
 GE Fanuc Automation

CIMPLICITY® Monitoring and Control Products

CIMPLICITY HMI

Basic Control Engine
Language Reference Manual

GFK-1283G July 2001

GFL-005
Following is a list of documentation icons:

 Warning notices are used in this publication to emphasize that hazardous voltages,
currents, temperatures, or other conditions that could cause personal injury exist in
the equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to
equipment, a Warning notice is used.

Caution provides information when careful attention must be taken in order to avoid
damaging results.

Important flags important information.

To do calls attention to a procedure.

Note calls attention to information that is especially significant to understanding and
operating the equipment.

Tip provides a suggestion.

Guide provides additional directions for selected topics.

This document is based on information available at the time of publication. While efforts have been made to be accurate,
the information contained herein does not purport to cover all details or variations in hardware or software, not to provide
for every possible contingency in connection with installation, operation, or maintenance. Features may be described
herein which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of
notice to holders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation of warranty, expressed, implied, or statutory with respect to, and assumes
no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No
warranties of merchantability or fitness for purpose shall apply.

CIMPLICITY is a registered trademark of GE Fanuc Automation North America, Inc.
Windows, Windows NT, Windows 98 and Windows 2001 are registered trademarks of Microsoft Corporation

This manual was produced using Doc-To-Help®, by WexTech Systems, Inc.

Copyright 1995-2001 GE Fanuc Automation North America, Inc.
All rights reserved

GFK-1283G iii

Preface

Contents of this Manual
Chapter 1. Introduction: Gives a brief description of the Basic Control Engine
language syntax, and lists the language elements by category.

Chapter 2. Symbols: Defines the symbols used by the Basic Control Engine
language.

Chapter 3. A: Discusses language elements - Abs through Atn.

Chapter 4. B: Discusses language elements - Basic.Capability through ByVal.

Chapter 5. C: Discusses language elements - Call through CVErr.

Chapter 6. D: Discusses language elements - Date through DropListBox.

Chapter 7. E: Discusses language elements - ebAbort through Expression.

Chapter 8. F: Discusses language elements - False through Fv.

Chapter 9. G: Discusses language elements - Get through GroupBox.

Chapter 10. H: Discusses language elements - Hex through Hour.

Chapter 11. I: Discusses language elements - If..Then...Else through ItemCount.

Chapter 12. K: Discusses language elements- Keywords through Kill.

Chapter 13. L: Discusses language elements - LBound through LTrim$.

Chapter 14. M: Discusses language elements - Main through MsgBox.

Chapter 15. N: Discusses language elements - Name through Null.

Chapter 16. O: Discusses language elements - Object through Or.

Chapter 17. P: Discusses language elements - Pi through Pv.

Chapter 18. R: Discusses language elements - Random through RTrim$.

Chapter 19. S: Discusses language elements - SaveFilename$ through SYD.

Chapter 20. T: Discusses language elements - Tab through Type.

Chapter 21. U: Discusses language elements - UBound through User-Defined
Types.

Chapter 22. V: Discusses language elements - Val through VarType.

iv CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Chapter 23. W: Discusses language elements - Weekday through WriteIni.

Chapter 24. X: Discusses language elements - Xor.

Chapter 25. Y: Discusses language elements - Year.

Chapter 26. CIMPLICITY Extensions to Basic: Discusses the CIMPLICITY
extensions to the Basic Control Engine language - Acquire through TraceEnable.

Related Publications
For more information, refer to these publications:

CIMPLICITY MMI and MES/SCADA Products User Manual (GFK-1180)

CIMPLICITY MMI and MES/SCADA Products Basic Control Engine Program
Editor Operation Manual (GFK-1305)

CIMPLICITY MMI and MES/SCADA Products Event Editor Operation Manual
(GFK-1282)

GFK-1283G Contents-v

Contents

Introduction 1-1
About the Basic Control Syntax ... 1-1
Using the Basic Control Engine Language Reference.. 1-2
Language Elements By Category ... 1-3

Arrays... 1-3
Clipboard ... 1-3
Comments .. 1-3
Comparison operators .. 1-3
Controlling other programs.. 1-4
Controlling program flow .. 1-4
Controlling the operating environment .. 1-5
Conversion ... 1-5
Data types .. 1-6
Database... 1-6
Date/time.. 1-6
DDE ... 1-7
Error handling .. 1-7
File I/O... 1-8
File system ... 1-8
Financial... 1-9
Getting information from Basic Control Engine .. 1-9
INI Files ... 1-10
Logical/binary operators .. 1-10
Math... 1-10
Miscellaneous .. 1-10
Numeric operators.. 1-11
Objects ... 1-11
Parsing ... 1-11
Predefined dialogs.. 1-11
Printing .. 1-12
Procedures.. 1-12
String operators.. 1-12
Strings .. 1-12
User dialogs ... 1-13
Variables and constants.. 1-14
Variants.. 1-14

Contents-vi CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Symbols 2-1
& (operator).. 2-1
' (keyword).. 2-1
() (keyword).. 2-2
* (operator)... 2-3
+ (operator) .. 2-4
- (operator) ... 2-5
. (keyword) ... 2-6
/ (operator).. 2-7
< (operator) .. 2-7
<= (operator) .. 2-7
<> (operator) .. 2-8
= (statement)... 2-8
= (operator) .. 2-8
> (operator) .. 2-8
>= (operator) .. 2-9
\ (operator).. 2-9
^ (operator)... 2-10
_ (keyword) .. 2-11

A 3-1
Abs (function)... 3-1
And (operator) .. 3-2
AnswerBox (function) .. 3-3
Any (data type) ... 3-4
AppActivate (statement)... 3-5
AppClose (statement) ... 3-6
AppFind$ (function)... 3-7
AppGetActive$ (function).. 3-7
AppGetPosition (statement) ... 3-8
AppGetState (function) .. 3-9
AppHide (statement) .. 3-10
AppList (statement) .. 3-11
AppMaximize (statement) .. 3-12
AppMinimize (statement)... 3-13
AppMove (statement)... 3-14
AppRestore (statement) .. 3-15
AppSetState (statement) ... 3-16
AppShow (statement) ... 3-17
AppSize (statement) ... 3-18
AppType (function) .. 3-19
ArrayDims (function) ... 3-20
Arrays (topic) ... 3-21
ArraySort (statement) ... 3-23
Asc (function)... 3-23
AskBox$ (function) .. 3-24
AskPassword$ (function) ... 3-25
Atn (function) ... 3-26

GFK-1283G Contents Contents-vii

B 4-1
Basic.Capability (method).. 4-1
Basic.Eoln$ (property) ... 4-2
Basic.FreeMemory (property) .. 4-2
Basic.HomeDir$ (property).. 4-2
Basic.OS (property).. 4-3
Basic.PathSeparator$ (property) .. 4-3
Basic.Version$ (property) .. 4-4
Beep (statement)... 4-4
Begin Dialog (statement).. 4-5
Boolean (data type) .. 4-7
ByRef (keyword).. 4-7
ByVal (keyword).. 4-8

C 5-1
Call (statement) .. 5-1
CancelButton (statement) ... 5-2
CBool (function) .. 5-3
CCur (function) .. 5-4
CDate, CVDate (functions) .. 5-5
CDbl (function) .. 5-6
ChDir (statement) ... 5-6
ChDrive (statement) ... 5-7
CheckBox (statement) .. 5-8
Choose (function)... 5-9
Chr, Chr$ (functions) ... 5-10
CInt (function).. 5-11
Clipboard$ (function)... 5-12
Clipboard$ (statement)... 5-12
Clipboard.Clear (method)... 5-13
Clipboard.GetFormat (method) .. 5-13
Clipboard.GetText (method) .. 5-14
Clipboard.SetText (method)... 5-14
CLng (function).. 5-15
Close (statement).. 5-15
ComboBox (statement)... 5-16
Command, Command$ (functions)... 5-17
Comments (topic) ... 5-17
Comparison Operators (topic) .. 5-18
Const (statement).. 5-20
Constants (topic) .. 5-22
Cos (function)... 5-23
CreateObject (function).. 5-23
CSng (function) .. 5-25
CStr (function) ... 5-26
CurDir, CurDir$ (functions)... 5-27
Currency (data type)... 5-27
CVar (function) .. 5-28
CVErr (function) .. 5-29

Contents-viii CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

D 6-1
Date (data type) .. 6-1
Date, Date$ (functions) .. 6-2
Date, Date$ (statements) .. 6-3
DateAdd (function)... 6-4
DateDiff (function)... 6-6
DatePart (function) ... 6-7
DateSerial (function) .. 6-8
DateValue (function) .. 6-9
Day (function) .. 6-9
DDB (function) .. 6-10
DDEExecute (statement) .. 6-11
DDEInitiate (function).. 6-12
DDEPoke (statement)... 6-13
DDERequest, DDERequest$ (functions).. 6-14
DDESend (statement)... 6-15
DDETerminate (statement)... 6-16
DDETerminateAll (statement).. 6-17
DDETimeout (statement) ... 6-18
Declare (statement)... 6-19
DefType (statement)... 6-25
Dialog (function) .. 6-27
Dialog (statement) .. 6-28
Dim (statement) .. 6-29
Dir, Dir$ (functions)... 6-31
DiskDrives (statement) ... 6-33
DiskFree (function) .. 6-33
DlgControlId (function).. 6-34
DlgEnable (function) .. 6-35
DlgEnable (statement) .. 6-36
DlgFocus (function).. 6-37
DlgFocus (statement).. 6-38
DlgListBoxArray (function) ... 6-39
DlgListBoxArray (statement) ... 6-40
DlgProc (function).. 6-41
DlgSetPicture (statement)... 6-44
DlgText (statement).. 6-45
DlgText$ (function).. 6-46
DlgValue (function).. 6-48
DlgValue (statement).. 6-49
DlgVisible (function).. 6-50
DlgVisible (statement).. 6-51
Do...Loop (statement)... 6-53
DoEvents (function) ... 6-55
DoEvents (statement) ... 6-55
Double (data type) .. 6-56
DropListBox (statement) .. 6-57

GFK-1283G Contents Contents-ix

E 7-1
ebAbort (constant).. 7-1
ebAbortRetryIgnore (constant)... 7-1
ebApplicationModal (constant).. 7-2
ebArchive (constant) .. 7-2
ebBold (constant) ... 7-2
ebBoldItalic (constant) ... 7-3
ebBoolean (constant).. 7-3
ebCancel (constant) .. 7-3
ebCritical (constant) ... 7-4
ebCurrency (constant) .. 7-4
ebDataObject (constant)... 7-4
ebError (constant) .. 7-5
ebDate (constant) ... 7-5
ebDefaultButton1 (constant) .. 7-6
ebDefaultButton2 (constant) .. 7-6
ebDefaultButton3 (constant) .. 7-6
ebDirectory (constant).. 7-7
ebDos (constant)... 7-7
ebDouble (constant) ... 7-8
ebEmpty (constant) .. 7-8
ebExclamation (constant) ... 7-8
ebHidden (constant) ... 7-9
ebIgnore (constant)... 7-9
ebInformation (constant) .. 7-10
ebInteger (constant).. 7-10
ebItalic (constant)... 7-11
ebLong (constant)... 7-11
ebNo (constant) .. 7-11
ebNone (constant) .. 7-12
ebNormal (constant)... 7-12
ebNull (constant) .. 7-13
ebObject (constant) .. 7-13
ebOK (constant) ... 7-13
ebOKCancel (constant) .. 7-14
ebOKOnly (constant) ... 7-14
ebQuestion (constant)... 7-14
ebReadOnly (constant) ... 7-15
ebRegular (constant) .. 7-15
ebRetry (constant) .. 7-16
ebRetryCancel (constant) ... 7-16
ebSingle (constant)... 7-17
ebString (constant) ... 7-17
ebSystem (constant) ... 7-18
ebSystemModal (constant) ... 7-18
ebVariant (constant) ... 7-18
ebVolume (constant) .. 7-19
ebWin32 (constant) .. 7-19
ebYes (constant)... 7-20
ebYesNo (constant) .. 7-20
ebYesNoCancel (constant) ... 7-20
Empty (constant) .. 7-21
End (statement) .. 7-21

Contents-x CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Environ, Environ$ (functions) .. 7-22
EOF (function) ... 7-23
Eqv (operator) .. 7-24
Erase (statement) .. 7-25
Erl (function) .. 7-26
Err (function).. 7-27
Err (statement).. 7-28
Error (statement) .. 7-29
Error Handling (topic) .. 7-30
Error, Error$ (functions) .. 7-31
Exit Do (statement) .. 7-32
Exit For (statement).. 7-33
Exit Function (statement) ... 7-33
Exit Sub (statement) ... 7-34
Exp (function) .. 7-34
Expression Evaluation (topic) .. 7-35

F 8-1
False (constant) .. 8-1
FileAttr (function) .. 8-2
FileCopy (statement) .. 8-3
FileDateTime (function) ... 8-4
FileDirs (statement) .. 8-5
FileExists (function) ... 8-6
FileLen (function)... 8-6
FileList (statement)... 8-7
FileParse$ (function) .. 8-9
Fix (function).. 8-10
For...Next (statement)... 8-11
Format, Format$ (functions)... 8-13
FreeFile (function)... 8-18
Function...End Function (statement)... 8-18
Fv (function)... 8-22

G 9-1
Get (statement) ... 9-1
GetAttr (function)... 9-4
GetObject (function)... 9-5
Global (statement) .. 9-6
GoSub (statement) .. 9-6
Goto (statement) ... 9-7
GroupBox (statement) .. 9-8

H 10-1
Hex, Hex$ (functions) .. 10-1
HLine (statement)... 10-2
Hour (function)... 10-2
HPage (statement) .. 10-3
HScroll (statement)... 10-3
HWND (object).. 10-4
HWND.Value (property).. 10-5

GFK-1283G Contents Contents-xi

I 11-1
If...Then...Else (statement) ... 11-1
IIf (function)... 11-2
Imp (operator) .. 11-3
Inline (statement).. 11-4
Input# (statement) .. 11-4
Input, Input$ (functions)... 11-7
InputBox, InputBox$ (functions) ... 11-8
InStr (function)... 11-9
Int (function) .. 11-10
Integer (data type) .. 11-10
IPmt (function) ... 11-11
IRR (function) .. 11-13
Is (operator).. 11-14
IsDate (function) .. 11-15
IsEmpty (function) ... 11-15
IsError (function) ... 11-16
IsMissing (function) ... 11-17
IsNull (function)... 11-17
IsNumeric (function) .. 11-18
IsObject (function) ... 11-19
Item$ (function).. 11-20
ItemCount (function) .. 11-21

K 12-1
Keywords (topic).. 12-1
Kill (statement)... 12-2

L 13-1
LBound (function).. 13-1
LCase, LCase$ (functions) ... 13-2
Left, Left$ (functions) .. 13-2
Len (function)... 13-3
Let (statement).. 13-4
Like (operator) ... 13-5
Line Input# (statement) .. 13-6
Line Numbers (topic) ... 13-6
Line$ (function).. 13-7
LineCount (function) .. 13-8
ListBox (statement) .. 13-9
Literals (topic).. 13-11
Loc (function)... 13-12
Lock (statement)... 13-13
Lof (function) ... 13-15
Log (function) .. 13-15
Long (data type) ... 13-16
LSet (statement) ... 13-17
LTrim, LTrim$ (functions)... 13-18

Contents-xii CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

M 14-1
Main (statement)... 14-1
MCI (function) ... 14-2
Mid, Mid$ (functions) .. 14-4
Mid, Mid$ (statements) .. 14-5
Minute (function) ... 14-6
MIRR (function)... 14-6
MkDir (statement) .. 14-7
Mod (operator) ... 14-8
Month (function) .. 14-8
MsgBox (function) ... 14-9
MsgBox (statement) ... 14-11
Msg.Close (method) ... 14-11
Msg.Open (method).. 14-12
Msg.Text (property) ... 14-13
Msg.Thermometer (property) ... 14-14

N 15-1
Name (statement).. 15-1
Named Parameters (topic) .. 15-2
Net.AddCon (method) .. 15-3
Net.Browse$ (method) ... 15-4
Net.CancelCon (method) .. 15-5
Net.GetCon$ (method) ... 15-6
Net.User$ (property) .. 15-6
New (keyword)... 15-7
Not (operator)... 15-8
Nothing (constant) .. 15-9
Now (function) ... 15-9
NPer (function)... 15-10
Npv (function) .. 15-11
Null (constant).. 15-12

O 16-1
Object (data type) ... 16-1
Objects (topic).. 16-2
Oct, Oct$ (functions) .. 16-5
OKButton (statement) .. 16-6
On Error (statement)... 16-7
Open (statement) .. 16-9
OpenFilename$ (function).. 16-11
Operator Precedence (topic)... 16-12
Operator Precision (topic) .. 16-13
Option Base (statement) ... 16-13
Option Compare (statement) .. 16-14
Option CStrings (statement) ... 16-15
OptionButton (statement) ... 16-16
OptionGroup (statement).. 16-17
Or (operator) .. 16-18

GFK-1283G Contents Contents-xiii

P 17-1
Pi (constant) ... 17-1
Picture (statement).. 17-2
PictureButton (statement)... 17-4
Pmt (function) .. 17-6
PopupMenu (function) ... 17-7
PPmt (function) .. 17-8
Print (statement) ... 17-9
Print# (statement) ... 17-10
Private (statement).. 17-12
Public (statement)... 17-14
PushButton (statement) .. 17-16
Put (statement) ... 17-17
Pv (function)... 17-19

R 18-1
Random (function) ... 18-1
Randomize (statement)... 18-2
Rate (function) ... 18-3
ReadIni$ (function) .. 18-4
ReadIniSection (statement) .. 18-5
Redim (statement) .. 18-6
Rem (statement) ... 18-7
Reset (statement) .. 18-7
Resume (statement) .. 18-8
Return (statement) .. 18-9
Right, Right$ (functions).. 18-9
RmDir (statement).. 18-10
Rnd (function) .. 18-11
RSet (statement) ... 18-12
RTrim, RTrim$ (functions) .. 18-13

S 19-1
SaveFilename$ (function) .. 19-1
Screen.DlgBaseUnitsX (property).. 19-3
Screen.DlgBaseUnitsY (property).. 19-3
Screen.Height (property) .. 19-4
Screen.TwipsPerPixelX (property) .. 19-4
Screen.TwipsPerPixelY (property) .. 19-5
Screen.Width (property)... 19-5
Second (function) ... 19-6
Seek (function) ... 19-7
Seek (statement) ... 19-8
Select...Case (statement) .. 19-9
SelectBox (function) .. 19-11
SendKeys (statement)... 19-12
Set (statement).. 19-15
SetAttr (statement) ... 19-16
Sgn (function)... 19-17
Shell (function)... 19-18
Sin (function) ... 19-19

Contents-xiv CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Single (data type).. 19-19
Sleep (statement) .. 19-20
Sln (function).. 19-20
Space, Space$ (functions) .. 19-21
Spc (function) ... 19-21
SQLBind (function).. 19-22
SQLClose (function) .. 19-23
SQLError (function) ... 19-24
SQLExecQuery (function).. 19-25
SQLGetSchema (function) ... 19-26
SQLOpen (function)... 19-29
SQLQueryTimeout (statement) .. 19-30
SQLRequest (function)... 19-30
SQLRetrieve (function) .. 19-32
SQLRetrieveToFile (function) ... 19-34
Sqr (function) ... 19-35
Stop (statement).. 19-35
Str, Str$ (functions) .. 19-36
StrComp (function)... 19-36
String (data type) .. 19-38
String, String$ (functions) .. 19-39
Sub...End Sub (statement) .. 19-40
Switch (function) .. 19-42
SYD (function) ... 19-43
System.Exit (method) ... 19-44
System.FreeMemory (property) ... 19-44
System.FreeResources (property)... 19-45
System.MouseTrails (method).. 19-45
System.Restart (method) .. 19-45
System.TotalMemory (property) .. 19-46
System.WindowsDirectory$ (property).. 19-46
System.WindowsVersion$ (property) .. 19-46

T 20-1
Tab (function)... 20-1
Tan (function)... 20-2
Text (statement).. 20-2
TextBox (statement) ... 20-3
Time, Time$ (functions)... 20-5
Time, Time$ (statements)... 20-6
Timer (function) ... 20-6
TimeSerial (function) ... 20-7
TimeValue (function) ... 20-7
Trim, Trim$ (functions).. 20-8
True (constant) ... 20-8
Type (statement)... 20-9

GFK-1283G Contents Contents-xv

U 21-1
UBound (function) ... 21-1
UCase, UCase$ (functions) .. 21-2
Unlock (statement) ... 21-2
User-Defined Types (topic).. 21-4

V 22-1
Val (function) ... 22-1
Variant (data type).. 22-2
VarType (function)... 22-5
VLine (statement)... 22-6
VPage (statement) .. 22-6
VScroll (statement) .. 22-7

W 23-1
Weekday (function).. 23-1
While...Wend (statement)... 23-2
Width# (statement)... 23-3
WinActivate (statement)... 23-4
WinClose (statement) ... 23-5
WinFind (function)... 23-6
WinList (statement).. 23-6
WinMaximize (statement) .. 23-7
WinMinimize (statement)... 23-8
WinMove (statement)... 23-9
WinRestore (statement).. 23-10
WinSize (statement) ... 23-11
Word$ (function).. 23-12
WordCount (function) .. 23-12
Write# (statement).. 23-13
WriteIni (statement) ... 23-14

X 24-1
X or (operator) ... 24-1

Y 25-1
Year (function) ... 25-1

CIMPLICITY Extensions to Basic 26-1
Acquire (Function) ... 26-1
Acquire, Release (Statements).. 26-2
AlarmGenerate (Method) ... 26-4
AlarmUpdate (Method) .. 26-6
ChangePassword (Method) .. 26-7
CimEMAlarmEvent (Object) ... 26-8
CimEMAlarmEvent.AlarmID (Property, Read) ... 26-8
CimEMAlarmEvent.FinalState (Property, Read) ... 26-9
CimEMAlarmEvent.GenTime (Property, Read) .. 26-9
CimEMAlarmEvent.Message (Property, Read) ... 26-10

Contents-xvi CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CimEMAlarmEvent.PrevState (Property, Read) .. 26-10
CimEMAlarmEvent.RefID (Property, Read) ... 26-11
CimEMAlarmEvent.ReqAction (Property, Read) .. 26-11
CimEMAlarmEvent.ResourceID (Property, Read) .. 26-11
CimEMEvent (Object) ... 26-12
CimEMEvent.ActionID (Property, Read) .. 26-12
CimEMEvent.AlarmEvent (Function) .. 26-12
CimEMEvent.EventID (Property, Read) .. 26-13
CimEMEvent.ObjectID (Property, Read) .. 26-13
CimEMEvent.PointEvent ... 26-13
CimEMEvent.TimeStamp (Property, Read) ... 26-14
CimEMEvent.Type (Property, Read) ... 26-14
CimEMPointEvent (Object) ... 26-15
CimEMPointEvent.Id ... 26-15
CimEmPointEvent.Quality (Property, Read).. 26-16
CimEmPointEvent.QualityAlarmed (Property, Read) .. 26-16
CimEmPointEvent.QualityAlarms_Enabled (Property, Read) ... 26-16
CimEmPointEvent.QualityDisable_Write (Property, Read)... 26-17
CimEmPointEvent.QualityIs_Available (Property, Read) ... 26-17
CimEmPointEvent.QualityIs_In_Range (Property, Read) ... 26-17
CimEmPointEvent.QualityLast_Upd_Man (Property, Read)... 26-18
CimEmPointEvent.QualityManual_Mode (Property, Read) .. 26-18
CimEmPointEvent.QualityStale_Data (Property, Read) .. 26-18
CimEMPointEvent.State (Property, Read) ... 26-19
CimEMPointEvent.TimeStamp (Property, Read.. 26-19
CimEmPointEvent.UserFlags (Property, Read}... 26-19
CimEMPointEvent.Value (Property, Read) ... 26-20
CimGetEMEvent (Function) .. 26-20
CimIsMaster (Function) ... 26-20
CimLogin (Procedure).. 26-21
CimLogout (Procedure).. 26-21
CimProjectData (Object).. 26-22
CimProjectData.Project (Property, Read/Write) .. 26-22
CimProjectData.Entity (Property, Read/Write) .. 26-23
CimProjectData.Attributes (Property, Read/Write).. 26-28
CimProjectData.Filters (Property, Read/Write) ... 26-28
CimProjectData.GetNext (Function) .. 26-29
CimProjectData.Reset (Method) .. 26-30
GetKey (Function).. 26-30
GetSystemWindowsDirectory (Function)... 26-30
GetTSSessionId (Function) .. 26-31
IsTerminalServices (Function) ... 26-31
LogStatus (Property, Read/Write) .. 26-32
Point (Subject).. 26-33
Point (Object) ... 26-36
Point.AlarmAck (Property, Read) .. 26-36
Point.Cancel (Method) ... 26-37
Point.DataType (Property, Read) ... 26-37
Point.DisplayFormat (Property, Read) ... 26-38
Point.DownloadPassword (Property, Read) ... 26-38
Point.Elements (Property, Read) .. 26-39
Point.EnableAlarm (Method) ... 26-39
Point.Enabled (Property, Read).. 26-39
Point.EuLabel (Property, Read) ... 26-40
Point.Get (Method)... 26-40

GFK-1283G Contents Contents-xvii

Point.GetArray (Method) ... 26-41
Point.GetNext (Function) ... 26-42
Point.GetNext (Method)... 26-42
Point.GetRawArray (Method) .. 26-43
Point.GetValue (Property, Read) ... 26-44
Point.HasEuConv (Property, Read).. 26-44
Point.Id (Property, Read/Write) ... 26-45
Point.InUserView (Property, Read) ... 26-45
Point.Length (Property, Read).. 26-46
Point.OnAlarm (Method) ... 26-46
Point.OnAlarmAck (Method)... 26-47
Point.OnChange (Method) ... 26-48
Point.OnTimed (Method) ... 26-49
Point.PointTypeId (Property, Read)... 26-49
Point.Quality (Property, Read)... 26-50
Point.QualityAlarmed (Property, Read) ... 26-50
Point.QualityAlarms_Enabled (Property, Read) .. 26-50
Point.QualityDisable_Write (Property, Read).. 26-51
Point.QualityIs_Available (Property, Read)... 26-51
Point.QualityIs_In_Range (Property, Read)... 26-51
Point.QualityLast_Upd_Man (Property, Read) .. 26-52
Point.QualityManual_Mode (Property, Read).. 26-52
Point.QualityStale_Data (Property, Read) ... 26-53
Point.RawValue (Property, Read/Write) .. 26-53
Point.ReadOnly (Property, Read)... 26-54
Point.Set (Method) ... 26-55
Point.SetArray (Method) .. 26-56
Point.SetElement (Method) .. 26-57
Point.SetpointPriv (Property, Read)... 26-57
Point.SetRawArray (Method)... 26-58
Point.SetValue (Property, Write) ... 26-59
Point.State (Property, Read)... 26-60
Point.TimeStamp (Property, Read) .. 26-61
Point.UserFlags (Property, Read)... 26-61
Point.Value (Property, Read/Write) ... 26-62
PointGet (Function).. 26-63
PointGetMultiple (Function) .. 26-63
PointGetNext (Function) .. 26-64
PointSet (Statement)... 26-65
Trace (Command) .. 26-65
TraceEnable/TraceDisable (Command) ... 26-66

Index i

GFK-1283G 1-1

Introduction

About the Basic Control Syntax
This chapter contains a complete, alphabetical listing of all keywords in the Basic
Control Engine script language. When syntax is described, the following notations
are used:

Notation Description
While...Wend Elements belonging to the Basic Control Engine script

language, referred to in this manual as keywords, appear in
the typeface shown to the left.

variable Items that are to be replaced with information that you
supply appear in italics. The type of replacement is indicated
in the following description.

text$ The presence of a type-declaration character following a
parameter signifies that the parameter must be a variable of
that type or an expression that evaluates to that type.

If a parameter does not appear with a type-declaration
character, then its type is described in the text.

[parameter] Square brackets indicate that the enclosed items are
optional.

In Basic Control Engine script language, you cannot end a
statement with a comma, even if the parameters are optional:

MsgBox "Hello",,"Message" '<--OK

MsgBox "Hello",, '<-- Not valid

{Input | Binary} Braces indicate that you must choose one of the enclosed
items, which are separated by a vertical bar.

... Ellipses indicate that the preceding expression can be
repeated any number of times.

1-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Using the Basic Control Engine Language Reference
The Reference chapter is organized like a dictionary containing an entry for each
language element. The language elements are categorized as follows:

Category Description
data type Any of the support data types, such as Integer, String, and

so on.

function Language element that takes zero or more parameters, performs
an action, and returns a value

keyword Language element that doesn't fit into any of the other categories

operator Language elements that cause an evaluation to be performed
either on one or two operands

statement Language element that takes zero or more parameters and
performs an action.

topic Describes information about a topic rather than a language
element

Each entry in the Reference chapter contains the following headings:

Heading Description
Syntax The syntax of the language element. The conventions used in

describing the syntax are described in Chapter 1.

Description Contains a one-line description of that language element.

Comments Contains any other important information about that language
keyword.

Example Contains an example of that language keyword in use. An
example is provided for every language keyword.

See Also Contains a list of other entries in the Reference section that
relate either directly or indirectly to that language element.

GFK-1283G Introduction 1-3

Language Elements By Category
The following subsections list Basic Control Engine language elements by category.

Arrays
ArrayDims Return the number of dimensions of an array

ArraySort Sort an array

Erase Erase the elements in one or more arrays

LBound Return the lower bound of a given array dimension

Option Base Change the default lower bound for array declarations

ReDim Re-establish the dimensions of an array

UBound Return the upper bound of a dimension of an array

Clipboard
Clipboard$ (function) Return the content of the clipboard as a string

Clipboard$ (statement) Set the content of the clipboard

Clipboard.Clear Clear the clipboard

Clipboard.GetFormat Get the type of data stored in the clipboard

Clipboard.GetText Get text from the clipboard

Clipboard.SetText Set the content of the clipboard to text

Comments
' Comment to end-of-line

REM Add a comment

Comparison operators
< Less than

<= Less than or equal to

<> Not equal

= Equal

> Greater than

>= Greater than or equal to

1-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Controlling other programs
AppActivate Activate an application

AppClose Close an application

AppFind Return the full name of an application

AppGetActive$ Return the name of the active application

AppGetPosition Get the position and size of an application

AppGetState Get the window state of an application

AppHide Hide an application

AppList Fill an array with a list of running applications

AppMaximize Maximize an application

AppMinimize Minimize an application

AppMove Move an application

AppRestore Restore an application

AppSetState Set the state of an application's window

AppShow Show an application

AppSize Change the size of an application

AppType Return the type of an application

SendKeys Send keystrokes to another application

Shell Execute another application

Controlling program flow
Call Call a subroutine

Choose Return a value at a given index

Do...Loop Execute a group of statements repeatedly

DoEvents (function) Yield control to other applications

DoEvents (statement) Yield control to other applications

End Stop execution of a script

Exit Do Exit a Do loop

Exit For Exit a For loop

For...Next Repeat a block of statement a specified number of
times

GoSub Execute at a specific label, allowing control to return
later

Goto Execute at a specific label

If...Then...Else Conditionally execute one or more statements

IIf Return one of two values depending on a condition

GFK-1283G Introduction 1-5

Main Define a subroutine where execution begins

Return Continue execution after the most recent GoSub

Select...Case Execute one of a series of statements

Sleep Pause for a specified number of milliseconds

Stop Suspend execution, returning to a debugger (if
present)

Switch Return one of a series of expressions depending on a
condition

While...Wend Repeat a group of statements while a condition is True

Controlling the operating environment
Command, Command$ Return the command line

Environm Environ$ Return a string from the environment

Conversion
Asc Return the value of a character

CBool Convert a value to a Boolean

CCur Convert a value to Currency

CDate Convert a value to a Date

CDbl Convert a value to a Double

Chr, Chr$ Convert a character value to a string

CInt Convert a value to an Integer

CLng Convert a value to a Long

CSng Convert a value to a Single

CStr Convert a value to a String

CVar Convert a value to a Variant

CVDate Convert a value to a Date

CVErr Convert a value to an error

Hex, Hex$ Convert a number to a hexadecimal string

IsDate Determine if an expression is convertible to a date

IsError Determine if a variant contains a user-defined error
value

IsNumeric Determine if an expression is convertible to a number

Oct, Oct$ Convert a number to an octal string

Str, Str$ Convert a number to a string

Val Convert a string to a number

1-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Data types
Boolean Data type representing True of False values

Currency Data type used to hold monitary values

Date Data type used to hold dates and times

Double Data type used to hold real number with 15-16 digits
of precision

HWND Data type used to hold windows

Integer Data type used to hold whole numbers with 4 digits of
precision

Long Data type used to hold whole numbers with 10 digits
of precision

Object Data type used to hold OLE automation objects

Single Data type used to hold real number with 7 digits of
precision

String Data type used to hold sequences of characters

Variant Data type that holds a number, string, or OLE
automation objects

Database
SQLBind Specify where to place results with SQLRetrieve

SQLClose Close a connection to a database

SQLError Return error information when an SQL function fails

SQLExecQuery Execute a query on a database

SQLGetSchema Return information about the structure of a database

SQLOpen Establishes a connection with a database

SQLRequest Run a query on a database

SQLRetrieve Retrieve all or part of a query

SQLRetrieveToFile Retrieve all or part of a query, placing results in a file

Date/time
Date, Date$ (functions) Return the current date

Date, Date$ (statements) Change the system date

DateAdd Add a number of date intervals to a date

DateDiff Subtract a number of date intervals from a date

DatePart Return a portion of a date

DateSerial Assemble a date from date parts

DateValue Convert a string to a date

GFK-1283G Introduction 1-7

Day Return the day component of a date value

Hour Return the hour part of a date value

Minute Return the minute part of a date value

Month Return the month part of a date value

Now Return the date and time

Second Return the seconds part of a date value

Time, Time$ (functions) Return the current system time

Time, Time$
(statements)

Set the system time

Timer Return the number of elapsed seconds since midnight

TimeSerial Assemble a date/time value from time components

TimeValue Convert a string to a date/time value

Weekday Return the day of the week of a date value

Year Return the year part of a date value

DDE
DDEExecute Execute a command in another application

DDEInitiate Initiate a DDE conversation with another application

DDEPoke Set a value in another application

DDERequest,
DDERequest$

Return a value from another application

DDESend Establishe a DDE conversation, then sets a value in
another application

DDETerminate Terminate a conversation with another application

DDETerminateAll Terminate all conversations

DDETimeOut Set the timeout used for non-responding applications

Error handling
Erl Return the line with the error

Err (function) Return the error that caused the current error trap

Err (statement) Set the value of the error

Error Simulate a trappable runtime error

Error, Error$ Return the text of a given error

On Error Trap an error

Resume Continue execution after an error trap

1-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

File I/O
Close Close one or more files

Eof Determine if the end-of-file has been reached

FreeFile Return the next available file number

Get Read data from a random or binary file

Input# Read data from a sequential file into variables

Input, Input$ Read a specified number of bytes from a file

Line Input # Read a line of text from a sequential file

Loc Return the record position of the file pointer within a file

Lock Lock a section of a file

Lof Return the number of bytes in an open file

Open Open a file for reading or writing

Print # Print data to a file

Put Write data to a binary or random file

Reset Close all open files

Seek Return the byte position of the file pointer within a file

Seek Set the byte position of the file pointer which a file

UnLock Unlock part of a file

Width# Specify the line width for sequential files

Write # Write data to a sequential file

File system
ChDir Change the current directory

ChDrive Change the current drive

CurDir, CurDir$ Return the current directory

Dir, Dir$ Return files in a directory

DiskDrives Fill an array with valid disk drive letters

DiskFree Return the free space on a given disk drive

FileAttr Return the mode in which a file is open

FileCopy Copy a file

FileDateTime Return the date and time when a file was last modified

FileDirs Fill an array with a subdirectory list

FileExists Determine if a file exists

FileLen Return the length of a file in bytes

FileList Fill an array with a list of files

FileParse$ Return a portion of a filename

GFK-1283G Introduction 1-9

GetAttr Return the attributes of a file

Kill Delete files from disk

MkDir Create a subdirectory

Name Rename a file

RmDir Remove a subdirectory

SetAttr Change the attributes of a file

Financial
DDB Return depreciation of an asset using double-declining

balance method

Fv Return the future value of an annuity

IPmt Return the interest payment for a given period of an
annuity

IRR Return the internal rate of return for a series of
payments and receipts

MIRR Return the modified internal rate of return

NPer Return the number of periods of an annuity

Npv Return the net present value of an annuity

Pmt Return the payment for an annuity

PPmt Return the principal payment for a given period of an
annuity

Pv Return the present value of an annuity

Rate Return the interest rate for each period of an annuity

Sln Return the straight-line depreciation of an asset

SYD Return the Sum of Years' Digits depreciation of an
asset

Getting information from Basic Control Engine
Basic.Capability Return capabilities of the platform

Basic.Eoln$ Return the end-of-line character for the platform

Basic.FreeMemory Return the available memory

Basic.HomeDir$ Return the directory where Basic Control Engine is
located

Basic.OS Return the platform id

Basic.PathSeparator$ Return the path separator character for the platform

Basic.Version$ Return the version of Basic Control Engine

1-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

INI Files
ReadIni$ Read a string from an INI file

ReadIniSection Read all the item names from a given section of an INI
file

WriteIni Write a new value to an INI file

Logical/binary operators
And Logical or binary conjunction

Eqv Logical or binary equivalence

Imp Logical or binary implication

Not Logical or binary negation

Or Logical or binary disjunction

Xor Logical or binary exclusion

Math
Abs Return the absolute value of a number

Atn Return the arc tangent of a number

Cos Return the cosine of an angle

Exp Return e raised to a given power

Fix Return the integer part of a number

Int Return the integer portion of a number

Log Return the natural logarithm of a number

Random Return a random number between two values

Randomize Initialize the random number generator

Rnd Generate a random number between 0 and 1

Sgn Return the sign of a number

Sin Return the sine of an angle

Sqr Return the square root of a number

Tan Return the tangent of an angle

Miscellaneous
() Force parts of an expression to be evaluated before

others

_ Line continuation

Beep Make a sound

Inline Allow execution or interpretation of a block of text

GFK-1283G Introduction 1-11

Numeric operators
* Multiply

+ Add

- Subtract

/ Divide

\ Integer divide

^ Power

Mod Remainder

Objects
CreateObject Instantiate an OLE automation object

GetObject Return an OLE automation object from a file, or returns
a previously instantiated OLE automation object

Is Compare two object variables

Nothing Value indicating no valid object

Parsing
Item$ Return a range of items from a string

ItemCount Return the number of items in a string

Line$ Retrieve a line from a string

LineCount Return the number of lines in a string

Word$ Return a sequence of words from a string

WordCount Return the number of words in a string

Predefined dialogs
AnswerBox Display a dialog asking a question

AskBox$ Display a dialog allowing the user to type a response

AskPassword$ Display a dialog allowing the user to type a password

InputBox, InputBox$ Display a dialog allowing the user to type a response

MsgBox (function) Display a dialog containing a message and some buttons

MsgBox (statement) Display a dialog containing a message and some buttons

OpenFilename$ Display a dialog requesting a file to open

SaveFilename$ Display a dialog requesting the name of a new file

SelectBox Display a dialog allowing selection of an item from an
array

1-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Printing
Print Print data to the screen

Spc Print a number of spaces within a Print statement

Tab Used with Print to print spaces up to a column
position

Procedures
Declare An external routine or a forward reference

Exit Function Exit a function

Exit Sub Exit a subroutine

Function...End Create a user-defined function

Sub...End Create a user-defined subroutine

String operators
& Concatenate two strings

Like Compare a string against a pattern

Strings
Format, Format$ Return a string formatted to a given specification

InStr Return the position of one string within another

LCase, LCase$ Convert a string to lower case

Left, Left$ Return the left portion of a string

Len Return the length of a string or the size of a data item

LSet Left align a string or user-defined type within another

LTrim, LTrim$ Remove leading spaces from a string

Mid, Mid$ Return a substring from a string

Mid, Mid$ Replace one part of a string with another

Option Compare Change the default comparison between text and binary

Option CStrings Allow interpretation of C-style escape sequences in strings

Right, Right$ Return the right portion of a string

RSet Right align a string within another

RTrim, RTrim$ Remove trailing spaces from a string

Space, Space$ Return a string os spaces

StrComp Compare two strings

String, String$ Return a string consisting of a repeated character

Trim, Trim$ Trim leading and trailing spaces from a string

UCase, UCase$ Return the upper case of a string

GFK-1283G Introduction 1-13

User dialogs
Begin Dialog Begin definition of a dialog template

CancelButton Define a Cancel button within a dialog template

CheckBox Define a combo box in a dialog template

ComboBox Define a combo box in a dialog template

Dialog (function) Invoke a user-dialog, returning which button was
selected

Dialog (statement) Invoke a user-dialog

DlgControlId Return the id of a control in a dynamic dialog

DlgEnable Determine if a control is enabled in a dynamic dialog

DlgEnable Enable or disables a control in a dynamic dialog

DlgFocus Return the control with the focus in a dynamic dialog

DlgFocus Set focus to a control in a dynamic dialog

DlgListBoxArray Set the content of a list box or combo box in a
dynamic dialog

DlgListBoxArray Set the content of a list box or combo box in a
dynamic dialog

DlgSetPicture Set the picture of a control in a dynamic dialog

DlgText (statement) Set the content of a control in a dynamic dialog

DlgText$ (function) Return the content of a control in a dynamic dialog

DlgValue (function) Return the value of a control in a dynamic dialog

DlgValue (statement) Set the value of a control in a dynamic dialog

DlgVisible (function) Determine if a control is visible in a dynamic dialog

DlgVisible (statement) Set the visibility of a control in a dynamic dialog

DropListBox Define a drop list box in a dialog template

GroupBox Define a group box in a dialog template

ListBox Add a list box to a dialog template

OKButton Add an OK button to a dialog template

OptionButton Add an option button to a dialog template

OptionGroup Add an option group to a dialog template

Picture Add a picture control to a dialog template

PictureButton Add a picture button to a dialog template

PushButton Add a push button to a dialog template

Text Add a text control to a dialog template

TextBox Add a text box to a dialog template

1-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Variables and constants
= Assignment

Const Define a constant

DefBool Set the default data type to Boolean

DefCur Set the default data type to Currency

DefDate Set the default data type to Date

DefDbl Set the default data type to Double

DefInt Set the default data type to Integer

DefLng Set the default data type to Long

DefObj Set the default data type to Object

DefSng Set the default data type to Single

DefStr Set the default data type to String

DefVar Set the default data type to Variant

Dim Declare a local variable

Global Declare variables for sharing between scripts

Let Assign a value to a variable

Private Declare variables accessible to all routines in a script

Public Declare variables accessible to all routines in all
scripts

Set Assign an object variable

Type Declare a user-defined data type

Variants
IsEmpty Determine if a variant has been initialized

IsError Determine if a variant contains a user-defined error

IsMissing Determine if an optional parameter was specified

IsNull Determine if a variant contains valid data

IsObject Determine if an expression contains an object

VarType Return the type of data stored in a variant

GFK-1283G 2-1

Symbols

& (operator)

Syntax expression1 & expression2

Description Returns the concatenation of expression1 and expression2.
Comments If both expressions are strings, then the type of the result is String. Otherwise, the type of the

result is a String variant.
When nonstring expressions are encountered, each expression is converted to a String variant.
If both expressions are Null, then a Null variant is returned. If only one expression is Null,
then it is treated as a zero-length string. Empty variants are also treated as zero-length strings.
In many instances, the plus (+) operator can be used in place of &. The difference is that +
attempts addition when used with at least one numeric expression, whereas & always concatenates.

Example This example assigns a concatenated string to variable s$ and a string to s2$, then concatenates
the two variables and displays the result in a dialog box.
Sub Main()

s$ = "This string" & " is concatenated"
s2$ = " with the '&' operator."
MsgBox s$ & s2$

End Sub

See Also + (operator); Operator Precedence (topic).

' (keyword)

Syntax 'text

Description Causes the compiler to skip all characters between this character and the end of the current line.
Comments This is very useful for commenting your code to make it more readable.
Example Sub Main()

'This whole line is treated as a comment.
i$ = "Strings" 'This is a valid assignment with a mment.
This line will cause an error (the apostrophe is missing).

End Sub

See Also Rem (statement); Comments (topic).

2-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

() (keyword)

Syntax 1 ...(expression)...

Syntax 2 ...,(parameter),...

Description Forces parts of an expression to be evaluated before others or forces a parameter to be passed by
value.

Comments Parentheses within Expressions
Parentheses override the normal precedence order of the scripts operators, forcing a subexpression
to be evaluated before other parts of the expression. For example, the use of parentheses in the
following expressions causes different results:

i = 1 + 2 * 3 'Assigns 7.
i = (1 + 2) * 3 'Assigns 9.

Use of parentheses can make your code easier to read, removing any ambiguity in complicated
expressions.

Parentheses Used in Parameter Passing
Parentheses can also be used when passing parameters to functions or subroutines to force a given
parameter to be passed by value, as shown below:

ShowForm i 'Pass i by reference.
ShowForm (i) 'Pass i by value.

Enclosing parameters within parentheses can be misleading. For example, the following statement
appears to be calling a function called ShowForm without assigning the result:

ShowForm(i)

The above statement actually calls a subroutine called ShowForm, passing it the variable i by
value. It may be clearer to use the ByVal keyword in this case, which accomplishes the same
thing:
ShowForm ByVal i

The result of an expression is always passed by value.

Example This example uses parentheses to clarify an expression.
Sub Main()

bill = False
dave = True
jim = True

If (dave And bill) Or (jim And bill) Then
Msgbox "The required parties for the meeting are here."

Else
MsgBox "Someone is late for the meeting!"

End If
End Sub

See Also ByVal (keyword); Operator Precedence (topic).

GFK-1283G Symbols 2-3

* (operator)

Syntax expression1 * expression2

Description Returns the product of expression1 and expression2.

Comments The result is the same type as the most precise expression, with the following exceptions:

If one
expression is

and the other
expression is

then the type
the result is

Single Long Double

Boolean Boolean Integer

Date Date Double

When the * operator is used with variants, the following additional rules apply:

• Empty is treated as 0.

• If the type of the result is an Integer variant that overflows, then the result is
automatically promoted to a Long variant.

• If the type of the result is a Single, Long, or Date variant that overflows, then
the result is automatically promoted to a Double variant.

• If expression1 is Null and expression2 is Boolean, then the result is Empty.
Otherwise, If either expression is Null, then the result is Null.

Example This example assigns values to two variables and their product to a third variable, then displays
the product of s# * t#.
Sub Main()

s# = 123.55
t# = 2.55
u# = s# * t#
MsgBox s# & " * " & t# & " = " & s# * t#

End Sub

See Also Operator Precedence (topic).

2-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

+ (operator)

Syntax expression1 + expression2

Description Adds or concatenates two expressions.

Comments Addition operates differently depending on the type of the two expressions:

If one
expression is

and the other
expression is then

Numeric Numeric Perform a numeric add (see below).
String String Concatenate, returning a string.
Numeric String A runtime error is generated.
Variant String Concatenate, returning a String variant.

Variant Numeric Perform a variant add (see below).

Empty variant Empty variant Return an Integer variant, value 0.

Empty variant Boolean variant Return an Integer variant (value 0 or -1)

Empty variant Any data type Return the non-Empty expression unchanged.

Null variant Any data type Return Null.

Variant Variant If either is numeric, add; otherwise, concatenate.

When using + to concatenate two variants, the result depends on the types of each variant at
runtime. You can remove any ambiguity by using the & operator.

Numeric Add
A numeric add is performed when both expressions are numeric (i.e., not variant or string). The
result is the same type as the most precise expression, with the following exceptions:.

If one
expression is

and the other
expression is

then the type
the result is

Single Long Double

Boolean Boolean Integer

A runtime error is generated if the result overflows its legal range

Variant Add
If both expressions are variants, or one expression is numeric and the other expression is
Variant, then a variant add is performed. The rules for variant add are the same as those for
normal numeric add, with the following exceptions:

• If the type of the result is an Integer variant that overflows, then the result is a
Long variant.

• If the type of the result is a Long, Single, or Date variant that overflows, then
the result is a Double variant.

GFK-1283G Symbols 2-5

Example This example assigns string and numeric variable values and then uses the + operator to
concatenate the strings and form the sums of numeric variables.
Sub Main()

i$ = "concatenate " + "strings!"
j% = 95 + 5 'Addition of numeric literals
k# = j% + j% 'Addition of numeric variable
MsgBox "You can " + i$
MsgBox "You can add literals or variables:" + Str(j%) + ", " + Str(k#)

End Sub

See Also & (operator); Operator Precedence (topic).

- (operator)

Syntax 1 expression1 – expression2

Syntax 2 –expression

Description Returns the difference between expression1 and expression2 or, in the second syntax, returns the
negation of expression.

