@ FANUC

GE Fanuc Automation

CIMPLICITY® Monitoring and Control Products

CIMPLICITY HMI

Basic Control Engine

Language Reference Manual

GFK-1283G July 2001



GFL-005
Following is a list of documentation icons:

rd
—-/
wA Warning notices are used in this publication to emphasize that hazardous voltages,

currents, temperatures, or other conditions that could cause personal injury exist in
the equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to
equipment, a Warning notice is used.

b
b 2 _ | _
® Caution provides information when careful attention must be taken in order to avoid
damaging results.

Important flags important information.

44/ To do calls attention to a procedure.

Note calls attention to information that is especially significant to understanding and
operating the equipment.

Tip provides a suggestion.

:-E Guide provides additional directions for selected topics.

This document is based on information available at the time of publication. While efforts have been made to be accurate,
the information contained herein does not purport to cover all details or variations in hardware or software, not to provide
for every possible contingency in connection with installation, operation, or maintenance. Features may be described
herein which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of
notice to holders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation of warranty, expressed, implied, or statutory with respect to, and assumes
no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No
warranties of merchantability or fitness for purpose shall apply.

CIMPLICITY is a registered trademark of GE Fanuc Automation North America, Inc.
Windows, Windows NT, Windows 98 and Windows 2001 are registered trademarks of Microsoft Corporation

This manual was produced using Doc-To—HeIp®, by WexTech Systems, Inc.

Copyright 1995-2001 GE Fanuc Automation North America, Inc.
All rights reserved



Preface

Contents of this Manual

GFK-1283G

Chapter 1. Introduction: Gives a brief description of the Basic Control Engine
language syntax, and lists the language elements by category.

Chapter 2. Symbols: Defines the symbols used by the Basic Control Engine
language.

Chapter 3
Chapter 4
Chapter 5

Discusses language elements - Abs through Atn.
Discusses language elements - Basic.Capability through ByVal.

Discusses language elements - Call through CVErr.

Chapter 7
Chapter 8
Chapter 9

A

. B:

.C:
Chapter 6. D: Discusses language elements - Date through DropListBox.

. E: Discusses language elements - ebAbort through Expression.

. F: Discusses language elements - False through Fv.

. G: Discusses language elements - Get through GroupBox.
Chapter 10. H: Discusses language elements - Hex through Hour.
Chapter 11. I: Discusses language elements - If..Then...Else through ItemCount.
Chapter 12. K: Discusses language elements- Keywords through Kill.
Chapter 13. L: Discusses language elements - LBound through LTrim$.
Chapter 14. M: Discusses language elements - Main through MsgBox.
Chapter 15. N: Discusses language elements - Name through Null.
Chapter 16. O: Discusses language elements - Object through Or.
Chapter 17. P: Discusses language elements - Pi through Pv.
Chapter 18. R: Discusses language elements - Random through RTrim$.
Chapter 19. S: Discusses language elements - SaveFilename$ through SYD.
Chapter 20. T: Discusses language elements - Tab through Type.

Chapter 21. U: Discusses language elements - UBound through User-Defined
Types.

Chapter 22. V: Discusses language elements - Val through VarType.



Chapter 23. W: Discusses language elements - Weekday through Writelni.
Chapter 24. X: Discusses language elements - Xor.
Chapter 25. Y: Discusses language elements - Year.

Chapter 26. CIMPLICITY Extensions to Basic: Discusses the CIMPLICITY
extensions to the Basic Control Engine language - Acquire through TraceEnable.

Related Publications

For more information, refer to these publications:
CIMPLICITY MMI and MES/SCADA Products User Manual (GFK-1180)

CIMPLICITY MMI and MES/SCADA Products Basic Control Engine Program
Editor Operation Manual (GFK-1305)

CIMPLICITY MMI and MES/SCADA Products Event Editor Operation Manual
(GFK-1282)

CIMPLICITY Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Contents

Introduction 1-1
About the BasiC CONLIOL SYNTAX ......ccueiuiiiiiiiiieie sttt b et e sae 1-1
Using the Basic Control Engine Language Reference..........ccocveveneniieneieieieeceesee e 1-2
Language EIements BY CAtEOOIY .......coiiiiriiiiriiieiiieieseeieie et s sbe e sne s 1-3

AATTAYS. ottt ettt b bt bt h e he e b e e bt b e e R bt Rt e Rt e b e e b e e be e be e e nnes 1-3
CHPBOAI ...ttt bbb bbb e 1-3
COMIMENTES ...t 1-3
COMPAISON OPEIALOTS ....c.veeueereitesiesteeieeieeseeste st sbe st be et e ee e e sbesbe bt sbe e e e eesbesbesbeseeenes 1-3
Controlling Other ProgramsS..........oeiieiiieie e 1-4
Controlling program fIOW ..o 1-4
Controlling the operating eNVIFONMENT ..........cooviieiiiiiii e 1-5
CONVEISION ...ttt bbb bbbt et b et b e bt e 1-5
DALA TYPES ..ttt ettt ettt bbbttt bbbt n bt e et e nre e e 1-6
DALADASE. ... ettt 1-6
DALE/TIME ...ttt 1-6
DIDE ..ttt 1-7
Error NANAIING ......ooeiee e 1-7
FIIE 11O e 1-8
FAIE SYSBIM ..ttt b b e b nreene s 1-8
FINANCIAL ... 1-9
Getting information from Basic Control ENgine ...........ccocooovveiiiiniine i 1-9
INT IS .ot 1-10
LOgical/DINary OPEIatOrS ........ccviieeieieriesie sttt st 1-10
IVIBEN ..o 1-10
MISCEITANEOUS ...ttt e 1-10
NUMEEIC OPEFALOIS. ...ttt sttt bbbt b et be bbbt b e e 1-11
(@] o111 £SO RTURURURURTPTRN 1-11
PASING -ttt bbb bbb e bbb e e 1-11
Predefined dialogs. ... ..co.eieiiiiiee e e 1-11
PIINTING ettt b ettt r e e b 1-12
PIOCERUUIES. ...ttt bbbttt 1-12
SEIING OPEIALOTS ...ttt bbbt sttt sb st e e e b e 1-12
S IS ettt bbbt n et b e bbbttt nbe e 1-12
USEE QHAI0GS ..ttt bbbttt bbbt nee s 1-13
Variables and CONSTANTS..........veviiriiiiiiese s 1-14
WATTANES ...t bbb bbbt bbbt 1-14

GFK-1283G Contents-v



Contents-vi

Symbols 2-1

Ea (o] oL - 1o ) SO URURTUTRN 2-1
KEYWOIT) ... ettt et btk bbbkttt e b bt e bt b e e bt e Rt e n b e b e nb e ke ebeebeene e b e 2-1
() (KEYWOIT) ..ottt bbbttt b e bbbt et et se e b e sb e eb e e b e e e e e e e et e 2-2
Bl (] o L=T = Lo o SO TSRO PPRPR T 2-3
S (o] ¢ L<] 1] ) ISP URURTUTN 2-4
B (o]0 1=T =10 o PO R R URURURTRN 2-5
(KEYWOTA) .t bbbttt b e bbbt et et e e b e bbb e e b e 2-6
JA (0] o L=] = 1o o PO TS U RTOR PR 2-7
S (0] 0151 1] ) [OOSR URUPTTRN 2-7
S (o] 0= 1o ) I PRSPPI 2-7
S (o] 01 L o] ) IS TOUOTS TR PRURURPN 2-8
e (1 1115 L PO U R URTURPRURPRN 2-8
(o] o<1 Lo ] ) [ PO RU ST RPN 2-8
Dl (o] 0151 Lo ] ) IO PO U TR URURTUTPN 2-8
B (o] 0151 L] ) ISP URPRURTRN 2-9
LN (0] o LT U] o OSSOSO 2-9
A (0] 0T 7= Lo ) PR UO U PRURPRURPRN 2-10
(KEYWOIA) .ttt bttt b e bbbt e e e bbb bt e e e et 2-11

3-1
ADS (FUNCTION)....c ettt bbbttt b bbbt n e e b e 3-1
YN a[o I (o] o L=T = (o] o TSSOSO SOURT 3-2
ANSWEIBOX (FUNCHION) ...t bbbt 3-3
F AN (o 1 = 1Y o 1) OSSPSR 3-4
APPACLIVALE (SLALEIMENT) ... eviitiiiiiiee ettt ettt se e e b e 3-5
APPCIOSE (SLALEMENT) ...ttt bbbttt b bbbt b e e e b e 3-6
APPFINAS (FUNCLION) ...ttt 3-7
APPGELACEIVES (FUNCLION) .....cviiiiiiiieee ettt 3-7
APPGELPOSITION (STALEMENT) ... bbb 3-8
APPGELSLALE (FUNCLION) ..o.viieitiieeee e bbbt 3-9
APPHIAE (SEALEMENL) ... ettt sr b bbb eneas 3-10
APPLISE (STALEMENT) ...ttt bbbt b e bttt e s 3-11
APPMaXIMIZe (SLALEIMENL) .....uiiieiieie ettt 3-12
APPMINIMIZE (STALEMENT) .....ecviiiieiiee ettt see e 3-13
ADPPMOVE (SEALEIMENT) ...ttt bbbt b e bbb nn e 3-14
ADPPRESIONE (STALEMENT) ...ttt et e se e bbbt sae e 3-15
APPSELSEALE (SLALEIMENT) ....eiiiiiieee ettt bbbttt see e 3-16
ADPPSNOW (SLALEIMEINL) ....veeeee ettt bbbt se e bbbt neeneas 3-17
ADPPSIZE (STALEMENT) ..ottt bbb bbbt nn e 3-18
APPTYPE (FUNCTION) ..ttt bbb bt e s 3-19
ArrayDimS (FUNCHION) ... e bbb bbb eneas 3-20
F AN g TR (0] o110 IO OSSO PR PRTURURRT 3-21
ATTAYSOIT (SLALEIMENT) ...t bbbttt bbb 3-23
ASC (FUNCLION) ..ttt bbb bbbttt e e nee e 3-23
ASKBOXS (FUNCLION) ...ttt 3-24
ASKPaSSWOIdS (FUNCEION) ......voviveieiiiiiiiisis ettt 3-25
AN (FUNCEION) .. et bbb bbb nee e 3-26

CIMPLICITY Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



GFK-1283G

Basic.Capability (method)..........cccooriiiiniiiiiiieeeeee,
BasiC.E0INS (PrOPEItY) .....cceererireririririeieieeere e
Basic.FreeMemory (Property) ......cccooeeervenerienieeiesieneneniens
Basic.HOmMeDIr$ (Property).......cccooreverricenneenenicesenienens
BasSiC.OS (PrOPErtY).....ccoererieeiieie e
Basic.PathSeparator$ (Property) ........ccccoveeerreiennicenenienens
Basic.Version$ (Property) .......cocoeeeerevererieenneienesieenesienens
Beep (StatemMENt).....cceieiiiieieeeere e
Begin Dialog (Statement).........ccooeverinenieie s
Boolean (data type) ......coeeereeieeieii e
BYRef (KEYWOId) ..o
ByVal (KEYWOId) .......coiiiiiiiiiiieie e

Call (Statement) ........cocoiirieiieie e
CancelButton (Statement) ........cccoeoereieienere e
CBO0OI (fUNCLION) ..
CCUr (FUNCLION) .
CDate, CVDate (funCtions) ..........cccecererenenieninieeie e
CDDBI (FUNCLION) ..t
ChDir (Statement) .......ooereiieie e
ChDrive (Statement) .......ccocorirerieieee e
CheckBoX (Statement) .........ccceeverrereienineseeee e
Choose (FUNCLION) ..o
Chr, Chr$ (fUNCLIONS) ......cccueieiiiiiireseee s
CINt (FUNCLION) ...
Clipboard$ (function).........ccccceeevererinnnnnnsceeeeee s
Clipboard$ (Statement)........cccoeeierererrrrerriseeeee s
Clipboard.Clear (method)..........cccouiiiiiiiniieniseeeeeie
Clipboard.GetFormat (method) ...........ccocveiinieiiencicncee
Clipboard.GetText (Method) ..........cccoveiiiiieniniee e
Clipboard.SetText (method).........cccoeviiiiiiiniiice e
CLNG (FUNCLION) ...
Cl0oSe (StAtEMENT)......eviieirierieeiie e
ComboBOX (StatemMENt).........ccceverieieieeiere e

Command, Command$ (functions)

COomMMENLS (TOPIC) ..vveveeeerierie it
Comparison Operators (10PIC) ......cceveerreererererereeeeieeiens
CoNst (StALEMENL).......ceiiiiiieie e
CoNStANtS (LOPIC) .vevvereereerierieeiieeee e e
C0S (FUNCLION)....eiiiiiie e
CreateObject (fuNCtion)..........cccoveirreii i
CSNG (FUNCLION) ..t
CStr (FUNCLION) ..o
CurDir, CurDir$ (FUNCLIONS).........cvvrvieeeeeieicrceerseiieee
Currency (data tyPe) .....oeeervereererieie e
CVar (FUNCLION) ..ot
CVEIT (fUNCLION) .ot

Contents

Contents-vii



Contents-viii

DL (o 1Y 1) ST UR USSP 6-1
Date, Date$ (FUNCTIONS) .....cueuiiiiiirisieieieieiet ettt 6-2
Date, DAteF (SLALEIMENES) ...cveueureeeetrieteieieserere et sese sttt ee st se st e e et bbb ebeses e e e e e b b banaen 6-3
Date Add (FUNCLION) ...ttt bbb bt e e e e e 6-4
DateDiff (FUNCLION) ......ouiiiiiieeee e et 6-6
DatePart (FUNCLION) ......c.iiieiiee ettt sb et e e e 6-7
DateSerial (TUNCHION) ......ooiiiiiice e e bbb bt 6-8
DateValue (FUNCLION) ..o bbb bbbt e 6-9
DAY (FUNCLION) ..ttt bbbttt et e e b e bbb e et e e b b e 6-9
DDB (FUNCLION) ...ttt bbbttt sb e bbbt be e e e 6-10
DDEEXECULE (SLALEIMENT) ...ttt sttt see b s 6-11
DDEINItiate (FUNCLION)......iiiiiiiiie ettt 6-12
DDEPOKE (SLALEIMENT) .....c.eiviitiiiiiiieiieie ettt bbb bbbt nn e 6-13
DDERequest, DDEReqUESt$ (FUNCLIONS).........coviviuiririiiiinieesiee e 6-14
DDESEN (SLALEIMENNL) .....cvitiitiiieeiieie ettt bbb bbbt e e nee b e 6-15
DDETerminate (STAtEMENT).......ceiieieiieierie ettt se b s 6-16
DDETerminateAll (SLAIEMENT)........oiuiiiiiiieieee et e 6-17
DDETIMEOUL (SAEEMENT) ....vitiitieiieieeee ettt sttt se bbb 6-18
DECIAre (SLALEIMENL)......ciuiieeiee ittt bttt b e bbbt b e e et e e b e 6-19
DEfTYPE (STALEMENT) ...ttt bbbttt bbbt bbbt e e e e 6-25
Dialog (FUNCHION) ...ttt sb bbbttt ne e e e 6-27
Dialog (STALEMENT) ...ttt bbbttt b bbbt b et be e e 6-28
DM (STAEEMENT) ...ttt bbbttt sb et e b b e e e et et e e 6-29
D, Dir$ (FUNCTIONS) ...ttt bbbttt 6-31
DiSKDIIVES (SLALEIMENT) ......eviitieieeiieie ettt bbbt n s 6-33
DiSKFTEE (FUNCHION) ...ttt sttt se s 6-33
DIGCONrolld (FUNCHION).....c.eiiiiiiieieee e bbbt 6-34
DIGENADIE (FUNCLION) ...ttt 6-35
DIGENADIE (STALEMENT) ....c.vieiieieieeieee ettt bbbt se e 6-36
DIGFOCUS (FUNCTION)....cieiiete ettt bbbt ee e 6-37
DIGFOCUS (SLALEIMENLT)......c.eitiitiiieiic ettt ettt sb e bbb e e e e 6-38
DIgLIiStBOXAITAY (FUNCLION) ....itiiiiiiiiiie ettt 6-39
DIgLIStBOXAITAY (STALEMENT) .....eiuieiiieeie ettt sae s 6-40
DIGPIOC (FUNCLION)....uiiieieieee sttt bbbt b et ee e e 6-41
DIgSEtPICtUre (STAtEMENT)......cueiiiie ettt bbb e 6-44
DIGTEXE (STALEMENT) .....cviteieeiteeieeeee ettt bttt e e b et b et ne e e 6-45
DIGTEXES (FUNCLION)......eeeeeeieiiiiececee sttt bbbttt 6-46
DIGValue (FUNCHION).....ceiiiii ettt 6-48
DIgGValue (SLALEIMENLT).......cuiiiiiiiiiieie ettt bbbt e s 6-49
DIgVisible (FUNCLION).........oiiiiiiiice bbb 6-50
DIgVisible (SAtEMENT).. ..ottt 6-51
DO0...L0O0P (STALEMENT)....c.uiieiiiiiieiee ettt bbbt e et bbbt ene e e e 6-53
DOEVENLS (FUNCLION) ...ttt bbbt 6-55
DOEVENLS (STALEMENT) ...ttt ettt b e bbbt e e e 6-55
DOUDIE (AALA LYPE) ..eveieeiieee sttt bbb bttt nb e bbbt r e 6-56
DropLiStBOX (SLALEMENT) ......ccuiiieiiiitieieie ettt bbbt se bbb 6-57

CIMPLICITY Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



GFK-1283G

EDADOIT (CONSTANT) ...t e bbbttt seesbe b 7-1
eDADOItREtryIgNore (CONSTANT).......cuiiiiiii it 7-1
ebApplicatioNMOodal (CONSTANT) .........ooiiiiiiiiiie e 7-2
EDAICHIVE (CONSTANT) .....eitiiei e bbbt e b b e 7-2
EDBOIU (CONSTANL) ...ttt bbb b bbb e et 7-2
EDBOIAIAlIC (CONSTANL) .....vieiitiieeieee bbbt ee e 7-3
EDBO00IEAN (CONSLANT)......cueieiiteiteite ettt bbbttt b et b sttt e e nbe b e 7-3
EDCANCE] (CONSLANL) ......eiteie ettt e bbb bt e e b b 7-3
EDCHILICAL (CONSTANT) ...t bbbttt eesa e e 7-4
EDCUITENCY (CONSLANT) ....veiiiitie et e b e bbbt see b b 7-4
ebDAtaODJECT (CONSTANT) ... e uieieeieie ettt bbb b 7-4
EDEFTOr (CONSEANL) ...ttt bbbt b e bbb e bt e s e e e e nbesbesbe b e 7-5
EDDALE (CONSLANT) ...ttt bbbttt e bbbt ettt sneebe b e 7-5
ebDefaultBUttonl (CONSTANT) .......ooviiuiiiiiiiieieeiee ettt bbb 7-6
ebDefaultBUtton2 (CONSTANT) .......cviiuiiiiiiiieiieiee ettt bbb 7-6
ebDefaultButton3 (CONSTANT) .......cviiuiiiiiiiieieeeee ettt bbb 7-6
EDDIFECTONY (CONSTANL) ... ctiitiitiitieii ettt ettt e bbbttt see b e b e 7-7
EDDOS (CONSLANT).... ittt bbbttt bbb bt et e e e e e e e nbe b e 7-7
EDDOUBIE (CONSLANT) .....eiteieietieeee ettt bbbt b ettt e en e b b be e 7-8
EDEMPLY (CONSTANT) ...ttt se e bbb e e e b e b e b 7-8
EDEXCIAMALIiON (CONSEANL) ......cueiiiiieiteite ittt bbb e b 7-8
EDHIAAEN (CONSLANT) ...ttt ettt be e b 7-9
EDIGNOTE (CONSTANT).....eiuiiie et bbbt se e bbbttt e e sbe b 7-9
ebINFOrMAation (CONSEANL) .........eiiiiiie ettt se s 7-10
EDINTEYET (CONSTANT).....eeiteiee ettt bbbt se bbb ees 7-10
EDIANIC (CONSTANT) ...ttt bbbt se b e b s 7-11
EDLONG (CONSLANT).....cueeeieeite ettt bbbt n bbb e 7-11
BOINO (CONSTANT) ...t bbbt e e bbb s 7-11
EDINONE (CONSTANT) ...t bbbt e bbb s 7-12
EDNOIMAL (CONSLANT) .......ieiieiitieieee ettt sttt se bbb 7-12
EDNUIT (CONSTANL) ... bbbttt e bbb 7-13
EDODJECT (CONSLANL) ...ttt bbbt e e e 7-13
BDOK (CONSLANT) ...ttt bbbttt bbbt bt et e et et et naees 7-13
EDOKCANCEI (CONSTANL) ...ttt bbbt se bbb s 7-14
EDOKONIY (CONSLANT) ...t bbbt n bbb s 7-14
EDQUESLION (CONSLANT).....cviieiitieiiiie ettt bbbt see b 7-14
EDREAAONIY (CONSTANL) ...c.viviieiiieeiee et bbbttt e e e 7-15
EDREGUIAT (CONSLANT) ..ottt bbbt en bbb 7-15
EORELIY (CONSLANT) ...ttt bttt bbbttt se bbb ens 7-16
EDREtryCanCel (CONSTANT) .....oouiiiiiiieie et b 7-16
EDSINGIE (CONSTANT) .....eeeieieieiee bbbttt e bbb s 7-17
EDSLING (CONSTANT) ...t bbbt se bbb 7-17
EDSYSIEM (CONSTANL) ... bbb b 7-18
ebSystemMOodal (CONSTANT) ......eoueiieieie et 7-18
EDVAriant (CONSTANL) .......oiuiiieiiiiee bbbttt b e b b 7-18
EDVOIUME (CONSTANE) ... bbbttt se e 7-19
EDWINS2 (CONSTANT) ...ttt se bbb s 7-19
BDYES (CONSLANL) ...ttt bbb bbbttt e e bbbt ens 7-20
EDYESINO (CONSEANL) ...ttt bbb bbbt s e en bbb e 7-20
EDYESNOCANCEI (CONSTANT) ......eiuiiriiieiie ettt 7-20
EMPLY (CONSTANL) ...ttt bbb bbbt b e et e sbesbenbeene s 7-21
ENG (SEALEMENT) ...t bbb bbbttt e bbb sbesbeene s 7-21
Contents Contents-ix



Contents-x

Environ, ENViron$ (FUNCLIONS) .....c.coviiiiririiiie e
EOF (FUNCLION) «..oeiie et e
o AV (o] L= -1 (0] ) ISR ORUPRPTRTPR PR
Erase (STAtEMENL) ......oiuiiiiieiieiee et et e
ErT (FUNCHION) <.
BT (FUNCLION) ...t e
ErT (SEAEEMENL) ...ttt e
Error (STAtEMENT) ...t et
Error Handling (T0PIC) ....cveeveeeeieie ettt
Error, Error$ (FUNCLIONS) ......ccoviviiiiiiciiinicieeee e
EXit DO (STAEEMENT) ...ttt et s
EXIt FOr (StAtEMENT) ..ottt
EXit FUNCtion (StAtemMeNt) .........coeiiiiiiiie e
EXIt SUD (StALEMENL) ....oviiiiieceee et e
EXP (FUNCLION) .ot e
Expression Evaluation (10PIC) .......eovrerieiriine e

FalSe (CONSLANT) ....veveiiiiiiieie e
FIlEALLr (FUNCLION) .. s
FileCopy (STAtBMENT) ...c.eiiee et
FileDateTime (FUNCHION) .....coiiiiiiiieeee e
FileDirs (StAtEMENL) ......cc.oiiieiieieie e bbbt
FIlEEXIStS (FUNCLION) ...t
FileLen (fUNCHION)......ooiiee e
FIleList (StAteMENT).......coviiiiieiiiiere et e
FileParse$ (FUNCHION) ......ovovvieeieicieeeee e
FIX (FUNCLION) ...ttt e
FOr...NEXt (STAtEMENT) .....eiuiiieieee et
Format, FOrmat$ (fUNCLIONS)......c.coueuiiriiieiririi e
FreeFile (FUNCLION).......ooiiiiiiiie e
Function...End Function (Statement)...........coceeeeieieiene i
FV (FUNCLION) ..t e

Gt (SEALEMENL) ...ttt bbb b
GEtALLE (FUNCHION) ...cviiieieiitieee e
GetODhJect (FUNCLION).....cciiiiee e s
GloDbal (STALEMENT) ..ot e
GOSUD (SEALEMENL) ...ttt
GOLO (STALEMENL) ... ettt e bbbt sbe s
GroupBOX (SLALEMENT) .....ccviiieieiiieieee et

HeX, HEX$S (FUNCLIONS) .....vcviiiiiiiiiiei e
HLINE (SLALEMENL) ..ot e e
HOUF (FUNCEION) ...ttt e
HPage (STAEMENT) ..o e
HSCIrOll (StAtEMENT)......c.eiiiiiie et e
HWND (ODJECL) ...ttt e
HWND.ValUE (PrOPEITY) ..ceeiuieiiiieiiie ittt

CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



GFK-1283G

If...Then...Else (Statement) ........cccooeiiiiniieniiinice e,
T (FUNCEION) ..
IMP (OPEIALOF) ...t
INHiNg (StAtEMENT)....c.oiiiiiieiieeee e
INPULHE (STAEMENT) ...
Input, INPUtS (FUNCEIONS).......cveerieiiiiiieee e

InputBox, InputBox$ (functions)

INSEr (FUNCEION) ...
INt (FUNCLION) .o
Integer (data tYPe) ....ccveverere et
IPME (FUNCLION) ..ot
IRR (fUNCLION) ..t
IS (OPEFALOT) ...ttt
ISDate (FUNCLION) ....ceiiiiiiier e
ISEmpty (FUNCLION) ..o
ISError (fUNCion) .....c.ooeeiiieiiiceee e
ISMissing (FUNCLION) .......oviiiiiiic e
ISNUIT (FUNCEION) ..o
ISNumeric (FUNCLION) .......ooviiiiiiiee e,
ISObject (fUNCION) .......oiviiiiiiieee e
1tem$ (FUNCEION).....cviiiiiriicceee s
ItemCount (fUNCLION) .......ocoiiiiiirieee e

KeYWOords (tOPIC)....cuervererieriirieiieieeeie e
Kill (STAtEMENT)....ocveiciee e

LBound (fUNCLION)........cccoiiiiiiiieece e
LCase, LCase$ (fUNCioNS) .....cocovvvvrererereririeieieeeneneseseseeas
Left, Left$ (FUNCEIONS) ......cueviieiiiiisissers e
Len (fUNCLION)......ccoiiiiie e
Let (StAteMENL)........ooeieiieiieie e s
LiKe (OPErator) ...coueeieeiie e
Line Input# (Statement) ........ccooeieieniieniieeee e
Line NUMDErS (0PIC) ...eoververeerieeieieieesie e
Line$ (FUNCLION)........coiereeeeecieeeeeee e
LineCount (fUNCiON) ......ccccviiiiieieree e
LiStBOX (Statement) .......coverireiieie e e
Literals (TOPIC) .....eivereieirieaieie e s
LOC (FUNCLION)....eiiiiiie e s
LOCK (StAtEMENT).....eveieiieiieeieee e s
LOF (fUNCHION) ...
LOg (FUNCLION) v s
LoNg (data tYPE) ..c.veeereeierierieeieeee e
LSet (StAtemMeNt) ....oove i
LTrim, LTrim$ (FUNCEIONS)........ccovvirereeeeieieeiieenee e

Contents

Contents-xi



Contents-xii

MaiN (SEALEMENT)......eiieiieie e et
MCT (FUNCEION) <.t e
Mid, Mid$ (FUNCLIONS) .....veieiieiiiiiee s
Mid, Mid$ (SAIEMENTS) ...eeveriiiiiiieieieieieie et
Minute (FUNCLION) ..o e
MIRR (FUNCEION) ...ttt e
MKDIF (SEAEEMENT) ..ttt
Y Lo o I (o] o L=1 =1 (o] o U USSP
MONth (FUNCHION) ...
MSGBOX (FUNCLION) ...ttt e
MSGBOX (STALEMENT) ...ttt
MSQ.CloSe (MELNOM) ....veviiiiiieiieee e e
MSQG.OPEN (MELNOT)......ee i e
MSQG.TEXE (PrOPEITY) .ttt be e
Msg. Thermometer (PrOPEITY) .....oooiereiirieierie sttt

NAME (SLALEIMENL)......cveiiiiiieiie e e e
Named Parameters (OPIC) .......civeiireiieieieie et
Net. AAdCoN (MEthod) .......c.viieeiie e
Net.Browse$ (Method) ........ceeeiriiiririririreeeeee e
Net.CancelCon (MEthod) ........cooviiriiiie e
Net.GetCon$ (MEhO) ....cveveiiiiiieieicieiee e
NEt.USEI$ (PrOPEILY) .ceeveiiiieeiirieieie sttt
NEW (KEYWOIT) ...ttt ettt
N o] (o] o L=T = 1o o USSP
NOthING (CONSEANT) ... e
NOW (FUNCLION) ..t e
NPET (FUNCHION) ... itiitiie e e
NPV (FUNCHION) .o
NUIT (CONSEANT) ...

(O] o] T:To f (0 1Y o) USSP
(@] o] TTo1 (] o] (o) H RSSO UR TP
OCt, OCLS (FUNCLIONS) ...ttt
OKBULTON (STAEEMENT) ...ttt e
ON Error (STAtBMENT).....coueiiieeiieeeie et e
OPEN (STALEMENT) ..ottt bbb
OpenFilename$ (FUNCLION) ..o
Operator Precedence (T0PIC) .. ...coverererirerieie et
Operator Precision (T0PIC) .....ccververereiieieeieie et
Option Base (StAtEMENT) .......cccoueiiiirieiieieiee e
Option Compare (StAtEMENT) ........coeiiiiiiese e e
Option CStrings (StAtEMENT) ......ooueiiiieie e e
OptionBULtoN (SLAIEMENL) ....c..eiiieiieiiieieee e e
OptioNGroup (SLALEMENT).......ccveiiitiie e
(O] g (o] o =T o] ) PRSP UT TR

CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



GFK-1283G

Pi (CONSEANE) .o
Picture (Statement).........cocooeeieirieie e
PictureButton (Statement)...........ocoovverinienicenee e
Pmt (fuNCLION) ..o
PopupMenu (fuNCtion) ..........ccocereiiiiiiine e
PPMLE (fUNCHION) ...
Print (Statement) ........cooeiiiiiiee e
Print# (Statement) .........cooereieieiee e
Private (Statement).........ccoeeieiiieniie e
Public (Statement).........ccooveeiieiiiie e
PushButton (Statement) .........cccoevereieninieneeere e
PUt (STAtEMENT) ...
PV (FUNCLION) ... e

Random (fUNCLiON) ........cocoviiiiiiiie e
Randomize (Statement)..........ccccevereieiinenice e
Rate (FUNCLION) .....oovoiiiiiiiieee e
ReadIni$ (FUNCLION) ....c.eviiiieceece e
ReadlniSection (Statement) ........cccocerveinieieienese e
Redim (Statement) ..o
Rem (Statement) ........ccocoviieiieiiee e
Reset (StAtEMENL) .....cceiiiiiiieee e
Resume (Statement) .........ccoereeieiinene e
Return (Statement) ........ccoveeiciiiee e
Right, Right$ (functions)............ccceeeeerennnnnnnrecceeenee
RMDIr (StAteMENt)......cceiiiiiieie e
RN (FUNCLION) ..o
RSet (StAtEMENL) ..o
RTrim, RTrim$ (fUnCtions) ........ccccoeeeriririnneciniccecieeeeeenn,

SaveFilename$ (FUNCEiON) ........cccceeeieriinrrrrececeene,
Screen.DIgBaseUnitsX (Property).......ccoeoeeeeveeveienieneneens
Screen.DIgBaseUnitsY (Property).......ccocoeeveeveieienicnennens
Screen.Height (Property).....cccceeeeierene i

Screen. TwipsPerPixelX (property)
Screen.TwipsPerPixelY (property)

Screen.Width (Property)......ccoeieerei s
Second (FUNCLION) ........ooiiiiiiiiic e
Seek (fUNCLION) ...
Seek (StAatemMENt) .......cccoviiiiieieiee e
Select...Case (Statement) .........ccoceveiirenieieere e
SelectBoX (fUNCHION) ...c..ooveiiiiiiie e
SendKeys (StatemMent) .........ccevereie e
Set (StAEMENL) .......ooviiiiiiiee e
SEtALtr (StAteMENt) ......covieeieiie e
SN (FUNCLION)....ciiiiieiece e
Shell (FUNCLION)......ooiiiii e
SIN (FUNCLION) ..

Contents

Contents-xiii



Contents-xiv

SINGIE (AR LYPE) ..ottt et e b bbb 19-19

SIEEP (SLALEIMENL) ....ovitiitieieeee ettt b e sb et ee e e 19-20
SIN (FUNCLION) ...t bttt bbbttt nee e 19-20
Space, SPACcEP (FUNCLIONS) ....cuevereiireiriiirisieie ettt 19-21
SPC (FUNCLION) .ttt b e bbbt e bbb e 19-21
SQLBING (FUNCHION) ...ttt ettt see s 19-22
SQLCI0SE (FUNCLION) ...ttt e bbb sn bbb 19-23
SQLEFTOr (FUNCHION) -ttt e et 19-24
SQLEXECQUETY (FUNCEION) .....oiuiiiiieiie sttt e 19-25
SQLGeEtSChema (FUNCHION) ..o 19-26
SQLOPEN (FUNCLION) ...ttt ettt s be bbb sae b e 19-29
SQLQUEryTIMEOUL (STALEMENT) ....evieiieiiiieiieie ettt s 19-30
SQLREQUESE (FUNCLION) ....ctiiiciieieie ettt 19-30
SQLRELrIEVE (FUNCLION) ....ueieiiieiie s bbb 19-32
SQLRetrieveTOFile (fUNCIION) .....ooeiiiieieie e e 19-34
SOE (FUNCLION) <.t ettt bbbt e e sae e 19-35
SEOP (SLALEIMENT).... ettt bbbttt bbb bt neene e e e 19-35
Sty SIS (FUNCTIONS) ...ttt 19-36
SrCOMP (FUNCLION)....c.eiieiieiie e et 19-36
SEANG (LA TYPL) ..ottt e bbbttt b et bbb b 19-38
String, StriNg$ (FUNCLIONS) .....c.viiiiieeceeeieiee e 19-39
Sub...ENd SUD (SLAEMENT) ... b 19-40
SWILCH (FUNCLION) ...ttt 19-42
SYD (FUNCLION) ...ttt ettt bbb nne s 19-43
SYStEM.EXIt (MENOA) ...t 19-44
System.FreeMemOory (PrOPEILY) ..cc..everiieiieieeeeie ettt sae s 19-44
SyStem.FreeRESOUICES (PIOPEILY) ....c.veiueiterieeteaeeie et stesie st ete s esee et b b sbe e e sn b seesaeees 19-45
System.MouseTrails (MEthod)..........ccoiiiiiiiiii e s 19-45
System.Restart (METhO) ........oviiiii e e e 19-45
System.TotalMemOry (PrOPEITY) ....oveiiieiiieieeieie ettt et see b 19-46
System.WindowsDireCtory$ (Property) .......ccooeeririeririeeinisie st 19-46
System.WindowsVersion$ (PrOPEILY) .....covoeerrueeririeririeieesisie s seeie st 19-46

20-1
TaD (FUNCLION) ...ttt ettt ettt e bbbt st ne e e 20-1
TAN (FUNCLION) ...ttt bttt e et bbb ae e e e e e 20-2
TEXE (SLALEIMENT)......eeeee ettt bbbttt b bbbt e e e e e 20-2
TEXtBOX (SEALEMENL) ...ttt ettt e bbbt e e e 20-3
Time, Time$ (FUNCTIONS)...c.ciiiiiiiireeietee ettt 20-5
Time, TimeSF (STALEMENES).....civivivteeteeeieeee ettt ettt bebebebenas 20-6
TIMEE (FUNCLION) ..ttt e bbb ee e 20-6
TimeSerial (FUNCHION) ....couiiuiiiee e 20-7
TIMEValUE (FUNCLION) ..ottt et e 20-7
Trim, TrM$ (FUNCHIONS)....cuiiiiiriiere et 20-8
THUE (CONSLANT) ...ttt sttt bbb bbbt s bt bt e s e e b et sbesbesbeeneebe e e enee e 20-8
TYPE (STALEMENT) ...ttt bttt e bbbt b e ene e e e be b e 20-9

CIMPLICITY Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



GFK-1283G

UBOUN (fUNCHION) ..o
UCase, UCase$ (FUNCLIONS) .....cuevereiireriniiiririeieeeee s
UNIOCK (StAtEMENT) .....cveiiciieeec e
User-Defined TYPeS (E0PIC) ... ccrveruererireiiieieie et

Val (FUNCHION) .o s
Variant (data tyPe).....cveoeee e
VarType (FUNCLION)......coiiiii e s
VLiINE (SAtEMENT) ...t e
VPage (StAEMENL) .....c.eiiiiiiiiiieiec e e
VSCroll (SLAtEMENL) ... e

Weekday (FUNCLION) ........ooiiiiiiici e
While...Wend (Statement)...........ccoveieieieiene e
Width# (STAteMENT) ...t e
WinActivate (Statement)........ccouoeeeiireie et
WiINCI0Se (StAtemMENt) .......c.ooveiiiiiiiiieieie e s
WINFINd (FUNCLION) ..o s
WINLISt (StAtEMENT) ......oeeiiieiiiieceee e
WinMaximize (Statement) ........ccoeeoeriireie i
WiInMinimize (Statement)..........coceoeiereie e
WINMOVE (StAtEMENT).....coviiiiiierie e
WINReStore (Statement)........cocoverieeiiieie et
WINSize (StAtemMENt) ........cccooeiiiiiieieiee s
WOrd$ (FUNCHION).....ceiieiiiiicece s
WordCount (FUNCLION) ....c.eiviiiiiiiiiice e
Write#f (StAtEMENT).....c.oiiieieeie e e
WriteIni (StAtEMENL) ..o e

Do Qo] (o] o1 = Lo ) PSR USSR

Year (fFUNCHION) .c..eieiici e

CIMPLICITY Extensions to Basic

ACQUITE (FUNCLION) ...viiiiiiiiie e
Acquire, Release (Statements).........ccocevevenerenenieeieiesese e
AlarmGenerate (Method) ..........cccooiiiiiniiieie e
AlarmUpdate (Method) ........ccoereiiiiiiiie e
ChangePassword (Method) ..........coceiiriiieieneie e
CimEMAIlarmEvent (ODJECt) ......coeveiireiiiiiieeciee e
CimEMAIlarmEvent.AlarmID (Property, Read) .........ccceoeveieiennene

CimEMAIlarmEvent.FinalState (Property, Read)
CimEMAIlarmEvent.GenTime (Property, Read)

CimEMAIlarmEvent.Message (Property, Read) ........cccccooeveicrennnne

Contents

Contents-xv



Contents-xvi

CimEMAIlarmEvent.PrevState (Property, Read) ........ccooveirieiiiiieieieeee e 26-10

CimEMAIlarmEvent.RefID (Property, Read) ..........coceieiiiiiiie e 26-11
CimEMAIlarmEvent.RegAction (Property, REad) .......cccooeiiriiiniiie e 26-11
CimEMAIlarmEvent.ResourcelD (Property, Read) .......ccocveerieieieniieiieeeee e 26-11
CIMEMENVENT (ODJECL) ...ttt bbbt sn bbb 26-12
CimEMEvent.ActionID (Property, Read) ........cccoooiiiiiiiiiiiiee e 26-12
CimEMEvent. AlarmEVvent (FUNCLION) .......cc.ooiiiiiiiiireeieece e s 26-12
CimEMEvent.EventID (Property, REad) ........cccuoiriiiiie it 26-13
CimEMEvent.ObjectID (Property, REAA) ......cccueieiiiiieiieieieie e 26-13
CIMEMEVENLPOINTEVENT ..ot 26-13
CimEMEvent. TimeStamp (Property, Read) ........cccocoviiiiiiiiiie e 26-14
CimEMEvent. Type (Property, REad) .........ccciiiiieiiieie st 26-14
CIMEMPOINTEVENE (ODJECL) ..ottt 26-15
CIMEMPOINTEVENL I ... 26-15
CimEmPointEvent.Quality (Property, REad)........ccocuiiriiieiiieie s 26-16
CimEmPointEvent.QualityAlarmed (Property, Read) .........ccooeieiiniiiiiiieicie e 26-16
CimEmPointEvent.QualityAlarms_Enabled (Property, Read) .........cccccoovienieicnencienee, 26-16
CimEmPointEvent.QualityDisable_Write (Property, Read)..........ccccooieinincncnencienee, 26-17
CimEmPointEvent.Qualityls_Available (Property, Read) .........cccccooiiiiieniiiiiiienee, 26-17
CimEmPointEvent.Qualityls_In_Range (Property, Read) .........cccccooriiiiniiniiiiiinc e, 26-17
CimEmPointEvent.QualitylLast Upd_Man (Property, Read).........ccccoovininiiiinnncicnee, 26-18
CimEmPointEvent.QualityManual_Mode (Property, Read) .........ccccooeniieiiciiieniienee, 26-18
CimEmPointEvent.QualityStale_Data (Property, Read) .........ccocoeirieriiiiincicie e 26-18
CimEMPointEvent.State (Property, R€ad) .........cccooiiiiiiiiieee s 26-19
CimEMPointEvent. TimeStamp (Property, Read..........ccooeeriiiiiiiieeieeee e 26-19
CimEmPointEvent.UserFlags (Property, Read} ..o 26-19
CimEMPointEvent.Value (Property, REad) ........cccocoiiiiiiiiniiie et 26-20
CIMGEtEMEVENT (FUNCHION) ..ottt e bbb 26-20
CImISMASEEr (FUNCHION) ...ttt bbb bbb e sbe s 26-20
CIMLOGIN (PPOCEAUIE) ...ttt ettt st b ettt bbb bbb sae e 26-21
CiImMLOGOUL (PIOCEAUIE)......cveitiiieitieiieie ettt sttt ettt bbbt sn bbb 26-21
CimProjectData (ODJECL) .....c..cuereieie ettt et se bbb s 26-22
CimProjectData.Project (Property, Read/WHIIte) ........cccceiviirieiiiiii e 26-22
CimProjectData.Entity (Property, Read/WIITE) .......coviieiiiiieie e 26-23
CimProjectData.Attributes (Property, Read/WIIte).........cccovereiiiiiiiniiiiec e 26-28
CimProjectData.Filters (Property, Read/WIIte) .........cccoceieiiriiiiiiieiee e 26-28
CimProjectData.GetNext (FUNCHION) .........coiiiiiiiiiiieiee e e 26-29
CimProjectData.Reset (IMEthOd) ........cceieiiiiiiiie e e 26-30
GEtKEY (FUNCLION) ... ittt bbbttt see bbbt e e eneas 26-30
GetSystemWindowsDirectory (FUNCHION)........coiiiiiiiiieie e 26-30
GetTSSesSIONIA (FUNCHION) ..o e s 26-31
ISTerminalServices (FUNCLION) ........ciiiiiieieie e 26-31
LogStatus (Property, REAA/NVIITE) ........cviirieiiie et 26-32
POINE (SUDJECE) ..ttt bbbttt bbb bbb ne e nee s 26-33
POINE (ODJECL) ...ttt sttt bbbttt b e b b be bt e e e e e nbe e 26-36
Point. AlarmAck (Property, REA) ........cccooiiiiiiiine ettt 26-36
PoINt.Cancel (MEthOd) .......c.ooiiiiii e e 26-37
Point.DataType (Property, REA) ........cooiriiiiiiieie et 26-37
Point.DisplayFormat (Property, Read) ..........ccooieiiiiiiiiiiee e 26-38
Point.DownloadPassword (Property, Read) ..........cccoeiiiiiiiiiieiieiese e 26-38
Point.Elements (Property, REA) .........ccoiiiiiiie ittt 26-39
Point.EnableAlarm (Method) .........coioiiiiiiee e e 26-39
Point.Enabled (Property, REAM)........cooi it e 26-39
Point.EuLabel (Property, REAM) ........cocoiiriiiiie ettt e 26-40
POINE.GEt (METNO)......ctieiieieeeee e e e 26-40

CIMPLICITY Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



GFK-1283G

Index

POINt.GEtAITay (IMEthOd) ........ceiiiie et e 26-41

POINt.GEINEXE (FUNCHION) ...ttt ettt st 26-42
POINt.GetNEXt (IMEtNOM).......cc.iiiiiiiiiciee e e 26-42
Point.GetRaWATrTay (IMEthod) ........c.coiiiieiiiieiee e e 26-43
Point.GetValue (Property, REad) ........cocoiiiiiiiieie e 26-44
Point.HasEUCONV (Property, REAM)........coceiiririeieiie ettt 26-44
Point.Id (Property, REAU/NVIITE) ....c..oviiiiieiieiee et 26-45
Point.InUserView (Property, Read) .........cooiiiiieiiiie s 26-45
Point.Length (Property, REAd).........c.couiiiiiiiiieeee et e 26-46
Point.ONAIArM (IMELhOO) .....c.coiiiiiiie e e e 26-46
Point.ONAIArMACK (Method)........ccueiuiiiiiiieee e 26-47
Point.ONChange (IMethod) .........cccouiiiiiieie e 26-48
Point.ONTImMed (MEthOO) .......cceiiiie et 26-49
Point.PointTypeld (Property, REad).........ccooueeiiiiieieeieeeee e 26-49
Point.Quality (Property, REA) ........couiiiiiieie et e 26-50
Point.QualityAlarmed (Property, Read) ..o 26-50
Point.QualityAlarms_Enabled (Property, Read) .........ccccoviiiiiiiiiii e 26-50
Point.QualityDisable_Write (Property, REad)........cccuveiiriiriii st 26-51
Point.Qualityls_Available (Property, Read)........cccuiiiiiiiiiii e 26-51
Point.Qualityls_In_Range (Property, Read).........ccooerireiiriiiiiieiee e 26-51
Point.QualityLast_Upd_Man (Property, Read) .........ccccoceiiriiiniiiiie e 26-52
Point.QualityManual_Mode (Property, Read)..........ccooiriririeieieiere s 26-52
Point.QualityStale_Data (Property, Read) ... 26-53
Point.RawValue (Property, Read/WIItE) ..........coeiuiiiiiiiiieeieee e 26-53
Point.ReadOnly (Property, REAM)........cccuiiiieieieieiere et 26-54
POINE.SEt (MELNOM) ... e 26-55
POINt.SEtAITay (IMEthod) ........ooiiiiiiii e e 26-56
Point.SetElement (MEthod) ........coooiiiiiiiee e 26-57
Point.SetpointPriv (Property, REAA) .......c.coiiiiiieieiie e 26-57
Point.SetRAWAITaY (MEthod)........coiiiiiiiiiece e e 26-58
Point.SetValue (Property, WIE) .....c..oieiieeee e 26-59
Point.State (Property, REa).........cooiiiiiiieeie e e 26-60
Point. TimeStamp (Property, REad) ..........cooiiiiiieie it e 26-61
Point.UserFlags (Property, REAM)........cocuiiiiiiieie ettt 26-61
Point.Value (Property, REa/NWVIITE) ........cooiiiiiiiiieiieie e 26-62
POINEGEL (FUNCLION) ...ttt et e e e be e 26-63
PointGetMultiple (FUNCHION) ......oouiiiiieece e e 26-63
POINtGEINEXE (FUNCHION) ...ttt e 26-64
POINESEt (SLALEIMENL).......iiiieiieiieit bbb 26-65
Trace (COMMANG) ....oviiiiiieie ettt sttt bbbt e b et bbbt ene e e nas 26-65
TraceEnable/TraceDisable (COMMAN) ........coeeieiiiiii i s 26-66

|

Contents Contents-xvii






Introduction

About the Basic Control Syntax

GFK-1283G

This chapter contains a complete, alphabetical listing of all keywordsin the Basic
Control Engine script language. When syntax is described, the following notations
are used:

Notation Description
Wi le...Wnd Elements belonging to the Basic Control Engine script

language, referred to in this manual as keywords, appear in
the typeface shown to the | eft.

variable Items that are to be replaced with information that you
supply appear in italics. The type of replacement is indicated
in the following description.

text$ The presence of atype-declaration character following a
parameter signifies that the parameter must be a variable of
that type or an expression that evaluates to that type.

If a parameter does not appear with a type-declaration
character, then itstype is described in the text.

[parameter] Square brackets indicate that the enclosed items are
optional.

In Basic Control Engine script language, you cannot end a
statement with a comma, even if the parameters are optional:

MsgBox "Hel l 0", , " Message" '<-- K
MsgBox "Hel l 0", , '<-- Not valid

{I'nput | Binary} Bracesindicatethat you must choose one of the enclosed
items, which are separated by a vertical bar.

Ellipses indicate that the preceding expression can be
repeated any number of times.

1-1



Using the Basic Control Engine Language Reference

The Reference chapter is organized like a dictionary containing an entry for each
language element. The language elements are categorized as follows:

1-2

Category

Description

datatype

function

keyword
operator

statement

topic

Any of the support data types, such as| nt eger, Stri ng, and
SO on.

Language element that takes zero or more parameters, performs
an action, and returns avalue

Language element that doesn't fit into any of the other categories

Language elements that cause an evaluation to be performed
either on one or two operands

Language element that takes zero or more parameters and
performs an action.

Describes information about a topic rather than alanguage
element

Each entry in the Reference chapter contains the following headings:

Heading
Syntax

Description

Comments

Example

See Also

Description

The syntax of the language element. The conventions used in
describing the syntax are described in Chapter 1.

Contains a one-line description of that language element.

Contains any other important information about that language
keyword.

Contains an example of that language keyword in use. An
exampleis provided for every language keyword.

Contains alist of other entries in the Reference section that
relate either directly or indirectly to that language element.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Language Elements By Category

The following subsections list Basic Control Engine language elements by category.

GFK-1283G

Arrays
ArrayDims
ArraySort
Erase
LBound
Option Base
ReDim
UBound

Clipboard
Clipboard$ (function)
Clipboard$ (statement)
Clipboard.Clear
Clipboard.GetFormat
Clipboard.GetText
Clipboard.SetText

Comments

REM

Return the number of dimensions of an array

Sort an array

Erase the elements in one or more arrays

Return the lower bound of a given array dimension
Change the default lower bound for array declarations
Re-establish the dimensions of an array

Return the upper bound of a dimension of an array

Return the content of the clipboard as a string
Set the content of the clipboard

Clear the clipboard

Get the type of data stored in the clipboard
Get text from the clipboard

Set the content of the clipboard to text

Comment to end-of-line

Add a comment

Comparison operators

<

<=

<>

Introduction

Lessthan

Less than or equal to
Not equal

Equal

Greater than

Greater than or equal to

1-3



Controlling other programs

AppActivate
AppClose
AppFind
AppGetActive$
AppGetPosition
AppGetState
AppHide
AppList
AppMaximize
AppMinimize
AppMove
AppRestore
AppSetState
AppShow
AppSize
AppType
SendKeys

Shell

Activate an application

Close an application

Return the full name of an application
Return the name of the active application
Get the position and size of an application
Get the window state of an application
Hide an application

Fill an array with alist of running applications
Maximize an application

Minimize an application

Move an application

Restore an application

Set the state of an application's window
Show an application

Change the size of an application

Return the type of an application

Send keystrokes to another application
Execute another application

Controlling program flow

Cdl
Choose
Do...Loop

DoEvents (function)

DoEvents (statement)

End
Exit Do
Exit For

For...Next

GoSub

Goto
If...Then...Else
IIf

1-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

Call a subroutine

Return avalue at a given index

Execute a group of statements repeatedly
Yield control to other applications

Yield control to other applications

Stop execution of a script

Exit aDo loop

Exit a For loop

Repeat a block of statement a specified number of
times

Execute at a specific label, allowing control to return
later

Execute at a specific label
Conditionally execute one or more statements

Return one of two values depending on a condition

GFK-1283G



Main
Return
Select...Case

Sleep
Stop

Switch

While...Wend

Define a subroutine where execution begins
Continue execution after the most recent GoSub
Execute one of a series of statements

Pause for a specified number of milliseconds

Suspend execution, returning to a debugger (if
present)

Return one of a series of expressions depending on a
condition

Repeat a group of statements while a conditionis True

Controlling the operating environment

Command, Command$

Environm Environ$

Conversion
Asc
CBool
CCur
CDate
CDbl
Chr, Chr$
Cint
CLng
CSng
CStr
CVar
CVDate
CVErr
Hex, Hex$
IsDate
IsError

IsSNumeric
Oct, Oct$
Str, Str$
Va

Introduction

Return the command line

Return a string from the environment

Return the value of a character

Convert avalueto aBoolean

Convert avalueto Currency

Convert avalueto aDate

Convert avalueto aDouble

Convert a character value to a string
Convert avalueto an Integer

Convert avalueto alLong

Convert avalueto a Single

Convert avalueto a String

Convert avalueto aVariant

Convert avalueto aDate

Convert avalue to an error

Convert a number to a hexadecimal string
Determineif an expression is convertible to a date

Determine if a variant contains a user-defined error
vaue

Determine if an expression is convertible to a number
Convert anumber to an octal string
Convert a number to a string

Convert a string to a number

1-5



Data types
Boolean
Currency
Date
Double

HWND
Integer

Long

Object
Single

String

Variant

Database
SQLBind
SQLClose
SQLError
SQLExecQuery
SQL GetSchema
SQLOpen
SQLRequest
SQLRetrieve
SQLRetrieveToFile

Date/time
Date, Date$ (functions)
Date, Date$ (statements)
DateAdd
DateDiff
DatePart
DateSerial
DateValue

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

Data type representing True of False values
Data type used to hold monitary values
Data type used to hold dates and times

Data type used to hold real number with 15-16 digits
of precision

Data type used to hold windows

Data type used to hold whole numbers with 4 digits of
precision

Data type used to hold whole numbers with 10 digits
of precision

Data type used to hold OLE automation objects

Data type used to hold real number with 7 digits of
precision

Data type used to hold sequences of characters

Data type that holds a number, string, or OLE
automation objects

Specify where to place results with SQL Retrieve
Close a connection to a database

Return error information when an SQL function fails
Execute a query on a database

Return information about the structure of a database
Establishes a connection with a database

Run a query on a database

Retrieve all or part of aquery

Retrieve all or part of aquery, placing resultsin afile

Return the current date

Change the system date

Add anumber of date intervals to a date
Subtract a number of date intervals from a date
Return a portion of a date

Assemble a date from date parts

Convert a string to a date

GFK-1283G



Day
Hour
Minute
Month
Now
Second

Time, Time$ (functions)

Time, Time$
(statements)

Timer
TimeSerial
TimeValue
Weekday

Y ear

DDE
DDEExecute
DDElnitiate
DDEPoke

DDERequest,
DDERequest$

DDESend

DDETerminate
DDETerminateAll
DDETimeOut

Error handling
Erl
Err (function)
Err (statement)
Error
Error, Error$
On Error

Resume

Introduction

Return the day component of a date value
Return the hour part of a date value
Return the minute part of a date value
Return the month part of a date value
Return the date and time

Return the seconds part of a date value
Return the current system time

Set the system time

Return the number of elapsed seconds since midnight
Assemble a date/time value from time components
Convert a string to a date/time value

Return the day of the week of a date value

Return the year part of a date value

Execute a command in another application
Initiate a DDE conversation with another application
Set avalue in another application

Return a value from another application

Establishe a DDE conversation, then setsavaluein
another application

Terminate a conversation with another application
Terminate all conversations

Set the timeout used for non-responding applications

Return the line with the error

Return the error that caused the current error trap
Set the value of the error

Simulate a trappabl e runtime error

Return the text of a given error

Trap an error

Continue execution after an error trap

1-7



File 1/0
Close
Eof
FreeFile
Get
Input#
Input, Input$
Line Input #
Loc
Lock
Lof
Open
Print #
Put
Reset
Seek
Seek
UnLock
Width#
Write #

File system
ChDir
ChDrive
CurDir, CurDir$
Dir, Dir$
DiskDrives
DiskFree
FileAttr
FileCopy
FileDateTime
FileDirs
FileExists
FileLen
FileList
FileParse$

1-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

Close one or morefiles

Determine if the end-of-file has been reached
Return the next available file number

Read data from arandom or binary file

Read data from a sequential file into variables
Read a specified number of bytes from afile
Read aline of text from a sequential file
Return the record position of the file pointer within afile
Lock a section of afile

Return the number of bytesin an open file

Open afile for reading or writing

Print datato afile

Write datato a binary or random file

Close all openfiles

Return the byte position of the file pointer within afile
Set the byte position of the file pointer which afile
Unlock part of afile

Specify the line width for sequential files

Write data to a sequential file

Change the current directory

Change the current drive

Return the current directory

Return filesin a directory

Fill an array with valid disk drive letters
Return the free space on a given disk drive
Return the mode in which afileis open
Copy afile

Return the date and time when afile was last modified
Fill an array with a subdirectory list
Determineif afile exists

Return the length of afilein bytes

Fill an array with alist of files

Return a portion of afilename

GFK-1283G



GetAttr
Kill
MkDir
Name
RmDir
SetAttr

Financial
DDB

Fv
1Pmt

IRR

MIRR
NPer
Npv
Pmt
PPmt

Rate
Sn
SYD

Return the attributes of afile
Delete files from disk

Create a subdirectory
Rename afile

Remove a subdirectory

Change the attributes of afile

Return depreciation of an asset using double-declining
balance method

Return the future value of an annuity

Return the interest payment for a given period of an
annuity

Return the internal rate of return for a series of
payments and receipts

Return the modified internal rate of return
Return the number of periods of an annuity
Return the net present value of an annuity
Return the payment for an annuity

Return the principal payment for a given period of an
annuity

Return the present value of an annuity
Return the interest rate for each period of an annuity
Return the straight-line depreciation of an asset

Return the Sum of Y ears Digits depreciation of an
asset

Getting information from Basic Control Engine

Basic.Capability
Basic.Eoln$
Basic.FreeMemory
Basic.HomeDir$

Basic.0S
Basic.PathSeparator$

Basic.Version$

GFK-1283G Introduction

Return capabilities of the platform
Return the end-of-line character for the platform
Return the available memory

Return the directory where Basic Control Engineis
located

Return the platform id
Return the path separator character for the platform

Return the version of Basic Control Engine

1-9



1-10

INI Files
Readlni$
Read|I ni Section

Writel ni

Read a string from an INI file

Read all the item names from a given section of an INI
file

Write anew valueto an INI file

Logical/binary operators

And
Eqv
Imp
Not
Or

Xor

Math
Abs
Atn

Cos
Exp

Fix

Int

Log
Random
Randomize
Rnd
Sgn

Sin

Sor

Tan

Miscellaneous
0

Beep
Inline

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

Logical or binary conjunction
Logical or binary equivalence
Logical or binary implication
Logical or binary negation
Logical or binary disunction

Logical or binary exclusion

Return the absolute value of a number
Return the arc tangent of a number

Return the cosine of an angle

Return e raised to a given power

Return the integer part of a number

Return the integer portion of a number
Return the natural |ogarithm of a number
Return arandom number between two values
Initialize the random number generator
Generate a random number between 0 and 1
Return the sign of a number

Return the sine of an angle

Return the square root of a number

Return the tangent of an angle

Force parts of an expression to be evaluated before
others

Line continuation
Make a sound

Allow execution or interpretation of ablock of text

GFK-1283G



GFK-1283G

Numeric operators

*

+

/
\

AN

Mod

Objects
CreateObject
GetObject

Is

Nothing

Parsing
Item$
ItemCount
Line$
LineCount
Word$
WordCount

Multiply

Add

Subtract
Divide
Integer divide
Power

Remainder

Instantiate an OLE automation object

Return an OLE automation object from afile, or returns
aprevioudly instantiated OL E automation object

Compare two object variables
Valueindicating no valid object

Return arange of items from a string
Return the number of itemsin a string
Retrieve aline from a string

Return the number of linesin a string
Return a sequence of words from a string

Return the number of wordsin a string

Predefined dialogs

AnswerBox
AskBox$
AskPassword$
InputBox, | nputBox$
MsgBox (function)
MsgBox (statement)
OpenFilename$
SaveFilename$
SelectBox

Introduction

Display adialog asking a question

Display adialog allowing the user to type a response
Display adialog allowing the user to type a password
Display adialog allowing the user to type a response
Display a dialog containing a message and some buttons
Display a dialog containing a message and some buttons
Display adialog requesting afile to open

Display a dialog requesting the name of anew file

Display adialog allowing selection of an item from an
array

1-11



Printing
Print

Spc
Tab

Procedures
Declare
Exit Function
Exit Sub
Function...End
Sub...End

String operators

&
Like

Strings
Format, Format$
InStr
LCase, LCase$
Left, Left$
Len
L Set
LTrim, LTrim$
Mid, Mid$
Mid, Mid$
Option Compare
Option CStrings
Right, Right$
RSet
RTrim, RTrim$
Space, Space$
StrComp
String, String$
Trim, Trim$
UCase, UCase$

1-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

Print data to the screen
Print a number of spaceswithin a Print statement

Used with Print to print spaces up to a column
position

An external routine or aforward reference
Exit afunction

Exit a subroutine

Create a user-defined function

Create a user-defined subroutine

Concatenate two strings

Compare a string against a pattern

Return a string formatted to a given specification
Return the position of one string within another
Convert a string to lower case

Return the left portion of a string

Return the length of a string or the size of a dataitem
Left align a string or user-defined type within another
Remove leading spaces from a string

Return a substring from a string

Replace one part of a string with another

Change the default comparison between text and binary

Allow interpretation of C-style escape sequences in strings

Return the right portion of a string

Right align a string within another

Remove trailing spaces from a string

Return a string os spaces

Compare two strings

Return a string consisting of a repeated character
Trim leading and trailing spaces from a string

Return the upper case of a string

GFK-1283G



User dialogs
Begin Dialog
CancelButton
CheckBox
ComboBox

Dialog (function)

Dialog (statement)
DlgControlld
DlgEnable
DlgEnable
DlgFocus
DlgFocus
DlgListBoxArray

DlgListBoxArray

DlgSetPicture
DlgText (statement)
DlgText$ (function)
DlgValue (function)
DlgValue (statement)
DlgVisible (function)

DlgVisible (statement)

DropListBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
PictureButton
PushButton
Text

TextBox

Introduction

Begin definition of a dialog template

Define a Cancel button within a dialog template
Define a combo box in a dialog template
Define a combo box in adialog template

Invoke a user-dialog, returning which button was
selected

Invoke a user-dialog

Return theid of a control in adynamic dialog
Determineif a control isenabled in adynamic dialog
Enable or disables a control in adynamic dialog
Return the control with the focusin adynamic dialog
Set focus to a control in a dynamic dialog

Set the content of alist box or combo box in a
dynamic dialog

Set the content of alist box or combo box in a
dynamic dialog

Set the picture of a control in adynamic dialog

Set the content of a control in adynamic dialog
Return the content of a control in a dynamic dialog
Return the value of a control in a dynamic dialog
Set the value of a control in a dynamic dialog
Determineif a control isvisible in adynamic dialog
Set the visibility of acontrol in adynamic dialog
Define adrop list box in adialog template

Define a group box in a dialog template

Add alist box to adialog template

Add an OK button to a dialog template

Add an option button to a dialog template

Add an option group to a dialog template

Add a picture control to a dialog template

Add a picture button to a dialog template

Add a push button to a dialog template

Add atext control to adialog template

Add atext box to adialog template

1-13



Variables and constants

Const
DefBool
DefCur
DefDate
DefDbl
DefInt
DefLng
DefObj
DefSng
DefStr
DefVar
Dim
Global
Let
Private
Public

Set
Type

Variants
ISEmpty
IsError
IsMissing
ISNull
IsObject
VarType

Assignment

Define a constant

Set the default data type to Boolean

Set the default data type to Currency

Set the default data type to Date

Set the default data type to Double

Set the default data type to Integer

Set the default data type to Long

Set the default data type to Object

Set the default data type to Single

Set the default data type to String

Set the default data type to Variant

Declare alocal variable

Declare variables for sharing between scripts
Assign avalueto avariable

Declare variables accessible to all routines in a script

Declare variables accessible to all routinesin all
scripts

Assign an object variable

Declare a user-defined data type

Determine if avariant has been initialized
Determine if avariant contains a user-defined error
Determineif an optional parameter was specified
Determineif avariant contains valid data
Determine if an expression contains an object

Return the type of data stored in a variant

1-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Symbols

& (operator)

Syntax
Description
Comments

Example

See Also

expressionl & expression2
Returns the concatenation of expressionl and expression?2.

If both expressions are strings, then the type of the result is St r i ng. Otherwise, the type of the
resultisa St ri ng variant.

When nonstring expressions are encountered, each expression is convertedtoaSt ri ng variant.
If both expressionsare Nul | ,thena Nul | variant isreturned. If only one expressionisNul | ,
then it istreated as a zero-length string. Enpt y variants are also treated as zero-length strings.

In many instances, the plus (+) operator can be used in place of &. The differenceisthat +
attempts addition when used with at least one numeric expression, whereas & always concatenates.

This example assigns a concatenated string to variable s$ and a string to s23$, then concatenates
the two variables and displays the result in a dialog box.

Sub Mai n()
s$ = "This string" & " is concatenated"
s2% =" with the '& operator.”
MsgBox s$ & s2$

End Sub

+ (operator); Operator Precedence (topic).

' (keyword)

Syntax
Description
Comments
Example

See Also

GFK-1283G

' text
Causes the compiler to skip all characters between this character and the end of the current line.
Thisisvery useful for commenting your code to make it more readable.

Sub Mai n()
"This whole line is treated as a conment.
i$ = "Strings" "This is a valid assignment with a nment.
This line will cause an error (the apostrophe is mssing).
End Sub

Rem(statement); Comments (topic).

2-1



() (keyword)

Syntax 1 ...( expression) ...

Syntax 2 ...,( parameter) ,...

Description Forces parts of an expression to be evaluated before others or forces a parameter to be passed by
vaue.

Comments Parentheses within Expressions

Parentheses override the normal precedence order of the scripts operators, forcing a subexpression
to be evaluated before other parts of the expression. For example, the use of parentheses in the
following expressions causes different results:

1+2*3 ' Assigns 7.
(1 +2) *3 " Assigns 9.

Use of parentheses can make your code easier to read, removing any ambiguity in complicated
expressions.

Parentheses Used in Parameter Passing

Parentheses can also be used when passing parameters to functions or subroutines to force agiven
parameter to be passed by value, as shown below:

ShowFor m i '"Pass i by reference.
ShowForm (i) 'Pass i by val ue.

Enclosing parameters within parentheses can be misleading. For example, the following statement
appears to be calling afunction called Showor mwithout assigning the result:

ShowFor (i)

The above statement actually calls a subroutine called Showor m passing it the variablei by
value. It may be clearer to use the By Val keyword in this case, which accomplishes the same
thing:

ShowFor m ByVal i

The result of an expression is always passed by value.

Example This example uses parentheses to clarify an expression.
Sub Mai n()
bill = Fal se
dave = True
jim= True

If (dave And bill) O (jimAnd bill) Then
Msgbox "The required parties for the neeting are here."
El se
MsgBox "Someone is late for the neeting!"
End |f
End Sub

See Also ByVal (keyword); Operator Precedence (topic).

2-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



* (operator)

Syntax
Description

Comments

Example

See Also

GFK-1283G

expressionl * expression2
Returns the product of expressionl and expression2.

Theresult is the same type as the most precise expression, with the following exceptions:

If one and the other then the type
expression is  expression is the result is
Si ngl e Long Doubl e

Bool ean Bool ean I nt eger

Dat e Dat e Doubl e

When the * operator is used with variants, the following additional rules apply:
 Enpty istreated asO.

« |f thetypeof theresultisan | nt eger variant that overflows, then theresult is
automatically promoted to aLong variant.

« |Ifthetypeof theresultisaSi ngl e, Long, or Dat e variant that overflows, then
the result is automatically promoted to a Doubl e variant.

* |Ifexpressionlis Nul | and expression2isBool ean, thentheresultisEnmpty.
Otherwise, If either expressionisNul | , thentheresultisNul | .

This example assigns values to two variables and their product to athird variable, then displays
the product of s#* t#.

Sub Mai n()

s# = 123.55

t# = 2.55

U# = s# * t#

MsgBox s# & " * " & t# & " =" & s# * t#
End Sub

Operator Precedence (topic).

Symbols

2-3



+ (operator)

Syntax
Description

Comments

2-4

expressionl + expression2
Adds or concatenates two expressions.

Addition operates differently depending on the type of the two expressions:

If one and the other

expressionis  expression is then

Numeric Numeric Perform a numeric add (see below).
String String Concatenate, returning a string.

Nurreri c String A runtime error is generated.

Vari ant String Concatenate, returning aSt r i ng variant.
Vari ant Nureri c Perform avariant add (see below).

Enpt y variant Enpt y variant Returnan | nt eger variant, value 0.

Enpt y variant Bool ean variant  Returnan| nt eger variant (valueO or - 1)

Enpt y variant Any data type Return the non-Enpt y expression unchanged.
Nul | variant Any datatype Return Nul | .
Var i ant Vari ant If either is numeric, add; otherwise, concatenate.

When using + to concatenate two variants, the result depends on the types of each variant at
runtime. Y ou can remove any ambiguity by using the & operator.

Numeric Add

A numeric add is performed when both expressions are numeric (i.e., not variant or string). The
result is the same type as the most precise expression, with the following exceptions..

If one and the other then the type
expression is  expression is the result is
Si ngl e Long Doubl e

Bool ean Bool ean I nt eger

A runtime error is generated if the result overflowsits legal range
Variant Add

If both expressions are variants, or one expression is numeric and the other expressionis
Var i ant , then avariant add is performed. The rules for variant add are the same as those for
normal numeric add, with the following exceptions:

« Ifthetypeof theresultisan| nt eger variant that overflows, then theresultisa
Long variant.

» If thetype of theresultisaLong, Si ngl e, or Dat e variant that overflows, then
theresultisaDoubl e variant.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Example This example assigns string and numeric variable values and then uses the + operator to
concatenate the strings and form the sums of numeric variables.

Sub Mai n()
i$ = "concatenate " + "strings!"
j%=95 +5 "Addition of nuneric literals
kit = %+ % "Addition of nuneric variable
MsgBox "You can " + i $
MsgBox "You can add literals or variables:" + Str(j% + ", " + Str(k#)
End Sub
See Also & (operator); Operator Precedence (topic).
- (operator)
Syntax 1 expressionl — expression2
Syntax 2 —expression
Description Returns the difference between expressionl and expression2 or, in the second syntax, returns the
negation of expression.
Comments Syntax 1
The type of the result is the same as that of the most precise expression, with the following
exceptions:
If one and the other then the type
expression is  expression is the result is
Long Si ngl e Doubl e
Bool ean Bool ean I nt eger

A runtime error is generated if the result overflowsits legal range.
When either or both expressions are Var i ant , then the following additional rules apply:

* IfexpressionlisNul | and expression2isBool ean, thentheresultisEnmpty.
Otherwise, if either expressionisNul | , thentheresultisNul | .

e Enptyistreatedasan| nt eger of valueO.

« |f thetypeof theresultisan| nt eger variant that overflows, then theresultisa
Long variant.

» |If thetype of theresultisalLong, Si ngl e, or Dat e variant that overflows, then
theresultisaDoubl e variant.

Syntax 2

If expression is numeric, then the type of the result is the same type as expression, with the
following exception:

* |If expressionisBool ean, thentheresultis| nt eger .

GFK-1283G Symbols 2-5



Example

See Also

In 2's compliment arithmetic, unary minus may result in an overflow with | nt eger and Long
variables when the value of expression is the largest negative number representable for that data
type. For example, the following generates an overflow error:

Sub Mai n()

Dima As |nteger

a = -32768

a=-a '<-- Generates overflow here.
End Sub

When negating variants, overflow will never occur because the result will be automatically
promoted: integers to longs and longs to doubles.

This example assigns values to two numeric variables and their difference to a third variable, then
displays the resullt.

Sub Mai n()

i %= 100

j# = 22.55

k## = 1%- j#

MsgBox "The difference is: " & k#
End Sub

Operator Precedence (topic).

. (keyword)

Syntax 1
Syntax 2
Description

Examples

See Also

2-6

object. property

structure.member

Separates an object from a property or a structure from a structure member.
This example uses the period to separate an object from a property.

Sub Main()
MsgBox "The clipboard text is: " & Clipboard.GetText()
End Sub

This example uses the period to separate a structure from a member.

Type Rect
left As Integer
top As Integer
right As Integer
bottom As | nteger
End Type

Sub Mai n()

Dimr As Rect

r. left =10

r. rigth = 12

Msgbox "r.left ="&r.left &", r.right =" &r.right
End Sub

Objects (topic).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



/ (operator)

Syntax expressionl/ expression2
Description Returns the quotient of expressionl and expression2.
Comments The type of theresult is Doubl e, with the following exceptions:
If one and the other then the type
expression is expression is the result is
I nt eger I nt eger Si ngl e
Si ngl e Si ngl e Si ngl e
Bool ean Bool ean Si ngl e

A runtime error is generated if the result overflows its legal range.
When either or both expressionsis Var i ant , then the following additiona rules apply:

e IfexpressionlisNul | and expression2isBool ean, thentheresultisEnpty.
Otherwise, if either expressionisNul | , then theresultisNul | .

e Enpty istreated asan| nt eger of valueO.

« If both expressions are either | nt eger or Si ngl e variants and the result overflows,
then the result is automatically promoted to a Doubl e variant.

Example This example assigns values to two variables and their quotient to a third variable, then displays the
result.

Sub Mai n()

i %= 100

j# = 22.55

kt = 1%/ j#

MsgBox "The quotient of i/j is: " & k#
End Sub

See Also \ (operator); Operator Precedence (topic).

< (operator)

See Comparison Operators (topic).

<= (operator)

See Comparison Operators (topic).

GFK-1283G Symbols 2-7



<> (operator)

See Comparison Operators (topic).

= (statement)

Syntax variable = expression

Description Assigns the result of an expression to avariable.

Comments When assigning expressions to variables, internal type conversions are performed automatically
between any two numeric quantities. Thus, you can freely assign numeric quantities without regard
to type conversions. However, it is possible for an overflow error to occur when converting from
larger to smaller types. This occurs when the larger type contains a numeric quantity that cannot be
represented by the smaller type. For example, the following code will produce a runtime error:

Di m anobunt As Long

Dimquantity As |nteger

anmount = 400123 "Assign a value out of range for int.

quantity = anount "Attenpt to assign to |nteger.
When performing an automatic data conversion, underflow is not an error.
The assignment operator (=) cannot be used to assign objects. Usethe Set  statement instead.

a$ = "This is a string"

b% = 100

c# = 1213.3443

MsgBox a$ & "," & b% & "," & c#
End Sub

See Also Let (statement); Operator Precedence (topic); Set (statement); Expression Evaluation (topic).

= (operator)

See Comparison Operators (topic).

> (operator)

2-8

See Comparison Operators (topic).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



>= (operator)

See Comparison Operators (topic).

\ (operator)

Syntax
Description

Comments

Example

See Also

GFK-1283G

expressionl\ expression2
Returns the integer division of expressionl and expression2.

Before the integer division is performed, each expression is converted to the data type of the most
precise expression. If the type of the expressionsis either Si ngl e, Doubl e, Date, or
Cur r ency, then each isrounded to Long.

If either expressionisaVar i ant , then the following additional rules apply:
e If either expressionisNul | , thentheresultisNul | .
e Enpty istreated asan| nt eger of valueO.

This example assigns the quotient of two literalsto a variable and displays the resullt.

Sub Mai n()

s% = 100.99 \ 2.6

MsgBox "I nteger division of 100.99\2.6 is: " & s%
End Sub

|/ (operator); Operator Precedence (topic).

Symbols

2-9



A (operator)

Syntax expressionl N expression2
Description Returns expressionl raised to the power specified in expression2.
Comments The following are specia cases:

Special Case Value

n~0 1

0”-n Undefined

0N +n 0

1™n 1

The type of theresult is always Doubl e, except with Bool ean expressions, in which case the
result isBool ean. Fractional and negative exponents are allowed.

If either expressionisaVar i ant containing Nul | , thentheresultisNul | .

It isimportant to note that raising a number to a negative exponent produces a fractional result.

s# =275 "Returns 2 to the 5'" power.
r# =16 ~ .5 'Returns the square root of 16.

MsgBox "2 to the 5'" power is: " & s#
MsgBox "The square root of 16 is: " & r#
End Sub

See Also Operator Precedence (topic).

2-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



_ (keyword)

Syntax

Description

Comments

Example

GFK-1283G

s$ = "This is a very long line that | want to split " & _
"onto two |ines"

Line-continuation character, which allows you to split a single script onto more than one line.

The line-continuation character cannot be used within strings and must be preceded by white space

(either a space or atab).
The line-continuation character can be followed by a comment, as shown below:
i =5 +6 & _ "Continue on the next line.
"Hel | o"
Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()

"The line-continuation operator is useful when concatenating
"long strings.

msgl = "This line is a line of text that" & crlf & "extends beyond " _
& "the borders of the editor” & crlf & "so it is split into " _
& "multiple lines"

"It is also useful for separating and continuing |ong cal culation |ines.

b# = .124
a# = .223
s# = ( (((Sin(b#) " 2) + (Cos(a#) " 2)) ~ .5) | _

(((Sin(a#) ~ 2) + (Cos(b#) ~ 2)) ~ .5) ) * 2.00
MsgBox megl & crlf & crlf & "The value of s# is: " & s#
End Sub

Symbols

2-11






Abs (function)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Abs (expression)

Returns the absolute value of expression.

If expression is Nul | , then Nul | is returned. Enpt vy is treated as O.

The type of the result is the same as that of expression, with the following exceptions:

e Ifexpressionisan| nt eger that overflows its legal range, then the result is returned
as a Long. This only occurs with the largest negative | nt eger :

Dima As Variant
Dimi As Integer
i = -32768
a = Abs(i) "Result is a Long.
i = Abs(i) "Qverfl ow
e If expression is a Long that overflows its legal range, then the result is returned as a
Doubl e. This only occurs with the largest negative Long:
Dima As Variant
Dim| As Long
| = -2147483648
a = Abs(l) "Result is a Double.
I = Abs(l) "Overfl ow

If expression is a Cur r ency value that overflows its legal range, an overflow error is
generated.

This example assigns absolute values to variables of four types and displays the result.

Sub Mai n()

s1% = Abs(-10. 55)

s2& = Abs(-10. 55)

s3! = Abs(-10.55)

s4# = Abs(-10. 55)

MsgBox "The absolute values are: " & s1% & "," & s2& & "," & s3! & "," & s4#
End Sub

Sgn (function).



And (operator)

Syntax
Description

Comments

Example

See Also

3-2

expressionl And expression2

Performs a logical or binary conjunction on two expressions.

If both expressions are either Bool ean,

conjunction is performed as follows:

If the first
expression is

and the second
expression is

True
True
True
Fal se
Fal se
Fal se
Nul |
Nul |
Nul |

True
Fal se
Nul |
True
Fal se
Nul |
True
Fal se
Nul |

Binary Conjunction

Bool ean variants, or Nul | variants, then a logical

then the
result is

True

Fal se

Nul |

Fal se

Fal se

Nul |
Nul |

Fal se

Nul |

If the two expressions are | nt eger , then a binary conjunction is performed, returning an
I nt eger result. All other numeric types (including Enpt y variants) are converted to Long, and a
binary conjunction is then performed, returning a Long result.

Binary conjunction forms a new value based on a bit-by-bit comparison of the binary

representations of the two expressions according to the following table:

1 And 1
0 And 1
1 And 0
0 And 0
Sub Mai n()

nl = 1001

n2 = 1000

bl = True

b2 = Fal se

' Thi s exanpl e perfor

= 1

0
= 0
0

"the result in N3.

n3 = nl And n2

If bl And b2 Then

Example:

5
6
And

MsgBox "bl And b2 are True; n3 is: " & n3
El se
MsgBox "bl And b2 are False; n3 is: " & n3
End |f
End Sub

CIMPLICITY HMI Basic Control Engine Language Reference Manual-July2001

00001001

00001010

00001000

ms a nuneric bitwi se And operation and stores

'This exanple performs a | ogical And conparing bl and b2 and displ ays
"the result.

Operator Precedence (topic); Or (operator); Xor (operator); EqQv (operator); | np (operator).

GFK-1283G



AnswerBox (function)

Syntax

Description

Comments

GFK-1283G

Answer Box (prompt [,[buttonl] [,[button2] [,button3]]111)

Displays a dialog box prompting the user for a response and returns an | nt eger indicating
which button was clicked (1 for the first button, 2 for the second, and so on).

The Answer Box function takes the following parameters:

Parameter Description

prompt Text to be displayed above the text box. The prompt parameter can be any
expression convertibletoa St ri ng.

The Basic Control Engine script resizes the dialog box to hold the entire
contents of prompt, up to a maximum width of 5/8 of the width of the screen
and a maximum height of 5/8 of the height of the screen. It also word-wraps
any lines too long to fit within the dialog box and truncates all lines beyond
the maximum number of lines that fit in the dialog box.

You can insert a carriage-return/line-feed character in a string to cause a line
break in your message.

A runtime error is generated if this parameter is Nul | .

buttonl Text for the first button. If omitted, then "OK" and "Cancel" are used. A
runtime error is generated if this parameter is Nul | .

button2 Text for the second button. A runtime error is generated if this parameter is
Nul I .

button3 Text for the third button. A runtime error is generated if this parameter is
Nul | .

The width of each button is determined by the width of the widest button.
The Answer Box function returns 0 if the user selects Cancel.
r% = Answer Box(" Copy fil es?")

Copy files?

0K Cancel I

r% = Answer Box(" Copy files?","Save", "Restore", "Cancel ")

Copy files?

| Restore I | Cancel I

3-3



Example This example displays a dialog box containing three buttons. It displays an additional message
based on which of the three buttons is selected.
Sub Mai n()

r% = Answer Box(" Tenporary File Operation?","Save", "Renove", "Cancel ")
Sel ect Case r%

Case 1
MsgBox "Files will be saved."

Case 2
MsgBox "Files will be renoved."

Case El se
MsgBox "Operation cancel ed. "

End Sel ect
End Sub
See Also MsgBox (statement); AskBox$ (function); AskPasswor d$ (function); | nput Box,

I nput Box$ (functions); OpenFi | enane$ (function); SaveFi | enanme$ (function);
Sel ect Box (function).

Notes: Answer Box displays all text in its dialog box in 8-point MS Sans Serif.

Any (data type)

Description Used with the Decl ar e statement to indicate that type checking is not to be performed with a
given argument.

Comments Given the following declaration:
Decl are Sub Foo Lib "FOO DLL" (a As Any)

the following calls are valid:

Foo 10
Foo "Hello, world."

Example The following example calls the FindWindow to determine if Program Manager is running.

This example uses the Any keyword to pass a NULL pointer, which is accepted by the
FindWindow function.

Decl are Function FindWndowl6 Lib "user" Alias "Fi ndWndow' (ByVal O ass _
As Any,ByVal Title As Any) As |nteger
Decl are Function FindWndow32 Lib "user32" Alias "FindWndowA" (ByVal d ass _
As Any,ByVal Title As Any) As Long
Sub Mai n()
Di m hwhd As Vari ant
If Basic.0Os = ebWnl6 Then
hwid = Fi ndW ndowl6( " PROGVAN', 0&)
El sel f Basic.C0s = ebWn32 Then
hwid = Fi ndW ndow32( " PROGVAN', 0&)
El se
hwid = 0
End |f
If hwid <> 0 Then
MsgBox " Program manager is running, wi ndow handle is " & hwd
End |f
End Sub

See Also Decl ar e (statement).

3-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July2001 GFK-1283G



AppActivate (statement)

Syntax
Description

Comments

Examples

See Also

Notes:

GFK-1283G

AppAct i vat e name$ | tasklD
Activates an application given its name or task ID.

The AppAct i vat e statement takes the following parameters:

Parameter Description
name$ St ri ng containing the name of the application to be activated.
taskiD Number specifying the task ID of the application to be activated. Acceptable task

IDs are returned by the Shel | function

When activating applications using the task ID, it is important to declare the variable used to hold
the task ID as a Var i ant . The type of the ID depends on the platform on which The Basic Control
Engine script is running.

This example activates Program Manager.

Sub Mai n()
AppActi vate "Program Manager"
End Sub

This example runs another application, activates it, and maximizes it.

Sub Mai n()
Dimid as variant
id = Shell ("notepad. exe") "Run Not epad mi nim zed.
AppActivate id ' Now acti vate Notepad.
AppMaxi m ze

End Sub

Shel | (function); SendKeys (statement); W nAct i vat e (statement).

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

Minimized applications are not restored before activation. Thus, activating a minimized DOS
application will not restore it; rather, it will highlight its icon.

A runtime error results if the window being activated is not enabled, as is the case if that
application is currently displaying a modal dialog box.



AppClose (statement)

Syntax AppC ose [name$]
Description Closes the named application.
Comments The name$ parameter is a St r i ng containing the name of the application. If the name$ parameter
is absent, then the AppCl ose statement closes the active application.
Example This example activates Excel, then closes it.
Sub Mai n()
I f AppFind$("Mcrosoft Excel") = "" Then'Make sure Excel is there.
MsgBox "Excel is not running."
Exit Sub
End If
AppActivate "M crosoft Excel" "Activate it (unnecessary).
Appd ose "M crosoft Excel " ‘Close it.
End Sub
See Also AppMaxi mi ze (statement); AppM ni m ze (statement); AppRest or e (statement); AppMove

(statement); AppSi ze (statement).

Notes: A runtime error results if the application being closed is not enabled, as is the case if that
application is currently displaying a modal dialog box.

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

3-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July2001 GFK-1283G



AppFind$ (function)

Syntax
Description

Comments

Example

See Also

Notes:

AppFi nd$( partial_name$)
Returns a St r i ng containing the full name of the application matching the partial_name$.

The partial_name$ parameter specifies the title of the application to find. If there is no exact
match, the script will find an application whose title begins with partial_name$.

AppFi nd$ returns a zero-length string if the specified application cannot be found.

AppFi nd$ is generally used to determine whether a given application is running. The following
expression returns Tr ue if Microsoft Word is running:

AppFi nd$("M crosoft Wrd")

This example checks to see whether Excel is running before activating it.

Sub Mai n()
I f AppFind$("M crosoft Excel") <> "" Then
AppActivate "M crosoft Excel"
El se
MsgBox "Excel is not running."
End | f
End Sub

AppFi | eNane$ (function).

This function returns a St r i ng containing the exact text appearing in the title bar of the active
application’s main window.

AppGetActive$ (function)

Syntax
Description

Comments

Example

See Also

Notes:

GFK-1283G

AppGet Acti ve$()
Returns a St r i ng containing the name of the application.
If no application is active, the AppGet Act i ve$ function returns a zero-length string.

You can use AppGet Act i ve$ to retrieve the name of the active application. You can then use this
name in calls to routines that require an application name.

Sub Mai n()
n$ = AppCet Active$()
AppM ni mi ze n$

End Sub

AppAct i vat e (statement); W nFi nd (function).

This function returns a St r i ng containing the exact text appearing in the title bar of the active
application’s main window.



AppGetPosition (statement)

Syntax AppGet Posi ti on X,Y,width,height [,name$]
Description Retrieves the position of the named application.
Comments The AppGetPosition statement takes the following parameters:
Parameter Description
X, Y Names of | nt eger variables to receive the position of the application's
window.
width, height Names of | nt eger variables to receive the size of the application's window.
name$ St ri ng containing the name of the application. If the name$ parameter is

omitted, then the active application is used.

The x, y, width, and height variables are filled with the position and size of the application's
window. If an argument is not a variable, then the argument is ignored, as in the following example,
which only retrieves the x and y parameters and ignores the width and height parameters:

Dimx As Integer,y As I|Integer
AppGet Position x,vy,0,0,"Program Manager"

Dimx As Integer,y As I|Integer

Dimcx As Integer,cy As Integer
AppGet Posi tion x,vY, cx, cy, " Program Manager"

End Sub
See Also AppMove (statement); AppSi ze (statement).
Notes: The position and size of the window are returned in twips.

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

3-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July2001 GFK-1283G



AppGetState (function)

Syntax
Description

Comments

Examples

See Also

Notes:

GFK-1283G

AppGet St at e[([name$])]
Returns an | nt eger specifying the state of the top-level window.
The AppGet St at e function returns any of the following values:

If the window is then AppGetState returns

Maximized ebMaxi m zed
Minimized ebM ni m zed
Restored ebRest or ed

The name$ parameter is a St r i ng containing the name of the desired application. If it is omitted,
then the AppGet St at e function returns the name of the active application.

This example saves the state of Program Manager, changes it, then restores it to its original setting.

Sub Mai n()
I f AppFi nd$("Program Manager") = "" Then
MsgBox "Can't find Program Manager."
Exit Sub
End | f
AppActi vate "Program Manager" ' Activate Program Manager.
state = AppGet State 'Save its state.
AppM ni mi ze 'Mnimze it.

MsgBox " Program Manager is now minimzed. Select OKto restore it."
AppActi vate "Program Manager"
AppSet State state 'Restore it.

End Sub

AppMaxi m ze (statement); AppM ni i ze (statement); AppRest or e (statement).

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

3-9



AppHide (statement)

Syntax AppHi de [name$]
Description Hides the named application.
Comments If the named application is already hidden, the AppHi de statement will have no effect.

The name$ parameter is a St r i ng containing the name of the desired application. If it is omitted,
then the AppHi de statement hides the active application.

AppH de generates a runtime error if the named application is not enabled, as is the case if that
application is displaying a modal dialog box.

Example This example hides Program Manager.
Sub Mai n()
' See whet her Program Manager is running.
I f AppFind$("Program Manager") = "" Then Exit Sub

AppHi de " Program Manager"
MsgBox " Program Manager is now hidden. Press OK to show it once again."
AppShow " Program Manager"

End Sub
See Also AppShow (statement).
Notes: The name$ parameter is the exact string appearing in the title bar of the named application's main

window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

3-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July2001 GFK-1283G



AppList (statement)

Syntax AppLi st AppNames$()
Description Fills an array with the names of all open applications.
Comments The AppNames$ parameter must specify either a zero- or one-dimensioned dynamic St ri ng array

or a one-dimensional fixed St r i ng array. If the array is dynamic, then it will be redimensioned to
match the number of open applications. For fixed arrays, AppLi st first erases each array element,
then begins assigning application names to the elements in the array. If there are fewer elements
than will fit in the array, then the remaining elements are unused. The script returns a runtime error
if the array is too small to hold the new elements.

After calling this function, you can use LBound and UBound to determine the new size of the
array.

Example This example minimizes all applications on the desktop.

Sub Mai n()
Di m apps$()
AppLi st apps
' Check to see whether any applications were found.
If ArrayDins(apps) = 0 Then Exit Sub
For i = LBound(apps) To UBound(apps)
AppM ni m ze apps(i)
Next i
End Sub

Notes: The name of an application is considered to be the exact text that appears in the title bar of the
application’s main window.

GFK-1283G A 3-11



AppMaximize (statement)

Syntax AppMaxi m ze [name$]
Description Maximizes the named application.
Comments The name$ parameter is a St r i ng containing the name of the desired application. If it is omitted,
then the AppMaxi m ze function maximizes the active application.
AppMaxi mi ze "Program Manager" ' Maximize Program Manager.
| f AppFind$("NotePad") <> "" Then
AppActi vate " Not ePad" 'Set the focus to NotePad.
AppMaxi m ze ‘Maximze it.
End If
End Sub
See Also AppM ni ni ze (statement); AppRest or e (statement); AppMove (statement); AppSi ze

(statement); AppCl ose (statement).
Notes: If the named application is maximized or hidden, the AppMaxi m ze statement will have no effect.

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

AppMaxi m ze generates a runtime error if the named application is not enabled, as is the case if
that application is displaying a modal dialog box.

3-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July2001 GFK-1283G



AppMinimize (statement)

Syntax AppM ni ni ze [name$]
Description Minimizes the named application.
Comments The name$ parameter is a St r i ng containing the name of the desired application. If it is omitted,
then the AppM ni mi ze function minimizes the active application.
AppM ni mi ze "Program Manager" ' Maximi ze Program Manager.

I f AppFind$(" NotePad") <> "" Then

AppActi vate " Not ePad" 'Set the focus to NotePad.
AppM ni mi ze ‘Maximze it.
End |f
End Sub
See Also AppMaxi mi ze (statement); AppRest or e (statement); AppMove (statement); AppSi ze

(statement); AppCl ose (statement).
Notes: If the named application is minimized or hidden, the AppM ni mi ze statement will have no effect.

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

AppM ni mi ze generates a runtime error if the named application is not enabled, as is the case if
that application is displaying a modal dialog box.

GFK-1283G A 3-13



AppMove (statement)

Syntax AppMove X, Y [,name$]
Description Sets the upper left corner of the named application to a given location.
Comments The AppMove statement takes the following parameters:

Parameter Description

X, Y I nt eger coordinates specifying the upper left corner of the new location of the
application, relative to the upper left corner of the display.

name$ St ri ng containing the name of the application to move. If this parameter is
omitted, then the active application is moved.

Example This example activates Program Manager, then moves it 10 pixels to the right.
Sub Mai n()
Dim x% y%
AppActi vate "Program Manager" " Activate Program Manager.
AppCet Position x%y%O0,0 '"Retrieve its position.
X% = x% + Screen. Twi psPerPi xel X * 10 'Add 10 pixels.
AppMove x% + 10, y% "Nudge it 10 pixels to the right.
End Sub

See Also AppMaxi mi ze (statement); AppM ni m ze (statement); AppRest or e (statement); AppSi ze
(statement); AppCl ose (statement).

Notes: If the named application is maximized or hidden, the AppMove statement will have no effect.
The X and Y parameters are specified in twips.
AppMove will accept X and Y parameters that are off the screen.

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

AppMove generates a runtime error if the named application is not enabled, as is the case if that
application is currently displaying a modal dialog box.

3-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July2001 GFK-1283G



AppRestore (statement)

Syntax AppRest or e [name$]
Description Restores the named application.
Comments The name$ parameter is a St r i ng containing the name of the application to restore. If this
parameter is omitted, then the active application is restored.
Example This example minimizes Program Manager, then restores it.
Sub Mai n()
I f AppFind$("Program Manager") = "" Then Exit Sub

AppActi vate "Program Manager"
AppM ni m ze " Program Manager"
MsgBox "Program Manager is now mnimzed. Press OKto restore it."
AppRest ore "Program Manager"
End Sub
See Also AppMaxi i ze (statement); AppM ni mi ze (statement); AppMove (statement); AppSi ze

(statement); AppCl ose (statement).

Notes: The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

AppRest or e will have an effect only if the main window of the named application is either
maximized or minimized.

AppRest or e will have no effect if the named window is hidden.

AppRest or e generates a runtime error if the named application is not enabled, as is the case if
that application is currently displaying a modal dialog box.

GFK-1283G A 3-15



AppSetState (statement)

Syntax
Description

Comments

Example

See Also

Notes:

3-16

AppSet St at e newstate [,name$]
Maximizes, minimizes, or restores the named application, depending on the value of newstate.

The AppSet St at e statement takes the following parameters:

Parameter Description
newstate I nt eger specifying the new state of the window. It can be any of the
following values
Value Description
ebMaxi m zed The named application is maximized.
ebM ni i zed The named application is minimized.
ebRest ored The named application is restored.
name$ St ri ng containing the name of the application to change. If this parameter

is omitted, then the active application is used.

This example saves the state of Program Manager, changes it, then restores it to its original setting.

Sub Mai n()
I f AppFind$("Program Manager") = "" Then
MsgBox "Can't find Program Manager."
Exit Sub
End |f
AppActi vate "Program Manager" " Activate Program Manager.
state = AppCet State 'Save its state.
AppM ni m ze "Mnimze it.

MsgBox " Program Manager is now minimzed. Select OKto restore it."
AppActi vate "Program Manager"
AppSet State state 'Restore it.

End Sub

AppGCet St at e (function); AppM ni m ze (statement); AppMaxi i ze (statement);
AppRest or e (statement).

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

CIMPLICITY HMI Basic Control Engine Language Reference Manual-July2001 GFK-1283G



AppShow (statement)

Syntax AppShow [name$]
Description Makes the named application visible.
Comments The name$ parameter is a St r i ng containing the name of the application to show. If this
parameter is omitted, then the active application is shown.
Example This example hides Program Manager.
Sub Mai n()
' See whet her Program Manager is running.
I f AppFind$("Program Manager") = "" Then Exit Sub

AppHi de " Program Manager"
MsgBox "Program Manager is now hidden. Press OK to show it once again."
AppShow " Pr ogr am Manager "

End Sub
See Also AppHi de (statement).
Notes: If the named application is already visible, AppShow will have no effect.

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

AppShow generates a runtime error if the named application is not enabled, as is the case if that
application is displaying a modal dialog box.

GFK-1283G A 3-17



AppSize (statement)

Syntax AppSi ze width,height [,name$]
Description Sets the width and height of the named application.
Comments The AppSi ze statement takes the following parameters:
Parameter Description
width, height I nt eger coordinates specifying the new size of the application.
name$ St ri ng containing the name of the application to resize. If this parameter is
omitted, then the active application is used.
Example This example enlarges the active application by 10 pixels in both the vertical and horizontal
directions.
Sub Mai n()
Di m w4 h%
AppCet Posi tion 0,0, w4 h% 'Get current w dth/height.

X% = x% + Screen. Twi psPerPi xel X * 10 'Add 10 pixels.
y% = y% + Screen. Twi psPerPixelY * 10 'Add 10 pi xel s.

AppSi ze W% h% ' Change to new si ze.
End Sub
See Also AppMaxi mi ze (statement); AppM ni m ze (statement); AppRest or e (statement); AppMove

(statement); AppCl ose (statement).
Notes: The width and height parameters are specified in twips.

This statement will only work if the named application is restored (i.e., not minimized or
maximized).

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

A runtime error results if the application being resized is not enabled, which is the case if that
application is displaying a modal dialog box when an AppSi ze statement is executed.

3-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July2001 GFK-1283G



AppType (function)

Syntax

Description

Comments

Example

See Also

Notes:

GFK-1283G

AppType [(name$)]

Returns an | nt eger indicating the executable file type of the named application:
ebDos DOS executable
ebW ndows Windows executable

The name$ parameter is a St r i ng containing the name of the application. If this parameter is
omitted, then the active application is used.

