Master’s thesis

Embedded Computer Including Software
for the Intelligent Bird Nesting Box

Be. Petr Kubiznadk

2014

Ing. Pavel Krsek, Ph.D., diploma thesis advisor

Czech Technical University in Prague

Faculty of Electrical Engineering, Department of Cybernetics

Acknowledgement

I would like to thank all people who helped me in any way with this work. Especially
my girlfriend for all her love and everyday care. My family for overall support. Mem-
bers of this project for great cooperation and supervision. Elnico s.r.o. for providing
development tools and exhaustive technical support. All business partners who helped
with components selection or otherwise participated. And last but not least all de-
velopers of free and open source software without which this work would never come

true.

Declaration

I declare that I worked out the presented thesis independently and I quoted all used
sources of information in accord with Methodical instructions about ethical principles
for writing academic thesis.

Prague, Wednesday 7" May, 2014 e,

iii

Abstrakt

Tato diplomova préce popisuje ndvrh a implementaci autonomniho kamerového sys-
tému, vestavéného do ptaci budky. Tento systém je pozadovan tymem ornitologi pro
vyzkum syce rousného v jeho prirozeném zivotnim prostiedi. Nejprve je navrzena se-
stava hardwarové vybavy, ktera je nasledné vyvinuta a vyrobena firmou Elnico s.r.o. dle
potieb systému. Poté jsou vybrany platformy Linux OS® a Freescale MQXTM RTOS
pro paralelni béh na dvoujadrovém mikroprocesoru ridicim hlavni desku. Pro tyto ope-
racni systémy jsou vyvinuty aplikace pro porizovani videa a Fizeni systému, prostredi
je nastaveno pro umoznéni pristupu k datim a konfigurovani zarizeni. Pii kazdém
vniknuti sovy do vletového otvoru budky vznikly systém zaznamenava video zaznamy
ve vysokém rozliSeni spolecné s identifika¢nimi idaji sovy a data o souc¢asném stavu pro-
stfedi. V zavéru jsou prezentovany vysledky prvnich experimentd po umisténi zarizeni
do cilového prostiedi na zac¢atku hnizdni sezény roku 2014.

Klicova slova

Kamera; monitorovani; sovy; vestavny systém; sbér dat

iv

Abstract

This diploma thesis describes design and implementation of an autonomous video
surveillance system embedded in a bird nest-box, needed for research of boreal owl
in its natural environment. First, a custom hardware equipment is proposed and de-
signed. It is then developed and manufactured by Elnico s.r.o. Linux OS® and Freescale
MQXT RTOS operating systems are selected as software platforms running on a dual-
core microprocessor in parallel. Video recording and system control applications are
developed and the environment set up to allow data access and system configuration.
The resulted system produces high-definition video records triggered by a bird passing
through the fly-in hole, the bird identification and environment conditions data. Re-
sults of the first experiments after deployment in the forest in nesting season of spring
2014 are presented.

Keywords

Camera; Monitoring; Owls; Embedded; Data acquisition

Ceské vysoké uéeni technické v Praze
Fakulta elektrotechnicka

Katedra kybernetiky

ZADANI DIPLOMOVE PRACE

Student: Bc. Petr Kubiziak
Studijni program: Oteviena informatika (magistersky)
Obor: PocitaCové vidéni a digitalni obraz

Nazev tématu: Vestavny pocitac€ a jeho programové vybaveni pro inteligentni pta¢i budku

Pokyny pro vypracovani:

1. Navazte na vyzkumny projekt A4M33SVP, ktery jste feSil v minulém semestru, v némz jste

se s tématem seznamil.

2. Navrhnéte a vytvorte systém pro sbér dat s procesorem Freescale Vybrid VF6, ktery bude
zakladem inteligentni ptaci budky, a pfipojte k nému potfebné periferie (dvé kamery, dva
osvétlovace, svételna zavora, ¢tecka RFID, WiFi modul a pfipadné dalkové ovladani).

. Navrhnéte a vytvorte systémovy software pro budku nad opera¢nimi systémy MQX a Linux.

. Navrhnéte a vytvofte aplikaéni software inteligentni ptaci budky.

. Spolupracuijte s ornitology z Ceské zemé&délské univerzity v Praze pfi vestavéni poditace
do budky a respektujte jejich uzivatelské pozadavky pfi vyvoji poCitace budky.

6. Vysledky zdokumentujte z navrhového i uZivatelského pohledu.

o, w

Seznam odborné literatury: Doda vedouci prace.

Vedouci diplomové prace: Ing. Pavel Krsek, Ph.D.

Platnost zadani: do konce zimniho semestru 2014/2015

L.S.

doc. Dr. Ing. Jan Kybic prof. Ing. Pavel Ripka, CSc.
vedouci katedry dékan

V Praze dne 20. 8. 2013

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc.Petr Kubizfiak
Study programme: Open Informatics
Specialisation: Computer Vision and Image Processing

Title of Diploma Thesis: Embedded Computer Including Software for the Intelligent Bird

[S 203

Nesting Box

Guidelines:

. Follow your own research project A4AM33SVP, which you solved in the past semester and

which introduced you into the topic.

. Design and implement data collection system with the processor Freescale Vybrid VF6,

which will be the core of the intelligent bird nesting box, connect necessary peripherals to it
(two cameras, two illuminants, light curtain, RFID reader, WiFi module and potentially
a remote control).

. Design and implement system sw for the intelligent bird nesting box based on operating

systems MQX and Linux.

. Design and implement the application sw of the intelligent bird nesting box.
. Collaborate with ornitlogists from the Czech University of Life Science Prague in

embedding the computer into the nesting box and take into account their user requirements
while developing the nesting box computer.

. Document your results both from a designer and user point of view.

Bibliography/Sources: Will be provided by the supervisor.

Diploma Thesis Supervisor: Ing. Pavel Krsek, Ph.D.

Valid until: the end of the winter semester of academic year 2014/2015

L.S.

doc. Dr. Ing. Jan Kybic prof. Ing. Pavel Ripka, CSc.
Head of Department Dean

Prague, August 20, 2013

Contents

1. Motivation

2. Task Formulation

3. State of the Art

5.

3.1. Direct Observation
3.2. Continuous Recording
3.3. Event-based Recording
Design
4.1. Hardware
4.1.1. Control Board
4.1.2. Cameras
4.1.3. Infrared Lighting
4.1.4. RFID Reader
4.1.5. Light Barrier
4.1.6. Temperature and Light Sensors
4.1.7. User Interface
4.2. Software
4.2.1. Operating Systems
MQXRTOS
Timesys Linux OS
4.2.2. Libraries.
uEye Library
MCC Library
ESL Library
4.2.3. Processes and Tasks
appmer o.o.
UEYETEC . .« o v v v e e e
ueyeusbd
mefsd L.
eslAppCtrl
appctrl
irBarrier
elb149cbm
adc.o
SENSOTS . . .+« v v v e e
hmi
wifi, httpd, ftpd
eslbog
Implementation
5.1. Hardware
5.1.1. Control Board
5.1.2. Camera and Lighting
5.1.3. Light Barrier
5.1.4. Temperature and Light Sensors

N O ot

(=]

10
11
13
14
15
16
16
17
17
19
20
22
22
22
23
24
24
34
35
35
35
35
36
36
36
36
36
36
37

39
39
39
41
42
42

Xi

5.1.5. RFID Reader
5.1.6. Cover Tamper Button
5.2, Software L
5.2.1. Toolchain o
Linux

MQX . e

5.2.2. Application
Startup
Recording L

5.2.3. Usage o
Application Data
Application Configuration
System Configuration

6. Experiments
6.1. Indoor Testing
6.1.1. Power Consumption
6.1.2. Prey Simulation 0 oL
6.2. Outdoor Testing

7. Conclusion
Bibliography
Appendices

A. DVD Content

B. Schematics
B.1. BudkaControl
B.2. BudkalLighting
B.3. BudkalRBar e
B.4. BudkaLlTS e

C. Printed Circuit Boards
C.1. BudkaControl e
C.2. BudkaLighting
C.3. BudkalRBar e
C4. BudkaLLTS

D. Photographs

xii

53
93
93
o4
o4

61

62

67

71
72
76
77
78

79
80
82
84
86

87

Abbreviations

List of standard and few own acronyms and abbreviations.

A5
ACK
ADC
API
ASCII
AVI
bps
BSP
CCD
CMOS
DC
DCT
DDR
ESL
FFS
fps
FTM
FTP
GCC
GDB
GNU
GPIO
GPL
HD
HEX
HTTP
HW
I2C
ID
IDE
P

IPC
IR
IRBAR
JPEG
LED
LGPL
M4
MCC
MCFS
MCU
MF'S
MPU
NACK
0OS

ARM® Cortex' -A5

acknowledge

A/D converter

Application Programming Interface

American Standard Code for Information Interchange

Audio Video Interleave
bits per second

Board Support Package
Charge-coupled Device

Complementary Metal-Oxide—Semiconductor

Direct Current

discrete cosine transform

Double Data Rate

Elnico Support Library

Flash File System

frames per second

FlexTimer

File Transfer Protocol

GNU Compiler Collection

GNU Debugger

GNU’s Not Unix

General Purpose Input/Output
General Public License

High Definition

hexadecimal

Hypertext Transfer Protocol
hardware

Inter-Integrated Circuit; also I1C or 12C
identifier

integrated development environment
Ingress Protection

Internet Protocol

inter-process communication
Infrared

infrared light barrier

Joint Photographic Experts Group
Light Emitting Diode

Lesser General Public License
ARM® Cortex' " -M4

Multi-Core Communication library
Multi-Core File System
Microcontroller Unit; microcontroller
MS-DOS File System
Mecroprocessor Unit; microprocessor
non-acknowledge

operating system

xiii

PC
PCB
PGM
PIT
PSP
PWM
px
RAM
RFID
RFS
ROM
RTC
RTCS
RTOS
SD
SW
SIP
SOM
SPI
TCP
TCP/IP
UART
Ul
USB
VAL
WDOG

Personal Computer

printed circuit board

Portable GrayMap

Passive Integrated Transponder
Processor Support Package
Pulse Width Modulation

pixel

Random Access Memory

Radio Frequency Identification
Root File System

Read-Only Memory

Real-time Clock

Real-Time Communication Stack
real-time operating system
Secure Digital

software

System-in-Package
System-on-Module

Serial Peripheral Interface
Transmission Control Protocol
Transmission Control Protocol/Internet Protocol
Universal Asynchronous Receiver/Transmitter
user interface

Universal Serial Bus
Video4Linux

watchdog

Names and Trademarks

List of often used company names and their products and trademarks.

ARM
Cortex
Elnico
Enika
Factory
Freescale
IDS
Linux
MQX
SQM4
Timesys
Windows

Xiv

ARM®

Cortex

Elnico s.r.o.

Enika.cz s.r.o.

LinuxLink Factory

Freescale Semiconductor, Inc
IDS Imaging Development System GmbH
Linux OS®

Freescale MQXTM

SQM4®

Timesys Corporation
Microsoft Windows® OS

1. Motivation

The assignment of this diploma thesis is motivated by the research of Ing. Markéta
Zarybnickd, Ph.D. from the Czech University of Life Sciences Prague. She is interested
in geographical variation in breeding and foraging strategy of the Tengmalm’s owl
(Aegolius funereus). The Department of Cybernetics of the Czech Technical University
in Prague, Faculty of Electrical Engineering cooperates at the activity. I was asked
to help the effort in my diploma project by developing and constructing an autonomous
computer system.

My motivation to participate in this project was based on my interest in practical
tasks. I also have the advantage that my father owns company Elnico s.r.o., which
develops and produces embedded electronics. Hence I have access to hi-tech embedded
technologies needed for this project.

My work contributes to a new type of a computerized nest-box enabling the data
acquisition and monitoring of owls nesting in nest-boxes located in their natural en-
vironment. The nest-box is hung usually on a tall tree in the forest. It has an own
battery allowing its autonomous operation.

The project requires a video surveillance system embedded in every nest-box to record
a fly in of an owl (typically a male) bringing the prey, usually a small mammal (Microtus
vole or Apodemus mouse) or a bird. The data needed for identification of individual
owls and the type of food supply are recorded.

Such a system has been developed and is described in this thesis. Monitored owls
are equipped by Radio Frequency Identification (RFID) chips. The owl identification
has been based on RFID technology. To identify the type of the prey, the expert
human recognition is required, as there is a high variety within hunted species. For this
sake, a pair of Infrared (IR) High Definition (HD) cameras is used. The first camera
records the entrance hole. The second camera records the nest-box ground. Both
cameras are equipped with an IR flash. The system is further equipped with an IR
optical barrier to detect owls flying in the nest-box and reduce memory and power
requirements by starting the recording only at the time of an event of interest and
stopping it afterwards. Two temperature sensors and one sensor of the ambient light are
included to provide more information about nesting for research purposes. All captured
data is stored permanently on a local filesystem and can be collected through a File
Transfer Protocol (FTP) connection, using a wired local network. The whole system
is powered by one 60 Ah 12 V traction battery which allows for approximately one-week
long autonomous operation of the system.

2. Task Formulation

Requirements on the embedded system to be developed are given by the planned re-
search project described in [1]. Authors of the project are researchers from a team
from the Czech University of Live Sciences Prague, Faculty of Environmental Sciences,
Department of Ecology, leaded by Ing. Markéta Zarybnicka, Ph.D. They will be fur-
ther referred to as the ornithologists in this document. The main focus of the project is
posed on the camera surveillance system: “The principal task is to record an owl adult
while bringing the prey into the nest-boxr and determine the prey species. The male
owl quickly approaches the nest-box opening and in most cases only throws the prey
inside. The secondary task is to monitor a mesting area on the bottom of the nest
box to gain additional information on prey determination, prey decapitation and owl
behaviour (e.g., sibling competition).” This means the system has to contain two cam-
eras, the first recording the fly-in hole and the second recording the nest-box ground.
Since the owls are active at night, a lighting has to be used to provide the cameras suf-
ficiency of light. To prevent disturbance of the birds, source of light invisible to them
shall be used.

To allow for identification of adult owls, each of them is fitted with a Passive In-
tegrated Transponder (PIT) tag of type EM4200, readable by any compatible RFID
reader. The tag should be scanned each time an owl approaches the fly-in hole, not de-
pending on whether it enters or exits the nest-box or just brings a prey. On the other
hand, the reader should not scan codes of birds present inside the box.

To improve the background of the scientific research, the system should be able
to regularly measure temperature inside the nest and outside the nest-box, and exterior
light conditions.

The system shall provide an easily accessible interface allowing to access the produced
data and configure the main application settings. Preferable solution would be a wire-
less communication on standard TCP/IP protocols. The easily accessible RJ45 socket
with the Ethernet connection might be used as a fall-back variant for case of the Wi-Fi
failure or if the system needs to be mounted before the wireless functionality is imple-
mented.

The output of the system will be:

1. Short video sequences (few seconds long, high frame-rates) of the nest-box fly-in
hole, triggered by the prey delivery events.

2. Longer video sequences (few minutes long, low frame-rates) of the nest-box ground,
triggered by the prey delivery events.

3. RFID codes of the adults delivering the prey, triggered by the prey delivery events.

4. The list of temperatures and ambient light measurements, triggered periodically.

5. All data will be marked with a time-stamp, giving time of its retrieval.

The minimal configurable options will be:

1. Video records lengths, adjustable separately for both cameras.

2. Video records frame-rates, adjustable separately for both cameras.
3. Camera exposures, adjustable separately for both cameras.

2. Task Formulation

The system will be powered by a traction 12 V battery, which will be replaced
regularly approximately once in a week. Ideal capacity is between 50 and 60 Ah,
as the dimensions and weight of the battery grow significantly with the capacity, a bigger
battery is hence inadvisable. The system should be designed with respect to minimum
power consumption.

The system will run autonomously and fully automatically, no remote control mecha-
nism is desired. Recorded data will be collected on weekly basis, together with the power
supply replacement.

To achieve requested scientific value of the research, higher number of such intelligent
nest-boxes is needed, the ideal count is twelve. That means that it must be possible
to produce such a number of boxes for a reasonable price, so the components need to be
selected with respect to the cost and availability.

3. State of the Art

Nest monitoring is a frequent task in life sciences, particularly in ornithology. It gives
scientists valuable data about population growth, nest attentiveness, parental care, nest
predation, birds’ diet and birds’ behaviour in general. Multiple different approaches
can be taken, each limited by the observation purpose, observed species, financial and
human resources and other constraints.

3.1. Direct Observation

A direct observation is technologically the simplest method used in nest monitoring.
It is based on a periodic visual exploration of nests, either locally or from a distance
(e.g. using binoculars). This method is useful mainly for checking the number of laid
eggs, number of hatched chicks, whether the nest has not been abandoned or predated.

The first main limitation of this method is induced by the monitored species, which
can either nest at inaccessible places (for example rocks) or be particularly sensitive
to human presence.

The second constraint is a limited number of human resources in scientific research,
as periodic checks of a scientifically sufficient number of nests may pose high require-
ments on time resources. Some researches or programmes try to solve this problem
by popularization of the topic and gaining volunteers which collect the data for them.
This is for example case of the Michigan Bluebird Society, trying to help and monitor
the population of the Fastern Bluebird. Through a large community of so-called land-
lords (see Fig. 1), they manage to “improve the nesting success of the Eastern Bluebird
and other native cavity-nesting birds in the state of Michigan” [2], USA.

Figure 1. Landlord performing regular check of a nest-box. From [2].

3. State of the Art

3.2. Continuous Recording

A widely used technique is an autonomous video surveillance system equipped with
a camera, a power supply and a data storage or stream. Such systems usually record
one video sequence continuously (typically with a very low frame-rate — time-lapse
video) or record shorter video sequences periodically with time delays.

These systems pose high requirements on the power supply and require either a large
data storage and its periodical replacement, or a sufficient bandwidth of a wired /wire-
less connection allowing for streaming or downloading the data remotely. One of dis-
advantages is a high percentage of useless data when there is nothing happening inside
the nest on one hand, and a high amount of potentially valuable events which are not
recorded on the other hand.

This approach has been taken for a research of siblicide in bearded vultures (Gypaetus
barbatus). To observe aggression between two sibling chicks and death of the younger
one, the authors used quite complicated apparatus comprising of two parts: “(1) a nest
monitoring subsystem (camera, microphone, battery with a charge controller and a trans-
mitter together with an antenna), which was supported by a solar panel, and (2) a record-
ing subsystem (antenna receiver, video signal controller and a remote controlled PC
through a GSM modem) that compressed the audio-video signal and provided real time
monitoring.” [3]. The nest monitoring subsystem featured a waterproof colour 640x480
camera with 1/3 inch CCD chip and a 3.6 mm lens with 78° wide field of view. It was
scheduled to record one 15 minutes long video shot at the frame-rate of 25 frames per
second (fps) every two hours. The control PC ran the Windows XP operating system.
The system was powered by a 100 Ah battery supported by a 75 W solar panel with-
out which the battery would discharge after a period of 4 days. The system structure
is illustrated in Figure 2.