Comments Syntax 1
The type of the result is the same as that of the most precise expression, with the following
exceptions:

If one
expression is

and the other
expression is

then the type
the result is

Long Single Double

Boolean Boolean Integer

A runtime error is generated if the result overflows its legal range.

When either or both expressions are Variant, then the following additional rules apply:

• If expression1 is Null and expression2 is Boolean, then the result is Empty.
Otherwise, if either expression is Null, then the result is Null.

• Empty is treated as an Integer of value 0.

• If the type of the result is an Integer variant that overflows, then the result is a
Long variant.

• If the type of the result is a Long, Single, or Date variant that overflows, then
the result is a Double variant.

Syntax 2
If expression is numeric, then the type of the result is the same type as expression, with the
following exception:

• If expression is Boolean, then the result is Integer.

2-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

In 2's compliment arithmetic, unary minus may result in an overflow with Integer and Long
variables when the value of expression is the largest negative number representable for that data
type. For example, the following generates an overflow error:
Sub Main()

Dim a As Integer
a = -32768
a = -a '<-- Generates overflow here.

End Sub

When negating variants, overflow will never occur because the result will be automatically
promoted: integers to longs and longs to doubles.

Example This example assigns values to two numeric variables and their difference to a third variable, then
displays the result.
Sub Main()

i% = 100
j# = 22.55
k# = i% - j#
MsgBox "The difference is: " & k#

End Sub

See Also Operator Precedence (topic).

. (keyword)

Syntax 1 object.property

Syntax 2 structure.member

Description Separates an object from a property or a structure from a structure member.

Examples This example uses the period to separate an object from a property.

Sub Main()
MsgBox "The clipboard text is: " & Clipboard.GetText()

End Sub

This example uses the period to separate a structure from a member.
Type Rect

left As Integer
top As Integer
right As Integer
bottom As Integer

End Type

Sub Main()
Dim r As Rect
r. left = 10
r. rigth = 12
Msgbox "r.left = "& r.left & ", r.right = " & r.right

End Sub

See Also Objects (topic).

GFK-1283G Symbols 2-7

/ (operator)

Syntax expression1 / expression2

Description Returns the quotient of expression1 and expression2.

Comments The type of the result is Double, with the following exceptions:

If one
expression is

and the other
expression is

then the type
the result is

Integer Integer Single

Single Single Single

Boolean Boolean Single

A runtime error is generated if the result overflows its legal range.

When either or both expressions is Variant, then the following additional rules apply:

• If expression1 is Null and expression2 is Boolean, then the result is Empty.
Otherwise, if either expression is Null, then the result is Null.

• Empty is treated as an Integer of value 0.

• If both expressions are either Integer or Single variants and the result overflows,
then the result is automatically promoted to a Double variant.

Example This example assigns values to two variables and their quotient to a third variable, then displays the
result.
Sub Main()

i% = 100
j# = 22.55
k# = i% / j#
MsgBox "The quotient of i/j is: " & k#

End Sub

See Also \ (operator); Operator Precedence (topic).

< (operator)

See Comparison Operators (topic).

<= (operator)

See Comparison Operators (topic).

2-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

<> (operator)

See Comparison Operators (topic).

= (statement)

Syntax variable = expression

Description Assigns the result of an expression to a variable.

Comments When assigning expressions to variables, internal type conversions are performed automatically
between any two numeric quantities. Thus, you can freely assign numeric quantities without regard
to type conversions. However, it is possible for an overflow error to occur when converting from
larger to smaller types. This occurs when the larger type contains a numeric quantity that cannot be
represented by the smaller type. For example, the following code will produce a runtime error:

Dim amount As Long
Dim quantity As Integer

amount = 400123 'Assign a value out of range for int.
quantity = amount 'Attempt to assign to Integer.

When performing an automatic data conversion, underflow is not an error.

The assignment operator (=) cannot be used to assign objects. Use the Set statement instead.

Example Sub Main()
a$ = "This is a string"
b% = 100
c# = 1213.3443
MsgBox a$ & "," & b% & "," & c#

End Sub

See Also Let (statement); Operator Precedence (topic); Set (statement); Expression Evaluation (topic).

= (operator)

See Comparison Operators (topic).

> (operator)

See Comparison Operators (topic).

GFK-1283G Symbols 2-9

>= (operator)

See Comparison Operators (topic).

\ (operator)

Syntax expression1 \ expression2

Description Returns the integer division of expression1 and expression2.

Comments Before the integer division is performed, each expression is converted to the data type of the most
precise expression. If the type of the expressions is either Single, Double, Date, or
Currency, then each is rounded to Long.

If either expression is a Variant, then the following additional rules apply:

• If either expression is Null, then the result is Null.

• Empty is treated as an Integer of value 0.

Example This example assigns the quotient of two literals to a variable and displays the result.
Sub Main()

s% = 100.99 \ 2.6
MsgBox "Integer division of 100.99\2.6 is: " & s%

End Sub

See Also / (operator); Operator Precedence (topic).

2-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

^ (operator)

Syntax expression1 ^ expression2

Description Returns expression1 raised to the power specified in expression2.

Comments The following are special cases:

Special Case Value
n^0 1
0^-n Undefined
0^+n 0
1^n 1

The type of the result is always Double, except with Boolean expressions, in which case the
result is Boolean. Fractional and negative exponents are allowed.

If either expression is a Variant containing Null, then the result is Null.

It is important to note that raising a number to a negative exponent produces a fractional result.

Example Sub Main()
s# = 2 ^ 5 'Returns 2 to the 5th power.
r# = 16 ^ .5 'Returns the square root of 16.
MsgBox "2 to the 5th power is: " & s#
MsgBox "The square root of 16 is: " & r#

End Sub

See Also Operator Precedence (topic).

GFK-1283G Symbols 2-11

_ (keyword)

Syntax s$ = "This is a very long line that I want to split " & _
"onto two lines"

Description Line-continuation character, which allows you to split a single script onto more than one line.

Comments The line-continuation character cannot be used within strings and must be preceded by white space
(either a space or a tab).

The line-continuation character can be followed by a comment, as shown below:
i = 5 + 6 & _ 'Continue on the next line.
"Hello"

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main()
'The line-continuation operator is useful when concatenating
'long strings.

msg1 = "This line is a line of text that" & crlf & "extends beyond " _
& "the borders of the editor" & crlf & "so it is split into " _
& "multiple lines"

'It is also useful for separating and continuing long calculation lines.

b# = .124
a# = .223
s# = ((((Sin(b#) ^ 2) + (Cos(a#) ^ 2)) ^ .5) / _

(((Sin(a#) ^ 2) + (Cos(b#) ^ 2)) ^ .5)) * 2.00
MsgBox msg1 & crlf & crlf & "The value of s# is: " & s#

End Sub

GFK-1283G 3-1

A

Abs (function)

Syntax Abs(expression)

Description Returns the absolute value of expression.

Comments If expression is Null, then Null is returned. Empty is treated as 0.

The type of the result is the same as that of expression, with the following exceptions:

• If expression is an Integer that overflows its legal range, then the result is returned
as a Long. This only occurs with the largest negative Integer:

Dim a As Variant
Dim i As Integer
i = -32768
a = Abs(i) 'Result is a Long.
i = Abs(i) 'Overflow!

• If expression is a Long that overflows its legal range, then the result is returned as a
Double. This only occurs with the largest negative Long:

Dim a As Variant
Dim l As Long
l = -2147483648
a = Abs(l) 'Result is a Double.
l = Abs(l) 'Overflow!

• If expression is a Currency value that overflows its legal range, an overflow error is
generated.

Example This example assigns absolute values to variables of four types and displays the result.
Sub Main()

s1% = Abs(-10.55)
s2& = Abs(-10.55)
s3! = Abs(-10.55)
s4# = Abs(-10.55)
MsgBox "The absolute values are: " & s1% & "," & s2& & "," & s3! & "," & s4#

End Sub

See Also Sgn (function).

3-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July2001 GFK-1283G

And (operator)

Syntax expression1 And expression2

Description Performs a logical or binary conjunction on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants, then a logical
conjunction is performed as follows:

If the first
expression is

and the second
expression is

then the
result is

True True True

True False False

True Null Null

False True False

False False False

False Null Null

Null True Null

Null False False

Null Null Null

Binary Conjunction
If the two expressions are Integer, then a binary conjunction is performed, returning an
Integer result. All other numeric types (including Empty variants) are converted to Long, and a
binary conjunction is then performed, returning a Long result.
Binary conjunction forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions according to the following table:

1 And 1 = 1 Example:

0 And 1 = 0 5 00001001

1 And 0 = 0 6 00001010

0 And 0 = 0 And 00001000

Example
Sub Main()

n1 = 1001
n2 = 1000
b1 = True
b2 = False
'This example performs a numeric bitwise And operation and stores
'the result in N3.
n3 = n1 And n2

'This example performs a logical And comparing b1 and b2 and displays
'the result.

If b1 And b2 Then
MsgBox "b1 And b2 are True; n3 is: " & n3

Else
MsgBox "b1 And b2 are False; n3 is: " & n3

End If
End Sub

See Also Operator Precedence (topic); Or (operator); Xor (operator); Eqv (operator); Imp (operator).

GFK-1283G A 3-3

AnswerBox (function)

Syntax AnswerBox(prompt [,[button1] [,[button2] [,button3]]]]])

Description Displays a dialog box prompting the user for a response and returns an Integer indicating
which button was clicked (1 for the first button, 2 for the second, and so on).

Comments The AnswerBox function takes the following parameters:

Parameter Description
prompt Text to be displayed above the text box. The prompt parameter can be any

expression convertible to a String.

The Basic Control Engine script resizes the dialog box to hold the entire
contents of prompt, up to a maximum width of 5/8 of the width of the screen
and a maximum height of 5/8 of the height of the screen. It also word-wraps
any lines too long to fit within the dialog box and truncates all lines beyond
the maximum number of lines that fit in the dialog box.

You can insert a carriage-return/line-feed character in a string to cause a line
break in your message.

A runtime error is generated if this parameter is Null.

button1 Text for the first button. If omitted, then "OK" and "Cancel" are used. A
runtime error is generated if this parameter is Null.

button2 Text for the second button. A runtime error is generated if this parameter is
Null.

button3 Text for the third button. A runtime error is generated if this parameter is
Null.

The width of each button is determined by the width of the widest button.

The AnswerBox function returns 0 if the user selects Cancel.

r% = AnswerBox("Copy files?")

r% = AnswerBox("Copy files?","Save","Restore","Cancel")

3-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July2001 GFK-1283G

Example This example displays a dialog box containing three buttons. It displays an additional message
based on which of the three buttons is selected.
Sub Main()

r% = AnswerBox("Temporary File Operation?","Save","Remove","Cancel")
Select Case r%

Case 1
MsgBox "Files will be saved."

Case 2
MsgBox "Files will be removed."

Case Else
MsgBox "Operation canceled."

End Select
End Sub

See Also MsgBox (statement); AskBox$ (function); AskPassword$ (function); InputBox,
InputBox$ (functions); OpenFilename$ (function); SaveFilename$ (function);
SelectBox (function).

Notes: AnswerBox displays all text in its dialog box in 8-point MS Sans Serif.

Any (data type)

Description Used with the Declare statement to indicate that type checking is not to be performed with a
given argument.

Comments Given the following declaration:
Declare Sub Foo Lib "FOO.DLL" (a As Any)

the following calls are valid:
Foo 10
Foo "Hello, world."

Example The following example calls the FindWindow to determine if Program Manager is running.

This example uses the Any keyword to pass a NULL pointer, which is accepted by the
FindWindow function.
Declare Function FindWindow16 Lib "user" Alias "FindWindow" (ByVal Class _

As Any,ByVal Title As Any) As Integer
Declare Function FindWindow32 Lib "user32" Alias "FindWindowA" (ByVal Class _

As Any,ByVal Title As Any) As Long
Sub Main()

Dim hWnd As Variant
If Basic.Os = ebWin16 Then

hWnd = FindWindow16("PROGMAN",0&)
ElseIf Basic.Os = ebWin32 Then

hWnd = FindWindow32("PROGMAN",0&)
Else

hWnd = 0
End If
If hWnd <> 0 Then

MsgBox "Program manager is running, window handle is " & hWnd
End If

End Sub

See Also Declare (statement).

GFK-1283G A 3-5

AppActivate (statement)

Syntax AppActivate name$ | taskID

Description Activates an application given its name or task ID.

Comments The AppActivate statement takes the following parameters:

Parameter Description
name$ String containing the name of the application to be activated.

taskID Number specifying the task ID of the application to be activated. Acceptable task
IDs are returned by the Shell function

When activating applications using the task ID, it is important to declare the variable used to hold
the task ID as a Variant. The type of the ID depends on the platform on which The Basic Control
Engine script is running.

Examples This example activates Program Manager.
Sub Main()

AppActivate "Program Manager"
End Sub

This example runs another application, activates it, and maximizes it.
Sub Main()

Dim id as variant
id = Shell("notepad.exe") 'Run Notepad minimized.
AppActivate id 'Now activate Notepad.
AppMaximize

End Sub

See Also Shell (function); SendKeys (statement); WinActivate (statement).

Notes: The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

Minimized applications are not restored before activation. Thus, activating a minimized DOS
application will not restore it; rather, it will highlight its icon.

A runtime error results if the window being activated is not enabled, as is the case if that
application is currently displaying a modal dialog box.

3-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July2001 GFK-1283G

AppClose (statement)

Syntax AppClose [name$]

Description Closes the named application.

Comments The name$ parameter is a String containing the name of the application. If the name$ parameter
is absent, then the AppClose statement closes the active application.

Example This example activates Excel, then closes it.
Sub Main()

If AppFind$("Microsoft Excel") = "" Then 'Make sure Excel is there.
MsgBox "Excel is not running."
Exit Sub

End If
AppActivate "Microsoft Excel" 'Activate it (unnecessary).
AppClose "Microsoft Excel" 'Close it.

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppRestore (statement); AppMove
(statement); AppSize (statement).

Notes: A runtime error results if the application being closed is not enabled, as is the case if that
application is currently displaying a modal dialog box.

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

GFK-1283G A 3-7

AppFind$ (function)

Syntax AppFind$(partial_name$)

Description Returns a String containing the full name of the application matching the partial_name$.

Comments The partial_name$ parameter specifies the title of the application to find. If there is no exact
match, the script will find an application whose title begins with partial_name$.

AppFind$ returns a zero-length string if the specified application cannot be found.

AppFind$ is generally used to determine whether a given application is running. The following
expression returns True if Microsoft Word is running:

AppFind$("Microsoft Word")

Example This example checks to see whether Excel is running before activating it.
Sub Main()

If AppFind$("Microsoft Excel") <> "" Then
AppActivate "Microsoft Excel"

Else
MsgBox "Excel is not running."

End If
End Sub

See Also AppFileName$ (function).

Notes: This function returns a String containing the exact text appearing in the title bar of the active
application's main window.

AppGetActive$ (function)

Syntax AppGetActive$()

Description Returns a String containing the name of the application.

Comments If no application is active, the AppGetActive$ function returns a zero-length string.

You can use AppGetActive$ to retrieve the name of the active application. You can then use this
name in calls to routines that require an application name.

Example Sub Main()
n$ = AppGetActive$()
AppMinimize n$

End Sub

See Also AppActivate (statement); WinFind (function).

Notes: This function returns a String containing the exact text appearing in the title bar of the active
application's main window.

3-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July2001 GFK-1283G

AppGetPosition (statement)

Syntax AppGetPosition X,Y,width,height [,name$]

Description Retrieves the position of the named application.

Comments The AppGetPosition statement takes the following parameters:

Parameter Description
X, Y Names of Integer variables to receive the position of the application's

window.

width, height Names of Integer variables to receive the size of the application's window.

name$ String containing the name of the application. If the name$ parameter is
omitted, then the active application is used.

The x, y, width, and height variables are filled with the position and size of the application's
window. If an argument is not a variable, then the argument is ignored, as in the following example,
which only retrieves the x and y parameters and ignores the width and height parameters:

Dim x As Integer,y As Integer
AppGetPosition x,y,0,0,"Program Manager"

Example Sub Main()
Dim x As Integer,y As Integer
Dim cx As Integer,cy As Integer
AppGetPosition x,y,cx,cy,"Program Manager"

End Sub

See Also AppMove (statement); AppSize (statement).

Notes: The position and size of the window are returned in twips.

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

GFK-1283G A 3-9

AppGetState (function)

Syntax AppGetState[([name$])]

Description Returns an Integer specifying the state of the top-level window.

Comments The AppGetState function returns any of the following values:

If the window is then AppGetState returns
Maximized ebMaximized

Minimized ebMinimized

Restored ebRestored

The name$ parameter is a String containing the name of the desired application. If it is omitted,
then the AppGetState function returns the name of the active application.

Examples This example saves the state of Program Manager, changes it, then restores it to its original setting.
Sub Main()

If AppFind$("Program Manager") = "" Then
MsgBox "Can't find Program Manager."
Exit Sub

End If
AppActivate "Program Manager" 'Activate Program Manager.
state = AppGetState 'Save its state.
AppMinimize 'Minimize it.
MsgBox "Program Manager is now minimized. Select OK to restore it."
AppActivate "Program Manager"
AppSetState state 'Restore it.

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppRestore (statement).

Notes: The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

3-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July2001 GFK-1283G

AppHide (statement)

Syntax AppHide [name$]

Description Hides the named application.

Comments If the named application is already hidden, the AppHide statement will have no effect.

The name$ parameter is a String containing the name of the desired application. If it is omitted,
then the AppHide statement hides the active application.

AppHide generates a runtime error if the named application is not enabled, as is the case if that
application is displaying a modal dialog box.

Example This example hides Program Manager.
Sub Main()

'See whether Program Manager is running.
If AppFind$("Program Manager") = "" Then Exit Sub
AppHide "Program Manager"
MsgBox "Program Manager is now hidden. Press OK to show it once again."
AppShow "Program Manager"

End Sub

See Also AppShow (statement).

Notes: The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

GFK-1283G A 3-11

AppList (statement)

Syntax AppList AppNames$()

Description Fills an array with the names of all open applications.

Comments The AppNames$ parameter must specify either a zero- or one-dimensioned dynamic String array
or a one-dimensional fixed String array. If the array is dynamic, then it will be redimensioned to
match the number of open applications. For fixed arrays, AppList first erases each array element,
then begins assigning application names to the elements in the array. If there are fewer elements
than will fit in the array, then the remaining elements are unused. The script returns a runtime error
if the array is too small to hold the new elements.

After calling this function, you can use LBound and UBound to determine the new size of the
array.

Example This example minimizes all applications on the desktop.
Sub Main()

Dim apps$()
AppList apps
'Check to see whether any applications were found.
If ArrayDims(apps) = 0 Then Exit Sub
For i = LBound(apps) To UBound(apps)

AppMinimize apps(i)
Next i

End Sub

Notes: The name of an application is considered to be the exact text that appears in the title bar of the
application's main window.

3-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July2001 GFK-1283G

AppMaximize (statement)

Syntax AppMaximize [name$]

Description Maximizes the named application.

Comments The name$ parameter is a String containing the name of the desired application. If it is omitted,
then the AppMaximize function maximizes the active application.

Example Sub Main()
AppMaximize "Program Manager" 'Maximize Program Manager.

If AppFind$("NotePad") <> "" Then
AppActivate "NotePad" 'Set the focus to NotePad.
AppMaximize 'Maximize it.

End If
End Sub

See Also AppMinimize (statement); AppRestore (statement); AppMove (statement); AppSize
(statement); AppClose (statement).

Notes: If the named application is maximized or hidden, the AppMaximize statement will have no effect.

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

AppMaximize generates a runtime error if the named application is not enabled, as is the case if
that application is displaying a modal dialog box.

GFK-1283G A 3-13

AppMinimize (statement)

Syntax AppMinimize [name$]

Description Minimizes the named application.

Comments The name$ parameter is a String containing the name of the desired application. If it is omitted,
then the AppMinimize function minimizes the active application.

Example Sub Main()
AppMinimize "Program Manager" 'Maximize Program Manager.

If AppFind$("NotePad") <> "" Then
AppActivate "NotePad" 'Set the focus to NotePad.
AppMinimize 'Maximize it.

End If
End Sub

See Also AppMaximize (statement); AppRestore (statement); AppMove (statement); AppSize
(statement); AppClose (statement).

Notes: If the named application is minimized or hidden, the AppMinimize statement will have no effect.

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

AppMinimize generates a runtime error if the named application is not enabled, as is the case if
that application is displaying a modal dialog box.

3-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July2001 GFK-1283G

AppMove (statement)

Syntax AppMove X, Y [,name$]

Description Sets the upper left corner of the named application to a given location.

Comments The AppMove statement takes the following parameters:

Parameter Description
X, Y Integer coordinates specifying the upper left corner of the new location of the

application, relative to the upper left corner of the display.
name$ String containing the name of the application to move. If this parameter is

omitted, then the active application is moved.

Example This example activates Program Manager, then moves it 10 pixels to the right.
Sub Main()

Dim x%,y%
AppActivate "Program Manager" 'Activate Program Manager.
AppGetPosition x%,y%,0,0 'Retrieve its position.
x% = x% + Screen.TwipsPerPixelX * 10 'Add 10 pixels.
AppMove x% + 10,y% 'Nudge it 10 pixels to the right.

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppRestore (statement); AppSize
(statement); AppClose (statement).

Notes: If the named application is maximized or hidden, the AppMove statement will have no effect.

The X and Y parameters are specified in twips.

AppMove will accept X and Y parameters that are off the screen.

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

AppMove generates a runtime error if the named application is not enabled, as is the case if that
application is currently displaying a modal dialog box.

GFK-1283G A 3-15

AppRestore (statement)

Syntax AppRestore [name$]

Description Restores the named application.

Comments The name$ parameter is a String containing the name of the application to restore. If this
parameter is omitted, then the active application is restored.

Example This example minimizes Program Manager, then restores it.
Sub Main()

If AppFind$("Program Manager") = "" Then Exit Sub
AppActivate "Program Manager"
AppMinimize "Program Manager"
MsgBox "Program Manager is now minimized. Press OK to restore it."
AppRestore "Program Manager"

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppMove (statement); AppSize
(statement); AppClose (statement).

Notes: The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

AppRestore will have an effect only if the main window of the named application is either
maximized or minimized.

AppRestore will have no effect if the named window is hidden.

AppRestore generates a runtime error if the named application is not enabled, as is the case if
that application is currently displaying a modal dialog box.

3-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July2001 GFK-1283G

AppSetState (statement)

Syntax AppSetState newstate [,name$]

Description Maximizes, minimizes, or restores the named application, depending on the value of newstate.

Comments The AppSetState statement takes the following parameters:

Parameter Description
newstate Integer specifying the new state of the window. It can be any of the

following values

Value Description
ebMaximized The named application is maximized.
ebMinimized The named application is minimized.
ebRestored The named application is restored.

name$ String containing the name of the application to change. If this parameter
is omitted, then the active application is used.

Example This example saves the state of Program Manager, changes it, then restores it to its original setting.
Sub Main()

If AppFind$("Program Manager") = "" Then
MsgBox "Can't find Program Manager."
Exit Sub

End If
AppActivate "Program Manager" 'Activate Program Manager.
state = AppGetState 'Save its state.
AppMinimize 'Minimize it.
MsgBox "Program Manager is now minimized. Select OK to restore it."
AppActivate "Program Manager"
AppSetState state 'Restore it.

End Sub

See Also AppGetState (function); AppMinimize (statement); AppMaximize (statement);
AppRestore (statement).

Notes: The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

GFK-1283G A 3-17

AppShow (statement)

Syntax AppShow [name$]

Description Makes the named application visible.

Comments The name$ parameter is a String containing the name of the application to show. If this
parameter is omitted, then the active application is shown.

Example This example hides Program Manager.
Sub Main()

'See whether Program Manager is running.
If AppFind$("Program Manager") = "" Then Exit Sub
AppHide "Program Manager"
MsgBox "Program Manager is now hidden. Press OK to show it once again."
AppShow "Program Manager"

End Sub

See Also AppHide (statement).

Notes: If the named application is already visible, AppShow will have no effect.

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

AppShow generates a runtime error if the named application is not enabled, as is the case if that
application is displaying a modal dialog box.

3-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July2001 GFK-1283G

AppSize (statement)

Syntax AppSize width,height [,name$]

Description Sets the width and height of the named application.

Comments The AppSize statement takes the following parameters:

Parameter Description
width, height Integer coordinates specifying the new size of the application.

name$ String containing the name of the application to resize. If this parameter is
omitted, then the active application is used.

Example This example enlarges the active application by 10 pixels in both the vertical and horizontal
directions.
Sub Main()

Dim w%,h%
AppGetPosition 0,0,w%,h% 'Get current width/height.
x% = x% + Screen.TwipsPerPixelX * 10 'Add 10 pixels.
y% = y% + Screen.TwipsPerPixelY * 10 'Add 10 pixels.
AppSize w%,h% 'Change to new size.

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppRestore (statement); AppMove
(statement); AppClose (statement).

Notes: The width and height parameters are specified in twips.

This statement will only work if the named application is restored (i.e., not minimized or
maximized).

The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

A runtime error results if the application being resized is not enabled, which is the case if that
application is displaying a modal dialog box when an AppSize statement is executed.

GFK-1283G A 3-19

AppType (function)

Syntax AppType [(name$)]

Description Returns an Integer indicating the executable file type of the named application:

ebDos DOS executable
ebWindows Windows executable

Comments The name$ parameter is a String containing the name of the application. If this parameter is
omitted, then the active application is used.

Example This example creates an array of strings containing the names of all the running Windows
applications. It uses the AppType command to determine whether an application is a Windows
application or a DOS application.
Sub Main()

Dim apps$(),wapps$()
AppList apps 'Retrieve a list of all Windows and DOS apps.
If ArrayDims(apps) = 0 Then

MsgBox "There are no running applications."
Exit Sub

End If
'Create an array to hold only the Windows apps.
ReDim wapps$(UBound(apps))
n = 0 'Copy the Windows apps from one array to the target array.
For i = LBound(apps) to UBound(apps)

If AppType(apps(i)) = ebWindows Then
wapps(n) = apps(i)
n = n + 1

End If
Next I
If n = 0 Then 'Make sure at least one Windows app was found.

MsgBox "There are no running Windows applications."
Exit Sub

End If
ReDim Preserve wapps(n - 1) 'Resize to hold the exact number.
'Let the user pick one.
index% = SelectBox("Windows Applications","Select a Windows application:",wapps)

End Sub

See Also AppFilename$ (function).

Notes: The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is
found that matches name$, then the first application encountered is used.

3-20 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July2001 GFK-1283G

ArrayDims (function)

Syntax ArrayDims(arrayvariable)
Description Returns an Integer containing the number of dimensions of a given array.
Comments This function can be used to determine whether a given array contains any elements or if the array

is initially created with no dimensions and then redimensioned by another function, such as the
FileList function, as shown in the following example.

Example This example allocates an empty (null-dimensioned) array; fills the array with a list of filenames,
which resizes the array; then tests the array dimension and displays an appropriate message.
Sub Main()

Dim f$()
FileList f$,"c:*.bat"
If ArrayDims(f$) = 0 Then

MsgBox "The array is empty."
Else

MsgBox "The array size is: " & (UBound(f$) - UBound(f$) + 1)
End If

End Sub

See Also LBound (function); UBound (function); Arrays (topic).

GFK-1283G A 3-21

Arrays (topic)

Declaring Array Variables
Arrays in a Basic Control Engine script are declared using any of the following statements:

Dim
Public
Private

For example:
Dim a(10) As Integer
Public LastNames(1 to 5,-2 to 7) As Variant
Private

Arrays of any data type can be created, including Integer, Long, Single, Double,
Boolean, Date, Variant, Object, user-defined structures, and data objects.

The lower and upper bounds of each array dimension must be within the following range:

-32768 <= bound <= 32767

Arrays can have up to 60 dimensions.

Arrays can be declared as either fixed or dynamic, as described below.

Fixed Arrays
The dimensions of fixed arrays cannot be adjusted at execution time. Once declared, a fixed array
will always require the same amount of storage. Fixed arrays can be declared with the Dim,
Private, or Public statement by supplying explicit dimensions. The following example
declares a fixed array of ten strings:

Dim a(10) As String

Fixed arrays can be used as members of user-defined data types. The following example shows a
structure containing fixed-length arrays:

Type Foo
rect(4) As Integer
colors(10) As Integer

End Type

Only fixed arrays can appear within structures.

Dynamic Arrays
Dynamic arrays are declared without explicit dimensions, as shown below:

Public Ages() As Integer

Dynamic arrays can be resized at execution time using the Redim statement:
Redim Ages$(100)

Subsequent to their initial declaration, dynamic arrays can be redimensioned any number of times.
When redimensioning an array, the old array is first erased unless you use the Preserve
keyword, as shown below:

Redim Preserve Ages$(100)

Dynamic arrays cannot be members of user-defined data types.

Passing Arrays
Arrays are always passed by reference.

3-22 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July2001 GFK-1283G

Querying Arrays
The following table describes the functions used to retrieve information about arrays.

Use this function to
LBound Retrieve the lower bound of an array. A runtime error is generated if the

array has no dimensions.
UBound Retrieve the upper bound of an array. A runtime error is generated if the

array has no dimensions.
ArrayDims Retrieve the number of dimensions of an array. This function returns 0 if

the array has no dimensions

Operations on Arrays
The following table describes the function that operate on arrays:

Use this
command

to

ArraySort Sort an array of integers, longs, singles, doubles, currency, Booleans,
dates, or variants.

FileList Fill an array with a list of files in a given directory.
DiskDrives Fill an array with a list of valid drive letters.
AppList Fill an array with a list of running applications.
SelectBox Display the contents of an array in a list box.
PopupMenu Display the contents of an array in a pop-up menu.
ReadIniSection Fill an array with the item names from a section in an ini file.
FileDirs Fill an array with a list of subdirectories.
Erase Erase all the elements of an array.
ReDim Establish the bounds and dimensions of an array.
Dim Declare an array.

GFK-1283G A 3-23

ArraySort (statement)

Syntax ArraySort array()

Description Sorts a single-dimensioned array in ascending order.

Comments If a string array is specified, then the routine sorts alphabetically in ascending order using case-
sensitive string comparisons. If a numeric array is specified, the ArraySort statement sorts
smaller numbers to the lowest array index locations.

The script generates a runtime error if you specify an array with more than one dimension.

When sorting an array of variants, the following rules apply:

• A runtime error is generated if any element of the array is an object.

• String is greater than any numeric type.

• Null is less than String and all numeric types.

• Empty is treated as a number with the value 0.

• String comparison is case-sensitive (this function is not affected by the Option
Compare setting).

Example This example dimensions an array and fills it with filenames using FileList, then sorts the array and
displays it in a select box.
Sub Main()

Dim f$()
FileList f$,"c:*.*"
ArraySort f$
r% = SelectBox("Files","Choose one:",f$)

End Sub

See Also ArrayDims (function); LBound (function); UBound (function).

Asc (function)

Syntax Asc(text$)

Description Returns an Integer containing the numeric code for the first character of text$.

Comments The return value is an integer between 0 and 255.

Example This example fills an array with the ASCII values of the string s components and displays the result.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
s$ = InputBox("Please enter a string.","Enter String")
If s$ = "" Then End 'Exit if no string entered.
msg1 = ""

For i = 1 To Len(s$)
msg1 = msg1 & Asc(Mid(s$,i,1)) & crlf

Next i
MsgBox "The Asc values of the string are:" & msg1

End Sub

See Also Chr, Chr$ (functions).

3-24 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July2001 GFK-1283G

AskBox$ (function)

Syntax AskBox$(prompt$ [,default$])

Description Displays a dialog box requesting input from the user and returns that input as a String.

Comments The AskBox$ function takes the following parameters:

Parameter Description
prompt$ String containing the text to be displayed above the text box. The dialog box is

sized to the appropriate width depending on the width of prompt$. A runtime
error is generated if prompt$ is Null.

default$ String containing the initial content of the text box. The user can return the
default by immediately selecting OK. A runtime error is generated if default$ is
Null.

The AskBox$ function returns a String containing the input typed by the user in the text box. A
zero-length string is returned if the user selects Cancel.

When the dialog box is displayed, the text box has the focus.

The user can type a maximum of 255 characters into the text box displayed by AskBox$.

s$ = AskBox$("Type in the filename:")

s$ = AskBox$("Type in the filename:","filename.txt")

Example This example asks the user to enter a filename and then displays what he or she has typed.
Sub Main()

s$ = AskBox$("Type in the filename:")
MsgBox "The filename was: " & s$

End Sub

See Also MsgBox (statement); AskPassword$ (function); InputBox, InputBox$ (functions);
OpenFilename$ (function); SaveFilename$ (function); SelectBox (function).

Notes: The text in the dialog box is displayed in 8-point MS Sans Serif.

GFK-1283G A 3-25

AskPassword$ (function)

Syntax AskPassword$(prompt$)

Description Returns a String containing the text that the user typed.

Comments Unlike the AskBox$ function, the user sees asterisks in place of the characters that are actually
typed. This allows the hidden input of passwords.

The prompt$ parameter is a String containing the text to appear above the text box. The dialog
box is sized to the appropriate width depending on the width of prompt$.

When the dialog box is displayed, the text box has the focus.

A maximum of 255 characters can be typed into the text box.

A zero-length string is returned if the user selects Cancel.

s$ = AskPassword$("Type in the password:")

Example Sub Main()
s$ = AskPassword$("Type in the password:")
MsgBox "The password entered is: " & s$

End Sub

See Also MsgBox (statement); AskBox$ (function); InputBox, InputBox$ (functions);
OpenFilename$ (function); SaveFilename$ (function); SelectBox (function);
AnswerBox (function).

Notes: The text in the dialog box is displayed in 8-point MS Sans Serif.

3-26 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July2001 GFK-1283G

Atn (function)

Syntax Atn(number)

Description Returns the angle (in radians) whose tangent is number.

Comments Some helpful conversions:

• Pi (3.1415926536) radians = 180 degrees.

• radian = 57.2957795131 degrees.

• degree = .0174532925 radians.

Example This example finds the angle whose tangent is 1 (45 degrees) and displays
the result.
Sub Main()

a# = Atn(1.00)
MsgBox "1.00 is the tangent of " & a# & " radians (45 degrees)."

End Sub

See Also Tan (function); Sin (function); Cos (function).

GFK-1283G 4-1

B

Basic.Capability (method)

Syntax Basic.Capability(which)

Description Returns True if the specified capability exists on the current platform; returns False otherwise.

Comments The which parameter is an Integer specifying the capability for which to test. It can be any of
the following values:

Value Returns True If the Platform Supports
1 Disk drives

2 System file attribute (ebSystem)

3 Hidden file attribute (ebHidden)

4 Volume label file attribute (ebVolume)

5 Archive file attribute (ebArchive)

6 Denormalized floating-point math

7 File locking (i.e., the Lock and Unlock statements)

8 Big endian byte ordering

Example This example tests to see whether your current platform supports disk drives and hidden file
attributes and displays the result.
Sub Main()

msg1 = "This operating system "
If Basic.Capability(1) Then

msg1 = msg1 & "supports disk drives."
Else

msg1 = msg1 & "does not support disk drives."
End If
MsgBox msg1

End Sub

See Also Cross-Platform Scripting (topic); Basic.OS (property).

4-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Basic.Eoln$ (property)

Syntax Basic.Eoln$

Description Returns a String containing the end-of-line character sequence appropriate to the current
platform.

Comments This string will be either a carriage return, a carriage return/line feed, or a line feed.

Example This example writes two lines of text in a message box.
Sub Main()

MsgBox "This is the first line of text." & Basic.Eoln$ & "This is the second
line of text."
End Sub

See Also Cross-Platform Scripting (topic); Basic.PathSeparator$ (property).

Basic.FreeMemory (property)

Syntax Basic.FreeMemory

Description Returns a Long representing the number of bytes of free memory in the script's data space.

Comments This function returns the size of the largest free block in the script's data space. Before this number
is returned, the data space is compacted, consolidating free space into a single contiguous free
block.

The script's data space contains strings and dynamic arrays.

Example This example displays free memory in a dialog box.
Sub Main()

MsgBox "The largest free memory block is: " & Basic.FreeMemory
End Sub

See Also System.TotalMemory (property); System.FreeMemory (property);
System.FreeResources (property); Basic.FreeMemory (property).

Basic.HomeDir$ (property)

Syntax Basic.HomeDir$

Description Returns a String specifying the directory containing the Basic Control Engine scripts.

Comments This method is used to find the directory in which the Basic Control Engine script files are located.

Example This example assigns the home directory to HD and displays it.
Sub Main()

hd$ = Basic.HomeDir$
MsgBox "The Basic Control Engine home directory is: " & hd$

End Sub

See Also System.WindowsDirectory$ (property).

GFK-1283G B 4-3

Basic.OS (property)

Syntax Basic.OS

Description Returns an Integer indicating the current platform.

Comments Value Constant Platform
2 ebWin32 Microsoft Windows 95, Microsoft Windows NT Workstation

(Intel, Alpha, MIPS, PowerPC), Microsoft Windows NT Server
(Intel, Alpha, MIPS, PowerPC), Microsoft Win32s running under
Windows 3.1

The value returned is not necessarily the platform under which the Basic Control Language script is
running but rather an indicator of the platform for which the script was created.

Example This example determines the operating system for which this version was created and displays the
appropriate message.
Sub Main()

Select Case Basic.OS
Case ebWin32

s = "Windows 95 or Windows NT"
Case Else

s = "not Windows 95 or Wndows NT"
End Select
MsgBox "You are currently running " & s

End Sub

See Also Cross-Platform Scripting (topic).

Basic.PathSeparator$ (property)

Syntax Basic.PathSeparator$

Description Returns a String containing the path separator appropriate for the current platform.

Comments The returned string is any one of the following characters: / (slash), \ (back slash), : (colon)

Example Sub Main()
MsgBox "The path separator for this platform is: " & Basic.PathSeparator$

End Sub

See Also Basic.Eoln$ (property); Cross-Platform Scripting (topic).

4-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Basic.Version$ (property)

Syntax Basic.Version$

Description Returns a String containing the version of Basic Control Engine.

Comments This function returns the major and minor version numbers in the format
major.minor.BuildNumber, as in "2.00.30."

Example This example displays the current version of the Basic Control Engine.
Sub Main()

MsgBox "Version " & Basic.Version$ & " of Basic Control Engine is running"
End Sub

Beep (statement)

Syntax Beep

Description Makes a single system beep.

Example This example causes the system to beep five times and displays a reminder message.
Sub Main()

For i = 1 To 5
Beep
Sleep 200

Next i
MsgBox "You have an upcoming appointment!"

End Sub

GFK-1283G B 4-5

Begin Dialog (statement)

Syntax Begin Dialog DialogName [x],[y],width,height,title$ [,[.DlgProc] [,[PicName$] [,style]]]
Dialog Statements

End Dialog

Description Defines a dialog box template for use with the Dialog statement and function.

Comments A dialog box template is constructed by placing any of the following statements between the
Begin Dialog and End Dialog statements (no other statements besides comments can
appear within a dialog box template):
Picture OptionButton OptionGroup

CancelButton Text TextBox

GroupBox DropListBox ListBox

ComboBox CheckBox PictureButton

PushButton OKButton

The Begin Dialog statement requires the following parameters:

Parameter Description
x, y Integer coordinates specifying the position of the upper left corner of the

dialog box relative to the parent window. These coordinates are in dialog units.

If either coordinate is unspecified, then the dialog box will be centered in that
direction on the parent window.

width, height Integer coordinates specifying the width and height of the dialog box (in
dialog units).

DialogName Name of the dialog box template. Once a dialog box template has been created,
a variable can be dimensioned using this name.

title$ String containing the name to appear in the title bar of the dialog box. If this
parameter specifies a zero-length string, then the name "Basic Control Engine"
is used.

.DlgProc Name of the dialog function. The routine specified by .DlgProc will be called
by the script when certain actions occur during processing of the dialog box.
(See DlgProc [prototype] for additional information about dialog
functions.)

If this omitted, then the script processes the dialog box using the default dialog
box processing behavior.

style Specifies extra styles for the dialog. It can be any of the following values:

Value Meaning
0 Dialog does not contain a title or close box.
1 Dialog contains a title and no close box.

2 (or omitted) Dialog contains both the title and close box.

4-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

The script generates an error if the dialog box template contains no controls.

A dialog box template must have at least one PushButton, OKButton, or CancelButton
statement. Otherwise, there will be no way to close the dialog box.

Dialog units are defined as ¼ the width of the font in the horizontal direction and 1/8 the height of
the font in the vertical direction.

Any number of user dialog boxes can be created, but each one must be created using a different
name as the DialogName. Only one user dialog box may be invoked at any time.

Expression Evaluation within the Dialog Box Template

The Begin Dialog statement creates the template for the dialog box. Any expression or variable
name that appears within any of the statements in the dialog box template is not evaluated until a
variable is dimensioned of type DialogName. The following example shows this behavior:

Sub Main()
MyTitle$ = "Hello, World"
Begin Dialog MyTemplate 16,32,116,64,MyTitle$

OKButton 12,40,40,14
End Dialog
MyTitle$ = "Sample Dialog"
Dim dummy As MyTemplate
rc% = Dialog(dummy)

End Sub

The above example creates a dialog box with the title "Sample Dialog".

Expressions within dialog box templates cannot reference external subroutines or functions.

All controls within a dialog box use the same font. The fonts used for text and text box control can
be changed explicitly by setting the font parameters in the Text and TextBox statements. A
maximum of 128 fonts can be used within a single dialog, although the practical limitation may be
less.

Example This example creates an exit dialog box.
Sub Main()

Begin Dialog QuitDialogTemplate 16,32,116,64,"Quit"
Text 4,8,108,8,"Are you sure you want to exit?"
CheckBox 32,24,63,8,"Save Changes",.SaveChanges
OKButton 12,40,40,14
CancelButton 60,40,40,14

End Dialog
Dim QuitDialog As QuitDialogTemplate
rc% = Dialog(QuitDialog)
Select Case rc%

Case -1
MsgBox "OK was pressed!"

Case 1
MsgBox "Cancel was pressed!"

End Select
End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement); ListBox
(statement); OKButton (statement); OptionButton (statement); OptionGroup (statement);
Picture (statement); PushButton (statement); Text (statement); TextBox (statement);
DlgProc (function).

Notes: Within user dialog boxes, the default font is 8-point MS Sans Serif.

GFK-1283G B 4-7

Boolean (data type)

Syntax Boolean

Description A data type capable of representing the logical values True and False.

Comments Boolean variables are used to hold a binary value—either True or False. Variables can be
declared as Boolean using the Dim, Public, or Private statement.

Variants can hold Boolean values when assigned the results of comparisons or the constants
True or False.

Internally, a Boolean variable is a 2-byte value holding –1 (for True) or 0 (for False).

Any type of data can be assigned to Boolean variables. When assigning, non-0 values are
converted to True, and 0 values are converted to False.

When appearing as a structure member, Boolean members require 2 bytes of storage.

When used within binary or random files, 2 bytes of storage are required.

When passed to external routines, Boolean values are sign-extended to the size of an integer on
that platform (either 16 or 32 bits) before pushing onto the stack.

There is no type-declaration character for Boolean variables.

Boolean variables that have not yet been assigned are given an initial value of False.

See Also Currency (data type); Date (data type); Double (data type); Integer (data type); Long
(data type); Object (data type); Single (data type); String (data type); Variant (data type);
DefType (statement); CBool (function); True (constant); False (constant).

ByRef (keyword)

Syntax ...,ByRef parameter,...

Description Used within the Sub...End Sub, Function...End Function, or Declare statement
to specify that a given parameter can be modified by the called routine.

Comments Passing a parameter by reference means that the caller can modify that variable's value.

Unlike the ByVal keyword, the ByRef keyword cannot be used when passing a parameter. The
absence of the ByVal keyword is sufficient to force a parameter to be passed by reference:

MySub ByVal I '<-- Pass i by value.
MySub ByRef i '<-- Illegal (will not compile).
MySub i '<-- Pass i by reference.

Example Sub Test(ByRef a As Variant)
a = 14

End Sub

Sub Main()
b = 12
Test b
MsgBox "The ByRef value is: " & b ' <-- Displays 14.

End Sub

See Also () (keyword), ByVal (keyword).

4-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ByVal (keyword)

Syntax ...ByVal parameter...

Description Forces a parameter to be passed by value rather than by reference.

Comments The ByVal keyword can appear before any parameter passed to any function, statement, or method
to force that parameter to be passed by value. Passing a parameter by value means that the caller
cannot modify that variable's value.

Enclosing a variable within parentheses has the same effect as the ByVal keyword:
Foo ByVal i 'Forces i to be passed by value.
Foo(i) 'Forces i to be passed by value.

When calling external statements and functions (that is, routines defined using the Declare
statement), the ByVal keyword forces the parameter to be passed by value regardless of the
declaration of that parameter in the Declare statement. The following example shows the effect
of the ByVal keyword used to passed an Integer to an external routine:

Declare Sub Foo Lib "MyLib" (ByRef i As Integer)

i% = 6
Foo ByVal i% 'Pass a 2-byte Integer.
Foo i% 'Pass a 4-byte pointer to an Integer.

Since the Foo routine expects to receive a pointer to an Integer, the first call to Foo will have
unpredictable results.

Example This example demonstrates the use of the ByVal keyword.
Sub Foo(a As Integer)

a = a + 1
End Sub

Sub Main()
Dim i As Integer
i = 10
Foo i
MsgBox "The ByVal value is: " & i 'Displays 11 (Foo changed the value).
Foo ByVal i
MsgBox "The ByVal value is still: " & i 'Displays 11 (Foo did not change the

value).
End Sub

See Also () (keyword), ByRef (keyword).

GFK-1283G 5-1

C

Call (statement)

Syntax Call subroutine_name [(arguments)]

Description Transfers control to the given subroutine, optionally passing the specified arguments.

Comments Using this statement is equivalent to:

subroutine_name [arguments]

Use of the Call statement is optional. The Call statement can only be used to execute
subroutines; functions cannot be executed with this statement. The subroutine to which control is
transferred by the Call statement must be declared outside of the Main procedure, as shown in
the following example.

Example This example demonstrates the use of the Call statement to pass control to another function.
Sub Example_Call(s$)
'This subroutine is declared externally to Main and displays the text
'passed in the parameter s$.
MsgBox "Call: " & s$

End Sub

Sub Main()
'This example assigns a string variable to display, then calls subroutine
'Example_Call, passing parameter S$ to be displayed in a message box
'within the subroutine.
s$ = "DAVE"
Example_Call s$
Call Example_Call("SUSAN")

End Sub

See Also Goto (statement); GoSub (statement); Declare (statement).

5-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CancelButton (statement)

Syntax CancelButton X, Y, width, height [,.Identifier]

Description Defines a Cancel button that appears within a dialog box template.

Comments This statement can only appear within a dialog box template (i.e., between the Begin Dialog
and End Dialog statements).

Selecting the Cancel button (or pressing Esc) dismisses the user dialog box, causing the Dialog
function to return 0. (Note: A dialog function can redefine this behavior.) Pressing the Esc key or
double-clicking the close box will have no effect if a dialog box does not contain a
CancelButton statement.

The CancelButton statement requires the following parameters:

Parameter Description
X, Y Integer coordinates specifying the position of the control (in dialog units)

relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

.Identifier Optional parameter specifying the name by which this control can be referenced
by statements in a dialog function (such as DlgFocus and DlgEnable). If
omitted, then the word Cancel is used.

A dialog box must contain at least one OKButton, CancelButton, or PushButton
statement; otherwise, the dialog box cannot be dismissed.

Example This example creates a sample dialog box with OK and Cancel buttons.
Sub Main()
Begin Dialog QuitDialogTemplate 16,32,116,64,"Quit"
Text 4,8,108,8,"Are you sure you want to exit?"
CheckBox 32,24,63,8,"Save Changes",.SaveChanges
OKButton 12,40,40,14
CancelButton 60,40,40,14

End Dialog
Dim QuitDialog As QuitDialogTemplate
rc% = Dialog(QuitDialog)
Select Case rc%
Case -1
MsgBox "OK was pressed!"

Case 1
MsgBox "Cancel was pressed!"

End Select
End Sub

See Also CheckBox (statement); ComboBox (statement); Dialog (function); Dialog (statement);
DropListBox (statement); GroupBox (statement); ListBox (statement); OKButton
(statement); OptionButton (statement); OptionGroup (statement); Picture (statement);
PushButton (statement); Text (statement); TextBox (statement); Begin Dialog
(statement), PictureButton (statement).

GFK-1283G C 5-3

CBool (function)

Syntax CBool(expression)

Description Converts expression to True or False, returning a Boolean value.

Comments The expression parameter is any expression that can be converted to a Boolean. A runtime error
is generated if expression is Null.

All numeric data types are convertible to Boolean. If expression is zero, then the CBool returns
False; otherwise, CBool returns True. Empty is treated as False.