This example creates an array of strings containing the names of all the running Windows
applications. It uses the AppType command to determine whether an application is a Windows
application or a DOS application.

Sub Mai n()
D m apps$() , wapps$()
ApplLi st apps '"Retrieve a list of all Wndows and DCS apps.

If ArrayDi ms(apps) = 0 Then

MsgBox "There are no running applications.”

Exit Sub
End |f
'"Create an array to hold only the Wndows apps.
ReDi m wapps$( UBound( apps))
n =0 'Copy the Wndows apps fromone array to the target array.
For i = LBound(apps) to UBound(apps)

I f AppType(apps(i)) = ebWndows Then

wapps(n) = apps(i)

n=n+1
End |f
Next |
If n =0 Then 'Mke sure at |east one Wndows app was found.
MsgBox "There are no runni ng Wndows applications."
Exit Sub
End |f

ReDi m Preserve wapps(n - 1) 'Resize to hold the exact nunber.

‘Let the user pick one.

i ndex% = Sel ect Box("W ndows Applications","Select a Wndows application:",wapps)
End Sub

AppFi | enanme$ (function).

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

A 3-19



ArrayDims (function)

Syntax ArrayDi ns(arrayvariable)
Description Returns an | nt eger containing the number of dimensions of a given array.
Comments This function can be used to determine whether a given array contains any elements or if the array
is initially created with no dimensions and then redimensioned by another function, such as the
Fi | eLi st function, as shown in the following example.
Example This example allocates an empty (null-dimensioned) array; fills the array with a list of filenames,
which resizes the array; then tests the array dimension and displays an appropriate message.
Sub Mai n()
Dim f$()
FileList f$,"c:\*. bat"
If ArrayDims(f$) = O Then
MsgBox "The array is enpty."
El se
MsgBox "The array size is: " & (UBound(f$) - UBound(f$) + 1)
End |f
End Sub
See Also LBound (function); UBound (function); Arrays (topic).

3-20 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July2001 GFK-1283G



Arrays (topic)

GFK-1283G

Declaring Array Variables

Arrays in a Basic Control Engine script are declared using any of the following statements:
Dim
Public
Private

For example:
Dim a(10) As Integer

Public LastNames(1l to 5,-2 to 7) As Variant
Private

Arrays of any data type can be created, including | nt eger, Long, Single, Doubl e,
Bool ean, Date, Variant, Object, user-defined structures, and data objects.

The lower and upper bounds of each array dimension must be within the following range:
- 32768 <= bound <= 32767

Arrays can have up to 60 dimensions.

Arrays can be declared as either fixed or dynamic, as described below.

Fixed Arrays

The dimensions of fixed arrays cannot be adjusted at execution time. Once declared, a fixed array
will always require the same amount of storage. Fixed arrays can be declared with the Di m

Pri vat e, or Publ i c statement by supplying explicit dimensions. The following example
declares a fixed array of ten strings:

Dima(1l0) As String

Fixed arrays can be used as members of user-defined data types. The following example shows a
structure containing fixed-length arrays:

Type Foo
rect(4) As Integer
colors(10) As Integer
End Type
Only fixed arrays can appear within structures.
Dynamic Arrays

Dynamic arrays are declared without explicit dimensions, as shown below:
Public Ages() As Integer

Dynamic arrays can be resized at execution time using the Redi mstatement:
Redi m Ages$(100)

Subsequent to their initial declaration, dynamic arrays can be redimensioned any number of times.
When redimensioning an array, the old array is first erased unless you use the Pr eser ve
keyword, as shown below:

Redi m Preserve Ages$(100)
Dynamic arrays cannot be members of user-defined data types.
Passing Arrays

Arrays are always passed by reference.

A 3-21



3-22

Querying Arrays

The following table describes the functions used to retrieve information about arrays.

Use this function
LBound

UBound

ArrayDi s

to

Retrieve the lower bound of an array. A runtime error is generated if the
array has no dimensions.

Retrieve the upper bound of an array. A runtime error is generated if the
array has no dimensions.

Retrieve the number of dimensions of an array. This function returns 0 if
the array has no dimensions

Operations on Arrays

The following table describes the function that operate on arrays:

Use this
command

ArraySort

Fi | eLi st

Di skDrives
ApplLi st

Sel ect Box
PopupMenu
Readl ni Secti on
FileDirs

Erase

ReDi m

Dim

CIMPLICITY HMI Basic Control Engine Language Reference Manual-July2001

to

Sort an array of integers, longs, singles, doubles, currency, Booleans,
dates, or variants.

Fill an array with a list of files in a given directory.

Fill an array with a list of valid drive letters.

Fill an array with a list of running applications.

Display the contents of an array in a list box.

Display the contents of an array in a pop-up menu.

Fill an array with the item names from a section in an ini file.
Fill an array with a list of subdirectories.

Erase all the elements of an array.

Establish the bounds and dimensions of an array.

Declare an array.

GFK-1283G



ArraySort (statement)

Syntax
Description

Comments

Example

See Also

ArraySort array()
Sorts a single-dimensioned array in ascending order.

If a string array is specified, then the routine sorts alphabetically in ascending order using case-
sensitive string comparisons. If a numeric array is specified, the Arr aySor t statement sorts
smaller numbers to the lowest array index locations.

The script generates a runtime error if you specify an array with more than one dimension.
When sorting an array of variants, the following rules apply:

e Arruntime error is generated if any element of the array is an object.

e String is greater than any numeric type.

 Null islessthan St ri ng and all numeric types.

« Enpty istreated as a number with the value 0.

e String comparison is case-sensitive (this function is not affected by the Opt i on
Conpar e setting).

This example dimensions an array and fills it with filenames using FileList, then sorts the array and
displays it in a select box.

Sub Mai n()

Dim f$()

FileList f$, "c:\*.*"

ArraySort f$

r% = Sel ect Box("Files","Choose one:",f$)
End Sub

Ar rayDi s (function); LBound (function); UBound (function).

Asc (function)

Syntax
Description
Comments

Example

See Also

GFK-1283G

Asc (text$)
Returns an | nt eger containing the numeric code for the first character of text$.
The return value is an integer between 0 and 255.

This example fills an array with the ASCII values of the string s components and displays the result.
Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
s$ = I nputBox("Pl ease enter a string.","Enter String")
If s$ ="" Then End "Exit if no string entered.
msgl = ""
For i =1 To Len(s$9)
nsgl = nsgl & Asc(M d(s$,i,1)) &crlf
Next i
MsgBox "The Asc values of the string are:" & nsgl
End Sub

Chr, Chr$ (functions).

A 3-23



AskBox$ (function)

Syntax AskBox$(prompt$ [,default$])
Description Displays a dialog box requesting input from the user and returns that inputasa St r i ng.
Comments The AskBox$ function takes the following parameters:

Parameter Description

prompt$ St ri ng containing the text to be displayed above the text box. The dialog box is

sized to the appropriate width depending on the width of prompt$. A runtime
error is generated if prompt$ is Nul | .

default$ St ri ng containing the initial content of the text box. The user can return the
default by immediately selecting OK. A runtime error is generated if default$ is
Nul I .

The AskBox$ function returns a St r i ng containing the input typed by the user in the text box. A
zero-length string is returned if the user selects Cancel.

When the dialog box is displayed, the text box has the focus.
The user can type a maximum of 255 characters into the text box displayed by AskBox$.

s$ = AskBox$( " Type in the filename:")

Type in the filename:

| |
| 0K I |Ean-::el|

s$ = AskBox$( " Type in the filename:","filename.txt")

Type in the hlename:

| filename_txt |

| oK I |Eam::el|

Example This example asks the user to enter a filename and then displays what he or she has typed.
Sub Mai n()
s$ = AskBox$("Type in the filename:")
MsgBox "The filenane was: " & s$
End Sub
See Also MsgBox (statement); AskPasswor d$ (function); | nput Box, | nput Box$ (functions);

OpenFi | ename$ (function); SaveFi | enane$ (function); Sel ect Box (function).

Notes: The text in the dialog box is displayed in 8-point MS Sans Serif.

3-24 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July2001 GFK-1283G



AskPassword$ (function)

Syntax AskPasswor d$(prompt$)
Description Returns a St r i ng containing the text that the user typed.
Comments Unlike the AskBox$ function, the user sees asterisks in place of the characters that are actually

typed. This allows the hidden input of passwords.

The prompt$ parameter is a St r i ng containing the text to appear above the text box. The dialog
box is sized to the appropriate width depending on the width of prompt$.

When the dialog box is displayed, the text box has the focus.
A maximum of 255 characters can be typed into the text box.
A zero-length string is returned if the user selects Cancel.

s$ = AskPasswor d$("Type in the password:")

Type in the password:

| |
| (1].9 I Eancell

s$ = AskPassword$("Type in the password:")

MsgBox "The password entered is: " & s$
End Sub

See Also MsgBox (statement); AskBox$ (function); | nput Box, | nput Box$ (functions);
OpenFi | enane$ (function); SaveFi | enane$ (function); Sel ect Box (function);
Answer Box (function).

Notes: The text in the dialog box is displayed in 8-point MS Sans Serif.

GFK-1283G A 3-25



Atn (function)

Syntax
Description

Comments

Example

See Also

3-26

At n(number)
Returns the angle (in radians) whose tangent is number.
Some helpful conversions:
* Pi(3.1415926536) radians = 180 degrees.
e radian = 57.2957795131 degrees.
e degree =.0174532925 radians.

This example finds the angle whose tangent is 1 (45 degrees) and displays
the result.

Sub Mai n()
a# = Atn(1.00)

MsgBox "1.00 is the tangent of " & a# & " radians (45 degrees)."

End Sub

Tan (function); Si n (function); Cos (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual-July2001

GFK-1283G



Basic.Capability (method)

Syntax Basi c. Capabi | i t y(which)
Description Returns Tr ue if the specified capability exists on the current platform; returns Fal se otherwise.
Comments The which parameter isan | nt eger specifying the capability for which to test. It can be any of

the following values:

Value Returns True If the Platform Supports
1 Disk drives

2 System file attribute (ebSyst en)

3 Hidden file attribute (ebHi dden)

4 Volume label file attribute (ebVol une)
5
6
7

Archivefile attribute (ebAr chi ve)

Denormalized floating-point math

Filelocking (i.e., the Lock and Unl ock statements)
8 Big endian byte ordering

Example This example tests to see whether your current platform supports disk drives and hidden file
attributes and displays the result.

Sub Mai n()
msgl = "This operating system"
I f Basic.Capability(1l) Then
msgl = msgl & “supports disk drives."

El se
msgl = msgl & "does not support disk drives."
End |f
MsgBox mnsgl
End Sub
See Also Cross-Platform Scripting (topic); Basi c. OS (property).

GFK-1283G

41



Basic.Eoln$ (property)

Syntax

Description

Comments

Example

See Also

Basi c. Eol n$

Returnsa St ri ng containing the end-of-line character sequence appropriate to the current
platform.

This string will be either a carriage return, a carriage return/line feed, or aline feed.

This example writes two lines of text in a message box.

Sub Mai n()

MsgBox "This is the first line of text." & Basic.Eoln$ & "This is the second
l'ine of text."
End Sub

Cross-Platform Scripting (topic); Basi c. Pat hSepar at or $ (property).

Basic.FreeMemory (property)

Syntax
Description

Comments

Example

See Also

Basi c. FreeMenory
Returns a Long representing the number of bytes of free memory in the script's data space.

This function returns the size of the largest free block in the script's data space. Before this number
isreturned, the data space is compacted, consolidating free space into a single contiguous free
block.

The script's data space contains strings and dynamic arrays.

This example displays free memory in a dialog box.

Sub Mai n()
MsgBox "The largest free nenory block is: " & Basic. FreeMenory
End Sub

Syst em Tot al Menory (property); Syst em Fr eeMenor y (property);
Syst em Fr eeResour ces (property); Basi c. Fr eeMenor y (property).

Basic.HomeDir$ (property)

Syntax
Description
Comments

Example

See Also

4-2

Basi c. HomeDi r $
Returnsa St r i ng specifying the directory containing the Basic Control Engine scripts.
This method is used to find the directory in which the Basic Control Engine script files are located.

This example assigns the home directory to HD and displays it.

Sub Mai n()

hd$ = Basic.HoneDir$

MsgBox "The Basic Control Engine home directory is: " & hd$
End Sub

Syst em W ndowsDi r ect or y$ (property).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Basic.OS (property)

Syntax
Description

Comments

Example

See Also

Basi c. OS
Returnsan | nt eger indicating the current platform.

Value Constant Platform

2 ebW n32 Microsoft Windows 95, Microsoft Windows NT Workstation
(Intel, Alpha, MIPS, PowerPC), Microsoft Windows NT Server
(Intel, Alpha, MIPS, PowerPC), Microsoft Win32s running under
Windows 3.1

The value returned is not necessarily the platform under which the Basic Control Language script is
running but rather an indicator of the platform for which the script was created.

This example determines the operating system for which this version was created and displays the
appropriate message.

Sub Mai n()
Sel ect Case Basic.(OS
Case ebW n32
s = "Wndows 95 or W ndows NT"

Case El se
s = "not Wndows 95 or Whdows NT"
End Sel ect
MsgBox "You are currently running " & s
End Sub

Cross-Platform Scripting (topic).

Basic.PathSeparator$ (property)

Syntax
Description
Comments

Example

See Also

GFK-1283G

Basi c. Pat hSepar at or $
Returnsa St r i ng containing the path separator appropriate for the current platform.

The returned string is any one of the following characters: / (slash),\ (back slash), : (colon)

Sub Mai n()
MsgBox "The path separator for this platformis: " & Basic.PathSeparator$
End Sub

Basi c. Eol n$ (property); Cross-Platform Scripting (topic).



Basic.Version$ (property)

Syntax Basi c. Ver si on$

Description Returnsa St r i ng containing the version of Basic Control Engine.

Comments This function returns the major and minor version numbers in the format
major.minor.BuildNumber, asin "2.00.30."

Example This example displays the current version of the Basic Control Engine.
Sub Mai n()

MsgBox "Version " & Basic.Version$ & " of Basic Control Engine is running"

End Sub

Beep (statement)

Syntax Beep
Description Makes a single system beep.

Example This example causes the system to beep five times and displays a reminder message.

Sub Mai n()
For i =1 To 5
Beep
Sl eep 200
Next
MsgBox "You have an upcom ng appointnent!"
End Sub

4-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Begin Dialog (statement)

Syntax

Description

Comments

GFK-1283G

Begi n Di al og DialogName [X],[y],width,height,title$ [,[.DIgProc] [,[PicName$] [,styl€]]]
Dialog Statements
End Di al og

Defines a dialog box template for use with the Di al og statement and function.

A dialog box template is constructed by placing any of the following statements between the
Begi n D al ogand End Di al og statements (no other statements besides comments can
appear within a dialog box template):

Picture Opt i onBut t on Opt i onGroup
Cancel Button Text Text Box

Gr oupBox Dr opLi st Box Li st Box
ConmboBox CheckBox Pi ctureButton
PushBut t on OKBut t on

TheBegi n Di al og statement requires the following parameters:

Parameter Description

X,y I nt eger coordinates specifying the position of the upper left corner of the
dialog box relative to the parent window. These coordinates are in dialog units.

If either coordinate is unspecified, then the dialog box will be centered in that
direction on the parent window.

width, height I nt eger coordinates specifying the width and height of the dialog box (in
dialog units).

DialogName Name of the dialog box template. Once a dialog box template has been created,
avariable can be dimensioned using this name.

title$ St ri ng containing the name to appear in the title bar of the dialog box. If this
parameter specifies a zero-length string, then the name "Basic Control Engine"
isused.

.DIgProc Name of the dialog function. The routine specified by .DIgProc will be called

by the script when certain actions occur during processing of the dialog box.
(See Dl gProc [ prototype] foradditional information about dialog
functions.)

If this omitted, then the script processes the dialog box using the default dialog
box processing behavior.

style Specifies extra styles for the dialog. It can be any of the following values:
Value Meaning
0 Dialog does not contain atitle or close box.
1 Dialog contains atitle and no close box.

2 (or omitted)  Dialog contains both the title and close box.



Example

See Also

Notes:

4-6

The script generates an error if the dialog box template contains no controls.

A dialog box template must have at least one PushBut t on, OKBut t on, or Cancel But t on
statement. Otherwise, there will be no way to close the dialog box.

Diaog units are defined as ¥4 the width of the font in the horizontal direction and 1/8 the height of
the font in the vertical direction.

Any number of user dialog boxes can be created, but each one must be created using a different
name as the DialogName. Only one user dialog box may be invoked at any time.

Expression Evaluation within the Dialog Box Template

TheBegi n Di al og statement creates the template for the dialog box. Any expression or variable
name that appears within any of the statementsin the dialog box template is not evaluated until a
variable is dimensioned of type DialogName. The following example shows this behavior:

Sub Mai n()
MTitle$ = "Hello, World"
Begi n Di al og MyTenpl ate 16, 32, 116, 64, MyTitl e$
OKButton 12, 40, 40, 14
End Di al og
MTitle$ = "Sanpl e D al og"
Di m dummy As MyTenpl at e
rc% = Di al og(dumy)
End Sub

The above example creates a dialog box with thetitle" Sanpl e Di al og".
Expressions within dialog box templates cannot reference external subroutines or functions.

All controls within a dialog box use the same font. The fonts used for text and text box control can
be changed explicitly by setting the font parametersin the Text and Text Box statements. A

maximum of 128 fonts can be used within a single dialog, although the practical limitation may be
less.

This example creates an exit dialog box.

Sub Mai n()

Begin Di al og QuitDial ogTenpl ate 16, 32, 116, 64, "Quit"
Text 4,8,108,8,"Are you sure you want to exit?"
CheckBox 32, 24, 63, 8, "Save Changes", . SaveChanges
OKButton 12, 40, 40, 14
Cancel Button 60, 40, 40, 14

End Di al og

Dim QuitDi al og As QuitDial ogTenpl ate

rc% = Di al og(Qui tDi al og)

Sel ect Case rc%

Case -1
MsgBox "OK was pressed!"
Case 1
MsgBox "Cancel was pressed!"
End Sel ect
End Sub

Cancel But t on (statement); CheckBox (statement); ConboBox (statement); Di al og
(function); Di al og (statement); Dr opLi st Box (statement); G- oupBox (statement); Li st Box
(statement); OKBut t on (statement); Opt i onBut t on (statement); Opt i onGr oup (statement);
Pi ct ur e (statement); PushBut t on (statement); Text (statement); Text Box (statement);

DI gPr oc (function).

Within user dialog boxes, the default font is 8-point MS Sans Serif.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Boolean (data type)

Syntax
Description

Comments

See Also

Bool ean
A datatype capable of representing the logical values Tr ue and Fal se.

Bool ean variables are used to hold a binary value—either Tr ue or Fal se. Variables can be
declared as Bool ean usingthe Di m Publ i ¢, or Pri vat e statement.

Variants can hold Bool ean values when assigned the results of comparisons or the constants
True or Fal se.

Internally, aBool ean variable is a 2-byte value holding —1 (for Tr ue) or O (for Fal se).

Any type of data can be assigned to Bool ean variables. When assigning, non-0 values are
converted to Tr ue, and O values are converted to Fal se.

When appearing as a structure member, Bool ean members require 2 bytes of storage.
When used within binary or random files, 2 bytes of storage are required.

When passed to external routines, Bool ean values are sign-extended to the size of an integer on
that platform (either 16 or 32 bits) before pushing onto the stack.

Thereis no type-declaration character for Bool ean variables.
Bool ean variables that have not yet been assigned are given an initial value of Fal se.

Cur r ency (datatype); Dat e (datatype); Doubl e (datatype); | nt eger (datatype); Long
(datatype); Obj ect (datatype); Si ngl e (datatype); St ri ng (datatype); Var i ant (datatype);
Def Type (statement); CBool (function); Tr ue (constant); Fal se (constant).

ByRef (keyword)

Syntax

Description

Comments

Example

See Also

GFK-1283G

..., ByRef parameter,...

Used withinthe Sub. . . End Sub, Function...End Functi on, or Decl ar e statement
to specify that a given parameter can be modified by the called routine.

Passing a parameter by reference means that the caller can modify that variable's value.

Unlike the By Val keyword, the ByRef keyword cannot be used when passing a parameter. The
absence of the By Val keyword is sufficient to force a parameter to be passed by reference:

MySub ByVal | '<-- Pass i by val ue.
MySub ByRef i "<-- lllegal (will not compile).
MySub i '<-- Pass i by reference.
Sub Test(ByRef a As Variant)
a =14
End Sub
Sub Mai n()
b =12
Test b
MsgBox "The ByRef value is: " &b ' <-- Displays 14.
End Sub

() (keyword), ByVal (keyword).



ByVal (keyword)

Syntax
Description

Comments

Example

See Also

4-8

... ByVal parameter...
Forces a parameter to be passed by value rather than by reference.

The ByVal keyword can appear before any parameter passed to any function, statement, or method
to force that parameter to be passed by value. Passing a parameter by value means that the caller
cannot modify that variable's value.

Enclosing a variable within parentheses has the same effect as the By Val keyword:

Foo ByVal i 'Forces i to be passed by val ue.

Foo(i) 'Forces i to be passed by val ue.
When calling external statements and functions (that is, routines defined using the Decl ar e
statement), the By Val keyword forces the parameter to be passed by value regardless of the
declaration of that parameter in the Decl ar e statement. The following example shows the effect
of the ByVal keyword used to passed an | nt eger to an external routine:

Declare Sub Foo Lib "MyLib" (ByRef i As I|nteger)

i%=16
Foo ByVval i % 'Pass a 2-byte Integer.
Foo i % 'Pass a 4-byte pointer to an Integer.

Since the Foo routine expectsto receive a pointer to an | nt eger , thefirst call to Foo will have
unpredictable results.

This example demonstrates the use of the ByVal keyword.

Sub Foo(a As | nteger)
a=a+1
End Sub

Sub Mai n()

Dimi As Integer

i =10

Foo i

MsgBox "The ByVal value is: " &i ' Di splays 11 (Foo changed the val ue).

Foo ByVal i

MsgBox "The ByVal value is still: " & 'Displays 11 (Foo did not change the
val ue).
End Sub

() (keyword), ByRef (keyword).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Call (statement)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Cal | subroutine_name [(arguments)]
Transfers control to the given subroutine, optionally passing the specified arguments.
Using this statement is equivalent to:

subroutine_name [arguments]

Useof theCal | statement isoptional. The Cal | statement can only be used to execute
subroutines; functions cannot be executed with this statement. The subroutine to which control is
transferred by the Cal | statement must be declared outside of the Mai n procedure, as shownin
the following example.

This example demonstrates the use of the Call statement to pass control to another function.

Sub Exanpl e_Cal | (s$)
"This subroutine is declared externally to Main and displays the text
'passed in the paraneter s$.

MsgBox "Call: " & s$

End Sub

Sub Mai n()
'This exanple assigns a string variable to display, then calls subroutine
' Exanpl e_Cal |, passing parameter S$ to be displayed in a nessage box
‘within the subroutine.
s$ = "DAVE"

Exanpl e_Cal | s$
Cal | Exanpl e_Cal | (" SUSAN")
End Sub

Got o (statement); GoSub (statement); Decl ar e (statement).

51



CancelButton (statement)

Syntax Cancel But t on X, Y, width, height [,.Identifier]
Description Defines a Cancel button that appears within a dialog box template.

Comments This statement can only appear within a dialog box template (i.e., between theBegi n Di al og
and End Di al og statements).

Selecting the Cancel button (or pressing Esc) dismisses the user dialog box, causingthe Di al og
function to return 0. (Note: A dialog function can redefine this behavior.) Pressing the Esc key or
double-clicking the close box will have no effect if adialog box does not contain a

Cancel But t on statement.

The Cancel But t on statement requires the following parameters:

Parameter Description

XY I nt eger coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height I nt eger coordinates specifying the dimensions of the control in dialog units.

Identifier Optional parameter specifying the name by which this control can be referenced

by statementsin a dialog function (such as DI gFocus and DI gEnabl e). If
omitted, then the word Cancel is used.

A dialog box must contain at least one OKBut t on, Cancel Button, or PushButton
statement; otherwise, the dialog box cannot be dismissed.

Example This example creates a sample dialog box with OK and Cancel buttons.

Sub Mai n()

Begin Di al og QuitDial ogTenpl ate 16,32, 116,64, "Quit"
Text 4,8,108,8,"Are you sure you want to exit?"
CheckBox 32, 24, 63, 8, "Save Changes", . SaveChanges
OKBut ton 12, 40, 40, 14
Cancel Button 60, 40, 40, 14

End Di al og

Dim QuitDi al og As QuitDial ogTenpl ate

rc% = Di al og(QuitDi al og)

Sel ect Case rc%

Case -1
MsgBox "OK was pressed!"
Case 1
MsgBox "Cancel was pressed!"
End Sel ect
End Sub

See Also CheckBox (statement); ConboBox (statement); Di al og (function); Di al og (statement);
Dr opLi st Box (statement); Gr oupBox (statement); Li st Box (statement); OKBut t on
(statement); Opt i onBut t on (statement); Opt i onGr oup (statement); Pi ct ur e (statement);
PushBut t on (statement); Text (statement); Text Box (statement); Begi n Di al og
(statement), Pi ct ur eBut t on (statement).

52 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



CBool (function)

Syntax
Description

Comments

Example

See Also

GFK-1283G

CBool (expression)
Convertsexpression to Tr ue or Fal se, returning aBool ean value.

The expression parameter is any expression that can be converted to aBool ean. A runtime error
isgenerated if expressionisNul | .

All numeric data types are convertible to Bool ean. If expression is zero, then the CBool returns
Fal se; otherwise, CBool returns Tr ue. Enpt y istreated asFal se.

If expressionisaSt ri ng, then CBool first attempts to convert it to a number, then converts the
number to aBool ean. A runtime error is generated if expression cannot be converted to a
number.

A runtime error is generated if expression cannot be converted to a Bool ean.

This example uses CBool to determine whether a string is numeric or just plain text.

Sub Mai n()
Dim | sNurreri cOrDate As Bool ean
s$ = 34224.54
I sNuneric = CBool (IsNureric(s$))
If IsNuneric = True Then
MsgBox s$ & “ is either a valid nunber!”
El se
MsgBox s$ & “ is not a valid nunmber!”
End I f
End Sub

CCur (function); CDat e, CVDat e (functions); CDbl (function); Cl nt (function); CLng
(function); CSng (function); CSt r (function); CVar (function); CVEr r (function); Bool ean
(datatype).



CCur (function)

Syntax
Description

Comments

Example

See Also

5-4

CCur (expression)
Converts any expressionto aCur r ency.

This function accepts any expression convertibleto aCur r ency, including strings. A runtime
error is generated if expressionisNul | or aSt ri ng not convertible to a number. Enpt y is
treated as 0.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression number toaCur r ency.

When used with variants, this function guarantees that the variant will be assigned aCur r ency
(Var Type 6).

This example displays the value of a String converted into a Currency value.

Sub Mai n()

i$ = "100. 44"

MsgBox "The currency value is: " & CCur(i$)
End Sub

CBool (function); CDat e, CVDat e (functions); CDbl (function); Cl nt (function); CLng
(function); CSng (function); CSt r (function); CVar (function); CVEr r (function); Curr ency
(datatype).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



CDate, CVDate (functions)

Syntax

Description

Comments

Example

See Also

GFK-1283G

CDat e(expression)
CvDat e(expression)
Converts expression to a date, returning a Dat e value.

The expression parameter is any expression that can be converted to aDat e. A runtime error is
generated if expressionisNul | .

If expressionisaSt ri ng, an attempt is made to convert it to a Dat e using the current country
settings. If expression does not represent avalid date, then an attempt is made to convert expression
to anumber. A runtime error is generated if expression cannot be represented as a date.

These functions are sensitive to the date and time formats of your computer.
The CDat e and CVDat e functions are identical .

This example takes two dates and computes the difference between them.
Sub Mai n()

Dimdatel As Date
Dim date2 As Date
Dmdiff As Date

datel = CDate(#1/1/1994#)
dat e2 CDhat e(" February 1, 1994")
diff = DateDiff("d", datel, date2)

MsgBox "The date difference is " & CInt(diff) & " days."
End Sub

CCur (function); CBool (function); CDbl (function); Cl nt (function); CLng (function); CSnhg
(function); CSt r (function); CVar (function); CVEr r (function); Dat e (data type).



CDDbl (function)

Syntax
Description

Comments

Example

See Also

CDbl (expression)
Converts any expression to aDoubl e.

This function accepts any expression convertible to a Doubl e, including strings. A runtime error is
generated if expressionisNul | . Enpt y istreated as 0. O.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression number to aDoubl e.

When used with variants, this function guarantees that the variant will be assigned aDoubl e
(var Type 5).

This example displays the result of two numbers as a Double.

Sub Mai n()

i %= 100

j! = 123.44

MsgBox "The double value is: " & CDbl (i%* j!)
End Sub

CCur (function); CBool (function); CDat e, CVDat e (functions); Cl nt (function); CLng
(function); CSng (function); CSt r (function); CVar (function); CVEr r (function); Doubl e (data
type).

ChDir (statement)

Syntax

Description

Example

See Also

5-6

ChDi r newdir$
Changes the current directory of the specified drive to newdir$.
This routine will not change the current drive. (See ChDr i ve [statement].)

This example saves the current directory, then changes to the root directory, displays the old and
new directories, restores the old directory, and displaysiit.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
save$ = CurDir$
ChDi r (Basi c. Pat hSepar at or $)
MsgBox "O d directory: " & save$ & crlf & "New directory: " & CurDir$
ChDi r (save$)
MsgBox "Directory restored to: " & CurDir$
End Sub

ChDri ve (statement); Cur Dir, Cur Di r$ (functions); Di r, Di r$ (functions); MkDi r
(statement); RnDi r (statement); Di r Li st (statement).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



ChDrive (statement)

Syntax
Description

Comments

Example

See Also

GFK-1283G

ChDri ve DrivelLetter$

Changes the default drive to the specified drive.

Only thefirst character of DriveLetter$ is used.

DrivelLetter$ is not case-sensitive,

If DriveLetter$ is empty, then the current drive is not changed.

This example allows the user to select a new current drive and uses ChDrive to make their choice the
new current drive.

Const crlf$ = Chr$(13) + Chr$(10)

Sub Mai n()
Di md()
old$ = FileParse$(CurDir, 1)
Di skDrives d

Agai n:

r = Sel ect Box("Avail able Drives","Sel ect new current drive:",d)
On Error Goto Error_Trap
If r <> -1 Then ChDrive d®
MsgBox "Od Current Drive: " & old$ &crlf & "New Current Drive: " & CurDir
End
Error_Trap:
MsgBox Error(err)
Resune Again
End Sub

ChDi r (statement); Cur Di r, Cur Di r $ (functions); Di r, Di r $ (functions); MkDi r
(statement); RDi r (statement); Di skDr i ves (statement).



CheckBox (statement)

Syntax
Description
Comments

Example

See Also

Notes:

5-8

CheckBox X, Y, width, height, title$, .Identifier
Defines a check box within a dialog box template.
Check box controls are either on or off, depending on the value of .Identifier.

This statement can only appear within a dialog box template (i.e., between theBegi n Di al og
and End Di al og statements).

The CheckBox statement requires the following parameters:

Parameter Description

XY I nt eger coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height I nt eger coordinates specifying the dimensions of the control in dialog units.

title$ St ri ng containing the text that appears within the check box. This text may

contain an ampersand character to denote an accel erator letter, such as
" &Font " for Font (indicating that the Font control may be selected by
pressing the F accelerator key).

Identifier Name by which this control can be referenced by statementsin a dialog function
(suchas Dl gFocus and DI gEnabl e). This parameter also creates an integer
variable whose value corresponds to the state of the check box (1 = checked; 0 =
unchecked). This variable can be accessed using the syntax:

DialogVariable.ldentifier.

When the dialog box isfirst created, the value referenced by .Identifier is used to set the initial state
of the check box. When the dialog box is dismissed, the final state of the check box is placed into
this variable. By default, the .Identifier variable contains 0, meaning that the check box is
unchecked.

This example displays a dialog box with two check boxes in different states.

Sub Mai n()
Begi n Di al og SaveOpti onsTenpl ate 36, 32, 151, 52, " Save"
G oupBox 4, 4, 84, 40, " G oupBox"
CheckBox 12, 16, 67, 8, "I ncl ude headi ng", . | ncl udeHeadi ng
CheckBox 12, 28, 73, 8, "Expand keywor ds", . ExpandKeywor ds
OKBut t on 104, 8, 40, 14, . XK
Cancel Button 104, 28, 40, 14, . Cancel
End Di al og
Di m SaveOpti ons As SaveOpti onsTenpl ate
SaveOpti ons. | ncl udeHeadi ng 1 ' Check box initially on.
SaveOpt i ons. ExpandKeywor ds 0 ' Check box initially off.
r% = Di al og( SaveOpti ons)
If r%= -1 Then
MsgBox "OK was pressed.”
End |f
End Sub

Cancel But t on (statement); Di al og (function); Di al og (statement); Dr opLi st Box
(statement); Gr oupBox (statement); Li st Box (statement); OKBut t on (statement);

Opt i onBut t on (statement); Opt i onGr oup (statement); Pi ct ur e (statement); PushBut t on
(statement); Text (statement); Text Box (statement); Begi n Di al og (statement),

Pi ct ur eBut t on (statement).

Accelerators are underlined, and the accelerator combination Alt+letter is used.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Choose (function)

Syntax Choose(index,expressionl,expression2,...,expressionls)
Description Returns the expression at the specified index position.
Comments The index parameter specifies which expression isto be returned. If index is 1, then expressionl is

returned; if index is 2, then expression2 is returned, and so on. If index islessthan 1 or greater than
the number of supplied expressions, then Nul | isreturned.

The Choose function returns the expression without converting its type. Each expression is
evaluated before returning the selected one.

Example This example assigns a variable of indeterminate typeto a

Sub Mai n()
Dima As Variant
Dimc As Integer

c%=2
a = Choose(c% "Hello, world", #1/ 1/ 94#, 5. 5, Fal se)
MsgBox "ltem" & c% & " is '" &a &""'" 'Displays the date passed as paraneter 2.
End Sub
See Also Swi t ch (function); I | f (function); | f. .. Then. .. El se (statement); Sel ect . . . Case
(statement).

GFK-1283G C 59



Chr, Chr$ (functions)

Syntax
Description

Comments

Example

See Also

5-10

Chr[ $] (Code)
Returns the character whose value is Code.
Code must bean | nt eger between 0 and 255.

Chr $ returns a string, whereas Chr returnsa St ri ng variant.

The Chr $ function can be used within constant declarations, asin the following example:

Const crlf = Chr$(13) + Chr$(10)

Some common uses of this function are:

Chr$(9) Tab
Chr$(13) + Chr$(10) End-of -line (carriage return, I|inefeed)
Chr $( 26) End-of -file
Chr $(0) Nul |
Sub Mai n()

' Concatenates carriage return (13) and linefeed (10) to CRLF$,
"then displays a nmultiple-line nmessage using CRLF$ to separate |lines.
crlf$ = Chr$(13) + Chr$(10)
MsgBox "First line." &crlf$ & "Second line."
"Fills an array with the ASCI| characters for ABC and displays their
' correspondi ng characters.
Di m a% 2)
For i =0 To 2
a%i) = (65 + i)
Next i

MsgBox "The first three el enents of the array are: " & Chr$(a%0)) & Chr$(a%1))

& Chr$(a%2))
End Sub

Asc (function); Str, Str$ (functions).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



Cint (function)

Syntax Cl nt (expression)
Description Convertsexpressionto an | nt eger .
Comments This function accepts any expression convertibleto an | nt eger , including strings. A runtime

error is generated if expressionisNul | . Enpt y istreated asO.

The passed numeric expression must be within the valid range for integers:
—32768 <= expression <= 32767

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as assigning a numeric
expressionto an | nt eger . Note that integer variables are rounded before conversion.

When used with variants, this function guarantees that the expression is converted to an | nt eger
variant (Var Type 2).

Example This example demonstrates the various results of integer manipulation with Cint.
Sub Mai n()
'(1) Assigns i# to 100.55 and displays its integer representation (101).
i # = 100.55
MsgBox "The value of Cint(i) =" & CInt(i#)
'(2) Sets j# to 100.22 and displays the CInt representation (100).
j# = 100. 22
MsgBox "The value of Cint(j) =" & CInt(j#)

'(3) Assigns k% (integer) to the Cint sumof j# and k% and di splays k%' (201).
k%= Cint(i# + j#)

MsgBox "The integer sumof 100.55 and 100.22 is: " & k%

'(4) Reassigns i# to 50.35 and recal cul ates k% then displays the result

' (note rounding).

i# = 50.35

k%= Cint(i# + j#)

MsgBox "The integer sumof 50.35 and 100.22 is: " & k%

End Sub

See Also CCur (function); CBool (function); CDat e, CVDat e (functions); CDbl (function); CLng
(function); CSng (function); CSt r (function); CVar (function); CVEr r (function); I nt eger
(datatype).

GFK-1283G C 5-11



Clipboard$ (function)

Syntax C i pboard$[ ()]
Description Returnsa St r i ng containing the contents of the Clipboard.
Comments If the Clipboard doesn't contain text or the Clipboard is empty, then a zero-length string is returned.
Example This example puts text on the Clipboard, displaysit, clears the Clipboard, and displays the
Clipboard again.
Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()

Cli pboard$ "Hello out there!"

MsgBox "The text in the Cipboard is:" & crlf & Cipboard$

d i pboard. d ear

MsgBox "The text in the Cipboard is:" & crlf & Cipboard$
End Sub

See Also C i pboar d$ (statement); Cl i pboar d. Get Text (method); C i pboar d. Set Text
(method).

Clipboard$ (statement)

Syntax d i pboar d$ NewContent$

Description Copies NewContent$ into the Clipboard.

Example This example puts text on the Clipboard, displaysit, clears the Clipboard, and displays the
Clipboard again.
Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()

Cli pboard$ "Hello out there!"

MsgBox "The text in the Cipboard is:" & crlf & Cipboard$

d i pboard. d ear

MsgBox "The text in the Cipboard is now" & crlf & Cipboard$
End Sub

See Also C i pboar d$ (function); C i pboar d. Get Text (method); C i pboar d. Set Text (method).

5-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Clipboard.Clear (method)

Syntax C i pboard. C ear

Description This method clears the Clipboard by removing any content.

Example This example puts text on the Clipboard, displaysit, clears the Clipboard, and displays the
Clipboard again.
Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()

Cli pboard$ "Hello out there!"

MsgBox "The text in the Cipboard before clearing:" & crlf & Cipboard$

C i pboard. C ear

MsgBox "The text in the Cipboard after clearing:" & crlf & Cipboard$
End Sub

Clipboard.GetFormat (method)

Syntax WhichFormat = Cl i pboar d. Get For mat (format)
Description Returns Tr ue if data of the specified format is available in the Clipboard; returns Fal se
otherwise.
Comments This method is used to determine whether the datain the Clipboard is of a particular format. The
format parameter isan | nt eger representing the format to be queried:
Format Description
1 Text
2 Bitmap
3 Metafile
8 Device-independent bitmap (DIB)
9 Color palette
Example This example checks to see whether thereis any text on the Clipboard, if so, it searches the text for

a string matching what the user entered.
Option Conpare Text

Sub Mai n()
r$ = InputBox("Enter a word to search for:","Scan d i pboard")

I f Cipboard. Get Fornat (1) Then
If Instr(Cipboard. Get Text(1l),r) = 0 Then

MsgBox """" & r & """" & " was not found in the clipboard."”
El se
MsgBox """" & r & """" & " is definitely in the clipboard."”
End |f
El se
MsgBox "The O ipboard does not contain any text."
End |f
End Sub
See Also Cl i pboar d$ (function); Cl i pboar d$ (statement).

GFK-1283G C 5-13



Clipboard.GetText (method)

Syntax text$ =Cl i pboar d. Get Text ([format])

Description Returns the text contained in the Clipboard.

Comments The format parameter, if specified, must be 1.

Example This example checks to see whether thereis any text on the Clipboard, if so, it searches the text for

a string matching what the user entered.
Option Conpare Text

Sub Mai n()
r$ = InputBox("Enter a word to search for:","Scan O i pboard")

If Cipboard. Get Fornat (1) Then
If Instr(Cipboard. Get Text(1l),r) = 0 Then

MsgBox """" & r & """" & " was not found in the clipboard."”
El se
MsgBox """" & r & """" & " is definitely in the clipboard."”
End |f
El se
MsgBox "The Cipboard does not contain any text."
End |f
End Sub
See Also C i pboar d$ (statement); Cl i pboar d$ (function); O i pboar d. Set Text (method).

Clipboard.SetText (method)

Syntax Cl i pboar d. Set Text data$[,format]

Description Copies the specified text string to the Clipboard.

Comments The data$ parameter specifies the text to be copied to the Clipboard. The format parameter, if
specified, must be 1.

Example This example gets the contents of the Clipboard and uppercasesit.
Sub Mai n()

If Not Cipboard. Get Fornat (1) Then Exit Sub
Cl i pboard. Set Text UCase(C i pboard. Get Text(1)),1
End Sub

See Also Cl i pboar d$ (statement); Cl i pboar d. Get Text (method); Cl i pboar d$ (function).

5-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



CLng (function)

Syntax CLng(expression)
Description Convertsexpression to aLong.
Comments This function accepts any expression convertible to aLong, including strings. A runtime error is

generated if expressionisNul | . Enpt y istreated asO.
The passed expression must be within the following range:
—2147483648 <= expression <= 2147483647
A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression to aLong. Note that long variables are rounded before conversion.

When used with variants, this function guarantees that the expression is converted toaLong
variant (Var Type 3).

Example This example displays the results for various conversions of i and j (note rounding).
Sub Mai n()
i %= 100
j& = 123.666
MsgBox "The result of i * j is: " & CLng(i%* j&) ' Di spl ays 12367.
MsgBox "The new variant type of i is: " & Vartype(CLng(i%)
End Sub
See Also CCur (function); CBool (function); CDat e, CVDat e (functions); CDbl (function); Cl nt
(function); CSng (function); CSt r (function); CVar (function); CVEr r (function); Long (data
type).

Close (statement)

Syntax Cl ose [[#] filenumber [,[#] filenumber]...]

Description Closes the specified files.

Comments If no arguments are specified, then all files are closed.

Example This example opens four files and closes them in various combinations.
Sub Mai n()

Open "test1" For Qutput As #1
Open "test2" For Qutput As #2
Open "test3" For Random As #3
Open "test4" For Binary As #4
MsgBox "The next available file nunber is: " & FreeFile()

Cl ose #1 "Closes file 1 only.
Cl ose #2, #3 ‘Closes files 2 and 3.
d ose "Closes all remaining files(4).
MsgBox "The next available file nunber is: " & FreeFile()
End Sub
See Also Open (statement); Reset (statement); End (statement).

GFK-1283G C 5-15



ComboBox (statement)

Syntax ComboBox X,Y,width,height,ArrayVariable,.Identifier
Description This statement defines a combo box within a dialog box template.

Comments When the dialog box isinvoked, the combo box will be filled with the elements from the specified
array variable.

This statement can only appear within a dialog box template (i.e., between the Begi n Di al og
and End Di al og statements).

The CormboBox statement requires the following parameters:

Parameter Description

XY I nt eger coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height I nt eger coordinates specifying the dimensions of the control in dialog units.

ArrayVariable  Single-dimensioned array used to initialize the elements of the combo box. If this
array has no dimensions, then the combo box will be initialized with no elements.
A runtime error resultsif the specified array contains more than one dimension.

ArrayVariable can specify an array of any fundamental data type (structures are
not allowed). Nul | and Enpt y values are treated as zero-length strings.

dentifier Name by which this control can be referenced by statementsin a dialog function
(suchasDl gFocus and DI gEnabl e). This parameter also creates a string
variable whose value corresponds to the content of the edit field of the combo
box. This variable can be accessed using the syntax:

DialogVariable.ldentifier.

When the dialog box isinvoked, the elements from ArrayVariable are placed into the combo box.
The .Identifier variable definesthe initial content of the edit field of the combo box. When the
dialog box is dismissed, the .Identifier variable is updated to contain the current value of the edit
field.

Example This example creates adial og box that allows the user to select aday of the week.

Sub Mai n()
Di m days$(6)
days$(0) " Monday"

days$(1) = "Tuesday"
days$(2) = "Wednesday"
days$(3) = "Thursday"
days$(4) = "Friday"
days$(5) = "Saturday"
days$(6) = "Sunday"

Begi n Di al og DaysDi al ogTenpl ate 16, 32, 124, 96, " Days"
OKButton 76, 8, 40, 14, . K
Text 8,10, 39, 8, "&WMekdays: "
ConboBox 8, 20, 60, 72, days$, . Days

End Di al og

Di m DaysDi al og As DaysDi al ogTenpl at e

DaysDi al og. Days = For nmat (Now, "dddd") 'Set to today.

r% = Di al og(DaysDi al og)

MsgBox "You sel ected: " & DaysDi al og. Days

End Sub

5-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



See Also Cancel But t on (statement); CheckBox (statement); Di al og (function); Di al og (statement);
Dr opLi st Box (statement); Gr oupBox (statement); Li st Box (statement); OKBut t on
(statement); Opt i onBut t on (statement); Opt i onGr oup (statement); Pi ct ur e (statement);
PushBut t on (statement); Text (statement); Text Box (statement); Begi n Di al og
(statement), Pi ct ur eBut t on (statement).

Command, Command$ (functions)

Syntax Conmmand[ $] [ () ]

Description Returns the argument from the command line used to start the application.

Comments Command$ returns a string, whereas Commrand returnsa St ri ng variant.

Example This example checksto see if any command line parameters were used. If parameters were used
they are displayed and a check is made to see if the user used the "/s" switch.
Sub Mai n()

cmd$ = Command

If cnd$ <> "" Then
If (InStr(cnd$,"/s")) <> 0 Then
MsgBox "Safety Mode On!"

El se
MsgBox "Safety Mdde Of!"
End If
MsgBox "The command |ine startup options were: " & cnmid$
El se
MsgBox "No command |ine startup options were used!"
End If
End Sub
See Also Envi ron, Environ$ (functions).

Comments (topic)

Comments can be added to Basic Control Engine script code in the following manner:
All text between a single quotation mark and the end of the line is ignored:

MsgBox "Hel | 0" 'Di spl ays a nessage box.
The REMstatement causes the compiler to ignore the entire line:

REM This is a conment.

The Basic Control Engine supports C-style multiline comment blocks/ *. . . */ , as shown in the

following example:
MsgBox "Before comment”
/* This stuff is all commented out.
This line, too, will be ignored.
This is the last line of the comrent. */
MsgBox "After comrent”

C-style comments can be nested.

GFK-1283G C 5-17



Comparison Operators (topic)

Syntax expressionl[< | > | <= | >=| <> | =] expression2
Description Comparison operatorsreturn Tr ue or Fal se depending on the operator.
Comments The comparison operators are listed in the following table:

Operator Returns True If

> expressionl is greater than expression2

< expressionl is less than expression2

<= expressionl isless than or equal to expression2
>= expressionl is greater than or equal to expression2
<> expressionl is not equal to expression2

= expressionl is equal to expression2

This operator behaves differently depending on the types of the expressions, as shown in the

following table:

If one and the other

expression is expression is then

Numeric Numeric A numeric comparison is performed (see below).
String String A string comparison is performed (see below).
Nuneric String A compile error is generated.

Vari ant String A string comparison is performed (see below).
Var i ant Numeric A variant comparison is performed (see below).
Nul I variant Any datatype Returns Nul | .

Vari ant Vari ant A variant comparison is performed (see below).

String Comparisons

If the two expressions are strings, then the operator performs atext comparison between the two
string expressions, returning Tr ue if expressionl is less than expression2. The text comparison is
case-sengitiveif Opt i on Conpar e isBi nar y; otherwise, the comparison is case-insensitive.

When comparing letters with regard to case, lowercase charactersin a string sort greater than
uppercase characters, so acomparison of "a" and "A" would indicate that "a" is greater than "A".

Numeric Comparisons

When comparing two numeric expressions, the less precise expression is converted to be the same
type as the more precise expression.

5-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Example

See Also

GFK-1283G

Dates are compared as doubles. This may produce unexpected results asit is possible to have two
dates that, when viewed astext, display as the same date when, in fact, they are different. This can
be seen in the following example:

Sub Mai n()

Dimdatel As Date
Dim date2 As Date

datel
dat e2

Now
datel + 0.000001 'Adds a fraction of a second.

MsgBox date2 = datel "Prints False (the dates are different).
MsgBox datel & "," & date2 "Prints two dates that are the sane.
End Sub

Variant Comparisons

When comparing variants, the actual operation performed is determined at execution time
according to the following table:

If one and the other
variant is variant is then
Numeric Numeric The variants are compared as numbers.
String String The variants are compared as text.
Numeric String The number is less than the string.
Nul | Any other data type Nul | .
Numeric Enpty The number is compared with 0.
String Empty The string is compared with a zero-length string.
Sub Mai n()
'Tests two literals and displays the result.
If 5 < 2 Then
MsgBox "5 is less than 2."
El se
MsgBox "5 is not less than 2."
End |f

'Tests two strings and displays the result.
If "This" < "That" Then
MsgBox "' This' is less than 'That'."
El se
MsgBox "' That' is less than 'This'."
End |f
End Sub

Operator Precedence (topic); | s (operator); Li ke (operator); Opt i on Conpar e (statement).

C 5-19



Const (statement)

Syntax
Description

Comments

5-20

Const name[ As type] =expression[,name[As type] = expression]...
Declares a constant for use within the current script.

The name is only valid within the current Basic Control Engine script. Constant names must follow
theserules:

1. Must beginwith aletter.
2. May contain only letters, digits, and the underscore character.
3. Must not exceed 80 charactersin length.
4. Cannot be areserved word.
Constant names are not case-sensitive.

The expression must be assembled from literals or other constants. Calls to functions are not
allowed except callsto the Chr $ function, as shown below:

Const s$ = "Hello, there" + Chr(44)

Constants can be given an explicit type by declaring the name with a type-declaration character, as
shown below:

Const a% = 5 ' Constant I nteger whose value is 5
Const b# = 5 ' Const ant Doubl e whose value is 5.0
Const c$ = "5" 'Constant String whose value is "5"
Const d! =5 ' Constant Single whose value is 5.0
Const e& = 5 ' Constant Long whose value is 5

The type can a so be given by specifying the As  type clause:

Const a As Integer =5 ' Constant |Integer whose value is 5

Const b As Double =5 ' Const ant Doubl e whose value is 5.0
Const ¢ As String = "5" "Constant String whose value is "5"
Const d As Single =5 ' Constant Single whose value is 5.0

(&)]

Const e As Long = ' Constant Long whose value is 5
Y ou cannot specify both a type-declaration character and the type:

Const a% As Integer = 5 "THI'S 1S | LLEGAL.

If an explicit typeis not given, then the Basic Control Engine script will choose the most imprecise
type that completely represents the data, as shown below:

Const a = 5 "I nteger constant
Const b = 5.5 ' Singl e constant
Const ¢ = 5.5E200 ' Doubl e const ant

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Constants defined withina Sub or Funct i on arelocal to that subroutine or function. Constants
defined outside of all subroutines and function can be used anywhere within that script. The
following example demonstrates the scoping of constants:

Const DefFile = "default.txt"

Sub Test1l
Const DefFile = "foobar.txt"
MsgBox DefFile 'Displays "foobar.txt".
End Sub
Sub Test 2
MsgBox DefFile 'Displays "default.txt".
End Sub
Example This example displays the declared constants in adialog box (crlf produces a new line in the dialog
box).

Const crlf = Chr$(13) + Chr$(10)
Const greeting As String = "Hello, "
Const questionl As String = "How are you today?"

Sub Mai n()
r = I nput Box("Pl ease enter your nanme","Enter Name")
MsgBox greeting & r & crlf & crlf & questionl

End Sub

See Also Def Type (statement); Let (statement); = (statement); Const ant s (topic).

GFK-1283G C 5-21



Constants (topic)

Constants are variables that cannot change value during script execution. The following constants
are predefined by the Basic Control Engine:

True

Pi

ebPortrait
ebW ndows
ebRest or ed
ebH dden
ebDirectory
ebOKOnl y
ebYesNoCancel
ebCritical
ebl nf ormati on
ebDef aul t Butt on2
ebOK

ebRetry

ebNo

ebDOS16
ebHPUX

ebAl X

eb(0s2

ebl nt eger
ebDoubl e
ebj ect
ebDOS32

Y ou can define your own constants using the Const statement.

5-22

Fal se

ebRi ght Butt on
eblLandscape
ebMaxi m zed
ebNor ma
ebSystem

ebAr chi ve
ebOKCancel
ebYesNo
ebQuesti on
ebAppl i cati onModal
ebDef aul t Butt on3
ebCancel

ebl gnore

ebW n16
ebSunGs

ebU trix
ebNet War e
ebEnpty
eblLong

ebDat e
ebDat aCbj ect
ebCurrency

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

Enmpt y
eblLef t Button
ebDOS

ebM ni m zed
ebReadOnl y
ebVol ure
ebNone
ebAbort Retryl gnore
ebRet ryCancel
ebExcl amati on
ebDef aul t Butt onl
ebSyst emvbdal
ebAbort

ebYes

ebW n32

ebSol ari s
eblrix
ebMaci nt osh
ebNul |

ebSi ngl e
ebBool ean

ebVari ant

GFK-1283G



Cos (function)

Syntax
Description
Comments

Example

See Also

Cos(angle)
Returnsa Doubl e representing the cosine of angle.
The angle parameter isa Doubl e specifying an anglein radians.

This example assigns the cosine of pi/4 radians (45 degrees) to C# and displaysits value.

Sub Mai n()

c# = Cos(3.14159 / 4)

MsgBox "The cosine of 45 degrees is: " & c#
End Sub

Tan (function); Si n (function); At n (function).

CreateObject (function)

Syntax
Description

Comments

Examples

GFK-1283G

Cr eat eObj ect (class$)
Creates an OLE automation object and returns a reference to that object.

The class$ parameter specifies the application used to create the object and the type of object being
created. It uses the following syntax:

"application.class',

where application is the application used to create the object and classis the type of the object to
create.

At runtime, Cr eat eObj ect looks for the given application and runs that application if found.
Once the object is created, its properties and methods can be accessed using the dot syntax (e.g.,
object.property = value).

There may be a dight delay when an automation server isloaded (this depends on the speed with
which a server can be loaded from disk). Thisdelay is reduced if an instance of the automation
server is aready loaded.

Thisfirst example instantiates Microsoft Excel. It then uses the resulting object to make Excel
visible and then close Excel.

Sub Mai n()
Di m Excel As Obj ect

On Error GoTo Trapl 'Set error trap.

Set Excel = CreateObject("excel.application") 'lInstantiate object.

Excel . Visi ble = True ' Make Excel visible.

Sl eep 5000 "Wait 5 seconds.

Excel . Qui t ' C ose Excel.

Exit Sub "Exit before error trap.
Trapl:

MsgBox "Can't create Excel object."” 'Display error nessage.

Exit Sub 'Reset error handler.
End Sub

C 5-23



This second example uses CreateObject to instantiate a Visio object. It then uses the resulting
object to create a new document.

Sub Mai n()
Dim Visio As Object
Di m doc As Obj ect
Di m page As Obj ect
Di m shape As Obj ect

On Error Goto NO VISIO
Set Visio = CreateObj ect ("visio.application") 'Create Visio object.
On Error Goto O

Set doc = Visio.Docunments. Add("") 'Create a new docunent.
Set page = doc. Pages(1) "CGet first page.
Set shape = page. DrawRect angl e(1, 1, 4, 4) 'Create a new shape.
shape.text = "Hello, world." "Set text within shape.
End

NO VI SI O
MsgBox "' Visio' cannot be found!", ebExcl amati on

End Sub

See Also Get Obj ect (function); Obj ect (datatype).

5-24 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



CSng (function)

Syntax
Description

Comments

Example

See Also

GFK-1283G

CSng(expression)
Convertsexpressionto aSi ngl e.

This function accepts any expression convertibleto aSi ngl e, including strings. A runtime error is
generated if expressionisNul | . Enpt y istreated as 0. O.

A runtime error results if the passed expression is not within the valid range for Si ngl e.

When passed a numeric expression, this function has the same effect as assigning the numeric
expressiontoaSi ngl e.

When used with variants, this function guarantees that the expression is converted to aSi ngl e
variant (Var Type 4).
This example displays the value of a String converted to a Single.

Sub Mai n()
s$ = "100"
MsgBox "The single value is: " & CSng(s$)
End Sub
CCur (function); CBool (function); CDat e, CVDat e (functions); CDbl (function); Cl nt
(function); CLng (function); CSt r (function); CVar (function); CVEr r (function); Si ngl e (data

type).

C 5-25



CStr (function)

Syntax
Description

Comments

Example

See Also

5-26

CSt r (expression)
Convertsexpressiontoa St ri ng.

Unlike St r $ or St r, the string returned by CSt r will not contain aleading space if the expression
is positive. Further, the CSt r function correctly recognizes thousands and decimal separators for
your locale.

Different data types are converted to St r i ng in accordance with the following rules:

Data Type CStr Returns
Any numerictype A string containing the number without the leading space for positive values.
Dat e A string converted to a date using the short date format.
Bool ean A string containing either "True" or "False".
Nul | variant A runtime error.
Enpt y variant A zero-length string.
This example displays the value of a Double converted to a String.
Sub Mai n()
s# = 123.456
MsgBox "The string value is: " & CStr(s#)
End Sub

CCur (function); CBool (function); CDat e, CVDat e (functions); CDbl (function); Cl nt
(function); CLng (function); CSng (function); CVar (function); CVEr r (function); St ri ng (data
type); Str, Str$ (functions).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



CurDir, CurDir$ (functions)

Syntax

Description

Comments

Example

See Also

CurDi r [ $] [ (drive$)]

Returns the current directory on the specified drive. If no drive$ is specified or drive$ is zero-
length, then the current directory on the current drive is returned.

Cur Di r $ returnsa St ri ng, whereas Cur Di r returnsa St ri ng variant.
The script generates aruntime error if drive$ isinvalid.

This example saves the current directory, changes to the next higher directory, and displays the
change; then restores the original directory and displays the change. Note: The dot designators will
not work with al platforms.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
save$ = CurDir
ChDir ("..")
MsgBox "Od directory: " & save$ & crlf & "New directory: " & CurDir
ChDir (save$)
MsgBox "Directory restored to: " & CurDir
End Sub

ChDi r (statement); ChDr i ve (statement); Di r, Di r $ (functions); MkDi r (statement); RDi r
(statement).

Currency (data type)

Synt ax

Description

Comments

See Also

GFK-1283G

Currency

A datatype used to declare variables capable of holding fixed-point numbers with 15 digitsto the
|eft of the decimal point and 4 digitsto the right.

Cur r ency variables are used to hold numbers within the following range:

-922, 337, 203, 685, 477. 5808 <= currency <= 922, 337, 203, 685, 477. 5807
Due to their accuracy, Cur r ency variables are useful within cal culations involving money.
The type-declaration character for Cur r ency is @

Storage

Internally, currency values are 8-byte integers scaled by 10000. Thus, when appearing within a
structure, currency values require 8 bytes of storage. When used with binary or random files, 8
bytes of storage are required.

Dat e (datatype); Doubl e (datatype); | nt eger (datatype); Long (datatype); Obj ect (data
type); Si ngl e (datatype); St ri ng (datatype); Var i ant (datatype); Bool ean (datatype);
Def Type (statement); CCur (function).

C 5-27



CVar (function)

Syntax CVar (expression)
Description ConvertsexpressiontoaVar i ant .
Comments This function is used to convert an expression into a variant. Use of this function is not necessary

(except for code documentation purposes) because assignment to variant variables automatically
performs the necessary conversion:

Sub Mai n()
Dimv As Vari ant
v =4&"th" "Assigns "4'™ to v.
MsgBox "You cane in: " & v
v = CVar(4 & "th") " Assigns "4'™ to v.
MsgBox "You cane in: " & v

End Sub

Example This example converts an expression into a Variant.
Sub Mai n()

Dims As String

Dima As Vari ant

s = CStr("The quick brown fox ")

negl = CVar(s & "junped over the |lazy dog.")

MsgBox nsgl
End Sub
See Also CCur (function); CBool (function); CDat e, CVDat e (functions); CDbl (function); Cl nt
(function); CLng (function); CSng (function); CSt r (function); CVEr r (function); Var i ant
(datatype).

5-28 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



CVErr (function)

Syntax
Description

Comments

Example

See Also

GFK-1283G

CVET r (expression)
Converts expression to an error.
Thisfunction is used to convert an expression into a user-defined error number.
A runtime error is generated under the following conditions:
If expressionisNul | .
If expression is a number outside the legal range for errors, which is as follows:
0 <= expression <= 65535
If expressionisBool ean.
If expressionisaSt ri ng that can't be converted to a number within the legal range.
Enpt y istreated as 0.

This example simulates a user-defined error and displays the error number.

Sub Mai n()
MsgBox "The error is: " & CStr(CVErr(2046))

End Sub

CCur (function); CBool (function); CDat e, CVDat e (functions); CDbl (function); CI nt

(function); CLng (function); CSng (function); CSt r (function); CvVar (function), | SEr r or

(function).

5-29






Date (data type)

Syntax
Description

Comments

See Also

GFK-1283G

Dat e
A data type capable of holding date and time values.

Dat e variables are used to hold dates within the following range:
January 1, 100 00: 00: 00 <= date <= Decenber 31, 9999 23:59:59
—6574340 <= date <= 2958465. 99998843

Internally, dates are stored as 8-byte | EEE double values. The integer part holds the number of days
since December 31, 1899, and the fractional part holds the number of seconds as a fraction of the
day. For example, the number 32874.5 represents January 1, 1990 at 12:00:00.

When appearing within a structure, dates require 8 bytes of storage. Similarly, when used with
binary or random files, 8 bytes of storage are required.

There is no type-declaration character for Dat e.
Dat e variables that haven't been assigned are given an initial value of O (i.e., December 31, 1899).
DatelLiterals

Literal dates are specified using number signs, as shown below:
Dimd As Date
d = #January 1, 1990#

Theinterpretation of the date string (i.e., January 1, 1990 inthe above example) occurs at
runtime, using the current country settings. Thisis a problem when interpreting dates such as
1/2/1990. If the date format is M/D/Y , then this date is January 2, 1990. If the date format is
D/M/Y , then this date is February 1, 1990. To remove any ambiguity when interpreting dates, use
the universal date format:

date variable = #YY/MM/DD HH:MM:SS#

The following example specifies the date June 3, 1965 using the universal date format:

Dmd As Date
d = #1965/6/3 10: 23: 45#

Cur r ency (datatype); Doubl e (datatype); | nt eger (datatype); Long (datatype); Obj ect
(datatype); Si ngl e (datatype); St ri ng (datatype); Var i ant (datatype); Bool ean (data
type); Def Type (statement); CDat e, CVDat e (functions).

6-1



Date, Date$ (functions)

Syntax
Description

Comments

Example

See Also

6-2

Dat e[ $] [(]
Returns the current system date.

The Dat e$ function returns the date using the short date format. The Dat e function returns the
date asaDat e variant.

Usethe Dat e/ Dat e$ statements to set the system date.
The date is returned using the current short date format (defined by the operating system).

Important

TheDat e$ function does not properly support international formats. Use the Dat e function
instead.

This example saves the current date to TheDat e$, then changes the date and displays the result.
It then changes the date back to the saved date and displays the restored date.

When run with non-US Regional or International settings,

the two nessage boxes may display different dates.

One set of International Date Formats which shows this is:
Short Date Format: dd.Myy (ex: 02.01.97 for 2 January 1997)
Long Date Fornat: ddddd, dd M vyyyy (Thursday, 02 January 1997)

Sub Mai n()

Save the current date

TheDat e$ = Date

Set the date to one that may confuse the library functions
(month and day < 12)

Date = "01/02/ 97" ' 1 Feb 1997
MsgBox( Format $ (Date$, "dddddd")) ' This may show 2 Jan
MsgBox(Format $ (Date, "dddddd")) ' This may show 1 Feb

Restore the date
Dat e = TheDat e$
End Sub

CDat e, CVDat e (functions); Ti me, Ti me$ (functions); Dat e, Dat e$ (statements); Now
(function); For mat, For mat $ (functions); Dat eSer i al (function); Dat eVal ue (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Date, Date$ (statements)

Syntax
Description

Comments

Example

See Also

Platform
Notes

GFK-1283G

Dat e[ $] = newdate
Sets the system date to the specified date.
The Dat e$ statement requires a string variable using one of the following formats:

MM-DD-YYYY
MM-DD-YY
MM/DD/YYYY
MM/DD/YY,

where MM is a two-digit month between 1 and 31, DD is atwo-digit day between 1 and 31, and
YYYY isafour-digit year between 1/1/100 and 12/31/9999.

The Dat e statement converts any expression to a date, including string and numeric values. Unlike
the Dat e$ statement, Dat e recognizes many different date formats, including abbreviated and full
month names and a variety of ordering options. If newdate contains a time component, it is
accepted, but the time is not changed. An error occurs if newdate cannot be interpreted as avalid
date.

This example saves the current date to Cdate$, then changes the date and displays the result. It then
changes the date back to the saved date and displays the result.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
TheDate$ = Date
Date = "01/01/95"
MsgBox "Saved date is: " & TheDate$ & crlf & "Changed date is: " & Date
Dat e = TheDat e$
MsgBox "Restored date to: " & TheDate$
End Sub

Dat e, Dat e$ (functions); Ti me, Ti me$ (statements).

If you do not have permission to change the date, runtime error 70 will be generated.



DateAdd (function)

Syntax Dat eAdd(interval$, increment&, date)

Description Returns a Dat e variant representing the sum of date and a specified number (increment) of time
intervals (interval$).

Comments This function adds a specified number (increment) of time intervals (interval$) to the specified date
(date). The following table describes the parameters to the Dat e Add function:

Parameter Description

interval$ St ri ng expression indicating the time interval used in the addition.

increment I nt eger indicating the number of time intervals you wish to add. Positive
values result in datesin the future; negative values result in dates in the past.

date Any expression convertibleto aDat e.

The interval$ parameter specifies what unit of timeis to be added to the given date. It can be any of

the following:

Time Interval

A Day of the year

“yyyy" Y ear

e Day

"t Month

“q” Quarter

" ww! Week

"h" Hour

"n" Minute

"s” Second

"w Weekday

To add days to a date, you may use either day, day of the year, or weekday, asthey are all equivalent

("d","y", "w").

The Dat eAdd function will never return an invalid date/time expression. The following example
adds two months to December 31, 1992:

s# = DateAdd("nt', 2, "Decenber 31, 1992")

In thisexample, s isreturned as the double-precision number equal to "February 28, 1993",
not"February 31, 1993".

A runtime error is generated if you try to subtract atime interval that is larger than the time value of
the date.

6-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Example

See Also

GFK-1283G

This example gets today's date using the Date$ function; adds three years, two months, one week, and
two daysto it; and then displays the result in a dialog box.

Sub Mai n()
Di m sdat e$
sdate$ = Date$
NewDat e# = Dat eAdd("yyyy", 4, sdat e$)
NewDat e# = Dat eAdd(" ', 3, NewDat e#)
NewDat e# = Dat eAdd("ww', 2, NewDat e#)
NewDat e# = Dat eAdd("d", 1, NewDat e#)
s$ = "Four years, three nonths, tw weeks,
s$ = s$ & Format (NewDat e#, "l ong date")
MsgBox s$

End Sub

Dat eDi f f (function).

and one day fromnow will

be:



DateDiff (function)

Syntax Dat eDi f f (interval$,datel,date?)
Description Returns a Dat e variant representing the number of given time intervals between datel and date2.
Comments The following table describes the parameters:

Parameter Description

interval$ St ri ng expression indicating the specific time interval you wish to find the

difference between.

datel Any expression convertibleto aDat e. An example of avalid date/time string
would be"January 1, 1994".

date2 Any expression convertibleto aDat e. An example of avalid date/time string
would be"January 1, 1994".

The following table lists the valid time interval strings and the meanings of each. The For nat $
function uses the same expressions.

Time Interval
A Day of the year
"yyyy" Y ear

" g Day

M Month
“q" Quarter
" Week
"h" Hour
“n" Minute
"s" Second
"w' Weekday

To find the number of days between two dates, you may use either day or day of the year, asthey
are both equivalent ("d", "y").

Thetime interval weekday ("w") will return the number of weekdays occurring between datel and
date2, counting the first occurrence but not the last. However, if the timeinterval isweek ("ww"),
the function will return the number of calendar weeks between datel and date2, counting the
number of Sundays. If datel falls on a Sunday, then that day is counted, but if date2 fallson a
Sunday, it is not counted.

TheDat eDi f f function will return a negative date/time value if datel is a date later in time than
date2.

6-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Example

See Also

This example gets today's date and adds ten days to it. It then cal culates the difference between the
two dates in days and weeks and displays the result.

Sub Mai n()
t oday$ = Format (Dat e$, "Short Date")
Next Week = For mat ( Dat eAdd("d", 14, t oday$), "Short Date")
Di f Days# = DateDi ff("d",today$, Next Week)
Di f Week# = DateDi ff("w',today$, Next Week)
s$ = "The difference between " & today$ & " and " & Next Wek
s$ =s$ &" is: " & DifDays# & " days or " & D fWek# & " weeks"
MsgBox s$
End Sub

Dat eAdd (function).

DatePart (function)

Syntax
Description

Comments

GFK-1283G

Dat ePar t (interval$,date)
Returnsan | nt eger representing a specific part of a date/time expression.

The Dat ePar t function decomposes the specified date and returns a given date/time element. The
following table describes the parameters:

Parameter Description

interval$ St ri ng expression that indicates the specific time interval you wish to identify
within the given date.

date Any expression convertibleto aDat e. An example of avalid date/time string

would be"January 1, 1995".

The following table lists the valid time interval strings and the meanings of each. The For nat $
function uses the same expressions.

Time Interval
A Day of the year
"yyyy" Year

" g Day

"t Month
“q" Quarter

" ww! Week
"h" Hour
"n" Minute
"s" Second
"W Weekday

The weekday expression starts with Sunday as 1 and ends with Saturday as 7.



Example

See Also

This example displays the parts of the current date.
Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
today$ = Date$

qt = DatePart("q",today$)
yr = DatePart("yyyy",today$)
no = DatePart ("nt,today$)
wk = DatePart ("ww',today$)
da = DatePart("d",today$)
s$ = "The current date is:" &crlf &crlf
s$ = s$ & "Quarter " &qt &ecrlf
s$ = s$ & "Year " &yr &ecrlf
s$ = s$ & "Month &m &crlf
s$ = s$ & "Week " & wk &ecrlf
s$ = s$ & "Day ;" &da &ecrlf
MsgBox s$

End Sub

Day (function); M nut e (function); Second (function); Mont h (function); Year (function);
Hour (function); Weekday (function), For mat (function).

DateSerial (function)

Syntax
Description

Comments

Example

See Also

6-8

Dat eSer i al (year,month,day)
Returns a Dat e variant representing the specified date.

The Dat eSer i al function takes the following parameters:

Parameter Description

year I nt eger between 100 and 9999
month I nt eger between 1 and 12

day I nt eger between 1 and 31

This example converts a date to areal number representing the serial date in days since December
30, 1899 (which isday 0).
Sub Mai n()

tdate# = DateSerial (1993, 08, 22)

MsgBox "The DateSerial value for August 22, 1993, is: " & tdate#
End Sub

Dat eVal ue (function); Ti neSeri al (function); Ti meVal ue (function); CDat e, CVDat e
(functions).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DateValue (function)

Syntax Dat eVal ue(date_string$)
Description Returns a Date variant representing the date contained in the specified string argument.
Example This example returns the day of the month for today's date.

Sub Mai n()

tdate$ = Date$

tday$ = DateVal ue(tdate$)

MsgBox "The date value of " & tdate$ & " is: " & tday$
End Sub

See Also Ti meSeri al (function); Ti meVal ue (function); Dat eSeri al (function).

Platform(s) All.

Day (function)

Syntax Day (date)
Description Returns the day of the month specified by date.
Comments The value returned isan | nt eger between 0 and 31 inclusive.

The date parameter is any expression that convertsto aDat e.

Example This example gets the current date and then displays it.
Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()

CurDate = Now()
MsgBox "Today is day " & Day(CurDate) & " of the month." & crlf & "Tonorrowis
day " & Day(CurDate + 1) & "."
End Sub
See Also M nut e (function); Second (function); Mont h (function); Year (function); Hour (function);

Weekday (function); Dat ePar t (function).

GFK-1283G D



DDB (function)

Syntax DDB(Cost, Salvage, Life, Period)

Description Calculates the depreciation of an asset for a specified Period of time using the double-declining
balance method.

Comments The double-declining balance method cal cul ates the depreciation of an asset at an accelerated rate.

The depreciation is at its highest in the first period and becomes progressively lower in each
additional period. DDB uses the following formulato calcul ate the depreciation:

DDB = ((Cost— Total_depreciation_from_all_other_periods) * 2) / Life

The DDB function uses the following parameters:

Parameter Description

Cost Doubl e representing the initial cost of the asset

Salvage Doubl e representing the estimated value of the asset at the end of its
predicted useful life

Life Doubl e representing the predicted length of the asset's useful life

Period Doubl e representing the period for which you wish to calculate the
depreciation

Life and Period must be expressed using the same units. For example, if Lifeis expressed in
months, then Period must also be expressed in months.

Example This example calculates the depreciation for capital equipment that cost $10,000, has a service life
of ten years, and is worth $2,000 as scrap. The dialog box displays the depreciation for each of the
first four years.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
s$ = "Depreciation Table" & crlf &crlf
For yy =1 To 4
Cur Dep# = DDB(10000. 0, 2000. 0, 10, yy)

s$ = s$ & "Year " &yy & " : " & CurDep# & crlf
Next yy
MsgBox s$
End Sub
See Also Sl n (function); SYD (function).

6-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DDEExecute (statement)

Syntax
Description

Comments

Example

See Also

GFK-1283G

DDEExecut e channel, command$
Executes a command in another application.
The DDEEx ecut e statement takes the following parameters:

Parameter Description

channel I nt eger containing the DDE channel number returned from DDEI ni ti at e.
An error will result if channel isinvalid.

command$ St ri ng containing the command to be executed. The format of command$
depends on the receiving application.

If the receiving application does not execute the instructions, a runtime error is generated.

This example sets and retrieves a cell in an Excel spreadsheet. The command strings being created
contain Microsoft Excel macro commands and may be concatenated and sent as one string to speed
things up.

Sub Mai n()

Di m cnd, g, ch%
g = Chr(34)' Define quotation marks.

id = Shell ("c:\excel 5\excel .exe",3) 'Start Excel.
ch% = DDElInitiate("Excel","Sheet1")

On Error Resune Next
cmd = "[ ACTI VATE(" & q &' SHEET1" & q & ")]" 'Activate worksheet.
DDEExecut e ch% cnd

DDEPoke ch% " R1Cl1", "$1000. 00" ' Send value to cell.
"Retrieve value and displ ay.
MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch% "RLC1")

DDETer mi nate ch%
Msgbox "Fi ni shed..."
End Sub

DDEI ni ti at e (function); DDEPoke (statement); DDERequest, DDERequest $ (functions);
DDESend (function); DDETer i nat e (statement); DDETer ni nat eAl | (statement);
DDETi neout (statement).

D 6-11



DDElnitiate (function)

Syntax DDEI ni t i at e(application$, topic$)

Description Initializes a DDE link to another application and returns a unique number subsequently used to
refer to the open DDE channel.

Comments The DDEI ni ti at e statement takes the following parameters:
Parameter Description

application$ St ri ng containing the name of the application (the server) with which a DDE
conversation will be established.

topic$ St ri ng containing the name of the topic for the conversation. The possible
values for this parameter are described in the documentation for the server
application.

This function returns O if the link cannot be established. Thiswill occur under any of the following
circumstances:

e The specified application is not running.
e Thetopic wasinvalid for that application.
«  Memory or system resources are insufficient to establish the DDE link.

Example This example sets and retrieves a cell in an Excel spreadshest.

Sub Mai n()
D mcnd, g, ch%
g = Chr(34)"' Define quotation narks.

id = Shell ("c:\excel 5\ excel .exe",3) 'Start Excel.
ch% = DDElInitiate("Excel","Sheet1")

On Error Resune Next
cmd = "[ACTI VATE(" & g &'SHEET1" & g & ")]" 'Activate worksheet.
DDEExecut e ch% cnd

DDEPoke ch% " R1C1", " $1000. 00" ' Send value to cell.
'Retrieve value and displ ay.
MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%"RL1Cl")

DDETer mi nate ch%
Msgbox "Fi ni shed..."
End Sub

See Also DDEExecut e (statement); DDEPoke (statement); DDERequest, DDERequest $ (functions);
DDESend (function); DDETer mi nat e (statement); DDETer ni nat eAl | (statement);
DDETi neout (statement).

6-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DDEPoke (statement)

Syntax DDEPoke channel, Dataltem, value
Description Sets the value of adataitem in the receiving application associated with an open DDE link.
Comments The DDEPok e statement takes the following parameters:

Parameter Description

channel I nt eger containing the DDE channel number returned from DDEI ni ti at e.

An error will result if channel isinvalid.

Dataltem Dataitem to be set. This parameter can be any expression convertibleto a
St ri ng. The format depends on the server.

value The new value for the data item. This parameter can be any expression
convertibletoa St ri ng. The format depends on the server. A runtime error is
generated if valueisNul | .

Example This example sets and retrieves a cell in an Excel spreadshest.

Sub Mai n()
D mcnd, g, ch%
g = Chr(34)' Define quotation narks.

id = Shell ("c:\excel 5\ excel.exe",3) 'Start Excel.
ch% = DDElInitiate("Excel","Sheet1")

On Error Resune Next
cmd = "[ACTI VATE(" & g &'SHEET1" & g & ")]" 'Activate worksheet.
DDEExecut e ch% cnd

DDEPoke ch% " R1C1", " $1000. 00" 'Send value to cell.
'Retrieve value and displ ay.
MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%"RL1Cl")

DDETer mi nate ch%
Msgbox "Fi ni shed..."
End Sub

See Also DDEExecut e (statement); DDEI ni t i at e (function); DDERequest, DDERequest $
(functions); DDESend (function); DDETer m nat e (statement); DDETer ni nat eAl |
(statement); DDETi nmeout (statement).

GFK-1283G D 6-13



DDERequest, DDERequest$ (functions)

Syntax

Description

Comments

Example

See Also

6-14

DDERequest [$](channel,Dataltem$)

Returns the value of the given dataitem in the receiving application associated with the open DDE

channel.
DDERequest $ returnsa St r i ng, whereas DDERequest returnsa St ri ng variant.
The DDERequest / DDERequest $ functions take the following parameters:

Parameter Description

channel I nt eger containing the DDE channel number returned from DDEI ni t i at e.

An error will result if channel isinvalid.

Dataltem$ St ri ng containing the name of the data item to request. The format for this
parameter depends on the server.

The format for the returned val ue depends on the server.

This example sets and retrieves a cell in an Excel spreadsheet.

Sub Mai n()
D mcnd, g, ch%
g = Chr(34)"' Define quotation narks.

id = Shell ("c:\excel 5\ excel.exe",3) 'Start Excel.
ch% = DDElInitiate("Excel","Sheet1")

On Error Resune Next
cmd = "[ACTI VATE(" & g &'SHEET1" & g & ")]" 'Activate worksheet.
DDEExecut e ch% cnd

DDEPoke ch% " R1C1", " $1000. 00" 'Send value to cell.
'Retrieve value and displ ay.
MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%"RL1Cl")

DDETer mi nate ch%
Msgbox "Fi ni shed..."
End Sub

DDEExecut e (statement); DDEI ni t i at e (function); DDEPoke (statement); DDESend
(function); DDETer ni nat e (statement); DDETer mi nat eAl | (statement); DDETi neout
(statement).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DDESend (statement)

Syntax DDESend application$, topic$, Dataltem, value

Description Initiates a DDE conversation with the server as specified by application$ and topic$ and sends that
server anew value for the specified item.

Comments The DDESend statement takes the following parameters:
Parameter Description

application$ St ri ng containing the name of the application (the server) with which a DDE
conversation will be established.

topic$ St ri ng containing the name of the topic for the conversation. The possible
values for this parameter are described in the documentation for the server
application.

Dataltem Dataitem to be set. This parameter can be any expression convertibleto a
St ri ng. The format depends on the server.

value New value for the data item. This parameter can be any expression convertible
toaSt ri ng. Theformat depends on the server. A runtime error is generated if
valueisNul I .

The DDESend statement performs the equivalent of the following statements:

ch% = DDEl ni ti ate(application$,topic$)
DDEPoke ch%item dat a
DDETer mi nate ch%

Example This example sets the content of the first cell in an Excel spreadsheet.

Sub Mai n()
Di m cmd, ch%
id = Shell ("c:\excel 5\ excel .exe",3) 'Start Excel.

On Error Goto Excel Error

DDESend "Excel ", " Sheet 1", "R1C1", "Payrol | For August 1995"
Msgbox "Fi ni shed..."

Exit Sub

Excel Error:
MsgBox "Error sending data to Excel."
Exit Sub 'Reset error handler.

End Sub

See Also DDEExecut e (statement); DDEI ni t i at e (function); DDEPoke (statement); DDERequest ,
DDERequest $ (functions); DDETer m nat e (statement); DDETer m nat eAl | (statement);
DDETi neout (statement).

GFK-1283G D 6-15



DDETerminate (statement)

Syntax
Description

Comments

Example

See Also

6-16

DDETer mi nat e channel
Closes the specified DDE channel.

The channel parameter isan | nt eger containing the DDE channel number returned from
DDEI ni ti at e. Anerror will result if channel isinvalid.

All open DDE channels are automatically terminated when the script ends.

This example sets and retrieves a cell in an Excel spreadsheet.

Sub Mai n()
D mcnd, g, ch%
g = Chr(34)"' Define quotation narks.

id = Shell ("c:\excel 5\ excel .exe",3) 'Start Excel.
ch% = DDElInitiate("Excel","Sheet1")

On Error Resune Next
cmd = "[ACTI VATE(" & g &'SHEET1" & g & ")]" 'Activate worksheet.
DDEExecut e ch% cnd

DDEPoke ch% " R1C1", " $1000. 00" 'Send value to cell.
'Retrieve value and displ ay.
MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%"RL1Cl")

DDETer mi nate ch%
Msgbox "Fi ni shed..."
End Sub

DDEExecut e (statement); DDEI ni t i at e (function); DDEPoke (statement); DDERequest ,
DDERequest $ (functions); DDESend (function); DDETer nmi nat eAl | (statement);
DDETi neout (statement).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DDETerminateAll (statement)

Syntax
Description
Comments

Example

See Also

GFK-1283G

DDETer i nat eAl |
Closes all open DDE channels.
All open DDE channels are automatically terminated when the script ends.

This example sets and retrieves a cell in an Excel spreadsheet.

Sub Mai n()
Di m cnd, g, ch%
q = Chr(34)' Define quotation marks.

id = Shell ("c:\excel 5\excel.exe",3) 'Start Excel.
ch% = DDElInitiate("Excel","Sheet1")

On Error Resune Next
cmd = "[ ACTI VATE(" & q &' SHEET1" & q & ")]" 'Activate worksheet.
DDEExecut e ch% cnd

DDEPoke ch% " R1Cl1", "$1000. 00" ' Send value to cell.
"Retrieve value and displ ay.
MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch% "RLC1")

DDETer m nat eAl |
Msgbox "Fi ni shed..."
End Sub

DDEExecut e (statement); DDEI ni t i at e (function); DDEPoke (statement); DDERequest ,
DDERequest $ (functions); DDESend (function); DDETer mi nat e (statement); DDETi meout
(statement).

D 6-17



DDETimeout (statement)

Syntax
Description

Comments

Example

See Also

6-18

DDETi meout milliseconds
Sets the number of milliseconds that must elapse before any DDE command times out.
The milliseconds parameter isaLong and must be within the following range:
0 <= milliseconds <= 2,147,483,647
The default is 10,000 (10 seconds).

This example sets and retrieves a cell in an Excel spreadsheet. The timeout has been set to wait 2
seconds for Excel to respond before timing out.

Sub Mai n()
Di m cnd, g, ch%
q = Chr(34)' Define quotation marks.

id = Shell ("c:\excel 5\excel .exe",3) 'Start Excel.
ch% = DDElInitiate("Excel","Sheet1")
DDETi neout 2000 "Wait 2 seconds for Excel to respond

On Error Resune Next
cmd = "[ ACTI VATE(" & q &' SHEET1" & q & ")]" 'Activate worksheet.
DDEExecut e ch% cnd

DDEPoke ch% " R1Cl1", "$1000. 00" ' Send value to cell.
"Retrieve value and displ ay.
MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch% "RLC1")

DDETer mi nate ch%
Msgbox "Fi ni shed. .."
End Sub

DDEExecut e (statement); DDEI ni t i at e (function); DDEPoke (statement); DDERequest ,
DDERequest $ (functions); DDESend (function); DDETer mi nat e (statement);
DDETer mi nat eAl | (statement).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Declare (statement)

Syntax

Description

Comments

GFK-1283G

Declare {Sub | Function} name TypeChar] [CDecl | Pascal | System| StdCall]

B [Lib "LibName$' [Alias "AliasName$']] [ ([ ParameterList])] [As type]
Where ParameterList is a comma-separated list of the following (up to 30 parameters are allowed):
[Optional] [ByVal | ByRef] ParameterName[ ()] [As ParameterType]

Creates a prototype for either an external routine or a Basic Control Engine routine that occurs later
in the source module or in another source module.

Decl ar e statements must appear outside of any Sub or Funct i on declaration.
Decl ar e statements are only valid during the life of the script in which they appear.
The Decl ar e statement uses the following parameters:

Parameter Description

name Any valid script name. When you declare functions, you can include a type-
declaration character to indicate the return type.

Thisnameis specified as anormal script keyword—i.e., it does not appear
within quotes.

TypeChar An optional type-declaration character used when defining the type of data
returned from functions. It can be any of the following characters. #, ! , $, @ %
or & For external functions, the @character is not allowed.

Type-declaration characters can only appear with function declarations, and
take the place of the As type clause.

Note: Cur r ency data cannot be returned from external functions. Thus, the
@type-declaration character cannot be used when declaring external functions.

CDecl Optional keyword indicating that the external subroutine or function uses the C
calling convention. With C routines, arguments are pushed right to left on the
stack and the caller performs stack cleanup.

Pascal Optional keyword indicating that this external subroutine or function uses the
Pascal calling convention. With Pascal routines, arguments are pushed left to
right on the stack and the called function performs stack cleanup.

System Optional keyword indicating that the external subroutine or function uses the
System calling convention. With System routines, arguments are pushed right
to left on the stack, the caller performs stack cleanup, and the number of
argumentsis specified in the AL register.

Stdcal | Optional keyword indicating that the external subroutine or function uses the
StdCall calling convention. With StdCall routines, arguments are pushed right
to left on the stack and the called function performs stack cleanup.

LibName$ Must be specified if the routine is external. This parameter specifies the name
of the library or code resource containing the external routine and must appear
within quotes.

The LibName$ parameter can include an optional path specifying the exact
location of the library or code resource..

D 6-19



AliasName$

type

Opt i onal

ByVal

By Ref

ParameterName

0
Parameter Type

Alias name that must be given to provide the name of the routine if the name
parameter is not the routine's real name. For example, the following two
statements declare the same routine:

Decl are Function GetCurrentTime Lib "user" () As I|nteger

Decl are Function GetTime Lib "user" Alias "GetCurrentTi me" _
As | nteger

Use an alias when the name of an external routine conflicts with the name of an
internal routine or when the external routine name contains invalid characters.

The AliasName$ parameter must appear within quotes.
Indicates the return type for functions.

For external functions, the valid return types are: | nt eger, Long, St ri ng,
Si ngl e, Doubl e, Dat e, Bool ean, and data objects.

Note: Currency, Var i ant , fixed-length strings, arrays, user-defined types,
and OLE automation objects cannot be returned by external functions.

Keyword indicating that the parameter is optional. All optional parameters
must be of type Var i ant . Furthermore, all parameters that follow the first
optional parameter must also be optional.

If this keyword is omitted, then the parameter being defined is required when
calling this subroutine or function.

Optional keyword indicating that the caller will pass the parameter by value.
Parameters passed by value cannot be changed by the called routine.

Optional keyword indicating that the caller will pass the parameter by
reference. Parameters passed by reference can be changed by the called
routine. If neither By Val or ByRef are specified, then By Ref is assumed.

Name of the parameter, which must follow the script's naming conventions:
1. Must start with aletter.

2. May contain letters, digits, and the underscore character (_). Punctuation
and type-declaration characters are not allowed. The exclamation point (! )
can appear within the name aslong asit is not the last character, in which
case it isinterpreted as a type-declaration character.

3. Must not exceed 80 charactersin length.

Additionally, ParameterName can end with an optional type-declaration
character specifying the type of that parameter (that is, any of the following
characters. % &, ! , #, @.

Indicates that the parameter is an array.

Specifies the type of the parameter (e.g., | nt eger, Stri ng, Vari ant , and
so on). The As Parameter Type clause should only be included if
Parameter Name does not contain a type-declaration character.

6-20 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



In addition to the default data types, Parameter Type can specify any user-
defined structure, data object, or OLE automation object. If the data type of the
parameter is not known in advance, then the Any keyword can be used. This
forces the compiler to relax type checking, allowing any data type to be passed
in place of the given argument.

Decl are Sub Convert Lib "nylib" (a As Any)

The Any data type can only be used when passing parameters to external
routines.

Passing Parameters

By default, arguments are passed by reference. Many external routines require a value rather than a
reference to avalue. The By Val keyword does this. For example, this C routine

voi d MessageBeep(int);

would be declared as follows:

Decl are Sub MessageBeep Lib "user" (ByVal n As |nteger)
As an example of passing parameters by reference, consider the following C routine which requires
apointer to an integer as the third parameter:

int SystenmParanetersinfo(int,int,int *,int);

This routine would be declared as follows (notice the By Ref keyword in the third parameter):

Decl are Function SystenParanetersinfo Lib "user" (ByVal action As |nteger, _
ByVal uParam As |nteger, ByRef plnfo As Integer, _
ByVal updatel Nl As Integer) As Integer

Strings can be passed by reference or by value. When they are passed by reference, a pointer to the
internal handle to the string is passed. When they are passed by value, the script passes a 32-hit
pointer to a null-terminated string (that is., a C string). If an external routine modifies a passed
string variable, then there must be sufficient space within the string to hold the returned characters.
This can be accomplished using the Space function, as shown in the following example:

Decl are Sub Get WndowsDirectory Lib "kernel" (ByVal dirnane$, ByVal |ength%
Di m s As String

s = Space(128)
Get WndowsDi rectory s, 128

Another aternative to ensure that a string has sufficient space is to declare the string with a fixed
length:
Decl are Sub Get WndowsDirectory Lib "kernel" (ByVal dirnane$, ByVal |ength%

Dims As String * 128 ‘"Declare a fixed-length string.
Get WndowsDi rectory s,len(s) 'Pass it to an external subroutine.

Calling Conventions with External Routines

For external routines, the argument list must exactly match that of the referenced routine. When
calling an external subroutine or function, the script needs to be told how that routine expectsto
receive its parameters and who is responsible for cleanup of the stack.

The following table describes which calling conventions are supported on which platform, and
indicates what the default calling convention is when no explicit calling convention is specified in
the Decl ar e statement.

GFK-1283G D 6-21



Passing Null Pointers

To passanull pointer to an external procedure, declare the parameter that isto receive the null
pointer as type Any, then pass along value O by value:

Decl are Sub Foo Lib "sanple" (ByVal |pName As Any)

Sub Mai n()
Sub Foo "Hell 0" 'Pass a 32-bit pointer to a null-terminated string
Sub Foo ByVal 0& 'Pass a null pointer

End Sub

Passing Data to External Routines

The following table shows how the different data types are passed to external routines:
Data Type Is Passed As

ByRef Bool ean A 32-bit pointer to a 2-byte value containing —1 or 0.

ByVal Bool ean A 2-bytevalue containing—1 or 0.

ByVval Integer A 32-hit pointer to a 2-byte short integer.

ByRef | nteger A 2-byte short integer.

ByVal Long A 32-bit pointer to a 4-byte long integer.

ByRef Long A 4-bytelong integer.

ByRef Single A 32-bit pointer to a 4-byte |EEE floating-point value (a float).
Byval Single A 4-byte | EEE floating-point value (afloat).

ByRef Doubl e A 32-bit pointer to an 8-byte |EEE floating-point value (a double).
ByVval Doubl e An 8-byte | EEE floating-point value (a double).

Byval String A 32-bit pointer to a null-terminated string. With strings containing
embedded nulls (Chr $( 0) ), it is not possible to determine which null
represents the end of the string. Therefore, the first null is considered the
string terminator.

An external routine can freely change the content of a string. It cannot,
however, write beyond the end of the null terminator.

ByRef String A 32-bit pointer to a 2-byte internal value representing the string. This
value can only be used by external routines written specifically for the
Basic Control Engine.

ByRef Date A 32-bit pointer to an 8-byte | EEE floating-point value (a double).
ByVal Date An 8-byte | EEE floating-point value (a double).

ByRef Currency A 32-bit pointer to an 8-byte integer scaled by 10000.

ByVal Currency  An8-byteinteger scaled by 10000.

ByRef Vari ant A 32-bit pointer to a 16-byte internal variant structure. This structure
contains a 2-byte type (the same as that returned by the Var Type
function), followed by 6 bytes of slop (for alignment), followed by 8 bytes
containing the value.

ByVval Vari ant A 16-byte variant structure. This structure contains a 2-byte type (the same
asthat returned by the Var Type function), followed by 6 bytes of slop
(for alignment), followed by 8 bytes containing the value.

6-22 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



ByVval bject For data objects, a 32-bit pointer to a 4-byte unsigned long integer. This
value can only be used by external routines written specifically for the
Basic Control Engine.

For OLE automation objects, a 32-bit pointer to an LPDI SPATCH handle
is passed.

ByRef bj ect For data objects, a 32-bit pointer to a 4-byte unsigned long integer that
references the object. This value can only be used by external routines
written specifically for the Basic Control Engine.

For OLE automation objects, a 32-bit pointer to a4-byteinternal ID is
passed. This value can only be used by external routines written
specifically for the Basic Control Engine.

User-defined type A 32-bit pointer to the structure. User-defined types can only be passed by
reference.

It isimportant to remember that structures in Basic Control Engine scripts
are packed on 2-byte boundaries, meaning that the individua structure
members may not be aligned consistently with similar structures declared

inC.

Arrays A 32-bit pointer to a packed array of elements of the given type. Arrays
can only be passed by reference.

Dialogs Dialogs cannot be passed to external routines.

Only variable-length strings can be passed to external routines; fixed-length strings are
automatically converted to variable-length strings.

The Basic Control Engine passes datato external functions consistent with that routine's prototype
as defined by the Decl ar e statement. There is one exception to this rule: you can override By Ref
parameters using the By Val keyword when passing individual parameters. The following example
shows a number of different waysto passan | nt eger to an external routine called Foo:

Decl are Sub Foo Lib "MyLib" (ByRef i As Integer)

Sub Main
Dimi As Integer
i =6
Foo 6 ' Passes a tenporary integer (value 6) by reference
Foo i ' Passes variable "i" by reference
Foo (i) ' Passes a tenporary integer (value 6) by reference
Foo i +1 ' Passes tenporary integer (value 7) by reference
Foo ByVal i 'Passes i by val ue

End Sub

The above example shows that the only way to override passing a value by reference isto use the
ByVal keyword.

Note

Use caution when using the By Val keyword in this way. The external routine Foo expectsto
receive apointer to an | nt eger —a 32-hit value; using By Val causes the Basic Control Engine
to passthel nt eger by value—a 16-bit value. Passing data of the wrong size to any external
routine will have unpredictable results.

GFK-1283G D 6-23



Example

See Also

Notes:

6-24

Decl are Function |IsLoaded% Lib "Kernel" Alias "Get Mbdul eHandl e" (ByVal KNanme$)

Decl are Function GetProfileString Lib "Kernel" (ByVal SName$, ByVal KNanme$, ByVal
Def $, ByVal Ret$, ByVal Size% As Integer

Sub Mai n()
SName$ = "Intl" "Wn.ini section nane.
KNarme$ = "sCountry" "Wn.ini country setting.
ret$ = String(255,0) ‘'Initialize return string.

If GetProfileString(SName$, KName$,"",ret$, Len(ret$)) Then
MsgBox "Your country setting is: " &ret$
El se
MsgBox "There is no country setting in your win.ini file."
End |f

I f |sLoaded("Progman") Then
MsgBox "Prognman is | oaded."
El se
MsgBox "Progman is not | oaded."
End |f
End Sub

Cal | (statement), Sub. .. End Sub (statement), Functi on. .. End Functi on (statement).

Under Win32, eternal routines are contained in DLLs. The libraries containing the routines are
|loaded when the routineis called for the first time (that is, not when the script isloaded). This
allows a script to reference external DLLs that potentially do not exist.

All the Win32 API routines are contained in DLLS, such as "user32", "kernel 32", and "gdi32". The
file extension ".exe" isimplied if another extension is not given.

ThePascal and St dCal | calling conventions are identical on Win32 platforms. Furthermore,
on this platform, the arguments are passed using C ordering regardless of the calling convention --
right to left on the stack.

If the libname$ parameter does not contain an explicit path to the DLL, the following search will be
performed for the DLL (in this order):

1. Thedirectory containing the Basic Control Engine scripts
2. Thecurrent directory

3. The Windows system directory

4. The Windows directory

5. All directories listed in the path environment variable

If the first character of aliasname$ is#, then the remainder of the characters specify the ordinal
number of the routine to be called. For example, the following two statements are equivalent (under
Win32, Get Cur r ent Ti ne isdefined as Get Ti ckCount , ordinal 300, in kernel32.dll):

Decl are Function GetTime Lib "kernel 32.dl 1" Alias "GetTickCount" () As Long
Decl are Function GetTime Lib "kernel 32.dl1" Alias "#300" () As Long

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DefType (statement)

Syntax Def | nt letterrange
Def Lng letterrange
Def St r letterrange
Def Sng letterrange
Def Dbl letterrange
Def Cur letterrange
Def Obj letterrange
Def Var letterrange
Def Bool letterrange
Def Dat e letterrange

Description Establishes the default type assigned to undeclared or untyped variables.

