distinctions:

1. Chunks are productions and are added to production memory. Justifications
do not appear in production memory.

2. Justifications disappear as soon as the working memory element or preference
they provide support for is removed.

34 CHAPTER 2. THE SOAR ARCHITECTURE

3. Chunks contain variables so that they may match working memory in other
situations; justifications are similar to an instantiated chunk.

2.8 Input and Output

Many Soar users will want their programs to interact with a real or simulated envi-
ronment. For example, Soar programs may control a robot, receiving sensory inputs
and sending command outputs. Soar programs may also interact with simulated envi-
ronments, such as a flight simulator. Input is viewed as Soar’s perception and output
is viewed as Soar’s motor abilities.

When Soar interacts with an external environment, it must make use of mechanisms
that allow it to receive input from that environment and to effect changes in that
environment; the mechanisms provided in Soar are called input functions and output
functions.

Input functions add and delete elements from working memory in response to
changes in the external environment.

Output functions attempt to effect changes in the external environment.

Input is processed at the beginning of each execution cycle and output occurs at the

end of each execution cycle.

Using input and output functions with Soar will be discussed briefly in Chapter 3.5,
and in more detail in The Soar Advanced Applications Manual.

Chapter 3

The Syntax of Soar Programs

This chapter describes in detail the syntax of elements in working memory, preference
memory, and production memory, and how impasses and I/O are represented in
working memory and in productions. Working memory elements and preferences are
created as Soar runs, while productions are created by the user or through chunking.
The bulk of this chapter explains the syntax for writing productions.

The first section of this chapter describes the structure of working memory elements in
Soar; the second section describes the structure of preferences; and the third section
describes the structure of productions. The fourth section describes the structure
of impasses. An overview of how input and output appear in working memory is
presented in the fifth section; the full discussion of Soar I/O found in The Soar
Advanced Applications Manual.

This chapter assumes that you understand the operating principles of Soar, as pre-
sented in Chapter 2.

3.1 Working Memory

Working memory contains working memory elements (WME’s). As described in
Section 2.2, WME’s can be created by the actions of productions, the evaluation of
preferences, the Soar architecture, and via the input/output system.

A WME is a list consisting of three symbols: an identifier, an attribute, and a value,
where the entire WME is enclosed in parentheses and the attribute is preceded by an
up-arrow (). A template for a working memory element is:

(identifier “attribute value)

The identifier is an internal symbol, generated by the Soar architecture as it runs. The
attribute and value can be either identifiers or constants; if they are identifiers, there
are other working memory elements that have that identifier in their first position.
As the previous sentences demonstrate, identifier is used to refer both to the first

35

36 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

position of a working memory element, as well as to the symbols that occupy that
position.

3.1.1 Symbols

Soar distinguishes between two types of working memory symbols: identifiers and
constants.

Identifiers: An identifier is a unique symbol, created at runtime when a new object
is added to working memory. The names of identifiers are created by Soar, and consist
of a single uppercase letter followed by a string of digits, such as G37 or 022.

(The Soar user interface will also allow users to specify identifiers using lowercase
letters, for example, when using the print command. But internally, they are actually
uppercase letters.)

Constants: There are three types of constants: integers, floating-point, and sym-
bolic constants:

e Integer constants (numbers). The range of values depends on the machine and
implementation you're using, but it is at least [-2 billion..2 billion].

e Floating-point constants (numbers). The range depends on the machine and
implementation you're using.

e Symbolic constants. These are symbols with arbitrary names. A constant can
use any combination of letters, digits, or $%&*+-/:<=>?7_ Other characters (such
as blank spaces) can be included by surrounding the complete constant name
with vertical bars: |This is a constant|. (The vertical bars aren’t part of
the name; they’re just notation.) A vertical bar can be included by prefacing it
with a backslash inside surrounding vertical bars: |0dd-symbol\ |name |

Identifiers should not be confused with constants, although they may “look the same”;
identifiers are generated (by the Soar architecture) at runtime and will not necessarily
be the same for repeated runs of the same program. Constants are specified in the
Soar program and will be the same for repeated runs.

Even when a constant “looks like” an identifier, it will not act like an identifier in
terms of matching. A constant is printed surrounded by vertical bars whenever there
is a possibility of confusing it with an identifier: |G37| is a constant while G37 is an
identifier. To avoid possible confusion, you should not use letter-number combinations
as constants or for production names.

3.1.2 Objects

Recall from Section 2.2 that all WME’s that share an identifier are collectively called
an object in working memory. The individual working memory elements that make
up an object are often called augmentations, because they augment the object. A
template for an object in working memory is:

3.1. WORKING MEMORY 37

(identifier “attribute-1 value-1 “attribute-2 value-2
~attribute-3 value-3... “attribute-n value-n)

For example, if you run Soar with the example blocks-world program described in
Appendix 7?7, after one elaboration cycle, you can look at the top-level state by using
the print command:

soar> print sl

(S1 “io Il “ontop 02 “ontop 03 “ontop 01 “problem-space blocks
“superstate nil “thing B3 “thing T1 “thing B1 “thing B2
“type state)

The attributes of an object are printed in alphabetical order to make it easier to find
a specific attribute.

Working memory is a set, so that at any time, there are never duplicate versions
of working memory elements. However, it is possible for several working memory
elements to share the same identifier and attribute but have different values. Such
attributes are called multi-valued attributes or multi-attributes. For example, state
S1, above, has two attributes that are multi-valued: thing and ontop.

3.1.3 Timetags

When a working memory element is created, Soar assigns it a unique integer timetag.
The timetag is a part of the working memory element, and therefore, WME’s are
actually quadruples, rather than triples. However, the timetags are not represented
in working memory and cannot be matched by productions. The timetags are used to
distinguish between multiple occurrences of the same WME. As preferences change
and elements are added and deleted from working memory, it is possible for a WME
to be created, removed, and created again. The second creation of the WME — which
bears the same identifier, attribute, and value as the first WME — is different, and
therefore is assigned a different timetag. This is important because a production will
fire only once for a given instantiation, and the instantiation is determined by the
timetags that match the production and not by the identifier-attribute-value triples.

To look at the timetags of WMESs, the wmes command can be used:

soar> wmes sl

(3: 81 “io I1)

(10: S1 “ontop 02)

(9: S1 “ontop 03)

(11: S1 “ontop 01)

(4: S1 “problem-space blocks)
(2: S1 “superstate nil)

(6: S1 ~“thing B3)

(5: S1 “thing T1)

38

(8:
(7:
(1:

S1
S1
S1

CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

~thing B1)
“thing B2)
“type state)

This shows all the individual augmentations of S1, each is preceded by an integer
timetag.

3.1.4 Acceptable preferences in working memory

The acceptable preferences for the operator augmentations of states appear in working
memory as identifier-attribute-value-preference quadruples. No other preferences ap-
pear in working memory. A template for an acceptable preference in working memory

1S:

(identifier “operator value +)

For example, if you run Soar with the example blocks-world program described in
Appendix ??, after the first operator has been selected, you can again look at the
top-level state using the wmes command:

soar> wmes sl
(3: S1 "io I1)
(9: S1 “ontop 03)

(10:
(11:
(48:
(49:
(50:
(51:
(54:
(52:
(53:

(4.
(2:
(5:
(8:
(6:
(7:
(1:

S1
S1
S1
S1
S1
S1
S1
S1
S1
S1
S1
S1
S1
S1
S1
S1

“ontop 02)
“ontop 01)
“operator 04 +)
“operator 05 +)
“operator 06 +)
“operator 07 +)
“operator 07)
“operator 08 +)
“operator 09 +)
“problem-space blocks)
“superstate nil)
~thing T1)
~thing B1)
“thing B3)
“thing B2)
“type state)

The state S1 has six augmentations of acceptable preferences for different operators
(04 through 09). These have plus signs following the value to denote that they are
acceptable preferences. The state has exactly one operator, 07. This state corresponds
to the illustration of working memory in Figure 2.4.

3.1. WORKING MEMORY 39

isa_~tolor size

apple red small

box orange large

isa size @ = identifiers
ball red big
_Fame = attributes

state = values

Figure 3.1: A semantic net illustration of four objects in working memory.

3.1.5 Working Memory as a Graph

Not only is working memory a set, it is also a graph structure where the identifiers
are nodes, attributes are links, and constants are terminal nodes. Working memory
is not an arbitrary graph, but a graph rooted in the states. Therefore, all WMEs are
linked either directly or indirectly to a state. The impact of this constraint is that
all WMEs created by actions are linked to WMEs tested in the conditions. The link
is one-way, from the identifier to the value. Less commonly, the attribute of a WME
may be an identifier.

Figure 3.1 illustrates four objects in working memory; the object with identifier X44
has been linked to the object with identifier 043, using the attribute as the link,
rather than the value. The objects in working memory illustrated by this figure are:

(043 ~“isa apple “color red “inside 053 “size small “X44 200)
(087 ~isa ball “color red “inside 053 “size big)

(053 ~isa box “size large “color orange “contains 043 087)
(X44 ~“unit grams “property mass)

In this example, object 043 and object 087 are both linked to object 053 through (053
"contains 043) and (053 “contains 087), respectively (the contains attribute is
a multi-valued attribute). Likewise, object 053 is linked to object 043 through (043

40 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

"inside 053) and linked to object 087 through (087 “inside 053). Object X44 is
linked to object 043 through (043 "X44 200).

Links are transitive so that X44 is linked to 053 (because 043 is linked to 053 and
X44 is linked to 043). However, since links are not symmetric, 053 is not linked to
X44.

3.2 Preference Memory

Preferences are created by production firings and express the relative or absolute mer-
its for selecting an operator for a state. When preferences express an absolute rating,
they are identifier-attribute-value-preference quadruples; when preferences express
relative ratings, they are identifier-attribute-value-preference-value quintuples

For example,
(81 “operator 03 +)

is a preference that asserts that operator O3 is an acceptable operator for state S1,
while

(81 “operator 03 > 04)

is a preference that asserts that operator O3 is a better choice for the operator of
state S1 than operator O4.

The semantics of preferences and how they are processed were described in Section
2.4, which also described each of the twelve different types of preferences. Multiple
production instantiations may create identical preferences. Unlike working memory,
preference memory is not a set: Duplicate preferences are allowed in preference mem-
ory.

3.3 Production Memory

Production memory contains productions, which can be loaded in by a user (typed in
while Soar is running or sourced from a file) or generated by chunking while Soar is
running. Productions (both user-defined productions and chunks) may be examined
using the print command, described in Section 6.2.6 on page 107.

Each production has three required components: a name, a set of conditions (also
called the left-hand side, or LHS), and a set of actions (also called the right-hand
side, or RHS). There are also two optional components: a documentation string and

a type.

Syntactically, each production consists of the symbol sp, followed by: an opening curly
brace, {; the production’s name; the documentation string (optional); the production

3.3. PRODUCTION MEMORY 41

sp {blocks-world*propose*move-block
(state <s> “problem-space blocks
“thing <thingl> {<> <thingl> <thing2>}
“ontop <ontop>)
(<thingl> “type block ~“clear yes)
(<thing2> “clear yes)
(<ontop> “top-block <thingl>
“bottom-block <> <thing2>)
-——>
(<s> ~operator <o> +)
(<0> “name move-block
“moving-block <thingl>
“destination <thing2>)}

Figure 3.2: An example production from the example blocks-world task.

type (optional); comments (optional); the production’s conditions; the symbol -->
(literally: dash-dash-greaterthan); the production’s actions; and a closing curly brace,
}. Each element of a production is separated by white space. Indentation and linefeeds
are used by convention, but are not necessary.

sp {production-name
Documentation string
:type
CONDITIONS
-—>
ACTIONS
X

An example production, named “blocks-world*propose*move-block”, is shown in
Figure 3.2. This production proposes operators named move-block that move blocks
from one location to another. The details of this production will be described in the
following sections.

Conventions for indenting productions

Productions in this manual are formatted using conventions designed to improve their
readability. These conventions are not part of the required syntax. First, the name of
the production immediately follows the first curly bracket after the sp. All conditions
are aligned with the first letter after the first curly brace, and attributes of an object
are all aligned The arrow is indented to align with the conditions and actions and the
closing curly brace follows the last action.

42 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

3.3.1 Production Names

The name of the production is an almost arbitrary constant. (See Section 3.1.1
for a description of constants.) By convention, the name describes the role of the
production, but functionally, the name is just a label primarily for the use of the
programimer.

A production name should never be a single letter followed by numbers, which is the
format of identifiers.

The convention for naming productions is to separate important elements with aster-
isks; the important elements that tend to appear in the name are:

1. The name of the task or goal (e.g., blocks-world).

2. The name of the architectural function (e.g., propose).

3. The name of the operator (or other object) at issue. (e.g., move-block)
4. Any other relevant details.

This name convention enables one to have a good idea of the function of a production
just by examining its name. This can help, for example, when you are watching Soar
run and looking at the specific productions that are firing and retracting. Since Soar
uses white space to delimit components of a production, if whitespace inadvertently
occurs in the production name, soar will complain that an open parenthesis was
expected to start the first condition.

3.3.2 Documentation string (optional)

A production may contain an optional documentation string. The syntax for a docu-
mentation string is that it is enclosed in double quotes and appears after the name of
the production and before the first condition (and may carry over to multiple lines).
The documentation string allows the inclusion of internal documentation about the
production; it will be printed out when the production is printed using the print
command.

3.3.3 Production type (optional)

A production may also include an optional production type, which may specify that
the production should be considered a default production (:default) or a chunk
(:chunk), or may specify that a production should be given O- support (:o-support)
or [-support (:i-support). Users are discouraged from using these types. These types
are described in Section 6.1.9, which begins on Page 95.

3.3. PRODUCTION MEMORY 43

3.3.4 Comments (optional)

Productions may contain comments, which are not stored in Soar when the production
is loaded, and are therefore not printed out by the print command. A comment is
begun with a pound sign character # and ends at the end of the line. Thus, everything
following the # is not considered part of the production, and comments that run across
multiple lines must each begin with a #.

For example:

sp {blocks-world*propose*move-block
(state <s> “problem-space blocks
“thing <thingl> {<> <thingl> <thing2>}
“ontop <ontop>)
(<thingl> “type block ~“clear yes)
(<thing2> “clear yes)
(<ontop> “top-block <thingl>
“bottom-block <> <thing2>)
-=>
(<s> ~“operator <o> +)
(<0> "name move-block # you can also use in-line comments
“moving-block <thingl>
“destination <thing2>)}

When commenting out conditions or actions, be sure that all parentheses remain
balanced outside the comment.

External comments

Comments may also appear in a file with Soar productions, outside the curly braces
of the sp command. Comments must either start a new line with a # or start with
;#. In both cases, the comment runs to the end of the line.

imagine that this is part of a "Soar program" that contains
Soar productions as well as some other code.

source blocks.soar ;# this is also a comment

3.3.5 The condition side of productions (or LHS)

The condition side of a production, also called the left-hand side (or LHS) of the
production, is a pattern for matching one or more WMEs. When all of the conditions
of a production match elements in working memory, the production is said to be
instantiated, and is ready to perform its action.

The following subsections describe the condition side of a production, including predi-

44 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

cates, disjunctions, conjunctions, negations, acceptable preferences for operators, and
a few advanced topics. A grammar for the condition side is given in Appendix ?77.

3.3.5.1 Conditions

The condition side of a production consists of a set of conditions. Fach condition tests
for the existence or absence (explained later in Section 3.3.5.6) of working memory
elements. Each condition consists of a open parenthesis, followed by a test for the
identifier, and the tests for augmentations of that identifier, in terms of attributes and
values. The condition is terminated with a close parenthesis. Thus, a single condition
might test properties of a single working memory element, or properties of multiple
working memory elements that constitute an object.

(identifier-test “attributel-test valuel-test
“attribute2-test value2-test
“attribute3-test value3-test

)

The first condition in a production must match against a state in working memory.
Thus, the first condition must begin with the additional symbol “state”. All other
conditions and actions must be linked directly or indirectly to this condition. This
linkage may be direct to the state, or it may be indirect, through objects specified in
the conditions. If the identifiers of the actions are not linked to the state, a warning is
printed when the production is parsed, and the production is not stored in production
memory. In the actions of the example production shown in Figure 3.2, the operator
preference is directly linked to the state and the remaining actions are linked indirectly
via the operator first preference.

Although all of the attribute tests in the template above are followed by value tests,
it is possible to test for only the existence of an attribute and not test any specific
value by just including the attribute and no value. Another exception to the above
template is operator preferences, which have the following structure where a plus sign
follows the value test.

(state-identifier-test “operator valuel-test +

)

In the remainder of this section, we describe the different tests that can be used
for identifiers, attributes, and values. The simplest of these is a constant, where
the constant specified in the attribute or value must match the same constant in a
working memory element.

3.3.5.2 Variables in productions

Variables match against constants in working memory elements in the identifier, at-
tribute, or value positions. Variables can be further constrained by additional tests

3.3. PRODUCTION MEMORY 45

(described in later sections) or by multiple occurrences in conditions. If a variable oc-
curs more than once in the condition of a production, the production will match only
if the variables match the same identifier or constant. However, there is no restriction
that prevents different variables from binding to the same identifier or constant.

Because identifiers are generated by Soar at run time, it impossible to include tests for
specific identifiers in conditions. Therefore, variables are used in conditions whenever
an identifier is to be matched.

Variables also provide a mechanism for passing identifiers and constants which match
in conditions to the action side of a rule.

Syntactically, a variable is a symbol that begins with a left angle-bracket (i.e., <), ends
with a right angle-bracket (i.e., >), and contains at least one alphanumeric symbol in
between.

In the example production in Figure 3.2, there are seven variables: <s>, <clearl>,
<clear2>, <ontop>, <blockl> <block2>, and <o>.

The following table gives examples of legal and illegal variable names.

Legal variables | Illegal variables
<s> <>

<1> <1

<variablel> variable>
<abc1> <a b>

3.3.5.3 Predicates for values

A test for an identifier, attribute, or value in a condition (whether constant or variable)
can be modified by a preceding predicate. There are six predicates that can be used:
<>, <=>, <, <=, >=, >.

b 3

Predicate | Semantics of Predicate

<> Not equal. Matches anything except the value immediately
following it.
<=> Same type. Matches any symbol that is the same type (identifier,

integer, floating-point, non-numeric constant) as the value
immediately following it.

< Numerically less than the value immediately following it.

<= Numerically less than or equal to the value immediately
following it.

>= Numerically greater than or equal to the value immediately
following it.

> Numerically greater than the value immediately following it.

The following table shows examples of legal and illegal predicates:

46 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

Legal predicates | Illegal predicates
> <valuex> > > <valuey>

<1 1>

<=> <y> = 10

Example Production

sp {propose-operator*to-show-example-predicate
(state <s> “car <c>)
(<c> “style convertible “color <> rust)
-—>
(<s> ~operator <o> +)
(o> “name drive-car “car <c>) }

In this production, there must be a “color” attribute for the working memory object
that matches <c>, and the value of that attribute must not be “rust”.

3.3.5.4 Disjunctions of values

A test for an identifier, attribute, or value may also be for a disjunction of constants.
With a disjunction, there will be a match if any one of the constants is found in
a working memory element (and the other parts of the working memory element
matches). Variables and predicates may not be used within disjunctive tests.

Syntactically, a disjunctive test is specified with double angle brackets (i.e., << and
>>). There must be spaces separating the brackets from the constants.

The following table provides examples of legal and illegal disjunctions:

Legal disjunctions Illegal disjunctions
<< A B C 45 I17 >> << <A> A >>

<< 5 10 >> << < 5> 10 >

<< good-morning good-evening >> | <<A B C >>

Example Production

For example, the third condition of the following production contains a disjunction
that restricts the color of the table to red or blue:

sp {blocks*example-production-conditions
(state “operator <o> + “table <t>)
(<0> “name move-block)
(<t> “type table “color << red blue >>)
-—>

3.3. PRODUCTION MEMORY 47

Note

Disjunctions of complete conditions are not allowed in Soar. Multiple (similar) pro-
ductions fulfill this role.

3.3.5.5 Conjunctions of values
A test for an identifier, attribute, or value in a condition may include a conjunction
of tests, all of which must hold for there to be a match.

Syntactically, conjuncts are contained within curly braces (i.e., { and }). The follow-
ing table shows some examples of legal and illegal conjunctive tests:

Legal conjunctions Illegal conjunctions
<= <a> >= } { <x> < <a> + }
<x> > <y> } {>> <>}

<> x> <y> }
<< ABC > <x>}
<=><x> > <y> << 1234 > <z>}

[t Nt Vet Wt Vet

Because those examples are a bit difficult to interpret, let’s go over the legal examples
one by one to understand what each is doing.

In the first example, the value must be less than or equal to the value bound to
variable <a> and greater than or equal to the value bound to variable .

In the second example, the value is bound to the variable <x>, which must also be
greater that the value bound to variable <y>.

In the third example, the value must not be equal to the value bound to variable
<x> and should be bound to variable <y>. Note the importance of order when using
conjunctions with predicates: in the second example, the predicate modifies <y>, but
in the third example, the predicate modifies <x>.

In the fourth example, the value must be one of A, B, or C, and the second conjunctive
test binds the value to variable <x>.

In the fifth example, there are four conjunctive tests. First, the value must be the
same type as the value bound to variable <x>. Second, the value must be greater
than the value bound to variable <y>. Third, the value must be equal to 1, 2, 3, or
4. Finally, the value should be bound to variable <z>.

In Figure 3.2, a conjunctive test is used for the thing attribute in the first condition.

48 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

3.3.5.6 Negated conditions

In addition to the positive tests for elements in working memory, conditions can also
test for the absence of patterns. A negated condition will be matched only if there does
not exist a working memory element consistent with its tests and variable bindings.
Thus, it is a test for the absence of a working memory element.

Syntactically, a negated condition is specified by preceding a condition with a dash
(i.e., “=7).

For example, the following condition tests the absence of a working memory element
of the object bound to <p1> "“type father.

-(<p1> ~“type father)

A negation can be used within an object with many attribute-value pairs by having
it precede a specific attribute:

(<p1> “name john -"type father “spouse <p2>)

In that example, the condition would match if there is a working memory element
that matches (<p1> "“name john) and another that matches (<p1> "spouse <p2>),
but is no working memory element that matches (<p1> “type father) (when p1 is
bound to the same identifier).

On the other hand, the condition:
-(<p1> “name john “type father ~“spouse <p2>)

would match only if there is no object in working memory that matches all three
attribute-value tests.

Example Production

sp {defaultxevaluate-object
(state <ss> “operator <so>)
(<so> “type evaluation
“superproblem-space <p>)
-(<p> “default-state-copy no)
-—>
(<so> ~“default-state-copy yes) }

Notes

One use of negated conditions to avoid is testing for the absence of the working
memory element that a production creates with I-support; this would lead to an

3.3. PRODUCTION MEMORY 49

“infinite loop” in your Soar program, as Soar would repeatedly fire and retract the
production.

3.3.5.7 Negated conjunctions of conditions

Conditions can be grouped into conjunctive sets by surrounding the set of conditions
with { and }. The production compiler groups the test in these conditions together.
This grouping allows for negated tests of more than one working memory element at
a time. In the example below, the state is tested to ensure that it does not have an
object on the table.

sp {blocks*negated-conjunction-example
(state <s> “name top-state)
-{(<s> “ontop <on>)
(<on> “bottom-object <bo>)
(<bo> ~“type table)}
-=>
(<s> “nothing-ontop-table true) }

When using negated conjunctions of conditions, the production has nested curly
braces. One set of curly braces delimits the production, while the other set delimits
the conditions to be conjunctively negated.

If only the last condition, (<bo> “type table) were negated, the production would
match only if the state had an ontop relation, and the ontop relation had a bottom-
object, but the bottom object wasn’t a table. Using the negated conjunction, the
production will also match when the state has no ontop augmentation or when it has
an ontop augmentation that doesn’t have a bottom-object augmentation.

The semantics of negated conjunctions can be thought of in terms of mathematical
logic, where the negation of (A A B A C):

“(AANBAC)

can be rewritten as:

(=A) vV (=B) v (=C)

That is, “not (A and B and C)” becomes “(not A) or (not B) or (not C)”.