If expression is a String, then CBool first attempts to convert it to a number, then converts the
number to a Boolean. A runtime error is generated if expression cannot be converted to a
number.

A runtime error is generated if expression cannot be converted to a Boolean.

Example This example uses CBool to determine whether a string is numeric or just plain text.
Sub Main()
Dim IsNumericOrDate As Boolean
s$ = 34224.54
IsNumeric = CBool(IsNumeric(s$))
If IsNumeric = True Then
MsgBox s$ & “ is either a valid number!”

Else
MsgBox s$ & “ is not a valid number!”

End If
End Sub

See Also CCur (function); CDate, CVDate (functions); CDbl (function); CInt (function); CLng
(function); CSng (function); CStr (function); CVar (function); CVErr (function); Boolean
(data type).

5-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CCur (function)

Syntax CCur(expression)

Description Converts any expression to a Currency.

Comments This function accepts any expression convertible to a Currency, including strings. A runtime
error is generated if expression is Null or a String not convertible to a number. Empty is
treated as 0.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression number to a Currency.

When used with variants, this function guarantees that the variant will be assigned a Currency
(VarType 6).

Example This example displays the value of a String converted into a Currency value.
Sub Main()

i$ = "100.44"
MsgBox "The currency value is: " & CCur(i$)

End Sub

See Also CBool (function); CDate, CVDate (functions); CDbl (function); CInt (function); CLng
(function); CSng (function); CStr (function); CVar (function); CVErr (function); Currency
(data type).

GFK-1283G C 5-5

CDate, CVDate (functions)

Syntax CDate(expression)

CVDate(expression)

Description Converts expression to a date, returning a Date value.

Comments The expression parameter is any expression that can be converted to a Date. A runtime error is
generated if expression is Null.

If expression is a String, an attempt is made to convert it to a Date using the current country
settings. If expression does not represent a valid date, then an attempt is made to convert expression
to a number. A runtime error is generated if expression cannot be represented as a date.

These functions are sensitive to the date and time formats of your computer.

The CDate and CVDate functions are identical.

Example This example takes two dates and computes the difference between them.
Sub Main()

Dim date1 As Date
Dim date2 As Date
Dim diff As Date

date1 = CDate(#1/1/1994#)
date2 = CDate("February 1, 1994")
diff = DateDiff("d",date1,date2)

MsgBox "The date difference is " & CInt(diff) & " days."
End Sub

See Also CCur (function); CBool (function); CDbl (function); CInt (function); CLng (function); CSng
(function); CStr (function); CVar (function); CVErr (function); Date (data type).

5-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CDbl (function)

Syntax CDbl(expression)

Description Converts any expression to a Double.

Comments This function accepts any expression convertible to a Double, including strings. A runtime error is
generated if expression is Null. Empty is treated as 0.0.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression number to a Double.

When used with variants, this function guarantees that the variant will be assigned a Double
(VarType 5).

Example This example displays the result of two numbers as a Double.
Sub Main()
i% = 100
j! = 123.44
MsgBox "The double value is: " & CDbl(i% * j!)

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CInt (function); CLng
(function); CSng (function); CStr (function); CVar (function); CVErr (function); Double (data
type).

ChDir (statement)

Syntax ChDir newdir$

Description Changes the current directory of the specified drive to newdir$.

This routine will not change the current drive. (See ChDrive [statement].)

Example This example saves the current directory, then changes to the root directory, displays the old and
new directories, restores the old directory, and displays it.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
save$ = CurDir$
ChDir(Basic.PathSeparator$)
MsgBox "Old directory: " & save$ & crlf & "New directory: " & CurDir$
ChDir(save$)
MsgBox "Directory restored to: " & CurDir$

End Sub

See Also ChDrive (statement); CurDir, CurDir$ (functions); Dir, Dir$ (functions); MkDir
(statement); RmDir (statement); DirList (statement).

GFK-1283G C 5-7

ChDrive (statement)

Syntax ChDrive DriveLetter$

Description Changes the default drive to the specified drive.

Comments Only the first character of DriveLetter$ is used.

DriveLetter$ is not case-sensitive.

If DriveLetter$ is empty, then the current drive is not changed.

Example This example allows the user to select a new current drive and uses ChDrive to make their choice the
new current drive.
Const crlf$ = Chr$(13) + Chr$(10)

Sub Main()
Dim d()
old$ = FileParse$(CurDir,1)
DiskDrives d

Again:
r = SelectBox("Available Drives","Select new current drive:",d)
On Error Goto Error_Trap
If r <> -1 Then ChDrive d®
MsgBox "Old Current Drive: " & old$ & crlf & "New Current Drive: " & CurDir
End

Error_Trap:
MsgBox Error(err)
Resume Again

End Sub

See Also ChDir (statement); CurDir, CurDir$ (functions); Dir, Dir$ (functions); MkDir
(statement); RmDir (statement); DiskDrives (statement).

5-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CheckBox (statement)

Syntax CheckBox X, Y, width, height, title$, .Identifier
Description Defines a check box within a dialog box template.
Comments Check box controls are either on or off, depending on the value of .Identifier.

This statement can only appear within a dialog box template (i.e., between the Begin Dialog
and End Dialog statements).
The CheckBox statement requires the following parameters:

Parameter Description
X, Y Integer coordinates specifying the position of the control (in dialog units)

relative to the upper left corner of the dialog box.
width, height Integer coordinates specifying the dimensions of the control in dialog units.
title$ String containing the text that appears within the check box. This text may

contain an ampersand character to denote an accelerator letter, such as
"&Font" for Font (indicating that the Font control may be selected by
pressing the F accelerator key).

.Identifier Name by which this control can be referenced by statements in a dialog function
(such as DlgFocus and DlgEnable). This parameter also creates an integer
variable whose value corresponds to the state of the check box (1 = checked; 0 =
unchecked). This variable can be accessed using the syntax:

DialogVariable.Identifier.
When the dialog box is first created, the value referenced by .Identifier is used to set the initial state
of the check box. When the dialog box is dismissed, the final state of the check box is placed into
this variable. By default, the .Identifier variable contains 0, meaning that the check box is
unchecked.

Example This example displays a dialog box with two check boxes in different states.
Sub Main()
Begin Dialog SaveOptionsTemplate 36,32,151,52,"Save"
GroupBox 4,4,84,40,"GroupBox"
CheckBox 12,16,67,8,"Include heading",.IncludeHeading
CheckBox 12,28,73,8,"Expand keywords",.ExpandKeywords
OKButton 104,8,40,14,.OK
CancelButton 104,28,40,14,.Cancel

End Dialog
Dim SaveOptions As SaveOptionsTemplate
SaveOptions.IncludeHeading = 1 'Check box initially on.
SaveOptions.ExpandKeywords = 0 'Check box initially off.
r% = Dialog(SaveOptions)
If r% = -1 Then
MsgBox "OK was pressed."

End If
End Sub

See Also CancelButton (statement); Dialog (function); Dialog (statement); DropListBox
(statement); GroupBox (statement); ListBox (statement); OKButton (statement);
OptionButton (statement); OptionGroup (statement); Picture (statement); PushButton
(statement); Text (statement); TextBox (statement); Begin Dialog (statement),
PictureButton (statement).

Notes: Accelerators are underlined, and the accelerator combination Alt+letter is used.

GFK-1283G C 5-9

Choose (function)

Syntax Choose(index,expression1,expression2,...,expression13)

Description Returns the expression at the specified index position.

Comments The index parameter specifies which expression is to be returned. If index is 1, then expression1 is
returned; if index is 2, then expression2 is returned, and so on. If index is less than 1 or greater than
the number of supplied expressions, then Null is returned.

The Choose function returns the expression without converting its type. Each expression is
evaluated before returning the selected one.

Example This example assigns a variable of indeterminate type to a.
Sub Main()
Dim a As Variant
Dim c As Integer
c% = 2
a = Choose(c%,"Hello, world",#1/1/94#,5.5,False)
MsgBox "Item " & c% & " is '" & a & "'" 'Displays the date passed as parameter 2.

End Sub

See Also Switch (function); IIf (function); If...Then...Else (statement); Select...Case
(statement).

5-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Chr, Chr$ (functions)

Syntax Chr[$] (Code)

Description Returns the character whose value is Code.

Comments Code must be an Integer between 0 and 255.

Chr$ returns a string, whereas Chr returns a String variant.

The Chr$ function can be used within constant declarations, as in the following example:
Const crlf = Chr$(13) + Chr$(10)

Some common uses of this function are:
Chr$(9) Tab
Chr$(13) + Chr$(10) End-of-line (carriage return, linefeed)
Chr$(26) End-of-file
Chr$(0) Null

Example Sub Main()
'Concatenates carriage return (13) and linefeed (10) to CRLF$,
'then displays a multiple-line message using CRLF$ to separate lines.
crlf$ = Chr$(13) + Chr$(10)
MsgBox "First line." & crlf$ & "Second line."
'Fills an array with the ASCII characters for ABC and displays their
'corresponding characters.
Dim a%(2)
For i = 0 To 2
a%(i) = (65 + i)

Next i
MsgBox "The first three elements of the array are: " & Chr$(a%(0)) & Chr$(a%(1))

& Chr$(a%(2))
End Sub

See Also Asc (function); Str, Str$ (functions).

GFK-1283G C 5-11

CInt (function)

Syntax CInt(expression)

Description Converts expression to an Integer.

Comments This function accepts any expression convertible to an Integer, including strings. A runtime
error is generated if expression is Null. Empty is treated as 0.

The passed numeric expression must be within the valid range for integers:

–32768 <= expression <= 32767

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as assigning a numeric
expression to an Integer. Note that integer variables are rounded before conversion.

When used with variants, this function guarantees that the expression is converted to an Integer
variant (VarType 2).

Example This example demonstrates the various results of integer manipulation with CInt.
Sub Main()

'(1) Assigns i# to 100.55 and displays its integer representation (101).
i# = 100.55
MsgBox "The value of CInt(i) = " & CInt(i#)

'(2) Sets j# to 100.22 and displays the CInt representation (100).
j# = 100.22
MsgBox "The value of CInt(j) = " & CInt(j#)

'(3) Assigns k% (integer) to the CInt sum of j# and k% and displays k% '(201).
k% = CInt(i# + j#)
MsgBox "The integer sum of 100.55 and 100.22 is: " & k%

'(4) Reassigns i# to 50.35 and recalculates k%, then displays the result
'(note rounding).

i# = 50.35
k% = CInt(i# + j#)
MsgBox "The integer sum of 50.35 and 100.22 is: " & k%

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl (function); CLng
(function); CSng (function); CStr (function); CVar (function); CVErr (function); Integer
(data type).

5-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Clipboard$ (function)

Syntax Clipboard$[()]

Description Returns a String containing the contents of the Clipboard.

Comments If the Clipboard doesn't contain text or the Clipboard is empty, then a zero-length string is returned.

Example This example puts text on the Clipboard, displays it, clears the Clipboard, and displays the
Clipboard again.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Clipboard$ "Hello out there!"
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$
Clipboard.Clear
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$

End Sub

See Also Clipboard$ (statement); Clipboard.GetText (method); Clipboard.SetText
(method).

Clipboard$ (statement)

Syntax Clipboard$ NewContent$

Description Copies NewContent$ into the Clipboard.

Example This example puts text on the Clipboard, displays it, clears the Clipboard, and displays the
Clipboard again.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Clipboard$ "Hello out there!"
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$
Clipboard.Clear
MsgBox "The text in the Clipboard is now:" & crlf & Clipboard$

End Sub

See Also Clipboard$ (function); Clipboard.GetText (method); Clipboard.SetText (method).

GFK-1283G C 5-13

Clipboard.Clear (method)

Syntax Clipboard.Clear

Description This method clears the Clipboard by removing any content.

Example This example puts text on the Clipboard, displays it, clears the Clipboard, and displays the
Clipboard again.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Clipboard$ "Hello out there!"
MsgBox "The text in the Clipboard before clearing:" & crlf & Clipboard$
Clipboard.Clear
MsgBox "The text in the Clipboard after clearing:" & crlf & Clipboard$

End Sub

Clipboard.GetFormat (method)

Syntax WhichFormat = Clipboard.GetFormat(format)

Description Returns True if data of the specified format is available in the Clipboard; returns False
otherwise.

Comments This method is used to determine whether the data in the Clipboard is of a particular format. The
format parameter is an Integer representing the format to be queried:

Format Description
1 Text
2 Bitmap
3 Metafile
8 Device-independent bitmap (DIB)
9 Color palette

Example This example checks to see whether there is any text on the Clipboard, if so, it searches the text for
a string matching what the user entered.
Option Compare Text

Sub Main()
r$ = InputBox("Enter a word to search for:","Scan Clipboard")

If Clipboard.GetFormat(1) Then
If Instr(Clipboard.GetText(1),r) = 0 Then
MsgBox """" & r & """" & " was not found in the clipboard."

Else
MsgBox """" & r & """" & " is definitely in the clipboard."

End If
Else
MsgBox "The Clipboard does not contain any text."

End If
End Sub

See Also Clipboard$ (function); Clipboard$ (statement).

5-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Clipboard.GetText (method)

Syntax text$ = Clipboard.GetText([format])

Description Returns the text contained in the Clipboard.

Comments The format parameter, if specified, must be 1.

Example This example checks to see whether there is any text on the Clipboard, if so, it searches the text for
a string matching what the user entered.
Option Compare Text

Sub Main()
r$ = InputBox("Enter a word to search for:","Scan Clipboard")

If Clipboard.GetFormat(1) Then
If Instr(Clipboard.GetText(1),r) = 0 Then
MsgBox """" & r & """" & " was not found in the clipboard."

Else
MsgBox """" & r & """" & " is definitely in the clipboard."

End If
Else
MsgBox "The Clipboard does not contain any text."

End If
End Sub

See Also Clipboard$ (statement); Clipboard$ (function); Clipboard.SetText (method).

Clipboard.SetText (method)

Syntax Clipboard.SetText data$ [,format]

Description Copies the specified text string to the Clipboard.

Comments The data$ parameter specifies the text to be copied to the Clipboard. The format parameter, if
specified, must be 1.

Example This example gets the contents of the Clipboard and uppercases it.
Sub Main()
If Not Clipboard.GetFormat(1) Then Exit Sub
Clipboard.SetText UCase(Clipboard.GetText(1)),1

End Sub

See Also Clipboard$ (statement); Clipboard.GetText (method); Clipboard$ (function).

GFK-1283G C 5-15

CLng (function)

Syntax CLng(expression)

Description Converts expression to a Long.

Comments This function accepts any expression convertible to a Long, including strings. A runtime error is
generated if expression is Null. Empty is treated as 0.

The passed expression must be within the following range:

–2147483648 <= expression <= 2147483647

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression to a Long. Note that long variables are rounded before conversion.

When used with variants, this function guarantees that the expression is converted to a Long
variant (VarType 3).

Example This example displays the results for various conversions of i and j (note rounding).
Sub Main()
i% = 100
j& = 123.666
MsgBox "The result of i * j is: " & CLng(i% * j&) 'Displays 12367.
MsgBox "The new variant type of i is: " & Vartype(CLng(i%))

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl (function); CInt
(function); CSng (function); CStr (function); CVar (function); CVErr (function); Long (data
type).

Close (statement)

Syntax Close [[#] filenumber [,[#] filenumber]...]

Description Closes the specified files.

Comments If no arguments are specified, then all files are closed.

Example This example opens four files and closes them in various combinations.
Sub Main()
Open "test1" For Output As #1
Open "test2" For Output As #2
Open "test3" For Random As #3
Open "test4" For Binary As #4
MsgBox "The next available file number is: " & FreeFile()
Close #1 'Closes file 1 only.
Close #2,#3 'Closes files 2 and 3.
Close 'Closes all remaining files(4).
MsgBox "The next available file number is: " & FreeFile()

End Sub

See Also Open (statement); Reset (statement); End (statement).

5-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ComboBox (statement)

Syntax ComboBox X,Y,width,height,ArrayVariable,.Identifier

Description This statement defines a combo box within a dialog box template.

Comments When the dialog box is invoked, the combo box will be filled with the elements from the specified
array variable.

This statement can only appear within a dialog box template (i.e., between the Begin Dialog
and End Dialog statements).

The ComboBox statement requires the following parameters:

Parameter Description
X, Y Integer coordinates specifying the position of the control (in dialog units)

relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

ArrayVariable Single-dimensioned array used to initialize the elements of the combo box. If this
array has no dimensions, then the combo box will be initialized with no elements.
A runtime error results if the specified array contains more than one dimension.

ArrayVariable can specify an array of any fundamental data type (structures are
not allowed). Null and Empty values are treated as zero-length strings.

.Identifier Name by which this control can be referenced by statements in a dialog function
(such as DlgFocus and DlgEnable). This parameter also creates a string
variable whose value corresponds to the content of the edit field of the combo
box. This variable can be accessed using the syntax:

DialogVariable.Identifier.

When the dialog box is invoked, the elements from ArrayVariable are placed into the combo box.
The .Identifier variable defines the initial content of the edit field of the combo box. When the
dialog box is dismissed, the .Identifier variable is updated to contain the current value of the edit
field.

Example This example creates a dialog box that allows the user to select a day of the week.
Sub Main()
Dim days$(6)
days$(0) = "Monday"
days$(1) = "Tuesday"
days$(2) = "Wednesday"
days$(3) = "Thursday"
days$(4) = "Friday"
days$(5) = "Saturday"
days$(6) = "Sunday"

Begin Dialog DaysDialogTemplate 16,32,124,96,"Days"
OKButton 76,8,40,14,.OK
Text 8,10,39,8,"&Weekdays:"
ComboBox 8,20,60,72,days$,.Days

End Dialog
Dim DaysDialog As DaysDialogTemplate
DaysDialog.Days = Format(Now,"dddd") 'Set to today.
r% = Dialog(DaysDialog)
MsgBox "You selected: " & DaysDialog.Days

End Sub

GFK-1283G C 5-17

See Also CancelButton (statement); CheckBox (statement); Dialog (function); Dialog (statement);
DropListBox (statement); GroupBox (statement); ListBox (statement); OKButton
(statement); OptionButton (statement); OptionGroup (statement); Picture (statement);
PushButton (statement); Text (statement); TextBox (statement); Begin Dialog
(statement), PictureButton (statement).

Command, Command$ (functions)

Syntax Command[$][()]

Description Returns the argument from the command line used to start the application.

Comments Command$ returns a string, whereas Command returns a String variant.

Example This example checks to see if any command line parameters were used. If parameters were used
they are displayed and a check is made to see if the user used the "/s" switch.
Sub Main()
cmd$ = Command

If cmd$ <> "" Then
If (InStr(cmd$,"/s")) <> 0 Then
MsgBox "Safety Mode On!"

Else
MsgBox "Safety Mode Off!"

End If
MsgBox "The command line startup options were: " & cmd$

Else
MsgBox "No command line startup options were used!"

End If
End Sub

See Also Environ, Environ$ (functions).

Comments (topic)

Comments can be added to Basic Control Engine script code in the following manner:

All text between a single quotation mark and the end of the line is ignored:
MsgBox "Hello" 'Displays a message box.

The REM statement causes the compiler to ignore the entire line:
REM This is a comment.

The Basic Control Engine supports C-style multiline comment blocks /*...*/, as shown in the
following example:
MsgBox "Before comment"
/* This stuff is all commented out.
This line, too, will be ignored.
This is the last line of the comment. */
MsgBox "After comment"

C-style comments can be nested.

5-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Comparison Operators (topic)

Syntax expression1 [< | > | <= | >= | <> | =] expression2

Description Comparison operators return True or False depending on the operator.

Comments The comparison operators are listed in the following table:

Operator Returns True If
> expression1 is greater than expression2
< expression1 is less than expression2
<= expression1 is less than or equal to expression2
>= expression1 is greater than or equal to expression2
<> expression1 is not equal to expression2
= expression1 is equal to expression2

This operator behaves differently depending on the types of the expressions, as shown in the
following table:

If one
expression is

and the other
expression is then

Numeric Numeric A numeric comparison is performed (see below).
String String A string comparison is performed (see below).
Numeric String A compile error is generated.
Variant String A string comparison is performed (see below).
Variant Numeric A variant comparison is performed (see below).

Null variant Any data type Returns Null.

Variant Variant A variant comparison is performed (see below).

String Comparisons
If the two expressions are strings, then the operator performs a text comparison between the two
string expressions, returning True if expression1 is less than expression2. The text comparison is
case-sensitive if Option Compare is Binary; otherwise, the comparison is case-insensitive.

When comparing letters with regard to case, lowercase characters in a string sort greater than
uppercase characters, so a comparison of "a" and "A" would indicate that "a" is greater than "A".

Numeric Comparisons
When comparing two numeric expressions, the less precise expression is converted to be the same
type as the more precise expression.

GFK-1283G C 5-19

Dates are compared as doubles. This may produce unexpected results as it is possible to have two
dates that, when viewed as text, display as the same date when, in fact, they are different. This can
be seen in the following example:
Sub Main()
Dim date1 As Date
Dim date2 As Date

date1 = Now
date2 = date1 + 0.000001 'Adds a fraction of a second.

MsgBox date2 = date1 'Prints False (the dates are different).
MsgBox date1 & "," & date2 'Prints two dates that are the same.

End Sub

Variant Comparisons
When comparing variants, the actual operation performed is determined at execution time
according to the following table:

If one
variant is

and the other
variant is then

Numeric Numeric The variants are compared as numbers.
String String The variants are compared as text.

Numeric String The number is less than the string.
Null Any other data type Null.

Numeric Empty The number is compared with 0.
String Empty The string is compared with a zero-length string.

Example Sub Main()

'Tests two literals and displays the result.
If 5 < 2 Then
MsgBox "5 is less than 2."

Else
MsgBox "5 is not less than 2."

End If

'Tests two strings and displays the result.
If "This" < "That" Then
MsgBox "'This' is less than 'That'."

Else
MsgBox "'That' is less than 'This'."

End If
End Sub

See Also Operator Precedence (topic); Is (operator); Like (operator); Option Compare (statement).

5-20 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Const (statement)

Syntax Const name [As type] = expression [,name [As type] = expression]...

Description Declares a constant for use within the current script.

Comments The name is only valid within the current Basic Control Engine script. Constant names must follow
these rules:

1. Must begin with a letter.

2. May contain only letters, digits, and the underscore character.

3. Must not exceed 80 characters in length.

4. Cannot be a reserved word.

Constant names are not case-sensitive.

The expression must be assembled from literals or other constants. Calls to functions are not
allowed except calls to the Chr$ function, as shown below:

Const s$ = "Hello, there" + Chr(44)

Constants can be given an explicit type by declaring the name with a type-declaration character, as
shown below:

Const a% = 5 'Constant Integer whose value is 5
Const b# = 5 'Constant Double whose value is 5.0
Const c$ = "5" 'Constant String whose value is "5"
Const d! = 5 'Constant Single whose value is 5.0
Const e& = 5 'Constant Long whose value is 5

The type can also be given by specifying the As type clause:
Const a As Integer = 5 'Constant Integer whose value is 5
Const b As Double = 5 'Constant Double whose value is 5.0
Const c As String = "5" 'Constant String whose value is "5"
Const d As Single = 5 'Constant Single whose value is 5.0
Const e As Long = 5 'Constant Long whose value is 5

You cannot specify both a type-declaration character and the type:
Const a% As Integer = 5 'THIS IS ILLEGAL.

If an explicit type is not given, then the Basic Control Engine script will choose the most imprecise
type that completely represents the data, as shown below:

Const a = 5 'Integer constant
Const b = 5.5 'Single constant
Const c = 5.5E200 'Double constant

GFK-1283G C 5-21

Constants defined within a Sub or Function are local to that subroutine or function. Constants
defined outside of all subroutines and function can be used anywhere within that script. The
following example demonstrates the scoping of constants:
Const DefFile = "default.txt"

Sub Test1
Const DefFile = "foobar.txt"
MsgBox DefFile 'Displays "foobar.txt".

End Sub

Sub Test2
MsgBox DefFile 'Displays "default.txt".

End Sub

Example This example displays the declared constants in a dialog box (crlf produces a new line in the dialog
box).
Const crlf = Chr$(13) + Chr$(10)
Const greeting As String = "Hello, "
Const question1 As String = "How are you today?"

Sub Main()
r = InputBox("Please enter your name","Enter Name")
MsgBox greeting & r & crlf & crlf & question1

End Sub

See Also DefType (statement); Let (statement); = (statement); Constants (topic).

5-22 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Constants (topic)

Constants are variables that cannot change value during script execution. The following constants
are predefined by the Basic Control Engine:
True False Empty

Pi ebRightButton ebLeftButton

ebPortrait ebLandscape ebDOS

ebWindows ebMaximized ebMinimized

ebRestored ebNormal ebReadOnly

ebHidden ebSystem ebVolume

ebDirectory ebArchive ebNone

ebOKOnly ebOKCancel ebAbortRetryIgnore

ebYesNoCancel ebYesNo ebRetryCancel

ebCritical ebQuestion ebExclamation

ebInformation ebApplicationModal ebDefaultButton1

ebDefaultButton2 ebDefaultButton3 ebSystemModal

ebOK ebCancel ebAbort

ebRetry ebIgnore ebYes

ebNo ebWin16 ebWin32

ebDOS16 ebSunOS ebSolaris

ebHPUX ebUltrix ebIrix

ebAIX ebNetWare ebMacintosh

ebOS2 ebEmpty ebNull

ebInteger ebLong ebSingle

ebDouble ebDate ebBoolean

ebObject ebDataObject ebVariant

ebDOS32 ebCurrency

You can define your own constants using the Const statement.

GFK-1283G C 5-23

Cos (function)

Syntax Cos(angle)

Description Returns a Double representing the cosine of angle.

Comments The angle parameter is a Double specifying an angle in radians.

Example This example assigns the cosine of pi/4 radians (45 degrees) to C# and displays its value.
Sub Main()
c# = Cos(3.14159 / 4)
MsgBox "The cosine of 45 degrees is: " & c#

End Sub

See Also Tan (function); Sin (function); Atn (function).

CreateObject (function)

Syntax CreateObject(class$)

Description Creates an OLE automation object and returns a reference to that object.

Comments The class$ parameter specifies the application used to create the object and the type of object being
created. It uses the following syntax:

"application.class",

where application is the application used to create the object and class is the type of the object to
create.

At runtime, CreateObject looks for the given application and runs that application if found.
Once the object is created, its properties and methods can be accessed using the dot syntax (e.g.,
object.property = value).

There may be a slight delay when an automation server is loaded (this depends on the speed with
which a server can be loaded from disk). This delay is reduced if an instance of the automation
server is already loaded.

Examples This first example instantiates Microsoft Excel. It then uses the resulting object to make Excel
visible and then close Excel.
Sub Main()
Dim Excel As Object

On Error GoTo Trap1 'Set error trap.
Set Excel = CreateObject("excel.application") 'Instantiate object.
Excel.Visible = True 'Make Excel visible.
Sleep 5000 'Wait 5 seconds.
Excel.Quit 'Close Excel.
Exit Sub 'Exit before error trap.

Trap1:
MsgBox "Can't create Excel object." 'Display error message.
Exit Sub 'Reset error handler.

End Sub

5-24 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

This second example uses CreateObject to instantiate a Visio object. It then uses the resulting
object to create a new document.
Sub Main()
Dim Visio As Object
Dim doc As Object
Dim page As Object
Dim shape As Object

On Error Goto NO_VISIO
Set Visio = CreateObject("visio.application") 'Create Visio object.
On Error Goto 0

Set doc = Visio.Documents.Add("") 'Create a new document.
Set page = doc.Pages(1) 'Get first page.
Set shape = page.DrawRectangle(1,1,4,4) 'Create a new shape.
shape.text = "Hello, world." 'Set text within shape.
End

NO_VISIO:
MsgBox "'Visio' cannot be found!",ebExclamation

End Sub

See Also GetObject (function); Object (data type).

GFK-1283G C 5-25

CSng (function)

Syntax CSng(expression)

Description Converts expression to a Single.

Comments This function accepts any expression convertible to a Single, including strings. A runtime error is
generated if expression is Null. Empty is treated as 0.0.

A runtime error results if the passed expression is not within the valid range for Single.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression to a Single.

When used with variants, this function guarantees that the expression is converted to a Single
variant (VarType 4).

Example This example displays the value of a String converted to a Single.
Sub Main()
s$ = "100"
MsgBox "The single value is: " & CSng(s$)

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl (function); CInt
(function); CLng (function); CStr (function); CVar (function); CVErr (function); Single (data
type).

5-26 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CStr (function)

Syntax CStr(expression)

Description Converts expression to a String.

Comments Unlike Str$ or Str, the string returned by CStr will not contain a leading space if the expression
is positive. Further, the CStr function correctly recognizes thousands and decimal separators for
your locale.

Different data types are converted to String in accordance with the following rules:

Data Type CStr Returns
Any numeric type A string containing the number without the leading space for positive values.
Date A string converted to a date using the short date format.
Boolean A string containing either "True" or "False".

Null variant A runtime error.

Empty variant A zero-length string.

Example This example displays the value of a Double converted to a String.
Sub Main()
s# = 123.456
MsgBox "The string value is: " & CStr(s#)

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl (function); CInt
(function); CLng (function); CSng (function); CVar (function); CVErr (function); String (data
type); Str, Str$ (functions).

GFK-1283G C 5-27

CurDir, CurDir$ (functions)

Syntax CurDir[$][(drive$)]

Description Returns the current directory on the specified drive. If no drive$ is specified or drive$ is zero-
length, then the current directory on the current drive is returned.

Comments CurDir$ returns a String, whereas CurDir returns a String variant.

The script generates a runtime error if drive$ is invalid.

Example This example saves the current directory, changes to the next higher directory, and displays the
change; then restores the original directory and displays the change. Note: The dot designators will
not work with all platforms.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
save$ = CurDir
ChDir ("..")
MsgBox "Old directory: " & save$ & crlf & "New directory: " & CurDir
ChDir (save$)
MsgBox "Directory restored to: " & CurDir

End Sub

See Also ChDir (statement); ChDrive (statement); Dir, Dir$ (functions); MkDir (statement); RmDir
(statement).

Currency (data type)

Syntax Currency

Description A data type used to declare variables capable of holding fixed-point numbers with 15 digits to the
left of the decimal point and 4 digits to the right.

Comments Currency variables are used to hold numbers within the following range:

–922,337,203,685,477.5808 <= currency <= 922,337,203,685,477.5807

Due to their accuracy, Currency variables are useful within calculations involving money.

The type-declaration character for Currency is @.

Storage
Internally, currency values are 8-byte integers scaled by 10000. Thus, when appearing within a
structure, currency values require 8 bytes of storage. When used with binary or random files, 8
bytes of storage are required.

See Also Date (data type); Double (data type); Integer (data type); Long (data type); Object (data
type); Single (data type); String (data type); Variant (data type); Boolean (data type);
DefType (statement); CCur (function).

5-28 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CVar (function)

Syntax CVar(expression)

Description Converts expression to a Variant.

Comments This function is used to convert an expression into a variant. Use of this function is not necessary
(except for code documentation purposes) because assignment to variant variables automatically
performs the necessary conversion:
Sub Main()
Dim v As Variant
v = 4 & "th" 'Assigns "4th" to v.
MsgBox "You came in: " & v
v = CVar(4 & "th") 'Assigns "4th" to v.
MsgBox "You came in: " & v

End Sub

Example This example converts an expression into a Variant.
Sub Main()
Dim s As String
Dim a As Variant
s = CStr("The quick brown fox ")
msg1 = CVar(s & "jumped over the lazy dog.")
MsgBox msg1

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl (function); CInt
(function); CLng (function); CSng (function); CStr (function); CVErr (function); Variant
(data type).

GFK-1283G C 5-29

CVErr (function)

Syntax CVErr(expression)

Description Converts expression to an error.

Comments This function is used to convert an expression into a user-defined error number.

A runtime error is generated under the following conditions:

If expression is Null.

If expression is a number outside the legal range for errors, which is as follows:

0 <= expression <= 65535

If expression is Boolean.

If expression is a String that can't be converted to a number within the legal range.

Empty is treated as 0.

Example This example simulates a user-defined error and displays the error number.
Sub Main()
MsgBox "The error is: " & CStr(CVErr(2046))

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl (function); CInt
(function); CLng (function); CSng (function); CStr (function); CVar (function), IsError
(function).

GFK-1283G 6-1

D

Date (data type)

Syntax Date

Description A data type capable of holding date and time values.

Comments Date variables are used to hold dates within the following range:

January 1, 100 00:00:00 <= date <= December 31, 9999 23:59:59

–6574340 <= date <= 2958465.99998843

Internally, dates are stored as 8-byte IEEE double values. The integer part holds the number of days
since December 31, 1899, and the fractional part holds the number of seconds as a fraction of the
day. For example, the number 32874.5 represents January 1, 1990 at 12:00:00.

When appearing within a structure, dates require 8 bytes of storage. Similarly, when used with
binary or random files, 8 bytes of storage are required.

There is no type-declaration character for Date.

Date variables that haven't been assigned are given an initial value of 0 (i.e., December 31, 1899).

Date Literals

Literal dates are specified using number signs, as shown below:
Dim d As Date
d = #January 1, 1990#

The interpretation of the date string (i.e., January 1, 1990 in the above example) occurs at
runtime, using the current country settings. This is a problem when interpreting dates such as
1/2/1990. If the date format is M/D/Y, then this date is January 2, 1990. If the date format is
D/M/Y, then this date is February 1, 1990. To remove any ambiguity when interpreting dates, use
the universal date format:

date_variable = #YY/MM/DD HH:MM:SS#

The following example specifies the date June 3, 1965 using the universal date format:
Dim d As Date
d = #1965/6/3 10:23:45#

See Also Currency (data type); Double (data type); Integer (data type); Long (data type); Object
(data type); Single (data type); String (data type); Variant (data type); Boolean (data
type); DefType (statement); CDate, CVDate (functions).

6-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Date, Date$ (functions)

Syntax Date[$][()]

Description Returns the current system date.

Comments The Date$ function returns the date using the short date format. The Date function returns the
date as a Date variant.

Use the Date/Date$ statements to set the system date.

The date is returned using the current short date format (defined by the operating system).

Important

The Date$ function does not properly support international formats. Use the Date function
instead.

Example This example saves the current date to TheDate$, then changes the date and displays the result.
It then changes the date back to the saved date and displays the restored date.
' When run with non-US Regional or International settings,
' the two message boxes may display different dates.
' One set of International Date Formats which shows this is:
' Short Date Format: dd.M.yy (ex: 02.01.97 for 2 January 1997)
' Long Date Format: ddddd, dd M, yyyy (Thursday, 02 January 1997)
Sub Main()

' Save the current date
TheDate$ = Date

' Set the date to one that may confuse the library functions
' (month and day < 12)
Date = "01/02/97" ' 1 Feb 1997
MsgBox(Format$ (Date$, "dddddd")) ' This may show 2 Jan
MsgBox(Format$ (Date, "dddddd")) ' This may show 1 Feb

' Restore the date
Date = TheDate$

End Sub

See Also CDate, CVDate (functions); Time, Time$ (functions); Date, Date$ (statements); Now
(function); Format, Format$ (functions); DateSerial (function); DateValue (function).

GFK-1283G D 6-3

Date, Date$ (statements)

Syntax Date[$] = newdate

Description Sets the system date to the specified date.

Comments The Date$ statement requires a string variable using one of the following formats:

MM-DD-YYYY
MM-DD-YY
MM/DD/YYYY
MM/DD/YY,

where MM is a two-digit month between 1 and 31, DD is a two-digit day between 1 and 31, and
YYYY is a four-digit year between 1/1/100 and 12/31/9999.

The Date statement converts any expression to a date, including string and numeric values. Unlike
the Date$ statement, Date recognizes many different date formats, including abbreviated and full
month names and a variety of ordering options. If newdate contains a time component, it is
accepted, but the time is not changed. An error occurs if newdate cannot be interpreted as a valid
date.

Example This example saves the current date to Cdate$, then changes the date and displays the result. It then
changes the date back to the saved date and displays the result.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
TheDate$ = Date
Date = "01/01/95"
MsgBox "Saved date is: " & TheDate$ & crlf & "Changed date is: " & Date
Date = TheDate$
MsgBox "Restored date to: " & TheDate$

End Sub

See Also Date, Date$ (functions); Time, Time$ (statements).

Platform
Notes

If you do not have permission to change the date, runtime error 70 will be generated.

6-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DateAdd (function)

Syntax DateAdd(interval$, increment&, date)

Description Returns a Date variant representing the sum of date and a specified number (increment) of time
intervals (interval$).

Comments This function adds a specified number (increment) of time intervals (interval$) to the specified date
(date). The following table describes the parameters to the DateAdd function:

Parameter Description
interval$ String expression indicating the time interval used in the addition.

increment Integer indicating the number of time intervals you wish to add. Positive
values result in dates in the future; negative values result in dates in the past.

date Any expression convertible to a Date.

The interval$ parameter specifies what unit of time is to be added to the given date. It can be any of
the following:

Time Interval
"y" Day of the year
"yyyy" Year
"d" Day
"m" Month
"q" Quarter
"ww" Week
"h" Hour
"n" Minute
"s" Second
"w" Weekday

To add days to a date, you may use either day, day of the year, or weekday, as they are all equivalent
("d", "y", "w").

The DateAdd function will never return an invalid date/time expression. The following example
adds two months to December 31, 1992:
s# = DateAdd("m",2,"December 31,1992")

In this example, s is returned as the double-precision number equal to "February 28, 1993",
not "February 31, 1993".

A runtime error is generated if you try to subtract a time interval that is larger than the time value of
the date.

GFK-1283G D 6-5

Example This example gets today's date using the Date$ function; adds three years, two months, one week, and
two days to it; and then displays the result in a dialog box.
Sub Main()

Dim sdate$
sdate$ = Date$
NewDate# = DateAdd("yyyy",4,sdate$)
NewDate# = DateAdd("m",3,NewDate#)
NewDate# = DateAdd("ww",2,NewDate#)
NewDate# = DateAdd("d",1,NewDate#)
s$ = "Four years, three months, two weeks, and one day from now will be: "
s$ = s$ & Format(NewDate#,"long date")
MsgBox s$

End Sub

See Also DateDiff (function).

6-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DateDiff (function)

Syntax DateDiff(interval$,date1,date2)

Description Returns a Date variant representing the number of given time intervals between date1 and date2.

Comments The following table describes the parameters:

Parameter Description
interval$ String expression indicating the specific time interval you wish to find the

difference between.

date1 Any expression convertible to a Date. An example of a valid date/time string
would be "January 1, 1994".

date2 Any expression convertible to a Date. An example of a valid date/time string
would be "January 1, 1994".

The following table lists the valid time interval strings and the meanings of each. The Format$
function uses the same expressions.

Time Interval
"y" Day of the year
"yyyy" Year
"d" Day
"m" Month
"q" Quarter
"ww" Week
"h" Hour
"n" Minute
"s" Second
"w" Weekday

To find the number of days between two dates, you may use either day or day of the year, as they
are both equivalent ("d", "y").

The time interval weekday ("w") will return the number of weekdays occurring between date1 and
date2, counting the first occurrence but not the last. However, if the time interval is week ("ww"),
the function will return the number of calendar weeks between date1 and date2, counting the
number of Sundays. If date1 falls on a Sunday, then that day is counted, but if date2 falls on a
Sunday, it is not counted.

The DateDiff function will return a negative date/time value if date1 is a date later in time than
date2.

GFK-1283G D 6-7

Example This example gets today's date and adds ten days to it. It then calculates the difference between the
two dates in days and weeks and displays the result.
Sub Main()

today$ = Format(Date$,"Short Date")
NextWeek = Format(DateAdd("d",14,today$),"Short Date")
DifDays# = DateDiff("d",today$,NextWeek)
DifWeek# = DateDiff("w",today$,NextWeek)
s$ = "The difference between " & today$ & " and " & NextWeek
s$ = s$ & " is: " & DifDays# & " days or " & DifWeek# & " weeks"
MsgBox s$

End Sub

See Also DateAdd (function).

DatePart (function)

Syntax DatePart(interval$,date)

Description Returns an Integer representing a specific part of a date/time expression.

Comments The DatePart function decomposes the specified date and returns a given date/time element. The
following table describes the parameters:

Parameter Description
interval$ String expression that indicates the specific time interval you wish to identify

within the given date.
date Any expression convertible to a Date. An example of a valid date/time string

would be "January 1, 1995".

The following table lists the valid time interval strings and the meanings of each. The Format$
function uses the same expressions.

Time Interval
"y" Day of the year
"yyyy" Year
"d" Day
"m" Month
"q" Quarter
"ww" Week
"h" Hour
"n" Minute
"s" Second
"w" Weekday

The weekday expression starts with Sunday as 1 and ends with Saturday as 7.

6-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example This example displays the parts of the current date.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
today$ = Date$
qt = DatePart("q",today$)
yr = DatePart("yyyy",today$)
mo = DatePart("m",today$)
wk = DatePart("ww",today$)
da = DatePart("d",today$)
s$ = "The current date is:" & crlf & crlf
s$ = s$ & "Quarter : " & qt & crlf
s$ = s$ & "Year : " & yr & crlf
s$ = s$ & "Month : " & mo & crlf
s$ = s$ & "Week : " & wk & crlf
s$ = s$ & "Day : " & da & crlf
MsgBox s$

End Sub

See Also Day (function); Minute (function); Second (function); Month (function); Year (function);
Hour (function); Weekday (function), Format (function).

DateSerial (function)

Syntax DateSerial(year,month,day)

Description Returns a Date variant representing the specified date.

Comments The DateSerial function takes the following parameters:

Parameter Description
year Integer between 100 and 9999

month Integer between 1 and 12

day Integer between 1 and 31

Example This example converts a date to a real number representing the serial date in days since December
30, 1899 (which is day 0).
Sub Main()

tdate# = DateSerial(1993,08,22)
MsgBox "The DateSerial value for August 22, 1993, is: " & tdate#

End Sub

See Also DateValue (function); TimeSerial (function); TimeValue (function); CDate, CVDate
(functions).

GFK-1283G D 6-9

DateValue (function)

Syntax DateValue(date_string$)

Description Returns a Date variant representing the date contained in the specified string argument.

Example This example returns the day of the month for today's date.
Sub Main()

tdate$ = Date$
tday$ = DateValue(tdate$)
MsgBox "The date value of " & tdate$ & " is: " & tday$

End Sub

See Also TimeSerial (function); TimeValue (function); DateSerial (function).

Platform(s) All.

Day (function)

Syntax Day(date)

Description Returns the day of the month specified by date.

Comments The value returned is an Integer between 0 and 31 inclusive.

The date parameter is any expression that converts to a Date.

Example This example gets the current date and then displays it.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
CurDate = Now()
MsgBox "Today is day " & Day(CurDate) & " of the month." & crlf & "Tomorrow is

day " & Day(CurDate + 1) & "."
End Sub

See Also Minute (function); Second (function); Month (function); Year (function); Hour (function);
Weekday (function); DatePart (function).

6-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DDB (function)

Syntax DDB(Cost, Salvage, Life, Period)

Description Calculates the depreciation of an asset for a specified Period of time using the double-declining
balance method.

Comments The double-declining balance method calculates the depreciation of an asset at an accelerated rate.
The depreciation is at its highest in the first period and becomes progressively lower in each
additional period. DDB uses the following formula to calculate the depreciation:

DDB = ((Cost – Total_depreciation_from_all_other_periods) * 2) / Life

The DDB function uses the following parameters:

Parameter Description
Cost Double representing the initial cost of the asset

Salvage Double representing the estimated value of the asset at the end of its
predicted useful life

Life Double representing the predicted length of the asset's useful life

Period Double representing the period for which you wish to calculate the
depreciation

Life and Period must be expressed using the same units. For example, if Life is expressed in
months, then Period must also be expressed in months.

Example This example calculates the depreciation for capital equipment that cost $10,000, has a service life
of ten years, and is worth $2,000 as scrap. The dialog box displays the depreciation for each of the
first four years.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
s$ = "Depreciation Table" & crlf & crlf
For yy = 1 To 4

CurDep# = DDB(10000.0,2000.0,10,yy)
s$ = s$ & "Year " & yy & " : " & CurDep# & crlf

Next yy
MsgBox s$

End Sub

See Also Sln (function); SYD (function).

GFK-1283G D 6-11

DDEExecute (statement)

Syntax DDEExecute channel, command$

Description Executes a command in another application.

Comments The DDEExecute statement takes the following parameters:

Parameter Description
channel Integer containing the DDE channel number returned from DDEInitiate.

An error will result if channel is invalid.

command$ String containing the command to be executed. The format of command$
depends on the receiving application.

If the receiving application does not execute the instructions, a runtime error is generated.

Example This example sets and retrieves a cell in an Excel spreadsheet. The command strings being created
contain Microsoft Excel macro commands and may be concatenated and sent as one string to speed
things up.
Sub Main()

Dim cmd,q,ch%
q = Chr(34)' Define quotation marks.

id = Shell("c:\excel5\excel.exe",3) 'Start Excel.
ch% = DDEInitiate("Excel","Sheet1")

On Error Resume Next
cmd = "[ACTIVATE(" & q &"SHEET1" & q & ")]" 'Activate worksheet.
DDEExecute ch%,cmd

DDEPoke ch%,"R1C1","$1000.00" 'Send value to cell.
'Retrieve value and display.
MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%,"R1C1")

DDETerminate ch%
Msgbox "Finished..."

End Sub

See Also DDEInitiate (function); DDEPoke (statement); DDERequest, DDERequest$ (functions);
DDESend (function); DDETerminate (statement); DDETerminateAll (statement);
DDETimeout (statement).

6-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DDEInitiate (function)

Syntax DDEInitiate(application$, topic$)

Description Initializes a DDE link to another application and returns a unique number subsequently used to
refer to the open DDE channel.

Comments The DDEInitiate statement takes the following parameters:

Parameter Description
application$ String containing the name of the application (the server) with which a DDE

conversation will be established.

topic$ String containing the name of the topic for the conversation. The possible
values for this parameter are described in the documentation for the server
application.

This function returns 0 if the link cannot be established. This will occur under any of the following
circumstances:

• The specified application is not running.

• The topic was invalid for that application.

• Memory or system resources are insufficient to establish the DDE link.

Example This example sets and retrieves a cell in an Excel spreadsheet.
Sub Main()

Dim cmd,q,ch%
q = Chr(34)' Define quotation marks.

id = Shell("c:\excel5\excel.exe",3) 'Start Excel.
ch% = DDEInitiate("Excel","Sheet1")

On Error Resume Next
cmd = "[ACTIVATE(" & q &"SHEET1" & q & ")]" 'Activate worksheet.
DDEExecute ch%,cmd

DDEPoke ch%,"R1C1","$1000.00" 'Send value to cell.
'Retrieve value and display.
MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%,"R1C1")

DDETerminate ch%
Msgbox "Finished..."

End Sub

See Also DDEExecute (statement); DDEPoke (statement); DDERequest, DDERequest$ (functions);
DDESend (function); DDETerminate (statement); DDETerminateAll (statement);
DDETimeout (statement).

GFK-1283G D 6-13

DDEPoke (statement)

Syntax DDEPoke channel, DataItem, value

Description Sets the value of a data item in the receiving application associated with an open DDE link.

Comments The DDEPoke statement takes the following parameters:

Parameter Description
channel Integer containing the DDE channel number returned from DDEInitiate.

An error will result if channel is invalid.

DataItem Data item to be set. This parameter can be any expression convertible to a
String. The format depends on the server.

value The new value for the data item. This parameter can be any expression
convertible to a String. The format depends on the server. A runtime error is
generated if value is Null.

Example This example sets and retrieves a cell in an Excel spreadsheet.
Sub Main()

Dim cmd,q,ch%
q = Chr(34)' Define quotation marks.

id = Shell("c:\excel5\excel.exe",3) 'Start Excel.
ch% = DDEInitiate("Excel","Sheet1")

On Error Resume Next
cmd = "[ACTIVATE(" & q &"SHEET1" & q & ")]" 'Activate worksheet.
DDEExecute ch%,cmd

DDEPoke ch%,"R1C1","$1000.00" 'Send value to cell.
'Retrieve value and display.
MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%,"R1C1")

DDETerminate ch%
Msgbox "Finished..."

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDERequest, DDERequest$
(functions); DDESend (function); DDETerminate (statement); DDETerminateAll
(statement); DDETimeout (statement).

6-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DDERequest, DDERequest$ (functions)

Syntax DDERequest[$](channel,DataItem$)

Description Returns the value of the given data item in the receiving application associated with the open DDE
channel.

Comments DDERequest$ returns a String, whereas DDERequest returns a String variant.

The DDERequest/DDERequest$ functions take the following parameters:

Parameter Description
channel Integer containing the DDE channel number returned from DDEInitiate.

An error will result if channel is invalid.

DataItem$ String containing the name of the data item to request. The format for this
parameter depends on the server.

The format for the returned value depends on the server.