Comments The Def Type statement controls automeatic type declaration of variables. Normally, if avariableis
encountered that hasn't yet been declared withthe Di m Publ i ¢, or Pri vat e statement or does
not appear with an explicit type-declaration character, then that variable is declared implicitly as a
variant (Def Var A—Z) . This can be changed using the Def Type statement to specify starting
|etter ranges for type other than integer. The letterrange parameter is used to specify starting letters.
Thus, any variable that begins with a specified character will be declared using the specified Type.

The syntax for letterrangeis:
letter [-letter] [,letter [-letter]]...

Def Type variable types are superseded by an explicit type declaration[] using either atype-
declaration character or the Di m Publ i ¢, or Pri vat e statement.

The Def Type statement only affects how the Basic Control Engine compiles scripts and has no
effect at runtime.

The Def Type statement can only appear outside all Sub and Funct i on declarations.
The following table describes the data types referenced by the different variations of the Def Type

statement:

Statement Data Type
Def | nt I nt eger
Def Lng Long

Def Str String
Def Sng Singl e
Def Dbl Doubl e
Def Cur Currency
Def Obj oj ect
Def Var Vari ant
Def Bool Bool ean
Def Dat e Dat e

GFK-1283G D 6-25



Example

See Also

6-26

Def Str
Def Lng
Def Sng
Def Dbl
Def | nt

X< W0nw3Sw
oo T h

Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()

msgl ="

g
IIII':IIIII

msgl
MsgBox
End Sub

msgl

val ues are:" &

& "(String) a:
& "(Long) n:
"

&
&

(Single) s:

" (Doubl e) v:
"(Integer) x:

crif &ecrlf
"&a &ecrlf

"&n &ecrlf

"&s &ecrlf
"& v &ecrlf
"& X &ecrlf

Cur r ency (datatype); Dat e (datatype); Doubl e (datatype); Long (datatype); Obj ect (data
type); Si ngl e (datatype); St ri ng (datatype); Var i ant (datatype); Bool ean (datatype);
I nt eger (datatype).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



Dialog (function)

Syntax Di al og(DialogVariable [,[ DefaultButton] [, Timeout]])

Description Displays the dialog box associated with DialogVariable, returning an | nt eger indicating which
button was clicked.

Comments The function returns any of the following values:
-1 The OK button was clicked.
0 The Cancel button was clicked.

>0 A push button was clicked. The returned number represents which button was clicked
based on its order in the dialog box template (1 is the first push button, 2 is the second
push button, and so on).

The Di al og function accepts the following parameters:

Parameter Description
DialogVariable Name of avariable that has previously been dimensioned as a user dialog box.

Thisis accomplished using the Di mstatement:
Dim MyDi al og As MyTenpl ate

All dialog variables are local to the Sub or Funct i on inwhich they are
defined. Private and public dialog variables are not all owed.

DefaultButton Anl nt eger specifying which button isto act as the default button in the

dialog box. The value of DefaultButton can be any of the following:

-2 This value indicates that there is no default button.

-1 This value indicates that the OK button, if present, should be
used as the default.

0 This value indicates that the Cancel button, if present, should
be used as the defaullt.

>0 This value indicates that the Nth button should be used asthe
default. This number is the index of a push button within the
dialog box template.

If DefaultButton is not specified, then - 1 isused. If the number specified by
DefaultButton does not correspond to an existing button, then there will be no
default button.

The default button appears with athick border and is selected when the user
presses Enter on a control other than a push button.

Timeout Anl nt eger specifying the number of milliseconds to display the dialog box
before automatically dismissing it. If TimeOut is not specified or isequal to 0,
then the dialog box will be displayed until dismissed by the user.

If adialog box has been dismissed due to atimeout, the Di al og function
returns 0.

GFK-1283G D 6-27



Example This example displays an abort/retry/ignore disk error dialog box.

Sub Mai n()

Begi n Di al og Di skErrorTenpl ate 16, 32, 152, 48,"Di sk Error"
Text 8, 8,100, 8,"The disk drive door is open."
PushBut t on 8, 24, 40, 14, "Abort", . Abort
PushButt on 56, 24, 40, 14, "Retry", . Retry
PushButt on 104, 24, 40, 14, "1 gnore", .l gnore

End Di al og

Di m Di skError As Di skErrorTenpl at e

r% = Di al og(Di skError, 3,0)

MsgBox "You selected button: " & r%

End Sub

See Also Cancel But t on (statement); CheckBox (statement); ConboBox (statement); Di al og
(statement); Dr opLi st Box (statement); Gr oupBox (statement); Li st Box (statement);
OKBut t on (statement); Opt i onBut t on (statement); Opt i onG oup (statement); Pi ct ur e
(statement); PushBut t on (statement); Text (statement); Text Box (statement); Begi n
Di al og (statement), Pi ct ur eBut t on (statement).

Dialog (statement)

Syntax Di al og DialogVariable [,[ DefaultButton] [, Timeout]]

Description Same asthe Di al og function, except that the Di al og statement does not return a value. (See
Di al og [function].)

Example This example displays an Abort/Retry/Ignore disk error dialog box.

Sub Mai n()

Begi n Di al og Di skErrorTenpl ate 16, 32, 152, 48,"Di sk Error"
Text 8, 8,100, 8,"The disk drive door is open."
PushButton 8, 24, 40, 14, "Abort", . Abort
PushButt on 56, 24, 40, 14, "Retry", . Retry
PushButt on 104, 24, 40, 14, "1 gnore", .l gnore

End Di al og

Di m Di skError As Di skErrorTenpl ate

Di al og Di skError, 3,0

End Sub

See Also Di al og (function).

6-28 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Dim (statement)

Syntax
Description

Comments

GFK-1283G

Di mname [(<subscripts>)] [As [New] type] [,name [(<subscripts>)] [As [New] typd]]...
Declares alist of local variables and their corresponding types and sizes.

If atype-declaration character is used when specifying name (suchas% @ &, $, or ! ), the optional
[ As type] expression isnot allowed. For example, the following are allowed:

Di m Tenperature As |nteger
Di m Tenper at ur e%

The subscripts parameter allows the declaration of dynamic and fixed arrays. The subscripts
parameter uses the following syntax:

[ lowerto] upper [,[lower to] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds of the array. If
lower is not specified, then the lower bound as specified by Opt i on Base isused (or 1if no
Opt i on Base statement has been encountered). The Basic Control Engine supports a maximum
of 60 array dimensions.

Thetotal size of an array (not counting space for strings) is limited to 64K.
Dynamic arrays are declared by not specifying any bounds:
Dim a()

The type parameter specifies the type of the dataitem being declared. It can be any of the following
datatypes: St ri ng, | nt eger, Long, Si ngl e, Doubl e, Currency, Obj ect , data object,
built-in data type, or any user-defined data type.

A Di mstatement within a subroutine or function declares variables local to that subroutine or
function. If the Di mstatement appears outside of any subroutine or function declaration, then that
variable has the same scope as variables declared with the Pr i vat e statement.

Fixed-Length Strings

Fixed-length strings are declared by adding a length to the St r i ng type-declaration character:
Di m name As String * length

where length is aliteral number specifying the string's length.

Implicit Variable Declaration

If the Basic Control Engine encounters a variable that has not been explicitly declared with Di m
then the variable will be implicitly declared using the specified type-declaration character (#, % @
$, or &). If the variable appears without a type-declaration character, then the first letter is
matched against any pending Def Type statements, using the specified type if found. If no

Def Type statement has been encountered corresponding to the first |etter of the variable name, then
Vari ant isused.

Creating New Objects

The optional New keyword is used to declare a new instance of the specified data object. This
keyword can only be used with data object types. Furthermore, this keyword cannot be used when
declaring arrays.

D 6-29



At runtime, the application or extension that defines that object type is notified that a new object is
being defined. The application responds by creating a new physical object (within the appropriate
context) and returning a reference to that object, which isimmediately assigned to the variable
being declared.

When that variable goes out of scope (That is, the Sub or Funct i on procedure in which the
variable is declared ends), the application is notified. The application then performs some
appropriate action, such as destroying the physical object.

Initial Values
All declared variables are given initial values, as described in the following table:

Data Type Initial Value

I nt eger 0

Long 0

Doubl e 0.0

Singl e 0.0

Dat e Decenber 31, 1899 00: 00: 00

Currency 0.0

Bool ean Fal se

oj ect Not hi ng

Vari ant Enpty

String " (zero-length string)

User-defined type  Each element of the structure is given aninitial value, as described above.
Arrays Each element of the array is given an initial value, as described above

Naming Conventions
Variable names must follow these naming rules:
1. Must start with aletter.

2. May contain letters, digits, and the underscore character (_); punctuation is not allowed. The
exclamation point (! ) can appear within the name aslong asit is not the last character, in
which caseit isinterpreted as a type-declaration character.

3. Thelast character of the name can be any of the following type-declaration characters: #, @ %
1, & and $.

4. Must not exceed 80 charactersin length.
5. Cannot be areserved word.

Examples The following examples use the Dim statement to declare various variable types.
Sub Mai n()
Dimi As Integer
Dml & "l ong
Dims As Single
Di m d# ' doubl e
Dimc$ "string
Dim M/Array(10) As Integer '10 el ement integer array
Dim MyStrings$(2, 10) '2-10 el ement string arrays
D m Fi | enames$(5 To 10) '6 element string array
Dim Val ues(1 To 10,100 To 200) '111 elenment variant array
End Sub
See Also Redi m(statement); Publ i c (statement); Pri vat e (statement); Opt i on Base (statement).

6-30 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Dir, Dir$ (functions)

Syntax

Description

Comments

GFK-1283G

Di r $[(filespec$ [ ,attributes])]
Returnsa St ri ng containing the first or next file matching filespec$.

If filespec$ is specified, then the first file matching that filespec$ is returned. If filespec$ is not
specified, then the next file matching theinitial filespec$ is returned.

Di r$returnsa St ri ng, whereasDi r returnsa St ri ng variant.
TheDi r $/Di r functions take the following parameters:

Parameter Description

filespec$ St ri ng containing afile specification.

If this parameter is specified, then Di r $ returns the first file matching thisfile
specification. If this parameter is omitted, then the next file matching the initial
file specification is returned.

If no path is specified in filespec$, then the current directory is used.

attributes I nt eger specifying attributes of files you want included in the list, as described
below. If omitted, then only the normal, read-only, and archive files are returned.

Anerror isgenerated if Di r $ is called without first calling it with avalid filespec$.
If there is no matching filespec$, then a zero-length string is returned.
Wildcards

The filespec$ argument can include wildcards, such as * and ?. The* character matches any
sequence of zero or more characters, whereas the ? character matches any single character.
Multiple * 'sand ?'s can appear within the expression to form complete searching patterns. The
following table shows some examples:

This pattern Matches these files Doesn't match these files
*SF L TXT SAMPLE. TXT SANMPLE
GOCSE. TXT SANMPLE. DAT
SAMS. TXT
C'T. TXT CAT. TXT CAP. TXT
ACATS. TXT
CT CAT CAT. DOC
CAP. TXT
C’T CAT CAT. TXT
CUT CAPI T
CT
* (All files)
D 6-31



Attributes

Y ou can control which files are included in the search by specifying the optional attributes
parameter. TheDi r, Di r $ functions aways return al normal, read-only, and archive files
(ebNormal O ebReadOnly O ebArchi ve). Toinclude additional files, you can specify
any combination of the following attributes (combined with the Or operator):

Constant Value Includes
ebNor nmal 0 Normal, Read-only, and archive files
ebH dden 2 Hidden files
ebSystem 4 System files
ebVol une 8 Volume label
ebDirectory 16 DOS subdirectories
Example This example uses Dir to fill a SelectBox with the first 10 directory entries.

Const crlf = Chr$(13) + Chr$(10)
Option Base 1

Sub Mai n()
Di m a$( 10)
i%=1
a(i®9 =Dir("*.*")

Vhile (a(i® <> "") and (i%< 10)

i%=i%+1
a(ivy =Dr
end
r = Sel ectBox("Top 10 Directory Entries",,a)
End Sub
See Also ChDi r (statement); ChDr i ve (statement); Cur Di r, Cur Di r $ (functions); MkDi r (statement);

RDi r (statement); Fi | eLi st (statement).

6-32 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DiskDrives (statement)

Syntax
Description

Comments

Example

See Also

Di skDri ves array()
Fillsthe specified St ri ng or Var i ant array with alist of valid drive letters.

Thearray() parameter specifies either a zero- or a one-dimensioned array of strings or variants.
The array can be either dynamic or fixed.

If array() isdynamic, thenit will be redimensioned to exactly hold the new number of elements. If
there are no elements, then the array will be redimensioned to contain no dimensions. Y ou can use
the LBound, UBound, and Ar r ayDi ns functions to determine the number and size of the new
array's dimensions.

If the array isfixed, each array element isfirst erased, then the new elements are placed into the
array. If there are fewer elements than will fit in the array, then the remaining elements are
initialized to zero-length strings (for St r i ng arrays) or Enpt y (for Var i ant arrays). A runtime
error resultsif the array istoo small to hold the new elements.

This example builds and displays an array containing the first three available disk drives.

Sub Mai n()

Dimdrive$()

Di skDrives drive$

r% = Sel ect Box("Avail abl e Di sk Drives",,drive$)
End Sub

ChDri ve (statement); Di skFr ee (function).

DiskFree (function)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Di skFr ee&([drive$])

Returns a Long containing the free space (in bytes) available on the specified drive.
If drive$ is zero-length or not specified, then the current drive is assumed.

Only the first character of the drive$ string is used.

This example uses DiskFree to set the value of i and then displays the result in a message box.

Sub Mai n()

s$ = "o

i# = DiskFree(s$9)

MsgBox "Free di sk space on drive '" & s$ & "' is: " & i#
End Sub

ChDri ve (statement); Di skDr i ves (statement).

D 6-33



DligControlld (function)

Syntax Dl gCont r ol | d(ControlName$)

Description Returnsan | nt eger containing the index of the specified control asit appears in the dialog box
template.

Comments Thefirst control in the dialog box templateis at index 0, the second is at index 1, and so on.

The ControlName$ parameter contains the name of the .Identifier parameter associated with that
control in the dialog box template.

The Basic Control Engine statements and functions that dynamically manipulate dialog box
controls identify individual controls using either the .Identifier name of the control or the control's
index. Using the index to refer to a control is slightly faster but results in code that is more difficult
to maintain.

Example This example uses DIgControlld to verify which control was triggered and branches the dynamic
dialog script accordingly.
Function D gProc(Control Nane$, Acti on% SuppVal ue% As | nteger
If Action% = 2 Then

' Enabl e the next three controls.
If DigControlld(Control Nane$) = 2 Then

For i =3 to 5
Dl gEnabl e i, Dl gVal ue(" CheckBox1")
Next i
DigProc =1 'Don't close the dial og box.
End |f

El self Action% = 1 Then
"Set initial state upon startup
For i =3 to 5
Dl gEnabl e i, Dl gVal ue(" CheckBox1")
Next i
End |f
End Function

Sub Mai n()
Begin Di al og UserDialog ,,180,96,"Untitled",.D gProc
OKButton 132, 8, 40, 14
Cancel Button 132, 28, 40, 14
CheckBox 24, 16,72,8,"dick Here",.CheckBox1

CheckBox 36, 32, 60,8, "Sub Option 1", . CheckBox2
CheckBox 36, 44,72,8,"Sub Option 2",.CheckBox3
CheckBox 36, 56, 60, 8, "Sub Option 3",.CheckBox4
CheckBox 24,72,76,8,"Main Option 2",.CheckBox5

End Di al og

Dimd As UserDi al og

Dial og d

End Sub
See Also Dl gEnabl e (function); DI gEnabl e (statement); DI gFocus (function); DI gFocus

(statement); DI gLi st BoxAr r ay (function); DI gLi st BoxAr r ay (statement);
Dl gSet Pi ct ur e (statement); DI gText (statement); DI gText (function); DI gVal ue
(function); DI gVal ue (statement); DI gVi si bl e (statement); DI gVi si bl e (function).

6-34 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DigEnable (function)

Syntax Dl gEnabl e(ControlName$ | Controllndex)
Description Returns Tr ue if the specified control is enabled; returns Fal se otherwise.
Comments Disabled controls are dimmed and cannot receive keyboard or mouse input.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the Controllndex parameter, a control can
be referred to using itsindex in the dialog box template (O is the first control in thetemplate, 1is
the second, and so on).

Y ou cannot disable the control with the focus.

Example This example checks the status of a checkbox at the end of the dialog procedure and notifies the
user accordingly.

Function D gProc(Control Nane$, Acti on% SuppVal ue% As | nteger
If Action% = 2 Then
' Enabl e the next three controls.
If DigControlld(Control Nane$) = 2 Then

For i =3 to 5
Dl gEnabl e i, Dl gVal ue(" CheckBox1")
Next i
DigProc =1 'Don't close the dial og box.
End |f

El self Action% = 1 Then
"Set initial state upon startup

For i =3 to 5
Dl gEnabl e i, Dl gVal ue(" CheckBox1")
Next i
End |f

| f Dl gEnabl e(i) = True Then
MsgBox "You do not have the required di sk space.", ebExcl amation, "Il nsufficient
Di sk Space"
End If
End Function

Sub Mai n()
Begin Dial og UserDialog ,,180,96,"Untitled",.D gProc
OKButton 132, 8, 40, 14
Cancel Button 132, 28, 40, 14
CheckBox 24, 16,72,8,"dick Here",.CheckBox1l

CheckBox 36, 32, 60,8, "Sub Option 1", . CheckBox2
CheckBox 36, 44,72,8,"Sub Option 2",.CheckBox3
CheckBox 36, 56, 60, 8, "Sub Option 3",.CheckBox4
CheckBox 24, 72,76,8,"Miin Option 2",.CheckBox5

End Di al og

Dimd As UserDi al og

Dial og d

End Sub
See Also Dl gCont rol (statement); DI gEnabl e (statement); DI gFocus (function); DI gFocus

(statement); DI gLi st BoxAr r ay (function); DI gLi st BoxAr r ay (statement);
Dl gSet Pi ct ur e (statement); DI gText (statement); DI gText (function); DI gVal ue
(function); DI gVal ue (statement); DI gVi si bl e (statement); DI gVi si bl e (function).

GFK-1283G D 6-35



DlgEnable (statement)

Syntax
Description

Comments

Example

See Also

6-36

Dl gEnabl e {ControlName$ | Controllndex} [,isOn]
Enables or disables the specified control.
Disabled controls are dimmed and cannot receive keyboard or mouse input.

TheisOn parameter isan | nt eger specifying the new state of the control. It can be any of the
following values:

0 The control is disabled.
1 The control is enabled.
Omitted Toggles the control between enabled and disabled.

Option buttons can be manipulated individually (by specifying an individual option button) or asa
group (by specifying the name of the option group).

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. Alternatively, by specifying the Controllndex parameter, a

control can be referred to using itsindex in the dialog box template (O is the first control in the
template, 1 isthe second, and so on).

This example uses DIgEnable to turn on/off various dialog options.

Function D gProc(Control Nane$, Acti on% SuppVal ue% As | nteger
If Action%= 2 Then
' Enabl e the next three controls.
If DigControlld(Control Nane$) = 2 Then

For i =3 to 5
Dl gEnabl e i, Dl gVal ue(" CheckBox1")
Next i
DigProc =1 'Don't close the dial og box.
End |f

El self Action% = 1 Then
"Set initial state upon startup
For i =3 to 5
Dl gEnabl e i, Dl gVal ue(" CheckBox1")
Next i
End If
End Function

Sub Mai n()
Begi n Di al og UserDial og ,, 180,96,"Untitled",.D gProc
OKBut t on 132, 8, 40, 14
Cancel Button 132, 28, 40, 14
CheckBox 24, 16,72,8,"dick Here",.CheckBox1

CheckBox 36, 32, 60, 8, "Sub Option 1", . CheckBox2
CheckBox 36, 44,72,8,"Sub Option 2",.CheckBox3
CheckBox 36, 56, 60, 8, "Sub Option 3", . CheckBox4
CheckBox 24,72,76,8,"Miin Option 2",.CheckBox5

End Di al og

Dimd As UserDi al og

Di al og d

End Sub

Dl gCont r ol (statement); DI gEnabl e (function); DI gFocus (function); DI gFocus
(statement); DI gLi st BoxAr r ay (function); DI gLi st BoxAr r ay (statement);

Dl gSet Pi ct ur e (statement); DI gText (statement); DI gText (function); DI gVal ue
(function); DI gVal ue (statement); DI gVi si bl e (statement); DI gVi si bl e (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DlgFocus (function)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Dl gFocus$[ ()]
Returnsa St r i ng containing the name of the control with the focus.

The name of the control isthe .Identifier parameter associated with the control in the dialog box
template.

This code fragment makes sure that the control being disabled does not currently have the focus
(otherwise, a runtime error would occur).

Sub Mai n()
If D gFocus = "Files" Then ‘Does it have the focus?
Dl gFocus " K" ' Change the focus to another control.
End | f
Dl gEnabl e "Fil es", Fal se 'Now we can di sable the control.
End Sub

Dl gCont rol (statement); DI gEnabl e (function); DI gEnabl e (statement); DI gFocus
(statement); DI gLi st BoxAr r ay (function); DI gLi st BoxAr r ay (statement);

Dl gSet Pi ct ur e (statement); DI gText (statement); DI gText (function); DI gVal ue
(function); DI gVal ue (statement); DI gVi si bl e (statement); DI gVi si bl e (function).

6-37



DlgFocus (statement)

Syntax DI gFocus ControlName$ | Controllndex
Description Sets focus to the specified control.
Comments A runtime error resultsif the specified control is hidden, disabled, or nonexistent.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the Controllndex parameter, a control can
be referred to using itsindex in the dialog box template (O is the first control in thetemplate, 1is
the second, and so on).

Example This code fragment makes sure the user enters a correct value. If not, the control returns focus back
to the TextBox for correction.

Function D gProc(Control Nane$, Acti on% SuppVal ue% As | nteger
If Action% = 2 and Control Name$ = "OK' Then
If I'sNuneric(D gText $(" Text Box1")) Then
Msgbox "Duly Noted."
El se
Msgbox "Sorry, you nmust enter a nunber."
Dl gFocus " Text Box1"
DigProc =1
End |f
End |f
End Function

Sub Mai n()
Di m Li st Box1$()
Begin Dialog UserDialog ,,112,74,"Untitled",.D gProc
Text Box 12, 20, 88, 12, . Text Box1
OKButton 12, 44, 40, 14
Cancel Button 60, 44, 40, 14
Text 12,11,88,8,"Enter Desired Salary:",.Textl
End Di al og
Dimd As UserDi al og
Dial og d
End Sub

See Also Dl gCont rol (statement); DI gEnabl e (function); DI gEnabl e (statement); DI gFocus
(function); DI gLi st BoxAr ray (function); DI gLi st BoxAr r ay (statement);
Dl gSet Pi ct ur e (statement); DI gText (statement); DI gText (function); DI gVal ue
(function); DI gVal ue (statement); DI gVi si bl e (statement); DI gVi si bl e (function).

6-38 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DigListBoxArray (function)

Syntax

Description

Comments

Example

See Also

GFK-1283G

Dl gLi st BoxAr r ay ({ ControlName$ | Controllndex}, ArrayVariable)

Fillsalist box, combo box, or drop list box with the elements of an array, returning an | nt eger
containing the number of elements that were actually set into the control.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the Controllndex parameter, a control can
be referred to using itsindex in the dialog box template (O is the first control in thetemplate, 1is
the second, and so on).

The ArrayVariable parameter specifies a single-dimensioned array used to initialize the elements of
the control. If this array has no dimensions, then the control will be initialized with no elements. A
runtime error results if the specified array contains more than one dimension. ArrayVariable can
specify an array of any fundamental data type (structures are not allowed). Nul | and Enpt y
values are treated as zero-length strings.

This dialog function refills an array with files.

Function D gProc(Control Nane$, Acti on% SuppVal ue% As | nteger
If Action% = 1 Then

Di m NewFi | es$() ‘'Create a new dynami c array.
FileList NewFiles$, "c:\*. *" "Fill the array with files.
r% = Dl gLi stBoxArray("Files", NewFiles$) 'Set itens in the |ist box.
Dl gvalue "Files",0 'Set the selection to the first item
DigProc =1 ‘Don't close the dial og box.
End | f
End Function
Sub Mai n()

Di m Li st Box1$()

Begin Di al og UserDialog ,,180,96,"Untitled",.D gProc
OKButton 132, 8, 40, 14
Cancel Button 132, 28, 40, 14
Li st Box 8,112,112, 72, Li st Box1$,.Files

End Di al og

Dimd As UserDi al og

Dial og d

End Sub

Dl gCont rol (statement); DI gEnabl e (function); DI gEnabl e (statement); DI gFocus
(function); DI gFocus (statement); DI gLi st BoxAr r ay (statement); DI gSet Pi ct ure
(statement); DI gText (statement); DI gText (function); DI gVal ue (function); DI gVal ue
(statement); DI gVi si bl e (statement); DI gVi si bl e (function).

D 6-39



DigListBoxArray (statement)

Syntax Dl gLi st BoxAr r ay { ControlName$ | ControlIndex}, ArrayVariable
Description Fillsalist box, combo box, or drop list box with the elements of an array.

Comments The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the Controllndex parameter, a control can
be referred to using itsindex in the dialog box template (O is the first control in the template, 1 isthe
second, and so on).

The ArrayVariable parameter specifies a single-dimensioned array used to initialize the elements of
the control. If this array has no dimensions, then the control will be initialized with no elements. A
runtime error results if the specified array contains more than one dimension. ArrayVariable can
specify an array of any fundamental data type (structures are not allowed). Nul | and Enpt y
values are treated as zero-length strings.

Example This dialog function refills an array with files.

Function D gProc(Control Nane$, Acti on% SuppVal ue% As | nteger
If Action% = 1 Then

Di m NewFi | es$() 'Create a new dynami c array.
FileList NewFiles$, "c:\*. *" "Fill the array with files.
Dl gLi st BoxArray "Files", NewFiles$ 'Set items in the |list box.
Dl gvalue "Files",0 'Set the selection to the first item
=1 ‘Don't close the dial og box.
End | f
End Function
Sub Mai n()

Di m Li st Box1$()

Begin Di al og UserDialog ,,180,96,"Untitled",.D gProc
OKButton 132, 8, 40, 14
Cancel Button 132, 28, 40, 14
Li st Box 8, 12,112, 72, Li st Box1$,.Files

End Di al og

Dimd As UserDi al og

Dial og d

End Sub

See Also Dl gCont rol (statement); DI gEnabl e (function); DI gEnabl e (statement); DI gFocus
(function); DI gFocus (statement); DI gLi st BoxAr ray (function); DI gSet Pi cture
(statement); DI gText (statement); DI gText (function); DI gVal ue (function); DI gVal ue
(statement); DI gVi si bl e (statement); DI gVi si bl e (function).

6-40 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DigProc (function)

Syntax
Description

Comments

GFK-1283G

Funct i on DIgProc(ControlName$, Action, SuppValue) [ As | nt eger ]
Describes the syntax, parameters, and return value for dialog functions.

Dialog functions are called by a script during the processing of a custom dialog box. The name of a
dialog function (DIgProc) appearsinthe Begi n Di al og statement as the .DIgProc parameter.

Dialog functions require the following parameters:

Parameter Description

ControlName$ St ri ng containing the name of the control associated with Action.
Action I nt eger containing the action that called the dialog function.

SuppValue I nt eger of extrainformation associated with Action. For some actions, this
parameter is not used.

When a script displays a custom dialog box, the user may click on buttons, type text into edit fields,
select items from lists, and perform other actions. When these actions occur, the Basic Control
Engine calls the dialog function, passing it the action, the name of the control on which the action
occurred, and any other relevant information associated with the action.

The following table describes the different actions sent to dialog functions:

Action Description

1 Thisaction is sent immediately before the dialog box is shown for the first time. This gives
the dialog function a chance to prepare the dialog box for use. When this action is sent,
ControlName$ contains a zero-length string, and SuppValueis 0.

The return value from the dialog function isignored in this case.
Before Showing the Dialog Box

After action 1 is sent, the Basic Control Engine performs additional processing before the
dialog box is shown. Specifically, it cycles though the dialog box controls checking for
visible picture or picture button controls. For each visible picture or picture button control,
the Basic Control Engine attempts to |oad the associated picture.

In addition to checking picture or picture button controls, the Basic Control Engine will
automatically hide any control outside the confines of the visible portion of the dialog box.
This prevents the user from tabbing to controls that cannot be seen. However, it does not
prevent you from showing these controls with the DI gVi si bl e statement in the dialog
function.

2 This action is sent when:

e A buttonisclicked, such as OK, Cancel, or a push button. In this case,
ControlName$ contains the name of the button. SuppValue contains 1 if an OK
button was clicked and 2 if a Cancel button was clicked; SuppValue is undefined
otherwise.

If the dialog function returns 0 in response to this action, then the dialog box will
be closed. Any other value causes the Basic Control Engine to continue dialog
processing.

D 6-41



e A check box's state has been modified. In this case, ControlName$ contains the
name of the check box, and SuppValue contains the new state of the check box (1
if on, O if off).

« Anoption button is selected. In this case, ControlName$ contains the name of the
option button that was clicked, and SuppValue contains the index of the option
button within the option button group (0-based).

e Thecurrent selection is changed in alist box, drop list box, or combo box. In this
case, ControlName$ contains the name of the list box, combo box, or drop list
box, and SuppValue contains the index of the new item (0 isthefirst item, 1 isthe
second, and so on).

3 This action is sent when the content of a text box or combo box has been changed. This
action is only sent when the control loses focus. When this action is sent, ControlName$
contains the name of the text box or combo box, and SuppValue contains the length of the
new content.

The dialog function's return value isignored with this action.

4 Thisaction is sent when a control gains the focus. When this action is sent, ControlName$
contains the name of the control gaining the focus, and SuppValue contains the index of the
control that |ost the focus (0-based).

The dialog function's return value isignored with this action.

5 Thisaction is sent continuously when the dialog box isidle. If the dialog function returns 1
in response to this action, then the idle action will continue to be sent. If the dialog function
returns 0, then the Basic Control Engine will not send any additional idle actions.

When the idle action is sent, ControlName$ contains a zero-length string, and SuppValue
contains the number of times the idle action has been sent so far.

Note

Not returning zero will cause your application to use all available CPU time and may
adversely affect your CIMPLICITY System.

6 This action is sent when the dialog box is moved. The ControlName$ parameter contains a
zero-length string, and SuppValueisO.

The dialog function's return value isignored with this action.

User-defined dialog boxes cannot be nested. In other words, the dialog function of one dialog box
cannot create another user-defined dialog box. Y ou can, however, invoke any built-in dialog box,
such as MsgBox or | nput Box$.

Within dialog functions, you can use the following additional statements and functions. These
statements allow you to manipulate the dialog box controls dynamically.

Dl gVisible Dl gText $ Dl gText
Dl gSet Picture Dl gLi st BoxArray D gFocus
Dl gEnabl e Dl gControl I d

The dialog function can optionally be declared to return aVar i ant . When returning avariable, the
Basic Control Engine will attempt to convert the variant to an | nt eger . If the returned variant
cannot be converted to an | nt eger , then 0 is assumed to be returned from the dialog function.

6-42 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Example This dialog function enables/disables a group of option buttons when a check box is clicked.
Function Sanpl eDl gProc(Control Name$, Acti on% SuppVal ue%)

If Action% = 2 And Control Name$ = "Printing" Then
Dl gEnabl e "Print Options", SuppVal ue%
Sanpl eDlgProc = 1 'Don't cl ose the dial og box.
End |f
End Function

Sub Mai n()
Begi n Di al og Sanpl eDi al ogTenpl ate 34, 39, 106, 45, " Sanpl e", . Sanpl eDl gPr oc
OKBut t on 4, 4, 40, 14
Cancel Button 4, 24, 40, 14
CheckBox 56, 8, 38,8,"Printing",.Printing
OptionGroup .PrintOptions
OptionButton 56, 20, 51, 8, "Landscape”, . Landscape
OptionButton 56, 32,40,8,"Portrait”,.Portrait
End Di al og
Di m Sanpl eDi al og As Sanpl eDi al ogTenpl at e
Sanpl eDial og. Printing = 1
r% = Di al og( Sanpl eDi al og)
End Sub

See Also Begi n Di al og (statement).

GFK-1283G D 6-43



DlgSetPicture (statement)

Syntax
Description

Comments

Examples

See Also

Notes:

6-44

Dl gSet Pi ct ur e {ControlName$ | Controllndex} ,PictureName$,PictureType
Changes the content of the specified picture or picture button control.
The Dl gSet Pi ct ur e statement accepts the following parameters:

Parameter Description

ControlName$ St ri ng containing the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to
locate the specified control within the template. Alternatively, by specifying the
Controllndex parameter, a control can be referred to using its index in the dialog
box template (0 isthe first control in the template, 1 is the second, and so on).

PictureName$ St ri ng containing the name of the picture. If PictureTypeis0, then this
parameter specifies the name of the file containing the image. If PictureTypeis
10, then PictureName$ specifies the name of the image within the resource of
the picture library.

If PictureName$ is empty, then the current picture associated with the specified
control will be deleted. Thus, atechnique for conserving memory and resources
would involve setting the picture to empty before hiding a picture control.

PictureType I nt eger specifying the source for the image. The following sources are
supported:
0 Theimageiscontained in afile on disk.
10 The image is contained in the picture library specified by the

Begi n Di al og statement. When thistypeis used, the
PictureName$ parameter must be specified with the Begi n
Di al og statement.

Sub Mai n()
Dl gSet Picture "Picturel", "\ w ndows\ checks. bnp",0 'Set picture froma file.

Dl gSet Pi cture 27, "FaxReport", 10 "Set control 10's inmge
‘froma library.
End Sub

D gCont r ol (statement); DI gEnabl e (function); DI gEnabl e (statement); DI gFocus
(function); DI gFocus (statement); DI gLi st BoxAr r ay (function); DI gLi st BoxArr ay
(statement); DI gText (statement); DI gText (function); DI gVal ue (function); DI gVal ue
(statement); DI gVi si bl e (statement); DI gVi si bl e (function), Pi ct ur e (statement),

Pi ct ur eBut t on (statement).

Picture controls can contain either bitmaps or WMFs (Windows metafiles). When extracting
images from a picture library, the Basic Control Engine assumes that the resource type for metafiles
is 256.

Picture libraries are implemented as DLLs on the Windows and Win32 platforms.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DligText (statement)

Syntax
Description

Comments

Example

See Also

GFK-1283G

DI gText {ControlName$ | Controlindex}, NewText$

Changes the text content of the specified control.

The effect of this statement depends on the type of the specified control:

Control Type
Picture

Option group
Drop list box

OK button
Cancel button
Push button
List box

Combo box
Text

Text box
Group box

Option button

Effect of DlgText

Runtime error.
Runtime error.

Sets the current selection to the item matching NewText$. |f an exact match
cannot be found, the DI gText statement searches from the first item
looking for an item that starts with NewText$. If no match is found, then the
selection is removed.

Sets the label of the control to NewText$.
Sets the label of the control to NewText$.
Sets the label of the control to NewText$.

Sets the current selection to the item matching NewText$. If an exact match
cannot be found, the DI gText statement searches from the first item
looking for an item that starts with NewText$. If no match is found, then the
selection is removed.

Sets the content of the edit field of the combo box to NewText$.
Sets the label of the control to NewText$.

Sets the content of the text box to NewText$.

Sets the label of the control to NewText$.

Sets the label of the control to NewText$.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the Controllndex parameter, a control can
be referred to using itsindex in the dialog box template (O is the first control in thetemplate, 1 is
the second, and so on).

Sub Mai n()

Dl gText "G oupBox1","Save Options"

I f DI gText $(9)
D gText 9,"Editing Options"

End If
End Sub

' Change text of group box 1.

"Save Options" Then
' Change text to "Editing Options".

Dl gControl (statement); DI gEnabl e (function); DI gEnabl e (statement); DI gFocus
(function); DI gFocus (statement); DI gLi st BoxAr r ay (function); DI gLi st BoxArr ay
(statement); DI gSet Pi ct ur e (statement); DI gText (function); DI gVal ue (function);
Dl gVal ue (statement); DI gVi si bl e (statement); DI gVi si bl e (function).

6-45



DigText$ (function)

Syntax
Description

Comments

Example

6-46

Dl gText $( ControlName$ | Controll ndex)

Returns the text content of the specified control.

The text returned depends on the type of the specified control:

Control Type

Value Returned by DIgText$

Picture
Option group
Drop list box

OK button
Cancel button
Push button
List box

Combo box
Text

Text box
Group box

Option button

No value is returned. A runtime error occurs.
No valueis returned. A runtime error occurs.

Returns the currently selected item. A zero-length string is returned if no item
iscurrently selected.

Returns the label of the control.
Returns the label of the control.
Returns the label of the control.

Returns the currently selected item. A zero-length string is returned if no item
iscurrently selected.

Returns the content of the edit field portion of the combo box.
Returns the label of the control.

Returns the content of the control.

Returns the label of the control.

Returns the [abel of the control.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the Controllndex parameter, a control can
be referred to using itsindex in the dialog box template (O is the first control in thetemplate, 1 is
the second, and so on).

This code fragment makes sure the user enters a correct value. If not, the control returns focus back
to the TextBox for correction.

Function D gProc(Control Nane$, Acti on% SuppVal ue% As | nteger
If Action% = 2 and Control Name$ = "OK" Then
If IsNureric(Dl gText $(" Text Box1")) Then
Msgbox "Duly Noted."

El se

Msgbox "Sorry, you must enter a nunber."
Dl gFocus " Text Box1"

Dl gProc

End If
End If
End Function

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



See Also

GFK-1283G

Sub Mai n()
Di m Li st Box1$()
Begin Dial og UserDialog ,,112,74,"Untitled",.D gProc
Text Box 12, 20, 88, 12, . Text Box1
OKBut ton 12, 44, 40, 14
Cancel Button 60, 44, 40, 14
Text 12,11,88,8,"Enter Desired Salary:",.Textl
End Di al og
Dimd As UserDi al og
Di al og d
End Sub

Dl gCont r ol (statement); DI gEnabl e (function); DI gEnabl e (statement); DI gFocus

(function); DI gFocus (statement); DI gLi st BoxAr r ay (function); DI gLi st BoxArr ay
(statement); DI gSet Pi ct ur e (statement); DI gText (statement); DI gVal ue (function);

D gVal ue (statement); DI gVi si bl e (statement); DI gVi si bl e (function).

6-47



DlgValue (function)

Syntax
Description

Comments

Example

See Also

6-48

Dl gVal ue(ControlName$ | Controllndex)
Returnsan | nt eger indicating the value of the specified control.
The value of any given control depends on its type, according to the following table:

Control Type DigValue Returns

Option group The index of the selected option button within the group (O is the first option
button, 1 is the second, and so on).

List box The index of the selected item.

Drop list box Theindex of the selected item.

Check box 1if the check box is checked; O otherwise.

A runtime error is generated if DI gVal ue isused with controls other than those listed in the above
table.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. Alternatively, by specifying the Controllndex parameter, a

control can be referred to using itsindex in the dialog box template (0 is the first control in the
template, 1 isthe second, and so on).

This code fragment toggles the value of a check box.

Sub Mai n()
I f Dl gVval ue("M/CheckBox") = 1 Then
Dl gVval ue " MyCheckBox", 0
El se
Dl gVval ue " MyCheckBox", 1
End | f
End Sub

Dl gCont rol (statement); DI gEnabl e (function); DI gEnabl e (statement); DI gFocus
(function); DI gFocus (statement); DI gLi st BoxAr r ay (function); DI gLi st BoxArr ay
(statement); DI gSet Pi ct ur e (statement); DI gText (statement); DI gText (function);
Dl gVal ue (statement); DI gVi si bl e (statement); DI gVi si bl e (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DlgValue (statement)

Syntax DI gVal ue {ControlName$ | Controllndex} ,Value
Description Changes the value of the given control.
Comments The value of any given control isan | nt eger and depends on its type, according to the following
table:
Control Type Description of Value
Option group Theindex of the new selected option button within the group (0 is the first
option button, 1 is the second, and so on).
List box The index of the new selected item.
Drop list box Theindex of the new selected item.
Check box 1if the check box is to be checked; O if the check is to be removed.

A runtime error is generated if DI gVal ue isused with controls other than those listed in the
abovetable.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the Controllndex parameter, a control can
be referred to using itsindex in the dialog box template (O is the first control in thetemplate, 1 is
the second, and so on).

Example This code fragment toggles the value of a check box.

Sub Mai n()
I f Dl gVval ue("M/CheckBox") = 1 Then
Dl gVval ue "MyCheckBox", 0

El se
Dl gVval ue "MyCheckBox", 1
End |f
End Sub
See Also Dl gControl (statement); DI gEnabl e (function); DI gEnabl e (statement); DI gFocus

(function); DI gFocus (statement); DI gLi st BoxAr r ay (function); DI gLi st BoxArr ay
(statement); DI gSet Pi ct ur e (statement); DI gText (statement); DI gText (function);
D gVal ue (function); DI gVi si bl e (statement); DI gVi si bl e (function).

GFK-1283G D 6-49



DlgVisible (function)

Syntax Dl gVi si bl e(ControlName$ | Controllndex)
Description Returns Tr ue if the specified control isvisible; returns Fal se otherwise.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. Alternatively, by specifying the Controllndex parameter, a
control can be referred to using itsindex in the template (0 is the first control in the template, 1is
the second, and so on).

A runtime error is generated if DI gVi si bl e iscalled with no user dialog is active.

If DigVisible("Portrait") Then Beep

If DigVisible(1l0) And D gVisible(1l2) Then
MsgBox "The 10th and 12th controls are visible."
End |f
End Sub

See Also Dl gCont rol (statement); DI gEnabl e (function); DI gEnabl e (statement); DI gFocus
(function); DI gFocus (statement); DI gLi st BoxAr r ay (function); Dl gLi st BoxArr ay
(statement); DI gSet Pi ct ur e (statement); DI gText (statement); DI gText (function);
Dl gVal ue (function); DI gVal ue (statement); DIl gVi si bl e (function).

6-50 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DlgVisible (statement)

Syntax
Description

Comments

Example

GFK-1283G

Dl gVi si bl e {ControlName$ | Controllndex} [,isOn]
Hides or shows the specified control.
Hidden controls cannot be seen in the dialog box and cannot receive the focus using Tab.

TheisOn parameter isan | nt eger specifying the new state of the control. It can be any of the
following values:

1 The control is shown.
0 The control is hidden.
Omitted Toggles the visibility of the control.

Option buttons can be manipulated individually (by specifying an individual option button) or asa
group (by specifying the name of the option group).

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the Controllndex parameter, a control can
be referred to using its index in the dialog box template (O is the first control in the template, 1 isthe
second, and so on).

Picture Caching

When the dialog box isfirst created and before it is shown, the Basic Control Engine calls the dialog
function with action set to 1. At thistime, no pictures have been loaded into the picture controls
contained in the dialog box template. After control returns from the dialog function and before the
dialog box is shown, the Basic Control Engine will load the pictures of all visible picture controls.
Thus, it is possible for the dialog function to hide certain picture controls, which prevents the
associated pictures from being loaded and causes the dialog box to load faster. When a picture
control is made visible for the first time, the associated picture will then be loaded.

This example creates a dialog box with two panels. The DIgVisible statement is used to show or hide
the controls of the different panels.

Sub Enabl eG oup(start%fini sh%

For i =6 To 13 ‘'Disable all options.
DigVisible i, Fal se
Next i
For i = start% To finish% 'Enable only the right ones.
DigVisible i, True
Next i
End Sub
D 6-51



Function D gProc(Control Name$, Acti on% SuppVal ue%)
If Action%= 1 Then

Dl gVval ue "Whi chOptions", 0 'Set to save options
Enabl eG oup 6, 8 ' Enabl e the save options.
End |f
If Action% = 2 And Control Name$ = "SaveOpti ons" Then
Enabl eGroup 6, 8 ' Enabl e the save options.
DigProc =1 "Don't close the dial og box.
End |f
If Action% = 2 And Control Name$ = "Editi ngOpti ons" Then
Enabl eG oup 9, 13 ' Enabl e the editing options
DigProc =1 "Don't close the dial og box.
End |f
End Function
Sub Mai n()

Begin Dial og Opti onsTenpl ate 33,33, 171, 134, " Opti ons", . D gProc
' Background (controls 0-5)
GroupBox 8, 40, 152, 84, ""
Opti onGroup . Wii chOpti ons
OptionButton 8, 8,59, 8,"Save Options",.SaveOptions
OptionButton 8, 20,65,8,"Editing Options",.EditingOptions
OKButton 116, 7, 44, 14
Cancel Button 116, 24, 44, 14

' Save options (controls 6-8)

CheckBox 20, 56, 88, 8, "Al ways create backup",.CheckBox1
CheckBox 20, 68, 65, 8, "Automati c save", . CheckBox2
CheckBox 20, 80, 70, 8, "Al'l ow overwriting",.CheckBox3

"Editing options (controls 9-13)

CheckBox 20, 56, 65, 8, "Overtype node", . OvertypehMde

CheckBox 20, 68, 69, 8, "Uppercase only", . UppercaseOnly

CheckBox 20, 80, 105, 8, "Automatically check syntax",.Aut oCheckSynt ax

CheckBox 20,92,73,8,"Full line selection",.FullLineSelection
CheckBox 20, 104, 102, 8, " Typi ng repl aces sel ection", . Typi ngRepl acesText
End Di al og

Di m Opti onsDi al og As OptionsTenpl ate
Di al og OptionsDi al og
End Sub

See Also Dl gControl (statement); DI gEnabl e (function); DI gEnabl e (statement); DI gFocus
(function); DI gFocus (statement); DI gLi st BoxAr r ay (function); DI gLi st BoxArr ay
(statement); DI gSet Pi ct ur e (statement); DI gText (statement); DI gText (function);
Dl gVal ue (function); DI gVal ue (statement); DI gVi si bl e (statement).

6-52 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Do...Loop (statement)

Syntax 1 Do {While | Until} condition statementsLoop
Syntax 2 Do
statements
Loop{While | Until} condition
Syntax 3 Do
statements
Loop
Description Repeats a block of Basic Control Engine statements while a condition is Tr ue or until a condition
isTr ue.
Comments Ifthe{While | Until} conditional clauseis not specified, then the loop repeats the statements

forever (or until the script encountersan Exi t Do statement).
The condition parameter specifies any Bool ean expression.

Examples Sub Mai n()
"This first exanple uses the Do...Wile statenment, which perfornmns

"the iteration, then checks the condition, and repeats if the
‘condition is True.

D m a$(100)
i%=-1
Do
i%=1i%+1
If i%= 0 Then
a(i® = Dir("*")
El se
a(ivy =Dr
End |f
Loop While(a(i% <> "" And i % <= 99)
r% = SelectBox(i% & " files found",, a)
End Sub

Sub Mai n()
' This second exanpl e uses the Do Wile...Loop, which checks the
‘condition and then repeats if the condition is True.

D m a$(100)

i%=0

a(i% = Dir("*")

Do Wiile (a(i% <> "") And (i% <= 99)
i%=1i%+ 1
a(ivy =Dr

Loop

r% = SelectBox(i% & " files found",, a)

End Sub

GFK-1283G D 6-53



See Also

Notes:

6-54

Sub Mai n()

"This third exanple uses the Do Until...Loop, which does the

"iteration and then checks the condition and repeats if the
‘condition is True.

D m a$(100)

i%=0

a(i% =Dir("*")

Do Until (a(i% ="") O (i%= 100)
i%=1i%+ 1
a(ivy =Dr

Loop

r% = SelectBox(i% & " files found",, a)
End Sub

Sub Mai n()

'This |l ast exanple uses the Do...Until Loop,
"iteration first, checks the condition,
‘condition is True.

whi ch performs the
and repeats if the

D m a$(100)
i%=-1
Do
i%=1i%+1
If i%= 0 Then
a(i® =Dir("*")
El se
a(ivy =Dr
End |f
Loop Until (a(i%y ="") O (i%= 100)
r% = SelectBox(i% & " files found",, a)
End Sub

For ... Next (statement); Whi |l e ... WEnd (statement).

Dueto errorsin program logic, you can inadvertently create infinite loopsin your code. You can

break out of infinite loops using Ctrl+Break.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



DoEvents (function)

Syntax DoEvent s[ ()]
Description  Yields control to other applications, returning an | nt eger 0.

Comments This statement yields control to the operating system, allowing other applications to process mouse,
keyboard, and other messages.

If aSendKeys statement is active, this statement waits until al the keysin the queue have been

processed.
Example The following routine explicitly yields to allow other applications to execute and refresh on a regular
basis.
Sub Mai n()
Open "test.txt" For Qutput As #1
For i = 1 To 10000

Print #1,"This is a test of the system and such."
r = DoEvents
Next i
MsgBox "The DoEvents return value is: " & r
Cl ose #1
End Sub

See Also DoEvent s (statement).

DoEvents (statement)

Syntax DoEvent s
Description Yields control to other applications.
Comments This statement yields control to the operating system, allowing other applications to process mouse,

keyboard, and other messages.

If aSendKeys statement is active, this statement waits until all the keysin the queue have been
processed.

Examples Thisfirst example shows a script that takes along time and hogs the system. The following routine
explicitly yields to alow other applications to execute and refresh on aregular basis.

Sub Mai n()
Open "test.txt" For CQutput As #1
For i =1 To 10000
Print #1,"This is a test of the systemand stuff."
DoEvent s
Next i
Cl ose #1
End Sub

In this second exampl e, the DoEvents statement is used to wait until the queue has been completely
flushed.

Sub Mai n()
id = Shell ("notepad. exe", 3) "Start new i nstance of Notepad.
SendKeys "This is a test.",False 'Send sone keys.
DoEvent s '"Wait for the keys to play back.

End Sub

See Also DoEvent s (function).

GFK-1283G D 6-55



Double (data type)

Syntax Doubl e
Description A datatype used to declare variables capable of holding real numberswith 15-16 digits of
precision.
Comments Doubl e variables are used to hold numbers within the following ranges:
Sign Range
Negative —1.797693134862315E308 <= double <=
- 4. 94066E- 324
Positive 4, 94066E- 324 <= double <= 1.797693134862315E308

The type-declaration character for Doubl e is#.
Storage

e Internaly, doubles are 8-byte (64-bit) |EEE values. Thus, when appearing within a
structure, doubles require 8 bytes of storage. When used with binary or random files, 8
bytes of storage are required.

Each Doubl e consists of the following
« A l-bitsign
e An 11-bit exponent
e A 53-bit significand (mantissa)

See Also Curr ency (datatype); Dat e (datatype); | nt eger (datatype); Long (datatype); Qbj ect
(datatype); Si ngl e (datatype); St ri ng (datatype); Var i ant (datatype); Bool ean (data
type); Def Type (statement); CDbl (function).

6-56 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



DropListBox (statement)

Syntax
Description

Comments

GFK-1283G

Dr opLi st Box X, Y, width, height, ArrayVariable, .Identifier

Creates adrop list box within a dialog box template.

When the dialog box isinvoked, the drop list box will be filled with the elements contained in
ArrayVariable. Drop list boxes are similar to combo boxes, with the following exceptions:

e Thelist box portion of adrop list box is not opened by default. The user must open it by
clicking the down arrow.

e Theuser cannot type into adrop list box. Only items from the list box may be selected.
With combo boxes, the user can type the name of an item from the list directly or type the
name of an item that is not contained within the combo box.

This statement can only appear within a dialog box template (i.e., between theBegi n Di al og
and End Di al og statements).

The Dr opLi st Box statement requires the following parameters:

Parameter

Description

XY

width, height
ArrayVariable

Identifier

I nt eger coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

I nt eger coordinates specifying the dimensions of the control in dialog units.

Single-dimensioned array used to initialize the elements of the drop list box. If
this array has no dimensions, then the drop list box will be initialized with no
elements. A runtime error resultsif the specified array contains more than one
dimension.

ArrayVariable can specify an array of any fundamental data type (structures are
not allowed). Nul | and Enpt y values are treated as zero-length strings.

Name by which this control can be referenced by statementsin a dialog function
(suchas Dl gFocus and DI gEnabl e). This parameter also creates an integer
variable whose value corresponds to the index of the drop list box's selection (0 is
thefirst item, 1 isthe second, and so on). This variable can be accessed using the
following syntax:

DialogVariable.ldentifier

6-57



Example

See Also

6-58

This example allows the user to choose a field name from a drop list box.

Sub Mai n()
Di m Fi el dNanmes$(4)

Fi el dNanes$(0) = "Last Nane"
Fi el dNanes$(1) = "First Name"
Fi el dNanes$(2) = "Zip Code"
Fi el dNanes$(3) = "State"

Fi el dNanes$(4) = "G ty"

Begin Di al og FindTenpl ate 16, 32, 168, 48, " Fi nd"
Text 8,8,37,8,"&Find what:"
Dr opLi st Box 48, 6, 64, 80, Fi el dNanes, . Wi chFi el d
OKButton 120, 7, 40, 14
Cancel Button 120, 27, 40, 14

End Di al og

Di m Fi ndDi al og As Fi ndTenpl ate

Fi ndDi al og. WhichField =1

Di al og Fi ndDi al og

End Sub

Cancel But t on (statement); CheckBox (statement); ConrboBox (statement); Di al og
(function); Di al og (statement); G- oupBox (statement); Li st Box (statement); OKBut t on
(statement); Opt i onBut t on (statement); Opt i onGr oup (statement); Pi ct ur e (statement);

PushBut t on (statement); Text (statement); Text Box (statement); Begi n Di al og
(statement), Pi ct ur eBut t on (statement).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



ebAbort (constant)

Description
Comments

Example

See Also

Returned by the MsgBox function when the Abort button is chosen.
This constant is equal to 3.

This example displays a dialog box with Abort, Retry, and Ignore buttons.

Sub Mai n()
Agai n:
rc% = MsgBox("Do you want to continue?", ebAbortRetryl gnore)
If rc% = ebAbort or rc% = eblgnore Then
End
Elself rc% = ebRetry Then
Cot o Again
End |f
End Sub

MsgBox (function); MsgBox (statement).

ebAbortRetrylgnore (constant)

Description
Comments

Example

See Also

GFK-1283G

Used by the MsgBox statement and function.
This constant is equal to 2.

This example displays a dialog box with Abort, Retry, and Ignore buttons.

Sub Mai n()
Agai n:
rc% = MsgBox("Do you want to continue?", ebAbortRetryl gnore)
If rc% = ebAbort or rc% = eblgnore Then
End
El self rc% = ebRetry Then
Coto Again
End |f
End Sub

MsgBox (function); MsgBox (statement).

7-1



ebApplicationModal (constant)

Description
Comments

Example

See Also

Used with the MsgBox statement and function.
This constant is equal to O.

This example displays an application-modal dialog box (which is the default).

Sub Mai n()
MsgBox "This is application-nopdal.",ebOKOnly O ebApplicati onMdal
End Sub

MsgBox (function); MsgBox (statement).

ebArchive (constant)

Description
Comments

Example

See Also

Bit position of afile attribute indicating that a file hasn't been backed up.
This constant is equal to 32.

This example dimensions an array and fills it with filenames with the Archive bit set.

Sub Mai n()
Di m s$()
FileList s$, "*", ebArchive
a% = Sel ect Box("Archived Files", "Choose one", s$)
If a% >= 0 Then "If a%is -1, then the user pressed Cancel.
MsgBox "You sel ected Archive file: " & s$(a)
El se
MsgBox "No sel ection nade."
End |f
End Sub

Dir, Dir$ (functions); Fi |l eLi st (statement); Set At t r (statement); Get At t r (function);

Fi | eAttr (function).

ebBold (constant)

Description
Comments

Example

See Also

7-2

Used with the Text and Text Box statement to specify a bold font.
This constant is equal to 2.

Sub Mai n()
Begi n Di al og UserDi al og 16, 32,232, 132, "Bol d Font Denp"
Text 10, 10, 200, 20, "Hel l o, world.",, "Hel v", 24, ebBol d

Text Box 10, 35, 200, 20, . Edit,, " Ti mes New Roman", 16, ebBol d
OKBut t on 96, 110, 40, 14
End Di al og
Dima As UserDi al og
Dialog a
End Sub

Text (statement), Text Box (statement).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



ebBoldltalic (constant)

Description
Comments

Example

See Also

Used with the Text and Text Box statement to specify abold-italic font.
This constant is equal to 6.

Sub Mai n()
Begi n Di al og UserDial og 16, 32,232,132,"Bold-Italic Font Denp"
Text 10, 10, 200, 20, "Hello, world.",,"Helv", 24,ebBoldltalic

Text Box 10, 35, 200, 20, . Edit,,"Ti mes New Ronman", 16, ebBoldltalic
OKButt on 96, 110, 40, 14
End Di al og
Dima As UserDi al og
Dialog a
End Sub

Text (statement), Text Box (statement).

ebBoolean (constant)

Description
Comments

Example

See Also

Number representing the type of aBool ean variant.

This constant is equal to 11.

Sub Mai n()
Dim MyVari ant as vari ant
MyVariant = True
I f Var Type(MyVariant) = ebBool ean Then
MyVariant = 5.5
End |f
End Sub

Var Type (function); Var i ant (datatype).

ebCancel (constant)

Description
Comments

Example

See Also

GFK-1283G

Returned by the MsgBox function when the Cancel button is chosen.

This constant is equal to 2.

Sub Mai n()
"I nvoke MsgBox and check whether the Cancel button was pressed.
rc% = MsgBox("Are you sure you want to quit?", ebOKCancel)
If rc% = ebCancel Then
MsgBox "The user clicked Cancel ."
End |f
End Sub

MsgBox (function); MsgBox (statement).

7-3



ebCritical (constant)

Description
Comments

Example

See Also

Used with the MsgBox statement and function.

This constant is equal to 16.

Sub Mai n()
"I nvoke MsgBox with Abort, Retry, and |Ignore buttons and a Stop icon.

rc% = MsgBox("Di sk drive door is open.",ebAbortRetrylgnore O ebCritical)

If rc%= 3 Then
' The user selected Abort fromthe dial og box.
MsgBox "The user clicked Abort."
End |f
End Sub

MsgBox (function); MsgBox (statement).

ebCurrency (constant)

Description
Comments

Example

See Also

Number representing the type of aCur r ency variant.
This constant is equal to 6.

This example checks to see whether avariant is of type Currency.

Sub Mai n()
Di m MyVari ant
I f VarType(M/Variant) = ebCurrency Then
MsgBox "Variant is Currency."
End | f
End Sub

Var Type (function); Var i ant (datatype).

ebDataObject (constant)

Description
Comments

Example

See Also

7-4

Number representing the type of a data object variant.
This constant is equal to 13.

This example checks to see whether avariable is a data object.

Sub Mai n()
Dim MyVari ant as Vari ant
I f VarType(MVariant) = ebDataCbject Then
MsgBox "Variant contains a data object."”
End | f
End Sub

Var Type (function); Var i ant (datatype).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



ebError (constant)

Description
Comments

Example

See Also

Number representing the type of an error variant.
This constant is equal to 10.

This example checks to see whether avariableis an error.

Function Div(ByVal a As Variant,ByVal b As Variant) As Variant
On Error Resume Next
Dv=alb
If Err <> 0 Then Div = CVErr(Err)

End Function

Sub Mai n()
a | nput Box(" Pl ease enter 1st nunber","Division Sanple")
b | nput Box(" Pl ease enter 2nd nunber", "Di vi sion Sanpl e")

res = Div(a,b)

I f VarType(res) = ebError Then
res = CStr(res)
res = Error(Md(res,7,Len(res)))

MsgBox "'" & res & "' occurred"
El se
MsgBox "The result of the divisionis: " &res
End |f
End Sub

Var Type (function); Var i ant (datatype).

ebDate (constant)

Description
Comments

Example

See Also

GFK-1283G

Number representing the type of aDat e variant.

This constant is equal to 7.

Sub Mai n()
Dim MyVari ant as Vari ant
I f VarType(MyVariant) = ebDate Then
MsgBox "This variable is a Date type!"
El se
MsgBox "This variable is not a Date type!"
End |f
End Sub

Var Type (function); Var i ant (datatype).



ebDefaultButtonl (constant)

Description Used with the Ms gBox statement and function.

Comments This constant is equal to O.
Example This example invokes MsgBox with the focus on the OK button by default.
Sub Mai n()
rc% = MsgBox("Are you sure you want to quit?",ebOKCancel O ebDefaul tButtonl)
End Sub
See Also MsgBox (function); MsgBox (statement).

ebDefaultButton2 (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 256.
Example This example invokes MsgBox with the focus on the Cancel button by default.
Sub Mai n()
rc% = MsgBox("Are you sure you want to quit?", ebOKCancel O ebDef aul t Button2)
End Sub
See Also MsgBox (function); MsgBox (statement).

ebDefaultButton3 (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 512.
Example This example invokes MsgBox with the focus on the Ignore button by default.
Sub Mai n()
rc% = MsgBox("Di sk drive door open.", ebAbortRetrylgnore O ebDef aul t Butt on3)
End Sub
See Also MsgBox (function); MsgBox (statement).

7-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



ebDirectory (constant)

Description Bit position of afile attribute indicating that afile isadirectory entry.

Comments This constant is equal to 16.

Example This example dimensions an array and fills it with directory names using the ebDirectory constant.

Sub Mai n()
Di m s$()
FileList s$,"c:\*", ebDirectory
a% = Sel ect Box("Directories", "Choose one:", s9)
If a% >= 0 Then
MsgBox "You selected directory: " & s(a%

El se
MsgBox "No sel ection nade."
End |f
End Sub
See Also Dir, Dir$ (functions); Fi |l eLi st (statement); Set At t r (statement); Get At t r (function);

Fi | eAttr (function).

ebDos (constant)

Description Used with the AppType or Fi | eType functions to indicate a DOS application.
Comments This constant is equal to 1.

Example This example detects whether a DOS program was selected.

Sub Mai n()
s$ = OpenFil enane$(" Run", " Programns: *. exe")
If s$ <> "" Then
If FileType(s$) = ebDos Then
MsgBox "You selected a DOS exe file."
End |f
End |f
End Sub

See Also AppType (function); Fi | eType (function).

GFK-1283G E

7-7



ebDouble (constant)

Description
Comments
Example

See Also

Number representing the type of aDoubl e variant.
This constant is equal to 5.
See ebSi ngl e (constant).

MsgBox (function); MsgBox (statement); Var Type (function); Var i ant (datatype).

ebEmpty

Description
Comments

Example

See Also

(constant)

Number representing the type of an Enpt y variant.

This constant is equal to O.

Sub Mai n()
Dim MyVari ant as Vari ant
I f Var Type(M/Variant) = ebEnpty Then
MsgBox "This variant has not been assigned a value yet!"
End |f
End Sub

Var Type (function); Var i ant (datatype).

ebExclamation (constant)

Description
Comments

Example

See Also

7-8

Used with the MsgBox statement and function.
This constant is equal to 48.

This example displays a dialog box with an OK button and an exclamation icon.

Sub Mai n()
MsgBox "Qut of menory saving to disk.",ebOKOnly O ebExcl anati on
End Sub

MsgBox (function); MsgBox (statement).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



ebHidden (constant)

Description Bit position of afile attribute indicating that afileis hidden.

Comments This constant is equal to 2.
Example This example dimensions an array and fills it with filenames using the ebHidden attribute.
Sub Mai n()
Dim s$()

FileList s$,"*", ebH dden
If ArrayDins(s$) = 0 Then
MsgBox "“No hidden files found!"
End
End |f
a% = Sel ect Box("Hi dden Files", " Choose one", s9$)
If a% >= 0 Then
MsgBox "You sel ected hidden file " & s(a%

El se
MsgBox "No sel ection nade."
End |f
End Sub
See Also Dir, Dir$ (functions); Fi |l eLi st (statement); Set At t r (statement); Get At t r (function);

Fi | eAttr (function).

eblgnore (constant)

Description Returned by the Ms gBox function when the Ignore button is chosen.

Comments This constant is equal to 5.

Example This example displays acritical error dialog box and sees what the user wants to do.
Sub Mai n()

rc% = MsgBox("Printer out of paper.", ebAbortRetrylgnore)
If rc% = eblgnore Then
' Continue printing here.
End |f
End Sub

See Also MsgBox (function); MsgBox (statement).

GFK-1283G E

7-9



ebIlnformation (constant)

Description Used with the Ms gBox statement and function.

Comments This constant is equal to 64.
Example This example displays a dialog box with the Information icon.
Sub Mai n()
MsgBox "You just deleted your file!",ebOKOnly O eblnformation
End Sub
See Also MsgBox (function); MsgBox (statement).

eblnteger (constant)

Description Number representing the type of an | nt eger variant.
Comments This constant is equal to 2.

Example This example defines a function that returns True if avariant contains an Integer value (either a 16-
bit or 32-bit Integer).

Function Islnteger(v As Variant) As Bool ean
If VarType(v) = eblnteger O VarType(v) = ebLong Then
I sl nteger = True
El se
I sl nteger = Fal se
End |f
End Function

Sub Mai n()
Dimi as Integer
i =123
If Isinteger(i) then
Msgbox "i is an Integer."
End |f
End Sub

See Also Var Type (function); Var i ant (datatype).

7-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



ebltalic (constant)

Description Used with the Text and Text Box statement to specify an italic font.

Comments This constant is equal to 4.
Begi n Di al og UserDial og 16, 32,232,132,"Italic Font Denp"
Text 10, 10, 200, 20, "Hello, world.",,"Helv",24,ebltalic

Text Box 10, 35, 200, 20, . Edit,,"Ti mes New Ronan", 16, ebltalic
OKBut t on 96, 110, 40, 14
End Di al og

Dima As UserDi al og
Dialog a
End Sub

See Also Text (statement), Text Box (statement).

ebLong (constant)

Description Number representing the type of aLong variant.
Comments This constant is equal to 3.

Example Seeebl nt eger (constant).

See Also Var Type (function); Var i ant (datatype).

ebNo (constant)

Description Returned by the Ms gBox function when the No button is chosen.

Comments This constant is equal to 7.
Example This example asks a question and queries the user's response.
Sub Mai n()

rc% = MsgBox("Do you want to update the gl ossary?", ebYesNo)
If rc% = ebNo Then
MsgBox "The user clicked 'No'." "Don't update gl ossary.
End |f
End Sub

See Also MsgBox (function); MsgBox (statement).

GFK-1283G E 7-11



ebNone (constant)

Description Bit value used to select files with no other attributes.

Comments This value can be used withthe Di r $ and Fi | eLi st commands. These functions will return only
files with no attributes set when used with this constant. This constant is equal to 64.
Example This example dimensions an array and fills it with filenames with no attributes set.
Sub Mai n()
Dim s$()

FileList s$,"*", ebNone
If ArrayDins(s$) = 0 Then
MsgBox "No files found without attributes!"
End
End | f
a% = Sel ect Box("No Attributes", "Choose one", s9)
If a% >= 0 Then
MsgBox "You selected file " & s(a%

El se
MsgBox "No sel ection nade."
End |f
End Sub
See Also Dir, Dir$ (functions); Fi | eLi st (statement); Set At t r (statement); Get At t r (function);

Fi | eAttr (function).

ebNormal (constant)

Description Used to search for "normal” files.

Comments This value can be used with the Di r $ and Fi | eLi st commands and will return files with the
Archive, Volume, ReadOnly, or no attributes set. It will not match files with Hidden, System, or
Directory attributes. This constant is equal to 0.

Example This example dimensions an array and fills it with filenames with Normal attributes.

Sub Mai n()
Di m s$()
FileList s$,"*", ebNormal
If ArrayDi ms(s$) = O Then
MsgBox "No fil esfound!"
End
End |f
a% = Sel ect Box("Normal Files", "Choose one", s$)
If a% >= 0 Then
MsgBox "You selected file " & s(a%

El se
MsgBox "No sel ection nade."
End |f
End Sub
See Also Dir, Dir$ (functions); Fi | eLi st (statement); Set At t r (statement); Get At t r (function);

Fi |l eAttr (function).

7-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



ebNull (constant)

Description
Comments

Example

See Also

Number representing the type of aNul | variant.

This constant is equal to 1.

Sub Mai n()
Di m MyVari ant
MyVariant = Null
I f VarType(MyVariant) = ebNull Then
MsgBox "This variant is Null"
End | f
End Sub

Var Type (function); Var i ant (datatype).

ebObject

Description
Comments

Example

See Also

(constant)

Number representing the type of an Obj ect variant (an OLE automation object).

This constant is equal to 9.

Sub Mai n()
Di m MyVari ant
If VarType(M/Variant) = ebCbject Then
MsgBox MyVari ant. Val ue
El se
MsgBox "' MyVariant' is not an object."
End | f
End Sub

Var Type (function); Var i ant (datatype).

ebOK (constant)

Description
Comments

Example

See Also

GFK-1283G

Returned by the MsgBox function when the OK button is chosen.
This constant is equal to 1.

This example displays a dialog box that allows the user to cancel.

Sub Mai n()
rc% = MsgBox("Are you sure you want to exit Wndows?", ebOKCancel)
If rc% = ebOK Then System Exi t

End Sub

MsgBox (function); MsgBox (statement).

E 7-13



ebOKCancel (constant)

Description
Comments

Example

See Also

Used with the MsgBox statement and function.
This constant is equal to 1.

This example displays adialog box that allows the user to cancel.

Sub Mai n()
rc% = MsgBox("Are you sure you want to exit Wndows?", ebOKCancel)
If rc% = ebOK Then System Exi t

End Sub

MsgBox (function); MsgBox (statement).

ebOKOnly (constant)

Description
Comments

Example

See Also

Used with the MsgBox statement and function.
This constant is equal to O.

This example informs the user of what is going on (no options).

Sub Mai n()
MsgBox "The system has been reset.", ebOKOnly
End Sub

MsgBox (function); MsgBox (statement).

ebQuestion (constant)

Description
Comments

Example

See Also

7-14

Used with the MsgBox statement and function.
This constant is equal to 32.
This example displays adialog box with OK and Cancel buttons and a question icon.

Sub Mai n()
rc% = MsgBox("OK to delete file?",ebOKCancel O ebQuestion)
End Sub

MsgBox (function); MsgBox (statement).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



ebReadOnly (constant)

Description Bit position of afile attribute indicating that afile is read-only.

Comments This constant is equal to 1.
Example This example dimensions an array and fills it with filenames with ReadOnly attributes.
Sub Mai n()
Dim s$()

FileList s$, "*", ebReadOnly
If ArrayDins(s$) = 0 Then
MsgBox “No read only files found!"
End
End |f
a% = Sel ect Box("ReadOnly", "Choose one", s$)
If a% >= 0 Then
MsgBox "You selected file " & s(a%

El se
MsgBox "No sel ection nade."
End |f
End Sub
See Also Dir, Dir$ (functions); Fi |l eLi st (statement); Set At t r (statement); Get At t r (function);

Fi | eAttr (function).

ebRegular (constant)

Description Used with the Text and Text Box statement to specify an normal-styled font (i.e., neither bold or

italic).
Comments This constant is equal to 1.
Begi n Di al og UserDi al og 16, 32,232, 132, "Regul ar Font Denp"
Text 10, 10, 200, 20, "Hello, world.",,"Hel v", 24, ebRegul ar

Text Box 10, 35, 200, 20, . Edit,,"Ti mes New Roman", 16, ebRegul ar
OKButt on 96, 110, 40, 14
End Di al og
Dima As UserDi al og
Dialog a
End Sub

See Also Text (statement), Text Box (statement).

GFK-1283G E 7-15



ebRetry (constant)

Description
Comments

Example

See Also

Returned by the MsgBox function when the Retry button is chosen.

This constant is equal to 4.

This example displays a Retry message box.

Sub Mai n()
rc% = MsgBox("Unable to open file.", ebRetryCancel)
If rc% = ebRetry Then
MsgBox "User selected Retry."
End | f
End Sub

MsgBox (function); MsgBox (statement).

ebRetryCancel (constant)

Description
Comments

Example

See Also

7-16

Used with the MsgBox statement and function.
This constant is equal to 5.

This example invokes a dialog box with Retry and Cancel buttons.

Sub Mai n()
rc% = MsgBox("Unable to open file.", ebRetryCancel)
End Sub

MsgBox (function); MsgBox (statement).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



ebSingle (constant)

Description Number representing the type of aSi ngl e variant.
Comments This constant is equal to 4.
Example This example defines a function that returns Trueif the passed variant is a Real number.

Function IsReal (v As Variant) As Bool ean
If VarType(v) = ebSingle O VarType(v) = ebDoubl e Then

| sReal = True
El se
I sReal = Fal se
End |f
End Function
Sub Mai n()
Dimi as Integer
i =123
If IsReal (i) then
Msgbox "i is Real."
End |f
End Sub
See Also Var Type (function); Var i ant (datatype).

ebString (constant)

Description Number representing the type of aSt r i ng variant.
Comments This constant is equal to 8.
Example Sub_Mai n()

Dim MyVari ant as vari ant

MyVariant = "This is a test."

If VarType(MyVariant) = ebString Then
MsgBox "Variant is a string."
End |f
End Sub

See Also Var Type (function); Var i ant (datatype).

GFK-1283G E 7-17



ebSystem (constant)

Description Bit position of afile attribute indicating that afile is a systemfile.
Comments This constant is equal to 4.

Example This example dimensions an array and fills it with filenames with System attributes.

Sub Mai n()
Di m s$()
FileList s$,"*", ebSystem
a% = Sel ect Box("System Fi |l es", "Choose one", s9)
If a% >= 0 Then
MsgBox "You selected file " & s(a%

El se
MsgBox "No sel ection nade."
End |f
End Sub
See Also Dir, Dir$ (functions); Fi | eLi st (statement); Set At t r (statement); Get At t r (function);

Fi | eAttr (function).

ebSystemModal (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 4096.
MsgBox "All applications are halted!", ebSyst enivbdal
End Sub
See Also ebAppl i cati onMbdal (constant); Constants (topic); MsgBox (function); MsgBox (statement).

ebVariant (constant)

Description Number representing the type of aVar i ant .
Comments Currently, it is not possible for variants to use this subtype. This constant is equal to 12.
See Also Var Type (function); Var i ant (datatype).

7-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



ebVolume (constant)

Description Bit position of afile attribute indicating that afile is the volume label.

Comments This constant is equal to 8.
Example This example dimensions an array and fills it with filenames with VVolume attributes.
Sub Mai n()
Dim s$()

FilelList s$, "*", ebVolume
If ArrayDins(s$) > 0 Then

MsgBox "The volume nane is: " & s(1)
El se
MsgBox "No vol unes found."
End |f
End Sub
See Also Dir, Dir$ (functions); Fi | eLi st (statement); Set At t r (statement); Get At t r (function);

Fi | eAttr (function).

ebWin32 (constant)

Description Used with the Basi c¢. OS property to indicate the 32-bit Windows version of the Basic Control
Engine.

Comments This constant is equal to 2.

The Basi c. OS property returns this value when running under any of the following operating
systems:

e Microsoft Windows 95
¢ Microsoft Windows NT Workstation (Intel, Alpha, MIPS, PowerPC)
e Microsoft Windows NT Server (Intel, Alpha, MIPS, PowerPC)

e Microsoft Win32s running under Windows 3.1

If Basic.0S = ebWn32 Then MsgBox "Running under Wn32."
End Sub
See Also Basi c. OS (property).

GFK-1283G E 7-19



ebYes (constant)

Description Returned by the MsgBox function when the Y es button is chosen.

Comments This constant is equal to 6.
Example This example queries the user for aresponse.
Sub Mai n()

rc% = MsgBox("Overwite file?", ebYesNoCancel)
If rc% = ebYes Then
MsgBox "You elected to overwite the file."
End | f
End Sub

See Also MsgBox (function); MsgBox (statement).

ebYesNo (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 4.
Example This example displays adialog box with Y es and No buttons.
Sub Mai n()
rc% = MsgBox("Are you sure you want to renove all formatting?", ebYesNo)
End Sub
See Also MsgBox (function); MsgBox (statement).

ebYesNoCancel (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 3.
Example This example displays adialog box with Y es, No, and Cancel buttons.
Sub Mai n()

rc% = MsgBox("Format drive C ?", ebYesNoCancel)
If rc% = ebYes Then
MsgBox "The user chose Yes."
End |f
End Sub

See Also MsgBox (function); MsgBox (statement).

7-20 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



Empty (constant)

Description

Comments

Example

See Also

Constant representing a variant of type 0.
The Enpt y value has special meaning indicating that aVar i ant isuninitialized.

When Enpt y isassigned to numbers, the value O is assigned. When Enpt y isassigned to a
St ri ng, the string is assigned a zero-length string.

Sub Mai n()
Dima As Vari ant
a = Empty
MsgBox "This string is" & a & "concatenated with Enpty"
MsgBox "5 + Enpty =" & (5 + a)
End Sub

Nul | (constant); Var i ant (datatype); Var Type (function).

End (statement)

Syntax
Description

Example

See Also

GFK-1283G

End
Terminates execution of the current script, closing all open files.

This example uses the End statement to stop execution.

Sub Mai n()
MsgBox "The next line will term nate the script."
End

End Sub

Cl ose (statement); St op (statement); Exi t For (statement); Exi t Do (statement); Exi t

Functi on (statement); Exi t Sub (function).

7-21



Environ, Environ$ (functions)

Syntax Envi ron[ $] (variable$ | VariableNumber)
Description Returns the value of the specified environment variable.
Comments Envi ron$ returnsa St ri ng, whereas Envi r on returnsa St r i ng variant.

If variable$ is specified, then this function looks for that variable$ in the environment. If the
variable$ name cannot be found, then a zero-length string is returned.

If VariableNumber is specified, then this function looks for the Nth variable within the environment
(the first variable being number 1). If there is no such environment variable, then a zero-length
string is returned. Otherwise, the entire entry from the environment is returned in the following
format:

vari abl e = val ue

Example This example looks for the DOS Comspec variable and displays the value in adialog box.

Sub Mai n()

Dim a$(1)

a$(1) = Environ("SI TE_Root")

MsgBox "My CIMPLICITY project directory is: " & a$(1)
End Sub

See Also Command, Command$ (functions).

7-22 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



EOF (function)

Syntax EOF(filenumber)
Description Returns Tr ue if the end-of-file has been reached for the given file; returns Fal se otherwise.
Comments The filenumber parameter isan | nt eger used by the Basic Control Engine to refer to the open

file—the number passed to the Open statement.

With sequential files, EOF returns Tr ue when the end of the file has been reached (i.e., the next
file read command will result in aruntime error).

With Randomor Bi nary files, EOF returns Tr ue after an attempt has been made to read beyond
the end of the file. Thus, EOF will only return Tr ue when Get was unable to read the entire

record.
Example This example opens the autoexec.bat file and reads lines from the file until the end-of-fileis
reached.
Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()
file$ = "c:\autoexec. bat"

Open file$ For Input As #1
Do While Not EOF(1)
Li ne I nput #1, newine

Loop
Cl ose
MsgBox "The last line of '" & file$ "' is:" &crlf &crlf & newine
End Sub
See Also Open (statement); LOF (function).

GFK-1283G E 7-23



Eqv (operator)

Syntax expressionl Eqv expression2
Description Performs alogical or binary equivalence on two expressions.
Comments If both expressions are either Bool ean, Bool ean variants, or Nul | variants, then alogica
equivalenceis performed as follows:
If the first and the second then the
expression is expression is result is
True True True
True Fal se Fal se
Fal se True Fal se
Fal se Fal se True

If either expressionisNul | , then Nul | isreturned.
Binary Equivalence

If the two expressions are | nt eger , then abinary equivalence is performed, returning an
I nt eger result. All other numeric types (including Enpt y variants) are converted to Long and a
binary equivalence is then performed, returning aLong result.

Binary equivalence forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions, according to the following table;

1 Eqv 1 = 1 Example:
0 Eqv 1 = 0 5 01101001
1 Eqv O = 0 6 10101010
0 Eqv O = 1 Eqv 00101000
Example This example assigns False to A, performs some eguivalent operations, and displays a dialog box

with the result. Since A isequivalent to False, and Falseis equivalent to 0, and by definition,
A =0, then the dialog box will display "A is False."

Sub Mai n()
a = Fal se
If ((a Eqv Fal se) And (False Eqv 0) And (a = 0)) Then
MsgBox "a is False."
El se
MsgBox "a is True."
End | f
End Sub

See Also Operator Precedence (topic); Or (operator); Xor (operator); | np (operator); And (operator).

7-24 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Erase (statement)

Syntax Erase arrayl[,array?]...
Description Erases the elements of the specified arrays.
Comments For dynamic arrays, the elements are erased, and the array is redimensioned to have no dimensions

(and therefore no elements). For fixed arrays, only the elements are erased; the array dimensions
are not changed.

After adynamic array is erased, the array will contain no elements and no dimensions. Thus, before
the array can be used by your program, the dimensions must be reestablished using the Redi m
Statement.

Up to 32 parameters can be specified with the Er ase statement.

The meaning of erasing an array element depends on the type of the element being erased:

Element Type What Erase Does to That Element
I nt eger Sets the element to 0.
Bool ean Sets the element to Fal se.
Long Sets the element to 0.
Doubl e Sets the element to 0.0.
Dat e Sets the element to December 30, 1899.
Si ngl e Sets the element to 0.0.
St ri ng (variable-length) Frees the string, then sets the element to a zero-length string.
St ri ng (fixed-length) Sets every character of each element to zero (Chr $( 0) ).
Qoj ect Decrements the reference count and sets the element to Not hi ng.
Vari ant Sets the element to Enpt .
User-defined type Sets each structure element as a separate variable.
Example This example fills an array with alist of available disk drives, displaysthe list, erases the array and
then redisplaysthe list.
Sub Mai n()
Di m a$(10) 'Declare an array.
Di skDrives a "Fill element 1 with a list of available disk drives.
r = Sel ect Box("Array Before Erase",,a)
Erase a$ "Erase all elements in the array.
r = Sel ectBox("Array After Erase",,a)
End Sub
See Also Redi m(statement); Arrays (topic).

GFK-1283G E 7-25



Erl (function)

Syntax Eri[()]
Description Returns the line number of the most recent error.
Comments Thefirst line of the script is 1, the second lineis 2, and so on.

Theinternal value of Er | isreset to 0 with any of the following statements: Resune, Exi t  Sub,
Exit Functi on. Thus, if you want to use this value outside an error handler, you must assign it
toavariable.

Example This example generates an error and then determines the line on which the error occurred.

Sub Mai n()
Dimi As Integer
On Error CGoto Trapl

i = 32767 'Generate an error--overflow
=i +1
Exit Sub

Trapl:
MsgBox "Error on line: " & Erl
Exit Sub 'Reset the error handler.

End Sub

See Also Err (function); Error, Error$ (functions); Error Handling (topic).

7-26 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Err (function)

Syntax Err[()]
Description Returns aLong representing the error that caused the current error trap.
Comments The Er r function can only be used while within an error trap.

Theinternal value of Er r isreset to O with any of the following statements: Resune, Exi t  Sub,
Exit Functi on. Thus, if you want to use this value outside an error handler, you must assign it
to avariable.

Example This example forces error 10, with a subsequent transfer to the TestError label. TestError teststhe
error and, if not error 55, resets Err to 999 (user-defined error) and returns to the Main subroutine.

Sub Mai n()
On Error Goto TestError
Error 10
MsgBox "The returned error is: '" & Err &" - " & Error$ & """
Exit Sub

TestError:
If Err = 55 Then "File already open.
MsgBox "Cannot copy an open file. Close it and try again."
El se
MsgBox "Error '" & Err & "' has occurred!"
Err = 999
End |f
Resume Next
End Sub

See Also Er | (function); Error, Error$ (functions); Error Handling (topic).

GFK-1283G E 7-27



Err (statement)

Syntax Err =value
Description Sets the value returned by the Er r function to a specific | nt eger value.
Comments Only positive values less than or equal to 32767 can be used.

Setting value to - 1 hasthe side effect of resetting the error state. This allows you to perform error
trapping within an error handler. The ability to reset the error handler while within an error trap is
not standard Basic. Normally, the error handler isreset only with the Resune, Exi t Sub, or
Exit Functi on statement.

Example This example forces error 10, with a subsequent transfer to the TestError label. TestError tests the
error and, if not error 55, resets Err to 999 (user-defined error) and returns to the Main subroutine.

Sub Mai n()
On Error Goto TestError
Error 10
MsgBox "The returned error is: '" & Err() &" - " & Error$ & """
Exit Sub

TestError:
If Err = 55 Then 'File already open.
MsgBox "Cannot copy an open file. Cose it and try again."
El se
MsgBox “"Error '" & Err & "' has occurred."
Err = 999
End |f
Resune Next
End Sub

See Also Er r or (statement); Error Handling (topic).

7-28 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Error (statement)

Syntax Er r or errornumber
Description Simulates the occurrence of the given runtime error.
Comments The errornumber parameter isany | nt eger containing either a built-in error number or a user-

defined error number. The Er r function can be used within the error trap handler to determine the
value of the error.

Example This example forces error 10, with a subsequent transfer to the TestError label. TestError tests the
error and, if not error 55, resets Err to 999 (user-defined error) and returns to the Main subroutine.

Sub Mai n()
On Error Goto TestError
Error 10
MsgBox “The returned error is: '" & Err() &" - " & Error$ & """
Exit Sub

TestError:
If Err = 55 Then 'File already open.
MsgBox "Cannot copy an open file. Cose it and try again."
El se
MsgBox “"Error '" & Err & "' has occurred."
Err = 999
End | f
Resunme Next
End Sub

See Also Er r (statement); Error Handling (topic).

GFK-1283G E 7-29



Error Handling (topic)

Error Handlers

The Basic Control Engine supports nested error handlers. When an error occurs within a
subroutine, the Basic Control Engine checksfor an On  Er r or handler within the currently
executing subroutine or function. An error handler is defined as follows:
Sub foo()
On Error CGoto catch

' Do sonet hing here.
Exit Sub

catch:
'Handl e error here.
End Sub

Error handlers have alife local to the procedure in which they are defined. The error isreset when
(1) another On  Er r or statement is encountered, (2) an error occurs, or (3) the procedure returns.

Cascading Errors

If aruntime error occursand no On  Er r or handler is defined within the currently executing
procedure, then the Basic Control Engine returns to the calling procedure and executes the error
handler there. This process repeats until a procedure is found that contains an error handler or until
there are no more procedures. If an error is not trapped or if an error occurs within the error
handler, then the Basic Control Engine displays an error message, halting execution of the script.

Once an error handler has control, it must address the condition that caused the error and resume
execution with the Resurme statement. This statement resets the error handler, transferring
execution to an appropriate place within the current procedure. An error is displayed if a procedure
exits without first executing Resurme or Exi t .

Visual Basic Compatibility

Where possible, the Basic Control Engine has the same error numbers and error messages as Visual
Basic. Thisisuseful for porting scripts between environments.

Handling errorsin the Basic Control Engine involves querying the error number or error text using
theEr r or $ or Er r function. Since thisis the only way to handle errorsin the Basic Control
Engine, compatibility with Visual Basic's error numbers and messages is essential.

Errorsfall into three categories:

1. Visual Basic-compatible errors: These errors, numbered between 0 and 799, are numbered
and named according to the errors supported by Visual Basic.

2. BasicControl Enginescript errors: These errors, numbered from 800 to 999, are unique to
the Basic Control Engine..

3. User-defined errors. These errors, equal to or greater than 1,000, are available for use by
extensions or by the script itself.

Y ou can intercept trappable errors using the Basic Control Enging'sOn  Er r or construct. Almost
al errorsin the Basic Control Engine are trappable except for various system errors.

7-30 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Error, Error$ (functions)

Syntax Error [ $] [ (errornumber)]

Description Returnsa St r i ng containing the text corresponding to the given error number or the most recent
error.

Comments Error$returnsaSt ri ng, whereasEr r or returnsa St ri ng variant.

The errornumber parameter isan | nt eger containing the number of the error message to retrieve.
If this parameter is omitted, then the function returns the text corresponding to the most recent
runtime error. If no runtime error has occurred, then a zero-length string is returned.

If the Er r or statement was used to generate a user-defined runtime error, then this function will
return a zero-length string (" ).

Example This example forces error 10, with a subsequent transfer to the TestError label. TestError tests the
error and, if not error 55, resets Err to 999 (user-defined error) and returns to the Main subroutine.

Sub Mai n()
On Error Goto TestError
Error 10
MsgBox "The returned error is: '" & Err &" - " & Error & """
Exit Sub

TestError:
If Err = 55 Then 'File already open.
MsgBox "Cannot copy an open file. Cose it and try again."
El se
MsgBox “"Error '" & Err & "' has occurred."
Err = 999
End |f
Resunme Next
End Sub

See Also Er | (function); Er r (function); Error Handling (topic).

GFK-1283G E 7-31



Exit Do (statement)

Syntax Exit Do

Description Causes execution to continue on the statement following the Loop clause.

Comments This statement can only appear withinaDo. . . Loop statement.

Example This example will load an array with directory entries unless there are more than ten entries-in

which case, the Exit Do terminates the loop.
Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
Di m a$(5)
Do
i%=1i%+1
If i%= 1 Then
a(i%g =Dir("*")
El se
a(iwy =Dr
End If

If i%>=5 Then Exit Do
Loop Wiile (a(i®g <> "")

If i%=5 Then
MsgBox i % & " directory entries processed!"

El se
MsgBox "Less than " & i% & " entries processed!"
End |f
End Sub
See Also St op (statement); Exi t For (statement); Exi t Functi on (statement); Exi t Sub

(statement); End (function); Do. . . Loop (statement).

7-32 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Exit For (statement)

Syntax Exit For
Description Causes execution to exit the innermost For loop, continuing execution on the line following the
Next statement.
Comments This statement can only appear withinaFor . . . Next block.
Example This example enters a large user-defined cycle, performs a calculation and exits the For...Next loop
when the result exceeds a certain value.
Const critical _level = 500
Sub Mai n()
num = | nput Box(" Pl ease enter the nunmber of cycles","Cycles")
For i =1 To Val (nun
newpressure =i * 2
If newpressure >= critical _|evel Then Exit For
Next i
MsgBox "The val ve pressure is: " & newpressure
End Sub
See Also St op (statement); Exi t Do (statement); Exi t Functi on (statement); Exi t Sub

(statement); End (statement); For . . . Next (statement).

Exit Function (statement)

Syntax Exit Function

Description Causes execution to exit the current function, continuing execution on the statement following the
call to thisfunction.

Comments This statement can only appear within a function.

Example This function displays a message and then terminates with Exit Function.

Function Test_Exit() As Integer
MsgBox "Testing function exit, returning to Main()."
Test _Exit =0
Exit Function
MsgBox "This |ine should never execute."
End Function

Sub Mai n()

a% = Test _Exit()

MsgBox "This is the last line of Main()."
End Sub

See Also St op (statement); Exi t For (statement); Exi t Do (statement); Exi t Sub (statement); End
(statement); Funct i on. . . End Functi on (statement).

GFK-1283G E 7-33



Exit Sub (statement)

Syntax

Description

Comments

Example

See Also

Exit Sub

Causes execution to exit the current subroutine, continuing execution on the statement following the
call to this subroutine.

This statement can appear anywhere within a subroutine. It cannot appear within a function.

This example displays a dialog box and then exits. The last line should never execute because of
the Exit Sub statement.

Sub Mai n()
MsgBox "Termi nating Main()."
Exit Sub
MsgBox “Still here in Main()."
End Sub

St op (statement); Exi t For (statement); Exi t Do (statement); Exi t Functi on
(statement); End (function); Sub. . . End Sub (statement).

Exp (function)

Syntax
Description

Comments

Example

See Also

7-34

Exp(value)
Returns the value of e raised to the power of value.
The value parameter isa Doubl e within the following range:
0 <= value <= 709. 782712893.
A runtime error is generated if value is out of the range specified above.
Thevalueof eis2. 71828.

This example assigns ato e raised to the 12.4 power and displaysit in a dialog box.

Sub Mai n()

a# = Exp(1l2.4)

MsgBox "e to the 12.4 power is: " & a#
End Sub

Log (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Expression Evaluation (topic)

GFK-1283G

Basic Control Engine scripts allows expressions to involve data of different types.
When this occurs, the two arguments are converted to be of the same type by
promoting the less precise operand to the same type as the more precise operand. For
example, the Basic Control Engine will promote the value of i %to aDoubl e in the
following expression:

result# = i%* d#

In some cases, the data type to which each operand is promoted is different than that
of the most precise operand. Thisis dependent on the operator and the data types of
the two operands and is noted in the description of each operator.

If an operation is performed between a numeric expressionanda St ri ng
expression, thenthe St r i ng expression is usually converted to be of the same type
as the numeric expression. For example, the following expression converts the
String expressionto an| nt eger before performing the multiplication:

result = 10 * "2" "Result is equal to 20.

There are exceptions to this rule as noted in the description of the individual
operators.

Type Coercion

The Basic Control Engine performs numeric type conversion automatically.
Automatic conversions sometimes result in overflow errors, as shown in the
following example:

d# = 45354
i %= d#

In this example, an overflow error is generated because the value contained in d# is
larger than the maximum size of an | nt eger .

Rounding

When floating-point values (Si ngl e or Doubl e) are converted to integer values
(I nt eger or Long), thefractional part of the floating-point number islost,
rounding to the nearest integer value. The Basic Control Engine uses Baker's
rounding:

» |f thefractional part islarger than .5, the number is rounded up.
e |f thefractional part is smaller than .5, the number is rounded down.

» |f thefractional part isequal to .5, then the number isrounded up if it is
odd and down if it is even.

The following table shows sample values before and after rounding:

Before Rounding After Rounding to Whole Number
21 2
4.6 5
25 2
35 4

7-35



7-36

Default Properties

When an OLE object variable or an Obj ect variant is used with numerical
operators such as addition or subtraction, then the default property of that object is
automatically retrieved. For example, consider the following:

Di m Excel As Object

Set Excel = Get bject(,"Excel.Application")
MsgBox "This application is " & Excel

The above example displays This application is Microsoft Excel inadialog
box. When the variable Excel isused within the expression, the default property is
automatically retrieved, which, in this case, is the string Microsoft Excel.
Considering that the default property of the Excel objectis. Val ue, then the
following two statements are equivalent:

MsgBox "This application is " & Excel
MsgBox "This application is " & Excel. Val ue

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



False (constant)

Description Bool ean constant whose valueisFal se.

Comments Used in conditionals and Bool ean expressions.
Example This example assigns False to a, performs some equivalent operations, and displays a dialog box

with the result. Since ais equivalent to False, and False is equivalent to 0, and by definition, a= 0,
then the dialog box will display "a is False."

Sub Mai n()
a = Fal se
If ((a = False) And (False Eqv 0) And (a = 0)) Then
MsgBox "a is False."
El se
MsgBox "a is True."
End | f
End Sub

See Also Tr ue (constant); Constants (topic); Bool ean (datatype).

GFK-1283G 8-1



FileAttr (function)

Syntax Fi | eAt t r (filenumber, attribute)

Description Returnsan | nt eger specifying the file mode (if attribute is 1) or the operating system file handle
(if attribute is 2).

Comments TheFi | eAt tr function takes the following parameters:

Parameter Description

filenumber I nt eger value used by Basic Control Engine to refer to the open file—the
number passed to the Open statement.

attribute I nt eger specifying the type of value to be returned. If attribute is 1, then
one of the following valuesis returned:
1 I nput
2 Cut put
4 Random

8 Append
32 Bi nary

If attribute is 2, then the operating system file handle is returned. On most
systems, thisisaspecia | nt eger vaueidentifying thefile.

Example This example opens afile for input, reads the file attributes, and determines the file mode for which
it was opened. Theresult is displayed in a dialog box.

Sub Mai n()
Open "c:\autoexec.bat" For |nput As #1
a%= FileAttr(1,1)
Sel ect Case a%

Case 1

MsgBox " Opened for input."
Case 2

MsgBox " Opened for output."
Case 4

MsgBox "Opened for random'
Case 8

MsgBox " Opened for append. "
Case 32

MsgBox "Opened for binary."
Case El se

MsgBox " Unknown file node."
End Sel ect

a% = FileAttr(1,2)
MsgBox "File handle is: " & a%
C ose

End Sub

See Also Fi | eLen (function); Get At t r (function); Fi | eType (function); Fi | eExi st s (function);
Open (statement); Set At t r (statement).

8-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



FileCopy (statement)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Fi | eCopy source$, destination$
Copies a source$ file to a destination$ file.

TheFi | eCopy function takes the following parameters:

Parameter Description
source$ St ri ng containing the name of asinglefile to copy.

The source$ parameter cannot contain wildcards (? or *) but may contain

path information.

destination$ St ri ng containing asingle, unique destination file, which may contain a

drive and path specification.

The file will be copied and renamed if the source$ and destination$ filenames are not the same.

Some platforms do not support drive letters and may not support dots to indicate current and parent

directories.

This example copies the autoexec.bat file to "autoexec.sav", then opens the copied file and tries to

copy it again--which generates an error.

Sub Mai n()
On Error Goto ErrHandl er
Fi | eCopy "c:\autoexec.bat","c:\autoexec. sav"
Open "c:\autoexec.sav" For Input As # 1
Fi | eCopy "c:\autoexec.sav", "c:\autoexec.sv2"
Cl ose
Exit Sub

Er r Handl er:
If Err = 55 Then 'File already open.
MsgBox "Cannot copy an open file. Cose it and try again."
El se
MsgBox "An unspecified file copy error has occurred."
End |f
Resunme Next
End Sub

Ki | | (statement); Nane (statement).

8-3



FileDateTime (function)

Syntax Fi | eDat eTi ne(filename$)
Description Returns a Dat e variant representing the date and time of the last modification of afile.
Comments This function retrieves the date and time of the last modification of the file specified by filename$

(wildcards are not allowed). A runtime error resultsif the file does not exist. The value returned can
be used with the date/time functions (i.e., Year , Mont h, Day, Weekday, M nut e, Second,
Hour ) to extract the individual elements.

Example This example gets the file date/time of the autoexec.bat file and displaysit in a dialog box.