3.3.5.8 Multi-valued attributes

An object in working memory may have multiple augmentations that specify the
same attribute with different values; these are called multi-valued attributes, or multi-
attributes for short. To shorten the specification of a condition, tests for multi-valued
attributes can be shortened so that the value tests are together.

For example, the condition:

50 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

(<p1> “type father ~“child sally “child sue)
could also be written as:

(<p1> ~“type father ~“child sally sue)

Multi-valued attributes and variables

When variables are used with multi-valued attributes, remember that variable bind-
ings are not unique unless explicitly forced to be so. For example, to test that an
object has two values for attribute child, the variables in following condition can
match to the same value.

(<p1> “type father ~child <c1> <c2>)

To do tests for multi-valued attributes with variables correctly, conjunctive tests must
be used, as in:

(<p1> ~“type father ~“child <c1> {<> <cl1> <c2>})

The conjunctive test {<> <c1> <c2>} ensures that <c2> will bind to a different
value than <c1> binds to.

Negated conditions and multi-valued attributes

A negation can also precede an attribute with multiple values. In this case it tests
for the absence of the conjunction of the values. For example

(<p1> “name john -"child oprah uma)

is the same as

(<p1> “name john)
-{(<p1> ~child oprah)
(<p1> “child uma)}

and the match is possible if either (<p1> “child oprah) or (<p1> “child uma)
cannot be found in working memory with the binding for <p1> (but not if both are
present).

3.3.5.9 Acceptable preferences for operators

The only preferences that can appear in working memory are acceptable preferences
for operators, and therefore, the only preferences that may appear in the conditions
of a production are acceptable preferences for operators.

3.3. PRODUCTION MEMORY 51

Acceptable preferences for operators can be matched in a condition by testing for a
“+” following the value. This allows a production to test the existence of a candidate
operator and its properties, and possibly create a preference for it, before it is selected.

In the example below, “operator <o> + matches the acceptable preference for the
operator augmentation of the state. This does not test that operator <o> has been
selected as the current operator.

sp {blocks*example-production-conditions
(state “operator <o> + “table <t>)
(<0> “name move-block)
-—>

.}

In the example below, the production tests the state for acceptable preferences for
two different operators (and also tests that these operators move different blocks):

sp {blocks*example-production-conditions
(state “operator + <02> + “table <t>)
(<o1> “name move-block “moving-block <ml1> “destination <d1>)
(02> “name move-block “moving-block {<m2> <> <m1>}
“destination <d2>)
-—>

3.3.5.10 Attribute tests

The previous examples applied all of the different test to the values of working memory
elements. All of the tests that can be used for values can also be used for attributes
and identifiers (except those including constants).

Variables in attributes

Variables may be used with attributes, as in:

sp {blocks*example-production-conditions
(state <s> “operator <o> +
“thing <t> {<> <t> <t2>})
(operator <o> “name group
“by-attribute <a>
“moving-block <t>
“destination <t2>)
(<t> “type block “<a> <x>)
(<t2> ~“type block ~<a> <x>)
-—>
(<s> ~operator <o> >) }

52 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

This production tests that there is acceptable operator that is trying to group blocks
according to some attribute, <a>, and that block <t> and <t2> both have this at-
tribute (whatever it is), and have the same value for the attribute.

Predicates in attributes

Predicates may be used with attributes, as in:

sp {blocks*example-production-conditions
(state “operator <o> + “table <t>)
(<t> ~<> type table)
-->

.}

which tests that the object with its identifier bound to <t> must have an attribute
whose value is table, but the name of this attribute is not type.

Disjunctions of attributes

Disjunctions may also be used with attributes, as in:

sp {blocks*example-production-conditions
(state “operator <o> + “table <t>)
(<t> “<< type name>> table)
-—>

.

which tests that the object with its identifier bound to <t> must have either an
attribute type whose value is table or an attribute name whose value is table.

Conjunctive tests for attributes

Section 3.3.5.5 illustrated the use of conjunctions for the values in conditions. Con-
junctive tests may also be used with attributes, as in:

sp {blocks*example-production-conditions
(state “operator <o> + “table <t>)
(<t> ~{<ta> <> name} table)
-=>

.}

which tests that the object with its identifier bound to <t> must have an attribute
whose value is table, and the name of this attribute is not name, and the name of
this attribute (whatever it is) is bound to the variable <ta>.

3.3. PRODUCTION MEMORY 53

When attribute predicates or attribute disjunctions are used with multi-valued at-
tributes, the production is rewritten internally to use a conjunctive test for the at-
tribute; the conjunctive test includes a variable used to bind to the attribute name.
Thus,

(<p1> “type father ~ <> name sue sally)
is interpreted to mean:

(<p1> “type father ~ {<> name <a*1>} sue ~ <a*1> sally)

3.3.5.11 Attribute-path notation

Often, variables appear in the conditions of productions only to link the value of one
attribute with the identifier of another attribute. Attribute-path notation provides a
shorthand so that these intermediate variables do not need to be included.

Syntactically, path notation lists a sequence of attributes separated by dots (.), after
the * in a condition.

For example, using attribute path notation, the production:

sp {blocks-world*monitor*move-block
(state <s> “operator <o>)
(<0> “name move-block
“moving-block <blockl>
“destination <block2>)
(<blockl> “name <blockl-name>)
(<block2> “name <block2-name>)
-—>
(write (crlf) |Moving Block: | <blockl-name>
| to: | <block2-name>) }

could be written as:

sp {blocks-world*monitor*move-block

(state <s> “operator <o>)

(<0> "name move-block
“moving-block.name <blockl-name>
“destination.name <block2-name>)

-=>

(write (crlf) |Moving Block: | <blockl-name>

| to: | <block2-name>) }

Attribute-path notation yields shorter productions that are easier to write, less prone
to errors, and easier to understand.

When attribute-path notation is used, Soar internally expands the conditions into
the multiple Soar objects, creating its own variables as needed. Therefore, when you

54 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

print a production (using the print command), the production will not be represented
using attribute-path notation.

Negations and attribute path notation

A negation may be used with attribute path notation, in which case it amounts to a
negated conjunction. For example, the production:

sp {blocks*negated-conjunction-example
(state <s> “name top-state)
-{(<s> ~“ontop <on>)
(<on> “bottom-object <bo>)
(<bo> ~“type table)}
-=>
(<s> “nothing-ontop-table true) }

could be rewritten as:

sp {blocks*negated-conjunction-example
(state <s> “name top-state -“ontop.bottom-object.type table)
-—>
(<s> “nothing-ontop-table true) }

Multi-valued attributes and attribute path notation

Attribute path notation may also be used with multi-valued attributes, such as:

sp {blocks-world*propose*move-block
(state <s> “problem-space blocks
“clear.block <block1> { <> <blockl> <block2> }
“ontop <ontop>)
(<blockl> ~“type block)
(<ontop> “top-block <blockl>
“bottom-block <> <block2>)
-—>
(<s> ~“operator <o> +)
(<0> "name move-block +
“moving-block <blockl> +
“destination <block2> +) }

Multi-attributes and attribute-path notation

Note: It would not be advisable to write the production in Figure 3.2 using attribute-
path notation as follows:

sp {blocks-world*propose*move-block*dont-do-this

3.3. PRODUCTION MEMORY 55

(state <s> “problem-space blocks
“clear.block <blockl>
“clear.block { <> <block1> <block2> }
“ontop.top-block <blockl>
“ontop.bottom-block <> <block2>)
(<blockl> ~“type block)
-—>

¥

This is not advisable because it corresponds to a different set of conditions than those
in the original production (the top-block and bottom-block need not correspond
to the same ontop relation). To check this, we could print the original production at
the Soar prompt:

soar> print blocks-world*propose*move-block*dont-do-this
sp {blocks-world*propose*move-block*dont-do-this
(state <s> “problem-space blocks ~“thing <thing2>
“thing { <> <thing2> <thingl> } “ontop <o*1> “ontop <o*2>)
(<thing2> “clear yes)
(<thingl> “clear yes “type block)
(<o*1> ~“top-block <thingl>)
(<0*2> “bottom-block { <> <thing2> <b*1> })
-—>
(<s> “operator <o> +)
(<0> “name move-block
“moving-block <thingl>
“destination <thing2>) }

Soar has expanded the production into the longer form, and created two distinctive
variables, <o*1> and <o*2> to represent the ontop attribute. These two variables
will not necessarily bind to the same identifiers in working memory.

Negated multi-valued attributes and attribute-path notation

Negations of multi-valued attributes can be combined with attribute-path notation.
However; it is very easy to make mistakes when using negated multi-valued attributes
with attribute-path notation. Although it is possible to do it correctly, we strongly
discourage its use.

For example,

sp {blocks*negated-conjunction-example
(state <s> “name top-state -“ontop.bottom-object.name table A)
-—>
(<s> “nothing-ontop-A-or-table true) }

56 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

gets expanded to:

sp {blocks*negated-conjunction-example

(state <s> “name top-state)

-{(<s> “ontop <o*1>)
(<ox1> “bottom-object <bx1>)
(<b*1> “name A)
(<b*1> “name table)}

-—>

(<s> “nothing-ontop-A-or-table true) }

This example does not refer to two different blocks with different names. It tests
that there is not an ontop relation with a bottom-block that is named A and named
table. Thus, this production probably should have been written as:

sp {blocks*negated-conjunction-example
(state <s> “"name top-state
-“ontop.bottom-object.name table
-“ontop.bottom-object.name A)
-—>
(<s> “nothing-ontop-A-or-table true) }

which expands to:

sp {blocks*negated-conjunction-example
(state <s> “name top-state)
-{(<s> “ontop <o*2>)
(<0*2> “bottom-object <b*2>)
(<b*2> “name a)}
-{(<s> “ontop <o*1>)
(<ox1> “bottom-object <bx1>)
(<bx1> “name table)}
-—>
(<s> “nothing-ontop-a-or-table true +) }

Notes on attribute-path notation

e Attributes specified in attribute-path notation may not start with a digit. For
example, if you type “foo.3.bar, Soar thinks the .3 is a floating-point number.
(Attributes that don’t appear in path notation can begin with a number.)

e Attribute-path notation may be used to any depth.

e Attribute-path notation may be combined with structured values, described in
Section 3.3.5.12.

3.3. PRODUCTION MEMORY 57

3.3.5.12 Structured-value notation

Another convenience that eliminates the use of intermediate variables is structured-
value notation.

Syntactically, the attributes and values of a condition may be written where a variable
would normally be written. The attribute-value structure is delimited by parentheses.

Using structured-value notation, the production in Figure 3.2 (on page 41) may also
be written as:

sp {blocks-world*propose*move-block
(state <s> “problem-space blocks
“thing <thingl> {<> <thingl> <thing2>}
“ontop (“top-block <thingl>
“bottom-block <> <thing2>))
(<thingl> “type block ~“clear yes)
(<thing2> “clear yes)
-—>
(<s> ~“operator <o> +)
(<0> “name move-block
“moving-block <thingl>
“destination <thing2>) }

Thus, several conditions may be “collapsed” into a single condition.

Using variables within structured-value notation

Variables are allowed within the parentheses of structured-value notation to specify
an identifier to be matched elsewhere in the production. For example, the variable
<ontop> could be added to the conditions (although it are not referenced again, so
this is not helpful in this instance):

sp {blocks-world*propose*move-block
(state <s> “problem-space blocks
“thing <thingl> {<> <thingl> <thing2>}
“ontop (<ontop>
“top-block <thingl>
“bottom-block <> <thing2>))
(<thingl> “type block ~“clear yes)
(<thing2> “clear yes)
-—>
(<s> ~operator <o> +)
(<o> “name move-block
“moving-block <thingl>
“destination <thing2>) }

58 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

Structured values may be nested to any depth. Thus, it is possible to write our
example production using a single condition with multiple structured values:

sp {blocks-world*propose*move-block
(state <s> “problem-space blocks
“thing <thingl>
({<> <thingl> <thing2>}
“clear yes)
“ontop (“top-block
(<thingl>
“type block
“clear yes)
“bottom-block <> <thing2>))
-—>
(<s> “operator <o> +)
(<0> "name move-block
“moving-block <thingl>
“destination <thing2>) }

Notes on structured-value notation

e Attribute-path notation and structured-value notation are orthogonal and can
be combined in any way. A structured value can contain an attribute path, or
a structure can be given as the value for an attribute path.

e Structured-value notation may also be combined with negations and with multi-
attributes.

e Structured-value notation may not be used in the actions of productions.

3.3.6 The action side of productions (or RHS)

The action side of a production, also called the right-hand side (or RHS) of the
production, consists of individual actions that can:

e Add new elements to working memory.
e Remove elements from working memory.
e Create preferences.

e Perform other actions

When the conditions of a production match working memory, the production is said to
be instantiated, and the production will fire during the next elaboration cycle. Firing
the production involves performing the actions using the same variable bindings that
formed the instantiation.

3.3. PRODUCTION MEMORY 59

3.3.6.1 Variables in Actions

Variables can be used in actions. A variable that appeared in the condition side will
be replaced with the value that is was bound to in the condition. A variable that
appears only in the action side will be bound to a new identifier that begins with
the first letter of that variable (e.g., <o> might be bound to 0234). This symbol
is guaranteed to be unique and it will be used for all occurrences of the variable in
the action side, appearing in all working memory elements and preferences that are
created by the production action.

3.3.6.2 Creating Working Memory Elements

An element is created in working memory by specifying it as an action. Multiple
augmentations of an object can be combined into a single action, using the same
syntax as in conditions, including path notation and multi-valued attributes.

-—>
(<s> “block.color red
“thing <t1> <t2>) }

The action above is expanded to be:

-——>

(ks> “block <*b>)
(<x*b> “color red)
(<s> “thing <t1>)
(<s> “thing <t2>) }

This will add four elements to working memory with the variables replaced with
whatever values they were bound to on the condition side.

Since Soar is case sensitive, different combinations of upper- and lowercase letters
represent different constants. For example, “red”, “Red”, and “RED” are all distinct
symbols in Soar. In many cases, it is prudent to choose one of uppercase or lowercase
and write all constants in that case to avoid confusion (and bugs).

The constants that are used for attributes and values have a few restrictions on them:

1. There are a number of architecturally created augmentations for state and im-
passe objects; see Section 3.4 for a listing of these special augmentations. User-
defined productions can not create or remove augmentations of states that use
these attribute names.

2. Attribute names should not begin with a number if these attributes will be used
in attribute-path notation.

60 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

3.3.6.3 Removing Working Memory Elements

A element is explicitly removed from working memory by following the value with a
dash: -, also called a reject.

-—>
(<s> “block -)}

If the removal of a working memory element removes the only link between the state
and working memory elements that had the value of the removed element as an iden-
tifier, those working memory elements will be removed. This is applied recursively,
so that all item that become unlinked are removed.

The reject should be used with an action that will be o-supported. If reject is at-
tempted with I-support, the working memory element will reappear if the reject loses
[-support and the element still has support.

3.3.6.4 The syntax of preferences

Below are the ten types of preferences as they can appear in the actions of a production
for the selection of operators:

RHS preferences Semantics

(id "operator value) acceptable

(id "operator value +) acceptable

(id "operator value !) require

(id “operator value ~) prohibit

(id “operator value -) reject

1 operator value > value etter

(id "op 1 lue2) | bett

(id “operator value < value2) | worse

(id “operator value >) best

1 operator value < wors

(id “op 1) t

id "“operator value = unary indifferen
(id “op 1) y indifferent
id "“operator value = value inary indifferen
(id "op 1 lue2) | binary indifferent

The identifier and value will always be variables, such as (<s1> “operator >
<02>).

The preference notation appears similar to the predicate tests that appear on the
left-hand side of productions, but has very different meaning. Predicates cannot be
used on the right-hand side of a production and you cannot restrict the bindings of
variables on the right-hand side of a production. (Such restrictions can happen only
in the conditions.)

Also notice that the + symbol is optional when specifying acceptable preferences in
the actions of a production, although using this symbol will make the semantics of
your productions clearer in many instances. The + symbol will always appear when

3.3. PRODUCTION MEMORY 61

you inspect preference memory (with the preferences command).

Productions are never needed to delete preferences because preferences will be re-
tracted when the production no longer matches. Preferences should never be created
by operator application rules, and they should always be created by rules that will
give only I-support to their actions.

3.3.6.5 Shorthand notations for preference creation

There are a few shorthand notations allowed for the creation of operator preferences
on the right-hand side of productions.

Acceptable preferences do not need to be specified with a + symbol. (<s> “operator
<op1>) is assumed to mean (<s> "“operator <opl> +).

Ambiguity can easily arise when using a preference that can be either binary or
unary: > < =. The default assumption is that if a value follows the preference, then
the preference is binary. It will be unary if a carat (up-arrow), a closing parenthesis,
another preference, or a comma follows it.

Below are four examples of legal, although unrealistic, actions that have the same
effect.

(<s> ~operator <02> + <02> < <0l1> <03> =, <04>)
(<s> “operator + <02> +
<02> < <01> <03> =, <04> +)

(<s> “operator <02> <02> < <o0l1> <04> <03> =)
(<s> “operator “operator <o2>
“operator <o02> < “operator <o4> <03> =)

Any one of those actions could be expanded to the following list of preferences:

(<s> ~operator +)
(<s> ~operator <o02> +)
(<s> “operator <02> < <o01>)
(<s> “operator <o3> =)
(<s> “operator <o4> +)

Note that structured-value notation may not be used in the actions of productions.

3.3.6.6 Righthand-side Functions

The fourth type of action that can occur in productions is called a righthand-side
function. Righthand-side functions allow productions to create side effects other than
changing working memory. The RHS functions are described below, organized by the
type of side effect they have.

62 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

3.3.6.7 Stopping and pausing Soar

halt — Terminates Soar’s execution and returns to the user prompt. A halt action
irreversibly terminates the running of a Soar program. It should not be used if
Soar is to be restarted (see the interrupt RHS action below.)

sp {

N
(halt) }

interrupt — Executing this function causes Soar to stop at the end of the current
phase, and return to the user prompt. This is similar to halt, but does not
terminate the run. The run may be continued by issuing a run command from
the user interface. The interrupt RHS function has the same effect as typing
ctrl-c at the prompt, except that there is more control because it takes effect
exactly at the end of the phase that fires the production.

sp {
-—>

(interrupt) }

3.3.6.8 Text input and output

The functions write and accept are provided as production actions to do simple input
and output of text in Soar. Soar applications that do extensive input and output of
text should use I/O in Soar or make use of Tcl or Tk functionality. (Adding I/O and
using Tcl and Tk functions are considered advanced usage and are beyond the scope
of this manual. Consult the Soar Advanced Applications Manual for instructions.)

write. — This function writes its arguments to the standard output. It does not
automatically insert blanks, linefeeds, or carriage returns. For example, if <o>
is bound to 4, then

sp {
-—>
(write <o0> <o> <o0> | x| <o> | | <0>) }

prints

444 x4 4

3.3. PRODUCTION MEMORY 63

Although write is provided as an action in Soar, it should be used only for

simple monitoring or debugging. For more extensive text output, Tcl and Tk
should be used.

crif — Short for “carriage return, line feed”, this function can be called only
within write. It forces a new line at its position in the write action.

sp {

-->
(write <x> (crlf) <y>) }

accept — Suspends Soar’s execution and waits for the user to type a constant,
followed by a carriage return. The result of accept is the constant. The accept
function does not read in strings. It accepts a single constant (which may look
like a string). Soar applications that make extensive use of text input should
be implemented using Tcl and Tk functionality, described in the Soar Advanced
Applications Manual.

The accept function does not work properly under the TSI (Tcl-Soar Inter-
face), or any other Soar program that has a separate “Agent Window” instead
of a Tcl or Wish Console. In this instance, users should employ the tc1 RHS
function (described on page 67) to get user input through a text widget.

sp {
-—>
(<s> “input (accept)) 7

3.3.6.9 Mathematical functions

The expressions described in this section can be nested to any depth. For all of the
functions in this section, missing or non-numeric arguments result in an error.

+, -, % — These symbols provide prefix notation mathematical functions.
These symbols work similarly to C functions. They will take either integer or
real-number arguments. The first three functions return an integer when all
arguments are integers and otherwise return a real number, and the last two
functions always return a real number. The - symbol is also a unary function
which, given a single argument, returns the product of the argument and -1.

sp {
-—>
(s> “sum (+ <x> <y>)

64 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

“product-sum (* (+ <v> <w>) (+ <x> <y>))
“big-sum (+ <x> <y> <z> 402)
“negative-x (- <x>))

div, mod — These symbols provide prefix notation binary mathematical func-
tions (they each take two arguments). These symbols work similarly to C func-
tions: They will take only integer arguments (using reals results in an error)
and return an integer: div takes two integers and returns their integer quotient;
mod returns their remainder.

sp {
-=>
(<s> “quotient (div <x> <y>)
“remainder (mod <x> <y>)) }

abs, atan2, sqrt, sin, cos — These symbols provide prefix notation unary
mathematical functions (they each take one argument). These symbols work
similarly to C functions: They will take either integer or real-number arguments.
The first function (abs) returns an integer when its argument is an integer and
otherwise returns a real number, and the last four functions always return a
real number. atan2 returns as a float in radians, the arctangent of (first_arg /
second_arg). sin and cos take as arguments the angle in radians.

sp {
-—>
(<s> ~“abs-value (abs <x>)
“sqrt (sqrt <x>)) }

int — Converts a single symbol to an integer constant. This function expects ei-
ther an integer constant, symbolic constant, or floating point constant. The
symbolic constant must be a string which can be interpreted as a single inte-
ger. The floating point constant is truncated to only the integer portion. This
function essentially operates as a type casting function.

For example, the expression 2 + sqrt(6) could be printed as an integer using
the following:

sp {
N
(write (+ 2 (int sqrt(6)))) }

3.3. PRODUCTION MEMORY 65

float

— Converts a single symbol to a floating point constant. This function
expects either an integer constant, symbolic constant, or floating point constant.
The symbolic constant must be a string which can be interpreted as a single
floating point number. This function essentially operates as a type casting
function.

For example, if you wanted to print out an integer expression as a floating-point
number, you could do the following:

sp {
N
(write (float (+ 2 3))) 1}

3.3.6.10 Generating and manipulating symbols

A new symbol (an identifier) is generated on the right-hand side of a production
whenever a previously unbound variable is used. This section describes other ways of
generating and manipulating symbols on the right-hand side.

timestamp — This function returns a symbol whose print name is a representation

of the current date and time.

For example:
sp {
-—>
(write (timestamp)) }

When this production fires, it will print out a representation of the current date
and time, such as:

soar> run 1 e
8/1/96-15:22:49

make-constant-symbol — This function returns a new constant symbol guar-

anteed to be different from all symbols currently present in the system. With
no arguments, it returns a symbol whose name starts with “constant”. With
one or more arguments, it takes those argument symbols, concatenates them,
and uses that as the prefix for the new symbol. (It may also append a number
to the resulting symbol, if a symbol with that prefix as its name already exists.)

sp {
-->
(<s> “new-symbol (make-constant-symbol)) }

66 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS
When this production fires, it will create an augmentation in working memory
such as:

(S1 “new-symbol constant5)
The production:
sp {
-—>
(<s> “new-symbol (make-constant-symbol <s>)) 1}
will create an augmentation in working memory such as:
(S1 “new-symbol [S14])
when it fires. The vertical bars denote that the symbol is a constant, rather
than an identifier; in this example, the number 4 has been appended to the
symbol S1.
This can be particularly useful when used in conjunction with the timestamp
function; by using timestamp as an argument to make-constant-symbol, you
can get a new symbol that is guaranteed to be unique. For example:
sp {
-—>
(<s> “new-symbol (make-constant-symbol (timestamp))) }
When this production fires, it will create an augmentation in working memory
such as:
(S1 “new-symbol 8/1/96-15:22:49)
capitalize-symbol — Given a symbol, this function returns a new symbol

with the first character capitalized. This function is provided primarily for text
output, for example, to allow the first word in a sentence to be capitalized.