Example This example sets and retrieves a cell in an Excel spreadsheet.
Sub Main()

Dim cmd,q,ch%
q = Chr(34)' Define quotation marks.

id = Shell("c:\excel5\excel.exe",3) 'Start Excel.
ch% = DDEInitiate("Excel","Sheet1")

On Error Resume Next
cmd = "[ACTIVATE(" & q &"SHEET1" & q & ")]" 'Activate worksheet.
DDEExecute ch%,cmd

DDEPoke ch%,"R1C1","$1000.00" 'Send value to cell.
'Retrieve value and display.
MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%,"R1C1")

DDETerminate ch%
Msgbox "Finished..."

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement); DDESend
(function); DDETerminate (statement); DDETerminateAll (statement); DDETimeout
(statement).

GFK-1283G D 6-15

DDESend (statement)

Syntax DDESend application$, topic$, DataItem, value

Description Initiates a DDE conversation with the server as specified by application$ and topic$ and sends that
server a new value for the specified item.

Comments The DDESend statement takes the following parameters:

Parameter Description
application$ String containing the name of the application (the server) with which a DDE

conversation will be established.

topic$ String containing the name of the topic for the conversation. The possible
values for this parameter are described in the documentation for the server
application.

DataItem Data item to be set. This parameter can be any expression convertible to a
String. The format depends on the server.

value New value for the data item. This parameter can be any expression convertible
to a String. The format depends on the server. A runtime error is generated if
value is Null.

The DDESend statement performs the equivalent of the following statements:
ch% = DDEInitiate(application$,topic$)
DDEPoke ch%,item,data
DDETerminate ch%

Example This example sets the content of the first cell in an Excel spreadsheet.
Sub Main()

Dim cmd,ch%
id = Shell("c:\excel5\excel.exe",3) 'Start Excel.

On Error Goto ExcelError
DDESend "Excel","Sheet1","R1C1","Payroll For August 1995"
Msgbox "Finished..."
Exit Sub

ExcelError:
MsgBox "Error sending data to Excel."
Exit Sub 'Reset error handler.

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement); DDERequest,
DDERequest$ (functions); DDETerminate (statement); DDETerminateAll (statement);
DDETimeout (statement).

6-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DDETerminate (statement)

Syntax DDETerminate channel

Description Closes the specified DDE channel.

Comments The channel parameter is an Integer containing the DDE channel number returned from
DDEInitiate. An error will result if channel is invalid.

All open DDE channels are automatically terminated when the script ends.

Example This example sets and retrieves a cell in an Excel spreadsheet.
Sub Main()

Dim cmd,q,ch%
q = Chr(34)' Define quotation marks.

id = Shell("c:\excel5\excel.exe",3) 'Start Excel.
ch% = DDEInitiate("Excel","Sheet1")

On Error Resume Next
cmd = "[ACTIVATE(" & q &"SHEET1" & q & ")]" 'Activate worksheet.
DDEExecute ch%,cmd

DDEPoke ch%,"R1C1","$1000.00" 'Send value to cell.
'Retrieve value and display.
MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%,"R1C1")

DDETerminate ch%
Msgbox "Finished..."

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement); DDERequest,
DDERequest$ (functions); DDESend (function); DDETerminateAll (statement);
DDETimeout (statement).

GFK-1283G D 6-17

DDETerminateAll (statement)

Syntax DDETerminateAll

Description Closes all open DDE channels.

Comments All open DDE channels are automatically terminated when the script ends.

Example This example sets and retrieves a cell in an Excel spreadsheet.
Sub Main()

Dim cmd,q,ch%
q = Chr(34)' Define quotation marks.

id = Shell("c:\excel5\excel.exe",3) 'Start Excel.
ch% = DDEInitiate("Excel","Sheet1")

On Error Resume Next
cmd = "[ACTIVATE(" & q &"SHEET1" & q & ")]" 'Activate worksheet.
DDEExecute ch%,cmd

DDEPoke ch%,"R1C1","$1000.00" 'Send value to cell.
'Retrieve value and display.
MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%,"R1C1")

DDETerminateAll
Msgbox "Finished..."

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement); DDERequest,
DDERequest$ (functions); DDESend (function); DDETerminate (statement); DDETimeout
(statement).

6-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DDETimeout (statement)

Syntax DDETimeout milliseconds

Description Sets the number of milliseconds that must elapse before any DDE command times out.

Comments The milliseconds parameter is a Long and must be within the following range:

0 <= milliseconds <= 2,147,483,647

The default is 10,000 (10 seconds).

Example This example sets and retrieves a cell in an Excel spreadsheet. The timeout has been set to wait 2
seconds for Excel to respond before timing out.
Sub Main()

Dim cmd,q,ch%
q = Chr(34)' Define quotation marks.

id = Shell("c:\excel5\excel.exe",3) 'Start Excel.
ch% = DDEInitiate("Excel","Sheet1")
DDETimeout 2000 'Wait 2 seconds for Excel to respond

On Error Resume Next
cmd = "[ACTIVATE(" & q &"SHEET1" & q & ")]" 'Activate worksheet.
DDEExecute ch%,cmd

DDEPoke ch%,"R1C1","$1000.00" 'Send value to cell.
'Retrieve value and display.
MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%,"R1C1")

DDETerminate ch%
Msgbox "Finished..."

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement); DDERequest,
DDERequest$ (functions); DDESend (function); DDETerminate (statement);
DDETerminateAll (statement).

GFK-1283G D 6-19

Declare (statement)

Syntax Declare {Sub | Function} name[TypeChar] [CDecl | Pascal | System | StdCall]
_

[Lib "LibName$" [Alias "AliasName$"]] [([ParameterList])] [As type]

Where ParameterList is a comma-separated list of the following (up to 30 parameters are allowed):

[Optional] [ByVal | ByRef] ParameterName[()] [As ParameterType]

Description Creates a prototype for either an external routine or a Basic Control Engine routine that occurs later
in the source module or in another source module.

Comments Declare statements must appear outside of any Sub or Function declaration.

Declare statements are only valid during the life of the script in which they appear.

The Declare statement uses the following parameters:

Parameter Description
name Any valid script name. When you declare functions, you can include a type-

declaration character to indicate the return type.

This name is specified as a normal script keyword—i.e., it does not appear
within quotes.

TypeChar An optional type-declaration character used when defining the type of data
returned from functions. It can be any of the following characters: #, !, $, @, %,
or &. For external functions, the @ character is not allowed.

Type-declaration characters can only appear with function declarations, and
take the place of the As type clause.

Note: Currency data cannot be returned from external functions. Thus, the
@ type-declaration character cannot be used when declaring external functions.

CDecl Optional keyword indicating that the external subroutine or function uses the C
calling convention. With C routines, arguments are pushed right to left on the
stack and the caller performs stack cleanup.

Pascal Optional keyword indicating that this external subroutine or function uses the
Pascal calling convention. With Pascal routines, arguments are pushed left to
right on the stack and the called function performs stack cleanup.

System Optional keyword indicating that the external subroutine or function uses the
System calling convention. With System routines, arguments are pushed right
to left on the stack, the caller performs stack cleanup, and the number of
arguments is specified in the AL register.

StdCall Optional keyword indicating that the external subroutine or function uses the
StdCall calling convention. With StdCall routines, arguments are pushed right
to left on the stack and the called function performs stack cleanup.

LibName$ Must be specified if the routine is external. This parameter specifies the name
of the library or code resource containing the external routine and must appear
within quotes.

The LibName$ parameter can include an optional path specifying the exact
location of the library or code resource..

6-20 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

AliasName$ Alias name that must be given to provide the name of the routine if the name
parameter is not the routine's real name. For example, the following two
statements declare the same routine:
Declare Function GetCurrentTime Lib "user" () As Integer

Declare Function GetTime Lib "user" Alias "GetCurrentTime" _
As Integer

Use an alias when the name of an external routine conflicts with the name of an
internal routine or when the external routine name contains invalid characters.

The AliasName$ parameter must appear within quotes.

type Indicates the return type for functions.

For external functions, the valid return types are: Integer, Long, String,
Single, Double, Date, Boolean, and data objects.

Note: Currency, Variant, fixed-length strings, arrays, user-defined types,
and OLE automation objects cannot be returned by external functions.

Optional Keyword indicating that the parameter is optional. All optional parameters
must be of type Variant. Furthermore, all parameters that follow the first
optional parameter must also be optional.

If this keyword is omitted, then the parameter being defined is required when
calling this subroutine or function.

ByVal Optional keyword indicating that the caller will pass the parameter by value.
Parameters passed by value cannot be changed by the called routine.

ByRef Optional keyword indicating that the caller will pass the parameter by
reference. Parameters passed by reference can be changed by the called
routine. If neither ByVal or ByRef are specified, then ByRef is assumed.

ParameterName Name of the parameter, which must follow the script's naming conventions:

1. Must start with a letter.

2. May contain letters, digits, and the underscore character (_). Punctuation
and type-declaration characters are not allowed. The exclamation point (!)
can appear within the name as long as it is not the last character, in which
case it is interpreted as a type-declaration character.

3. Must not exceed 80 characters in length.

Additionally, ParameterName can end with an optional type-declaration
character specifying the type of that parameter (that is, any of the following
characters: %, &, !, #, @).

() Indicates that the parameter is an array.

ParameterType Specifies the type of the parameter (e.g., Integer, String, Variant, and
so on). The As ParameterType clause should only be included if
ParameterName does not contain a type-declaration character.

GFK-1283G D 6-21

In addition to the default data types, ParameterType can specify any user-
defined structure, data object, or OLE automation object. If the data type of the
parameter is not known in advance, then the Any keyword can be used. This
forces the compiler to relax type checking, allowing any data type to be passed
in place of the given argument.
Declare Sub Convert Lib "mylib" (a As Any)

The Any data type can only be used when passing parameters to external
routines.

Passing Parameters
By default, arguments are passed by reference. Many external routines require a value rather than a
reference to a value. The ByVal keyword does this. For example, this C routine

void MessageBeep(int);

would be declared as follows:
Declare Sub MessageBeep Lib "user" (ByVal n As Integer)

As an example of passing parameters by reference, consider the following C routine which requires
a pointer to an integer as the third parameter:

int SystemParametersInfo(int,int,int *,int);

This routine would be declared as follows (notice the ByRef keyword in the third parameter):
Declare Function SystemParametersInfo Lib "user" (ByVal action As Integer,_

ByVal uParam As Integer,ByRef pInfo As Integer,_
ByVal updateINI As Integer) As Integer

Strings can be passed by reference or by value. When they are passed by reference, a pointer to the
internal handle to the string is passed. When they are passed by value, the script passes a 32-bit
pointer to a null-terminated string (that is., a C string). If an external routine modifies a passed
string variable, then there must be sufficient space within the string to hold the returned characters.
This can be accomplished using the Space function, as shown in the following example:
Declare Sub GetWindowsDirectory Lib "kernel" (ByVal dirname$,ByVal length%)

:
Dim s As String
s = Space(128)
GetWindowsDirectory s,128

Another alternative to ensure that a string has sufficient space is to declare the string with a fixed
length:
Declare Sub GetWindowsDirectory Lib "kernel" (ByVal dirname$,ByVal length%)

:
Dim s As String * 128 'Declare a fixed-length string.
GetWindowsDirectory s,len(s) 'Pass it to an external subroutine.

Calling Conventions with External Routines
For external routines, the argument list must exactly match that of the referenced routine. When
calling an external subroutine or function, the script needs to be told how that routine expects to
receive its parameters and who is responsible for cleanup of the stack.

The following table describes which calling conventions are supported on which platform, and
indicates what the default calling convention is when no explicit calling convention is specified in
the Declare statement.

6-22 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Passing Null Pointers
To pass a null pointer to an external procedure, declare the parameter that is to receive the null
pointer as type Any, then pass a long value 0 by value:

Declare Sub Foo Lib "sample" (ByVal lpName As Any)

Sub Main()
Sub Foo "Hello" 'Pass a 32-bit pointer to a null-terminated string
Sub Foo ByVal 0& 'Pass a null pointer

End Sub

Passing Data to External Routines
The following table shows how the different data types are passed to external routines:

Data Type Is Passed As
ByRef Boolean A 32-bit pointer to a 2-byte value containing –1 or 0.
ByVal Boolean A 2-byte value containing –1 or 0.
ByVal Integer A 32-bit pointer to a 2-byte short integer.
ByRef Integer A 2-byte short integer.
ByVal Long A 32-bit pointer to a 4-byte long integer.
ByRef Long A 4-byte long integer.
ByRef Single A 32-bit pointer to a 4-byte IEEE floating-point value (a float).
ByVal Single A 4-byte IEEE floating-point value (a float).
ByRef Double A 32-bit pointer to an 8-byte IEEE floating-point value (a double).
ByVal Double An 8-byte IEEE floating-point value (a double).
ByVal String A 32-bit pointer to a null-terminated string. With strings containing

embedded nulls (Chr$(0)), it is not possible to determine which null
represents the end of the string. Therefore, the first null is considered the
string terminator.

An external routine can freely change the content of a string. It cannot,
however, write beyond the end of the null terminator.

ByRef String A 32-bit pointer to a 2-byte internal value representing the string. This
value can only be used by external routines written specifically for the
Basic Control Engine.

ByRef Date A 32-bit pointer to an 8-byte IEEE floating-point value (a double).
ByVal Date An 8-byte IEEE floating-point value (a double).
ByRef Currency A 32-bit pointer to an 8-byte integer scaled by 10000.
ByVal Currency An 8-byte integer scaled by 10000.
ByRef Variant A 32-bit pointer to a 16-byte internal variant structure. This structure

contains a 2-byte type (the same as that returned by the VarType
function), followed by 6 bytes of slop (for alignment), followed by 8 bytes
containing the value.

ByVal Variant A 16-byte variant structure. This structure contains a 2-byte type (the same
as that returned by the VarType function), followed by 6 bytes of slop
(for alignment), followed by 8 bytes containing the value.

GFK-1283G D 6-23

ByVal Object For data objects, a 32-bit pointer to a 4-byte unsigned long integer. This
value can only be used by external routines written specifically for the
Basic Control Engine.

For OLE automation objects, a 32-bit pointer to an LPDISPATCH handle
is passed.

ByRef Object For data objects, a 32-bit pointer to a 4-byte unsigned long integer that
references the object. This value can only be used by external routines
written specifically for the Basic Control Engine.

For OLE automation objects, a 32-bit pointer to a 4-byte internal ID is
passed. This value can only be used by external routines written
specifically for the Basic Control Engine.

User-defined type A 32-bit pointer to the structure. User-defined types can only be passed by
reference.

It is important to remember that structures in Basic Control Engine scripts
are packed on 2-byte boundaries, meaning that the individual structure
members may not be aligned consistently with similar structures declared
in C.

Arrays A 32-bit pointer to a packed array of elements of the given type. Arrays
can only be passed by reference.

Dialogs Dialogs cannot be passed to external routines.

Only variable-length strings can be passed to external routines; fixed-length strings are
automatically converted to variable-length strings.

The Basic Control Engine passes data to external functions consistent with that routine's prototype
as defined by the Declare statement. There is one exception to this rule: you can override ByRef
parameters using the ByVal keyword when passing individual parameters. The following example
shows a number of different ways to pass an Integer to an external routine called Foo:

Declare Sub Foo Lib "MyLib" (ByRef i As Integer)

Sub Main
Dim i As Integer
i = 6
Foo 6 'Passes a temporary integer (value 6) by reference
Foo i 'Passes variable "i" by reference
Foo (i) 'Passes a temporary integer (value 6) by reference
Foo i + 1 'Passes temporary integer (value 7) by reference
Foo ByVal i'Passes i by value

End Sub

The above example shows that the only way to override passing a value by reference is to use the
ByVal keyword.

Note

Use caution when using the ByVal keyword in this way. The external routine Foo expects to
receive a pointer to an Integer—a 32-bit value; using ByVal causes the Basic Control Engine
to pass the Integer by value—a 16-bit value. Passing data of the wrong size to any external
routine will have unpredictable results.

6-24 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example Declare Function IsLoaded% Lib "Kernel" Alias "GetModuleHandle" (ByVal KName$)

Declare Function GetProfileString Lib "Kernel" (ByVal SName$,ByVal KName$,ByVal
Def$,ByVal Ret$,ByVal Size%) As Integer

Sub Main()
SName$ = "Intl" 'Win.ini section name.
KName$ = "sCountry" 'Win.ini country setting.
ret$ = String(255,0) 'Initialize return string.

If GetProfileString(SName$,KName$,"",ret$,Len(ret$)) Then
MsgBox "Your country setting is: " & ret$

Else
MsgBox "There is no country setting in your win.ini file."

End If

If IsLoaded("Progman") Then
MsgBox "Progman is loaded."

Else
MsgBox "Progman is not loaded."

End If
End Sub

See Also Call (statement), Sub...End Sub (statement), Function...End Function (statement).

Notes: Under Win32, eternal routines are contained in DLLs. The libraries containing the routines are
loaded when the routine is called for the first time (that is, not when the script is loaded). This
allows a script to reference external DLLs that potentially do not exist.

All the Win32 API routines are contained in DLLs, such as "user32", "kernel32", and "gdi32". The
file extension ".exe" is implied if another extension is not given.

The Pascal and StdCall calling conventions are identical on Win32 platforms. Furthermore,
on this platform, the arguments are passed using C ordering regardless of the calling convention --
right to left on the stack.

If the libname$ parameter does not contain an explicit path to the DLL, the following search will be
performed for the DLL (in this order):

1. The directory containing the Basic Control Engine scripts

2. The current directory

3. The Windows system directory

4. The Windows directory

5. All directories listed in the path environment variable

If the first character of aliasname$ is #, then the remainder of the characters specify the ordinal
number of the routine to be called. For example, the following two statements are equivalent (under
Win32, GetCurrentTime is defined as GetTickCount, ordinal 300, in kernel32.dll):
Declare Function GetTime Lib "kernel32.dll" Alias "GetTickCount" () As Long

Declare Function GetTime Lib "kernel32.dll" Alias "#300" () As Long

GFK-1283G D 6-25

DefType (statement)

Syntax DefInt letterrange
DefLng letterrange
DefStr letterrange
DefSng letterrange
DefDbl letterrange
DefCur letterrange
DefObj letterrange
DefVar letterrange
DefBool letterrange
DefDate letterrange

Description Establishes the default type assigned to undeclared or untyped variables.

Comments The DefType statement controls automatic type declaration of variables. Normally, if a variable is
encountered that hasn't yet been declared with the Dim, Public, or Private statement or does
not appear with an explicit type-declaration character, then that variable is declared implicitly as a
variant (DefVar A–Z). This can be changed using the DefType statement to specify starting
letter ranges for type other than integer. The letterrange parameter is used to specify starting letters.
Thus, any variable that begins with a specified character will be declared using the specified Type.

The syntax for letterrange is:

letter [-letter] [,letter [-letter]]...

DefType variable types are superseded by an explicit type declaration using either a type-
declaration character or the Dim, Public, or Private statement.

The DefType statement only affects how the Basic Control Engine compiles scripts and has no
effect at runtime.

The DefType statement can only appear outside all Sub and Function declarations.

The following table describes the data types referenced by the different variations of the DefType
statement:

Statement Data Type
DefInt Integer

DefLng Long

DefStr String

DefSng Single

DefDbl Double

DefCur Currency

DefObj Object

DefVar Variant

DefBool Boolean

DefDate Date

6-26 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example DefStr a-m
DefLng n-r
DefSng s-u
DefDbl v-w
DefInt x-z

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a = 100.52
n = 100.52
s = 100.52
v = 100.52
x = 100.52
msg1 = "The values are:" & crlf & crlf
msg1 = msg1 & "(String) a: " & a & crlf
msg1 = msg1 & "(Long) n: " & n & crlf
msg1 = msg1 & "(Single) s: " & s & crlf
msg1 = msg1 & "(Double) v: " & v & crlf
msg1 = msg1 & "(Integer) x: " & x & crlf
MsgBox msg1

End Sub

See Also Currency (data type); Date (data type); Double (data type); Long (data type); Object (data
type); Single (data type); String (data type); Variant (data type); Boolean (data type);
Integer (data type).

GFK-1283G D 6-27

Dialog (function)

Syntax Dialog(DialogVariable [,[DefaultButton] [,Timeout]])

Description Displays the dialog box associated with DialogVariable, returning an Integer indicating which
button was clicked.

Comments The function returns any of the following values:
-1 The OK button was clicked.
0 The Cancel button was clicked.
>0 A push button was clicked. The returned number represents which button was clicked

based on its order in the dialog box template (1 is the first push button, 2 is the second
push button, and so on).

The Dialog function accepts the following parameters:

Parameter Description
DialogVariable Name of a variable that has previously been dimensioned as a user dialog box.

This is accomplished using the Dim statement:
Dim MyDialog As MyTemplate

All dialog variables are local to the Sub or Function in which they are
defined. Private and public dialog variables are not allowed.

DefaultButton An Integer specifying which button is to act as the default button in the
dialog box. The value of DefaultButton can be any of the following:
-2 This value indicates that there is no default button.
-1 This value indicates that the OK button, if present, should be

used as the default.
0 This value indicates that the Cancel button, if present, should

be used as the default.
>0 This value indicates that the Nth button should be used as the

default. This number is the index of a push button within the
dialog box template.

If DefaultButton is not specified, then -1 is used. If the number specified by
DefaultButton does not correspond to an existing button, then there will be no
default button.

The default button appears with a thick border and is selected when the user
presses Enter on a control other than a push button.

Timeout An Integer specifying the number of milliseconds to display the dialog box
before automatically dismissing it. If TimeOut is not specified or is equal to 0,
then the dialog box will be displayed until dismissed by the user.

If a dialog box has been dismissed due to a timeout, the Dialog function
returns 0.

6-28 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example This example displays an abort/retry/ignore disk error dialog box.
Sub Main()

Begin Dialog DiskErrorTemplate 16,32,152,48,"Disk Error"
Text 8,8,100,8,"The disk drive door is open."
PushButton 8,24,40,14,"Abort",.Abort
PushButton 56,24,40,14,"Retry",.Retry
PushButton 104,24,40,14,"Ignore",.Ignore

End Dialog
Dim DiskError As DiskErrorTemplate
r% = Dialog(DiskError,3,0)
MsgBox "You selected button: " & r%

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(statement); DropListBox (statement); GroupBox (statement); ListBox (statement);
OKButton (statement); OptionButton (statement); OptionGroup (statement); Picture
(statement); PushButton (statement); Text (statement); TextBox (statement); Begin
Dialog (statement), PictureButton (statement).

Dialog (statement)

Syntax Dialog DialogVariable [,[DefaultButton] [,Timeout]]

Description Same as the Dialog function, except that the Dialog statement does not return a value. (See
Dialog [function].)

Example This example displays an Abort/Retry/Ignore disk error dialog box.
Sub Main()

Begin Dialog DiskErrorTemplate 16,32,152,48,"Disk Error"
Text 8,8,100,8,"The disk drive door is open."
PushButton 8,24,40,14,"Abort",.Abort
PushButton 56,24,40,14,"Retry",.Retry
PushButton 104,24,40,14,"Ignore",.Ignore

End Dialog
Dim DiskError As DiskErrorTemplate
Dialog DiskError,3,0

End Sub

See Also Dialog (function).

GFK-1283G D 6-29

Dim (statement)

Syntax Dim name [(<subscripts>)] [As [New] type] [,name [(<subscripts>)] [As [New] type]]...

Description Declares a list of local variables and their corresponding types and sizes.

Comments If a type-declaration character is used when specifying name (such as %, @, &, $, or !), the optional
[As type] expression is not allowed. For example, the following are allowed:

Dim Temperature As Integer
Dim Temperature%

The subscripts parameter allows the declaration of dynamic and fixed arrays. The subscripts
parameter uses the following syntax:

[lower to] upper [,[lower to] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds of the array. If
lower is not specified, then the lower bound as specified by Option Base is used (or 1 if no
Option Base statement has been encountered). The Basic Control Engine supports a maximum
of 60 array dimensions.

The total size of an array (not counting space for strings) is limited to 64K.

Dynamic arrays are declared by not specifying any bounds:
Dim a()

The type parameter specifies the type of the data item being declared. It can be any of the following
data types: String, Integer, Long, Single, Double, Currency, Object, data object,
built-in data type, or any user-defined data type.

A Dim statement within a subroutine or function declares variables local to that subroutine or
function. If the Dim statement appears outside of any subroutine or function declaration, then that
variable has the same scope as variables declared with the Private statement.

Fixed-Length Strings
Fixed-length strings are declared by adding a length to the String type-declaration character:

Dim name As String * length

where length is a literal number specifying the string's length.

Implicit Variable Declaration
If the Basic Control Engine encounters a variable that has not been explicitly declared with Dim,
then the variable will be implicitly declared using the specified type-declaration character (#, %, @,
$, or &). If the variable appears without a type-declaration character, then the first letter is
matched against any pending Def Type statements, using the specified type if found. If no
DefType statement has been encountered corresponding to the first letter of the variable name, then
Variant is used.

Creating New Objects
The optional New keyword is used to declare a new instance of the specified data object. This
keyword can only be used with data object types. Furthermore, this keyword cannot be used when
declaring arrays.

6-30 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

At runtime, the application or extension that defines that object type is notified that a new object is
being defined. The application responds by creating a new physical object (within the appropriate
context) and returning a reference to that object, which is immediately assigned to the variable
being declared.
When that variable goes out of scope (That is, the Sub or Function procedure in which the
variable is declared ends), the application is notified. The application then performs some
appropriate action, such as destroying the physical object.

Initial Values
All declared variables are given initial values, as described in the following table:

Data Type Initial Value
Integer 0

Long 0

Double 0.0

Single 0.0

Date December 31, 1899 00:00:00

Currency 0.0

Boolean False

Object Nothing

Variant Empty

String "" (zero-length string)
User-defined type Each element of the structure is given an initial value, as described above.
Arrays Each element of the array is given an initial value, as described above

. Naming Conventions
Variable names must follow these naming rules:
1. Must start with a letter.
2. May contain letters, digits, and the underscore character (_); punctuation is not allowed. The

exclamation point (!) can appear within the name as long as it is not the last character, in
which case it is interpreted as a type-declaration character.

3. The last character of the name can be any of the following type-declaration characters: #, @, %,
!, &, and $.

4. Must not exceed 80 characters in length.
5. Cannot be a reserved word.

Examples The following examples use the Dim statement to declare various variable types.
Sub Main()

Dim i As Integer
Dim l& 'long
Dim s As Single
Dim d# 'double
Dim c$ 'string
Dim MyArray(10) As Integer '10 element integer array
Dim MyStrings$(2,10) '2-10 element string arrays
Dim Filenames$(5 To 10) '6 element string array
Dim Values(1 To 10,100 To 200) '111 element variant array

End Sub

See Also Redim (statement); Public (statement); Private (statement); Option Base (statement).

GFK-1283G D 6-31

Dir, Dir$ (functions)

Syntax Dir$[(filespec$ [,attributes])]

Description Returns a String containing the first or next file matching filespec$.

If filespec$ is specified, then the first file matching that filespec$ is returned. If filespec$ is not
specified, then the next file matching the initial filespec$ is returned.

Comments Dir$ returns a String, whereas Dir returns a String variant.

The Dir$/Dir functions take the following parameters:

Parameter Description
filespec$ String containing a file specification.

If this parameter is specified, then Dir$ returns the first file matching this file
specification. If this parameter is omitted, then the next file matching the initial
file specification is returned.

If no path is specified in filespec$, then the current directory is used.

attributes Integer specifying attributes of files you want included in the list, as described
below. If omitted, then only the normal, read-only, and archive files are returned.

An error is generated if Dir$ is called without first calling it with a valid filespec$.

If there is no matching filespec$, then a zero-length string is returned.

Wildcards
The filespec$ argument can include wildcards, such as * and ?. The * character matches any
sequence of zero or more characters, whereas the ? character matches any single character.
Multiple *'s and ?'s can appear within the expression to form complete searching patterns. The
following table shows some examples:

This pattern Matches these files Doesn't match these files
S.TXT SAMPLE.TXT

GOOSE.TXT
SAMS.TXT

SAMPLE
SAMPLE.DAT

C*T.TXT CAT.TXT CAP.TXT
ACATS.TXT

C*T CAT
CAP.TXT

CAT.DOC

C?T CAT
CUT

CAT.TXT
CAPIT
CT

* (All files)

6-32 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Attributes
You can control which files are included in the search by specifying the optional attributes
parameter. The Dir, Dir$ functions always return all normal, read-only, and archive files
(ebNormal Or ebReadOnly Or ebArchive). To include additional files, you can specify
any combination of the following attributes (combined with the Or operator):

Constant Value Includes
ebNormal 0 Normal, Read-only, and archive files
ebHidden 2 Hidden files
ebSystem 4 System files
ebVolume 8 Volume label
ebDirectory 16 DOS subdirectories

Example This example uses Dir to fill a SelectBox with the first 10 directory entries.
Const crlf = Chr$(13) + Chr$(10)
Option Base 1

Sub Main()
Dim a$(10)
i% = 1
a(i%) = Dir("*.*")

While (a(i%) <> "") and (i% < 10)
i% = i% + 1
a(i%) = Dir

Wend

r = SelectBox("Top 10 Directory Entries",,a)
End Sub

See Also ChDir (statement); ChDrive (statement); CurDir, CurDir$ (functions); MkDir (statement);
RmDir (statement); FileList (statement).

GFK-1283G D 6-33

DiskDrives (statement)

Syntax DiskDrives array()

Description Fills the specified String or Variant array with a list of valid drive letters.

Comments The array() parameter specifies either a zero- or a one-dimensioned array of strings or variants.
The array can be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new number of elements. If
there are no elements, then the array will be redimensioned to contain no dimensions. You can use
the LBound, UBound, and ArrayDims functions to determine the number and size of the new
array's dimensions.

If the array is fixed, each array element is first erased, then the new elements are placed into the
array. If there are fewer elements than will fit in the array, then the remaining elements are
initialized to zero-length strings (for String arrays) or Empty (for Variant arrays). A runtime
error results if the array is too small to hold the new elements.

Example This example builds and displays an array containing the first three available disk drives.
Sub Main()

Dim drive$()
DiskDrives drive$
r% = SelectBox("Available Disk Drives",,drive$)

End Sub

See Also ChDrive (statement); DiskFree (function).

DiskFree (function)

Syntax DiskFree&([drive$])

Description Returns a Long containing the free space (in bytes) available on the specified drive.

Comments If drive$ is zero-length or not specified, then the current drive is assumed.

Only the first character of the drive$ string is used.

Example This example uses DiskFree to set the value of i and then displays the result in a message box.
Sub Main()

s$ = "c"
i# = DiskFree(s$)
MsgBox "Free disk space on drive '" & s$ & "' is: " & i#

End Sub

See Also ChDrive (statement); DiskDrives (statement).

6-34 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DlgControlId (function)

Syntax DlgControlId(ControlName$)

Description Returns an Integer containing the index of the specified control as it appears in the dialog box
template.

Comments The first control in the dialog box template is at index 0, the second is at index 1, and so on.

The ControlName$ parameter contains the name of the .Identifier parameter associated with that
control in the dialog box template.

The Basic Control Engine statements and functions that dynamically manipulate dialog box
controls identify individual controls using either the .Identifier name of the control or the control's
index. Using the index to refer to a control is slightly faster but results in code that is more difficult
to maintain.

Example This example uses DlgControlId to verify which control was triggered and branches the dynamic
dialog script accordingly.
Function DlgProc(ControlName$,Action%,SuppValue%) As Integer

If Action% = 2 Then
'Enable the next three controls.
If DlgControlId(ControlName$) = 2 Then

For i = 3 to 5
DlgEnable i,DlgValue("CheckBox1")

Next i
DlgProc = 1 'Don't close the dialog box.

End If
ElseIf Action% = 1 Then

'Set initial state upon startup
For i = 3 to 5

DlgEnable i,DlgValue("CheckBox1")
Next i

End If
End Function

Sub Main()
Begin Dialog UserDialog ,,180,96,"Untitled",.DlgProc

OKButton 132,8,40,14
CancelButton 132,28,40,14
CheckBox 24,16,72,8,"Click Here",.CheckBox1
CheckBox 36,32,60,8,"Sub Option 1",.CheckBox2
CheckBox 36,44,72,8,"Sub Option 2",.CheckBox3
CheckBox 36,56,60,8,"Sub Option 3",.CheckBox4
CheckBox 24,72,76,8,"Main Option 2",.CheckBox5

End Dialog
Dim d As UserDialog
Dialog d

End Sub

See Also DlgEnable (function); DlgEnable (statement); DlgFocus (function); DlgFocus
(statement); DlgListBoxArray (function); DlgListBoxArray (statement);
DlgSetPicture (statement); DlgText (statement); DlgText (function); DlgValue
(function); DlgValue (statement); DlgVisible (statement); DlgVisible (function).

GFK-1283G D 6-35

DlgEnable (function)

Syntax DlgEnable(ControlName$ | ControlIndex)

Description Returns True if the specified control is enabled; returns False otherwise.

Comments Disabled controls are dimmed and cannot receive keyboard or mouse input.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the ControlIndex parameter, a control can
be referred to using its index in the dialog box template (0 is the first control in the template, 1 is
the second, and so on).

You cannot disable the control with the focus.

Example This example checks the status of a checkbox at the end of the dialog procedure and notifies the
user accordingly.
Function DlgProc(ControlName$,Action%,SuppValue%) As Integer

If Action% = 2 Then
'Enable the next three controls.
If DlgControlId(ControlName$) = 2 Then

For i = 3 to 5
DlgEnable i,DlgValue("CheckBox1")

Next i
DlgProc = 1 'Don't close the dialog box.

End If
ElseIf Action% = 1 Then

'Set initial state upon startup
For i = 3 to 5

DlgEnable i,DlgValue("CheckBox1")
Next i

End If

If DlgEnable(i) = True Then
MsgBox "You do not have the required disk space.",ebExclamation,"Insufficient

Disk Space"
End If

End Function

Sub Main()
Begin Dialog UserDialog ,,180,96,"Untitled",.DlgProc

OKButton 132,8,40,14
CancelButton 132,28,40,14
CheckBox 24,16,72,8,"Click Here",.CheckBox1
CheckBox 36,32,60,8,"Sub Option 1",.CheckBox2
CheckBox 36,44,72,8,"Sub Option 2",.CheckBox3
CheckBox 36,56,60,8,"Sub Option 3",.CheckBox4
CheckBox 24,72,76,8,"Main Option 2",.CheckBox5

End Dialog
Dim d As UserDialog
Dialog d

End Sub

See Also DlgControl (statement); DlgEnable (statement); DlgFocus (function); DlgFocus
(statement); DlgListBoxArray (function); DlgListBoxArray (statement);
DlgSetPicture (statement); DlgText (statement); DlgText (function); DlgValue
(function); DlgValue (statement); DlgVisible (statement); DlgVisible (function).

6-36 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DlgEnable (statement)

Syntax DlgEnable {ControlName$ | ControlIndex} [,isOn]

Description Enables or disables the specified control.

Comments Disabled controls are dimmed and cannot receive keyboard or mouse input.

The isOn parameter is an Integer specifying the new state of the control. It can be any of the
following values:

0 The control is disabled.

1 The control is enabled.

Omitted Toggles the control between enabled and disabled.

Option buttons can be manipulated individually (by specifying an individual option button) or as a
group (by specifying the name of the option group).

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. Alternatively, by specifying the ControlIndex parameter, a
control can be referred to using its index in the dialog box template (0 is the first control in the
template, 1 is the second, and so on).

Example This example uses DlgEnable to turn on/off various dialog options.
Function DlgProc(ControlName$,Action%,SuppValue%) As Integer

If Action% = 2 Then
'Enable the next three controls.
If DlgControlId(ControlName$) = 2 Then

For i = 3 to 5
DlgEnable i,DlgValue("CheckBox1")

Next i
DlgProc = 1 'Don't close the dialog box.

End If
ElseIf Action% = 1 Then

'Set initial state upon startup
For i = 3 to 5

DlgEnable i,DlgValue("CheckBox1")
Next i

End If
End Function

Sub Main()
Begin Dialog UserDialog ,,180,96,"Untitled",.DlgProc

OKButton 132,8,40,14
CancelButton 132,28,40,14
CheckBox 24,16,72,8,"Click Here",.CheckBox1
CheckBox 36,32,60,8,"Sub Option 1",.CheckBox2
CheckBox 36,44,72,8,"Sub Option 2",.CheckBox3
CheckBox 36,56,60,8,"Sub Option 3",.CheckBox4
CheckBox 24,72,76,8,"Main Option 2",.CheckBox5

End Dialog
Dim d As UserDialog
Dialog d

End Sub

See Also DlgControl (statement); DlgEnable (function); DlgFocus (function); DlgFocus
(statement); DlgListBoxArray (function); DlgListBoxArray (statement);
DlgSetPicture (statement); DlgText (statement); DlgText (function); DlgValue
(function); DlgValue (statement); DlgVisible (statement); DlgVisible (function).

GFK-1283G D 6-37

DlgFocus (function)

Syntax DlgFocus$[()]

Description Returns a String containing the name of the control with the focus.

Comments The name of the control is the .Identifier parameter associated with the control in the dialog box
template.

Example This code fragment makes sure that the control being disabled does not currently have the focus
(otherwise, a runtime error would occur).
Sub Main()

If DlgFocus = "Files" Then 'Does it have the focus?
DlgFocus "OK" 'Change the focus to another control.

End If
DlgEnable "Files",False 'Now we can disable the control.

End Sub

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement); DlgFocus
(statement); DlgListBoxArray (function); DlgListBoxArray (statement);
DlgSetPicture (statement); DlgText (statement); DlgText (function); DlgValue
(function); DlgValue (statement); DlgVisible (statement); DlgVisible (function).

6-38 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DlgFocus (statement)

Syntax DlgFocus ControlName$ | ControlIndex

Description Sets focus to the specified control.

Comments A runtime error results if the specified control is hidden, disabled, or nonexistent.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the ControlIndex parameter, a control can
be referred to using its index in the dialog box template (0 is the first control in the template, 1 is
the second, and so on).

Example This code fragment makes sure the user enters a correct value. If not, the control returns focus back
to the TextBox for correction.
Function DlgProc(ControlName$,Action%,SuppValue%) As Integer

If Action% = 2 and ControlName$ = "OK" Then
If IsNumeric(DlgText$("TextBox1")) Then

Msgbox "Duly Noted."
Else

Msgbox "Sorry, you must enter a number."
DlgFocus "TextBox1"
DlgProc = 1

End If
End If

End Function

Sub Main()
Dim ListBox1$()
Begin Dialog UserDialog ,,112,74,"Untitled",.DlgProc

TextBox 12,20,88,12,.TextBox1
OKButton 12,44,40,14
CancelButton 60,44,40,14
Text 12,11,88,8,"Enter Desired Salary:",.Text1

End Dialog
Dim d As UserDialog
Dialog d

End Sub

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgListBoxArray (function); DlgListBoxArray (statement);
DlgSetPicture (statement); DlgText (statement); DlgText (function); DlgValue
(function); DlgValue (statement); DlgVisible (statement); DlgVisible (function).

GFK-1283G D 6-39

DlgListBoxArray (function)

Syntax DlgListBoxArray({ControlName$ | ControlIndex}, ArrayVariable)

Description Fills a list box, combo box, or drop list box with the elements of an array, returning an Integer
containing the number of elements that were actually set into the control.

Comments The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the ControlIndex parameter, a control can
be referred to using its index in the dialog box template (0 is the first control in the template, 1 is
the second, and so on).

The ArrayVariable parameter specifies a single-dimensioned array used to initialize the elements of
the control. If this array has no dimensions, then the control will be initialized with no elements. A
runtime error results if the specified array contains more than one dimension. ArrayVariable can
specify an array of any fundamental data type (structures are not allowed). Null and Empty
values are treated as zero-length strings.

Example This dialog function refills an array with files.
Function DlgProc(ControlName$,Action%,SuppValue%) As Integer

If Action% = 1 Then
Dim NewFiles$() 'Create a new dynamic array.
FileList NewFiles$,"c:*.*" 'Fill the array with files.
r% = DlgListBoxArray("Files",NewFiles$) 'Set items in the list box.
DlgValue "Files",0 'Set the selection to the first item.
DlgProc = 1 'Don't close the dialog box.

End If
End Function

Sub Main()
Dim ListBox1$()
Begin Dialog UserDialog ,,180,96,"Untitled",.DlgProc

OKButton 132,8,40,14
CancelButton 132,28,40,14
ListBox 8,12,112,72,ListBox1$,.Files

End Dialog
Dim d As UserDialog
Dialog d

End Sub

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (statement); DlgSetPicture
(statement); DlgText (statement); DlgText (function); DlgValue (function); DlgValue
(statement); DlgVisible (statement); DlgVisible (function).

6-40 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DlgListBoxArray (statement)

Syntax DlgListBoxArray {ControlName$ | ControlIndex}, ArrayVariable

Description Fills a list box, combo box, or drop list box with the elements of an array.

Comments The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the ControlIndex parameter, a control can
be referred to using its index in the dialog box template (0 is the first control in the template, 1 is the
second, and so on).

The ArrayVariable parameter specifies a single-dimensioned array used to initialize the elements of
the control. If this array has no dimensions, then the control will be initialized with no elements. A
runtime error results if the specified array contains more than one dimension. ArrayVariable can
specify an array of any fundamental data type (structures are not allowed). Null and Empty
values are treated as zero-length strings.

Example This dialog function refills an array with files.
Function DlgProc(ControlName$,Action%,SuppValue%) As Integer

If Action% = 1 Then
Dim NewFiles$() 'Create a new dynamic array.
FileList NewFiles$,"c:*.*" 'Fill the array with files.
DlgListBoxArray "Files",NewFiles$ 'Set items in the list box.
DlgValue "Files",0 'Set the selection to the first item.

= 1 'Don't close the dialog box.
End If

End Function

Sub Main()
Dim ListBox1$()
Begin Dialog UserDialog ,,180,96,"Untitled",.DlgProc

OKButton 132,8,40,14
CancelButton 132,28,40,14
ListBox 8,12,112,72,ListBox1$,.Files

End Dialog
Dim d As UserDialog
Dialog d

End Sub

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgSetPicture
(statement); DlgText (statement); DlgText (function); DlgValue (function); DlgValue
(statement); DlgVisible (statement); DlgVisible (function).

GFK-1283G D 6-41

DlgProc (function)

Syntax Function DlgProc(ControlName$, Action, SuppValue) [As Integer]

Description Describes the syntax, parameters, and return value for dialog functions.

Comments Dialog functions are called by a script during the processing of a custom dialog box. The name of a
dialog function (DlgProc) appears in the Begin Dialog statement as the .DlgProc parameter.

Dialog functions require the following parameters:

Parameter Description
ControlName$ String containing the name of the control associated with Action.

Action Integer containing the action that called the dialog function.

SuppValue Integer of extra information associated with Action. For some actions, this
parameter is not used.

When a script displays a custom dialog box, the user may click on buttons, type text into edit fields,
select items from lists, and perform other actions. When these actions occur, the Basic Control
Engine calls the dialog function, passing it the action, the name of the control on which the action
occurred, and any other relevant information associated with the action.

The following table describes the different actions sent to dialog functions:

Action Description
1 This action is sent immediately before the dialog box is shown for the first time. This gives

the dialog function a chance to prepare the dialog box for use. When this action is sent,
ControlName$ contains a zero-length string, and SuppValue is 0.

The return value from the dialog function is ignored in this case.

Before Showing the Dialog Box
After action 1 is sent, the Basic Control Engine performs additional processing before the
dialog box is shown. Specifically, it cycles though the dialog box controls checking for
visible picture or picture button controls. For each visible picture or picture button control,
the Basic Control Engine attempts to load the associated picture.

In addition to checking picture or picture button controls, the Basic Control Engine will
automatically hide any control outside the confines of the visible portion of the dialog box.
This prevents the user from tabbing to controls that cannot be seen. However, it does not
prevent you from showing these controls with the DlgVisible statement in the dialog
function.

2 This action is sent when:

• A button is clicked, such as OK, Cancel, or a push button. In this case,
ControlName$ contains the name of the button. SuppValue contains 1 if an OK
button was clicked and 2 if a Cancel button was clicked; SuppValue is undefined
otherwise.

If the dialog function returns 0 in response to this action, then the dialog box will
be closed. Any other value causes the Basic Control Engine to continue dialog
processing.

6-42 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

• A check box's state has been modified. In this case, ControlName$ contains the
name of the check box, and SuppValue contains the new state of the check box (1
if on, 0 if off).

• An option button is selected. In this case, ControlName$ contains the name of the
option button that was clicked, and SuppValue contains the index of the option
button within the option button group (0-based).

• The current selection is changed in a list box, drop list box, or combo box. In this
case, ControlName$ contains the name of the list box, combo box, or drop list
box, and SuppValue contains the index of the new item (0 is the first item, 1 is the
second, and so on).

3 This action is sent when the content of a text box or combo box has been changed. This
action is only sent when the control loses focus. When this action is sent, ControlName$
contains the name of the text box or combo box, and SuppValue contains the length of the
new content.

The dialog function's return value is ignored with this action.

4 This action is sent when a control gains the focus. When this action is sent, ControlName$
contains the name of the control gaining the focus, and SuppValue contains the index of the
control that lost the focus (0-based).

The dialog function's return value is ignored with this action.

5 This action is sent continuously when the dialog box is idle. If the dialog function returns 1
in response to this action, then the idle action will continue to be sent. If the dialog function
returns 0, then the Basic Control Engine will not send any additional idle actions.

When the idle action is sent, ControlName$ contains a zero-length string, and SuppValue
contains the number of times the idle action has been sent so far.

Note

Not returning zero will cause your application to use all available CPU time and may
adversely affect your CIMPLICITY System.

6 This action is sent when the dialog box is moved. The ControlName$ parameter contains a
zero-length string, and SuppValue is 0.

The dialog function's return value is ignored with this action.

User-defined dialog boxes cannot be nested. In other words, the dialog function of one dialog box
cannot create another user-defined dialog box. You can, however, invoke any built-in dialog box,
such as MsgBox or InputBox$.

Within dialog functions, you can use the following additional statements and functions. These
statements allow you to manipulate the dialog box controls dynamically.
DlgVisible DlgText$ DlgText
DlgSetPicture DlgListBoxArray DlgFocus
DlgEnable DlgControlId

The dialog function can optionally be declared to return a Variant. When returning a variable, the
Basic Control Engine will attempt to convert the variant to an Integer. If the returned variant
cannot be converted to an Integer, then 0 is assumed to be returned from the dialog function.

GFK-1283G D 6-43

Example This dialog function enables/disables a group of option buttons when a check box is clicked.
Function SampleDlgProc(ControlName$,Action%,SuppValue%)

If Action% = 2 And ControlName$ = "Printing" Then
DlgEnable "PrintOptions",SuppValue%
SampleDlgProc = 1 'Don't close the dialog box.

End If
End Function

Sub Main()
Begin Dialog SampleDialogTemplate 34,39,106,45,"Sample",.SampleDlgProc

OKButton 4,4,40,14
CancelButton 4,24,40,14
CheckBox 56,8,38,8,"Printing",.Printing
OptionGroup .PrintOptions

OptionButton 56,20,51,8,"Landscape",.Landscape
OptionButton 56,32,40,8,"Portrait",.Portrait

End Dialog
Dim SampleDialog As SampleDialogTemplate
SampleDialog.Printing = 1
r% = Dialog(SampleDialog)

End Sub

See Also Begin Dialog (statement).

6-44 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DlgSetPicture (statement)

Syntax DlgSetPicture {ControlName$ | ControlIndex},PictureName$,PictureType

Description Changes the content of the specified picture or picture button control.

Comments The DlgSetPicture statement accepts the following parameters:

Parameter Description
ControlName$ String containing the name of the .Identifier parameter associated with a

control in the dialog box template. A case-insensitive comparison is used to
locate the specified control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog
box template (0 is the first control in the template, 1 is the second, and so on).

PictureName$ String containing the name of the picture. If PictureType is 0, then this
parameter specifies the name of the file containing the image. If PictureType is
10, then PictureName$ specifies the name of the image within the resource of
the picture library.

If PictureName$ is empty, then the current picture associated with the specified
control will be deleted. Thus, a technique for conserving memory and resources
would involve setting the picture to empty before hiding a picture control.

PictureType Integer specifying the source for the image. The following sources are
supported:
0 The image is contained in a file on disk.
10 The image is contained in the picture library specified by the

Begin Dialog statement. When this type is used, the
PictureName$ parameter must be specified with the Begin
Dialog statement.

Examples Sub Main()
DlgSetPicture "Picture1","\windows\checks.bmp",0 'Set picture from a file.

DlgSetPicture 27,"FaxReport",10 'Set control 10's image
'from a library.

End Sub

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgText (statement); DlgText (function); DlgValue (function); DlgValue
(statement); DlgVisible (statement); DlgVisible (function), Picture (statement),
PictureButton (statement).