Sub Mai n()
If FileExists("c:\autoexec.bat") Then
a# = Fil eDateTi ne("c:\autoexec. bat")

MsgBox "The date/tine information for the file is: " & Year(a#) & "-" &
Month(a#) & "-" & Day(a#)
El se
MsgBox "The file does not exist."
End |f
End Sub
See Also Fi | eLen (function); Get At t r (function); Fi | eType (function); Fi | eAt t r (function);

Fi | eExi st s (function).

Notes: The Win32 operating system stores the file creation date, last modification date, and the date the
filewas last writtento. TheFi | eDat eTi me function only returns the last modification date.

8-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



FileDirs (statement)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Fi | eDi rs array() [,dirspec$]
FillsaSt ri ng or Vari ant array with directory names from disk.

TheFi | eDi r s statement takes the following parameters:

Parameter Description
array() Either a zero- or aone-dimensioned array of strings or variants. The array

can be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new
number of elements. If there are no elements, then the array will be
redimensioned to contain no dimensions. Y ou can use the LBound,
UBound, and Ar r ayDi s functions to determine the number and size of
the new array's dimensions.

If the array isfixed, each array element isfirst erased, then the new elements
are placed into the array. If there are fewer elements than will fit in the array,
then the remaining elements are initialized to zero-length strings (for
String arrays) or Enpt y (for Var i ant arrays). A runtime error results if
the array istoo small to hold the new elements.

dirspec$ St ri ng containing the file search mask, such as:
t*.
ci\*
If this parameter is omitted, then * is used, which fills the array with all the
subdirectory names within the current directory.

This examplefills an array with directory entries and displays the first one.

Sub Mai n()

Di m a$()

FileDirs a$, "c:\*"

MsgBox "The first directory is: " & a$(0)
End Sub

Fi | eLi st (statement); Di r, Di r$ (functions); Cur Di r, Cur Di r$ (functions); ChDi r
(statement).



FileExists (function)

Syntax
Description

Comments

Example

See Also

Fi | eExi st s(filename$)

Returns Tr ue if filename$ exists; returns Fal se otherwise.

This function determines whether a given filename$ is valid.

This function will return Fal se if filename$ specifies a subdirectory.

This example checks to see whether there is an autoexec.bat file in the root directory of the C drive,
then displays either its creation date and time or the fact that it does not exist.

Sub Mai n()
If FileExists("c:\autoexec.bat") Then
Msgbox "This file exists!"
El se
MsgBox "File does not exist."
End |f
End Sub

Fi | eLen (function); Get Att r (function); Fi | eType (function); Fi | eAt t r (function);
Fi | ePar se$ (function).

FileLen (function)

Syntax
Description

Comments

Example

See Also

8-6

Fi | eLen(filename$)
Returns aLong representing the length of filename$ in bytes.

Thisfunction is used in place of the LOF function to retrieve the length of a file without first
opening the file. A runtime error results if the file does not exist.

This example checks to see whether there is a c:\autoexec.bat file and, if there s, displaysthe
length of thefile.

Sub Mai n()
file$ = "c:\autoexec. bat"
If FileExists(file$) And FileLen(file$) <> 0) Then
b% = FileLen(file$)

MsgBox "'" & file$ & "' is " & b%&" bytes."
El se
MsgBox "'" & file$ & "' does not exist."
End |f
End Sub

Get At tr (function); Fi | eType (function); Fi | eAt t r (function); Fi | ePar se$ (function);
Fi | eExi st s (function); Loc (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



FileList (statement)

Syntax Fi | eLi st array() [,[filespec$] [,[include_attr] [,exclude_attr]]]
Description FillsaStri ng or Vari ant array with filenames from disk.
Comments TheFi | eLi st function takes the following parameters:
Parameter Description
array() Either a zero- or a one-dimensioned array of strings or variants. The array can

be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new
number of elements. If there are no elements, then the array will be
redimensioned to contain no dimensions. Y ou can use the LBound, UBound,
and Ar r ayDi ns functions to determine the number and size of the new
array's dimensions.

If the array isfixed, each array element isfirst erased, then the new elements
are placed into the array. If there are fewer elements than will fit in the array,
then the remaining elements are initialized to zero-length strings (for St r i ng
arrays) or Enpt y (for Var i ant arrays). A runtime error resultsif the array
istoo smal to hold the new elements.

filespec$ St ri ng specifying which filenames are to be included in the list.

The filespec$ parameter can include wildcards, such as* and ?. If this
parameter is omitted, then * is used.

include_attr I nt eger specifying attributes of files you want included in the list. It can be
any combination of the attributes listed below.

If this parameter is omitted, then the value 97 isused (ebReadOnl y O
ebArchive O ebNone).

exclude_attr I nt eger specifying attributes of files you want excluded from the list. It can
be any combination of the attributes listed below.

If this parameter is omitted, then the value 18 isused (ebHi dden O
ebDi r ect ory). In other words, hidden files and subdirectories are excluded
from thelist.

Wildcards

The* character matches any sequence of zero or more characters, whereas the ? character matches
any single character. Multiple * 's and ?'s can appear within the expression to form complete
searching patterns. The following table shows some examples:

This Pattern Matches These Files Doesn't Match These Files
*SF L TXT SAMPLE. TXT SANVPLE

GOCSE. TXT SANMPLE. DAT

SAMS. TXT
C'T. TXT CAT. TXT CAP. TXT

ACATS. TXT

CT CAT CAT. DOC

CAP. TXT

GFK-1283G F 8-7



Example

See Also

8-8

c?T CAT CAT. TXT
cutr CAPIT

* (All files)
File Attributes

These numbers can be any combination of the following:

Constant Value Includes

ebNor nal 0 Read-only, archive, subdir, none
ebReadOnl y 1 Read-only files

ebH dden 2 Hidden files

ebSystem 4 System files

ebVol une 8 Volume label

ebDirectory 16 DOS subdirectories

ebArchive 32 Files that have changed since the last backup
ebNone 64 Files with no attributes

This examplefills an array awith the directory of the current drive for al files that have normal or
no attributes and excludes those with system attributes. The dialog box displays four filenames
from the array.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
Di m a$()
FileList a$, "*.*", (ebNormal + ebNone), ebSystem
If ArrayDims(a$) > O Then
r = Sel ectBox("FileList","The files you filtered are:", a$)
El se
MsgBox "No files found."
End |f
End Sub

Fi | eDi rs (statement); Di r, Di r $ (functions).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



FileParse$ (function)

Syntax
Description

Comments

Example

See Also

Notes:

GFK-1283G

Fi | ePar se$( filename$[, operation])
Returnsa St r i ng containing a portion of filename$ such as the path, drive, or file extension.

The filename$ parameter can specify any valid filename (it does not have to exist). For example:

..\test. dat
c:\sheets\test. dat
t est. dat

A runtime error is generated if filename$ is a zero-length string.

The optional operation parameter isan | nt eger specifying which portion of the filename$ to
extract. It can be any of the following values.

Value Meaning Example

0 Full name c:\sheets\test. dat
1 Drive c

2 Path c:\sheets

3 Name t est. dat

4 Root t est

5 Extension dat

If operation is not specified, then the full name is returned. A runtime error will result if operation
is not one of the above values.

A runtime error resultsif filename$ is empty.

Thisexample parsesthefilestring c: \ t enp\ aut oexec. bat into its component parts and
displaysthemin a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
D m a$(5)
file$ = "c:\tenp\autoexec. bat"
For i =1 To 5
a$(i) = FileParse$(file$,i)
Next i
nsgl = "The breakdown of '" & file$ & "' is:" &crlf &ecrlf
negl = neg & a$(1l) & crlf & a$(2) &crlf & a$(3) &crlf & a$(4) & crlf & a$(5)
MsgBox nsgl
End Sub

Fi | eLen (function); Get Att r (function); Fi | eType (function); Fi | eAt t r (function);
Fi | eExi st s (function).

The backdash and forward slash can be used interchangeably. For example, "c:\test.dat" isthe same
as"c:/test.dat".



Fix (function)

Syntax Fi x (number)

Description Returns the integer part of number.

Comments This function returns the integer part of the given value by removing the fractional part. The signis
preserved.

The Fi x function returns the same type as number, with the following exceptions:
e If number isEnpt y, thenan| nt eger variant of value O is returned.
e IfnumberisaStri ng, thenaDoubl e variant is returned.

¢ |If number contains no valid data, then aNul | variant is returned.

Example This example returns the fixed part of a number and assignsit to b, then displaystheresultin a
dialog box.
Sub Mai n()

a# = -19923. 45

b% = Fi x(a#)

MsgBox "The fixed portion of -19923.45 is: " & b%
End Sub

See Also I nt (function); Cl nt (function).

8-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



For...Next (statement)

Syntax

Description

Comments

GFK-1283G

For counter = start To end[ St ep increment]
[ statements]
[Exit For]
[ statements]

Next [ counter [, nextcounter]... ]

Repeats a block of statements a specified number of times, incrementing aloop counter by a given
increment each time through the loop.

The For statement takes the following parameters:

Parameter Description

counter Name of anumeric variable. Variables of the following types can be used:
I nt eger, Long, Si ngl e, Doubl e, Vari ant .

start Initial value for counter. The first time through the loop, counter is assigned
thisvalue.

end Final value for counter. The statements will continue executing until counter
isegual to end.

increment Amount added to counter each time through the loop. If end is greater than

start, then increment must be positive. If end is less than start, then increment
must be negative.

If increment is not specified, then 1 is assumed. The expression given as
increment is evaluated only once. Changing the step during execution of the
loop will have no effect.

statements Any number of Basic Control Engine statements.

TheFor. .. Next statement continues executing until an Exi t For statement is encountered
when counter is greater than end.

For ... Next statementscan be nested. In such acase, the Next [ counter] statement appliesto
theinnermost For . . . Next .

The Next clause can be optimized for nested next loops by separating each counter with a comma.
The ordering of the counters must be consistent with the nesting order (innermost counter appearing
before outermost counter). The following example shows two equivalent For statements:

For i =1 To 10 For i =1 To 10
For j =1 To 10 For j =1 To 10
Next j Next j,i

Next i

A Next clause appearing by itself (with no counter variable) matches the innermost For loop.

The counter variable can be changed within the loop but will have no effect on the number of times
the loop will execute.

F 8-11



8-12

'This exanple constructs a truth table for the OR statenent

For...Next | oops
Msgl = "Logic table for O:" &crlf &ecrlf
For x = -1 To O
For y =-1To O

''using nested

z=xOvy
msgl = msgl & CBool (x) &" O "
msgl = msgl & CBool (y) & " ="
nmegl = nsgl & CBool (z) & Basic. Eol n$
Next vy
Next X
MsgBox mnsgl
End Sub
See Also Do. . . Loop (statement); VWi | e. . . ViEnd (statement).
Notes: Dueto errorsin program logic, you can inadvertently create infinite loopsin your code. You can

use Ctrl+Break to break out of infinite loops.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Format, Format$ (functions)

Syntax For mat [ $] ( expression [,Userformat$])
Description Returnsa St ri ng formatted to user specification.
Comments For mat $ returnsa St ri ng, whereas For mat returnsa St ri ng variant.

The For mat $/ For mat functions take the following parameters:

Parameter Description

expression String or numeric expression to be formatted.

Userformat$ Format expression that can be either one of the built-in Basic Control Engine
formats or a user-defined format consisting of characters that specify how the
expression should be displayed.

String, numeric, and date/time formats cannot be mixed in asingle
Userformat$ expression.

If Userformat$ is omitted and the expression is numeric, then these functions perform the same
functionasthe St r $ or St r statements, except that they do not preserve aleading space for
positive values.

If expressionisNul | , then a zero-length string is returned.
Built-In Formats

To format numeric expressions, you can specify one of the built-in formats. There are two
categories of built-in formats: one deals with numeric expressions and the other with date/time
values. The following tableslist the built-in numeric and date/time format strings, followed by an
explanation of what each does.

Numeric Formats

Format Description
General number Display the numeric expression asis, with no additional formatting.

Currency Displays the numeric expression as currency, with thousands separator if
necessary.

Fixed Displays at least one digit to the left of the decimal separator and two digitsto
the right.

Standard Displays the numeric expression with thousands separator if necessary.
Displays at least one digit to the |eft of the decimal separator and two digitsto
the right.

Percent Displays the numeric expression multiplied by 100. A percent sign (%) will

appear at the right of the formatted output. Two digits are displayed to the
right of the decimal separator.

Scientific Displays the number using scientific notation. One digit appears before the
decimal separator and two after.

Yes/No Displays No if the numeric expression is 0. Displays Yesfor all other values.

True/False Displays Falseif the numeric expression is 0. Displays True for all other values.

On/Off Displays Off if the numeric expression is 0. Displays On for all other values.

GFK-1283G F 8-13



Date/Time Formats

Format
General date

Long date
Medium date
Short date
Long time

Medium time

Short time

Description

Displays the date and time. If there is no fractional part in the numeric
expression, then only the date is displayed. If thereis no integral part in the
numeric expression, then only the timeis displayed. Output isin the following
form: 1/ 1/ 95 01: 00: 00 AM

Displays along date.

Displays a medium date—prints out only the abbreviated name of the month.
Displays a short date.

Displays the long time. The default is: h:mm:ss.

Displays the time using a 12-hour clock. Hours and minutes are displayed, and
the AM/PM designator is at the end.

Displays the time using a 24-hour clock. Hours and minutes are displayed.

User-Defined Formats

In addition to the built-in formats, you can specify a user-defined format by using characters that
have special meaning when used in aformat expression. The following tables list the characters you
can use for numeric, string, and date/time formats and explain their functions.

Numeric Formats
Character

Empty string

0

%

Meaning
Displays the numeric expression asis, with no additional formatting.
Thisisadigit placeholder.

Displays a number or a 0. If anumber existsin the numeric expressionin
the position where the 0 appears, the number will be displayed. Otherwise, a
0 will be displayed. If there are more Os in the format string than there are
digits, the leading and trailing Os are displayed without modification.

Thisisadigit placeholder.

Displays a number or nothing. If a number existsin the numeric expression
in the position where the number sign appears, the number will be
displayed. Otherwise, nothing will be displayed. Leading and trailing Os are
not displayed.

Thisisthe decimal placeholder.

Designates the number of digits to the left of the decimal and the number of
digitsto the right. The character used in the formatted string depends on the
decimal placeholder, as specified by your locale.

Thisis the percentage operator.

The numeric expression is multiplied by 100, and the percent character is
inserted in the same position as it appears in the user-defined format string.

8-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



GFK-1283G

E- E+ e-

-+ 8 ()
space

: " ABC

e+

Thisis the thousand separator.

The common use for the thousands separator is to separate thousands from
hundreds. To specify this use, the thousands separator must be surrounded
by digit placeholders. Commas appearing before any digit placeholders are
specified are just displayed. Adjacent commas with no digit placeholders
specified between them and the decimal mean that the number should be
divided by 1,000 for each adjacent commain the format string. A comma
immediately to the left of the decimal has the same function. The actua
thousands separator character used depends on the character specified by
your locale.

These are the scientific notation operators, which display the number in
scientific notation. At least one digit placeholder must exist to the left of E-
, E+, e-, or e+. Any digit placeholders displayed to the | eft of E- , E+, e-,
or e+ determine the number of digits displayed in the exponent. Using E+
or e+ placesa + in front of positive exponents and a—in front of negative
exponents. Using E- or e- placesa—in front of negative exponents and
nothing in front of positive exponents.

Thisisthe time separator.

Separates hours, minutes, and seconds when time values are being
formatted. The actual character used depends on the character specified by
your locale.

Thisisthe date separator.

Separates months, days, and years when date values are being formatted.
The actual character used depends on the character specified by your locale.

These are the literal characters you can display.

To display any other character, you should precede it with a backslash or
encloseit in quotes.

This designates the next character as a displayed character.

To display characters, precede them with a backslash. To display a
backslash, use two backdashes. Double quotation marks can also be used to
display characters. Numeric formatting characters, date/time formatting
characters, and string formatting characters cannot be displayed without a
preceding backslash.

Displays the text between the quotation marks, but not the quotation marks.
To designate a double quotation mark within a format string, use two
adjacent double quotation marks.

Thiswill display the next character as the fill character.
Any empty space in afield will be filled with the specified fill character.

Numeric formats can contain one to three parts. Each part is separated by a semicolon. If you
specify one format, it appliesto all values. If you specify two formats, the first appliesto positive
values and the second to negative values. If you specify three formats, the first applies to positive
values, the second to negative values, and the third to Os. If you include semicolons with no format
between them, the format for positive valuesis used.

8-15



String Formats

Character

@

Meaning
Thisisacharacter placeholder.

Displays a character if one exists in the expression in the same position;
otherwise, displays a space. Placeholders are filled from right to left unless
the format string specifies left to right.

Thisis acharacter placeholder.

Displays a character if one exists in the expression in the same position;
otherwise, displays nothing. Placeholders are filled from right to left unless
the format string specifies left to right.

This character forces lowercase.
Displays all charactersin the expression in lowercase.
This character forces uppercase.
Displays all charactersin the expression in uppercase.

This character forces placeholders to be filled from left to right. The default
isright to left.

Date/Time Formats

Character
c

d

dd

ddd
dddd
ddddd
dddddd
w

W

m

yy
yyyy

Meaning

Displaysthe date asddddd and thetimeast t t t t . Only the dateis
displayed if no fractional part exists in the numeric expression. Only the time
isdisplayed if no integral portion existsin the numeric expression.

Displays the day without a leading 0 (1-31).

Displays the day with aleading 0 (01-31).

Displays the day of the week abbreviated (Sun—Sat).

Displays the day of the week (Sunday—Saturday).

Displays the date as a short date.

Displays the date as along date.

Displays the number of the day of the week (1-7). Sunday is 1; Saturday is 7.
Displays the week of the year (1-53).

Displays the month without aleading 0 (1-12). If m immediately follows h or
hh, mistreated as minutes (0-59).

Displays the month with aleading 0 (01-12). If mm immediately follows h or
hh, mm is treated as minutes with aleading 0 (00-59).

Displays the month abbreviated (Jan-Dec).
Displays the month (January—December).
Displays the quarter of the year (1-4).
Displays the day of the year (1-366).
Displays the year, not the century (00-99).
Displays the year (1000-9999).

8-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



hh

nn

SS
ttett

AM PM

am pm

AP
alp
AVPM

Displays the hour without aleading 0 (0-24).

Displays the hour with aleading 0 (00-24).

Displays the minute without a leading 0 (0-59).

Displays the minute with aleading 0 (00-59).

Displays the second without a leading 0 (0-59).

Displays the second with aleading 0 (00-59).

Displaysthetime. A leading O is displayed if specified by your locale.

Displays the time using a 12-hour clock. Displays an uppercase AMfor time
values before 12 noon. Displays an uppercase PMfor time values after 12
noon and before 12 midnight.

Displays the time using a 12-hour clock. Displays a lowercase amor pmat
theend.

Displays the time using a 12-hour clock. Displays an uppercase A or P at the end.
Displays the time using a 12-hour clock. Displays alowercase a or p at the end.

Displays the time using a 12-hour clock. Displaysthe string s1159 for values
before 12 noon and s2359 for values after 12 noon and before 12 midnight.

Example Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()
a# = 1199.234
msgl = "Sonme general formats for '" & a# & "' are:" &crlf &crlf
msgl = msgl & Fornat (a#, "General Number") & crlf
msgl = msgl & Fornmt (a#, "Currency") & crlf
msgl = msgl & Fornmt (a#, "Standard") & crlf
msgl = msgl & Fornat (a#, "Fixed") & crlf
msgl = msgl & Fornmt (a#, "Percent") & crlf
msgl = megl & Fornmt (a#,"Scientific") & crlf
msgl = msgl & Fornat (True, "Yes/No") & crlf
msgl = msgl & Fornat (True, " True/ Fal se") & crlf
msgl = megl & Fornmat (True,"On/OFf") & crlf
msgl = msgl & Fornmt (a#,"0,0.00") & crlf
msgl = gl & Fornat (a#, " ##, #i#, ###. ###") & crlf
MsgBox nsgl
da$ = Date$
negl = "Sonme date formats for '" & da$ & "' are:" &crlf &ecrlf
nmsgl = nsgl & Format (da$, "General Date") & crlf
nsgl = nsgl & Format (da$, "Long Date") & crlf
nsgl = nsgl & Format (da$, "Medi um Date") & crlf
nsgl = nsgl & Format (da$, "Short Date") & crlf
MsgBox mnsgl
ti$ = Time$
negl = "Some tine formats for '" &ti$ & "' are:" &crlf &ecrlf
negl = nsgl & Format (ti$, "Long Tine") & crlf
nsgl = nsgl & Format (ti$, "Medium Tine") & crlf
nsgl = nsgl & Format (ti$, "Short Tine") & crlf
MsgBox mnsgl
End Sub
See Also Str, Str$ (functions); CStr (function).
Note: The default date/time formats are read fromthe[ | nt | ] section of the win.ini file.

GFK-1283G

8-17



FreeFile (function)

Syntax FreeFile[()]
Description Returnsan | nt eger containing the next available file number.
Comments The number returned is suitable for use in the Open statement and will always be between 1 and
255 inclusive.
Example This example assigns A to the next free file number and displaysit in a dialog box.
Sub Mai n()
a = FreeFile
MsgBox "The next free file nunber is: " & a
End Sub
See Also Fi | eAttr (function); Open (statement).
Function...End Function (statement)
Syntax [Private | Public] [Static] Function name[(arglist)] [AsReturnType]
[statements]
End Sub
where arglist is a comma-separated list of the following (up to 30 arguments are allowed):
[Optional] [ByVval | ByRef] parameter [()] [Astype]
Description Creates a user-defined function.
Comments The Funct i on statement has the following parts:
Part Description
Private Indicates that the function being defined cannot be called from other scripts.
Publ i c Indicates that the function being defined can be called from other scripts. If
boththe Pri vat e and Publ i ¢ keywords are missing, then Publ i ¢ is
assumed.
Static Recognized by the compiler but currently has no effect.
name Name of the function, which must follow Basic Control Engine naming
conventions:
1. Must start with aletter.
2. May contain letters, digits, and the underscore character (). Punctuation
and type-declaration characters are not allowed. The exclamation point
(1) can appear within the name aslong asit is not the last character, in
which caseit isinterpreted as a type-declaration character.
3. Must not exceed 80 charactersin length.
Additionally, the name parameter can end with an optional type-declaration
character specifying the type of data returned by the function (that is, any of
the following characters. % &, ! , #, @.
8-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Opt i onal Keyword indicating that the parameter is optional. All optional parameters
must be of type Var i ant . Furthermore, all parameters that follow the first
optional parameter must also be optional.

If this keyword is omitted, then the parameter is required.
Note

You canusethel sM ssi ng function to determineif an optional parameter
was actually passed by the caller.

ByVal Keyword indicating that parameter is passed by value.

By Ref Keyword indicating that parameter is passed by reference. If neither the
ByVal nor the ByRef keyword isgiven, then ByRef isassumed.

parameter Name of the parameter, which must follow the same naming conventions as
those used by variables. This name can include a type-declaration character,
appearing in place of As type.

type Type of the parameter (for example, | nt eger, St ri ng, and so on). Arrays
are indicated with parentheses. For example, an array of integers would be
declared asfollows:

Function Test(a() As Integer)
End Function

ReturnType Type of datareturned by the function. If the return typeis not given, then
Var i ant isassumed. The ReturnType can only be specified if the function
name (i.e., the name parameter) does not contain an explicit type-declaration
character.

A function returns to the caller when either of the following statementsis encountered:

End Function
Exit Function

Functions can be recursive.
Returning Values from Functions

To assign areturn value, an expression must be assigned to the name of the function, as shown
below:
Function TinesTwo(a As Integer) As Integer
TimesTwo = a * 2
End Function

If no assignment is encountered before the function exits, then one of the following valuesis

returned:

Value Data Type Returned by the Function

0 I nt eger, Long, Si ngl e, Doubl e, Currency
Zero-length string String

Not hi ng Obj ect (or any data object)

Enmpty Vari ant

December 30,1899 Date

Fal se Bool ean

GFK-1283G F 8-19



The type of the return value is determined by the As ReturnType clause onthe Funct i on

statement itself. As an alternative, a type-declaration character can be added to the Funct i on

name. For example, the following two definitions of Test both return St ri ng values:
Function Test() As String

Test = "Hello, world"
End Function

Function Test$()
Test = "Hello, world"
End Function

Passing Parameters to Functions

Parameters are passed to a function either by value or by reference, depending on the declaration of
that parameter in arglist. If the parameter is declared using the By Ref keyword, then any
modifications to that passed parameter within the function change the value of that variable in the
caller. If the parameter is declared using the By Val keyword, then the value of that variable cannot
be changed in the called function. If neither the ByRef or ByVal keywords are specified, then the
parameter is passed by reference.

Y ou can override passing a parameter by reference by enclosing that parameter within parentheses.
For instance, the following example passes the variable | by reference, regardless of how the third
parameter is declared in the arglist of User Funct i on:

i = UserFunction(10,12,(j))
Optional Parameters
The Basic Control Engine allows you to skip parameters when calling functions, as shown in the
following example:

Function Test(a%b%c% As Variant
End Function

Sub Mai n
a = Test(1,,4) "Parameter 2 was ski pped.
End Sub

Y ou can skip any parameter with the following restrictions:

1. The call cannot end with a comma. For instance, using the above example, the following is not
valid:
a = Test(1,,)
2. The call must contain the minimum number of parameters as required by the called function.
For instance, using the above example, the following are invalid:

a
a

Test (, 1) 'Only passes two out of three required parameters.
Test (1, 2) 'Only passes two out of three required parameters.

When you skip a parameter in this manner, the Basic Control Engine creates atemporary variable
and passes this variable instead. The value of this temporary variable depends on the data type of
the corresponding parameter in the argument list of the called function, as described in the

following table:

Value Data Type

0 I nt eger, Long, Si ngl e, Doubl e, Currency
Zero-length string String

Not hi ng Obj ect (or any data object)

Error Var i ant

December 30, 1899 Date

Fal se Boolean

8-20 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Example

See Also

GFK-1283G

Within the called function, you will be unable to determine if a parameter was skipped unless the
parameter was declared as a variant in the argument list of the function. In this case, you can use the
I sM ssi ng function to determine if the parameter was skipped:

Function Test(a,b,c)
If IsMssing(a) O IsMssing(b) Then Exit Sub
End Function

Function Factorial (n% As |nteger
"This function calculates NI (N-factorial).
f%=1
For i = n To 2 Step -1
f=1f*i
Next i
Factorial = f
End Function

Sub Mai n()
' This exanple calls user-defined function Factorial and displays the
‘result in a dialog box.
a%=0
Do Wiile a% < 2
a% = Val (1 nput Box("Enter an integer number greater than 2.","Conmpute Factorial"))
Loop
b# = Factorial (a%
MsgBox "The factorial of " & a% & " is: " & b#
End Sub

Sub. .. End Sub (statement)

F 8-21



Fv (function)

Syntax

Description

Comments

Example

See Also

8-22

Fv (Rate, Nper, Pmt,Pv,Due)

Calculates the future value of an annuity based on periodic fixed payments and a constant rate of
interest.

An annuity is a series of fixed payments made to an insurance company or other investment
company over a period of time. Examples of annuities are mortgages and monthly savings plans.

The Fv function requires the following parameters:

Parameter Description

Rate Doubl e representing the interest rate per period. Make sure that annual rates
are normalized for monthly periods (divided by 12).

NPer Doubl e representing the total number of payments (periods) in the annuity.

Pmt Doubl e representing the amount of each payment per period. Payments are

entered as negative values, whereas receipts are entered as positive values.

Pv Doubl e representing the present value of your annuity. In the case of aloan,
the present value would be the amount of the loan, whereas in the case of a
retirement annuity, the present value would be the amount of the fund.

Due I nt eger indicating when payments are due for each payment period. A 0
specifies payment at the end of each period, whereasa 1 indicates payment at
the start of each period.

Rate and NPer values must be expressed in the same units. If Rate is expressed as a percentage per
month, then NPer must also be expressed in months. If Rate isan annual rate, then the NPer must
also be givenin years.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

This example calculates the future value of 100 dollars paid periodically for a period of 10 years
(120 months) at arate of 10% per year (or .10/12 per month) with payments made on the first of the
month. The valueis displayed in adialog box. Note that payments are negative values.

Sub Mai n()

a# = Fv((.10/12), 120, -100. 00,0, 1)

MsgBox "Future value is: " & Format(a#, "Currency")
End Sub

I RR (function); M RR (function); Npv (function); Pv (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Get (statement)

Syntax
Description

Comments

GFK-1283G

Get [#] filenumber, [recordnumber], variable

Retrieves data from arandom or binary file and stores that data into the specified variable.

The Get statement accepts the following parameters:

Parameter

filenumber

recordnumber

variable

Description

I nt eger used by the Basic Control Engine to identify the file. Thisisthe
same humber passed to the Qpen statement.

Long specifying which record is to be read from the file.

For bi nar y files, this number represents the first byte to be read starting
with the beginning of the file (the first byteis 1). For r andomfiles, this
number represents the record number starting with the beginning of thefile
(thefirst record is 1). This value ranges from 1 to 2147483647.

If the recordnumber parameter is omitted, the next record is read from the file
(if no records have been read yet, then the first record in the file is read).
When this parameter is omitted, the commas must still appear, asin the
following example:

CGet #1,,recvar

If recordnumber is specified, it overrides any previous change in file position
specified with the Seek statement.

Variable into which datawill be read. The type of the variable determines
how the datais read from the file, as described below.

With random files, aruntime error will occur if the length of the data being read exceeds the reclen
parameter specified with the Open statement. If the length of the data being read is less than the
record length, the file pointer is advanced to the start of the next record. With binary files, the data
elements being read are contiguousl] the file pointer is never advanced.

9-1



9-2

Variable Types

The type of the variable parameter determines how datawill be read from thefile. It can be any of

the following types:
Variable Type

File Storage Description

| nt eger
Long

String
(variable-length)

String
(fixed-length)

Doubl e
Si ngl e
Dat e

Bool ean

Vari ant

User-defined types

Arrays
Objects

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

2 bytes are read from thefile.
4 bytes are read from thefile.

In binary files, variable-length strings are read by first determining the
specified string variable's length and then reading that many bytes from the
file. For example, to read a string of eight characters:

s$ = String(8," ")
Get #1,,s$

In random files, variable-length strings are read by first reading a 2-byte
length and then reading that many characters from the file.

Fixed-length strings are read by reading a fixed number of characters from
the file equal to the string's declared length.

8 bytes are read from the file (IEEE format).
4 bytes are read from the file (IEEE format).
8 bytes are read from the file (IEEE double format).

2 bytes are read from the file. Nonzero values are Tr ue, and zero values
areFal se.

A 2-byte Var Ty pe isread from the file, which determines the format of the
datathat follows. Once the Var Type isknown, the dataisread individualy,
as described above. With user-defined errors, after the 2-byte Var Type, a
2-byte unsigned integer is read and assigned as the value of the user-defined
error, followed by 2 additional bytes of information about the error.

The exception is with strings, which are always preceded by a 2-byte string
length.

Each member of a user-defined data type is read individually

In binary files, variable-length strings within user-defined types are read by
first reading a 2-byte length followed by the string's content. This storageis
different from variable-length strings outside of user-defined types.

When reading user-defined types, the record length must be greater than or
equal to the combined size of each element within the data type.

Arrays cannot be read from afile using the Get statement.

Object variables cannot be read from afile using the Get statement.

GFK-1283G



Example

See Also

GFK-1283G

This example opens afile for random write, then writes ten records into the file with the values
10...50. Then thefileis closed and reopened in random mode for read, and the records are read
with the Get statement. The result is displayed in a message box.

Sub Mai n()

Open "test.dat" For Random Access Wite As #1
For x =1 to 10

y =x * 10
Put #1,Xx,y
Next x
Cl ose

Open "test.dat" For Random Access Read As #1
nmsgl = ""

For y =1to 5

Cet #1,y,X

nmsgl = negl & "Record " &y &": " & x & Basic. Eol n$
Next vy
Cl ose

MsgBox mnsgl
End Sub

Open (statement); Put (statement); | nput # (statement); Li ne | nput # (statement); | nput ,
I nput $ (functions).

9-3



GetAttr (function)

Syntax
Description

Comments

Example

See Also

9-4

Get At t r (filename$)
Returnsan | nt eger containing the attributes of the specified file.

The attribute value returned is the sum of the attributes set for the file. The value of each attributeis
asfollows:

Constant Value Includes

ebNor nal 0 Read-only files, archive files, subdirectories, and fileswith
no attributes.

ebReadOnl y 1 Read-only files

ebHi dden 2 Hidden files

ebSystem 4 System files

ebVol unme 8 Volume label

ebDirectory 16 DOS subdirectories

ebArchive 32 Files that have changed since the last backup

ebNone 64 Files with no attributes

To determine whether a particular attribute is set, you can And the values shown above with the
valuereturned by Get At t r . If theresultis Tr ue, the attribute is set, as shown below:

Sub Mai n()

Dimw As | nteger

w = CGetAttr("sanple.txt")

If w And ebReadOnly Then MsgBox “"This file is read-only."
End Sub

This example tests to see whether the file test.dat exists. If it does not, then it creates the file. The
file attributes are then retrieved with the GetAttr function, and the result is displayed.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
Dim a()
FileList a,"*. *"
Agai n:
msgl = ""
r = Sel ectBox("Attribute Checker","Select File:",a)
If r =-1 Then
End
El se
y% = CGetAttr(a(r))
End |f

If y% = 0 Then nsgl = nsgl & "This file has no special attributes." & crlf
If y% And ebReadOnly Then nsgl = nsgl & "The read-only bit is set." & crlf
If y% And ebHi dden Then nmsgl = msgl & "The hidden bit is set." & crlf
If y% And ebSystem Then nmsgl = msgl & "The systembit is set." & crlf
If y% And ebVol ume Then nmsgl = msgl & "The volune bit is set." & crlf
If y% And ebDirectory Then nsgl = nsgl & "The directory bit is set." & crlf
If y% And ebArchive Then nsgl = nsgl & "The archive bit is set."
MsgBox nsgl
Coto Again

End Sub

Set Att r (statement); Fi | eAtt r (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



GetObject (function)

Syntax

Description

Comments

Examples

See Also

GFK-1283G

Get oj ect (filename$ [,class$)])

Returns the object specified by filename$ or returns a previously instantiated object of the given
class$.

This function is used to retrieve an existing OLE automation object, either one that comes from a
file or one that has previously been instantiated.

The filename$ argument specifies the full pathname of the file containing the object to be activated.
The application associated with the file is determined by OLE at runtime. For example, suppose
that afilecalled c: \ docs\ r esune. doc was created by aword processor called

wor dpr oc. exe. The following statement would invoke wor dpr oc. exe, load thefile called
c:\docs\resune. doc, and assign that object to avariable:

Di m doc As Obj ect
Set doc = Get bj ect("c:\docs\resune. doc")

To activate a part of an object, add an exclamation point to the filename followed by a string
representing the part of the object that you want to activate. For example, to activate the first three
pages of the document in the previous example:

Di m doc As Obj ect
Set doc = Get hj ect("c:\docs\resune. doc! P1- P3")

The Get Obj ect function behaves differently depending on whether the first parameter is omitted.
The following table summarizes the different behaviors of Get Obj ect :

Filename$ Class$ GetObject Returns

Omitted Specified Reference to an existing instance of the specified object. A
runtime error resultsif the object is not already loaded.

" Specified Reference to a new object (as specified by class$). A runtime
error occurs if an object of the specified class cannot be found.

Thisisthe sameasCr eat e(bj ect .

Specified Omitted Default object from filename$. The application to activate is
determined by OLE based on the given filename.
Specified Specified Object given by class$ from the file given by filename$. A

runtime error occurs if an object of the given class cannot be
found in the given file.
Thisfirst example instantiates the existing copy of Excel.

Sub Mai n()
Di m Excel As Obj ect
Set Excel = Getbject(,"Excel.Application")

This second example loads the OLE server associated with a document.

Dim MyObj ect As (Obj ect
Set MyQhj ect = Get bj ect (" c:\docurment s\ resune. doc")
End Sub

Cr eat ebj ect (function); Obj ect (datatype).



Global (statement)

Description

See Publ i ¢ (statement).

GoSub (statement)

Syntax
Description

Comments

Example

See Also

9-6

GoSub label

Causes execution to continue at the specified label.

Execution can later be returned to the statement following the GoSub by using the Ret ur n

statement.

The label parameter must be a label within the current function or subroutine. GoSub outside the

context of the current function or subroutine is not allowed.

This example gets a name from the user and then branches to a subroutine to check the input. If the
user clicks Cancel or enters a blank name, the program terminates; otherwise, the nameis set to

MICHAEL, and a message is displayed.

Sub Mai n()
unane$ = Ucase$( | nput Box$("Enter your nanme:","Enter Name"))
GoSub CheckNare
MsgBox "I'm | ooking for MCHAEL, not " & unane$
Exit Sub

CheckNarre:

If (unane$ = "") Then
GoSub Bl ankNare

El sel f unane$ = "M CHAEL" Then
GoSub Ri ght Nare

El se
GoSub O her Nare

End If

Return

Bl ankNane:
MsgBox "No name? dicked Cancel ? |'m shutti ng down."
Exit Sub
Ri ght Name:
Msgbox "Hey, M KE where have you been?"
End
O her Nane:
Return
End Sub

Got o (statement); Ret ur n (statement).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



Goto (statement)

Syntax
Description

Comments

Example

See Also

Note:

GFK-1283G

Got o label

Transfers execution to the line containing the specified label.

The compiler will produce an error if label does not exist.

The label must appear within the same subroutine or function as the Got o.
Labels are identifiers that follow these rules:

1. Must begin with aletter.

2. May contain letters, digits, and the underscore character.

3. Must not exceed 80 charactersin length.

4. Must befollowed by acolon (: ).

Labels are not case-sensitive.

This example gets a name from the user and then branches to a statement, depending on the input
name. If the name is not MICHAEL, it isreset to MICHAEL unlessit isnull or the user clicks
Cancel--in which case, the program displays a message and terminates.

Sub Mai n()
uname$ = UCase( | nput Box("Enter your name:","Enter Name"))
If unane$ = "M CHAEL" Then
Cot o Ri ght Nane

El se
CGot o W ongNane
End |f
W ongNane:
If (uname$ = "") Then
MsgBox "No name? Cicked Cancel ? |'m shutting down."
El se

MsgBox "1 amrenam ng you M CHAEL!"
uname$ = "M CHAEL"
Cot o Ri ght Nane

End |f

Exit Sub

Ri ght Name:
MsgBox "Hello, " & unane$
End Sub
GoSub (statement); Cal | (statement).

To break out of aninfinite loop, press Ctrl+Break.

9-7



GroupBox (statement)

Syntax G oupBox X,Y,width,height,title$ [,.Identifier]
Description Defines a group box within a dialog box template.
Comments This statement can only appear within adialog box template (that is., between the Begi n

Di al ogand End Di al og statements).

The group box control is used for static display only[] the user cannot interact with a group box
control.

Separator lines can be created using group box controls. Thisis accomplished by creating a group
box that is wider than the width of the dialog box and extends bel ow the bottom of the dialog
box[] that is, three sides of the group box are not visible.

If title$ is a zero-length string, then the group box is drawn as a solid rectangle with no title.

The G oupBox statement requires the following parameters:

Parameter Description

XY I nt eger coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height I nt eger coordinates specifying the dimensions of the control in dialog
units.

title$ St ri ng containing the label of the group box. If title$ is a zero-length

string, then no title will appear.

dentifier Optional parameter that specifies the name by which this control can be
referenced by statementsin adialog function (such as Dl gFocus and
Dl gEnabl e). If omitted, then the first two words of title$ are used.

Example This example shows the GroupBox statement being used both for grouping and as a separator line.

Sub Mai n()
Begin Dial og OptionsTenpl ate 16, 32, 128, 84, " Opti ons"
GroupBox 4, 4, 116, 40, "W ndow Opti ons"
CheckBox 12, 16, 60, 8, " Show &Tool bar", . ShowTool bar
CheckBox 12, 28, 68, 8, "Show &St at us Bar", . ShowSt at usBar
GroupBox -12,52,152,48," ",. SeparatorlLine
OKBut t on 16, 64, 40, 14, . K
Cancel Button 68, 64, 40, 14, . Cancel
End Di al og
Di m Opti onsDi al og As OptionsTenpl ate
Di al og OptionsDi al og
End Sub

See Also Cancel But t on (statement); CheckBox (statement); ConboBox (statement); Di al og
(function); Di al og (statement); Dr opLi st Box (statement); Li st Box (statement); OKBut t on
(statement); Opt i onBut t on (statement); Opt i onGr oup (statement); Pi ct ur e (statement);
PushBut t on (statement); Text (statement); Text Box (statement); Begi n Di al og
(statement), Pi ct ur eBut t on (statement).

9-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Hex, Hex$ (functions)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Hex[ $] ( number)
Returnsa St ri ng containing the hexadecimal equivalent of number.
Hex$ returnsa St ri ng, whereas Hex returnsa St ri ng variant.

The returned string contains only the number of hexadecimal digits necessary to represent the
number, up to a maximum of eight.

The number parameter can be any type but is rounded to the nearest whole number before
converting to hex. If the passed number is an integer, then a maximum of four digits are returned;
otherwise, up to eight digits can be returned.

The number parameter can be any expression convertible to a number. If number isNul | , then
Nul | isreturned. Enpt y istreated asO.

This example accepts a number and displays the decimal and hexadecimal equivalent until the input
number isO or invalid.

Sub Mai n()
Do

xs$ = I nputBox("Enter a nunber to convert:","Hex Convert")
x = Val (xs$)
If x <> 0 Then
MsgBox "Decimal: " & x & " Hex: " & Hex(Xx)
El se
MsgBox " Goodbye. "
End |f
Loop Wile x <> 0
End Sub

Cct, Cct$ (functions).

10-1



HLine (statement)

Syntax
Description

Comments

Example

See Also

HLi ne [lines]
Scrolls the window with the focus left or right by the specified number of lines.

Thelines parameter isan | nt eger specifying the number of linesto scroll. If this parameter is
omitted, then the window is scrolled right by one line.

This example scrolls the Notepad window to the left by three "amounts." Each "amount” is
equivalent to clicking the right arrow of the horizontal scroll bar once.

Sub Mai n()

AppActivate "Not epad”

HLi ne 3 "Move 3 lines in.
End Sub

HPage (statement); HScr ol | (statement).

Hour (function)

Syntax
Description

Comments

Example

See Also

10-2

Hour (time)

Returns the hour of the day encoded in the specified time parameter.
Thevauereturned isasan | nt eger between 0 and 23 inclusive.
The time parameter is any expression that convertsto a Dat e.

This example takes the current time; extracts the hour, minute, and second; and displays them as the
current time.

Sub Mai n()
Msgbox "It is now hour " & Hour(Tinme) & " of today."
End Sub

Day (function); M nut e (function); Second (function); Mont h (function); Year (function);
Weekday (function); Dat ePar t (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



HPage (statement)

Syntax
Description

Comments

Example

See Also

HPage [pages]
Scrolls the window with the focus left or right by the specified number of pages.

The pages parameter isan | nt eger specifying the number of pagesto scroll. If this parameter
is omitted, then the window is scrolled right by one page.

This example scrolls the Notepad window to the left by three "amounts." Each "amount” is
equivalent to clicking within the horizontal scroll bar on the right side of the thumb mark.

Sub Mai n()
AppActivate "Not epad"”
HPage 3 ' Move 3 pages down.
End Sub

HLi ne (statement); HScr ol | (statement).

HScroll (statement)

Syntax
Description

Comments

Example

See Also

GFK-1283G

HScrol | percentage
Sets the thumb mark on the horizontal scroll bar attached to the current window.

The position is given as a percentage of the total range associated with that scroll bar. For
example, if the percentage parameter is 50, then the thumb mark is positioned in the middle of
the scroll bar.

This example centers the thumb mark on the horizontal scroll bar of the Notepad window.

Sub Mai n()

AppActivate "Not epad”

HScrol | 50 "Junp to the middle of the docunent.
End Sub

HLi ne (statement); HPage (statement).

10-3



HWND (object)

Syntax
Description

Comments

Example

See Also

10-4

Di m name As HW\D
A datatype used to hold window objects.

This data type is used to hold references to physical windows in the operating environment. The

following commands operate on HWND obj ects:

W nActivate W nCl ose W nFi nd W nLi st
W nMaxi m ze W nM ni m ze W nMove W nRest ore
W nSi ze

The above language elements support both string and HAND window specifications.

This example activates the "Main" MDI window within Program Manager.

Sub Mai n()
Di m Programvanager As HW\D
Di m Progr amvanager Mai n As HWND
Set Progranmvanager = W nFi nd("Program Manager")
I f Programvanager |s Not Nothing Then
W nActi vat e Programvanager
W nMaxi m ze Programvanager
Set Progranmivanager Mai n = W nFi nd(" Program Manager | Mai n")
I f ProgramvanagerMain |'s Not Nothing Then
W nActi vat e Programvanager Mai n
W nRest or e Programvanager Mai n
El se
MsgBox "Your Program Manager doesn't have a Main group.”
End |f
El se
MsgBox " Program Manager is not running."
End |f
End Sub

HWAD. Val ue (property); W nFi nd (function); W nAct i vat e (statement).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



HWND.Value (property)

Syntax

Description

Comments

Example

See Also

Notes

GFK-1283G

wi ndow.Value

The default property of an HAND object that returnsaVar i ant containing a HANDLE to the
physical window of an HAND object variable.

The .Value property is used to retrieve the operating environment—specific value of a given HAND
object. The size of this value depends on the operating environment in which the script is executing
and thus should always be placed into aVar i ant variable.

This property is read-only.

This example displays a dialog box containing the class name of Program Manager's Main window.
It does so using the .Value property, passing it directly to a Windows external routine.

Decl are Sub GetC assNane Lib "user" (ByVal W n% ByVal C sNane$,
ByVal C sNaneLen%)
Sub Mai n()
Di m Programvanager As HW\D
Set Progranmivanager = W nFi nd(" Program Manager")
O assNanme$ = Space(40)
Get O assName Progranivanager . Val ue, Cl assNane$, Len( d assNane$)
MsgBox "The program classnane is: " & Cl assName$
End Sub

HWAD (object).

Under Windows, thisvalueisan | nt eger .

H 10-5






If...Then...Else (statement)

Syntax 1
Syntax 2

Description

Comments

GFK-1283G

I f condition Then statements [ El se else statements]

I f condition Then
[ statements]
[ El sel f ese condition Then

[ elseif_statements] ]
[El se

[ else_statements] ]
End | f

Conditionally executes a statement or group of statements.

The single-line conditional statement (syntax 1) has the following parameters:

Parameter Description
condition Any expression evaluating to aBool ean value.
statements One or more statements separated with colons. This group of statementsis

executed when condition is Tr ue.

else_statements One or more statements separated with colons. This group of statementsis
executed when conditionis Fal se.

The multiline conditional statement (syntax 2) has the following parameters:

Parameter Description

condition Any expression evaluating to aBool ean value.

statements One or more statements to be executed when conditionis Tr ue.
else_condition Any expression evaluating to aBool ean value. The else_condition is

evaluated if condition isFal se.

elseif statements One or more statements to be executed when condition is Fal se and
else _conditionisTr ue.

else_statements One or more statements to be executed when both condition and
else_condition are Fal se.

There can be asmany El sel f conditions as required.

11-1



Example This example inputs a name from the user and checks to see whether it isMICHAEL or MIKE
using three forms of the If...Then...Else statement. It then branches to a statement that displays a
wel come message depending on the user's name.

Sub Mai n()
uname$ = UCase( | nput Box("Enter your name:","Enter Name"))
I f unane$ = "M CHAEL" Then GoSub M keNane
If unane$ = "M KE" Then
GoSub M keNane

Exit Sub
End |f
If unane$ = "" Then
MsgBox "Since you don't have a nanme, 1'Il call you MKE"

unane$ = "M KE"
GoSub M keNane
El sel f unane$ = "M CHAEL" Then
GoSub M keNane
El se
GoSub O her Nane
End If
Exit Sub

M keNane:
MsgBox "Hel | o, M CHAEL!"
Return

O her Nane:
MsgBox "Hello, " & unane$ & "!*"
Return

End Sub

See Also Choose (function); Swi t ch (function); I | f (function); Sel ect . . . Case (statement).

lIf (function)

Syntax I 1 f (condition, TrueExpression,Fal seExpression)
Description Returns TrueExpression if condition is Tr ue; otherwise, returns Fal seExpression.
Comments Both expressions are calculated before | | f returns.

Thel | f function is shorthand for the following construct:

I f condition Then
variable = TrueExpression

El se
variable = FalseExpression
End If
s$ = "Car"
MsgBox "You have a " & IIf(s$ = "Car","nice car.","nice non-car.")
End Sub
See Also Choose (function); Swi t ch (function); I f. . . Then. . . El se (statement); Sel ect . . . Case
(statement).

11-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Imp (operator)

Syntax
Description

Comments

Example

See Also

GFK-1283G

expressionl | nmp expression2
Performsalogical or binary implication on two expressions.

If both expressions are either Bool ean, Bool ean variants, or Nul | variants, then alogical
implication is performed as follows:

If the first and the second then the
expression is expression is result is
True True True
True Fal se Fal se
True Nul | Nul |
Fal se True True
Fal se Fal se True
Fal se Nul | True
Nul | True True
Nul | Fal se Nul |

Nul | Nul | Nul |

Binary Implication

If the two expressions are | nt eger , then abinary implication is performed, returning an
I nt eger result. All other numeric types (including Enpt y variants) are converted to Long and a
binary implication is then performed, returning aLong result.

Binary implication forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions, according to the following table;

1 Imp 1 = 1 Example:
0 Imp 1 = 1 5 01101001
1 Imp 0 = 0 6 10101010
0 Imp 0 = 1 Imp 10111110
This example compares the result of two expressions to determine whether one implies the other.
Sub Mai n()
a=10: b=20: ¢c=230: d =40

If (a<b) Inp (c <d) Then

MsgBox "a is less than b inplies that c is less than d."
El se

MsgBox "a is less than b does not inply that c is less than d."
End | f

If (a<b) Inp (c >d) Then
MsgBox "a is less than b inplies that c is greater than d."
El se
MsgBox "a is less than b does not inply that c is greater than d."
End |f
End Sub

Operator Precedence (topic); Or (operator); Xor (operator); Eqv (operator); And (operator).

11-3



Inline (statement)

Syntax

Description

Comments

Example

I nl i ne name [parameters]
anytext
End Inline

Allows execution or interpretation of ablock of text.

Thel nl i ne statement takes the following parameters:

Parameter Description

name Identifier specifying the type of inline statement.

parameters Comma-separated list of parameters.

anytext Text to be executed by the | nl i ne statement. Thistext must be in aformat

appropriate for execution by thel nl i ne statement.

The end of the text is assumed to be the first occurrence of the words End
I nl i ne appearing on aline.

Sub Mai n()
Inline Script
- This is an Wn32Script conment.
Beep
Di splay Dialog "Wn32Script" buttons "OK' default button "OK"
Di splay Dialog Current Date
End Inline
End Sub

Input# (statement)

Syntax
Description

Comments

11-4

I nput [#]filenumber%,variable[,variable]...
Reads data from the file referenced by filenumber into the given variables.

Each variable must be type-matched to the datain the file. For example, a St r i ng variable must
be matched to a string in the file.

The following parsing rules are observed while reading each variable in the variable list:
1. Leading white spaceisignored (spaces and tabs).

2. Whenreading St r i ng variables, if the first character on the line is a quotation mark, then
characters are read up to the next quotation mark or the end of the line, whichever comes first.
Blank lines are read as empty strings. If the first character read is not a quotation mark, then
characters are read up to the first comma or the end of the line, whichever comesfirst. String
delimiters (quotes, comma, end-of-line) are not included in the returned string.

3. When reading numeric variables, scanning of the number stops when the first nonnumber
character (such as acomma, aletter, or any other unexpected character) is encountered.
Numeric errors are ignored while reading numbers from afile. The resultant number is
automatically converted to the same type as the variable into which the value will be placed. If
thereis an error in conversion, then O is stored into the variable.

octaldigits ! | #| %4 & @

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



After reading the number, input is skipped up to the next delimiter—a comma, an end-of-line,
or an end-of-file.

Numbers must adhere to any of the following syntaxes:
[ -] +] digity[ . digits] [ E[ - | +] digits] [ ! | #| %4 & @
&Hhexdigity ! | #| % &]
&g

4. When reading Bool ean variables, the first character must be #; otherwise, a runtime error
occurs. If the first character is#, then input is scanned up to the next delimiter (a comma, an
end-of-line, or an end-of-file). If the input matches #FAL SE#, then Fal se isstored in the
Bool ean; otherwise Tr ue is stored.

5. When reading Dat e variables, the first character must be #; otherwise, a runtime error
occurs. If the first character is#, then the input is scanned up to the next delimiter (acomma, an
end-of-line, or an end-of-file). If the input endsin a# and the text between the #'s can be
correctly interpreted as a date, then the date is stored; otherwise, December 31, 1899, is stored.

Normally, dates that follow the universal date format are input from sequential files. These
dates use this syntax:

#YYYY- MM-DD HH: MM: SS#

where YYYY is ayear between 100 and 9999, MM is a month between 1 and 12, DD isaday
between 1 and 31, HH is an hour between 0 and 23, MM is a minute between 0 and 59, and SS
is a second between 0 and 59.

6. Whenreading Var i ant variables, if the data begins with a quotation mark, then astring is
read consisting of the characters between the opening quotation mark and the closing quotation
mark, end-of-line, or end-of-file.

If the input does not begin with a quotation mark, then input is scanned up to the next comma,
end-of-line, or end-of-file and a determination is made as to what data is being represented. If
the data cannot be represented as a number, Dat e, Er r or , Bool ean, or Nul | , thenitisread
asastring.

The following table describes how specia dataisinterpreted as variants;

Blank line Read as an Empty variant.
#NULL# Read asaNul | variant.
HTRUEH Read asaBool ean variant.
#FALSE# Read asaBool ean variant.
#ERROR codett Read as a user-defined error.
#datett Read asaDat e variant.

" text" Read asa St ri ng variant.

If an error occurs in interpretation of the data as a particular type, then that dataisread as a
Stri ng variant.

GFK-1283G 11-5



Example

See Also

11-6

When reading numbers into variants, the optional type-declaration character determines the
Var Type of theresulting variant. If no type-declaration character is specified, then The Basic
Control Engine will read the number according to the following rules:

Rule 1: If the number contains a decimal point or an exponent, then the number isread as
Cur r ency. If thereisan error converting to Cur r ency, then the number istreated asa
Doubl e.

Rule 2: If the number does not contain adecimal point or an exponent, then the number is
stored in the smallest of the following data types that most accurately represents that value:
I nt eger, Long, Currency, Doubl e.

7. End-of-lineisinterpreted as either asingle line feed, asingle carriage return, or a carriage-
return/line-feed pair. Thus, text files from any platform can be interpreted using this command.

The filenumber parameter is a number that is used by The Basic Control Engine to refer to the open
file the number passed to the Open statement.

The filenumber must reference afile opened in | nput mode. It isgood practiceto usetheWi t e
statement to write date elements to files read with thel nput statement to ensure that the variable
list is consistent between the input and output routines.

This example creates afile called test.dat and writes a series of variablesinto it. Then the variables
are read using the Input# function.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
Open "test.dat" For Qutput As #1
Wite #1,2112, "David", "M Cue", " 123- 45- 6789"
Cl ose

Open "test.dat" For |nput As #1
I nput #1, x% s1$, s2%, s3$

nsgl = "Enpl oyee #" & x% & " Personal Information" & crlf & crlf
nsgl = nsgl & "First Nanme: " & sl1$ & crlf
nsgl = nsgl & "Last Nane: "& s2$ & crlf
nsgl = nsgl & "Social Security Nunmber: " & s3$
MsgBox nsgl
Cl ose
Kill "test.dat"
End Sub

Qpen (statement); Get (statement); Li ne | nput # (statement); | nput, | nput $ (functions).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Input, Input$ (functions)

Syntax I nput [ $] (numbytes,[#]filenumber)
Description Returns numbytes characters read from a given sequential file.
Comments I nput $ returnsa St ri ng, whereas| nput returnsa St ri ng variant.

Thel nput / | nput $ functions require the following parameters:

Parameter Description
numbytes I nt eger containing the number of bytes to be read from thefile.
filenumber I nt eger referencing afile opened in either | nput or Bi nar y mode. Thisis

the same number passed to the Cpen statement.
This function reads all characters, including spaces and end-of-lines.

Example This example opens the autoexec.bat file and displaysit in adialog box.
Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
file$ = "c:\autoexec. bat"
x& = FileLen(file$)

If x& > 0 Then
Open file$ For Input As #1

El se
MsgBox "'" & file$ & "' not found or enpty."
Exit Sub

End |f

‘use the file length to read the file in
If x& > 80 Then
ins = | nput(80,1)
El se
ins = | nput(x& 1)
End |f
Cl ose

MsgBox UCase(file$) & crlf &crlf & "File length: " & x& & crlf & "Contents:" &

crif &ins
End Sub

See Also Open (statement); Get (statement); | nput # (statement); Li ne | nput # (statement).

GFK-1283G 11-7



InputBox, InputBox$ (functions)

Syntax | nput Box[ $] (prompt [, [title] [, [default] [, X Y]1])
Description Displays a dialog box with atext box into which the user can type.
Comments The content of the text box isreturned asa St ri ng (inthe case of | nput Box$) orasaStri ng

variant (in the case of | nput Box). A zero-length string is returned if the user selects Cancel.

The |l nput Box/ | nput Box$ functions take the following parameters:

Parameter Description
prompt Text to be displayed above the text box. The prompt parameter can contain

multiple lines, each separated with an end-of-line (a carriage return, line
feed, or carriage-return/line-feed pair). A runtime error is generated if

promptisNul | .

title Caption of the dialog box. If this parameter is omitted, then no title appears
asthe dialog box's caption. A runtime error is generated if titleisNul | .

default Default response. This string isinitialy displayed in the text box. A runtime
error is generated if defaultisNul | .

XY I nt eger coordinates, given in twips (twentieths of a point), specifying the

upper left corner of the dialog box relative to the upper left corner of the
screen. If the position is omitted, then the dialog box is positioned on or near
the application executing the script.

s$ = InputBox("File to copy:", "Copy", "sanple.txt")
End Sub

File to copy:

Cancel

See Also MsgBox (statement); AskBox$ (function); AskPasswor d$ (function); OpenFi | ename$
(function); SaveFi | enanme$ (function); Sel ect Box (function); Answer Box (function).

11-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



InStr (function)

Syntax
Description

Comments

Example

See Also

GFK-1283G

InStr([start,] search, find [, compare] )
Returns the first character position of string find within string search.

Thel nSt r function takes the following parameters:

Parameter Description
start I nt eger specifying the character position where searching begins. The start

parameter must be between 1 and 32767.
If this parameter is omitted, then the search starts at the beginning (start = 1).

search Text to search. This can be any expression convertibletoa St ri ng.
find Text for which to search. This can be any expression convertibleto a
String.
compare I nt eger controlling how string comparisons are performed:
0 String comparisons are case-sensitive.
1 String comparisons are case-insensitive.

Any other value A runtime error is produced.

If this parameter is omitted, then string comparisons use the current Opt i on
Conpar e setting. If no Opt i on Conpar e statement has been encountered,
then Bi nary isused (i.e., string comparisons are case-sensitive).

If the string is found, then its character position within search is returned, with 1 being the
character position of the first character. If find is not found, or start is greater than the length of
search, or search is zero-length, then O is returned.

This example checks to see whether one string is in another and, if it is, then it copiesthe string to a
variable and displays the result.

Sub Mai n()
a$ = "This string contains the name Stuart and other characters."
X% = InStr(a$,"Stuart", 1)
If X% <> 0 Then
b$ = M d(a$, x% 6)
MsgBox b$ & " was found."
Exit Sub
El se
MsgBox "Stuart not found."
End |f
End Sub

Md, Md$ (functions); Option Conpare (statement); |lten®$ (function);
Word$ (function); Line$ (function).

11-9



Int (function)

Syntax I nt (number)
Description Returns the integer part of number.
Comments This function returns the integer part of a given value by returning the first integer less than the

number. The sign is preserved.

Thel nt function returns the same type as number, with the following exceptions:
e If number isEnpt y, thenan| nt eger variant of value O is returned.
e IfnumberisaStri ng, thenaDoubl e variant is returned.
e If number isNul | ,thenaNul | variant isreturned.

Example This example extracts the integer part of a number.

Sub Mai n()

a# = -1234.5224

b% = I nt (a#)

MsgBox "The integer part of -1234.5224 is: " & b%
End Sub

See Also Fi x (function); Cl nt (function).

Integer (data type)

Syntax I nt eger

Description A data type used to declare whole numbers with up to four digits of precision.

Comments I nt eger variables are used to hold numbers within the following range:
—32768 <= integer <= 32767

Internally, integers are 2-byte shor t values. Thus, when appearing within a structure, integers
require 2 bytes of storage. When used with binary or random files, 2 bytes of storage are required.

When passed to external routines, | nt eger values are sign-extended to the size of an integer on
that platform (either 16 or 32 bits) before pushing onto the stack.

The type-declaration character for | nt eger is%

See Also Curr ency (datatype); Dat e (datatype); Doubl e (datatype); Long (datatype), Obj ect (data
type), Si ngl e (datatype), St ri ng (datatype), Var i ant (datatype), Bool ean (datatype),
Def Type (statement), Cl nt (function).

11-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



IPmt (function)

Syntax

Description

Comments

GFK-1283G

| Pnt (Rate, Per, Nper, Pv, Fv, Due)

Returns the interest payment for a given period of an annuity based on periodic, fixed payments and
afixed interest rate.

An annuity is a series of fixed payments made to an insurance company or other investment
company over aperiod of time. Examples of annuities are mortgages, monthly savings plans, and
retirement plans.

The following table describes the different parameters:

Parameter Description

Rate Doubl e representing the interest rate per period. If the payment periods are
monthly, be sure to divide the annual interest rate by 12 to get the monthly
rate.

Per Doubl e representing the payment period for which you are calculating the

interest payment. If you want to know the interest paid or received during
period 20 of an annuity, this value would be 20.

Nper Doubl e representing the total number of paymentsin the annuity. Thisis
usually expressed in months, and you should be sure that the interest rate
given above isfor the same period that you enter here.

Pv Doubl e representing the present value of your annuity. In the case of aloan,
the present value would be the amount of the |oan because that is the amount
of cash you have in the present. In the case of aretirement plan, this value
would be the current value of the fund because you have a set amount of
principal in the plan.

Fv Doubl e representing the future value of your annuity. In the case of aloan,
the future value would be zero because you will have paid it off. In the case of
a savings plan, the future value would be the balance of the account after all
payments are made.

Due I nt eger indicating when payments are due. If this parameter is 0, then
payments are due at the end of each period (usually, the end of the month). If
thisvalueis 1, then payments are due at the start of each period (the beginning
of the month).

Rate and Nper must be in expressed in the same units. If Rate is expressed in percentage paid per
month, then Nper must also be expressed in months. If Rate is an annual rate, then the period given
in Nper should also be in years or the annual Rate should be divided by 12 to obtain a monthly rate.

If the function returns a negative value, it represents interest you are paying out, whereas a positive
value represents interest paid to you.

11-11



Example This example calcul ates the amount of interest paid on a $1,000.00 loan financed over 36 months
with an annual interest rate of 10%. Payments are due at the beginning of the month. The interest
paid during the first 10 monthsis displayed in atable.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
nmsgl = ""
For x =1 to 10

i pm# = | Pnt((.10/12),x, 36, 1000, 0, 1)
msgl = msgl & Format (x,"00") & " : " & Format (ipm#, " 0,0.00") & crlf
Next X
MsgBox mnsgl
End Sub
See Also NPer (function); Pmt (function); PPnt (function); Rat e (function).

11-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



IRR (function)

Syntax | RR(ValueArray(),Guess)
Description Returnsthe internal rate of return for a series of periodic payments and receipts.
Comments The internal rate of return isthe equivalent rate of interest for an investment consisting of a series of

positive and/or negative cash flows over aperiod of regular intervals. It is usually used to project
the rate of return on a business investment that requires a capital investment up front and a series of
investments and returns on investment over time.

The | RR function requires the following parameters:

Parameter Description
ValueArray() Array of Doubl e numbers that represent payments and receipts. Positive

values are payments, and negative values are receipts.

There must be at |east one positive and one negative value to indicate the initial
investment (negative value) and the amount earned by the investment (positive
value).

Guess Doubl e containing your guess as to the value that the | RR function will
return. The most common guessis.1 (10 percent).

The value of | RRisfound by iteration. It starts with the value of Guess and cycles through the
calculation adjusting Guess until the result is accurate within 0.00001 percent. After 20 tries, if a
result cannot be found, | RR fails, and the user must pick a better guess.

Example This example illustrates the purchase of alemonade stand for $800 and a series of incomes from the
sale of lemonade over 12 months. The projected incomes for this example are generated in two
For ... Next Loops, and then theinternal rate of return is calculated and displayed. (Not a bad

investment!)
Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()
Di m val u#(12)
valu(1l) = -800 "Initial investnent

msgl = val u#(1l) & ",

"Cal cul ate the second through fifth nonths' sales.
For x = 2 To 5

valu(x) = 100 + (x * 2)

msgl = nmegl & valu(x) & ",
Next X

"Calculate the sixth through twel fth nonths' sales.
For x = 6 To 12

valu(x) = 100 + (x * 10)

msgl = nmegl & valu(x) & ",
Next X

'Cal cul ate the equivalent investnment return rate.

retrn# = |RR(val u, . 1)

msgl = "The values: " &crlf & nsgl & crif & crlf

MsgBox msgl & "Return rate: " & Format(retrn#, "Percent")
End Sub

See Also Fv (function); M RR (function); Npv (function); Pv (function).

GFK-1283G 11-13



Is (operator)

Syntax object |'s [object | Not hi ng]

Description Returns Tr ue if the two operands refer to the same object; returns Fal se otherwise.

Comments This operator is used to determine whether two object variables refer to the same object. Both
operands must be object variables of the same type (i.e., the same data object type or both of type
oj ect).

The Not hi ng constant can be used to determine whether an object variable is uninitialized:
If MyQbject I's Nothing Then MsgBox "MyCbject is uninitialized."

Uninitialized object variables reference no object.

Example This function inserts the date into a Microsoft Word document.

Sub I nsertDate(ByVal WnWrd As bj ect)
If WnWrd I's Nothing Then
MsgBox "bject variant is not set."
El se
W nWord. | nsert Date$
End |f
End Sub

Sub Mai n()
Dim WnWrd As bj ect
On Error Resune Next
WnWord = Creat ebj ect ("word. basic")
I nsert Date W nWrd
End Sub

See Also Operator Precedence (topic); Li ke (operator).
Platform(s) All.

Notes: When comparing OL E automation objects, the | s operator will only return Tr ue if the operands
reference the same OLE automation object. Thisis different from data objects. For example, the
following use of | s (using the object class called excel . appl i cati on) returns Tr ue:

Dima As bject

Dimb As bject

= Createbj ect ("excel . application")
a

f als b Then Beep

a
b
I

The following use of | s will return Fal se, even though the actual objects may be the same;

Dima As bject

Dimb As bject

a = Create(bject("excel.application")
b = Get vj ect (, "excel . application")
If als b Then Beep

Thel s operator may return Fal se in the above case because, even though a and b reference the
same object, they may be treated as different objects by OLE 2.0 (this is dependent on the OLE 2.0
server application).

11-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



IsDate (function)

Syntax
Description

Example

See Also

| sDat e( expression)
Returns Tr ue if expression can be legally converted to a date; returns Fal se otherwise.

Sub Mai n()
Dima As Vari ant
Retry:
a = InputBox("Enter a date.","Enter Date")
If IsDate(a) Then
MsgBox Format (a, "l ong date")
El se
Msgbox "Not quite, please try again!"
CGoto Retry
End |f
End Sub

Vari ant (datatype); | sEnmpty (function); | sErr or (function); | sCbj ect (function);
Var Type (function); I sNul | (function).

ISEmpty (function)

Syntax

Description

Comments

Example

See Also

GFK-1283G

| sEnpt y( expression)
Returns Tr ue if expressionisaVar i ant variable that has never been initialized; returns Fal se
otherwise.
Thel sEnpt y function is the same as the following:
(Var Type( expression) = ebEnpty)

Sub Mai n()
Dima As Variant
If IsEnpty(a) Then

a =1.0# "Gve uninitialized data a Doubl e value 0.0.
MsgBox "The variable has been initialized to: " & a
El se
MsgBox "The variable was already initialized!'"
End | f
End Sub

Vari ant (datatype); | sDat e (function); | sEr r or (function); | sQbj ect (function);
Var Type (function); I sNul | (function).

11-15



IsError (function)

Syntax | SError ( expression)
Description Returns Tr ue if expression is a user-defined error value; returns Fal se otherwise.
Example This example creates a function that divides two numbers. If there is an error dividing the numbers,

then avariant of type "error” is returned. Otherwise, the function returns the result of the division.
The IsError function is used to determine whether the function encountered an error.

Function Div(ByVal a,ByVal b) As Variant

If b =0 Then
Div = CVErr(2112) '"Return a special error value.
El se
Dv=alb "Return the division.
End If
End Function
Sub Mai n()

Dima As Vari ant
a = Div(10,12)
If IsError(a) Then
MsgBox "The following error occurred: " & CStr(a)

El se
MsgBox "The result of the divisionis: " & a
End |f
End Sub
See Also Vari ant (datatype); | sEnpty (function); | sDat e (function); | sObj ect (function);

Var Type (function); I sNul | (function).

11-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



IsMissing (function)

Syntax I sM ssi ng( variable)

Description Returns Tr ue if variable was passed to the current subroutine or function; returns Fal se if
omitted.

Comments Thel sM ssi ng isused with variant variables passed as optional parameters (using the
Opt i onal keyword) to the current subroutine or function. For non-variant variables or variables
that were not declared with the Opt i onal keyword, | sM ssi ng will alwaysreturn Tr ue.

Example The following function runs an application and optionally minimizesit. If the optiona isMinimize
parameter is not specified by the caller, then the application is not minimized.

Sub Test (AppNanme As String, Optional isMninmize As Variant)
app = Shel | (AppNane)
If Not IsMssing(isMnimze) Then
AppM ni mi ze app
El se
AppMaxi mi ze app
End If
End Sub

Sub Main
Test "notepad. exe" 'Maxim ze this application
Test "notepad. exe", True "Mnimze this application
End Sub

See Also Decl ar e (statement), Sub. . . End Sub (statement), Functi on. .. End Functi on
(statement)

ISNull (function)

Syntax I sNul | ( expression)

Description Returns Tr ue if expressionisaVar i ant variable that contains no valid data; returns Fal se
otherwise.

Comments Thel sNul | function isthe same as the following:

(Var Type( expression) = ebNul I)

Dima As Vari ant ‘"Initialized as Enpty

If IsNull (a) Then MsgBox "The variable contains no valid data."

a = Enpty * Null

If IsNull(a) Then MsgBox "Null propagated through the expression."
End Sub

See Also Enpt y (constant); Var i ant (datatype); | sEnpt y (function); | sDat e (function); | SEr r or
(function); 1 sObj ect (function); Var Type (function).

GFK-1283G 11-17



IsNumeric (function)

Syntax I sNuner i c(expression)
Description Returns Tr ue if expression can be converted to a number; returns Fal se otherwise.
Comments If passed a number or a variant containing a number, then | sNuner i ¢ awaysreturns Tr ue.

IfaStringorStringvariantispassed, then| sNurrer i ¢ will return Tr ue only if the string
can be converted to a number. The following syntaxes are recognized as valid numbers:

&Hhexdigit] & % ! | #| @
&[ O octaldigity & % ! | #| @
[-| +] digits[ . [ digits] ] [ E[ - | +] digits] [! | %4 & #| @

If an Qbj ect variant is passed, then the default property of that object is retrieved and one of the
aboverulesis applied.

I sNurrer i c returns Fal se if expressionisaDat e.

Dims$ As String

s$ = I nputBox("Enter a nunber.","Enter Nunber")

If IsNuneric(s$) Then
MsgBox "You did good!"

El se
MsgBox "You didn't do so good!"
End |f
End Sub
See Also Var i ant (datatype); | sEnpt y (function); | sDat e (function); | sEr r or (function);

I sObj ect (function); Var Type (function); I sNul | (function).

11-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



IsObject (function)

Syntax | sChj ect ( expression)

Description Returns Tr ue if expressionisaVar i ant variable containing an Obj ect ; returns Fal se
otherwise.

Example This example will attempt to find a running copy of Excel and create 'a Excel object that can be
referenced as any other object in the Basic Control Engine.
Sub Mai n()

Dimv As Variant
On Error Resune Next
Set v = Get Obj ect (, "Excel. Application")

If IsCbject(v) Then

MsgBox "The default object value is: " & v = v.Val ue ' Access val ue property
of the object.
El se
MsgBox "Excel not | oaded."
End |f
End Sub
See Also Var i ant (datatype); | sEnpty (function); | sDat e (function); | sEr r or (function); Var Type

(function); I sNul I (function).

GFK-1283G 11-19



ltem$ (function)

Syntax
Description

Comments

Example

See Also

11-20

I t ent( text$, first, last [, delimiters$] )
Returns al the items between first and last within the specified formatted text list.
Thel t ent function takes the following parameters:

Parameter Description
text$ St ri ng containing the text from which arange of itemsis returned.
first I nt eger containing the index of the first item to be returned. If first is greater

than the number of itemsin text$, then a zero-length string is returned.

last I nt eger containing the index of the last item to be returned. All of theitems
between first and last are returned. If last is greater than the number of itemsin
text$, then all items from first to the end of text are returned.

delimiters$ St ri ng containing different item delimiters.
By default, items are separated by commas and end-of-lines. This can be changed
by specifying different delimitersin the delimiters$ parameter.

This example creates two delimited lists and extracts a range from each, then displays the result in a
dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
ilist$ ="1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15"
slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/ 14/ 15"
listl$ = Itend(ilist$,5,12)

list2% = Iten®(slist$,2,9,"/")
MsgBox "The returned lists are: " &crlf & listl$ & crlf & list2$
End Sub

I t emCount (function); Li ne$ (function); Li neCount (function); Wor d$ (function);
Wor dCount (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



ltemCount (function)

Syntax I t emCount (text$ [, delimiters$] )
Description Returnsan | nt eger containing the number of itemsin the specified delimited text.
Comments Items are substrings of a delimited text string. Items, by default, are separated by commas and/or

end-of-lines. This can be changed by specifying different delimiters in the delimiters$ parameter.
For example, to parse items using a backslash:

n = lItenCount (text$,"\")
Example This example creates two delimited lists and then counts the number of itemsin each. The counts
are displayed in a dialog box.
Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
ilist$ = "1,2, 34,586,789, 10, 11, 12, 13, 14, 15"
slist$ = "1/2/3/4/5/6/7/8/ 9/10/ 11/ 12/ 13/ 14/ 15/ 16/ 17/ 18/ 19"

| 1% = ItenCount (ilist$)
| 2% = ItenCount (slist$,"/")

msgl = "The first lists contains: " &11% & " itens." & crlf
msgl = nmsgl & "The second list contains: " &12% & " itens."
MsgBox nsgl
End Sub
See Also I t en (function); Li ne$ (function); Li neCount (function); Wor d$ (function); Wor dCount
(function).

GFK-1283G 11-21






Keywords (topic)

A keyword is any word or symbol recognized by the Basic Control Engine as part of the language.
All of the following are keywords:

¢ Built-in subroutine names, such as MsgBox and Pr i nt .

*  Built-in function names, such as St r $, CDbl , and M d$.
e Special keywords, such as To, Next , Case, and Bi nary.
«  Names of any extended language elements.

Restrictions

All keywords are reserved by the Basic Control Engine, in that you cannot create a variable,
function, constant, or subroutine with the same name as a keyword. However, you are free to use al
keywords as the names of structure members.

GFK-1283G 12-1



Kill (statement)

Syntax
Description

Comments

Example

See Also

12-2

Ki || filespec$
Deletes al files matching filespec$.

The filespec$ argument can include wildcards, such as* and ?. The* character matches any
sequence of zero or more characters, whereas the ? character matches any single character.
Multiple * 'sand ?'s can appear within the expression to form complex searching patterns. The
following table shows some examples.

This Pattern Matches These Files Doesn't Match These Files
*SF L TXT SAMPLE. TXT SANMVPLE
GOCSE. TXT SANVPLE. DAT
SAMS. TXT
C'T. TXT CAT. TXT CAP. TXT
ACATS. TXT
CT CAT CAT. DOC
CAP. TXT
C’T CAT CAT. TXT
Cutr CAPI T
CT
* (All files)

This example looks to see whether file testl.dat exists. If it does not, then it creates both testl.dat
and test2.dat. The existence of the filesistested again; if they exist, amessage is generated, and
then they are deleted. The final test looks to see whether they are still there and displays the result.

Sub Mai n()

If Not FileExists("testl.dat") Then
Open "testl.dat" For Qutput As #1
Open "test2.dat" For Qutput As #2
Cl ose

End |f

If FileExists ("testl.dat") Then
MsgBox "File testl.dat exists."

Kill "test?. dat"
End |f
If FileExists ("testl.dat") Then
MsgBox "File testl.dat still exists."
El se
MsgBox "test?.dat successfully deleted."”
End |f
End Sub

Nane (statement).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



LBound (function)

Syntax

Description

Comments

Examples

See Also

GFK-1283G

LBound(ArrayVariable() [,dimension])

LBound( object. property [, dimension] )
LBound( object. method [, dimension] )

Sub Mai n()

' Thi s exanpl e dinensions two arrays and displays their |ower bounds.

Dima(5 To 12)
Dimb(2 To 100,9 To 20)

| ba LBound( a)
| bb LBound( b, 2)

MsgBox "The | ower bound of ais: " & lba &" The |ower bound of b is:

' Thi s exanpl e uses LBound and UBound to dinension a dynanmic array to
"hold a copy of an array redinmed by the FileList statenent.

Dimfl$()
FileList fI$, "*. *"
count = UBound(fl $)
If ArrayDinms(a) Then

Redi m nl $(LBound(f1$) To UBound(fl$))

For x = 1 To count

nl $(x) = f1$(x)

Next X

MsgBox "The | ast elenent of the new array is: " & nl$(count)
End |f

End Sub

UBound (function); Ar r ayDi s (function); Arrays (topic).

Returnsan | nt eger containing the lower bound of the specified dimension of the specified array
variable.

The dimension parameter is an integer specifying the desired dimension. If this parameter is not
specified, then the lower bound of the first dimension is returned.

The LBound function can be used to find the lower bound of a dimension of an array returned by
an OLE automation method or property:

" & I bb

131



LCase, LCase$ (functions)

Syntax LCase[ $] (text)
Description Returns the lowercase equivalent of the specified string.
Comments LCase$ returnsa St ri ng, whereasLCase returnsa St r i ng variant.

Nul | isreturned if textisNul | .

Example This example shows the L Case function used to change uppercase names to lowercase with an
uppercase first letter.

Sub Mai n()
| nane$ = "WLLI AVB"
fl$ = Left(lname$, 1)
rest$ = Md(Il nanme$, 2, Len(| nane$))
Inane$ = f1$ & LCase(rest$)

MsgBox "The converted nane is: " & | name$
End Sub
See Also UCase, UCase$ (functions).

Left, Left$ (functions)

Syntax Lef t [ $] (text,NumChars)
Description Returns the leftmost NumChars characters from a given string.
Comments Left $returnsaStri ng, whereasLeft returnsa St ri ng variant.

NumCharsisan | nt eger value specifying the number of character to return. If NumCharsisO,
then a zero-length string is returned. If NumCharsis greater than or equal to the number of
characters in the specified string, then the entire string is returned.

Nul | isreturned if textisNul | .

Example This example shows the Left$ function used to change uppercase names to lowercase with an
uppercase first letter.

Sub Mai n()
| nane$ = "WLLI AVE"
fl1$ = Left(lname$, 1)
rest$ = Md(l name$, 2, Len(| nanme$))
I name$ = f1$ & LCase(rest$)

MsgBox "The converted nanme is: " & | name$
End Sub
See Also Ri ght, Ri ght$ (functions).

13-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Len (function)

Syntax Len(expression)

Description Returns the number of charactersin expression or the number of bytes required to store the
specified variable.

Comments If expression evaluates to a string, then Len returns the number of charactersin a given string or O

if the string is empty. When used with aVar i ant variable, the length of the variant when
convertedtoa St ri ng isreturned. If expressionisaNul | , thenLen returnsaNul | variant.

If used withanon-St ri ng or non-Var i ant variable, the function returns the number of bytes
occupied by that data element.

When used with user-defined data types, the function returns the combined size of each member
within the structure. Since variable-length strings are stored el sewhere, the size of each variable-
length string within a structure is 2 bytes.

The following table describes the sizes of the individual data elements:

Data Element Size

I nt eger 2 bytes.

Long 4 bytes.

Fl oat 4 bytes.

Doubl e 8 bytes.

Currency 8 bytes.

String Number of charactersin the string.

(variable-length)

String The length of the string as it appears in the string's declaration.
(fixed-length)

Objects 0 bytes. Both data object variables and variables of type Obj ect are aways

returned as O size.
User-defined type  Combined size of each structure member.
Variable-length strings within structures require 2 bytes of storage.

Arrays within structures are fixed in their dimensions. The elements for fixed
arrays are stored within the structure and therefore require the number of
bytes for each array element multiplied by the size of each array dimension:

el ement _si ze * dimensionl * dinension2...

The Len function always returns O with object variables or any data object variable.
Examples Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
' Thi s exanpl e shows the Len function used in a routine to change
' uppercase nanmes to | owercase with an uppercase first letter.
| namre$ = "WLLI AVS'
fl1$ = Left(lname$, 1)
I n% = Len(l nane$)
rest$ = Md(l nane$, 2,1 n%
nname$ = f1$ & LCase(rest$)
MsgBox "The proper case for " & Inane$ & " is " & nname$ & "."

GFK-1283G L 13-3



'This exanple returns a table of lengths for standard numeric types.
Dim | ns(4)

a% = 100 : b& = 200 : c! = 200.22 : d# = 300.22

Ins(1l) = Len(a%

Ins(2) = Len(b&)

Ins(3) = Len(c!)

I ns(4) = Len(d#)

msgl "Lengths (in bytes) of standard types:" & crlf & crlf
msgl msgl & "Integer: " & Ins(l) & crlf

g

In T In
g
0

"Long: " & Ins(2) &ecrlf
msgl msgl & "Single: " & 1Ins(3) &crlf
msgl msgl & "Double: " & Ins(4) & crlf
MsgBox mnsgl

End Sub
See Also I nStr (function).

Let (statement)

Syntax [ Let] variable = expression
Description Assigns the result of an expression to avariable.

Comments The use of the word Let is supported for compatibility with other implementations of the Basic
Control Engine. Normally, this word is dropped.

When assigning expressions to variables, internal type conversions are performed automatically
between any two numeric quantities. Thus, you can freely assign numeric quantities without regard
to type conversions. However, it is possible for an overflow error to occur when converting from
larger to smaller types. This happens when the larger type contains a numeric quantity that cannot
be represented by the smaller type. For example, the following code will produce a runtime error:

Di m anount As Long
D m quantity As |nteger

amount = 400123 ' Assign a value out of range for int.
quantity = anount "Attenpt to assign to Integer.

When performing an automatic data conversion, underflow is not an error.

Example Sub Mai n()
Let a$ = "This is a string."
Let b% = 100
Let c# = 1213. 3443
End Sub
See Also = (keyword); Expression Evaluation (topic).

13-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Like (operator)

Syntax expression Li ke pattern
Description Compares two strings and returns Tr ue if the expression matches the given pattern; returns

Fal se otherwise.
Comments Case sensitivity is controlled by the Opt i on Conpar e setting.
The pattern expression can contain special characters that allow more flexible matching:
Character Evaluates To
? Matches a single character.

*

Matches one or more characters.

# Matches any digit.
[ range] Matches if the character in question is within the specified range.
[ ! range] Matches if the character in question is not within the specified range.

A range specifies agrouping of characters. To specify a match of any of a group of characters, use
the syntax [ ABCDE] . To specify arange of characters, use the syntax [ A- Z] . Specia characters
must appear within brackets, such as| ] * ?#.

If expression or pattern is not a string, then both expression and pattern are convertedto St r i ng
variants and compared, returning a Bool ean variant. If either variantisNul | , thenNul | is
returned

The following table shows some examples:

expression True If pattern Is False If pattern Is
" EBW "E*W, "E*" "E*B"
"BasicScript" "B*[r-t]icScript" "B[r-t]ic"
"Ver si on” "V[e] ?s*n" "V[r] ?s*N"
"2.0" "H#oOH#", "#H?H" “HHH, "#?[10-9]"
"[ABC" "1+ "[ABQ ", "[*]"
Example This example demonstrates various uses of the Like function.
Sub Mai n()
a$ "This is a string variable of 123456 characters"

b$ = "123. 45"

If a$ Like "[A-Z][g-i]*" Then MsgBox "The first comparison is True."

If b$ Like "##3.##" Then MsgBox "The second conparison is True."

If a$ Like "*variable*" Then MsgBox "The third conparison is True."
End Sub

See Also Operator Precedence (topic); | s (operator); Opti on Conpar e (statement).

GFK-1283G L 13-5



Line Input# (statement)

Syntax Li ne | nput [#] filenumber,variable
Description Reads an entire line into the given variable.
Comments The filenumber parameter is a number that is used to refer to the open filel] the number passed to

the Open statement. The filenumber must reference afile openedin | nput mode.

Thefileisread up to the next end-of-line, but the end-of-line character(s) is (are) not returned in

the string. The file pointer is positioned after the terminating end-of-line.

The variable parameter is any string or variant variable reference. This statement will automatically

declare the variable if the specified variable has not yet been used or dimensioned.

This statement recognizes either asingle line feed or a carriage-return/line-feed pair as the end-of-

line delimiter.

Example This example reads five lines of the autoexec.bat file and displays themin a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
file$ = "c:\autoexec. bat"
Open file$ For Input As #1
megl = ""

For x =1 To 5
Li ne I nput #1,1in$
nsgl = nsgl & 1in$ & crlf

Next X
MsgBox "The first 5 lines of '" &file$ & "' are:"
End Sub
See Also Qpen (statement); Get (statement); | nput # (statement); | nput , | nput $ (functions).

&crlf &crlf & nsgl

Line Numbers (topic)

Line numbers are not supported by the Basic Control Engine.

As an dternative to line numbers, you can use meaningful labels as targets for absolute jumps, as

shown below:

Sub Mai n()

Dimi As Integer

On Error Goto MyErrorTrap

i =0
LoopTop:

=i +1

If i < 10 Then Goto LoopTop
MYError Trap:

MsgBox "An error occurred."
End Sub

13-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



Line$ (function)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Li ne$( text$, first[ , ladt] )
Returnsa St ri ng containing asingle line or a group of lines between first and last.
Lines are delimited by carriage return, line feed, or carriage-return/line-feed pairs.

The Li ne$ function takes the following parameters:

Parameter Description
text$ St ri ng containing the text from which the lineswill be extracted.
first I nt eger representing the index of the first line to return. If last is omitted,

then thisline will be returned. If first is greater than the number of linesin
text$, then a zero-length string is returned.

last I nt eger representing the index of the last line to return.

This example reads five lines of the autoexec.bat file, extracts the third and fourth lines with the Line$
function, and displays them in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
file$ = "c:\autoexec. bat”
Open file$ For Input As #1
txt = "o

For x =1 To 5
Li ne I nput #1,1in$
txt =txt &lin$ &crlf
Next X
lines$ = Line$(txt, 3,4)
MsgBox "The 3rd and 4th lines of '" & file$ & "' are:" & crlf_
&crlf & lines$
End Sub

I t en$ (function); | t enCount (function); Li neCount (function); Wor d$ (function);
Wor dCount (function).

L 13-7



LineCount (function)

Syntax Li neCount (text$)
Description Returnsan | nt eger representing the number of linesin text$.
Comments Lines are delimited by carriage return, line feed, or both.
Example This example reads your autoexec.bat file into a variable and then determines how many linesit is
comprised of.
Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()
file$ = "c:\autoexec. bat"

Open file$ For Input As #1

txt ="
Do Until Eof (1)

Line Input #1,1in$
txt =txt &lin$ &crlf

Loop

lines! = LineCount(txt)

MsgBox "'" & file$ & "' " lines long!" & crlf_
&crlf & txt
End Sub
See Also I t ends (function); | t enCount (function); Li ne$ (function); Wor d$ (function); Wor dCount
(function).

13-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



ListBox (statement)

Syntax
Description

Comments

Example

GFK-1283G

Li st Box X, Y, width, height, ArrayVariable, . Identifier
Creates alist box within a dialog box template.

When the dialog box isinvoked, the list box will be filled with the elements contained in
ArrayVariable.

This statement can only appear within a dialog box template (that is, between the Begi n Di al og
and End Di al og statements).

TheLi st Box statement requires the following parameters:

Parameter Description

XY I nt eger coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height I nt eger coordinates specifying the dimensions of the control in dialog
units.

ArrayVariable Specifies a single-dimensioned array of strings used to initialize the elements

of the list box. If this array has no dimensions, then the list box will be
initialized with no elements. A runtime error results if the specified array
contains more than one dimension.

ArrayVariable can specify an array of any fundamental data type (structures
are not allowed). Nul | and Enpt y values are treated as zero-length strings.

Identifier Name by which this control can be referenced by statementsin adialog
function (such as DI gFocus and DI gEnabl e). This parameter also creates
an integer variable whose value corresponds to the index of the list box's
selection (0 isthefirst item, 1 is the second, and so on). This variable can be
accessed using the following syntax:

DialogVariable. Identifier

This example creates a dialog box with two list boxes, one containing files and the other containing
directories.

Sub Mai n()

Dimfiles() As String

Dimdirs() As String

Begi n Di al og ListBoxTenpl ate 16, 32, 184, 96, " Sanpl e"
Text 8,4,24,8,"&Files:"
Li st Box 8, 16,60,72,files$,.Files
Text 76,4,21,8,"&Dirs:"
Li st Box 76, 16,56,72,dirs$,.Dirs
OKBut t on 140, 4, 40, 14
Cancel Button 140, 24, 40, 14

End Di al og

FileList files

FileDirs dirs

Di m Li st BoxDi al og As Li st BoxTenpl ate

rc% = Di al og(Li st BoxDi al 0og)
End Sub

L 139



See Also Cancel But t on (statement); CheckBox (statement); ConboBox (statement); Di al og
(function); Di al og (statement); Dr opLi st Box (statement); G- oupBox (statement);
OKBut t on (statement); Opt i onBut t on (statement); Opt i onG oup (statement); Pi ct ur e
(statement); PushBut t on (statement); Text (statement); Text Box (statement); Begi n
Di al og (statement), Pi ct ur eBut t on (statement).

13-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Literals (topic)

GFK-1283G

Literals are values of a specific type. The following table shows the different types of literals
supported by the Basic Control Engine:

Literal
10

43265
5#

5. 4E100
&HFF
8047
&HFF#

"hel | 0"

hel | o

#1/ 1/ 1994#

Description
I nt eger whosevaueis 10.

Long whose value is 43,265.

Doubl e whose valueis 5.0. A number's type can be explicitly set using any of
the following type-declaration characters:

% I nt eger
& Long

# Doubl e
! Si ngl e

Doubl e whose valueis 5.5. Any number with decimal point is considered a
double.

Doubl e expressed in scientific notation.
I nt eger expressed in hexadecimal.

I nt eger expressedin octal.

Doubl e expressed in hexadecimal.

St ri ng of five characters: hel | o.

St ri ng of seven characters: " hel | 0" . Quotation marks can be embedded
within strings by using two consecutive quotation marks.

Dat e value whose internal representation is 34335.0. Any valid date can appear
with #'s. Date literals are interpreted at execution time using the local e settings
of the host environment. To ensure that date literals are correctly interpreted for
all locales, use the international date format:

#YYYY-MM-DD HH:MM:SS#
Constant Folding

The Basic Control Engine supports constant folding where constant expressions
are calculated by the compiler at compile time. For example, the expression

i%= 10 + 12
isthe same as:
i %= 22

Similarly, with strings, the expression

s$ = "Hello," + " there" + (46)
isthesame as:

s$ = "Hello, there."

13-11



Loc (function)

Syntax Loc (filenumber)
Description Returns aLong representing the position of the file pointer in the given file.
Comments The filenumber parameter isan | nt eger used by the Basic Control Engine to refer to the number

passed by the Open statement to the Basic Control Engine..

The Loc function returns different values depending on the mode in which the file was opened:

File Mode Returns
I nput Current byte position divided by 128
Qut put Current byte position divided by 128
Append Current byte position divided by 128
Bi nary Position of the last byte read or written
Random Number of the last record read or written
Example This example reads 5 lines of the autoexec.bat file, determines the current location of the file

pointer, and displaysit in adialog box.
Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()

file$ = "c:\autoexec. bat"

Open file$ For Input As #1

For x =1 To 5

If Not EOF(1) Then Line Input #1,1in$

Next X

I c% = Loc(1)

d ose

MsgBox "The file byte location is: " & 1c%
End Sub

See Also Seek (function); Seek (statement); Fi | eLen (function).

13-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Lock (statement)

Syntax

Description

Comments

GFK-1283G

Lock [#] filenumber [, {record | [sart] To end}]

Locks a section of the specified file, preventing other processes from accessing that section of the
file until the Unl ock statement isissued.

The Lock statement requires the following parameters:

Parameter Description

filenumber I nt eger used by the Basic Control Engine to refer to the open file—the
number passed to the Open statement.

record Long specifying which record to lock.

start Long specifying the first record within arange to be locked.

end Long specifying the last record within a range to be locked.

For sequential files, therecord, start, and end parameters are ignored. The entire file islocked.

The section of thefileis specified using one of the following:

Syntax Description

No parameters Locks the entire file (no record specification is given).

record Locks the specified record number (for Randomfiles) or byte (for Bi nary
files).

to end Locks from the beginning of the file to the specified record (for Random
files) or byte (for Bi nary files).

start t o end Locks the specified range of records (for Randomfiles) or bytes (for Bi nary
files).

The lock range must be the same as that used to subsequently unlock the file range, and all locked
ranges must be unlocked before the file is closed. Ranges within files are not unlocked
automatically by the Basic Control Engine when your script terminates, which can cause file access
problems for other processes. It isagood ideato group the Lock and Unl ock statements close
together in the code, both for readability and so subsequent readers can see that the lock and unlock
are performed on the same range. This practice also reduces errorsin file locks.

L 13-13



Example

See Also

13-14

This example creates test.dat and fillsit with ten string variable records. These are displayed in a
dialog box. Thefileis then reopened for read/write, and each record is locked, modified, rewritten,
and unlocked. The new records are then displayed in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
a$ = "This is record nunber
b$ = "0O"
rec$ = ""

msgl = ""
Open "test.dat" For Random Access Wite Shared As #1
For x =1 To 10
rec$ = a$ & x
Lock #1,x
Put #1,,rec$
Unl ock #1, x
nmegl = negl & rec$ & crlf
Next X
Cl ose
MsgBox "The records are:" & crlf & msgl

msgl = ""
Open "test.dat" For Random Access Read Wite Shared As #1
For x =1 To 10

rec$ = Md(rec$,1,23) & (11 - x)

Lock #1,x

Put #1,x,rec$

Unl ock #1, x

nmegl = nsgl & rec$ & crlf
Next X
MsgBox "The records are: " & crlf & msgl
Cl ose

Kill "test.dat"
End Sub

Unl ock (statement); Open (statement).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Lof (function)

Syntax
Description

Comments

Example

See Also

Lof (filenumber)
Returns a Long representing the number of bytesin the given file.

The filenumber parameter isan | nt eger used by the Basic Control Engine to refer to the open
filed the number passed to the Qpen statement.

Thefile must currently be open.

This example creates atest file, writes ten recordsinto it, then finds the length of the file and
displaysit in amessage box.
Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
a$ = "This is record nunber:

Open "test.dat" For Random Access Wite Shared As #1
msgl = ""
For x =1 To 10
rec$ = a$ & x
put #1,,rec$
nmegl = nsgl & rec$ & crlf
Next X
Cl ose

Open "test.dat" For Random Access Read Wite Shared As #1
r% = Lof (1)
Cl ose
MsgBox "The length of 'test.dat' is: " &r%
End Sub

Loc (function); Open (statement); Fi | eLen (function).

Log (function)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Log(number)

Returns a Doubl e representing the natural logarithm of a given number.
The value of number must be aDoubl e greater than O.

Thevalue of eis2.71828.

This example calculates the natural log of 100 and displays it in a message box.

Sub Mai n()

x# = Log(100)

MsgBox "The natural logarithmof 100 is: " & x#
End Sub

Exp (function).

L 13-15



Long (data type)

Syntax Long
Description Long variables are used to hold numbers (with up to ten digits of precision) within the following
range:

-2,147, 483, 648 <= Long <= 2, 147, 483, 647

Internally, longs are 4-byte values. Thus, when appearing within a structure, longs require 4 bytes
of storage. When used with binary or random files, 4 bytes of storage are required.

The type-declaration character for Long is &.

See Also Curr ency (datatype); Dat e (datatype); Doubl e (datatype); | nt eger (datatype); Obj ect
(datatype); Si ngl e (datatype); St ri ng (datatype); Var i ant (datatype); Bool ean (data
type); Def Type (statement); CLng (function).

13-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



L Set (statement)

Syntax 1 LSet dest = source

Syntax 2 LSet dest variable = source variable

Description Left-aligns the source string in the destination string or copies one user-defined type to another.
Comments Syntax 1

The LSet statement copies the source string source into the destination string dest. The dest
parameter must be the name of either aSt ri ng or Var i ant variable. The source parameter is
any expression convertible to a string.

If sourceis shorter in length than dest, then the string is left-aligned within dest, and the remaining
characters are padded with spaces. If source$ islonger in length than dest, then source is truncated,
copying only the leftmost number of characters that will fit in dest.

The destvariable parameter specifiesa St ri ng or Var i ant variable. If destvariableisa
Var i ant containing Enpt y, then no characters are copied. If destvariable is not convertible to a
St ri ng, then aruntime error occurs. A runtime error results if destvariableisNul | .