3503 ;
B0 GF \ T

&
counter|
Power

Figure 2. Structure of the video-surveillance system used to monitor a bearded vulture nest.
1-9 Nest subsystem, 10-16 local subsystem, 17 central subsystem. From [3].

3.3. Event-based Recording

A much simpler and probably cheaper equipment was used in a research of nest pre-
dation of Superb Fairy-wren (Malurus cyaneus) [4]. The recording system was based on
an Apple MacMini computer, controlling and storing data from four waterproof video
cameras Eye Spy World with 1/4 inch Sony CCD sensor. Each camera was powered
by a small 12 V 12 Ah battery and connected to the recording system by a cable.
The system was set to record continuously. To reduce the amount of data, the au-
thors scanned 24 hours of one day only for variation in feeding activity during the day,
as the highest predation risk is during feeding. According to that measure they se-
lected 2-hour period in the morning and 2-hour period in the evening to be examined
thoroughly in all records, the rest was ignored.

3.3. Event-based Recording

Recording systems equipped with event detectors help to automatically separate the in-
teresting data from the rest, simplifying results evaluation and potentially saving power
and storage resources.

One such system has been developed for monitoring nests of Tengmalm’s owl and
is described in [5]. The authors’ functional requirements on the system abilities were:

1. “Observation of movements of the nesting individuals between the nest and the en-

vironment.

2. Monitoring the times spent by an individual outwards the nest and in the nest.

3. Identification of the kind and type of prey.

4. Observing behaviour of nestlings and distribution of parental roles in the nesting

period.” [5]

The requirements implied need of a night vision camera, that is a camera sensitive
on IR light, and an IR flash to illuminate the content of the nest-box. The authors
chose a DECAM camera module (SINIT, Czech Republic) equipped with 16 MB data
memory, wireless data communication, two logical inputs and one output for lighting
control. The camera was able to record 1-3 frames per second. The flash was con-
structed from 24 IR Light Emitting Diodes (LEDs) SFH485-2 with 880 nm wavelength
as it was the closest match for expected ideal wavelength of 900 nm.

detector reader device

ﬁ ‘
Eattery _’Ilnterfacing block
I \ 4

Datalogger I IR lamp [Manual control

[Movement |Chip Camera

Figure 3. Conceptual design of device for monitoring nesting of the Tengmalm’s owl. From [5].

As the used camera allowed for storing of a very limited number of pictures (1024, [6]),
the system had to be equipped with a mechanism called motion detector so the camera

3. State of the Art

could record only important scenes, filtering out all the rest when there is nothing hap-
pening in front of it. The motion detector was in fact an IR optical barrier constructed
from through-beam sensors KS96 (Kotlin, Czech Republic, [7]) with the frequency mod-
ulation. The barrier was placed in the fly-in hole so the light beam must be crossed
by the bird entering the box. The sensors could operate on 15-30 V DC.

The system was further equipped with a PIT tag reader device PS02 (Elvis, Czech
Republic) with a circular antenna positioned around the fly-in hole, used to identify
owls fitted with a PIT tag.

The entire system, illustrated in Figure 3, was powered by a 60 Ah 12 V traction
battery which sufficed for 6-8 days operation.

4. Design

The event-based surveillance system from [5], described in Section 3.3, became a good
model for the new system being developed. The requirements posed on both systems
were practically the same, so the actual task was to redesign the system from [5] using
the up-to-date technologies, allowing for more functionalities and better performance.

4.1. Hardware

The conceptual design of the system, depicted in Figure 4, is very similar to the design
of the model system, shown in Figure 3. The main difference is in the number of cam-
eras, which is two instead of one. Also, illuminants are controlled directly by the cam-
eras. Important change, not visible from the figure, is that the image data is stored
in a centralized data storage on the control board, so the amount of data is not limited
by the size of cameras internal memories, as it was in case of [5].

Lighting Lighting
A A
User Interface Camera Camera
RFID Reader ontrol Board Interior Sensors
Light Barrier Battery Exterior Sensors

Figure 4. Conceptual design of the system hardware. The arrows symbolize the direction
of communication/control.

Completely new items to the scheme are the interior and exterior sensor blocks, which
were not present on the referential design.

The system uses the light barrier as an event detector, too (referred as Movement
detector in Figure 3). Even though it might seem to be redundant since RFID reader
could also be used for the same purpose, experiences with the referential solution have
shown that the reader reliability is not completely satisfiable as the PIT tags sometimes
fail to be scanned.

The following subsections describe briefly each block of the scheme in terms of what
device has been selected and why, without discussing other alternatives as this has
already been done in [8] in terms of the subject A4M33SVP.

4. Design

4.1.1. Control Board

The central block of the system is a control board with the following requirements:
Provides hardware interface to all needed peripherals,

allows for running Linux OS® (Linux),

is powered by a powerful microcontroller (MCU) / microprocessor (MPU),
has a low power consumption,

is well documented,

is guaranteed to be available for several years,
can be acquired for a reasonable price.

No commercially available solution fulfilling all listed requirements was found, so it
was decided to let develop and manufacture a custom board. As a suitable platform,
a new Freescale Vybrid VF6 microprocessor was chosen, bringing all the features dia-
grammed in Figure 5.

- Vybrid VF6xx Block Diagram

Debug and Trace Core System Core
ARM~ Cotex A5 ATM Gt M
Up to 500 MHz Intarnal and Up to 167 MHz
% Extemal Watchdog
DP-EPU SP.FP
P 5 " -
[+] -3
FlexTimer (2-ch.) NEON DMA DsP
FlexTimer (2-ch.) L1 VD Gache HpdoBiei
FlexTimer (8-ch.) Power Trace/Debug
L2 Gache [optional) Managsment
i oo
— =
: ~ L NVIC
ok Protaction Unit
Memory Dizplay Communication
T e [|| o |
e (o L ron]
IEEE 15688
Memory Interfaces 10/100 Ethernet x2
| AN P Conoter | o
OTG + PHY
| 2« Securs Digital VO |
Up to 135 GPIO
fwith Interrupt)

Figure 5. Freescale Vybrid VF6xx microprocessor block diagram. From [9)].

The speciality of the microprocessor is its asymmetrical dual-core architecture, con-
sisting of one 500 MHz ARM® Cortex -A5 (A5) core, designated for running a high-
level operating system (OS), and one 167 MHz ARM® Cortex " -M4 (M4) core primar-
ily for low-level hardware operations. The ARM® (ARM) architecture is a guarantee
for low power consumption and well-designed hardware. The microprocessor is new,
available generally since January 2014, promising a long time support. And finally,
there exists a processor module SQM/-VF6-W assembled with this MCU. It is manu-
factured by a Czech company Elnico s.r.o. (Elnico), commercially available from [10].

10

4.1. Hardware

SQM4-VF6-W is a product from the SQM4® (SQM4) solderable processor modules
series. Every device from this series is characterized as a System-on-Module (SOM),
comprising a microcontroller/microprocessor with Double Data Rate (DDR) mem-
ory, NAND FLASH memory, Ethernet and Universal Serial Bus (USB) controllers
on a squared module (16 cm?), interfaced by so-called RIM connection with 160 pins.
The RIM connection provides 4 variants of assembly, where one of them (Down-pins)
is detachable, designed mainly for development purposes, while the others are solder-
able, providing a robust and reliable connection between the module and a base board.

The SQM4-VF6-W module, depicted in Figure 6, is comprised of a 256 MB DDR3
SDRAM memory, 256 MB FLASH memory, Dual Ethernet, USB and also an extra
low-power WiFi modem, fulfilling the request on a wireless communication interface.

Figure 6. Photo of the SQM4-VF6-W module, the brain of the intelligent nest-box surveillance
system. From [10].

Using the SQM4-VF6-W module, the development of the custom base board, named
BudkaControl, became much simpler and hence cheaper task than it would be without
it, as it reduced to a simple expansion board of the SOM. The peripheral scheme
of the base board, illustrating the structure and assignments of the board peripherals
to the peripheral devices, is depicted in Figure 7. The peripheral devices are described
in the following subsections.

4.1.2. Cameras

The most attention in selection of peripheral devices was paid to the digital cameras,
being the most important and expensive part of the system. It was decided to buy
two monochrome industrial cameras UI-1541LE by IDS Imaging Development System
GmbH (IDS), depicted in Figure 8. This type has the following features:
Monochromatic CMOS sensor 1/2",

resolution 1280x1024 px,

maximum 25 fps,

USB 2.0 interface,

1x external flash output,

1x external trigger input,

2x external GPIO,

1x external I?C bus,

free C/C++ API, Linux drivers and demos available.

11

4. Design

BudkalTS

r=——=-"=1
BudkaLightin 4‘ (WA __ BudkalTs
Fo—mmon e NG NN N
\

——— o —— — ——

|
|
|
|
! —o
|
: jan usB Ethernet 0—5%
| UI-1541LE |
: BSM4016512 1 B Py SQM4_VF6_W
BudkaLighting Ly 12C UART ¢—¢ ELB149C5M
o Kﬂ
| ~/\N| | || = [ttt
| |
| ~—e : BudkaControl
I : | GPIO Power
| T SD-micro Supply
| UFI541LE ! || Eooooooooeseee .
| BSM6016512 !

)
35;;

BudkalRBar \

Figure 7. Peripheral scheme of the control board BudkaControl, depicting board peripherals
assigned to peripheral devices.

Figure 8. Photo of the UI-1541LE monochrome industrial camera. From [11].

12

4.1. Hardware

Each camera should monitor different scene, implying different viewing angles, as
illustrated in Figure 9. For this sake, different lenses were mounted on each camera.
The fly-in camera was equipped by a lens BSM/016512 (f = 4 mm, 96° horizontal field
angle, S-Mount) to fulfil requirement of viewing the whole front side from the fly-in
hole to the box ground, and the ground camera was equipped by a lens BSM6016512
(f = 6 mm, 65° horizontal field angle, S-Mount) allowing for viewing the bottom half
of the box. Both lenses are distributed by IDS, too.

A
8 53°
v
A Rl
S een
8 -~y n....‘
\ 75°/'
A e
4
U
4
o A
4
4
4
4
'l
24 G
'l
” 20
4
4
4
4
4
¢
4
4
\ 4 \J
20

Figure 9. Approximate cameras viewing angles, derived from expected box dimensions (in
centimetres). Violet: The fly-in camera and its required field of view. Green: The ground
camera and its required field of view.

4.1.3. Infrared Lighting

The camera chip is not covered by any IR-cut filter, allowing for sensitivity on the IR
light. Graph of the chip sensitivity with respect to the light wavelength is depicted
in Figure 10. In the wavelength range of 700-900 nm, the chip sensitivity falls steeply
with the growing wavelength, with only approximately 23% of full sensitivity at 900 nm
wavelength. For this reason, the wavelength of the camera lighting should be rather
close to 800 nm where the efficiency is much higher (about 40%).

Thanks to the external flash output of the UI-1541LE cameras, the lighting can be
controlled right from the cameras. It was decided to develop a special board named
BudkaLighting, implementing the infra-red lighting functionality. As the cameras have
no covering, the board was designed to be directly connected to the camera and covered
together in one box, protected on level at least IP54 (dust and partial water protection).

As the light source, TSHG5510 TR, LED by Vishay was picked. Main reasons for
this type were its peak wavelength)\, = 830 nm and a high angle of half intensity
@ = +38°, promising a uniform illumination of the whole scene. Graphs of the relative
radiant power /intensity with respect to the wavelength and angular displacement are
shown in Figure 11. More technical information can be found in [12].

13

4. Design

. {R-Cu-Fidtor B55nm
40 500 600 700 B3 900
Wavelangty fem]

Figure 10. UI-1541LE-M-GL camera chip sensitivity on different light wavelengths. From [11].

125 14
1.0
Z
§ 10 % 0.9 ,/ \\
E E 07
2 075 \ g / \
: g o / \
o
g o 05 /
g 05 2
§ 2 o4 / \
"~ £ o3
e]
S 025 s 0.
R 5 02
< 01
0 S~ 0
740 800 900 -90 -70 -50 -30 -10010 30 50 70 90
21012 o
16972_1 - Wavelength (nm) Angle (°)

Figure 11. TSHG5510 HighSpeed Infrared Emitting Diode. Left: Relative Radiant Power vs.
Wavelength. Right: Relative Radiant Intensity vs. Angular Displacement. From [12].

4.1.4. RFID Reader

Monitored owls are tagged with an RFID chip EM/200. It can be scanned by vari-
ous commercially available RFID readers. The product ELB149C5M by Seeed Studio
(see Figure 12) was found at [13] to be appropriate for this task. First it has relatively
low power consumption (approx. 30 mA / 5 V), second it has a modular construction
with a simple communication interface (UART, baud rate 9600 bits per second (bps),
TTL output [14]) so it can be easily integrated into the system, and finally it is available
for a very reasonable price.

The module is distributed with an external antenna which cannot be used though.
A circular antenna around the fly-in hole, similar to the one used in the referential design
(see Section 3.3), needed to be manufactured. Its dimensions are depicted in Figure 13.

14

4.1. Hardware

Figure 12. RFID chip reader ELB149C5M. From [13].

R| |77

1 1

Figure 13. Custom RFID antenna dimensions requirements. Distances are in millimetres.
(Edited drawing by the ornithologists.)

4.1.5. Light Barrier

The light barrier is an important part of the system functioning as the event trigger.
It is a device consisting of one transmitter and one receiver. Transmitter is typically
a LED, usually emitting an IR light. Receiver is located opposite to the transmitter and
detects whether the space between both parts is clean, i.e. the light excites the receiver,
or the beam is disrupted by a non-transparent object. The light is usually modulated
by a periodic signal of a defined frequency, all other frequencies are filtered by the
receiver, providing the high robustness against ambient light (sunlight, artificial light
sources of different frequencies).

There are plenty of commercial products available on the market, being used for
example for gate control or toilets flushing. These devices have usually a relatively
high power consumption, big packaging and high cost. The majority of them (perhaps
most of them) are also designed for too high voltage, often 230 V.

For these reasons, it was decided to develop and manufacture a custom light barrier
on a board named BudkalRBar. The receiver (TSSP58038 by Vishay, technical spec-
ification in [15]) is designed for 38 kHz pulses of IR light with the highest sensitivity

15

4. Design

at 950 nm, and can be powered from 2.5 V to 5.5 V. The transmitter (TSAL5100
by Vishay, technical specification in [16]) is a simple IR LED with peak wavelength
Ap = 940 nm and a narrow beam (angle of half intensity: ¢ = +10°). The output sig-
nal of a required frequency needs to be generated by an external source. Pulse Width
Modulation (PWM) peripheral of the processor will be used for that.

The board is designed to be placed in a groove milled in the front side of the nest-box,
as illustrated in Figure 14. The board has a special shape so it goes around the fly-in
hole and the light beam crosses the hole horizontally in the middle.

Ll

——— =
(cable)

Figure 14. TIllustration of the light barrier design and its placement in a groove milled
in the front side of the box.

4.1.6. Temperature and Light Sensors

Interior and exterior sensors are designed as separate tiny boards named BudkaLTS.
Both boards contain the temperature sensor (MCP9804 by Microchip, technical spec-
ification in [17]) communicating on Inter-Integrated Circuit (I?C) bus. In addition,
the exterior sensors board features a 12-bit I*C A/D converter, processing analog input
from a photocell, implementing a light sensor. These parts are not placed on the interior
sensors board.

The exterior sensors board is designed to be built in a nest-box side in such a way
the photocell is in the box exterior. The interior sensor is not planned to be fixed
on any place; on the contrary it should be on a loose cable so the ornithologists can
place it for example amongst eggs and measure the temperature directly in the nest.

4.1.7. User Interface

According to the requirements, the user interface is designed to be realized by two hard-
ware interfaces — Ethernet (a wired network) and WiFi (a wireless network). All needed
controllers are implemented on the SQM4-VF6-W module. In case of Ethernet, only
the RJ/5 connector needs to be placed on the base board. The WiFi is implemented
by the Qualcomm-Atheros AR4100P chip.

The AR/100P is a small, single stream, 802.11 b/g/n WiFi System-in-Package (SIP)
solution. It is primarily designed for applications hosted by low-resource microcon-

16

4.2. Software

trollers that send infrequent data packets over the network. The system features extra-
low power consumption, balanced by a lower throughput [18].

The chip is placed on the bottom side of the SQM4-VF6-W module, as shown in Fig-
ure 15. The module also features a tiny U.FL male connector on the top side, as visible
in Figure 6. That can be used to connect the external WiFi antenna.

Figure 15. Bottom side of the SQM4-VF6-W SOM, with the AR4100P WiFi SIP
by Qualcomm-Atheros.

4.2. Software

The main goal of this thesis is to develop an application serving all the hardware
described in Section 4.1 and implementing all the functionalities described in Chapter 2.
The application has been named Birdhouse.

The most general application flowchart is depicted in Figure 16. After powering on
the device, the system boots, and depending on the daytime, it enters either a Sleep
mode with most of the peripheral hardware powered off (light barrier, RFID reader,
cameras), or a Ready mode, with all its hardware powered on.

In the Sleep mode, only the temperature and light sensors are periodically read out
with a predefined time period. In the Ready mode, besides the periodical sensors read-
outs, recording operation can be triggered by a disruption of the light barrier. When
that happens, firstly a short video sequence is recorded by the fly-in camera (further
referred to as the door camera, D), then a longer sequence is recorded by the ground
camera (further referred to as the floor camera, F). RFID identification is performed
in parallel with the camera recording.

A real design of the application is much more complex though and is discussed
on multiple levels — operating systems, libraries and processes/tasks. Its hierarchy
is depicted in Figure 17.

4.2.1. Operating Systems

There is a wide selection of operating systems used in embedded. Most of them are
real-time operating systems, i.e. operating systems meeting real-time requirements.
Such systems guarantee the response within strict time constraints, often referred to

17

4. Design

< Power On >

\ 4
< Boot >
) 4
No
Is night?
Yes
\ 4
Sleep Ready

Barrier
disrupted?

\ 4 ¢
/ Read out sensors / / Record [D] / / Identify /

\ 4

/
Record [F]
[

Figure 16. General application flowchart. The blue blocks are executed by the M4 core, the red
blocks by the A5 core.

Readout
scheduled?

as deadlines. Depending on the consequences of missing the deadline, real-time systems
are divided into three groups:

e “Hard: Missing a deadline is a total system failure.

o Firm: Infrequent deadline misses are tolerable, but may degrade the systems qual-

ity of service. The usefulness of a result is zero after its deadline.

o Soft: The usefulness of a result degrades after its deadline, thereby degrading

the system’s quality of service.” [19]

The Birdhouse application can be categorized as a soft real-time system, posing real-
time requirements on the delay between the light barrier disruption and start of record-
ing by the door camera. The requirements were not defined specifically, but they can
be derived from the need to record at least 3 frames of the prey by the door camera
before it falls on the ground, i.e. out of the camera view. As the prey occurrence takes
about 500 ms, the recording must start with respect to this duration and the camera
frame rate. From the user point of view, the best would be if the recording started

18

4.2. Software

[
Tasks Applications || Bash Scripts H £
- S
2
ESL uEye <
Stacks Standard Libraries
(S
V]
E
Kernel Kernel 0
(@)]
=
©
BSP/PSP BSP/PSP §
Max 5)
ARM Cortex M4 ARM Cortex A5
o
Freescale Vybrid VF6 ﬁ
1 ()
I o
o
Peripherals

Figure 17. The system software block diagram from the HW/OS point of view. All application
specific parts, implemented in terms of this work, are labelled in underlined bold font.