(capitalize-symbol foo)

3.3. PRODUCTION MEMORY 67
3.3.6.11 Tcl functions as RHS actions

Any Tcl command, including the Soar Interface commands described in Chapter 6,
can be issued on the righthand-side of productions through the tcl RHS function.
There are no safety nets with this function, and users are warned that they can get
themselves into trouble if not careful. Users should never use the tcl RHS function
to invoke add-wme, remove-wme or sp.

tcl — Concatenates each of its arguments into a string which is then sent to the
agent’s Tcl interpreter for evaluation. It does not automatically insert spaces
between arguments. If <o> is bound to x, then

sp {
-—>
(tcl |MakeANote | <o> 1) }

will produce the string “MakeANote x1” which will then be executed in the Tcl
interpreter. This will call the Tcl procedure “MakeANote” (presumably defined
by the user) with the single argument “x1”.

The tcl RHS function returns its result as a symbolic constant so that Tcl
results can be used in functional compositions. For example, the log of a number
<x> could be printed this way:

sp {
-->
(write |The log of | <x> | is: | (tcl |expr log(l<x>|)|))

3.3.6.12 Controlling learning

Soar’s learning mechanism, called Chunking, is described in Chapter 4.

The following two functions are provided as RHS actions to assist in development of
Soar programs; they are not intended to correspond to any theory of learning in Soar.
This functionality is provided as a development tool, so that learning may be turned
off in specific problem spaces, preventing otherwise buggy behavior.

The dont-learn and force-learn RHS actions are to be used with specific settings
for the learn command (see page ??.) Using the learn command, learning may
be set to one of on, off, except, or only; learning must be set to except for the
dont-learn RHS action to have any effect and learning must be set to only for the
force-learn RHS action to have any effect.

68 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

dont-learn — When learning is set to except, by default chunks can be formed
in all states; the dont-learn RHS action will cause learning to be turned off
for the specified state.

sp {turn-learning-off
(state <s> “feature 1 ~“feature 2 -"feature 3)
-——>
(dont-learn <s>) }

The dont-learn RHS action applies when learn is set to —except, and has no
effect when other settings for learn are used.

force-learn — When learning is set to only, by default chunks are not formed
in any state; the force-learn RHS action will cause learning to be turned on
for the specified state.

sp {turn-learning-on
(state <s8> “feature 1 ~“feature 2 -"feature 3)
-—>
(force-learn <s>) }

The force-learn RHS action applies when learn is set to —only, and has no
effect when other settings for learn are used.

3.4 Impasses in Working Memory and in Produc-
tions

When the preferences in preference memory cannot be resolved unambiguously, Soar
reaches an impasse, as described in Section 2.6:

e When Soar is unable to select a new operator (in the decision cycle), it is said
to reach an operator impasse.

All impasses appear as states in working memory, where they can be tested by pro-
ductions. This section describes the structure of state objects in working memory.

3.4.1 Impasses in working memory

There are four types of impasses.

Below is a short description of the four types of impasses. (This was described in
more detail in Section 2.6 on page 24.)

1. tie: when there is a collection of equally eligible operators competing for the
value of a particular attribute;

3.4. IMPASSES IN WORKING MEMORY AND IN PRODUCTIONS 69

2. conflict: when two or more objects are better than each other, and they are not
dominated by a third operator;

3. constraint-failure: when there are conflicting necessity preferences;

4. no-change: when the proposal phase runs to quiescence without suggesting a
new operator.

The list below gives the seven augmentations that the architecture creates on the
substate generated when an impasse is reached, and the values that each augmentation

can contain:
"type state

"impasse Contains the impasse type: tie, conflict, constraint-failure, or no-change.

“choices Either multiple (for tie and conflict impasses), constraint-failure (for
constraint-failure impasses), or none (for no-change impasses).

"superstate Contains the identifier of the state in which the impasse arose.

Mattribute For multi-choice and constraint-failure impasses, this contains operator.
For no-change impasses, this contains the attribute of the last decision with a
value (state or operator).

MNitem For multi-choice and constraint-failure impasses, this contains all values in-
volved in the tie, conflict, or constraint-failure. If the set of items that tie
or conflict changes during the impasse, the architecture removes or adds the
appropriate item augmentations without terminating the existing impasse.

"quiescence States are the only objects with quiescence t, which is an explicit
statement that quiescence (exhaustion of the elaboration cycle) was reached in
the superstate. If problem solving in the subgoal is contingent on quiescence
having been reached, the substate should test this flag. The side-effect is that
no chunk will be built if it depended on that test. See Section 4.1 on page 77
for details. This attribute can be ignored when learning is turned off.

Knowing the names of these architecturally defined attributes and their possible val-
ues will help you to write productions that test for the presence of specific types of
impasses so that you can attempt to resolve the impasse in a manner appropriate to
your program. Many of the default productions in the demos/defaults directory of
the Soar distribution provide means for resolving certain types of impasses. You may
wish to make use of some of all of these productions or merely use them as guides for
writing your own set of productions to respond to impasses.

Examples
The following is an example of a substate that is created for a tie among three
operators:

(812 “type state “impasse tie “choices multiple “attribute operator
“superstate S3 “item 09 010 011 ~“quiescence t)

70 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

The following is an example of a substate that is created for a no-change impasse to
apply an operator:

(812 “type state “impasse no-change ~“choices none “attribute operator
“superstate S3 “quiescence t)
(83 “operator 02)

3.4.2 Testing for impasses in productions

Since states appear in working memory, they may also be tested for in the conditions
of productions.

There are numerous examples of this in the set of default productions (see Section
6.7.3 or Appendix ?? for more information).

For example, the following production tests for a constraint-failure impasse on the
top-level state.

sp {default*top-goal*halt*operator*failure
"Halt if no operator can be selected for the top goal."
:default
(state <s> “superstate nil)
(state <ss> “impasse constraint-failure “superstate <s>)
-—>
(write (crlf) |[No operator can be selected for top goal.|)
(write (crlf) [Soar must halt.|)
(halt) }

3.5 Soar I/O: Input and Output in Soar

Many Soar users will want their programs to interact with a real or simulated envi-
ronment. For example, Soar programs could control a robot, receiving sensory inputs
and sending command outputs. Soar programs might also interact with simulated
environments, such as a flight simulator. The mechanisms by which Soar receives
inputs and sends outputs to an external process is called Soar I/0.

This section describes how input and output are represented in working memory
and in productions. The details of creating and registering the input and output
functions for Soar are beyond the scope of this manual, but they are fully described
in the Advanced Soar User’s Manual. This section is provided for the sake of Soar
users who will be making use of a program that has already been implemented, or
for those who would simply like to understand how I/O is implemented in Soar. A
simple example of Soar I/O using Tcl is provided in Section (Appendix?) ?7.

3.5. SOAR I/O: INPUT AND OUTPUT IN SOAR 71

3.5.1 Overview of Soar I/O

When Soar interacts with an external environment, it must make use of mechanisms
that allow it to receive input from that environment and to effect changes in that
environment. An external environment may be the real world or a simulation; input
is usually viewed as Soar’s perception and output is viewed as Soar’s motor abilities.

Soar 1/0O is accomplished via input functions and output functions. Input functions
are called at the start of every execution cycle, and add elements directly to specific
input structures in working memory. These changes to working memory may change
the set of productions that will fire or retract. Output functions are called at the end
of every execution cycle and are processed in response to changes to specific output
structures in working memory. An output function is called only if changes have been
made to the output-link structures in working memory.

The structures for manipulating input and output in Soar are linked to a predefined
attribute of the top-level state, called the io attribute. The io attribute has sub-
structure to represent sensor inputs from the environment called input links; because
these are represented in working memory, Soar productions can match against input
links to respond to an external situation. Likewise, the io attribute has substruc-
ture to represent motor commands, called output links. Functions that execute motor
commands in the environment use the values on the output links to determine when
and how they should execute an action. Generally, input functions create and remove
elements on the input link to update Soar’s perception of the environment. Output
functions respond to values of working memory elements that appear on Soar’s output
link strucure.

3.5.2 Input and output in working memory

All input and output is represented in working memory as substructure of the io
attribute of the top-level state. By default, the architecture creates an input-1link
attribute of the io object and an output-link attribute of the io object. The values
of the input-link and output-link attributes are identifiers whose augmentations
are the complete set of input and output working memory elements, respectively.
Some Soar systems may benefit from having multiple input and output links, or
that use names which are more descriptive of the input or output function, such
as vision-input-link, text-input-link, or motor-output-link. In addition to
providing the default io substructure, the architecture allows users to create multiple
input and output links via productions and I/O functions. Any identifiers for io
substructure created by the user will be assigned at run time and are not guaranteed
to be the same from run to run. Therefore users should always employ variables when
referring to input and output links in productions.

Suppose a blocks-world task is implemented using a robot to move actual blocks
around, with a camera creating input to Soar and a robotic arm executing command
outputs. The camera image might be analyzed by a separate vision program; this

72 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

1
I yellow
y

Figure 3.3: An example portion of the input link for the blocks-world task.

program could have as its output the locations of blocks on an xy plane. The Soar
input function could take the output from the vision program and create the following
working memory elements on the input link (all identifiers are assigned at runtime;
this is just an example of possible bindings):

(S1 ~io I1) [A]
(I1 ~input-link I2) [A]
(I2 ~block B1)

(I2 “block B2)

(I2 “block B3)

(B1 “x-location 1)

(B1 “y-location 0)

(B1 “color red)

(B2 "“x-location 2)

(B2 “y-location 0)

(B2 “color blue)

(B3 "“x-location 3)

(B3 “y-location 0)

(B3 “color yellow)

The ’[A]” notation in the example is used to indicate the working memory elements
that are created by the architecture and not by the input function. This configuration
of blocks corresponds to all blocks on the table, as illustrated in the initial state in
Figure 2.2.

3.5. SOAR I/O: INPUT AND OUTPUT IN SOAR 73

move-block

moving-block

Figure 3.4: An example portion of the output link for the blocks-world task.

Then, during the Apply Phase of the execution cycle, Soar productions could respond
to an operator, such as “move the red block ontop of the blue block” by creating a
structure on the output link, such as:

(81 ~io I1) [A]
(I1 ~“output-link I3) [A]
(I3 “name move-block)

(I3 “moving-block B1)

(I3 “x-destination 2)

(I3 “y-destination 1)

(B1 “x-location 1)

(B1 “y-location 0)

(B1 “color red)

The ’[A]” notation is used to indicate the working memory elements that are created
by the architecture and not by productions. An output function would look for
specific structure in this output link and translate this into the format required by
the external program that controls the robotic arm. Movement by the robotic arm
would lead to changes in the vision system, which would later be reported on the
input-link.

Input and output are viewed from Soar’s perspective. An input function adds or
deletes augmentations of the input-1ink providing Soar with information about some
occurrence external to Soar. An output function responds to substructure of the

74 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

output-link produced by production firings, and causes some occurrence external
to Soar. Input and output occur through the io attribute of the top-level state
exclusively.

The substructure of the input-link will remain in working memory until the input
function that created it removes it. Thus working memory elements produced by an
input function provide support for condition-matching in productions as long as the
input persists in working memory, i.e. until the input function specifically removes the
elements of the substructure. However, a production that tests only a single element
on the input structure will result in instantiations that fire only once for each input
element that matches. The instantiation will not continue to fire for each matched
input element, unless the element is removed and then added again.

3.5.3 Input and output in production memory

Productions involved in input will test for specific attributes and values on the input-
link, while productions involved in output will create preferences for specific attributes
and values on the output link. For example, a simplified production that responds to
the vision input for the blocks task might look like this:

sp {blocks-world*elaborate*input
(state <s> “io.input-link <in>)
(<in> “block <ib1>)
(<ib1> “x-location <x1> “y-location <y1>)
(<in> “block {<ib2> <> <ibi1>})
(<ib2> ~“x-location <x1> “y-location {<y2> > <yi1>})
-=>
(<s> “block <b1>)
(<s> “block <b2>)
(<b1> “x-location <x1> “y-location <yl1> “clear no)
(<b2> ~“x-location <x1> “y-location <y2> “above <bl>)

This production “copies” two blocks and their locations directly to the top-level state.
This is a generally a good idea when using input, since the input function may change
the information on the link before the Soar program has finished using it. This
production also adds information about the relationship between the two blocks.
The variables used for the blocks on the RHS of the production are deliberately
different from the variable name used for the block on the input-link in the LHS of
the production. If the variable were the same, the production would create a link
into the structure of the input-link, rather than copy the information. The attributes
x-location and y-location are assumed to be values and not identifiers, so the
same variable names may be used to do the copying.

A production that creates wmes on the output-link for the blocks task might look
like this:

3.5. SOAR I/O: INPUT AND OUTPUT IN SOAR 75

sp {blocks-world*apply*move-block*send-output-command
(state <s> “operator <o> “io.output-link <out>)
(o> “"name move-block “moving-block <bl> “destination <b2>)
(<b1> “x-location <x1> “y-location <y1>)
(<b2> ~"x-location <x2> “y-location <y2>)
-=>
(<out> “move-block <bil>
“x-destination <x2> “y-destination (+ <y2> 1))

This production would create substructure on the output-link that the output func-
tion could interpret as being a command to move the block to a new location.

76

CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

Chapter 4

Learning

Chunking is Soar’s learning mechanism, the sole learning mechanism in Soar. Chunk-
ing creates productions, called chunks, that summarize the processing required to
produce the results of subgoals. When a chunk is built, it is added to production
memory, where it will be matched in similar situations, avoiding the need for the sub-
goal. Chunks are created only when results are formed in subgoals; since most Soar
programs are continuously subgoaling and returning results to higher-level states,
chunks are typically created continuously as Soar runs.

This chapter begins with a discussion of when chunks are built (Section 4.1 below),
followed by a detailed discussion of how Soar determines a chunk’s conditions and
actions (Section 4.2). Sections 4.3 through 4.4 examine the construction of chunks in
further detail. Section 4.5 explains how and why chunks are prevented from match-
ing with the WME’s that led to their creation. Section 4.6 reviews the problem of
overgeneral chunks.

4.1 Chunk Creation

Several factors govern when chunks are built. Soar chunks the results of every subgoal,
unless one of the following conditions is true:

1. Learning is off. (See Section 6.4.3 on page 143 for details of learn used to
turn learning off.)

Learning can be set to on or off. When learn is on chunks are built. When
learn is off, chunks are not built.

2. Learning is set to bottom-up and a chunk has already been built for a subgoal
of the state that generated the results. (See Section ?? on page ?? for details
of learn used to set learning to bottom-up.)

With bottom-up learning, chunks are learned only in states in which no subgoal
has yet generated a chunk. In this mode, chunks are learned only for the “bot-

7

78 CHAPTER 4. LEARNING

tom” of the subgoal hierarchy and not the intermediate levels. With experience,
the subgoals at the bottom will be replaced by the chunks, allowing higher level
subgoals to be chunked.!

3. The chunk duplicates a production or chunk already in production memory. In
some rare cases, a duplicate production will not be detected because the order
of the conditions or actions is not the same as an existing production.

4. The augmentation, “quiescence t, of the substate that produced the result is
backtraced through.

This mechanism is motivated by the chunking from exhaustion problem, where
the results of a subgoal are dependent on the exhaustion of alternatives (see
Section 4.6 on page 82). If this substate augmentation is encountered when
determining the conditions of a chunk, then no chunk will be built for the
currently considered action. This is recursive, so that if an un-chunked result
is relevant to a second result, no chunk will be built for the second result. This
does not prevent the creation of a chunk that would include “quiescence t as
a condition.

5. Learning has been temporarily turned off via a call to the dont-learn produc-
tion action (described on page 67 in Section 3.3.6.12).

This capability is provided for debugging and system development, and it is not
part of the theory of Soar.

If a result is to be chunked, Soar builds the chunk as soon as the result is created,
rather than waiting until subgoal termination.

4.2 Determining Conditions and Actions

Chunking is an experience-based learning mechanism that summarizes as productions
the problem solving that occurs within a state. In order to maintain a history of the
processing to be used for chunking, Soar builds a trace of the productions that fire
in the subgoals. This section describes how the relevant actions are determined, how
information is stored in a trace, and finally, how the trace and the actions together
determine the conditions for the chunk.

In order for the chunk to apply at the appropriate time, its conditions must test
exactly those working memory elements that were necessary to produce the results
of the subgoal. Soar computes a chunk’s conditions based on the productions that
fire in the subgoal, beginning with the results of the subgoal, and then backtracing
through the productions that created each result. It recursively backtraces through
the working memory elements that matched the conditions of the productions, finding

'For some tasks, bottom-up chunking facilitates modelling power-law speedups, although its
long-term theoretical status is problematic.

4.2. DETERMINING CONDITIONS AND ACTIONS 79

the actions that led to the WME’s creation, etc., until conditions are found that test
elements that are linked to a superstate.

4.2.1 Determining a chunk’s actions

A chunk’s actions are built from the results of a subgoal. A result is any working
memory element created in the substate that is linked to a superstate. A working
memory element is linked if its identifier is either the value of a superstate WME, or
the value of an augmentation for an object that is linked to a superstate.

The results produced by a single production firing are the basis for creating the actions
of a chunk. A new result can lead to other results by linking a superstate to a WME
in the substate. This WME may in turn link other WMEs in the substate to the
superstate, making them results. Therefore, the creation of a single WME that is
linked to a superstate can lead to the creation of a large number of results. All of the
newly created results become the basis of the chunk’s actions.

4.2.2 Tracing the creation and reference of working memory
elements

Soar automatically maintains information on the creation of each working memory
element in every state. When a production fires, a trace of the production is saved
with the appropriate state. A trace is a list of the working memory elements matched
by the production’s conditions, together with the actions created by the production.
The appropriate state is the most recently created state (i.e., the state lowest in the
subgoal hierarchy) that occurs in the production’s matched working memory elements.

Recall that when a subgoal is created, the “item augmentation lists all values that lead
to the impasse. Chunking is complicated by the fact that the “item augmentation
of the substate is created by the architecture and not by productions. Backtracing
cannot determine the cause of these substate augmentations in the same way as other
working memory elements. To overcome this, Soar maps these augmentations onto
the acceptable preferences for the operators in the “item augmentations.

Negated conditions

Negated conditions are included in a trace in the following way: when a production
fires, its negated conditions are fully instantiated with its variables’ appropriate val-
ues. This instantiation is based on the working memory elements that matched the
production’s positive conditions. If the variable is not used in any positive conditions,
such as in a conjunctive negation, a dummy variable is used that will later become a
variable in a chunk.

80 CHAPTER 4. LEARNING

If the identifier used to instantiate a negated condition’s identifier field is linked to
the superstate, then the instantiated negated condition is added to the trace as a
negated condition. In all other cases, the negated condition is ignored because the
system cannot determine why a working memory element was not produced in the
subgoal and thus allowed the production to fire. Ignoring these negations of conditions
internal to the subgoal may lead to overgeneralization in chunking (see Section 4.6
on page 82).

4.2.3 Determining a chunk’s conditions

The conditions of a chunk are determined by a dependency analysis of production
traces — a process called backtracing. For each instantiated production that creates a
subgoal result, backtracing examines the production trace to determine which working
memory elements were matched. If a matched working memory element is linked to a
superstate, it is included in the chunk’s conditions. If it is not linked to a superstate,
then backtracing recursively examines the trace of the production that created the
working memory element. Thus, backtracing begins with a subgoal result, traces
backwards through all working memory elements that were used to produce that
result, and collects all of the working memory elements that are linked to a superstate.
This method ignores when the working memory elements were created, thus allowing
the conditions of one chunk to test the results of a chunk learned earlier in the subgoal.
The user can observe the backtracing process by setting setting backtracing on, using
the watch command: watch backtracing -on (see Section 6.3.8 on page 132). This
prints out a trace of the conditions as they are collected.

Certain productions do not participate in backtracing. If a production creates only
a reject preference or a desirability preference (better, worse, indifferent, or
parallel), then neither the preference nor the objects that led to its creation will
be included in the chunk. (The exception to this is that if the desirability or reject
preference is a result of a subgoal, it will be in the chunk’s actions.) Desirability
and reject preferences should be used only as search control for choosing between
legal alternatives and should not be used to guarantee the correctness of the problem
solving. The argument is that such preferences should affect only the efficiency and
not the correctness of problem solving, and therefore are not necessary to produce
the results. Necessity preferences (require or prohibit) should be used to enforce
the correctness of problem solving; the productions that create these preferences will
be included in backtracing.

Given that results can be created at any point during a subgoal, it is possible for one
result to be relevant to another result. Whether or not the first result is included in
the chunk for the second result depends on the links that were used to match the first
result in the subgoal. If the elements are linked to the superstate, they are included as
conditions. If the elements are not linked to the superstate, then the result is traced
through. In some cases, there may be more than one set of links, so it is possible for
a result to be both backtraced through, and included as a condition.

4.3. VARIABLIZING IDENTIFIERS 81

4.3 Variablizing Identifiers

Chunks are constructed by examining the traces, which include working memory ele-
ments and operator preferences. To achieve any useful generality in chunks, identifiers
of actual objects must be replaced by variables when the chunk is created; otherwise
chunks will only ever fire when the exact same objects are matched. However, a

constant value is never variablized; the actual value always appears directly in the
chunk.

When a chunk is built, all occurrences of the same identifier are replaced with the
same variable. This can lead to an overspecific chunk, when two variables are forced
to be the same in the chunk, even though distinct variables in the original productions
just happened to match the same identifier.

A chunk’s conditions are also constrained by any not-equal (<>) tests for pairs of
indentifiers used in the conditions of productions that are included in the chunk.
These tests are saved in the production traces and then added in to the chunk.

4.4 Ordering Conditions

Since the efficiency of the Rete matcher [?] depends heavily upon the order of a
production’s conditions, the chunking mechanism attempts to write the chunk’s con-
ditions in the most favorable order. At each stage, the condition-ordering algorithm
tries to determine which eligible condition, if placed next, will lead to the fewest num-
ber of partial instantiations when the chunk is matched. A condition that matches
an object with a multi-valued attribute will lead to multiple partial instantiations, so
it is generally more efficient to place these conditions later in the ordering.

This is the same process that internally reorders the conditions in user-defined pro-
ductions, as mentioned briefly in Section 2.3.1.

4.5 Inhibition of Chunks

When a chunk is built, it may be able to match immediately with the same working
memory elements that participated in its creation. If the production’s actions include
preferences for new operators, the production would immediately fire and create a
preference for a new operator, which duplicates the operator preference that was the
original result of the subgoal. To prevent this, inhibition is used. This means that
each production that is built during chunking is considered to have already fired
with the instantiation of the exact set of working memory elements used to create it.
This does not prevent a newly learned chunk from matching other working memory
elements that are present and firing with those values.

82 CHAPTER 4. LEARNING

4.6 Problems that May Arise with Chunking

One of the weaknesses of Soar is that chunking can create overgeneral productions
that apply in inappropriate situations, or overspecific productions that will never fire.
These problems arise when chunking cannot accurately summarize the processing
that led to the creation of a result. Below is a description of three known problems
in chunking.

4.6.1 Using search control to determine correctness

Overgeneral chunks can be created if a result of problem solving in a subgoal is
dependent on search-control knowledge. Recall that desirability preferences, such as
better, best, and worst, are not included in the traces of problem solving used in
chunking (Section 4.2 on page 78). In theory, these preferences do not affect the
validity of search. In practice, however, a Soar program can be written so that search
control does affect the correctness of search. Here are two examples:

1. Some of the tests for correctness of a result are included in productions that pre-
fer operators that will produce correct results. The system will work correctly
only when those productions are loaded.

2. An operator is given a worst preference, indicating that it should be used only
when all other options have been exhausted. Because of the semantics of worst,
this operator will be selected after all other operators; however, if this operator
then produces a result that is dependent on the operator occurring after all
others, this fact will not be captured in the conditions of the chunk.

In both of these cases, part of the test for producing a result is implicit in search
control productions. This move allows the explicit state test to be simpler because
any state to which the test is applied is guaranteed to satisfy some of the requirements
for success. However, chunks created in such a problem space will be overgeneral
because the implicit parts of the state test do not appear as conditions.

Solution: To avoid this problem, necessity preferences (require and prohibit)
should be used whenever a control decision is being made that also incorporates goal-
attainment knowledge. The necessity preferences are included in the backtrace by
chunking, thereby avoiding overgenerality.