Syntax 2

The source structure is copied byte for byte into the destination structure. Thisis useful for copying
structures of different types. Only the number of bytes of the smaller of the two structuresis copied.
Neither the source structure nor the destination structure can contain strings.

Example This example replaces a 40-character string of asterisks (*) with an RSet and L Set string and then
displays the result.
Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
Di m nsg, t mpstr$
tnpstr$ = String(40,"*")

msgl = "Here are two strings that have been right-" + crlf
msgl = nmegl & "and left-justified in a 40-character string."
Msgl = nmsgl & crlf & crlf

Rset tnpstr$ = "Right|"
nsgl = nsgl & tnpstr$ & crlf

LSet tnpstr$ = "|Left"
nsgl = nsgl & tnpstr$ & crlf
MsgBox nsgl
End Sub
See Also RSet (function).

GFK-1283G L 13-17



LTrim, LTrim$ (functions)

Syntax
Description

Comments

Example

See Also

13-18

LTri nT $] (text)

Returns text with the leading spaces removed.

LTri n$ returnsaStri ng, whereasLTr i mreturnsa St ri ng variant.
Nul I isreturned if textisNul | .

This example displays aright-justified string and its LTrim result.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
txt$ =" This is text
tr$ = LTrin(txt$)

MsgBox "Original ->" & txt$ & "<-" &ecrlf & "Left Trimed ->"

End Sub
RTrim RTrin$ (functions); Tri m  Tri n® (functions).

&tr$ & "<-"

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Main (statement)

Syntax Sub Mai n()
End Sub
Description Defines the subroutine where execution begins.
MsgBox "This is the Main() subroutine and entry point."
End Sub

GFK-1283G 14-1



MCI (function)

Syntax Mei ( command$,result$ [,error$])
Description Executesan Mci command, returning an Integer indicating whether the command was successful.
Comments The Mei function takes the following parameters:

Parameter Description

command$ String containing the command to be executed.

result$ String variable into which the result is placed. If the command doesn't return

anything, then a zero-length string is returned.

To ignore the returned string, pass a zero-length string, such as.

r% = Mi ("open chinmes.wav type waveaudi 0","")
error$ Optional String variable into which an error string will be placed. A zero-
length string will be returned if the function is successful.
Example 1 Thisfirst example plays awave file. The wavefileis played to completion before execution can
continue.
Sub Mai n()

Dimresult As String
Di m Error Message As String
Dim Fil enanme As String
Dimrc As Integer
'Establish name of file in the Wndows directory.
Fi |l enane = Fil eParse$(System W ndowsDi rectory$ + "\" + "chi mes. wav")
'Open the file and driver.
rc = Mci("open " & Filenane & " type waveaudi o alias Cool Sound","", Error Message)
If (rc) Then
"Error occurred--display error nessage to user.
MsgBox Error Message

Exit Sub
End |f
rc = Mei ("play Cool Sound wait","","") "Wait for sound to finish.
rc = Mci ("close Cool Sound","","") "Close driver and file.
End Sub

14-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Example 2 This next example shows how to query an Mci device and play an MIDI file in the background.

Sub Mai n()
Dimresult As String
DimErrMsg As String
Dim Fil enanme As String
Dimrc As Integer
' Check to see whether M DI device can play for us.
rc = Mci ("capability sequencer can play",result, Error Message)
' Check for error.
If rc Then
MsgBox Error Message
Exit Sub
End |f
‘Can it play?
If result <> "true" Then
MsgBox "M DI device is not capable of playing."
Exit Sub
End |f
'Assenble a filename fromthe Wndows directory.
Fi |l enane = Fil eParse$(System W ndowsDi rectory$ & "\" & "canyon. nmi d")

'"Qpen the driver and file.
rc = Mci("open " & Filenane & " type sequencer alias song",result$, ErrMsg)
If rc Then
MsgBox Err Msg
Exit Sub
End | f
rc = Mi("play song","","") "Play in the background.
MsgBox "Press OK to stop the nusic.", ebOKOnly
rc = Mci("close song","","")
End Sub

See Also Beep (statement)

Notes The Mei function accepts any Mci command as defined in the Multimedia Programmers Reference

in the Windows 3.1 SDK.

GFK-1283G M

14-3



Mid, Mid$ (functions)

Syntax M d[ $] (text, start [, length] )

Description Returns a substring of the specified string, beginning with start, for length characters.

Comments The returned substring starts at character position start and will be length characters long.
M d$ returnsa St ri ng, whereasM d returnsa St ri ng variant.

TheM d/ M d$ functions take the following parameters:

Parameter Description

text Any St ri ng expression containing the text from which characters are
returned.

start I nt eger specifying the character position where the substring begins. If

start is greater than the length of text$, then a zero-length string is returned.

length I nt eger specifying the number of charactersto return. If this parameter is
omitted, then the entire string is returned, starting at start.

TheM d function will return Nul | textisNul I .

Example This example extracts the left and right halves of a string using the Mid functions and displays the
text with a message spliced in the middle.
Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
a$ = "DAVE is a good programmer"
I'$ = Md(a$,1,7)
r$ = Md(a$, 16, 10)
MsgBox |'$ & " an excellent " &r$
End Sub

See Also I nSt r (function); Opt i on Conpar e (statement); M d, M d$ (statements).

14-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Mid, Mid$ (statements)

Syntax M d[ $] (variable, start[ , length] ) = newvalue
Description Replaces one part of a string with another.
Comments TheM d/ M d$ statements take the following parameters:
Parameter Description
variable StringorVariant variableto be changed.
start I nt eger specifying the character position within variable where replacement
begins. If start is greater than the length of variable, then variable remains
unchanged.
length I nt eger specifying the number of characters to change. If this parameter is
omitted, then the entire string is changed, starting at start.
newvalue Expression used as the replacement. This expression must be convertibleto a
String.

The resultant string is never longer than the original length of variable.

With M d, variable must beaVar i ant variable convertibleto aSt r i ng, and newvalue is any
expression convertible to astring. A runtime error is generated if either variantisNul | .

Example This example displays a substring from the middle of a string variable using the Mid$ function,
replacing the first four characters with "NEW " using the Mid$ statement.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
a$ = "This is the Main string containing text."
b$ = Md(a$, 14, Len(a$))
M d(b$, 1) = "NEW
MsgBox a$ & crlf & b$
End Sub

See Also M d, M d$ (functions); Opti on Conpar e (statement).

GFK-1283G M 14-5



Minute (function)

Syntax M nut e( time)
Description Returns the minute of the day encoded in the specified time parameter.
Comments The value returned isasan | nt eger between 0 and 59 inclusive.

The time parameter is any expression that convertsto a Dat e.

Example This example takes the current time; extracts the hour, minute, and second; and displays them as the
current time.
Sub Mai n()
Msgbox "It is nowmnute " & Mnute(Tinme) & " of the hour."
End Sub
See Also Day (function); Second (function); Mont h (function); Year (function); Hour (function);

Weekday (function); Dat ePar t (function).

MIRR (function)

Syntax M RR( ValueArray( ) , FinanceRate, ReinvestRate)

Description Returns aDoubl e representing the modified internal rate of return for a series of periodic
payments and receipts.

Comments The modified internal rate of return isthe equivalent rate of return on an investment in which
payments and receipts are financed at different rates. The interest cost of investment and the rate of
interest received on the returns on investment are both factors in the calculations.

The M RR function requires the following parameters:

Parameter Description
ValueArray() Array of Doubl e numbers representing the payments and receipts. Positive

values are payments (invested capital), and negative values are receipts
(returns on investment).

There must be at least one positive (investment) value and one negative
(return) value.

FinanceRate Doubl e representing the interest rate paid on invested monies (paid out).

ReinvestRate Doubl e representing the rate of interest received on incomes from the
investment (receipts).

FinanceRate and ReinvestRate should be expressed as percentages. For example, 11 percent should
be expressed as 0.11.

To return the correct value, be sure to order your payments and receipts in the correct sequence.

14-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Example This example illustrates the purchase of alemonade stand for $800 financed with money borrowed
at 10%. The returns are estimated to accelerate as the stand gains popularity. The proceeds are
placed in abank at 9 percent interest. The incomes are estimated (generated) over 12 months. This
program first generates the income stream array in two For...Next loops, and then the modified
internal rate of return is calculated and displayed. Notice that the annual rates are normalized to
monthly rates by dividing them by 12.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
Di m val u#(12)
valu(1) = -800 "I'nitial investnent

msgl = valu(l) & ",
For x =2 To 5

valu(x) = 100 + (x * 2) "I ncomes nonths 2-5
msgl = megl & valu(x) & ",
Next X
For x = 6 To 12
val u(x) = 100 + (x * 10) ‘I ncomes nonths 6-12
msgl = megl & valu(x) & ", "
Next X
retrn# = MRR(val u,.1/12,.09/12) "Note: normalized annual rates

msgl = "The values: " & crlf & nsgl & crif & crlf
MsgBox msgl & "Modified rate: " & Fornat (retrn#, "Percent")
End Sub

See Also Fv (function); I RR (function); Npv (function); Pv (function).

MkDir (statement)

Syntax MkDi r dir$
Description Creates a new directory as specified by dir$.

Example This example creates a new directory on the default drive. If this causes an error, then the error is
displayed and the program terminates. If no error is generated, the directory is removed with the
RmDir statement.

Sub Mai n()
On Error Resume Next
MDir "testdir"
If Err <> 0 Then
MsgBox "The following error occurred: " & Error(Err)
El se
MsgBox "Directory 'testdir' was created and is about to be renoved."
RrDir "testdir"
End |f
End Sub

See Also ChDi r (statement); ChDr i ve (statement); Cur Di r, Cur Di r$ (functions);Dir, Dir$
(functions); RDi r (statement).

GFK-1283G M 14-7



Mod (operator)

Syntax expressionl Mod expression2
Description Returns the remainder of expressionl/ expression2 as awhole number.
Comments If both expressions are integers, then the result is an integer. Otherwise, each expression is

converted to aLong before performing the operation, returning aLong.
A runtime error occursif the result overflows the range of aLong.
If either expressionisNul | , then Nul | isreturned. Enpt y istreated asO.

Example This example uses the Mod operator to determine the value of arandomly selected card where card
listhe ace (1) of clubsand card 52 isthe king (13) of spades. Since the values recur in a sequence
of 13 cards within 4 suits, we can use the Mod function to determine the value of any given card

number.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
cval $ = "Ace, Two, Thr ee, Four, Fi ve, Si x, Seven, Ei ght, Ni ne, Ten, Jack, Queen, Ki ng"
Randoni ze

card% = Random( 1, 52)
val ue = card% Mbd 13
If value = 0 Then value = 13
CardNun® = Iten®(cval, val ue)
If card% < 53 Then suit$ = "Spades"
If card% < 40 Then suit$ = "Hearts"
If card% < 27 Then suit$ = "Di anonds"
If card% < 14 Then suit$ = "d ubs"
msgl = "Card nunber " & card% & " is the "
nmegl = nsg 1& CardNum & " of " & suit$
MsgBox mnsgl

End Sub

See Also | (operator); \ (operator).

Month (function)

Syntax Mont h( date)

Description Returns the month of the date encoded in the specified date parameter.

Comments The value returned isasan | nt eger between 1 and 12 inclusive.
The date parameter is any expression that convertsto aDat e.

Example This example returns the current month in a dialog box.

Sub Mai n()
nons$ = "Jan., Feb., Mar., Apr., May, Jun., Jul ., Aug., Sep., Cct., Nov., Dec."
tdate$ = Date$
tmont h! = Mont h( Dat eVal ue(t dat e$))
MsgBox "The current nonth is: " & Iten$(nons$, tnonth!)
End Sub

See Also Day (function); M nut e (function); Second (function); Year (function); Hour (function);
Weekday (function); Dat ePar t (function).

14-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



MsgBox (function)

Syntax MsgBox(msg [, [type] [, title]])

Description Displays amessage in a dialog box with a set of predefined buttons, returning an | nt eger
representing which button was selected.

Comments The MsgBox function takes the following parameters:
Parameter Description
msg Message to be displayed—any expression convertibletoaSt ri ng.

End-of-lines can be used to separate lines (either a carriage return, line feed, or
both). If agiven lineistoo long, it will be word-wrapped. If msg contains
character 0, then only the characters up to the character O will be displayed.
The width and height of the dialog box are sized to hold the entire contents of
msg.

A runtime error is generated if msgisNul I .

type I nt eger specifying the type of dialog box (see below).
title Caption of the dialog box. This parameter is any expression convertibleto a

String. Ifitisomitted, thent he scri pt isused.
A runtime error is generated if titleisNul | .

The MsgBox function returns one of the following values:

Constant Value Description
ebXK 1 OK was clicked.
ebCancel 2 Cancel was clicked.
ebAbort 3 Abort was clicked.
ebRetry 4 Retry was clicked.
ebl gnore 5 Ignore was clicked.
ebYes 6 Y eswas clicked.
ebNo 7 No was clicked.

The type parameter is the sub of any of the following values:

Constant Value Description

ebOKOnl y 0 Displays OK button only.

ebOKCancel 1 Displays OK and Cancel buttons.
ebAbortRetrylgnore 2 Displays Abort, Retry, and Ignore buttons.
ebYesNoCancel 3 Displays Yes, No, and Cancel buttons.
ebYesNo 4 Displays Yes and No buttons.

ebRet ryCancel 5 Displays Retry and Cancel buttons.

ebCritical 16 Displays "stop" icon. @

GFK-1283G M 14-9



ebQuestion 32 Displays "question mark" icon. 9

ebExcl amat i on 48 Displays "exclamation point” icon. ®

ebl nf ormati on 64 Displays "information" icon. 0

ebDef aul t But t onl 0 First button is the default button.

ebDef aul t But t on2 256 Second button is the default button.

ebDef aul t But t on3 512 Third button is the default button.
ebApplicationMddal 0 Application modal—the current application is suspended

until the dialog box is closed.
The default value for typeis O (display only the OK button, making it the default).
Breaking Text across Lines

The msg parameter can contain end-of-line characters, forcing the text that follows to start on anew
line. The following example shows how to display a string on two lines:

MsgBox "This is on" + Chr(13) + Chr(10) + "two lines."

The carriage-return or line-feed characters can be used by themselves to designate an end-of-line.
r = MsgBox("Hello, World")

Hello, World

r = MsgBox("Hello, Wrld", ebYesNoCancel O ebDefaultButtonl)

Hello, 'wWorld

| Ho I |Ean-::el|

r = MsgBox("Hello, Wrld", ebYesNoCancel O ebDefaultButtonl O ebCritical)

@ Hello, World

I | Cancel I

14-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Example

See Also

Note:

Sub Mai n()
MsgBox "This is a sinple nessage box."
MsgBox "This is a nessage box with a title and an icon.", _
ebExcl amati on, " Si npl e"
MsgBox "This message box has OK and Cancel buttons.", _
ebCkCancel , " MsgBox"
MsgBox "This message box has Abort, Retry, and lIgnore buttons.", _
ebAbort Retryl gnor e, " MsgBox"
MsgBox "This message box has Yes, No, and Cancel buttons.", _
ebYesNoCancel O ebDefaul t Button2, " MsgBox"
MsgBox "This message box has Yes and No buttons.", ebYesNo, " MsgBox"
MsgBox "This message box has Retry and Cancel buttons.", _
ebRet ryCancel , " MsgBox"
MsgBox "This message box is system nodal!", ebSyst enivbdal
End Sub

AskBox$ (function); AskPasswor d$ (function); | nput Box, | nput Box$ (functions);
OpenFi | enane$ (function); SaveFi | enanme$ (function); Sel ect Box (function);
Answer Box (function).

MsgBox displays all text inits dialog box in 8-point MS Sans Serif.

MsgBox (statement)

Syntax

Description

Example

See Also

MsgBox msg [, [type] [, titlg] ]

This command is the same as the Ms gBox function, except that the statement form does not return
avalue. See MsgBox (function).
Sub Mai n()
MsgBox "This is text displayed in a nessage box." 'Display text.
MsgBox "The result is: " & (10 * 45) 'Display a nunber.
End Sub
AskBox$ (function); AskPasswor d$ (function); | nput Box, | nput Box$ (functions);
OpenFi | enane$ (function); SaveFi | enanme$ (function); Sel ect Box (function);
Answer Box (function).

Msg.Close (method)

Syntax
Description
Comments

Example

See Also

GFK-1283G

Msg. C ose
Closes the model ess message dialog box.

Nothing will happen if there is no open message dialog box.

Sub Mai n()
Msg. Open "Printing. Please wait...",0, True, True
Sl eep 3000
Msg. d ose

End Sub

Msg. Open (method); Msg. Ther nonet er (property); Msg. Text (property).

M 14-11



Msg.Open (method)

Syntax Msg. Open prompt,timeout,cancel ,thermometer [,XPos,YPos]|
Description Displays amessage in a dialog box with an optional Cancel button and thermometer.
Comments The Msg. Open method takes the following named parameters:

Parameter Description

prompt String containing the text to be displayed. The text can be changed using the

Msg. Text property.

timeout Integer specifying the number of seconds before the dialog box is
automatically removed. The timeout parameter has no effect if itsvalue is 0.

cancel Boolean controlling whether or not a Cancel button appears within the dialog
box beneath the displayed message. If this parameter is True, then aCancel
button appears. If it is not specified or False, then no Cancel button is
created. If auser choosesthe Cancel button at runtime, a trappable runtime
error is generated (error number 18). In this manner, a message dialog box
can be displayed and processing can continue as hormal, aborting only when
the user cancels the process by choosing the Cancel button.

thermometer Boolean controlling whether the dialog box contains athermometer. If this
parameter is True, then athermometer is created between the text and the
optional Cancel button. The thermometer initially indicates 0% complete
and can be changed using the Msg. Ther momnet er property.

XPos, YPos Integer coordinates specifying the location of the upper left corner of the
message box, in twips (twentieths of a point). If these parameters are not
specified, then the window is centered on top of the application.

Unlike other dialog boxes, a message dialog box remains open until the user selects Cancel, the
timeout has expired, or the Msg. Cl ose method is executed (thisis sometimes referred to as
modeless).

Only a single message window can be opened at any one time. The message window is removed
automatically when a script terminates.

The Cancel button, if present, can be selected using either the mouse or keyboard. However,
these events will never reach the message dialog unless you periodically call DoEvent s from
within your script.

Example This example displays severa types of message boxes.

Sub Mai n()
Msg. Open "Printing. Please wait...",0, True, Fal se
Sl eep 3000
Msg. d ose
Msg. Open "Printing. Please wait...",0, True, True
For x =1 to 100
Msg. Ther noneter = x
Next X
Sl eep 1000
Msg. d ose
End Sub

See Also Msg. C ose (method); Msg. Ther monet er (property); Msg. Text (property).

14-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Msg.Text (property)

Syntax

Description

Comments

Example

See Also

GFK-1283G

Meg. Text [= newtext$)

Changes the text within an open message dialog box (one that was previously opened with the
Msg. Open method).

The message dialog box is not resized to accommodate the new text.
A runtime error will result if a message dialog box is not currently open (using Msg. Open).

This example creates a model ess message box, leaving room in the message text for the record
number. This box contains a Cancel button.

Sub Mai n()
Msg. Open " Readi ng Record", 0, True, Fal se
For i =1 To 100

'Read a record here
' Updat e t he nodel ess nessage box.
Sl eep 100
Msg. Text ="Reading record " &
Next
Msg. d ose
End Sub

Msg. C ose (method); Msg. Open (method); Msg. Ther monet er (property).

14-13



Msg.Thermometer (property)

Syntax Msg. Ther nomet er [= percentage]

Description Changes the percentage filled indicated within the thermometer of a message dialog box (one
that was previoudly opened with the Msg. Open method).

Comments A runtime error will result if a message box is not currently open (using Msg. Open) or if the
value of percentageis not between 0 and 100 inclusive.

Example This example create a model ess message box with a thermometer and a Cancel button. This
example a so shows how to process the clicking of the Cancel button.

Sub Mai n()
On Error Goto ErrorTrap
Msg. Open "Reading records fromfile...",0, True, True
For i =1 To 100 'Read a record here.
' Updat e t he nodel ess nessage box.
Msg. Ther nonet er =i
DoEvent s
Sl eep 50
Next i
Msg. d ose
On Error Goto O "Turn error trap off.
Exit Sub
Error Trap:
If Err = 809 Then
MsgBox "Cancel was pressed!"

Exit Sub ' Reset error handler.
End |f
End Sub
See Also Msg. C ose (method); Msg. Open (method); Msg. Text (property).

14-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Name (statement)

Syntax Nane oldfile$ As newfile$
Description Renames afile.
Comments Each parameter must specify a single filename. Wildcard characters such as* and ? are not allowed.

Some platforms allow naming of files to different directories on the same physical disk volume. For
example, the following rename will work under Windows:

Narme "c:\sanpl es\nydoc.txt" As "c:\backup\doc\ mydoc. bak"

Y ou cannot rename files across physical disk volumes. For example, the following will error under
Windows:

Narme "c:\sanpl es\nydoc.txt" As "a:\mydoc.bak" 'This will error!

To rename afileto adifferent physical disk, you must first copy the file, then erase the original:
Fil eCopy "c:\sanpl es\nydoc.txt","a:\nydoc. bak" ' Make a copy

Kill "c:\sanples\nydoc.txt" 'Del ete the original
Example This example creates afile called test.dat and then renames it to test2.dat.
Sub Mai n()
oldfile$ = "test.dat"
newfile$ = "test2.dat"

On Error Resune Next

If FileExists(oldfile$) Then
Nane ol dfile$ As newfile$
If Err <> 0 Then

msgl = "The following error occurred: " & Error(Err)
El se
negl = "'" & oldfile$ & "' was renaned to '" & newfile$ & """
End |f
El se
Open ol dfile$ For Qutput As #1
Cl ose

Nanme ol dfile$ As newfile$
If Err <> 0 Then
negl = "'" & oldfile$ & "' not created. The followi ng error occurred: " &
Error(Err)
El se
negl = "'" & oldfile$ & "' was created and renaned to '" & newfile$ & """
End |f
End |f
MsgBox nsgl
End Sub

See Also Ki Il (statement), Fi | eCopy (statement).

GFK-1283G 151



Named Parameters (topic)

Man

y language elements in BasicScript support named parameters. Named parameters allow you to specify parametersto

afunction or subroutine by name rather than in adherence to a predetermined order. The following table contains
examples showing various callsto MsgBox both using parameter by both name and position.

By
By
By
By
By

By

Name MsgBox Pronpt:= "Hello, world."
Position MsgBox "Hell o, world."
Name MsgBox Title:="Title", Pronpt:="Hello, world."
Position MsgBox "Hello, world",,"Title"
Name MsgBox Hel pFil e: ="BASI C. HLP",

Prompt:="Hello, world.", Hel pContext:=10
Position MsgBox "Hello, world.",,,"BASIC. HLP", 10

Using named parameter makes your code easier to read, while at the same time removes you from knowing the order of
parameter. With function that require many parameters, most of which are optional (such as Ms gBox), code becomes

signi

ficantly easier to write and maintain.

When supported, the names of the named parameter appear in the description of that language element.

When using named parameter, you must observe the following rules:

15-2

Named parameter must use the parameter name as specified in the description of that language element.
Unrecognized parameter names cause compiler errors.

All parameters, whether named or positional, are separated by commeas.
The parameter name and its associated value are separated with :=

If one parameter is named, then all subsequent parameter must also be named as shown below:

MsgBox "Hello, world", Title:="Title" 'K
MsgBox Pronpt:="Hello, world.",,"Title" 'WRONG !!
CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Net.AddCon (method)

Syntax

Description

Comments

Example

See Also

GFK-1283G

Net . AddCon NetPath,Password,LocalName[ ,[UserName] [,isPermanent]]

Redirects alocal device (adisk drive or printer queue) to the specified shared device or remote
server.

The new syntax does not affect previously compiled code.

If Password is not specified, then the default password is used. If empty, then no password is
used.

If LocalName is not specified, then the a connection is made to the network resource without
redirecting the local device.

The UserName parameter specifies the name of the user making the connection. If UserNameis
not specified, then the default user for that processis used.

The isPermanent parameter specifies whether the connection should be restored during
subsequent logon operations. Only a successful connection will persist in this manner.

The Net . AddCon method takes the following parameters:

Parameter Description

netpath$ String containing the name of the shared device or the name of aremote
server. This parameter can contain the name of a shared printer queue (such as
that returned by Net . Br owse[ 1] ) or the name of a network path (such as
that returned by Net . Br owse[ 0] ).

password$ String containing the password for the given device or server. This parameter
ismainly used to specify the password on a remote server.

localname$ String containing the name of the local device being redirected, such as
"LPT1" or "D:".

A runtime error will result if no network is present.

This example sets N: so that it refers to the network path SY S\PUBLIC.

Sub Mai n()
Net . AddCon "SYS:\PUBLIC',"","N. "
End Sub

Net . Cancel Con (method); Net . Get Con$ (method).

15-3



Net.Browse$ (method)

Syntax Net . Br owse$(type)

Description Callsthe currently installed network's browse dialog box, requesting a particular type of
information.

Comments The type parameter isan | nt eger specifying the type of dialog box to display:
Type  Description

0 If type is O, then this method displays a dialog box that allows the user to browse
network volumes and directories. Choosing OK returns the completed pathname as a
String.

1 If typeis 1, then this function displays a dialog box that allows the user to browse the
network'’s printer queues. Choosing OK returns the complete name of that printer
gueue as a String. This string is the same format as required by the Net.AddCon
method.

2 Display the Disconnect dialog for disk resources

3 Display the Disconnect dialog for printer resources
This dialog box differs depending on the type of network installed.
A runtime error will result if no network is present.

Example This example retrieves a valid network path.

Sub Mai n()
s$ = Net. Browse$(0)
If s$ <> "" Then

MsgBox "The followi ng network path was selected: " & s$
El se
MsgBox "Di al og box was cancel ed. "
End |f
End Sub
See Also Net . Di al og (method).

15-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Net.CancelCon (method)

Syntax

Description

Comments

Example

See Also

GFK-1283G

Net . Cancel Con Connection [,[isForce] [,isPermanent]]
TheisForce parameter is True if missing or omitted.

The isPermanent parameter indicates if the disconnection should persist to subsequent logon
operations.

On al platforms, the Connection parameter specifies what is to be disconnected. If Connection
specifiesalocal device, then only that device is disconnected. If Connection specifies aremote
device, then all local devices attached to that remote device are disconnected.

Cancels a network connection.

The Net . Cancel Con method takes the following parameters:

Parameter Description
connection$ String containing the name of the device to cancel, suchas"LPT1" or "D:".
isForce Boolean specifying whether to force the cancellation of the connection if there

are open files or open print jobs.

e If this parameter is True, then this method will close all open files and
open print jobs before the connection is closed.

e |If thisparameter is False, this the method will issue aruntime error if
there are any open files or open print jobs.

A runtime error will result if no network is present.

This example del etes the drive mapping associated with drive N:.

Sub Mai n()
Net . Cancel Con "N: "
End Sub

Net . AddCon (method); Net . Get Con$ (method).

15-5



Net.GetCon$ (method)

Syntax Net . Get Con$(localname$)
Description Returns the name of the network resource associated with the specified redirected local device.
Comments The localname$ parameter specifies the name of the local device, such as"LPT1" or "D:".

The function returns a zero-length string if the specified local device is not redirected.
A runtime error will result if no network is present.

Example This example finds out where drive Z is mapped.

Sub Mai n()

Net Pat h$ = Net. Get Con$("Z: ")

MsgBox "Drive Z is mapped as " & NetPath$
End Sub

See Also Net . Cancel Con (method); Net . AddCon (method).

Net.User$ (property)

Syntax Net . User $ [([LocalName])]
Description Returns the name of the user on the network.
Comments A runtime error is generated if the network is not installed.

The LocalName parameter is the name of the local device that the user has made a connection
to. If this parameter is omitted, then the name of the current user of the processis used.

If Localname is a network name and the user is connected to that resource using different
names, the network provider may not be able to resolve which user name to return. In this case,
the provider may make an arbitrary choice from the possible user names.

Example

Sub Mai n()
'This exanple tells the user who he or she is.
MsgBox "You are " & Net.User$
' This exanpl e makes sure this capability is supported.
If Net.GetCaps(4) And 1 Then MsgBox "You are " & _
Net . User $
End Sub

15-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



New (keyword)

Syntax 1 Di m ObjectVariable As New ObjectType
Syntax 2 Set ObjectVariable = New ObjectType
Description Creates a new instance of the specified object type, assigning it to the specified object variable.

Comments The New keyword is used to declare a new instance of the specified data object. This keyword can
only be used with data object types.
At runtime, the application or extension that defines that object type is notified that a new object is
being defined. The application responds by creating a new physical object (within the appropriate
context) and returning a reference to that object, which isimmediately assigned to the variable
being declared.

When that variable goes out of scope (that is, the Sub or Funct i on procedure in which the
variableis declared ends), the application is notified. The application then performs some
appropriate action, such as destroying the physical object.

See Also Di m(statement); Set (statement).

GFK-1283G N 15-7



Not (operator)

Syntax Not expression
Description Returns either alogical or binary negation of expression.
Comments The result is determined as shown in the following table:

If the Expression Is Then the Result Is

True Fal se

Fal se True

Nul | Nul |

Any numeric type A binary negation of the number. If the number isan | nt eger , then

an| nt eger isreturned. Otherwise, the expression isfirst converted to
along, then abinary negation is performed, returning aLong.

Enmpt y Treated asalong valueO.

Example This example demonstrates the use of the Not operator in comparing logical expressions and for
switching a True/False toggle variable.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
a = Fal se
b = True

If (Not a and b) Then nsgl = "a = False, b = True" & crlf

toggl e% = True
msgl = nmegl & “"toggle%is now " & CBool (toggle¥ & crlf
toggl e% = Not toggl e%
msgl = nmsgl & “"toggle%is now " & CBool (toggle¥ & crlf
toggl e% = Not toggl e%
msgl = nsgl & "toggle%is now " & CBool (toggl e%
MsgBox nsgl
End Sub

See Also Bool ean (datatype); Comparison Operators (topic).

15-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Nothing (constant)

Description A valueindicating that an object variable no longer references avalid object.

Dima As bject

If a Is Nothing Then
MsgBox "The object variable references no object.”
El se
MsgBox "The object variable references: " & a.Val ue
End |f
End Sub

See Also Set (statement); Cbj ect (datatype).

Now (function)

Syntax Nowf ()]
Description Returns aDat e variant representing the current date and time.
Example This example shows how the Now function can be used as an elapsed-time counter.
Sub Mai n()
t1# = Now
MsgBox "Wait a while and click OK "
t2# = Now

t3# = Second(t2#) - Second(t1#)
MsgBox "El apsed tine was: " & t3# & " seconds."
End Sub

See Also Dat e, Dat e$ (functions); Ti me, Ti me$ (functions).

GFK-1283G N 159



NPer (function)

Syntax NPer ( Rate, Pnmt, Pv, Fv, Due)

Description Returns the number of periods for an annuity based on periodic fixed payments and a constant rate
of interest.

Comments An annuity is a series of fixed payments paid to or received from an investment over a period of

time. Examples of annuities are mortgages, retirement plans, monthly savings plans, and term loans.

The NPer function requires the following parameters:

Parameter Description

Rate Doubl e representing the interest rate per period. If the periods are monthly,
be sure to normalize annual rates by dividing them by 12.

Pmt Doubl e representing the amount of each payment or income. Incomeis
represented by positive values, whereas payments are represented by negative
values.

Pv Doubl e representing the present value of your annuity. In the case of aloan,

the present value would be the amount of the |oan, and the future value (see
below) would be zero.

Fv Doubl e representing the future value of your annuity. In the case of aloan,
the future value would be zero, and the present value would be the amount of
the loan.

Due I nt eger indicating when payments are due for each payment period. A 0

specifies payment at the end of each period, whereas a 1 indicates payment at
the start of each period.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example This example calculates the number of $100.00 monthly payments necessary to accumulate
$10,000.00 at an annual rate of 10%. Payments are made at the beginning of the month.

Sub Mai n()

ag# = NPer((.10/12), 100, 0, 10000, 1)

MsgBox "The nunber of nonthly periods is: " & Format(ag#, "Standard")
End Sub

See Also I Pt (function); Pmt (function); PPnt (function); Rat e (function).

15-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Npv (function)

Syntax Npv ( Rate, ValueArray( ) )

Description Returns the net present value of an annuity based on periodic payments and receipts, and a
discount rate.

Comments The Npv function requires the following parameters:
Parameter Description
Rate Doubl e that represents the interest rate over the length of the period. If the

values are monthly, annual rates must be divided by 12 to normalize them to
monthly rates.

ValueArray() Array of Doubl e numbers representing the payments and receipts. Positive
values are payments, and negative values are receipts.

There must be at least one positive and one negative value.
Positive numbers represent cash received, whereas negative numbers represent cash paid out.

For accurate results, be sure to enter your payments and receipts in the correct order because Npv
uses the order of the array valuesto interpret the order of the payments and receipts.

If your first cash flow occurs at the beginning of the first period, that value must be added to the
return value of the Npv function. It should not be included in the array of cash flows.

Npv differs from the Pv function in that the payments are due at the end of the period and the cash
flows are variable. Pv's cash flows are constant, and payment may be made at either the beginning
or end of the period.

Example This example illustrates the purchase of alemonade stand for $800 financed with money borrowed
at 10%. The returns are estimated to accel erate as the stand gains popularity. The incomes are
estimated (generated) over 12 months. This program first generates the income stream array in two
For...Next loops, and then the net present value (Npv) is calculated and displayed. Note
normalization of the annual 10% rate.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
Di m val u#(12)
valu(1) = -800 "Initial investnent
msgl = valu(l) &", "
For x = 2 To 5 "Months 2-5

valu(x) = 100 + (x * 2)
msgl = msgl 1& valu(x) & ", "

Next X

For x = 6 To 12 'Mont hs 6-12
val u(x) = 100 + (x * 10) " Accel erated incone
msgl = megl & valu(x) & ", "

Next X

Net Val # = NPV((.10/12), val u)

msgl = "The values:" & crlf & nsgl & crlf & crlf

MsgBox msgl & "Net present value: " & Format(NetVal#, " Currency")
End Sub

See Also Fv (function); I RR (function); M RR (function); Pv (function).

GFK-1283G N 15-11



Null (constant)

Description Represents avariant of Var Type 1.
Comments The Nul | value has special meaning indicating that a variable contains no data.

Most numeric operators return Nul | when either of the argumentsisNul | . This"propagation” of
Nul I makesit especially useful for returning error values through a complex expression. For
example, you can write functions that return Nul | when an error occurs, then call this function
within an expression. You can then usethel sNul | function to test the final result to see whether
an error occurred during calculation.

Since variants are Enpt y by default, the only way for Nul | to appear within avariant is for you to
explicitly place it there. Only afew functions return this value.

Dima As Vari ant

a = Null

If IsNull (a) Then MsgBox "The variable is Null."

MsgBox "The VarType of a is: " & VarType(a) 'Should display 1.
End Sub

15-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Object (data type)

Syntax
Description

Comments

GFK-1283G

oj ect
A datatype used to declare OL E automation variables.

The Obj ect typeisused to declare variables that reference objects within an application using
OLE automation.

Each object is a 4-byte (32-bit) value that references the object internally. The value O (or

Not hi ng) indicates that the variable does not reference a valid object, asis the case when the
object has not yet been given avalue. Accessing properties or methods of such Obj ect variables
generates a runtime error.

Using Objects
oj ect variables are declared using the Di m Publ i c, or Pri vat e statement:
Dim MyApp As Obj ect

hj ect variables can be assigned values (thereby referencing areal physical object) using the
Set statement:

Set MyApp
Set MyApp

Properties of an Obj ect are accessed using the dot (.) separator:

MyApp. Col or = 10
i % = MyApp. Col or

Methods of an Obj ect are also accessed using the dot (.) separator:

My/App. Open "sanple.txt"
i sSuccess = MyApp. Save("new. txt", 15)

Cr eat eoj ect (" phant om appl i cation")
Not hi ng

16-1



Automatic Destruction

The Basic Control Engine keeps track of the number of variables that reference a given object so
that the object can be destroyed when there are no longer any referencesto it:

Sub Mai n() ' Nunber of references to object
Dima As bject '0
Dmb As bject '0
Set a = Create(j ect("phantomapplication) '1
Set b = a ‘2
Set a = Not hing "1
End Sub "0 (object destroyed)
Note

An OLE automation object isinstructed by the Basic Control Engine to destroy itself when no
variables reference that object. However, it isthe responsibility of the OLE automation server to
destroy it. Some servers do not destroy their objects—usually when the objects have a visual
component and can be destroyed manually by the user.

See Also Curr ency (datatype); Dat e (datatype); Doubl e (datatype); | nt eger (datatype); Long
(datatype); Si ngl e (datatype); St ri ng (datatype); Var i ant (datatype); Bool ean (data
type); Def Type (statement).

Objects (topic)

The Basic Control Engine defines two types of objects: data objects and OLE
automation objects.

Syntactically, these are referenced in the same way.
What Is an Object

An object in the Basic Control Engine is an encapsulation of data and routinesinto a
single unit. The use of objects in the Basic Control Engine has the effect of grouping
together a set of functions and data items that apply only to a specific object type.

Objects expose data items for programmability called properties. For example, a
sheet object may expose an integer called NuntCol unms. Usually, properties can
be both retrieved (get) and modified (set).

Objects also expose internal routines for programmability called methods. In the
Basic Control Engine, an object method can take the form of afunction or a
subroutine. For example, a OLE automation object called My App may contain a
method subroutine called Open that takes a single argument (a filename), as shown
below:

MyApp. Open "c:\files\sanmple.txt"
Declaring Object Variables

In order to gain accessto an object, you must first declare an object variable using
either Di m Publ i c, or Pri vat e:

Dimo As bject ' CLE aut omati on obj ect

Initially, objects are given the value O (or Not hi ng). Before an object can be
accessed, it must be associated with a physical object.

16-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



GFK-1283G

Assigning a Value to an Object Variable

An object variable must reference areal physical object before accessing any
properties or methods of that object. To instantiate an object, use the Set statement.

Dim MyApp As Obj ect
Set MyApp = Createoj ect("Server. Application")
Accessing Object Properties

Once an object variable has been declared and associated with a physical object, it
can be modified using the Basic Control Engine code. Properties are syntactically
accessible using the dot operator, which separates an object name from the property
being accessed:

MyApp. BackgroundCol or = 10
i % = MyApp. Docunent Count

Properties are set using the Basic Control Engine normal assignment statement:
MyApp. BackgroundCol or = 10

Object properties can be retrieved and used within expressions:

i % = MyApp. Docunent Count + 10
MsgBox "Nunber of documents = " & MyApp. Docunent Count

Accessing Object Methods

Like properties, methods are accessed via the dot operator. Object methods that do
not return values behave like subroutines in the Basic Control Engine (that is, the
arguments are not enclosed within parentheses):

MyApp. Open "c:\files\sanple.txt", True, 15

Object methods that return a value behave like function calls in the Basic Control
Engine. Any arguments must be enclosed in parentheses:

I f MyApp. Docunment Count = 0 Then MsgBox "No open docunents."
NurmDocs = app. count (4, 5)

There is no syntactic difference between calling a method function and retrieving a
property value, as shown below:

variable = object.property(argl,arg2)
variable = object.method(argl,arg?)

Comparing Object Variables

The values used to represent objects are meaningless to the script in which they are
used, with the following exceptions:

»  Objects can be compared to each other to determine whether they refer
to the same object.

»  Objects can be compared with Not hi ng to determine whether the
object variable refersto avalid object.

Object comparisons are accomplished using the | s operator:

If als b Then MsgBox "a and b are the sane object.”
If a Is Nothing Then MsgBox "a is not initialized."
If b Is Not Nothing Then MsgBox "b is in use."

16-3



Collections

A collection is a set of related object variables. Each element inthe set iscalled a
member and is accessed via an index, either numeric or text, as shown below:

MyApp. Tool bar . Butt ons(0)
MyApp. Tool bar . Butt ons(" Tuesday")

It istypical for collection indexes to begin with 0.

Each element of a collection isitself an object, as shown in the following examples:
Di m MyTool barButton As (bj ect

Set MyTool barButton = MyApp. Tool bar. Buttons(" Save")
MyAppp. Tool bar. Buttons(1). Capti on = "Qpen"

The collection itself contains properties that provide you with information about the
collection and methods that allow navigation within that collection:
Di m MyTool barButton As hj ect

NumBut t ons% = MyApp. Tool bar. But t ons. Count
MyApp. Tool bar . Butt ons. MoveNext
MyApp. Tool bar. Butt ons. Fi ndNext " Save"

For i = 1 To MyApp. Tool bar. Butt ons. Count
Set MyTool barButton = MyApp. Tool bar. Buttons(i)
MyTool bar But t on. Capti on = " Copy"

Next i

Predefined Objects

The Basic Control Engine predefines afew objectsfor usein al scripts. These are:

Clipboard System HWND
Net Basi c Screen

16-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Oct, Oct$ (functions)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Cct [ $] ( number)
Returnsa St r i ng containing the octal equivalent of the specified number.
COct $returnsa St ri ng, whereasCct returnsa St ri ng variant.

The returned string contains only the number of octal digits necessary to represent the number.

The number parameter is any numeric expression. If this parameter isNul | , then Nul | is

returned. Enpt y istreated as 0. The number parameter is rounded to the nearest whole number
before converting to the octal equivalent.

This example accepts a number and displays the decimal and octal ‘equivalent until the input
number is O or invalid.
Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()
Do
xs$ = I nputBox("Enter a nunber to convert:","Cctal Convert")

x = Val (xs$)
If x <> 0 Then

MsgBox "Decimal: " & x & " Cctal: " & Cct(x)
El se
MsgBox " Goodbye. "
End |f
Loop Wile x <> 0
End Sub

Hex, Hex$ (functions).

16-5



OKButton (statement)

Syntax OKBut t on X, Y, width, height [, . Identifier]
Description Creates an OK button within a dialog box template.

Comments This statement can only appear within adialog box template (that is, between the Begi n Di al og
and End Di al og statements).

The OKBut t on statement accepts the following parameters:

Parameter Description

XY I nt eger coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height I nt eger coordinates specifying the dimensions of the control in dialog
units.

Identifier Name by which this control can be referenced by statementsin adialog

function (such as DI gFocus and DI gEnabl e).

If the DefaultButton parameter is not specified in the Di al og statement, the OK button will be
used as the default button. In this case, the OK button can be selected by pressing Enter on a
nonbutton control.

A dialog box template must contain at least one OKBut t on, Cancel But t on, or PushBut t on
statement (otherwise, the dialog box cannot be dismissed).

Example This example shows how to use the OK and Cancel buttons within a dialog box template and how
to detect which one closed the dialog box.

Sub Mai n()

Begi n Di al og QuitDial ogTenpl ate 16, 32, 116, 64, "Quit"
Text 4,8,108,8,"Are you sure you want to exit?"
CheckBox 32, 24, 63, 8, "Save Changes", . SaveChanges
OKBut ton 12, 40, 40, 14
Cancel Button 60, 40, 40, 14

End Di al og

Dim QuitD al og As QuitDi al ogTenpl ate

rc% = Di al og( Qi t Di al og)

Sel ect Case rc%

Case -1
MsgBox "OK was pressed!"
Case 1
MsgBox "Cancel was pressed!"
End Sel ect
End Sub
See Also Cancel But t on (statement); CheckBox (statement); ConboBox (statement); Di al og

(function); Di al og (statement); Dr opLi st Box (statement); G- oupBox (statement); Li st Box
(statement); Opt i onBut t on (statement); Opt i onGr oup (statement); Pi ct ur e (statement);
PushBut t on (statement); Text (statement); Text Box (statement); Begi n Di al og
(statement), Pi ct ur eBut t on (statement).

16-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



On Error (statement)

Syntax
Description

Comments

GFK-1283G

On Error {Goto label | Resune Next | Goto 0}
Defines the action taken when a trappable runtime error occurs.

TheformOn Error Got o label causes execution to transfer to the specified label when a
runtime error occurs.

TheformOn Error Resune Next causesexecution to continue on the line following the line
that caused the error.

TheformOn Error Got o 0 causesany existing error trap to be removed.
If an error trap isin effect when the script ends, then an error will be generated.
An error trap is only active within the subroutine or function in which it appears.

Once an error trap has gained control, appropriate action should be taken, and then control should
be resumed using the Resune statement. The Resune statement resets the error handler and
continues execution. If a procedure ends while an error is pending, then an error will be generated.
(TheExit SuborExit Function statement also resetsthe error handler, allowing a
procedure to end without displaying an error message.)

Errors within an Error Handler

If an error occurs within the error handler, then the error handler of the caller (or any procedurein
the call stack) will be invoked. If there is no such error handler, then the error isfatal, causing the
script to stop executing. The following statements reset the error state (that is, these statements turn
off the fact that an error occurred):

Resurne
Err=1

The Resune statement forces execution to continue either on the same line or on the line following
the line that generated the error. The Er r =- 1 statement allows explicit resetting of the error state

so that the script can continue normal execution without resuming at the statement that caused the
error condition.

TheOn Error statement will not reset the error. Thus, if an On Er r or statement occurs within
an error handler, it has the effect of changing the location of a new error handler for any new errors
that may occur once the error has been reset.

0] 16-7



Example This example will demonstrate three types of error handling. The first case simply by-passes an
expected error and continues with program operation. The second case creates an error branch that
jumps to a common error handling routine that processes incoming errors, clearsthe error (with the
Resume statement) and resumes program execution. The third case clears al internal error
handling so that execution will stop when the next error is encountered.

Sub Mai n()
Di m x%
a = 10000
b = 10000

On Error CGoto Pass "Branch to this |abel on error.
Do

X%=a*b
Loop

Pass:
Err = -1 'Clear error status.
MsgBox "Cl eared error status and continued."

On Error Goto Overflow 'Branch to new error routine on any

X% = 1000 ' subsequent errors.

X%=a*b

X%=a/l 0

On Error Resunme Next 'Pass by any following errors until

X% = 1000 "another On Error statenent is

X%=a*b ' encount er ed.

On Error Goto O "C ear error branching.

Xx%=a*b "Programwi ||l stop here.

Exit Sub "Exit before common error routine.
Qverfl ow ' Begi nni ng of conmon error routine.

If Err = 6 then

MsgBox "Overfl ow Branch."
El se

MsgBox Error (Err)
End |f

Resune Next
End Sub

See Also Error Handling (topic); Er r or (statement); Resune (statement).

16-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Open (statement)

Syntax Open filename$ [ For mode] [ Access accessmode] [lock] As [#] filenumber _
[Len = reclen]

Description Opens afile for agiven mode, assigning the open file to the supplied filenumber.

Comments The filename$ parameter is a string expression that contains avalid filename.

The filenumber parameter is a number between 1 and 255. The Fr eeFi | e function can be used to
determine an available file number.

The mode parameter determines the type of operations that can be performed on that file:

File Mode Description
I nput Opens an existing file for sequential input (filename$ must exist). The value of

accessmode, if specified, must be Read.

Qut put Opens an existing file for sequential output, truncating its length to zero, or
creates a new file. The value of accessmode, if specified, must beW i t e.

Append Opens an existing file for sequential output, positioning the file pointer at the
end of thefile, or creates anew file. The value of accessmode, if specified,
must beRead Wite.

Random Opens an existing file for record 1/O or creates a new file. Existing random
filesare truncated only if accessmodeisW i t e. The reclen parameter
determines the record length for 1/0O operations.

If the mode parameter is missing, then Randomis used.

The accessmode parameter determines what type of 1/O operations can be performed on the file:

Access Description
Read Opensthefile for reading only. Thisvalueisvalid only for files opened in

Bi nary, Random or | nput mode.

Wite Opensthefile for writing only. Thisvalue isvalid only for files opened in
Bi nary, Random or Qut put mode.

Read Wite Opens the file for both reading and writing. This valueisvalid only for files
opened in Bi nary, Random or Append mode.

If the accessmode parameter is not specified, the following defaults are used:

File Mode Default Value for accessmode

I nput Read

Qut put Wite

Append Read Wite

Bi nary When thefileisinitially opened, accessis attempted three timesin the

following order:

1. Read Wite
2. Wite

3. Read

GFK-1283G 0] 16-9



Example

See Also

16-10

Random SameasBi nary files

The lock parameter determines what access rights are granted to other processes that attempt to
open the same file. The following table describes the values for lock:

lock Value Description

Shar ed Another process can both read this file and write to it. (Deny none.)
Lock Read Another process can write to this file but not read it. (Deny read.)

Lock Wite Another process can read this file but not write to it. (Deny write.)

Lock Read Another processis prevented both from reading this file and from writing
Wite to it. (Exclusive.)

If lock is not specified, then the fileis opened in Shar ed mode.

If the file does not exist and the lock parameter is specified, the file is opened twiceJ once to create
the file and again to establish the correct sharing mode.

Files opened in Randommaode are divided up into a sequence of records, each of the length
specified by the reclen parameter. If this parameter is missing, then 128 is used. For files opened
for sequential 1/0, the reclen parameter specifies the size of the internal buffer used by the Basic
Control Engine when performing 1/0O. Larger buffers mean faster file access. For Bi nar y files, the
reclen parameter isignored.

This example opens several files in various configurations.

Sub Mai n()
Open "test.dat" For Qutput Access Wite Lock Wite As #2
Cl ose
Open "test.dat" For Input Access Read Shared As #1
Cl ose
Open "test.dat" For Append Access Wite Lock Read Wite As #3
Cl ose
Open "test.dat" For Binary Access Read Wite Shared As #4
Cl ose
Open "test.dat" For Random Access Read Wite Lock Read As #5
Cl ose
Open "test.dat" For Input Access Read Shared As #6
Cl ose
Kill "test.dat"
End Sub

Cl ose (statement); Reset (statement); Fr eeFi | e (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



OpenFilename$ (function)

Syntax

Description

Comments

Example

See Also

GFK-1283G

OpenFi | ename$[ ([ title$ [, extensions$] ) ]

Displays adialog box that prompts the user to select from alist of files, returning the full pathname
of the file the user selects or a zero-length string if the user selects Cancel.

This function displays the standard file open dialog box, which allows the user to select afile. It
takes the following parameters:

Parameter Description

title$ St ri ng specifying the title that appearsin the dialog box's title bar. If this
parameter is omitted, then" Open" isused.

extension$ St ri ng specifying the available file types. If this parameter is omitted, then
all files are displayed.

e$ "All Files:*.BW, *. WF; Bi t maps: *. BMP;, Met af i | es: *. VWF"

f$

File Hame:

296color.bmp
arcade.bmp
archesz_bmp
argyle_bmp
carz.bmp
castle_bmp
chitz.bmp
egyplt.bmp

OpenFi | enane$(" Open Picture", e$)

Directories:
c:win3l

= e

E= win3l
C2 meapps
£ ndw
1 system
1 xga

Drives:
| = c: jim

List Files of Type:
All Files E

This example asks the user for the name of afile, then proceeds to read the first line from that file.

Sub Main
Dmf As String,s As String
f$ = OpenFil ename$(" Open Picture","Text Files:*. TXT")
If f$ <> "" Then
Open f$ For Input As #1
Line I nput #1,s$
Cl ose #1
MsgBox "First line from" &f$ & " is " & s$
End |f
End Sub

MsgBox (statement); AskBox$ (function); AskPasswor d$ (function); | nput Box,
I nput Box$ (functions); SaveFi | ename$ (function); Sel ect Box (function); Answer Box
(function).

0] 16-11



Notes: The extensions$ parameter must be in the following format:
type: ext[ , ext] [ ; type: ext[ , ext] ] . ..
Placeholder  Description
type Specifies the name of the grouping of files, suichasAl | Fi | es.
ext Specifiesavalid file extension, such as* . BAT or *. ?F?.
For example, the following are valid extensions$ specifications:
"All Files:*. *"
"Docunents: *. TXT, *. DOC'
"All Files:*.*; Docunments:*. TXT, *. DOC"
Operator Precedence (topic)
The following table shows the precedence of the operators supported by the Basic Control Engine.
Operations involving operators of higher precedence occur before operations involving operators of
lower precedence. When operators of equal precedence occur together, they are evaluated from left
toright.
Operator Description Precedence Order
() Parentheses Highest
A Ex ponentiation
- Unary minus
I, = Division and multiplication
\ Integer division
Mbd Modulo
+, - Addition and subtraction
& String concatenation
= <> > K, <= >= Relational
Li ke, Is String and object comparison
Not Logical negation
And Logical or binary conjunction
O Logical or binary digunction
Xor, Eqv, Inp Logical or binary operators L owest
The precedence order can be controlled using parentheses, as shown below:
a=4+3"*2 'a becomes 10.
a=(4+3 * 2 "a becones 14.
16-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Operator Precision (topic)

When numeric, binary, logical or comparison operators are used, the data type of the result is
generally the same as the data type of the more precise operand. For example, adding an | nt eger
and aLong first convertsthe | nt eger operand to aLong, then performs along addition,
overflowing only if the result cannot be contained with aLong. The order of precisionisshownin
the following table:

Enpty Least precise

Bool ean

I nt eger

Long

Si ngl e

Dat e

Doubl e

Currency Most precise

There are exceptions noted in the descriptions of each operator.

Therules for operand conversion are further complicated when an operator is used with variant
data. In many cases, an overflow causes automatic promotion of the result to the next highest
precise data type. For example, adding two | nt eger variantsresultsinan | nt eger variant
unlessit overflows, in which case the result is automatically promoted to aLong variant.

Option Base (statement)

Syntax Option Base {0 | 1}
Description Sets the lower bound for array declarations.
Comments By default, the lower bound used for al array declarationsis 0.

This statement must appear outside of any functions or subroutines.

Example Option Base 1

Sub Mai n()
Di m a(10) 'Contains 10 el enents (not 11).
a(l) = "Hello"
MsgBox “The first elenent of the array is: " & a(l)
End Sub

See Also Di m(statement); Publ i ¢ (statement); Pri vat e (statement).

GFK-1283G 0] 16-13



Option Compare (statement)

Syntax Option Conpare [Binary | Text]
Description Controls how strings are compared.
Comments When Opt i on Conpar e isset to Bi nary, then string comparisons are case-sensitive (for

example, "A" does not equal "a"). When it is set to Text , string comparisons are case-insensitive
(for example, "A" isequal to"a").

The default value for Opt i on Conpar e isBi nary.

The Opt i on Conpar e statement affects all string comparisonsin any statements that follow the
Opt i on Conpar e statement. Additionally, the setting affects the default behavior of | nst r,
St r Conp, and the Li ke operator. The following table shows the types of string comparisons

affected by this setting:

> < <>

<= >= I nstr
St r Conp Li ke

The Opt i on Conpar e statement must appear outside the scope of all subroutines and functions.
In other words, it cannot appear within a Sub or Funct i on block.

Example This example shows the use of Option Compare.

Option Conpare Binary
Sub Conpar eBi nary
a$ "This String Contains UPPERCASE. "
b$ = "this string contains uppercase."
If a$ = b$ Then
MsgBox "The two strings were conpared case-insensitive."
El se
MsgBox "The two strings were conpared case-sensitive."
End |f
End Sub

Option Conpare Text
Sub Conpar eText
a$ "This String Contains UPPERCASE. "
b$ = "this string contains uppercase."
If a$ = b$ Then
MsgBox "The two strings were conpared case-insensitive."
El se
MsgBox "The two strings were conpared case-sensitive."
End |f
End Sub

Sub Mai n()
Conpar eBi nary 'Calls subroutine above
Conpar eText 'Calls subroutine above
End Sub

See Also Li ke (operator); | nSt r (function); St r Conp (function); Comparison Operators (topic).

16-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Option CStrings (statement)

Syntax
Description

Comments

Example

GFK-1283G

Option CStrings {On | Of}

Turns on or off the ability to use C-style escape sequences within strings.

When Opti on CStrings Onisineffect, the compiler treats the backslash character as an
escape character when it appears within strings. An escape character is simply a special character
that cannot otherwise be ordinarily typed by the computer keyboard.

Escape Description

\r Carriage return

\n Line feed

\a Bell

\b Backspace

\ f Form feed

\t Tab

\v Vertical tab

\0 Null

\" Double quotation mark
\\ Backslash

\'? Question mark

\! Single quotation mark
\ xhh Hexadecimal number
\ooo Octa number

\ anycharacter ~ Any character

Equivalent Expression
Chr $(13)
Chr $(10)
Chr$(7)
Chr $(8)
Chr $(12)
Chr$(9)
Chr $(11)
Chr $(0)

" or Chr $( 34)
Chr $(92)
?

Chr $( Val (" &Hhh) )
Chr $( Val (" &0000") )

anycharacter

With hexadecimal values, the Basic Control Engine stops scanning for digits when it encounters a
nonhexadecimal digit or two digits, whichever comes first. Similarly, with octal values, the Basic
Control Engine stops scanning when it encounters a nonoctal digit or three digits, whichever comes

first.

When Opti on CStrings O f isin effect, then the backdash character has no special

meaning. Thisisthe default.
Option CStrings On
Sub Mai n()

MsgBox "They said, \"Watch out for that clunp of grass!\""

MsgBox "First line.\r\nSecond line."

MsgBox "Char A: \x41 \r\n Char B: \x42"

End Sub

16-15



OptionButton (statement)

Syntax Opt i onBut t on X,Y,width,height,title$ [,.Identifier]
Description Defines an option button within a dialog box template.
Comments This statement can only appear within adialog box template (that is, between the Begi n Di al og

and End Di al og statements).

The Opt i onBut t on statement accepts the following parameters:

Parameter Description

XY I nt eger coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height I nt eger coordinates specifying the dimensions of the control in dialog
units.

title$ St ri ng containing text that appears within the option button. This text may

contain an ampersand character to denote an accel erator letter, such as
"&Portrait" forPortrait,which can be selected by pressing the P

accelerator.
Identifier Name by which this control can be referenced by statementsin adialog
function (such as DI gFocus and DI gEnabl e).
Example This example creates a group of option buttons.
Sub Mai n()

Begi n Di al og Power Tenpl ate 16, 31, 128, 65,"Print"
GroupBox 8, 8,64,52,"Anplifier Qutput",.Junk
OptionGroup . Orientation

OptionButton 16, 20, 51, 8,"10 Watts", . Ten

OptionButton 16, 32,51, 8,"50 Watts",.Fifty

OptionButton 16, 44,51, 8,"100 Watts", . Hundred
OKBut t on 80, 8, 40, 14

End Di al og

Di m Power Di al og As Power Tenpl at e

Di al og Power Di al og

End Sub

See Also Cancel But t on (statement); CheckBox (statement); ConboBox (statement); Di al og
(function); Di al og (statement); Dr opLi st Box (statement); G- oupBox (statement); Li st Box
(statement); OKBut t on (statement); Opt i onGr oup (statement); Pi ct ur e (statement);
PushBut t on (statement); Text (statement); Text Box (statement); Begi n Di al og
(statement), Pi ct ur eBut t on (statement).

Note: Accelerators are underlined, and the accelerator combination Alt+letter is used.

16-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



OptionGroup (statement)

Syntax Opti onG oup . ldentifier
Description Specifies the start of a group of option buttons within a dialog box template.
Comments The .Identifier parameter specifies the name by which the group of option buttons can be

referenced by statementsin adialog function (such as Dl gFocus and DI gEnabl e). This
parameter also creates an integer variable whose value corresponds to the index of the selected
option button within the group (0 is the first option button, 1 is the second option button, and so
on). Thisvariable can be accessed using the following syntax: DialogVariable.ldentifier.

This statement can only appear within a dialog box template (that is, between the Begi n Di al og
and End Di al og statements).

When the dialog box is created, the option button specified by .1dentifier will be on; all other
option buttons in the group will be off. When the dialog box is dismissed, the .Identifier will
contain the selected option button.

Example This example creates a group of option buttons.

Sub Mai n()

Begi n Di al og Power Tenpl ate 16, 31, 128, 65,"Print"
GroupBox 8, 8,64,52,"Anplifier Qutput",.Junk
OptionGroup . Orientation

OptionButton 16, 20, 51, 8,"10 Watts", . Ten

OptionButton 16, 32,51, 8,"50 Watts",.Fifty

OptionButton 16, 44,51, 8,"100 Watts", . Hundred
OKBut t on 80, 8, 40, 14

End Di al og

Di m Power Di al og As Power Tenpl at e

Di al og Power Di al og

End Sub

See Also Cancel But t on (statement); CheckBox (statement); ConboBox (statement); Di al og
(function); Di al og (statement); Dr opLi st Box (statement); G- oupBox (statement); Li st Box
(statement); OKBut t on (statement); Opt i onBut t on (statement); Pi ct ur e (statement);
PushBut t on (statement); Text (statement); Text Box (statement); Begi n Di al og
(statement), Pi ct ur eBut t on (statement).

GFK-1283G 0] 16-17



Or (operator)

Svntax expressionl Or expression2
Description Performs alogical or binary disjunction on two expressions.
Comments If both expressions are either Bool ean, Bool ean variants, or Nul | variants, then alogical
If the first expression is and the second expression is then the result is
True True Tr ue
True Fal se Tr ue
True Nul | Tr ue
Fal se True Tr ue
Fal se Fal se Fal se
Fal se Nul | Nul |
Nul | True True
Nul | Fal se Nul |
Nul | Nul | Nul |

Binary Disjunction

If the two expressions are | nt eger , then abinary digunction is performed, returning an
I nt eger result. All other numeric types (including Enpt y variants) are converted to Long and a
binary digunction is then performed, returning aLong result.

Binary disjunction forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions according to the following table:

1 Or 1 = 1 Example;
0 Or 1 1 5 10101001

1 Or 0 1 6 01101010

0 Or 0 0 Or 11101011
Examples Thisfirst example shows the use of logical Or.

Sub Mai n()

temperature_alert = True
pressure_al ert = Fal se
If tenperature_alert O pressure_alert Then
MsgBox "You had better run!", ebExcl anation, "Nucl ear Di saster |nm nent"
End |f
End Sub

This second example shows the use of binary Or.

Sub Mai n()
Dimw As | nteger

TryAgai n:
s$ = I nputBox("Enter a hex nunber (four digits max).","Binary O Exanple")
If Md(s$,1,1) <> "& Then
s$ = "&H' & s$

End |f
If Not IsNuneric(s$) Then CGoto TryAgain
w = dnt(s$)

MsgBox "Your nunber is &H' & Hex(w)

w=w O &H8000

MsgBox "Your nunber with the high bit set is &' & Hex(w)
End Sub

See Also Operator Precedence (topic); Xor (operator); Eqv (operator); | np (operator); And (operator).

16-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Pi (constant)

Syntax Pi
Description The Doubl e value 3. 141592653589793238462643383279.
Comments Pi can aso be determined using the following formula:
4 * Atn(1)
Example This example illustrates the use of the Pi constant.
Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()
dia = InputBox("Enter a circle dianmeter to conpute.","Conpute Circle")

circ# = Pi * dia

area# = Pi * ((dia/ 2) ~ 2)

msgl = "Dianeter: " & dia & crlf

msgl = msgl & "Circunference: " & Format(circ#,"Standard") & crlf

msgl = nmsgl & "Area: " & Format (area#, " Standard")
MsgBox nsgl
End Sub
See Also Tan (function); At n (function); Cos (function); Si n (function).

GFK-1283G 17-1



Picture (statement)

Syntax
Description

Comments

17-2

Pi cture X, Y, width, height, PictureName$, PictureType [, [ . Identifier] [, style] ]

Creates a picture control in adialog box template.

Picture controls are used for the display of graphicsimages only. The user cannot interact with these

controls.

The Pi ct ur e statement accepts the following parameters:

Parameter
X, Y

width, height

PictureName$

PictureType

Identifier

style

Description

I nt eger coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

I nt eger coordinates specifying the dimensions of the control in dialog
units.

St ri ng containing the name of the picture. If PictureTypeis O, then this
name specifies the name of the file containing the image. If PictureTypeis 10,
then PictureName$ specifies the name of the image within the resource of the
picture library.

If PictureName$ is empty, then no picture will be associated with the control.
A picture can later be placed into the picture control using the
Dl gSet Pi ct ur e statement.

I nt eger specifying the source for the image. The following sources are
supported:

0 Theimageis contained in afile on disk.

10 The image is contained in a picture library as specified by the
PicName$ parameter on the Begin Dialog statement.

Name by which this control can be referenced by statementsin adialog
function (such as DI gFocus and DI gEnabl e). If omitted, then the first two
words of PictureName$ are used

Specifies whether the picture is drawn within a 3D frame. It can be any of the
following values:

0 Draw the picture control with anormal frame.
1 Draw the picture control with a 3D frame.

If omitted, then the picture control is drawn with a normal frame..

The picture control extracts the actual image from either a disk file or a picture library. In the case of
bitmaps, both 2- and 16-color bitmaps are supported. In the case of WMFs, the Basic Control
Engine supports the Placeable Windows Metdfile.

If PictureName$ is a zero-length string, then the picture is removed from the picture control, freeing
any memory associated with that picture.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Examples

See Also

Notes:

GFK-1283G

Thisfirst example shows how to use a picture from afile.

Sub Mai n()
Begi n Di al og LogoDi al ogTenpl ate 16, 32, 288, 76, "1 ntroducti on"
OKBut t on 240, 8, 40, 14
Picture 8, 8,224, 64,"c:\bitmaps\I| ogo. bnp", 0, . Logo
End Di al og
Di m LogoDi al og As LogoDi al ogTenpl ate
Di al og LogoDi al og
End Sub

This second example shows how to use a picture from a picture library with a 3D frame.

Sub Mai n()
Begi n Di al og LogoDi al ogTenpl ate 16, 31, 288, 76, "I ntroducti on",, "pictures.dl|"
OKBut t on 240, 8, 40, 14
Picture 8,8, 224, 64, " ConpanyLogo", 10, . Logo, 1
End Di al og
Di m LogoDi al og As LogoDi al ogTenpl at e
Di al og LogoDi al og
End Sub
Cancel But t on (statement); CheckBox (statement); ConrboBox (statement); Di al og
(function); Di al og (statement); Dr opLi st Box (statement); G- oupBox (statement); Li st Box
(statement); OKBut t on (statement); Opt i onBut t on (statement); Opt i onGr oup (statement);
PushBut t on (statement); Text (statement); Text Box (statement); Begi n Di al og

(statement), Pi ct ur eBut t on (statement) , Dl gSet Pi ct ur e (statement).

Picture controls can contain either a bitmap or a WMF (Windows metafile). When extracting images
from apicture library, the Basic Control Engine assumes that the resource type for metafilesis 256.

Picture libraries are implemented as DLLs on the Windows and Win32 platforms.

P 17-3



PictureButton (statement)

Syntax Pi ctureButton X, Y, width, height, PictureName$, PictureType [, . Identifier]
Description Creates a picture button control in adialog box template.
Comments Picture button controls behave very much like a push button controls. Visualy, picture buttons are

different than push buttonsin that they contain a graphic image imported either from afile or from
apicturelibrary.

ThePi ct ur eBut t on statement accepts the following parameters:

Parameter Description

XY I nt eger coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height I nt eger coordinates specifying the dimensions of the control in dialog
units.

PictureName$ St ri ng containing the name of the picture. If PictureTypeisO0, then this

name specifies the name of the file containing the image. If PictureTypeis
10, then PictureName$ specifies the name of the image within the resource of
the picture library.

If PictureName$ is empty, then no picture will be associated with the control.
A picture can later be placed into the picture control using the
Dl gSet Pi ct ur e statement.

PictureType I nt eger specifying the source for the image. The following sources are
supported:

0 Theimageiscontained in afile on disk.

10 Theimageiscontained in apicture library as specified by the
PicName$ parameter on the Begi n Di al og statement.

Identifier Name by which this control can be referenced by statementsin adialog
function (such as Dl gFocus and DIl gEnabl e).

The picture button control extracts the actual image from either adisk file or a picture library,
depending on the value of PictureType. The supported picture formats vary from platform to
platform.

If PictureName$ is a zero-length string, then the picture is removed from the picture button control,
freeing any memory associated with that picture.

Examples Thisfirst example shows how to use a picture from afile.

Sub Mai n()
Begi n Di al og LogoDi al ogTenpl ate 16, 32, 288, 76, "I ntroducti on"
OKBut t on 240, 8, 40, 14
Pi ctureButton 8, 4,224, 64, "c:\bitmaps\I ogo. bnp", 0, . Logo
End Di al og
Di m LogoDi al og As LogoDi al ogTenpl at e
Di al og LogoDi al og
End Sub

17-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



See Also

Notes:

GFK-1283G

This second example shows how to use a picture from a picture library.

Sub Mai n()
Begi n Di al og LogoDi al ogTenpl ate 16, 31, 288, 76, "I ntroducti on",, "pictures.dl|"
OKBut t on 240, 8, 40, 14
Pi ctureButton 8, 4,224, 64, " ConpanyLogo", 10, . Logo
End Di al og
Di m LogoDi al og As LogoDi al ogTenpl at e
Di al og LogoDi al og
End Sub
Cancel But t on (statement); CheckBox (statement); ConrboBox (statement); Di al og
(function); Di al og (statement); Dr opLi st Box (statement); Gr oupBox (statement); Li st Box
(statement); OKBut t on (statement); Opt i onBut t on (statement); Opt i onGr oup (statement);
PushBut t on (statement); Text (statement); Text Box (statement); Begi n Di al og

(statement), Pi ct ur e (statement), DI gSet Pi ct ur e (statement).

Picture controls can contain either a bitmap or a WMF (Windows metafile). When extracting
images from a picture library, the Basic Control Engine assumes that the resource type for metafiles
is 256.

Picture libraries are implemented as DLLs on the Win32 platforms.
Picture controls can contain either bitmaps or Windows metafiles.

Picture libraries under OS/2 are implemented as resources within DLLs. The PictureName$
parameter corresponds to the name of one of these resources as it appears within the DLL.

Picture controls on the Macintosh can contain only PICT images. These are contained in files of
type PICT.

Picture libraries on the Macintosh are files with collections of named PICT resources. The
PictureName$ parameter corresponds to the name of one the resources asit appears within thefile.

Under DOS, Pi ct ur eBut t on statements within dialog box templates are ignored at runtime.

P 17-5



Pmt (function)

Syntax Pt ( Rate, NPer, Pv, Fv, Due)
Description Returns the payment for an annuity based on periodic fixed payments and a constant rate of interest.
Comments An annuity is a series of fixed payments made to an insurance company or other investment

company over aperiod of time. Examples of annuities are mortgages and monthly savings plans.

The Pnt function requires the following parameters:

Parameter Description

Rate Doubl e representing the interest rate per period. If the periods are given in
months, be sure to normalize annual rates by dividing them by 12.

NPer Doubl e representing the total number of payments in the annuity.

Pv Doubl e representing the present value of your annuity. In the case of a

loan, the present value would be the amount of the loan.

Fv Doubl e representing the future value of your annuity. In the case of aloan,
the future value would be 0.

Due I nt eger indicating when payments are due for each payment period. A 0
specifies payment at the end of each period, whereasa 1 specifies payment
at the start of each period.

Rate and NPer must be expressed in the same units. If Rate is expressed in months, then NPer must
also be expressed in months.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.
Example This example calculates the payment necessary to repay a $1,000.00 loan over 36 months at an
annual rate of 10%. Payments are due at the beginning of the period.

Sub Mai n()
x = Pt ((.1/12), 36,1000. 00,0, 1)
nsgl = "The paynent to anortize $1,000 over 36 nonths @10%is: "
MsgBox nmsgl & Fornmat (x, " Currency")

End Sub

See Also I Pt (function); NPer (function); PPrt (function); Rat e (function).

17-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



PopupMenu (function)

Syntax

Description

Comments

Example

See Also

GFK-1283G

PopupMenu(Menultems$())
Displays a pop-up menu containing the specified items, returning an | nt eger representing the
index of the selected item.

If no item is selected (that is, the pop-up menu is canceled), then avalue of 1 less than the lower
bound is returned (normally, —1).

This function creates a pop-up menu using the string elementsin the given array. Each array
element is used as amenu item. A zero-length string results in a separator bar in the menu.

The pop-up menu is created with the upper left corner at the current mouse position.
A runtime error resultsif Menultems$ is not a single-dimension array.

Only one pop-up menu can be displayed at atime. An error will result if another script executes
this function while a pop-up menu isvisible.

Sub Mai n()

Di m a$()

AppLi st a$

W6 = PopupMenu( a$)
End Sub

Sel ect Box (function).

17-7



PPmt (function)

Syntax

Description

Comments

Example

See Also

17-8

PPnt ( Rate, Per, NPer, Pv, Fv, Due)

Calculates the principal payment for a given period of an annuity based on periodic, fixed payments
and afixed interest rate.

An annuity is a series of fixed payments made to an insurance company or other investment
company over a period of time. Examples of annuities are mortgages and monthly savings plans.

The PPmt function requires the following parameters:

Parameter Description

Rate Doubl e representing the interest rate per period.

Per Doubl e representing the number of payment periods. Per can be no less than
1 and no greater than NPer.

NPer Doubl e representing the total number of paymentsin your annuity.

Pv Doubl e representing the present value of your annuity. In the case of aloan,

the present value would be the amount of the loan.

Fv Doubl e representing the future value of your annuity. In the case of aloan,
the future value would be 0.

Due I nt eger indicating when payments are due. If this parameter is 0, then
payments are due at the end of each period; if itis 1, then payments are due at
the start of each period.

Rate and NPer must be in the same units to calculate correctly. If Rate is expressed in months, then
NPer must also be expressed in months.

Negative values represent payments paid out, whereas positive values represent payments received.

This example calculates the principal paid during each year on aloan of $1,000.00 with an annual
rate of 10% for a period of 10 years. The result is displayed as a table containing the following
information: payment, principal payment, principal balance.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
pay = Pnt (.1, 10, 1000. 00, 0, 1)

msgl = "Anortization table for 1,000" & crlf & "at 10% annually for"
msgl = msgl & " 10 years: " &crlf &crlf
bal = 1000. 00
For per =1 to 10
prn = PPnt (.1, per, 10, 1000, 0, 0)
bal = bal + prn
nsgl = nsgl & Format(pay,"Currency") & " " & Format$(Prn,"Currency")
msgl = msgl & " " & Fornmat(bal,"Currency") & crlf
Next per
MsgBox nsgl
End Sub

I Pnt (function); NPer (function); Pt (function); Rat e (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Print (statement)

Syntax
Description
Comments

Examples

Note:

GFK-1283G

Print [[{Spc(n) | Tab(n)}][expressionlist] [{; | ,}]]

Prints data to an output device.

The actual output device depends on the platform on which the Basic Control Engine is running.
The following table describes how data of different typesiswritten:

Data Type Description

String Printed in its literal form, with no enclosing quotes.

Any numeric type Printed with an initial space reserved for the sign (space = positive).
Additionally, there is a space following each number.

Bool ean Printed as"True" or "False".

Dat e Printed using the short date format. If either the date or time component is

missing, only the provided portion is printed (thisis consistent with the
"general date" format understood by the For mat / For mat $ functions).

Empt y Nothing is printed.
Nul | Prints "Null".
User-defined errors Printed as"Error code", where code is the value of the user-defined error.

The word "Error" is not trandl ated.

Each expression in expressionlist is separated with either acomma (,) or asemicolon (;). A comma
means that the next expression is output in the next print zone. A semicolon means that the next
expression is output immediately after the current expression. Print zones are defined every 14
spaces.

If the last expressionin thelist is not followed by a comma or a semicolon, then a carriage return is
printed to thefile. If the last expression ends with a semicolon, no carriage return is printedd the
next Pri nt statement will output information immediately following the expression. If the last
expression in the list ends with acomma, the file pointer is positioned at the start of the next print
zone on the current line.

The Tab and Spc functions provide additional control over the column position. The Tab function
moves the file position to the specified column, whereas the Spc function outputs the specified
number of spaces.

Sub Mai n()
i%= 10
s$ = "This is a test."
Print "The value of i=";i%"the value of s=";s$
'"This exanple prints the value of i%in print zone 1 and s$ in print
'zone 3.

Print i%,s$

'This exanple prints the value of i%and s$ separated by 10 spaces.
Print i9% Spc(10);s$

"This exanple prints the value of i in colum 1 and s$ in colum 30.
Print i% Tab(30);s$

"This exanple prints the value of i% and s$.

Print i%s$,
Print 67
End Sub

On Win32, the Pri nt statement prints datato st dout .

P 17-9



Print# (statement)

Syntax
Description

Comments

17-10

Print [#]filenumber, [[{Spc(n) | Tab(n)}][ expressionlist] [{;],}]]
Writes data to a sequential disk file.

The filenumber parameter is a number that is used by the Basic Control Engine to refer to the open
file—the number passed to the Qpen statement.

The following table describes how data of different typesis written:

Data Type Description
String Printed initsliteral form, with no enclosing quotes.

Any numerictype  Printed with an initial space reserved for the sign (space = positive).
Additionally, there is a space following each number.

Bool ean Printed as"True" or "False".

Dat e Printed using the short date format. If either the date or time component is
missing, only the provided portion is printed (thisis consistent with the
"general date" format understood by the For mat / For mat $ functions).

Enpty Nothing is printed.
Nul | Prints "Null".

User-defined errors  Printed to files as "Error code", where code is the value of the user-defined
error. The word "Error" is not trand ated.

Each expression in expressionlist is separated with either acomma (,) or a semicolon (;). A comma
means that the next expression is output in the next print zone. A semicolon means that the next
expression is output immediately after the current expression. Print zones are defined every 14
spaces.

If the last expression in thelist is not followed by a comma or a semicolon, then an end-of-lineis
printed to the file. If the last expression ends with a semicolon, no end-of-lineis printed the next
Pri nt statement will output information immediately following the expression. If the |ast
expression in the list ends with a comma, the file pointer is positioned at the start of the next print
zone on the current line.

The W i t e statement always outputs information ending with an end-of-line. Thus, if aPri nt
statement isfollowed by aW i t e statement, the file pointer is positioned on a new line.

ThePri nt statement can only be used with files that are opened in Qut put or Append mode.

The Tab and Spc functions provide additional control over the file position. The Tab function
moves the file position to the specified column, whereas the Spc function outputs the specified
number of spaces.

In order to correctly read the data using the | nput # statement, you should write the data using the
Wit e statement.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Examples

See Also

Note:

GFK-1283G

Sub Mai n()
' This exanple opens a file and prints sonme data.

the value of s=";s$

of i%in print zone 1 and s$ in

of i%and s$ separated by ten spaces.

of i in colum 1 and s$ in colum 30.

of i% and s$.

Open "test.dat" For CQutput As #1
i%= 10
s$ = "This is a test."
Print #1,"The value of i=";i%"
' This exanple prints the val ue
"print zone 3.
Print #1,i%, s$
' This exanple prints the val ue
Print #1,i % Spc(10);s$
" This exanple prints the val ue
Print #1,i % Tab(30);s$
' This exanple prints the val ue
Print #1,i% s$,
Print #1,67
Cl ose #1
Kill "test.dat"

End Sub

Open (statement); Put (statement); W i t e# (statement).

The end-of-line character can be either the carriage-return/line-feed pair, or the line-feed character.

17-11



Private (statement)

Syntax Private name [ (subscripts)] [As type] [, name [ (subscripts)] [As type]]. ..
Description Declaresalist of private variables and their corresponding types and sizes.
Comments Private variables are global to every Sub and Funct i on within the currently executing script.

If atype-declaration character is used when specifying name (suchas% @ &, $, or ! ), the optional
[ As type] expressionisnot allowed. For example, the following are allowed:

Private foo As Integer
Private foo%

The subscripts parameter allows the declaration of arrays. This parameter uses the following
syntax:

[lower To] upper [,[lower To] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds of the array. If
lower is not specified, then the lower bound as specified by Opt i on Base isused (or 1if no
Opt i on Base statement has been encountered). Up to 60 array dimensions are allowed.

Thetotal size of an array (not counting space for strings) is limited to 64K.
Dynamic arrays are declared by not specifying any bounds:
Private a()

The type parameter specifies the type of the dataitem being declared. It can be any of the following
datatypes: St ri ng, | nt eger, Long, Si ngl e, Doubl e, Currency, Obj ect , data object,
built-in data type, or any user-defined data type.

If avariableis seen that has not been explicitly declared with either Di m Publ i ¢, or Pri vat e,
then it will be implicitly declared local to the routine in which it is used.

Fixed-Length Strings

Fixed-length strings are declared by adding a length to the St r i ng type-declaration character:
Private name As String * length

where length is aliteral number specifying the string's length.

Initial Values

All declared variables are given initial values, as described in the following table:

Data Type Initial Value

I nt eger 0

Long 0

Doubl e 0.0

Si ngl e 0.0

Currency 0.0

oj ect Not hi ng

Dat e Decenber 31, 1899 00: 00: 00
Bool ean Fal se

17-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Var i ant Enpty

String "" (zero-length string)
User-defined type  Each element of the structure is given a default value, as described above.
Arrays Each element of the array is given a default value, as described above.
Example This example sets the value of variable x# in two separate routines to show the behavior of private
variables.
Private x#
Sub Area()
x# = 10 "Set this copy of x# to 10 and displ ay
MsgBox x#
End Sub
Sub Mai n()
x# = 100 "Set this copy of x# to 100 and display after calling the Area
subroutine
Area
MsgBox x#
End Sub
See Also Di m(statement); Redi m(statement); Publ i ¢ (statement); Opt i on Base (statement).

GFK-1283G P 17-13



Public (statement)

Syntax Publ i ¢ name [ (subscripts)] [As type] [, name [ (subscripts)] [As type]]. ..
Description Declaresalist of public variables and their corresponding types and sizes.
Comments Public variables are global to all Subsand Funct i onsinall scripts.

If atype-declaration character is used when specifying name (suchas% @ &, $, or ! ), the optional
[ As type] expressionisnot allowed. For example, the following are allowed:

Public foo As Integer
Public foo%

The subscripts parameter allows the declaration of arrays. This parameter uses the following
syntax:

[ lower To] upper [,[lower To] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds of the array. If
lower is not specified, then the lower bound as specified by Opt i on Base isused (or 1if no
Opt i on Base statement has been encountered). Up to 60 array dimensions are allowed.

Thetotal size of an array (not counting space for strings) is limited to 64K.
Dynamic arrays are declared by not specifying any bounds:
Public a()

The type parameter specifies the type of the dataitem being declared. It can be any of the following
datatypes: St ri ng, | nt eger, Long, Si ngl e, Doubl e, Currency, Obj ect , data object,
built-in data type, or any user-defined data type.

If avariableis seen that has not been explicitly declared with either Di m Publ i ¢, or Pri vat e,
then it will be implicitly declared local to the routine in which it is used.

For compatibility, the keyword G obal isalso supported. It has the same meaning as Publ i c.

Fixed-Length Strings

Fixed-length strings are declared by adding a length to the St r i ng type-declaration character:
Public name As String * length

where length is aliteral number specifying the string's length.

Initial Values

All declared variables are given initial values, as described in the following table;

Data Type Initial Value

I nt eger 0

Long 0

Doubl e 0.0

Singl e 0.0

Currency 0.0

Dat e Decenber 31, 1899 00: 00: 00
oj ect Not hi ng

17-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Bool ean Fal se

Vari ant Enpty

String " (zero-length string)

User-defined type Each element of the structureis given a default value, as described above.
Arrays Each element of the array is given a default value, as described above.
Sharing Variables

When sharing variables, you must ensure that the declarations of the shared variables are the same
in each script that uses those variables. If the public variable being shared is a user-defined
structure, then the structure definitions must be exactly the same.

Example This example uses a subroutine to cal culate the area of ten circles and displays the result in adialog
box. The variables R and Ar are declared as Public variables so that they can be used in both Main
and Area.

Const crlf = Chr$(13) + Chr$(10)
Public x#, ar#

Sub Area()
ar#t = (x# N 2) * Pi
End Sub

Sub Mai n()
msgl = "The area of the ten circles are:" & crlf &ecrlf
For x# =1 To 10
Area
negl = negl & x# & ": " & Format (ar#,"fixed") & Basic. Eol n$
Next x#
MsgBox mnsgl
End Sub

See Also Di m(statement); Redi m(statement); Pri vat e (statement); Opt i on Base (statement).

GFK-1283G P 17-15



PushButton (statement)

Syntax PushBut t on X, Y, width, height, title$ [, . Identifier]

Description Defines a push button within a dialog box template.

Comments Choosing a push button causes the dialog box to close (unless the dialog function redefines this
behavior).

This statement can only appear within a dialog box template (that is, between the Begi n Di al og
and End Di al og statements).

The PushBut t on statement accepts the following parameters:

Parameter Description

XY I nt eger coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height I nt eger coordinates specifying the dimensions of the control in dialog
units.

title$ St ri ng containing the text that appears within the push button. This text

may contain an ampersand character to denote an accelerator letter, such as
"&Save" for Save.

Identifier Name by which this control can be referenced by statementsin adialog
function (such as DI gFocus and DI gEnabl e).

If a push button is the default button, it can be selected by pressing Enter on a nonbutton control.

A dialog box template must contain at least one OKBut t on, Cancel But t on, or PushBut t on
statement (otherwise, the dialog box cannot be dismissed).

Example This example creates a bunch of push buttons and displays which button was pushed.

Sub Mai n()
Begi n Di al og ButtonTenpl ate 17, 33, 104, 84, "Butt ons"
OKButton 8, 4, 40, 14, . K
Cancel Button 8, 24, 40, 14, . Cancel
PushButton 8, 44,40, 14,"1",.Buttonl
PushButton 8, 64, 40, 14,"2", . Button2
PushButton 56, 4, 40, 14, " 3", . Button3
PushButton 56, 24, 40, 14, "4", . Button4
PushButton 56, 44, 40, 14, "5", . Button5
PushButton 56, 64, 40, 14, "6", . Button6
End Di al og
Di m ButtonDi al og As ButtonTenpl ate
Whi chBut t on% = Di al og(ButtonDi al og)
MsgBox "You pushed button " & Wi chButton%
End Sub

See Also Cancel But t on (statement); CheckBox (statement); ConboBox (statement); Di al og
(function); Di al og (statement); Dr opLi st Box (statement); G- oupBox (statement); Li st Box
(statement); OKBut t on (statement); Opt i onBut t on (statement); Opt i onGr oup (statement);
Pi ct ur e (statement); Text (statement); Text Box (statement); Begi n Di al og (statement),
Pi ct ur eBut t on (statement).

Note: Accelerators are underlined, and the accelerator combination Alt+letter is used.

17-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Put (statement)

Syntax
Description

Comments

GFK-1283G

Put [ #] filenumber, [recordnumber], variable
Writes data from the specified variable to aRandomor Bi nar y file.

The Put statement accepts the following parameters:

Parameter Description
filenumber I nt eger representing the file to be written to. Thisisthe same value as

returned by the Open statement.
recordnumber Long specifying which record is to be written to the file.

For Bi nar y files, this number represents the first byte to be written starting
with the beginning of the file (the first byteis 1). For Randomfiles, this
number represents the record number starting with the beginning of the file
(thefirst record is 1). This value ranges from 1 to 2147483647.

If the recordnumber parameter is omitted, the next record is written to the
file (if no records have been written yet, then the first record in thefileis
written). When recordnumber is omitted, the commas must till appear, asin
the following example:

Put #1,,recvar

If recordlength is specified, it overrides any previous change in file position
specified with the Seek statement.

The variable parameter is the name of any variable of any of the following types:

Variable Type File Storage Description
I nt eger 2 bytes are written to the file.
Long 4 bytes are written to thefile.
String InBi nary files, variable-length strings are written by first determining the

(variable-length) specified string variabl€e's length, then writing that many bytes to the file.

In Randomfiles, variable-length strings are written by first writing a 2-byte
length, then writing that many charactersto thefile.

String Fixed-length strings are written to Randomand Bi nar y filesin the same
(fixed-length) way: the number of characters equal to the string's declared length are
written.

Doubl e 8 bytes are written to the file (IEEE format).
Single 4 bytes are written to the file (IEEE format).
Dat e 8 bytes are written to the file (IEEE double format).
Bool ean 2 bytes are written to the file (either —1 for Tr ue or O for Fal se).

P 17-17



Vari ant A 2-byte Var Ty pe iswritten to the file followed by the data as described
above. With variants of type 10 (user-defined errors), the 2-byte Var Type is
followed by a 2-byte unsigned integer (the error value), which is then
followed by 2 additional bytes of information.

The exception is with strings, which are always preceded by a 2-byte string
length.

User-defined types  Each member of a user-defined data type is written individualy.

In Bi nary files, variable-length strings within user-defined types are written
by first writing a 2-byte length followed by the string's content. This storage
is different than variable-length strings outside of user-defined types.

When writing user-defined types, the record length must be greater than or
equal to the combined size of each element within the data type.

Arrays Arrays cannot be written to afile using the Put statement.
Objects Object variables cannot be written to afile using the Put statement.

With Randomfiles, aruntime error will occur if the length of the data being written exceeds the
record length (specified as the reclen parameter with the Open statement). If the length of the data
being written is less than the record length, the entire record is written along with padding
(whatever data happensto bein the I/0 buffer at that time). With Bi nar y files, the data elements
are written contiguously: they are never separated with padding.

Example This example opens afile for random write, then writes ten records into the file with the values 10-
50. Then thefileis closed and reopened in random mode for read, and the records are read with the
Get statement. The result is displayed in a dialog box.
Sub Mai n()

Open "test.dat" For Random Access Wite As #1
For x =1 To 10

r%=x * 10
Put #1,X,r%
Next x
Cl ose

Open "test.dat" For Random Access Read As #1
For x =1 To 10

Get #1,X,1r%

megl = "Record " & x & " is: " & r% & Basic. Eol n$
Next X

MsgBox mnsgl

Cl ose

Kill "test.dat"
End Sub

See Also Open (statement); Put (statement); W i t e# (statement); Pr i nt # (statement).

17-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Pv (function)

Syntax Pv( Rate, NPer, Pmt, Fv, Due)
Description Calculates the present value of an annuity based on future periodic fixed payments and a constant
rate of interest.
Comments The Pv function requires the following parameters:
Parameter Description
Rate Doubl e representing the interest rate per period. When used with monthly
payments, be sure to normalize annual percentage rates by dividing them by
12.
NPer Doubl e representing the total number of paymentsin the annuity.
Pmt Doubl e representing the amount of each payment per period.
Fv Doubl e representing the future value of the annuity after the last payment has

been made. In the case of aloan, the future value would be 0.

Due I nt eger indicating when the payments are due for each payment period. A 0
specifies payment at the end of each period, whereas a 1 specifies payment at
the start of each period.

Rate and NPer must be expressed in the same units. If Rate is expressed in months, then NPer must
also be expressed in months.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example This example demonstrates the present value (the amount you'd have to pay now) for a $100,000
annuity that pays an annual income of $5,000 over 20 years at an annual interest rate of 10%.
Sub Mai n()
pval = Pv(.1, 20, -5000, 100000, 1)
MsgBox "The present value is: " & Format(pval,"Currency")
End Sub
See Also Fv (function); I RR (function); M RR (function); Npv (function).

GFK-1283G P 17-19






Random (function)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Randon{ min, max)
ReturnsaLong value greater than or equal to min and less than or equal to max.

Both the min and max parameters are rounded to Long. A runtime error is generated if minis
greater than max.

This example sets the randomize seed then generates six random numbers between 1 and 54 for the
lottery.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
Di m a% 5)
Randomi ze

For x = 0 To 5
tenp = Randon( 1, 54)

"Elimninate duplicate nunbers.
For y =0 To 5

If a(y) = tenp Then found = true
Next

If found = false Then a(x) = tenp Else x =x - 1
found = fal se
Next

ArraySort a
nmsgl = ""
For x = 0 To 5
msgl = megl & a(x) & crlf
Next X

MsgBox "Today's winning lottery nunbers are: " & crlf & crlf & nsgl
End Sub

Random ze (statement); Random(function).

18-1



Randomize (statement)

Syntax Random ze [ seed]
Description Initializes the random number generator with a new seed.
Comments If seed is not specified, then the current value of the system clock is used.
Example This example sets the randomize seed then generates six random numbers between 1 and 54 for the
lottery.
Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()
Di m a% 5)

Randomi ze ' This sets the random seed.
"Onmitting this line will
"identical each time the sanple is run.

For x = 0 To 5
temp = Rnd(1) * 54 + 1

"Elimninate duplicate nunbers.

For y =0 To 5

If a(y) = tenp Then found = true

Next

If found = false Then a(x) = tenp El se

found = fal se
Next

ArraySort a
nmegl = ""
For x = 0 To 5
msgl = megl & a(x) & crlf

Next X
MsgBox "Today's winning lottery nunbers are:
End Sub
See Also Random(function); Rnd (function).

18-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

cause the random nunbers to be

" &ecerlf &ecerlf & megl

GFK-1283G



Rate (function)

Syntax Rat e(NPer,Pmt,Pv,Fv,Due,Guess)
Description Returns the rate of interest for each period of an annuity.
Comments An annuity is a series of fixed payments made to an insurance company or other investment

company over aperiod of time. Examples of annuities are mortgages and monthly savings plans.

The Rat e function requires the following parameters:

Parameter Description

NPer Doubl e representing the total number of paymentsin the annuity.

Pmt Doubl e representing the amount of each payment per period.

Pv Doubl e representing the present value of your annuity. In aloan situation,

the present value would be the amount of the loan.

Fv Doubl e representing the future value of the annuity after the last payment
has been made. In the case of aloan, the future value would be zero.

Due I nt eger specifying when the payments are due for each payment period. A
0 indicates payment at the end of each period, whereasa 1 indicates payment
at the start of each period.

Guess Doubl e specifying a guess as to the value the Rat e function will return.
The most common guessis.1 (10 percent).

Positive numbers represent cash received, whereas negative val ues represent cash paid out.

The value of Rate isfound by iteration. It starts with the value of Guess and cycles through the
calculation adjusting Guess until the result is accurate within 0.00001 percent. After 20 tries, if a
result cannot be found, Rate fails, and the user must pick a better guess.

Example This example calculates the rate of interest necessary to save $8,000 by paying $200 each year for
48 years. The guessrate is 10%.

Sub Mai n()

r# = Rate(48,-200,8000,0,1,.1)

MsgBox "The rate required is: " & Fornmat (r#, "Percent")
End Sub

See Also I Pt (function); NPer (function); Pnt (function); PPt (function).

GFK-1283G R 18-3



ReadIni$ (function)

Syntax Readl ni $(section$,item$[,filename$])
Description Returnsa St r i ng containing the specified item from an ini file.
Comments The Readl ni $ function takes the following parameters:
Parameter Description
section$ St ri ng specifying the section that contains the desired variable, such as
"windows'. Section names are specified without the enclosing brackets.
item$ St ri ng specifying the item whose value is to be retrieved.
filename$ St ri ng containing the name of theini file to read.
See Also Witelni (statement); Readl ni Secti on (statement).
Notes: If the name of theini fileis not specified, then win.ini is assumed.

If the filename$ parameter does not include a path, then this statement looks for ini filesin the
Windows directory.

18-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



ReadIniSection (statement)

Syntax Readl ni Secti on section$,ArrayOfitems()[,filename$]
Description Fills an array with the item names from a given section of the specified ini file.
Comments The Readl ni Sect i on statement takes the following parameters:
Parameter Description
section$ St ri ng specifying the section that contains the desired variables, such as

"windows". Section names are specified without the enclosing brackets.

ArrayOfltems() Specifies either a zero- or a one-dimensioned array of strings or variants. The
array can be either dynamic or fixed.

If ArrayOfitems() is dynamic, then it will be redimensioned to exactly hold
the new number of elements. If there are no elements, then the array will be
redimensioned to contain no dimensions. Y ou can use the LBound,
UBound, and Ar r ayDi ns functions to determine the number and size of
the new array's dimensions.

If the array isfixed, each array element isfirst erased, then the new elements
are placed into the array. If there are fewer elements than will fit in the array,
then the remaining elements are initialized to zero-length strings (for
String arrays) or Enpt y (for Var i ant arrays). A runtime error results if
the array istoo small to hold the new elements.

filename$ St ri ng containing the name of anini file.
On return, the ArrayOfltems() parameter will contain one array element for each variable in the
specified ini section.

Dimitenms() As String
Readl ni Secti on "W ndows",itens$

r% = Sel ect Box("IN Itenms",,itens$)
End Sub
See Also Readl ni $ (function); Wi t el ni (statement).
Notes: If the name of theini fileis not specified, then win.ini is assumed.

If the filename$ parameter does not include a path, then this statement looks for ini filesin the
Windows directory.

GFK-1283G R 18-5



Redim (statement)

Syntax
Description

Comments

Example

See Also

18-6

Redi m [ Preserve] variablename (subscriptRange) [ As type], ...
Redimensions an array, specifying a new upper and lower bound for each dimension of the array.

The variablename parameter specifies the name of an existing array (previously declared using the
Di mstatement) or the name of anew array variable. If the array variable already exists, then it must
previously have been declared with the Di mstatement with no dimensions, as shown in the
following example:

Dima$() 'Dynamic array of strings (no di mensions yet)
Dynamic arrays can be redimensioned any number of times.

The subscriptRange parameter specifies the new upper and lower bounds for each dimension of the
array using the following syntax:

[ lower To] upper [,[lower To] upper]...

If lower is not specified, then O is used (or the value set using the Opt i on Base statement). A
runtime error is generated if lower isless than upper. Array dimensions must be within the
following range:

—32768 <= lower <= upper <= 32767

The type parameter can be used to specify the array element type. Arrays can be declared using any
fundamental data type, user-defined data types, and objects.

Redimensioning an array erases all elements of that array unlessthe Pr eser ve keyword is
specified. When this keyword is specified, existing datain the array is preserved where possible. If
the number of elementsin an array dimension isincreased, the new elements areinitialized to O (or
empty string). If the number of elementsin an array dimension is decreased, then the extra elements
will be deleted. If the Pr eser ve keyword is specified, then the number of dimensions of the
array being redimensioned must either be zero or the same as the new number of dimensions.

This example uses the FileList statement to redim an array and fill it with filename strings. A new
array is then redimmed to hold the number of elements found by FileList, and the FileList array is
copied into it and partially displayed.