“immediately”, i.e. the system should minimize the time delay between the disruption
event and recording start.

The freedom of selection in this application has been limited from the beginning
though. The uEye library, needed to access and control the cameras (see 4.2.2), is
available only in the binary form for Windows PC and Linux under a limited number
of architectures. Use of the latter operating system on the A5 core is hence inevitable.

Analogously, to communicate with the AR4100 WiFi SIP (see Section 4.1.7), an op-
erating system supported by the wifi driver has to be selected. From the sparse list
of supported operating systems, Freescale MQXTM (MQX) real-time operating sys-
tem (RTOS) was picked.

MQX RTOS

Freescale MQXTM is a real-time operating system provided by Freescale Semiconduc-
tor, Inc (Freescale). It is free to use with all Freescale MCUs and MPUs. It features
a lightweight component-based microkernel with a highly customizable architecture, as
depicted in Figure 18. It is a multi-platform OS with a minimal footprint of necessary
components (Core), allowing to be used on most Freescale-based devices. The kernel
includes a real-time, priority-based pre-emptive scheduler allowing for real-time multi-
tasking and fast interrupt handling, extensive inter-task communication and synchro-
nization facilities [20].

19

4. Design

MQX™ RTOS: Customizable Component Set

Name
Queues Services Interrupts
Partitions Messages
Task Utilities Elents
Management Task Errors Initialization
Lightweight Core Memory Semaphones
Watchdogs Semaphores E Services
Task Queue Automatic Task Midexee
Timers Scheduling Creation
RR and FIFO IPCs
Scheduling
Formatted Exception
/O Handling
110 Kernel
Subsystems Logs Log
As-Needed

Figure 18. Freescale MQXTM (MQX) real-time operating system (RTOS) highly customizable
microkernel architecture. From [20].

Besides the kernel, MQX contains also Processor Support Packages (PSPs) for all
supported platforms, Board Support Packages (BSPs) for various development boards,
optional software stacks, services and frameworks (see fig. 19):

e FF'S — Flash File System, low-level flash drivers with wear-levelling.

e MCC — Multi-Core Communication library, efficient inter-core MQX-to-MQX or
MQX-to-Linux communication subsystem.

MFS — Embedded MS-DOS File System.

RTCS — Real-Time Communication Stack, a TCP/IP stack implementation.
Shell — A lightweight command-line environment.

USB — Universal Serial Bus host/device stack.

MQX further contains tens of examples and a pretty quality documentation. To-
gether with referential development kits and quite good support, MQX became the best
choice of all available operating systems runnable on the M4 core. Also availability of
Multi-Core Communication library (MCC) and Elnico Support Library (ESL) is a great
advantage, as described in Section 4.2.2.

Timesys Linux OS

Linux is not a real-time operating system by design. There are some Linux kernel
modifications or extensions, for example PREEMPT _RT [21], but I have no experiences
with these extensions. Since the application belongs to the soft real-time category with
no critical impacts in case of failure, this direction was not further considered.

Seeking for a Linux distribution, it was evident that a custom one must be built,
as the kernel configuration and BSP must be adjusted according to the custom board.
It was logical to choose the LinuzLink framework by Timesys Corporation (Timesys)
for a bunch of reasons.

First, Timesys is “a trusted source of embedded Linuz” [22], with deep experience
in real-time Linux. They develop LinuxLink, a software development framework for
configuration, patching, building and maintenance of an open source Linux platform.

20

4.2. Software

l Comprehensive Freescale Solution

Demo Gode Applications
Development Tool Custamized lication
with MOX Task-Aware e ————— Applications AR
Debugging: Industry-Specific Libraries
CodeWarrior
Development Studio
IAR Embedded
Workbench®
ARM® Keil®* MDK
GCC Compiler

ARM DS-5
Development Studio

Processor Expert
Software

Open Source
BDM/AJTAG and

Third Party: BDM/JTAG Mcu Hardware
Emulator/Probe

PC Hosted On Device

] Freescale MQX™ Software Solutions
Figure 19. Block diagram of a software solution based on the MQX RTOS. From [20].

“It includes a Linuz kernel, GNU toolchain, packages, libraries and development tools.
All Linuz platform components and updates are open source and are provided through
the LinuzLink Factory custom platform builder” [23] (see fig. 20 for the typical Lin-
uxLink flow). They also provide documentation and support. They are a partner
of Freescale, supplying Linux PSPs for the Freescale’s processors and BSPs for their
development boards.

Timesys LinuxLink
The Leading Software Development Framework for Embedded Linux

]
Development Tools i

Middleware
& Applications

User Guides

-}' Your Custom Tools
1

Your Custom Image

TimeStorm IDE

Figure 20. Typical LinuxLink framework flow. From [22].
Second, although LinuxLink is a commercial service, a long-term professional license

is granted to every customer who purchased TWR-VF65GS10 [24], the Vybrid devel-
opment board by Freescale. Elnico, the manufacturer of the SQM4-VF6-W Vybrid

21

4. Design

module (Figure 6) and developer of the BudkaControl board (design described in Sec-
tion 4.1.1, realization in 5.1.1), is a LinuxLink licensee and can provide custom Linux
configuration and build through this tool.

And finally, Timesys develops and distributes the mcc-kmod package [25], a Linux
kernel module providing communication with the MQX MCC library (see section 4.2.2).
That is, using the Linux by Timesys, we can get well prepared and supported Linux
distribution allowing communication with MQX running on the second core.

4.2.2. Libraries

Selection of the essential software libraries used by the application is a fundamental
task which has to be done in the software design phase. In this case, uEye, MCC and
ESL libraries belong to such category.

uEye Library

uEye is a software library for Ul cameras control, provided by their manufacturer,
IDS Imaging Development System GmbH. It contains drivers with a daemon process,
Application Programming Interface (API), examples and few utilities. It provides
the only way to access and control the cameras as they do not comply with common
video standards like Video4Linux (V4L).

The library is proprietary and is distributed only in the binary form, the source
files are not available. Use of the library (and thus the UI cameras) hence depended
on availability of suitable binaries for the ARM® Cortex " -A5 platform. No such li-
brary distribution existed. Nevertheless, after some tries it appeared that a distribution
for BeagleBoard can be used. BeagleBoard is an open-source hardware computer with
an ARM Cortex A8 processor [26]. The A8 and A5 cores have the same architecture
ARMVT-A, so they feature the same instruction set [27]. For this reason, the binaries
built for BeagleBoard are compatible with the A5 core on Vybrid VF6, even though
they are not optimized for use on this MPU. The latest uEye library distribution for
BeagleBoard (uEye version 3.90) was downloaded from [28], up-to-date PC binaries
and documentation is available from [29].

The library features a C/C++ API, providing a high number of functions, briefly:

e Preparing image capture — camera opening and closing, querying library and cam-

era information, image buffer allocation and freeing.

e Camera configuration — getting and setting camera pixel clock, exposure, gain,

gamma, saturation, frame-rate, image preprocessing, ...

e Capturing — capture mode setting, capture control, event handling.

e Storing — single frames loading and saving to the file system.

e External communication — General Purpose Input/Output (GPIO) and flash con-

trol, I2C communication.

MCC Library

The Multi-Core Communication library (MCC) is a subsystem which enables com-
munication of applications running on different cores of multicore processors. Each
communication channel consists of two message queues stored in the shared RAM,
signalization is realized by interrupts and exclusive access by hardware semaphores.
That ensures a lightweight and fast communication with simple blocking/non-blocking
send /receive API calls [30].

22

4.2. Software

The library supports MQX and Linux operating systems, allowing for either MQX-
to-MQX or MQX-to-Linux communication. It is developed by Freescale and Timesys.
In MQX, it is shipped as part of the MQX distribution. In Linux, the library can be
fetched from a repository. It operates in the kernel space, being injected to the Linux
kernel as the kmod-mcc kernel module developed by Timesys.

This communication layer is a fundamental part of the Birdhouse project, allowing
for dual-core MQX-Linux implementation.

ESL Library

The Elnico Support Library (ESL) is a middleware framework built on top of MQX
version 4. It is developed by Elnico as a support software for their Kinetis and Vybrid
processor modules. It is a modular, highly configurable multiplatform library, simplify-
ing use of often used functionalities and enabling quick composition of new applications
from the library modules as follows:
e “appctrl — application control mechanisms,
cfg — config files parser and writer,
cre — cyclic redundancy check,
fs — useful filesystem functions,
gpio — GPIO interrupts demultiplexer,
12¢ — 12C' communication,
log — logging task,
mcfs — virtual multicore filesystem,
nand — NAND flash file system,
rtc — real time controller,
sd — SD card,
spi — SPI bus control,
spimem — SPI memory control,
wifi — Atheros wifi control.” [31]

Use of the library can significantly simplify and accelerate the target application
development, reducing the application code size as Figure 21 illustrates.

Most of the library modules are used in this project, namely appctrl, cfg, gpio, i2c,
log, mcfs, rtc and wifi.

appctrl is a simple module implementing task eslAppCtrl. Its purpose is to start all
the other application tasks and control their run. In the version used in the Birdhouse
application (1.004, not publicly available at the time of writing this document), its
function is limited to simply starting all the other tasks in a defined order.

c¢fg is an implementation of a very simple configuration files processor. Configuration
files are needed to keep the user settings, e.g. camera exposure times.

gpio realizes a simple interrupt demultiplexer. On Vybrid, there is only one interrupt
vector for each GPIO port. When there are more then one GPIOs from the same port
used, the application needs to check on which pin from the port the interrupt originated.
That is done by this module.

i2c module is a set of functions for accessing the I?C peripheral, enforcing mutual
access to each channel. The I2C peripheral is used to communicate with the sensors
on the BudkaLTS board (see Section 4.1.6).

log implements logging functions and a task responsible for writing the log messages
to a defined location (a UART standard output and/or a file on a file system). It collects
logging messages from both the library and the application.

23

4. Design

Application

Application

=

MQXTM MQXTM

Hardware

Hardware

Figure 21. Elnico Support Library middleware diagram. From [31].

mcfs is a virtual multi-core file system used to access a Linux file system from MQX.
It installs a file system into MQX and communicates using MCC with a Linux daemon
running on the second core and actually executing the read/write commands. Since
the whole dual-core system disposes of only one non-volatile memory storage (Secure
Digital (SD) card), it has to be shared by both cores, i.e. by both operating systems.
One solution would be to use hardware semaphores to synchronize access to the de-
vice, which would probably require modifications in the Linux kernel. Multi-Core File
System (MCFS) gives an alternative way to share the medium as described previously
in this paragraph, and is used in this application for all MQX file operations.

rtc is a simple set of functions for date/time operations, e.g. generating time stamps
for log and other purposes.

wifi is a complex module containing the driver for the AR4100 Atheros wifi SIP.
On the top of the driver and the MQX TCP/IP stack, access point and managed modes
are implemented. This module can be used for the WiFi human-machine interface.

4.2.3. Processes and Tasks

From the processes and tasks point of view, the application gets pretty complicated.
The overall processes/tasks diagram is depicted in Figure 22.

In MQX, the whole application is formed of a single executable binary, containing
the OS kernel, drivers and user program. Individual subprograms are implemented simi-
larly to threads, but are called tasks and play the role of processes in the Linux/Windows
terminology. For this reason, MQX tasks and Linux processes in Figure 22 are shown
on the same level of abstraction. They are described in the following subsections.

appmgr

appmgr is the name used for two executable entities — an MQX task appmgr™ and
a Linux process appmgr’. They form two sides of the main core of the Birdhouse
application. They are the only executable entities which perform the inter-core com-
munication (if not counting the MCF'S subsystem), forming the application’s backbone.

24

4.2. Software

MQX |MCC| Linux

—_

eslAppCirl : El El
[2l—{P]

)
Q
o

A W N

appctrl

sensors

ueyeusbd
- Barri postprocessor
irBarrier —
<
| : % appmgr(M) |4 » appmgr(l) g
elb149c5m LR
YYVVYVVYVY
hmi >~ eslLog 4 v

Q ueyerec(D) ueyerec(F)

mcfsd >

A 4

Figure 22. Birdhouse application processes/tasks communication diagram. In MQX, each
block represents one task. In Linux, each block represents one process. Grey blocks represent
third-party tasks/processes. Tasks labelled in grey italics were not implemented. Legend:
1. a starts b. 2. Client-server communication, a being a client of b. 3. a controls b. 4. a sends
data to b.

appmgr™ plays the superior role in the communication based on the client-server
model, appmgr™ being the client and appmgr® being the server. The communication
protocol for the three most important operations is defined in Table 1. The client
always starts the communication by sending a message of given type. Each message
can further contain iParam, iParam?2, iParam8 and uParam parameters. WAKFEUP,
SLEEP, RECORD, RECORD__FINISH and ACK message types and MCC _OK and
MCC ERROR return codes are defined.

appmgr™ is basically an event processor which after initialization cycles in an endless
loop, as depicted in Figure 23. There are three main event types: SLEEP, WAKEUP
and RECORD. After an event is detected, appropriate operation is executed. Should
any of the operations fail, the whole processor is reset immediately and the application
must start again from the beginning, recovering from the failure state.

SLEEP and WAKEUP events are triggered by a periodic timer. They switch the ap-
plication to the READY mode at predefined evening time, and to the SLEEP mode
at predefined morning time. The subsequent operations are depicted in Figures 24 and
25. Both operations are similar — appmgr™ sends corresponding message to appmgr,
waits for reply and powers on/off the RFID and infrared light barrier (IRBAR) devices
(through elb149c5m and irBarrier tasks).

25

4. Design

] Message ‘ Protocol Description

WAKEUP | The server powers-up the USBs and starts ueyerec for both the door and
floor camera. It replies with ACK where iParam is set to the operation
result — MCC_OK on success, MCC_ERROR if something failed. In
the case of failure, uParam contains additional information about which
camera experienced problems. The server remains in the READY mode
anyway. It is responsibility of the client to take appropriate action to fix
the state.

SLEEP The server stops ueyerec for both the door and floor camera and powers-
down the USBs. It replies with ACK where iParam is set to the oper-
ation result — MCC__OK on success, MCC__ERROR if something failed.
uParam then contains additional information about which camera experi-
enced problems.

RECORD | To create a record of two video sequences and accompanying data, client
sends a RECORD message with data triplet [interier temperature], [ex-
terier temperature], [exterier light] stored in iParam, iParam2, iParam3.
If the server is ready (i.e. it is in the READY mode and not busy), it imme-
diately replies by ACK with iParam set to MCC__OK and starts recording
the video. In a short time period, the client sends a RECORD__FINISH
message, with iParam set to MCC__OK and uParam set to detected RFID
code, or with iParam set to MCC__ ERROR if no RFID code was detected.
The server replies after finishing the recording job by ACK with iParam
set to either MCC_OK or MCC_ERROR depending on the operation
result. If the server is not ready when the RECORD message is received,
it replies by ACK with iParam set to MCC__ERROR and the transaction
ends, client does not send more messages.

Table 1. appmgr inter-core client-server communication protocol. The communication is al-
ways initiated by sending a message of type in the left column from appmgr™ to appmgr”.

The SET READY operation is more complicated by taking several trials before
giving up, as the remote operation labelled as A5 SET READY is not fully reliable
due to USB issues. That is not a pleasant solution but it is acceptable, as this operation
is not time-critical.

The RECORD event is triggered by disruption of IRBAR, handled by the irBar-
rier task, and is only valid when the system is in the READY mode. The operation
has two steps, as shown in Figure 26. First appmgr’ is notified about the event so
the camera recording starts. appmgr’ replies immediately so appmgr™ can continue
operation. It waits for a predefined delay and then retrieves last scanned RFID code
from the elb149c5m task. Depending on the age of the code (as every code is equipped
with a timestamp), it is used or thrown away. Then a RECORD__FINISH message
is sent to appmgr® and execution stops until a reply is received. It is responsibility
of appmgr® to store all the records to the permanent storage.

appmgr’ is the main process on the Linux side of the application. It firstly starts
the mecfsd process needed for the MCFS file system, and then it enters the infinite
message loop, as depicted on a flowchart in Figure 27. It is an interlink between
MQX (appmng) and the recording processes, instances of ueyerec. It plays a role of
a server in the MCC communication (with appmgr™) and a client in the inter-process
communication (IPC) with ueyerec.

26

4.2. Software

Start) C Reset >

+ A

Initialization

v

o Service WDOG

SET_SLEEP
WAKEUP event? SET_READY
RECORD event? RECORD

Yes ANO
Success?

Figure 23. appmgr task flowchart. SET SLEEP, SET READY and RECORD operations
are depicted in Figures 24, 25 and 26.

The infinite loop realizes the server role for appmgr™. When a message is received,
appmgrL executes appropriate operation including a client communication with ueyerec.
These operations are depicted in Figures 28 and 29.

In A5 _SET READY operation (Figure 28), appmgr” powers on both USB chan-
nels and tries to run two instances of ueyerec, each for one camera. This operation,
labelled as START UEYEREC, first involves forking and running a new process — in-
stance of ueyerec. This process is given an inter-process communication (IPC) queue
identifier (ID) of appmgr®. To allow for bidirectional communication, appmgr” needs
to know IPC queue ID of the new task - that is done during a three-step handshake
illustrated in Figure 30. First ueyerec sends a HANDSHAKE1 message with ID of its
IPC queue. appmgr” replies by HANDSHAKE?2 message with system process ID of the
ueyerec process, which replies by an empty HANDSHAKFES message, playing a role of
simple acknowledge (ACK). By that, the IPC communication between these two tasks
is established. appmgr” then instructs ueyerec to get to the Ready mode by opening, ac-
tivating and configuring the camera (messages OPEN, ACTIVATE, SET _EXPOSURE
and SET _GAIN). Full collection of used IPC messages and their parameters is listed
in Table 2.

27

4. Design

SET_SLEEP
Yes
Is Ready? send SLEEP -
. -’:.......................:
* i A5 _SET_SLEEP .
No T :
recv ACK —
> Success?
No
Yes
power off RFID, IRBAR
<
\ 4

(return >

Figure 24. SET SLEEP operation flowchart, executed by appmgr™. Violet blocks represent
MCC communication. The red block is illustration of corresponding A5 operation (appmgr®).

In A5 SET SLEEP operation (Figure 28), appmgr’ stops both instances of ueyerec
and powers off both USB channels. Stopping the ueyerec processes involves a sequence
of IPC messages (DEACTIVATE, CLOSE, QUIT), followed by a forced kill of the pro-
cess if it does not terminate as requested.

A5 _RECORD_START operation (Figure 29) simply checks that appmgr” is ready
for recording. A5 _RECORD_FINISH (Figure 29) is also trivial, it only outputs data
received from appmgr™ (sensor data and RFID code) to a file.

More complicated is the A5 RECORD operation (Figure 29). It first commands
the weyerec process handling the door camera (ueyerec?) to record a video sequence
of preset parameters (duration, framerate), and then it does the same for the ueyerec
process handling the floor camera (ueyerect’) with different parameters.