Notes: Picture controls can contain either bitmaps or WMFs (Windows metafiles). When extracting
images from a picture library, the Basic Control Engine assumes that the resource type for metafiles
is 256.

Picture libraries are implemented as DLLs on the Windows and Win32 platforms.

GFK-1283G D 6-45

DlgText (statement)

Syntax DlgText {ControlName$ | ControlIndex}, NewText$

Description Changes the text content of the specified control.

Comments The effect of this statement depends on the type of the specified control:

Control Type Effect of DlgText
Picture Runtime error.

Option group Runtime error.

Drop list box Sets the current selection to the item matching NewText$. If an exact match
cannot be found, the DlgText statement searches from the first item
looking for an item that starts with NewText$. If no match is found, then the
selection is removed.

OK button Sets the label of the control to NewText$.

Cancel button Sets the label of the control to NewText$.

Push button Sets the label of the control to NewText$.

List box Sets the current selection to the item matching NewText$. If an exact match
cannot be found, the DlgText statement searches from the first item
looking for an item that starts with NewText$. If no match is found, then the
selection is removed.

Combo box Sets the content of the edit field of the combo box to NewText$.

Text Sets the label of the control to NewText$.

Text box Sets the content of the text box to NewText$.

Group box Sets the label of the control to NewText$.

Option button Sets the label of the control to NewText$.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the ControlIndex parameter, a control can
be referred to using its index in the dialog box template (0 is the first control in the template, 1 is
the second, and so on).

Example Sub Main()

DlgText "GroupBox1","Save Options" 'Change text of group box 1.

If DlgText$(9) = "Save Options" Then
DlgText 9,"Editing Options" 'Change text to "Editing Options".

End If
End Sub

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (function); DlgValue (function);
DlgValue (statement); DlgVisible (statement); DlgVisible (function).

6-46 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DlgText$ (function)

Syntax DlgText$(ControlName$ | ControlIndex)

Description Returns the text content of the specified control.

Comments The text returned depends on the type of the specified control:

Control Type Value Returned by DlgText$
Picture No value is returned. A runtime error occurs.

Option group No value is returned. A runtime error occurs.

Drop list box Returns the currently selected item. A zero-length string is returned if no item
is currently selected.

OK button Returns the label of the control.

Cancel button Returns the label of the control.

Push button Returns the label of the control.

List box Returns the currently selected item. A zero-length string is returned if no item
is currently selected.

Combo box Returns the content of the edit field portion of the combo box.

Text Returns the label of the control.

Text box Returns the content of the control.

Group box Returns the label of the control.

Option button Returns the label of the control.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the ControlIndex parameter, a control can
be referred to using its index in the dialog box template (0 is the first control in the template, 1 is
the second, and so on).

Example This code fragment makes sure the user enters a correct value. If not, the control returns focus back
to the TextBox for correction.
Function DlgProc(ControlName$,Action%,SuppValue%) As Integer

If Action% = 2 and ControlName$ = "OK" Then
If IsNumeric(DlgText$("TextBox1")) Then

Msgbox "Duly Noted."
Else

Msgbox "Sorry, you must enter a number."
DlgFocus "TextBox1"
DlgProc = 1

End If
End If

End Function

GFK-1283G D 6-47

Sub Main()
Dim ListBox1$()
Begin Dialog UserDialog ,,112,74,"Untitled",.DlgProc

TextBox 12,20,88,12,.TextBox1
OKButton 12,44,40,14
CancelButton 60,44,40,14
Text 12,11,88,8,"Enter Desired Salary:",.Text1

End Dialog
Dim d As UserDialog
Dialog d

End Sub

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (statement); DlgValue (function);
DlgValue (statement); DlgVisible (statement); DlgVisible (function).

6-48 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DlgValue (function)

Syntax DlgValue(ControlName$ | ControlIndex)

Description Returns an Integer indicating the value of the specified control.

Comments The value of any given control depends on its type, according to the following table:

Control Type DlgValue Returns
Option group The index of the selected option button within the group (0 is the first option

button, 1 is the second, and so on).

List box The index of the selected item.

Drop list box The index of the selected item.

Check box 1 if the check box is checked; 0 otherwise.

A runtime error is generated if DlgValue is used with controls other than those listed in the above
table.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. Alternatively, by specifying the ControlIndex parameter, a
control can be referred to using its index in the dialog box template (0 is the first control in the
template, 1 is the second, and so on).

Example This code fragment toggles the value of a check box.
Sub Main()

If DlgValue("MyCheckBox") = 1 Then
DlgValue "MyCheckBox",0

Else
DlgValue "MyCheckBox",1

End If
End Sub

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (statement); DlgText (function);
DlgValue (statement); DlgVisible (statement); DlgVisible (function).

GFK-1283G D 6-49

DlgValue (statement)

Syntax DlgValue {ControlName$ | ControlIndex},Value

Description Changes the value of the given control.

Comments The value of any given control is an Integer and depends on its type, according to the following
table:

Control Type Description of Value
Option group The index of the new selected option button within the group (0 is the first

option button, 1 is the second, and so on).

List box The index of the new selected item.

Drop list box The index of the new selected item.

Check box 1 if the check box is to be checked; 0 if the check is to be removed.

A runtime error is generated if DlgValue is used with controls other than those listed in the
above table.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the ControlIndex parameter, a control can
be referred to using its index in the dialog box template (0 is the first control in the template, 1 is
the second, and so on).

Example This code fragment toggles the value of a check box.
Sub Main()

If DlgValue("MyCheckBox") = 1 Then
DlgValue "MyCheckBox",0

Else
DlgValue "MyCheckBox",1

End If
End Sub

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (statement); DlgText (function);
DlgValue (function); DlgVisible (statement); DlgVisible (function).

6-50 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DlgVisible (function)

Syntax DlgVisible(ControlName$ | ControlIndex)

Description Returns True if the specified control is visible; returns False otherwise.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. Alternatively, by specifying the ControlIndex parameter, a
control can be referred to using its index in the template (0 is the first control in the template, 1 is
the second, and so on).

A runtime error is generated if DlgVisible is called with no user dialog is active.

Example Sub Main()
If DlgVisible("Portrait") Then Beep

If DlgVisible(10) And DlgVisible(12) Then
MsgBox "The 10th and 12th controls are visible."

End If
End Sub

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (statement); DlgText (function);
DlgValue (function); DlgValue (statement); DlgVisible (function).

GFK-1283G D 6-51

DlgVisible (statement)

Syntax DlgVisible {ControlName$ | ControlIndex} [,isOn]

Description Hides or shows the specified control.

Comments Hidden controls cannot be seen in the dialog box and cannot receive the focus using Tab.

The isOn parameter is an Integer specifying the new state of the control. It can be any of the
following values:

1 The control is shown.

0 The control is hidden.

Omitted Toggles the visibility of the control.

Option buttons can be manipulated individually (by specifying an individual option button) or as a
group (by specifying the name of the option group).

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to locate the specific
control within the template. Alternatively, by specifying the ControlIndex parameter, a control can
be referred to using its index in the dialog box template (0 is the first control in the template, 1 is the
second, and so on).

Picture Caching
When the dialog box is first created and before it is shown, the Basic Control Engine calls the dialog
function with action set to 1. At this time, no pictures have been loaded into the picture controls
contained in the dialog box template. After control returns from the dialog function and before the
dialog box is shown, the Basic Control Engine will load the pictures of all visible picture controls.
Thus, it is possible for the dialog function to hide certain picture controls, which prevents the
associated pictures from being loaded and causes the dialog box to load faster. When a picture
control is made visible for the first time, the associated picture will then be loaded.

Example This example creates a dialog box with two panels. The DlgVisible statement is used to show or hide
the controls of the different panels.
Sub EnableGroup(start%,finish%)

For i = 6 To 13 'Disable all options.
DlgVisible i,False

Next i
For i = start% To finish% 'Enable only the right ones.

DlgVisible i,True
Next i

End Sub

6-52 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Function DlgProc(ControlName$,Action%,SuppValue%)
If Action% = 1 Then

DlgValue "WhichOptions",0 'Set to save options.
EnableGroup 6,8 'Enable the save options.

End If
If Action% = 2 And ControlName$ = "SaveOptions" Then

EnableGroup 6,8 'Enable the save options.
DlgProc = 1 'Don't close the dialog box.

End If
If Action% = 2 And ControlName$ = "EditingOptions" Then

EnableGroup 9,13 'Enable the editing options.
DlgProc = 1 'Don't close the dialog box.

End If
End Function

Sub Main()
Begin Dialog OptionsTemplate 33,33,171,134,"Options",.DlgProc

'Background (controls 0-5)
GroupBox 8,40,152,84,""
OptionGroup .WhichOptions

OptionButton 8,8,59,8,"Save Options",.SaveOptions
OptionButton 8,20,65,8,"Editing Options",.EditingOptions

OKButton 116,7,44,14
CancelButton 116,24,44,14

'Save options (controls 6-8)
CheckBox 20,56,88,8,"Always create backup",.CheckBox1
CheckBox 20,68,65,8,"Automatic save",.CheckBox2
CheckBox 20,80,70,8,"Allow overwriting",.CheckBox3

'Editing options (controls 9-13)
CheckBox 20,56,65,8,"Overtype mode",.OvertypeMode
CheckBox 20,68,69,8,"Uppercase only",.UppercaseOnly
CheckBox 20,80,105,8,"Automatically check syntax",.AutoCheckSyntax
CheckBox 20,92,73,8,"Full line selection",.FullLineSelection
CheckBox 20,104,102,8,"Typing replaces selection",.TypingReplacesText

End Dialog

Dim OptionsDialog As OptionsTemplate
Dialog OptionsDialog

End Sub

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement); DlgFocus
(function); DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (statement); DlgText (function);
DlgValue (function); DlgValue (statement); DlgVisible (statement).

GFK-1283G D 6-53

Do...Loop (statement)

Syntax 1 Do {While | Until} condition statements Loop

Syntax 2 Do
statements

Loop {While | Until} condition

Syntax 3 Do
statements

Loop

Description Repeats a block of Basic Control Engine statements while a condition is True or until a condition
is True.

Comments If the {While | Until} conditional clause is not specified, then the loop repeats the statements
forever (or until the script encounters an Exit Do statement).

The condition parameter specifies any Boolean expression.

Examples Sub Main()
'This first example uses the Do...While statement, which performs
'the iteration, then checks the condition, and repeats if the
'condition is True.

Dim a$(100)
i% = -1
Do

i% = i% + 1
If i% = 0 Then

a(i%) = Dir("*")
Else

a(i%) = Dir
End If

Loop While(a(i%) <> "" And i% <= 99)
r% = SelectBox(i% & " files found",,a)

End Sub

Sub Main()
'This second example uses the Do While...Loop, which checks the
'condition and then repeats if the condition is True.

Dim a$(100)
i% = 0
a(i%) = Dir("*")
Do While (a(i%) <> "") And (i% <= 99)

i% = i% + 1
a(i%) = Dir

Loop
r% = SelectBox(i% & " files found",,a)

End Sub

6-54 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Sub Main()
'This third example uses the Do Until...Loop, which does the
'iteration and then checks the condition and repeats if the
'condition is True.

Dim a$(100)
i% = 0
a(i%) = Dir("*")
Do Until (a(i%) = "") Or (i% = 100)

i% = i% + 1
a(i%) = Dir

Loop
r% = SelectBox(i% & " files found",,a)

End Sub

Sub Main()
'This last example uses the Do...Until Loop, which performs the
'iteration first, checks the condition, and repeats if the
'condition is True.

Dim a$(100)
i% = -1
Do

i% = i% + 1
If i% = 0 Then

a(i%) = Dir("*")
Else

a(i%) = Dir
End If

Loop Until (a(i%) = "") Or (i% = 100)
r% = SelectBox(i% & " files found",,a)

End Sub

See Also For...Next (statement); While ...WEnd (statement).

Notes: Due to errors in program logic, you can inadvertently create infinite loops in your code. You can
break out of infinite loops using Ctrl+Break.

GFK-1283G D 6-55

DoEvents (function)
Syntax DoEvents[()]

Description Yields control to other applications, returning an Integer 0.

Comments This statement yields control to the operating system, allowing other applications to process mouse,
keyboard, and other messages.

If a SendKeys statement is active, this statement waits until all the keys in the queue have been
processed.

Example The following routine explicitly yields to allow other applications to execute and refresh on a regular
basis.
Sub Main()

Open "test.txt" For Output As #1
For i = 1 To 10000

Print #1,"This is a test of the system and such."
r = DoEvents

Next i
MsgBox "The DoEvents return value is: " & r
Close #1

End Sub

See Also DoEvents (statement).

DoEvents (statement)
Syntax DoEvents

Description Yields control to other applications.

Comments This statement yields control to the operating system, allowing other applications to process mouse,
keyboard, and other messages.

If a SendKeys statement is active, this statement waits until all the keys in the queue have been
processed.

Examples This first example shows a script that takes a long time and hogs the system. The following routine
explicitly yields to allow other applications to execute and refresh on a regular basis.
Sub Main()

Open "test.txt" For Output As #1
For i = 1 To 10000

Print #1,"This is a test of the system and stuff."
DoEvents

Next i
Close #1

End Sub

In this second example, the DoEvents statement is used to wait until the queue has been completely
flushed.
Sub Main()

id = Shell("notepad.exe",3) 'Start new instance of Notepad.
SendKeys "This is a test.",False 'Send some keys.
DoEvents 'Wait for the keys to play back.

End Sub

See Also DoEvents (function).

6-56 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Double (data type)

Syntax Double

Description A data type used to declare variables capable of holding real numbers with 15–16 digits of
precision.

Comments Double variables are used to hold numbers within the following ranges:

Sign Range
Negative –1.797693134862315E308 <= double <=

-4.94066E-324

Positive 4.94066E-324 <= double <= 1.797693134862315E308

The type-declaration character for Double is #.

Storage

• Internally, doubles are 8-byte (64-bit) IEEE values. Thus, when appearing within a
structure, doubles require 8 bytes of storage. When used with binary or random files, 8
bytes of storage are required.

Each Double consists of the following

• A 1-bit sign

• An 11-bit exponent

• A 53-bit significand (mantissa)

See Also Currency (data type); Date (data type); Integer (data type); Long (data type); Object
(data type); Single (data type); String (data type); Variant (data type); Boolean (data
type); DefType (statement); CDbl (function).

GFK-1283G D 6-57

DropListBox (statement)

Syntax DropListBox X, Y, width, height, ArrayVariable, .Identifier

Description Creates a drop list box within a dialog box template.

Comments When the dialog box is invoked, the drop list box will be filled with the elements contained in
ArrayVariable. Drop list boxes are similar to combo boxes, with the following exceptions:

• The list box portion of a drop list box is not opened by default. The user must open it by
clicking the down arrow.

• The user cannot type into a drop list box. Only items from the list box may be selected.
With combo boxes, the user can type the name of an item from the list directly or type the
name of an item that is not contained within the combo box.

This statement can only appear within a dialog box template (i.e., between the Begin Dialog
and End Dialog statements).

The DropListBox statement requires the following parameters:

Parameter Description
X, Y Integer coordinates specifying the position of the control (in dialog units)

relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

ArrayVariable Single-dimensioned array used to initialize the elements of the drop list box. If
this array has no dimensions, then the drop list box will be initialized with no
elements. A runtime error results if the specified array contains more than one
dimension.

ArrayVariable can specify an array of any fundamental data type (structures are
not allowed). Null and Empty values are treated as zero-length strings.

.Identifier Name by which this control can be referenced by statements in a dialog function
(such as DlgFocus and DlgEnable). This parameter also creates an integer
variable whose value corresponds to the index of the drop list box's selection (0 is
the first item, 1 is the second, and so on). This variable can be accessed using the
following syntax:

DialogVariable.Identifier

6-58 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example This example allows the user to choose a field name from a drop list box.
Sub Main()

Dim FieldNames$(4)
FieldNames$(0) = "Last Name"
FieldNames$(1) = "First Name"
FieldNames$(2) = "Zip Code"
FieldNames$(3) = "State"
FieldNames$(4) = "City"
Begin Dialog FindTemplate 16,32,168,48,"Find"

Text 8,8,37,8,"&Find what:"
DropListBox 48,6,64,80,FieldNames,.WhichField
OKButton 120,7,40,14
CancelButton 120,27,40,14

End Dialog
Dim FindDialog As FindTemplate
FindDialog.WhichField = 1
Dialog FindDialog

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); GroupBox (statement); ListBox (statement); OKButton
(statement); OptionButton (statement); OptionGroup (statement); Picture (statement);
PushButton (statement); Text (statement); TextBox (statement); Begin Dialog
(statement), PictureButton (statement).

GFK-1283G 7-1

E

ebAbort (constant)

Description Returned by the MsgBox function when the Abort button is chosen.

Comments This constant is equal to 3.

Example This example displays a dialog box with Abort, Retry, and Ignore buttons.
Sub Main()
Again:

rc% = MsgBox("Do you want to continue?",ebAbortRetryIgnore)
If rc% = ebAbort or rc% = ebIgnore Then

End
ElseIf rc% = ebRetry Then

Goto Again
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

ebAbortRetryIgnore (constant)

Description Used by the MsgBox statement and function.

Comments This constant is equal to 2.

Example This example displays a dialog box with Abort, Retry, and Ignore buttons.
Sub Main()
Again:

rc% = MsgBox("Do you want to continue?",ebAbortRetryIgnore)
If rc% = ebAbort or rc% = ebIgnore Then

End
ElseIf rc% = ebRetry Then

Goto Again
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

7-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ebApplicationModal (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 0.

Example This example displays an application-modal dialog box (which is the default).
Sub Main()

MsgBox "This is application-modal.",ebOKOnly Or ebApplicationModal
End Sub

See Also MsgBox (function); MsgBox (statement).

ebArchive (constant)

Description Bit position of a file attribute indicating that a file hasn't been backed up.

Comments This constant is equal to 32.

Example This example dimensions an array and fills it with filenames with the Archive bit set.
Sub Main()

Dim s$()
FileList s$,"*",ebArchive
a% = SelectBox("Archived Files", "Choose one", s$)
If a% >= 0 Then 'If a% is -1, then the user pressed Cancel.

MsgBox "You selected Archive file: " & s$(a)
Else

MsgBox "No selection made."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr (function);
FileAttr (function).

ebBold (constant)

Description Used with the Text and TextBox statement to specify a bold font.

Comments This constant is equal to 2.

Example Sub Main()
Begin Dialog UserDialog 16,32,232,132,"Bold Font Demo"

Text 10,10,200,20,"Hello, world.",,"Helv",24,ebBold
TextBox 10,35,200,20,.Edit,,"Times New Roman",16,ebBold
OKButton 96,110,40,14

End Dialog
Dim a As UserDialog
Dialog a

End Sub

See Also Text (statement), TextBox (statement).

GFK-1283G E 7-3

ebBoldItalic (constant)

Description Used with the Text and TextBox statement to specify a bold-italic font.

Comments This constant is equal to 6.

Example Sub Main()
Begin Dialog UserDialog 16,32,232,132,"Bold-Italic Font Demo"

Text 10,10,200,20,"Hello, world.",,"Helv",24,ebBoldItalic
TextBox 10,35,200,20,.Edit,,"Times New Roman",16,ebBoldItalic
OKButton 96,110,40,14

End Dialog
Dim a As UserDialog
Dialog a

End Sub

See Also Text (statement), TextBox (statement).

ebBoolean (constant)

Description Number representing the type of a Boolean variant.

Comments This constant is equal to 11.

Example Sub Main()
Dim MyVariant as variant
MyVariant = True
If VarType(MyVariant) = ebBoolean Then

MyVariant = 5.5
End If

End Sub

See Also VarType (function); Variant (data type).

ebCancel (constant)

Description Returned by the MsgBox function when the Cancel button is chosen.

Comments This constant is equal to 2.

Example Sub Main()
'Invoke MsgBox and check whether the Cancel button was pressed.
rc% = MsgBox("Are you sure you want to quit?",ebOKCancel)
If rc% = ebCancel Then

MsgBox "The user clicked Cancel."
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

7-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ebCritical (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 16.

Example Sub Main()
'Invoke MsgBox with Abort, Retry, and Ignore buttons and a Stop icon.

rc% = MsgBox("Disk drive door is open.",ebAbortRetryIgnore Or ebCritical)
If rc% = 3 Then
'The user selected Abort from the dialog box.
MsgBox "The user clicked Abort."

End If
End Sub

See Also MsgBox (function); MsgBox (statement).

ebCurrency (constant)

Description Number representing the type of a Currency variant.

Comments This constant is equal to 6.

Example This example checks to see whether a variant is of type Currency.
Sub Main()

Dim MyVariant
If VarType(MyVariant) = ebCurrency Then

MsgBox "Variant is Currency."
End If

End Sub

See Also VarType (function); Variant (data type).

ebDataObject (constant)

Description Number representing the type of a data object variant.

Comments This constant is equal to 13.

Example This example checks to see whether a variable is a data object.
Sub Main()

Dim MyVariant as Variant
If VarType(MyVariant) = ebDataObject Then

MsgBox "Variant contains a data object."
End If

End Sub

See Also VarType (function); Variant (data type).

GFK-1283G E 7-5

ebError (constant)

Description Number representing the type of an error variant.

Comments This constant is equal to 10.

Example This example checks to see whether a variable is an error.
Function Div(ByVal a As Variant,ByVal b As Variant) As Variant

On Error Resume Next
Div = a / b
If Err <> 0 Then Div = CVErr(Err)

End Function

Sub Main()
a = InputBox("Please enter 1st number","Division Sample")
b = InputBox("Please enter 2nd number","Division Sample")

res = Div(a,b)

If VarType(res) = ebError Then
res = CStr(res)
res = Error(Mid(res,7,Len(res)))
MsgBox "'" & res & "' occurred"

Else
MsgBox "The result of the division is: " & res

End If
End Sub

See Also VarType (function); Variant (data type).

ebDate (constant)

Description Number representing the type of a Date variant.

Comments This constant is equal to 7.

Example Sub Main()
Dim MyVariant as Variant
If VarType(MyVariant) = ebDate Then

MsgBox "This variable is a Date type!"
Else

MsgBox "This variable is not a Date type!"
End If

End Sub

See Also VarType (function); Variant (data type).

7-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ebDefaultButton1 (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 0.

Example This example invokes MsgBox with the focus on the OK button by default.
Sub Main()

rc% = MsgBox("Are you sure you want to quit?",ebOKCancel Or ebDefaultButton1)
End Sub

See Also MsgBox (function); MsgBox (statement).

ebDefaultButton2 (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 256.

Example This example invokes MsgBox with the focus on the Cancel button by default.
Sub Main()

rc% = MsgBox("Are you sure you want to quit?",ebOKCancel Or ebDefaultButton2)
End Sub

See Also MsgBox (function); MsgBox (statement).

ebDefaultButton3 (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 512.

Example This example invokes MsgBox with the focus on the Ignore button by default.
Sub Main()

rc% = MsgBox("Disk drive door open.",ebAbortRetryIgnore Or ebDefaultButton3)
End Sub

See Also MsgBox (function); MsgBox (statement).

GFK-1283G E 7-7

ebDirectory (constant)

Description Bit position of a file attribute indicating that a file is a directory entry.

Comments This constant is equal to 16.

Example This example dimensions an array and fills it with directory names using the ebDirectory constant.
Sub Main()

Dim s$()
FileList s$,"c:*",ebDirectory
a% = SelectBox("Directories", "Choose one:", s$)
If a% >= 0 Then

MsgBox "You selected directory: " & s(a%)
Else

MsgBox "No selection made."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr (function);
FileAttr (function).

ebDos (constant)

Description Used with the AppType or FileType functions to indicate a DOS application.

Comments This constant is equal to 1.

Example This example detects whether a DOS program was selected.
Sub Main()

s$ = OpenFilename$("Run","Programs:*.exe")
If s$ <> "" Then

If FileType(s$) = ebDos Then
MsgBox "You selected a DOS exe file."

End If
End If

End Sub

See Also AppType (function); FileType (function).

7-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ebDouble (constant)

Description Number representing the type of a Double variant.

Comments This constant is equal to 5.

Example See ebSingle (constant).

See Also MsgBox (function); MsgBox (statement); VarType (function); Variant (data type).

ebEmpty (constant)

Description Number representing the type of an Empty variant.

Comments This constant is equal to 0.

Example Sub Main()
Dim MyVariant as Variant
If VarType(MyVariant) = ebEmpty Then

MsgBox "This variant has not been assigned a value yet!"
End If

End Sub

See Also VarType (function); Variant (data type).

ebExclamation (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 48.

Example This example displays a dialog box with an OK button and an exclamation icon.
Sub Main()

MsgBox "Out of memory saving to disk.",ebOKOnly Or ebExclamation
End Sub

See Also MsgBox (function); MsgBox (statement).

GFK-1283G E 7-9

ebHidden (constant)

Description Bit position of a file attribute indicating that a file is hidden.

Comments This constant is equal to 2.

Example This example dimensions an array and fills it with filenames using the ebHidden attribute.
Sub Main()

Dim s$()
FileList s$,"*",ebHidden
If ArrayDims(s$) = 0 Then

MsgBox "No hidden files found!"
End

End If
a% = SelectBox("Hidden Files","Choose one", s$)
If a% >= 0 Then

MsgBox "You selected hidden file " & s(a%)
Else

MsgBox "No selection made."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr (function);
FileAttr (function).

ebIgnore (constant)

Description Returned by the MsgBox function when the Ignore button is chosen.

Comments This constant is equal to 5.

Example This example displays a critical error dialog box and sees what the user wants to do.
Sub Main()

rc% = MsgBox("Printer out of paper.",ebAbortRetryIgnore)
If rc% = ebIgnore Then

'Continue printing here.
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

7-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ebInformation (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 64.

Example This example displays a dialog box with the Information icon.
Sub Main()

MsgBox "You just deleted your file!",ebOKOnly Or ebInformation
End Sub

See Also MsgBox (function); MsgBox (statement).

ebInteger (constant)

Description Number representing the type of an Integer variant.

Comments This constant is equal to 2.

Example This example defines a function that returns True if a variant contains an Integer value (either a 16-
bit or 32-bit Integer).
Function IsInteger(v As Variant) As Boolean

If VarType(v) = ebInteger Or VarType(v) = ebLong Then
IsInteger = True

Else
IsInteger = False

End If
End Function

Sub Main()
Dim i as Integer
i = 123
If IsInteger(i) then

Msgbox "i is an Integer."
End If

End Sub

See Also VarType (function); Variant (data type).

GFK-1283G E 7-11

ebItalic (constant)

Description Used with the Text and TextBox statement to specify an italic font.

Comments This constant is equal to 4.

Example Sub Main()
Begin Dialog UserDialog 16,32,232,132,"Italic Font Demo"

Text 10,10,200,20,"Hello, world.",,"Helv",24,ebItalic
TextBox 10,35,200,20,.Edit,,"Times New Roman",16,ebItalic
OKButton 96,110,40,14

End Dialog

Dim a As UserDialog
Dialog a

End Sub

See Also Text (statement), TextBox (statement).

ebLong (constant)

Description Number representing the type of a Long variant.

Comments This constant is equal to 3.

Example See ebInteger (constant).

See Also VarType (function); Variant (data type).

ebNo (constant)

Description Returned by the MsgBox function when the No button is chosen.

Comments This constant is equal to 7.

Example This example asks a question and queries the user's response.
Sub Main()

rc% = MsgBox("Do you want to update the glossary?",ebYesNo)
If rc% = ebNo Then

MsgBox "The user clicked 'No'." 'Don't update glossary.
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

7-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ebNone (constant)

Description Bit value used to select files with no other attributes.

Comments This value can be used with the Dir$ and FileList commands. These functions will return only
files with no attributes set when used with this constant. This constant is equal to 64.

Example This example dimensions an array and fills it with filenames with no attributes set.
Sub Main()

Dim s$()
FileList s$,"*",ebNone
If ArrayDims(s$) = 0 Then

MsgBox "No files found without attributes!"
End

End If
a% = SelectBox("No Attributes", "Choose one", s$)
If a% >= 0 Then

MsgBox "You selected file " & s(a%)
Else

MsgBox "No selection made."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr (function);
FileAttr (function).

ebNormal (constant)

Description Used to search for "normal" files.

Comments This value can be used with the Dir$ and FileList commands and will return files with the
Archive, Volume, ReadOnly, or no attributes set. It will not match files with Hidden, System, or
Directory attributes. This constant is equal to 0.

Example This example dimensions an array and fills it with filenames with Normal attributes.
Sub Main()

Dim s$()
FileList s$,"*", ebNormal
If ArrayDims(s$) = 0 Then

MsgBox "No filesfound!"
End

End If
a% = SelectBox("Normal Files", "Choose one", s$)
If a% >= 0 Then

MsgBox "You selected file " & s(a%)
Else

MsgBox "No selection made."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr (function);
FileAttr (function).

GFK-1283G E 7-13

ebNull (constant)

Description Number representing the type of a Null variant.

Comments This constant is equal to 1.

Example Sub Main()
Dim MyVariant
MyVariant = Null
If VarType(MyVariant) = ebNull Then

MsgBox "This variant is Null"
End If

End Sub

See Also VarType (function); Variant (data type).

ebObject (constant)

Description Number representing the type of an Object variant (an OLE automation object).

Comments This constant is equal to 9.

Example Sub Main()
Dim MyVariant
If VarType(MyVariant) = ebObject Then

MsgBox MyVariant.Value
Else

MsgBox "'MyVariant' is not an object."
End If

End Sub

See Also VarType (function); Variant (data type).

ebOK (constant)

Description Returned by the MsgBox function when the OK button is chosen.

Comments This constant is equal to 1.

Example This example displays a dialog box that allows the user to cancel.
Sub Main()

rc% = MsgBox("Are you sure you want to exit Windows?",ebOKCancel)
If rc% = ebOK Then System.Exit

End Sub

See Also MsgBox (function); MsgBox (statement).

7-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ebOKCancel (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 1.

Example This example displays a dialog box that allows the user to cancel.
Sub Main()

rc% = MsgBox("Are you sure you want to exit Windows?",ebOKCancel)
If rc% = ebOK Then System.Exit

End Sub

See Also MsgBox (function); MsgBox (statement).

ebOKOnly (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 0.

Example This example informs the user of what is going on (no options).
Sub Main()

MsgBox "The system has been reset.",ebOKOnly
End Sub

See Also MsgBox (function); MsgBox (statement).

ebQuestion (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 32.

Example This example displays a dialog box with OK and Cancel buttons and a question icon.
Sub Main()

rc% = MsgBox("OK to delete file?",ebOKCancel Or ebQuestion)
End Sub

See Also MsgBox (function); MsgBox (statement).

GFK-1283G E 7-15

ebReadOnly (constant)

Description Bit position of a file attribute indicating that a file is read-only.

Comments This constant is equal to 1.

Example This example dimensions an array and fills it with filenames with ReadOnly attributes.
Sub Main()

Dim s$()
FileList s$, "*", ebReadOnly
If ArrayDims(s$) = 0 Then

MsgBox "No read only files found!"
End

End If
a% = SelectBox("ReadOnly", "Choose one", s$)
If a% >= 0 Then

MsgBox "You selected file " & s(a%)
Else

MsgBox "No selection made."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr (function);
FileAttr (function).

ebRegular (constant)

Description Used with the Text and TextBox statement to specify an normal-styled font (i.e., neither bold or
italic).

Comments This constant is equal to 1.

Example Sub Main()
Begin Dialog UserDialog 16,32,232,132,"Regular Font Demo"

Text 10,10,200,20,"Hello, world.",,"Helv",24,ebRegular
TextBox 10,35,200,20,.Edit,,"Times New Roman",16,ebRegular
OKButton 96,110,40,14

End Dialog
Dim a As UserDialog
Dialog a

End Sub

See Also Text (statement), TextBox (statement).

7-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ebRetry (constant)

Description Returned by the MsgBox function when the Retry button is chosen.

Comments This constant is equal to 4.

Example This example displays a Retry message box.
Sub Main()

rc% = MsgBox("Unable to open file.",ebRetryCancel)
If rc% = ebRetry Then

MsgBox "User selected Retry."
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

ebRetryCancel (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 5.

Example This example invokes a dialog box with Retry and Cancel buttons.
Sub Main()

rc% = MsgBox("Unable to open file.",ebRetryCancel)
End Sub

See Also MsgBox (function); MsgBox (statement).

GFK-1283G E 7-17

ebSingle (constant)

Description Number representing the type of a Single variant.

Comments This constant is equal to 4.

Example This example defines a function that returns True if the passed variant is a Real number.
Function IsReal(v As Variant) As Boolean

If VarType(v) = ebSingle Or VarType(v) = ebDouble Then
IsReal = True

Else
IsReal = False

End If
End Function

Sub Main()
Dim i as Integer
i = 123
If IsReal(i) then

Msgbox "i is Real."
End If

End Sub

See Also VarType (function); Variant (data type).

ebString (constant)

Description Number representing the type of a String variant.

Comments This constant is equal to 8.

Example Sub Main()
Dim MyVariant as variant
MyVariant = "This is a test."
If VarType(MyVariant) = ebString Then

MsgBox "Variant is a string."
End If

End Sub

See Also VarType (function); Variant (data type).

7-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ebSystem (constant)

Description Bit position of a file attribute indicating that a file is a system file.

Comments This constant is equal to 4.

Example This example dimensions an array and fills it with filenames with System attributes.
Sub Main()

Dim s$()
FileList s$,"*",ebSystem
a% = SelectBox("System Files", "Choose one", s$)
If a% >= 0 Then

MsgBox "You selected file " & s(a%)
Else

MsgBox "No selection made."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr (function);
FileAttr (function).

ebSystemModal (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 4096.

Example Sub Main()
MsgBox "All applications are halted!",ebSystemModal

End Sub

See Also ebApplicationModal (constant); Constants (topic); MsgBox (function); MsgBox (statement).

ebVariant (constant)

Description Number representing the type of a Variant.

Comments Currently, it is not possible for variants to use this subtype. This constant is equal to 12.

See Also VarType (function); Variant (data type).

GFK-1283G E 7-19

ebVolume (constant)

Description Bit position of a file attribute indicating that a file is the volume label.

Comments This constant is equal to 8.

Example This example dimensions an array and fills it with filenames with Volume attributes.
Sub Main()

Dim s$()
FileList s$, "*", ebVolume
If ArrayDims(s$) > 0 Then

MsgBox "The volume name is: " & s(1)
Else

MsgBox "No volumes found."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr (function);
FileAttr (function).

ebWin32 (constant)

Description Used with the Basic.OS property to indicate the 32-bit Windows version of the Basic Control
Engine.

Comments This constant is equal to 2.

The Basic.OS property returns this value when running under any of the following operating
systems:

• Microsoft Windows 95

• Microsoft Windows NT Workstation (Intel, Alpha, MIPS, PowerPC)

• Microsoft Windows NT Server (Intel, Alpha, MIPS, PowerPC)

• Microsoft Win32s running under Windows 3.1

Example Sub Main()
If Basic.OS = ebWin32 Then MsgBox "Running under Win32."

End Sub

See Also Basic.OS (property).

7-20 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ebYes (constant)

Description Returned by the MsgBox function when the Yes button is chosen.

Comments This constant is equal to 6.

Example This example queries the user for a response.
Sub Main()

rc% = MsgBox("Overwrite file?",ebYesNoCancel)
If rc% = ebYes Then

MsgBox "You elected to overwrite the file."
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

ebYesNo (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 4.

Example This example displays a dialog box with Yes and No buttons.
Sub Main()

rc% = MsgBox("Are you sure you want to remove all formatting?",ebYesNo)
End Sub

See Also MsgBox (function); MsgBox (statement).

ebYesNoCancel (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 3.

Example This example displays a dialog box with Yes, No, and Cancel buttons.
Sub Main()

rc% = MsgBox("Format drive C:?",ebYesNoCancel)
If rc% = ebYes Then

MsgBox "The user chose Yes."
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

GFK-1283G E 7-21

Empty (constant)

Description Constant representing a variant of type 0.

Comments The Empty value has special meaning indicating that a Variant is uninitialized.

When Empty is assigned to numbers, the value 0 is assigned. When Empty is assigned to a
String, the string is assigned a zero-length string.

Example Sub Main()
Dim a As Variant
a = Empty
MsgBox "This string is" & a & "concatenated with Empty"
MsgBox "5 + Empty = " & (5 + a)

End Sub

See Also Null (constant); Variant (data type); VarType (function).

End (statement)

Syntax End

Description Terminates execution of the current script, closing all open files.

Example This example uses the End statement to stop execution.
Sub Main()

MsgBox "The next line will terminate the script."
End

End Sub

See Also Close (statement); Stop (statement); Exit For (statement); Exit Do (statement); Exit
Function (statement); Exit Sub (function).

7-22 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Environ, Environ$ (functions)

Syntax Environ[$](variable$ | VariableNumber)

Description Returns the value of the specified environment variable.

Comments Environ$ returns a String, whereas Environ returns a String variant.

If variable$ is specified, then this function looks for that variable$ in the environment. If the
variable$ name cannot be found, then a zero-length string is returned.

If VariableNumber is specified, then this function looks for the Nth variable within the environment
(the first variable being number 1). If there is no such environment variable, then a zero-length
string is returned. Otherwise, the entire entry from the environment is returned in the following
format:

variable = value

Example This example looks for the DOS Comspec variable and displays the value in a dialog box.
Sub Main()

Dim a$(1)
a$(1) = Environ("SITE_Root")
MsgBox "My CIMPLICITY project directory is: " & a$(1)

End Sub

See Also Command, Command$ (functions).

GFK-1283G E 7-23

EOF (function)

Syntax EOF(filenumber)

Description Returns True if the end-of-file has been reached for the given file; returns False otherwise.

Comments The filenumber parameter is an Integer used by the Basic Control Engine to refer to the open
file—the number passed to the Open statement.

With sequential files, EOF returns True when the end of the file has been reached (i.e., the next
file read command will result in a runtime error).

With Random or Binary files, EOF returns True after an attempt has been made to read beyond
the end of the file. Thus, EOF will only return True when Get was unable to read the entire
record.

Example This example opens the autoexec.bat file and reads lines from the file until the end-of-file is
reached.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
file$ = "c:\autoexec.bat"
Open file$ For Input As #1
Do While Not EOF(1)

Line Input #1,newline
Loop
Close
MsgBox "The last line of '" & file$ "' is:" & crlf & crlf & newline

End Sub

See Also Open (statement); LOF (function).

7-24 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Eqv (operator)

Syntax expression1 Eqv expression2

Description Performs a logical or binary equivalence on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants, then a logical
equivalence is performed as follows:

If the first
expression is

and the second
expression is

then the
result is

True True True

True False False

False True False

False False True

If either expression is Null, then Null is returned.

Binary Equivalence
If the two expressions are Integer, then a binary equivalence is performed, returning an
Integer result. All other numeric types (including Empty variants) are converted to Long and a
binary equivalence is then performed, returning a Long result.

Binary equivalence forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions, according to the following table:

1 Eqv 1 = 1 Example:

0 Eqv 1 = 0 5 01101001

1 Eqv 0 = 0 6 10101010

0 Eqv 0 = 1 Eqv 00101000

Example This example assigns False to A, performs some equivalent operations, and displays a dialog box
with the result. Since A is equivalent to False, and False is equivalent to 0, and by definition,
A = 0, then the dialog box will display "A is False."
Sub Main()

a = False
If ((a Eqv False) And (False Eqv 0) And (a = 0)) Then

MsgBox "a is False."
Else

MsgBox "a is True."
End If

End Sub

See Also Operator Precedence (topic); Or (operator); Xor (operator); Imp (operator); And (operator).

GFK-1283G E 7-25

Erase (statement)

Syntax Erase array1 [,array2]...

Description Erases the elements of the specified arrays.

Comments For dynamic arrays, the elements are erased, and the array is redimensioned to have no dimensions
(and therefore no elements). For fixed arrays, only the elements are erased; the array dimensions
are not changed.

After a dynamic array is erased, the array will contain no elements and no dimensions. Thus, before
the array can be used by your program, the dimensions must be reestablished using the Redim
statement.

Up to 32 parameters can be specified with the Erase statement.

The meaning of erasing an array element depends on the type of the element being erased:

Element Type What Erase Does to That Element
Integer Sets the element to 0.
Boolean Sets the element to False.
Long Sets the element to 0.
Double Sets the element to 0.0.
Date Sets the element to December 30, 1899.
Single Sets the element to 0.0.

String (variable-length) Frees the string, then sets the element to a zero-length string.

String (fixed-length) Sets every character of each element to zero (Chr$(0)).
Object Decrements the reference count and sets the element to Nothing.
Variant Sets the element to Empty.

User-defined type Sets each structure element as a separate variable.

Example This example fills an array with a list of available disk drives, displays the list, erases the array and
then redisplays the list.
Sub Main()

Dim a$(10) 'Declare an array.
DiskDrives a 'Fill element 1 with a list of available disk drives.
r = SelectBox("Array Before Erase",,a)
Erase a$ 'Erase all elements in the array.
r = SelectBox("Array After Erase",,a)

End Sub

See Also Redim (statement); Arrays (topic).

7-26 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Erl (function)

Syntax Erl[()]

Description Returns the line number of the most recent error.

Comments The first line of the script is 1, the second line is 2, and so on.

The internal value of Erl is reset to 0 with any of the following statements: Resume, Exit Sub,
Exit Function. Thus, if you want to use this value outside an error handler, you must assign it
to a variable.

Example This example generates an error and then determines the line on which the error occurred.
Sub Main()

Dim i As Integer
On Error Goto Trap1
i = 32767 'Generate an error--overflow.
i = i + 1
Exit Sub

Trap1:
MsgBox "Error on line: " & Erl
Exit Sub 'Reset the error handler.

End Sub

See Also Err (function); Error, Error$ (functions); Error Handling (topic).

GFK-1283G E 7-27

Err (function)

Syntax Err[()]

Description Returns a Long representing the error that caused the current error trap.

Comments The Err function can only be used while within an error trap.

The internal value of Err is reset to 0 with any of the following statements: Resume, Exit Sub,
Exit Function. Thus, if you want to use this value outside an error handler, you must assign it
to a variable.

Example This example forces error 10, with a subsequent transfer to the TestError label. TestError tests the
error and, if not error 55, resets Err to 999 (user-defined error) and returns to the Main subroutine.
Sub Main()

On Error Goto TestError
Error 10
MsgBox "The returned error is: '" & Err & " - " & Error$ & "'"
Exit Sub

TestError:
If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."
Else

MsgBox "Error '" & Err & "' has occurred!"
Err = 999

End If
Resume Next

End Sub

See Also Erl (function); Error, Error$ (functions); Error Handling (topic).

7-28 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Err (statement)

Syntax Err = value

Description Sets the value returned by the Err function to a specific Integer value.

Comments Only positive values less than or equal to 32767 can be used.

Setting value to -1 has the side effect of resetting the error state. This allows you to perform error
trapping within an error handler. The ability to reset the error handler while within an error trap is
not standard Basic. Normally, the error handler is reset only with the Resume, Exit Sub, or
Exit Function statement.

Example This example forces error 10, with a subsequent transfer to the TestError label. TestError tests the
error and, if not error 55, resets Err to 999 (user-defined error) and returns to the Main subroutine.
Sub Main()

On Error Goto TestError
Error 10
MsgBox "The returned error is: '" & Err() & " - " & Error$ & "'"
Exit Sub

TestError:
If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."
Else

MsgBox "Error '" & Err & "' has occurred."
Err = 999

End If
Resume Next

End Sub

See Also Error (statement); Error Handling (topic).

GFK-1283G E 7-29

Error (statement)

Syntax Error errornumber

Description Simulates the occurrence of the given runtime error.

Comments The errornumber parameter is any Integer containing either a built-in error number or a user-
defined error number. The Err function can be used within the error trap handler to determine the
value of the error.

Example This example forces error 10, with a subsequent transfer to the TestError label. TestError tests the
error and, if not error 55, resets Err to 999 (user-defined error) and returns to the Main subroutine.
Sub Main()

On Error Goto TestError
Error 10
MsgBox "The returned error is: '" & Err() & " - " & Error$ & "'"
Exit Sub

TestError:
If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."
Else

MsgBox "Error '" & Err & "' has occurred."
Err = 999

End If
Resume Next

End Sub

See Also Err (statement); Error Handling (topic).

7-30 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Error Handling (topic)

Error Handlers
The Basic Control Engine supports nested error handlers. When an error occurs within a
subroutine, the Basic Control Engine checks for an On Error handler within the currently
executing subroutine or function. An error handler is defined as follows:

Sub foo()
On Error Goto catch
'Do something here.
Exit Sub

catch:
'Handle error here.

End Sub

Error handlers have a life local to the procedure in which they are defined. The error is reset when
(1) another On Error statement is encountered, (2) an error occurs, or (3) the procedure returns.

Cascading Errors
If a runtime error occurs and no On Error handler is defined within the currently executing
procedure, then the Basic Control Engine returns to the calling procedure and executes the error
handler there. This process repeats until a procedure is found that contains an error handler or until
there are no more procedures. If an error is not trapped or if an error occurs within the error
handler, then the Basic Control Engine displays an error message, halting execution of the script.

Once an error handler has control, it must address the condition that caused the error and resume
execution with the Resume statement. This statement resets the error handler, transferring
execution to an appropriate place within the current procedure. An error is displayed if a procedure
exits without first executing Resume or Exit.

Visual Basic Compatibility
Where possible, the Basic Control Engine has the same error numbers and error messages as Visual
Basic. This is useful for porting scripts between environments.

Handling errors in the Basic Control Engine involves querying the error number or error text using
the Error$ or Err function. Since this is the only way to handle errors in the Basic Control
Engine, compatibility with Visual Basic's error numbers and messages is essential.

Errors fall into three categories:

1. Visual Basic–compatible errors: These errors, numbered between 0 and 799, are numbered
and named according to the errors supported by Visual Basic.

2. Basic Control Engine script errors: These errors, numbered from 800 to 999, are unique to
the Basic Control Engine..

3. User-defined errors: These errors, equal to or greater than 1,000, are available for use by
extensions or by the script itself.

You can intercept trappable errors using the Basic Control Engine's On Error construct. Almost
all errors in the Basic Control Engine are trappable except for various system errors.

GFK-1283G E 7-31

Error, Error$ (functions)

Syntax Error[$][(errornumber)]

Description Returns a String containing the text corresponding to the given error number or the most recent
error.

Comments Error$ returns a String, whereas Error returns a String variant.

The errornumber parameter is an Integer containing the number of the error message to retrieve.
If this parameter is omitted, then the function returns the text corresponding to the most recent
runtime error. If no runtime error has occurred, then a zero-length string is returned.

If the Error statement was used to generate a user-defined runtime error, then this function will
return a zero-length string ("").

Example This example forces error 10, with a subsequent transfer to the TestError label. TestError tests the
error and, if not error 55, resets Err to 999 (user-defined error) and returns to the Main subroutine.
Sub Main()

On Error Goto TestError
Error 10
MsgBox "The returned error is: '" & Err & " - " & Error & "'"
Exit Sub

TestError:
If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."
Else

MsgBox "Error '" & Err & "' has occurred."
Err = 999

End If
Resume Next

End Sub

See Also Erl (function); Err (function); Error Handling (topic).

7-32 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Exit Do (statement)

Syntax Exit Do

Description Causes execution to continue on the statement following the Loop clause.

Comments This statement can only appear within a Do...Loop statement.

Example This example will load an array with directory entries unless there are more than ten entries-in
which case, the Exit Do terminates the loop.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim a$(5)
Do

i% = i% + 1
If i% = 1 Then

a(i%) = Dir("*")
Else

a(i%) = Dir
End If
If i% >= 5 Then Exit Do

Loop While (a(i%) <> "")

If i% = 5 Then
MsgBox i% & " directory entries processed!"

Else
MsgBox "Less than " & i% & " entries processed!"

End If
End Sub

See Also Stop (statement); Exit For (statement); Exit Function (statement); Exit Sub
(statement); End (function); Do...Loop (statement).

GFK-1283G E 7-33

Exit For (statement)

Syntax Exit For

Description Causes execution to exit the innermost For loop, continuing execution on the line following the
Next statement.

Comments This statement can only appear within a For...Next block.

Example This example enters a large user-defined cycle, performs a calculation and exits the For...Next loop
when the result exceeds a certain value.
Const critical_level = 500

Sub Main()
num = InputBox("Please enter the number of cycles","Cycles")
For i = 1 To Val(num)

newpressure = i * 2
If newpressure >= critical_level Then Exit For

Next i

MsgBox "The valve pressure is: " & newpressure
End Sub

See Also Stop (statement); Exit Do (statement); Exit Function (statement); Exit Sub
(statement); End (statement); For...Next (statement).

Exit Function (statement)

Syntax Exit Function

Description Causes execution to exit the current function, continuing execution on the statement following the
call to this function.

Comments This statement can only appear within a function.