4.6.2 Testing for local negated conditions

Overgeneral chunks can be created when negated conditions test for the absence
of a working memory element that, if it existed, would be local to the substate.
Chunking has no mechanism for determining why a given working memory element
does not exist, and thus a condition that occurred in a production in the subgoal is
not included in the chunk. For example, if a production tests for the absence of a local

4.6. PROBLEMS THAT MAY ARISE WITH CHUNKING 83

flag, and that flag is copied down to the substate from a superstate, then the chunk
should include a test that the flag in the superstate does not exist. Unfortunately,
it is computationally expensive to determine why a given working memory element
does not exist. Chunking only includes negated tests if they test for the absence of
superstate working memory elements.

Solution: To avoid using negated conditions for local data, the local data can be
made a result by attaching it to the superstate. This increases the number of chunks
learned, but a negated condition for the superstate can be used that leads to correct
chunks.

4.6.3 Testing for the substate

Overgeneral chunks can be created if a result of a subgoal is dependent on the creation
of an impasse within the substate. For example, processing in a subgoal may consist of
exhaustively applying all the operators in the problem space. If so, then a convenient
way to recognize that all operators have applied and processing is complete is to wait
for a state no-change impasse to occur. When the impasse occurs, a production can
test for the resulting substate and create a result for the original subgoal. This form
of state test builds overgeneral chunks because no pre-existing structure is relevant to
the result that terminates the subgoal. The result is dependent only on the existence
of the substate within a substate.

Solution: The current solution to this problem is to allow the problem solving to
signal the architecture that the test for a substate is being made. The signal used
by Soar is a test for the “quiescence t augmentation of the subgoal. The chunking
mechanism recognizes this test and does not build a chunk when it is found in a
backtrace of a subgoal. The history of this test is maintained, so that if the result
of the substate is then used to produce further results for a superstate, no higher
chunks will be built. However, if the result is used as search control (it is a desirability
preference), then it does not prevent the creation of chunks because the original result
is not included in the backtrace. If the “quiescence t being tested is connected to
a superstate, it will not inhibit chunking and it will be included in the conditions of
the chunk.

84

CHAPTER 4. LEARNING

Chapter 5

Soar and Tcl: The Soar
Application Interface

This chapter provides a brief introduction to the Soar Application Interface and
how Soar interacts with Tcl, the Tool Command Language. It also discusses the
graphical interface that is bundled with Soar, called the Tcl-Soar Interface, or TSI.
This chapter is not intended to be a full discourse on Tcl or how to develop Soar
simulation environments. The reader is referred to Practical Programming in Tcl and
Tk by Brent Welch and The Soar Advanced Applications Manual for more detailed
information.

85

8 CHAPTER 5. SOAR AND TCL: THE SOAR APPLICATION INTERFACE

Chapter 6

The Soar User Interface

This chapter describes the set of user interface commands for Soar. A few core Tcl
commands are also included in sections 6.5 and 6.7 for completeness. All commands
and examples are presented as if they are being entered at the Soar command prompt,
but they could just as easily be placed in a file and loaded into Soar using the Tcl
source command. Make sure you have read Chapter 1.5, concerning the integration
of Soar and Tcl.

This chapter is organized into 7 sections:

1. Basic Commands for Running Soar

2. Examining Memory

3. Configuring Trace Information and Debugging
4. Configuring Soar’s Run-Time Parameters

5. File System I/O Commands

6. Soar I/O commands

7. Miscellaneous Commands

Each section begins with a summary description of the commands covered in that
section, including the role of the command and its importance to the user. Commands
are then described fully, in alphabetical order.

Throughout this chapter, each function description includes a specification of its
syntax and an example of its use.

For a concise overview of the Soar interface functions, see the Function Summary and
Index on page ??7. This index is intended to be a quick reference into the commands
described in this chapter.

87

88 CHAPTER 6. THE SOAR USER INTERFACE
Notation

The notation used to denote the syntax for each user-interface command follows some
general conventions:

e The command name itself is given in a bold font.
e Optional command arguments are enclosed within square brackets, [and].
e A vertical bar, |, separates alternatives.

e Curly braces, {}, are used to group arguments when at least one argument from
the set is required.

e Variable arguments, such as a file name or an integer, are in an italic font, for
example, filename

e The commandline prompt that is printed by Soar, is normally the agent name,
followed by ’>’. In the examples in this manual, we use “soar>”.

e Some of the command specifications are too long to fit on one line. In such
cases, a backslash, \, is used to continue the command on the next line. The
backslash is not part of the command itself; it is the Tcl syntax for continuing
a long command on multiple lines.

e Following Tcl syntax, comments in the examples are preceded by a '#’, and
in-line comments are preceded by ’;#’.

For many commands, there is some flexibility in the order in which the arguments may
be given. (See the online help for each command for more information.) We have
not incorporated this flexible ordering into the syntax specified for each command
because doing so complicates the specification of the command. When the order of
arguments will affect the output produced by a command, the reader will be alerted.

6.1 Basic Commands for Running Soar

This section describes the commands used to start, run and stop a Soar program;
to invoke on-line help information; and to create and delete Soar productions. The
specific commands described in this section are:

Summary

d - Run the Soar program for one decision cycle.
e - Run the Soar program for one elaboration cycle.
excise - Delete Soar productions from production memory.

exit - Terminate Soar and return to the operating system.

6.1. BASIC COMMANDS FOR RUNNING SOAR 89

help - Provide formatted, on-line information about Soar commands.
init-soar - Reinitialize Soar so a program can be rerun from scratch.

quit - Close log file, terminate Soar, and return user to the operating
system.

run - Begin Soar’s execution cycle.
sp - Create a production and add it to production memory.

stop-soar - Interrupt a running Soar program.

These commands are all frequently used anytime Soar is run.

6.1.1 d [n]

The 4 alias is a shorthand for “run 4”. If a numeric argument is specified, d will
cause Soar to run for n decision cycles. The default value of n is 1, so that if no
argument is specified, Soar will run 1 decision cycle.

Example
soar> d 5 #; run for 5 decision cycles
6.1.2 e [n]

The e alias is a shorthand for “run e”. If a numeric argument is specified, e will
cause Soar to run to the end of the nth elaboration cycle. The default value of n is
1, so that if no argument is specified, Soar will complete 1 elaboration cycle.

Example
soar> e 3 #; run for 3 elaboration cycles

Recall that an elaboration cycle is the sequence of firings and retractions followed by
working memory changes, which occur during the Propose and Apply phases. The
Input, Decide, and Output phases each count as one elaboration cycle for the purposes
of this command.

6.1.3 excise prod-name|-all|-chunks|-default|-user|-task

The excise command removes productions from production memory. A pound sign
(#) is printed for every production excised. The command must be called with ei-
ther a specific production name or with a flag that indicates a particular group of
productions. The optional flags are described in the table below:

90 CHAPTER 6. THE SOAR USER INTERFACE

argument ‘ productions removed ‘

prod-name | Excise only the named production

-all Excise all productions;
also do an init-soar

-chunks Excise all chunks and justifications

-default | Excise all default productions

-task Excise all non-default productions (user, chunks, justs);
also do an init-soar

-user Excise all user productions;
chunks, justifications and default productions remain

The excise command must be called with at least one argument. Note that the

-task and -all arguments also cause Soar to do an init-soar, described on page
92.

Example

soar> excise blocks-world*propose*initial-state
#

soar> excise -all
it i i S R S S S R R S A f ini t-soar done

Notes

The excise command prints a pound sign for each production excised. The printing
of pound signs may be turned off by using the watch command; this is described in
Section 6.3.8.

6.1.4 exit

The exit command terminates the Soar process. exit is actually a core Tcl command
that terminates the process that executed the exit command. If an integer value is
supplied as the argument to exit, then that becomes the exit status of the process.
The exit command does not invoke any callbacks or close open log files before exiting;
therefore it is recommended that users terminate Soar by using the quit command,
described later in this section.

Example
soar> exit

(process returned to operating system.)

6.1. BASIC COMMANDS FOR RUNNING SOAR 91

6.1.5 help ,? [-all | command-name | -usage command-name]

The help command and its alias, 7, provide online reference information about Soar
commands. Only the help command is referred to in this chapter, but help and ?
may be used interchangably.

When called with no arguments, help will provide a brief synopsis of some of the
most frequently used Soar commands.

When called with the optional argument -all, help will print a listing of all of
the commands in Soar, followed by a listing of the core Tcl commands for which
information is available. (Or it may print a hint as to where to look for the on-line
Tcl documentation if Soar can’t display it for some reason.)

When help is called with a specific command-name, help will display a manual page
for that command. Soar will search for Soar, Tcl, and, on Unix the system man
pages, and print the information for the first match to command-name that it finds.
When Soar is being run under the Tcl-Soar Interface (TSI), the requested help page
will be displayed in an independent scrollable window. When Soar is run without the
TSI, the help page will temporarily overwrite the text on the window in which you
are running Soar; to make the help page go away, type q; to scroll down through the
manual page, hit the space bar.

Soar’s help facility is able to do command completion, so as long as a unique substring
of the command-name is specified, Soar will find and display the help page. If the
substring is not unique, a message listing the possible choices is printed.

When called with —usage and a command-name, help will display only a brief de-
scription of the syntax for that command.

Example

soar> help

Commonly used Soar commands:
cd Change to another directory
excise Remove productions from Soar’s memory
Reinitialize Soar
Turn learning on and off
log Save a Soar session to a file

init-soar
learn

matches Print info about the match set and partial matches
preferences Display items in preference memory

print Display productions or working memory elements
pwd Display the current working directory

quit Exit Soar

run Run the Soar decision cycle

soarnews Display information such as where to report bugs
source Load a file into Soar

sp

Define a Soar production

92 CHAPTER 6. THE SOAR USER INTERFACE

version Display the version number of Soar
watch Set the amount of information displayed as Soar runs
wmes alias to display working memory elements

For a list of ALL available help topics, type "help -all"
For help on a specific command, type "help" followed by the command name.

soar>help in
Ambiguous Help topic: input-period internal-symbols interp
indifferent-selection incr inds info init-soar

Notes

Although we’ve tried to make the help command robust, it may function differently
in different operating systems. For the most reliable and consistent output from help,
always run Soar with the TSI.

If you have problems accessing online help, contact your local Soar administrator or
send email to soar-help@umich.edu.

6.1.6 init-soar

The init-soar command re-initializes Soar. It empties working memory, wiping
out the subgoal stack, and resets all runtime statistics. The firing counts for all
productions is reset to zero. The init-soar command allows a Soar program that
has been halted to be reset and start its execution from the beginning.

init-soar does not remove any productions from production memory; to do this, use
the excise command. Note however, that all justifications will be removed because
they will no longer be supported.

Example

soar> init-soar

6.1.7 quit

The quit command terminates Soar and returns the user to the operating system. It
does not accept any arguments. It closes any open log files and invokes any system
termination callbacks that are registered (see the monitor command). Using quit
instead of the Tcl exit command allows programs to invoke procedures prior to
termination. Once all callbacks have been processed, quit invokes the Tcl exit
command.

6.1. BASIC COMMANDS FOR RUNNING SOAR 93

Example

soar> quit
Exiting Soar ...

6.1.8 run [n|forever] [unit] [-self]

The run command starts the Soar execution cycle or continues any execution that
was temporarily stopped. The default behavior of run, with no arguments, is to cause
Soar to execute until it is halted or interrupted by an action of a production, or until
an external interrupt is issued by the user.

The run command can also specify that Soar should run only for a specific number of
Soar cycles or phases (which may also be prematurely stopped by a production action
or a control-C). This is helpful for debugging sessions, where users may want to pay
careful attention to the specific productions that are firing and retracting, perhaps
in conjunction with changing the watch settings, described in Section 6.3.8 on page
132.

If there are multiple Soar agents that exist in the same Soar process, then issuing a run
command in any agent will cause all agents to run with the same set of parameters,
unless the flag —self is specified, in which case only that agent will execute.

run followed by the keyword ’forever’ is the same as the default behavior with no
arguments: Soar executes until stopped by an external interrupt (eg: Ctrl-C), a RHS
interrupt action, or a RHS halt action.

The run command takes two optional arguments: an integer, n, which specifies how
many units to run; and a unit flag indicating what steps or increments to use.

The following is a list of available units and their meaning. In each case, if n is not
specified as an argument to run, but a unit flag is specified, n defaults to 1.

94 CHAPTER 6. THE SOAR USER INTERFACE

unit | effect on running |
p run for n phases (a phase is either input, propose, decide, apply or output)
e run Soar for n elaboration cycles (here input, decide and output
phases are each counted as an elaboration cycle)
d run for n decision cycles (this is the default unit for running Soar,
if run is called with a number, but not a letter)
S run until the nth time a state is selected
o run until the nth time an operator is selected
out run until the nth time output is generated on the output-link
(or a maximum of 15 decision cycles with no output.)
<s> run until current level of subgoaling has terminated

<ss> | run until superstate’s level of subgoaling has terminated

<sss> | run until supersuperstate’s level of subgoaling has terminated

<o> run Soar until the nth time an operator is selected at this level
of subgoaling, or until the current level of subgoaling is
terminated

<so> | run Soar until the nth time a superoperator is selected, or until that
level of subgoaling is terminated

<sso> | run Soar until the nth time a supersuperoperator is selected or until
that level of subgoaling is terminated

The number, n, and unit arguments to the run command can appear in either order;
for example, “run 1 d” and “run d 1” are equivalent. Also note that if you call run
with a number but not a letter, that d is assumed and Soar will run for n decision
cycles. Similarly, if you call run with a letter but not a number, n=1 is assumed.

Note that the <s> argument is different from the s argument, and the <o> argument
is different from the o argument (with and without the angle braces that signify a
variable). For example, with the angle braces, operator selections that take place
in subgoals will not be counted; without the angle braces, operator selections are
counted without regard to the level of subgoaling.

The units that refer to operator variables (<o>, <so>, and <sso>) will not work unless
a value is already in place for that operator. For example, when Soar is first started,
none of these units will work because there is no current operator, much less a current
superoperator or current supersuperoperator.

Examples

run ;# run until halted by a control-C or a production action
run 5 d ;# run for 5 decision cycles

run d 3 ;# run for 3 decision cycles

run 2 ;# run for 2 decision cycles

run p ;# run for 1 phase

run 3 <o> ;# run for 3 operator selections at this level of subgoaling

6.1. BASIC COMMANDS FOR RUNNING SOAR 95
Notes

If Soar has been stopped due to a halt action, an init-soar command must be
issued before Soar can be restarted with the run command.

In Soar 8, the execution cycle no longer ends after the decision phase, as it did in
Soar 7. Therefore users who wish to examine memory or print the match set after
the decision phase, but before any firings or retractions, must either step through
the execution by phases, or set a monitor to generate a “stop-soar -self” after
each decision phase. See the sections on the stop-soar (page 97) and monitor (page
122) commands, and the Soar Advanced Applications Manual for more information
on stopping after the decision phase.

There are two predefined aliases for the run command. The d command alias will run
Soar by decision cycles (see Section 6.1.1 on page 89), and the e command alias will
run Soar by elaboration cycles (see Section 6.1.2 on page 89). You may, of course,
define your own aliases if you find an increment that is particularly useful for your
debugging session. (See the alias command on page 161.)

6.1.9 sp { production-body }

The sp command creates a new production and loads it into production memory. If
the production name is the same as an existing production, the old production will be
overwritten (excised). This section provides only a brief overview of the sp command.
The syntax of productions is described completely in Section 3.3 on page 40.

Syntax

Syntactically, each production consists of the symbol sp, followed by: an opening
curly brace, {, the production’s name, the production’s conditions, the symbol -=>,
the production’s actions, and a closing curly brace, }:

sp { production-name

CONDITIONS
-—>
ACTIONS

X

An optional comment string can be included following the name of the production.
This string is set off with double quotes when curly braces are used to define the
production:

sp { production-name

"optional documentation string"
CONDITIONS

96 CHAPTER 6. THE SOAR USER INTERFACE

-->
ACTIONS
}

One or more optional flags may be used to force the production to be considered a
certain type (regardless of what would otherwise be true).

sp { production-name

"optional documentation string"
flag*
CONDITIONS
-=>
ACTIONS
b

The optional flags are as follows:

:0-support specifies that all the RHS actions are to be given O-support when the
production fires.

:si-support specifies that all the RHS actions are only to be given I-support when
the production fires.

:default specifies that this production is a default production. (This matters for the
excise -task command).

:chunk specifies that this production is a chunk. (This matters for the
explain-backtraces command.)

Multiple flags may be used, but not both of o-support and i-support.

Although you could force your productions to provide O-support or I-support by
using these commands — regardless of the structure of the conditions and actions of
the production — this is not proper coding style. The o-support and i-support
flags are included to help with debugging, but should not be used in a standard Soar
program.

Example

sp {blocks*create-problem-space
"This creates the top-level space"
(state <s> “superstate nil)
-—=>
(<s> “name solve-blocks-world “problem-space <p>)
(<p> “name blocks-world)

6.1. BASIC COMMANDS FOR RUNNING SOAR 97
Notes

The syntax of the sp command is explained in Section 3.3, and a grammar appears
in Appendix ?7. Consult these two sections for additional details.

The syntax of productions changes when Tcl variables appear in productions. This
is described briefly in Section ?7. Since using Tcl in productions is considered an
advanced usage, consult the Soar Advanced Applications Manual for more details.

The sp command prints one asterisk for each production successfully loaded into
production memory and one pound sign # for each production redefined (excised and
loaded). The printing of asterisks and pound signs may be turned off by using the
watch command; this is described in Section 6.3.8 on 132.

6.1.10 stop-soar [-self [reason-stringl]

The stop-soar command stops any running Soar agents. It sets a flag in the Soar
kernel so that Soar will stop running at a ”safe” point and return control to the user.
This operates exactly as if the user had issued a control-C (SIGINT) interrupt to the
Soar process, or Soar had issued a RHS interrupt action: It causes all currently
running Soar interpreters to stop.

If the argument -self is specified, only the Soar agent that issued the command is
interrupted; all other agents continue running. An optional reason-string following
-self will be printed when Soar is stopped, to indicate why it was stopped. If left
blank, no message will be printed when Soar is stopped.

A common use of this command is as an action resulting from a button press on a
Graphical User Interface (GUI), or as a monitor to be executed at a specific Soar
Event. For example, a user may wish to examine an agent’s "matches” after the Soar
Decision Phase. In order to do this in Soar 8, the user must register a monitor, or
callback, to issue the "stop-soar -self" command for the after-decision-phase-cycle
event.

Example

soar> monitor -add {stop-soar -self "after decision phase"} \
after—-decision-phase-cycle

The above example shows how to stop Soar8 after the decision phase using “stop-soar
-self” in a monitor to stop after the decision phase so that memory can be examined.

Notes

If the graphical interface doesn’t periodically do a Tcl "update” command, then it
may not be possible to interrupt a Soar agent from the command line.

98 CHAPTER 6. THE SOAR USER INTERFACE

When using the TSI, the stop-soar command is redefined by the TSI to also pause
the interface itself.

6.2 Examining Memory

This section describes the commands used to inspect production memory, working
memory, and preference memory; to see what productions will match and fire in
the next Propose or Apply phase; and to examine the goal dependency set. These
commands are particularly useful when running or debugging Soar, as they let users
see what Soar is “thinking.” The specific commands described in this section are:

Summary

gds_print - Print the WMEs in the goal dependency set for each goal.
internal-symbols - Print information about the Soar symbol table.
matches - Print information about the match set and partial matches.
memories - Print memory usage for production matches.
preferences - Examine items in preference memory.

print - Print items in working memory or production memory.
production-find - Find productions that contain a given pattern.
default-wme-depth - Set the level of detail used to print WME'’s.

wmes - An alias for the print command; prints items in working memory.

Of these commands, print is the most often used (and the most complex) followed
by matches and memories. preferences is used to examine which candidate opera-
tors have been proposed. production-find is especially useful when the number of
productions loaded is high. gds_print is useful for examining the goal dependecy set
when subgoals seem to be disappearing unexpectedly. default-wme-depth and wmes
are both related to the print command. internal-symbols is not often used but is
helpful when debugging Soar extensions or trying to locate memory leaks.

6.2.1 gds _print

This is a debugging command for examining the Goal Dependency Set for each goal in
the stack. First it steps through all the working memory elements in the rete, looking
for any that are included in any goal dependency set, and prints each one. Then it
also lists each goal in the stack and prints the wmes in the goal dependency set for
that particular goal. This command is useful when trying to determine why subgoals
are disappear unexpectedly: often something has changed in the goal dependency set,
causing a subgoal to be regenerated prior to producing a result.

6.2. EXAMINING MEMORY 99

Example

soar> gds_print
kokokokokokokokokokkokkkkkkkkkk Current GDS kskskskokskokokokokokokkoskoskskokskokokok ok kokok ok
stepping thru all wmes in rete, looking for any that are in a gds...
For Goal S2 (128: S2 “superstate S1)
For Goal S2 (131: S2 “choices multiple)
For Goal S2 (124: S1 “operator 01 +)
For Goal S2 (125: S1 ~“operator 02 +)
For Goal S2 (126: S1 “operator 03 +)
For Goal S2 (9: S1 ~“desired D1)
For Goal S2 (10: S1 “problem-space P1)
For Goal S2 (12: P1 “default-state-copy yes)
For Goal S2 (13: P1 “default-operator-copy no)
3k 3k 3k 3k 3k 3k 5k 3k k 3k 5k 5k %k 3k 5k 5k >k 3k 3k 5k 3k 5k 5k %k 5k 5k 5k >k 5k %k 3k 5k 5k >k 5k %k 5k 5k 5k >k 5k 3k >k 5k 5k %k 5k 3k %k >k %k %k 5k 5k %k >k 5k k k k
For Goal S1 : No GDS for this goal.
For Goal S2
(13: P1 ~“default-operator-copy no)
(12: P1 "“default-state-copy yes)
(9: S1 ~desired D1)
(10: S1 “problem-space P1)
(128: S2 “superstate S1)
(131: S2 “choices multiple)
(124: S1 “operator 01 +)
(125: S1 “operator 02 +)
(126: S1 “operator 03 +)
For Goal S3 : No GDS for this goal.
3k 3k 3k 3k 3k 3k 5k 3k k 3k 5k 5k %k 3k 5k 5k >k 5k 3k 5k 3k 5k 5k %k 5k 5k 5k >k 5k %k 3k 5k 5k >k 5k %k 5k 5k 5k >k 5k 3k >k 5k 5k %k 5k 5k %k >k %k %k 5k 5k %k >k 5k k k k
soar>

Notes

This command is quite inefficient and can be very slow.

6.2.2 internal-symbols

The internal-symbols command prints information about the Soar symbol table.
Such information is typically only useful for users attempting to debug Soar by lo-
cating memory leaks or examining I/O structure.

Example

soar> internal-symbols

--- Symbolic Constants: ---

100 CHAPTER 6. THE SOAR USER INTERFACE

operator

accept
evaluate-object
problem-space
sqrt

interrupt

mod

goal

io

(...additional symbols deleted for brevity...)
--- Integer Constants: ---
--- Floating-Point Constants: ---
--- Identifiers: ---

-—- Variables: ---
<o>

<sso>

<to>

<ss>

<ts>

<so>

<sss>

<s>

soar>

6.2.3 matches [-assertions|-retractions][0][1]2] \
[-names | -timetags|-wmes]
matches [prodname] [0]|1|2|-count|-timetags|-wmes]

The matches command prints a list of productions that have instantiations in the
match set, i.e., those productions that will retract or fire in the next Propose or Apply
phase. It also will print partial match information for a single, named production.

The optional arguments to the matches command are described in the following table.
The numeric and named flags are redundant; either the number or name may be used
to specify the level of detail.

6.2. EXAMINING MEMORY 101

‘ matches ‘ Effect on output

-assertions Print match set information only about assertions

-retractions Print match set information only about retractions

prodname Print information about partial matches
for the named production.