The IPC communication hidden behind this “command” is following: appmgr’ sends
a LIVE message with requested duration and frame-rate of the video record to be
captured, ueyerec replies by SUCCESS message, appmgr’ sends a text message with
output filenames format, ueyerec records the video sequence and replies by SUCCESS
message.

28

4.2. Software

Figure 25. SET READY operation flowchart, executed by appmgr™. Violet blocks represent
MCC communication. The red block is illustration of corresponding A5 operation (appmgr’).

29

4. Design

Figure 26. RECORD operation flowchart, executed by appmgr™. Violet blocks represent MCC
communication. The red blocks are illustration of corresponding A5 operations (appmgr’).

Start

v

Initialization

v

4.2. Software

Start mcfsd

A5_RECORD

v

recv message

v

send ACK

No

Yes
msg==RECORD?

A5_RECORD_START

msg==
RECORD_FINISH?

A5_RECORD_FINISH —p

A5_SET_SLEEP N

msg==WAKEUP?

A5_SET_READY

'

/ send ACK

/[

Figure 27. appmgr® task flowchart.

Violet blocks represent MCC communication.

A5_SET _SLEEP, A5 SET READY, A5 RECORD_START, A5 RECORD and
A5 RECORD_FINISH operations are depicted in Figures 28 and 29.

31

4. Design

C A5_SET_SLEEP > C A5_SET_READY >

No
Is Ready?
Yes
STOP_UEYEREC(D) power on USBs
STOP_UEYEREC(F) START_UEYEREC(D)
power off USBs START_UEYEREC(F)

-
)l

A 4 A 4
< return > < return >
Figure 28. A5 SET SLEEP and A5 SET READY operations, executed by appmgr’. Or-
ange blocks involve IPC communication with ueyerec.

A5_RECORD_START A5_RECORD A5_RECORD_FINISH

v v

output data

RECORD_UEYEREC(D)

v

RECORD_UEYEREC(F) return

(success +

Is Ready?

return

failure

Figure 29. A5 RECORD_START, A5 RECORD and A5 RECORD_FINISH operations,
executed by appmgr’. Orange blocks involve IPC communication with ueyerec.

4.2. Software

Message Parameters Description

QUIT - Quit the application.

OPEN - Open the camera.

CLOSE — Close the camera.

ACTIVATE - Wakeup the camera from standby.

DEACTIVATE — Sleep the camera to standby.

LIVE duration, Capture a video of specified parameters.
framerate

SET_EXPOSURE | exposure

Set camera exposure time.

SET_GAIN gain Set camera chip gain.

HANDSHAKE1 IPC queue ID First handshake message (sent by server).
HANDSHAKE?2 process ID Second handshake message (sent by client).
HANDSHAKE3 - Last handshake message (sent by server).
SUCCESS - Operation success (sent by server).
FAILURE - Operation failure (sent by server).

Table 2. Inter-process communication messages between appmgr’ and ueyerec processes.

<«—— | HANDSHAKE1(queue_id)

HANDSHAKE2(process_id) - »
] HANDSHAKES3()
OPEN() I
«— | SUCCESS()
ACTIVATE() I
< SUCCESS()
SET_EXPOSURE(exposure) | —
] SUCCESS()
SET_GAIN(gain) >
«— | SUCCESS()

Figure 30. Inter-process protocol illustration on case of operation START UEYFEREC. Yellow
messages are sent from ueyerec to appmgr”, the red ones in the opposite direction.

33

4. Design

ueyerec

ueyerec (the name comes from UI recorder) is the only program designed to access and
control the cameras (or better to say the camera; two program instances are needed
to control two cameras). It serves as a server for appmgr’. It provides commands
to open, configure and close a camera, and to take a snapshot or record a sequence
of video frames.

The program again cycles in a message queue, as depicted in Figure 31. Messages
are received first from the user interface (UI), second from the connected camera, and
third from a periodic timer.

—p dataflow
messages flow
Initialization D 9

%7l€7

—»
user «—
<

Camera

input

message loop

¢

Figure 31. Simplified ueyerec functionality diagram illustrating data and messages flow inside
the program.

On the target device, ueyerec Ul stands for the IPC communication with appmgr”,
being a source of commands corresponding to the camera control messages from Table 2.

The camera produces several types of events, which are then translated to messages
handled by the message loop. In the used camera mode (Software Trigger mode, see Fig-
ure 32), the considerable events are TRIGGER and FRAME events. The TRIGGER
event is emitted when the camera is ready for the next frame capture, i.e. when the last
frame was already captured and transferred, but not preprocessed by the uEye library
API. Last frame preprocessing (generally e.g. color conversion) and new frame cap-
turing can be done in parallel, as both operations run on different hardware. When
the frame is also preprocessed by the API and is ready for the application processing,
the FRAME event is triggered.

The events need to be translated by separate threads to the messages recognized
by the main message queue. When the corresponding FRAME message is received,
ueyerec simply stores the captured frame to the file system as an image file, as the uEye
library under Linux does not provide direct output in a video format (e.g. Audio
Video Interleave (AVI)). New frame capture is initiated after the file has been saved,
since this sequential approach saves memory (only one image buffer is needed) and
prevents the code from potential bugs, while providing high enough frame-rate (for this
application).

34

4.2. Software

FreezeVideo li I l
['

Ext. Trigger | |]
I H
Sensor| | - : - -
L\ ."' :
AL { CPU /AP
Transfer
- Camera
Pre-processing [Exposure
AP events IK’I I‘) l l B Readout
T I TRIGGER event
Image display* | 1 - I FRAME event
Time

Figure 32. uEye camera software trigger mode flow diagram. From [32].

To allow for capturing frames with a requested frame-rate, new capture cannot be
initiated right after the application is ready for it, but it needs to wait for a syn-
chronization message from a periodic timer. The timer sends two types of messages —
first the periodic frame ticks, and second the end of capture message to ensure proper
capture length.

When the whole image sequence is complete, it needs to be encoded to the video
format. That is done asynchronously using an external script labelled as postprocessor
(see Section 5.2). The script is run by appmgr’.

ueyeusbd

ueyeusbd is a Linux daemon (i.e. a background process) responsible for the system
to recognize an attached USB camera, and perform all background work needed for
its correct operation. The program is part of the uEye library.

mcfsd

mcfsd is a Linux daemon playing the role of server in the MCFES subsystem. It receives
file operation requests from the MQX application via MCC library, and performs the op-
erations on the local file system. It is a third-party program delivered as a part of ESL
library. More information at [31].

eslAppCtrl

eslAppCirl is the only automatically started MQX application task. It comes from
the ESL library. Its ultimate goal is to start and control run of all application tasks,
i.e. realize a software watchdog. Currently it only starts all application tasks.

appctrl

appctrl is an MQX task which supplies eslAppCtrl in the tasks control function. Any-
way, it currently controls only appmgr™ which is the main task of the application and
every critical failure of any subsystem earlier or later projects to failure of appmgr™.
The appctrl task cycles in an infinite event loop, receiving events from appmgr™
and a periodic timer with a shorter period then the expiration delay of the hardware
watchdog. In every cycle, it services the HW watchdog and increments a counter. When
the counter exceeds predefined threshold, the task resets the MCU. To avoid hardware

35

4. Design

reset, the counter must be reset to zero by receiving the event from appmgr™ (notice
the Service WDOG block in Figure 23), effectively realizing SW watchdog of that task.

irBarrier

irBarrier is an MQX task intended to control the BudkalRBar board. That involves
generation of a periodic signal for the light transmitter, and evaluation of input from
the receiver. The periodic output signal of required frequency 38 kHz is generated
by the FlexTimer (FTM) peripheral configured to the PWM mode. When the barrier
disruption is detected, irBarrier signalizes it to appmgr™ by setting the RECORD
event. The task also provides an interface for disabling and enabling the IRBAR, so it
can be powered off in the SLEEP mode to save the power resource.

elb149chm

elb149c5m is an MQX task that performs readouts from the ELB149C5M RFID reader.
It simply reads the data written to the Universal Asynchronous Receiver/Transmitter
(UART) peripheral and checks the checksum. The EM4200 code contains 10 ASCII
data characters (representing a hexadecimal code) followed by a 2-bytes long checksum
- cumulative XOR of the previous 5 subsequent pairs of bytes (see an example in [14]).
If the read checksum equals the computed checksum, the code is correct and its decimal
representation (ignoring the first 2 HEX characters) is stored to a variable together
with current timestamp. This is read by appmgr¥ during the RECORD operation (see
Figure 26) and — if the code was scanned near the time of the RECORD event — stored
together with the recorded video data. The task also provides an interface for disabling
and enabling the reader for the same reasons as the irBarrier task.

adc

adc is an MQX task which measures the power supply voltage using the MCU’s A/D
converter (ADC) peripheral. The purpose of the task is to inform about the battery
state and — if the voltage is too low — power off the system. The value, calculated
as a sliding average of last 60 measurements, is reported to the sensors task which
integrates it into its output.

sensors

sensors is an MQX task which periodically aggregates data from the temperature and
light sensors (I2C communication with the BudkaL TS board) and battery voltage from
the adc task, and writes them to the MCFS file system.

hmi

hmi is an MQX task serving as a simple testing interface. It presents the internal appli-
cation state via a LED blinking with different frequencies, and it controls the appmgr™
task via a set of debug buttons. These devices have little to no use in the final appli-
cation though, as they are inaccessible in practice.

wifi, httpd, ftpd

wifi task is intended to initialize, configure and control an access point of a wireless
network, realizing the user interface of the system. hitpd and ftpd tasks are meant

36

4.2. Software

to operate the Hypertext Transfer Protocol (HTTP) and File Transfer Protocol (FTP)
servers, accessible through the wireless network. Due to a collision in DMA operation,
caused probably by use of the same channel by both the MQX wifi driver and Linux
kernel, the Wi-Fi functionality is only roughly prepared, but could not be completed.
The problem must be fixed on the level of either ESL library or Linux kernel.

eslLog

eslLog is an ESL task processing all logging messages from the application and the ESL
library itself. Its purpose is to serialize the messages and write them to a predefined
medium (standard output and/or a file). It provides a simple interface for logging
messages of multiple severities (debug, information, warning and error).

37

5. Implementation

The system implementation was determined by its design, and was also already par-
tially described in Chapter 4, since design and implementation of such a completely
new and complex system go hand in hand. This chapter describes mainly the prod-
ucts of the implementation, that is resulting hardware and software equipment and its
practical use.

5.1. Hardware

All the commercial hardware selected in Section 4.1 was procured, all the custom hard-
ware was developed and manufactured by Elnico s.r.o. This section presents the result-
ing products.

5.1.1. Control Board

The BudkaControl control board was realized as a simple two-layer printed circuit
board (PCB). See its schematics in Appendix B.1, routings and silkscreens in Appendix
C.1. Labelled photo of the board is shown in Figure 33.

909999900000

REMOVE TEST CAMERA 7

Figure 33. Realization of the BudkaControl board. 1. SQM4-VF6-W processor module.
2. ELB149C5M RFID reader with antenna connector. 3. Terminal strip for power source and
peripheral boards connection. 4. MicroSD card slot. 5. RJ45 Ethernet connector. 6. RS-232
debug port serial connector. 7. Expansion connector. 8. 3V battery holder. 9. Reset and
testing buttons. 10. Status LED. 11. U.FL Male WiFi antenna connector. 12. RTX4100
WiFi module footprint (not placed). 13. WiFi antenna connector for RTX4100 module
(not used).

39

5. Implementation

] Clamp Peripheral Function ‘
J12-2 Power Supply +12V
J12-1 Power Supply GND
J18-2 Tamper Detect TAMPER1
J18-1 Tamper Detect GND
J6-2 Camera 1 12C_D
Jo-1 Camera 1 12C_C
J14-2 Camera 1l GPIO2
J14-1 Camera 1l GPIO1
J20-2 Camera l TRIGGER
J20-1 Camera l
J19-2 Camera l
J19-1 Camera'l USB-

J9-2 Camera 1

Jo-1 Camera 0 12C_D
J7-2 Camera 0 12C_C
J7-1 Camera 0 GPIO2
J1-2 Camera 0 GPIO1
Ji1-1 Camera 0 TRIGGER

J11-2 Camera 0
J11-1 Camera 0

J10-2 Camera 0 USB-

J10-1 Camera 0

J16-2 Light Barrier IRLEDFREQ
J16-1 Light Barrier

J21-2 Light Barrier GND

J21-1 Light Barrier IRDETECT

J27-2 Sensors Internal
J27-1 Sensors Internal
J26-2 Sensors Internal
J26-1 Sensors Internal
J29-2 Sensors External
J20-1 Sensors External
J17-2 Sensors External
J17-1 Sensors External

Table 3. Terminal strip peripherals and cables assignments. The left column background
colours correspond to peripheral colour markings on the terminal strip. Background colours
of individual cells in the Function column correspond to colours of respective cables. Signals
in gray italics are not used.

The board basically expands all needed peripherals of the SQM4-VF6-W module,
which is mounted in the center of the board (1). The ELB149C5M RFID reader module
(2) is located over the base board, which it is fixed to using spacers. Under the RFID
module, there is placed a MicroSD card slot (3) and a 3V battery needed for powering
the on-chip Real-time Clock (RTC) peripheral when the power source is detached.
Next to the RFID reader, RJ45 Ethernet connector is placed (5). For connecting all
the peripheral boards, terminal strip (3) is used. Cable assignments according to their
colours is listed in Table 3. Next to the terminal strip, there is one expansion connector
(7) with additional GPIOs, SPI and few more signals. It is currently unused though.

For development and debug purposes, there is one serial connector (6) attached to
an RS-232 debug port, one reset and three debug/testing buttons (9) and a low-power
LED for signalizing the application status.

40

5.1. Hardware

To implement the WiFi interface, there is a prepared space for the RTX4100 WiFi
module (12) and an antenna connector (13). This was meant as a fall-back solution in
case of problems with the AR/100P WiFi SIP placed on the SQM4-VF6-W module.
An the end, it was not even tested due to a very low throughput, as it is designed
for extremely low-power applications [33]. The AR/100P WiFi SIP on SQM/-VF6-W
module will be used instead when the collision of ESL with Linux kernel is solved,
as described in 4.2.3. U.FL Male connector (11) for connecting the WiFi antenna
is prepared on the processor module.

The board dimensions are designed to fit in the ELBOX 171x121x55 transp. installa-
tion box with protection IP65 [34] by Enika.cz s.r.o. (Enika). Photographs of the board
covered and installed in the nest-box can be found in Appendix D.

5.1.2. Camera and Lighting

The BudkaLighting board was realized as a simple two-layer PCB directly connected
to the Ul-1541LF camera. See its schematics in Appendix B.2, routings and silkscreens
in Appendix C.2. The photo of the board with highlighted board items is shown in
Figure 34.

@ e ®
D15 D4
Mo /Dn

© o ®

Figure 34. Realization of the BudkaLighting board, with highlighted board items (description
in the text). Dashed lines mark components placed from the other side.

The board implements the IR flash as five parallel sets of three TSHG5510 IR LEDs
(areas highlighted by yellow rectangles). There is also one additional red LED used
for testing purposes — it can be easily turned off by removing the jumper (red area).
The camera (blue area) is placed on the other side of the board, connected by its I/0
connector (see [35]), directly facing the board’s connector (green area), and fixed on
spacers. The USB+ and USB- signals are not present in the camera I/O connector,
but there is an additional USB connector used for that purpose.

The camera is connected only to the BudkaLighting board, which is connected
to the BudkaControl board by a USB cable attached to the terminal strip placed
on the bottom side of the BudkaLighting board (violet area). Hence only USB-, USB+,
GND and +5V are used, being connected to the corresponding signals on the Bud-
kaControl board by cables coloured as in Table 3. Remaining signals are not used.
The lighting is controlled automatically by the camera (if configured appropriately).

Dimensions of the board together with the camera are designed to fit in the ELBOX
115265240 transp. installation box with protection IP65 [36] by Enika. Photographs
of the board covered and installed in the nest-box can be found in Appendix D.

41

5. Implementation

5.1.3. Light Barrier

The BudkalRBar board was realized as a simple two-layer PCB of the mirrored “U”
shape. Its schematics is presented in Appendix B.3, routings and silkscreens in Ap-
pendix C.3. Photo of the board with illustrated light beam and its direction is shown
in Figure 35. Realistic photograph can be found in Appendix D.

_—m | . BudkalRBar xzo
L | DET

Figure 35. Realization of the BudkaIRBar board, with highlighted light beam and its direction.

The board is connected to the BudkaControl board by a standard four-wire cable,
with individual wires coloured according to the colour scheme in Table 3. The Bud-
kaIRBar board is not covered in any box, it is meant to be fixed directly in a groove
in the wood by two screws and covered by a wooden and metal plate. The whole board
is varnished for better endurance against the weather conditions.

5.1.4. Temperature and Light Sensors

The BudkaLTS board was realized as a tiny PCB, common for both variants (with and
without the light sensor). See its schematics in Appendix B.4, routings and silkscreens
in Appendix C.4. The illustration photo of the variant with light sensor, with labelled
assembled parts is depicted in Figure 36.

-y, P02

(-!lcsct‘— 1

—_— — —

Figure 36. Realization of the BudkaLTS board, variant with the light sensor. 1. Temperature
sensor MCP9804. 2. A/D converter MCP3221. 3. Photocell VT83N2.

The board is produced in two instances. Both instances are placed by a MCP980/4
I2C digital temperature sensor with +0.25°C' typical accuracy and —40°C to +125°C

42

5.2. Software

operation range [17]. The exterior sensors board is also placed by a MCP3221 low power
I2C 12-bit A/D converter [37], measuring the voltage on the photocell VT83N2 [38].

The board is designed to fit in a capsule of a pen or marker, and isolated by silicone
rubber, as visible on the realistic photographs in Appendix D, Figures 62 and 63. It is
attached to the terminal strip on BudkaControl board by a four-wire cable according
to the colour scheme in Table 3.

5.1.5. RFID Reader

The RFID reader selected during the system design (ELB149C5M, Section 4.1.4) is
mounted directly to the control board, as described in Section 5.1.1. The external
antenna was manufactured by Libor Hofmann [39] following the dimensions from Fig-
ure 13. Its photo is shown in Appendix D in Figure 64. The antenna is connected by
a two-wire cable to the original white connector on the reader module.

5.1.6. Cover Tamper Button

As an additional feature, the terminal strip on the control board contains two signals
for Tamper Detect. It is used to connect a button serving as a detector of the battery
door being open/closed. The TAMPER]1 signal is connected to the input of Tamper
peripheral on the Vybrid MCU. When the main power supply is not provided, that
peripheral is powered by the 3V backup battery so it can detect unauthorized access
even in the case of disconnected/discharged battery. This functionality has not been
implemented in the software yet though.

5.2. Software

The Birdhouse application software has been implemented following the design de-
scribed in Section 5.2. Some implementation details and application use guidelines will
be described here.

5.2.1. Toolchain

Toolchain is a set of tools and libraries used to develop the application. The Birdhouse
application, being run on two different systems in parallel, has been developed under
two toolchains — GNU for Linux application development and TAR for MQX application
development.