Example This function displays a message and then terminates with Exit Function.
Function Test_Exit() As Integer

MsgBox "Testing function exit, returning to Main()."
Test_Exit = 0
Exit Function
MsgBox "This line should never execute."

End Function

Sub Main()
a% = Test_Exit()
MsgBox "This is the last line of Main()."

End Sub

See Also Stop (statement); Exit For (statement); Exit Do (statement); Exit Sub (statement); End
(statement); Function...End Function (statement).

7-34 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Exit Sub (statement)

Syntax Exit Sub

Description Causes execution to exit the current subroutine, continuing execution on the statement following the
call to this subroutine.

Comments This statement can appear anywhere within a subroutine. It cannot appear within a function.

Example This example displays a dialog box and then exits. The last line should never execute because of
the Exit Sub statement.
Sub Main()

MsgBox "Terminating Main()."
Exit Sub
MsgBox "Still here in Main()."

End Sub

See Also Stop (statement); Exit For (statement); Exit Do (statement); Exit Function
(statement); End (function); Sub...End Sub (statement).

Exp (function)

Syntax Exp(value)

Description Returns the value of e raised to the power of value.

Comments The value parameter is a Double within the following range:

0 <= value <= 709.782712893.

A runtime error is generated if value is out of the range specified above.

The value of e is 2.71828.

Example This example assigns a to e raised to the 12.4 power and displays it in a dialog box.
Sub Main()

a# = Exp(12.4)
MsgBox "e to the 12.4 power is: " & a#

End Sub

See Also Log (function).

GFK-1283G E 7-35

Expression Evaluation (topic)

Basic Control Engine scripts allows expressions to involve data of different types.
When this occurs, the two arguments are converted to be of the same type by
promoting the less precise operand to the same type as the more precise operand. For
example, the Basic Control Engine will promote the value of i% to a Double in the
following expression:
result# = i% * d#

In some cases, the data type to which each operand is promoted is different than that
of the most precise operand. This is dependent on the operator and the data types of
the two operands and is noted in the description of each operator.

If an operation is performed between a numeric expression and a String
expression, then the String expression is usually converted to be of the same type
as the numeric expression. For example, the following expression converts the
String expression to an Integer before performing the multiplication:
result = 10 * "2" 'Result is equal to 20.

There are exceptions to this rule as noted in the description of the individual
operators.

Type Coercion
The Basic Control Engine performs numeric type conversion automatically.
Automatic conversions sometimes result in overflow errors, as shown in the
following example:
d# = 45354
i% = d#

In this example, an overflow error is generated because the value contained in d# is
larger than the maximum size of an Integer.

Rounding
When floating-point values (Single or Double) are converted to integer values
(Integer or Long), the fractional part of the floating-point number is lost,
rounding to the nearest integer value. The Basic Control Engine uses Baker's
rounding:

• If the fractional part is larger than .5, the number is rounded up.

• If the fractional part is smaller than .5, the number is rounded down.

• If the fractional part is equal to .5, then the number is rounded up if it is
odd and down if it is even.

The following table shows sample values before and after rounding:

Before Rounding After Rounding to Whole Number
2.1 2

4.6 5

2.5 2

3.5 4

7-36 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Default Properties
When an OLE object variable or an Object variant is used with numerical
operators such as addition or subtraction, then the default property of that object is
automatically retrieved. For example, consider the following:
Dim Excel As Object
Set Excel = GetObject(,"Excel.Application")
MsgBox "This application is " & Excel

The above example displays This application is Microsoft Excel in a dialog
box. When the variable Excel is used within the expression, the default property is
automatically retrieved, which, in this case, is the string Microsoft Excel.
Considering that the default property of the Excel object is .Value, then the
following two statements are equivalent:
MsgBox "This application is " & Excel
MsgBox "This application is " & Excel.Value

GFK-1283G 8-1

F

False (constant)

Description Boolean constant whose value is False.

Comments Used in conditionals and Boolean expressions.

Example This example assigns False to a, performs some equivalent operations, and displays a dialog box
with the result. Since a is equivalent to False, and False is equivalent to 0, and by definition, a = 0,
then the dialog box will display "a is False."
Sub Main()

a = False
If ((a = False) And (False Eqv 0) And (a = 0)) Then

MsgBox "a is False."
Else

MsgBox "a is True."
End If

End Sub

See Also True (constant); Constants (topic); Boolean (data type).

8-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

FileAttr (function)

Syntax FileAttr(filenumber, attribute)

Description Returns an Integer specifying the file mode (if attribute is 1) or the operating system file handle
(if attribute is 2).

Comments The FileAttr function takes the following parameters:

Parameter Description
filenumber Integer value used by Basic Control Engine to refer to the open file—the

number passed to the Open statement.

attribute Integer specifying the type of value to be returned. If attribute is 1, then
one of the following values is returned:
1 Input

2 Output

4 Random

8 Append

32 Binary

If attribute is 2, then the operating system file handle is returned. On most
systems, this is a special Integer value identifying the file.

Example This example opens a file for input, reads the file attributes, and determines the file mode for which
it was opened. The result is displayed in a dialog box.
Sub Main()

Open "c:\autoexec.bat" For Input As #1
a% = FileAttr(1,1)
Select Case a%

Case 1
MsgBox "Opened for input."

Case 2
MsgBox "Opened for output."

Case 4
MsgBox "Opened for random."

Case 8
MsgBox "Opened for append."

Case 32
MsgBox "Opened for binary."

Case Else
MsgBox "Unknown file mode."

End Select
a% = FileAttr(1,2)
MsgBox "File handle is: " & a%
Close

End Sub

See Also FileLen (function); GetAttr (function); FileType (function); FileExists (function);
Open (statement); SetAttr (statement).

GFK-1283G F 8-3

FileCopy (statement)

Syntax FileCopy source$, destination$

Description Copies a source$ file to a destination$ file.

Comments The FileCopy function takes the following parameters:

Parameter Description
source$ String containing the name of a single file to copy.

The source$ parameter cannot contain wildcards (? or *) but may contain
path information.

destination$ String containing a single, unique destination file, which may contain a
drive and path specification.

The file will be copied and renamed if the source$ and destination$ filenames are not the same.

Some platforms do not support drive letters and may not support dots to indicate current and parent
directories.

Example This example copies the autoexec.bat file to "autoexec.sav", then opens the copied file and tries to
copy it again--which generates an error.
Sub Main()

On Error Goto ErrHandler
FileCopy "c:\autoexec.bat","c:\autoexec.sav"
Open "c:\autoexec.sav" For Input As # 1
FileCopy "c:\autoexec.sav","c:\autoexec.sv2"
Close
Exit Sub

ErrHandler:
If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."
Else

MsgBox "An unspecified file copy error has occurred."
End If
Resume Next

End Sub

See Also Kill (statement); Name (statement).

8-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

FileDateTime (function)

Syntax FileDateTime(filename$)

Description Returns a Date variant representing the date and time of the last modification of a file.

Comments This function retrieves the date and time of the last modification of the file specified by filename$
(wildcards are not allowed). A runtime error results if the file does not exist. The value returned can
be used with the date/time functions (i.e., Year, Month, Day, Weekday, Minute, Second,
Hour) to extract the individual elements.

Example This example gets the file date/time of the autoexec.bat file and displays it in a dialog box.
Sub Main()

If FileExists("c:\autoexec.bat") Then
a# = FileDateTime("c:\autoexec.bat")
MsgBox "The date/time information for the file is: " & Year(a#) & "-" &

Month(a#) & "-" & Day(a#)
Else

MsgBox "The file does not exist."
End If

End Sub

See Also FileLen (function); GetAttr (function); FileType (function); FileAttr (function);
FileExists (function).

Notes: The Win32 operating system stores the file creation date, last modification date, and the date the
file was last written to. The FileDateTime function only returns the last modification date.

GFK-1283G F 8-5

FileDirs (statement)

Syntax FileDirs array() [,dirspec$]

Description Fills a String or Variant array with directory names from disk.

Comments The FileDirs statement takes the following parameters:

Parameter Description
array() Either a zero- or a one-dimensioned array of strings or variants. The array

can be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new
number of elements. If there are no elements, then the array will be
redimensioned to contain no dimensions. You can use the LBound,
UBound, and ArrayDims functions to determine the number and size of
the new array's dimensions.

If the array is fixed, each array element is first erased, then the new elements
are placed into the array. If there are fewer elements than will fit in the array,
then the remaining elements are initialized to zero-length strings (for
String arrays) or Empty (for Variant arrays). A runtime error results if
the array is too small to hold the new elements.

dirspec$ String containing the file search mask, such as:
t*.
c:*

If this parameter is omitted, then * is used, which fills the array with all the
subdirectory names within the current directory.

Example This example fills an array with directory entries and displays the first one.
Sub Main()

Dim a$()
FileDirs a$,"c:*"
MsgBox "The first directory is: " & a$(0)

End Sub

See Also FileList (statement); Dir, Dir$ (functions); CurDir, CurDir$ (functions); ChDir
(statement).

8-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

FileExists (function)

Syntax FileExists(filename$)

Description Returns True if filename$ exists; returns False otherwise.

Comments This function determines whether a given filename$ is valid.

This function will return False if filename$ specifies a subdirectory.

Example This example checks to see whether there is an autoexec.bat file in the root directory of the C drive,
then displays either its creation date and time or the fact that it does not exist.
Sub Main()

If FileExists("c:\autoexec.bat") Then
Msgbox "This file exists!"

Else
MsgBox "File does not exist."

End If
End Sub

See Also FileLen (function); GetAttr (function); FileType (function); FileAttr (function);
FileParse$ (function).

FileLen (function)

Syntax FileLen(filename$)

Description Returns a Long representing the length of filename$ in bytes.

Comments This function is used in place of the LOF function to retrieve the length of a file without first
opening the file. A runtime error results if the file does not exist.

Example This example checks to see whether there is a c:\autoexec.bat file and, if there is, displays the
length of the file.
Sub Main()

file$ = "c:\autoexec.bat"
If FileExists(file$) And FileLen(file$) <> 0) Then

b% = FileLen(file$)
MsgBox "'" & file$ & "' is " & b% & " bytes."

Else
MsgBox "'" & file$ & "' does not exist."

End If
End Sub

See Also GetAttr (function); FileType (function); FileAttr (function); FileParse$ (function);
FileExists (function); Loc (function).

GFK-1283G F 8-7

FileList (statement)

Syntax FileList array() [,[filespec$] [,[include_attr] [,exclude_attr]]]

Description Fills a String or Variant array with filenames from disk.

Comments The FileList function takes the following parameters:

Parameter Description
array() Either a zero- or a one-dimensioned array of strings or variants. The array can

be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new
number of elements. If there are no elements, then the array will be
redimensioned to contain no dimensions. You can use the LBound, UBound,
and ArrayDims functions to determine the number and size of the new
array's dimensions.

If the array is fixed, each array element is first erased, then the new elements
are placed into the array. If there are fewer elements than will fit in the array,
then the remaining elements are initialized to zero-length strings (for String
arrays) or Empty (for Variant arrays). A runtime error results if the array
is too small to hold the new elements.

filespec$ String specifying which filenames are to be included in the list.

The filespec$ parameter can include wildcards, such as * and ?. If this
parameter is omitted, then * is used.

include_attr Integer specifying attributes of files you want included in the list. It can be
any combination of the attributes listed below.

If this parameter is omitted, then the value 97 is used (ebReadOnly Or
ebArchive Or ebNone).

exclude_attr Integer specifying attributes of files you want excluded from the list. It can
be any combination of the attributes listed below.

If this parameter is omitted, then the value 18 is used (ebHidden Or
ebDirectory). In other words, hidden files and subdirectories are excluded
from the list.

Wildcards
The * character matches any sequence of zero or more characters, whereas the ? character matches
any single character. Multiple *'s and ?'s can appear within the expression to form complete
searching patterns. The following table shows some examples:

This Pattern Matches These Files Doesn't Match These Files
S.TXT SAMPLE.TXT

GOOSE.TXT
SAMS.TXT

SAMPLE
SAMPLE.DAT

C*T.TXT CAT.TXT CAP.TXT
ACATS.TXT

C*T CAT
CAP.TXT

CAT.DOC

8-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

C?T CAT
CUT

CAT.TXT
CAPIT
CT

* (All files)

File Attributes
These numbers can be any combination of the following:

Constant Value Includes
ebNormal 0 Read-only, archive, subdir, none
ebReadOnly 1 Read-only files
ebHidden 2 Hidden files
ebSystem 4 System files
ebVolume 8 Volume label
ebDirectory 16 DOS subdirectories
ebArchive 32 Files that have changed since the last backup
ebNone 64 Files with no attributes

Example This example fills an array a with the directory of the current drive for all files that have normal or
no attributes and excludes those with system attributes. The dialog box displays four filenames
from the array.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim a$()
FileList a$,"*.*",(ebNormal + ebNone),ebSystem
If ArrayDims(a$) > 0 Then

r = SelectBox("FileList","The files you filtered are:",a$)
Else

MsgBox "No files found."
End If

End Sub

See Also FileDirs (statement); Dir, Dir$ (functions).

GFK-1283G F 8-9

FileParse$ (function)

Syntax FileParse$(filename$[, operation])

Description Returns a String containing a portion of filename$ such as the path, drive, or file extension.

Comments The filename$ parameter can specify any valid filename (it does not have to exist). For example:
..\test.dat
c:\sheets\test.dat
test.dat

A runtime error is generated if filename$ is a zero-length string.

The optional operation parameter is an Integer specifying which portion of the filename$ to
extract. It can be any of the following values.

Value Meaning Example
0 Full name c:\sheets\test.dat

1 Drive c

2 Path c:\sheets

3 Name test.dat

4 Root test

5 Extension dat

If operation is not specified, then the full name is returned. A runtime error will result if operation
is not one of the above values.

A runtime error results if filename$ is empty.

Example This example parses the file string c:\temp\autoexec.bat into its component parts and
displays them in a dialog box.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim a$(5)
file$ = "c:\temp\autoexec.bat"
For i = 1 To 5

a$(i) = FileParse$(file$,i)
Next i

msg1 = "The breakdown of '" & file$ & "' is:" & crlf & crlf
msg1 = msg & a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(4) & crlf & a$(5)
MsgBox msg1

End Sub

See Also FileLen (function); GetAttr (function); FileType (function); FileAttr (function);
FileExists (function).

Notes: The backslash and forward slash can be used interchangeably. For example, "c:\test.dat" is the same
as "c:/test.dat".

8-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Fix (function)

Syntax Fix(number)

Description Returns the integer part of number.

Comments This function returns the integer part of the given value by removing the fractional part. The sign is
preserved.

The Fix function returns the same type as number, with the following exceptions:

• If number is Empty, then an Integer variant of value 0 is returned.

• If number is a String, then a Double variant is returned.

• If number contains no valid data, then a Null variant is returned.

Example This example returns the fixed part of a number and assigns it to b, then displays the result in a
dialog box.
Sub Main()

a# = -19923.45
b% = Fix(a#)
MsgBox "The fixed portion of -19923.45 is: " & b%

End Sub

See Also Int (function); CInt (function).

GFK-1283G F 8-11

For...Next (statement)

Syntax For counter = start To end [Step increment]
[statements]
[Exit For]
[statements]

Next [counter [,nextcounter]...]

Description Repeats a block of statements a specified number of times, incrementing a loop counter by a given
increment each time through the loop.

Comments The For statement takes the following parameters:

Parameter Description
counter Name of a numeric variable. Variables of the following types can be used:

Integer, Long, Single, Double, Variant.

start Initial value for counter. The first time through the loop, counter is assigned
this value.

end Final value for counter. The statements will continue executing until counter
is equal to end.

increment Amount added to counter each time through the loop. If end is greater than
start, then increment must be positive. If end is less than start, then increment
must be negative.

If increment is not specified, then 1 is assumed. The expression given as
increment is evaluated only once. Changing the step during execution of the
loop will have no effect.

statements Any number of Basic Control Engine statements.

The For...Next statement continues executing until an Exit For statement is encountered
when counter is greater than end.

For...Next statements can be nested. In such a case, the Next [counter] statement applies to
the innermost For...Next.

The Next clause can be optimized for nested next loops by separating each counter with a comma.
The ordering of the counters must be consistent with the nesting order (innermost counter appearing
before outermost counter). The following example shows two equivalent For statements:

For i = 1 To 10 For i = 1 To 10
For j = 1 To 10 For j = 1 To 10
Next j Next j,i

Next i

A Next clause appearing by itself (with no counter variable) matches the innermost For loop.

The counter variable can be changed within the loop but will have no effect on the number of times
the loop will execute.

8-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example Sub Main()
'This example constructs a truth table for the OR statement 'using nested

For...Next loops.
Msg1 = "Logic table for Or:" & crlf & crlf
For x = -1 To 0

For y = -1 To 0
z = x Or y
msg1 = msg1 & CBool(x) & " Or "
msg1 = msg1 & CBool(y) & " = "
msg1 = msg1 & CBool(z) & Basic.Eoln$

Next y
Next x
MsgBox msg1

End Sub

See Also Do...Loop (statement); While...WEnd (statement).

Notes: Due to errors in program logic, you can inadvertently create infinite loops in your code. You can
use Ctrl+Break to break out of infinite loops.

GFK-1283G F 8-13

Format, Format$ (functions)
.

Syntax Format[$](expression [,Userformat$])

Description Returns a String formatted to user specification.

Comments Format$ returns a String, whereas Format returns a String variant.

The Format$/Format functions take the following parameters:

Parameter Description
expression String or numeric expression to be formatted.

Userformat$ Format expression that can be either one of the built-in Basic Control Engine
formats or a user-defined format consisting of characters that specify how the
expression should be displayed.

String, numeric, and date/time formats cannot be mixed in a single
Userformat$ expression.

If Userformat$ is omitted and the expression is numeric, then these functions perform the same
function as the Str$ or Str statements, except that they do not preserve a leading space for
positive values.

If expression is Null, then a zero-length string is returned.

Built-In Formats
To format numeric expressions, you can specify one of the built-in formats. There are two
categories of built-in formats: one deals with numeric expressions and the other with date/time
values. The following tables list the built-in numeric and date/time format strings, followed by an
explanation of what each does.

Numeric Formats
Format Description
General number Display the numeric expression as is, with no additional formatting.

Currency Displays the numeric expression as currency, with thousands separator if
necessary.

Fixed Displays at least one digit to the left of the decimal separator and two digits to
the right.

Standard Displays the numeric expression with thousands separator if necessary.
Displays at least one digit to the left of the decimal separator and two digits to
the right.

Percent Displays the numeric expression multiplied by 100. A percent sign (%) will
appear at the right of the formatted output. Two digits are displayed to the
right of the decimal separator.

Scientific Displays the number using scientific notation. One digit appears before the
decimal separator and two after.

Yes/No Displays No if the numeric expression is 0. Displays Yes for all other values.

True/False Displays False if the numeric expression is 0. Displays True for all other values.

On/Off Displays Off if the numeric expression is 0. Displays On for all other values.

8-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Date/Time Formats
Format Description
General date Displays the date and time. If there is no fractional part in the numeric

expression, then only the date is displayed. If there is no integral part in the
numeric expression, then only the time is displayed. Output is in the following
form: 1/1/95 01:00:00 AM.

Long date Displays a long date.

Medium date Displays a medium date—prints out only the abbreviated name of the month.

Short date Displays a short date.

Long time Displays the long time. The default is: h:mm:ss.

Medium time Displays the time using a 12-hour clock. Hours and minutes are displayed, and
the AM/PM designator is at the end.

Short time Displays the time using a 24-hour clock. Hours and minutes are displayed.

User-Defined Formats
In addition to the built-in formats, you can specify a user-defined format by using characters that
have special meaning when used in a format expression. The following tables list the characters you
can use for numeric, string, and date/time formats and explain their functions.

Numeric Formats
Character Meaning
Empty string Displays the numeric expression as is, with no additional formatting.
0 This is a digit placeholder.

Displays a number or a 0. If a number exists in the numeric expression in
the position where the 0 appears, the number will be displayed. Otherwise, a
0 will be displayed. If there are more 0s in the format string than there are
digits, the leading and trailing 0s are displayed without modification.

This is a digit placeholder.

Displays a number or nothing. If a number exists in the numeric expression
in the position where the number sign appears, the number will be
displayed. Otherwise, nothing will be displayed. Leading and trailing 0s are
not displayed.

. This is the decimal placeholder.

Designates the number of digits to the left of the decimal and the number of
digits to the right. The character used in the formatted string depends on the
decimal placeholder, as specified by your locale.

% This is the percentage operator.

The numeric expression is multiplied by 100, and the percent character is
inserted in the same position as it appears in the user-defined format string.

GFK-1283G F 8-15

, This is the thousand separator.

The common use for the thousands separator is to separate thousands from
hundreds. To specify this use, the thousands separator must be surrounded
by digit placeholders. Commas appearing before any digit placeholders are
specified are just displayed. Adjacent commas with no digit placeholders
specified between them and the decimal mean that the number should be
divided by 1,000 for each adjacent comma in the format string. A comma
immediately to the left of the decimal has the same function. The actual
thousands separator character used depends on the character specified by
your locale.

:E- E+ e- e+ These are the scientific notation operators, which display the number in
scientific notation. At least one digit placeholder must exist to the left of E-
, E+, e-, or e+. Any digit placeholders displayed to the left of E-, E+, e-,
or e+ determine the number of digits displayed in the exponent. Using E+
or e+ places a + in front of positive exponents and a – in front of negative
exponents. Using E- or e- places a – in front of negative exponents and
nothing in front of positive exponents.

: This is the time separator.

Separates hours, minutes, and seconds when time values are being
formatted. The actual character used depends on the character specified by
your locale.

/ This is the date separator.

Separates months, days, and years when date values are being formatted.
The actual character used depends on the character specified by your locale.

:- + $ ()
space

These are the literal characters you can display.

To display any other character, you should precede it with a backslash or
enclose it in quotes.

\ This designates the next character as a displayed character.

To display characters, precede them with a backslash. To display a
backslash, use two backslashes. Double quotation marks can also be used to
display characters. Numeric formatting characters, date/time formatting
characters, and string formatting characters cannot be displayed without a
preceding backslash.

:"ABC" Displays the text between the quotation marks, but not the quotation marks.
To designate a double quotation mark within a format string, use two
adjacent double quotation marks.

* This will display the next character as the fill character.

Any empty space in a field will be filled with the specified fill character.

. Numeric formats can contain one to three parts. Each part is separated by a semicolon. If you
specify one format, it applies to all values. If you specify two formats, the first applies to positive
values and the second to negative values. If you specify three formats, the first applies to positive
values, the second to negative values, and the third to 0s. If you include semicolons with no format
between them, the format for positive values is used.

8-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

String Formats
Character Meaning
@ This is a character placeholder.

Displays a character if one exists in the expression in the same position;
otherwise, displays a space. Placeholders are filled from right to left unless
the format string specifies left to right.

& This is a character placeholder.

Displays a character if one exists in the expression in the same position;
otherwise, displays nothing. Placeholders are filled from right to left unless
the format string specifies left to right.

< This character forces lowercase.

Displays all characters in the expression in lowercase.
> This character forces uppercase.

Displays all characters in the expression in uppercase.
! This character forces placeholders to be filled from left to right. The default

is right to left.

Date/Time Formats
Character Meaning
c Displays the date as ddddd and the time as ttttt. Only the date is

displayed if no fractional part exists in the numeric expression. Only the time
is displayed if no integral portion exists in the numeric expression.

d Displays the day without a leading 0 (1–31).
dd Displays the day with a leading 0 (01–31).
ddd Displays the day of the week abbreviated (Sun–Sat).
dddd Displays the day of the week (Sunday–Saturday).
ddddd Displays the date as a short date.
dddddd Displays the date as a long date.
w Displays the number of the day of the week (1–7). Sunday is 1; Saturday is 7.
ww Displays the week of the year (1–53).
m Displays the month without a leading 0 (1–12). If m immediately follows h or

hh, m is treated as minutes (0–59).
mm Displays the month with a leading 0 (01–12). If mm immediately follows h or

hh, mm is treated as minutes with a leading 0 (00–59).
mmm Displays the month abbreviated (Jan–Dec).
mmmm Displays the month (January–December).
q Displays the quarter of the year (1–4).
y Displays the day of the year (1–366).
yy Displays the year, not the century (00–99).
yyyy Displays the year (1000–9999).

GFK-1283G F 8-17

h Displays the hour without a leading 0 (0–24).
hh Displays the hour with a leading 0 (00–24).
n Displays the minute without a leading 0 (0–59).
nn Displays the minute with a leading 0 (00–59).
s Displays the second without a leading 0 (0–59).
ss Displays the second with a leading 0 (00–59).
ttttt Displays the time. A leading 0 is displayed if specified by your locale.
AM/PM Displays the time using a 12-hour clock. Displays an uppercase AM for time

values before 12 noon. Displays an uppercase PM for time values after 12
noon and before 12 midnight.

am/pm Displays the time using a 12-hour clock. Displays a lowercase am or pm at
the end.

A/P Displays the time using a 12-hour clock. Displays an uppercase A or P at the end.
a/p Displays the time using a 12-hour clock. Displays a lowercase a or p at the end.
AMPM Displays the time using a 12-hour clock. Displays the string s1159 for values

before 12 noon and s2359 for values after 12 noon and before 12 midnight.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a# = 1199.234
msg1 = "Some general formats for '" & a# & "' are:" & crlf & crlf
msg1 = msg1 & Format(a#,"General Number") & crlf
msg1 = msg1 & Format(a#,"Currency") & crlf
msg1 = msg1 & Format(a#,"Standard") & crlf
msg1 = msg1 & Format(a#,"Fixed") & crlf
msg1 = msg1 & Format(a#,"Percent") & crlf
msg1 = msg1 & Format(a#,"Scientific") & crlf
msg1 = msg1 & Format(True,"Yes/No") & crlf
msg1 = msg1 & Format(True,"True/False") & crlf
msg1 = msg1 & Format(True,"On/Off") & crlf
msg1 = msg1 & Format(a#,"0,0.00") & crlf
msg1 = msg1 & Format(a#,"##,###,###.###") & crlf
MsgBox msg1

da$ = Date$
msg1 = "Some date formats for '" & da$ & "' are:" & crlf & crlf
msg1 = msg1 & Format(da$,"General Date") & crlf
msg1 = msg1 & Format(da$,"Long Date") & crlf
msg1 = msg1 & Format(da$,"Medium Date") & crlf
msg1 = msg1 & Format(da$,"Short Date") & crlf
MsgBox msg1

ti$ = Time$
msg1 = "Some time formats for '" & ti$ & "' are:" & crlf & crlf
msg1 = msg1 & Format(ti$,"Long Time") & crlf
msg1 = msg1 & Format(ti$,"Medium Time") & crlf
msg1 = msg1 & Format(ti$,"Short Time") & crlf
MsgBox msg1

End Sub

See Also Str, Str$ (functions); CStr (function).

Note: The default date/time formats are read from the [Intl] section of the win.ini file.

8-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

FreeFile (function)

Syntax FreeFile[()]

Description Returns an Integer containing the next available file number.

Comments The number returned is suitable for use in the Open statement and will always be between 1 and
255 inclusive.

Example This example assigns A to the next free file number and displays it in a dialog box.
Sub Main()

a = FreeFile
MsgBox "The next free file number is: " & a

End Sub

See Also FileAttr (function); Open (statement).

Function...End Function (statement)

Syntax [Private | Public] [Static] Function name[(arglist)] [As ReturnType]
[statements]

End Sub

where arglist is a comma-separated list of the following (up to 30 arguments are allowed):

[Optional] [ByVal | ByRef] parameter [()] [As type]

Description Creates a user-defined function.

Comments The Function statement has the following parts:

Part Description
Private Indicates that the function being defined cannot be called from other scripts.
Public Indicates that the function being defined can be called from other scripts. If

both the Private and Public keywords are missing, then Public is
assumed.

Static Recognized by the compiler but currently has no effect.

name Name of the function, which must follow Basic Control Engine naming
conventions:

1. Must start with a letter.

2. May contain letters, digits, and the underscore character (_). Punctuation
and type-declaration characters are not allowed. The exclamation point
(!) can appear within the name as long as it is not the last character, in
which case it is interpreted as a type-declaration character.

3. Must not exceed 80 characters in length.

Additionally, the name parameter can end with an optional type-declaration
character specifying the type of data returned by the function (that is, any of
the following characters: %, &, !, #, @).

GFK-1283G F 8-19

Optional Keyword indicating that the parameter is optional. All optional parameters
must be of type Variant. Furthermore, all parameters that follow the first
optional parameter must also be optional.

If this keyword is omitted, then the parameter is required.

Note

You can use the IsMissing function to determine if an optional parameter
was actually passed by the caller.

ByVal Keyword indicating that parameter is passed by value.
ByRef Keyword indicating that parameter is passed by reference. If neither the

ByVal nor the ByRef keyword is given, then ByRef is assumed.

parameter Name of the parameter, which must follow the same naming conventions as
those used by variables. This name can include a type-declaration character,
appearing in place of As type.

type Type of the parameter (for example, Integer, String, and so on). Arrays
are indicated with parentheses. For example, an array of integers would be
declared as follows:

Function Test(a() As Integer)
End Function

ReturnType Type of data returned by the function. If the return type is not given, then
Variant is assumed. The ReturnType can only be specified if the function
name (i.e., the name parameter) does not contain an explicit type-declaration
character.

A function returns to the caller when either of the following statements is encountered:
End Function
Exit Function

Functions can be recursive.

Returning Values from Functions
To assign a return value, an expression must be assigned to the name of the function, as shown
below:

Function TimesTwo(a As Integer) As Integer
TimesTwo = a * 2

End Function

If no assignment is encountered before the function exits, then one of the following values is
returned:

Value Data Type Returned by the Function
0 Integer, Long, Single, Double, Currency

Zero-length string String

Nothing Object (or any data object)
Empty Variant

December 30, 1899 Date

False Boolean

8-20 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

The type of the return value is determined by the As ReturnType clause on the Function
statement itself. As an alternative, a type-declaration character can be added to the Function
name. For example, the following two definitions of Test both return String values:

Function Test() As String
Test = "Hello, world"

End Function

Function Test$()
Test = "Hello, world"

End Function

Passing Parameters to Functions
Parameters are passed to a function either by value or by reference, depending on the declaration of
that parameter in arglist. If the parameter is declared using the ByRef keyword, then any
modifications to that passed parameter within the function change the value of that variable in the
caller. If the parameter is declared using the ByVal keyword, then the value of that variable cannot
be changed in the called function. If neither the ByRef or ByVal keywords are specified, then the
parameter is passed by reference.

You can override passing a parameter by reference by enclosing that parameter within parentheses.
For instance, the following example passes the variable j by reference, regardless of how the third
parameter is declared in the arglist of UserFunction:

i = UserFunction(10,12,(j))

Optional Parameters
The Basic Control Engine allows you to skip parameters when calling functions, as shown in the
following example:

Function Test(a%,b%,c%) As Variant
End Function

Sub Main
a = Test(1,,4) 'Parameter 2 was skipped.

End Sub

You can skip any parameter with the following restrictions:

1. The call cannot end with a comma. For instance, using the above example, the following is not
valid:
a = Test(1,,)

2. The call must contain the minimum number of parameters as required by the called function.
For instance, using the above example, the following are invalid:
a = Test(,1) 'Only passes two out of three required parameters.
a = Test(1,2) 'Only passes two out of three required parameters.

When you skip a parameter in this manner, the Basic Control Engine creates a temporary variable
and passes this variable instead. The value of this temporary variable depends on the data type of
the corresponding parameter in the argument list of the called function, as described in the
following table:
Value Data Type
0 Integer, Long, Single, Double, Currency
Zero-length string String
Nothing Object (or any data object)
Error Variant

December 30, 1899 Date
False Boolean

GFK-1283G F 8-21

Within the called function, you will be unable to determine if a parameter was skipped unless the
parameter was declared as a variant in the argument list of the function. In this case, you can use the
IsMissing function to determine if the parameter was skipped:

Function Test(a,b,c)
If IsMissing(a) Or IsMissing(b) Then Exit Sub

End Function

Example Function Factorial(n%) As Integer
'This function calculates N! (N-factorial).
f% = 1
For i = n To 2 Step -1

f = f * i
Next i
Factorial = f

End Function

Sub Main()
'This example calls user-defined function Factorial and displays the
'result in a dialog box.
a% = 0
Do While a% < 2

a% = Val(InputBox("Enter an integer number greater than 2.","Compute Factorial"))
Loop
b# = Factorial(a%)
MsgBox "The factorial of " & a% & " is: " & b#

End Sub

See Also Sub...End Sub (statement)

8-22 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Fv (function)

Syntax Fv(Rate, Nper, Pmt,Pv,Due)

Description Calculates the future value of an annuity based on periodic fixed payments and a constant rate of
interest.

Comments An annuity is a series of fixed payments made to an insurance company or other investment
company over a period of time. Examples of annuities are mortgages and monthly savings plans.

The Fv function requires the following parameters:

Parameter Description
Rate Double representing the interest rate per period. Make sure that annual rates

are normalized for monthly periods (divided by 12).

NPer Double representing the total number of payments (periods) in the annuity.

Pmt Double representing the amount of each payment per period. Payments are
entered as negative values, whereas receipts are entered as positive values.

Pv Double representing the present value of your annuity. In the case of a loan,
the present value would be the amount of the loan, whereas in the case of a
retirement annuity, the present value would be the amount of the fund.

Due Integer indicating when payments are due for each payment period. A 0
specifies payment at the end of each period, whereas a 1 indicates payment at
the start of each period.

Rate and NPer values must be expressed in the same units. If Rate is expressed as a percentage per
month, then NPer must also be expressed in months. If Rate is an annual rate, then the NPer must
also be given in years.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example This example calculates the future value of 100 dollars paid periodically for a period of 10 years
(120 months) at a rate of 10% per year (or .10/12 per month) with payments made on the first of the
month. The value is displayed in a dialog box. Note that payments are negative values.
Sub Main()

a# = Fv((.10/12),120,-100.00,0,1)
MsgBox "Future value is: " & Format(a#,"Currency")

End Sub

See Also IRR (function); MIRR (function); Npv (function); Pv (function).

GFK-1283G 9-1

G

Get (statement)

Syntax Get [#] filenumber, [recordnumber], variable

Description Retrieves data from a random or binary file and stores that data into the specified variable.

Comments The Get statement accepts the following parameters:

Parameter Description
filenumber Integer used by the Basic Control Engine to identify the file. This is the

same number passed to the Open statement.

recordnumber Long specifying which record is to be read from the file.

For binary files, this number represents the first byte to be read starting
with the beginning of the file (the first byte is 1). For random files, this
number represents the record number starting with the beginning of the file
(the first record is 1). This value ranges from 1 to 2147483647.

If the recordnumber parameter is omitted, the next record is read from the file
(if no records have been read yet, then the first record in the file is read).
When this parameter is omitted, the commas must still appear, as in the
following example:

Get #1,,recvar

If recordnumber is specified, it overrides any previous change in file position
specified with the Seek statement.

variable Variable into which data will be read. The type of the variable determines
how the data is read from the file, as described below.

With random files, a runtime error will occur if the length of the data being read exceeds the reclen
parameter specified with the Open statement. If the length of the data being read is less than the
record length, the file pointer is advanced to the start of the next record. With binary files, the data
elements being read are contiguous the file pointer is never advanced.

9-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Variable Types
The type of the variable parameter determines how data will be read from the file. It can be any of
the following types:

Variable Type File Storage Description
Integer 2 bytes are read from the file.
Long 4 bytes are read from the file.
String
 (variable-length)

In binary files, variable-length strings are read by first determining the
specified string variable's length and then reading that many bytes from the
file. For example, to read a string of eight characters:
s$ = String(8," ")
Get #1,,s$

In random files, variable-length strings are read by first reading a 2-byte
length and then reading that many characters from the file.

String
 (fixed-length)

Fixed-length strings are read by reading a fixed number of characters from
the file equal to the string's declared length.

Double 8 bytes are read from the file (IEEE format).
Single 4 bytes are read from the file (IEEE format).
Date 8 bytes are read from the file (IEEE double format).
Boolean 2 bytes are read from the file. Nonzero values are True, and zero values

are False.
Variant A 2-byte VarType is read from the file, which determines the format of the

data that follows. Once the VarType is known, the data is read individually,
as described above. With user-defined errors, after the 2-byte VarType, a
2-byte unsigned integer is read and assigned as the value of the user-defined
error, followed by 2 additional bytes of information about the error.

The exception is with strings, which are always preceded by a 2-byte string
length.

User-defined types Each member of a user-defined data type is read individually

In binary files, variable-length strings within user-defined types are read by
first reading a 2-byte length followed by the string's content. This storage is
different from variable-length strings outside of user-defined types.

When reading user-defined types, the record length must be greater than or
equal to the combined size of each element within the data type.

Arrays Arrays cannot be read from a file using the Get statement.

Objects Object variables cannot be read from a file using the Get statement.

GFK-1283G G 9-3

Example This example opens a file for random write, then writes ten records into the file with the values
10...50. Then the file is closed and reopened in random mode for read, and the records are read
with the Get statement. The result is displayed in a message box.
Sub Main()

Open "test.dat" For Random Access Write As #1
For x = 1 to 10

y = x * 10
Put #1,x,y

Next x
Close

Open "test.dat" For Random Access Read As #1
msg1 = ""

For y = 1 to 5
Get #1,y,x
msg1 = msg1 & "Record " & y & ": " & x & Basic.Eoln$

Next y
Close

MsgBox msg1
End Sub

See Also Open (statement); Put (statement); Input# (statement); Line Input# (statement); Input,
Input$ (functions).

9-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

GetAttr (function)

Syntax GetAttr(filename$)

Description Returns an Integer containing the attributes of the specified file.

Comments The attribute value returned is the sum of the attributes set for the file. The value of each attribute is
as follows:

Constant Value Includes
ebNormal 0 Read-only files, archive files, subdirectories, and files with

no attributes.
ebReadOnly 1 Read-only files
ebHidden 2 Hidden files
ebSystem 4 System files
ebVolume 8 Volume label
ebDirectory 16 DOS subdirectories
ebArchive 32 Files that have changed since the last backup
ebNone 64 Files with no attributes

To determine whether a particular attribute is set, you can And the values shown above with the
value returned by GetAttr. If the result is True, the attribute is set, as shown below:
Sub Main()

Dim w As Integer
w = GetAttr("sample.txt")
If w And ebReadOnly Then MsgBox "This file is read-only."

End Sub

Example This example tests to see whether the file test.dat exists. If it does not, then it creates the file. The
file attributes are then retrieved with the GetAttr function, and the result is displayed.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim a()
FileList a,"*.*"

Again:
msg1 = ""
r = SelectBox("Attribute Checker","Select File:",a)
If r = -1 Then

End
Else

y% = GetAttr(a(r))
End If

If y% = 0 Then msg1 = msg1 & "This file has no special attributes." & crlf
If y% And ebReadOnly Then msg1 = msg1 & "The read-only bit is set." & crlf
If y% And ebHidden Then msg1 = msg1 & "The hidden bit is set." & crlf
If y% And ebSystem Then msg1 = msg1 & "The system bit is set." & crlf
If y% And ebVolume Then msg1 = msg1 & "The volume bit is set." & crlf
If y% And ebDirectory Then msg1 = msg1 & "The directory bit is set." & crlf
If y% And ebArchive Then msg1 = msg1 & "The archive bit is set."

MsgBox msg1
Goto Again

End Sub

See Also SetAttr (statement); FileAttr (function).

GFK-1283G G 9-5

GetObject (function)

Syntax GetObject(filename$ [,class$])

Description Returns the object specified by filename$ or returns a previously instantiated object of the given
class$.

Comments This function is used to retrieve an existing OLE automation object, either one that comes from a
file or one that has previously been instantiated.

The filename$ argument specifies the full pathname of the file containing the object to be activated.
The application associated with the file is determined by OLE at runtime. For example, suppose
that a file called c:\docs\resume.doc was created by a word processor called
wordproc.exe. The following statement would invoke wordproc.exe, load the file called
c:\docs\resume.doc, and assign that object to a variable:

Dim doc As Object
Set doc = GetObject("c:\docs\resume.doc")

To activate a part of an object, add an exclamation point to the filename followed by a string
representing the part of the object that you want to activate. For example, to activate the first three
pages of the document in the previous example:

Dim doc As Object
Set doc = GetObject("c:\docs\resume.doc!P1-P3")

The GetObject function behaves differently depending on whether the first parameter is omitted.
The following table summarizes the different behaviors of GetObject:

Filename$ Class$ GetObject Returns
Omitted Specified Reference to an existing instance of the specified object. A

runtime error results if the object is not already loaded.
"" Specified Reference to a new object (as specified by class$). A runtime

error occurs if an object of the specified class cannot be found.

This is the same as CreateObject.

Specified Omitted Default object from filename$. The application to activate is
determined by OLE based on the given filename.

Specified Specified Object given by class$ from the file given by filename$. A
runtime error occurs if an object of the given class cannot be
found in the given file.

Examples This first example instantiates the existing copy of Excel.
Sub Main()

Dim Excel As Object
Set Excel = GetObject(,"Excel.Application")

This second example loads the OLE server associated with a document.
Dim MyObject As Object
Set MyObject = GetObject("c:\documents\resume.doc")

End Sub

See Also CreateObject (function); Object (data type).

9-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Global (statement)
Description See Public (statement).

GoSub (statement)

Syntax GoSub label

Description Causes execution to continue at the specified label.

Comments Execution can later be returned to the statement following the GoSub by using the Return
statement.

The label parameter must be a label within the current function or subroutine. GoSub outside the
context of the current function or subroutine is not allowed.

Example This example gets a name from the user and then branches to a subroutine to check the input. If the
user clicks Cancel or enters a blank name, the program terminates; otherwise, the name is set to
MICHAEL, and a message is displayed.
Sub Main()

uname$ = Ucase$(InputBox$("Enter your name:","Enter Name"))
GoSub CheckName
MsgBox "I'm looking for MICHAEL, not " & uname$
Exit Sub

CheckName:
If (uname$ = "") Then

GoSub BlankName
ElseIf uname$ = "MICHAEL" Then

GoSub RightName
Else

GoSub OtherName
End If
Return

BlankName:
MsgBox "No name? Clicked Cancel? I'm shutting down."
Exit Sub

RightName:
Msgbox "Hey, MIKE where have you been?"
End

OtherName:
Return

End Sub

See Also Goto (statement); Return (statement).

GFK-1283G G 9-7

Goto (statement)

Syntax Goto label

Description Transfers execution to the line containing the specified label.

Comments The compiler will produce an error if label does not exist.

The label must appear within the same subroutine or function as the Goto.

Labels are identifiers that follow these rules:

1. Must begin with a letter.

2. May contain letters, digits, and the underscore character.

3. Must not exceed 80 characters in length.

4. Must be followed by a colon (:).

Labels are not case-sensitive.

Example This example gets a name from the user and then branches to a statement, depending on the input
name. If the name is not MICHAEL, it is reset to MICHAEL unless it is null or the user clicks
Cancel--in which case, the program displays a message and terminates.
Sub Main()

uname$ = UCase(InputBox("Enter your name:","Enter Name"))
If uname$ = "MICHAEL" Then

Goto RightName
Else

Goto WrongName
End If

WrongName:
If (uname$ = "") Then

MsgBox "No name? Clicked Cancel? I'm shutting down."
Else

MsgBox "I am renaming you MICHAEL!"
uname$ = "MICHAEL"
Goto RightName

End If
Exit Sub

RightName:
MsgBox "Hello, " & uname$

End Sub

See Also GoSub (statement); Call (statement).

Note: To break out of an infinite loop, press Ctrl+Break.

9-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

GroupBox (statement)

Syntax GroupBox X,Y,width,height,title$ [,.Identifier]

Description Defines a group box within a dialog box template.

Comments This statement can only appear within a dialog box template (that is., between the Begin
Dialog and End Dialog statements).

The group box control is used for static display only the user cannot interact with a group box
control.

Separator lines can be created using group box controls. This is accomplished by creating a group
box that is wider than the width of the dialog box and extends below the bottom of the dialog
box that is, three sides of the group box are not visible.

If title$ is a zero-length string, then the group box is drawn as a solid rectangle with no title.

The GroupBox statement requires the following parameters:

Parameter Description
X, Y Integer coordinates specifying the position of the control (in dialog units)

relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

title$ String containing the label of the group box. If title$ is a zero-length
string, then no title will appear.

.Identifier Optional parameter that specifies the name by which this control can be
referenced by statements in a dialog function (such as DlgFocus and
DlgEnable). If omitted, then the first two words of title$ are used.

Example This example shows the GroupBox statement being used both for grouping and as a separator line.
Sub Main()

Begin Dialog OptionsTemplate 16,32,128,84,"Options"
GroupBox 4,4,116,40,"Window Options"
CheckBox 12,16,60,8,"Show &Toolbar",.ShowToolbar
CheckBox 12,28,68,8,"Show &Status Bar",.ShowStatusBar
GroupBox -12,52,152,48," ",.SeparatorLine
OKButton 16,64,40,14,.OK
CancelButton 68,64,40,14,.Cancel

End Dialog
Dim OptionsDialog As OptionsTemplate
Dialog OptionsDialog

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); ListBox (statement); OKButton
(statement); OptionButton (statement); OptionGroup (statement); Picture (statement);
PushButton (statement); Text (statement); TextBox (statement); Begin Dialog
(statement), PictureButton (statement).

GFK-1283G 10-1

H

Hex, Hex$ (functions)

Syntax Hex[$](number)

Description Returns a String containing the hexadecimal equivalent of number.

Comments Hex$ returns a String, whereas Hex returns a String variant.

The returned string contains only the number of hexadecimal digits necessary to represent the
number, up to a maximum of eight.

The number parameter can be any type but is rounded to the nearest whole number before
converting to hex. If the passed number is an integer, then a maximum of four digits are returned;
otherwise, up to eight digits can be returned.

The number parameter can be any expression convertible to a number. If number is Null, then
Null is returned. Empty is treated as 0.

Example This example accepts a number and displays the decimal and hexadecimal equivalent until the input
number is 0 or invalid.
Sub Main()

Do
xs$ = InputBox("Enter a number to convert:","Hex Convert")
x = Val(xs$)
If x <> 0 Then

MsgBox "Decimal: " & x & " Hex: " & Hex(x)
Else

MsgBox "Goodbye."
End If

Loop While x <> 0
End Sub

See Also Oct, Oct$ (functions).

10-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

HLine (statement)

Syntax HLine [lines]

Description Scrolls the window with the focus left or right by the specified number of lines.

Comments The lines parameter is an Integer specifying the number of lines to scroll. If this parameter is
omitted, then the window is scrolled right by one line.

Example This example scrolls the Notepad window to the left by three "amounts." Each "amount" is
equivalent to clicking the right arrow of the horizontal scroll bar once.
Sub Main()

AppActivate "Notepad"
HLine 3 'Move 3 lines in.

End Sub

See Also HPage (statement); HScroll (statement).

Hour (function)

Syntax Hour(time)

Description Returns the hour of the day encoded in the specified time parameter.

Comments The value returned is as an Integer between 0 and 23 inclusive.

The time parameter is any expression that converts to a Date.

Example This example takes the current time; extracts the hour, minute, and second; and displays them as the
current time.
Sub Main()

Msgbox "It is now hour " & Hour(Time) & " of today."
End Sub

See Also Day (function); Minute (function); Second (function); Month (function); Year (function);
Weekday (function); DatePart (function).

GFK-1283G H 10-3

HPage (statement)

Syntax HPage [pages]

Description Scrolls the window with the focus left or right by the specified number of pages.

Comments The pages parameter is an Integer specifying the number of pages to scroll. If this parameter
is omitted, then the window is scrolled right by one page.

Example This example scrolls the Notepad window to the left by three "amounts." Each "amount" is
equivalent to clicking within the horizontal scroll bar on the right side of the thumb mark.
Sub Main()

AppActivate "Notepad"
HPage 3 'Move 3 pages down.

End Sub

See Also HLine (statement); HScroll (statement).

HScroll (statement)

Syntax HScroll percentage

Description Sets the thumb mark on the horizontal scroll bar attached to the current window.

Comments The position is given as a percentage of the total range associated with that scroll bar. For
example, if the percentage parameter is 50, then the thumb mark is positioned in the middle of
the scroll bar.

Example This example centers the thumb mark on the horizontal scroll bar of the Notepad window.
Sub Main()

AppActivate "Notepad"
HScroll 50 'Jump to the middle of the document.

End Sub

See Also HLine (statement); HPage (statement).

10-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

HWND (object)

Syntax Dim name As HWND

Description A data type used to hold window objects.

Comments This data type is used to hold references to physical windows in the operating environment. The
following commands operate on HWND objects:
WinActivate WinClose WinFind WinList

WinMaximize WinMinimize WinMove WinRestore

WinSize

The above language elements support both string and HWND window specifications.