Sub Mai n()

Dimfl$()

FileList fl$,"*. *"

count = Ubound(fl$)

Redi m nl $(Lbound(f1$) To Ubound(fl$))

For x = 1 to count

nl $(x) = fl(x)

Next X

MsgBox "The | ast elenent of the new array is: " & nl$(count)
End Sub

Di m(statement); Publ i ¢ (statement); Pri vat e (statement); Ar r ayDi ns (function); LBound
(function); UBound (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Rem (statement)

Syntax
Description

Example

See Also

Rem text

Causes the compiler to skip al characters on that line.

Sub Mai n()
Rem This is a line of comments that serves to illustrate the
Rem wor ki ngs of the code. You can insert comments to nake it nore
Rem readabl e and nmi ntainable in the future.

End Sub

" (keyword); Comments (topic).

Reset (statement)

Syntax
Description

Example

See Also

GFK-1283G

Reset

Closes all open files, writing out all 1/O buffers.

This example opens afile for output, closes it with the Reset statement, then deletes it with the Kill

statement.

Sub Mai n()
Open "test.dat" for Qutput Access Wite as # 1
Reset
Kill "test.dat"

If FileExists("test.dat") Then
MsgBox "The file was not deleted."”
El se
MsgBox "The file was del eted."
End | f
End Sub

Cl ose (statement); Open (statement).

18-7



Resume (statement)

Syntax Resune {[0] | Next | label}

Description Ends an error handler and continues execution.

Comments Theform Resune 0 (or simply Resune by itself) causes execution to continue with the
statement that caused the error.

Theform Resume Next causes execution to continue with the statement following the statement
that caused the error.

The form Resune label causes execution to continue at the specified label.

The Resune statement resets the error state. This means that, after executing this statement, new
errors can be generated and trapped as normal.

Example This example accepts two integers from the user and attempts to multiply the numbers together. If
either number islarger than an integer, the program processes an error routine and then continues
program execution at a specific section using 'Resume <label>'. Another error trap isthen set using
'Resume Next'. The new error trap will clear any previous error branching and also 'tell’ the
program to continue execution of the program even if an error is encountered.

Sub Mai n()
Di m a% b% x%

Agai n:
On Error Goto Overflow
a% = | nput Box("Enter 1st integer to nmultiply","Enter Nunber")
b% = | nput Box("Enter 2nd integer to multiply","Enter Nunmber")

On Error Resunme Next ' Continue program execution at next |ine
X% = a%* b% "if an error (integer overflow) occurs.
If err = 0 Then
MsgBox a% & " * " & b%& " =" & x%
El se
Msgbox a% & " * " & b% & " cause an integer overflow"
End |f
Exit Sub
Overfl ow "Error handler.

MsgBox "You've entered a non-integer value, try again!"
Resune Again
End Sub

See Also Error Handling (topic); On Er r or (statement).

18-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Return (statement)

Syntax Ret urn

Description Transfers execution control to the statement following the most recent GoSub.

Comments A runtime error resultsif aRet ur n statement is encountered without a corresponding GoSub
Statement.

Example This example calls a subroutine and then returns execution to the Main routine by the Return
Statement.
Sub Mai n()

GoSub SubTrue
MsgBox "The Main routine continues here."
Exit Sub

SubTr ue:
MsgBox "This message is generated in the subroutine.”
Return
Exit Sub

End Sub

See Also GoSub (statement).

Right, Right$ (functions)

Syntax Ri ght [ $] (text, NumChars)
Description Returns the rightmost NumChars characters from a specified string.
Comments Ri ght $ returnsa St ri ng, whereas Ri ght returnsa St ri ng variant.

TheRi ght function takes the following parameters:

Parameter Description

text St ri ng from which characters are returned. A runtime error is generated if
textisNul | .

NumChars I nt eger specifying the number of charactersto return. If NumCharsis

greater than or equal to the length of the string, then the entire string is
returned. If NumCharsis 0, then a zero-length string is returned.

Example This example shows the Right$ function used in a routine to change uppercase names to lowercase
with an uppercase first letter.

Sub Mai n()

| nane$ = "WLLI AVE"

x = Len(l nane$)

rest$ = Right(lname$, x - 1)

fl1$ = Left(lname$, 1)

I name$ = f1$ & LCase(rest$)

MsgBox "The converted nanme is: " & | name$
End Sub

See Also Left, Left$ (functions).

GFK-1283G R 18-9



RmDir (statement)

Syntax
Comments

Example

See Also

18-10

RnDi r dir$

Removes the directory specified by the St r i ng contained in dir$.

Thisroutine creates adirectory and then deletes it with RmDir.

Sub Mai n()
On Error Goto Erriake
MDir("test0l")
On Error Goto ErrRenove
RmDir("test0Ol")

Er r Make:
MsgBox "The directory could not be created."
Exit Sub

Err Renove:
MsgBox "The directory could not be renoved."
Exit Sub

End Sub

ChDi r (statement); ChDri ve (statement); Cur Di r,
(functions); MkDi r (statement).

Cur Di r $ (functions); Di r ,

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

Dr$

GFK-1283G



Rnd (function)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Rnd[ ( number) ]

Returns arandom Si ngl e number between 0 and 1.

If number is omitted, the next random number is returned. Otherwise, the number parameter has the
following meaning:

If Then

number < 0 Always returns the same number.
number = 0 Returns the last number generated.
number > 0 Returns the next random number.

This example sets the randomize seed then generates six random numbers between 1 and 54 for the

|ottery.
Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
Di m a% 5)
Random ze

For x =0 To 5
tenp = Rnd(1) * 54 + 1

"Elimninate duplicate nunbers.
For y =0 To 5

If a(y) = tenp Then found = true
Next

If found = false Then a(x) = tenp Else

found = fal se
Next

ArraySort a
msgl = ""
For x = 0 To 5
msgl = nmegl & a(x) & crlf
Next X

MsgBox "Today's winning lottery nunbers are:

End Sub

Random ze (statement); Random(function).

" &ecrlf &ecrlf & nmegl

18-11



RSet (statement)

Syntax RSet destvariable = source
Description Copies the source string source into the destination string destvariable.
Comments If sourceis shorter in length than destvariable, then the string is right-aligned within destvariable

and the remaining characters are padded with spaces. If source islonger in length than destvariable,
then source is truncated, copying only the leftmost number of characters that will fit in
destvariable. A runtime error is generated if sourceisNul | .

The destvariable parameter specifiesa St ri ng or Var i ant variable. If destvariableisa
Var i ant containing Enpt y, then no characters are copied. If destvariable is not convertible to a
St ri ng, then aruntime error occurs. A runtime error resultsif destvariableis Nul | .

Example This example replaces a 40-character string of asterisks (*) with an RSet and L Set string and then
displays the result.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
Di m nmsgl, tnpstr$
tnpstr$ = String(40,"*")
msgl "Here are two strings that have been right-" + crlf
msgl msgl & "and left-justified in a 40-character string."
msgl = nmsgl & crlf & crlf
RSet tnpstr$ = "Right|"
nsgl = nsgl & tnpstr$ & crlf

LSet tnpstr$ = "|Left"
nsgl = nsgl & tnpstr$ & crlf
MsgBox nsgl
End Sub
See Also LSet (statement).

18-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



RTrim, RTrim$ (functions)

Syntax
Description

Comments

Example

See Also

GFK-1283G

RTri nT $] (text)

Returns a string with the trailing spaces removed.

RTri n® returnsa St ri ng, whereas RTr i mreturnsa St ri ng variant.
Nul | isreturned if textisNul | .

This example displays aleft-justified string and its RTrim result.
Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
txt$ =" This is text
tr$ = RTrim(txt$)

MsgBox "Original ->" & txt$ & "<-" &ecrlf & "Right Trimed ->"

End Sub
LTrim LTrin® (functions); Tri m Tri n® (functions).

&tr$ & "<-"

18-13






SaveFilename$ (function)

Syntax SaveFi | ename$[ ([ title$ [, extensions$] ] ) ]

Description Displays a dialog box that prompts the user to select from alist of filesand returnsa St ri ng
containing the full path of the selected file.

Comments The SaveFi | enane$ function accepts the following parameters:
Parameter Description
title$ St ri ng containing thetitle that appears on the dialog box's caption. If this

string is omitted, then" Save As" isused.

extensions$ St ri ng containing the available file types. Its format depends on the
platform on which the Basic Control Engineisrunning. If thisstring is
omitted, then al files are used.

The SaveFi | enane$ function returns afull pathname of the file that the user selects. A zero-
length string is returned if the user selects Cancel. If the file already exists, then the user is
prompted to overwriteit.

e$ = "Al Files:*.BW, *. WF; Bi t maps: *. BMP;, Met af i | es: *. WWF"
f$ = SaveFil ename$(" Save Picture", e$)

File Mame: Directories:

|m chwin3l

= A
E= win3l
£ msapps

£ ndw
] system
£ xga

Save File as Type: Drives:
All Files EREE

GFK-1283G 19-1



Example This example creates a save dialog box, giving the user the ability to save to several different file

types.
Sub Mai n()
e$ = "All Files:*.BW, *. WF; Bi t maps: *. BMP; Met af i | es: *. WW/F"
f$ = SaveFil ename$(" Save Picture", e$)
If Not f$ = "" Then
Msgbox "User choose to save file as: " + f$
El se
Msgbox "User cancel ed."
End | F
End Sub
See Also MsgBox (statement); AskBox$ (function); AskPasswor d$ (function); | nput Box,
I nput Box$ (functions); OpenFi | ename$ (function); Sel ect Box (function); Answer Box
(function).
Note: The extensions$ parameter must be in the following format:

description: ext[ , ext] [ ; description: ext[ , ext]] . . .
Placeholder Description
description Specifies the grouping of filesfor theuser, suchasAl | Fi |l es.
ext Specifiesavalid file extension, such as* . BAT or *. ?F?.

For example, the following are valid extensions$ specifications:

"Al Files:*"
"Docunent s: *. TXT, *. DOC"
"Al Files:*;Docunents:*. TXT, *. DOC"

19-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Screen.DlgBaseUnitsX (property)

Syntax
Description

Comments

Example

See Also

Screen. Dl gBaseUni t sX
Returnsan | nt eger used to convert horizontal pixelsto and from dialog units.
The number returned depends on the name and size of the font used to display dialog boxes.

To convert from pixelsto dialog unitsin the horizontal direction:
((XPi xels * 4) + (Screen.D gBaseUnitsX - 1)) / Screen. D gBaseUnitsX

To convert from dialog units to pixelsin the horizontal direction:
(XDl gUnits * Screen. Dl gBaseUnitsX) / 4

This example converts the screen width from pixelsto dialog units.

Sub Mai n()

XPi xel s = Screen. Wdth

conv% = Screen. Dl gBaseUni t sX

XDigUnits = (XPixels * 4) + (conv%-1) / conv%

MsgBox "The screen width is " & XDigUnits & " dialog units."
End Sub

Screen. Dl gBaseUni t sY (property).

Screen.DlgBaseUnitsY (property)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Screen. Dl gBaseUni tsY
Returnsan | nt eger used to convert vertical pixelsto and from dialog units.
The number returned depends on the name and size of the font used to display dialog boxes.
To convert from pixels to dialog unitsin the vertical direction:

(YPixel s * 8) + (Screen. Dl gBaseUnitsY - 1) / Screen. Dl gBaseUnitsY
To convert from dialog units to pixelsin the vertical direction:

(YD gUnits * Screen. Dl gBaseUnitsY) / 8

This example converts the screen width from pixelsto dialog units.

Sub Mai n()

YPi xel s = Screen. Hei ght

conv% = Screen. Dl gBaseUni tsY

YDigUnits = (YPixels * 8) + (conv%-1) / conv%

MsgBox "The screen width is " & YDigUnits & " dialog units."
End Sub

Scr een. Dl gBaseUni t sX (property).

S 19-3



Screen.Height (property)

Syntax Scr een. Hei ght
Description Returns the height of the screenin pixelsasan | nt eger .
Comments This property is used to retrieve the height of the screen in pixels. Thisvalue will differ depending

on the display resolution.

This property is read-only.

Example This example displays the screen height in pixels.
Sub Mai n()
MsgBox "The Screen height is " & Screen.Height & " pixels."
End Sub
See Also Screen. W dt h (property).

Screen.TwipsPerPixelX (property)

Syntax Screen. Twi psPer Pi xel X
Description Returnsan | nt eger representing the number of twips per pixel in the horizontal direction of the
installed display driver.
Comments This property isread-only.
Example This example displays the number of twips across the screen horizontally.
Sub Mai n()
XScreenTwi ps = Screen. Wdth * Screen. Twi psPer Pi xel X
MsgBox "Total horizontal screen twips =" & XScreenTw ps
End Sub
See Also Screen. Twi psPer Pi xel Y (property).

19-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Screen.TwipsPerPixelY (property)

Syntax Screen. Twi psPer Pi xel Y
Description Returnsan | nt eger representing the number of twips per pixel in the vertical direction of the
installed display driver.
Comments This property isread-only.
Example This example displays the number of twips across the screen vertically.
Sub Mai n()
YScreenTwi ps = Screen. Hei ght * Screen. Twi psPerPi xel Y
MsgBox "Total vertical screen twips =" & YScreenTw ps
End Sub
See Also Screen. Twi psPer Pi xel X (property).

Screen.Width (property)

Syntax Screen. Wdth
Description Returns the width of the screen in pixelsasan | nt eger .
Comments This property is used to retrieve the width of the screen in pixels. This value will differ depending

on the display resolution.
This property is read-only.

Example This example displays the screen width in pixels.
Sub Mai n()
MsgBox "The screen width is " & Screen.Wdth & " pixels."
End Sub
See Also Screen. Hei ght (property).

GFK-1283G S 19-5



Second (function)

Syntax Second( time)
Description Returns the second of the day encoded in the specified time parameter.
Comments The value returned isan | nt eger between 0 and 59 inclusive.

The time parameter is any expression that convertsto a Dat e.

Example This example fires and event every 10 seconds based on the system clock.
Sub Mai n()
trigger = 10
Do

xs% = Second( Now)
If (xs% Mod trigger = 0) Then

Beep
End 'Renove this line to trigger the | oop continuously.
Sl eep 1000
End If
DoEvent s
Loop
End Sub
See Also Day (function); M nut e (function); Mont h (function); Year (function); Hour (function);

Weekday (function); Dat ePar t (function).

19-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Seek (function)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Seek( filenumber)

Returns the position of the file pointer in afile relative to the beginning of the file.

The filenumber parameter is a number that the Basic Control Engine uses to refer to the open file—

the number passed to the Open statement.

The value returned depends on the mode in which the file was opened:

File Mode Returns

I nput Byte position for the next read

Qut put Byte position for the next write

Append Byte position for the next write

Random Number of the next record to be written or read
Bi nary Byte position for the next read or write

The value returned isaLong between 1 and 2147483647, where the first byte (or first record) in
thefileis 1.

This example opens afile for random write, then writes ten records into the file using the PUT
statement. The file position is displayed using the Seek Function, and thefile is closed.
Sub Mai n()

Open "test.dat" For Random Access Wite As #1
For x =1 To 10

r%=x * 10
Put #1,X,r%
Next X
y = Seek(1)
MsgBox "The current file positionis: " &y
Cl ose
End Sub

Seek (statement); Loc (function).

19-7



Seek (statement)

Syntax Seek [#] filenumber,position

Description Sets the position of the file pointer within a given file such that the next read or write operation will
occur at the specified position.

Comments The Seek statement accepts the following parameters:

Parameter Description

filenumber I nt eger used by the Basic Control Engine to refer to the open file—the
number passed to the Open statement.

position Long that specifies the location within the file at which to position the file
pointer. The value must be between 1 and 2147483647, where the first byte
(or record number) in thefileis 1. For files opened in either Bi nary,
Qut put , I nput , or Append mode, position is the byte position within the
file. For Randomfiles, position is the record number.

A file can be extended by seeking beyond the end of the file and writing data there.

Example This example opens afile for random write, then writes ten records into the file using the PUT
statement. The file is then reopened for read, and the ninth record isread using the Seek and Get
functions.

Sub Mai n()
Open "test.dat" For Random Access Wite As #1
For x =1 To 10
rec$ = "Record#: " & X
Put #1,x,rec$
Next X
d ose

Open "test.dat" For Random Access Read As #1
Seek #1,9
Get #1,,rec$
MsgBox "The ninth record =" & X
Cl ose
Kill "test.dat"
End Sub

See Also Seek (function); Loc (function).

19-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Select...Case (statement)

Syntax Sel ect Case testexpression
[ Case expressionlist
[ statement_block] ]
[ Case expressionlist
[ statement_block] ]

[ Case El se
[ statement_block] ]
End Sel ect
Description Used to execute ablock of the Basic Control Engine statements depending on the value of agiven
expression.
Comments The Sel ect Case statement has the following parts:
Part Description
testexpression Any numeric or string expression.
statement_block Any group of the Basic Control Engine statements. If the testexpression
matches any of the expressions contained in expressionlist, then this
statement block will be executed.
expressionlist A comma separated list of expressions to be compared against testexpression

using any of the following syntaxes:

expression [, expression] . . .
expression t 0 expression
i s relational_operator expression

The resultant type of expression in expressionlist must be the same as that of
testexpression.

Multiple expression ranges can be used within asingle Case clause. For example:
Case 1 to 10,12,15 Is > 40

Only the statement_block associated with the first matching expression will be executed. If no
matching statement_block is found, then the statements following the Case El se will be
executed.

A Sel ect...End Sel ect expression can aso berepresented withthel f. .. Then
expression. The use of the Sel ect statement, however, may be more readable.

GFK-1283G S 19-9



Example

See Also

19-10

Case 0, 2

s = "M crosoft Wndows"
Case 1

s = "DOS"
Case 3 to 8,12

s = "UNI X"
Case 10

s = "I BM Cs/ 2"
Case El se

s = "Qther"

End Sel ect
MsgBox "This version of the Basic Control
End Sub

Engi ne is runni ng on:

"8

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

Thisexample usesthe Sel ect . . . Case statement to output the current operating system.
Sub Mai n()
OpSyst enth = Basi c. OS
Sel ect Case pSystenth

Choose (function); Swi t ch (function); I I f (function); | f. . . Then. .. El se (statement).

GFK-1283G



SelectBox (function)

Syntax Sel ect Box( title, prompt, ArrayOfltems)
Description Displays a dialog box that allows the user to select from alist of choicesand returnsan | nt eger
containing the index of the item that was selected.
Comments The Sel ect Box statement accepts the following parameters:
Parameter Description
title Title of the dialog box. This can be an expression convertibletoaSt ri ng.
A runtime error is generated if titleisNul | .
prompt Text to appear immediately above the list box containing the items. This can
be an expression convertibleto aSt r i ng. A runtime error is generated if
promptisNul | .
ArrayOfltems Single-dimensioned array. Each item from the array will occupy asingle

entry in thelist box. A runtime error is generated if ArrayOfitemsisnot a
single-dimensioned array.

ArrayOfltems can specify an array of any fundamental data type (structures
are not allowed). Nul | and Enpt y values are treated as zero-length strings.

Thevauereturned isan | nt eger representing the index of theitem in the list box that was
selected, with 0 being the first item. If the user selects Cancel, —1 is returned.

resul t % = Sel ect Box("Pi cker","Pick an application:", a$)

Pick an application:

Motepad - [Untitled]
Microzoft Word
Program Manager

Example This example gets the current apps running, puts them in to an array and then asks the user to select
onefromalist.

Sub Mai n()
Di m a$()
AppLi st a$
resul t % = Sel ect Box("Pi cker","Pick an application:", a$)
If Not result%= -1 then
Msgbox "User selected: " & a$(result%
El se
Msgbox "User cancel ed"
End |f
End Sub

GFK-1283G S 19-11



See Also

Note:

MsgBox (statement); AskBox$ (function); AskPasswor d$ (function); | nput Box,
I nput Box$ (functions); OpenFi | ename$ (function); SaveFi | enane$ (function);
Answer Box (function).

The Sel ect Box displaysall text inits dialog box in 8-point MS Sans Serif.

SendKeys (statement)

Syntax

Description

Comments

19-12

SendKeys KeyString$ [, [isWait] [, time] ]

Sends the specified keys to the active application, optionally waiting for the keys to be processed
before continuing.

The SendKeys statement accepts the following parameters:

Parameter Description

KeySring$ St ri ng containing the keys to be sent. The format for KeyString$ is
described below.

isWait Bool ean value.

If Tr ue, then the Basic Control Engine waits for the keys to be compl etely
processed before continuing.

If you are using SendKeys in a CimEdit/CimView script, you must set this
flagto Tr ue. If you do not, when a user tries to execute the SendKey's
statement, the CimView screen freezes and processing will not continue.

If Fal se (or not specified), then the BasicScript continues script execution
before the active application receives al keys from the SendKeys statement.

time I nt eger specifying the number of milliseconds devoted for the output of the
entire KeyString$ parameter. It must be within the following range:

0 <= time <= 32767

For example, if timeis 5000 (5 seconds) and the KeyString$ parameter
contains ten keys, then akey will be output every 1/2 second. If unspecified
(or 0), the keyswill play back at full speed.

Specifying Keys

To specify any key on the keyboard, simply use that key, such as"a" for lowercase a, or "A" for

uppercase a.

Sequences of keys are specified by appending them together: "abc™" or "dir /w'.

Some keys have special meaning and are therefore specified in a special way—by enclosing them
within braces. For example, to specify the percent sign, use" { %4 " . The following table shows the
special keys:

Key Special Meaning Example

+ Shift "+{F1}" ' Shift+F1
n Ctrl "ra" "Crl +A

- Shortcut for Enter et " Ent er

% Alt "o "At+F

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



GFK-1283G

[]
{}
0

No special meaning
Used to enclose specia keys
Used to specify grouping

{0y
"{Wp}”
“A(ab)"

' Open bracket
"Up Arrow

"Crl+A, Crl+B

Keysthat are not displayed when you press them are also specified within braces, such as
{Enter} or{Up}.A list of these keysfollows:

{ BkSp}
{Del et e}
{ Escape}
{Left}
{NunPad3}
{NunPad8}
{NunPad+}
{Ri ght}
{F2}

{F7}
{F12}

{ BS}

{ Del }
{Esc}
{Nunmi_ock}
{ NunPad4}
{ NunPad9}
{NunPad. }
{ Tab}
{F3}

{ F8}
{F13}

{ Br eak}

{ Down}

{ Hel p}

{ NunPad0}
{ NunPad5}
{ NunPad/ }
{ PgDn}

{ Up}

{ F4}

{ F9}

{ F14}

{ CapsLock}
{ End}

{ Horre}
{NunPad1}
{ NunPad6}
{ NunPad*}
{ PgUp}
{F1

{F5}

{ F10}

{ F15}

{Cl ear}
{Enter}
{Insert}
{ NunPad?2}
{NunPad7}
{ NunPad- }
{PrtSc}

{Scroll Lock}

{ F6}
{F11}
{F16}

Keys can be combined with Shift, Ctrl, and Alt using the reserved keys"+", """, and "%
respectively:

For Key Combination Use
Shift+Enter "+{Enter}"
Ctrl+C "Act

Alt+F2 "o F2}"

To specify amodifier key combined with a sequence of consecutive keys, group the key sequence

within parentheses, as in the following example:

For Key Combination Use
Shift+A, Shift+B "+(abc)"
Ctrl+F1, Ctrl+F2 "A{FLY{F2})"

Use"~" as ashortcut for embedding Enter within a key sequence:
For Key Combination Use

a, b, Enter, d, e "ab~de"
Enter, Enter "~

To embed quotation marks, use two quotation marksin a row:

For Key Combination Use
"Hello" ""Hel | o""
a'b'c "a""b""c"

Key sequences can be repeated using a repeat count within braces:
For Key Combination Use

"{a 10}"
"{Enter 2}"

Ten"a" keys
Two Enter keys

19-13



Example This example runs Notepad, writes to Notepad, and saves the new file using the SendK eys

Statement.
Sub Mai n()
Dimid As Variant
id = Shell ("notepad.exe") " Run Not epad mi nim zed
AppActivate id " Now acti vat e Notepad
AppMaxi m ze ' Open and maxim ze the Notepad wi ndow
SendKeys "Hell o Notepad", 1 '"Wite text with time to avoid burst
Sl eep 2000
SendKeys "% s", 1 ‘Save file (Simulate Al't+F, S keys)
Sl eep 2000
SendKeys "nane.txt{ENTER}", 1 'Enter nanme of file to save
AppCl ose
End Sub

19-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Set (statement)

Syntax 1 Set object_var = object_expression
Syntax 2 Set object var = New object_type
Syntax 3 Set object_var = Not hi ng
Description Assigns avalue to an object variable.
Comments Syntax 1

Thefirst syntax assigns the result of an expression to an object variable. This statement does not
duplicate the object being assigned but rather copies a reference of an existing object to an object
variable.

The object_expression is any expression that evaluates to an object of the same type as the
object_var.

With data objects, Set performs additional processing. When the Set is performed, the object is
notified that areferenceto it is being made and destroyed. For example, the following statement
deletes areference to object A, then adds a new reference to B.

Set a=»b
In thisway, an object that is no longer being referenced can be destroyed.
Syntax 2

In the second syntax, the object variable is being assigned to a new instance of an existing object
type. This syntax is valid only for data objects.

When an object created using the New keyword goes out of scope (that is, the Sub or Functi on
in which the variable is declared ends), the object is destroyed.

Syntax 3

The reserved keyword Not hi ng isused to make an object variable reference no object. At alater
time, the object variable can be compared to Not hi ng to test whether the object variable has been
instantiated:

Set a = Not hi ng
If'a I s Not hi ng Then Beep

Example This example creates two objects and sets their values.

Sub Mai n()
Di m docunent As (Obj ect
Di m page As Obj ect
Set docunment = Get Obj ect ("c:\resune. doc")
Set page = Docunent. ActivePage
MsgBox page. nane
End Sub

See Also = (statement); Let (statement); Cr eat eCbj ect (function); Get Obj ect (function); Not hi ng
(constant).

GFK-1283G S 19-15



SetAttr (statement)

Syntax Set Attr filename$, attribute
Description Changes the attribute filename$ to the given attribute. A runtime error results if the file cannot be
found.
Comments The Set At t r statement accepts the following parameters:
Parameter Description
filename$ St ri ng containing the name of the file.
attribute I nt eger specifying the new attribute of thefile.

The attribute parameter can contain any combination of the following values:

Constant Value Description

ebNor el 0 Turns off al attributes

ebReadOnl y 1 Read-only files

ebH dden 2 Hidden files

ebSystem 4 System files

ebVol une 8 Volume label

ebAr chi ve 32 Files that have changed since the last backup
ebNone 64 Turns off all attributes

The attributes can be combined using the + operator or the binary Or operator.

Example This example creates afile and setsits attributes to Read-Only and System.
Sub Mai n()
Open "test.dat" For Qutput As #1
Cl ose #1

MsgBox "The current file attribute is: " & GetAttr("test.dat")
Set Attr "test.dat", ebReadOnly + ebSystem

MsgBox “"The file attribute was set to: " & GetAttr("test.dat")
Set Attr "test.dat", ebNor nal

Kill "test.dat"
End Sub
See Also Get Attr (function); Fi | eAtt r (function).

19-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Sgn (function)

Syntax Sgn( number)
Description Returnsan | nt eger indicating whether a number isless than, greater than, or equal to 0.
Comments Returns 1 if number is greater than 0.

Returns O if number is equal to 0.

Returns—1 if number islessthan 0.

The number parameter is anumeric expression of any type. If number isNul | , then aruntime

error is generated. Enpt y istreated as 0.

Example This example tests the product of two numbers and displays a message based on the sign of the

result.

Sub Mai n()
a% = - 100
b% = 100

c%=a%* b%

Sel ect Case
Case -1
MsgBox
Case 0
MsgBox
Case 1
MsgBox
End Sel ect
End Sub

See Also Abs (function).

GFK-1283G S

Sgn(c%

"The product is negative " & Sgn(c%
"The product is 0" & Sgn(c%

"The product is positive " & Sgn(c%

19-17



Shell (function)

Syntax
Description

Comments

Example

See Also
Note:

Important:

19-18

Shel | (command$ [, WindowStyle] )
Executes another application, returning the task ID if successful.

The Shel | statement accepts the following parameters:

Parameter Description
command$ St ri ng containing the name of the application and any parameters.
WindowStyle Optional | nt eger specifying the state of the application window after

execution. It can be any of the following values:
1 Normal window with focus
2 Minimized with focus (default)
3 Maximized with focus
4 Normal window without focus
7 Minimized without focus
An error is generated if unsuccessful running command$.

The Shel I command runs programs asynchronously: the statement following the Shel |
statement will execute before the child application has exited. On some platforms, the next
statement will run before the child application has finished loading.

The Shel | function returns a value suitable for activating the application using the
AppAct i vat e statement. It isimportant that this value be placed into aVar i ant , asitstype
depends on the platform.

This example displays the Windows Clock, delays awhile, then closesiit.

Sub Mai n()
id = Shell ("clock.exe", 1)
AppActivate "d ock"
Sl eep(2000)
Appd ose "d ock"
End Sub

SendKeys (statement); AppAct i vat e (statement).
This function returns a global process ID that can be used to identify the new process.

On Windows NT, CIMPLICITY runs as a service. Programs started from the Event Manager run as
part of the service. Services, by default, do not interact with the desktop. Therefore, shelling of a
program such as CimView, will cause the program to run, but with no interface.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Sin (function)

Syntax Si n(angle)
Description ReturnsaDoubl e value specifying the sine of angle.
Comments The angle parameter isaDoubl e specifying an angle in radians.
Example This example displays the sine of pi/4 radians (45 degrees).

Sub Mai n()

c# = Sin(Pi [ 4)
MsgBox "The sine of 45 degrees is: " & c#
End Sub

See Also Tan (function); Cos (function); At n (function).

Single (data type)

Syntax Single
Description A de}tgtype used to declare variables capable of holding real numbers with up to seven digits of
precision.
Comments Si ngl e variables are used to hold numbers within the following ranges:
Sign Range
Negative - 3.402823E38 <= single <= -1.401298E- 45
Positive 1. 401298E-45 <= single <= 3. 402823E38

The type-declaration character for Si ngl e is! .
Storage

Internally, singles are stored as 4-byte (32-bit) IEEE values. Thus, when appearing within a
structure, singles require 4 bytes of storage. When used with binary or random files, 4 bytes of
storageisrequired.

Each single consists of the following
« A l-bitsign
*  An 8-bit exponent
e A 24-bit mantissa

See Also Curr ency (datatype); Dat e (datatype); Doubl e (datatype); | nt eger (datatype); Long
(datatype); Obj ect (datatype); St ri ng (datatype); Var i ant (datatype); Bool ean (data
type); Def Type (statement); CSng (function).

GFK-1283G S 19-19



Sleep (statement)

Syntax Sl eep milliseconds
Description Causes the script to pause for a specified number of milliseconds.
Comments The milliseconds parameter isaLong in the following range:

0 <= milliseconds <= 2, 147, 483, 647

Example This example displays a message for 2 seconds.

Sub Mai n()
MsgOpen "Waiting 2 seconds", 0, Fal se, Fal se
Sl eep 2000
Msgd ose

End Sub

Sin (function)

Syntax Sl n( Cost, Salvage, Life)
Description Returns the straight-line depreciation of an asset assuming constant benefit from the asset.

Comments The Sl n of an asset isfound by taking an estimate of its useful life in years, assigning valuesto
each year, and adding up al the numbers.

The formula used to find the SI n of an asset is as follows:
(Cost - Salvage Value) / Useful Life

The SI n function requires the following parameters:

Parameter Description

Cost Doubl e representing the initial cost of the asset.

Salvage Doubl e representing the estimated value of the asset at the end of its
useful life.

Life Doubl e representing the length of the asset's useful life.

The unit of time used to express the useful life of the asset is the same as the unit of time used to
express the period for which the depreciation is returned.

Example This example calculates the straight-line depreciation of an asset that cost $10,000.00 and has a
salvage value of $500.00 as scrap after 10 years of service life.

Sub Mai n()

dep# = Sl n(10000. 00, 500. 00, 10)

MsgBox "The annual depreciation is: " & Format(dep#, "Currency")
End Sub

See Also SYD (function); DDB (function).

19-20 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Space, Space$ (functions)

Syntax Space[ $] ( NumSpaces)
Description Returns a string containing the specified number of spaces.
Comments Space$ returnsa St r i ng, whereas Space returnsa St ri ng variant.

NumSpacesisan | nt eger between 0 and 32767.

Example This example returns a string of ten spaces and displaysit.

Sub Mai n()

I n$ = Space(10)

MsgBox "Hello" & In$ & "over there."
End Sub

See Also String, String$ (functions); Spc (function).

Spc (function)

Syntax Spc ( numspaces)

Description Prints out the specified number of spaces. This function can only be used with the Pr i nt and
Pri nt # statements.

Comments The numspaces parameter isan | nt eger specifying the number of spacesto be printed. It can be
any value between 0 and 32767.

If aline width has been specified (using the W dt h statement), then the number of spacesis
adjusted as follows:

nunspaces = nunspaces Mdd w dth
If the resultant number of spacesisgreater thanwi dt h - print_posi ti on, thenthe number
of spacesisrecalculated as follows:

nunspaces = nunspaces — (width — print_position)
These calculations have the effect of never allowing the spaces to overflow the line length.
Furthermore, with alarge value for col umm and a small line width, the file pointer will never
advance more than one line.

Example This example displays 20 spaces between the arrows.

Sub Mai n()
Print "1 am'; Spc(20); "20 spaces apart!"
Sl eep (10000) 'WAit 10 seconds.

End Sub

See Also Tab (function); Pri nt (statement); Pri nt # (statement).

GFK-1283G S 19-21



SQLBInd (function)

Syntax

Description

Comments

Example

See Also

19-22

SQLBi nd( ID, array, column)

Specifies which fields are returned when results are requested using the SQLRet r i eve or
SQLRet ri eveToFi | e function.

The following table describes the parameters to the SQLBi nd function:

Parameter

ID

array

column

Description
Long parameter specifying a valid connection.

Any array of variants. Each call to SQLBi nd adds a new column number (an
I nt eger) inthe appropriate slot in the array. Thus, as you bind additional
columns, the array parameter grows, accumulating a sorted list (in ascending
order) of bound columns.

If array isfixed, then it must be a one-dimensional variant array with
sufficient space to hold all the bound column numbers. A runtime error is
generated if array istoo small.

If array is dynamic, then it will be resized to exactly hold all the bound
column numbers.

Optional Long parameter that specifies the column to which to bind data. If
this parameter is omitted, all bindings for the connection are dropped.

This function returns the number of bound columns on the connection. If no columns are bound,
then O isreturned. If there are no pending queries, then calling SQLBI nd will cause an error
(queries areinitiated using the SQLExecQuer y function).

If supported by the driver, row humbers can be returned by binding column 0.

The Basic Control Engine generates a trappable runtime error if SQLBi nd fails. Additional error
information can then be retrieved using the SQLEr r or function.

This example binds columns to data.

Sub Mai n()

Di m col uims() As Vari ant
i d& = SQLOpen("dsn=SAMPLE",, 3)
t& = SQLExecQuery(id& "Sel ect * From c:\sanpl e.dbf")
i % = SQ.Bi nd(i d&, col ums, 3)
i % = SQ.Bi nd(i d&, col ums, 1)
i % = SQ.Bi nd(i d&, col ums, 2)
i % = SQ.Bi nd(i d&, col utms, 6)
For x = 0 To (i%- 1)
MsgBox col umms(x)

Next x

i d& = SQLA ose(id&)

End Sub

SQLRet ri eve (function); SQLRet ri eveToFi | e (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



SQLClose (function)

Syntax SQLC ose( connectionl D)
Description Closes the connection to the specified data source.
Comments The unigue connection ID (connectionID) isaLong value representing a valid connection as

returned by SQLOpen. After SQLCl ose iscalled, any subsequent calls made with the
connectionl D will generate runtime errors.

The SQLC ose function returns 0 if successful; otherwise, it returns the passed connection ID and
generates a trappable runtime error. Additional error information can then be retrieved using the
SQLEr r or function.

The Basic Control Engine automatically closes all open SQL connections when either the script or
the application terminates. Y ou should use the SQLCl ose function rather than relying on the
application to automatically close connections in order to ensure that your connections are closed at
the proper time.

Example This example disconnects the data source sample.

Sub Mai n()
Dims As String
Dimqry As Long
i d& = SQLOpen("dsn=SAMPLE", s$, 3)
qry = LExecQuery(id&, "Select * Fromc:\sanple.dbf")
MsgBox "There are " & qry & " records in the result set."
id& = SQLA ose(id&)

End Sub

See Also SQLOpen (function).

GFK-1283G S 19-23



SQLError (function)

Syntax
Description
Comments

Example

19-24

SQLError (ErrArray[,ID])
Retrieves driver-specific error information for the most recent SQL functions that failed.

Thisfunction is called after any other SQL function fails. Error information is returned in a two-
dimensional array (ErrArray). The following table describes the parameters to the SQLEr r or
function:

Parameter Description
ErrArray Two-dimensional Var i ant array, which can be dynamic or fixed.

If the array isfixed, it must be (x,3), where x is the number of errors you
want returned. If x istoo small to hold all the errors, then the extra error
information is discarded. If x is greater than the number of errors available,
al errors are returned, and the empty array elements are set to Enpt y.

If the array is dynamic, it will be resized to hold the exact number of errors.

ID Optional Long parameter specifying a connection ID. If this parameter is
omitted, error information is returned for the most recent SQL function call.

Each array entry in the ErrArray parameter describes one error. The three elementsin each array
entry contain the following information:

Element Value

(entry, 0) The ODBC error state, indicated by alL.ong containing the error class and
subclass.

(entry, 1) The ODBC native error code, indicated by aLong.

(entry, 2) The text error message returned by the driver. ThisfieldisSt ri ng type.

For example, to retrieve the ODBC text error message of the first returned error, the array is
referenced as:

ErrArray( 0, 2)
The SQLEr r or function returns the number of errors found.

The Basic Control Engine generates aruntime error if SQLEr r or fails. (Y ou cannot use the
SQL Error function to gather additional error information in this case.)

This example forces a connection error and traps it for use with the SQLError function.

Sub Mai n()
Dima() As Variant
On Error CGoto Trap
id& = SQCpen("",,4)
id& = SQ.A ose(id&)
Exit Sub

Trap:
rc% = SQ.Error(a)
If (rc®w Then
For x =0 To (rc%- 1)
MsgBox "The SQ. state returned was: " & a(x,0)
MsgBox "The native error code returned was: " & a(x,1)
MsgBox a(x, 2)
Next X
End |f
End Sub

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



SQLExecQuery (function)

Syntax
Description

Comments

Example

See Also

GFK-1283G

SQLExecQuer y( ID, query$)
Executes an SQL statement query on a data source.

Thisfunction is called after a connection to a data source is established using the SQLOpen

function. The SQLExecQuer y function may be called multiple times with the same connection

ID, each timereplacing all results.

The following table describes the parameters to the SQLExec Quer y function:

Parameter Description

ID Long identifying avalid connected data source. This parameter is returned by

the SQLOpen function.

query$ St ri ng specifying an SQL query statement. The SQL syntax of the string must

strictly follow that of the driver.

The return value of this function depends on the result returned by the SQL statement:

SOL Statement Value
SELECT. .. FROM The value returned is the number of columns returned by the SQL
Statement.

DELETE, | NSERT, UPDATE  The value returned is the number of rows affected by the SQL

statement.

The Basic Control Engine generates aruntime error if SQLExecQuer y fails. Additional error

information can then be retrieved using the SQLEr r or function.

This example executes a query on the connected data source.

Sub Mai n()
Dims As String
Dimqgry As Long
i d& = SQLOpen("dsn=SAMPLE", s$, 3)
gqry = SQLExecQuery(id&, "Select * From c:\sanple.dbf")
MsgBox "There are " & qry & " colums in the result set."
id& = SQ.A ose(id&)

End Sub

SQLOpen (function); SQLC ose (function); SQLRet r i eve (function);
SQLRet ri eveToFi | e (function).

19-25



SQLGetSchema (function)

Syntax SQL.Get Schema( ID, action, [, [ array] [, qualifier$] ])
Description Returns information about the data source associated with the specified connection.
Comments The following table describes the parameters to the SQLGet Schena function:
Parameter Description
ID Long parameter identifying avalid connected data source. This parameter is
returned by the SQLOpen function.
action I nt eger parameter specifying the results to be returned. The following
table lists values for this parameter:
Value Meaning
1 Returns a one-dimensional array of available data sources.

The array isreturned in the array parameter.

2 Returns a one-dimensional array of databases (either directory
names or database names, depending on the driver) associated
with the current connection. The array isreturned in the array
parameter.

3 Returns a one-dimensional array of owners (user IDs) of the
database associated with the current connection. The array is
returned in the array parameter.

4 Returns a one-dimensional array of table names for a specified
owner and database associated with the current connection.
The array isreturned in the array parameter.

5 Returns a two-dimensional array (n by 2) containing
information about a specified table. The array is configured as
follows:

(0, 0) Zeroth column name

(0, 1) ODBC SQL datatype (I nt eger)
(1, 0) First column name

(1, 1) ODBC SQL datatype (I nt eger)

('n, 0) Nth column name
(n, 1) ODBC SQL datatype (I nt eger)
6 Returns a string containing the 1D of the current user.

7 Returns a string containing the name (either the directory
name or the database name, depending on the driver) of the
current database.

8 Returns a string containing the name of the data source on the
current connection.

9 Returns a string containing the name of the DBMS of the data
source on the current connection (for example, "FoxPro 2.5"
or "Excel Files").

19-26 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



10 Returns a string containing the name of the server for the data
source.

11 Returns a string containing the owner qualifier used by the
data source (for example, "owner," "Authorization ID,"
"Schema").

12 Returns a string containing the table qualifier used by the data
source (for example, "table," "file").

13 Returns a string containing the database qualifier used by the
data source (for example, "database,” "directory").

14 Returns a string containing the procedure qualifier used by the
data source (for example, "database procedure," "stored
procedure,” "procedure").

array Optional Var i ant array parameter. This parameter isonly required for
action values 1, 2, 3, 4, and 5. The returned information is put into this array.

If array isfixed and it is not the correct size necessary to hold the requested
information, then SQLGet Schenwa will fail. If the array islarger than
required, then any additional elements are erased.

If array is dynamic, then it will be redimensioned to hold the exact number
of elements requested.

qualifier Optional St ri ng parameter required for actions 3, 4, or 5. The values are

listed in the following table:

Action Qualifier

3 The qualifier parameter must be the name of the database
represented by ID.

4 The qualifier parameter specifies a database name and an
owner name. The syntax for this string is:

DatabaseName.Owner Name
5 The qualifier parameter specifies the name of atable on the

current connection.

The Basic Control Engine generates aruntime error if SQLGet Schenma fails. Additional error
information can then be retrieved using the SQLEr r or function.

If you want to retrieve the available data sources (where action = 1) before establishing a
connection, you can pass 0 as the ID parameter. This isthe only action that will execute
successfully without a valid connection.

This function callsthe ODBC functions SQLGet | nf 0 and SQLTabl es in order to retrieve the
reguested information. Some database drivers do not support these calls and will therefore cause
the SQLGet Schena function to fail.

GFK-1283G S 19-27



Example This example gets all available data sources.
Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
Dimdsn() As Variant
nundi n8% = SQ.Get Schema(0, 1, dsn)
I f (nundi ms% Then
msgl = "Valid ODBC data sources:" & crlf & crlf
For x = 0 To numdi ms% - 1
msgl = megl & dsn(x) & crlf
Next X
El se
msgl = "There are no avail abl e data sources."
End |f
MsgBox mnsgl
End Sub

See Also SQLOpen (function).

19-28 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



SQLOpen (function)

Syntax SQLOpen(loging [, [ completed$] [, prompt] ])

Description Establishes a connection to the specified data source, returning aLong representing the unique
connection ID.

Comments This function connects to a data source using alogin string (login$) and optionally setsthe

completed login string (completed$) that was used by the driver. The following table describes the
parameters to the SQLOpen function:

Parameter Description

login$ St ri ng expression containing information required by the driver to connect
to the requested data source. The syntax must strictly follow the driver's SQL
syntax.

completed$ Optional St ri ng variable that will receive a completed connection string
returned by the driver. If this parameter is missing, then no connection string
will be returned.

prompt I nt eger expression specifying any of the following values:

Value Meaning
1 The driver'slogin dialog box is always displayed.

2 The driver's dialog box is only displayed if the connection
string does not contain enough information to make the
connection. Thisisthe default behavior.

3 The driver's dialog box is only displayed if the connection
string does not contain enough information to make the
connection. Dialog box options that were passed as valid
parameters are dimmed and unavailable.

4 The driver'slogin dialog box is never displayed.

The SQLOpen function will never return an invalid connection ID. The following example
establishes a connection using the driver'slogin dialog box:

i d& = SQLOpen("",, 1)

The Basic Control Engine returns 0 and generates a trappable runtime error if SQLOpen fails.
Additional error information can then be retrieved using the SQLEr r or function.

Before you can use any SQL statements, you must set up a data source and relate an existing
database to it. Thisis accomplished using the odbcadm.exe program.

Example This example connects the data source called "sample," returning the completed connection string,
and then displaysiit.

Sub Mai n()
Dims As String
i d& = SQLOpen("dsn=SAMPLE", s$, 3)
MsgBox "The conpl eted connection string is: " & s$
id& = SQ.A ose(id&)
End Sub

See Also SQLC ose (function).

GFK-1283G S 19-29



SQLQueryTimeout (statement)

Syntax

Description

Comments

Example

SQLQuer yTi meout time

Specifies the timeout, in seconds, for ODBC queries.

If you do not set SQ_Quer yTi neout , the default timeout is 60 seconds (1 minute).
The SQLQuer yTi meout statement accepts the following parameter:

Parameter Description
time I nt eger specifying the timeout for ODBC queriesin seconds.

The following example sets the timeout for ODBC queries to 120 seconds (2 minutes).

Sub Mai n()
SQLQuer yTi neout 120
End Sub

SQLRequest (function)

Syntax
Description

Comments

19-30

SQLRequest ( connection$, query$, array [, [ output$] [, [ prompt] [ , isColumnNames] ] ])
Opens a connection, runs a query, and returns the results as an array.

The SQLRequest function takes the following parameters:

Parameter Description

connection St ri ng specifying the connection information required to connect to the data
source.

query St ri ng specifying the query to execute. The syntax of this string must

strictly follow the syntax of the ODBC driver.
array Array of variants to be filled with the results of the query.

The array parameter must be dynamic: it will be resized to hold the exact
number of records and fields.

output Optional St ri ng to receive the completed connection string as returned by
the driver.
prompt Optional | nt eger specifying the behavior of the driver's dialog box.

isColumnNames Optional Bool ean specifying whether the column names are returned as the
first row of results. The default isFal se.

The Basic Control Engine generates aruntime error if SQLRequest fails. Additional error
information can then be retrieved using the SQLEr r or function.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



The SQ_LRequest function performs one of the following actions, depending on the type of query

being performed:
Type of Query Action
SELECT The SQLRequest function fills array with the results of the

query, returning aLong containing the number of results
placed in the array. The array isfilled as follows (assuming an

x by y query):

(record 1,field 1)
(record 1,field 2)

(record 1,field y)
(record 2,field 1)
(record 2,field 2)

(record 2/field y)

(record x,field 1)
(record x,field 2)

(record xfield y)

I NSERT, DELETE, UPDATE The SQLRequest function erasesarray and returnsalLong
containing the number of affected rows.

Example This example opens a data source, runs a select query on it, and then displays all the data found in
the result set.

Sub Mai n()
Dima() As Variant
| & = SQRequest ("dsn=SAMPLE; ", "Sel ect * From c:\sanple.dbf", a,, 3, True)
For x = 0 To Ubound(a)

For y =0To |l - 1
MsgBox a(x,y)
Next vy
Next X
End Sub

GFK-1283G S 19-31



SQLRetrieve (function)

Syntax
Description

Comments

19-32

SQLRet ri eve(ID, array[, [maxcolumns] [, [ maxrows] [, [isColumnNames] [, isFetchFirst]]1]1])
Retrieves the results of a query.

Thisfunction is called after a connection to a data source is established, a query is executed, and
the desired columns are bound. The following table describes the parameters to the
SQLRet ri eve function:

Parameter Description
ID Long identifying avalid connected data source with pending query results.
array Two-dimensional array of variants to receive the results. The array has x rows

by y columns. The number of columnsis determined by the number of bindings
on the connection.

maxcolumns Optional | nt eger expression specifying the maximum number of columnsto
be returned. If maxcolumnsis greater than the number of columns bound, the
additional columns are set to empty. If maxcolumnsis less than the number of
bound results, the rightmost result columns are discarded until the resullt fits.

maxrows Optional | nt eger specifying the maximum number of rows to be returned. If
maxrows is greater than the number of rows available, all results are returned,
and additional rows are set to empty. If maxrows is less than the number of
rows available, the array isfilled, and additional results are placed in memory
for subsequent callsto SQLRet ri eve.

isColumnNames  Optional Bool ean specifying whether column names should be returned as
the first row of results. The default isFal se.

isFetchFirst Optional Bool ean expression specifying whether results are retrieved from
the beginning of the result set. The default isFal se.

Before you can retrieve the results from a query, you must (1) initiate a query by calling the
SQLExecQuer y function and (2) specify the fields to retrieve by calling the SQLBI nd function.

This function returns aLong specifying the number of rows available in the array.

The Basic Control Engine generates aruntime error if SQLRet r i eve fails. Additional error
information is placed in memory.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Example This example executes a query on the connected data source, binds columns, and retrieves them.

Sub Mai n()
Dimb() As Variant
Dimc() As Variant
i d& = SQ.Open( " DSN=SAMPLE", , 3)
qry& = SQLExecQuery(id& "Sel ect * From c:\sanpl e.dbf")
i %= SQ.Bi nd(id&, b, 3)
i %= SQ.Bi nd(idé&, b, 1)
i %= SQBi nd(id&, b, 2)
i %= SQ.Bi nd(id&, b, 6)
| & = SQLRetrieve(id&, c)
For x = 0 To Ubound(c)
For y = 0 To Ubound(b)
MsgBox c(x,Yy)
Next vy
Next X
id& = SQLA ose(id&)
End Sub

See Also SQLOpen (function); SQLExecQuer y (function); SQLC ose (function); SQLBi nd (function);
SQLRet ri eveToFi | e (function).

GFK-1283G S 19-33



SQLRetrieveToFile (function)

Syntax
Description

Comments

Example

See Also

19-34

SQLRetri eveToFi | e(ID, destination$ [, [ isColumnNames] [, delimiter$] ])
Retrieves the results of a query and writes them to the specified file.

The following table describes the parametersto the SQLRet ri eveToFi | e function:

Parameter Description
ID Long specifying avalid connection ID.
destination St r i ng specifying the file where the results are written.

isColumnNames Optional Bool ean specifying whether the first row of results returned are
the bound column names. By default, the column names are not returned.

delimiter Optional St ri ng specifying the column separator. A tab (Chr $(9) ) isused
as the defaullt.

Before you can retrieve the results from a query, you must (1) initiate a query by calling the
SQLExecQuer y function and (2) specify the fields to retrieve by calling the SQLBi nd function.

This function returns the number of rows written to the file. A runtime error is generated if there are
no pending results or if the Basic Control Engine is unable to open the specified file.

The Basic Control Engine generates aruntime error if SQLRet ri eveToFi | e fails. Additional
error information may be placed in memory for later use with the SQLEr r or function.

This example opens a connection, runs a query, binds columns, and writes the resultsto afile.

Sub Mai n()
Dimb() As Variant
i d& = SQLOpen( " DSN=SAMPLE; Ul D=RI CH", , 4)
t& = SQLExecQuery(id& "Sel ect * From c:\sanple.dbf")
i % = SQLBi nd(id&, b, 3)
i % = SQLBi nd(id&, b, 1)
i % = SQLBi nd(id&, b, 2)
i % = SQLBi nd(id&, b, 6)
| & = SQLRetrieveToFile(id& "c:\results.txt", True,",")
id& = SQLA ose(i d&)
End Sub

SQLOpen (function); SQLExecQuer y (function); SQLC ose (function); SQLBI nd (function);
SQLRet ri eve (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Sqgr (function)

Syntax Sqgr ( number)

Description Returns aDoubl e representing the square root of number.

Comments The number parameter isaDoubl e greater than or equal to O.

Example This example calculates the square root of the numbers from 1 to 10 and displays them.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
nmsgl = ""
For x =1 To 10
Sx# = Sqr(x)

msgl = msgl & "The square root of " & x & " is " &
For mat (sx#, "Fi xed") & crlf
Next X
MsgBox mnsgl
End Sub

Stop (statement)

Syntax Stop

Description Suspends execution of the current script, returning control to a debugger if oneis present. If a
debugger is not present, this command will have the same effect as End.

Example The Stop statement can be used for debugging. In this example, it is used to stop execution when Z
israndomly set to 0.
Sub Mai n()

For x =1 To 10
z = Randon{0, 10)
If z =0 Then Stop
y =x1/ z
Next X
End Sub

See Also Exit For (statement); Exi t Do (statement); Exi t Functi on (statement); Exi t Sub
(statement); End (statement).

GFK-1283G S 19-35



Str, Str$ (functions)

Syntax
Description

Comments

Example

See Also

St r[ $] ( number)
Returns a string representation of the given number.

The number parameter is any numeric expression or expression convertible to a number. If number
is negative, then the returned string will contain aleading minus sign. If number is positive, then the
returned string will contain aleading space.

Singles are printed using only 7 significant digits. Doubles are printed using 15-16 significant
digits.

These functions recognize the decimal separator and thousands separators as specified in the
Regional Settingsin the Control Panel. If theregional settings are changed, these functions will
recognize it and act accordingly. The CSt r , For nat , and For mat $ functions also determine
their separators based on the regional settings.

In this example, the St r $ function is used to display the value of a numeric variable.

Sub Mai n()

x# = 100. 22

MsgBox "The string value is: " + Str(x#)
End Sub

Format, Format$ (functions); CSt r (function).

StrComp

Syntax
Description

Comments

19-36

(function)

St r Conp( stringl, string2 [, compare] )
Returnsan | nt eger indicating the result of comparing the two string arguments.

Any of the following values are returned:

0 stringl = string2
1 stringl > string2
-1 stringl < string2
Nul | stringl or string2 isNul |

The St r Conp function accepts the following parameters:

Parameter Description

stringl First string to be compared, which can be any expression convertible to a
String.

string2 Second string to be compared, which can be any expression convertible to a
String.

compare Optional | nt eger specifying how the comparison isto be performed. It can
be either of the following values:
0 Case-sensitive comparison
1 Case-insensitive comparison

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Example

See Also

GFK-1283G

If compareis not specified, then the current Opt i on Conpar e setting isused. If no Opt i on
Conpar e statement has been encountered, then Bi nar y isused (that is, string comparison is
case-sengitive).

This example compares two strings and displays the results. It illustrates that the function
compares two strings to the length of the shorter string in determining equivalency.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
di m abc as bool ean
di m abi as bool ean
di mcdc as bool ean
dimcdi as bool ean
a$ = "This string is UPPERCASE and | ower case"
b$ = "This string is uppercase and | owercase"
c$ = "This string"
d$ = "This string is uppercase and | owercase characters"
msgl = "a =" & a &ecrlf
msgl = msgl & "b =" &b &crlf
msgl = megl & "c =" & c &crlf
msgl = megl & "d =" &d &crlf &ecrlf
abc = StrConp(a$, b$, 0)
msgl = megl & "a and ¢ (insensitive) : " & abc & crlf
abi = StrConp(a$, b$, 1)
msgl = megl & "a and ¢ (sensitive): " & abi & crlf
cdc = StrConp(c$, ds$, 1)
msgl = msgl & “c and d (insensitive): " & cdc & crlf
cdi = StrConp(c$, ds$, 1)
msgl = msgl & “c and d (sensitive) : " & cdi &ecrlf
MsgBox nsgl
End Sub

Comparison Operators (topic); Li ke (operator); Opt i on Conpar e (statement).

19-37



String (data type)

Syntax String
Description A datatype capable of holding a number of characters.

Comments Strings are used to hold sequences of characters, each character having a value between 0 and 255.
Strings can be any length up to a maximum length of 32767 characters.

Strings can contain embedded nulls, as shown in the following example:
s$ = "Hello" + Chr$(0) + "there" "String with enbedded nul |

The length of a string can be determined using the Len function. This function returns the number
of characters that have been stored in the string, including unprintable characters.

The type-declaration character for St ri ng is$.
St ri ng variables that have not yet been assigned are set to zero-length by default.

Strings are normally declared as variable-length, meaning that the memory required for storage of
the string depends on the size of its content. The following script statements declare a variable-
length string and assign it a value of length 5:

Dms As String
s = "Hell o" "String has length 5.

Fixed-length strings are given alength in their declaration:

Dms As String * 20
s = "Hell o" "String has length 20 (internally pads with spaces).

When a string expression is assigned to a fixed-length string, the following rules apply:

e If thestring expression is less than the length of the fixed-length string, then the fixed-
length string is padded with spaces up to its declared length.

e If the string expression is greater than the length of the fixed-length string, then the
string expression is truncated to the length of the fixed-length string.

Fixed-length strings are useful within structures when afixed sizeis required, such as when passing
structures to external routines.

The storage for afixed-length string depends on where the string is declared, as described in the
following table:

Strings Declared  Are Stored

In structures In the same data area as that of the structure. Local structures are on the
stack; public structures are stored in the public data space; and private
structures are stored in the private data space. Local structures should be
used sparingly as stack spaceis limited.

In arrays In the global string space along with all the other array elements.
Local routines On the stack. The stack islimited in size, so local fixed-length strings
should be used sparingly.
See Also Currency (datatype); Dat e (datatype); Doubl e (datatype); | nt eger (datatype); Long

(datatype); Obj ect (datatype); Si ngl e (datatype); Var i ant (datatype); Bool ean (data
type); Def Type (statement); CSt r (function).

19-38 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



String, String$ (functions)

Syntax String[ $] (number, [ CharCode | text$] )
Description Returns a string of length number consisting of a repetition of the specified filler character.
Comments String$retunsaStri ng, whereasSt ri ng returnsa St ri ng variant.

These functions take the following parameters:

Parameter Description
number I nt eger specifying the number of repetitions.
CharCode I nt eger specifying the character code to be used as the filler character. If

CharCode is greater than 255 (the largest character value), then the Basic
Control Engine convertsit to avalid character using the following formula:

CharCode Mbd 256

text$ Any St ri ng expression, the first character of which is used as thefiller
character.
Example This example uses the String function to create aline of "=" signs the length of another string and

then displays the character string underlined with the generated string.
Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
a$ = "This string will appear underlined."
b$ = String(Len(a$),"_")
MsgBox a$ & crlf & b$

End Sub

See Also Space, Space$ (functions).

GFK-1283G S 19-39



Sub...End Sub (statement)

Syntax [Private | Public] [Static] Sub name (arglist)]
[ statements]
End Sub

Where arglist is a comma-separated list of the following (up to 30 arguments are allowed):
[Optional] [ByVal | ByRef] parameter[ ()] [As type]

Description Declares a subroutine.
Comments The Sub statement has the following parts:
Part Description
Private Indicates that the subroutine being defined cannot be called from other scripts.
Publ i c Indicates that the subroutine being defined can be called from other scripts. If
the Pri vat e and Publ i ¢ keywords are both missing, then Publ i c is
assumed.
Static Recognized by the compiler but currently has no effect.
name Name of the subroutine, which must follow the Basic Control Engine naming
conventions:

1. Must start with aletter.

2. May contain letters, digits, and the underscore character (_). Punctuation
and type-declaration characters are not allowed. The exclamation point
(1) can appear within the name aslong asit is not the last character.

3. Must not exceed 80 charactersin length.

Opt i onal Keyword indicating that the parameter is optional. All optional parameters
must be of type Var i ant . Furthermore, all parameters that follow the first
optional parameter must also be optional.

If this keyword is omitted, then the parameter is required.
Note

Youcanusethel sM ssi ng function to determine if an optional parameter
was actually passed by the caller.

ByVal Keyword indicating that the parameter is passed by value.

By Ref Keyword indicating that the parameter is passed by reference. If neither the
ByVal nor the ByRef keyword isgiven, then ByRef isassumed.

parameter Name of the parameter, which must follow the same naming conventions as
those used by variables. This name can include a type-declaration character,
appearing in place of As type.

type Type of the parameter (i.e., | nt eger, St ri ng, and so on). Arrays are
indicated with parentheses. For example, an array of integers would be
declared asfollows:

Sub Test(a() As Integer)
End Sub

19-40 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



GFK-1283G

A subroutine terminates when one of the following statements is encountered:

End Sub
Exit Sub

Subroutines can be recursive.
Passing Parameters to Subroutines

Parameters are passed to a subroutine either by value or by reference, depending on the declaration
of that parameter in arglist. If the parameter is declared using the By Ref keyword, then any
modifications to that passed parameter within the subroutine change the value of that variable in the
caller. If the parameter is declared using the By Val keyword, then the value of that variable cannot
be changed in the called subroutine. If neither the By Ref or ByVal keywords are specified, then
the parameter is passed by reference.

Y ou can override passing a parameter by reference by enclosing that parameter within parentheses.
For instance, the following example passes the variable j by reference, regardless of how the third
parameter isdeclared inthe arglist of User Sub:

User Sub 10, 12, (j)

Optional Parameters

The Basic Control Engine allows you to skip parameters when calling subroutines, as shown in the
following example:

Sub Test (a% b% c%
End Sub

Sub Main
Test 1,,4 ' Paraneter 2 was skipped.
End Sub

Y ou can skip any parameter with the following restrictions:
1. The call cannot end with acomma. For instance, using the above example, the following is not
valid:
Test 1,,
2. The call must contain the minimum number of parameters as required by the called subroutine.
For instance, using the above example, the following are invalid:

Test ,1 '"Only passes two out of three required paraneters.
Test 1,2 'Only passes two out of three required paraneters.

When you skip a parameter in this manner, the Basic Control Engine creates atemporary variable
and passes this variable instead. The value of this temporary variable depends on the data type of
the corresponding parameter in the argument list of the called subroutine, as described in the
following table:

Value Data type

0 I nt eger, Long, Si ngl e, Doubl e, Currency
Zero-lengthstring String

Not hi ng Obj ect (or any data object)

Error Var i ant

December 30, 1899 Date

Fal se Boolean

S 19-41



Within the called subroutine, you will be unable to determine if a parameter was skipped unless the
parameter was declared as a variant in the argument list of the subroutine. In this case, you can use
thel sM ssi ng function to determine if the parameter was skipped:

Sub Test(a, b, c)
If IsMssing(a) O IsMssing(b) Then Exit Sub

End Sub
Example This example uses a subroutine to calculate the area of acircle.
Sub Mai n()
r = inputbox("Enter a circle radius to be converted to area","Radius -> Area")
PrintArea r
End Sub
Sub PrintArea(r)
areal = (r »~ 2) * Pi
MsgBox "The area of a circle with radius " &r &" =" & areal!
End Sub
See Also Mai n (keyword); Functi on. .. End Functi on (statement).

Switch (function)

Syntax Swi t ch( conditionl, expressionl [, condition2, expression2. . . [, condition7, expression7] | )
Description Returns the expression corresponding to the first Tr ue condition.
Comments The Swi t ch function evaluates each condition and expression, returning the expression that

corresponds to the first condition (starting from the | eft) that evaluatesto Tr ue. Up to seven
condition/expression pairs can be specified.

A runtime error is generated it there is an odd number of parameters (that is, thereis a condition
without a corresponding expression).

The Swi t ch function returns Nul | if no condition evaluatesto Tr ue.

Example The following code fragment displays the current operating platform. If the platform is unknown,
then the word "Unknown" is displayed.
Sub Mai n()
Dima As Vari ant
a = Switch(Basic.0s = 0,"Wndows 3.1",Basic.0S = 2,"Wn32",Basic. S = 11, " 05/ 2")
MsgBox "The current platformis: " & IIf(lIsNull(a),"Unknown", a)
End Sub

See Also Choose (function); I I f (function); | f. . . Then. . . El se (statement); Sel ect . . . Case
(statement).

19-42 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



SYD (function)

Syntax SYD( Cost, Salvage, Life, Period)
Description Returns the sum of years digits depreciation of an asset over a specific period of time.
Comments The SYD of an asset is found by taking an estimate of its useful lifein years, assigning valuesto

each year, and adding up al the numbers.
The formula used to find the SYD of an asset is as follows:
(Cost — Sal vage_Val ue) * Renmining_Useful _Life / SYD

The SYD function requires the following parameters:

Parameter Description

Cost Doubl e representing the initial cost of the asset.

Salvage Doubl e representing the estimated value of the asset at the end of its useful
life.

Life Doubl e representing the length of the asset's useful life.

Period Doubl e representing the period for which the depreciation is to be calculated.

It cannot exceed the life of the asset.

To receive accurate results, the parameters Life and Period must be expressed in the same units. If
Lifeis expressed in terms of months, for example, then Period must also be expressed in terms of
months.

Example In this example, an asset that cost $1,000.00 is depreciated over ten years. The salvage valueis
$100.00, and the sum of the years digits depreciation is shown for each year.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
msgl = ""
For x =1 To 10
dep# = SYD(1000, 100, 10, x)
msgl = megl & "Year: " & x & " Dep: " & Format (dep#, "Currency") & crlf
Next X
MsgBox mnsgl
End Sub

See Also Sl n (function); DDB (function).

GFK-1283G S 19-43



System.Exit (method)

Syntax
Description

Example

See Also

System Exi t
Exits the operating environment.

This example asks whether the user would like to restart Windows after exiting.

Sub Main
nessage$="Restart Wndows on exit?", ebYesNo, "Exit W ndows"
button = MsgBox nessage$

If button = ebYes Then System Restart 'Yes button sel ected.
If button = ebNo Then System Exit 'No button sel ected.
End Sub

Syst em Rest art (method).

System.FreeMemory (property)

Syntax
Description

Example

See Also

19-44

System FreeMenory
Returns a Long indicating the number of bytes of free memory.

The following example gets the free memory and converts it to kilobytes.

Sub Mai n()
FreeMenm& = System FreeMenory
FreeKByt es$ = Format (FreeMem& / 1000, "##, ###")
MsgBox FreeKbytes$ & " Kbytes of free nenory"
End Sub

Syst em Tot al Menory (property); Syst em Fr eeResour ces (property);
Basi c. FreeMenor y (property).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



System.FreeResources (property)

Syntax
Description
Comments

Example

See Also

Syst em FreeResour ces
Returnsan | nt eger representing the percentage of free system resources.
The returned value is between 0 and 100.

This example gets the percentage of free resources.

Sub Mai n()

FreeRes% = System FreeResour ces

MsgBox FreeRes% & "% of nenory resources avail able."
End Sub

Syst em Tot al Menory (property); Syst em Fr eeMenor y (property);
Basi c. FreeMenory (property).

System.MouseTrails (method)

Syntax
Description

Comments

Example

See Also

Syst em MouseTr ai | s isOn

Toggles mouse trails on or off.

If isOnis Tr ue, then mouse trails are turned on; otherwise, mouse trails are turned off.
A runtime error is generated if mouse trailsis not supported on your system.

This example turns on mouse trails.

Sub Mai n
System MouseTrails 1
End Sub

System.Restart (method)

Syntax
Description

Example

See Also

GFK-1283G

System Rest art

Restarts the operating environment.

This example asks whether the user would like to restart Windows after exiting.

Sub Mai n
button = MsgBox ("Restart Wndows on exit?",ebYesNo, _
"Exit W ndows")
If button = ebYes Then System Restart 'Yes button sel ected.
If button = ebNo Then System Exit 'No button sel ect ed.
End Sub

Syst em Exi t (method).

S 19-45



System.TotalMemory (property)

Syntax
Description

Example

See Also

Syst em Tot al Menory
Returns a Long representing the number of bytes of available free memory in Windows.

This example displays the total system memory.

Sub Mai n()

Tot Mem& = System Tot al Menory

Tot KByt es$ = Format (Tot Mem& / 1000, " ##, ###")

MsgBox Tot Kbytes$ & " Kbytes of total system nenory exist"
End Sub

Syst em FreeMenory (property); Syst em Fr eeResour ces (property);
Basi c. FreeMenory (property).

System.WindowsDirectory$ (property)

Syntax
Description

Example

See Also

Syst em W ndowsDi rectory$

Returns the home directory of the operating environment.

This example displays the Windows directory.

Sub Mai n
MsgBox "W ndows directory = " & System W ndowsDi rectory$
End Sub

Basi c. HonmeDi r $ (property).

System.WindowsVersion$ (property)

Syntax
Description
Comments

Example

See Also

19-46

Syst em W ndowsVer si on$

Returns the version of the operating environment, such as"3.0" or "3.1."

This example sets the UseWin31 variable to True if the Windows version is greater than or equal to
3.1; otherwise, it setsthe UseWin31 variable to False.

Sub Mai n()
If Val (System W ndowsVersion$) > 3.1 Then
MsgBox "You are running a Wndows version |ater than 3.1"
El se
MsgBox "You are running Wndows version 3.1 or earlier"
End |f
End Sub

Basi c. Ver si on$ (property).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Tab (function)

Syntax Tab( column)
Description Prints the number of spaces necessary to reach a given column position.
Comments This function can only be used with the Pri nt and Pr i nt # statements.

The column parameter isan | nt eger specifying the desired column position to which to advance.
It can be any value between 0 and 32767 inclusive.

Rule 1: If the current print position isless than or equal to column, then the number of spacesis
calculated as:
colum — print_position

Rule 2: If the current print position is greater than column, then column — 1 spaces are printed on
the next line.

If aline width is specified (using the W dt h statement), then the column position is adjusted as
follows before applying the above two rules:
colum = columm Md width
The Tab function is useful for making sure that output begins at a given column position,
regardless of the length of the data already printed on that line.
Example This example prints three column headers and three numbers aligned below the column headers.

Sub Mai n()
Print "Columl"; Tab(10);" Col um2"; Tab( 20) ;" Col urm3"
Print Tab(3);"1"; Tab(14);"2"; Tab(24);"3"

Sl eep(10000) '"Wait 10 seconds.
End Sub
See Also Spc (function); Pri nt (statement); Pr i nt # (statement).

GFK-1283G 20-1



Tan (function)

Syntax Tan( angle)

Description ReturnsaDoubl e representing the tangent of angle.

Comments The angle parameter isa Doubl e value given in radians.

Example This example computes the tangent of pi/4 radians (45 degrees).
Sub Mai n()

c# = Tan(Pi | 4)
MsgBox "The tangent of 45 degrees is: " & c#
End Sub

See Also Si n (function); Cos (function); At n (function).

Text (statement)

Syntax Text x,y, width, height, title$ [, [ . Identifier] [, [ FontName$] [, [size] [, style]]1]]

Description Defines atext control within adialog box template. The text control only displays text; the user
cannot set the focusto atext control or otherwise interact with it.

Comments The text within atext control word-wraps. Text controls can be used to display up to 32K of text.

The Text statement accepts the following parameters:

Parameter Description

X,y I nt eger positions of the control (in dialog units) relative to the upper left
corner of the dialog box.

width, height I nt eger dimensions of the control in dialog units.

title$ St ri ng containing the text that appears within the text control. This text

may contain an ampersand character to denote an accelerator letter, such as
" &Save" for Save. Pressing this accelerator letter sets the focusto the
control following the Text statement in the dialog box template.

Identifier Name by which this control can be referenced by statementsin adialog
function (such as DI gFocus and DI gEnabl e). If omitted, then the first
two words from title$ are used.

FontName$ Name of the font used for display of the text within the text control. If
omitted, then the default font for the dialog is used.

size Size of the font used for display of the text within the text control. If omitted,
then the default size for the default font of the dialog is used.

style Style of the font used for display of the text within the text control. This can
be any of the following values:

ebRegul ar Normal font (that is, neither bold nor italic)
ebBol d Bold font

ebltalic Italic font

ebBol dltalic Bold-italic font

If omitted, then ebRegul ar isused.

20-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Example

See Also

Note:

Sub Mai n()
Begi n Di al og UserDi al og 81, 64, 128, 60, "Untitled"
Cancel Button 80, 32, 40, 14
OKBut t on 80, 8, 40, 14
Text 4,8,68,44,"This text is displayed in the dial og box."
End Di al og
Dimd As UserDi al og
Di al og d
End Sub

Cancel But t on (statement); CheckBox (statement); ConrboBox (statement); Di al og
(function); Di al og (statement); Dr opLi st Box (statement); G- oupBox (statement); Li st Box
(statement); OKBut t on (statement); Opt i onBut t on (statement); Opt i onGr oup (statement);
Pi ct ur e (statement); PushBut t on (statement); Text Box (statement); Begi n Di al og
(statement), Pi ct ur eBut t on (statement).

Accelerators are underlined, and the Alt+letter accelerator combination is used.

8-point MS Sans Serif isthe default font used within user dialogs.

TextBox (statement)

Syntax
Description

Comments

GFK-1283G

Text Box X, y, width, height, . Identifier [, [isMultiling] [, [FontName$] [, [size] [, style] ] 1]
Defines asingle or multiline text-entry field within a dialog box template.

If isMultilineis 1, the Text Box statement creates a multiline text-entry field. When the user types
into amultiline field, pressing the Enter key creates a new line rather than selecting the default
button.

This statement can only appear within a dialog box template (that is, between the Begi n Di al og
and End Di al og statements).

The Text Box statement requires the following parameters:

Parameter Description

XY I nt eger position of the control (in dialog units) relative to the upper left
corner of the dialog box.

width, height I nt eger dimensions of the control in dialog units.

Identifier Name by which this control can be referenced by statementsin adialog

function (such as Dl gFocus and DI gEnabl e). This parameter also creates
a string variable whose value corresponds to the content of the text box. This
variable can be accessed using the syntax:

DialogVariable. Identifier

isMultiline Specifies whether the text box can contain more than asingle line (0 = single-
ling; 1 = multiline).

FontName$ Name of the font used for display of the text within the text box control. If
omitted, then the default font for the dialog is used.

size Size of the font used for display of the text within the text box control. If
omitted, then the default size for the default font of the dialog is used.

T 20-3



style Style of the font used for display of the text within the text box control. This
can be any of the following values:

ebRegul ar Normal font (i.e., neither bold nor italic)
ebBol d Bold font

ebltalic Italic font

ebBol dltalic Bold-italic font

If omitted, then ebRegul ar isused.

When the dialog box is created, the Identifier variable is used to set the initial content of the text
box. When the dialog box is dismissed, the variable will contain the new content of the text box.

A single-line text box can contain up to 256 characters. The length of text in amultiline text box is
not limited by the Basic Control Engine; the default memory limit specified by the given platformis
used instead.

Begi n Di al og UserDi al og 81, 64, 128, 60, "Untitled"

Cancel Button 80, 32, 40, 14
OKBut t on 80, 8, 40, 14
Text Box 4, 8, 68, 44, . Text Box1, 1
End Di al og
Dimd As UserDi al og
d. Text Boxl = "Enter text before invoking" 'Display text in the Textbox by
setting the default value of the TextBox before showing it.
Dial og d
End Sub

See Also Cancel But t on (statement); CheckBox (statement); ConboBox (statement); Di al og
(function); Di al og (statement); Dr opLi st Box (statement); G- oupBox (statement); Li st Box
(statement); OKBut t on (statement); Opt i onBut t on (statement); Opt i onGr oup (statement);
Pi ct ur e (statement); PushBut t on (statement); Text (statement); Begi n Di al og
(statement), Pi ct ur eBut t on (statement).

Note: 8-point MS Sans Serif is the default font used within user dialogs.

20-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Time, Time$ (functions)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Ti me[ $][()]
Returnsthe systemtimeasaSt ri ng or asaDat e variant.

The Ti me$ function returnsa St r i ng contains the time in 24-hour time format, whereas Ti ne
returns a Dat e variant.

To set thetime, usethe Ti me/ Ti ne$ statements.

This example returns the system time and displays it in a dialog box.
Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
oldtinme$ = Tine
negl = "Tinme was: " & oldtine$ & crlf
Time = "10: 30: 54"
msgl = megl & "Tine set to: " & Time & crlf
Time = ol dtine$
msgl = megl & "Tine restored to: " & Tinme
MsgBox mnsgl
End Sub

Ti me, Ti nme$ (statements); Dat e, Dat e$ (functions); Dat e, Dat e$ (statements); Now
(function).

20-5



Time, Time$ (statements)

Syntax
Description

Comments

Example

See Also

Note:

Time[$] = newtime
Sets the system time to the time contained in the specified string.
The Ti ne$ statement requires a string variable in one of the following formats:

HH
HH:MM
HH:MM:SS

where HH is between 0 and 23, MM is between 0 and 59, and SSis between 0 and 59.

The Ti me statement converts any valid expression to atime, including string and numeric values.
Unlikethe Ti me$ statement, Ti ne recognizes many different time formats, including 12-hour
times.

This example returns the system time and displays it in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
oldtinme$ = Tinme
nmegl = "Tinme was: " & oldtine$ & crlf
Time = "10: 30: 54"
msgl = megl & "Tine set to: " & Time & crlf
Time = ol dtine$
msgl = megl & "Tine restored to: " & Tinme
MsgBox mnsgl
End Sub

Ti me, Ti nme$ (functions); Dat e, Dat e$ (functions); Dat e, Dat e$ (statements).

If you do not have permission to change the time, aruntime error 70 will be generated.

Timer (function)

Syntax
Description

Example

See Also

20-6

Ti mer
Returnsa Si ngl e representing the number of seconds that have elapsed since midnight.

This example displays the elapsed time between execution start and the time you clicked the OK
button on the first message.

Sub Mai n()

start& = Timer

MsgBox "dick the OK button, please."

total & = Tiner - start&

MsgBox "The el apsed tine was: " & total & & " seconds. "
End Sub

Ti me, Ti me$ (functions); Now (function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



TimeSerial (function)

Syntax Ti meSeri al ( hour, minute, second)
Description Returns a Dat e variant representing the given time with a date of zero.
Comments The Ti neSeri al function requires the following parameters:
Parameter Description
hur I nt eger between 0 and 23.
minute I nt eger between 0 and 59.
second I nt eger between 0 and 59.
Example Sub Mai n()

start# = Ti meSerial (10, 22, 30)

finish# = TimeSerial (10, 35, 27)

dif# = Abs(start# - finish#)

MsgBox "The time difference is: " & Format(dif#, "hh: mm ss")
End Sub

See Also Dat eVal ue (function); Ti meVal ue (function); Dat eSer i al (function).

TimeValue (function)

Syntax Ti meVal ue(time_string$)
Description Returns a Dat e variant representing the time contained in the specified string argument.
Comments This function interprets the passed time_string$ parameter looking for a valid time specification.

The time_string$ parameter can contain valid time items separated by time separators such as colon
(:) or period (.).

Time strings can contain an optional date specification, but thisis not used in the formation of the
returned value.

If aparticular timeitem is missing, then it is set to 0. For example, the string 10 pm" would be
interpreted as "22:00:00."

Example This example calculates the TimeValue of the current time and displaysit in adialog box.

Sub Mai n()

t1$ = "10: 15"

t2# = TinmeVal ue(t1$)

MsgBox "The TineValue of " & t1$ & " is: " & t2#
End Sub

See Also Dat eVal ue (function); Ti meSeri al (function); Dat eSeri al (function).

GFK-1283G T 20-7



Trim, Trim$ (functions)

Syntax Trinf $] (text)
Description Returns a copy of the passed string expression (text) with leading and trailing spaces removed.
Comments Tri n® returnsa St ri ng, whereas Tr i mreturnsa St ri ng variant.

Nul | isreturned if textisNul | .

Example This example uses the Trim$ function to extract the nonblank part of a string and display it.
Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()
txt$ =" This is text

tr$ = Trimtxt$)
MsgBox "Original ->" & txt$ & "<-" &crlf & "Trimed ->" &tr$ & "<-"
End Sub

See Also LTrim LTrin$ (functions); RTrim RTri nt (functions).

True (constant)

Description Bool ean constant whose valueis Tr ue.
Comments Used in conditionals and Bool ean expressions.
Example This example sets variable ato True and then tests to see whether (1) A is True; (2) the True
constant =-1; and (3) A isequal to -1 (True).
Sub Mai n()
a = True

If ((a = True) and (True = -1) and (a = -1)) then
MsgBox "a is True."

El se
MsgBox "a is Fal se."
End | f
End Sub
See Also Fal se (constant); Constants (topic); Bool ean (datatype).

20-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Type (statement)

Syntax

Description

Comments

Example

See Also

GFK-1283G

Type username
variable As type
variable As type
variable As type

En.d Type

The Ty pe statement creates a structure definition that can then be used with the Di mstatement to
declare variables of that type. The username field specifies the name of the structure that is used
later with the Di mstatement.

Within a structure definition appear field descriptionsin the format:
variable As type

where variable is the name of afield of the structure, and type is the data type for that variable. Any
fundamental data type or previously declared user-defined data type can be used within the
structure definition (structures within structures are allowed). Only fixed arrays can appear within
structure definitions.

The Ty pe statement can only appear outside of subroutine and function declarations.

When declaring strings within fixed-size types, it is useful to declare the strings as fixed-length.
Fixed-length strings are stored within the structure itself rather than in the string space. For
example, the following structure will always require 62 bytes of storage:

Type Person
FirstName As String * 20
LastNane As String * 40
Age As Integer

End Type

Note

Fixed-length strings within structures are size-adjusted upward to an even byte boundary. Thus, a
fixed-length string of length 5 will occupy 6 bytes of storage within the structure.

This example displays the use of the Type statement to create a structure representing the parts of a
circle and assign values to them.

Type Circ
msg As String
rad As |nteger
dia As Integer
are As Doubl e
cir As Double

End Type
Sub Mai n()
Dimcircle As Crc
circle.rad = 5
circle.dia =circle.rad * 2
circle.are = (circle.rad » 2) * P
circle.cir =circle.dia * P
circle.msg = "The area of this circle is: " &circle.are
MsgBox circle. nsg
End Sub

Di m(statement); Publ i c (statement); Pri vat e (statement).

T 20-9






UBound (function)

Syntax UBound( ArrayVariable() [, dimension] )

Description Returnsan | nt eger containing the upper bound of the specified dimension of the specified array
variable.

Comments The dimension parameter is an integer that specifies the desired dimension. If not specified, then

the upper bound of the first dimension is returned.

The UBound function can be used to find the upper bound of adimension of an array returned by
an OLE automation method or property:

UBound( object. property [, dimension] )
UBound( object. method [, dimension] )

Example This example dimensions two arrays and displays their upper bounds.
Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()

Dima(5 To 12)

Dimb(2 To 100,9 To 20)

uba = UBound( a)

ubb = UBound(b, 2)

MsgBox "The upper bound of a is: " & uba & crlf & " The upper bound of b is: " &
ubb

This example uses Lbound and Ubound to dimension a dynamic array to hold a copy of an array
redimmed by the FileList statement.

Dimfl$()
FileList fI$,"*"
count = Ubound(fl$)
If ArrayDins(a) Then
Redi m nl $(Lbound(f1$) To Ubound(fl$))
For x = 1 To count
nl $(x) = f13$(x)
Next X
MsgBox "The | ast elenent of the new array is: " & nl$(count)
End |f
End Sub

See Also LBound (function); Ar r ayDi ns (function); Arrays (topic).

GFK-1283G 21-1



UCase, UCase$ (functions)

Syntax
Description

Comments

Example

See Also

UCase[ $] (text)

Returns the uppercase equivalent of the specified string.

UCase$ returnsa St ri ng, whereas UCase returnsa St r i ng variant.
Nul | isreturned if textisNul | .

This example uses the UCase$ function to change a string from lowercase to uppercase.

Sub Mai n()
al$ = "this string was | owercase, but was converted."
a2$ = UCase(al$)
MsgBox a2$

End Sub

LCase, LCase$ (functions).

Unlock (statement)

Syntax
Description

Comments

21-2

Unl ock [#] filenumber [, {record| [start] To end}]

Unlocks a section of the specified file, allowing other processes access to that section of thefile.

The Unl ock statement requires the following parameters:

Parameter Description

filenumber I nt eger used by the Basic Control Script to refer to the open file—the
number passed to the Open statement.

record Long specifying which record to unlock.

start Long specifying the first record within arange to be unlocked.

end Long specifying the last record within a range to be unlocked.

For sequential files, the record, start, and end parameters are ignored: the entire file is unlocked.

The section of thefileis specified using one of the following:

Syntax Description
No record specification Unlock the entire file.

record Unlock the specified record number (for Randomfiles) or byte (for
Bi nary files).

to end Unlock from the beginning of the file to the specified record (for
Randomfiles) or byte (for Bi nary files).

start t o end Unlock the specified range of records (for Randomfiles) or bytes (for
Bi nary files).

The unlock range must be the same as that used by the Lock statement.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001



Example

See Also

GFK-1283G

This example creates a file named test.dat and fills it with ten string variable records. These are
displayed in adialog box. Thefile is then reopened for read/write, and each record islocked,
modified, rewritten, and unlocked. The new records are then displayed in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n()
a$ = "This is record nunber:
b$ = "0O"
rec$ = ""

msgl = ""
Open "test.dat" For Random Access Wite Shared As #1
For x =1 To 10
rec$ = a$ & x
Lock #1,x
Put #1,,rec$
Unl ock #1, x
megl = negl & rec$ & crlf
Next X
Cl ose
MsgBox "The records are: " & crlf & msgl

nmegl = ""
Open "test.dat" For Random Access Read Wite Shared As #1
For x =1 to 10

rec$ = Md(rec$,1,23) & (11 - x)

Lock #1,x "Lock it for our use.
Put #1,x,rec$ ' Nobody' s changed it.
UnLock #1, x
nmegl = nsgl & rec$ & crif

Next X

MsgBox "The records are: " & crlf & msgl

d ose

Kill "test.dat"

End Sub

Lock (statement); Open (statement).

21-3



User-Defined Types (topic)

User-defined types (UDTSs) are structure definitions created using the Type statement. UDTs are
equivalent to C language structures.
Declaring Structures

The Ty pe statement is used to create a structure definition. Type declarations must appear outside
the body of all subroutines and functions within a script and are therefore global to an entire script.
Once defined, aUDT can be used to declare variables of that type using the Di m Publ i ¢, or

Pri vat e statement. The following example defines a rectangle structure:

Type Rect
left As |nteger
top As Integer
right As Integer
bottom As | nteger
End Type

Sub Mai n()
Dmr As Rect

r.'l eft = 10
End Sub

Any fundamental data type can be used as a structure member, including other user-defined types.
Only fixed arrays can be used within structures.

Copying Structures

UDTs of the same type can be assigned to each other, copying the contents. No other standard
operators can be applied to UDTs.

Dimrl As Rect
Dimr2 As Rect

r 1 =r2
When copying structures of the same type, al stringsin the source UDT are duplicated and
references are placed into the target UDT.
The LSet statement can be used to copy a UDT variable of one type to another:

LSet variablel = variable2

LSet cannot be used with UDTs containing variable-length strings. The smaller of the two
structures determines how many bytes get copied.

Passing Structures

UDTs can be passed both to user-defined routines and to external routines, and they can be
assigned. UDTs are always passed by reference.

Since structures are always passed by reference, the By Val keyword cannot be used when defining
structure arguments passed to external routines (using Decl ar €). The By Val keyword can only
be used with fundamental datatypessuchasl nt eger and St ri ng.

Passing structures to external routines actually passes afar pointer to the data structure.

Size of Structures

The Len function can be used to determine the number of bytes occupied by aUDT:
Len( udt_variable name)

Since strings are stored in the Basic Control Engine's data space, only areference (currently, 2
bytes) is stored within a structure. Thus, the Len function may seem to return incorrect information
for structures containing strings.

21-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Val (function)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Val ( string_expression)
Converts a given string expression to a number.
The number parameter can contain any of the following:
¢ Leading minus sign (for nonhex or octal numbers only)
e Hexadecimal number in the format & Hhexdigits
¢ Octa number in the format & Ooctaldigits
e Floating-point number, which can contain adecimal point and an optional exponent
Spaces, tabs, and line feeds are ignored.
If number does not contain a number, then O is returned.
TheVal function continues to read characters from the string up to the first nonnumeric character.

The Val function always returns a double-precision floating-point value. This valueisforced to the
data type of the assigned variable.

This example inputs a number string from an InputBox and convertsit to a number variable.

Sub Mai n()
a$ = | nputBox("Enter anything containing a nunber","Enter Nunber")
b# = Val (a$)
MsgBox "The value is: " & b#

End Sub

'The followi ng table shows valid strings and their numeric equival ents:
12 3" 123

"12. 3" 12.3
" &HFFFF" -1
" &OTT" 63
"12. 345E- 02" . 12345

CDbl (function); Str, Str$ (functions).

22-1



Variant (data type)

Syntax
Description

Comments

22-2

Vari ant

A datatype used to declare variables that can hold one of many different types of data.

During avariant's existence, the type of data contained within it can change. Variants can contain
any of the following types of data:

Type of Data
Numeric

Logical

Dates and times
String

Object

No valid data
Uninitialized

The Basic Control Engine Data Types

I nteger, Long, Single, Double, Boolean, Date,
Currency

Bool ean

Dat e

String

hj ect

A variant with no valid datais considered Nul |

An uninitialized variant is considered Enpt y

There is no type-declaration character for variants.

The number of significant digits representable by a variant depends on the type of data contained

within the variant.

Var i ant isthe default datatype for the Basic Control Engine. If avariable is not explicitly
declared with Di m Publ i c, or Pri vat e, and there is no type-declaration character (i.e., #, @! ,
% or &), then the variable is assumed to be Var i ant .

Determining the Subtype of a Variant

The following functions are used to query the type of data contained within a variant:

Function
Var Type

I sNunmeri c

| sObj ect
I sNul |

| sEnpty

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

Description
Returns a number representing the type of data contained within the variant.

Returns Tr ue if avariant contains numeric data. The following are
considered numeric:

I nteger, Long, Single, Double, Date, Bool ean,
Currency

If avariant contains a string, this function returns Tr ue if the string can be
converted to a number.

If avariant contains an Cbj ect whose default property is numeric, then
I sNurreri c returns Tr ue.

Returns Tr ue if avariant contains an object.
Returns Tr ue if avariant contains no valid data

Returns Tr ue if avariant is uninitialized.

GFK-1283G



I sDate Returns Tr ue if avariant contains a date. If the variant contains a string,
then this function returns Tr ue if the string can be converted to a date. If the
variant contains an Qbj ect , then this function returns Tr ue if the default
property of that object can be converted to a date.

Assigning to Variants

BeforeaVar i ant hasbeen assigned avalue, it is considered empty. Thus, immediately after
declaration, the Var Ty pe function will return ebEnpt y. An uninitialized variant is 0 when used
in numeric expressions and is a zero-length string when used within string expressions.

A Vari ant isEnpt y only after declaration and before assigning it a value. The only way for a
Var i ant to become Enpt y after having received avalueisfor that variant to be assigned to
another Var i ant containing Enpt vy, for it to be assigned explicitly to the constant Enpt vy, or for
it to be erased using the Er ase statement.

When avariant is assigned avalue, it is also assigned that value's type. Thus, in al subsequent
operations involving that variant, the variant will behave like the type of datait contains.

Operations on Variants

Normally, aVar i ant behavesjust like the datait contains. One exception to thisruleisthat, in
arithmetic operations, variants are automatically promoted when an overflow occurs. Consider the
following statements:

Dima As Integer,b As Integer,c As Integer
Dimx As Variant,y As Variant,z As Variant

a% = 32767

b% =1

c% = a%+ b% "This will overflow.

x = 32767

y =1

zZ =X +y 'z becomes a Long because of Integer overflow.

In the above example, the addition involving | nt eger variables overflows because the result
(32768) overflows the legal range for integers. With Var i ant variables, on the other hand, the
addition operator recognizes the overflow and automatically promotes the result to aLong.

Adding Variants

The + operator is defined as performing two functions: when passed strings, it concatenates them;
when passed numbers, it adds the numbers.

With variants, the rules are complicated because the types of the variants are not known until
execution time. If you use +, you may unintentionally perform the wrong operation.

It is recommended that you use the & operator if you intend to concatenate two St r i ng variants.
This guarantees that string concatenation will be performed and not addition.

Variants That Contain No Data

A Vari ant canbe set to aspecial valueindicating that it contains no valid data by assigning the
Vari ant toNul I :

Dima As Vari ant
a = Null

The only way that aVar i ant becomesNul | isif you assign it as shown above.

TheNul | value can be useful for catching errors since its value propagates through an expression.

GFK-1283G \% 22-3



Variant Storage

Variants require 16 bytes of storage internaly:
e A 2-bytetype
e A 2-byte extended type for data objects
e bytesof padding for alignment
 An8-bytevaue

Unlike other data types, writing variantsto Bi nar y or Randomfiles does not write 16 bytes. With
variants, a 2-byte type is written, followed by the data (2 bytesfor | nt eger and so on).

Disadvantages of Variants
The following list describes some disadvantages of variants:

1. Using variantsis slower than using the other fundamental data types (that is, | nt eger, Long,
Si ngl e, Doubl e, Dat e, Obj ect, String, Currency, and Bool ean). Each operation
involving aVar i ant requires examination of the variant's type.

2. Variants require more storage than other data types (16 bytes as opposed to 8 bytes for a
Doubl e, 2 bytesfor an | nt eger, and so on).

3. Unpredictable behavior. Y ou may write code to expect an | nt eger variant. At runtime, the
variant may be automatically promoted to aLong variant, causing your code to break.

Passing Nonvariant Data to Routines Taking Variants

Passing nonvariant data to a routine that is declared to receive a variant by reference prevents that
variant from changing type within that routine. For example:
Sub Foo(v As Variant)
v = 50 " OK

v = "Hello, world." 'Get a type-msmatch error here!
End Sub

Sub Mai n()

Dimi As Integer

Foo i 'Pass an integer by reference.
End Sub

In the above example, since an | nt eger is passed by reference (meaning that the caller can
change the original value of the | nt eger ), the caller must ensure that no attempt is made to
change the variant's type.

Passing Variants to Routines Taking Nonvariants

Variant variables cannot be passed to routines that accept nonvariant data by reference, as
demonstrated in the following example:

Sub Foo(i As I|nteger)

End Sub
Sub Mai n()
Dima As Vari ant
Foo a ' Conpi l er gives type-mismatch error here.
End Sub
See Also Curr ency (datatype); Dat e (datatype); Doubl e (datatype); | nt eger (datatype); Long

(datatype); Obj ect (datatype); Si ngl e (datatype); St ri ng (datatype); Bool ean (data type);
Def Type (statement); Cvar (function); Enpty (constant); Nul | (constant); Var Type
(function).

22-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



VarType (function)

Syntax
Description

Comments

Comments

Example

See Also

GFK-1283G

Var Type( variable)

Returnsan | nt eger representing the type of datain variable.

The variable parameter isthe name of any Var i ant .

The following table shows the different values that can be returned by Var Type:

Value Constant
ebEnmpty
ebNul |

ebl nt eger

eblLong

ebDoubl e

ebCurrency

ebDat e

ebString

eboj ect
10 ebError

0
1
2
3
4 ebSi ngl e
5
6
7
8
9

11 ebBool ean
12 ebVari ant

13 ebDat abj ect

Data Type

Uninitialized

No valid data

I nt eger

Long

Si ngl e

Doubl e

Currency

Dat e

String

hj ect (OLE automation object)
User-defined error

Bool ean

Var i ant (not returned by this function)
Non-OLE automation object

When passed an object, the Var Ty pe function returns the type of the default property of that
object. If the object has no default property, then either ebOhj ect or ebDat aCbj ect is
returned, depending on the type of variable.

Sub Mai n()
Dimv As Vari ant
v = 5&

I f VarType(v) = eblnteger Then
Msgbox "v is an Integer."
El sel f Var Type(v) = ebLong Then
Msgbox "v is a Long."
End |f
End Sub

'Set v to a Long.

Enpt y (constant); Nul | (constant); Var i ant (datatype).

22-5



VLine (statement)

Syntax VLi ne [lines]
Description Scrolls the window with the focus up or down by the specified number of lines.
Comments The lines parameter isan | nt eger specifying the number of linesto scroll. If this parameter is
omitted, then the window is scrolled down by one line.
Example This example prints a series of lines to the viewport, then scrolls back up the lines to the top using
VLine.
Sub Mai n()
"Basi cScript Viewport", 100, 100, 500, 200
For i =1 to 50

Print “"This will be displayed on line# " &
Next
MsgBox "W will now go back 40 lines..."

VLi ne -40
MsgBox "...and here we are!"
End Sub
See Also VPage (statement); VScr ol | (statement).

VPage (statement)

Syntax VPage [pages]
Description Scrolls the window with the focus up or down by the specified number of pages.

Comments The pages parameter isan | nt eger specifying the number of linesto scroll. If this parameter is
omitted, then the window is scrolled down by one page.
Example This example scrolls the viewport window up five pages.
Sub Mai n()
"Basi cScript Viewport", 100, 100, 500, 200
For i =1 to 500
Print "This will be displayed on line# " &
Next
MsgBox "We will now go back 5 pages..."
VLine -5
MsgBox "...and here we are!"
End Sub

See Also VLi ne (statement); VScr ol | (statement).

22-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



VScroll (statement)

Syntax VScrol | percentage

Description Sets the thumb mark on the vertical scroll bar attached to the current window.

Comments The position is given as a percentage of the total range associated with that scroll bar. For
example, if the percentage parameter is 50, then the thumb mark is positioned in the middle of the
scroll bar.

Example This example prints a bunch of linesto the viewport, then scrolls back to the top using VScr ol | .
Sub Mai n()

"Basi cScript Viewport", 100, 100, 500, 200
For i =1 to 50

Print "This will be displayed on line#: " &i
Next i
Message$="We will now go to the the top..."
MsgBox Message$
VScroll 0O
VScroll O
MsgBox "...and here we are!"
End Sub

See Also VLi ne (statement); VPage (statement).

GFK-1283G \% 22-7






Weekday (function)

Syntax

Description

Example

See Also

GFK-1283G

Weekday ( date)

Returnsan | nt eger value representing the day of the week given by date. Sunday is 1, Monday is
2, and so on.

The date parameter is any expression representing avalid date.

This example gets a date in an input box and displays the day of the week and its name for the date
entered.