Linux

For implementation of the Linux side of the application, LinuxLink Factory (Factory)
build system has been used. It enriches the GNU toolchain [40] by a few (omissible)
tools — advice engine and upgrade engine (more at [22]). GNU toolchain is a collection
of programming tools produced by the GNU Project, licensed under a sort of GNU
General Public License (GPL) licenses (typically Lesser General Public License (LGPL)
— the software can be used for free even for proprietary commercial projects).

The GNU toolchain consists of tens of tools. The key tools are GNU make (build
automation tool), GNU Compiler Collection (GCC) (C and C++ compilers), GNU
binutils (linker, assembler), GNU build system (autotools) and GNU Debugger (GDB)
(code debugging tool).

43

5. Implementation

The Linux kernel, several tools and the whole distribution can be configured using
the menuconfig tool, accessible as a Makefile target. It provides a semi-graphical inter-
face for easy interactive configuration (see Figure 37) of .config files, containing complex
information about packages to be built and their options, together with dependency
resolution, simple search and help.

.config - Linux/arm 3.8.15-ts-armv7l Kernel Configuration

Linux/arm 3.0.15-ts-armv7l Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted letters
are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features. Press
<Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded
<M= module = > module capable

[1 Patch physical to virtual translations at runtime (EXPERIMENTAL)
General setup --->
[*] Enable loadable module support ---=
[*] Enable the block layer --->
System Type --->
N
Kernel Features ---»
Boot options --->
CPU Power Management --->
Fleating peint emulation --->
Userspace binary formats --->
Power management options --->
[*] Networking support ---=
Device Drivers --->
File systems --->
Kernel hacking --->
Security optiens --->
-*- Cryptographic API --->
Library routines --->
Load an Alternate Cenfiguration File
Save an Alternate Configuration File

< Exit > < Help >

Figure 37. Screenshot of the menuconfig utility when configuring the Linux kernel.

To run menuconfig for the Linux kernel, make kernel-menuconfig command-line

command is used, while command make menuconfig is used to run menuconfig on so-
called Workorder (in Timesys terminology), i.e. the Linux distribution configuration.

Concerning the kernel and workorder configuration, there is an official distribu-
tion available for the TWR-VF65GS10 [24] Vybrid development board by Freescale
in the Factory, as already described in Section 4.2.1. Elnico sells a development kit
for their SQM4 modules — the SQM/ EasyBoard Development Kit (EasyBoard) [41]
— derived from the Freescale Tower development platform, being highly compatible
with that board. Elnico provides modification of the official Vybrid distribution with
some BSP changes and patches for EasyBoard (e.g. support for two USB Host devices,
needed for our application).

BudkaControl board has been developed to have the same BSP as EasyBoard, allow-
ing to use the Elnico modification of the Factory workorder without need to make any
changes in the Linux kernel.

To sum up, Linux kernel version 3.0 was used, configured and patched for the Vybrid
platform. Its source files including the configuration file can be found on accompanying
DVD in directory linuz_sdk/kernel-source/ (see Appendix A).

The Factory workorder configuration was reused, some changes were made though.
For example, configuration of BusyBoz' was modified to include tcpsvd and ftpd, tools
needed to run a minimal FTP server for the remote data access over Ethernet.

LA minimum bash-like processor. It is an “all-in-one” application implementing hundreds of stripped-
down versions of standard command-line utilities, optimized for embedded environments.

44

5.2. Software

Some libraries had to be added to the toolchain, too, for example libconfig (configura-
tion files handling library) or — of course — libueye (UI cameras API). The full workorder
configuration is stored in the linuz_sdk/.config configuration file (see Appendix A).

MQX

While all the development of the Linux side of the application was done under Linux
host operating system, all MQX development was done under Microsoft” " Windows®
OS (Windows). JAR Embedded Workbench toolchain by ITAR Systems was used. It is
a tool suite for C/C++ development for 8-, 16-, and 32-bit MCUs, including C/C++
compiler, assembler, linker and debugger, optimized for embedded applications includ-
ing RTOS plug-ins built in an integrated development environment (IDE). JTAG in-
terface connected through the j- Trace debug probe (by Segger) was used for debugging.

All these expensive professional tools, which provide powerful embedded development
instruments and produce high-quality outputs, were made available by Elnico.

The ‘story’ about the MQX BSP is similar to the one of Linux. The TWR-VF65GS10
BSP is an official part of MQX, distributed together with it in one archive. EasyBoard
BSP was derived from the TWR-VF65GS10 BSP and is available from Elnico. In ad-
dition, because BudkaControl was designed to be compatible with EasyBoard, its BSP
was used for the Birdhouse application.

The MQX applications are built the way that the MQX operating system is first
configured for the application and pre-built to a set of libraries, containing different
components of the system. These are then linked together with the object files of the ap-
plication into a single executable file, which is then downloaded and run on the device.
This library distribution is a part of the project and can be found on the accompanying
DVD in src/birdhouse/libmgz/ directory (see Appendix A).

Similarly to MQX, the ESL library is configured and pre-built to project-specific
libraries, which are linked together with the application in a single binary. The ESL
library distribution, including the configuration file and binary, is located in src/bird-
house/libesl/ directory on the accompanying DVD.

5.2.2. Application

This section describes some implementation details about the application startup and
recording.

Startup

Standard real-time embedded application is typically a single binary burned directly
into the MCU FLASH memory or another type of a non-volatile on-chip Read-Only
Memory (ROM), which is directly accessed and executed by the processor. This is
also the case of MQX in general. Different approach is taken with Linux though, as
the linux kernel is too big to fit in the internal memories, and many programmes being
run under Linux are even bigger.

For this reason, both Linux kernel and Linux applications need to be first loaded
to the Random Access Memory (RAM) from where they are executed. Linux kernel
needs to be loaded first, which is done by a bootloader — U-Boot in our case. It is
a small application which could be written into the on-chip ROM memory, but it is
typically stored on a data storage.

45

5. Implementation

In our application, U-Boot is loaded from the MicroSD card. The U-Boot binary
is written directly to the SD card memory address 0x400 at a place of no partition?.
The Vybrid MCU is implicitly configured to load the program from this location.

When U-Boot starts, it initializes the main peripherals (e.g. memories) and mounts
the file system on the first SD card partition (named KERNEL). Linux kernel binary
is stored there — file ulmage-3.0-ts-armv7l (see directory linuz__sdk/ on the DVD and
Appendix A). This file is loaded into the memory and executed by the primary core —
A5 (the secondary core — M4 — was not initialized yet and its clock is off).

One of first steps of the Linux boot is to mount the Root File System (RFS) located
on the second SD card partition. It contains all files needed to start and run the system,
including the application data. During boot, system init scripts from the /etc/init.d/
directory are sequentially executed, with respect to their alphabetical order (all scripts
beginning with the S character). These scripts start services needed for the system
run, for example they install kernel modules and run network services. The original
init scripts generated by Factory can be found in <DVD> /linux__sdk/rfs/rootfs.tar.gz.
Custom application scripts are located in <DVD> /sdcard/rfs overlay/etc/init.d/.

The first custom script (S60-ftpd) starts the BusyBox built-in FTP server with access
to the /root/app/ directory. S60-vsftpd is an empty file which overlays the original file so
the vsftpd FTP server is not started (we need only one server). S92-usb script configures
GPIO outputs controlling power supply to the BudkaLighting board (leaving the power
off) and starts udevadm service needed to properly detect attached USB cameras when
the power is turned on. S94-ueyerec is an empty file to disable direct start of the ueyerec
application. And finally S99-birdhouse starts the Birdhouse application.

The start involves execution of several commands. First it loads the kmod-mcc kernel
module, needed for the multi-core communication with MQX through the MCC library.
Next it starts the appmgr® process (which further starts the remaining Linux programs)
and finally it starts the MQX side of the application by the following command:

mgxboot birdhouse_sqm4vi6_eb_m4.bin 0x3f000000 0x3£f000401

mgqzboot is a utility which loads an MQX binary file (birdhouse__sqm4uf6__eb__mJ.bin)
on a specified memory address (0x3£000000), starts the M4 core by enabling its clock
and instructs it to execute the program from its start address (0x3£000401). The bi-
nary file is the MQX application built by the IAR toolchain, the addresses come from
the linker configuration.

After all these steps performed, both cores are running their applications, which
initialize all needed peripherals, establish inter-core communication and start doing
their job as designed in Section 4.2.3.

Recording

When the application is in the READY mode and the infrared light barrier is disrupted,
the recording operation is triggered immediately. Just to recall, the recording trigger
is a long sequence of communication operations, as illustrated in Figure 38. The light
barrier disruption changes the IRDETECT GPIO input (see schematics in Appendix
B.3), which triggers a hardware interrupt handled by the irBarrier task. This task
sets an event to the appmgr™ task, which sends an MCC message to the appmgr’
process, and that sends two IPC messages to the ueyerec? process. Its IPC interface
translates the message into an internal message type sent to the main message queue

2dd utility was used for this purpose. More in README.tzt and install.sh in sdcard/ directory
on the DVD, see Appendix A.

46

5.2. Software

(running in a different thread), from where the camera recording process is finally
started. See Section 4.2.3 for detailed communication description.

irBarrier L g appmgr(M) | ——p{ appmgr(l) |——pp{1» ueyerec
event MCC IPC

message message

Figure 38. Recording trigger communication illustration.

Even though the uEye library contains a set of functions for outputting AVI video
files, it is not available for Linux. For this reason, each frame has to be processed
manually. When the camera emits the FRAME event, signalling a new image frame is
ready in the buffer, ueyerec saves it as an image file.

The images stored to the buffer by the uEye API are in standard 8-bit grayscale
format and 1280x1024 px dimensions, taking 1,310,720 Bytes of memory. The sim-
plest and fastest method to store that as a standard image file is to use the Portable
GrayMap (PGM) format [42] in its binary form. It just adds a very simple header
before the binary data, as shows the listing below.

P5

1280 1024

255

<binary data ...>

On the first line, the format identification number is printed. There are six en-
coding options available ({BitMap, GrayMap, PixMap} x {ascii,binary}), P5 repre-
senting the binary GrayMap encoding. The second line states the image dimensions
and the third line states the colour space scale (0 being always black and the given
maximum value — here 255 — always white).

PGM format has advantage of an easy implementation and a fast export. On the other
hand, the output is too large (1,310,737 Bytes = 1.25 Megabytes including the header)
so only a limited number of frames can be stored in the file system. That would not be
a critical problem, as the individual frames are deleted after being converted to a video
file. Practical problem arises here though — a limited speed of writing to the MicroSD
card, where the file system is located, in conjunction with data buffering®. That causes
the frames being saved in ‘clusters’, i.e. few subsequent frames are captured and saved
correctly, then ueyerec operation is blocked until the file system is ready for new writes,
and the process is repeated. This is undesirable behaviour of course so another way
of data exporting had to be found.

Joint Photographic Experts Group (JPEG) format conversion seemed to be promis-
ing. It is an image format designed for realistic photographs, using a lossy compression
based on the discrete cosine transform (DCT). That allows to reduce image size signif-
icantly, depending on the quality setting and the image content (more at [43]). In case
of our video frames and 95% quality, each image takes approx. 150 kilobytes of space.

3Since the memory sectors in MicroSD medium can handle only a limited number of writes
(10k ~ 100k), the driver stores the data in memory buffer until full, then it starts writing them
to the medium, blocking the file write operations for some time.

47

5. Implementation

Being almost ten-times smaller, all frames of one record might fit in the file system
write buffer, effectively avoiding the problems with PGM export. Another problem
arises here, though. JPEG compression is a complex and computationally expensive
(i.e. slow) algorithm, so the maximum frame-rate is limited by this operation instead.
Standard libjpeg library is able to produce only about 1 frame per second on our plat-
form. An alternative library libjpeg-turbo was found, allowing to save from 5 to 6 frames
per second, without apparent regressions on output quality and size (comparisons with
libjpeg in [44]). That is sufficient for the floor camera, but not enough for frame-rate
requested from the door camera.

To sum it up, PGM export is fast as long as the output files fit in the file system
write buffer, but they do not fit there all. On the other hand, all frames encoded as
JPEG might fit in the buffer (after some size optimizations), but the export is too slow
by design.

A compromise solution was taken. Instead of writing the output files directly to
the SD card file system, the big enough write buffer was emulated by creating a ramdisk
in Linux file system. That is done by adding the following line to /etc/fstab (see
Appendix A):

tmpfs /mnt/tmp tmpfs defaults,size=90m O O

It specifies to create a disk of type tmpfs, i.e. a temporary file system stored
in a volatile memory (RAM) and mount it under /mnt/tmp. Its size is set to 90 MB,
which is enough for storing up-to 71 PGM image frames and yet leave enough free
RAM for the operating system and other running processes.

The default capture configuration — 3 seconds x 10 fps (door camera) + 60 seconds
x 1 fps — generates 90 frames of one record, which is still more then 71. The final step
of this workaround is to use both image formats — PGM for the door camera (short
records, high frame-rate) and JPEG for the floor camera (long records, low frame-rate).
Following this schema, one record with default configuration takes approximately 30 x
1.31+60 x 0.15 = 48.3 MB. The reserve space provides enough freedom for performing
future configuration changes.

ueyerec(D) ueyerec(F)

RAMDISK
appmgr(L) postprocessor
[[
data.txt floor.log
floor.avi
SDCARD

Figure 39. Illustration of flow of the recorded data.

48

5.2. Software

The output image files serve as input for the postprocessor, whose task is to convert
a sequence of images into a video file. It is the bash script video_encode tmp.sh
located in the /root/ directory (<DVD>/sdcard/rfs_overlay/root/, see Appendix A).
It is run by the appmgr” separately for each camera at the time when the camera stops
recording. The script basically runs ffmpeg tool, which does all the video encoding job
and produces an AVI file (door.avi or floor.avi for the door camera or floor camera
respectively) and a log file. appmgr’ creates file data.tzt, containing the date and
time of the record, scanned RFID code (or NONE if no code scanned), internal and
external temperature and ambient light (value from 0 to 4095, 0 being absolute dark,
4095 absolute light) — all the values received from appmgr™. The example content of
the data.txt file shows the following listing.

Date: Mon Apr 14 21:21:02 2014
RFID: 3774526282
Temperature intermnal: 22.75 °C
Temperature external: 0.75 °C
Ambient light: 4

All these five files (door.avi, door.log, floor.avi, floor.log, data.txt) are stored to the SD
card file system together in one directory named after a timestamp of the record-
ing start, e.g. 20140414 204103 767/ for April 14, 2014, 8:41 pm, which is placed
in /root/app/data/ directory (accessible as /data/ using FTP). The recorded data flow
is illustrated in Figure 39.

5.2.3. Usage

The last section of this chapter describes the application from the user’s point of view
and can be viewed as a simple user manual or guideline.

Application Data

This application is an autonomous system with no remote access control mechanisms.
The system starts automatically when a power supply is attached, and stops normally
only when the power supply is too low or detached. When the system boots, it loads
its configuration files and starts its automatic operation. It collects video and textual
data and stores them to a file system.

The data is accessible via the FTP service. Through FTP, the user has access only
to the public part of the file system where the data is stored. An example of the public
directory tree is listed in Figure 40.

The config/ directory contains application configuration files. These will be discussed
later.

The data/ directory contains video data recorded by the application — one directory
for each record. The directory is named by timestamp of the record, i.e. date and time
when it was captured. Each directory contains two video files with accompanying log
files and one text file with the environment state at the time of recording. For more
information about the files, see Section 5.2.2.

The log/ directory contains application log files from both MQX and Linux side
of the system. They are unimportant for the user but may contain valuable data
for troubleshooting in the case of application failures.

And finally the sensors/ directory contains a list of files — each created at a new
system startup — containing periodic sensors readout data. The symbolic format of their

49

5. Implementation

/

| config/
linux.cfg
log.cfg
mgx.cfg

| _data/

| 20140414_204103_767/
data.txt
door.avi
door.log
floor.avi
floor.log

| 20140414_212102_468/

L ...

. _log/

| sensors/
t20140414_141357.txt

Figure 40. Example of the public data directory tree.

lines is following: (d)(t) : (tonp) °C, (tinT) °C, {texT) °C, (1), (v) V, with the following
meaning of the symbols:

(d) Date of the readout.
(t) Time of the readout.

(tonp) On-board temperature (irrelevant for the user).

)
)
(t;n7) Temperature inside the nest-box.
)
)

(tgxT) Temperature outside the nest-box.

{) Ambient light outside the nest-box.
(v) Measured power source voltage (not very accurate).

An example data might look as listed below. The example presents records from five
following readouts, collected on April 15, 2014 after 8 pm. Since it is just about sunset,
it registers the fall of the exterior light and both interior and exterior temperatures.
Slight descent of the source power voltage is also noticeable (even though the absolute
value is inexact).

2014-04-15 20:03:00: 14.50 °C, 22.50 °C,
2014-04-15 20:03:30: 14.50 °C, 22.25 °C,
2014-04-15 20:04:00: 14.50 °C, 22.00 °C, .25 °C, 3442, 12.253
2014-04-15 20:04:30: 14.50 °C, 22.00 °C, .25 °C, 3409, 12.253
2014-04-15 20:05:00: 14.50 °C, 22.00 °C, 0.25 °C, 3433, 12.254 V

.50 °C, 3487, 12.256
.25 °C, 3463, 12.255

O O O O
S << <

When collecting the data, the user typically needs to download all content of data/
and sensors/ directories. The content of log/ directory should also be regularly checked
for system failures. If the system is in use for a higher number of cycles, the content
of all these directories should be regularly cleared to ensure enough free disk space for
further operation. When performing cleanup, it is important to preserve the original
directory tree, that is the four top-most directories, and the configuration files.

50

5.2. Software

Typical maintenance procedure might consist of the following steps:
Attach Ethernet cable;

Establish FTP connection;

Copy directories data/, log/ and sensors/;

Check if the downloaded data is complete;

Delete the content of directories data/, log/ and sensors/;
Abolish FTP connection;

Replace the battery;

Establish FTP connection;

Check the system is on (new file created in sensors/ directory);
Abolish FTP connection;

. Detach Ethernet cable.

© 0N WD

—_
— O

Application Configuration

The application is parametrized by two user configuration files — linuz.cfg and mqz.cfg
— stored in the /config/ directory (accessible using FTP). mqz.cfg configures the MQX
side of the application, i.e. the main application control, while linuz.cfg configures
the Linux side, which reduces only to the main cameras configuration settings. Both
files have different syntax and are described below.

The default content of the mqx.cfy file is as follows:
#lwcfg config file
sleep_enable=1
sleep_hour=7
sleep_minute=00
wakeup_hour=19
wakeup_minute=00
battery_low=12000

battery_verylow=11850
battery_critical=11750

The first line is a comment and can be ignored. Each of the remaining lines con-
tains one record of the form (key) = (value). User can modify the values according
to the description in Table 4. Please note that battery verylow and battery critical
should better be set to lower values as the battery voltage measurement does not per-
form accurately. Also note that halting the system is a controlled operation (with all
files being saved properly) while turning off the system is a hard system power down.