Example This example activates the "Main" MDI window within Program Manager.
Sub Main()

Dim ProgramManager As HWND
Dim ProgramManagerMain As HWND
Set ProgramManager = WinFind("Program Manager")
If ProgramManager Is Not Nothing Then

WinActivate ProgramManager
WinMaximize ProgramManager
Set ProgramManagerMain = WinFind("Program Manager|Main")
If ProgramManagerMain Is Not Nothing Then

WinActivate ProgramManagerMain
WinRestore ProgramManagerMain

Else
MsgBox "Your Program Manager doesn't have a Main group."

End If
Else

MsgBox "Program Manager is not running."
End If

End Sub

See Also HWND.Value (property); WinFind (function); WinActivate (statement).

GFK-1283G H 10-5

HWND.Value (property)

Syntax window.Value

Description The default property of an HWND object that returns a Variant containing a HANDLE to the
physical window of an HWND object variable.

Comments The .Value property is used to retrieve the operating environment–specific value of a given HWND
object. The size of this value depends on the operating environment in which the script is executing
and thus should always be placed into a Variant variable.

This property is read-only.

Example This example displays a dialog box containing the class name of Program Manager's Main window.
It does so using the .Value property, passing it directly to a Windows external routine.
Declare Sub GetClassName Lib "user" (ByVal Win%,ByVal ClsName$,

ByVal ClsNameLen%)
Sub Main()

Dim ProgramManager As HWND
Set ProgramManager = WinFind("Program Manager")
ClassName$ = Space(40)
GetClassName ProgramManager.Value,ClassName$,Len(ClassName$)
MsgBox "The program classname is: " & ClassName$

End Sub

See Also HWND (object).

Notes Under Windows, this value is an Integer.

GFK-1283G 11-1

I

If...Then...Else (statement)

Syntax 1 If condition Then statements [Else else_statements]

Syntax 2 If condition Then
[statements]

[ElseIf else_condition Then
[elseif_statements]]

[Else
[else_statements]]

End If

Description Conditionally executes a statement or group of statements.

Comments The single-line conditional statement (syntax 1) has the following parameters:

Parameter Description
condition Any expression evaluating to a Boolean value.

statements One or more statements separated with colons. This group of statements is
executed when condition is True.

else_statements One or more statements separated with colons. This group of statements is
executed when condition is False.

The multiline conditional statement (syntax 2) has the following parameters:

Parameter Description
condition Any expression evaluating to a Boolean value.

statements One or more statements to be executed when condition is True.

else_condition Any expression evaluating to a Boolean value. The else_condition is
evaluated if condition is False.

elseif_statements One or more statements to be executed when condition is False and
else_condition is True.

else_statements One or more statements to be executed when both condition and
else_condition are False.

There can be as many ElseIf conditions as required.

11-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example This example inputs a name from the user and checks to see whether it is MICHAEL or MIKE
using three forms of the If...Then...Else statement. It then branches to a statement that displays a
welcome message depending on the user's name.
Sub Main()

uname$ = UCase(InputBox("Enter your name:","Enter Name"))
If uname$ = "MICHAEL" Then GoSub MikeName
If uname$ = "MIKE" Then

GoSub MikeName
Exit Sub

End If

If uname$ = "" Then
MsgBox "Since you don't have a name, I'll call you MIKE!"
uname$ = "MIKE"
GoSub MikeName

ElseIf uname$ = "MICHAEL" Then
GoSub MikeName

Else
GoSub OtherName

End If
Exit Sub

MikeName:
MsgBox "Hello, MICHAEL!"
Return

OtherName:
MsgBox "Hello, " & uname$ & "!"
Return

End Sub

See Also Choose (function); Switch (function); IIf (function); Select...Case (statement).

IIf (function)

Syntax IIf(condition,TrueExpression,FalseExpression)

Description Returns TrueExpression if condition is True; otherwise, returns FalseExpression.

Comments Both expressions are calculated before IIf returns.

The IIf function is shorthand for the following construct:

If condition Then
variable = TrueExpression

Else
variable = FalseExpression

End If

Example Sub Main()
s$ = "Car"
MsgBox "You have a " & IIf(s$ = "Car","nice car.","nice non-car.")

End Sub

See Also Choose (function); Switch (function); If...Then...Else (statement); Select...Case
(statement).

GFK-1283G I 11-3

Imp (operator)

Syntax expression1 Imp expression2

Description Performs a logical or binary implication on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants, then a logical
implication is performed as follows:

If the first
expression is

and the second
expression is

then the
result is

True True True

True False False

True Null Null

False True True

False False True

False Null True

Null True True

Null False Null

Null Null Null

Binary Implication
If the two expressions are Integer, then a binary implication is performed, returning an
Integer result. All other numeric types (including Empty variants) are converted to Long and a
binary implication is then performed, returning a Long result.

Binary implication forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions, according to the following table:
1 Imp 1 = 1 Example:
0 Imp 1 = 1 5 01101001
1 Imp 0 = 0 6 10101010
0 Imp 0 = 1 Imp 10111110

Example This example compares the result of two expressions to determine whether one implies the other.
Sub Main()

a = 10 : b = 20 : c = 30 : d = 40
If (a < b) Imp (c < d) Then

MsgBox "a is less than b implies that c is less than d."
Else

MsgBox "a is less than b does not imply that c is less than d."
End If

If (a < b) Imp (c > d) Then
MsgBox "a is less than b implies that c is greater than d."

Else
MsgBox "a is less than b does not imply that c is greater than d."

End If
End Sub

See Also Operator Precedence (topic); Or (operator); Xor (operator); Eqv (operator); And (operator).

11-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Inline (statement)

Syntax Inline name [parameters]
anytext

End Inline

Description Allows execution or interpretation of a block of text.

Comments The Inline statement takes the following parameters:

Parameter Description
name Identifier specifying the type of inline statement.

parameters Comma-separated list of parameters.

anytext Text to be executed by the Inline statement. This text must be in a format
appropriate for execution by the Inline statement.

The end of the text is assumed to be the first occurrence of the words End
Inline appearing on a line.

Example Sub Main()
Inline Script

-- This is an Win32Script comment.
Beep
Display Dialog "Win32Script" buttons "OK" default button "OK"
Display Dialog Current Date

End Inline
End Sub

Input# (statement)

Syntax Input [#]filenumber%,variable[,variable]...

Description Reads data from the file referenced by filenumber into the given variables.

Comments Each variable must be type-matched to the data in the file. For example, a String variable must
be matched to a string in the file.

The following parsing rules are observed while reading each variable in the variable list:

1. Leading white space is ignored (spaces and tabs).

2. When reading String variables, if the first character on the line is a quotation mark, then
characters are read up to the next quotation mark or the end of the line, whichever comes first.
Blank lines are read as empty strings. If the first character read is not a quotation mark, then
characters are read up to the first comma or the end of the line, whichever comes first. String
delimiters (quotes, comma, end-of-line) are not included in the returned string.

3. When reading numeric variables, scanning of the number stops when the first nonnumber
character (such as a comma, a letter, or any other unexpected character) is encountered.
Numeric errors are ignored while reading numbers from a file. The resultant number is
automatically converted to the same type as the variable into which the value will be placed. If
there is an error in conversion, then 0 is stored into the variable.

octaldigits[!|#|%|&|@]

GFK-1283G I 11-5

After reading the number, input is skipped up to the next delimiter—a comma, an end-of-line,
or an end-of-file.

Numbers must adhere to any of the following syntaxes:

[-|+]digits[.digits][E[-|+]digits][!|#|%|&|@]

&Hhexdigits[!|#|%|&]

&[O]

4. When reading Boolean variables, the first character must be #; otherwise, a runtime error
occurs. If the first character is #, then input is scanned up to the next delimiter (a comma, an
end-of-line, or an end-of-file). If the input matches #FALSE#, then False is stored in the
Boolean; otherwise True is stored.

5. When reading Date variables, the first character must be #; otherwise, a runtime error
occurs. If the first character is #, then the input is scanned up to the next delimiter (a comma, an
end-of-line, or an end-of-file). If the input ends in a # and the text between the #'s can be
correctly interpreted as a date, then the date is stored; otherwise, December 31, 1899, is stored.

Normally, dates that follow the universal date format are input from sequential files. These
dates use this syntax:

#YYYY-MM-DD HH:MM:SS#

where YYYY is a year between 100 and 9999, MM is a month between 1 and 12, DD is a day
between 1 and 31, HH is an hour between 0 and 23, MM is a minute between 0 and 59, and SS
is a second between 0 and 59.

6. When reading Variant variables, if the data begins with a quotation mark, then a string is
read consisting of the characters between the opening quotation mark and the closing quotation
mark, end-of-line, or end-of-file.

If the input does not begin with a quotation mark, then input is scanned up to the next comma,
end-of-line, or end-of-file and a determination is made as to what data is being represented. If
the data cannot be represented as a number, Date, Error, Boolean, or Null, then it is read
as a string.

The following table describes how special data is interpreted as variants:

Blank line Read as an Empty variant.
#NULL# Read as a Null variant.

#TRUE# Read as a Boolean variant.

#FALSE# Read as a Boolean variant.

#ERROR code# Read as a user-defined error.

#date# Read as a Date variant.

"text" Read as a String variant.

If an error occurs in interpretation of the data as a particular type, then that data is read as a
String variant.

11-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

When reading numbers into variants, the optional type-declaration character determines the
VarType of the resulting variant. If no type-declaration character is specified, then The Basic
Control Engine will read the number according to the following rules:

Rule 1: If the number contains a decimal point or an exponent, then the number is read as
Currency. If there is an error converting to Currency, then the number is treated as a
Double.

Rule 2: If the number does not contain a decimal point or an exponent, then the number is
stored in the smallest of the following data types that most accurately represents that value:
Integer, Long, Currency, Double.

7. End-of-line is interpreted as either a single line feed, a single carriage return, or a carriage-
return/line-feed pair. Thus, text files from any platform can be interpreted using this command.

The filenumber parameter is a number that is used by The Basic Control Engine to refer to the open
file the number passed to the Open statement.

The filenumber must reference a file opened in Input mode. It is good practice to use the Write
statement to write date elements to files read with the Input statement to ensure that the variable
list is consistent between the input and output routines.

Example This example creates a file called test.dat and writes a series of variables into it. Then the variables
are read using the Input# function.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Open "test.dat" For Output As #1
Write #1,2112,"David","McCue","123-45-6789"
Close

Open "test.dat" For Input As #1
Input #1,x%,s1$,s2$,s3$
msg1 = "Employee #" & x% & " Personal Information" & crlf & crlf
msg1 = msg1 & "First Name: " & s1$ & crlf
msg1 = msg1 & "Last Name: "& s2$ & crlf
msg1 = msg1 & "Social Security Number: " & s3$
MsgBox msg1
Close

Kill "test.dat"
End Sub

See Also Open (statement); Get (statement); Line Input# (statement); Input, Input$ (functions).

GFK-1283G I 11-7

Input, Input$ (functions)

Syntax Input[$](numbytes,[#]filenumber)

Description Returns numbytes characters read from a given sequential file.

Comments Input$ returns a String, whereas Input returns a String variant.

The Input/Input$ functions require the following parameters:

Parameter Description
numbytes Integer containing the number of bytes to be read from the file.

filenumber Integer referencing a file opened in either Input or Binary mode. This is
the same number passed to the Open statement.

This function reads all characters, including spaces and end-of-lines.

Example This example opens the autoexec.bat file and displays it in a dialog box.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
file$ = "c:\autoexec.bat"
x& = FileLen(file$)

If x& > 0 Then
Open file$ For Input As #1

Else
MsgBox "'" & file$ & "' not found or empty."
Exit Sub

End If

'use the file length to read the file in
If x& > 80 Then

ins = Input(80,1)
Else

ins = Input(x&,1)
End If
Close

MsgBox UCase(file$) & crlf & crlf & "File length: " & x& & crlf & "Contents:" &
crlf & ins
End Sub

See Also Open (statement); Get (statement); Input# (statement); Line Input# (statement).

11-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

InputBox, InputBox$ (functions)

Syntax InputBox[$](prompt [,[title] [,[default] [,X,Y]]])

Description Displays a dialog box with a text box into which the user can type.

Comments The content of the text box is returned as a String (in the case of InputBox$) or as a String
variant (in the case of InputBox). A zero-length string is returned if the user selects Cancel.

The InputBox/InputBox$ functions take the following parameters:

Parameter Description
prompt Text to be displayed above the text box. The prompt parameter can contain

multiple lines, each separated with an end-of-line (a carriage return, line
feed, or carriage-return/line-feed pair). A runtime error is generated if
prompt is Null.

title Caption of the dialog box. If this parameter is omitted, then no title appears
as the dialog box's caption. A runtime error is generated if title is Null.

default Default response. This string is initially displayed in the text box. A runtime
error is generated if default is Null.

X, Y Integer coordinates, given in twips (twentieths of a point), specifying the
upper left corner of the dialog box relative to the upper left corner of the
screen. If the position is omitted, then the dialog box is positioned on or near
the application executing the script.

Example Sub Main()
s$ = InputBox("File to copy:","Copy","sample.txt")

End Sub

See Also MsgBox (statement); AskBox$ (function); AskPassword$ (function); OpenFilename$
(function); SaveFilename$ (function); SelectBox (function); AnswerBox (function).

GFK-1283G I 11-9

InStr (function)

Syntax InStr([start,] search, find [,compare])

Description Returns the first character position of string find within string search.

Comments The InStr function takes the following parameters:

Parameter Description
start Integer specifying the character position where searching begins. The start

parameter must be between 1 and 32767.

If this parameter is omitted, then the search starts at the beginning (start = 1).

search Text to search. This can be any expression convertible to a String.

find Text for which to search. This can be any expression convertible to a
String.

compare Integer controlling how string comparisons are performed:
0 String comparisons are case-sensitive.
1 String comparisons are case-insensitive.

Any other value A runtime error is produced.

If this parameter is omitted, then string comparisons use the current Option
Compare setting. If no Option Compare statement has been encountered,
then Binary is used (i.e., string comparisons are case-sensitive).

If the string is found, then its character position within search is returned, with 1 being the
character position of the first character. If find is not found, or start is greater than the length of
search, or search is zero-length, then 0 is returned.

Example This example checks to see whether one string is in another and, if it is, then it copies the string to a
variable and displays the result.
Sub Main()

a$ = "This string contains the name Stuart and other characters."
x% = InStr(a$,"Stuart",1)
If x% <> 0 Then

b$ = Mid(a$,x%,6)
MsgBox b$ & " was found."
Exit Sub

Else
MsgBox "Stuart not found."

End If
End Sub

See Also Mid, Mid$ (functions); Option Compare (statement); Item$ (function);
Word$ (function); Line$ (function).

11-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Int (function)

Syntax Int(number)

Description Returns the integer part of number.

Comments This function returns the integer part of a given value by returning the first integer less than the
number. The sign is preserved.

The Int function returns the same type as number, with the following exceptions:

• If number is Empty, then an Integer variant of value 0 is returned.

• If number is a String, then a Double variant is returned.

• If number is Null, then a Null variant is returned.

Example This example extracts the integer part of a number.
Sub Main()

a# = -1234.5224
b% = Int(a#)
MsgBox "The integer part of -1234.5224 is: " & b%

End Sub

See Also Fix (function); CInt (function).

Integer (data type)

Syntax Integer

Description A data type used to declare whole numbers with up to four digits of precision.

Comments Integer variables are used to hold numbers within the following range:

–32768 <= integer <= 32767

Internally, integers are 2-byte short values. Thus, when appearing within a structure, integers
require 2 bytes of storage. When used with binary or random files, 2 bytes of storage are required.

When passed to external routines, Integer values are sign-extended to the size of an integer on
that platform (either 16 or 32 bits) before pushing onto the stack.

The type-declaration character for Integer is %.

See Also Currency (data type); Date (data type); Double (data type); Long (data type), Object (data
type), Single (data type), String (data type), Variant (data type), Boolean (data type),
DefType (statement), CInt (function).

GFK-1283G I 11-11

IPmt (function)

Syntax IPmt(Rate, Per, Nper, Pv, Fv, Due)

Description Returns the interest payment for a given period of an annuity based on periodic, fixed payments and
a fixed interest rate.

Comments An annuity is a series of fixed payments made to an insurance company or other investment
company over a period of time. Examples of annuities are mortgages, monthly savings plans, and
retirement plans.

The following table describes the different parameters:

Parameter Description
Rate Double representing the interest rate per period. If the payment periods are

monthly, be sure to divide the annual interest rate by 12 to get the monthly
rate.

Per Double representing the payment period for which you are calculating the
interest payment. If you want to know the interest paid or received during
period 20 of an annuity, this value would be 20.

Nper Double representing the total number of payments in the annuity. This is
usually expressed in months, and you should be sure that the interest rate
given above is for the same period that you enter here.

Pv Double representing the present value of your annuity. In the case of a loan,
the present value would be the amount of the loan because that is the amount
of cash you have in the present. In the case of a retirement plan, this value
would be the current value of the fund because you have a set amount of
principal in the plan.

Fv Double representing the future value of your annuity. In the case of a loan,
the future value would be zero because you will have paid it off. In the case of
a savings plan, the future value would be the balance of the account after all
payments are made.

Due Integer indicating when payments are due. If this parameter is 0, then
payments are due at the end of each period (usually, the end of the month). If
this value is 1, then payments are due at the start of each period (the beginning
of the month).

Rate and Nper must be in expressed in the same units. If Rate is expressed in percentage paid per
month, then Nper must also be expressed in months. If Rate is an annual rate, then the period given
in Nper should also be in years or the annual Rate should be divided by 12 to obtain a monthly rate.

If the function returns a negative value, it represents interest you are paying out, whereas a positive
value represents interest paid to you.

11-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example This example calculates the amount of interest paid on a $1,000.00 loan financed over 36 months
with an annual interest rate of 10%. Payments are due at the beginning of the month. The interest
paid during the first 10 months is displayed in a table.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
msg1 = ""
For x = 1 to 10

ipm# = IPmt((.10/12),x,36,1000,0,1)
msg1 = msg1 & Format(x,"00") & " : " & Format(ipm#," 0,0.00") & crlf

Next x
MsgBox msg1

End Sub

See Also NPer (function); Pmt (function); PPmt (function); Rate (function).

GFK-1283G I 11-13

IRR (function)

Syntax IRR(ValueArray(),Guess)

Description Returns the internal rate of return for a series of periodic payments and receipts.

Comments The internal rate of return is the equivalent rate of interest for an investment consisting of a series of
positive and/or negative cash flows over a period of regular intervals. It is usually used to project
the rate of return on a business investment that requires a capital investment up front and a series of
investments and returns on investment over time.

The IRR function requires the following parameters:

Parameter Description
ValueArray() Array of Double numbers that represent payments and receipts. Positive

values are payments, and negative values are receipts.

There must be at least one positive and one negative value to indicate the initial
investment (negative value) and the amount earned by the investment (positive
value).

Guess Double containing your guess as to the value that the IRR function will
return. The most common guess is .1 (10 percent).

The value of IRR is found by iteration. It starts with the value of Guess and cycles through the
calculation adjusting Guess until the result is accurate within 0.00001 percent. After 20 tries, if a
result cannot be found, IRR fails, and the user must pick a better guess.

Example This example illustrates the purchase of a lemonade stand for $800 and a series of incomes from the
sale of lemonade over 12 months. The projected incomes for this example are generated in two
For...Next Loops, and then the internal rate of return is calculated and displayed. (Not a bad
investment!)
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim valu#(12)
valu(1) = -800 'Initial investment
msg1 = valu#(1) & ", "

'Calculate the second through fifth months' sales.
For x = 2 To 5

valu(x) = 100 + (x * 2)
msg1 = msg1 & valu(x) & ", "

Next x

'Calculate the sixth through twelfth months' sales.
For x = 6 To 12

valu(x) = 100 + (x * 10)
msg1 = msg1 & valu(x) & ", "

Next x

'Calculate the equivalent investment return rate.
retrn# = IRR(valu,.1)
msg1 = "The values: " & crlf & msg1 & crlf & crlf
MsgBox msg1 & "Return rate: " & Format(retrn#,"Percent")

End Sub

See Also Fv (function); MIRR (function); Npv (function); Pv (function).

11-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Is (operator)

Syntax object Is [object | Nothing]

Description Returns True if the two operands refer to the same object; returns False otherwise.

Comments This operator is used to determine whether two object variables refer to the same object. Both
operands must be object variables of the same type (i.e., the same data object type or both of type
Object).

The Nothing constant can be used to determine whether an object variable is uninitialized:
If MyObject Is Nothing Then MsgBox "MyObject is uninitialized."

Uninitialized object variables reference no object.

Example This function inserts the date into a Microsoft Word document.
Sub InsertDate(ByVal WinWord As Object)

If WinWord Is Nothing Then
MsgBox "Object variant is not set."

Else
WinWord.Insert Date$

End If
End Sub

Sub Main()
Dim WinWord As Object
On Error Resume Next
WinWord = CreateObject("word.basic")
InsertDate WinWord

End Sub

See Also Operator Precedence (topic); Like (operator).

Platform(s) All.

Notes: When comparing OLE automation objects, the Is operator will only return True if the operands
reference the same OLE automation object. This is different from data objects. For example, the
following use of Is (using the object class called excel.application) returns True:

Dim a As Object
Dim b As Object
a = CreateObject("excel.application")
b = a
If a Is b Then Beep

The following use of Is will return False, even though the actual objects may be the same:
Dim a As Object
Dim b As Object
a = CreateObject("excel.application")
b = GetObject(,"excel.application")
If a Is b Then Beep

The Is operator may return False in the above case because, even though a and b reference the
same object, they may be treated as different objects by OLE 2.0 (this is dependent on the OLE 2.0
server application).

GFK-1283G I 11-15

IsDate (function)

Syntax IsDate(expression)

Description Returns True if expression can be legally converted to a date; returns False otherwise.

Example Sub Main()
Dim a As Variant

Retry:
a = InputBox("Enter a date.","Enter Date")
If IsDate(a) Then

MsgBox Format(a,"long date")
Else

Msgbox "Not quite, please try again!"
Goto Retry

End If
End Sub

See Also Variant (data type); IsEmpty (function); IsError (function); IsObject (function);
VarType (function); IsNull (function).

IsEmpty (function)

Syntax IsEmpty(expression)

Description Returns True if expression is a Variant variable that has never been initialized; returns False
otherwise.

Comments The IsEmpty function is the same as the following:

(VarType(expression) = ebEmpty)

Example Sub Main()
Dim a As Variant
If IsEmpty(a) Then

a = 1.0# 'Give uninitialized data a Double value 0.0.
MsgBox "The variable has been initialized to: " & a

Else
MsgBox "The variable was already initialized!"

End If
End Sub

See Also Variant (data type); IsDate (function); IsError (function); IsObject (function);
VarType (function); IsNull (function).

11-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

IsError (function)

Syntax IsError(expression)

Description Returns True if expression is a user-defined error value; returns False otherwise.

Example This example creates a function that divides two numbers. If there is an error dividing the numbers,
then a variant of type "error" is returned. Otherwise, the function returns the result of the division.
The IsError function is used to determine whether the function encountered an error.
Function Div(ByVal a,ByVal b) As Variant

If b = 0 Then
Div = CVErr(2112) 'Return a special error value.

Else
Div = a / b 'Return the division.

End If
End Function

Sub Main()
Dim a As Variant
a = Div(10,12)
If IsError(a) Then

MsgBox "The following error occurred: " & CStr(a)
Else

MsgBox "The result of the division is: " & a
End If

End Sub

See Also Variant (data type); IsEmpty (function); IsDate (function); IsObject (function);
VarType (function); IsNull (function).

GFK-1283G I 11-17

IsMissing (function)

Syntax IsMissing(variable)

Description Returns True if variable was passed to the current subroutine or function; returns False if
omitted.

Comments The IsMissing is used with variant variables passed as optional parameters (using the
Optional keyword) to the current subroutine or function. For non-variant variables or variables
that were not declared with the Optional keyword, IsMissing will always return True.

Example The following function runs an application and optionally minimizes it. If the optional isMinimize
parameter is not specified by the caller, then the application is not minimized.
Sub Test(AppName As String,Optional isMinimize As Variant)

app = Shell(AppName)
If Not IsMissing(isMinimize) Then

AppMinimize app
Else

AppMaximize app
End If

End Sub

Sub Main
Test "notepad.exe" 'Maximize this application
Test "notepad.exe",True 'Minimize this application

End Sub

See Also Declare (statement), Sub...End Sub (statement), Function...End Function
(statement)

IsNull (function)

Syntax IsNull(expression)

Description Returns True if expression is a Variant variable that contains no valid data; returns False
otherwise.

Comments The IsNull function is the same as the following:

(VarType(expression) = ebNull)

Example Sub Main()
Dim a As Variant 'Initialized as Empty
If IsNull(a) Then MsgBox "The variable contains no valid data."
a = Empty * Null
If IsNull(a) Then MsgBox "Null propagated through the expression."

End Sub

See Also Empty (constant); Variant (data type); IsEmpty (function); IsDate (function); IsError
(function); IsObject (function); VarType (function).

11-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

IsNumeric (function)

Syntax IsNumeric(expression)

Description Returns True if expression can be converted to a number; returns False otherwise.

Comments If passed a number or a variant containing a number, then IsNumeric always returns True.

If a String or String variant is passed, then IsNumeric will return True only if the string
can be converted to a number. The following syntaxes are recognized as valid numbers:

&Hhexdigits[&|%|!|#|@]

&[O]octaldigits[&|%|!|#|@]

[-|+]digits[.[digits]][E[-|+]digits][!|%|&|#|@]

If an Object variant is passed, then the default property of that object is retrieved and one of the
above rules is applied.

IsNumeric returns False if expression is a Date.

Example Sub Main()
Dim s$ As String
s$ = InputBox("Enter a number.","Enter Number")

If IsNumeric(s$) Then
MsgBox "You did good!"

Else
MsgBox "You didn't do so good!"

End If
End Sub

See Also Variant (data type); IsEmpty (function); IsDate (function); IsError (function);
IsObject (function); VarType (function); IsNull (function).

GFK-1283G I 11-19

IsObject (function)

Syntax IsObject(expression)

Description Returns True if expression is a Variant variable containing an Object; returns False
otherwise.

Example This example will attempt to find a running copy of Excel and create 'a Excel object that can be
referenced as any other object in the Basic Control Engine.
Sub Main()

Dim v As Variant
On Error Resume Next
Set v = GetObject(,"Excel.Application")

If IsObject(v) Then
MsgBox "The default object value is: " & v = v.Value 'Access value property

of the object.
Else

MsgBox "Excel not loaded."
End If

End Sub

See Also Variant (data type); IsEmpty (function); IsDate (function); IsError (function); VarType
(function); IsNull (function).

11-20 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Item$ (function)

Syntax Item$(text$,first,last [,delimiters$])

Description Returns all the items between first and last within the specified formatted text list.

Comments The Item$ function takes the following parameters:

Parameter Description
text$ String containing the text from which a range of items is returned.

first Integer containing the index of the first item to be returned. If first is greater
than the number of items in text$, then a zero-length string is returned.

last Integer containing the index of the last item to be returned. All of the items
between first and last are returned. If last is greater than the number of items in
text$, then all items from first to the end of text are returned.

delimiters$ String containing different item delimiters.
By default, items are separated by commas and end-of-lines. This can be changed
by specifying different delimiters in the delimiters$ parameter.

Example This example creates two delimited lists and extracts a range from each, then displays the result in a
dialog box.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
ilist$ = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"
slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15"
list1$ = Item$(ilist$,5,12)
list2$ = Item$(slist$,2,9,"/")
MsgBox "The returned lists are: " & crlf & list1$ & crlf & list2$

End Sub

See Also ItemCount (function); Line$ (function); LineCount (function); Word$ (function);
WordCount (function).

GFK-1283G I 11-21

ItemCount (function)

Syntax ItemCount(text$ [,delimiters$])

Description Returns an Integer containing the number of items in the specified delimited text.

Comments Items are substrings of a delimited text string. Items, by default, are separated by commas and/or
end-of-lines. This can be changed by specifying different delimiters in the delimiters$ parameter.
For example, to parse items using a backslash:

n = ItemCount(text$,"\")

Example This example creates two delimited lists and then counts the number of items in each. The counts
are displayed in a dialog box.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
ilist$ = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"
slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19"

l1% = ItemCount(ilist$)
l2% = ItemCount(slist$,"/")
msg1 = "The first lists contains: " & l1% & " items." & crlf
msg1 = msg1 & "The second list contains: " & l2% & " items."
MsgBox msg1

End Sub

See Also Item$ (function); Line$ (function); LineCount (function); Word$ (function); WordCount
(function).

GFK-1283G 12-1

K

Keywords (topic)

A keyword is any word or symbol recognized by the Basic Control Engine as part of the language.
All of the following are keywords:

• Built-in subroutine names, such as MsgBox and Print.

• Built-in function names, such as Str$, CDbl, and Mid$.

• Special keywords, such as To, Next, Case, and Binary.

• Names of any extended language elements.

Restrictions
All keywords are reserved by the Basic Control Engine , in that you cannot create a variable,
function, constant, or subroutine with the same name as a keyword. However, you are free to use all
keywords as the names of structure members.

12-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Kill (statement)

Syntax Kill filespec$

Description Deletes all files matching filespec$.

Comments The filespec$ argument can include wildcards, such as * and ?. The * character matches any
sequence of zero or more characters, whereas the ? character matches any single character.
Multiple *'s and ?'s can appear within the expression to form complex searching patterns. The
following table shows some examples.

This Pattern Matches These Files Doesn't Match These Files
S.TXT SAMPLE.TXT

GOOSE.TXT
SAMS.TXT

SAMPLE
SAMPLE.DAT

C*T.TXT CAT.TXT CAP.TXT
ACATS.TXT

C*T CAT CAT.DOC
CAP.TXT

C?T CAT
CUT

CAT.TXT
CAPIT
CT

* (All files)

Example This example looks to see whether file test1.dat exists. If it does not, then it creates both test1.dat
and test2.dat. The existence of the files is tested again; if they exist, a message is generated, and
then they are deleted. The final test looks to see whether they are still there and displays the result.
Sub Main()

If Not FileExists("test1.dat") Then
Open "test1.dat" For Output As #1
Open "test2.dat" For Output As #2
Close

End If

If FileExists ("test1.dat") Then
MsgBox "File test1.dat exists."
Kill "test?.dat"

End If

If FileExists ("test1.dat") Then
MsgBox "File test1.dat still exists."

Else
MsgBox "test?.dat successfully deleted."

End If
End Sub

See Also Name (statement).

GFK-1283G 13-1

L

LBound (function)

Syntax LBound(ArrayVariable() [,dimension])

Description Returns an Integer containing the lower bound of the specified dimension of the specified array
variable.

Comments The dimension parameter is an integer specifying the desired dimension. If this parameter is not
specified, then the lower bound of the first dimension is returned.

The LBound function can be used to find the lower bound of a dimension of an array returned by
an OLE automation method or property:

LBound(object.property [,dimension])

LBound(object.method [,dimension])

Examples Sub Main()
'This example dimensions two arrays and displays their lower bounds.

Dim a(5 To 12)
Dim b(2 To 100,9 To 20)

lba = LBound(a)
lbb = LBound(b,2)
MsgBox "The lower bound of a is: " & lba & " The lower bound of b is: " & lbb

'This example uses LBound and UBound to dimension a dynamic array to
'hold a copy of an array redimmed by the FileList statement.

Dim fl$()
FileList fl$,"*.*"
count = UBound(fl$)
If ArrayDims(a) Then

Redim nl$(LBound(fl$) To UBound(fl$))
For x = 1 To count

nl$(x) = fl$(x)
Next x
MsgBox "The last element of the new array is: " & nl$(count)

End If
End Sub

See Also UBound (function); ArrayDims (function); Arrays (topic).

13-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

LCase, LCase$ (functions)

Syntax LCase[$](text)

Description Returns the lowercase equivalent of the specified string.

Comments LCase$ returns a String, whereas LCase returns a String variant.

Null is returned if text is Null.

Example This example shows the LCase function used to change uppercase names to lowercase with an
uppercase first letter.
Sub Main()

lname$ = "WILLIAMS"
fl$ = Left(lname$,1)
rest$ = Mid(lname$,2,Len(lname$))
lname$ = fl$ & LCase(rest$)
MsgBox "The converted name is: " & lname$

End Sub

See Also UCase, UCase$ (functions).

Left, Left$ (functions)

Syntax Left[$](text,NumChars)

Description Returns the leftmost NumChars characters from a given string.

Comments Left$ returns a String, whereas Left returns a String variant.

NumChars is an Integer value specifying the number of character to return. If NumChars is 0,
then a zero-length string is returned. If NumChars is greater than or equal to the number of
characters in the specified string, then the entire string is returned.

Null is returned if text is Null.

Example This example shows the Left$ function used to change uppercase names to lowercase with an
uppercase first letter.
Sub Main()

lname$ = "WILLIAMS"
fl$ = Left(lname$,1)
rest$ = Mid(lname$,2,Len(lname$))
lname$ = fl$ & LCase(rest$)
MsgBox "The converted name is: " & lname$

End Sub

See Also Right, Right$ (functions).

GFK-1283G L 13-3

Len (function)

Syntax Len(expression)

Description Returns the number of characters in expression or the number of bytes required to store the
specified variable.

Comments If expression evaluates to a string, then Len returns the number of characters in a given string or 0
if the string is empty. When used with a Variant variable, the length of the variant when
converted to a String is returned. If expression is a Null, then Len returns a Null variant.

If used with a non-String or non-Variant variable, the function returns the number of bytes
occupied by that data element.

When used with user-defined data types, the function returns the combined size of each member
within the structure. Since variable-length strings are stored elsewhere, the size of each variable-
length string within a structure is 2 bytes.

The following table describes the sizes of the individual data elements:

Data Element Size
Integer 2 bytes.
Long 4 bytes.
Float 4 bytes.
Double 8 bytes.
Currency 8 bytes.
String
(variable-length)

Number of characters in the string.

String
(fixed-length)

The length of the string as it appears in the string's declaration.

Objects 0 bytes. Both data object variables and variables of type Object are always
returned as 0 size.

User-defined type Combined size of each structure member.

Variable-length strings within structures require 2 bytes of storage.

Arrays within structures are fixed in their dimensions. The elements for fixed
arrays are stored within the structure and therefore require the number of
bytes for each array element multiplied by the size of each array dimension:

element_size * dimension1 * dimension2...

The Len function always returns 0 with object variables or any data object variable.

Examples Const crlf = Chr$(13) + Chr$(10)

Sub Main()
'This example shows the Len function used in a routine to change
'uppercase names to lowercase with an uppercase first letter.
lname$ = "WILLIAMS"
fl$ = Left(lname$,1)
ln% = Len(lname$)
rest$ = Mid(lname$,2,ln%)
nname$ = fl$ & LCase(rest$)
MsgBox "The proper case for " & lname$ & " is " & nname$ & "."

13-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

'This example returns a table of lengths for standard numeric types.
Dim lns(4)
a% = 100 : b& = 200 : c! = 200.22 : d# = 300.22
lns(1) = Len(a%)
lns(2) = Len(b&)
lns(3) = Len(c!)
lns(4) = Len(d#)
msg1 = "Lengths (in bytes) of standard types:" & crlf & crlf
msg1 = msg1 & "Integer: " & lns(1) & crlf
msg1 = msg1 & "Long: " & lns(2) & crlf
msg1 = msg1 & "Single: " & lns(3) & crlf
msg1 = msg1 & "Double: " & lns(4) & crlf
MsgBox msg1

End Sub

See Also InStr (function).

Let (statement)
Syntax [Let] variable = expression

Description Assigns the result of an expression to a variable.
Comments The use of the word Let is supported for compatibility with other implementations of the Basic

Control Engine. Normally, this word is dropped.
When assigning expressions to variables, internal type conversions are performed automatically
between any two numeric quantities. Thus, you can freely assign numeric quantities without regard
to type conversions. However, it is possible for an overflow error to occur when converting from
larger to smaller types. This happens when the larger type contains a numeric quantity that cannot
be represented by the smaller type. For example, the following code will produce a runtime error:

Dim amount As Long
Dim quantity As Integer

amount = 400123 'Assign a value out of range for int.
quantity = amount 'Attempt to assign to Integer.

When performing an automatic data conversion, underflow is not an error.
Example Sub Main()

Let a$ = "This is a string."
Let b% = 100
Let c# = 1213.3443

End Sub

See Also = (keyword); Expression Evaluation (topic).

GFK-1283G L 13-5

Like (operator)

Syntax expression Like pattern

Description Compares two strings and returns True if the expression matches the given pattern; returns
False otherwise.

Comments Case sensitivity is controlled by the Option Compare setting.

The pattern expression can contain special characters that allow more flexible matching:

Character Evaluates To
? Matches a single character.
* Matches one or more characters.
Matches any digit.

[range] Matches if the character in question is within the specified range.

[!range] Matches if the character in question is not within the specified range.

A range specifies a grouping of characters. To specify a match of any of a group of characters, use
the syntax [ABCDE]. To specify a range of characters, use the syntax [A-Z]. Special characters
must appear within brackets, such as []*?#.

If expression or pattern is not a string, then both expression and pattern are converted to String
variants and compared, returning a Boolean variant. If either variant is Null, then Null is
returned

The following table shows some examples:

expression True If pattern Is False If pattern Is
"EBW" "E*W", "E*" "E*B"

"BasicScript" "B*[r-t]icScript" "B[r-t]ic"

"Version" "V[e]?s*n" "V[r]?s*N"

"2.0" "#.#", "#?#" "###", "#?[!0-9]"

"[ABC]" "[[]*]" "[ABC]", "[*]"

Example This example demonstrates various uses of the Like function.
Sub Main()

a$ = "This is a string variable of 123456 characters"
b$ = "123.45"
If a$ Like "[A-Z][g-i]*" Then MsgBox "The first comparison is True."
If b$ Like "##3.##" Then MsgBox "The second comparison is True."
If a$ Like "*variable*" Then MsgBox "The third comparison is True."

End Sub

See Also Operator Precedence (topic); Is (operator); Option Compare (statement).

13-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Line Input# (statement)

Syntax Line Input [#]filenumber,variable

Description Reads an entire line into the given variable.

Comments The filenumber parameter is a number that is used to refer to the open file the number passed to
the Open statement. The filenumber must reference a file opened in Input mode.

The file is read up to the next end-of-line, but the end-of-line character(s) is (are) not returned in
the string. The file pointer is positioned after the terminating end-of-line.

The variable parameter is any string or variant variable reference. This statement will automatically
declare the variable if the specified variable has not yet been used or dimensioned.

This statement recognizes either a single line feed or a carriage-return/line-feed pair as the end-of-
line delimiter.

Example This example reads five lines of the autoexec.bat file and displays them in a dialog box.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
file$ = "c:\autoexec.bat"
Open file$ For Input As #1
msg1 = ""
For x = 1 To 5

Line Input #1,lin$
msg1 = msg1 & lin$ & crlf

Next x
MsgBox "The first 5 lines of '" & file$ & "' are:" & crlf & crlf & msg1

End Sub

See Also Open (statement); Get (statement); Input# (statement); Input, Input$ (functions).

Line Numbers (topic)

Line numbers are not supported by the Basic Control Engine.

As an alternative to line numbers, you can use meaningful labels as targets for absolute jumps, as
shown below:
Sub Main()

Dim i As Integer
On Error Goto MyErrorTrap
i = 0

LoopTop:
i = i + 1
If i < 10 Then Goto LoopTop

MyErrorTrap:
MsgBox "An error occurred."

End Sub

GFK-1283G L 13-7

Line$ (function)

Syntax Line$(text$,first[,last])

Description Returns a String containing a single line or a group of lines between first and last.

Comments Lines are delimited by carriage return, line feed, or carriage-return/line-feed pairs.

The Line$ function takes the following parameters:

Parameter Description
text$ String containing the text from which the lines will be extracted.

first Integer representing the index of the first line to return. If last is omitted,
then this line will be returned. If first is greater than the number of lines in
text$, then a zero-length string is returned.

last Integer representing the index of the last line to return.

Example This example reads five lines of the autoexec.bat file, extracts the third and fourth lines with the Line$
function, and displays them in a dialog box.
Const crlf = Chr$(13) + Chr$(10)
Sub Main()

file$ = "c:\autoexec.bat"
Open file$ For Input As #1
txt = ""
For x = 1 To 5

Line Input #1,lin$
txt = txt & lin$ & crlf

Next x
lines$ = Line$(txt,3,4)
MsgBox "The 3rd and 4th lines of '" & file$ & "' are:" & crlf_

& crlf & lines$
End Sub

See Also Item$ (function); ItemCount (function); LineCount (function); Word$ (function);
WordCount (function).

13-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

LineCount (function)

Syntax LineCount(text$)

Description Returns an Integer representing the number of lines in text$.

Comments Lines are delimited by carriage return, line feed, or both.

Example This example reads your autoexec.bat file into a variable and then determines how many lines it is
comprised of.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
file$ = "c:\autoexec.bat"
Open file$ For Input As #1
txt = ""
Do Until Eof(1)

Line Input #1,lin$
txt = txt & lin$ & crlf

Loop
lines! = LineCount(txt)
MsgBox "'" & file$ & "' is " & lines! & " lines long!" & crlf_

& crlf & txt
End Sub

See Also Item$ (function); ItemCount (function); Line$ (function); Word$ (function); WordCount
(function).

GFK-1283G L 13-9

ListBox (statement)

Syntax ListBox X,Y,width,height,ArrayVariable,.Identifier

Description Creates a list box within a dialog box template.

Comments When the dialog box is invoked, the list box will be filled with the elements contained in
ArrayVariable.

This statement can only appear within a dialog box template (that is, between the Begin Dialog
and End Dialog statements).

The ListBox statement requires the following parameters:

Parameter Description
X, Y Integer coordinates specifying the position of the control (in dialog units)

relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

ArrayVariable Specifies a single-dimensioned array of strings used to initialize the elements
of the list box. If this array has no dimensions, then the list box will be
initialized with no elements. A runtime error results if the specified array
contains more than one dimension.

ArrayVariable can specify an array of any fundamental data type (structures
are not allowed). Null and Empty values are treated as zero-length strings.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates
an integer variable whose value corresponds to the index of the list box's
selection (0 is the first item, 1 is the second, and so on). This variable can be
accessed using the following syntax:

DialogVariable.Identifier

Example This example creates a dialog box with two list boxes, one containing files and the other containing
directories.
Sub Main()

Dim files() As String
Dim dirs() As String
Begin Dialog ListBoxTemplate 16,32,184,96,"Sample"

Text 8,4,24,8,"&Files:"
ListBox 8,16,60,72,files$,.Files
Text 76,4,21,8,"&Dirs:"
ListBox 76,16,56,72,dirs$,.Dirs
OKButton 140,4,40,14
CancelButton 140,24,40,14

End Dialog
FileList files
FileDirs dirs

Dim ListBoxDialog As ListBoxTemplate
rc% = Dialog(ListBoxDialog)

End Sub

13-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement);
OKButton (statement); OptionButton (statement); OptionGroup (statement); Picture
(statement); PushButton (statement); Text (statement); TextBox (statement); Begin
Dialog (statement), PictureButton (statement).

GFK-1283G L 13-11

Literals (topic)

Literals are values of a specific type. The following table shows the different types of literals
supported by the Basic Control Engine:

Literal Description
10 Integer whose value is 10.

43265 Long whose value is 43,265.

5# Double whose value is 5.0. A number's type can be explicitly set using any of
the following type-declaration characters:
% Integer

& Long

Double

! Single

5.5 Double whose value is 5.5. Any number with decimal point is considered a
double.

5.4E100 Double expressed in scientific notation.

&HFF Integer expressed in hexadecimal.

&O47 Integer expressed in octal.

&HFF# Double expressed in hexadecimal.

"hello" String of five characters: hello.

"""hello""
"

String of seven characters: "hello". Quotation marks can be embedded
within strings by using two consecutive quotation marks.

#1/1/1994# Date value whose internal representation is 34335.0. Any valid date can appear
with #'s. Date literals are interpreted at execution time using the locale settings
of the host environment. To ensure that date literals are correctly interpreted for
all locales, use the international date format:

#YYYY-MM-DD HH:MM:SS#

Constant Folding
The Basic Control Engine supports constant folding where constant expressions
are calculated by the compiler at compile time. For example, the expression

i% = 10 + 12

is the same as:
i% = 22

Similarly, with strings, the expression
s$ = "Hello," + " there" + (46)

is the same as:
s$ = "Hello, there."

13-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Loc (function)

Syntax Loc(filenumber)

Description Returns a Long representing the position of the file pointer in the given file.

Comments The filenumber parameter is an Integer used by the Basic Control Engine to refer to the number
passed by the Open statement to the Basic Control Engine .

The Loc function returns different values depending on the mode in which the file was opened:

File Mode Returns
Input Current byte position divided by 128
Output Current byte position divided by 128
Append Current byte position divided by 128
Binary Position of the last byte read or written
Random Number of the last record read or written

Example This example reads 5 lines of the autoexec.bat file, determines the current location of the file
pointer, and displays it in a dialog box.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
file$ = "c:\autoexec.bat"
Open file$ For Input As #1
For x = 1 To 5

If Not EOF(1) Then Line Input #1,lin$
Next x
lc% = Loc(1)
Close
MsgBox "The file byte location is: " & lc%

End Sub

See Also Seek (function); Seek (statement); FileLen (function).

GFK-1283G L 13-13

Lock (statement)

Syntax Lock [#] filenumber [,{record | [start] To end}]

Description Locks a section of the specified file, preventing other processes from accessing that section of the
file until the Unlock statement is issued.

Comments The Lock statement requires the following parameters:

Parameter Description
filenumber Integer used by the Basic Control Engine to refer to the open file—the

number passed to the Open statement.

record Long specifying which record to lock.

start Long specifying the first record within a range to be locked.

end Long specifying the last record within a range to be locked.

For sequential files, the record, start, and end parameters are ignored. The entire file is locked.

The section of the file is specified using one of the following:

Syntax Description
No parameters Locks the entire file (no record specification is given).

record Locks the specified record number (for Random files) or byte (for Binary
files).

to end Locks from the beginning of the file to the specified record (for Random
files) or byte (for Binary files).

start to end Locks the specified range of records (for Random files) or bytes (for Binary
files).

The lock range must be the same as that used to subsequently unlock the file range, and all locked
ranges must be unlocked before the file is closed. Ranges within files are not unlocked
automatically by the Basic Control Engine when your script terminates, which can cause file access
problems for other processes. It is a good idea to group the Lock and Unlock statements close
together in the code, both for readability and so subsequent readers can see that the lock and unlock
are performed on the same range. This practice also reduces errors in file locks.

13-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example This example creates test.dat and fills it with ten string variable records. These are displayed in a
dialog box. The file is then reopened for read/write, and each record is locked, modified, rewritten,
and unlocked. The new records are then displayed in a dialog box.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = "This is record number: "
b$ = "0"
rec$ = ""

msg1 = ""
Open "test.dat" For Random Access Write Shared As #1
For x = 1 To 10

rec$ = a$ & x
Lock #1,x
Put #1,,rec$
Unlock #1,x
msg1 = msg1 & rec$ & crlf

Next x
Close
MsgBox "The records are:" & crlf & msg1

msg1 = ""
Open "test.dat" For Random Access Read Write Shared As #1
For x = 1 To 10

rec$ = Mid(rec$,1,23) & (11 - x)
Lock #1,x
Put #1,x,rec$
Unlock #1,x
msg1 = msg1 & rec$ & crlf

Next x
MsgBox "The records are: " & crlf & msg1
Close

Kill "test.dat"
End Sub

See Also Unlock (statement); Open (statement).

GFK-1283G L 13-15

Lof (function)

Syntax Lof(filenumber)

Description Returns a Long representing the number of bytes in the given file.

Comments The filenumber parameter is an Integer used by the Basic Control Engine to refer to the open
file the number passed to the Open statement.

The file must currently be open.

Example This example creates a test file, writes ten records into it, then finds the length of the file and
displays it in a message box.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = "This is record number: "

Open "test.dat" For Random Access Write Shared As #1
msg1 = ""
For x = 1 To 10

rec$ = a$ & x
put #1,,rec$
msg1 = msg1 & rec$ & crlf

Next x
Close

Open "test.dat" For Random Access Read Write Shared As #1
r% = Lof(1)
Close
MsgBox "The length of 'test.dat' is: " & r%

End Sub

See Also Loc (function); Open (statement); FileLen (function).

Log (function)

Syntax Log(number)

Description Returns a Double representing the natural logarithm of a given number.

Comments The value of number must be a Double greater than 0.

The value of e is 2.71828.

Example This example calculates the natural log of 100 and displays it in a message box.
Sub Main()

x# = Log(100)
MsgBox "The natural logarithm of 100 is: " & x#

End Sub

See Also Exp (function).

13-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Long (data type)

Syntax Long

Description Long variables are used to hold numbers (with up to ten digits of precision) within the following
range:

–2,147,483,648 <= Long <= 2,147,483,647

Internally, longs are 4-byte values. Thus, when appearing within a structure, longs require 4 bytes
of storage. When used with binary or random files, 4 bytes of storage are required.