Sub Mai n()
Dim a$(7)
a$(1) = "Sunday"
a$(2) = "Monday"
a$(3) = "Tuesday"
a$(4) = "Wednesday"
a$(5) = "Thursday"
a$(6) = "Friday"
a$(7) = "Saturday"
Repronpt :

bd = | nput Box("Pl ease enter your birthday.","Enter Birthday")
If Not(lsDate(bd)) Then Goto Repronpt

dt = DateVal ue(bd)

dw = WeekDay(dt)

Msgbox "You were born on day " & dw & ", which was a " & a$(dw)
End Sub

Day (function); M nut e (function); Second (function); Mont h (function); Year (function);
Hour (function); Dat ePar t (function).

231



While...Wend (statement)

Syntax

Description
Comments

Example

See Also
Note:

23-2

Whi | e condition

[ statements]
Vend

Repeats a statement or group of statements while a conditionis Tr ue.

The condition isinitially and then checked at the top of each iteration through the loop.

This example executes a While loop until the random number generator returns a value of 1.

Sub Mai n()
x% =0
count% = 0
Wi le x%<> 1 And count % < 500
X% = Rnd(1)
If count% > 1000 Then
Exit Sub
El se
count% = count% + 1
End If
Wend
MsgBox "The | oop executed " & count% & " tines."
End Sub

Do. . . Loop (statement); For . . . Next (statement).

Dueto errorsin program logic, you can inadvertently create infinite loopsin your code. Y ou can

break out of infinite loops using Ctrl+Break.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



Width# (statement)

Syntax W dt h# filenumber, newwidth
Description Specifies the line width for sequential files opened in either Cut put or Append mode.
Comments The W dt h# statement requires the following parameters:

Parameter Description

filenumber I nt eger used by the Basic Control Engineto refer to the open file—the

number passed to the Open statement.

newwidth I nt eger between 0 to 255 inclusive specifying the new width. If newwidth
is 0, then no maximum line length is used.

When afileisinitially opened, thereis no limit to line length. This command forces all subsequent
output to the specified file to use the specified value as the maximum line length.

The W dt h statement affects output in the following manner: if the column position is greater than
1 and the length of the text to be written to the file causes the column position to exceed the current
line width, then the data is written on the next line.

The W dt h statement also affects output of the Pr i nt command when used with the Tab and
Spc functions.

Example This statement sets the maximum line width for file number 1 to 80 columns.
Const crlf$ = Chr$(13) + Chr$(10)
Sub Mai n()

Dimi, nsgl, new i ne$
Open "test.dat" For Qutput As #1 'Create data file.

For i =0 To 9
Print #1,Chr(48 +i); 'Print 0-9 to test file all on sane line.
Next i

Print #1,crlf "New |ine.
Wdth #1,5 'Change line width to 5.

For i =0 To 9 'Print 0-9 again. This time, five characters print before line
W aps.
Print #1,Chr(48 + i);
Next |
Cl ose #1
msgl = "The effect of the Wdth statenent is as shown below. " & crlf

Open "test.dat" For Input As #1'Read new file.
Do Wil e Not Eof (1)
I nput #1, new i ne$
negl = negl & crlf$ & newine$
Loop
Cl ose #1
negl = negl & crlf$ & crlf$ & "Choose K to renpve the test file."

MsgBox nmsgl' Di splay effects of Wdth.
Kill "test.dat"
End Sub

See Also Print (statement); Pri nt # (statement); Tab (function); Spc (function).

GFK-1283G w 23-3



WinActivate (statement)

Syntax
Description

Comments

Example

See Also

234

W nAct i vat e [window_name$ | window_object] [,timeout]
Activates the window with the given name or object value.
The W nAct i vat e statement requires the following parameters:

Parameter Description

window_name$  String containing the name that appears on the desired application'stitle bar.
Optionally, a partial name can be used, such as"Word" for "Microsoft
Word."

A hierarchy of windows can be specified by separating each window name
with avertical bar (]), asin the following example:

W nActivate "Not epad| Fi nd"

In this example, the top-level windows are searched for a window whose title
contains the word " Not epad" . If found, the windows owned by the top
level window are searched for one whose title contains the string " Fi nd" .

window_object  HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.

timeout Integer specifying the number of milliseconds for which to attempt activation
of the specified window. If not specified (or 0), then only one attempt will be
made to activate the window. Thisvalueis handy when you are not certain
that the window you are attempting to activate has been created.

If window_name$ and window_object are omitted, then no action is performed.

Thisexample runsthe cl ock. exe program by activating the Run File dialog box from within
Program Manager.

Sub Mai n()
W nActi vate "Program Manager"
Menu "File. Run"
W nActivate "Program Manager | Run"
SendKeys "cl ock. exe{ ENTER}"

End Sub

AppAct i vat e (statement).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



WinClose (statement)

Syntax
Description

Comments

Example

See Also

Notes

GFK-1283G

W nCl ose [window_name$ | window_object]
Closes the given window.
The W nCl ose statement requires the following parameters:

Parameter Description

window_name$  String containing the name that appears on the desired application'stitle bar.
Optionally, apartial name can be used, such as"Word" for "Microsoft
Word."

A hierarchy of windows can be specified by separating each window name
with avertical bar (]), asin the following example:

W nActivate "Notepad| Fi nd"

In this example, the top-level windows are searched for a window whose title
contains the word " Not epad" . If found, the windows owned by the top
level window are searched for one whose title contains the string " Fi nd" .

window_object HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.

If window_name$ and window_object are omitted, then the window with the focus is closed.

This command differs from the AppCl ose command in that this command operates on the
current window rather than the current top-level window (or application).

This example closes Microsoft Word if its object reference is found.

Sub Mai n()

Di m Wor dHandl e As HWND

Set WordHandl e = W nFi nd("Word")

If (WrdHandl e I's Not Nothing) Then W nd ose WrdHandl e
End Sub

W nFi nd (function).

Under Windows, the current window can be an MDI child window, a pop-up window, or atop-
level window.

235



WinFind (function)

Syntax W nFi nd(name$) As HWAD

Description Returns an object variable referencing the window having the given name.

Comments The name$ parameter is specified using the same format as that used by the W nAct i vat e
Statement.

Example This example closes Microsoft Word if its object reference is found.
Sub Mai n()

Di m Wor dHandl e As HWND

Set WordHandl e = W nFi nd("Word")

If (WrdHandl e I's Not Nothing) Then WnCd ose WrdHandl e
End Sub

See Also W nAct i vat e (statement).

WinList (statement)

Syntax W nLi st ArrayOf\Windows()
Description Fills the passed array with references to all the top-level windows.
Comments The passed array must be declared as an array of HWND objects.

The ArrayOfWindows parameter must specify either a zero- or one-dimensioned dynamic array
or asingle-dimensioned fixed array. If the array isdynamic, then it will be redimensioned to
exactly hold the new number of elements. For fixed arrays, each array element isfirst erased,
then the new elements are placed into the array. If there are fewer elements than will fit in the
array, then the remaining elements are unused. A runtime error resultsif the array istoo small to
hold the new elements.

After calling this function, use the LBound and UBound functions to determine the new size of

the array.
Example This example minimizes all top-level windows.
Sub Mai n()
Dima() As HWD
WnList a
For i =1 To UBound(a)
WnM nim ze a(i)
Next i
End Sub
See Also W nFi nd (function).

23-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



WinMaximize (statement)

Syntax
Description

Comments

Example

See Also

Notes

GFK-1283G

W nMaxi nmi ze [window_name$ | window_object]
Maximizes the given window.
The W nMaxi mi ze statement requires the following parameters:

Parameter Description

window_name$  String containing the name that appears on the desired application'stitle bar.
Optionally, apartial name can be used, such as"Word" for "Microsoft
Word."

A hierarchy of windows can be specified by separating each window name
with avertical bar (]), asin the following example:

W nActivate "Notepad| Fi nd"

In this example, the top-level windows are searched for a window whose title
contains the word " Not epad" . If found, the windows owned by the top
level window are searched for one whose title contains the string " Fi nd" .

window_object HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.

If window_name$ and window_object are omitted, then the window with the focusis
maximized.

This command differs from the AppMaxi m ze command in that this command operates on the
current window rather than the current top-level window.

This example maximizes all top-level windows.

Sub Mai n()
Dima() As HWD
WnList a
For i =1 To UBound(a)
W nMaxi m ze a(i)
Next i
End Sub

W nM ni nmi ze (statement); W nRest or e (statement).

Under Windows, the current window can be an MDI child window, a pop-up window, or atop-
level window.

23-7



WinMinimize (statement)

Syntax
Description

Comments

Example
See Also

Notes

23-8

W nM ni mi ze [window_name$ | window_object]
Minimizes the given window.
The W nM ni mi ze statement requires the following parameters:

Parameter Description

window_name$  String containing the name that appears on the desired application'stitle bar.
Optionally, a partial name can be used, such as"Word" for "Microsoft
Word."

A hierarchy of windows can be specified by separating each window name
with avertical bar (]), asin the following example:

W nActivate "Not epad| Fi nd"

In this example, the top-level windows are searched for a window whose title
contains the word " Not epad" . If found, the windows owned by the top
level window are searched for one whose title contains the string " Fi nd" .

window_object  HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.

If window_name$ and window_object are omitted, then the window with the focus is minimized.

This command differs from the AppM ni m ze command in that this command operates on the
current window rather than the current top-level window.

See example for W nLi st (statement).
W nMaxi mi ze (statement); W nRest or e (statement).

Under Windows, the current window can be an MDI child window, a pop-up window, or atop-
level window.

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



WinMove (statement)

Syntax W nMove x,y [window_name$ | window_object]
Description Moves the given window to the given x,y position.
Comments The W nMove statement requires the following parameters:
Parameter Description
X,y Integer coordinates given in twips that specify the new location for the
window.

window_name$  String containing the name that appears on the desired application'stitle bar.
Optionally, apartial name can be used, such as"Word" for "Microsoft
Word."

A hierarchy of windows can be specified by separating each window name
with avertical bar (]), asin the following example:

W nActivate "Notepad| Fi nd"

In this example, the top-level windows are searched for a window whose title
contains the word " Not epad" . If found, the windows owned by the top
level window are searched for one whose title contains the string " Fi nd" .

window_object HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.

If window_name$ and window_object are omitted, then the window with the focus is moved.

This command differs from the AppMove command in that this command operates on the
current window rather than the current top-level window. When moving child windows,
remember that the x and y coordinates are relative to the client area of the parent window.

Example This example moves Program Manager to upper left corner of the screen.
W nMove 0, 0, " Program Manager"

See Also W nSi ze (statement).
Notes Under Windows, the current window can be an MDI child window, a pop-up window, or atop-
level window.

GFK-1283G w 239



WinRestore (statement)

Syntax W nRest or e [window_name$ | window_object]
Description Restores the specified window to its restore state.

Comments Restoring a minimized window restores that window to its screen position before it was
minimized. Restoring a maximized window resizes the window to its size previousto
maximizing.

The W nRest or e statement requires the following parameters:

Parameter Description

window_name$  String containing the name that appears on the desired application'stitle bar.
Optionally, a partial name can be used, such as"Word" for "Microsoft
Word."

A hierarchy of windows can be specified by separating each window name
with avertical bar (]), asin the following example:

W nActivate "Not epad| Fi nd"

In this example, the top-level windows are searched for a window whose title
contains the word " Not epad" . If found, the windows owned by the top
level window are searched for one whose title contains the string " Fi nd" .

window_object HWND object specifying the exact window to activate. Thiscan beused in
place of the window_name$ parameter to indicate a specific window to
activate.

If window_name$ and window_object are omitted, then the window with the focus is restored.

This command differs from the AppRest or e command in that this command operates on the
current window rather than the current top-level window.

Example This example minimizes al top-level windows except for Program Manager.

Sub Mai n()

Dima() As HWD

WnList a

For i = 0 To UBound(a)

W nM nimze a(i)

Next |

W nRestore "Program Manager"
End Sub

See Also W nMaxi m ze (statement); W nM ni mi ze (statement).

Notes Under Windows, the current window can be an MDI child window, a pop-up window, or atop-
level window.

23-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



WinSize (statement)

Syntax
Description

Comments

Example

See Also

Note

GFK-1283G

W nSi ze width,height [,window_name$ | window_object]
Resizes the given window to the specified width and height.
The WinSize statement requires the following parameters:

Parameter Description

width,height Integer coordinates given in twips that specify the new size of the window.

window_name$  String containing the name that appears on the desired application's title bar.
Optionally, a partial name can be used, such as"Word" for "Microsoft
Word." A hierarchy of windows can be specified by separating each window
name with avertical bar ([), asin the following example:

W nActivate " Not epad| Fi nd"

In this example, the top-level windows are searched for a window whose title
contains the word " Not epad" . If found, the windows owned by the top
level window are searched for one whose title contains the string " Fi nd" .

window_object HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.

If window_name$ and window_object are omitted, then the window with the focus is resized.

This command differs fromthe AppSi ze command in that this command operates on the
current window rather than the current top-level window.

This example runs and resizes Notepad.

Sub Mai n()
Di m Not epadApp As HWAD
id = Shell ("Notepad. exe")
set Not epadApp = W nFi nd(" Not epad")
W nSi ze 4400, 8500, Not epadApp
End Sub

W nMbve (statement).

Under Windows, the current window can be an MDI child window, a pop-up window, or atop-
level window.

w 23-11



Word$ (function)

Syntax
Description

Comments

Example

See Also

Vor d$( text$, first[ , last] )
Returnsa St ri ng containing a single word or sequence of words between first and last.

The Wor d$ function requires the following parameters:

Parameter Description
text$ St ri ng from which the sequence of words will be extracted.
first I nt eger specifying the index of the first word in the sequence to return. If

last is not specified, then only that word is returned.

last I nt eger specifying the index of the last word in the sequence to return. If
last is specified, then all words between first and last will be returned,
including all spaces, tabs, and end-of-lines that occur between those words.

Words are separated by any nonal phanumeric characters such as spaces, tabs, end-of-lines, and
punctuation.

If first is greater than the number of wordsin text$, then a zero-length string is returned.

If last is greater than the number of wordsin text$, then all words from first to the end of the text
are returned.

This example finds the name " Stuart" in a string and then extracts two words from the string.

Sub Mai n()
s$ = "MW last nane is Wllians; Stuart is ny surnane."”
c$ = Wrd$(s$, 5, 6)
MsgBox "The extracted nane is: " & c$

End Sub

| t ens (function); | t emCount (function); Li ne$ (function); Li neCount (function);
Wor dCount (function).

WordCount (function)

Syntax
Description
Comments

Example

See Also

23-12

Wor dCount ( text$)
Returnsan | nt eger representing the number of wordsin the specified text.
Words are separated by spaces, tabs, and end-of-lines.

This example counts the number of words in a particular string.

Sub Mai n()
s$ ="M last nane is WIllianms; Stuart is ny surnane."
i % = Wor dCount (s$)
MsgBox "'" & s$ & "' has " & i%& " words."

End Sub

I t ends (function); | t emCount (function); Li ne$ (function); Li neCount (function); Wor d$
(function).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



Write# (statement)

Syntax
Description

Comments

Example

See Also

GFK-1283G

Wite [#]filenumber [, expressionlist]
Writes alist of expressions to a given sequentia file.
Thefile referenced by filenumber must be opened in either Qut put or Append mode.

The filenumber parameter isan | nt eger used by the Basic Control Engine to refer to the open
file—the number passed to the Qpen statement.

The following table summarizes how variables of different types are written:

Data Type Description

Any numeric type Written as text. There is no leading space, and the period is always used
as the decimal separator.

String Written as text, enclosed within quotes.

Enpty No datais written.

Nul | Written as #NUL L#.

Bool ean Written as # TRUE# or #FAL SE#.

Dat e Written using the universal date format:

#YYYY- MM- DD HH: MM: SS#

user-defined errors Written as#ERROR ErrorNumber#, where ErrorNumber isthe value
of the user-defined error. The word ERROR is not translated.

The W i t e statement outputs variables separated with commas. After writing each expression in
thelist, Wi t e outputs an end-of-line.

The W i t e statement can only be used with files opened in Qut put or Append mode.

This example opens afile for sequential write, then writes ten records into the file with the values
10...50. Then thefileis closed and reopened for read, and the records are read with the Input
statement. The results are displayed in a dialog box.

Sub Mai n()

Open "test.dat" For Qutput Access Wite As #1
For x =1 To 10

r%=x * 10
Wite #1,X,r%
Next x
Cl ose
nmegl = ""

Open "test.dat" For Input Access Read As #1
For x =1 To 10
I nput #1, a% b%

nmsgl = negl & "Record " & a% & ": " & b% & Basi c. Eol n$
Next X
MsgBox nsgl
Cl ose
End Sub

Open (statement); Put (statement); Pr i nt # (statement).

w 23-13



Writelni (statement)

Syntax Witelni section$, ItemName$, valued[ , filenames$]
Description Writesanew valueinto anini file.
Comments TheW i t el ni statement requires the following parameters:
Parameter Description
section$ St ri ng specifying the section that contains the desired variables, such as

"windows." Section names are specified without the enclosing brackets.

ItemName$ St ri ng specifying which item from within the given section you want to
change. If ItemName$ is a zero-length string ("), then the entire section
specified by section$ is deleted.

value$ St ri ng specifying the new value for the given item. If value$ is a zero-
length string ("), then the item specified by ItemName$ is deleted from the
ini file.
filename$ St ri ng specifying the name of theini file.
Example This example sets the txt extension to be associated with Notepad.
Sub Mai n()
Witelni "Extensions","txt","c:\w ndows\notepad.exe . txt","win.ini"
End Sub
See Also Readl ni $ (function); Readl ni Sect i on (statement).
Note: If filename$ is not specified, the win.ini fileis used.

If the filename$ parameter does not include a path, then this statement looks for ini filesin the
Windows directory.

23-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001 GFK-1283G



X or (operator)

Syntax
Description

Comments

GFK-1283G

expressionl Xor expression2

Performs alogical or binary exclusion on two expressions.

If both expressions are either Bool ean, Bool ean variants, or Nul | variants, then alogical

exclusion is performed as follows:

If the first

expression is

and the second
expression is

True
True
Fal se
Fal se

then the
result is

Fal se
True
True
Fal se

If either expressionisNul | , then Nul | isreturned.

Binary Exclusion

If the two expressions are | nt eger , then abinary exclusion is performed, returning an | nt eger
result. All other numeric types (including Enpt y variants) are converted to Long, and abinary
exclusion is then performed, returning aLong result.

Binary exclusion forms a new value based on a bit-by-bit comparison of the binary representations
of the two expressions according to the following table:

1

0
1
0

Xor
Xor
Xor
Xor

1
1
0
0

0

1
1
0

Example:

5 01101001
6 10101010
Xor 11000011

24-1



24-2

Example This example builds alogic table for the XOR function and displaysiit.
Const crlf = Chr$(13) + Chr$(10)
Sub Mai n()

msgl = "Logic table for Xor:" &crlf &ecrlf
For x = -1 To O

For y = -1 To O
zZ = X Xor y

msgl = msgl & CBool (x) & " Xor "
msgl = msgl & CBool (y) & " ="
msgl = msgl & CBool (z) & crlf
Next vy
Next X
MsgBox mnsgl
End Sub
See Also Operator Precedence (topic); Or (operator); Eqv (operator); | np (operator); And (operator).

CIMPLICITY HMI Basic Control Engine Language Reference Manual—July 2001

GFK-1283G



Year (function)

Syntax Year ( date)

Description Returns the year of the date encoded in the specified date parameter. The value returned is between
100 and 9999 inclusive.

The date parameter is any expression representing avalid date.

Example This example returns the current year in adialog box.

Sub Mai n()
tdate$ = Date$
tyear! = Year(DateVal ue(tdate$))
MsgBox "The current year is " & tyear!
End Sub

See Also Day (function); M nut e (function); Second (function); Mont h (function); Hour (function);
Weekday (function); Dat ePar t (function).

GFK-1283G 25-1






CIMPLICITY Extensions to Basic

Acquire (Function)

Syntax bool = Acquire(Region$, TimeOut&)

Description Acquire a Critical Section with a timeout. If the section is not acquired within the specified
timeout, a value of Fal se is returned.

Critical Sections are used in multithreaded application to control reentrancy, protect access global
data structures, and provide synchronization. Only one thread of an application can be within a
critical section at a time. Since the Basic Control Engine is a multithreaded application, you may
need to use critical sections to prevent race type conditions.

Acqui r e and Rel ease only work with the same process. In other words, two standalone
executables cannot protect against each other using this mechanism.

Note

In the Basic Control Engine, when an event occurs, the script is started in parallel with any other
currently executing scripts. If two scripts compete for the same resource in your factory (e.g.
controlling a pump) you may need to use critical sections to control access.

Unlike a C application, access to public and private variables is controlled automatically by
BASIC. That is, if two threads are trying to set and get the value of a variable access to the
variable is synchronous. In other words, the thread, which is reading the value, won't get a value,
which is half-written by the other thread. However, if you are accessing more than one element of a
global data structure and expect another thread to be accessing the data, then you must protect the
access with a critical section.

The Basic Control Engine automatically releases any critical sections held by the script when it
terminates. While the script is running, you can use the Acqui r e and Rel ease commands to
control when a critical section is released. You must make a call to Rel ease for each call you
make to Acqui r e for a critical section.

Comments Parameter Description
Region$ String. A unique identifier of the region to be operated on.
TimeOut& Long. The time in milliseconds to wait.

GFK-1283G 26-1



Example Prevent reentry into the routine if the script is already in progress. If the script can't acquire the
region immediately, it will exit.

sub main()
private LastDate as String
Sub Mai n()
if Acquire("DATETI ME", 0) = FALSE then
exit sub
end if

if Date$ <> LastDate then
Last Date = Date$
Poi nt Set " DATE", Last Dat e
end if
Poi nt Set " TI ME", Ti ne$
Rel ease "DATETI MVE"
End Sub

Acquire, Release (Statements)

Syntax Acqui r e Region$
Rel ease Region$

Description Acquire a Critical Section. The script will wait until the region is available. Use this to provide
synchronous access to data.

Release an acquired critical section.
A region can be acquired multiple times and must be released as many times as it is acquired.

Acqui r e and Rel ease only work with the same process. In other words, two standalone
executables cannot protect against each other using this mechanism.

Note

In the Basic Control Engine, when an event occurs, the script is started in parallel. If another event
triggers the same script before the script ends, two scripts will be running in parallel. The
Acqui r e and Rel ease routines can be used to modify this behavior. Two options are available.

1. Serialize the processing. In this case, the second instance of the script waits until the first is
complete and then begins execution. This is accomplished by placing an acquire statement at
the start of the script.

2. Skip processing. In this case, the second instance of the script exits without performing any
processing. The example in Acquire (FUNCTION) illustrated this.

Important

Be careful when acquiring more than one section (nesting), as deadlock can occur
if two threads acquire the sections in different order. Consider the following:

Threadl
Acquire "Sectionl"
Acquire "Section2"

Thr ead2
Acquire "Section2"
Acquire "Sectionl"

In the above example, if Threadl acquires Sectionl and then Thread2 acquires Section2, both
Threadl and Thread2 will be blocked indefinitely.

26-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Comments Parameter Description
Region$ String. A unique identifier of the region to be operated on.

Example Consider the following example. Trigger is a point which caused the make decision to execute.
The function may be called in response to two separate events with a different Point ID. The
function will make a decision only if the timestamp of the point is more recent than the time the last
decision was made.

DimlastTine as Date

sub MakeDeci sion(trigger as Point, decision as Point)
' Only one thread may be within this |oop.
Acqui re "MakeDeci si on"
' Make sure we rel ease the "MakeDeci sion" section prior to |eaving.
ON ERROR GOTO RELEASEI T
' If we made a decision after this point changed then return
if lastTime < trigger.TimeStanp then
goto RELEASEIT
end if
lastTinme = trigger. Ti meStanp
deci si on. Val ue = trigger. Val ue
decision. Wite
RELEASEI T:
Rel ease "MakeDeci si on"
exit sub
end sub

GFK-1283G CIMPLICITY Extensions to Basic 26-3



AlarmGenerate (Method)

Al ar mGener at e Project$, Alarmld$, Resourceld$, Message$

Syntax [, Userld$ [, Refld$ [, Master]]]
Description To generate an alarm on a local or remote CIMPLICITY project.
Note
The Alarm ID must have an Alarm Type of $CIMBASIC otherwise the alarm message may not be
displayed correctly.
A unique alarm in CIMPLICITY is defined by the Alarm 1D, Resource ID and Reference ID
combination. Each unique alarm can be displayed as a distinct entry in the Alarm Viewer. Non-
unique alarms are stacked, so that the user only sees the most recent occurrence. In general, the
Resource ID is used to control the routing of alarms to users. The Reference ID is used by an
application to distinguish between different instances of the same alarm.
Comments Parameter Description
Project$ String. The project to generate the alarm on, an empty string """ indicates
the current project
Alarmld$ String. The ID of the Alarm. Must be a valid alarm of type $CIMBASIC
Resourceld$ String. The Resource ID to generate the alarm against. Used to control
routing of the alarm.
Message$ String. The update alarm message to display.
Note

This string is substituted into the first variable field of the Alarm's message.
For a user-defined alarm message, this will be the first s field in the
message. For a point alarm message, it will be the first variable field
(%VAL, %ID, etc.) in the alarm message. For this reason, it is not
recommended that you use the AlarmMessage$ field when updating point

alarms.
Userld$ String (optional). The User ID which generated the alarm.
Refld$ String (optional). A Reference ID used to distinguish to identical alarms.
Master Boolean (optional). By default on a computer with Server Redundancy,

alarms sent by the slave computer's Event Manager are ignored.

To allow an alarm to be generated from a script on a slave computer, set this
parameter to Tr ue.

26-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Example

See Also

GFK-1283G

sub main()

' Cenerate a single alarmw th no reference Id.
Al ar nGener at e "BCEDEMO', "MY_ALARM 1", " $SYSTEM', _
"Electrical Bus 1 Failure"

' Cenerate three of the same alarmfor different resources.

Al ar nGener at e " BCEDEMO', " MY_ALARM 2", " RESOURCE_1", _
"Multiple Instance for each resource"

Al ar nGener at e " BCEDEMO', " MY_ALARM 2", " RESOURCE_2", _
"Multiple Instance for each resource"

Al ar nGener at e "BCEDEMO', " MY_ALARM 2", " RESOURCE_3", _
"Multiple Instance for each resource"

' CGenerate three of the same alarmfor the same resource

' but use a different reference id.

Al ar nGener at e "BCEDEMO', " MY_ALARM 3", " RESOURCE_1",

"Multiple Instances for Refld","","1"
Al ar nGener at e "BCEDEMJ', " MY_ALARM 3", " RESOURCE_1", _
"Multiple Instances for Refld","","2"
Al ar nGener at e "BCEDEMO', " MY_ALARM 3", " RESOURCE_1", _
"Multiple Instances for Refld","","3"
end sub
Al ar mpdat e

CIMPLICITY Extensions to Basic

26-5



AlarmUpdate (Method)

Syntax

Description

Comments

26-6

Al ar mUpdat e Project$, Alarmld$, Resourceld$, Action%
[, AlarmMessage$ [, Userld$ [, Refld$]]]

To update a currently generated alarm. The alarm being updated may be of any alarm type.
However, if the AlarmMessage$ is specified, it must be an alarm with an alarm type of

$CIMBASIC.

Note

When updating an alarm, the Alarmld$, Resourceld$ and Refld$ must match exactly to the alarm to
be updated, if they don't match the alarm will not be updated.

When updating a point alarm, the Refld$ is always the Point ID (which is also the Alarm 1D)

Parameter

Project$

Alarmld$

Resourceld$

Action%

AlarmMessage$

Userld$
Refld$

Description

String. The project to generate the alarm on, an empty string
the current project

indicates

String. The ID of the Alarm. Must be a valid alarm.

String. The Resource ID to generate the alarm against. Used to control
routing of the alarm.

Integer. Indicates whether to acknowledge or reset the alarm. Use the
manifest constants AM_ACKNOWLEDGED, AM RESET or
AM_ACKNOW.EDGED + AM RESET to perform and acknowledgment and
a reset.

By default on a computer with Server Redundancy, alarm updates from the
slave computer's Event Manager are ignored. To acknowledge or reset an
alarm on the master computer from the slave computer, use

AM ACKNOW.EDGED Mor AM RESET _Mto override the default
behavior.

String (optional). The update alarm message to display.

Note

This string is substituted into the first variable field of the Alarm's message.
For a user-defined alarm message, this will be the first s field in the
message. For a point alarm message, it will be the first variable field
(%VAL, %ID, etc.) in the alarm message. For this reason, it is not
recommended that you use the AlarmMessage$ field when updating point
alarms.

String (optional). The User 1D which generated the alarm.

String (optional). A Reference ID used to distinguish between identical
alarms. The Reference ID needs to match the Reference ID of the generated
alarm. If the alarm was generated without a Reference 1D, then this field
can be omitted from the call.

CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Example

sub main()
a$ = tine$
Al ar mpdat e " BCEDEMD', " MY_ALARM 1", " $SYSTEM', X, _
"Electrical Bus 1 " & a$
Al ar mpdat e " BCEDEMD', " MY_ALARM 2", " RESOURCE_1", X, _
"Multiple Instance for each resource " & a$
Al ar mpdat e " BCEDEMD', " MY_ALARM 2", " RESOURCE_2", X, _
"Multiple Instance for each resource " & a$
Al ar mpdat e " BCEDEMD', " MY_ALARM 2", " RESOURCE_3", X, _
"Multiple Instance for each resource " & a$
Al ar mpdat e " BCEDEMD', " MY_ALARM 3", " RESOURCE_1", X, _

"Multiple Instances for Reflf " & a$,"","1"
Al ar mpdat e " BCEDEMO', " MY_ALARM 3", " RESOURCE 1", X, _
"Multiple Instances for Reflf " & a$,"","2"
Al ar mpdat e " BCEDEMO', " MY_ALARM 3", " RESOURCE 1", X, _
"Multiple Instances for Reflf " & a$,"","3"
end sub
See Also Al ar nCGener at e

ChangePassword (Method)

Syntax ChangePasswor d Project$, OldPassword$, NewPassword$

Description To change a password for a currently logged in user on a specified project.

Note: The user must be logged into the specified project or the function will fail.

Comments Parameter Description
Project$ String. The project to change the password on. An empty string indicates
the current default project.
OldPassword$ String. The old password of the user
NewPassword$ String. The new password of the user
Example
sub main()
ChangePassword " Cl MPDEMO', "OLDPASS', " NEWPASS'
end sub

GFK-1283G CIMPLICITY Extensions to Basic 26-7



CimEMAIlarmEvent (Object)

Overview The CimEMAIlarmEvent object provides information for scripts invoked from an alarm event.

Exanwple Di m al arnEvent As Ci nEmAl ar nEvent
Set al arnEvent = Ci mGet EMEvent (). Al ar nEvent ()
Poi nt Set " ALARM MESSAGE", al arnEvent. Message

Note: CimEMAIlarmEvent can only be used from the Event Manager. It is not valid in
CimView/CimEdit.

CimEMAIlarmEvent.AlarmID (Property, Read)

Syntax Al armEvent . Alarm d

Description String. Returns the Alarm ID of the Alarm that triggered the event.

Example

Sub Mai n()
Dim Al arnEvent as Ci nEmAl ar nEvent
Set Al arnkEvent = Ci mGet EMEvent (). Al ar mEvent ()
Poi nt Set “LAST_ALARM | D', Al arnkEvent. Al arm D
End if

end sub

26-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



CimEMAIlarmEvent.FinalState (Property, Read)

Syntax Al ar mEvent . Fi nal St at e

Description Integer. Returns the final state of the alarm after the requested action. For example, if the user
acknowledged the alarm and the deletion requirements for the alarm only require acknowledgement
then the final state would be AM_DELETED.

Valid States are :
e AM_GENERATED
e AM_ACKNOWLEDGED
e AM_RESET
» AM_DELETED

Example
Sub Mai n()
Di m Al arnEvent as Ci nEmAl ar nEvent
Set Al arnEvent = Ci nGet EMEvent (). Al ar nEvent ()
If AlarnEvent. Final State = AM ACKNOALEDGED t hen
Poi nt Set “ALARM MESSAGE", “Alarmis Acknow edged”
End if
end sub
See Also

CimEMAlarmEvent.GenTime (Property, Read)

Syntax Al arnEvent . GenTi ne
Description Date. Returns the day and time the alarm was generated.
Example

Sub Mai n()

Dim Al arnEvent as Ci nEmAl ar nEvent
Set Al arnEvent = Ci mGet EMEvent (). Al ar mEvent ()
Poi nt Set “TEXT_ALARM GEN_TI ME’, cstr (Al arnEvent. GenTi nme)
End if
end sub

GFK-1283G CIMPLICITY Extensions to Basic 26-9



CimEMAlarmEvent.Message (Property, Read)

Syntax
Description

Example

Al ar mEvent . Message

String. Returns the text of the Alarm Message of the alarm that triggered the event.

Sub Mai n()
Di m Al arnEvent as Ci nEmAl ar nEvent
Set Al arnEvent = Ci mGet EMEvent (). Al ar mEvent ()
Poi nt Set “LAST_ALARM MESSAGE’, Al arnEvent. Message
End if
end sub

CimEMAIlarmEvent.PrevState (Property, Read)

Syntax

Description

Example

26-10

Al arnEvent . PrevSt at e
Integer. Returns the previous state of the alarm. Valid States are :
¢ AM_GENERATED
e AM_ACKNOWLEDGED
e AM_RESET
e AM_DELETED

Sub Mai n()
Di m Al arnEvent as Ci nEmAl ar nEvent
Set Al arnEvent = Ci mGet EMEvent (). Al ar mEvent ()
If AlarnEvent.PrevState = AM ACKNOALEDGED t hen
Poi nt Set “ ALARM PREVSTATE’, “ACKNOALEDGED'
End if
end sub

CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



CimEMAIlarmEvent.RefID (Property, Read)

Syntax Al ar nEvent . Ref I D
Description String. Returns the Reference ID of the alarm that triggered the event.
Example

Sub Mai n()

Dim Al arnEvent as Ci nEmAl ar nEvent
Set Al arnkEvent = Ci mGet EMEvent (). Al ar mEvent ()
Poi nt Set “LAST_ALARM REF_I D", Al arnkEvent.ReflD
End if

end sub

CimEMAlarmEvent.RegAction (Property, Read)

Syntax Al ar nEvent . RegActi on

Description Integer. Returns the action requested on the alarm. For example, if the user had acknowledged the
alarm in the Alarm Viewer the requested action would be AM_ACKNOWLEDGED.

Example

Sub Mai n()
Di m Al arnEvent as Ci nEmAl ar nEvent
Set Al arnkEvent = Ci mGet EMEvent (). Al ar mEvent ()
I f Al arnEvent. RegAction = AM ACKNOALEDGED t hen
Poi nt Set “ALARM MESSAGE", “Al arm has been Acknow edged”
End if
end sub

CimEMAIlarmEvent.ResourcelD (Property, Read)

Syntax Al ar mEvent . Resour cel D
Description String. Returns the Resource 1D of the alarm that triggered the event.
Example

Sub Mai n()

Di m Al arnEvent as Ci nEmAl ar nEvent
Set Al arnEvent = Ci nGet EMEvent (). Al ar nEvent ()
Poi nt Set “LAST_ALARM RESOURCE | D', Al arnEvent. Resourcel D
End if
end sub

GFK-1283G CIMPLICITY Extensions to Basic 26-11



CimEMEvent (Object)

Overview

An object used by the Event Manager to hold information about the event that triggered the action.

Example

Sub Mai n()

Di m event as Ci nEMEvent

Set event = C mGet EMEvent ()

Poi nt Set “LAST_EVENT_| D', event.Eventld
End Sub

Note: CimEMEvent can only be used from the Event Manager. It is not valid in
CimView/CimEdit.

CimEMEvent.ActionlID (Property, Read)

Syntax Event . Actionl D
Description String. Returns the Action ID that is a running the script.

Example

Sub Mai n()

Di m event as Ci nEMEvent

Set event = C mGet EMEvent ()

Poi nt Set “LAST_ACTION_I D', event.ActionlD
End Sub

CimEMEvent.AlarmEvent (Function)

Syntax Event . Al ar nEvent

Description Returns CimEMAlarmEvent. Returns the Alarm Event object that triggered the action, or empty if
action was not triggered by an alarm.

Example

Sub Mai n()

Di m event as C nEMEvent

Set event = C mGet EMEvent ()

I f event. Type = EM ALARM GEN t hen
Di m al arnEvent as Ci nEMAI ar nEvent
Set Al arnmEvent = event. Al arnkEvent ()

Process the alarm
End If

End Sub

26-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



CimEMEvent.EventID (Property, Read)

Syntax
Description

Example

Event. Event | D
String. Returns the EventlD that triggered the event.

Sub Mai n()

Di m event as Ci mEMEvent

Set event = C mGet EMEvent ()

Poi nt Set “LAST_EVENT_| D', event.Eventld
End Sub

CimEMEvent.ObjectID (Property, Read)

Syntax

Description

Example

Event. QojectI D

String. If the script is invoked from an object event, the Object ID invoking the action is returned.
If the script is invoked from a non-object event, an empty string is returned

Sub Mai n()

Di m event as C mEMEvent

Set event = C mGet EMEvent ()

Poi nt Set “LAST_OBJECT_I D', event.ObjectlD
End Sub

CimEMEvent.PointEvent

Syntax

Description

Example

GFK-1283G

Event . Poi nt Event

Returns CimEMPointEvent. Returns the Point Event object that triggered the action, or empty if
action was not triggered by point event.

Sub Mai n()
Di m event as Ci mEMEvent
Set event = C mGet EMEvent ()
Di m poi nt Event as Ci nEMPoi nt Event
Set poi nt Event = event. Poi nt Event ()
End Sub

CIMPLICITY Extensions to Basic 26-13



CimEMEvent.TimeStamp (Property, Read)

Syntax Event . Ti neSt anp
Description Date. Returns the Time Stamp at which the event occurred.
Example

Sub Mai n()

Di m event as Ci mEMEvent

Set event = C mGet EMEvent ()

Poi nt Set “LAST_EVENT_TI ME", cstr(event. Ti meStanp)
End Sub

CimEMEvent.Type (Property, Read)

Syntax Event. Type
Description Integer. Returns the type of event that triggered the action. Valid values are:
« EM_ALARM_GEN - Alarm Generated
« EM_ALARM_ACK - Alarm Acknowledged
« EM_ALARM_RST - Alarm Reset
« EM_ALARM_DEL - Alarm Deleted
« EM_POINT_CHANGE - Point Changed
« EM_POINT_UNAVAIL - Point Unavailable
« EM_POINT_EQUALS - Point Equals
« EM_POINT_UPDATE - Point Updated
« EM_POINT_TRANS_HIGH - Point Transition to High
« EM_POINT_TRANS_LOW - Point Transition to Low
« EM_TIMED - Timed Event
« EM_RUN_ONCE - Run Once
« EM_TRIGGERED - Externally trigged by BCEUI or Action Calendar

Consult the Event Editor documentation for more details.

26-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Example

Sub Mai n()

Di m event as Ci nEMEvent

Set event = C mGet EMEvent ()

I f event. Type = EM ALARM GEN t hen
Di m al arnEvent as G nEMAl ar nEvent
Set Al arnmEvent = event. Al arnEvent ()
‘ Process the alarm

End If

End Sub

CimEMPointEvent (Object)

Overview

Example

Related
Function

An Event Manager Object used to contain information about a Point Event

Sub Mai n()
Di m Poi nt Event as Ci nEnPoi nt Event
Set Poi nt Event = Ci nGet EMEvent (). Poi nt Event ()
‘ perform processing
‘ reset the event point to O
Poi nt Set Poi ntEvent.ld, 0O
end sub

CimEMPointEvent.id

Syntax
Description

Example

GFK-1283G

Poi nt Event . | d

String. Returns the Point ID of the point that triggered the event.

Sub Mai n()
Di m Poi nt Event as Ci nEnPoi nt Event
Set Poi nt Event = Ci mGet EMEvent (). Poi nt Event ()
per f orm processi ng
reset the event point to O
Poi nt Set Poi nt Event.1d, 0O
end sub

Note: CimEMPointEvent can only be used from the Event Manager. It is not valid in

CimView/CimEdit

CIMPLICITY Extensions to Basic

26-15



CimEmPointEvent.Quality (Property, Read)

Syntax C mEMPoi nt Event . Qual ity
Description Long. Returns the 16-bit quality mask for the point that triggered the event.

Example

Sub Mai n()
Dim p as new Ci nEMPoi nt Event
Set p = C nGet EnEvent (). Poi nt Event ()
X = p. Qality

End Sub

CimEmPointEvent.QualityAlarmed (Property, Read)

Syntax G mEMPoi nt Event . Qual i t yAl ar nmed
Description Boolean. Returns TRUE if the point that triggered the event is in alarm, FALSE otherwise.

Example

Sub Mai n()
Dim p as new Ci nEMPoi nt Event
Set p = G nGet EnEvent (). Poi nt Event ()
if p.QualityAl arnmed then
DoSonet hi ng
End | f
End Sub

CimEmPointEvent.QualityAlarms_Enabled (Property,
Read)

Syntax C mEMPoi nt Event . Qual i t yAl ar ms_Enabl ed

Description Boolean. Returns TRUE if alarming for the point that triggered the event is enabled, FALSE
otherwise.

Example
Sub Mai n()

Dim p as new C nEMPoi nt Event
Set p = CinGet EnEvent (). Poi nt Event ()
if p.QualityAl arms_Enabl ed then
DoSonet hi ng
End |f
End Sub

26-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



CimEmPointEvent.QualityDisable Write (Property, Read)

Syntax

Description

Example

C nEMPoi nt Event . Qual i tyDi sable_Wite

Boolean. Returns TRUE if setpoints have been disabled for the point that triggered the event,
FALSE otherwise.

Sub Mai n()
Dim p as new Ci nEMPoi nt Event
Set p = G nGet EnEvent (). Poi nt Event ()
if p.QualityDi sable_Wite Then
DoSonet hi ng
End | f
End Sub

CimEmPointEvent.Qualityls_Available (Property, Read)

Syntax

Description

Example

Ci nEMPoi nt Event . Qual ityls_Avail abl e

Boolean. Returns TRUE if the value of the point that triggered the event is available, FALSE if the
value is unavailable.

Sub Mai n()
Dimp as new C nEMPoi nt Event
Set p = CinGet EnEvent (). Poi nt Event ()
if p.Qualityls_Available = FALSE then
DoSonet hi ng
End |f
End Sub

CimEmPointEvent.Qualityls In_Range (Property, Read)

Syntax

Description

Example

GFK-1283G

C nEMPoi nt Event . Qual ityls_I n_Range

Boolean. Returns TRUE if the value of the point that triggered the event is in range, FALSE if the
point is out of range. When a point is out of range its value is unavailable.

Sub Mai n()
Dim p as new Ci nEMPoi nt Event
Set p = C nGet EnEvent (). Poi nt Event ()
if p.Qualityls_In_Range = FALSE then
DoSonet hi ng
End | f
End Sub

CIMPLICITY Extensions to Basic 26-17



CimEmPointEvent.QualityLast Upd_Man (Property,

Read)

Syntax

Description

Example

C nEMPoi nt Event . Qual i tyLast _Upd_Man

Boolean. Returns TRUE if the value of the point that triggered the event came from a manual
update rather than a device read.

Sub Mai n()
Dim p as new Ci nEMPoi nt Event
Set p = C nGet EnEvent (). Poi nt Event ()
If p.QualityLast_Upd_Man then
DoSonet hi ng
End | f
End Sub

CimEmPointEvent.QualityManual Mode (Property, Read)

Syntax

Description

Example

C nEMPoi nt Event . Qual i t yManual _Mbde

Boolean. Returns TRUE if the point that triggers the event was in Manual Mode, otherwise
FALSE.

Sub Mai n()
Dimp as new C nEMPoi nt Event
Set p = CinGet EnEvent (). Poi nt Event ()
if p.QualityManual _Mode then
ProcessManual Mode
End if
End Sub

CimEmPointEvent.QualityStale Data (Property, Read)

Syntax

Description

Example

26-18

C nEMPoi nt Event . Qual ityStal e_Dat a

Boolean. Returns TRUE if the value of the point that triggered the event is stale, otherwise
FALSE.

Sub Mai n()
Dim p as new Ci nEMPoi nt Event
Set p = C nGet EnEvent (). Poi nt Event ()
if p.QualityStale_Data = TRUE
DoSonet hi ng
End | f
End Sub

CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



CimEMPointEvent.State (Property, Read)

Syntax Poi nt Event . St at e

Description Integer. Returns the state of the point. Can be used to determine if the point is available. See
Point.State for a complete description of states.

Example

Sub Mai n()
Di m Poi nt Event as G nEnPoi nt Event
Set Poi nt Event = Ci nGet EMEvent (). Poi nt Event ()
I f Poi nt Event. State = CP_UNAVAI LABLE THEN
LogStatus CIM FAILURE, "Main()", _
"Point “ & Point.ld & “is unavail abl e"
end
End if
end sub

CimEMPointEvent. TimeStamp (Property, Read

Syntax Poi nt Event . Ti meSt anp
Description Date. Returns the date and time of the point change that triggered the event.)
Example

Sub Mai n()

Di m Poi nt Event as Ci nEnPoi nt Event

Set Poi nt Event = Ci mGet EMEvent (). Poi nt Event ()

Poi nt Set “LAST_EVENT_TI ME”, cstr(Poi nt Event. Ti meSt anp)
end sub

CimEmPointEvent.UserFlags (Property, Read}

Syntax C mEMPoi nt Event . User Fl ags

Description Long. Returns the value of the 16-bit user defined flags for the point that triggered the event.

Example

Sub Mai n()
Dimp as new C nEMPoi nt Event
Set p = CinGet EnEvent (). Poi nt Event ()
X = p. UserFl ags

End Sub

GFK-1283G CIMPLICITY Extensions to Basic 26-19



CimEMPointEvent.Value (Property, Read)

Syntax Poi nt Event . Val ue
Description Variant. Returns the value of the point that triggered the event.
Example

Sub Mai n()

Di m Poi nt Event as Ci nEnPoi nt Event

Set Poi nt Event = Ci mGet EMEvent (). Poi nt Event ()

Poi nt Set “QUTPUT_PO NT”, Poi nt Event. Val ue + 100
end sub

CimGetEMEvent (Function)

Syntax Ci mCGet EMEvent ()

Description Returns a CimEMEvent object. A function to return the event object that causes the action to run.
Only valid from Event Manager.

Example

Sub Mai n()

Di m event as Ci nEMEvent

Set event = C mGet EMEvent ()

Poi nt Set “LAST_EVENT_TI ME", cstr(event. Ti meSt anp)
End Sub

Note: CimGetEMEvent can only be used from the Event Manager. It is not valid in
CimView/CimEdit. See the "CIMPLICITY HMI Basic Control Engine Program Editor Operation Manual"
(GFK-1305) for information about fabricating an event.

CimlIsMaster (Function)

Syntax Ci m sMast er
Description In a computer with Server Redundancy, to determine if the computer is operating in Master or
Slave mode.

This function returns Tr ue if the computer is currently the active master.
This function returns Fal se if the computer is currently the slave.

Example

Sub Mai n()
If CmsMster then
MoveCr ane
End if
End Sub

26-20 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



CimLogin (Procedure)

Syntax

Description

Comments

Example

Ci mLogin project$

Initiates a login for the specified project. Similar in effect to selecting login from the Login Panel.
Only valid when the user is actively using points or viewing alarms from the project, otherwise it
has no effect. Initiating a login will cause the CIMPLICITY login box to be displayed.

Parameter Description
project$ String. The project to login to.
Sub Mai n()
Ci mLogi n “Cl MPDEMO
End Sub

CimLogout (Procedure)

Syntax

Description

Comments

Example

GFK-1283G

Ci mLogout project$

Logs the user out of the specified project. Similar in effect to selecting logout from the Login
Panel. When the user is logged out of the project, all points from the project will be unavailable
and no alarm information will be available. If the user is not logged into the project, the call has no
effect.

Parameter Description
project$ String. The project to logout of.
Sub Mai n()
Ci nLogout “Cl MPDEMY
End Sub

CIMPLICITY Extensions to Basic 26-21



CimProjectData (Object)

Overview The CimProjectData object provides the ability to search and return specific pieces of a project’s
configuration. The underlying APIs used by the CimProjectData object are the same as those used
to browse point configuration on a remote project. In general, this object provides a convenient
way to retrieve a set of attributes based on specified filter criteria. This object provides a read-only
capability.

To write configuration, please see the help file for the CIMPLICITY Configuration Object Model.

Example

Sub Mai n()

This exanple retrieves all points beginning with A for Device MY_PLC
in project MY_PRQIECT and displays the point id and resource id of
each matching item

Dimd as new CinProjectData

d. Project = “MY_PRQIECT”

d. Entity = “PO NT”

d.Filters = “PO NT_I D=A*, DEVI CE_I D=MY_PLC’

d. Attributes = “PO NT_I D, RESOURCE_| D’

Dimp as string

Dimr as String

top
if d.GetNext(p,r) = TRUE then
MsgBox “Point Id =“ & p & “ Resource Id =" &r
goto top
End if
end sub

CimProjectData.Project (Property, Read/Write)

Syntax Ci nProj ect Dat a. Pr oj ect
Description String. Get/set the project to browse data from.
Must be specified when used from CimView.
For use in the Event Manager, the project name should be empty to browse the local project.

Example

Dimd as new CinProjectData
d. project = “MY_PRQIECT”

26-22 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



CimProjectData.Entity (Property, Read/Write)

Syntax

Description

GFK-1283G

Ci nProjectData. Entity

String. The entity to obtain data for. Below is a list of the available entities and their attributes.

Entity
ACTION

ALARM_CLASS

Description

Contains Action information
Attribute ID

ACTION_ID
ACTION_TYPE
POINT_ID

PT_VAL
PROC_OF_SRCPT

Filter
Yes
No
No
No
No

Contains Alarm Class information

Attribute ID
CLASS ID

CLASS TITLE
CLASS ORDER
CLASS ALARM FG

CLASS_ALARM_BG

CLASS_NORMAL_FG

CLASS_NORMAL_BG

CLASS_ACK_FG

CLASS_ACK_BG

CLASS_WAVE_FILE
CLASS_BEEP_FREQ
CLASS_BEEP_DURATION

CLASS_BEEP_DELAY

CIMPLICITY Extensions to Basic

Filter
Yes
Yes
No
No

No

No

No

No

No

No

No

No

No

Description

Action ID

Action Type

Point ID targeted by the action
Point value

Source point,

Description

Class ID

Class title

Class order

The foreground color to use for
points of this class that are in alarm
state

The background color to use for
points of this class that are in alarm
state

The foreground color to use for
points of this class that are in
normal state

The background color to use for
points of this class that are in
normal state

The foreground color to use for
points of this class that are in
acknowledged state

The background color to use for
points of this class that are in
acknowledged state

The WAV file to play from the
Alarm Sound Manager

Frequency of beeps from the Alarm
Sound Manager

Duration of beeps from the Alarm
Sound Manager

Delay between beeps from the
Alarm Sound Manager

26-23



ALARM_DEF Contains Alarm information

Attribute ID Filter Description

ALARM _ID Yes Alarm ID

CLASS_ID Yes Alarm Class of the alarm

ALARM_TYPE_ID Yes Alarm Type ID of the alarm

DESCRIPTION Yes Description of the alarm
AMLP Contains Alarm Printer information

Attribute ID Filter Description

AMLP_NAME Yes Alarm printer name

AMLP_PORT No Alarm printer port

PAGE_WIDTH No Page width

PAGE_LENGTH No Page length

DATE_FORMAT No Date format

TIME_FORMAT No Time format
CLASS Contains Class information

Attribute ID Filter Description

CLASS ID Yes Class ID

DESCRIPTION Yes Description of the class
CLIENT Contains Client information

Attribute ID Filter Description

NODE_ID Yes Computer name

USER_ID No Default User ID

TRUSTED No Trusted computer
DEVICE Contains Device information

Attribute ID Filter Description

DEVICE_ID Yes Device ID

RESOURCE_ID Yes Resource ID for the device

DESCRIPTION Yes Device description

PORT_ID Yes Port ID for the device
EVENT Contains Event information

Attribute ID Filter Description

EVENT_ID Yes Event ID

EVENT_TYPE No Event type

EM_ENABLED No Event enabled flag

ID No Event source identifier

RESOURCE_ID No Resource ID of the event

PT_VAL No For Point Equal event, the value of

the point

EVENT_ACTION  Contains Event-Action information

Attribute ID Filter Description

EVENT_ID Yes Event ID

ACTION_ID Yes Action ID for the event

LOG_FLAG No Flag indicating if the event-action

is to be logged

GLB_PARMS Contains Global Parameter information for the project

Attribute ID Filter Description

PARM_ID Yes Global Parameter ID

PARM_VALUE No Value of the global parameter

26-24 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



GFK-1283G

OBJECT Contains object information

Attribute ID Filter Description
OBJECT_ID Yes Object ID
CLASS_ID Yes Class ID for the object
DESCRIPTION Yes Object description
OBJECT _INF This is a specialized entity used to extract information from a specified

object. The filter for this entity is OBJECT_ID=MY_OBJECT, where
MY _OBJECT is replaced with the object name you wish to read. Since the
function returns specialized attribute information, only one of the attributes

may be used at a time.

This entity may not be used from the Event Manager or without a specified

running project.
Attribute ID
DATA_ITEM

ATTRIBUTE, VALUE

CLASS_ID
DEFAULT_GRAPHIC

GRAPHICS_FILE

HELP_FILE

CIMPLICITY Extensions to Basic

Filter

No

No

No
No

No

No

Description

Returns all data items for the
object. Each data item returns by a
GetNext call.

Returns the attribute for the object.
If VALUE is specified, it must be
the second attribute, and the value
of the attribute will be returned
The Class ID of the object

Returns the name of the default
graphic for the object's class. Must
be specified with
GRAPHICS_FILE

Example
obj . Attributes=

" GRAPHI CS_FI LE, DEFAULT_
GRAPHI C

The Graphics File specified for the
object’s class

The Help File specified for the
object’s class

26-25



26-26

POINT

POINT_ALSTR

POINT_DISP

CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001

Contains Point information
Attribute ID

POINT_ID

DEVICE_ID

RESOURCE._ID
POINT_TYPE_ID

DESCRIPTION
DISPLAY_LIMITS_HI
DISPLAY_LIMITS_LO
DISPLAY_LIMITS

DISPLAY_FORMAT
ELEMENTS
ADDRESS
ADDRESS_OFFSET
HAS_EU

ALARM_HI
ALARM_LO
WARNING_HI

WARNING_LO
ACCESS_FILTER

READ_WRITE
MODIFIED

Filter
Yes
Yes

Yes
Yes

Yes
No
No
No

No
No
No
No
No

No

Yes

No
No

Contains Alarm String information

Attribute ID
ALARM STR_ID
ALARM HI_STR
ALARM_LOW _STR
WARNING_HI_STR
WARNING_LO_STR

Filter
No
No
No
No
No

Contains Point Display information

Attribute ID
POINT_ID
SCREEN_ID

DISPLAY_LIM_LOW

DISPLAY_LIM_HIGH

Filter
Yes
No

No

No

Description

Point ID

The Device ID for the point.

If the point is a global point, the
device is “$GLOBAL".

If the point is an equation point,
the device is “$DERIVED

The Resource ID of the point

The Point Type ID of the point
(UINT, REAL, etc.)

The description of the point

The high display limit of the point
The low display limit of the point
The low and high display limits of
the point separated by a hyphen
The display format for the point
The number of array elements
The device address of the point
The address offset for the point
Set to 1 if the point has EU
Conversion, otherwise set to 0
The high alarm limit for the point
The low alarm limit for the point
The high warning limit for the
point

The low warning limit for the point
If the point is an enterprise point,
this field is set to “E”

Indicates if point is read/write
The data and time in string format
that the point was last edited

Description

Alarm String 1D

String for Alarm High state
String for Alarm Low state
String for Warning High state
String for Warning Low state

Description

Point ID

The screen associated with the
point

The low limit for the point value
display. Values below this limit
will display as asterisks (***)
The high limit for the point value
display. Values above this limit
will display as asterisks (***)

GFK-1283G



POINT_TYPE

PORT

PROJECTS

PROTOCOL

RESOURCE

ROLE

SYS_PARMS

USER

Example

Contains Point Type information

Description

The Point Type ID

The numeric data type code for the
point type

The numeric data length for the
point type

Description

The Port ID

The protocol used by the port
Port description

Description

Project Name

The User ID to log into the project
Encrypted password for project
login

Indicates if the project is enabled
Indicates if the project is exclusive
For an Enterprise Server, indicates
if points are collected

For an Enterprise Server, indicates
if alarms are collected

Description
Protocol ID

Description
The Resource 1D
Description of the resource

Description
The Role ID

Description
System Parameter ID
Value of the system parameter

Description

The User ID

The user’s Role ID

The user’s encrypted password
The user’s name

Attribute ID Filter
POINT_TYPE_ID Yes
DATA TYPE No
DATA LENGTH No
Contains Port information

Attribute ID Filter
PORT_ID Yes
PROTOCOL_ID No
DESCRIPTION No
Contains information on Remote Projects
Attribute ID Filter
PROJECT_NAME Yes
USER_ID No
PASSWORD No
ENABLE No
EXCLUSIVE No
CONCPOINTS No
CONCALARMS No
Contains Protocol information
Attribute ID Filter
PROTOCOL_ID Yes
Contains Resource information
Attribute ID Filter
RESOURCE_ID Yes
DESCRIPTION No
Contains Role information

Attribute ID Filter
ROLE_ID Yes
Contains global parameter information for the system
Attribute ID Filter
PARM_ID Yes
PARM_VALUE No
Contains User Information

Attribute ID Filter
USER_ID Yes
ROLE_ID Yes
PASSWORD No
USER_NAME No
ENABLE No

Dimd as New CinProjectData

d.Entity = “PQ NT”

GFK-1283G

CIMPLICITY Extensions to Basic

Indicates if the user account is
enabled or disabled.

26-27



CimProjectData.Attributes (Property, Read/Write)

Syntax Ci nProjectData. Attri butes

Description String. The list of attributes, separated by commas, of the entity to return for each item matching
the filter criteria.

The Attribute 1Ds are case sensitive and must be entered in the case documented in
C nProjectData. Entity.
Example

Dimd as new CinProjectData
d. Attributes = “PO NT_| D, RESOURCE | D, DESCRI PTI O\’

CimProjectData.Filters (Property, Read/Write)

Syntax CnProjectData.Filters

Description String. The filter set to be used to determine which items to return. Each filter contains an
Attribute ID and Value pair. You can use “*” and “?”as wildcard characters.

The filters are documented in Ci nPr oj ect Dat a. Entity.
Filters must be in uppercase even when matching against lowercase data.

Example

Dimd as new CinProjectData
d.Filters = “PO NT_I D=P*", DEVI CE_| D=TESTP?C’

26-28 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



CimProjectData.GetNext (Function)

Syntax Ci nProj ect Dat a. Get Next (pl1$ [, p2$ [, p3$..) as Bool ean

Description This function returns the specified attributes for the next item that matches the filter criteria. 1fa
record is found, a value of TRUE is returned, otherwise a value of FALSE is returned.

The function takes a variable number (20 maximum) of string parameters.

The values returned into the parameters are defined by the attributes specified for the object.

Comments Parameter Description
pls$ String. First attribute for the object
p20$ String. Twentieth attribute for the object
Example The following sample script returns all the data items for the PID1 object.
Sub mai n()
Di m browse as new G nProj ect Dat a
Browse. Proj ect = “MY_PRQJ”

Browse. Entity = “OBJECT_I NF”
Browse. Attri butes = DATA | TEM
Browse. Filters = “OBJECT_| D=PI D1”
Dimdataltemas String
Top:
I f Browse. Get Next (dataltem) = Fal se then end
Msgbox dataitem
Coto top
End Sub

The following sample script returns all points for a device:

Sub mai n()
Di m browse as new G nProj ect Dat a
Browse. Proj ect = “M_PRQJ”
Browse. Entity = “PO NT”
Browse. Attri butes = “PO NT_I| D, RESOURCE_| D’
Browse. Filters = “DEVI CE_| D=PLC1"
Top:
I f Browse. CGet Next (p$,r$) = Fal se then end
Msgbox “Point 1d “ & p$ & “ Resource id “ & r$
Coto top
End Sub

GFK-1283G CIMPLICITY Extensions to Basic 26-29



CimProjectData.Reset (Method)

Syntax Ci nPr oj ect Dat a. Reset
Description Resets the list so that a new set of search criteria, attributes, or project may be specified.
Example

d. reset

GetKey (Function)

Syntax a$ = Get Key(key$, string$)

Description To search for a keyword and returns its value. This is of use particularly from the Basic Control
Engine to extract the EVENT and ACTION, which caused the script to run. An empty string is
returned if the key is not found.

Comments Parameter Description
key$ String. The keyword to search for.
string$ String. The string to search for the keyword. The format of this string is

keyword followed by an equal sign and the value. A comma separates
multiple keyword value combinations.

Example

sub main()
event _i d$= Cet Key("EVENT", command$)
action_id$ = GetKey("ACTION', command$)
' Name$ will contain PETE after this statenent.
name$ = Get Key(" NAVE", " NAME=PETE, LOCATI ON=ALBANY")
end sub

GetSystemWindowsDirectory (Function)

Syntax d$ = Get Syst emW ndowsDirectory
Description Returns the true Windows directory and not the per user Windows directory when running under
Terminal Services.
Example
Sub Mai n()
direct$ = Get SystenWW ndowsDirectory
MsgBox " Get SystemW ndowsDirectory =" & direct$
End Sub

26-30 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



GetTSSessionld (Function)

Syntax

Description

Example

i d& = CGet TSSessionld

The Session ID of the Terminal Services client. This is 0 if running on the console or if Terminal

Services is not running.

Sub Mai n()

myi d& = Get TSSessi onl d

MsgBox "Termi nal Services Session Id =" & nyid&
End Sub

IsTerminalServices (Function)

Syntax
Description

Example

GFK-1283G

| sTermi nal Servi ces
Returns True if this computer is running Terminal Services.

Sub Mai n()
MsgBox "Terminal Services =" & |IsTermi nal Services
End Sub

CIMPLICITY Extensions to Basic

26-31



LogStatus (Property, Read/Write)

Syntax LogSt at us Severity, Procedure$, Message$ [, error_code [, error_reference]]

Description To provide the programmer with the ability to log errors to the CIMPLICITY Status Log. To view
the errors, use the CIMPLICITY Status Log Viewer.

Comments Parameter Description
Severity Integer. The severity of the error.

¢ CIM_SUCCESS - An Informational Error
« CIM_WARNING - A warning message
¢ CIM_FAILURE - A failure message

Procedure$ String. The name of the Basic Procedure which logged the error.
Message$ String. The error message to log.

error_code Long (optional). A user-defined error code.

error_reference Long (optional). A user-defined error reference. Used to distinguish the

difference between two errors with the same error_code.

Example

sub main()
on error goto error_handl er

exit sub
error_handl er
error$, err, and erl are BASIC variabl es which contain the
error text, error code and error |line respectively.
LogStatus CIM FAILURE, "main()", error$, err, erl
exit sub
end sub

26-32 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Point (Subject)

Overview

Security

Performance

GFK-1283G

The values of CIMPLICITY HMI points can be used in a variety of ways by a script. You can use
scripts that act on point values to define reactions to changing conditions in your process.

Points are manipulated by the Poi nt Set statement and Poi nt Get function or the point object.
In general, Poi nt Set and Poi nt Get are useful if you require the value of the point or wish to
set the point. The point object extends your capabilities by allowing you to receive point values as
they change, access array points, provide more information about the point’s configuration; and
improve performance when repeatedly setting a point.

The CIMPLICITY extensions to Basic provide the same security which all your CIMPLICITY
HMI applications use; Set Point Security, Set Point Privilege, Download Password and Set Point
Audit trail. Consult your CIMPLICITY HMI for Windows NT and Windows 95 Base System User's
Manual (GFK-1180) for a detailed description of these features.

In order to discuss security, first we will need to understand when security is imposed on your
access to points. There are two categories of processes running on your CIMPLICITY HMI
Server; User Applications and Resident Processes.

User Applications are applications run by the user, that usually provide a user interface. Examples
of such programs are CimView, CimEdit, Alarm Viewer and Program Editor. In order for the
application to access a point on the local CIMPLICITY HMI project or a remote CIMPLICITY
HMI project, a user login is required. The CIMPLICITY HMI privileges defined for your User 1D
define your capabilities.

Resident Processes are processes that are started as part of your CIMPLICITY HMI project.
Examples of resident processes are the Database Logger, Point Manager and scripts automatically
run by the Basic Control Engine. Since a resident process is a trusted part of your system, a
resident process is not required to obtain a login in order to access points in their project. If the
resident process wishes to access a point on a remote system, a remote project must be configured
to supply the resident process with the User ID and Password with which to log in to the remote
system.

The CIMPLICITY extensions to Basic provide a high performance mechanism to interact with your
Point Database. However, there are several considerations to keep in mind when designing your
application to obtain the highest performance possible.

First, is the Set Point Audit Trail. For each CIMPLICITY HMI role, you may configure whether or
not the user will generate an audit trail for each setpoint. The audit trail is composed of a
$DOWNLOAD event containing information on who set the point. This information is sent to your
event log and can provide a detailed audit trail of who and what was set. However, the audit trail
imposes significant overhead (20 times slower), since the record is logged to the database for each
setpoint. This is particularly noticeable when running setpoints in a loop in the Program Editor.
However, when the script is run from the Basic Control Engine, a SDOWNLOAD event will not be
generated since a resident process is trusted. If you do not require an audit trail is it recommended
that you disable it through role configuration (this is the default).

CIMPLICITY Extensions to Basic 26-33



Polling

26-34

Second, is the difference between a Poi nt Set statement and using the Point Object. With a Point
Object, you create the object once and initialize its point information once (data type, elements,
etc.). Subsequent operations on the Point are very fast, since the point characteristics are contained
in the object. Conversely, Poi nt Set and Poi nt Read must fetch the point information on each
execution (in benchmark testing this is 2 times slower.)

Consider the following example :

Exanpl e One
sub sl ow_set ()
for I =0 to 100
Poi nt Set " MY_PO NT", |
next |
end sub
Exanpl e two
sub fast_set
Di m MyPoi nt as new Poi nt
MyPoint.ld = "M_PO NT"

for 1 =0 to 100
MyPoi nt . Set Val ue =
next |
end sub

The subroutine f ast _set ramps the point ten times faster than the sl ow_set routine. While the
second example at first may appear more complex, you will find that the object interface provides
much more flexibility. As a rule, use Poi nt Get and Poi nt Set when you need to read or set the
point's value once within your script.

CIMPLICITY HMI provides a high performance Point Interface. As a result, improperly written
applications can degrade the overall performance of a system. One common issue is polling a point
to wait for it to change. Consider the following example.

Incorrect Code

Pol | :
I f PointGet("POLL_PO NT") = 0 then
Sl eep 100
Cot o pol
Endi f

The sleep statement causes a 100ms delay between polls. However many extra polls are still being
performed.

Correct and Most Efficient Code

Dimp as new point
p.ld = "POLL_PO NT"
p. Onchange
Pol | :
Wait_for
p. Get Next
if p.Value=0 then goto wait for

In this example, the script requests the value of the point as it changes. When the point changes, the
Get Next statement returns. When the point is not changing the script is waiting and using no
system resources.

CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Error Basic provides a flexible error handling capability with the On Error command. The CIMPLICITY

Handling extensions to Basic are designed to use the built in error handling capability. When an error occurs
while executing your CIMPLICITY command, a Basic Run Time error is generated. There are
many ways you can implement error handling. Among these are :

« No error handling. When an error occurs, the script's execution halts and the error is
reported (in the Program Editor, this is via a Message Box, and in the control engine by
logging an error message to the status log).

e Error Handler. When an error occurs, the script's execution moves to the defined error
handler. Within the error handler, the user can report the error or try to recover.

< Inline error checking. When an error occurs, the script's execution continues on the next
program statement. The user can check the err variable to determine if an error occurred.

Inthe f ast _set example above a run time error could be generated on the setting of the ID or the
setting of the value. Since the routine provides no error handling, when an error occurs, the routine
exits and returns to the calling routine. If no error handler is found as the program returns up the
call stack, a default error handler reports the run-time error. If you run the script from the Program
Editor, a dialog box opens, and if it is run from the Basic Control Engine, a Status Log message is
created.

Consider the two examples below:

sub inline_errorcheck()

' \When an error occurs continue execution at the next statenent
on error resume next
Poi nt Set "BAD_PO NT", 10
' Did an error occur?
If err <> 0 then

' clear the error

err =0

exit sub
End if
Poi nt Set "BAD PO NT1", 10
if err <> 0 then

err =0
exit sub
end if
end sub

sub outline_errorcheck()
' \When an error occurs goto the error handler
on error goto error_handl er
Poi nt Set "BAD PO NT", 10
Poi nt Set "BAD PO NT1", 10
exit sub
error_handl er:
MsgBox "Error"
exit sub
end sub

You can choose how to handle or not handle error conditions.

GFK-1283G CIMPLICITY Extensions to Basic 26-35



Point (Object)

Overview The Point object provides an object-oriented interface to CIMPLICITY HMI real-time point data.
Through the object, you may set and read point values. Methods are supplied to receive the point
value as it changes, periodically, or when the alarm state changes.

Example
Dim MyPoint as new Point ' Creates a new enpty point object
Di m Thi sPoi nt as Poi nt ' Creates a pointer to a point object
Set Thi sPoint = MyPoi nt ' Now the two object are equa
Notes

In the above example, we create a point object in two different ways. The first example using the
new keyword, is typically the method you will use. This constructs a point object, at which time
you can set the ID of the point and use it. The second example creates a reference to a point and
sets it to empty. A run-time error will occur if you attempt to access methods of the object, since it
is currently unassigned. You can assign the reference to a particular object by using the set
command. In general, you will use this with the Poi nt Get Next function, which takes a list of
point objects and returns the first one that changes.

Point.AlarmAck (Property, Read)

Syntax Poi nt . Al ar mAck

Description Boolean. When used in combination with the Poi nt . OnAl ar mAck method, a Boolean is
returned indicating if the point's alarm is in an Acknowledged state.

Example

Sub Mai n()
Dim x as new Poi nt
x. 1D = "Some_point"
X. OnAl ar mAck
top
X. Get Next
Trace "Alarm Ack state is " & x. Al ar mAck
end sub

26-36 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Point.Cancel (Method)

Syntax
Description

Example

See Also

Poi nt . Cancel

To cancel the currently active OnChange, OnAl ar m OnTi med or OnAl ar mAck request.

Sub Mai n()

Dimt as new Point

t.ld ="TIME"

Read the next two val ues of the point

t . OnChange

for i =1to 2
t. Get Next

next |

Cancel the onchange request.

t. Cancel

Cet the point value every three seconds

t.OnTined 3
for i =1to 2
t. Get Next
next |
End Sub

Poi nt . OnChange,

Poi nt. OnTi nmed, Poi nt. OnAl arm Poi nt. OnAl ar mAck

Point.DataType (Property, Read)

Syntax
Description

Comments

GFK-1283G

Poi nt . Dat aType

Integer. To return the numeric data type of the point.

The following are the possible return values.

Return Value

CP_DI G TAL
CP_STRI NG
CP_USHORT
CP_UINT
CP_UDI NT

CP_SHORT
CP_INT

CP_DI NT
CP_REAL

CP_BI TSTRI NG
CP_STRUCT

Description
A digital or Boolean value. Range Tr ue or Fal se

A character string.
An unsigned short (8-Bit) integer.
An unsigned (16-Bit) integer.

An unsigned long (32-Bit) integer, returned as a double precision floating

point number

A signed short (8-bit) integer.

A signed (16-bit) integer.

A signed long (32-bit) integer.

A double precision floating point.

A bitstring. Can only be returned as a character string.

A structure point. Structure points are not currently supported.

CIMPLICITY Extensions to Basic

26-37



Example

See Also

if MyPoint.DataType = CP_STRING t hen
a$ = MyPoi nt. Val ue

el se
a% = MyPoi nt. Val ue

end if

Poi nt . Poi nt Typel d

Point.DisplayFormat (Property, Read)

Syntax

Description

Poi nt . Di spl ayFor mat

String. To return a string containing the configured display format for the point.

Point.DownloadPassword (Property, Read)

Syntax
Description

Example

Related
Function

26-38

Poi nt . DownLoadPasswor d

Boolean. To determine if a download password is required to set the point.

Prompt the user for the downl oad password if required to set
the point.
Sub Mai n()
Dimp as new Poi nt
p.ld = "CP_U NT"
p. Val ue = 10
i f p.DownLoadPassword then
pass$ = AskPasswor d(" DownLoad Password:")
p. Set pass$
el se
p. Set
end if
End Sub

Poi nt. Set Poi nt Priv, Point.|nUserView

CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



Point.Elements (Property, Read)

Syntax

Description

Example

Poi nt. El enent s

Integer. To return the number of elements configured for the point. For array points this will be

greater than 1, for non-array points the value will be 1.

sub main()
Di m MyPoi nt as new Poi nt
M/Point.1d = "ARRAY_PO NT"
for x = 0 to MPoint.Elements - 1
MyPoi nt . Val ue(x) = x
next x
MyPoi nt . Set
end sub

Point.EnableAlarm (Method)

Syntax
Description

Comments

Example

Poi nt . Enabl eAl ar m enable

To enable or disable alarming on the point. Can be used to temporarily disable alarming on a point.

Parameter

Enable — Boolean — a value of TRUE enables alarming for the point and value of FALSE disables

alarming for the point.

Sub Mai n()
Di m nyPoi nt As New poi nt
nyPoint.ld = "ALARM PO NT"
' Disable alarmfor point.
nmyPoi nt . Enabl eAl ar m FALSE
End Sub

Point.Enabled (Property, Read)

Syntax

Description

GFK-1283G

Poi nt . Enabl ed

Boolean. To determine if the point is enabled to be collected from the PLC.

Return if the point is disabled.
I f MyPoint. Enabl ed = FALSE then
exit sub
end if

CIMPLICITY Extensions to Basic

26-39



Point.EuLabel (Property, Read)

Syntax Poi nt . EuLabel
Description String. To retrieve the Engineering Units Label for a point.
Example

a$ = MyPoi nt. EuLabel

or
if MyPoint.EuLabel = "Litres" then
end if

Point.Get (Method)

Syntax Poi nt . Get

Description To get the current value of the point from the CIMPLICITY Point Manager and store it in the
object. You may inspect the value through the Val ue and RawVal ue properties.

Example
Sub Mai n()
Di m MyPoi nt as new Poi nt
MyPoint.ld = "\\ PROJECT1\ PO NT1"
MyPoi nt . Get
MsgBox "The value is " & MyPoint. Val ue
End Sub
Related Poi nt . Val ue, Poi nt. OnChange, Point. OnTi ned
Routines

26-40 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Point.GetArray (Method)

Syntax Poi nt . Get Array array [, startElement [, endElement [, fromElement]]]

Description To retrieve an array point's values directly into a Basic array using Engineering Units Conversion if
applicable. There are several rules to keep in mind:

e If the array is undimensioned, the array will be redimensioned to the same size as the
point.

e If the array is dimensioned smaller than the point, only that many elements will be
copied into the array.

< Ifthe array is larger than the point, all elements of the point are copied, and the rest of
the array is left as is.

If the startElement is specified, the function will start copying data into the array at this element
and will continue until the end of the point is reached or the array is full whichever occurs first.

If the endElement is specified, the function will stop copying data into the array after populating
this element or when the end of the point is reached.

If the fromElement is specified, the values copied into the array start at this element in the point
array and continue as described above.

Note

You must get the point value using the Get or Get Next method prior to using the Get Arr ay
method. The Get Ar r ay method does not retrieve the current value from the Point Manager.
Instead, it retrieves the current value in the Point Object, which was generated during the last Get
or Get Next . See the example below.

Comments Parameter Description
array Array. A dimensioned or undimensioned Basic Array to which the point
data will be copied.
startElement (optional) Integer. The first array element to which data will be copied.
endElement (optional) Integer. The last array element to which data will be copied.
fromElement (optional) Integer. The first point element from which data is to be copied.
Example
sub main()
Di m val ues() as integer
Dimp as new Poi nt ' Declare the point object
p.1d = "ARRAY_PO NT" " Set the Id
p. Get ' Cet value fromC MPLICITY
p. Get Array val ues ' Copy the object into values
end sub
Related Poi nt. Set Array, Point. Get RawArray, Point. HasEuConv, Point. Val ue,
Function Poi nt . Rawval ue

GFK-1283G CIMPLICITY Extensions to Basic 26-41



Point.GetNext (Function)

Syntax

Description

Example

Related
Routines

Poi nt . Get Next [( timeout) ]

Boolean. A function, to read the next value of a point with a specified timeout in milliseconds.
Returns Tr ue if the point was read, Fal se if it timed out.

sub mai n()
Di m MyPoi nt as new Poi nt
M/Point.Id = "TIME" ' Set the Id
MyPoi nt . OnChange ' Request the value on change
MyPoi nt . Get Next ' The current value is returned i mediately.
if MyPoint.GetNext(1000) then ' Wait 1 second for the next val ue.
MsgBox MyPoi nt. Val ue ' Display the val ue.
El se
MsgBox " Ti neout” ' Point didn't change in one second.
end if
end sub

Poi nt . OnChange, Poi nt. OnTi ned, Poi nt. OnAl arm Poi nt. OnAl ar mAck,

Poi nt . Cancel

Point.GetNext (Method)

Syntax
Description

Example

See Also

26-42

Poi nt . Get Next

To wait for and get the next value of the point. This method returns when a point update is
received for the point, based on a previously submitted OnChange, OnAl ar m OnTi ned or
OnAl ar mAck call. If the point never changes, the call never returns. To wait with a timeout, see

the Get Next (function.)

' Calculate the average of the next two point val ues.

Sub mai n()

Di m MyPoi nt as new Poi nt

M/Point.1d = "TANK_TEMPERATURE" '
MyPoi nt . OnChange !
MyPoi nt . Get Next !
X = MyPoi nt. Val ue !
MyPoi nt . Get Next '
x1 = MyPoi nt. Val ue '
ave# = (x + x1 )/ 2 '

Set the Id
Request poi nt onchange

Retrieve the first val ue.

Record the val ue.

Wait for the next val ue.
Record the val ue

Cal cul ate the average

MsgBox "The average was " & str$(ave)

end sub
Poi nt . OnChange, Poi nt. OnAl arm

Poi nt. OnTi ned, Poi nt

. OnAl ar mAck

CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Point.GetRawArray (Method)

Syntax Poi nt . Get RawAr ray array [, startElement [, endElement [, fromElement]]]

Description To retrieve an array points value directly into a Basic array bypassing Engineering Units
Conversion. There are several rules to keep in mind

e If the array is undimensioned, the array will be redimensioned to the same size as the
point.

e If the array is dimensioned smaller than the point, only that many elements will be
copied into the array.

< Ifthe array is larger than the point, all elements of the point are copied, and the rest of
the array is left as is.

If the startElement is specified, the function will start copying data into the array at this element
and will continue until the end of the point is reached or the array is full whichever occurs first.

If the endElement is specified, the function will stop copying data into the array after populating
this element or when the end of the point is reached.

If the fromElement is specified, the values copied into the array start at this element in the point
array and continue as described above.

Comments Parameter Description
array Array. A dimensioned or undimensioned Basic Array to which the point data
will be copied.
startElement (optional) Integer. The first array element to which data will be copied.
endElement (optional) Integer. The last array element to which data will be copied.
fromElement (optional) Integer. The first point element from which data is to be copied.
Example
sub main()
Di m rawal ues() as integer
Dimp as new Poi nt ' Declare the point object
p.1d = "ARRAY_PO NT" ' Set the Id
p. Get ' Get value fromC MPLICTY
p. Get RawArray rawval ues ' Copy the object into val ues
end sub
See Also Poi nt . Get Array, Point. Set RawArray, Point.HasEuConv, Point. Val ue,

Poi nt . Rawval ue

GFK-1283G CIMPLICITY Extensions to Basic 26-43



Point.GetValue (Property, Read)

Syntax

Description

Example

Poi nt . Get Val ue

To get a snapshot of the point value from the Point Manager and return it. This operation combines

the Get Method and Value Property into a single command.

Note

If the point is unavailable (due to the device being down, remote server unavailable, etc.) an error
will be generated if you attempt to access the value (since the value is unavailable.) See the

Poi nt . St at e property if you need to determine if the point is available or not.

sub main()
Di m MyPoi nt as new Poi nt ' Declare the point object
MyPoint.ld = "TANK_LEVEL" ' Set the point id
X = MyPoi nt. Get Val ue ' Read and return the val ue.
end sub

Point.HasEuConv (Property, Read)

Syntax
Description

Example

Related
Function

26-44

Poi nt . HasEuConv

Boolean. To determine if the point has Engineering Units conversion configured.

sub main()
Di m MyPoi nt as new Poi nt
MyPoint.1d = "DEVI CE_PO NT_1"
i f MyPoint.HasEuConv then
MsgBox "Has Eu Conversi on"
el se
MsgBox "No Eu Conversi on"
end if
end sub

Poi nt . Set RawAr ray, Point. Set Array, Point. CGet Array,
Poi nt . Get RawAr ray, Poi nt. Val ue, Poi nt.Rawal ue

CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



Point.Id (Property, Read/Write)

Syntax Point.Id

Description String. To get or set the object's CIMPLICITY Point ID. The function generates an error if the
point is not configured or the remote server is not available.

Comments If an error is generated, one of the following error codes may be reported.
Err Description
CP_PQO NT_NOTFOUND The Point ID specified is invalid and was not found.
Example
sub main()
Di m MyPoi nt as new Poi nt
M/Point.ld = “\\PROJECTI\ PO NT1" ' Set the id
end sub

sub processPoi nt (M/Poi nt as Poi nt)
if MyPoint.ld = "GEF_DEMD CCS" then ' Conpare the Id
end'if

end sub

Point.InUserView (Property, Read)

Syntax Poi nt . | nUser Vi ew

Description Boolean. To determine if the point is in the user's view. If setpoint security is enabled on the
point's project and the point's resource is not in the user's view, then FALSE is returned; otherwise,
TRUE is returned.

Note

If the point is not in the user's view, a run time error will be generated if you try to set it.

Example
sub mai n()
Di m MyPoi nt as new Poi nt
MyPoint.ld = "TEST_PO NT"
if MyPoint.InUserView = TRUE
MyPoi nt . Set Val ue = 10
el se
MsgBox "Point not in user view, setpoint not allowed"
end if
end sub
Related Poi nt . Set Poi nt Pri v, Point.DownlLoadPassword
Routines

GFK-1283G CIMPLICITY Extensions to Basic 26-45



Point.Length (Property, Read)

Syntax Poi nt. Lengt h

Description Integer. To return the length in Bytes of the point value. This is valid only for character strings.
Related Poi nt . El ement s

Routines

Point.OnAlarm (Method)

Syntax Poi nt . OnAl ar m [condl [, cond2 [, cond3 [, cond4]]]]

Description To request the point's value when its alarm state changes. If no parameters are specified, the value
will be returned whenever the alarm state changes. The four optional parameters can be used to
restrict which alarm conditions will be reported to the application.

Call Get Next to obtain the next value of the point.
Only one of the OnChange, OnAl ar m OnTi med or OnAl ar mAck requests may be active at a

time.
Comments Optional Parameters

Value Description

CP_ALARM Send the value whenever the point changes into an Alarm (Hi or Low)
State

CP_WARNI NG Send the value whenever the point changes into a Warning (Hi or
Low) State

CP_ALARM HI GH Send the value whenever the point changes into an Alarm High State.

CP_ALARM_LOW Send the value whenever the point changes into an Alarm Low State.

CP_WARNI NG_HI GH Send the value whenever the point changes into a Warning High State.

CP_WARNI NG_LOW Send the value whenever the point changes into a Warning Low State.

Note

Due to a current limitation, selecting ALARM HI GHand WARNI NG_LOW for example, will return
the point for all alarm and warning states. In other words, the High and Low end up applying to
both the Alarm and Warning.

26-46 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Example

Related
Routines

sub main()

Di m MyPoi nt as new Poi nt
M/Point.ld = "TANK_LEVEL"
MyPoi nt . OnAl arm

MyPoi nt . Get Next

if MyPoint.State = CP_ALARM HI GH t hen
MsgBox " Al arm Hi gh"

el seif MyPoint.State = CP_ALARM LOWt hen
MsgBox " Al arm Low"

el seif MyPoint.State = CP_WARNI NG _HI GH t hen
MsgBox "War ni ng Hi gh"

el seif MyPoint.State = CP_WARNI NG LOW t hen
MsgBox "Warni ng Low'

el seif MyPoint.State = CP_UNAVAI LABLE t hen
MsgBox " Unavai |l abl e"

el se
MsgBox " Nor mal "

end if

goto top

end sub

Poi nt . Get Next, Poi nt. Cancel, Point. OnAl ar mAck

Point.OnAlarmAck (Method)

Syntax

Description

Related
Routines

GFK-1283G

Poi nt . OnAl ar mAck

To receive the point's value when the alarm acknowledgment state changes.

CIMPLICITY Extensions to Basic

Only one of the OnChange, OnAl ar m OnTi med or OnAl ar mAck requests may be active at a
time.

Poi nt . Get Next, Point. Cancel, Point.OnAl arm

26-47



Point.OnChange (Method)

Syntax Poi nt . OnChange

Description To request the point's value on change. The next value of the point may be received by calling the
Get Next method or function. The current value of the point is returned immediately. Any
subsequent Get Next call will block until the point's value changes.

Only one of the OnChange, OnAl ar m OnTi med or OnAl ar mAck requests may be activate at a

time.
Example Read the point value on change forever.
Sub mai n()
Di m MyPoi nt as new Poi nt ' Declare the point object
M/Point.ld = "TANK_LEVEL" ' Set the Id
MyPoi nt . OnChange ' Request the value on change
top :
MyPoi nt. Get Next ' Get the value
Trace MyPoint. Val ue ' trace it to the output w ndow
goto top ' repeat forever
end sub
Related Poi nt . Get Next, Poi nt. OnTi med, Point. Cancel

Routines

26-48 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Point.OnTimed (Method)

Syntax

Description

Comments

Example

See Also

Poi nt . OnTi ned time_period

To poll the points value periodically. A new value will be sent to the application every time_period
seconds. The application should call Get Next to retrieve the next value.

Note

Unlike the OnChange method, you may miss values of the point if it changes in between your
polls. Use the OnChange method to receive the point whenever it changes. OnTi nmed is useful if
the point is rapidly changing and you are only interested in its value in a periodic manner.

Only one of the OnChange, OnAl ar m OnTi nmed or OnAl ar mAck requests may be active at a
time.

Parameter Description
time_period Integer. Time period in seconds to read the point
Sub mai n()
Di m MyPoi nt as new Poi nt ' Declare the point object
MyPoint.ld = "TANK_LEVEL" ' Set the point Id
MyPoi nt. OnTi ned 60 ' Request val ue every mnute
top :
MyPoi nt . Get Next ' Read the val ue
Trace MyPoi nt. Val ue ' Put it out to the trace buffer
goto top ' Repeat forever
end sub

Poi nt . Get Next, Poi nt. OnChange, Point. Cancel.

Point.PointTypeld (Property, Read)

Syntax
Description
Example

See Also

GFK-1283G

Poi nt . Poi nt Typel d
String. To retrieve the character based Point Type ID.

sub main()
Di m MyPoi nt as new Poi nt
M/Point.1d = "CP_DI G TAL"
if MyPoint. PointTypeld = "Dl G TAL" then
MsgBox "It is a digital point"
el se
MsgBox "Point Type IDis : " & MyPoint. Poi nt Typel d
endi f
end sub

Poi nt . Dat aType

CIMPLICITY Extensions to Basic 26-49



Point.Quality (Property, Read)

Syntax Point. Quality
Description Long. Return the 16-bit quality mask for the point.

Example

Sub Mai n()
Dimp as new Poi nt
p.ld = “VALVE_1"
p. Get
MsgBox cstr(p. Quality)
End Sub

Point.QualityAlarmed (Property, Read)

Syntax Poi nt . Qual i t yAl ar med
Description Boolean. Returns TRUE if the point is in alarm, FALSE otherwise.

Example

Sub Mai n()
Dimp as new Poi nt
p.ld = “VALVE_1"
p. Get
if p.QalityAl armed then
MsgBox “Point is in alarnf
End |f
End Sub

Point.QualityAlarms_Enabled (Property, Read)

Syntax Poi nt . Qual i t yAl ar ms_Enabl ed
Description Boolean. Returns TRUE if alarming for the point is enabled, FALSE otherwise.

Example

Sub Mai n()
Dimp as new Poi nt
p.ld = “VALVE_1"
p. Get
if p.QualityAl arms_Enabl ed then
MsgBox “Alarming is enabl ed”
End |f
End Sub

26-50 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



Point.QualityDisable Write (Property, Read)

Syntax
Description

Example

Point. QualityDi sable Wite
Boolean. Returns TRUE if setpoints have been disabled for the point, FALSE otherwise.

Sub Mai n()
Dimp as new Poi nt
p.ld = “VALVE_1"
p. Get
if p.QalityDisable_Wite Then
MsgBox “Witing disabled for point”
End |f
End Sub

Point.Qualityls_Available (Property, Read)

Syntax
Description

Example

Point. Qualityls_Avail abl e

Boolean. Returns TRUE if the points value is available, FALSE if the value is unavailable.

Sub Mai n()
Dimp as new Poi nt
p.ld = “VALVE_1"
p. Get
if p.Qualityls_Available = FALSE then
MsgBox “Point is not avail able”
End |f
End Sub

Point.Qualityls_In_Range (Property, Read)

Syntax

Description

Example

GFK-1283G

Poi nt. Qualityls_In_Range

Boolean. Returns TRUE if the current value of the point is in range, FALSE if the point is out of
range. When a point is out of range its value is unavailable.

Sub Mai n()
Dim p as new Poi nt
p.ld = “VALVE_1"
p. Get
if p.Qualityls_In_Range = FALSE then
MsgBox “Point is out of range”
End | f
End Sub

CIMPLICITY Extensions to Basic 26-51



Point.QualityLast _Upd_Man (Property, Read)

Syntax Poi nt . Qual i tyLast _Upd_Man

Description Boolean. Returns TRUE if the current value of the point came from a manual update rather than a
device read.

Example
Sub Mai n()

Dim p as new Poi nt
p.ld = “VALVE_1"
p. CGet
if p.QualityLast_Upd_Man then
MsgBox “Last Update Manual”
End If
End Sub

Point.QualityManual _Mode (Property, Read)

Syntax Poi nt . Qual i t yManual _Mbde
Description Boolean. Returns TRUE if the point has been placed into Manual Mode, otherwise FALSE.

Example

Sub Mai n()
Dim p as new Poi nt
p.ld = “VALVE 1"

p. CGet
if p.QualityManual _Mbde then
Poi nt Set “VALVE_1_STATE’, “In Manual”
El se
Poi nt Set “VALVE_1_STATE", “’
End | f
End Sub

26-52 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Point.QualityStale Data (Property, Read)

Syntax Point. QualityStal e _Data
Description Boolean. Returns TRUE if the value of the point is stale, otherwise FALSE.

Example

Sub Mai n()
Dimp as new Poi nt
p.ld = “VALVE_1"
p. Get
if p.QualityStale_Data = TRUE
MsgBox “Value is stale”
End |f
End Sub

Point.RawValue (Property, Read/Write)

Syntax Poi nt . Rawval ue[( index) ]

Description Same as Poi nt . Val ue except bypasses Engineering Units conversion if configured for the point.
Will return into any type subject to some restrictions. All numeric types may be returned into any
other numeric type and into string types. String and BitString types can only be returned into string
types. If the variable being returned into does not have a type, the variable will be changed to the
appropriate type, based on the point type.

Note

The opti on base (see language reference), determines if the first element of an array point will
be zero or one. If you do not explicitly set the opt i on base, all arrays in Basic start at 0. If you
set it to 1, all arrays in Basic start at 1. See the example below.

Comments Parameter Description
index (Optional) Integer. The array element to access. Range depends on the

opti on base setting.

GFK-1283G CIMPLICITY Extensions to Basic 26-53



Example

I ncrenent the points raw val ue by one

sub main()

Di m MyPoi nt as new Poi nt ' Declare the point object
M/Point.ld = "TANK_LEVEL" ' Set the Id

MyPoi nt . Get ' Read the point

X = MyPoi nt. Rawval ue ' Return the raw val ue
MyPoi nt. Rawwal ue = x + 1 ' Set the raw val ue

MyPoi nt . Set Wite the val ue
end sub
' Find the maxi mumraw value in the array.
option base 1 ' Arrays start at one
sub main()
Di m MyPoi nt as new Poi nt ' Decl are point object
MyPoint.ld = "ARRAY_PO NT" ' Set the Point Id
MyPoi nt . Get ' CGet the value of the point
max = MyPoi nt. Rawval ue(1) ' Get first value (option base = 1)
for | =2 to M/Point.Elements ' Loop through all elenents
if MyPoint.Rawal ue(l) > nax then max = MyPoi nt. Rawval ue( )
next |
end sub

' Set all elements of the array to 10
option base 0 ' Arrays start at 0 (default)

sub main()
Di m MyPoi nt as new Poi nt ' Declare the object
M/Point.ld = "ARRAY_PO NT" ' Set the Id

' Loop through all elenents. Since arrays are set to start
' at 0, the index of the last elenment is one less than the
' count of the el enents.
for | =0 to MPoint.Elements - 1
MyPoi nt . Rawval ue(l) = 10 ' Set the raw val ue
next |
' Values are not witten to CCMPLICITY until this
' set is executed
MyPoi nt . Set ' Wite the point
end sub

Related Poi nt . Val ue
Routines

Point.ReadOnly (Property, Read)

Syntax Poi nt . ReadOnl y
Description Boolean. To determine if the point is read only.
Example
sub main()
Di m MyPoi nt as new Poi nt ' Declare the point object
M/Point.ld = "TANK_LEVEL" ' Set the Id
if MyPoint.ReadOnly then ' |Is the point read-only?
MsgBox " Point cannot be set, point is read-only"
el se
MyPoi nt . Set Val ue = 10 ' Set the value and wite to CIMPLICITY.
end if
end sub

26-54 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Point.Set (Method)

Syntax Poi nt . Set [downloadPassword]

Description To write the point's value out to the CIMPLICITY HMI project. An optional download password
can be supplied.

Note

The values set into the Point using the Value, Rawval ue, Set Ar r ay and Set RawAr r ay
methods are not written out to the CIMPLICITY HMI project until they are committed with a Set

statement.
Parameter Description
downloadPassword (Optional) String. The download password for the project.
Example
sub main()
Di m MyPoi nt as new Poi nt ' Declare the point object
M/Point.ld = "TANK_LEVEL" ' Set the Id
MyPoi nt . Val ue = 10 ' Set the val ue
MyPoi nt . Set ' Wite the value out to CIMPLICITY
end sub
See Also Poi nt . Set Val ue, Poi nt Set

GFK-1283G CIMPLICITY Extensions to Basic 26-55



Point.SetArray (Method)

Syntax Poi nt. Set Array array [, startElement [, endElement [, fromElement]]]
Description To set an array point's values directly from a Basic array. There are several rules to keep in mind:

e If the array is dimensioned smaller than the point, only that many elements will be
copied into the point.

e Ifthe array is larger than the point, all elements of the array are copied, and the rest of
the array is ignored.

If the startElement is specified, the function will start copying data from the array at this element
and will continue until the end of the array is reached or the point is full whichever occurs first.

If the endElement is specified, the function will stop copying data from the array after copying this
element or when the point is full.

If the fromElement is specified, the values copied from the array start at this element in the point
array and continue as described above.

Note

The Set Ar r ay method only updates the internal value of the point object. The Set method must
be executed to write the value out to the CIMPLICITY HMI project.

Comments Parameter Description
array Array. A dimensioned or undimensioned Basic Array from which the point
data will be copied.
startElement (optional) Integer. The first array element from which data will be copied.
endElement (optional) Integer. The last array element from which data will be copied.
fromElement (optional) Integer. The first point element to which data is to be copied.
Example
Read an array point, sort the elenents by value and wite them
out to CIMPLICITY sorted.
sub main()
Dim x() as integer ' Decl are the val ue array
Di m MyPoi nt as new Poi nt ' Decl are the point object
Poi nt . Get 'Get the point value
Poi nt. Get Array X 'Transfer point element into array
ArraySort X "Sort the array
Poi nt. Set Array X "Transfer to array into the point
Poi nt . Set "Transfer the sorted data to Cl MPLICITY.
end sub
Related Poi nt . Set RawAr ray, Poi nt. Val ue, Point. Get Array, Point. Set
Routines

26-56 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Point.SetElement (Method)

Syntax Poi nt . Set El enent index, [download password]
Description To write a single element of the point to the Point Manager
Comments Parameter Description

Index Integer. The index of the element to write.

download password  (optional) String. Optional download password

Example

‘ Read an array point, sort the elenents by value and wite them
‘ out to CIMPLICITY sorted

sub main()
Dim x() as integer ‘Declare the value array
Di m MyPoi nt as new Poi nt ‘Decl are the point object
MyPoi nt . Val ue(3) = 10 ‘Assign the value of the third el ement
MyPoi nt . Set El enent 3 ‘Wite only the third el enent
end sub

Point.SetpointPriv (Property, Read)

Syntax Poi nt . Set poi nt Priv
Description Boolean. To determine if the user accessing the point has Setpoint privilege.
Example

sub main()

Di m MyPoi nt as new Poi nt
MyPoint.ld = "TANK_LEVEL"
if MyPoint.SetpointPriv = FALSE then
MsgBox "You do not have the setpoint privilege"

el se
MyPoi nt . Set Val ue = | nput Box$(" Set poi nt Val ue: ")
end if
end sub
Related Poi nt . Downl oadPassword, Point. | nUserVi ew

Routines

GFK-1283G CIMPLICITY Extensions to Basic 26-57



Point.SetRawArray (Method)

Syntax Poi nt . Set RawAr ray array [, startElement [, endElement [, fromElement]]]

Description To set an array point's values directly from a Basic array, bypassing Engineering Units Conversion.
There are several rules to keep in mind:

e If the array is dimensioned smaller than the point, only that many elements will be
copied into the point.

e If the array is larger than the point, all elements of the point are set.