Key Allowed Description
Values
sleep__enable Oorl Use 1 to enable the power-saving SLEEP mode, when
the video recording is disabled. Use 0 to disable it.
sleep__hour 0 to 23 Hour and minute of the day when to switch to SLEEP
sleep_ minute 0 to 59 mode. sleep__enable must be 1 to take effect.
wakeup__hour 0 to 23 Hour and minute of the day when to switch to READY
wakeup__minute | 0 to 59 mode. sleep__enable must be 1 to take effect.
battery_ low 1 to 13000 | Battery voltage (in millivolts) when to warn about low volt-
age.
battery_verylow | 1 to 13000 | Battery voltage (in millivolts) when to halt the system.
battery_ critical | 1 to 13000 | Battery voltage (in millivolts) when to turn off the system.

Table 4. mgz.cfg configuration keys description.

ol

5. Implementation

The default content of the linuz.cfg file is as follows:

Door camera settings

dcam:
{
sensor gain <0,100> - increment to increase sensitivity
gain = 10;
camera exposure <0.5,50.0> ms - increment to increase lightness
exposure = 6.0;
number of frames per second <0.1,10.0> fps
framerate = 10.0;
video record duration <0.1,300.0> s
duration = 3.0;
I
Floor camera settings
fcam:
{
sensor gain <0,100> - increment to increase sensitivity
gain = 10;
camera exposure <0.5,50.0> ms - increment to increase lightness
exposure = 6.0;
number of frames per second <0.1,10.0> fps
framerate = 1.0;

video record duration <0.1,300.0> s

The sum of both durations must be smaller then 300 s!

duration = 60.0;
15

The file contains two groups — dcam for the door camera configuration, and fcam
for the floor camera configuration. Both groups contain the same configuration records
of the form (key) = (value); with each being commented (preceding line(s) begin-
ning with the # character). Please, note that it is preferable to increase gain rather
than ezxposure to accomplish brighter records, as the longer exposure time decreases
the maximum frame-rate. Remember that the sum of durations of both cameras has
to be smaller then 300, and that the temporary output buffer has a limited capacity
so the weighted sum of products of (framerate) x (duration) must not be too high
(see Section 5.2.2 for explanation and computation of maximum allowable values).

When the configuration is being changed, the system must be reset afterwards,
as‘the configuration files are read only during system startup (described in Section
5.2.2). It is also recommended to wait for five minutes before the system is reset so all
the changes are flushed from the file system buffer to the hardware medium.

System Configuration

Much more powerful configuration and administration options are available through
a direct access to the Linux operating system. That includes, for example, the date
and time configuration, network configuration or password changes, but also updates
of the application binaries and complete system control. All these possibilities are
available when accessing the system through ssh or telnet services, being logged in as
the root user. That should be done by experienced users only though! Standard use
of the system should not require that level of administration.

52

6. Experiments

When the system was finally successfully completed, multiple experiments were per-
formed to verify its proper functioning. This chapter describes those most important.

6.1. Indoor Testing

Two main experiments were performed indoor, validating the system is ready for au-
tonomous use outdoor.

6.1.1. Power Consumption

First, it was needed to check if the system is able to run autonomously for seven days
without the need to change the battery. Because the ornithologists wanted to use it
for their outdoor research in Spring 2014 breeding season, there was not enough time
to do a week-long test with the battery. For this reason it was decided to measure instan-
taneous power consumption by ammeter and compute theoretical length of the system
run without the need to replace the battery.

The system was powered from hard 12 V power source. It ran continuously from one
day afternoon to second day morning, so both SLEEP and READY modes were run
for long enough time. In the READY mode, the light barrier was disrupted multiple
times, so the RECORDING mode was tested, too. In all modes, several measure-
ments of instantaneous power consumption were noted. Their averaged values are
listed in the second column (Current), Table 5.

’ Mode \ Current \ Power \ Holding Time ‘
SLEEP 169 mA | 2.03 W | 14.77 days
READY 308 mA | 3.70 W | 8.11 days
RECORDING | 351 mA | 4.21 W | 7.12 days

Table 5. Averaged measurements of instantaneous system power consumptions.

From the knowledge of the power source voltage, the system power was computed
(I -U = (current) - 12), as listed in the third table column (Power). The theoretical
battery capacity is 12 V - 60 Ah = 720 Wh, from where the length of continuous run
in given mode was computed (Holding Time).

The table shows that the system should theoretically be able to run for seven days
even in the RECORDING mode. Here it is important to admit that accuracy of this
mode consumption measurements was not probably very good, as the flashing IR light-
ing causes short but high consumption peaks which are not possible to be measured by
a simple ammeter.

Anyway, taking into account the results of the SLEEP mode and READY mode
theoretical holding times, their combination (according to the default configuration)
gives about 11 days holding time. A few tens of minutes of the RECORDING mode
being active each night should not change the results too much. In any case, the reserve

93

6. Experiments

should be big enough to guarantee a week-long run of the system without damaging
the battery. More exact power consumption testing can hardly be performed without
undergoing the real 7-day test.

6.1.2. Prey Simulation

The second experiment was to simulate the bird fly-in with prey delivery and collect
recorded data as it was in real operation. Since the experiment was taken at daytime,
switch to the READY mode was enforced manually using the testing on-board buttons
(see Section 5.1.1). Instead of the prey, living hamster was used, being simply thrown
into the nest-box by hand. Please note this experiment did not cause the hamster any
harm.

When the hamster first disrupted the light barrier, door camera started recording
of 3 seconds long sequence with 10 fps frame-rate. The first frames captured the ham-
ster falling inside the nest-box, as shown in Figure 41. The remaining frames did not
carry any useful information. Immediately after the door recording stopped, the floor
camera started recording its 60 seconds long sequence with 1 fps frame-rate. The ham-
ster moving on the box ground was recorded, 3 subsequent frames are for illustration
depicted in Figure 42.

Content of accompanying data.tzt file is listed below:

Date: Mon Apr 7 13:24:26 2014
RFID: NONE

Temperature intermal: 19.50 °C
Temperature external: 18.75 °C
Ambient light: 1281

Complete data, including the sensor readouts and application logs can be found
on the accompanying DVD in the ezperiments/indoor/ directory (see Appendix A).
It shows that the application operated correctly and recorded all data as expected.

6.2. Outdoor Testing

Neither tens of hours of indoor testing undertaken, nor the indoor experiments described
in Section 6.1 can guarantee the full system functionality in the final application with
no supervision. Besides there was no time to do some longer supervised experiments
in the outdoor environment, as there was a pressure to already install the system
in the field. It was decided to skip further testing efforts for these reasons and undergo
‘baptism by fire’.

Since the system never ran for longer then 24 hours, the most probable risks of this
approach were:

e The system might crash after some time without recovering, hence loosing poten-

tially unrecorded data.

e The system might completely drain the battery, which might get damaged.

Obviously, the first point would come true for sure if the decision was to do more
supervised experiments, so the only main risk of the decision was potential battery
damage. The ornithologists valued their research more than one battery, so the de-
scribed decision was taken. It was decided to do first battery replacement after a 4-day
run only to at least eliminate the battery damage risk.

The system configuration was changed slightly. The floor camera was set to record
only 30 seconds long sequences but with 4 fps frame-rate. The rest of cameras config-

o4

6.2. Outdoor Testing

Figure 41. First 6 frames captured by the door camera in the prey simulation experiment.

95

6. Experiments

Figure 42. Three of frames captured by the floor camera in the prey simulation experiment.

uration was left unchanged. The wakeup time was changed to 8 pm and the battery
voltage thresholds were set to highly improbable values so the system does not turn off
due to the voltage checks (the low threshold was set to 12,000 mV, verylow to 11,000 mV
and critical to 10,000 mV).

The system was installed on Monday, April 14, 2014, in Ore mountains, Czech Re-
public (Figure 43). The ornithologists replaced a plain nest-box occupied by nesting
Tengmalm’s owls by this system, moving the nest including eggs to the new nest-box,
and tagged the parents by PIT tags. They powered on the system and left the place.
After 4 days, on Friday, April 18, 2014, they returned and collected the data following
the guideline from Section 5.2.3, without experiencing any problems. In the end, they
replaced the battery, and after evaluation that no serious problem occurred, they left
the place, leaving the system running for the new cycle.

Figure 43. Installation of the nest-box by ornithologists in the field. The box is covered by
additional plating. (Photos by the ornithologists.)

Collected data was provided by the ornithologists for detailed analysis, it can be found
on the DVD in the experiments/outdoor directory (see Appendix A). On the first sight
the system worked very well. According to the logs and number of files in the /sensors/

56

6.2. Outdoor Testing

directory, the system started three times. The first two starts happened in the morning
(9:51 and 10:04) of Monday 14th and the runs were very short, apparently being just
kinds of testing or configuration runs. The last time the system started at 14:13, and
it ran continuously until Friday 18th, 8:22, when the battery was detached.

During the four nights, 48 records were collected. Almost half of the records (22)
was captured during the first night because the female left and returned many times
— maybe the birds were nervous about the new nest-box, but it is not the deal of this
document to discuss the birds’ behaviour. There are from 6 to 11 records at the other
nights. Some of the records capture the female first leaving the nest, and then returning
back after few minutes. The remaining records capture prey delivery by the male and
its handover to the female.

Lets discuss deeply the Wednesday evening (April 16, 2014). The first record of that
night (20140416_212355_941) was captured at 21:23:55 when the female left the box.
Fly-out typically takes from 15 to 30 seconds, so there is only feather visible on the door
record (see the left picture in Figure 44). First half of the floor camera record contains
only feather, too, then the female leaves and empty nest is visible, containing 4 eggs
(right picture in Figure 44).

Figure 44. Record of the female leaving the nest-box. The left frame comes from the door
camera, the right frame from the floor camera. (Data by the ornithologists.)

In comparison with indoor testing, the records are pretty dark. It is caused first by
no ambient exterior light, and second by much darker scene (the real nest-box sides
are darker in comparison with the testing box, and the owl is also dark). That can be
easily fixed by incrementing cameras gain or exposure in the configuration files.

The files door.log and floor.log reveal records frame-rates. The door record was
recorded with 10 fps, as expected, while the floor record had lower frame-rate then
configured — only 2.57 fps instead of 4 fps. This is not caused by the speed of JPEG
export, but by simultaneous processing of the door record by ffmpeg and recording
of the floor record by wueyerec’. Since Linux is not a real-time operating system, it
is complicated to ensure the requested frame-rate. Even though it provides a priority
mechanism (which was used), the priorities are not absolute — processes with higher
priorities are just given more processor time then others, but the other processes also get

o7

6. Experiments

some, leading to the observed behaviour. It is not an ideal situation, but on the other
hand the problem is not critical, at least not for this application.

From the file data.tzt listed below we can see the internal temperature was 25.75 °C
(the sensor was placed amongst the eggs) while outside it was 0 °C and complete dark.
The RFID tag was scanned properly.

Date: Wed Apr 16 21:23:55 2014
RFID: 3774526282

Temperature internal: 25.75 °C
Temperature external: 0.00 °C
Ambient light: 3

The female returned 5 minutes later, at 21:28:40 (record 20140416 _212840_033).
The door camera recorded the female passing through the fly-in hole (Figure 45, left
image), while the floor camera recorded the owl landing on the box ground and sitting
on the eggs (Figure 45, right image).

Figure 45. Record of the female returning to the nest-box. The left frame comes from the door
camera, the right frame from the floor camera. (Data by the ornithologists.)

Frame-rate of the door record was 10 fps as expected. The floor record frame-rate
was 3.07 fps for the same reasons that were described above.

From the data.tzt file (below) we can see now both internal and external temper-
atures fell down. The internal temperature dropped by 6 degrees, while the external
temperature dropped just by 0.25 °C. First software bug is discovered here, as the tem-
perature is stored in an unsigned char variable, so 255.75 °C is printed instead of
-0.25 °C. To get the real temperature, user needs to subtract value 256. The bug is
easy to fix for the next real operation after the expected maintenance. The exterior
light also dropped from 3 to 2, but it has no real meaning as the sensor is already
under-exposed and these fluctuations are generally caused by noise. The same RFID
tag was scanned again.

o8

6.2. Outdoor Testing

Date: Wed Apr 16 21:28:40 2014
RFID: 3774526282
Temperature internal: 19.50 °C
Temperature external: 255.75 °C
Ambient light: 2

The following record 20140416 212919 941 comes the very next moment, at 21:29:19,
when the male brings a prey — a kind of rodent. The door camera recorded the male
transmitting the prey to the female (Figure 46, left image) while the floor camera cap-
tured the female placing the food on the ground (Figure 46, right image) and further
sitting on the eggs.

Figure 46. Record of the male bringing a prey. The left frame comes from the door camera,
the right frame from the floor camera. (Data by the ornithologists.)

In this case, frame-rates of both records were lower — 4.67 fps for the door camera
and 2.30 fps for the floor camera. The reason is that new recording started almost
immediately after the previous one was finished — but finished here means the moment
when the floor camera stopped recording, not when the frames post-processing was
complete. So the cause is the same as in previous cases where it influenced only the floor
camera. Again, it is not ideal situation, but better to have a record with lower frame-
rate then to miss it completely — it still provides all needed data.

The most important information from the data.tzt file (listed below) is the missing
RFID code. This is typical result of this part of the system — while the female is usually
scanned properly (as it always passes through the RFID antenna), the male usually
fails to be scanned (as it keeps its legs outside of the hole). This can be considered
the biggest issue found during the analysis. The RFID antenna probably needs to be
adjusted to improve the result.

Date: Wed Apr 16 21:29:19 2014
RFID: NONE

Temperature internal: 19.25 °C
Temperature external: 255.75 °C
Ambient light: 2

99

6. Experiments

Last thing to be evaluated is the power consumption. According to the source power
voltage measurements (recorded in the sensors/20140414_141357.txt file), the initial
voltage was about 12.75 Volts and the final voltage was only about 12.11 Volts. Similar
results were reported by the ornithologists. Even though both measurements are prob-
ably pretty inexact (the ornithologists used a very cheap voltmeter), the battery was
surely discharged more then expected, as according to the battery manual 12.1 V cor-
responds to only 25% remaining energy. On the other hand, the results are influenced
by several aspects:

e The measurements were not very precise,

e the battery might not had been fully charged at the beginning,

e the nights were very cold!, which decreases the battery performance.

To sum the results of the experiment, it verified the system to work correctly, au-
tonomously and reliably, providing high quality data useful for further research. Besides
few trivial issues (the negative temperature bug and low video brightness) and one issue
of low importance (lower frame-rate than requested), the RFID reader was found not
to perform reliably, and the overall power consumption was found to be perhaps higher
then expected, but that needs to be further tested. In any case, the overall results are
very positive.

!The lowest temperature measured by the exterior sensor was -4.75 °C.

60

7. Conclusion

This document described the development, implementation and testing of a new video
surveillance system embedded in a bird nest-box. Such a system was needed by or-
nithologists from the Czech University of Live Sciences Prague for research of breeding
and foraging strategy of Tengmalm’s owl.

The work involved development of both hardware and software equipment of the sys-
tem. It started by selection of appropriate platform and building blocks. The system
was built on the SQM4-VF6-W processor module with the new heterogeneous dual-core
microprocessor Freescale Vybrid VF6. The custom control board and several peripheral
boards were developed and manufactured by Elnico s.r.o., which also provided for free
the development tools and libraries and exhaustive support. Infra-red light sensitive
monochromatic HD cameras UI-1541LE by IDS Imaging Development System GmbH
were used for video capturing.

The system software was based on two operating systems — Linux OS® on the first
core and Freescale MQXTM RTOS on the second core. Development of the application
software involved design and implementation of a Linux video recording application
and a control interlink application, and an MQX application controlling the system
logic and peripherals.

The system has been already delivered to the ornithologists and tested in practice.
It showed to be fully functional, producing quality video records of observed owls
and multiple additional types of data. A few issues are yet to be tested and solved,
for example possibly higher power consumption than expected or unimplemented Wi-
Fi interface which would allow to download the data and control the system remotely
without owls disturbance.

61

Bibliography

1]

Markéta Zarybnicka. Ndvrh Standardniho projektu. Geografickd variabilita hnizdni
a potravni strategie syce rousného. Czech. Version Final. Registration number 14-
09797S. Apr. 2013.

Michigan Bluebird Society. Monitoring Nest Boxes. Michigan Bluebird Society.
URL: http://www.michiganbluebirds . org/monitoring- forms (visited on
04/02/2014).

Costas Grivas et al. “An audio—visual nest monitoring system for the study and
manipulation of siblicide in bearded vultures Gypaetus barbatus on the island of
Crete (Greece)”. English. In: Journal of Ethology 27.1 (2009), pp. 105-116. ISSN:
0289-0771. DOI: 10.1007/s10164-008-0091-2. URL: http://dx.doi.org/10.
1007/s10164-008-0091-2.

Diane Colombelli-Négrel and Sonia Kleindorfer. “Video nest monitoring reveals
male coloration-dependant nest predation and sex differences in prey size delivery
in a bird under high sexual selection”. English. In: Journal of Ornithology 151.2
(2010), pp. 507-512. 18SN: 0021-8375. DOI: 10.1007/s10336-009-0480-5. URL:
http://dx.doi.org/10.1007/s10336-009-0480-5.

V. Bezouska, P. Déd, and M. Drdédkova. “The automatics system for monitoring
of owls nesting”. In: ITCE 2005 Conference abstracts, CZU TF Praha (2005),
pp. 173-182.

Markéta Zarybnicka and Jifi Vojar. “Effect of male provisioning on the parental
behavior of female Boreal Owls Aegolius funereus”. English. In: Zoological Studies
52.1 (2013), pp. 1-8. DOI: 10.1186/1810-522X-52-36. URL: http://dx.doi.
org/10.1186/1810-522X-52-36.

Kotlin Senzory s.r.o. Kotlin Senzory s.r.o. KS96 IRV(. Czech. URL: http://wuw.
kotlin.cz/image . php?Akce=detail&id=521&url=cs/snimace/opticke/
vyhledavani-opticke&KeepThis=true&TB_iframe=true&height=600&width=
800 (visited on 04/03/2014).

Petr Kubiznak. Pocitacovy systém pro sledovdni hnizdéni sov. Zprdva k predmeétu
A4M33SVP. Czech. Ceské vysoké uceni technické v Praze, 2013.

Freescale Semiconductor. VF6zz: Vybrid family with ARM(R) Cortex(TM)-A5 +
Cortex-M4, 1.5MB SRAM, LCD, security, 2x Ethernet, L2 switch. URL: http:

//www . freescale . com/webapp/sps/site/prod_summary . jsp?code=VF6xx
(visited on 04/04/2014).

Elnico s.r.o. SQM4-VF6-W. URL: http://www.sqm4.com/sqm4-vEi6-vybrid-
module-wifi (visited on 04/04/2014).

IDS Imaging. Ul-1541LFE - uFEye LE - USB 2 cameras. URL: http://en.ids-
imaging . com/store/produkte/kameras/usb-2-0-kameras/ueye-le/ui-
15411e.html (visited on 07/04/2013).