0 | —names For the match set, print only the names of the productions that
are about to fire or retract (default)

0 | -count For named productions, print only partial match counts (default)

1 | -timetags | Also print the timetags of the WME’s that match the productions

2 | ~wmes Also print the WME’s that match the productions

6.2.3.1 Printing the match set

When printing the match set (i.e., no production name is specified), the default action
prints only the names of the productions which are about to fire or retract. If there
are multiple instantiations of a production, the total number of instantiations of that
production is printed after the production name, unless -~timetags|1 or -wmes |2 are
specified, in which case each instantiation is printed on a separate line.

When printing the match set, the —assertions and -retractions arguments may
be specified to restrict the output to print only the assertions or retractions.

Example

soar> matches

Assertions:
blocks-world*select*move-block*indifferent (2)

Retractions:
blocks-world*select*move-block*indifferent (5)

soar> matches 1
Assertions:
blocks-world*select*move-block*indifferent 68 62
blocks-world*select*move-block*indifferent 69 65
Retractions:
blocks-world*select*move-block*indifferent
57 49
blocks—-world*select*move-block*indifferent
b6 46
blocks—-world*select*move-block*indifferent
55 43
blocks-world*select*move-block*indifferent
b3 37

102 CHAPTER 6. THE SOAR USER INTERFACE

blocks-world*select*move-block*indifferent
52 34

soar> matches 2

Assertions:
blocks-world*select*move-block*indifferent (68: S1 “operator 08 +)
(62: 08 “name move-block)

blocks-world*select*move-block*indifferent (69: S1 “operator 09 +)
(65: 09 “name move-block)

Retractions:
blocks—-world*select*move-block*indifferent
(67: S1 “operator 06 +)

(49: D06 "“name move-block)

blocks-world*select*move-block*indifferent
(66: S1 “operator 05 +)
(46: 05 “name move-block)

blocks-world*select*move-block*indifferent
(65: S1 “operator 04 +)
(43: 04 “name move-block)

blocks-world*select*move-block*indifferent
(63: S1 “operator 02 +)
(37: 02 "“name move-block)

blocks-world*select*move-block*indifferent
(62: S1 “operator 01 +)
(34: 01 "“name move-block)

6.2.3.2 Printing partial matches for productions

In addition to printing the current match set, the matches command can be used to
print information about partial matches for a named production. In this case, the
conditions of the production are listed, each preceded by the number of currently
active matches for that condition. If a condition is negated, it is preceded by a minus
sign (-). The pointer >>>> before a condition indicates that this is the first condition
that failed to match.

When printing partial matches, the default action is to print only the counts of the
number of WME’s that match, and is a handy tool for determining which condition
failed to match for a production that you thought should have fired. At levels 1 and

6.2. EXAMINING MEMORY 103

2 (or -timetags and -wmes arguments) the matches command displays the WME’s
immediately after the first condition that failed to match — temporarily interrupting
the printing of the production conditions themselves.

Examples

soar> run 1 d

0: ==>S: S1
Initial state has A on B and B and C on the table.
The goal is to get A on B on C on the table.

1: 0: 02 (build-tower)

soar> matches top-goal*terminate*operatorxbuild-tower
1 (state <g> “operator <o>)

(<0> “name build-tower)

(<g> “problem-space <p>)

(<p> “name top-ps)

(<g> “object-dynamic <tower>)

>>>> (<tower> “bottom-block <blockc>)
(<blockc> “name c)
(<tower> “middle-block <blockb>)
(<blockb> “name b)
(<tower> ~“top-block <blocka>)
(<blocka> “name a)

e e

0 complete matches.

soar> matches top-goal*terminate*operator*build-tower -wmes
1 (state <g> “operator <o>)
(<0> “name build-tower)
(<g> “problem-space <p>)
(<p> “name top-ps)
(<g> “object-dynamic <tower>)
>>>> (<tower> “bottom-block <blockc>)
xxx Matches For Left *xx
(48: S1 “operator 02)
(35: 02 “name build-tower)
(7: S1 "“problem-space P1)
(9: P1 “name top-ps)
(13: S1 “object-dynamic T1)

D= = e

(48: S1 ~“operator 02)
(35: 02 “name build-tower)
(7: S1 “problem-space P1)

104 CHAPTER 6. THE SOAR USER INTERFACE

(9: P1 "name top-ps)
(12: S1 “object-dynamic B1)

(48: S1 “operator 02)

(35: 02 “name build-tower)
(7: S1 "“problem-space P1)
(9: P1 “name top-ps)

(11: S1 “object-dynamic B2)

(48: S1 ~“operator 02)

(35: 02 “name build-tower)
(7: S1 "“problem-space P1)
(9: P1 “name top-ps)

(10: S1 “object-dynamic B3)

¥k Matches for Right *x*x*

(<blockc> “name c)

(<tower> "“middle-block <blockb>)
(<blockb> “name b)

(<tower> ~“top-block <blocka>)
(<blocka> “name a)

0 complete matches.

Notes

When printing partial match information, some of the matches displayed by this
command may have already fired, depending on when in the execution cycle this
command is called. To check for the matches that are about to fire, use the matches
command without a named production.

In Soar 8, the execution cycle (decision cycle) is input, propose, decide, apply output;
it no longer stops for user input after the decision phase when running by decision
cycles (run 1 d). If a user wishes to print the match set immediately after the
decision phase and before the apply phase, then the user must either run Soar by
phases (run 1 p), or register a callback using the monitor command to pause Soar
after the decision phase.

6.2.4 memories [prodname | n | prodtype]

The memories command prints out the internal memory usage for full and partial
matches of production instantiations, with the productions using the most memory

6.2. EXAMINING MEMORY 105

printed first.

Memory usage is recorded according to the tokens that are allocated in the Rete
network for the given production(s). This number is a function of the number of
elements in working memory that match each production. Therefore, this command
will not provide useful information at the beginning of a Soar run (when working
memory is empty) and should be called in the middle (or at the end) of a Soar run.

With no arguments, the memories command prints memory usage for all produc-
tions. If a production name is specified, memory usage will be printed only for that
production; if a positive integer n is given, only n productions will be printed: the n
productions that use the most memory.

Output may be restricted to print memory usage for particular types of productions,
using one or more of the flags in the following table:

‘ prod type ‘ effect on printing behavior ‘
-user print memory usage of user-defined productions
-default print memory usage of default productions
-chunks print memory usage of chunks
-justifications | print memory usage of justifications

The memories command is used to find the productions that are using the most
memory and, therefore, may be taking the longest time to match (this is only a
heuristic). By identifying these productions, you may be able to rewrite your program
so that it will run more quickly. Note that memory usage is just a heuristic measure
of the match time: A production might not use much memory relative to others but
may still be time-consuming to match, and excising a production that uses a large
number of tokens may not speed up your program, because the Rete matcher shares
common structure among different productions.

As a rule of thumb, numbers less than 100 mean that the production is using a small
amount of memory, numbers above 1000 mean that the production is using a large
amount of memory, and numbers above 10,000 mean that the production is using a
very large amount of memory.

Example

soar> memories -chunk
Memory use for productions:
chunk-3: 1

chunk-2: 1
chunk-1: 1

106 CHAPTER 6. THE SOAR USER INTERFACE

6.2.5 preferences [id] [["] attribute] [0[1]2]3] \
[-none|-names|-timetags|-wmes]

The preferences command prints the current preferences for the specified identifier
and attribute; an optional third argument increases the level of detail. If no argu-
ments are specified, the id and attribute default to the current state and operator,
respectively. This command is useful for examining which candidate operators have
been proposed and what relationships, if any, exist among them. If a preference has
O-support, the string, “:0” will also be printed.

The optional arguments to the preferences command are described in the following
table. The numeric and named flags are redundant; one may use either a number or
a name to specify the level of detail.

‘ preferences ‘ Effect on output ‘
0 | -none Print only the preferences themselves (default)
1 | -names Also print the names of the productions that generated these
preferences

2 | ~timetags | Also print the timetags of the WME’s that matched the
productions that generated the preferences
3 | —~wmes Also print the WME’s that matched the productions

Example

soar> preferences
Preferences for S1 “operator:

acceptables:
020 (move-block) +
021 (move-block) +
09 (move-block) +

reconsiders:
015 (move-block) @

unary indifferents:
020 (move-block)
021 (move-block)
09 (move-block) =
soar>

soar> preferences sl operator 1
Preferences for S1 “operator:

acceptables:

6.2. EXAMINING MEMORY 107

020 (move-block) +

From blocks-world*xproposexmove-block
021 (move-block) +

From blocks-world*xproposexmove-block
09 (move-block) +

From blocks-world*propose*move-block

reconsiders:
015 (move-block) @
From blocks-world*terminate*move-block

unary indifferents:
020 (move-block) =
From blocks-world*comparexmove-block*indifferent
021 (move-block) =
From blocks-world*compare*move-block*indifferent
09 (move-block) =
From blocks-world*comparexmove-block*indifferent
soar>

6.2.6 print [-internal] [-name|-full] [-filename] \
{prodname |-all|-chunks|-defaults| \
-justifications|-user}
print [-depth n] [-internal] \
{identifier|timetag | pattern}
print -stack [-statel|-operator]

The print command prints information about items in production memory and work-
ing memory. It will also print the current subgoal stack. The print command must
take an argument, such as the name or type of a production (to print productions);
an identifier, timetag or pattern (to print an object or element in working memory);
or -stack to print the current subgoal stack. It is a rather overloaded and complex
command, so it is broken down into its three different functions below. Each section
defines the pertinent arguments and gives examples.

The output of print is dependent on the order of the arguments. Arguments such as
-internal, -full, and -filename are applied only to arguments that follow them
on the commandline. For example:

soar> print -chunks -full ;# print only the names of chunks (default)

soar> print -full -chunks ;# print each chunk entirely

This may seem inflexible, but it does allow users to print any number of items in
memory and have different modifiers apply to different arguments, with a single com-

108 CHAPTER 6. THE SOAR USER INTERFACE

mand.

6.2.6.1 Printing items in production memory.

Usage: print [-internal] [-name|-full] [-filename] \
{prodname | -all|-chunks|-defaults|-justifications|-user}

‘ argument ‘ prints ‘
-internal Print productions in their “internal” form
-name Print only the name of the production. This is the default
when a production type is specified.
-full Print the full production. This is the default when
a production name is specified.
-filename Print the name of the file that contains the production.
Useful when many files are sourced to load productions.
prodname (s) prints the full named production(s)
-all Print the names of all productions. If -full
is specified first, print the full productions.
-chunks Print the names of all chunks. If -full
is specified first, print the full productions.
-defaults Print the names of all default productions. If -full
is specified first, print the full productions.
-justifications | Print the names of all justifications. If -full
is specified first, print the full productions.
-user Print the names of all user productions. If -full
is specified first, print the full productions.

comment: underline the unique 2-char substrings that are allowed.

The print command is used to print items in production memory. If a production
name is specified, Soar will by default print the entire production. If a production
type is specified, Soar will by default print the names of all productions of that type.
The flags [-name|-full] can be used to override the defaults and print the entire
production for all of the specified type, or print only the name for named productions
(which seems rather silly).

The flag -filename modifies the output of print to include the name of the file
that stores the production. This is particularly useful when productions are stored
in multiple files that all get loaded when the program starts.

The flag —~internal is used to print productions as they appear in the Rete, with the
conditions in their reordered form.

Examples

6.2. EXAMINING MEMORY 109

soar> print -filename blocks-world*compare*move-block*indifferent
sourcefile : blocks-world.soar
sp {blocks-world*compare*move-block*indifferent

(state <s> “operator <o> +)

(<0> “name move-block)

-—=>

(<s> ~operator <o> =)

¥

soar> print -u

comment: ... need the info for the example ...

Notes

The flags -internal, -name|-full, and -filename, must be specified on the com-
mandline before the production name or type.

6.2.6.2 Printing items in working memory.

Usage: print [-depth n] [-internall] {identifier |timetag |pattern}

argument ‘ prints ‘

-depth n for working memory elements only, follows links to print
the subobjects of objects to the specified depth

-internal Print the individual WMEs for the item specified
identifier | prints the working memory object specified by the identifier
timetag print the object or WME with this integer timetag
pattern print object or WME that matches this pattern

print is also used to print items in working memory. The syntax of printing items
from working memory is a bit tricky; including the optional flags can alter the output
dramatically. By default, print retrieves the object associated with the identifier,
timetag, or pattern specified as the argument to print. (Recall that an object com-
prises all WMESs with a common identifier.) But depending on whether -internal
is specified, and what the -depth value is, the output generated might be a long list
of individual WMESs, or several copies of the same object. The effects of these flags
will be described in text, but the reader is encouraged to study the examples.

To print items from working memory, one of the following arguments must be given:
an identifier, such as S1; an integer timetag, e.g., 15; or a pattern that will match
against one or more elements of working memory, e.g., {(* “operator *)}. The
syntax of a pattern is exactly the (id “attribute value) triplet that represents working
memory elements, with the addition that wildcards can be used in place of any or

110 CHAPTER 6. THE SOAR USER INTERFACE

all of the components of the triplet. It is important to note that the whole triplet,
including the parenthesis, must be enclosed in curly braces for it to be parsed properly.
If wildcards are included, an object will be printed for each pattern match, even if
this results in the same object being printed multiple times. See Example 2.

Use of the optional —~internal flag will result in individual WMEs and their timetags
being printed, rather than objects. Except for the addition of the timetags, this is
just a change in format of the same information. Compare the output of the two
commands in Example 1.

The optional -depth flag causes the print command to follow identifier links in
working memory to the depth specified. By default, Soar uses a depth of 1, which
causes the print command to follow each link of the identifier exactly one level. A
-depth of 2 will result in the object being printed and also all objects whose identifiers
are values in the first object. The default depth for Soar can be changed through the
default-wme-depth command (described on page 114), but specifying -depth = in
the print command will always override the value set by default-wme-depth. In
what seems like a special case (but really isn’t), the output of print for -depth 0
depends on whether or not the ~internal flag is also specified. If —~internal is not
specified, Soar prints the object, and the -depth flag has no effect on the output.
However, if -internal and -depth 0 are both specified, then Soar will print only
the matched WME. Compare the output of the commands in Example 3.

To print individual WMEs for a given argument (identifier or timetag or pattern),
use print -depth O -internal arg. For convenience, the wmes alias described on
page 115 provides exactly that notation. To print a single copy of all elements in
working memory, in their internal form, i.e., as WMEs with timetags, use:

soar> print -depth O -internal {(* ~* x)}
OR
soar> wmes {(x “* %)}

In the above print statement, omitting ~depth 0 will cause each WME to be printed
for every object they are part of (if the default depth is 1); omitting -internal will
cause the entire object to be printed for each WME.

Example 1 The default behavior of print is to print an object. Specifying
-internal causes the individual WMEs and their timetags to be printed.

soar> print si

(81 "io I1 “ontop 03 “ontop 02 “ontop 01
“operator 04 + “operator 07 “operator 05 + “operator 06 +
“operator 07 + “operator 08 + “operator 09 +
“problem-space blocks “superstate nil
“thing T1 ~“thing B1 “thing B3 “thing B2 “type state)

soar> print -internal sl

6.2. EXAMINING MEMORY

(3: S1 ~io I1)
(9: S1 “ontop 03)

(10:
(11:
(48:
(54:
(49:
(50:
(51:
(52:
(53:

(4:
(2:
(5:
(8:
(6:
(7:
(1:

S1
S1
S1
S1
S1
S1
S1
S1
S1
S1
S1
S1
S1
S1
S1
S1

“ontop 02)
“ontop 01)
“operator 04 +)
“operator 06)
“operator 05 +)
“operator 06 +)
“operator 07 +)
“operator 08 +)
“operator 09 +)
“problem-space blocks)
“superstate nil)
“thing T1)
~thing B1)
“thing B3)
~thing B2)

“type state)

111

Example 2 The acceptable preferences for operators that may appear in working
memory may be printed by following the identifier-attribute-value pattern with a plus
sign, +. When wildcards are used, Soar prints the object for each item matched; in
this example, six operator preferences are matched in the same object, and no other
operator preferences exist.

soar> print {(x ~* x +)}
(S1 “io I1 “ontop 03 “ontop 02 “ontop 01 “operator 04 + “operator 06

“operator 05 + “operator 06 + “operator 07 + “operator 08 +

“operator 09 + “problem-space blocks “superstate nil “thing T1

“thing B1 “thing B3 “thing B2 “type state)

(S1 “io I1 “ontop 03 “ontop 02 “ontop 01 “operator 04 + “operator 06

“operator 05 + “operator 06 + “operator 07 + “operator 08 +

“operator 09 + “problem-space blocks “superstate nil “thing T1

“thing B1 “thing B3 “thing B2 “type state)

(S1 “io Il “ontop 03 “ontop 02 “ontop 01 “operator 04 + “operator 06

“operator 05 + “operator 06 + “operator 07 + “operator 08 +

“operator 09 + “problem-space blocks “superstate nil “thing T1

“thing B1 “thing B3 “thing B2 “type state)

(S1 “io I1 “ontop 03 “ontop 02 “ontop 01 “operator 04 + ~“operator 06

“operator 05 + “operator 06 + “operator 07 + “operator 08 +

“operator 09 + “problem-space blocks “superstate nil “thing T1

“thing B1 “thing B3 “thing B2 “type state)

(S1 “io I1 “ontop 03 “ontop 02 “ontop 01 “operator 04 + “operator 06

“operator 05 + “operator 06 + “operator 07 + “operator 08 +

“operator 09 + “problem-space blocks “superstate nil “thing T1

112 CHAPTER 6. THE SOAR USER INTERFACE

“thing B1 “thing B3 “thing B2 “type state)

(S1 “io Il “ontop 03 “ontop 02 “ontop 01 “operator 04 + “operator 06
“operator 05 + “operator 06 + “operator 07 + “operator 08 +
“operator 09 + “problem-space blocks “superstate nil “thing T1
“thing B1 “thing B3 “thing B2 “type state)

soar>

Example 3 When a timetag is specified as the argument to print, Soar prints the
object that includes the WME with that timetag.

soar> print 30
(04 “destination Bl “moving-block B2 "name move-block)

The output when -depth 0 is specified still prints the object, unless the ~internal
is also specified.

soar> print -depth 0 30
(04 “destination Bl “moving-block B2 ~"name move-block)

soar> print -depth O -internal 30
(30: 04 “name move-block)

6.2.6.3 Printing the current subgoal stack.

print can be used to print the current subgoal stack by specifying the -stack ar-
gument. By default this includes both states and operators. The stack listing can
be restricted by adding the -states and -operator restrictions. Specifying both
options is equivalent to the default. The predefined alias 'ps’ is the same as print
-stack.

Usage: print -stack [-operators|-states]

‘ argument ‘ prints ‘
-stack prints the current subgoal stack
-operators | print only the operators
-states print only the states

Examples

soar> print -stack
: ==>S: S1
0: 07 (move-block)

6.2. EXAMINING MEMORY 113

6.2.7 production-find {[-1hs|-rhs] [-chunks|-nochunks] \
[-show-bindings] {pattern} }

The production-find command is used to find productions in production memory
that include conditions or actions that match a given pattern. The pattern given spec-
ifies one or more condition elements on the lefthand side of productions (or negated
conditions), or one or more actions on the righthand side of productions. Any pattern
that can appear in productions can be used in the production-find command. In
addition, the asterisk symbol, *, can be used as a wildcard for an attribute or value.
It is important to note that the whole pattern, including the parenthesis, must be
enclosed in curly braces for it to be parsed properly.

The variable names used in a call to production-find do not have to match the
variable names used in the productions being retrieved.

The production-find command can also be restricted to apply to only certain types
of productions, or to look only at the conditions or only at the actions of productions,
by using the flags shown in the following table:

‘ flag ‘ Effect on productions found ‘
-1lhs Match pattern only against the conditions (lefthand side) of
productions (default)
-rhs Match pattern only against the actions (righthand side) of
productions
-chunks Look only for chunks that match the pattern
-nochunks Disregard chunks when looking for the pattern

‘ -showbindings ‘ Show the bindings associated with a wildcard pattern

Examples

soar> production-find {(<s> “operator <o>) (<o> “name move-block)}
blocks-world*monitor*move-block

blocks-world*terminate*move-block
blocks-world*apply*move-block*remove-old-clear
blocks-world*apply*move-block*add-new-ontop
blocks-world*apply*move-block*add-new-clear
blocks-world*apply*move-block*remove-old-ontop

soar> production-find -showbindings -rhs \
{(<state> ~“operator <op>) (<op> “name move-block)}
blocks-world*propose*move-block, with bindings:
(<state> -> <s>)
(<op> -> <o0>)

soar> production-find -rhs -lhs \

114 CHAPTER 6. THE SOAR USER INTERFACE

{(<s> ~“operator <o> +)(<0> "name move-block)}
blocks-world*select*move-block*indifferent
blocks-world*proposexmove—block

6.2.8 default-wme-depth [n]

The default-wme-depth command reflects the default depth used when working
memory elements are printed (using the print command or wmes alias). The default
value is 1. When the command is issued with no arguments, default-wme-depth
returns the current value of the default depth. When followed by an integer value,
default-wme-depth sets the default depth to the specified value. This default depth
can be overridden on any particular call to the print or wmes command by explicitly
using the -depth flag, e.g.,print -depth 10 args.

Recall that by default, the print command prints objects in working memory, not just
the individual working memory element. To limit the output to individual working
memory elements, the -internal flag must also be specified in the print command.
Thus when the print depth is 0, by default Soar prints the entire object, which is the
same behavior as when the print depth is 1. But if -internal is also specified, the
a depth of 0 prints just the individual WME, while a depth of 1 prints all WMEs
which share that same identifier. This is true when printing timetags, identifiers or
WME patterns.

When the depth is greater than 1, the identifier links from the specified WME’s will
be followed, so that additional substructure is printed. For example, a depth of 2
means that the object specified by the identifier, wme-pattern, or timetag will be
printed, along with all other objects whose identifiers appear as values of the first
object. This may result in multiple copies of the same object being printed out. If
-internal is also specified, then individuals WMEs and their timetags will be printed
instead of the full objects.

Example

soar> default-wme-depth 2
soar> default-wme-depth
2

Notes

See the print command on page 107 for more information and examples on default
print depth.

6.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 115

6.2.9 wmes{identifier|timetag|pattern}

The wmes alias is a shorthand for print -depth 0 -internal, used to print working
memory elements. The wmes command always prints WME’s in their internal form,
i.e., as separate working memory elements with timetags, rather than as objects.

As with the print command, the depth can be set to any level by using the optional
-depth flag, but then WMEs may be printed multiple times, once for each object
they are part of.

Examples The first example prints all WMEs for the object, al:

soar> wmes al
(20: A1 “name a)
(19: Al “type block)

This example prints the WME with the timetag, 20:

soar> wmes 20
(20: A1 “name a)

This example will print one copy of each element of working memory:

soar> wmes {(* “* %)}

6.3 Configuring Trace Information and Debugging

This section describes the commands used primarily for debugging or to configure the
trace output printed by Soar as it runs. Users may: specify the format and content
of the runtime trace output; ask that they be alerted when specific productions fire
and retract; specify certain actions be taken at various points in the execution cycle;
or request details on Soar’s performance.

The specific commands described in this section are:

Summary

chunk-name-format - Specify format of the name to use for new chunks.
firing-counts - Print the number of times productions have fired.
format-watch - Change the trace output that’s printed as Soar runs.
monitor - Manage attachment of Tcl scripts to Soar events.

pwatch - Trace firings and retractions of specific productions.

stats - Print information on Soar’s runtime statistics.

warnings - Toggle whether or not warnings are printed.

116 CHAPTER 6. THE SOAR USER INTERFACE
watch - Control the information printed as Soar runs.

Of these commands, watch is the most often used (and the most complex). pwatch is
related to watch, but applies only to specific, named productions. firing-counts and
stats are useful for understanding how much work Soar is doing. Both format-watch
and chunk-name-format are less-frequently used, but they allow for detailed control
of Soar’s output. monitor is especially useful when interacting with an external
environment, but can be used anytime it is useful to always take a specific action at a
specific point in Soar’s execution cycle. The monitor command is discussed in more
depth in the Soar Advanced Applications Manual.

6.3.1 chunk-name-format [-short|-long] \
[-prefix [prefiz]] [-count [n]]

The chunk-name-format command specifies the format to be used when naming newly
created chunks.