If the startElement is specified, the function will start copying data from the array at this element
and will continue until the end of the array is reached or the point is full whichever occurs first.

If the endElement is specified, the function will stop copying data from the array after copying this
element or when the point is full.

If the fromElement is specified, the values copied from the array start at this element in the point
array and continue as described above.

Note

The Set RawAr r ay method only updates the internal value of the point object. The Set method
must be executed to write the value out to the CIMPLICITY HMI project.

Comments Parameter Description
array Array. A dimensioned or undimensioned Basic Array from which the point
data will be copied.
startElement (optional) Integer. The first array element from which data will be copied.
endElement (optional) Integer. The last array element from which data will be copied.
fromElement (optional) Integer. The first point element to which data is to be copied.
Example
Copy the log value of one array point to another array point.
sub main()
Di m source as new Poi nt ' Decl are source point
Di m dest as new Poi nt ' Decl are destination point
Dim x() as double ' Declare array
source.ld = "I NPUT" ' Set the ID of the source point
sour ce. Get ' Cet the value of the source point
dest.ld = "OQUTPUT" ' Set the ID of the destination point
source. Get RawArray x ' Transfer value to array
Loop through array point, taking |ogarithm
for I =0 to source.Elenents - 1
x(1) = log(x(1))
next |
dest . Set RawArray x ' Transfer value into destination object
dest . Set ' Set the value to CIMPLICITY
end sub
Related Poi nt. Set Array, Poi nt. Rawval ue, Poi nt. Get RawAr r ay
Routines

26-58 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Point.SetValue (Property, Write)

Syntax Poi nt. Set Val ue = a

Description To set the point's value in a CIMPLICITY HMI project. This operation combines the Val ue and
Set operations into one command. The Set Val ue method uses Engineering Units Conversion
and cannot be used to set elements of an array point.

Example
' Ranp tank level fromO to 100 in steps of five, with a del ay
on 100ms between each set.

sub main()
Di m MyPoi nt as new Poi nt ' Decl are the point object
MyPoint.ld = "TANK_LEVEL" "Set the Id
for I =0 to 100 step 5 'Loop in steps of 5
MyPoi nt . Set Val ue = | 'Set and wite value to CIMPLICITY
Sl eep 100 'Sl eep 100ns
next | ' Loop
end sub

GFK-1283G CIMPLICITY Extensions to Basic 26-59



Point.State (Property, Read)

Syntax
Description

Comments

Example

Related
Routines

26-60

Point. State
Integer. To return the state of the point's value.

Any of the following states may be returned.

State Description

CP_NORVAL Point is in Normal State

CP_ALARM HI GH Point is in Alarm High State.

CP_ALARM LOW Point is in Alarm Low State.

CP_WARNI NG_HI GH Point is in Warning High State.

CP_WARNI NG_LOW Point is in Warning Low State.

CP_ALARM Point is in Alarm State.

CP_WARNI NG Point is in Warning State.

CP_AVAI LABLE Point has gone from Unavailable to Available.
CP_UNAVAI LABLE Point is Unavailable

I ncrenent the point value by one, if the point is unavailable,
set it to O.
sub main()
Di m MyPoi nt as new Poi nt
M/Point.ld = "TANK_LEVEL"
MyPoi nt . Get
if MyPoint.State = CP_UNAVAI LABLE t hen
MyPoi nt . Set Val ue = 0
el se
MyPoi nt . Set Val ue = MyPoi nt.Value + 1
end if
end sub

Poi nt. Get, Poi nt. Get Next

CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



Point.TimeStamp (Property, Read)

Syntax

Description

Example

Related
Routines

Poi nt . Ti meSt anp

Date. To retrieve the timestamp into a Basic Date Object. The timestamp indicates the time at

which the point's value was read from the PLC.

Sub Mai n()

Dim x as new Poi nt

a$ = I nputBox$("Enter a point id")
x.ld = a$

Xx. OnChange

top :
X. Cet Next

Trace str$(x. TineStanp) & " " & x.Value
goto top

End Sub

Poi nt . Get, Poi nt. Get Next

Point.UserFlags (Property, Read)

Syntax
Description

Example

GFK-1283G

Poi nt . User Fl ags

Long. Returns the value of the 16-bit user defined flags for the point.

Sub Mai n()

Dim p as new Poi nt

p.ld = “VALVE_1"

p. CGet

MsgBox cstr (p. User Fl ags)
End Sub

CIMPLICITY Extensions to Basic

26-61



Point.Value (Property, Read/Write)

Syntax

Description

Example

Related
Routines

26-62

Poi nt . Val ue[(index) ]

To retrieve or set the value in the point object. The optional index may be supplied to access values
of an array point. The first element of the array is at the zero index. The value property uses
Engineering Units conversion if supplied by the point. To bypass Engineering Units conversion, use
the RawVal ue property.

Automatic conversion will be performed between data types as needed. The only exceptions are
String and BitString points, which can only be assigned from Strings.

Note

To retrieve the point value, the Poi nt . Get method must be invoked first. Once the value has been
read, it can be accessed many times without having to retrieve it from the Point Manager on each
reference. If the point hasn't been read, an exception is generated.

Note

When setting a value, the value is not written to the device until the Set method is invoked.

Thi s subroutine show automatic type conversion

sub main()
Di m MyPoi nt as new Poi nt ' Decl are the point object
MyPoint.ld = "I NTEGER_PO NT" "Set the Id, Point Type is | NTEGER

The string value of "10" is autonmtically converted to a integer
val ue of 10 and place in point object.
MyPoi nt . Val ue = " 10"

MyPoi nt . Set ' Wite the point
The floating point value of 10.01 is truncated to 10 and pl ace
in the point
MyPoi nt . Val ue = 10. 01
MyPoi nt . Set ' Wite the point
end sub

Poi nt . Rawval ue, Point. Get Array, Point. Get RawArray

CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



PointGet (Function)

Syntax Poi nt Get ( pointld$)
Description To read a particular point and return the value.
Comments Parameter Description
pointld$ String. The Point ID to get the value from.
Example

Pronpt user for point id, get the point value and display
it into a nessage box.

sub mai n()
MsgBox “Value is " & PointGet (| nputBox$("Enter Point Id") )
end sub
Related Poi nt Get Mul ti pl e

Routines

PointGetMultiple (Function)

Syntax Poi nt Get Mul ti pl e pointl[,point2[,point3...]]
Description Request data from up to 30 points in a single snapshot request.
If the function fails, an error is generated.

If you need to get data from several points, use this function rather than issuing a single Poi nt Get
command for each point. For the example below, it is six times more efficient to use

Poi nt Get Mul ti pl e, since the data is retrieved from the Point Manager in a single request,
rather than six separate Poi nt Get requests.

Comments Parameter Description
pointn String. Point objects for which data is going to be requested. Up to 30 may
be specified as function parameters.
Example
sub mai n()
Dmx As New Point: x.ld = “Rl”
Dimx1 As New Point: x1.1d = “R2”
Dimx2 As New Point: x2.1d = “R3"
Dimx3 As New Point: x3.1d = “R4”
Dimx4 As New Point: x4.1d = “R5”
Dim x5 As New Point: x5.1d = “R6”
Poi nt Get Mul ti pl e X, x1, x2, x3, x4, x5
End Sub
Related Poi nt Get
Routines

GFK-1283G CIMPLICITY Extensions to Basic 26-63



PointGetNext (Function)

Syntax Poi nt Get Next ( timeOutMs, pointl [, ... [, point16])
or
Poi nt Get Next ( timeOutMs, PointArray)

Description To return the next point value from a list of points with a timeout.

The timeout value is in milliseconds, a timeout of -1 indicates to wait forever, a timeout of 0
indicates to not wait and a positive integer indicates the timeout period in milliseconds.

Pointl is a Point object with an outstanding request. Up to 16 points can be specified on the
function call.

Alternatively, the user may pass an array of point objects.

The function returns the object whose value changed or empty.

Comments Parameter Description
timeOutMs Integer. Maximum time to wait in milliseconds. -1 = INFINITE, 0 = Do

not wait, > 0 wait. Current resolution is 10ms, all values will be rounded up
to the next 10ms increment.

pointn Point object with an OnChange, etc. Up to 16 may be specified as function
parameters.
PointArray An array of Point object with OnChange, etc.
Example
' Trace the values of 2 point as they change or trace timeout if neither
' point change in 1 second.
sub main()
Di m Poi nt1 as new Poi nt ' Declare Point Object
Di m Poi nt2 as new Poi nt ' Declare Point Object
Point1.1d = "TANK_LEVEL" ' Set the Id
Point2.1d = "TANK_TEMP" ' Set the Id
Poi nt 1. OnChange ' Regi ster OnChange request
Poi nt 2. OnChange ' Regi ster OnChange request
Di m Result as Poi nt ' Declare result pointer
top :
' Set result equal to result of waiting on Pointl and Point2
' to change for 1 second
Set Result = Point Get Next (1000, Point1, Point?2)
if Result is enpty then ' Enpty is returned if timeout
Trace "Ti meQut"
el se
' Otherwise Result is Pointl or Point2 depending on which one
' changed I ast.
Trace Result.ld & " " & str$(Result. TineStanp) & Result. Val ue
end if
goto top
end sub
See Also Poi nt . OnChange, Poi nt. Get Next, Point.OnAlarm Point.OnTi med,

Poi nt . OnAl ar mAck

26-64 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



PointSet (Statement)

Syntax Poi nt Set pointld$, value
Description To set a point's value.
Comments Parameter Description
pointld$ String. The point ID to set.
value Value to set it to.
Example
sub main()
Poi nt Set | nput Box$("Point 1d:"), |nputBox$("Value:")
end sub

Trace (Command)

Syntax Trace a$

Description Traces (prints) a string to the trace output. By default, when running in the Program Editor, tracing
will be output to the trace window. When running from the Event Manager, tracing must be
specifically enabled (Tr aceEnabl e) in order for tracing to occur.

Example

Sub Mai n()
Dim x as new Poi nt
a$ = InputBox$("Enter a point id")
x.ld = a$
Xx. OnChange
top :
X. Cet Next
Trace str$(x. TineStanp) & " " & x.Value
goto top
End Sub

GFK-1283G CIMPLICITY Extensions to Basic 26-65



TraceEnable/TraceDisable (Command)

Syntax Tr aceEnabl e file$
TraceDi sabl e

Description Tr aceEnabl e enables tracing to a file. The file will be located in your project's log directory.
Tracing to a file is only supported from the event manager. The trace output will be written to the
log directory. Tracing has a performance impact since the file is opened and closed for each write.
Tracing is intended for debug use only and should be removed from production code.

Tr aceDi sabl e disables tracing to a file

Example

sub main()
i f PointSet("TRACE_TRIGGER') = TRUE then
TraceEnabl e "MW_LOG'
end if
Trace "Trace Message 1"
Trace "Trace Message 2"
TraceDi sabl e
end sub

26-66 CIMPLICITY HMI Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Index

' (apostrophe), used with comments 2-1-2-3

— (minus sign), subtraction operator 2-5-2-6

I (exclamation point)
activating parts of files 9-5
used within user-defined formats 8-16

n

" (quote), embedding within strings 13-11

#

# (number sign)
as delimiter for date literals 13-11
delimiter for date literals 6-1
delimiter for parsing input 11-4-11-6
used to specify ordinal values 6-24
used within user-defined formats 8-14
wildcard used with Like (operator) 13-5
#ERROR code#
writing to sequential files 23-13
#FALSE#
writing to sequential files 23-13
#NULL#
writing to sequential files 23-13
#TRUE#
writing to sequential files 23-13

%

% (percent)
used within user-defined formats 8-14

GFK-1283G

&

& (ampersand)
concatenation operator 2-1
octal/hexadecimal formats 13-11
used within user-defined formats 8-16
& (operator), vs. addition 2-4

(

(26-9
() (parentheses)
used in expressions 2-2
() (parentheses)
used to pass parameters by value 2-2

*

* (asterisk)
multiplication operator 2-3
used within user-defined formats 8-15
wildcard used with Like (operator) 13-5

, (comma)
used with Print 17-9
used within user-defined formats 8-15

. (period)
used to separate object from property 2-6
used with structures 2-6
used within user-defined formats 8-14

/

/ (slash)
division operator 2-7
used within user-defined formats 8-15

: (colon)
used with labels 9-7
: (colon)
used within user-defined formats 8-15

; (semicolon), used with Print 17-9, 17-10

Index-i



?

? (question mark)
wildcard used with Like (operator) 13-5

@
@ (at sign)

used within user-defined formats 8-16
\

\ (backslash)
integer division operator 2-9
used with escape characters 16-15
used within user-defined formats 8-15

AN

A (caret), exponentiation operator 2-10

_ (underscore), line-continuation character 2-11

+

+ (plus sign), addition operator 2-4—-2-5

<

< (less than)

comparison operator 2-7

used within user-defined formats 8-16
<= (less than or equal), comparison operator 2-7
<> (not equal), comparison operator 2-8

= (equal sign)
assignment statement 2-8
comparison operator 2-8

>

> (greater than)
comparison operator 2-8
used within user-defined formats 8-16
>= (greater than or equal), comparison operator 2-9

0
0 (digit), used within user-defined formats 8-14

Index-ii CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

A

Abs (function) 3-1
absolute value 3-1
Acquire (Function) 26-1
Acquire (Statement) 26-2
actions, dialog 6-41
activating

applications 3-5

windows 23-4
Alarm

Request point value on alarm ack 26-47

Request point value on alarm state change 26-46
AlarmAck

Point property 26-36
AlarmGenerate (Method) 26-4
AlarmUpdate (Method) 26-6
And (operator) 3-2
annuities

future values of 8-22

interest rates of 18-3

number of periods for 15-10

payments for 17-6

present value of 15-11, 17-19

principal payments for 17-8
AnswerBox (function) 3-3-3-4
antilogarithm function (Exp) 7-34
Any (data type) 3-4
AppActivate (statement) 3-5
AppClose (statement) 3-6
Append (keyword) 16-9-16-10
AppFind$ (function) 3-7
AppGetActive$ (function) 3-7
AppGetPosition (statement) 3-8
AppGetState (function) 3-9
AppHide (statement) 3-10
applications

activating 3-5

changing size of 3-18

closing 3-6

finding 3-7

finding active 3-7

getting position of 3-8

getting state of 3-9

getting type of 3-19

hiding 3-10

listing 3-11

maximizing 3-12

minimizing 3-13

moving 3-14

restoring 3-15

running 19-18

setting state of 3-16

showing 3-17
AppList (statement) 3-11

GFK-1283G



AppMaximize (statement) 3-12
AppMinimize (statement) 3-13
AppMove (statement) 3-14
AppRestore (statement) 3-15
AppSetState (statement) 3-16
AppShow (statement) 3-17
AppSize (statement) 3-18
AppType (function) 3-19
arctangent function (Atn) 3-26
arguments
parentheses use 2-2
passed to functions 8-20
passed to subroutines 19-41
to external routines 4-8, 6-21, 6-23
ArrayDims (function) 3-20
arrays 3-21
ArrayDims (function) 3-20
declaring 3-21
as local 6-29-6-30
as private 17-12-17-13
as public 17-14-17-15
Dim (statement) 6-29-6-30
dimensions
getting bounds of 3-22
getting lower bound 13-1
getting number of 3-20, 3-22
getting upper bound 21-1
LBound (function) 13-1
maximum number of 6-29
reestablishing 18-6
UBound (function) 21-1
dynamic 3-21, 6-29, 17-12, 17-14, 18-6
erasing 7-25
filling combo boxes from 6-39
filling drop list boxes from 6-39
filling list boxes from 6-39
filling with
window objects 23-6
filling with application names 3-11
filling with disk names 6-33
filling with query results 19-32
fixed-sized, declaring 3-21
list of language elements 1-3
operations on 3-22
passing 3-21
Private (statement) 17-12-17-13
Public (statement) 17-14-17-15
selecting items of 19-11-19-12
setting default lower bound of 16-13
size, changing while running 18-6
sorting 3-23
total size of 6-29, 17-12, 17-14
Arrays 26-39
ArraySort (statement) 3-23
Asc (function) 3-23

AskBox$ (function) 3-24
AskPassword$ (function) 3-25
assigning, objects 19-15
assignment

= (statement) 2-8

Let (statement) 13-4

LSet (statement) 13-17

overflow during 2-8, 13-4

rounding during 7-35

RSet (statement) 18-12
Atn (function) 3-26

used to calculate Pi 17-1

B

Basic Control Engine

free memory of 4-2

home directory of 4-2

version of 4-4
Basic.Capability (method) 4-1
Basic.Eoln$ (property) 4-2
Basic.FreeMemory (property) 4-2
Basic.HomeDir$ (property) 4-2
Basic.OS (property) 4-3
Basic.PathSeparator$ (property) 4-3
Basic.Version$ (property) 4-4
BasicScript

functions to get information from 1-9
Beep (statement) 4-4
Begin Dialog (statement) 4-5-4-6
Binary (keyword) 16-9-16-10
binary data

reading 9-1-9-3

writing 17-17-17-18
binary files

opening 16-9-16-10

reading from 9-1-9-3

writing to 17-17-17-18
binary operators

And (operator) 3-2

Eqv (operator) 7-24

Imp (operator) 11-3

list of 1-10

Not (operator) 15-8

Or (operator) 16-18

Xor (operator) 24-1-24-2
bitmaps, used in dialog boxes 17-2, 17-4
Boolean (data type) 4-7

converting to 5-3

range of values 4-7

storage requirements 4-7
Boolean constants

False (constant) 8-1

True (constant) 20-8
browse dialog box 15-4

Index-iii CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



bugs (error trapping) 7-30, 16-7-16-8
by value, forcing parameters 8-20, 19-41
ByRef (keyword) 4-7, 6-21, 8-19, 8-20, 19-40, 19-41
ByVal (keyword) 2-2, 4-8, 6-21, 8-19, 8-20,
19-40, 19-41

C

Call (statement) 5-1
calling

external routines 6-19-6-24

other routines 5-1
calling conventions

under Win32 6-24
Cancel

Point method 26-37
Cancel buttons

adding to dialog template 5-2

getting label of 6-46

setting label of 6-45
capabilities

of platform 4-1
Case Else (statement) 19-9
case sensitivity, when comparing strings 16-14
case statement 19-9-19-10
CBool (function) 5-3
CCur (function) 5-4
CDate, CVDate (functions) 5-5
CDbl (function) 5-6
CDecl (keyword) 6-19-6-24
ChangePassword (Method) 26-7
character

codes 3-23

converting to number 3-23
ChDir (statement) 5-6
ChDrive (statement) 5-7
check boxes

adding to dialog template 5-8

getting state of 6-48

setting state of 6-49
CheckBox (statement) 5-8
Choose (function) 5-9
Chr, Chr$ (functions) 5-10
CimEMAIlarmEvent (Object) 26-8
CimEMAIlarmEvent. Alarm ID (Property Read 26-8
CimEMAIlarmEvent. RefID(Property Read) 26-11
CimEMAIlarmEvent. ResourcelD (Property

Read) 26-11
CimEMAIlarmEvent.FinalState (Property Read) 26-9
CimEMAIlarmEvent.GenTime (Property Read) 26-9
CimEMAIlarmEvent.Message (Property Read) 26-10
CimEMAIlarmEvent.PrevState (Property Read) 26-10
CimEMAIlarmEvent.RegAction
(Property Read) 26-11

CimEMEvent (Object) 26-12

Index-iv CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

CimEMEvent. TimeStamp (Property Read) 26-14
CimEMEvent.ActionID (Property Read) 26-12
CimEMEvent.AlarmEvent (Function) 26-12
CimEMEvent.EventID (Property Read) 26-13
CimEMEvent.ObjectID (Property Read) 26-13
CimEMEvent.PointEvent 26-13
CimEMEvent.Type (Property Read) 26-14
CimEMPointEvent (Object) 26-15
CimEMPointEvent.ld 26-15
CimEmPointEvent.Quality (Property Read) 26-16
CimEmPointEvent.QualityAlarmed (Property

Read) 26-16
CimEmPointEvent.QualityAlarms_Enabled (Property
Read) 26-16
CimEmPointEvent.QualityDisable_Write (Property
Read) 26-17
CimEmPointEvent.Qualityls_Available (Property
Read) 26-17
CimEmPointEvent.Qualityls_In_Range (Property
Read) 26-17
CimEmPointEvent.QualityLast Upd_Man (Property
Read) 26-18
CimEmPointEvent.QualityStale_Data (Property
Read) 26-18
CimEmPointEvent.QualtyManual_Mode (Property
Read) 26-18

CimEMPointEvent.State (Property Read) 26-19
CimEMPointEvent. TimeStamp
(Property Read) 26-19
CimEmPointEvent.UserFlags (Property Read) 26-19
CimEMPointEvent.Value (Property Read) 26-20
CimGetEMEvent (Function) 26-20
CimlIsMaster (Function) 26-20
CimLogin (Procedure) 26-21
CimLogout (Procedure) 26-21, 26-28
CimProjectData (Object) 26-22
CimProjectData.Attributes (Property
Read/Write) 26-28

CimProjectData.Entity (Property Read/Write) 26-23
CimProjectData.GetNext (Function) 26-29
CimProjectData.Project (Property Read/Write) 26-22
CimProjectData.Reset (Method) 26-30
Clnt (function) 5-11
Clipboard

erasing 5-13

getting contents of 5-12, 5-14

getting type of data in 5-13

list of language elements 1-3

setting contents of 5-12, 5-14
Clipboard$ (function) 5-12
Clipboard$ (statement) 5-12
Clipboard.Clear (method) 5-13
Clipboard.GetFormat (method) 5-13
Clipboard.GetText (method) 5-14
Clipboard.SetText (method) 5-14

GFK-1283G



CLng (function) 5-15
Close (statement) 5-15
closing

all files 18-7

applications 3-6

files 5-15

windows 23-5
collections

defined 16-4

elements, identifying 16-4

indexing 16-4

methods of 16-4

properties of 16-4
combo boxes

adding to dialog template 5-16-5-17

getting edit field of 6-46

setting edit field of 6-45

setting items in 6-39
ComboBox (statement) 5-16-5-17
Command

Trace 26-65

TraceEnable/TraceDisable 26-66
command line, retrieving 5-17
Command, Command$ (functions) 5-17
comments 5-17

' (apostrophe) 2-1-2-3

list of language elements 1-3

Rem (statement) 18-7
common dialogs

file open 16-11-16-12

file save 19-1-19-2
comparing strings 19-36-19-37
comparison operators 5-18

list of 1-3

table of 5-18

used with mixed types 5-18

used with numbers 5-18

used with strings 5-18

used with variants 5-19
compatibility mode, opening files in 16-10
concatenation operator (&) 2-1
conditionals

Choose (function) 5-9

If...Then...Else (statement) 11-1-11-2

I1f (function) 11-2

Switch (function) 19-42
conjunction operator (And) 3-2
Const (statement) 5-20-5-21
constants

declaring 5-20-5-21

ebAbort (constant) 7-1

ebApplicationModal (constant) 7-2

ebArchive (constant) 7-2

ebBold (constant) 7-2

ebBoldltalic (constant) 7-3

ebBoolean (constant) 7-3
ebCancel (constant) 7-3
ebCritical (constant) 7-4
ebCurrency (constant) 7-4
ebDataObject (constant) 7-4
ebDate (constant) 7-5
ebDefaultButtonl (constant) 7-6
ebDefaultButton2 (constant) 7-6
ebDefaultButton3 (constant) 7-6
ebDirectory (constant) 7-7
ebDos (constant) 7-7
ebDouble (constant) 7-8
ebEmpty (constant) 7-8
ebError (constant) 7-5
ebExclamation (constant) 7-8
ebHidden (constant) 7-9
eblgnore (constant) 7-9
ebInformation (constant) 7-10
eblnteger (constant) 7-10
ebltalic (constant) 7-11
ebLong (constant) 7-11

ebNo (constant) 7-11

ebNone (constant) 7-12
ebNormal (constant) 7-12
ebNull (constant) 7-13
ebObject (constant) 7-13
ebOK (constant) 7-13
ebOKCancel (constant) 7-14
ebOKOnly (constant) 7-14
ebQuestion (constant) 7-14
ebReadOnly (constant) 7-15
ebRegular (constant) 7-15
ebRetry (constant) 7-16
ebRetryCancel (constant) 7-16
ebSingle (constant) 7-17
ebString (constant) 7-17
ebSystem (constant) 7-18
ebSystemModal (constant) 7-18
ebVariant (constant) 7-18
ebVolume (constant) 7-19
ebWin32 (constant) 7-19
ebYes (constant) 7-19-7-20
ebYesNo (constant) 7-20
ebYesNoCancel (constant) 7-20
Empty (constant) 7-21

False (constant) 8-1

folding 13-11

giving explicit type to 5-20
list of language elements 1-14
naming conventions of 5-20
Nothing (constant) 15-9

Null (constant) 15-12

Pi (constant) 17-1

scoping of 5-21

True (constant) 20-8

Index-v CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



Constants
list of 5-22
control IDs, retrieving 6-34
control structures 7-21
Do...Loop (statement) 6-53-6-54
Exit Do (statement) 7-32
Exit For (statement) 7-33
Exit Function (statement) 7-33
Exit Sub (statement) 7-34
For...Next (statement) 8-11-8-12

Function...End Function (statement) 8-18-8-21

GoSub (statement) 9-6, 18-9

Goto (statement) 9-7

If...Then...Else (statement) 11-1-11-2
list of 1-4

Select...Case (statement) 19-9-19-10

Sub...End Sub (statement) 19-40-19-42

While...Wend (statement) 23-2
controlling applications
list of language elements 1-4
SendKeys (statement) 19-12-19-14
coordinate systems
dialog base units 19-3
pixels 19-4, 19-5
twips per pixel 19-4, 19-5
copying
data
using = (statement) 2-8
using Let (statement) 13-4
using LSet (statement) 13-17
using RSet (statement) 18-12
files 8-3
user-defined types 13-17
Cos (function) 5-23
cosine 5-23

counters, used with For...Next (statement) 8-11

counting
items in string 11-21
lines in string 13-8
words 23-12
CP_BITSTRING 26-37
CP_DIGITAL 26-37
CP_FLOAT 26-37
CP_INT 26-37
CP_LONG 26-37
CP_SHORT 26-37
CP_STRING 26-37
CP_STRUCT 26-37
CP_UDINT 26-37
CP_UINT 26-37
CP_USHORT 26-37
CreateObject (function) 5-23-5-24
creating new objects 6-29, 15-2-15-7
cross-platform scripting
determining platform 4-1

getting end-of-line character 4-2
getting path separator 4-3
getting platform 4-3
CSng (function) 5-25
CStr (function) 5-26
CurDir, CurDir$ (functions) 5-27
Currency (data type) 5-27
converting to 5-4
range of values 5-27
storage requirements 5-27
currency format 8-13
CVar (function) 5-28
CVDate (function) 5-5
CVErr (function) 5-29

D

data conversion
character to number 3-23
during expression evaluation 7-35
list of language elements 1-5
number to character 5-10
number to hex string 10-1
number to octal string 16-5
string to number 22-1
testing for numbers 11-18
to Boolean 5-3
to Currency 5-4
to Date 5-5, 6-9, 11-15, 20-7
to Double 5-6
to error 5-29
to Integer 5-11
to Long 5-15
to Single 5-25
to String 5-26, 8-13-8-17, 19-36
to Variant 5-28

data conversion functions
Asc (function) 3-23
CBool (function) 5-3
CCur (function) 5-4
CDate, CVDate (functions) 5-5
CDbl (function) 5-6
Chr, Chr$ (functions) 5-10
Clnt (function) 5-11
CLng (function) 5-15
CSng (function) 5-25
CStr (function) 5-26
CVar (function) 5-28
CVErr (function) 5-29

Format, Format$ (functions) 8-13-8-17

Hex, Hex$ (functions) 10-1
Oct, Oct$ (functions) 16-5
Str, Str$ (functions) 19-36
Val (function) 22-1

Index-vi CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



data formatting, Format, Format$ converting to 5-5, 6-9, 20-7

(functions) 8-13-8-17 formatting 8-13-8-17
data sources range of values 6-1
retrieving DBMS of 19-26 specifying date constants 6-1
retrieving list of 19-26 storage requirements 6-1
retrieving name of 19-26 Date, Date$ (functions) 6-2
retrieving owner qualifier of 19-27 Date, Date$ (statements) 6-3
retrieving server of 19-27 date/time functions
data types Date, Date$ (functions) 6-2
Any (data type) 3-4 Date, Date$ (statements) 6-3
Boolean (data type) 4-7 DateAdd (function) 6-4-6-5
changing default 6-25-6-26 DateDiff (function) 6-6—6-7
Currency (data type) 5-27 DatePart (function) 6-7-6-8
Date (data type) 6-1 DateSerial (function) 6-8
Dim (statement) 6-29-6-30 Day (function) 6-9
Double (data type) 6-55-6-56 FileDateTime (function) 8-4
Integer (data type) 11-10 Format, Format$ (functions) 8-13-8-17
list of 1-6 Hour (function) 10-2
Long (data type) 13-16 IsDate (function) 11-15
Object (data type) 16-1-16-2 list of language elements 1-6
Private (statement) 17-12-17-13 Minute (function) 14-6
Public (statement) 17-14-17-15 Month (function) 14-8
Single (data type) 19-19 Now (function) 15-9
String (data type) 19-38 Second (function) 19-6
user-defined 21-4 Time, Time$ (functions) 20-5
Variant (data type) 22-2-22-4 Time, Time$ (statements) 20-6
database Timer (function) 20-6
list of language elements 1-6 TimeSerial (function) 20-7
database functions Weekday (function) 23-1
SQLBind (function) 19-22 Year (function) 25-1
SQLClose (function) 19-23 DateAdd (function) 6-4-6-5
SQLError (function) 19-24 DateDiff (function) 6-6—6-7
SQLExecQuery (function) 19-25 DatePart (function) 6-7—6-8
SQLGetSchema (function) 19-26 dates
SQLOpen (function) 19-29 adding 6-4-6-5
SQLQueryTimeout (statement) 19-30 converting to 6-8, 11-15
SQLRequest (function) 19-29-19-30 current 6-2, 15-9
SQLRetrieve (function) 19-32 Date (data type) 6-1
SQLRetrieveToFile (function) 19-34 day of month 6-9
databases day of week 23-1
closing 19-23 file creation 8-4
opening 19-29 file modification 8-4
placing data 19-22 month of year 14-8
querying 19-25, 19-29-19-30, 19-32, 19-34 parts of 6-7-6-8
retrieving errors from 19-24 reading from sequential files 11-5
retrieving information about 19-26 setting 6-3
retrieving list of 19-26 subtracting 6-6—6-7
retrieving list of owners of 19-26 year 25-1
retrieving name of 19-26 DateSerial (function) 6-8
retrieving qualifier of 19-27 DateValue (function) 6-9
tables Day (function) 6-9
retrieving list of 19-26 DDB (function) 6-10
DataType DDE
Point property 26-37 AppActivate (statement) 3-5
Date (data type) 6-1 changing timeout 6-18

Index-vii CIMPLICITY Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



DoEvents (function) 6-55
DoEvents (statement) 6-55
ending conversation 6-16
executing remote command 6-11
getting text 6-14
getting value from another application 6-14
initiating conversation 6-12
list of language elements 1-7
sending text 6-13
SendKeys (statement) 19-12-19-14
setting data in another application 6-15
setting value in another application 6-13
Shell (function) 19-18
starting conversation 6-12
terminating conversation 6-16, 6-17
DDEExecute (statement) 6-11
DDeElnitiate (function) 6-12
DDEPoke (statement) 6-13
DDERequest, DDERequest$ (functions) 6-14
DDESend (statement) 6-15
DDETerminate (statement) 6-16
DDETerminateAll (statement) 6-17
DDETimeout (statement) 6-18
deadlock 26-2
debugger, invoking 19-35
decision making
Choose (function) 5-9
If...Then...Else (statement) 11-1-11-2
I1f (function) 11-2
Select...Case (statement) 19-9-19-10
Switch (function) 19-42
Declare (statement) 3-4, 6-19-6-24
declaring
implicit variables 6-29

object variables 6-29, 15-2-15-7, 16-1, 16-2

with Dim (statement) 6-29-6-30

with Private (statement) 17-12-17-13

with Public (statement) 17-14-17-15
default data type, changing 6-25-6-26
default properties 7-36
DefType (statement) 6-25-6-26
degrees, converting to radians 3-26
DELETE (SQL statement) 19-25, 19-31
delimited files, reading 11-4-11-6
depreciation

calculated using double-declining balance

method 6-10

straight-line depreciation 19-20

sum of years' digits depreciation 19-43
Dialog (function) 6-27-6-28
Dialog (statement) 6-28
dialog actions 6-41
dialog controls

Cancel buttons

adding to dialog template 5-2

getting label of 6-46
setting label of 6-45
changing focus of 6-38
changing text of 6-45
check boxes
adding to dialog template 5-8
getting state of 6-48
setting state of 6-49
combo boxes
adding to dialog template 5-16-5-17
getting edit field of 6-46
setting edit field of 6-45
setting items in 6-39
disabling 6-36
drop list boxes
adding to dialog template 6-57-6-58
getting selection index of 6-48
getting selection of 6-46
setting items in 6-39
setting selection of 6-45, 6-49
enabling 6-36
getting enabled state of 6-35
getting focus of 6-37
getting text of 6-46—6-47
getting value of 6-48
getting visibility of 6-50
group boxes
adding to dialog template 9-8
getting label of 6-46
setting label of 6-45
list boxes
adding to dialog template 13-9-13-10
getting selection index of 6-48
getting selection of 6-46
setting items in 6-39
setting selection of 6-45, 6-49
OK buttons
adding to dialog template 16-6
getting label of 6-46
setting label of 6-45
option buttons
adding to dialog template 16-16
getting label of 6-46
getting selection index of 6-48
grouping within dialog template 16-17
selecting 6-49
setting label of 6-45
picture button controls
adding to dialog template 17-4-17-5
picture controls
adding to dialog template 17-2-17-3
setting image of 6-44

Index-viii CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



push buttons
adding to dialog template 17-16
getting label of 6-46
setting label of 6-45
retrieving 1D of 6-34
setting value of 6-49
setting visibility of 6-51-6-52
text boxes
adding to dialog template 20-3-20-4
getting content of 6-46
setting content of 6-45
text controls
adding to dialog template 20-2—20-3
getting label of 6-46
setting label of 6-45
dialog procedures 6-41-6-43
actions sent to 6-41
dialog units, calculating 19-3
dialogs, built in, OpenFilename$
(function) 16-11-16-12
dialogs, built-in
AnswerBox (function) 3-3-3-4
AskBox$ (function) 3-24
AskPassword$ (function) 3-25
InputBox, InputBox$ (functions) 11-8
listing of 1-11
Msg.Open (method) 14-12
Msg.Text (property) 14-13
Msg.Thermometer (property) 14-14
MsgBox (function) 14-9-14-11
MsgBox (statement) 14-11
MsgClose (method) 14-11
PopupMenu (function) 17-7
SaveFilename$ (function) 19-1-19-2
SelectBox (function) 19-11-19-12
user-defined 4-5-4-6
Dim (statement) 6-29-6-30
Dir, Dir$ (functions) 6-31-6-32
directories
changing 5-6
containing
Windows 19-46
containing Basic Control Engine 4-2
creating 14-7
getting list of 8-5
getting path separator 4-3
parsing names of 8-9
removing 18-10
retrieving 5-27
retrieving filenames from 6-31-6-32, 8-7-8-8
disabling, dialog controls 6-36
disjunction operator (Or) 16-18

Index-ix CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

disk drives

changing 5-7

getting free space of 6-33

retrieving current directory of 5-27

retrieving list of 6-33
DiskDrives (statement) 6-33
DiskFree (function) 6-33
DisplayFormat

Point property 26-38
displaying messages 14-9-14-11

breaking text across lines 14-10
DlgControlld (function) 6-34
DlgEnable (function) 6-35
DlgEnable (statement) 6-36
DlgFocus (function) 6-37
DlgFocus (statement) 6-38
DlgListBoxArray (function) 6-39
DlgListBoxArray (statement) 6-40
DlgProc (function) 6-41-6-43
DlgSetPicture (statement) 6-44
DlgText (statement) 6-45
DlgText$ (function) 6-46—6-47
DlgValue (function) 6-48
DlgValue (statement) 6-49
DlgVisible (function) 6-50
DlgVisible (statement) 6-51-6-52
DLLs

calling 6-19-6-24

Declare (statement) 6-19-6-24
Do...Loop (statement) 6-53-6-54

exiting Do loop 7-32
DoEvents (function) 6-55
DoEvents (statement) 6-55
Double (data type) 6-55-6-56

converting to 5-6

internal format 6-56

range of values 6-56

storage requirements 6-55-6-56
double-declining balance method, used to calculate

depreciation 6-10

DownloadPassword

Point property 26-38
drop list boxes

adding to dialog template 6-57—6-58

getting selection index of 6-48

getting selection of 6-46

setting items in 6-39

setting selection of 6-45, 6-49
DropListBox (statement) 6-57—-6-58
dynamic arrays 3-21

GFK-1283G



E
ebAbort (constant) 7-1

ebAbortRetrylgnore (constant) 7-1
ebApplicationModal (constant) 7-2

ebArchive (constant) 7-2
ebBold (constant) 7-2
ebBoldltalic (constant) 7-3
ebBoolean (constant) 7-3
ebCancel (constant) 7-3
ebCritical (constant) 7-4
ebCurrency (constant) 7-4
ebDataObject (constant) 7-4
ebDate (constant) 7-5
ebDefaultButtonl (constant) 7-6
ebDefaultButton2 (constant) 7-6
ebDefaultButton3 (constant) 7-6
ebDirectory (constant) 7-7
ebDos (constant) 7-7
ebDouble (constant) 7-8
ebEmpty (constant) 7-8
ebError (constant) 7-5
ebExclamation (constant) 7-8
ebHidden (constant) 7-9
eblgnore (constant) 7-9
ebInformation (constant) 7-10
eblInteger (constant) 7-10
ebltalic (constant) 7-11
ebLong (constant) 7-11
ebNo (constant) 7-11
ebNone (constant) 7-12
ebNormal (constant) 7-12
ebNull (constant) 7-13
ebObject (constant) 7-13
ebOK (constant) 7-13
ebOKCancel (constant) 7-14
ebOKOnly (constant) 7-14
ebQuestion (constant) 7-14
ebReadOnly (constant) 7-15
ebRegular (constant) 7-15
ebRetry (constant) 7-16
ebRetryCancel (constant) 7-16
ebSingle (constant) 7-17
ebString (constant) 7-17
ebSystem (constant) 7-18
ebSystemModal (constant) 7-18
ebVariant (constant) 7-18
ebVolume (constant) 7-19
ebWin32 (constant) 7-19
ebYes (constant) 7-19-7-20
ebYesNo (constant) 7-20
ebYesNoCancel (constant) 7-20
Elements

Point property 26-39
Else (keyword) 11-1-11-2

Elself (keyword) 11-1-11-2
embedded quotation marks 13-11
Empty (constant) 7-21
Empty, testing for 11-15
Enabled

Point property 26-39
enabling, dialog controls 6-36
End (statement) 7-21
end of file

checking 7-23

checking for 7-23

end-of-line, in sequential files 11-6

Engineering Units 26-44

Point.EuLabel (Property Read) 26-40
Engineering Units conversion 26-53
entry points, Main (statement) 14-1
Environ, Environ$ (functions) 7-22
environment variables, getting 7-22

environment, controlling
list of language elements 1-5
EOF (function) 7-23
equivalence operator (Eqv) 7-24
Eqv (operator) 7-24
Erase (statement) 7-25
Erl (function) 7-26
Err (function) 7-27
Err (statement) 7-28
Error (statement) 7-29
error handlers
cascading 7-30
nesting 7-30, 16-7
removing 16-7
resetting 7-28, 16-7
resuming 16-7, 18-8
error trapping 7-30, 16-7-16-8
Error, Error$ (functions) 7-31
errors
BasicScript-specific 7-30
cascading 7-30
Erl (function) 7-26
Err (function) 7-27
Err (statement) 7-28
Error (statement) 7-29
Error, Error$ (functions) 7-31
generating 7-29
getting error number of 7-27
getting line number of 7-26
getting text of 7-31
handling 7-30
list of language elements 1-7
On Error (statement) 16-7-16-8
range of values for 7-28
resetting state of 7-28
Resume (statement) 18-8
resuming control after 7-30

Index-x CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



setting 7-28
SQL 19-24
Stop (statement) 19-35
trapping 16-7-16-8
user-defined 7-30
converting to 5-29
printing 17-9
printing to sequential files 17-10
reading from binary/random files 9-2
testing for 11-16
writing to random/binary files 17-18
writing to sequential files 23-13
Visual Basic compatibility with 7-30
escape characters, table of 16-15
EuLabel
Point property 26-40
exclusive or operator (Xor) 24-1-24-2
Exit Do (statement) 6-53, 7-32
Exit For (statement) 7-33, 8-11
Exit Function (statement) 7-33
Exit Sub (statement) 7-34
exiting operating environment 19-44
Exp (function) 7-34
exponentiation operator () 2-10
expressions
evaluation of 7-35-7-36
promotion of operands within 7-35
propagation of Null through 15-12
external routines
calling 6-19-6-24
calling conventions of 6-21
passing parameters 6-21
data formats 6-22
null pointers 6-22
strings 6-21
using ByVal (keyword) 4-8, 6-23
specified with ordinal numbers 6-24
under Win32 6-24

F

False (constant) 8-1

file /O
Close (statement) 5-15
EOF (function) 7-23
Get (statement) 9-1-9-3
Input# (statement) 11-4-11-6
Input, Input$ (functions) 11-7
Line Input# (statement) 13-6
Loc (function) 13-12
Lock (statement) 13-13-13-14
Lof (function) 13-15
Open (statement) 16-9-16-10
Print# (statement) 17-9
Put (statement) 17-17-17-18

Reset (statement) 18-7
Seek (function) 19-7
Seek (statement) 19-8
Spc (function) 19-21
Tab (function) 20-1
Unlock (statement) 21-2-21-3
Width# (statement) 23-3
Write# (statement) 23-13
file numbers, finding available 8-18
file open dialog box 16-11-16-12
file save dialog box 19-1-19-2
file system
list of language elements 1-8
FileAttr (function) 8-2
FileCopy (statement) 8-3
FileDateTime (function) 8-4
FileDirs (statement) 8-5
FileExists (function) 8-6
FileLen (function) 8-6
FileList (statement) 8-7-8-8
FileParse$ (function) 8-9
files
attributes of
ebArchive (constant) 7-2
ebDirectory (constant) 7-7
ebHidden (constant) 7-9
ebNone (constant) 7-12
ebNormal (constant) 7-12
ebReadOnly (constant) 7-15
ebSystem (constant) 7-18
ebVolume (constant) 7-19
getting 9-4
setting 19-16
used with Dir, Dir$ (functions) 6-32
used with FileList (statement) 8-8
used with GetAttr (function) 9-4

attributes, used with SetAttr (statement) 19-16

checking existence of 8-6
checking for end of 7-23

closing 5-15

closing all 18-7

copying 8-3

deleting 12-2

getting date and time of 8-4
getting length of 8-6

getting list of 6-31-6-32, 8-7-8-8
getting mode of 8-2

getting next available file number 8-18
getting position within 13-12, 19-7
getting size of 13-15

list of language elements 1-8
locking regions in 13-13-13-14

Index-xi CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



opening 16-9-16-10
access capabilities 16-9
modes 16-9
setting another process's access rights 16-10
setting record length 16-10
truncating to zero length 16-9
reading 11-4-11-6, 11-7
reading binary data from 9-1-9-3
reading lines from 13-6
renaming 15-1
requesting name of 16-11-16-12, 19-1-19-2
setting read/write position in 19-8
sharing 16-10
splitting names of 8-9
types of
ebDos (constant) 7-7
unlocking regions in 21-2-21-3
writing binary data to 17-17-17-18
writing query results to 19-34
writing to 17-9, 23-13
financial functions
DDB (function) 6-10
Fv (function) 8-22
IPmt (function) 11-11-11-12
IRR (function) 11-13
list of 1-9
MIRR (function) 14-6-14-7
NPer (function) 15-10
Npv (function) 15-11
Pmt (function) 17-6
PPmt (function) 17-8
Pv (function) 17-19
Rate (function) 18-3
SIn (function) 19-20
SYD (function) 19-43
finding
applications 3-7
files 6-31-6-32
strings 11-9
windows 23-6
Fix (function) 8-10. See also Int (function)
fixed arrays 3-21
fixed numeric format 8-13
fixed-length strings
conversion between variable-length 19-38
declaring 6-29, 17-12, 17-14
passing to external routines 6-21, 6-23
within structures 20-9
floating-point values
Double (data type) 6-55-6-56
Single (data type) 19-19
focus, of dialog controls
getting 6-37
setting 6-38
fonts, within user-dialogs 4-6

Index-xii CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

For...Next (statement) 8-11-8-12
exiting For loop 7-33
Format, Format$ (functions) 8-13-8-17
formatting data 8-13-8-17
built-in 8-13
built-in formats
date/time 8-14
numeric 8-13
in files
Spc (function) 19-21
Tab (function) 20-1
Width# (statement) 23-3
user-defined formats 8-14
date/time 8-16
numeric 8-14
string 8-16
forward referencing, with Declare (statement) 3-4,
6-19-6-24
FreeFile (function) 8-18
Function
Acquire 26-1
CimEMEvent.AlarmEvent 26-12
CimGetEMEvent 26-20
CimlsMaster 26-20
CimProjectData.GetNext 26-29
GetKey 26-30
GetSystemWindowsDirectory 26-30
GetTSSessionld 26-31
IsTerminalServices 26-31
Point.GetNext 26-42
PointGet 26-63
PointGetMultiple 26-63
PointGetNext 26-64
Function...End Function (statement) 8-18-8-21
Function...End Sub (statement), exiting function 7-33
functions
defining 8-18-8-21
exiting function 7-33
naming conventions of 8-18
returning values from 8-19
future value of annuity, calculating 8-22
fuzzy string comparisons 13-5
Fv (function) 8-22

G

general date format 8-14
general number format 8-13
generating random numbers 18-1
Get

Point function 26-63

Point method 26-40
Get (statement) 9-1-9-3
Get Multiple Points function 26-63

GFK-1283G



GetArray
Point method 26-41
GetAttr (function) 9-4
GetKey (Function) 26-30
GetNext
Point function 26-42
Point method 26-42
GetSystemWindowsDirectory
Function 26-30
GetTSSessionld
Function 26-31
GetValue
Point property 26-44
global (public) variables 17-14-17-15
Global (statement) (Public [statement]) 17-14-17-15
GoSub (statement) 9-6
returning from 18-9
Goto (statement) 9-7
grep (Like [operator]) 13-5
group boxes
adding to dialog template 9-8
getting label of 6-46
setting label of 6-45
GroupBox (statement) 9-8
grouping option buttons 16-17

H

handles, getting operating system file handles 8-2
HasEuConv
Point property 26-44
Height, of screen 19-4
Hex, Hex$ (functions) 10-1
hexadecimal characters, in strings 16-15
hexadecimal strings
converting to 10-1
converting to numbers 22-1
hiding
applications 3-10
dialog controls 6-51-6-52
HLine (statement) 10-2
home directory 4-2
Hour (function) 10-2
HPage (statement) 10-3
HScroll (statement) 10-3
HWND (object) 10-4
getting value of 10-5

Id
Point property 26-45

idle loops
DoEvents (function) 6-55
DoEvents (statement) 6-55

Index-xiii CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

If...Then...Else (statement) 11-1-11-2
If...Then...End If (statement), shorthand for (1If) 11-2
I1f (function) 11-2
Imp (operator) 11-3
implication operator (Imp) 11-3
implicit variable declaration, with DefType
(statement) 6-25-6-26

indexing collections 16-4
infinite loops, breaking out of 6-54, 8-12, 23-2
ini files

list of language elements 1-10

reading items from 18-4

reading section names from 18-5

writing items to 23-14
Inline (statement) 11-4
Input (keyword) 16-9-16-10
Input# (statement) 11-4-11-6
Input, Input$ (functions) 11-7
InputBox, InputBox$ (functions) 11-8
INSERT (SQL statement) 19-25, 19-31
instantiation of OLE objects 5-23-5-24
InStr (function) 11-9
Int (function) 11-10. See also Fix (function)
Integer (data type) 11-10

converting to 5-11

range of values for 11-10

storage requirements of 11-10
integer division operator (\) 2-9
intercepting (trapping) errors 7-30, 16-7-16-8
interest payments, calculating 11-11-11-12
internal rate of return, calculating 11-13, 14-6-14-7
international formatting 8-13-8-17
InUserView

Point property 26-45
IPmt (function) 11-11-11-12
IRR (function) 11-13
Is (operator) 11-14
IsDate (function) 11-15
ISEmpty (function) 11-15
IsError (function) 11-16
IsMissing (function) 8-21, 11-17, 19-42
IsNull (function) 11-17
IsNumeric (function) 11-18
IsObject (function) 11-19
IsTerminalServices

Function 26-31
Item$ (function) 11-20
ItemCount (function) 11-21
iterating through collections 16-4

GFK-1283G



J

jumps
GoSub (statement) 9-6
Goto (statement) 9-7
Return (statement) 18-9

K

keystrokes, sending
DoEvents (function) 6-55
DoEvents (statement) 6-55
keystrokes, sending to applications 19-12-19-14
keystrokes, sending, SendKeys (statement) 19-12—
19-14
keywords
list of 12-1
restrictions for 12-1
Kill (statement) 12-2

L

labels
in place of line numbers 13-6
naming conventions of 9-7
used with GoSub (statement) 9-6
used with Goto (statement) 9-7
LBound (function) 13-1
used with OLE arrays 13-1
LCase, LCase$ (functions) 13-2
least precise operand 16-13
Left, Left$ (functions) 13-2
Len (function) 13-3-13-4
Len (keyword), specifying record length 16-9-16-10
Length
Point property 26-46
Let (statement) 13-4
Lib (keyword) 6-19-6-24
Like (operator) 13-5
line breaks, in MsgBox (statement) 14-10
line continuation 2-11
Line Input# (statement) 13-6
line numbers 13-6
Line$ (function) 13-7
LineCount (function) 13-8
list boxes
adding to dialog template 13-9-13-10
getting selection index of 6-48
getting selection of 6-46
setting items in 6-39
setting selection of 6-45, 6-49
ListBox (statement) 13-9-13-10
Literal characters
used within user-defined formats 8-15
literals 13-11

Index-xiv CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

Loc (function) 13-12
local variables
declaring 6-29-6-30
Lock (statement) 13-13-13-14
locking file regions 13-13-13-14
Lof (function) 13-15
Log (function) 13-15
logarithm function (Log) 13-15
logarithms
Exp (function) 7-34
Log (function) 13-15
logical constants
False (constant) 8-1
True (constant) 20-8
logical negation 15-8
logical operators
And (operator) 3-2
Eqv (operator) 7-24
Imp (operator) 11-3
list of 1-10
Not (operator) 15-8
Or (operator) 16-18
Xor (operator) 24-1-24-2
LogsStatus (Property Read/Write) 26-32
Long (data type) 13-16
converting to 5-15
range of values 13-16
storage requirements for 13-16
long date format 8-14
long time format 8-14
looping
Do...Loop (statement) 6-53-6-54
exiting Do loop 7-32
exiting For loop 7-33
For...Next (statement) 8-11-8-12
lowercasing strings 13-2
LSet (statement) 13-17
LTrim, LTrim$ (functions) 13-18

M

Main (statement) 14-1

matching strings 13-5

math functions
Abs (function) 3-1
Atn (function) 3-26
Cos (function) 5-23
Exp (function) 7-34
Fix (function) 8-10
Int (function) 11-10
list of 1-10
Log (function) 13-15
Randomize (statement) 18-2
Rnd (function) 18-11
Sgn (function) 19-17

GFK-1283G



Sin (function) 19-19
Sqgr (function) 19-35
Tan (function) 20-2
maximizing
applications 3-12
windows 23-7
MCI (function) 14-2
medium date format 8-14
medium time format 8-14
memory
available 19-44
resources 19-45
available within Basic Control Engine 4-2
total 19-46
total size for arrays 6-29
menus
pop-up 17-7
message dialog
changing text of 14-13
closing 14-11
creating 14-12
setting thermometer 14-14
metafiles
used in dialog boxes 17-2, 17-4
used with picture controls 6-44, 17-3, 17-5
Method
AlarmGenerate 26-4
AlarmUpdate 26-6
ChangePassword 26-7
CimProjectData.Reset 26-30
Point.Cancel 26-37
Point.EnableAlarm 26-39
Point.Get 26-40
Point.GetArray 26-41
Point.GetNext 26-42
Point.GetRawArray 26-43
Point.OnAlarm 26-46
Point.OnAlarmAck 26-47
Point.OnChange 26-48
Point.OnTimed 26-49
Point.Set 26-55
Point.SetArray 26-56
Point.SetElement 26-57
Point.SetRawArray 26-58
methods
defined 16-2
invoking 16-3
with OLE automation 16-1
Mid, Mid$ (functions) 14-2-14-4
Mid, Mid$ (statements) 14-5
minimizing
applications 3-13
windows 23-8
Minute (function) 14-6
MIRR (function) 14-6-14-7

MkDir (statement) 14-7
Mod (operator) 14-8
modeless message dialog 14-12
modes, for open files 8-2
Month (function) 14-8
most precise operand 16-13
mouse

trails, setting 19-45
moving

applications 3-14

windows 23-9
Msg.Close (method) 14-11
Msg.Open (method) 14-12
Msg.Text (property) 14-13

Msg.Thermometer (property) 14-14

MsgBox (function) 14-9-14-11
MsgBox (statement) 14-11
constants used with
ebAbort (constant) 7-1

ebApplicationModal (constant) 7-2

ebArchive (constant) 7-2
ebCancel (constant) 7-3
ebCritical (constant) 7-4
ebDataObject (constant) 7-4

ebDefaultButtonl (constant) 7-6
ebDefaultButton2 (constant) 7-6
ebDefaultButton3 (constant) 7-6

ebExclamation (constant) 7-8
eblgnore (constant) 7-9
ebInformation (constant) 7-10
ebNo (constant) 7-11

ebOK (constant) 7-13
ebOKCancel (constant) 7-14
ebOKOnly (constant) 7-14
ebQuestion (constant) 7-14
ebRetry (constant) 7-16

ebRetryCancel (constant) 7-16
ebSystemModal (constant) 7-18

ebYes (constant) 7-19-7-20
ebYesNo (constant) 7-20

ebYesNoCancel (constant) 7-20

N

Name (statement) 15-1
Named parameters (topic) 15-2
naming conventions
of constants 5-20
of functions 8-18
of labels 9-7
of subroutines 19-40
of variables 6-30
negation
logical 15-8
unary minus operator 2-5-2-6

Index-xv CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



nesting, For...Next (statement) 8-11
net present value, calculating 15-11
Net.AddCon (method) 15-3
Net.Browse$ (method) 15-4
Net.CancelCon (method) 15-5
Net.GetCon$ (method) 15-6
Net.User$ (property) 15-6
networks
canceling connection 15-5
getting
name of connection 15-6
user name 15-6
invoking 15-4
redirecting local device 15-3
New (keyword) 6-29, 15-2-15-7, 19-15
Next (keyword) 8-11-8-12
Not (operator) 15-8
Nothing (constant) 15-9
used with Is (operator) 11-14
Now (function) 15-9
NPer (function) 15-10
Npv (function) 15-11
Null
checking for 11-17
propagation of 15-12
vs. Empty 15-12
Null (constant) 15-12
nulls, embedded within strings 19-38
numbers
adding 2-4
converting from strings 22-1
converting to strings 19-36
floating-point 6-55-6-56, 19-19
formatting 8-13-8-17
getting sign of 19-17
hexadecimal representation 13-11
IsNumeric (function) 11-18
octal representation 13-11
printing 17-9
reading from binary/random files 9-1-9-3
reading from sequential files 11-4-11-6
testing for 11-18
truncating 8-10, 11-10
writing to binary/random files 17-17-17-18
writing to sequential files 17-9, 23-13
numeric operators
— (operator) 2-5-2-6
\ (operator) 2-9
* (operator) 2-3
/ (operator) 2-7
A (operator) 2-10
+ (operator) 2-4-2-5
list of 1-11

O

Object
CimEMAIlarmEvent 26-8
CimEMEvent 26-12
CimEMPointEvent 26-15
CimProjectData 26-22
Point 26-36

Obiject (data type) 16-1-16-2
storage requirements for 16-1

objects 16-2-16-4
accessing methods of 16-3
accessing properties of 16-1, 16-3
assigning 19-15
assigning values to 16-3
automatic destruction 16-2
collections of 16-4
comparing 11-14, 16-3
creating 19-15
creating new 6-29, 15-2-15-7

declaring 6-29-6-30, 16-1, 16-2, 17-12-17-13

declaring as public 17-14-17-15
defined 16-2
instantiating 16-1
invoking methods of 16-1
list of language elements 1-11
OLE, creating 5-23-5-24
predefined, table of 16-4
testing for 11-19
testing if uninitialized 11-14
using dot separator 16-1
Oct, Oct$ (functions) 16-5
octal characters, in strings 16-15
octal strings
converting to 16-5
converting to numbers 22-1
OK buttons
adding to dialog template 16-6
getting label of 6-46
setting label of 6-45
OKButton (statement) 16-6
OLE automation
automatic destruction 16-2
CreateObject (function) 5-23-5-24
creating objects 5-23-5-24
default properties of 7-36
Obiject (data type) 16-1-16-2
Set (statement) 19-15

On Error (statement) 7-30, 16-7-16-8

on/off format 8-13
OnAlarm

Point method 26-46
OnAlarmAck

Point method 26-47

Index-xvi CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



OnChange

Point method 26-48
OnTimed

Point method 26-49
Open (statement) 16-9-16-10
OpenFilename$ (function) 16-11-16-12
operating environment

exiting 19-44

free

memory of 19-44
resources of 19-45

restarting 19-45

total memory in 19-46
operators

— (operator) 2-5-2-6

& (operator) 2-1

\ (operator) 2-9

* (operator) 2-3

/ (operator) 2-7

A (operator) 2-10

+ (operator) 2-4-2-5

< (operator) 2-7

<= (operator) 2-7

<> (operator) 2-8

= (operator) 2-8

> (operator) 2-8

>= (operator) 2-9

And (operator) 3-2

Eqv (operator) 7-24

Imp (operator) 11-3

Is (operator) 11-14

Like (operator) 13-5

Mod (operator) 14-8

Not (operator) 15-8

Or (operator) 16-18

precedence of 16-12

precision of 16-13

Xor (operator) 24-1-24-2
Option Base (statement) 6-29, 16-13, 17-12, 17-14
option buttons

adding to dialog template 16-16

getting label of 6-46

getting selection index of 6-48

grouping within dialog template 16-17

selecting 6-49

setting label of 6-45
Option Compare (statement) 16-14

effect on InStr (function) 11-9

effect on Like (operator) 13-5

effect on string comparisons 5-18, 19-37
Option CStrings (statement) 16-15
Optional (keyword) 8-19, 19-40

optional parameters
checking for 11-17
passed to functions 8-20
passed to subroutines 19-41
passing to functions 8-19
passing to subroutines 19-40
OptionButton (statement) 16-16
OptionGroup (statement) 16-17
Or (operator) 16-18
ordinal values 6-24
Output (keyword) 16-9-16-10
overflow, in assignment 2-8, 13-4

P

parameters
passing by reference 4-7
passing by value 2-2, 4-8
to external routines 4-8, 6-21, 6-23
parentheses, used in expressions 2-2
parsing
filenames 8-9
list of language elements 1-11
strings
by item 11-20
by line 13-7
by words 23-12
counting items within 11-21
counting lines within 13-8
counting words within 23-12
password, requesting from user 3-25
path separator
getting 4-3
paths
extracting from filenames 8-9
pausing script execution 19-20
percent format 8-13
period (.), used to separate object from property 2-6
period (.), used with structures 2-6
Pi (constant) 17-1
PICT files, on the Macintosh 17-5
Picture (statement) 17-2-17-3
picture button controls
adding to dialog template 17-4-17-5
picture controls
adding to dialog template 17-2-17-3
automatic loading of images into 6-51
caching 6-51
deleting image of 6-44
setting image of 6-44
PictureButton (statement) 17-4-17-5
platform constants 4-3
Pmt (function) 17-6

Index-xvii CIMPLICITY Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



Point

Request point value on alarm state change 26-46

Request value on alarm ack 26-47

Request value on change 26-48
Point (Object) 26-36
Point (Subject) 26-33
Point.AlarmAck (Property Read) 26-36
Point.Cancel (Method) 26-37
Point.DataType (Property Read) 26-37
Point.DisplayFormat (Property Read) 26-38
Point.DownloadPassword (Property Read) 26-38
Point.Elements (Property Read) 26-39
Point.EnableAlarm (Method) 26-39
Point.Enabled (Property Read) 26-39
Point.EuLabel (Property Read) 26-40
Point.Get (Method) 26-40
Point.GetArray (Method) 26-41
Point.GetNext (Function) 26-42
Point.GetNext (Method) 26-42
Point.GetRawArray (Method) 26-43
Point.GetValue (Property Read) 26-44
Point.HasEuConv (Property Read) 26-44
Point.Id (Property Read/Write) 26-45
Point.InUserView (Property Read) 26-45
Point.Length (Property Read) 26-46
Point.OnAlarm 26-37
Point.OnAlarm (Method) 26-46
Point.OnAlarmAck 26-37
Point.OnAlarmAck (Method) 26-47
Point.OnChange 26-37
Point.OnChange (Method) 26-48
Point.OnTimed 26-37
Point.OnTimed (Method) 26-49
Point.PointTypeld (Property Read) 26-49
Point.Quality (Property Read) 26-50
Point.QualityAlarmed (Property Read) 26-50
Point.QualityAlarms_Enabled (Property Read) 26-50
Point.QualityDisable_Write (Property Read) 26-51
Point.Qualityls_Awvailable (Property Read) 26-51
Point.Qualityls_In_Range (Property Read) 26-51
Point.QualityLast_Upd_Man (Property Read) 26-52
Point.QualityManual_Mode (Property Read) 26-52
Point.QualityStale_Data (Property Read) 26-53
Point.RawValue (Property Read/Write) 26-53
Point.ReadOnly (Property Read) 26-54
Point.Set (Method) 26-55
Point.SetArray (Method) 26-56
Point.SetElement (Method) 26-57
Point.SetpointPriv (Property Read) 26-57
Point.SetRawArray (Method) 26-58
Point.SetValue (Property Write) 26-59
Point.State (Property Read) 26-60
Point. TimeStamp (Property Read) 26-61
Point.UserFlags (Property Read) 26-61
Point.Value (Property Read/Write) 26-62

Index-xviii CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

PointGet (Function) 26-63
PointGetMultiple (Function) 26-63
PointGetNext (Function) 26-64
PointSet (Statement) 26-65
PointTypeld
Point property 26-49
PopupMenu (function) 17-7
PPmt (function) 17-8
precedence of operators 16-12
precision
loss of 2-8
of operators 16-13
predefined objects, table of 16-4
present value, calculating 17-19
Preserve (keyword) 18-6
preserving elements while redimensioning arrays 18-6
Print (statement) 17-9
print zones 17-9, 17-10
Print# (statement) 17-9
printing
list of language elements 1-12
to stdout 17-9
Private (keyword) 8-18, 19-40
Private (statement) 17-12-17-13
private variables, declaring 17-12-17-13
Procedure
CimLogin 26-21
CimLogout 26-21, 26-28
procedures
list of language elements 1-12
promotion
automatic 16-13
of operands in expressions 7-35
properties
accessing 16-3
defined 16-2
with OLE automation 16-1
Property 26-17
Property Read
CimEMAIlarmEvent. AlarmID 26-8
CimEMAIlarmEvent. RefID 26-11
CimEMAIlarmEvent. ResourcelD 26-11
CimEmAlarmEvent.FinalState 26-9
CimEmAlarmEvent.Message 26-10
CimEMAIlarmEvent.PrevState 26-10
CimEMAIlarmEvent.RegAction 26-11
CimEMEvent. TimeStamp 26-14
CimEMEvent.ActionID 26-12
CimEMEvent.EventID 26-13
CimEMEvent.ObjectID 26-13
CimEMEvent.Type 26-14
CimEmPointEvent.QualityAlarmed 26-16
CimEmPointEvent.QualityAlarms_Enabled 26-16
CimEmPointEvent.QualityDisable_Write 26-17
CimEmPointEvent.Qualityls_In_Range 26-17

GFK-1283G



CimEmPointEvent.QualityLast Upd_Man 26-18
CimEmPointEvent.QualityManual_Mode 26-18
CimEmPointEvent.QualityStale Date 26-18
CimEMPointEvent.Qualtiy 26-16
CimEMPointEvent.State 26-19
CimEMPointEvent. TimeStamp 26-19
CimEmPointEvent.UserFlags 26-19
CimEMPointEvent.Value 26-20
Point. ReadOnly 26-54
Point.AlarmAck 26-36
Point.DataType 26-37
Point.DisplayFormat 26-38
Point.DownloadPassword 26-38
Point.Elements 26-39
Point.Enabled 26-39
Point.EuLabel 26-40
Point.GetValue 26-44
Point.HasEuConv 26-44
Point.InUserView 26-45
Point.Length 26-46
Point.PointTypeld 26-49
Point.Quality 26-50
Point.QualityAlarmed 26-50
Point.QualityAlarms_Enabled 26-50
Point.QualityDisable_Write 26-51
Point.Qualityls_Available 26-51
Point.Qualityls_In_Range 26-51
Point.QualityLast_Upd_Man 26-52
Point.QualityManual_Mode 26-52
Point.QualityStale_Data 26-53
Point.SetpointPriv 26-57
Point.State 26-60
Point. TimeStamp 26-61
Point.UserFlags 26-61
Point.Value 26-62

Property Read/Write
CimProjectData.Attributes 26-28
CimProjectData.Entity 26-23
CimProjectData.Project 26-22
LogStatus 26-32
Point.ld 26-45
Point.RawValue 26-53

Property Write
Point.SetValue 26-59

Public (keyword) 8-18, 19-40

Public (statement) 17-14-17-15

public variables, declaring 17-14-17-15

push buttons
adding to dialog template 17-16
getting label of 6-46
setting label of 6-45

PushButton (statement) 17-16

Put (statement) 17-17-17-18

Pv (function) 17-19

Index-xix CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

Q

qualifiers
of database owners 19-27
of databases 19-27
of tables 19-27
queues
waiting for playback of 6-55

R

radians, converting to degrees 3-26
Random (function) 18-1
Random (keyword) 16-9-16-10
random files

opening 16-9-16-10

reading 9-1-9-3

setting record length 16-10

writing to 17-17-17-18
random numbers

generating

between 0 and 1 18-11
within range 18-1

initializing random number generator 18-2
Randomize (statement) 18-2
Rate (function) 18-3
RawValue

Point property 26-53
Read (keyword) 16-9-16-10
Read Next Point Value 26-64
Read Point Value 26-63
ReadIni$ (function) 18-4
ReadIniSection (statement) 18-5
ReadOnly

Point property 26-54
recursion 8-19, 19-41
Redim (statement) 18-6
redimensioning arrays 18-6
reference counting 16-2
regular expressions, with Like (operator) 13-5
relaxed type checking 3-4
Release (Satement) 26-2
Rem (statement) 18-7
remainder, calculating 14-8
remote execution, with DDEExecute (statement) 6-11
renaming files 15-1
reserved words 12-1
Reset (statement) 18-7
resetting error handler 16-7
resizing

applications 3-18

windows 23-11
resolution, of screen 19-4, 19-5
resources, of operating environment 19-45

GFK-1283G



restoring
applications 3-15
windows 23-10
restricted words 12-1
Resume (statement) 7-30, 16-7-16-8, 18-8
Return (statement) 18-9
Right, Right$ (functions) 18-9
RmDir (statement) 18-10
Rnd (function) 18-11
rounding 7-35
RSet (statement) 18-12
RTrim, RTrim$ (functions) 18-13
running other programs 19-18

S

SaveFilename$ (function) 19-1-19-2
scientific format 8-13
Scientific notation operators

used within user-defined formats 8-15
scoping

of constants 5-21

of object variables 19-15
Screen.DlgBaseUnitsX (property) 19-3
Screen.DlgBaseUnitsY (property) 19-3
Screen.Height (property) 19-4
Screen. TwipsPerPixelX (property) 19-4
Screen. TwipsPerPixel Y (property) 19-5
Screen.Width (property) 19-5
scrolling

HLine (statement) 10-2

HPage (statement) 10-3

HScroll (statement) 10-3

VLine (statement) 22-6

VPage (statement) 22-6

VScroll (statement) 22-7
Second (function) 19-6
Security

Download Password 26-38

In User View 26-45

Setpoint Privilege 26-57
seed, for random number generator 18-2
Seek (function) 19-7
Seek (statement) 19-8
SELECT (SQL statement) 19-25, 19-31
Select...Case (statement) 19-9-19-10
SelectBox (function) 19-11-19-12
sending keystrokes 19-12-19-14
SendKeys (statement) 6-55, 19-12-19-14

predefined keys used with 19-12-19-14
separator lines, in dialog boxes 9-8

sequential files

opening 16-9-16-10

reading 11-4-11-6

reading lines from 13-6

writing to 17-9, 23-13
Set

Point method 26-55
Set (statement) 19-15
Set Point Array Element 26-57
Set Point Array Raw Values 26-58
Set Point Array Values 26-56
Set Point Value 26-55, 26-59
SetArray

Point method 26-56
SetAttr (statement) 19-16
SetpointPriv

Point property 26-57
SetRawArray

Point method 26-58
SetValue

Point property 26-59
Sgn (function) 19-17
Shared (keyword) 16-9-16-10
sharing

files 16-10
sharing variables 17-15
Shell (function) 19-18
short date format 8-14
short time format 8-14
showing

applications 3-17

dialog controls 6-51-6-52
sign, of numbers 19-17
Sin (function) 19-19
sine function (Sin) 19-19
Single (data type) 19-19

conversion to 5-25

range of values 19-19

storage requirements 19-19
Sleep (statement) 19-20
SIn (function) 19-20
sounds

Beep (statement) 4-4
Space, Space$ (functions) 19-21
Spc (function) 17-9, 17-10, 19-21
special characters 5-10

escape characters 16-15
SQLBind (function) 19-22
SQLClose (function) 19-23
SQLError (function) 19-24
SQLExecQuery (function) 19-25
SQLGetSchema (function) 19-26
SQLOpen (function) 19-29

SQLQueryTimeout (statement) 19-30
SQLRequest (function) 19-29-19-30

Index-xx CIMPLICITY Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



SQLRetrieve (function) 19-32
SQLRetrieveToFile (function) 19-34
Sqgr (function) 19-35
square root function (Sqr) 19-35
standard numeric format 8-13
State
Point Property 26-60
Statement
Acquire 26-2
PointSet 26-65
Release 26-2
Static (keyword) 8-18, 19-40
Status Viewer 26-32
stdout, printing to 17-9
Step (keyword) 8-11-8-12
Stop (statement) 19-35
stopping script execution 7-21, 19-35
storage
for fixed-length strings 19-38
Str, Str$ (functions) 19-36
straight-line depreciation 19-20
StrComp (function) 19-36-19-37
String (data type) 19-38
string functions
Item$ (function) 11-20
LCase, LCase$ (functions) 13-2
Left, Left$ (functions) 13-2
Len (function) 13-3-13-4
Line$ (function) 13-7
LTrim, LTrim$ (functions) 13-18
Mid, Mid$ (functions) 14-2-14-4
Option Compare (statement) 16-14
Right, Right$ (functions) 18-9
RTrim, RTrim$ (functions) 18-13
Space, Space$ (functions) 19-21
StrComp (function) 19-36-19-37
String, String$ (functions) 19-39
Trim, Trim$ (functions) 20-8
UCase, UCase$ (functions) 21-2
Word$ (function) 23-12
string operators
& (operator) 2-1
+ (operator) 2-4-2-5
Like (operator) 13-5
list of 1-12
String, String$ (functions) 19-39
strings

comparing 5-18, 13-5, 16-14, 19-36-19-37

concatenation 2-1, 2-4-2-5

vs. addition 2-1, 2-4
converting from numbers 19-36
converting to 5-26
converting to lowercase 13-2
converting to numbers 22-1
converting to uppercase 21-2

Index-xxi CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

copying 13-17, 18-12

counting items within 11-21

counting lines within 13-8

counting words within 23-12

escape characters in 16-15

finding one within another 11-9
fixed-length vs. variable-length 19-38
fixed-length, declaring 6-29, 17-12, 17-14
getting leftmost characters from 13-2
getting length of 13-3-13-4

getting rightmost characters from 18-9
getting substrings from 14-2-14-4

list of language elements 1-12

of same characters 19-39

of spaces 19-21

parsing by item 11-20

printing 17-9

reading from sequential files 11-4-11-6, 11-7, 13-6
requesting from user 3-24, 11-8

retrieving items from 11-20

retrieving lines from 13-7

retrieving words from 23-12

setting substrings in 14-5

String (data type) 19-38

trimming leading and trailing spaces from 20-8
trimming leading spaces from 13-18
trimming trailing spaces from 18-13
writing to sequential files 17-9, 23-13

Sub...End Sub (statement) 19-40-19-42

exiting subroutine 7-34

Subject

Point 26-33

subroutines

defining 19-40-19-42
exiting subroutine 7-34
naming conventions of 19-40

substrings

finding 11-9

getting 14-2-14-4

getting leftmost characters from 13-2
getting rightmost characters from 18-9
setting 14-5

sum of years' digits depreciation 19-43

Switch (function) 19-42

SYD (function) 19-43

System.Exit (method) 19-44
System.FreeMemory (property) 19-44
System.FreeResources (property) 19-45
System.MouseTrails (method) 19-45
System.Restart (method) 19-45
System.TotalMemory (property) 19-46
System.WindowsDirectory$ (property) 19-46
System.WindowsVersion$ (property) 19-46

GFK-1283G



T

Tab (function) 17-9, 17-10, 20-1
tables
retrieving column data types 19-26
retrieving column names of 19-26
retrieving list of 19-26
retrieving qualifier of 19-27
Tan (function) 20-2
tangent function (Tan) 20-2
task list, filling array with 3-11
Text
used within user-defined formats 8-15
Text (statement) 20-2-20-3
text boxes
adding to dialog template 20-3-20-4
getting content of 6-46
setting content of 6-45
text controls
adding to dialog template 20-2—20-3
getting label of 6-46
setting label of 6-45
TextBox (statement) 20-3-20-4
thermometers, in message dialogs 14-14
time
forming from components 20-7
getting current time 15-9, 20-5
getting specific time 20-7
hours 10-2
minutes 14-6
seconds 19-6
seconds since midnight 20-6
setting current time 20-6
Time, Time$ (functions) 20-5
Time, Time$ (statements) 20-6
Timer (function) 20-6
TimeSerial (function) 20-7
TimeStamp
Point property 26-61
TimeValue (function) 20-7
Trace (Command) 26-65
TraceDisable (Command) 26-66
TraceEnable (Command) 26-66
trigonometric functions
Atn (function) 3-26
Cos (function) 5-23
Sin (function) 19-19
Tan (function) 20-2
Trim, Trim$ (functions) 20-8
trimming

leading and trailing spaces from strings 20-8

leading spaces from strings 13-18
trailing spaces from strings 18-13
True (constant) 20-8
true/false format 8-13

truncating numbers 8-10, 11-10
twips per pixel, calculating 19-4, 19-5
Type (statement) 20-9

type checking, relaxed, with Declare (statement) 3-4

type coercion 7-35
type-declaration characters

effect on interpretation when reading numbers from

sequential files 11-5
for Currency 5-27
for Double 6-56
for Integer 11-10
for Long 13-16
for Single 19-19
for String 19-38
used when converting to number 11-18
used when declaring literals 13-11
used with Dim (statement) 6-29

U

UBound (function) 21-1
used with OLE arrays 21-1
UCase, UCase$ (functions) 21-2
unary minus operator 2-5-2-6
underflow 2-8
uninitialized objects 16-1, 16-2
Nothing (constant) 15-9
testing for with Is (operator) 11-14
universal date format
reading 11-5
used with literals 6-1, 13-11
writing 23-13
Unlock (statement) 21-2-21-3
unlocking file regions 21-2-21-3
UPDATE (SQL statement) 19-25, 19-31
uppercasing strings 21-2
user dialogs
automatic timeout for 6-27
available controls in 4-5
Begin Dialog (statement) 4-5-4-6
CheckBox (statement) 5-8
ComboBox (statement) 5-16-5-17
control outside bounds of 6-41
creating 4-5-4-6
default button for 6-27
Dialog (function) 6-27-6-28
Dialog (statement) 6-28
dialog procedures of 6-41-6-43
DlgControlld (function) 6-27-6-28
DlgEnable (function) 6-35
DlgEnable (statement) 6-36
DlgFocus (function) 6-37
DlgFocus (statement) 6-38
DlgListBoxArray (function) 6-39
DlgListBoxArray (statement) 6-40

Index-xxii CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



DlgProc (function) 6-41-6-43

DlgSetPicture (statement) 6-44

DlgText (statement) 6-45

DlgText$ (function) 6-46—6-47

DlgValue (function) 6-48

DlgValue (statement) 6-49

DlgVisible (function) 6-50

DlgVisible (statement) 6-51-6-52

DropL.istBox (statement) 6-57—-6-58

expression evaluation within 4-6

GroupBox (statement) 9-8

idle processing for 6-42

invoking 6-27-6-28

list of language elements 1-13

ListBox (statement) 13-9-13-10

nesting capabilities of 6-42

OKButton (statement) 16-6

OptionButton (statement) 16-16

OptionGroup (statement) 16-17

Picture (statement) 17-2-17-3

PictureButton (statement) 17-4-17-5

pressing Enter within 16-6

pressing Esc within 5-2

PushButton (statement) 17-16

required statements within 4-6

showing 6-41

Text (statement) 20-2—20-3

TextBox (statement) 20-3-20-4
user-defined errors

converting to 5-29

generating 7-29

printing 17-9

printing to sequential files 17-10

reading from binary/random files 9-2

testing for 11-16

writing to random/binary files 17-18

writing to sequential files 23-13
user-defined types 21-4

copying 21-4

declaring 21-4

defining 20-9

getting size of 13-3-13-4, 21-4

passing 21-4

Vv

Val (function) 22-1
Value
Point property 26-62
Value (property) 10-5
variables
assigning objects 19-15
declaring
as local 6-29-6-30
as private 17-12-17-13

as public 17-14-17-15
with Dim 6-29-6-30
with Private (statement) 17-12-17-13
with Public (statement) 17-14-17-15
getting storage size of 13-3-13-4
implicit declaration of 6-29
initial values of 6-30, 17-12, 17-14
list of language elements 1-14
naming conventions of 6-30
Variant (data type) 22-2-22-4
variants
adding 2-4, 22-3
assigning 22-3
automatic promotion of 16-13
containing no data 15-12, 22-3
converting to 5-28
disadvantages 22-4
Empty (constant) 7-21
getting length of 13-3-13-4
getting types of 22-2, 22-5
list of language elements 1-14
Null (constant) 15-12
operations on 22-3
passing nonvariant data to routines taking
variants 22-4
passing to routines taking nonvariants 22-4
printing 17-9
reading from sequential files 11-4-11-6
storage requirements of 22-4
testing for Empty 11-15
testing for Error 11-16
testing for Null 11-17
testing for objects 11-19
types of 22-2, 22-5
ebBoolean (constant) 7-3
ebCurrency (constant) 7-4
ebDate (constant) 7-5
ebDouble (constant) 7-8
ebEmpty (constant) 7-8
ebError (constant) 7-5
eblnteger (constant) 7-10
ebLong (constant) 7-11
ebNull (constant) 7-13
ebObject (constant) 7-13
ebSingle (constant) 7-17
ebString (constant) 7-17
ebVariant (constant) 7-18
Variant (data type) 22-2-22-4
writing to sequential files 17-9, 23-13
VarType (function) 22-5
version
of Basic Control Engine 4-4
version, of
Windows 19-46
VLine (statement) 22-6

Index-xxiii CIMPLICITY Basic Control Engine Language Reference Manual-July 2001

GFK-1283G



VPage (statement) 22-6
VScroll (statement) 22-7

w

Weekday (function) 23-1
While...Wend (statement) 23-2
Width# (statement) 23-3
width, of screen 19-5
wildcards

used with Dir, Dir$ (functions) 6-31
win.ini file 8-17, 18-4, 18-5, 23-14
WinActivate (statement) 23-4
WinClose (statement) 23-5, 23-6
windows

activating 23-4

closing 23-5

finding 23-6

getting

list of 23-6
value of 10-5

maximizing 23-7

minimizing 23-8

moving 23-9

resizing 23-11

restoring 23-10

scrolling 10-2, 10-3, 22-6, 22-7
Windows

directory of 19-46

version of 19-46
WinFind (function) 23-6
WinList (statement) 23-6, 23-7
WinMaximize (statement) 23-7
WinMinimize (statement) 23-8, 23-9
WinMove (statement) 23-9
WinRestore (statement) 23-10, 23-11
WinSize (statement) 23-11
Word$ (function) 23-12
WordCount (function) 23-12
word-wrapping, in MsgBox (statement) 14-10
Write (keyword) 16-9-16-10
Write# (statement) 23-13
Writelni (statement) 23-14

X
Xor (operator) 24-1-24-2

Y

Year (function) 25-1
yes/no format 8-13
yielding 6-55, 19-20

Index-xxiv CIMPLICITY Basic Control Engine Language Reference Manual-July 2001 GFK-1283G



	CIMPLICITY HMI: BCE Language Reference
	Preface
	Table of Contents
	1. Introduction
	About the Basic Control Syntax
	Using the Basic Control Engine Language Reference
	Language Elements By Category
	Arrays
	Clipboard
	Comments
	Comparison operators
	Controlling other programs
	Controlling program flow
	Controlling the operating environment
	Conversion
	Data types
	Database
	Date/time
	DDE
	Error handling
	File I/O
	File system
	Financial
	Getting information from Basic Control Engine
	INI Files
	Logical/binary operators
	Math
	Miscellaneous
	Numeric operators
	Objects
	Parsing
	Predefined dialogs
	Printing
	Procedures
	String operators
	Strings
	User dialogs
	Variables and constants
	Variants


	2. Symbols
	& (operator)
	' (keyword)
	() (keyword)
	* (operator)
	+ (operator)
	- (operator)
	. (keyword)
	/ (operator)
	< (operator)
	<= (operator)
	<> (operator)
	= (statement)
	= (operator)
	> (operator)
	>= (operator)
	\ (operator)
	^ (operator)
	_ (keyword)

	3. A
	Abs (function)
	And (operator)
	AnswerBox (function)
	Any (data type)
	AppActivate (statement)
	AppClose (statement)
	AppFind$ (function)
	AppGetActive$ (function)
	AppGetPosition (statement)
	AppGetState (function)
	AppHide (statement)
	AppList (statement)
	AppMaximize (statement)
	AppMinimize (statement)
	AppMove (statement)
	AppRestore (statement)
	AppSetState (statement)
	AppShow (statement)
	AppSize (statement)
	AppType (function)
	ArrayDims (function)
	Arrays (topic)
	ArraySort (statement)
	Asc (function)
	AskBox$ (function)
	AskPassword$ (function)
	Atn (function)

	4. B
	Basic.Capability (method)
	Basic.Eoln$ (property)
	Basic.FreeMemory (property)
	Basic.HomeDir$ (property)
	Basic.OS (property)
	Basic.PathSeparator$ (property)
	Basic.Version$ (property)
	Beep (statement)
	Begin Dialog (statement)
	Boolean (data type)
	ByRef (keyword)
	ByVal (keyword)

	5. C
	Call (statement)
	CancelButton (statement)
	CBool (function)
	CCur (function)
	CDate, CVDate (functions)
	CDbl (function)
	ChDir (statement)
	ChDrive (statement)
	CheckBox (statement)
	Choose (function)
	Chr, Chr$ (functions)
	CInt (function)
	Clipboard$ (function)
	Clipboard$ (statement)
	Clipboard.Clear (method)
	Clipboard.GetFormat (method)
	Clipboard.GetText (method)
	Clipboard.SetText (method)
	CLng (function)
	Close (statement)
	ComboBox (statement)
	Command, Command$ (functions)
	Comments (topic)
	Comparison Operators (topic)
	Const (statement)
	Constants (topic)
	Cos (function)
	CreateObject (function)
	CSng (function)
	CStr (function)
	CurDir, CurDir$ (functions)
	Currency (data type)
	CVar (function)
	CVErr (function)

	6. D
	Date (data type)
	Date, Date$ (functions)
	Date, Date$ (statements)
	DateAdd (function)
	DateDiff (function)
	DatePart (function)
	DateSerial (function)
	DateValue (function)
	Day (function)
	DDB (function)
	DDEExecute (statement)
	DDEInitiate (function)
	DDEPoke (statement)
	DDERequest, DDERequest$ (functions)
	DDESend (statement)
	DDETerminate (statement)
	DDETerminateAll (statement)
	DDETimeout (statement)
	Declare (statement)
	DefType (statement)
	Dialog (function)
	Dialog (statement)
	Dim (statement)
	Dir, Dir$ (functions)
	DiskDrives (statement)
	DiskFree (function)
	DlgControlId (function)
	DlgEnable (function)
	DlgEnable (statement)
	DlgFocus (function)
	DlgFocus (statement)
	DlgListBoxArray (function)
	DlgListBoxArray (statement)
	DlgProc (function)
	DlgSetPicture (statement)
	DlgText (statement)
	DlgText$ (function)
	DlgValue (function)
	DlgValue (statement)
	DlgVisible (function)
	DlgVisible (statement)
	Do...Loop (statement)
	DoEvents (function)
	DoEvents (statement)
	Double (data type)
	DropListBox (statement)

	7. E
	ebAbort (constant)
	ebAbortRetryIgnore (constant)
	ebApplicationModal (constant)
	ebArchive (constant)
	ebBold (constant)
	ebBoldItalic (constant)
	ebBoolean (constant)
	ebCancel (constant)
	ebCritical (constant)
	ebCurrency (constant)
	ebDataObject (constant)
	ebError (constant)
	ebDate (constant)
	ebDefaultButton1 (constant)
	ebDefaultButton2 (constant)
	ebDefaultButton3 (constant)
	ebDirectory (constant)
	ebDos (constant)
	ebDouble (constant)
	ebEmpty (constant)
	ebExclamation (constant)
	ebHidden (constant)
	ebIgnore (constant)
	ebInformation (constant)
	ebInteger (constant)
	ebItalic (constant)
	ebLong (constant)
	ebNo (constant)
	ebNone (constant)
	ebNormal (constant)
	ebNull (constant)
	ebObject (constant)
	ebOK (constant)
	ebOKCancel (constant)
	ebOKOnly (constant)
	ebQuestion (constant)
	ebReadOnly (constant)
	ebRegular (constant)
	ebRetry (constant)
	ebRetryCancel (constant)
	ebSingle (constant)
	ebString (constant)
	ebSystem (constant)
	ebSystemModal (constant)
	ebVariant (constant)
	ebVolume (constant)
	ebWin32 (constant)
	ebYes (constant)
	ebYesNo (constant)
	ebYesNoCancel (constant)
	Empty (constant)
	End (statement)
	Environ, Environ$ (functions)
	EOF (function)
	Eqv (operator)
	Erase (statement)
	Erl (function)
	Err (function)
	Err (statement)
	Error (statement)
	Error Handling (topic)
	Error, Error$ (functions)
	Exit Do (statement)
	Exit For (statement)
	Exit Function (statement)
	Exit Sub (statement)
	Exp (function)
	Expression Evaluation (topic)

	8. F
	False (constant)
	FileAttr (function)
	FileCopy (statement)
	FileDateTime (function)
	FileDirs (statement)
	FileExists (function)
	FileLen (function)
	FileList (statement)
	FileParse$ (function)
	Fix (function)
	For...Next (statement)
	Format, Format$ (functions)
	FreeFile  (function)
	Function...End Function (statement)
	Fv (function)

	9. G
	Get (statement)
	GetAttr (function)
	GetObject (function)
	Global (statement)
	Goto (statement)
	GroupBox (statement)

	10. H
	Hex, Hex$ (functions)
	HLine (statement)
	Hour (function)
	HPage (statement)
	HScroll (statement)
	HWND (object)
	HWND.Value (property)

	11. I
	If...Then...Else (statement)
	IIf (function)
	Imp (operator)
	Inline (statement)
	Input# (statement)
	Input, Input$ (functions)
	InputBox, InputBox$ (functions)
	InStr (function)
	Int (function)
	Integer (data type)
	IPmt (function)
	IRR (function)
	Is (operator)
	IsDate (function)
	IsEmpty (function)
	IsError (function)
	IsMissing (function)
	IsNull (function)
	IsNumeric (function)
	IsObject (function)
	Item$ (function)
	ItemCount (function)

	12. K
	Keywords (topic)
	Kill (statement)

	13. L
	LBound (function)
	LCase, LCase$ (functions)
	Left, Left$ (functions)
	Len (function)
	Let (statement)
	Like (operator)
	Line Input# (statement)
	Line Numbers (topic)
	Line$ (function)
	LineCount (function)
	ListBox (statement)
	Literals (topic)
	Loc (function)
	Lock (statement)
	Lof (function)
	Log (function)
	Long (data type)
	LSet (statement)
	LTrim, LTrim$ (functions)

	14. M
	Main (statement)
	MCI (function)
	Mid, Mid$ (functions)
	Mid, Mid$ (statements)
	Minute (function)
	MIRR (function)
	MkDir (statement)
	Mod (operator)
	Month (function)
	MsgBox (function)
	MsgBox (statement)
	Msg.Close (method)
	Msg.Open (method)
	Msg.Text (property)
	Msg.Thermometer (property)

	15. N
	Name (statement)
	Named Parameters (topic)
	Net.AddCon (method)
	Net.Browse$ (method)
	Net.CancelCon (method)
	Net.GetCon$ (method)
	Net.User$ (property)
	New (keyword)
	Not (operator)
	Nothing (constant)
	Now (function)
	NPer (function)
	Npv (function)
	Null (constant)

	16. O
	Object (data type)
	Objects (topic)
	Oct, Oct$ (functions)
	OKButton (statement)
	On Error (statement)
	Open (statement)
	OpenFilename$ (function)
	Operator Precedence (topic)
	Operator Precision (topic)
	Option Base (statement)
	Option Compare (statement)
	Option CStrings (statement)
	OptionButton (statement)
	OptionGroup (statement)
	Or (operator)

	17. P
	Pi (constant)
	Picture (statement)
	PictureButton (statement)
	Pmt (function)
	PopupMenu (function)
	PPmt (function)
	Print (statement)
	Print# (statement)
	Private (statement)
	Public (statement)
	PushButton (statement)
	Put (statement)
	Pv (function)

	18. R
	Random (function)
	Randomize (statement)
	Rate (function)
	ReadIni$ (function)
	ReadIniSection (statement)
	Redim (statement)
	Rem (statement)
	Reset (statement)
	Resume (statement)
	Return (statement)
	Right, Right$ (functions)
	RmDir (statement)
	Rnd (function)
	RSet (statement)
	RTrim, RTrim$ (functions)

	19. S
	SaveFilename$ (function)
	Screen.DlgBaseUnitsX (property)
	Screen.DlgBaseUnitsY (property)
	Screen.Height (property)
	Screen.TwipsPerPixelX (property)
	Screen.TwipsPerPixelY (property)
	Screen.Width (property)
	Second (function)
	Seek (function)
	Seek (statement)
	Select...Case (statement)
	SelectBox (function)
	SendKeys (statement)
	Set (statement)
	SetAttr (statement)
	Sgn (function)
	Shell (function)
	Sin (function)
	Single (data type)
	Sleep (statement)
	Sln (function)
	Space, Space$ (functions)
	Spc (function)
	SQLBind (function)
	SQLClose (function)
	SQLError (function)
	SQLExecQuery (function)
	SQLGetSchema (function)
	SQLOpen (function)
	SQLQueryTimeout (statement)
	SQLRequest (function)
	SQLRetrieve (function)
	SQLRetrieveToFile (function)
	Sqr (function)
	Stop (statement)
	Str, Str$ (functions)
	StrComp (function)
	String (data type)
	String, String$ (functions)
	Sub...End Sub (statement)
	Switch (function)
	SYD (function)
	System.Exit (method)
	System.FreeMemory (property)
	System.FreeResources (property)
	System.MouseTrails (method)
	System.Restart (method)
	System.TotalMemory (property)
	System.WindowsDirectory$ (property)
	System.WindowsVersion$ (property)

	20. T
	Tab (function)
	Tan (function)
	Text (statement)
	TextBox (statement)
	Time, Time$ (functions)
	Time, Time$ (statements)
	Timer (function)
	TimeSerial (function)
	TimeValue (function)
	Trim, Trim$ (functions)
	True (constant)
	Type (statement)

	21. U
	UBound (function)
	UCase, UCase$ (functions)
	Unlock (statement)
	User-Defined Types (topic)

	22. V
	Val (function)
	Variant (data type)
	VarType (function)
	VLine (statement)
	VPage (statement)
	VScroll (statement)

	23. W
	Weekday (function)
	While...Wend (statement)
	Width# (statement)
	WinActivate (statement)
	WinClose (statement)
	WinFind (function)
	WinList (statement)
	WinMaximize (statement)
	WinMinimize (statement)
	WinMove (statement)
	WinRestore (statement)
	WinSize (statement)
	Word$ (function)
	WordCount (function)
	Write# (statement)
	WriteIni (statement)

	24. X
	X or (operator)

	25. Y
	Year (function)

	26. CIMPLICITY Extensions to Basic
	Acquire (Function)
	Acquire, Release (Statements)
	AlarmGenerate (Method)
	AlarmUpdate (Method)
	ChangePassword (Method)
	CimEMAlarmEvent (Object)
	CimEMAlarmEvent.AlarmID (Property, Read)
	CimEMAlarmEvent.FinalState (Property, Read)
	CimEMAlarmEvent.GenTime (Property, Read)
	CimEMAlarmEvent.Message (Property, Read)
	CimEMAlarmEvent.PrevState (Property, Read)
	CimEMAlarmEvent.RefID (Property, Read)
	CimEMAlarmEvent.ReqAction (Property, Read)
	CimEMAlarmEvent.ResourceID (Property, Read)
	CimEMEvent (Object)
	CimEMEvent.ActionID (Property, Read)
	CimEMEvent.AlarmEvent (Function)
	CimEMEvent.EventID (Property, Read)
	CimEMEvent.ObjectID (Property, Read)
	CimEMEvent.PointEvent
	CimEMEvent.TimeStamp (Property, Read)
	CimEMEvent.Type (Property, Read)
	CimEMPointEvent (Object)
	CimEMPointEvent.Id
	CimEmPointEvent.Quality (Property, Read)
	CimEmPointEvent.QualityAlarmed (Property, Read)
	CimEmPointEvent.QualityAlarms_Enabled (Property, Read)
	CimEmPointEvent.QualityDisable_Write (Property, Read)
	CimEmPointEvent.QualityIs_Available (Property, Read)
	CimEmPointEvent.QualityIs_In_Range (Property, Read)
	CimEmPointEvent.QualityLast_Upd_Man (Property, Read)
	CimEmPointEvent.QualityManual_Mode (Property, Read)
	CimEmPointEvent.QualityStale_Data (Property, Read)
	CimEMPointEvent.State (Property, Read)
	CimEMPointEvent.TimeStamp (Property, Read
	CimEmPointEvent.UserFlags (Property, Read}
	CimEMPointEvent.Value (Property, Read)
	CimGetEMEvent (Function)
	CimIsMaster (Function)
	CimLogin (Procedure)
	CimLogout (Procedure)
	CimProjectData (Object)
	CimProjectData.Project (Property, Read/Write)
	CimProjectData.Entity (Property, Read/Write)
	CimProjectData.Attributes (Property, Read/Write)
	CimProjectData.Filters (Property, Read/Write)
	CimProjectData.GetNext (Function)
	CimProjectData.Reset (Method)
	GetKey (Function)
	GetSystemWindowsDirectory (Function)
	GetTSSessionId (Function)
	IsTerminalServices (Function)
	LogStatus (Property, Read/Write)
	Point (Subject)
	Point (Object)
	Point.AlarmAck (Property, Read)
	Point.Cancel (Method)
	Point.DataType (Property, Read)
	Point.DisplayFormat (Property, Read)
	Point.DownloadPassword (Property, Read)
	Point.Elements (Property, Read)
	Point.EnableAlarm (Method)
	Point.Enabled (Property, Read)
	Point.EuLabel (Property, Read)
	Point.Get (Method)
	Point.GetArray (Method)
	Point.GetNext (Function)
	Point.GetNext (Method)
	Point.GetRawArray (Method)
	Point.GetValue (Property, Read)
	Point.HasEuConv (Property, Read)
	Point.Id (Property, Read/Write)
	Point.InUserView (Property, Read)
	Point.Length (Property, Read)
	Point.OnAlarm (Method)
	Point.OnAlarmAck (Method)
	Point.OnChange (Method)
	Point.OnTimed (Method)
	Point.PointTypeId (Property, Read)
	Point.Quality (Property, Read)
	Point.QualityAlarmed (Property, Read)
	Point.QualityAlarms_Enabled (Property, Read)
	Point.QualityDisable_Write (Property, Read)
	Point.QualityIs_Available (Property, Read)
	Point.QualityIs_In_Range (Property, Read)
	Point.QualityLast_Upd_Man (Property, Read)
	Point.QualityManual_Mode (Property, Read)
	Point.QualityStale_Data (Property, Read)
	Point.RawValue (Property, Read/Write)
	Point.ReadOnly (Property, Read)
	Point.Set (Method)
	Point.SetArray (Method)
	Point.SetElement (Method)
	Point.SetpointPriv (Property, Read)
	Point.SetRawArray (Method)
	Point.SetValue (Property, Write)
	Point.State (Property, Read)
	Point.TimeStamp (Property, Read)
	Point.UserFlags (Property, Read)
	Point.Value (Property, Read/Write)
	PointGet (Function)
	PointGetMultiple (Function)
	PointGetNext (Function)
	PointSet (Statement)
	Trace (Command)
	TraceEnable/TraceDisable (Command)

	Index