63

http://www.michiganbluebirds.org/monitoring-forms
http://dx.doi.org/10.1007/s10164-008-0091-2
http://dx.doi.org/10.1007/s10164-008-0091-2
http://dx.doi.org/10.1007/s10164-008-0091-2
http://dx.doi.org/10.1007/s10336-009-0480-5
http://dx.doi.org/10.1007/s10336-009-0480-5
http://dx.doi.org/10.1186/1810-522X-52-36
http://dx.doi.org/10.1186/1810-522X-52-36
http://dx.doi.org/10.1186/1810-522X-52-36
http://www.kotlin.cz/image.php?Akce=detail&id=521&url=cs/snimace/opticke/vyhledavani-opticke&KeepThis=true&TB_iframe=true&height=600&width=800
http://www.kotlin.cz/image.php?Akce=detail&id=521&url=cs/snimace/opticke/vyhledavani-opticke&KeepThis=true&TB_iframe=true&height=600&width=800
http://www.kotlin.cz/image.php?Akce=detail&id=521&url=cs/snimace/opticke/vyhledavani-opticke&KeepThis=true&TB_iframe=true&height=600&width=800
http://www.kotlin.cz/image.php?Akce=detail&id=521&url=cs/snimace/opticke/vyhledavani-opticke&KeepThis=true&TB_iframe=true&height=600&width=800
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=VF6xx
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=VF6xx
http://www.sqm4.com/sqm4-vf6-vybrid-module-wifi
http://www.sqm4.com/sqm4-vf6-vybrid-module-wifi
http://en.ids-imaging.com/store/produkte/kameras/usb-2-0-kameras/ueye-le/ui-1541le.html
http://en.ids-imaging.com/store/produkte/kameras/usb-2-0-kameras/ueye-le/ui-1541le.html
http://en.ids-imaging.com/store/produkte/kameras/usb-2-0-kameras/ueye-le/ui-1541le.html

Bibliography

[12]

[13]

64

Vishay. TSHG5510. High Speed Infrared Emitting Diode, 830 nm, GaAlAs Double
Hetero. Version 1.2. Aug. 23, 2011. URL: http://www.vishay.com/docs/81887/
tshgb610.pdf.

HW Kitchen. FElectronic Brick — 125KHz RFID Card Reader. URL: http://www.
hwkitchen. com/products/electronic-brick-125khz-rfid-card-reader/
(visited on 07/08/2013).

Seeed Studio Works. 125K RFID READER. Version 1.01. Sept. 20, 2010. URL:
http://www.eio.com/admin/images/Downloads/125K%20RFID%20Reader’
20v0.9b.pdf (visited on 04/15/2014).

Vishay. TSSP58038. IR Receiver Module for Light Barrier Systems. Version 1.0.
Mar. 13, 2012. URL: http://www.vishay.com/docs/82479/tssp58038.pdf.

Vishay. TSAL5100. High Power Infrared Emitting Diode, 940 nm, GaAlAs/-
GaAs. Version 1.7. Aug. 24, 2011. URL: http://www.vishay.com/docs/81007/
tsalb5100.pdf.

Microchip. MCP9804. +0.25°C Typical Accuracy Digital Temperature Sensor.
Nov. 29, 2011. URL: http://wwl.microchip.com/downloads/en/DeviceDoc/
22203C. pd.

Qualcomm Atheros. AR4100 System in Package 802.11n — General Availability.
Data Sheet. Version 5.0 MKG-16487. Apr. 2012. URL: http://www.freescale.
com/files/wireless_comm/doc/data_sheet/AR4100_DataSheet.pdf.

Wikipedia. Real-time computing. Mar. 25, 2014. URL: http://en.wikipedia.
org/w/index.php?title=Real-time_computing&oldid=601138241 (visited on
04/09/2014).

Freescale Semiconductor, Inc. Freescale M QXTM Real-Time Operating System
(RTOS). URL: http://www . freescale . com/webapp/sps/site/overview.
jsp7nodeId=01521060795BB6 (visited on 04/10,/2014).

RTwiki. Real-Time Linux Wiki. URL: https://rt.wiki.kernel.org/index.
php/Main_Page (visited on 04/10/2014).

Timesys Corporation. Timesys LinuxLink Embedded Linuxr Build Systems. URL:
http ://www . timesys . com/ embedded - linux / build - systems (visited on
04/10/2014).

Wikipedia. TimeSys. July 23, 2013. URL: http://en.wikipedia.org/wiki/
TimeSys (visited on 04/10/2014).

Freescale Semiconductor, Inc. TWR-VF65GS10: Vybrid Controller Solutions Tower
System Module. URL: http://www.freescale.com/webapp/sps/site/prod_

summary . jsp?code=TWR-VF65GS10&parentCode=null&nodeId=0152106740B1ECOD68
(visited on 04/10/2014).

Timesys Corporation. Index of /buildsources/m/mcc-kmod. URL: http://repository.
timesys.com/buildsources/m/mcc-kmod/ (visited on 04/10/2014).

Wikipedia. BeagleBoard. Apr. 10, 2014. URL: http://en.wikipedia.org/wiki/
BeagleBoard (visited on 04/03/2014).

Wikipedia. ARM architecture. Apr. 10, 2014. URL: http://en.wikipedia.org/
wiki/ARM_architecture (visited on 04/10/2014).

http://www.vishay.com/docs/81887/tshg5510.pdf
http://www.vishay.com/docs/81887/tshg5510.pdf
http://www.hwkitchen.com/products/electronic-brick-125khz-rfid-card-reader/
http://www.hwkitchen.com/products/electronic-brick-125khz-rfid-card-reader/
http://www.eio.com/admin/images/Downloads/125K%20RFID%20Reader%20v0.9b.pdf
http://www.eio.com/admin/images/Downloads/125K%20RFID%20Reader%20v0.9b.pdf
http://www.vishay.com/docs/82479/tssp58038.pdf
http://www.vishay.com/docs/81007/tsal5100.pdf
http://www.vishay.com/docs/81007/tsal5100.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/22203C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/22203C.pdf
http://www.freescale.com/files/wireless_comm/doc/data_sheet/AR4100_DataSheet.pdf
http://www.freescale.com/files/wireless_comm/doc/data_sheet/AR4100_DataSheet.pdf
http://en.wikipedia.org/w/index.php?title=Real-time_computing&oldid=601138241
http://en.wikipedia.org/w/index.php?title=Real-time_computing&oldid=601138241
http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=01521060795BB6
http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=01521060795BB6
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
http://www.timesys.com/embedded-linux/build-systems
http://en.wikipedia.org/wiki/TimeSys
http://en.wikipedia.org/wiki/TimeSys
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=TWR-VF65GS10&parentCode=null&nodeId=0152106740B1EC0D68
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=TWR-VF65GS10&parentCode=null&nodeId=0152106740B1EC0D68
http://repository.timesys.com/buildsources/m/mcc-kmod/
http://repository.timesys.com/buildsources/m/mcc-kmod/
http://en.wikipedia.org/wiki/BeagleBoard
http://en.wikipedia.org/wiki/BeagleBoard
http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/ARM_architecture

[36]

[37]

[39]

40]
[41)
42]
43]

[44]

Bibliography

IDS Imaging Development System GmbH.
Index of /frontend/files/support/uFEye/LINUX. URL: http://www.ids-imaging.
de/frontend/files/support/uEye/LINUX/ (visited on 08/2013).

IDS Imaging Development System GmbH. Downloads. URL: http://en.ids-
imaging.com/downloads.html (visited on 04/10/2014).

Freescale Semiconductor, Inc. MultiCore Communication Library. User Guide.
Version 1.2. 2014. URL: http://cache . freescale.com/files/32bit/doc/
user_guide/MQX_MCC_User_Guide.pdf.

Elnico s.r.o. ESL (Elnico Support Library). URL: http://www.sqm4.com/esl-
elnico-support-library (visited on 04/11/2014).

IDS Imaging Development System GmbH. uFEye Camera Manual. Version 3.90.
2011. Chap. Camera basics -> Operating modes -> Trigger mode. URL: http:
//en.ids-imaging.com/downloads.html.

RTX A/S. RTX}100 Wi-Fi Module. Version 2.4. Nov. 21, 2013. URL: http://
www . rtx.dk/Files/Billeder/RTX _T/RTX411%20Documentation/RTX4100 _
Datasheet_DS1.pdf.

Enika.cz s.r.o. 61.2140002 ELBOX 171x121x55 transp. ** URL: http://www.

enika.cz/en/electromechanical-components/boxes-and-cases/installation-

boxes/ip-55-and-more.html?vyrobek=448%jazyk=en (visited on 04/17/2014).

IDS Imaging Development System GmbH. uFEye Camera Manual. Version 3.90.
2011. Chap. Specifications > Electrical specifications > USB uEye LE > USB
uEye LE pin assignment I/O connector. URL: http://en.ids-imaging.com/
downloads.html.

Enika.cz s.r.o. 61.2030002 ELBOX 115265240 transp. URL: http://www.enika.
cz/en/electromechanical - components/boxes-and-cases/installation-
boxes/ip-55-and-more.html?vyrobek=442&jazyk=en (visited on 04/17/2014).
Microchip. MCP3221. Low Power 12-Bit A/D Converter With I2C Interface.
Nov. 29, 2012. URL: http://wwl.microchip.com/downloads/en/DeviceDoc/
21732D. pdf.

PerkinElmer Optoelectronics. Photoconductive Cell. VIT800 Series. URL: http:
//www .gme . cz/img/cache/doc/520/059/vt83n2-datasheet-1.pdf (visited on
04/17/2014).

Libor Hofmann. HL | HF RFID Tags, UHF RFID Tags, RFID Antennas, UHF
label, UHF RFID antenna, Czech Republic. URL: http://rfidtag.cz/ (visited
on 04/17/2014).

Wikipedia. GNU toolchain. Mar. 18, 2014. URL: http://en.wikipedia.org/
wiki/GNU_toolchain (visited on 04/17/2014).

Elnico s.r.o. EasyBoard Development Kit. URL: http://www.sqmé.com/easyboard-
development-kit (visited on 04/18/2014).

Wikipedia. Netpbm format. Apr. 10, 2014. URL: http://en.wikipedia. org/
wiki/Portable_graymap (visited on 04/19/2014).

Wikipedia. JPEG. Apr. 10, 2014. URL: http://en.wikipedia.org/wiki/Jpeg
(visited on 04/19/2014).

libjpeg-turbo Project. libjpeg-turbo | About / Performance. Feb. 11, 2013. URL:
http://www.libjpeg-turbo.org/About/Performance (visited on 04/19/2014).

65

http://www.ids-imaging.de/frontend/files/support/uEye/LINUX/
http://www.ids-imaging.de/frontend/files/support/uEye/LINUX/
http://en.ids-imaging.com/downloads.html
http://en.ids-imaging.com/downloads.html
http://cache.freescale.com/files/32bit/doc/user_guide/MQX_MCC_User_Guide.pdf
http://cache.freescale.com/files/32bit/doc/user_guide/MQX_MCC_User_Guide.pdf
http://www.sqm4.com/esl-elnico-support-library
http://www.sqm4.com/esl-elnico-support-library
http://en.ids-imaging.com/downloads.html
http://en.ids-imaging.com/downloads.html
http://www.rtx.dk/Files/Billeder/RTX_T/RTX411%20Documentation/RTX4100_Datasheet_DS1.pdf
http://www.rtx.dk/Files/Billeder/RTX_T/RTX411%20Documentation/RTX4100_Datasheet_DS1.pdf
http://www.rtx.dk/Files/Billeder/RTX_T/RTX411%20Documentation/RTX4100_Datasheet_DS1.pdf
http://www.enika.cz/en/electromechanical-components/boxes-and-cases/installation-boxes/ip-55-and-more.html?vyrobek=448&jazyk=en
http://www.enika.cz/en/electromechanical-components/boxes-and-cases/installation-boxes/ip-55-and-more.html?vyrobek=448&jazyk=en
http://www.enika.cz/en/electromechanical-components/boxes-and-cases/installation-boxes/ip-55-and-more.html?vyrobek=448&jazyk=en
http://en.ids-imaging.com/downloads.html
http://en.ids-imaging.com/downloads.html
http://www.enika.cz/en/electromechanical-components/boxes-and-cases/installation-boxes/ip-55-and-more.html?vyrobek=442&jazyk=en
http://www.enika.cz/en/electromechanical-components/boxes-and-cases/installation-boxes/ip-55-and-more.html?vyrobek=442&jazyk=en
http://www.enika.cz/en/electromechanical-components/boxes-and-cases/installation-boxes/ip-55-and-more.html?vyrobek=442&jazyk=en
http://ww1.microchip.com/downloads/en/DeviceDoc/21732D.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21732D.pdf
http://www.gme.cz/img/cache/doc/520/059/vt83n2-datasheet-1.pdf
http://www.gme.cz/img/cache/doc/520/059/vt83n2-datasheet-1.pdf
http://rfidtag.cz/
http://en.wikipedia.org/wiki/GNU_toolchain
http://en.wikipedia.org/wiki/GNU_toolchain
http://www.sqm4.com/easyboard-development-kit
http://www.sqm4.com/easyboard-development-kit
http://en.wikipedia.org/wiki/Portable_graymap
http://en.wikipedia.org/wiki/Portable_graymap
http://en.wikipedia.org/wiki/Jpeg
http://www.libjpeg-turbo.org/About/Performance

Appendix A.
DVD Content

This thesis is accompanied by a data DVD containing the software resources used and
developed in terms of this work. Its structure is listed here.

67

Appendix A. DVD Content

DVD/

| appendices/
PCDS/ i e PCBs from appendix C
...
PhHOtOS/ oottt e photos from appendix D
schematics/oiiiiiiiiiiiiii schematics from appendix B

L ...

| _experiments/

| _...(see the next page)

68

INdOOT/ .t e prey simulation output
OUEAOOT/ ot ittt e e e e e real output
| config/
1inux.Cfg tiiiii e linux-side configuration
log.cfg wovvviiiiiiiii log-counter internal configuration
1110 bGP ol o - mgx-side configuration
| _data/
| 20140414_204103_767T/ vverrieeeinannnnn. first record directory
data.tXb .o record summary
o o Yo - e fly-in camera record
door.1og ...t fly-in camera log
floor.avi ...everniiiiiii i ground camera record
£100T.108 vttt ground camera log
| 2L014O4 14 212102_468/ ..ovvriiiiiiiiian second record directory
I oY - application logs
| SENSOTS/ v e lists of sensors readouts
20140414_095131.txt
20140414_100441.txt
20140414 _141357 .txt
L 1linux_sdR/ o e SDK generated by Factory
| _bootloader/
hu—boot CAMX U-Boot binary
| kernel-source/iiiiiiiiiiiii i complete kernel source files
| linux-3.0/
cconfig ..o kernel configuration file
| rfs/
| rootfs.tar. BZ e device filesystem image
| toolchain/ ...eeuiniiii e build tools, libraries, etc.
L L CONTAg i workorder configuration file
| ulmage-3.0-ts-armv7lciiiiiiiiiinninn. Linux kernel binary

DVD/

| ...(continued from the previous page)
| sdcard/
| rfs_overlay/ ... additional RFS data
| _etc/
L dnit.d/ system init scripts
S60-ftpd
S60-vsftpd
S92-usb
S94-ueyerec
S99-birdhouse
| fstab
| _root/
=Y o o Y application data directory
config/
linux.cfg
mgx.cfg
data/
log/
sensors/
EECN o o) = ol PP appmgr” binary
| _birdhouse_sqm4vf6_eb_m4.bin MQX application binary
L omcEfsd . e MCFS daemon binary
L UBYETEC ottt tttttttttiii e ueyerec binary
| video_encode_tmp.shol postprocessor script
| README.tXt .vviiiiiiiee i iiiaennn SD card preparation comments
| _install.shciiiiiiiiiii i SD card installation script
| _src/
EIE-N o3 o11Y- 5 o appmgr’ source files
| birdhouse/iiiiiiii e MQX application source files
L AAT e TAR project files
F]ibesl/ ESL library distribution
I o3 e PP MQX library distribution
| UEYETEC/ ittt e ueyerec source files
| _thesis.pdf ...l electronic version of this document

69

Appendix B.
Schematics

Schematics of all custom boards, developed by Elnico s.r.o.

71

Appendix B. Schematics

B.1. BudkaControl

Schematics of the control board named BudkaControl. WIFI MODEM - MODULE
and ezternal RTC are not placed.