‘ flag ‘ Effect on chunk name ‘
-short Use the short format for naming chunks
-long Use the long format for naming chunks (default)

-prefix [string] | If string is given, use string as the prefix for naming chunks.
Otherwise return the current prefiz. (defaults to “chunk”)
-count n If n is given, set the chunk counter for naming chunks to n.
Otherwise return the current value of the chunk counter.

The short format for naming newly-created chunks is:
preficChunknum

The long (default) format for naming chunks is:
prefiz- Chunknum*ddc*impassetype *dc Chunknum

where:

prefix is a user-definable prefix string; prefir defaults to “chunk” when
unspecified by the user. It may not contain the character *.

Chunknum is n for the first chunk created, n+1 for the second chunk created,
etc.

dc is the number of the decision cycle in which the chunk was formed.
impassetype isone of [tie | conflict | cfailure | snochange | opnochangel.

dcChunknum is the number of the chunk within that specific decision cycle.

6.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 117

Notes
The chunk-name-format command enforces the constraint that the prefir string may
not contain the “*” character.

The chunk-name-format command enforces the constraint that the Chunknum can-
not be reset to a number lower than the smallest chunk number of any loaded chunk.

The '+’ character marks the ending of the number of the chunk, and chunk numbers
are examined during production loading to allow a starting chunk number to be
identified automatically.

impasse-type is the impasse of the lowest goal that whose result generated this
chunk.

Examples Default naming of chunks uses the long form:

soar> print -c
chunk-1*xd4*opnochangex*1
chunk-2xdbxtiex1
chunk-4*d8*opnochange*1
chunk-5*xd8*tiex2
chunk-7*d13*opnochangex*1

To name chunks according to the “old” (pre-Soar8) scheme:
soar> chunk-name-format -short -prefix '"chunk" -count 0

To begin naming a new sequence of chunks of the form new-chunkn , where n starts
with 1 and is incremented by 1 for each new chunk:

soar> chunk-name-format -short -prefix '"new-chunk"

To begin numbering a new sequence of chunks at 1000.

soar> chunk-name-format -count 1000

To retrieve the next chunk-num that will be used to form a chunk name.

soar> chunk-name-format -count
8

6.3.2 firing-counts [n | prodname(s)]

The firing-counts command prints the number of times each production has fired;
production names are given from most frequently fired to least frequently fired. With
no arguments, it lists all productions. If an integer argument, n, is given, only the
top n productions are listed.

If n is zero (0), only the productions that haven’t fired at all are listed. If one or more

118 CHAPTER 6. THE SOAR USER INTERFACE

production names are given as arguments, only firing counts for these productions
are printed.

Note that firing counts are reset by a call to init-soar.

Example

soar> firing-counts 10

34: default*generic*elaborate*add-attribute-to-duplicate

17: blocks-world*propose*operator*move-block

11: blocks-world*monitor*state*relation*ontop
default*generic*elaborate*state*xadd-duplicate-to-state
blocks-world*reject*move-block*twice
default*generic*elaborate*state*xduplicate-id-for-attribute
blocks-world*monitor*tied-operators*move-block
default*selection*propose*operator*evaluate-object
default*selection*elaborate*state*with-wait-true-not-all-

objects-evaluated

7: default*selection*select*operator*evaluate-object*indifferent
soar> firing-counts blocks-world*propose*operator*move-block

17: blocks-world*propose*operator*move-block

~N NN 00 o0 oo

6.3.3 format-watch [-stack|-object] \
[[-add|-remove] [ols|*] [namel {format}]

The format-watch command allows users to customize the appearance of the output
printed as Soar runs. Unlike the watch command, which controls what information is
printed, the format-watch command controls how this information is printed, that
is, how it is formatted. Generally, this command is not used by beginners, but it
gives great flexibility for customizing the runtime appearance of Soar. Readers may
wish to read through the section on the watch command on page 132, before reading
this section.

The formatting is controlled by a set of formatting rules, each having certain applica-
bility conditions' and a format string. When Soar wants to print something, it looks
for an applicable rule (choosing the most specific one if more than one is applicable)
and uses that format string to control the printout.

'In general, these conditions could be made arbitrarily complicated, and a whole Rete net could
be used to match the rules. However, we have opted for simplicity here instead: the conditions are
very restricted, so that the matching (actually, lookup) can be done in constant time.

6.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 119

‘ argument ‘ Effect on format-watch ‘

-stack applies to printing of context stack trace (default)
-object | applies to printing of objects

-add add a new format possibly replacing an old format
-remove | remove an existing format

restrict to states only
restrict to operator only
* do not restrict by type

name for —stack, restrict to named problem spaces
for —object, restrict to objects with “name name

‘ format ‘ sequence of format masks to apply ‘

All calls to format-watch should take either —~stack or -object as an argument, to
specify whether the rule applies to stack formats or object formats. Stack formats
control how Soar prints its context stack selections in watch 1 and print -stack
output. Object formats control how Soar prints an object, e.g., a certain operator,
problem-space, etc. If no type is given, then -stack is assumed.

With no additional arguments, format-watch prints the current formatting settings
(for either stacks or objects, as specified).

Any additional arguments are considered an action, which add or delete a formatting
rule. The optional action takes the form:

operatton class [name] format

The operation must be either —add or -remove. An -add operation adds new for-
mats, replacing any existing ones with identical applicability conditions. A -remove
operation removes formats with the given applicability conditions. The combination
of class and name define the applicability conditions of the format (i.e., which classes
of items the format applies to). The class must be either s or o and indicates that
the operation applies to states or operators, respectively. The wildcard symbol * may
also be used to indicate that the format applies to all classes of items. If an -object
trace is being manipulated, then an optional name may be given indicating the format
applies only to objects with that name. If a —stack trace is being manipulated, then
an optional name may be given indicating the format applies only within problem
spaces of that name.

The format string can be any sequence of characters surrounded by curly braces. Note
that curly braces must be used to delimit the format otherwise any square brackets
in the format string will be interpreted as a command to be evaluated by Tcl. A
set, of formatting controls can be used within the format string; see the subsection
“Formatting Controls” below for more information.

Note that there can only be one rule with given applicability conditions in the system
at a time. If you try to —add a second rule with identical conditions, the first one is
removed and replaced by the second.

120

Also note that there can be two rules with different applicability conditions that
happen to apply to the same object. For example, there could be one rule with a
name restriction that matches a certain object, and a second rule that has no name
restriction (and thus also matches the object). In this case, Soar uses whichever
rule has the most specific conditions. (For purposes of this, name restrictions are

CHAPTER 6. THE SOAR USER INTERFACE

considered more specific than type restrictions.)

Formatting Controls

The format strings have escape sequences embedded in them, starting with a % sign.
Soar expands the escape sequences into the appropriate pieces of text. For example,
the format string %right[6,%dc] means print the current decision cycle number,

right justified in a field 6 characters wide.

‘ format string ‘

Effect on output

Tolh

print a percent sign.

Wl print a left bracket.

A print a right bracket.

Jnl print a newline.
%hleft[num,pattern] | print the given pattern, left justified

in a field of num spaces.

hright [num,pattern]

print the given pattern, right justified
in a field of num spaces.

hid print the identifier of the current object.
hvlattr] print the value(s) of attribute "attr on
the current object. If there is no “attr on the
current object, nothing is printed.
hvlpath] same as the above, only follow the given
path to get the value(s). A path is a
series of attribute names separated by periods,
such as foo.bar.baz
Jov [*] print all values of all attributes for current object.
%holargs] same as %v, except that if the value is an

identifier, it is printed using the appropriate object
format rather than just as 037, for example.

havlargs]

same as %v, except the printed value is preceded
with “attr to indicate the attribute name.

haolargs]

a combination of the above two.

hifdef[pattern]

print the given pattern if and only if all escape
sequences inside it are “meaningful” or
“well-defined.” For example,

“%ifdef[foo has value: %v[fooll” will print
nothing if there is no “foo attribute

on the current object.

6.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 121

The following escape sequences are valid only for -stack formats:

‘ format string ‘ Effect on output
Tolo print a percent sign.
hes print the current state using the defined format.
heo print the current operator using the defined format.
hdc print the current decision cycle number. (not meaningful

in stack traces produced by the (print -stack) command.
In these cases, nothing is printed.)

hec print the current elaboration cycle number. (not meaningful
in stack traces produced by the (print -stack) command.
In these cases, nothing is printed.)

hsd print the current substate depth (where 0 is the

top-level state).

hrsdlpattern] | print the given pattern, repeating it substate depth times.
The pattern may contain other escape sequences.

Examples

The following stack formats are the built-in defaults in Soar, and yield the watch 1
trace seen when Soar is running:

format-watch -stack -add s {)right[6,%dc]: %rsd[1==>S: Vcs}
format-watch -stack -add o {right[6,%dc]: %rsd[1 0: Y%co}

In the first example above, the format string %right [6,%dc] means print the current
decision cycle number, right justified in a field 6 characters wide. After that, the
format string says to print a colon and a space. The %rsd escape causes the pattern
in the brackets (three spaces) to be printed current-substate-depth times. Finally, the
characters “==>3” should be printed followed by the current state, using whatever
object format is appropriate. The second example above, is left as an exercise for the
reader.

The following object formats are the built-in defaults for Soar:

format-watch -object -add * {/id %ifdef[(%v[name])]}
format-watch -object -add s {%id %ifdef[()v[attribute] %v[impasse])]}
format-watch -object -add o evaluate-object

{%id (evaluate-object %ol[object])}

The first command adds a rule that affects both states and operators; this rule prints
an identifier followed by its name in parentheses (if a name is defined). This rule will
always apply unless a more specific rule also holds for the same item.

The second command adds a rule that affects only the printing of state objects;
this rule tprints the state identifier followed by, in parentheses, its “attribute and
Nimpasse attributes, if they are defined.

122 CHAPTER 6. THE SOAR USER INTERFACE

The third command adds a rule that affects only the printing of operator objects;
this rule handles specifically the evaluate-object operators in the selection space.
These operators will be printed as an identifier followed by, in parentheses, the string
"evaluate-object 7 and the printed representation of the object being printed.

Notice that the second and third rules are more specific than the first, and either
will take precedence over the first. Also, the third rule gives a special format to be
used only on operators with a certain name. Users may find this technique useful in
their own code, to get certain parameters printed on certain operators but different
parameters printed on other operators.

The following formatting rules produce a Soar trace where instead of indenting for
states, the level of subgoaling prefaces each state or operator symbol.

format-watch -stack -add s {%left[6,%dc] (%sd) S: %cs}
format-watch -stack -add o {%left[6,%dc] (%sd) 0: %co}

The following formatting rule causes both the current state and current operator to
be printed whenever an operator is selected. (There is a linefeed in the middle of the
format string.)

format-watch -stack -add o {Yright[6,%dc]: %rsdl] S: Y%cs
Yrsd[1 0: %co}

This format can be useful for watching the effects of a series of operator applications.
Each time an operator is selected, the current state is also printed, so users can see
what modifications the previous operator made to the state.

6.3.4 monitor action

The monitor command manages the attachment of Tcl scripts to specific Soar events.
Soar events are important events that occur in Soar throughout the execution cycle.
Scripts can be attached to these Soar events so that they are invoked every time the
Soar event occurs. These scripts can also be removed using the monitor command.
The status of attachments can also be listed and tested. If a new attachment is
created, its id is returned as the result of this command. This id is used when
deleting a specific script from an event.

The monitor command is particularly useful when Soar must interact with an external
environment, but this is considered an advanced usage and is not within the scope of
this manual. A more detailed description of the use of the monitor command, and
specific useful examples are given in the Soar Advanced Applications Manual.

The monitor command must be followed by a specific action which must have one of

the following forms:

-add soar-event script [id] Add the script to the list of scripts to be
invoked when the soar-event occurs during execution. See below for

6.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 123

a list of valid Soar event names. If the id is given, it is used to name
the attachment. If no id is given, then a unique id is generated and
returned.

-delete soar-event [id] Remove scripts attached to soar-event. The
soar-event must match a valid Soar event name (see below). If id
is given after a soar-event, then only that particular attachment is
removed. Otherwise, all attachments under soar-event are removed.

-list For every Soar event, list the attached scripts.

-test Test the script attachment process by attaching a script to print a
message to every Soar event.

-clear Remove all attached scripts from every Soar event.

Soar Events

The monitor command utilizes the Soar callback system which can associate Tcl or C
functions with Soar events. The permissable Soar event names for use with monitor
listed in the following table:

124 CHAPTER 6. THE SOAR USER INTERFACE

Event name ‘ Description
after-init-agent An agent has just been created and initialized.
before-init-soar The agent is about to be initialized. The
init-soar command will generate this event.
after-init-soar The agent has just been initialized. The
init-soar command will generate this event.
after-halt-soar The agent has just been halted.
before-schedule-cycle This event is triggered by the run command.
it occurs just before the agent is run.
after-schedule-cycle This event is triggered by the run command.
it occurs just after the agent is run
before-decision-cycle A decision cycle is just about to start.
after-decision-cycle A decision cycle has just ended.
before-input-phase An input phase is just about to start.
after-input-phase An input phase has just ended.
before-preference- A preference phase is just about to begin.
phase-cycle
after-preference- A preference phase has just ended.
phase-cycle
before-wm-phase-cycle A working memory phase is just about to begin.
after-wm-phase-cycle A working memory phase is just about to begin.
before-decision- A decision phase is about to begin.
phase-cycle
after-decision- A decision phase has just ended.
phase-cycle
before-output-phase An output phase is just about to begin.
after-output-phase An output phase has just ended.
wm-changes Changes to working memory have just completed.
create-new-context A new state has been created on the goal stack.
pop-context-stack A subgoal has finished.
production-just-added A productions has just been added to the agent.
production-just-about- A production is just about to be removed
to-be-excised from the agent.
firing A production instantiation has just fired.
retraction A production instantiation is just about to retract.
system-parameter—-changed | A system parameter has just been changed.
system-termination The Soar system is exiting.

Examples The following command creates an attachment which prints a message
after every Soar decision cycle:

monitor -add after-decision-cycle {puts "Finished DC!"}

The next example creates an attachment which calls the Tcl pro- cedure ” DoSome-
thing” (presumably user-defined) after every production firing:

6.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 125

monitor -add firing DoSomething

The next example creates an attachment which processes pending X events after
every decision cycle. This is often needed in long-running Soar agents (agents that
run more than a few decision cycles at a time) so that GUIs do not appear frozen:

monitor -add after-decision-cycle update

The following example removes the single attachment ”m1” which asso- ciates a script
with the Soar event after-init-agent:

monitor -delete after-init-agent ml

The next example removes all script attachments to the Soar event before-preference-
phase-cycle:

monitor —-delete before-preference-phase-cycle

Finally, this example removes all script attachments that have been added with the
monitor command:

monitor -clear

6.3.5 pwatch [-on|-off] [production-name(s)]

The pwatch command enables and disables the tracing of the firings and retractions
of individual productions. This is a companion command to watch, which cannot
specify individual productions by name.

With no arguments, pwatch lists the productions currently being traced. With one
or more production-name arguments, pwatch enables tracing of those productions;
-on can be explicitly stated, but it is the default action. If —-off is specified followed
by one or more production-names, tracing is turned off for those productions.

When no production-names are specified, pwatch -on lists all productions currently
being traced, and pwatch -off disables tracing of all productions.

Example

soar> pwatch -on blocks-world*terminate*move-block
soar> pwatch

blocks-world*terminatex*move-block

soar> run 3 d

0: ==>S: S1
Initial state has a, b, and ¢ on the table.
1: 0: 06 (move-block)

Moving Block: c to: b
Firing blocks-world*terminatexmove-block

126 CHAPTER 6. THE SOAR USER INTERFACE

2: 0: 08 (move-block)
Moving Block: c to: a
Retracting blocks-world*terminatexmove-block
Firing blocks-world*terminate*move-block

3: 0: 011 (move-block)

6.3.6 stats [-system [stat]] |\
[-memory [resourcell | \
[-rete [rtype qualifier]]

The stats command provides statistical information about Soar’s internal workings.
Users can obtain summary information on the whole system, the Rete net, or memory
pools; or can request single values for individual items. Most users are interested in the
summary information for the system and might examine more detailed information
only when debugging.

6.3.6.1 stats [-system [stat]]

With no arguments or if -system is specified, the stats command lists a summary
of run statistics, including the following:

Version — The Soar version number, hostname, and date of the run.

Number of productions — The total number of productions loaded in
the system, including all chunks built during problem solving and all
default productions.

Timing Information — Might be quite detailed depending on the flags
set at compile time. See Appendix 77 on page ?77.

Decision Cycles — The total number of decision cycles in the run and
the average time-per-decision-cycle in milliseconds.

Elaboration cycles — The total number of elaboration cycles that were
executed during the run, the everage number of elaboration cycles
per decision cycle, and the average time-per-elaboration-cycle in mil-
liseconds. This is not the total number of production firings, as pro-
ductions can fire in parallel.

Production Firings — The total number of productions that were fired.

Working Memory Changes — This is the total number of changes
to working memory. This includes all additions and deletions from
working memory. Also prints the average match time.

Working Memory Size — This gives the current, mean and maximum
number of working memory elements.

6.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 127

The following specific arguments may follow -system to limit the output to the desired
information:

—dc-count -firings-count
-ec-count -firings/ec

-ecs-dc -wme—-change-count
-all-productions-count -wme—addition-count
—-chunk-production-count -wme-removal-count
—default-production-count -wme-count
—-justification-count -wme—avg-count
-user—-production-count —wme-max—-count

If Soar has been compiled with the NO_TIMING_STUFF not set, then the following
statistics are also available with the -system argument:

-ms/dc
-ms/ec
-ms/firing
—total-time

If Soar has been compiled with the DETAILED_TIMING_STATS set to TRUE, then the
following statistics are also available in the -system module:

—chunking-time
-match-time
-ms/wme-change
—ownership-time

The standard distributions of Soar have been compiled to include all the above statis-
tics by default.

Example

soar> stats
Soar 8.2 on ledoux.ummu.umich.edu at Thu May 6 10:41:53 1999

91 productions (79 default, 12 user, 0 chunks)
+ 1 justifications

| Derived
Phases: Input DLP Pref W/M Output Decision| Totals
1ttt I =========
Kernel: 0.080 0.100 2.570 0.710 0.030 0.920 | 4.410

=============== Detailed Tlmlng Statistics =============|=========
Match: 0.020 0.020 0.000 0.470 0.000 0.040 | 0.550

128 CHAPTER 6. THE SOAR USER INTERFACE

Own’ship: 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000
Chunking: 0.000 0.000 0.040 0.000 0.000 0.000 | 0.040
Other: 0.060 0.080 2.530 0.240 0.030 0.880 | 3.820
Operand2: 0.000 0.060 0.000 0.100 0.000 0.000 | 0.160
R S S S S S S S S S o o S S S S S S S o S S S S S S S S S S S S s s === | =========
Input fn: 0.020 | 0.020
1ttt I =========
Outpt fn 0.020 | 0.020
1ttt I =========
Callbcks 0.0560 0.000 0.020 0.010 0.020 0.220 | 0.320
R S S S S S S S S S o o S S S S S S S o S S S S S S S S S S S S s s === | =========
Derived-—-——-———————————— - Fom——————-
Totals: 0.150 0.100 2.590 0.720 0.070 1.140 | 4.770
Values from single timers:
Kernel CPU Time: 4.980 sec.
Total CPU Time: 5.610 sec.

23 decision cycles (216.522 msec/dc)
18 elaboration cycles (0.783 ec’s per dc, 276.667 msec/ec)
4 p-elaboration cycles (0.174 pe’s per dc, 1245.000 msec/pe)
87 production firings (4.833 pf’s per ec, 57.241 msec/pf)
486 wme changes (355 additions, 131 removals)

match time: 1.132 msec/wm change
WM size: 224 current, 102.376 mean, 240 maximum

xk Time/<x> statistics use the total kernel time from a ***
x single kernel timer. Differences between this value **x*
+x and the derived total kernel time are expected. See **x*
xx* help for the stats command for more information. **x*

6.3.6.2 stats [-memory [resource | -pool pool-stat]]

The optional stats argument -memory provides information about memory usage and
Soar’s memory pools, which are used to allocate space for the various data structures
used in Soar. The following specific arguments may follow stats -memory to limit
the output to the desired information:

-hash-table

-misc

—-overhead

-pool [pool-statistic]
-strings

-total

6.3. CONFIGURING TRACE INFORMATION AND DEBUGGING

129

where pool-statistic is either -total or pool-name [aspect]. The available

pool—names are:

action {node varnames}
{alpha mem} not

{chunk condition} {output link}
{complex test} preference
condition production
{cons cell} {rete node}
{d1 cons} {rete test}
{float constant} {right mem}
identifier {saved test}
instantiation slot

{int constant} {sym constant}
{io wme} token

{ms change} variable
{negative token} wme

Note that the two-word pool-names must be enclosed in curly braces.

If no aspect is given, then print all statistics about the given pool. If given, aspect

must have one of the following forms:

-used

-free
—item—size
-total-bytes

The first two aspects are available only if Soar has been compiled with
MEMORY_POOL_STATS set to TRUE, which is the default setting for the Soar distribution.

Examples

soar> stats -memory
1259813 bytes total memory allocated
2328 bytes statistics overhead
8149 bytes for strings
133340 bytes for hash tables
1112688 bytes for various memory pools
3308 bytes for miscellaneous other things
Memory pool statistics:
Item Size

Used Items Free Items

chunk condition 0

Total Bytes

130 CHAPTER 6. THE SOAR USER INTERFACE

io wme 0 0 16 0
output link 0 0 24 0
preference 217 192 80 32720
wme 228 161 84 32676
slot 157 184 96 32736
instantiation 84 545 52 32708
ms change 6 676 48 32736
right mem 478 545 32 32736
token 2441 3399 56 327040
node varnames 796 12561 16 32752
rete node 740 624 48 65472
rete test 181 2548 12 32748
alpha mem 106 638 44 32736
saved test 0 2729 12 32748
not 1 2728 12 32748
action 230 1134 24 32736
production 92 537 52 32708
condition 560 122 48 32736
complex test 12 4082 8 32752
float constant 0 0 24 0
int constant 10 1354 24 32736
sym constant 229 940 28 32732
identifier 64 250 104 32656
variable 173 645 40 32720
dl cons 0 2729 12 32748
cons cell 245 3849 8 32752

6.3.6.3 stats [-rete [rtype qualifier]]

The optional stats argument -rete provides information about node usage in the
Rete net, the large data structure used for efficient matching in Soar. To restrict
information to specific modules, an rtype and qualifier may be specified. The following
rtypes are available:

{unhashed memory} memory

{unhashed mem-pos} mem-pos
{unhashed negative} negative
{unhashed positive} positive

{dummy top} {dummy matches}
{conj. neg.} {conj. neg. partner}
production total

Note that the two-word rtypes must be enclosed in curly braces.

and qualifier must be one of the following:

6.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 131

-actual
—-if-no—merging
—-if-no-sharing

The total statistic gives a total count over all node types. The -if-no-sharing
option is available only if Soar has been compiled with SHARING_FACTORS set to TRUE,
which is the default for the Soar distribution.

Examples

soar> stats -rete

Node Type Actual If no merging
unhashed memory 2 29
memory 28 485

unhashed mem-pos 27 0
mem-pos 457 0

unhashed negative 0 0
negative 31 31

unhashed positive 23 50
positive 73 530

dummy top 1 1

dummy matches 0 0
conj. neg. 3 3

conj. neg. partner 3 3
production 92 92

Total 740 1224

6.3.7 warnings [-on|-off]

The warnings command controls whether warnings are printed during the loading
of productions. The default value for warnings is -on; it may also be set to —off.
With no argument, the warnings command returns the current setting. If warnings
are disabled using this command, then most warnings are supressed, but some aren’t
because they are too important to be ignored.

The warnings that are printed apply to the syntax of the productions, to notify
the user when they are not in the correct syntax. When a lefthand side error is
discovered (such as conditions that are not linked to a common state or impasse
object), the production is generally loaded into production memory anyway, although
this production may never match or may seriously slow down the matching process.
Righthand side errors, such as preferences that are not linked to the state, usually
result in the production not being loaded.

132 CHAPTER 6. THE SOAR USER INTERFACE

Example

soar> warnings -off

soar> warnings
off

6.38 watch [0 | 1|23 141]5]
| |

watch [none | decisions | phases | productions | \
wmes | preferences] [-on|-off|-inc[lusivel]l]
watch productions [-all | -default | -user | \
—-chunks | -justifications \

{-print|-noprint}]
[-nowmes |-timetags|-fullwmes]
watch wmes filter-options

watch learning [-print | -noprint | -fullprint]
watch aliases [-on | -off]

watch loading [-on | -off]

watch backtracing [-on | -off]

The watch command controls the amount of information that is printed out as Soar
runs. The information controlled by this setting pertains to Soar’s “internal state”:
state and operator decisions, the productions that fire and retract, and changes to
working memory and preference memory. The watch setting has no effect on output
produced by RHS write actions or RHS calls to Tcl functions.

With no arguments, watch will print the information about the current watch “set-
tings,” i.e., the values of each parameter. The functionality of the watch command is
quite overloaded, and the syntax is somewhat complex; therefore the description will
be presented in the following subsections: basic watch settings, watching productions,
watching wmes, watching learning, and watching other functions.

6.3.8.1 Basic Watch Settings

The basic functionality of the watch command is to trace various [evels of information
about Soar’s internal workings. The higher the [evel, the more information is printed
as Soar runs. At the lowest setting, 0 | none, nothing is printed. The levels are
cumulative, so that each successive level prints the information from the previous
level as well as some additional information. The default setting for the watch level
is 1, (or decisions). The levels are described in the following table:

6.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 133

‘ watch ‘ effect on the Soar trace ‘
0 | none print nothing about Soar’s internals
1 | decisions print the state and operator selected
for each decision cycle (the default watch level)
2 | phases also print out the phases of the decision

cycle as Soar executes

3 | productions | also print the names of productions as

they fire and retract

(including chunks and justifications)

4 | wmes also trace the working memory elements that are
added and deleted as productions fire and retract
5 | preferences | also print the preferences asserted and

retracted when productions fire and retract.

The numerical arguments (0 - 5) do not take any arguments or modifiers. They
inclusively turn on all levels up to the number specified. To use numerical arguments
to turn off a level, specify a number which is less than the level to be turned off.
For instance, to turn off watching of produc- tions, specify "watch 2”7 (or 1 or 0).
Numerical arguments are provided for shorthand convenience. For more detailed
control over the watch settings, the named arguments should be used.

The named arguments can have one of the additional switches, [-on | -off | -inc].
Specifying the —inc switch (which fully specified is -inclusive), or setting no flag at
all, has the effect of setting all levels up to, and including, the level specified. This is
the same behavior as when the equivalent numeric argument is used. Setting either
the —on or —off switch selectively turns on or off only that level. For example, watch
productions -on selectively turns on the tracing of production firings/retractions;
watch productions -off selectively turns it off again. watch productions [-inc]
turns on the tracing of productions and also turns on tracing of all levels below pro-
ductions: decisions and phases, too.

The numeric and named flags may also be used in combinations. For example, you
might want to say something like “watch 3 phases -off” to watch state and oper-
ator decisions and to see the names of productions that fire and retract, but to omit
the printing of phases.

Examples

soar> watch 1
Current watch settings:
Decisions: on
Phases: off
Production firings/retractions
default productions: off
user productions: off
chunks: off

134 CHAPTER 6. THE SOAR USER INTERFACE

justifications: off
WME detail level: 1
Working memory changes: off
Preferences generated by firings/retractions: off

Learning: -noprint (watch creation of chunks/just.)
Backtracing: off

Alias printing: (null)

Loading: on

soar> watch 3 phases -off
soar> watch
Current watch settings:
Decisions: on
Phases: off
Production firings/retractions
default productions: on
user productions: on
chunks: on
justifications: on
WME detail level: 1
Working memory changes: off
Preferences generated by firings/retractions: off

Learning: -noprint (watch creation of chunks/just.)
Backtracing: off

Alias printing: (null)

Loading: on

soar>

Notes

In order to watch preferences or wmes, users must also watch productions. Pref-
erences and WMEs can be watched only if the productions that create them are
watched. So if only -user productions are being watched, then any preference or
wme activity resulting from -defaults and -chunks will not be printed.

Only when a [-on | -off] switch is specified, are the other current settings pre-
served. When using an inclusive or numeric setting, all levels are turned off, and only
the appropriate settings are turned back on.

6.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 135

6.3.8.2 Watching Productions

By default, the names of the productions are printed as each production fires and
retracts (at watch levels 3 and higher). However, it may be more helpful to watch
only a specific type of production. The tracing of firings and retractions of pro-
ductions can be limited to only certain types by modifying the watch productions
[-on|-off|-inc] command using the following flags:

‘ flag ‘ subset of productions ‘
-all applies to all productions
-defaults applies to default productions only
-user applies to user productions only
-chunks applies to chunks only
-justifications | applies to justifications only

followed by either -print or -noprint. And in the future users should be able to
specify -fullprint to get the full production printed instead just the production
name. Each type may also be specified with its unique first letter; for example, -d is
equivalent to ~defaults. Combinations may be formed by combining letters, such as
-cj to specify chunks and justifications. Note that substrings longer than the unique
first letter will not work in this context; either the first letter only, or the full string
must be specified.

Finally, when watching productions, users may set the level of detail to be displayed
for WMESs that are added or retracted as productions fire and retract.

‘ flag ‘ effect on WME information ‘
-nowmes don’t print any info about WMEs
-timetags | print only the timetags for WMEs
-fullwmes | print the full WMEs added or retracted
as watched productions fire and retract.

Detailed information about WMEs will be printed only for productions that are being
watched. For instance, if no -chunks are being watched, then no WME details for
chunks will be printed.

So the full syntax for fine-tuning the watching of productions is:

Usage: watch productions [-on|-offl-inc] \
{-alll|-chunks|-defaults|-justifications|-user} \
-print | -noprint \

[-nowmes | -timetags | -fullwmes]

136 CHAPTER 6. THE SOAR USER INTERFACE

Examples

To watch all productions, phases and decisions:

soar> watch productions

To watch all productions, phases and decisions, but not default productions:
soar> watch productions -inc -defaults -noprint

To watch only —user productions fire, and not affect other watch settings:
soar> watch productions -off -u -print

To do the same as above, but also see the full WMEs: watch settings:

soar> watch productions -off -u -print -fullwmes

Notes

To watch specific named productions, use the pwatch command.

In the future the -print | -noprint arguments may be modified so that -on |
-off will also work, and perhaps the -fullprint option will be implemented as well.
So always check the Soar on-line help pages for the latest information.

6.3.8.3 Watching working memory elements

There are two different ways to control the printing of working memory changes as
Soar runs: one is to set the level of detail printed for WMEs when watching produc-
tions, as described in the previous section; the other is to watch WMEs that match a
given identifier-attribute-value triplet. The latter is done by watching wmes, option-
ally followed by -on|-inc (since -off wouldn’t make sense here), and specifying an
action to add, remove, list or reset the filters; a type which specifies whether to apply
the filter to wmes as they are either added or removed or both; and a pattern which
describes the identifier-attribute-value triplet to watch.

Usage: watch wmes actzon type pattern

The four actions supported are:

6.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 137

‘ action effect on the Soar trace ‘

-add-filter add a filter to print wmes that meet the

type and pattern criteria

-remove-filter | delete filters for printing wmes that match the
type and pattern criteria

-list-filter list the filters of this type currently in use
does not use pattern arg

-reset-filter | delete all filters of this type

does not use pattern arg

The type argument is one of:

type ‘ effect on the Soar trace ‘
-adds print info when WME is added

-removes | print info when WME is retracted

-both print info when WME is added or retracted

The -add-filter and -remove-filter arguments also require a pattern to specify
which WMEs are of interest. The pattern takes the form:

{7d | *} {attribute | *} {value | *}

where * is a wildcard that matches any string. For any given pattern, a working
memory element must match exactly for the watch command to print any information.
Only constants and pre-existing identifiers are may be specified in the pattern. This
command is somewhat fragile.

Examples

Users can watch an attribute of a particular object (as long as that object already
exists):

soar> watch wmes -add-filter -both D1 speed *

or print WMEs that retract in a specific state (provided the state already exists):
soar> watch wmes -add-filter -removes S3 * *

or watch any relationship between objects:

soar> watch wmes -add-filter -both * ontop *

To list all specific WME filtering:

soar> watch wmes -list-filter -both

To remove all specific WME filtering:

soar> watch wmes -reset-filter -both

138 CHAPTER 6. THE SOAR USER INTERFACE

6.3.8.4 Watching learning

Usage: watch learning [-print|-noprint|-fullprint]

As Soar is running, it may create justifications and chunks which are added to pro-
duction memory. The watch command allows users to monitor when chunks and
justifications are created by specifying one of the following arguments to the watch
learning command:

‘ argument ‘ effect on the Soar trace ‘
-print print the names of new chunks and justifications when created
-noprint print nothing about new chunks or justifications (default)
-fullprint | print entire chunks and justifications when created

Currently these arguments affect both chunks and justifications equally. There is no
way to watch the creation of chunks but not justifications, but that may change in
the future.

The watch learning arguments affect the amount of information printed when a
chunk or justification is created, but not when they are fired or retracted.

For printing additional information about chunks and justifications after they are
created, see the explain-backtraces command on page 139.

6.3.8.5 Watching other functions

Three additional arguments to the watch command control the tracing of other Soar
events, as shown in the following table:

‘ watch ‘ ‘ effect on the Soar trace ‘

backtracing | —on | print backtracing information when a chunk is created
-off | don’t print backtracing information (default)

aliases -on | echo aliases when they are defined
-off | don’t echo aliases when they are defined (default)
loading -on | print an asterisk, *, for each production loaded and a

pound sign, #, for each production excised (default)
-off | don’t print anything when productions are loaded
or excised

6.4 Configuring Soar’s Runtime Parameters

This section describes the commands that control Soar’s Runtime Parameters. Many
of these commands provide options that simplify or restrict runtime behavior to en-
able easier and more localized debugging. Others allow users to select alternative

6.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 139

algorithms or methodologies. Users can configure Soar’s learning mechanism; exam-
ine the backtracing information that supports chunks and justifications; provide hints
that could improve the efficiency of the Rete matcher; limit runaway chunking and
production firing; choose an alternative algorithm for determining whether a working
memory element receives O-support; and configure options for selecting between mu-
tually indifferent operators. There is also a mode for allowing users to revert to Soar
7 methodology.

The specific commands described in this section are:

Summary

explain-backtraces - Print information about chunk and justification
backtraces.

indifferent-selection - Controls how indifferent selections are made.
learn - Set the parameters for chunking, Soar’s learning mechanism.

max-chunks - Limit the number of chunks created during a decision
cycle.

max-elaborations - Limit the maximum number of elaboration cycles.

multi-attributes - Declare multi-attributes so as to increase Rete match-
ing efficiency.

o-support-mode - Choose experimental variations of o-support.

save_backtraces - Save trace information to explain chunks and justifi-
cations.

soar8 - Toggle between Soar 8 methodology and Soar 7 methodology.

waitsnc - Generate a wait state rather than a state-no-change impasse.

6.4.1 explain-backtraces [name] [-full] [cond-num]

The explain-backtraces command provides some interpretation of the backtraces
generated during the formation of chunks and justifications when impasses are re-
solved. This command is only meaningful for a particular chunk or justification if
the save-backtraces variable has been set to —on before the impasse is resolved (see
Section 6.4.8). If no argument is specified, then explain-backtraces prints a list of
all chunks and justifications for which backtracing information is available.

There are four different ways to call explain-backtraces: with no arguments, with
a production name, with a production name and an integer condition number, and
with a production name and the argument -full:

140 CHAPTER 6. THE SOAR USER INTERFACE

‘ arguments action ‘
(no args) print a listing of all productions that can be “explained”
prodname print the conditions and grounds for the named production
prodname n print the grounds for the nth condition of the named

production
prodname -full | print the full backtrace for the named production

The two most useful variants are explain-backtraces name and explain-backtraces
name n. The first variant prints a numbered list of all of the conditions for the
named chunk or justification, and the ground which resulted in its inclusion in the
chunk /justification. A ground is a working memory element which was tested in
the supergoal. Often just knowing which WME was tested in the supergoal is
enough to explain why the chunk/justification exists. If not, the second variant,
explain-backtraces mname n, where n is the number of the condition of interest,
can be used to further backtrace through that particular condition to find out why
it is included in the chunk/justification. Additionally, the user may wish to call
explain-backtraces chunkname -full to see the full backtrace of the chunk.

Example

comment: this example needs to be updated for explain-backtraces and save-
backtraces. and to Soar7

Note that the save-backtraces variable must be set to —on prior to the impasse
being resolved.

soar> explain-backtraces

List of all explained chunks/justifications:
Have explanation for chunk-3

Have explanation for chunk-2

Have explanation for chunk-1

Have explanation for justification-5

Have explanation for justification-4

Have explanation for justification-3

Have explanation for justification-2

Have explanation for justification-1

soar> explain-backtraces chunk-1
sp {chunk-1
(state <s1> “object-dynamic <n3> “problem-space <pl> “desired <d4>
“operator + “object-dynamic <n2>)
(<n3> “clear yes “object-static <b3>)
(<s1> “object-dynamic <n1>)
(<n1> “clear yes “object-static <b2>)
(<p1> -"default-state-copy no “two-level-attributes object-dynamic
“name blocks-world “default-operator-copy no)

6.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 141

10 :

11

12
13 :
14
15 :
16 :
17
18 :

19 .
20 :

21

22 :
23 :
24 :
25 :
26 :

27
28 :

(<d4> “ontop-count 3 “object-dynamic <d3>
“object-dynamic { <> <d3> <di1> }

“object-dynamic { <> <d1> <> <d3> <d2> })

(<b3> "“type block)

(<d3> “object-static <b3> “ontop <b2>)
(<d1> “object-static <b2>)

(<01> "moving-block <b2> “destination <b1>)
(<d1> “ontop <bl>)

(<n2> “object-static <bl> “ontop <t1>)
(<d2> “object-static <bi>)

(<d2> “ontop <t1>)

(<s2> "operator <o2> >)

(state <s1> “object-dynamic <n3>) Ground :
(<n3> ~“clear yes) Ground :
(<s1> “object-dynamic <n1>) Ground :
(<n1> ~“clear yes) Ground :
(<s1> “problem-space <p1l>) Ground :

(<p1> -"default-state-copy no) Ground :

(S4 “object-dynamic N2)
(N2 ~“clear yes)

(S4 “object-dynamic N3)
(N3 ~“clear yes)

(S4 “problem-space P2)

(P2 -"default-state-copy no)

(P2 “two-level-attributes

object-dynamic)

(P2 “name blocks-world)

(P2 ~default-operator-copy no)

(S4 ~desired D2)

(D2 ~“ontop-count 3)

(N2 “object-static B4)
(B4 “type block)

(D2 ~“object-dynamic D3)
(D3 “object-static B4)
(D3 ~“ontop B5)

(N3 “object-static B5)

(D2 “object-dynamic D4)
(D4 ~“object-static B5)
(S4 “operator 015 +)
(015 “moving-block B5)
(015 “destination B6)
(D4 “ontop B6)

(S4 "object-dynamic N4)

(<p1> “two-level-attributes object-dynamic)
Ground :
(<p1> “name blocks-world) Ground :
(<p1> “default-operator-copy no) Ground :
(<s1> “desired <d4>) Ground :
(<d4> “ontop-count 3) Ground :
(<n3> “object-static <b3>) Ground :
(<b3> “type block) Ground :
(<d4> “object-dynamic <d3>) Ground :
(<d3> “object-static <b3>) Ground :
(<d3> “ontop <b2>) Ground :
(<n1> “object-static <b2>) Ground :
(<d4> “object-dynamic { <> <d3> <di> })
Ground :
(<d1> “object-static <b2>) Ground :
(<s1> “operator +) Ground :
(01> "moving-block <b2>) Ground :
(<o1> “destination <bl>) Ground :
(<d1> “ontop <b1l>) Ground :
(<s1> “object-dynamic <n2>) Ground :
(<n2> “object-static <b1l>) Ground :

(<d4> "“object-dynamic { <> <d1> <> <d3>
“object-dynamic D5)

<d

(<d2> “object-static <bl>) Ground :
(<n2> “ontop <t1>) Ground :

(N4 “object-static B6)
2> }) Ground : (D2

(D5 ~“object-static B6)
(N4 “ontop T2)

142 CHAPTER 6. THE SOAR USER INTERFACE

29 : (<d2> “ontop <t1>) Ground : (D5 “ontop T2)

soar> explain-backtraces chunk-1 2
Explanation of why condition (N2 “clear yes) was included in chunk-1

Production justification-17 matched
(N2 “clear yes) which caused
production
default*selection*select*success—-evaluation-becomes-best-preference
to match
(E4 "symbolic-value success) which caused
A result to be generated.

soar>

6.4.2 indifferent-selection [-first|-last|-random|-ask]

The indifferent-selection command allows the user to set which option should be
used to select between operator proposals that are mutually indifferent in preference
mMemory.

By default, Soar will select the -first of the mutually indifferent augmentations, and
create the corresponding element in working memory. “First” refers to a list internal
to Soar; the ordering of the augmentations is arbitrary but deterministic, so that if
you run Soar repeatedly, -first will always make the same decision. Similarly, -last
chooses the last of the tied objects from the internal list. The options, -first and
-last are in contrast to -random, which also makes an arbitrary decision, but this
will not generally be the same decision for each repeated run.

A fourth method for deciding among indifferent operator proposals currently works
only on Unix systems when running without the Tcl-Soar Interface. This is because
a Wish or Tcl Console window is currently required. The —ask method prompts the
user to make the decision. This option should be restored on all Soar platforms with
the next release, so it is documented here, but users are alerted that it doesn’t work
as advertised for Soar 8.2.

If no argument is provided, indifferent-selection will display the current setting.
With an argument, it sets indifferent-selection to the given value:

‘ argument ‘ effect on selection ‘

-first select the first indifferent object from Soar’s internal list (default)
-last select the last indifferent object from Soar’s internal list

-random | select randomly

-ask ask the user to choose

Example

6.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 143

soar> indifferent-selection
—-first
soar> indifferent-selection -random

6.4.3 learn [-onl|-off|-except|-only] [-list] \
[-all-levels | -bottom-up]

The learn command controls the parameters for chunking (Soar’s learning mecha-
nism).

With no arguments, this command prints out the current learning environment status.
If arguments are provided, they will alter the learning environment as described in
the table below.

‘ learn ‘ effect on chunking behavior ‘
-on turn chunking on (default)
-except chunking is on, except as specified by RHS dont-learn actions
-only chunking is on only as specified by RHS force-learn actions
-off turn chunking off
-list ‘ prints listings of dont-learn and force-learn states ‘

-all-levels | build productions whenever a subgoal returns a result (default)
-bottom-up | build productions only for subgoals that have not yet had
any subgoals with chunks built

The -except and -only flags interact with dont-learn and force-learn production
actions, as described in Section 3.3.6.12 on page 67.

With the -on flag, chunking is on all the time. With the -except flag, chunking is
on, but Soar will not create chunks for states that have had RHS dont-learn actions
executed in them. With the -only flag, chunking is off, but Soar will create chunks for
only those states that have had RHS force-learn actions executed in them. With
the —off flag, chunking is off all the time.

The -only flag and its companion force-learn RHS action allow Soar developers to
turn learning on in a particular problem space, so that they can focus on debugging
the learning problems in that particular problem space without having to address
the problems elsewhere in their programs at the same time. Similarly, the -except
flag and its companion dont-learn RHS action allow developers to temporarily turn
learning off for debugging purposes. These facilities are provided as debugging tools,
and do not correspond to any theory of learning in Soar.

The -1ist flag produces a listing of the identifiers of all states that have been set to
“don’t learn” and all states that have been set to “force learn”.

The -all-levels and -bottom-up flags are orthogonal to the -on, -except, -only,
and -off flags, and so, may be used in combination with them. Recall from Chapter

144 CHAPTER 6. THE SOAR USER INTERFACE

4 that with bottom-up learning, chunks are learned only in states in which no subgoal
has yet generated a chunk. In this mode, chunks are learned only for the “bottom” of
the subgoal hierarchy and not the intermediate levels. With experience, the subgoals
at the bottom will be replaced by the chunks, allowing higher level subgoals to be
chunked.

Learning can be turned on or off at any point during a run.

Example

soar> learn -on

soar> learn

Current learn settings:
-on

—all-levels

6.4.4 max-chunks [n]

The max-chunks command is used to limit the maximum number of chunks that may
be created during a decision cycle. The initial value of this variable is 50; allowable
settings are any integer greater than 0.

The chunking process will end after max-chunks chunks have been created, even if
there are more results that have not been backtraced through to create chunks., and
Soar will proceed to the next phase. A warning message is printed to notify the user
that the limit has been reached.

This limit is included in Soar to prevent getting stuck in an infinite loop during the
chunking process. This could conceivably happen because newly-built chunks may
match immediately and are fired immediately when this happens; this can in turn lead
to additional chunks being formed, etc. If you see this warning, something is seriously
wrong; Soar is unable to guarantee consistency of its internal structures. You should
not continue execution of the Soar program in this situation; stop and determine
whether your program needs to build more chunks or whether you've discovered a
bug (in your program or in Soar itself).

Example

soar> max—chunks

50

soar> max-chunks 100
soar> max-chunks

100

6.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 145

6.4.5 max-elaborations [n]

comment: somewhere, maybe appendix C, i’d like to see an example of hitting
the limit

The max-elaborations command is used to limit the maximum number of elabora-
tion cycles allowed during an elaboration phase. The inital value of this variable is
100; allowable settings are any integer greater than or equal to 1.

The elaboration phase will end after max-elaboration cycles have completed, even
if there are more productions eligible to fire or retract; and Soar will proceed to the
next phase. A warning message is printed to notify the user that the limit has been
reached and Soar has moved on to the next phase. This limits the total number of
cycles of parallel production firing but does not limit the total number of productions
that can fire during elaboration.

This limit is included in Soar to prevent getting stuck in infinite loops (such as a
production that repeatedly fires in one elaboration cycle and retracts in the next);
if you see the warning message, it may be a signal that you have a bug your code.
However some Soar programs are designed to require a large number of elaboration
cycles, so rather than a bug, you may need to increase the value of max_elaborations.

Regardless of the reason that your program has hit the maximum number of elabora-
tion cycles, if you see the warning message it means that your program is not working
as intended. You should either fix a bug or increase the limit.

Example

soar> max-elaborations
100

soar> max—elaborations 20
soar> max—elaborations

20

6.4.6 multi-attributes [attribute [n]]

The multi-attributes command is used before productions are loaded to declare
attributes that are multi-attributes, i.e., they will routinely have multiple values. The
information provided by this command is used by the Rete matcher, which reorders
the conditions of productions heuristically in an attempt to increase the speed of the
matching process.

The specified attribute is the name of an attribute that may take on multiple
values; the optional n is an integer (greater than 0), indicating an upper limit on the
number of expected values that will appear for the attribute. If n is not specified, the

146 CHAPTER 6. THE SOAR USER INTERFACE

value 10 is used for each declared multi-attribute. More informed values will tend to
result in greater efficiency.

This declaration is not required. It also has no effect on the contents of working
memory. Instead, the multi-attributes command is used only to increase the
efficiency of the matcher so that Soar can have heuristic information about multi-
attributes available when it internally reorders production conditions in the Rete net.

With no arguments, the multi-attributes command prints a listing of the currently
declared multi-attributes.

Example

soar> multi-attributes thing 4
soar> multi-attributes ontop 3

Notes Note that multi-attributes declarations must be made before productions
are loaded into production memory.

6.4.7 o-support-mode O] 1] 2]

The o-support-mode command is used to control the way that O-support is deter-
mined for preferences. See Section 77 for a discussion of the default scheme.

The o-support-mode value must be one of three values:

‘ value ‘ effect ‘

0 O-support works as described earlier in this manual

1 O-support works as described in this manual, but

a message is printed whenever the alternative scheme would have
made a difference in the Soar program.