72

.1. BudkaControl

TOYLNOD WHANg vINOS

paloiy

OJINT3 €702'8

ot aug

0'TIA

o200 0is10

1026 posuma &

WYYOVIa M08

12000 no¥a)
nazey Jossn

“punoig enbla

*aND Woly pasal|l4 ‘sunaid Bojeue pue NN 104 Jamod YSSA
YSSA Wouy paialfid "NON 8Y1 Uo DAY oy aBe1joA aousiaal 1omoT
“YAAA woly paialfi4 "NOIN 8yl uo DAy Joy abeljon souaissal Jaddn
"NON~EAE WOl paidi4 "sundiio Bojeue pue NOW 104 Jamod vYAAA

*AE €+ woly pasal|i4 “Jamod eubip NoW
(G OuL Al kL o RS s o ino
wouy reubis NI 9OYLA Y1 Aq pajjosauod ysums 1amod gsn Jo Indino

'SUNDID uole[sues) a6e1on WAgSO Aq pasn "NOW 09NC
ay) wouy reubis NI~AS ay3 Agq pajjoauod youms Jamod gsn o indino
‘yoyums Jamod gsn 01 Indu| “10398UU0I GSN WOl pald|i4 “Jamod Indul Arepuosas
‘youms Jemod gsn 01 induj “1amod Induir Arewnid

NOILdI40s3a

SISN PUNOIY 7 I9MOd

9Ng3d z€zsy Q3AY3S3Y LdvN L3NY3HL3
€ 193us £ 198US ¢ 100US
Z ANV T V¥3NVO LSOH asn H3av3Y aI4y LEvn SHYOSNIS FANLYHIdNTL
€ 199ys [EBEETS € 199Us
OL¥ ANV d43AT0H AY3LLYE SITOH LN
€ 198us Z 199US
103130 ¥3dAVL TOYLNOD ANV ONILS3L
1M0 WNAINY
€ 193Us XL 1HvN [AREEDS
X 1HvN
QyvO OYDIN as EAed ASd
JOLO3INNOD NOISNVdX3
€ 19aus € 199Us IINAOWN W3IAOW 14-IM Z 199Us
YOSNIS ¥IRRIVE LHOIT LIVEA ‘€ELMOA N BRIA
€ 198us 1911 1) THRIN HERIA
431 | 14 VAAA NSSA
WIX ZHM 89L ‘T€
VS E/AS/AZT A1ddNS ¥IMOd ONIHOLIMS WIX ZHAPZ OO ZHA 05
¢ 199U 2z 198us JINAOW 94N ¥INDS

AO
A0
AO
NEE
AE'E
AE'E
AE'E
NS

NS
NS
NS

JOVLION

ano
VSSA
434N
HA3dA
vaan

NOW ™ €AEd

AEE+

SN OYL AGd

MSAGd
asn AG+
NS+

13N

s|eubis pal019aA - sejouaq [] 10 <>
reubis mo1-aA1ldY - sajouaq g

:ofesn jeub
“Jaumoeynuew ay1 Yl

SolLer

Jaquinu 8y "Ajuo aduaiayal 1o} i 1aquinu adA1 991AaQ

*Ppa193UL0d A]|o11393]2 I8 SUOIBUIGUIOD

181318] 10 19118] BWES 8Y} YHM pPapoa saul| pardnusiul

9114]0393]8 wnuiwnfe ase sioyoeded pazuejod ||y
0Q are sabeyjon ||y

4n ur are sjoyeded |y

Swyo ul are sIoIsisal ||y

|erads -

ads asImIaylO ssajun -

[

o

e

3 °c | €1 by o asea [ad 010.4d

pano iddy amg uo 11d 119530

SUO TS TASY

SerRyduad

1HIM+ 95AVINOS

weiberq 5poig

~ N | 1y O

SIUSII0] JO S[EL

Appendix B. Schematics

TOYLNOD WXANg-vINOS OJINT3 €102°8 -
ooloid sany aug -
ot-oec
0 TA €102°6
azion ojsio posaeid €/ - aoay O——svose
ue ajnpow - =
(ANVdX3 pue sInpow 93A-yINOS 2a00d Aroxg - I JuBWaoe|d BARUIRNY v 2umn O——oreoe
s JoseiEn .
aano oms 0a0/0 tanovzaal o O Aootpuo0T o eroee
Lllsans 0IaMS_98G/TLN0_ONITVTd 2 n O owx oovva
van TOMS 980/0LN0™OWI131/03d [-2- +
o it o S e e aonn B e S—C
- - XTONIVSHO 000V/SAd (57~ 157 TLavn X TN3T98Q/S10 TLEvN 6x ~
- = 6T 0ldD 108
- - 1087002 TNIVZHO 0dNDV/LO4 ZIOHIN
= VS 032IXL TNIVSHD 0JNDV/94 - or-oe
~ " . oo O——
O N ST 0107 OOILIY/SIZSIVNITS TNOA/TTS/SOd g~ S1a T1avn XL"TN3T080/S18 LMV ~ eone
o Jems - - - soqziss [O———<
- - Z30HIN OIA XLONIVHD ZSNNIOS “TINOA/¥Qd/vd [
— — 15 3AOW3Y QuvO as XY_2SN/EHO_0dOv/Ed [.
" O iran o Chans A omra s aigs EO—— o
Za10HIN — ams T7ATddNS S90S/ ONTYN_TL) - 1nos _HV|A 08¢
Aoot/uo0r P, zs 1531 vaanvo 107 081/XL 0NV v L el
i) STAODINA 1IN0 00ALZVTLNG 00va/2Tad |2 e ot
Zz0HIN o ms e sos zies [O——
ZISTIOENZ 43534 XY 0SN/SO_TSN/N_VIXA1/88d [1N0S™0IdS
o I s 1531 3dIAIA XL 08N/ TS/ W84 [F rishes mu|A s-oec
STHODINIG - ~ s+
2Z310HLN e XLTSO/NIOS - < xsorwn G010 _HV|A v-oec
- - - I roumn
1 e
zane o,
W DO RO/ D2IIo0 NI TYG [B g
Tane a5 D21/033 0N L/0ve [E— 570149
A - o J0MINOY 1353
03ME0d WS o8t

94N09T PNOS

09T] <WM3/vaS TOZ1/82007/.8 0N0Q/LTNODY/BZ3Ld 108 X ZIVS/200S IVS3/00X TIIN/ETOL 75
96r] 195 1021/2200/98 0N2Q/OTNODM/2231d 108 X1 ZIVS/T0S IVSH/TaX_TINU/ZTOLS [5)
$6T] 92091/58_0NDQ/STNOO/9Z31d Y 000S 1¥S3/AG SO TINN/TTOL [,
Jet] s2a21v80noa/vINON/SZ3Ld 153 IVS3/0ION TIINS/0TOLS [7
‘6eT] P2A01/E8_0NDA/ETNOOY/PE3Ld | £
26H] eeadves ondareTnodu/EeaLd
$er] zeadvTe ondarezaL |
Fer| Teadvos onareals
Sar] <wmanvas 0321/0209v29”0n0a/TINGOM0Z3Ld |
fer] 105 00z1/6131/99 0nda/0TNOOM/ETALA
G4T] B1A91/59_0NO0/GNODM/BT31d
T Vo onQ/aNoow S Ta1d |
SVE] 91G21/E9-0NOQ/INODH/ST3Ld L
T¥E] s1a21/29 0now/eNoOw/STaLd | B
$7E] radTs onoarvtaL E
2 eravvos onoarera | E
97| <Ad1/ZTAIVESA TIdS/LY ONIG/SNODH/ZTALd Fr—Onas
P THGo1/90-0noa/moow/T AL | m_ adTesn
$7] oradvsy onoa/enoou/oTaLd olo NaTasn
T¥T] 600/vH_0NOQ/ZNOOH/63Ld c < —O.
S B00V/ER 0NOA/TNODH/E3Ld S|y 4ao8sn
2] Ladvzonoa/oNodw3Ld =3 | = X
H oaova-onoareata
5F] saovou onaa/saa g8
56T YOOVENODL_0N30/20"0n0a/v3Ld el
26T £001ONOQL 0N20/9V1 0N0/EILd o' w
Y] 202154104 0N00/z3Ld |
5T Ta0VZNODL_ONOG/INASA-0NIQ/OAONLO0/T3Ld
oT] 000VTNOL ONOG/INASH 0NDG/TAONLO08/03Ld |
16| ¥ AND - -~ -
MSTHaS SEE] G TOHAS/SHO ENLY/0TON 3N/920Y 83/9201d
£a-oHas 43 |
zaonas
TaoHas T |
00-9Has
aNIDHaS 7T |
100 OHaS W
£T] |
k2 K
$oH] <1no0nar E198p08 Xl Ivs/sa30veL/TEvLd
41| <Y1YQ NIADION OIGNY LXA/TSId OldS/BTaLd -
O] SR s co-tnL o oogvEgm e |
T <6a01/VHd QO_THL v /8114
] <SN/0802Y/T35 TO0V/20 08S/T30VEL T _ _ ~ ~
$7T] <00V/03S TOOV/N3 SNEA 08SM/00IOVAL/STYLd | TSOd"Z1dS/0HO_ERLY/STOI N/TEQY E4/TEqLd 207Tasn
2] 10 aadwv oMM DX/Eu3aNYL X3 0504 21dS/THO_EWLY/¥TOI N/0EQY83/0501
STE| NI U3 ONM LX/2HEdNVL LG NIS 21dS/2HO_ENLI/ETOI N/62Qv_8d/6201d
T Nl b | <OH GNL 108200 O N/ GeQV a5t
SrH] ouadnv. G <PHO ENLY/VOS 2021/ TIOI N/LZV_84/2201d
SIT1 20 Ba735 £145/500 6 01dSO/ETAL | 9HO_EN19/60I IN/SCQY /52 LA
o 145/0¥10 8 014SO/ZT0Ld LHO ENL/BOI 3N/vZQy 83/v2ald
50T YOV S4/NIS E1dS/TYLVA 8 01dSO/TTAL | <TNDQ/S3S TOQW/ONAS XL T
S0T] <00/5QV /0504 £145/2¥Av0 8 01dSO/01ALd <8/250d SR
70T <I¥S/90Y_84/TS0d E14S/EVLYA 8 01dS0/60Ld | _<aizsad c_nm\sqn‘éu
JOT] < 837405 TIdS/LNON1D_83/050_ 8 01dsO/8aLd <7TNQ/T MY BI/ONAS XL
20T BQV_E/100S TIdS/405 @ 01ds0/2aLd | <3 84/519 TIOSNIVG XL 2
07| 60Y E/NIS T14S/500 Y 01dS0/901d <SL G43W BA/XL_TIOS/108 X1_OIVS/Eceld
E0T|O10Y sdosod Tiaioviva ¥ oistisoud | QU NIVAITNOS 0IdS/2281d
SOT] <eS/TTQY BTS04 TIdS/IVLVA Y 0ldSO/baLd
ZRa0 PTG
o Q10 TSRO WOD/0TYIV NINOSOd OIdS/6TELS P
H <" B/ v S.5 </ONASH_TNOG/XL S10S/EEQTVO3OVAL/OEVLd [
XL ziavn < 310dS/STAY B4/XL ZIDS/HOS ¥ 01¢SO/001d ala vas 1021
] <ninvieaovoNLXE/ESS Toav/EHO ONLY/ERLS S5 105121
2] <IVS/98001/235_T90/ZHO_ONLA/TENODM/ZALd g8 Va5 0021
. ivS/eBa1/e3s 000w/ H ONL/DENOSMFaLd ERE-1 Y
29v110M = <s/vEad 35 000V/OH ONL3/08Ld S1s No-HOSN3S
2] sastoav =
5| 83sToav X oravn
= ezsooav | <N3/TOMO/30" NIA/PNODL ONDA/KL 0I0S/0TELd (¥ XLowvn
2] e3sooav 14 TN0Q/BHd_00_ T W15 31
H 100va | 947 1N00/30 NINYH 0D 5 OFadaT
ooova > 00va <ATYQD1/_8 01dSO/SLO_TIOS/LHD ONLI/L81d Sio TN
e = | <POOV/ISO Y 0IdSO/SLE TIOS/OHD ONLY/98L Sl Tiavn
38 [3 SINBEQOYYES_ToQwC TIdS/SHD ONLI/58L ST
v - _ | <IVBEQD1/Y3S 00QV/XL TIOS/PHD ONLI/vaL XAtiavn
] <eivs/siosios/zas Toavmaxy T ToL <B9ST_TINI/ONAS XL EIVS/STOIOVAL/TEVAA [
H <IVS/SLY S10S/TI0S_IVS3/00X._TIN4/STILd (] < BBST TLINF/ONAS X 1030w M NI TESn
| <2IVS/X5195/0105 1¥S3/TAXL T m_0 _ 0 Xd NIA/LYLG 15315081
S/E0QS™ IVS3U3X [] <TINODL™TNOG/NIIS 1AM/ LNONTD 1INE/9YLd (1
™

3INPON 94A-¥INDS

74

B.1. BudkaControl

75

TOYINOD WMANg-vWdS | OJINT3 €T02°8
OTA ponoss | ETOCE i oumg /e T T D =
. . 4not 00T _}100T. ugoT. ny
STIVHIHAIY3d - o s T o0 == = =, snﬁ = 108
a3T 2 ©
- ; e S sl (Joel o
= |3
« :
% S 1nozu au/s19T L8V = yau PV
L] nom fr—— > w cakkd =
sTEzEzsE—] LnoeL NIZL 5E XLTTNI1980/S1H TLHVN o
e Y D e advd OHOIN as
ol < 13INY3H13
5 or
650] [850 = 5 zin 957] 2o
9Ng3a zezsy 5w s B o5 B g B B B Y oS or o oEom g b O e s
H HH ~ gag.ﬁ_as%
Iﬁ YOS Jamod gsn —
Joooelow sl e
Tovo Jzeo mﬂl ﬂnu
Y 520
o
i
09THOS00000522809TH05000005228 2 ANV T YH43NVD 1SOH g9sn > oo7ossn
= {> oo t8sn
SAT0H PVINNW
o] XX
<Ox O €2y o e
Yy v T Oxszisvn = 09TH0S000008228
oL e P < xaziwn seetea |o oL
2t d3u03WI
e e 022095184 —dava | T ‘ mm ey
e | ol
o T zH T v - . zuz el e
nor oy T s % 2 (Y sessn §
33 - U_J P e e Tz o — < 1o3130u1
43aavad didy 1dvn » S iA w To
us
. 0221 W0 (MCILU
ayvodNoO TYNY3LX3 TYNY3ILNI
014 ANV ¥3d10H AY3llvd HOSNIS ¥3I14¥dve LHOIT
& 2 5 B & 2 8 8 oorHosooaoosea
25 2 8 28 © cemosooaooszis
= " L % =
T b 4
V060N [, = 3ov110M S T
2 = = o] Lew 2 o | 4
PR Bl n o oowan | ° 30v1100
£ 1 Ad3Live ot Zu3dNvL 2 = =
, .
Lasi— S vas oo T
w [oot Lo _ o o
Ty _— AzZ095 18
k o T . - g
5 U‘Jﬁ ¥3N00 Y o s VS T/AZT
SHOSN3S FdNLVH3IdNTL 103130 ¥3dnvl VS €/AS/NZT A1ddNS 3IMOd ONIHOLIMS

Schematics of the camera infrared lighting board named BudkaLighting.

B.2. Budkalighting

Appendix B. Schematics

ONILHOIT vYyaNng OJINT3 v10c/v
BEEI N san 8ua
T H> 9z19A 0[SID v1oe/y : po Isoureld T/T — e
109Uu0) pue 31 1530d Knoien MIZ/U00T MAZ/U00T
: nazeN / 0Is1 1811 o == =

X <O— O wx

ZIIOHLN ZIT0HLN
2 O—— <O ex

ZIIOHLN ZIT0HLN
X O— E—

ZIIOHLN ZITOHLN
X O—— ——CO

ZIIOHLN ZI0HLN

ON — v

V43INvO 3SvD Ol 90d

m.m_.Y|* z-8r
w.mnT
w.:Y|* T80 2-50

% lotsmgsi|orssosy|orssmos.|orssmosLoTssHosL
- o RE R IR
HSvH 1a Ta 60 9a €a
z-9r
£ :Y|* 90 % _lotsemysi|orssosL|orssmos.|orssRos.|oTssHosL
- 0TNAg 8YTYNT N x x AN ® T-9r
— ez
—_— 1a Ta 8a Sa za
T ¢ y =™y
.10 91a
w_lotsemosi]orssmost |otsamosL|oTssmost [otsamosL| wam
A e % % A A AN AN
1a 1a pAe] va Ta Ta
mm: T-50 V NS+ A -2 H6Y 461 61 H6Y Héy 0Ly
4 vy ey 2y i 8y
H.:Y|* T2 z1e ﬁ
NS+

dAV1O

76

B.3. BudkalRBar

B.3. BudkalRBar

Schematics of the infrared light barrier board named BudkalRBar.

Tegyl wyang OJINT3

:308foid isaly

€102/TT

:aug

TIA €10¢/11

: 9zI8A OSID : po 1soure|d T/T

198UU0) pue a37

1890d An0X[8D

: nazeN /0Is19 1817

O ex
ZITOHLN
O wx

ZINOHLN

g0d Ol 3719v0

Mig/uoot

20

(24
Z3NOHLN
124

Z31OHLN

3SVvJ Ol 90d

anNo

10313ayl

(OEEl¢ERIE]

NG+

-1C

€-1r

Iy

OTWASG

L1a

[\[44

uootT

€0

8E08SdSSL
1a

% |ootsvsL
N

= £e6243y
LNOA [~ .a
SSA ¥ozZ
uooT
= NIAT
&) Zn €
NG+

7

S17 wMang

:309foid

OQINT3

Hisany

€T0¢/0T

0'TA €T0¢/0T

* 9Z19A 0|SID

: po Isoure|d

108UU0) pue a37

: nazeN

/T

1900d An0¥|9D
/ 0Is1 381

Schematics of the temperature and light sensors board named BudkaLTS5.

Appendix B. Schematics
B.4. BudkalTS

1]

91

gl

Sl

g0d Ol 379v0

00T

‘SdYON
T

0T

70

Wot

€2

T2zedOW

a

€

T

08640

109]9S SSaIPPY x

x 0 40
o Y

|®m

L

o

¥ 7o

d0 _ — wo LU00T

0

anNo

vas ozl
105 0zl

NS+

78

Appendix C.
Printed Circuit Boards

Board routings and silkscreens of the printed circuit boards, assembled by Elnico s.r.o.

79

...............

Appendix C. Printed Circuit Boards

C.2. Budkalighting

Routings and silkscreens of the camera infrared lighting board named BudkaLighting.

BudkaLighting

Figure 50. Board routing layer top.

Figure 51. Board routing layer bottom.

82

C.2. BudkaLighting

AN
TOP
BudkaLighting
Figure 52. Silkscreen layer top.
C]
L] L]
[
C]
C]
C]
C]
r
A
T04

Figure 53. Silkscreen layer bottom.

83

Appendix C. Printed Circuit Boards

C.3. BudkalRBar

Routings and silkscreens of the infrared light barrier board named BudkalIRBar.

TOP BudkalRBar V1.1

Figure 54. Board routing layer top.

84

C.3. BudkalRBar

Figure 55. Board routing layer bottom.

Xt X3 D17 iy TOP BudkalRBar V1.1 2
L
nr M
I I |
‘4 T C1 C4 U2
.
"'R3 .
(T
(@) =
D7 L

Figure 56. Silkscreen layer top.

85

Appendix C. Printed Circuit Boards

C.4. BudkalT$S

Routings and silkscreens of the temperature and light sensors board named BudkaLTS5.

Figure 58. Board routing layer bottom.

TOP
LTS

Figure 59. Silkscreen layer top.

86

Appendix D.

Photographs

Photographs of the nest-box and its components.

has

1) - - -~ -

“& 4% Ev @V 4y v an o

e i
¢y as

|
|

-

-

Figure 60. BudkaLighting board with attached camera.

Figure 61. BudkalRBar board installed in the nest-box.

Figure 62. BudkaLTS board (variant with the light sensor).

Figure 63. BudkaLTS board closed in a cover.

Figure 64. RFID antenna and the PIT chip.

Figure 65. Installed fly-in camera, light barrier and RFID antenna.

281218

Figure 66. BudkaControl board covered in the covering box.

Figure 67. BudkaControl board installed in the nest-box.

Figure 68. Complete view on the intelligent bird nest-box.

	Motivation
	Task Formulation
	State of the Art
	Direct Observation
	Continuous Recording
	Event-based Recording

	Design
	Hardware
	Control Board
	Cameras
	Infrared Lighting
	RFID Reader
	Light Barrier
	Temperature and Light Sensors
	User Interface

	Software
	Operating Systems
	MQX RTOS
	Timesys Linux OS

	Libraries
	uEye Library
	MCC Library
	ESL Library

	Processes and Tasks
	appmgr
	ueyerec
	ueyeusbd
	mcfsd
	eslAppCtrl
	appctrl
	irBarrier
	elb149c5m
	adc
	sensors
	hmi
	wifi, httpd, ftpd
	eslLog

	Implementation
	Hardware
	Control Board
	Camera and Lighting
	Light Barrier
	Temperature and Light Sensors
	RFID Reader
	Cover Tamper Button

	Software
	Toolchain
	Linux
	MQX

	Application
	Startup
	Recording

	Usage
	Application Data
	Application Configuration
	System Configuration

	Experiments
	Indoor Testing
	Power Consumption
	Prey Simulation

	Outdoor Testing

	Conclusion
	Bibliography
	DVD Content
	Schematics
	BudkaControl
	BudkaLighting
	BudkaIRBar
	BudkaLTS

	Printed Circuit Boards
	BudkaControl
	BudkaLighting
	BudkaIRBar
	BudkaLTS

	Photographs