2 The alternative O-support scheme is used.

In the alternative scheme, O-support is determined according to the following rules:

IF the preference is for an operator augmentation of a state,
THEN the preference gets I-support
ELSE IF the production creating the preference tests an “operator
augmentation on a state, OR tests an acceptable preference
for an “operator augmentation on a state, OR creates an
additional acceptable preference for an “operator augmentation
on a state,
THEN the preference gets 0-support
ELSE the preference gets I-support

The main difference in the alternative O-support scheme is that O-support determi-

6.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 147

nation is based entirely on the structure of the production that creates the preference,
and is not based on working memory. (In the default scheme, O-support is based on
whether the preference is linked to the operator or the state, but this linkage might
be created after the production has fired.)

A few specific details:
1. Operator proposal preferences always get [-support.

2. Search control preferences (desirability preferences for operators) always get
[-support.

3. Changes to working memory resulting from operator elaboration get O-support.
(This is the most contentious change under the alternative scheme.)

4. Structures shared between the operator and the state are no longer “special”
(With the default scheme, there is some ambiguity over whether shared struc-
ture is considered to “test the operator”.)

Differences and similarities between the two schemes:

e For most "normal” O-support calculations, things don’t change, the calculation
will just be simpler (for both user and machine) under the alternative scheme.

e Operator proposal, operator application, state elaboration, operator selection
all will come out the same, if there are no usual shared structures involved.

e Operator elaboration is definitely different.

6.4.8 save _backtraces

comment: this could use a pointer to an explanation of what a backtrace is

The save_backtraces variable is a toggle that controls whether or not backtracing
information (from chunks and justifications) is saved. The initial value of this variable
is off; it may also be set to on.

When save_backtraces is set to “off”, backtracing information is not saved and
explanations of the chunks and justifications that are formed can not be retrieved.
When save_backtraces is set to “on”, backtracing information can be retrieved by
using the explain-backtraces command (described on page 139). Saving backtrac-
ing information may slow down the execution of your Soar program, but it can be a
very useful tool in understanding how chunks are formed.

Example

soar> set save_backtraces
off

soar> set save_backtraces on
soar> set save_backtraces

on

148 CHAPTER 6. THE SOAR USER INTERFACE

6.4.9 soar8 [-on | -off]

Significant architectural changes were made to Soar between version 7 and version
8. The soar8 command allows users to revert to the Soar 7 methodology in order
to run older Soar programs. Both production memory and working memory must be
empty to toggle between Soar 7 mode and Soar 8 mode. The soar8 command with no
arguments returns the current mode; the default is that soar8 is ~on. This command
may not be available in future versions of Soar, as maintaining both architectures in
the same source code is cumbersome and may lead to problems as more changes are
introduced.

‘ soar8 ‘ effect on Soar ‘

-on | use the Soar 8 methodology (default)
-off | use the Soar 7 methodology

Users are referred to the Release Notes for Soar 8.2 for detailed information on the
differences between the two architectures.

6.4.10 waitsnc [-on | -off]

In some systems, esepcially those that model expert (fully chunked) knowledge, a
state-no-change may represent a wait state rather than an impasse. The waitsnc com-
mand allows users to anticipate this situation and cause Soar to generate a wait state
whenever a state-no-change impasse would otherwise occur. When waitsnc is set
to —on, Soar will automatically generate a wait state rather than a state-no-change
impasse. The decision cycle will repeat (and the decision cycle count is incremented)
but no state-no-change impasse (and therefore no substate) will be generated.

‘ waitsnc ‘ effect on Soar ‘

-on turns state-no-change impasse into “wait” mode
-off state-no-change generates impasse (default)

6.5 File System I/O Commands

This section describes commands which interact in one way or another with operating
system input and output, or file I/O. Users can save/retrieve information to/from
files, redirect the information printed by Soar as it runs, and save and load the binary
representation of productions. The specific commands described in this section are:

Summary

command-to-file - Evaluate a command and print its results to a file.

6.5. FILE SYSTEM 1/O COMMANDS 149

directory functions - chdir, cd, dirs, popd, pushd, pwd, topd
echo - Print a string to the current output-strings-destination.
log - Record all user-interface input and output to a file.
output-strings-destination - Redirect the Soar output stream.
rete-net - Save the current Rete net, or restore a previous one.

source - Load and evaluate the contents of a file.

The source command is used for nearly every Soar program. The directory func-
tions are important to understand so that users can navigate directories/folders to
load/save the files of interest. Any Soar application that includes a graphical interface
or other simulation environment will require the use of echo and output-strings-destination.

6.5.1 command-to-file {emd} filename [-new|-existing]

The command-to-file command evaluates a specified Soar command and redirects
the output of the command to the specified file. The file specified may be a new file,
an existing file to be overwritten, or an existing file to be added to; if neither -new
or —existing is specified, the file will be opened as a “new” file, overwriting the file
if it already exists.

‘ argument ‘ action ‘

cmd The command to be evaluated

filename | The name of the file to open

-new Open the named file, overwriting it if it already exists (default)
-existing | Open the named file, appending to it if it already exists

To process a multiple-word Soar command using command-to-file, the multiple-
word command and all its arguments must be enclosed in either curly braces, { and
}, or double quotes. If double quotes are used, the string will first be scanned for
Tecl variable references (indicated by a $ sign) and embedded command evaluations
(anything enclosed in square brackets, [1), before the command is evaluated.

Examples

soar> command-to-file {print -all} my-task.soar
soar> command-to-file {print -chunk} my-chunks.soar
soar> command-to-file firing-counts -existing my-firing-counts.save

The first example will save all productions (including chunks, justifications, and de-
fault productions) to the file my-task.soar; the second example will save only chunks
to the file mychunks.soar. (Both files are formatted such that they could be read
back in to reload the productions.) The third example appends the firing-counts data
to the file my-firing-counts.save; note that the curly braces were not required to
group the command string, but including them would work fine too.

150 CHAPTER 6. THE SOAR USER INTERFACE

6.5.2 Directory/Folder functions: chdir , cd, dirs
popd, pushd , pwd, topd

There are several commands for changing and displaying the current directory or
folder: chdir, cd, pwd. The commands chdir and cd are synonyms. They take as an
optional argument the relative or absolute path of the directory that should become
the current working directory; if no argument is given, the $H0ME directory is used if it
exists. The command pwd prints the full pathname of the current working directory.

There is an alternative approach to managing directories, which involves maintaining
a directory stack. Using this approach, the “top” of the stack is the current directory,
returned by the topd command; new directories are “pushed” onto the stack with
the pushd dirname command; and when a directory is “popped” off the stack with
popd, the next directory in the stack becomes the new current directory. The dirs
command lists the entire stack.

‘ command ‘ action ‘

cd [dirname]l changes the process’s current working directory

chdir [dirname] | changes the process’s current working directory

pwd prints the current working directory. This is the
directory from which files will be loaded.

dirs lists the agent’s directory stack.

popd pop a directory off of the directory stack and change
to the directory now at the top of the stack.

pushd dirname push the current directory onto the directory stack and
change to the given directory.

topd lists the top directory on the directory stack.

A process can have at most, one current directory location. This has implications for
running Soar with more than one agent. If the current directory is changed for one
agent, it is changed for all agents. This is a situation where using a directory stack is
particularly useful. Each agent has its own directory stack which is not modified when
other agents pushd dirname, popd, or cd dirname to other locations. The current
directory will be modified, but the stack will not be. So as long as agents maintain
their own directory stack using pushd, popd, topd and dirs, it will always be possible
to ensure that the agents can set the proper current directory before invoking any
commands that read or write files.

6.5.3 echo [-nonewline] [args]

The echo command prints its arguments back to the current output stream, which
is normally stdout or the user interface, but can be set to a variety of channels.
By default, a newline is printed after the echoed arguments, but if the optional
-nonewline argument is specified first, no newline character is printed.

Users wanting to print variables and data to the screen, should use echo rather than

6.5. FILE SYSTEM I/O COMMANDS 151

the Tcl "puts” command. The echo command gets redirected to the appropriate
channel according to output-strings-destination; the puts command does not.
(see Section 6.5.5).

The arguments to be echoed back may be enclosed in curly braces, { and }, to control
interword spacing, for example, but in most cases, these delimiters are not needed.

Examples

soar> echo Test load number 5
Test load number 5

soar> echo {I want space}
I want space

6.5.4 log [-new filename | -existing filename
-off | -query | -add string]

The log command allows users to save all user-interface input and output to a file.
When Soar is logging to a file, everything typed by the user and everything printed
by Soar is written to the file (in addition to the screen).

With no arguments, the log commands prints the current logging status (“open”
or “closed” and the name of the file that is open if logging is on). The optional
arguments are described in the following table:

‘ log ‘ Action ‘

-new filename Begin logging to the named file,
overwriting it if it already exists
-existing filename | Begin logging to the named file,
appending to it if it already exists

-off Close the current log file

-query Print the current log status

-add string Add the given string to the open file
Examples

This initiates logging and places the record in foo.log:
soar> log -new foo.log

This appends log data to an existing foo.log file:
soar> log -existing foo.log

This terminates logging and closes the open log file:

152 CHAPTER 6. THE SOAR USER INTERFACE

soar> log -off

6.5.5 output-strings-destination [-pop | -push action]

The output-strings-destination command redirects the Soar text output stream.
This is useful for applications which need to change where printed results are placed.
Printed output is normally sent to standard output. However, if a Graphical User
Interface (GUI) is being used in place of the command line inter- preter, as is the case
with the Tcl-Soar Interface, then printed output should appear in the GUL. GUIs are
composed of elements called widgets and printed output would be directed to a text
widget, or its command procedure.

Printed output is normally sent to standard output. Printed output can be sent to
any other open file descriptor as well, such as an open file or pipe. It is also possible
that the user is not interested in an agent’s printed output. In that case, the printed
output can be discarded — which results in faster processing for the agent as well.

Some Soar commands return results and some print results. If the user wishes to
have printed results returned so that they can be saved for later use (i.e., saved to
a variable), then this command can cause the printed output to be appended to the
returned result.

The printing facility is implemented as a stack, so newly installed print redirections
are in force until popped off the stack. This is done to allow easy transient redirection,
supporting the restoration of prior printing contexts after completing a printing task.
Hence, there are two primary functions: -push action and -pop. The —pop function
takes no additional arguments as it serves only to pop the print-redirection stack to
re-establish the prior printing context. The -push actzon takes one of the following
additional arguments:

‘ -push arguments ‘ effect ‘
-append-to-result Instead of simply printing command output, append the
output string to the result returned by the command.
-channel open-fid Redirect printing to the open channel
(file or pipe) denoted by open-fid
-discard Ignore prints (similar to redirecting to /dev/null in the

Bourne shell, sh)

-procedure proc-name | Redirect printing to the Tcl procedure named

proc-name. (Tk widgets are also procedures,

so this action can send output to widget procedures,

or any other Tcl procedure).

-text-widget widname | Redirect printing to the text widget named
interp-name | widname in the current interpreter. If

interp-name is specified, then printing is redirected

to the text widget named widname in the

interpreter named interp-name.

6.5. FILE SYSTEM 1/O COMMANDS 153

Example This example redirects prints to the text widget ”.text”:
soar> output-strings—-destination -push -text-widget .text
This example causes all printing to be supressed:

soar> output-strings—-destination -push -discard

This example removes the most recently added print destina- tion:

soar> output-strings-destination -pop

Notes

This command only affects the printing generated by Soar commands such as write
and echo. It does not affect printing done by the Tcl commands such as puts.

6.5.6 rete-net {-save | -load} filename

The rete-net command saves the current Rete net to a file or restores a Rete net pre-
viously saved. The Rete net is Soar’s internal representation of production memory;
the conditions of productions are reordered and common substructures are shared
across different productions. This command provides a fast method of saving and
loading productions since a binary format is used. rete-net files are portable across
platforms that support Soar. The action must be one of the following:

| argument | action |

-save filename | Save the Rete net in the named filename.
-load filename | Load the named filename into the Rete network.

The Rete network cannot be saved while there are justifications present. These can
be eliminated by using the init-soar command.

In order to load productions stored in binary form, working memory and produc-
tion memory must both be empty. Working memory can be emptied by using the
init-soar command. Production memory can be emptied by using the excise -all
command. If working memory or production memory is not empty, an error message
is issued.

Example

soar> rete-net -save my-program-with-chunks.rete
soar> init-soar

soar> excise -all

soar> rete-net -load my-program-with-chunks.rete

154 CHAPTER 6. THE SOAR USER INTERFACE
Notes

If the filename contains a suffix of ”7.Z”, then the file is compressed automatically
when it is saved and uncompressed when it is loaded. Compressed files may not be
portable to another platform if that platform does not support the same uncompress
utility. File compression in the rete-net command is not available on Macintoshes.

6.5.7 source ‘‘filename’’

The source command is a core Tcl command which loads the file, filename: it
opens the file and sequentially evaluates any commands included in the file as if they
had been directly entered by the user. The filename can be a simple filename,
in which case it is loaded from the current working directory; or it can specify the
full pathname to access files located in another directory. Users should refer to Tcl
documentation for the format for specifying a full pathname.

The source command is typically used to load a file that contains productions for a
Soar program, but files may contain any of the commands in this chapter, including
the source command itself, and often include core Tcl commands.

Example

soar> source '"blocks.soar"
ok ok ok ok ok ok ok ok

soar>

soar> source '"blocks.soar"
kb ik itk iEx ik Hk ik ok ok
soar>

Notes

If felename is a simple string with no special characters, the double quotes may be
omitted.

The printing of asterisks and pound signs for each production loaded (as defined
by the sp command) and excised (redefined using sp or removed from production
memory using excise) may be turned off by using the watch loading command;
this is described in Section 6.3.8.

If the file being source’d includes commands to source other files, then users should
either pushd to the directory, or specify full pathnames whenever the source com-
mand is issued.

6.6. SOAR I/O COMMANDS 155

6.6 Soar I/0 Commands

This section describes the commands used to manage Soar’s Input/Output (I/0O) sys-
tem, which provides a mechanism for allowing Soar to interact with external systems,
such as a computer game environment or a robot. Soar I/O is accomplished via input
functions and output functions which are managed using the io command. These
functions make calls to add-wme and remove-wme to add and remove elements to the
io structure of Soar’s working memory. See section 6.6 for a functional description
of Soar I/O and The Soar Advanced Applications Manual for more information on
creating input and output functions. The demo file demos/soar-io-using-tcl.tcl
gives examples for doing I/O in Soar using Tcl scripts.

The specific commands described in this section are:

Summary

add-wme - Manually add an element to working memory.

io - Register or cancel routines for managing Soar’s input and output
links.

remove-wme - Manually remove an element from working memory.

These commands are used only when Soar needs to interact with an external envi-
ronment.

6.6.1 add-wme id ["lattribute value

The add-wme command adds a new working memory element directly to working
memory, bypassing the usual evaluation processes of Soar. This command is pro-
vided for use in Soar input functions; although there is no programming enforcement,
add-wme should only be called from registered input functions to create working mem-
ory elements on Soar’s input link. add-wme returns the timetag of the new WME,
which can be used later by remove-wme to remove the WME when it is no longer
needed.

The id must be an identifier that already exists in working memory. The attribute
and value may be any symbols; an asterisk (*) indicates that Soar should create a
new identifier for the attribute or value (see page 36). Any symbol generated by Soar
has the form of a single letter followed by an integer which will make the symbol
unique. The carat symbol that precedes the attribute is optional.

Note that because the id must already exist in working memory, the WME that
you are adding will be attached (directly or indirectly) to the top-level state. Input
functions should only add working memory elements to the “input-1link, which is a
structure on the top-level io attribute. As with other WME’s, any WME added via

156 CHAPTER 6. THE SOAR USER INTERFACE

a call to add-wme will automatically be removed from working memory once it is no
longer attached to the top-level state.

Example

Typically, add-wme will not be invoked from Soar’s command line, except perhaps as
a debugging aid, but the syntax is the same whether it is typed at the user prompt or
as part of an input function. Note that prior to issuing this command, the user must
have a valid identifier, such as the symbol I2 for the "input-1link. The method
for obtaining the Soar input-link and output-link identifiers is described in the
demo file demos/soar-io-using-tcl.tcl and in The Soar Advanced Applications
Manual.

soar> add-wme I2 blockl on-table

Warning

The add-wme command may have weird side effects (possibly even including system
crashes) when used outside its intended role. It should only be invoked during the
Input Phase of Soar’s execution cycle. Also note that Soar’s chunking mechanism
can’t backtrace through working memory elements created via add-wme.

6.6.2 i0 -add -input script [2d]
I0 -add -output script td
i0 -delete {-inputl|-output} <d
i0 -list {-input | -output}

Recall from section 6.6 that Soar I/O is accomplished via input functions and out-
put functions which manipulate augmentations of the top-level “io attribute. Input
functions are called at the start of every execution cycle to add and remove working
memory elements on the “io.input-link. Output functions are processed at the
end of every execution cycle in response to changes made to the “io.output-link.
Input and output functions are registered with Soar using the io command. The
io command allows users to add and delete input and output functions, and list all
currently registered functions.

6.6. SOAR I/O COMMANDS 157

6.6.2.1 Adding I/O functions.
6.6.2.2 Deleting I/O functions.
6.6.2.3 Listing I/O functions.

The method for obtaining the Soar input-1link and output-1link identifiers is de-
scribed in the demo file demos/soar-io-using-tcl.tcl and The Soar Advanced
Applications Manual.

6.6.3 remove-wme n

The remove-wme command removes the working memory element with the given
timetag, n, which must be a positive integer matching the timetag of an existing
working memory element. This command is provided primarily for use in Soar input
functions; although there is no programming enforcement, add-wme should only be
called from registered input functions to create working memory elements on Soar’s
input link.

Although this command is able to remove any working memory element or preference
— including those automatically created by the Soar architecture and via the evalua-
tion of preferences — recklessly removing working memory elements is likely to have
weird side effects, including system crashes.

Example

Typically, remove-wme will not be invoked from Soar’s command line, except perhaps
as a debugging aid, but the syntax is the same whether the command is typed at the
user prompt or is part of an input function. Note that prior to issuing this command,
the user must have determined the timetag of the WME which is to be removed,
usually a WME that was added with add-wme. The method for managing the Soar
io structure is described more fully in the demo file demos/soar-io-using-tcl.tcl
and in The Soar Advanced Applications Manual.

soar> remove-wme 45

Warning

The remove-wme command may have weird side effects (possibly even including sys-
tem crashes) when used outside its intended role. It should only be invoked during
the Input Phase or Output Phase of Soar’s execution cycle. It should never be in-
voked from the action side of productions. remove-wme may have adverse affects on
chunking. Removing input working memory elements or state, operator, or impasse
working memory elements may have weird side effects, including system crashes.

158 CHAPTER 6. THE SOAR USER INTERFACE

6.7 Miscellaneous

comment: this section still needs to be rewritten...

The specific commands described in this section are:

Summary

alias

default rules
predefined aliases
soarnews

soar.tcl file
unalias

variables

version

6.7.1 alias [name [definition | -off]]

The alias command displays and defines Soar aliases. When called with no argu-
ments, it displays a listing of the currently defined aliases; when called with a specific
name, it displays the alias currently defined for that name; when called with a name
and a definition, it defines a new alias. When called with a name and -off, it removes
the named alias.

The name can be one or more alphanumeric characters, but must begin with a letter.

The definition can be any Soar command, including another alias, and including
any number of arguments to that command. The definition may be an arbitrarily
complex single command. If more complex (multi-command) aliases are desired, the
the Tcl proc command can be used to define a new procedure (see Chapter 5.)

Version 7.0.3 comment: probably has the same curly braces/double quotes
tradeoffs as other commands, but I’'m not certain.

KJC: yep

Aliasing of a command may be turned off by using alias name -off or unalias
name. (The latter is provided for similarity to the Unix aliasing capability.)

6.7. MISCELLANEOUS 159

Version 7.0.3 comment: T'm confused by how this command is implemented;
probably due to Tclisms.

Seems to me that “alias” with no args should print a listing of all the aliases
and their definitions, just as in Unix. But instead, it just lists the names of
aliases that have been defined.

When I look at the actual definitions, I suddenly understand — It’s way more
complicated than what I typed. But I don’t understand why this is necessary.
(Why can’t it just be saved as a string, the way (I thought) Unix does it?)

Example

soar> alias r3 run 3 d
alias r3 run 3 d

soar> r3

r3

Moving Block: b to: c

9: 0: 039 (move-block)
Moving Block: b to: a

10: 0: 043 (move-block)
Moving Block: c to: b

11: 0: 046 (move-block)

soar> alias
alias
7?7 ea ec et exit fc 1 1 mp ps q r r3 s W wmes
soar> alias r3
alias r3
r3:
if {$args == ""} {
run 3 d
} else {
eval run 3 d $args

¥

Version 7.0.83 comment: T'm fairly certain that this change is what broke the
ability to use multiple commands with an alias — e.g., you used to be able to
define an alias like: “run 3 d; print s1”. I can “eval run 3 d” and “eval run
3 d; print s1”. I’m guessing this other approach has to do with some sort of
efficiency concern, but I wonder if the tradeoff is worth it. (Not being able to
define multi-command aliases, and not being able to print a simple definition
of an alias.

KJC: I don’t think it’s on the list for 7.1 either. I'd like to leave it and see
how it plays with users. Since alias is implemented in TCI and not C, it will
be simple to have users update it later.

160 CHAPTER 6. THE SOAR USER INTERFACE

6.7.2 Defining command aliases

The user may define his or her own aliases for any of the Soar commands provided
here; see the alias command on page 161 for more information. Frequently used
aliases may be defined in a file that is loaded using the source command at start-up
time; see Appendix ?? on page 7?7 for more information.

6.7.3 source $default

The command source $default provides a simple means of loading Soar’s default
knowledge (described in Section ?? and in Appendix ??) without knowing the path-
name to the file of default rules.

Example

soar> source $default
Sk K K K o oK ok oK 3K K K K oK oK ok 3K 3K 3 K K o ok ok 3K 3 K K o ok oK oK 3 K ok ok ok K K ok ok ok 3K 3K K K oK ok ok 3 3 K ok ok ok K K

%k >k 3k 5k >k 3k 5k 5k >k %k 5k 5k %k 5k 5k >k %k 5k 5k >k %k 5k >k %k 3k >k %k %k 5k >k %k 5k >k %k %k k %k k

soar>

Notes

The dollar sign indicates that default is a Tcl variable. If you have any problems
with this command, it is likely that this variable is not being resolved properly. If this
should happen, you’ll have to use the full pathname to load the default productions;
report the problem to your local Soar administrator.

If you can run Soar, you should always be able to source the default productions with
the longer command: source $soar_library/default.soar.

6.7.4 predefined aliases

6.7.5 soarnews

Version 7.0.8 comment: this command should probably be changed to print
even more info, for example, where to get documentation and how to join soar-

group.

update example output for final release.

The soarnews command prints information about the current release.

6.7. MISCELLANEOUS 161

Example

soar> soarnews
News for Soar version 7.0.2. TCL TK

Bugs and questions should be sent to soar-bugs@cs.cmu.edu
The current bug-list may be obtained by sending mail to
soarhack@cs.cmu.edu with the Subject: line "bug list".

This software is in the public domain, and is made available AS IS.
Carnegie Mellon University, The University of Michigan, and

The University of Southern California/Information Sciences Institute
make no warranties about the software or its performance, implied

or otherwise.

Type "help" for information on various topics.

Type "quit" to exit. Use ctrl-c to stop a Soar run.
Type "soarnews" for news.

Type "version" for complete version information.

soar>

6.7.6 The $soar _library/soar.tcl file

The $soar_library/soar.tcl file is loaded for all users at a local site, and can be
reconfigured by the local Soar administrator. This file is used to load local aliases; it
also contains the Tcl code that implements many of the user-interface functions. It
is also the appropriate place for platform-dependent code.

Individual Soar users have no control over this file.

6.7.7 unalias [name [definition | -off 1]

6.7.8 version

The version command prints the version number of Soar. This is useful information
to know when asking for help or reporting a bug.

Example

soar> version
7.0.2. TCL TK