The type-declaration character for Long is &.

See Also Currency (data type); Date (data type); Double (data type); Integer (data type); Object
(data type); Single (data type); String (data type); Variant (data type); Boolean (data
type); DefType (statement); CLng (function).

GFK-1283G L 13-17

LSet (statement)

Syntax 1 LSet dest = source

Syntax 2 LSet dest_variable = source_variable

Description Left-aligns the source string in the destination string or copies one user-defined type to another.

Comments Syntax 1
The LSet statement copies the source string source into the destination string dest. The dest
parameter must be the name of either a String or Variant variable. The source parameter is
any expression convertible to a string.

If source is shorter in length than dest, then the string is left-aligned within dest, and the remaining
characters are padded with spaces. If source$ is longer in length than dest, then source is truncated,
copying only the leftmost number of characters that will fit in dest.

The destvariable parameter specifies a String or Variant variable. If destvariable is a
Variant containing Empty, then no characters are copied. If destvariable is not convertible to a
String, then a runtime error occurs. A runtime error results if destvariable is Null.

Syntax 2
The source structure is copied byte for byte into the destination structure. This is useful for copying
structures of different types. Only the number of bytes of the smaller of the two structures is copied.
Neither the source structure nor the destination structure can contain strings.

Example This example replaces a 40-character string of asterisks (*) with an RSet and LSet string and then
displays the result.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim msg,tmpstr$
tmpstr$ = String(40,"*")
msg1 = "Here are two strings that have been right-" + crlf
msg1 = msg1 & "and left-justified in a 40-character string."
Msg1 = msg1 & crlf & crlf
Rset tmpstr$ = "Right|"
msg1 = msg1 & tmpstr$ & crlf
LSet tmpstr$ = "|Left"
msg1 = msg1 & tmpstr$ & crlf
MsgBox msg1

End Sub

See Also RSet (function).

13-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

LTrim, LTrim$ (functions)

Syntax LTrim[$](text)

Description Returns text with the leading spaces removed.

Comments LTrim$ returns a String, whereas LTrim returns a String variant.

Null is returned if text is Null.

Example This example displays a right-justified string and its LTrim result.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()

txt$ = " This is text "
tr$ = LTrim(txt$)
MsgBox "Original ->" & txt$ & "<-" & crlf & "Left Trimmed ->" & tr$ & "<-"

End Sub

See Also RTrim, RTrim$ (functions); Trim, Trim$ (functions).

GFK-1283G 14-1

M

Main (statement)

Syntax Sub Main()
End Sub

Description Defines the subroutine where execution begins.

Example Sub Main()
MsgBox "This is the Main() subroutine and entry point."

End Sub

14-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

MCI (function)

Syntax Mci(command$,result$ [,error$])

Description Executes an Mci command, returning an Integer indicating whether the command was successful.

Comments The Mci function takes the following parameters:

Parameter Description
command$ String containing the command to be executed.

result$ String variable into which the result is placed. If the command doesn't return
anything, then a zero-length string is returned.

To ignore the returned string, pass a zero-length string, such as.
r% = Mci("open chimes.wav type waveaudio","")

error$ Optional String variable into which an error string will be placed. A zero-
length string will be returned if the function is successful.

Example 1 This first example plays a wave file. The wave file is played to completion before execution can
continue.
Sub Main()

Dim result As String
Dim ErrorMessage As String
Dim Filename As String
Dim rc As Integer
'Establish name of file in the Windows directory.
Filename = FileParse$(System.WindowsDirectory$ + "\" + "chimes.wav")
'Open the file and driver.
rc = Mci("open " & Filename & " type waveaudio alias CoolSound","",ErrorMessage)
If (rc) Then

'Error occurred--display error message to user.
MsgBox ErrorMessage
Exit Sub

End If
rc = Mci("play CoolSound wait","","") 'Wait for sound to finish.
rc = Mci("close CoolSound","","") 'Close driver and file.

End Sub

GFK-1283G M 14-3

Example 2 This next example shows how to query an Mci device and play an MIDI file in the background.
Sub Main()

Dim result As String
Dim ErrMsg As String
Dim Filename As String
Dim rc As Integer
'Check to see whether MIDI device can play for us.
rc = Mci("capability sequencer can play",result,ErrorMessage)
'Check for error.
If rc Then

MsgBox ErrorMessage
Exit Sub

End If
'Can it play?
If result <> "true" Then

MsgBox "MIDI device is not capable of playing."
Exit Sub

End If
'Assemble a filename from the Windows directory.
Filename = FileParse$(System.WindowsDirectory$ & "\" & "canyon.mid")

'Open the driver and file.
rc = Mci("open " & Filename & " type sequencer alias song",result$,ErrMsg)
If rc Then

MsgBox ErrMsg
Exit Sub

End If
rc = Mci("play song","","") 'Play in the background.
MsgBox "Press OK to stop the music.",ebOKOnly
rc = Mci("close song","","")

End Sub

See Also Beep (statement)

Notes The Mci function accepts any Mci command as defined in the Multimedia Programmers Reference
in the Windows 3.1 SDK.

14-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Mid, Mid$ (functions)

Syntax Mid[$](text,start [,length])

Description Returns a substring of the specified string, beginning with start, for length characters.

Comments The returned substring starts at character position start and will be length characters long.

Mid$ returns a String, whereas Mid returns a String variant.

The Mid/Mid$ functions take the following parameters:

Parameter Description
text Any String expression containing the text from which characters are

returned.

start Integer specifying the character position where the substring begins. If
start is greater than the length of text$, then a zero-length string is returned.

length Integer specifying the number of characters to return. If this parameter is
omitted, then the entire string is returned, starting at start.

The Mid function will return Null text is Null.

Example This example extracts the left and right halves of a string using the Mid functions and displays the
text with a message spliced in the middle.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = "DAVE is a good programmer"
l$ = Mid(a$,1,7)
r$ = Mid(a$,16,10)
MsgBox l$ & " an excellent " & r$

End Sub

See Also InStr (function); Option Compare (statement); Mid, Mid$ (statements).

GFK-1283G M 14-5

Mid, Mid$ (statements)

Syntax Mid[$](variable,start[,length]) = newvalue

Description Replaces one part of a string with another.

Comments The Mid/Mid$ statements take the following parameters:

Parameter Description
variable String or Variant variable to be changed.

start Integer specifying the character position within variable where replacement
begins. If start is greater than the length of variable, then variable remains
unchanged.

length Integer specifying the number of characters to change. If this parameter is
omitted, then the entire string is changed, starting at start.

newvalue Expression used as the replacement. This expression must be convertible to a
String.

The resultant string is never longer than the original length of variable.

With Mid, variable must be a Variant variable convertible to a String, and newvalue is any
expression convertible to a string. A runtime error is generated if either variant is Null.

Example This example displays a substring from the middle of a string variable using the Mid$ function,
replacing the first four characters with "NEW " using the Mid$ statement.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = "This is the Main string containing text."
b$ = Mid(a$,14,Len(a$))
Mid(b$,1) = "NEW"
MsgBox a$ & crlf & b$

End Sub

See Also Mid, Mid$ (functions); Option Compare (statement).

14-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Minute (function)

Syntax Minute(time)

Description Returns the minute of the day encoded in the specified time parameter.

Comments The value returned is as an Integer between 0 and 59 inclusive.

The time parameter is any expression that converts to a Date.

Example This example takes the current time; extracts the hour, minute, and second; and displays them as the
current time.
Sub Main()

Msgbox "It is now minute " & Minute(Time) & " of the hour."
End Sub

See Also Day (function); Second (function); Month (function); Year (function); Hour (function);
Weekday (function); DatePart (function).

MIRR (function)

Syntax MIRR(ValueArray(),FinanceRate,ReinvestRate)

Description Returns a Double representing the modified internal rate of return for a series of periodic
payments and receipts.

Comments The modified internal rate of return is the equivalent rate of return on an investment in which
payments and receipts are financed at different rates. The interest cost of investment and the rate of
interest received on the returns on investment are both factors in the calculations.

The MIRR function requires the following parameters:

Parameter Description
ValueArray() Array of Double numbers representing the payments and receipts. Positive

values are payments (invested capital), and negative values are receipts
(returns on investment).

There must be at least one positive (investment) value and one negative
(return) value.

FinanceRate Double representing the interest rate paid on invested monies (paid out).

ReinvestRate Double representing the rate of interest received on incomes from the
investment (receipts).

FinanceRate and ReinvestRate should be expressed as percentages. For example, 11 percent should
be expressed as 0.11.

To return the correct value, be sure to order your payments and receipts in the correct sequence.

GFK-1283G M 14-7

Example This example illustrates the purchase of a lemonade stand for $800 financed with money borrowed
at 10%. The returns are estimated to accelerate as the stand gains popularity. The proceeds are
placed in a bank at 9 percent interest. The incomes are estimated (generated) over 12 months. This
program first generates the income stream array in two For...Next loops, and then the modified
internal rate of return is calculated and displayed. Notice that the annual rates are normalized to
monthly rates by dividing them by 12.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim valu#(12)
valu(1) = -800 'Initial investment
msg1 = valu(1) & ", "
For x = 2 To 5

valu(x) = 100 + (x * 2) 'Incomes months 2-5
msg1 = msg1 & valu(x) & ", "

Next x
For x = 6 To 12

valu(x) = 100 + (x * 10) 'Incomes months 6-12
msg1 = msg1 & valu(x) & ", "

Next x
retrn# = MIRR(valu,.1/12,.09/12) 'Note: normalized annual rates

msg1 = "The values: " & crlf & msg1 & crlf & crlf
MsgBox msg1 & "Modified rate: " & Format(retrn#,"Percent")

End Sub

See Also Fv (function); IRR (function); Npv (function); Pv (function).

MkDir (statement)

Syntax MkDir dir$

Description Creates a new directory as specified by dir$.

Example This example creates a new directory on the default drive. If this causes an error, then the error is
displayed and the program terminates. If no error is generated, the directory is removed with the
RmDir statement.
Sub Main()

On Error Resume Next
MkDir "testdir"
If Err <> 0 Then

MsgBox "The following error occurred: " & Error(Err)
Else

MsgBox "Directory 'testdir' was created and is about to be removed."
RmDir "testdir"

End If
End Sub

See Also ChDir (statement); ChDrive (statement); CurDir, CurDir$ (functions); Dir, Dir$
(functions); RmDir (statement).

14-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Mod (operator)

Syntax expression1 Mod expression2

Description Returns the remainder of expression1 / expression2 as a whole number.

Comments If both expressions are integers, then the result is an integer. Otherwise, each expression is
converted to a Long before performing the operation, returning a Long.

A runtime error occurs if the result overflows the range of a Long.

If either expression is Null, then Null is returned. Empty is treated as 0.

Example This example uses the Mod operator to determine the value of a randomly selected card where card
1 is the ace (1) of clubs and card 52 is the king (13) of spades. Since the values recur in a sequence
of 13 cards within 4 suits, we can use the Mod function to determine the value of any given card
number.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
cval$ = "Ace,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten,Jack,Queen,King"
Randomize
card% = Random(1,52)
value = card% Mod 13
If value = 0 Then value = 13
CardNum$ = Item$(cval,value)
If card% < 53 Then suit$ = "Spades"
If card% < 40 Then suit$ = "Hearts"
If card% < 27 Then suit$ = "Diamonds"
If card% < 14 Then suit$ = "Clubs"
msg1 = "Card number " & card% & " is the "
msg1 = msg 1& CardNum & " of " & suit$
MsgBox msg1

End Sub

See Also / (operator); \ (operator).

Month (function)

Syntax Month(date)

Description Returns the month of the date encoded in the specified date parameter.

Comments The value returned is as an Integer between 1 and 12 inclusive.

The date parameter is any expression that converts to a Date.

Example This example returns the current month in a dialog box.
Sub Main()

mons$ = "Jan.,Feb.,Mar.,Apr.,May,Jun.,Jul.,Aug.,Sep.,Oct.,Nov.,Dec."
tdate$ = Date$
tmonth! = Month(DateValue(tdate$))
MsgBox "The current month is: " & Item$(mons$,tmonth!)

End Sub

See Also Day (function); Minute (function); Second (function); Year (function); Hour (function);
Weekday (function); DatePart (function).

GFK-1283G M 14-9

MsgBox (function)

Syntax MsgBox(msg [,[type] [,title]])

Description Displays a message in a dialog box with a set of predefined buttons, returning an Integer
representing which button was selected.

Comments The MsgBox function takes the following parameters:

Parameter Description
msg Message to be displayed—any expression convertible to a String.

End-of-lines can be used to separate lines (either a carriage return, line feed, or
both). If a given line is too long, it will be word-wrapped. If msg contains
character 0, then only the characters up to the character 0 will be displayed.

The width and height of the dialog box are sized to hold the entire contents of
msg.

A runtime error is generated if msg is Null.

type Integer specifying the type of dialog box (see below).

title Caption of the dialog box. This parameter is any expression convertible to a
String. If it is omitted, then the script is used.

A runtime error is generated if title is Null.

The MsgBox function returns one of the following values:

Constant Value Description
ebOK 1 OK was clicked.
ebCancel 2 Cancel was clicked.
ebAbort 3 Abort was clicked.
ebRetry 4 Retry was clicked.
ebIgnore 5 Ignore was clicked.
ebYes 6 Yes was clicked.
ebNo 7 No was clicked.

The type parameter is the sub of any of the following values:

Constant Value Description
ebOKOnly 0 Displays OK button only.
ebOKCancel 1 Displays OK and Cancel buttons.
ebAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.
ebYesNoCancel 3 Displays Yes, No, and Cancel buttons.
ebYesNo 4 Displays Yes and No buttons.
ebRetryCancel 5 Displays Retry and Cancel buttons.
ebCritical 16 Displays "stop" icon.

14-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ebQuestion 32 Displays "question mark" icon.

ebExclamation 48 Displays "exclamation point" icon.

ebInformation 64 Displays "information" icon.

ebDefaultButton1 0 First button is the default button.
ebDefaultButton2 256 Second button is the default button.
ebDefaultButton3 512 Third button is the default button.
ebApplicationModal 0 Application modal—the current application is suspended

until the dialog box is closed.

The default value for type is 0 (display only the OK button, making it the default).

Breaking Text across Lines
The msg parameter can contain end-of-line characters, forcing the text that follows to start on a new
line. The following example shows how to display a string on two lines:

MsgBox "This is on" + Chr(13) + Chr(10) + "two lines."

The carriage-return or line-feed characters can be used by themselves to designate an end-of-line.
r = MsgBox("Hello, World")

r = MsgBox("Hello, World",ebYesNoCancel Or ebDefaultButton1)

r = MsgBox("Hello, World",ebYesNoCancel Or ebDefaultButton1 Or ebCritical)

GFK-1283G M 14-11

Example Sub Main()
MsgBox "This is a simple message box."
MsgBox "This is a message box with a title and an icon.",_

ebExclamation,"Simple"
MsgBox "This message box has OK and Cancel buttons.",_

ebOkCancel,"MsgBox"
MsgBox "This message box has Abort, Retry, and Ignore buttons.",_

ebAbortRetryIgnore,"MsgBox"
MsgBox "This message box has Yes, No, and Cancel buttons.",_

ebYesNoCancel Or ebDefaultButton2,"MsgBox"
MsgBox "This message box has Yes and No buttons.",ebYesNo,"MsgBox"
MsgBox "This message box has Retry and Cancel buttons.",_

ebRetryCancel,"MsgBox"
MsgBox "This message box is system modal!",ebSystemModal

End Sub

See Also AskBox$ (function); AskPassword$ (function); InputBox, InputBox$ (functions);
OpenFilename$ (function); SaveFilename$ (function); SelectBox (function);
AnswerBox (function).

Note: MsgBox displays all text in its dialog box in 8-point MS Sans Serif.

MsgBox (statement)

Syntax MsgBox msg [,[type] [,title]]

Description This command is the same as the MsgBox function, except that the statement form does not return
a value. See MsgBox (function).

Example Sub Main()
MsgBox "This is text displayed in a message box." 'Display text.
MsgBox "The result is: " & (10 * 45) 'Display a number.

End Sub

See Also AskBox$ (function); AskPassword$ (function); InputBox, InputBox$ (functions);
OpenFilename$ (function); SaveFilename$ (function); SelectBox (function);
AnswerBox (function).

Msg.Close (method)

Syntax Msg.Close

Description Closes the modeless message dialog box.

Comments Nothing will happen if there is no open message dialog box.

Example Sub Main()
Msg.Open "Printing. Please wait...",0,True,True
Sleep 3000
Msg.Close

End Sub

See Also Msg.Open (method); Msg.Thermometer (property); Msg.Text (property).

14-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Msg.Open (method)

Syntax Msg.Open prompt,timeout,cancel,thermometer [,XPos,YPos]

Description Displays a message in a dialog box with an optional Cancel button and thermometer.

Comments The Msg.Open method takes the following named parameters:

Parameter Description
prompt String containing the text to be displayed. The text can be changed using the

Msg.Text property.

timeout Integer specifying the number of seconds before the dialog box is
automatically removed. The timeout parameter has no effect if its value is 0.

cancel Boolean controlling whether or not a Cancel button appears within the dialog
box beneath the displayed message. If this parameter is True, then a Cancel
button appears. If it is not specified or False, then no Cancel button is
created. If a user chooses the Cancel button at runtime, a trappable runtime
error is generated (error number 18). In this manner, a message dialog box
can be displayed and processing can continue as normal, aborting only when
the user cancels the process by choosing the Cancel button.

thermometer Boolean controlling whether the dialog box contains a thermometer. If this
parameter is True, then a thermometer is created between the text and the
optional Cancel button. The thermometer initially indicates 0% complete
and can be changed using the Msg.Thermometer property.

XPos, YPos Integer coordinates specifying the location of the upper left corner of the
message box, in twips (twentieths of a point). If these parameters are not
specified, then the window is centered on top of the application.

Unlike other dialog boxes, a message dialog box remains open until the user selects Cancel, the
timeout has expired, or the Msg.Close method is executed (this is sometimes referred to as
modeless).

Only a single message window can be opened at any one time. The message window is removed
automatically when a script terminates.

The Cancel button, if present, can be selected using either the mouse or keyboard. However,
these events will never reach the message dialog unless you periodically call DoEvents from
within your script.

Example This example displays several types of message boxes.
Sub Main()

Msg.Open "Printing. Please wait...",0,True,False
Sleep 3000
Msg.Close
Msg.Open "Printing. Please wait...",0,True,True
For x = 1 to 100

Msg.Thermometer = x
Next x
Sleep 1000
Msg.Close

End Sub

See Also Msg.Close (method); Msg.Thermometer (property); Msg.Text (property).

GFK-1283G M 14-13

Msg.Text (property)

Syntax Msg.Text [= newtext$]

Description Changes the text within an open message dialog box (one that was previously opened with the
Msg.Open method).

Comments The message dialog box is not resized to accommodate the new text.

A runtime error will result if a message dialog box is not currently open (using Msg.Open).

Example This example creates a modeless message box, leaving room in the message text for the record
number. This box contains a Cancel button.
Sub Main()

Msg.Open "Reading Record",0,True,False
For i = 1 To 100

'Read a record here.
'Update the modeless message box.
Sleep 100
Msg.Text ="Reading record " & i

Next i
Msg.Close

End Sub

See Also Msg.Close (method); Msg.Open (method); Msg.Thermometer (property).

14-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Msg.Thermometer (property)

Syntax Msg.Thermometer [= percentage]

Description Changes the percentage filled indicated within the thermometer of a message dialog box (one
that was previously opened with the Msg.Open method).

Comments A runtime error will result if a message box is not currently open (using Msg.Open) or if the
value of percentage is not between 0 and 100 inclusive.

Example This example create a modeless message box with a thermometer and a Cancel button. This
example also shows how to process the clicking of the Cancel button.
Sub Main()

On Error Goto ErrorTrap
Msg.Open "Reading records from file...",0,True,True
For i = 1 To 100 'Read a record here.

'Update the modeless message box.
Msg.Thermometer =i
DoEvents
Sleep 50

Next i
Msg.Close
On Error Goto 0 'Turn error trap off.
Exit Sub

ErrorTrap:
If Err = 809 Then

MsgBox "Cancel was pressed!"
Exit Sub 'Reset error handler.

End If
End Sub

See Also Msg.Close (method); Msg.Open (method); Msg.Text (property).

GFK-1283G 15-1

N

Name (statement)

Syntax Name oldfile$ As newfile$

Description Renames a file.

Comments Each parameter must specify a single filename. Wildcard characters such as * and ? are not allowed.

Some platforms allow naming of files to different directories on the same physical disk volume. For
example, the following rename will work under Windows:

Name "c:\samples\mydoc.txt" As "c:\backup\doc\mydoc.bak"

You cannot rename files across physical disk volumes. For example, the following will error under
Windows:

Name "c:\samples\mydoc.txt" As "a:\mydoc.bak" 'This will error!

To rename a file to a different physical disk, you must first copy the file, then erase the original:
FileCopy "c:\samples\mydoc.txt","a:\mydoc.bak" 'Make a copy
Kill "c:\samples\mydoc.txt" 'Delete the original

Example This example creates a file called test.dat and then renames it to test2.dat.
Sub Main()

oldfile$ = "test.dat"
newfile$ = "test2.dat"

On Error Resume Next
If FileExists(oldfile$) Then

Name oldfile$ As newfile$
If Err <> 0 Then

msg1 = "The following error occurred: " & Error(Err)
Else

msg1 = "'" & oldfile$ & "' was renamed to '" & newfile$ & "'"
End If

Else
Open oldfile$ For Output As #1
Close
Name oldfile$ As newfile$
If Err <> 0 Then

msg1 = "'" & oldfile$ & "' not created. The following error occurred: " &
Error(Err)

Else
msg1 = "'" & oldfile$ & "' was created and renamed to '" & newfile$ & "'"

End If
End If
MsgBox msg1

End Sub

See Also Kill (statement), FileCopy (statement).

15-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Named Parameters (topic)
Many language elements in BasicScript support named parameters. Named parameters allow you to specify parameters to
a function or subroutine by name rather than in adherence to a predetermined order. The following table contains
examples showing various calls to MsgBox both using parameter by both name and position.

By Name MsgBox Prompt:= "Hello, world."

By Position MsgBox "Hello, world."

By Name MsgBox Title:="Title", Prompt:="Hello, world."

By Position MsgBox "Hello, world",,"Title"

By Name MsgBox HelpFile:="BASIC.HLP", _

Prompt:="Hello, world.", HelpContext:=10

By Position MsgBox "Hello, world.",,,"BASIC.HLP",10

Using named parameter makes your code easier to read, while at the same time removes you from knowing the order of
parameter. With function that require many parameters, most of which are optional (such as MsgBox), code becomes
significantly easier to write and maintain.

When supported, the names of the named parameter appear in the description of that language element.

When using named parameter, you must observe the following rules:

• Named parameter must use the parameter name as specified in the description of that language element.
Unrecognized parameter names cause compiler errors.

• All parameters, whether named or positional, are separated by commas.

• The parameter name and its associated value are separated with :=

• If one parameter is named, then all subsequent parameter must also be named as shown below:
MsgBox "Hello, world", Title:="Title" 'OK

MsgBox Prompt:="Hello, world.",,"Title" 'WRONG!!!

GFK-1283G N 15-3

Net.AddCon (method)

Syntax Net.AddCon NetPath,Password,LocalName [,[UserName] [,isPermanent]]

Description Redirects a local device (a disk drive or printer queue) to the specified shared device or remote
server.

The new syntax does not affect previously compiled code.

If Password is not specified, then the default password is used. If empty, then no password is
used.

If LocalName is not specified, then the a connection is made to the network resource without
redirecting the local device.

The UserName parameter specifies the name of the user making the connection. If UserName is
not specified, then the default user for that process is used.

The isPermanent parameter specifies whether the connection should be restored during
subsequent logon operations. Only a successful connection will persist in this manner.

Comments The Net.AddCon method takes the following parameters:

Parameter Description
netpath$ String containing the name of the shared device or the name of a remote

server. This parameter can contain the name of a shared printer queue (such as
that returned by Net.Browse[1]) or the name of a network path (such as
that returned by Net.Browse[0]).

password$ String containing the password for the given device or server. This parameter
is mainly used to specify the password on a remote server.

localname$ String containing the name of the local device being redirected, such as
"LPT1" or "D:".

A runtime error will result if no network is present.

Example This example sets N: so that it refers to the network path SYS:\PUBLIC.
Sub Main()

Net.AddCon "SYS:\PUBLIC","","N:"
End Sub

See Also Net.CancelCon (method); Net.GetCon$ (method).

15-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Net.Browse$ (method)

Syntax Net.Browse$(type)

Description Calls the currently installed network's browse dialog box, requesting a particular type of
information.

Comments The type parameter is an Integer specifying the type of dialog box to display:

Type Description
0 If type is 0, then this method displays a dialog box that allows the user to browse

network volumes and directories. Choosing OK returns the completed pathname as a
String.

1 If type is 1, then this function displays a dialog box that allows the user to browse the
network's printer queues. Choosing OK returns the complete name of that printer
queue as a String. This string is the same format as required by the Net.AddCon
method.

2 Display the Disconnect dialog for disk resources

3 Display the Disconnect dialog for printer resources

This dialog box differs depending on the type of network installed.

A runtime error will result if no network is present.

Example This example retrieves a valid network path.
Sub Main()

s$ = Net.Browse$(0)
If s$ <> "" Then

MsgBox "The following network path was selected: " & s$
Else

MsgBox "Dialog box was canceled."
End If

End Sub

See Also Net.Dialog (method).

GFK-1283G N 15-5

Net.CancelCon (method)

Syntax Net.CancelCon Connection [,[isForce] [,isPermanent]]

Description The isForce parameter is True if missing or omitted.

The isPermanent parameter indicates if the disconnection should persist to subsequent logon
operations.

On all platforms, the Connection parameter specifies what is to be disconnected. If Connection
specifies a local device, then only that device is disconnected. If Connection specifies a remote
device, then all local devices attached to that remote device are disconnected.

Cancels a network connection.

Comments The Net.CancelCon method takes the following parameters:

Parameter Description
connection$ String containing the name of the device to cancel, such as "LPT1" or "D:".

isForce Boolean specifying whether to force the cancellation of the connection if there
are open files or open print jobs.

• If this parameter is True, then this method will close all open files and
open print jobs before the connection is closed.

• If this parameter is False, this the method will issue a runtime error if
there are any open files or open print jobs.

A runtime error will result if no network is present.

Example This example deletes the drive mapping associated with drive N:.
Sub Main()

Net.CancelCon "N:"
End Sub

See Also Net.AddCon (method); Net.GetCon$ (method).

15-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Net.GetCon$ (method)

Syntax Net.GetCon$(localname$)

Description Returns the name of the network resource associated with the specified redirected local device.

Comments The localname$ parameter specifies the name of the local device, such as "LPT1" or "D:".

The function returns a zero-length string if the specified local device is not redirected.

A runtime error will result if no network is present.

Example This example finds out where drive Z is mapped.
Sub Main()

NetPath$ = Net.GetCon$("Z:")
MsgBox "Drive Z is mapped as " & NetPath$

End Sub

See Also Net.CancelCon (method); Net.AddCon (method).

Net.User$ (property)

Syntax Net.User$ [([LocalName])]

Description Returns the name of the user on the network.

Comments A runtime error is generated if the network is not installed.

The LocalName parameter is the name of the local device that the user has made a connection
to. If this parameter is omitted, then the name of the current user of the process is used.

If Localname is a network name and the user is connected to that resource using different
names, the network provider may not be able to resolve which user name to return. In this case,
the provider may make an arbitrary choice from the possible user names.

Example
Sub Main()

'This example tells the user who he or she is.
MsgBox "You are " & Net.User$
'This example makes sure this capability is supported.
If Net.GetCaps(4) And 1 Then MsgBox "You are " & _

Net.User$
End Sub

GFK-1283G N 15-7

New (keyword)

Syntax 1 Dim ObjectVariable As New ObjectType

Syntax 2 Set ObjectVariable = New ObjectType

Description Creates a new instance of the specified object type, assigning it to the specified object variable.

Comments The New keyword is used to declare a new instance of the specified data object. This keyword can
only be used with data object types.

At runtime, the application or extension that defines that object type is notified that a new object is
being defined. The application responds by creating a new physical object (within the appropriate
context) and returning a reference to that object, which is immediately assigned to the variable
being declared.

When that variable goes out of scope (that is, the Sub or Function procedure in which the
variable is declared ends), the application is notified. The application then performs some
appropriate action, such as destroying the physical object.

See Also Dim (statement); Set (statement).

15-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Not (operator)

Syntax Not expression

Description Returns either a logical or binary negation of expression.

Comments The result is determined as shown in the following table:

If the Expression Is Then the Result Is
True False

False True

Null Null

Any numeric type A binary negation of the number. If the number is an Integer, then
an Integer is returned. Otherwise, the expression is first converted to
a Long, then a binary negation is performed, returning a Long.

Empty Treated as a Long value 0.

Example This example demonstrates the use of the Not operator in comparing logical expressions and for
switching a True/False toggle variable.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a = False
b = True
If (Not a and b) Then msg1 = "a = False, b = True" & crlf

toggle% = True
msg1 = msg1 & "toggle% is now " & CBool(toggle%) & crlf
toggle% = Not toggle%
msg1 = msg1 & "toggle% is now " & CBool(toggle%) & crlf
toggle% = Not toggle%
msg1 = msg1 & "toggle% is now " & CBool(toggle%)
MsgBox msg1

End Sub

See Also Boolean (data type); Comparison Operators (topic).

GFK-1283G N 15-9

Nothing (constant)

Description A value indicating that an object variable no longer references a valid object.

Example Sub Main()
Dim a As Object
If a Is Nothing Then

MsgBox "The object variable references no object."
Else

MsgBox "The object variable references: " & a.Value
End If

End Sub

See Also Set (statement); Object (data type).

Now (function)

Syntax Now[()]

Description Returns a Date variant representing the current date and time.

Example This example shows how the Now function can be used as an elapsed-time counter.
Sub Main()

t1# = Now
MsgBox "Wait a while and click OK."
t2# = Now
t3# = Second(t2#) - Second(t1#)
MsgBox "Elapsed time was: " & t3# & " seconds."

End Sub

See Also Date, Date$ (functions); Time, Time$ (functions).

15-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

NPer (function)

Syntax NPer(Rate,Pmt,Pv,Fv,Due)

Description Returns the number of periods for an annuity based on periodic fixed payments and a constant rate
of interest.

Comments An annuity is a series of fixed payments paid to or received from an investment over a period of
time. Examples of annuities are mortgages, retirement plans, monthly savings plans, and term loans.

The NPer function requires the following parameters:

Parameter Description
Rate Double representing the interest rate per period. If the periods are monthly,

be sure to normalize annual rates by dividing them by 12.

Pmt Double representing the amount of each payment or income. Income is
represented by positive values, whereas payments are represented by negative
values.

Pv Double representing the present value of your annuity. In the case of a loan,
the present value would be the amount of the loan, and the future value (see
below) would be zero.

Fv Double representing the future value of your annuity. In the case of a loan,
the future value would be zero, and the present value would be the amount of
the loan.

Due Integer indicating when payments are due for each payment period. A 0
specifies payment at the end of each period, whereas a 1 indicates payment at
the start of each period.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example This example calculates the number of $100.00 monthly payments necessary to accumulate
$10,000.00 at an annual rate of 10%. Payments are made at the beginning of the month.
Sub Main()

ag# = NPer((.10/12),100,0,10000,1)
MsgBox "The number of monthly periods is: " & Format(ag#,"Standard")

End Sub

See Also IPmt (function); Pmt (function); PPmt (function); Rate (function).

GFK-1283G N 15-11

Npv (function)

Syntax Npv(Rate,ValueArray())

Description Returns the net present value of an annuity based on periodic payments and receipts, and a
discount rate.

Comments The Npv function requires the following parameters:

Parameter Description
Rate Double that represents the interest rate over the length of the period. If the

values are monthly, annual rates must be divided by 12 to normalize them to
monthly rates.

ValueArray() Array of Double numbers representing the payments and receipts. Positive
values are payments, and negative values are receipts.

There must be at least one positive and one negative value.
Positive numbers represent cash received, whereas negative numbers represent cash paid out.
For accurate results, be sure to enter your payments and receipts in the correct order because Npv
uses the order of the array values to interpret the order of the payments and receipts.
If your first cash flow occurs at the beginning of the first period, that value must be added to the
return value of the Npv function. It should not be included in the array of cash flows.
Npv differs from the Pv function in that the payments are due at the end of the period and the cash
flows are variable. Pv's cash flows are constant, and payment may be made at either the beginning
or end of the period.

Example This example illustrates the purchase of a lemonade stand for $800 financed with money borrowed
at 10%. The returns are estimated to accelerate as the stand gains popularity. The incomes are
estimated (generated) over 12 months. This program first generates the income stream array in two
For...Next loops, and then the net present value (Npv) is calculated and displayed. Note
normalization of the annual 10% rate.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim valu#(12)
valu(1) = -800 'Initial investment
msg1 = valu(1) & ", "
For x = 2 To 5 'Months 2-5

valu(x) = 100 + (x * 2)
msg1 = msg1 1& valu(x) & ", "

Next x
For x = 6 To 12 'Months 6-12

valu(x) = 100 + (x * 10) 'Accelerated income
msg1 = msg1 & valu(x) & ", "

Next x
NetVal# = NPV((.10/12),valu)
msg1 = "The values:" & crlf & msg1 & crlf & crlf
MsgBox msg1 & "Net present value: " & Format(NetVal#,"Currency")

End Sub

See Also Fv (function); IRR (function); MIRR (function); Pv (function).

15-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Null (constant)

Description Represents a variant of VarType 1.

Comments The Null value has special meaning indicating that a variable contains no data.

Most numeric operators return Null when either of the arguments is Null. This "propagation" of
Null makes it especially useful for returning error values through a complex expression. For
example, you can write functions that return Null when an error occurs, then call this function
within an expression. You can then use the IsNull function to test the final result to see whether
an error occurred during calculation.

Since variants are Empty by default, the only way for Null to appear within a variant is for you to
explicitly place it there. Only a few functions return this value.

Example Sub Main()
Dim a As Variant
a = Null
If IsNull(a) Then MsgBox "The variable is Null."
MsgBox "The VarType of a is: " & VarType(a) 'Should display 1.

End Sub

GFK-1283G 16-1

O

Object (data type)

Syntax Object

Description A data type used to declare OLE automation variables.

Comments The Object type is used to declare variables that reference objects within an application using
OLE automation.

Each object is a 4-byte (32-bit) value that references the object internally. The value 0 (or
Nothing) indicates that the variable does not reference a valid object, as is the case when the
object has not yet been given a value. Accessing properties or methods of such Object variables
generates a runtime error.

Using Objects
Object variables are declared using the Dim, Public, or Private statement:

Dim MyApp As Object

Object variables can be assigned values (thereby referencing a real physical object) using the
Set statement:

Set MyApp = CreateObject("phantom.application")
Set MyApp = Nothing

Properties of an Object are accessed using the dot (.) separator:
MyApp.Color = 10
i% = MyApp.Color

Methods of an Object are also accessed using the dot (.) separator:
MyApp.Open "sample.txt"
isSuccess = MyApp.Save("new.txt",15)

16-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Automatic Destruction
The Basic Control Engine keeps track of the number of variables that reference a given object so
that the object can be destroyed when there are no longer any references to it:
Sub Main() 'Number of references to object
Dim a As Object '0
Dim b As Object '0
Set a = CreateObject("phantom.application) '1
Set b = a '2
Set a = Nothing '1

End Sub '0 (object destroyed)

Note

An OLE automation object is instructed by the Basic Control Engine to destroy itself when no
variables reference that object. However, it is the responsibility of the OLE automation server to
destroy it. Some servers do not destroy their objects—usually when the objects have a visual
component and can be destroyed manually by the user.

See Also Currency (data type); Date (data type); Double (data type); Integer (data type); Long
(data type); Single (data type); String (data type); Variant (data type); Boolean (data
type); DefType (statement).

Objects (topic)

The Basic Control Engine defines two types of objects: data objects and OLE
automation objects.

Syntactically, these are referenced in the same way.

What Is an Object
An object in the Basic Control Engine is an encapsulation of data and routines into a
single unit. The use of objects in the Basic Control Engine has the effect of grouping
together a set of functions and data items that apply only to a specific object type.

Objects expose data items for programmability called properties. For example, a
sheet object may expose an integer called NumColumns. Usually, properties can
be both retrieved (get) and modified (set).

Objects also expose internal routines for programmability called methods. In the
Basic Control Engine, an object method can take the form of a function or a
subroutine. For example, a OLE automation object called MyApp may contain a
method subroutine called Open that takes a single argument (a filename), as shown
below:
MyApp.Open "c:\files\sample.txt"

Declaring Object Variables
In order to gain access to an object, you must first declare an object variable using
either Dim, Public, or Private:
Dim o As Object 'OLE automation object

Initially, objects are given the value 0 (or Nothing). Before an object can be
accessed, it must be associated with a physical object.

GFK-1283G O 16-3

Assigning a Value to an Object Variable
An object variable must reference a real physical object before accessing any
properties or methods of that object. To instantiate an object, use the Set statement.
Dim MyApp As Object
Set MyApp = CreateObject("Server.Application")

Accessing Object Properties
Once an object variable has been declared and associated with a physical object, it
can be modified using the Basic Control Engine code. Properties are syntactically
accessible using the dot operator, which separates an object name from the property
being accessed:
MyApp.BackgroundColor = 10
i% = MyApp.DocumentCount

Properties are set using the Basic Control Engine normal assignment statement:
MyApp.BackgroundColor = 10

Object properties can be retrieved and used within expressions:
i% = MyApp.DocumentCount + 10
MsgBox "Number of documents = " & MyApp.DocumentCount

Accessing Object Methods
Like properties, methods are accessed via the dot operator. Object methods that do
not return values behave like subroutines in the Basic Control Engine (that is, the
arguments are not enclosed within parentheses):
MyApp.Open "c:\files\sample.txt",True,15

Object methods that return a value behave like function calls in the Basic Control
Engine. Any arguments must be enclosed in parentheses:
If MyApp.DocumentCount = 0 Then MsgBox "No open documents."
NumDocs = app.count(4,5)

There is no syntactic difference between calling a method function and retrieving a
property value, as shown below:

variable = object.property(arg1,arg2)
variable = object.method(arg1,arg2)

Comparing Object Variables
The values used to represent objects are meaningless to the script in which they are
used, with the following exceptions:

• Objects can be compared to each other to determine whether they refer
to the same object.

• Objects can be compared with Nothing to determine whether the
object variable refers to a valid object.

Object comparisons are accomplished using the Is operator:
If a Is b Then MsgBox "a and b are the same object."
If a Is Nothing Then MsgBox "a is not initialized."
If b Is Not Nothing Then MsgBox "b is in use."

16-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Collections
A collection is a set of related object variables. Each element in the set is called a
member and is accessed via an index, either numeric or text, as shown below:
MyApp.Toolbar.Buttons(0)
MyApp.Toolbar.Buttons("Tuesday")

It is typical for collection indexes to begin with 0.

Each element of a collection is itself an object, as shown in the following examples:
Dim MyToolbarButton As Object

Set MyToolbarButton = MyApp.Toolbar.Buttons("Save")
MyAppp.Toolbar.Buttons(1).Caption = "Open"

The collection itself contains properties that provide you with information about the
collection and methods that allow navigation within that collection:

Dim MyToolbarButton As Object

NumButtons% = MyApp.Toolbar.Buttons.Count
MyApp.Toolbar.Buttons.MoveNext
MyApp.Toolbar.Buttons.FindNext "Save"

For i = 1 To MyApp.Toolbar.Buttons.Count
Set MyToolbarButton = MyApp.Toolbar.Buttons(i)
MyToolbarButton.Caption = "Copy"

Next i

Predefined Objects
The Basic Control Engine predefines a few objects for use in all scripts. These are:

Clipboard System HWND
Net Basic Screen

GFK-1283G O 16-5

Oct, Oct$ (functions)

Syntax Oct[$](number)

Description Returns a String containing the octal equivalent of the specified number.

Comments Oct$ returns a String, whereas Oct returns a String variant.

The returned string contains only the number of octal digits necessary to represent the number.

The number parameter is any numeric expression. If this parameter is Null, then Null is
returned. Empty is treated as 0. The number parameter is rounded to the nearest whole number
before converting to the octal equivalent.

Example This example accepts a number and displays the decimal and octal 'equivalent until the input
number is 0 or invalid.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Do

xs$ = InputBox("Enter a number to convert:","Octal Convert")
x = Val(xs$)
If x <> 0 Then

MsgBox "Decimal: " & x & " Octal: " & Oct(x)
Else

MsgBox "Goodbye."
End If

Loop While x <> 0
End Sub

See Also Hex, Hex$ (functions).

16-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

OKButton (statement)

Syntax OKButton X,Y,width,height [,.Identifier]

Description Creates an OK button within a dialog box template.

Comments This statement can only appear within a dialog box template (that is, between the Begin Dialog
and End Dialog statements).

The OKButton statement accepts the following parameters:

Parameter Description
X, Y Integer coordinates specifying the position of the control (in dialog units)

relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

If the DefaultButton parameter is not specified in the Dialog statement, the OK button will be
used as the default button. In this case, the OK button can be selected by pressing Enter on a
nonbutton control.

A dialog box template must contain at least one OKButton, CancelButton, or PushButton
statement (otherwise, the dialog box cannot be dismissed).

Example This example shows how to use the OK and Cancel buttons within a dialog box template and how
to detect which one closed the dialog box.
Sub Main()

Begin Dialog QuitDialogTemplate 16,32,116,64,"Quit"
Text 4,8,108,8,"Are you sure you want to exit?"
CheckBox 32,24,63,8,"Save Changes",.SaveChanges
OKButton 12,40,40,14
CancelButton 60,40,40,14

End Dialog
Dim QuitDialog As QuitDialogTemplate
rc% = Dialog(QuitDialog)
Select Case rc%

Case -1
MsgBox "OK was pressed!"

Case 1
MsgBox "Cancel was pressed!"

End Select
End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement); ListBox
(statement); OptionButton (statement); OptionGroup (statement); Picture (statement);
PushButton (statement); Text (statement); TextBox (statement); Begin Dialog
(statement), PictureButton (statement).

GFK-1283G O 16-7

On Error (statement)

Syntax On Error {Goto label | Resume Next | Goto 0}

Description Defines the action taken when a trappable runtime error occurs.

Comments The form On Error Goto label causes execution to transfer to the specified label when a
runtime error occurs.

The form On Error Resume Next causes execution to continue on the line following the line
that caused the error.

The form On Error Goto 0 causes any existing error trap to be removed.

If an error trap is in effect when the script ends, then an error will be generated.

An error trap is only active within the subroutine or function in which it appears.

Once an error trap has gained control, appropriate action should be taken, and then control should
be resumed using the Resume statement. The Resume statement resets the error handler and
continues execution. If a procedure ends while an error is pending, then an error will be generated.
(The Exit Sub or Exit Function statement also resets the error handler, allowing a
procedure to end without displaying an error message.)

Errors within an Error Handler
If an error occurs within the error handler, then the error handler of the caller (or any procedure in
the call stack) will be invoked. If there is no such error handler, then the error is fatal, causing the
script to stop executing. The following statements reset the error state (that is, these statements turn
off the fact that an error occurred):

Resume
Err=-1

The Resume statement forces execution to continue either on the same line or on the line following
the line that generated the error. The Err=-1 statement allows explicit resetting of the error state
so that the script can continue normal execution without resuming at the statement that caused the
error condition.

The On Error statement will not reset the error. Thus, if an On Error statement occurs within
an error handler, it has the effect of changing the location of a new error handler for any new errors
that may occur once the error has been reset.

16-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example This example will demonstrate three types of error handling. The first case simply by-passes an
expected error and continues with program operation. The second case creates an error branch that
jumps to a common error handling routine that processes incoming errors, clears the error (with the
Resume statement) and resumes program execution. The third case clears all internal error
handling so that execution will stop when the next error is encountered.
Sub Main()

Dim x%
a = 10000
b = 10000

On Error Goto Pass 'Branch to this label on error.
Do

x% = a * b
Loop

Pass:
Err = -1 'Clear error status.
MsgBox "Cleared error status and continued."

On Error Goto Overflow 'Branch to new error routine on any
x% = 1000 'subsequent errors.
x% = a * b
x% = a / 0

On Error Resume Next 'Pass by any following errors until
x% = 1000 'another On Error statement is
x% = a * b 'encountered.

On Error Goto 0 'Clear error branching.
x% = a * b 'Program will stop here.
Exit Sub 'Exit before common error routine.

Overflow: 'Beginning of common error routine.
If Err = 6 then

MsgBox "Overflow Branch."
Else

MsgBox Error(Err)
End If

Resume Next
End Sub

See Also Error Handling (topic); Error (statement); Resume (statement).

GFK-1283G O 16-9

Open (statement)

Syntax Open filename$ [For mode] [Access accessmode] [lock] As [#] filenumber _
[Len = reclen]

Description Opens a file for a given mode, assigning the open file to the supplied filenumber.

Comments The filename$ parameter is a string expression that contains a valid filename.

The filenumber parameter is a number between 1 and 255. The FreeFile function can be used to
determine an available file number.

The mode parameter determines the type of operations that can be performed on that file:

File Mode Description
Input Opens an existing file for sequential input (filename$ must exist). The value of

accessmode, if specified, must be Read.

Output Opens an existing file for sequential output, truncating its length to zero, or
creates a new file. The value of accessmode, if specified, must be Write.

Append Opens an existing file for sequential output, positioning the file pointer at the
end of the file, or creates a new file. The value of accessmode, if specified,
must be Read Write.

Random Opens an existing file for record I/O or creates a new file. Existing random
files are truncated only if accessmode is Write. The reclen parameter
determines the record length for I/O operations.

If the mode parameter is missing, then Random is used.

The accessmode parameter determines what type of I/O operations can be performed on the file:

Access Description
Read Opens the file for reading only. This value is valid only for files opened in

Binary, Random, or Input mode.

Write Opens the file for writing only. This value is valid only for files opened in
Binary, Random, or Output mode.

Read Write Opens the file for both reading and writing. This value is valid only for files
opened in Binary, Random, or Append mode.

If the accessmode parameter is not specified, the following defaults are used:

File Mode Default Value for accessmode
Input Read

Output Write

Append Read Write

Binary When the file is initially opened, access is attempted three times in the
following order:

1. Read Write

2. Write

3. Read

16-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Random Same as Binary files

The lock parameter determines what access rights are granted to other processes that attempt to
open the same file. The following table describes the values for lock:

lock Value Description
Shared Another process can both read this file and write to it. (Deny none.)
Lock Read Another process can write to this file but not read it. (Deny read.)
Lock Write Another process can read this file but not write to it. (Deny write.)
Lock Read
Write

Another process is prevented both from reading this file and from writing
to it. (Exclusive.)

If lock is not specified, then the file is opened in Shared mode.

If the file does not exist and the lock parameter is specified, the file is opened twice once to create
the file and again to establish the correct sharing mode.

Files opened in Random mode are divided up into a sequence of records, each of the length
specified by the reclen parameter. If this parameter is missing, then 128 is used. For files opened
for sequential I/O, the reclen parameter specifies the size of the internal buffer used by the Basic
Control Engine when performing I/O. Larger buffers mean faster file access. For Binary files, the
reclen parameter is ignored.

Example This example opens several files in various configurations.
Sub Main()

Open "test.dat" For Output Access Write Lock Write As #2
Close
Open "test.dat" For Input Access Read Shared As #1
Close
Open "test.dat" For Append Access Write Lock Read Write As #3
Close
Open "test.dat" For Binary Access Read Write Shared As #4
Close
Open "test.dat" For Random Access Read Write Lock Read As #5
Close
Open "test.dat" For Input Access Read Shared As #6
Close
Kill "test.dat"

End Sub

See Also Close (statement); Reset (statement); FreeFile (function).

GFK-1283G O 16-11

OpenFilename$ (function)

Syntax OpenFilename$[([title$ [,extensions$]])]

Description Displays a dialog box that prompts the user to select from a list of files, returning the full pathname
of the file the user selects or a zero-length string if the user selects Cancel.

Comments This function displays the standard file open dialog box, which allows the user to select a file. It
takes the following parameters:

Parameter Description
title$ String specifying the title that appears in the dialog box's title bar. If this

parameter is omitted, then "Open" is used.

extension$ String specifying the available file types. If this parameter is omitted, then
all files are displayed.

e$ = "All Files:*.BMP,*.WMF;Bitmaps:*.BMP;Metafiles:*.WMF"
f$ = OpenFilename$("Open Picture",e$)

Example This example asks the user for the name of a file, then proceeds to read the first line from that file.
Sub Main

Dim f As String,s As String
f$ = OpenFilename$("Open Picture","Text Files:*.TXT")
If f$ <> "" Then

Open f$ For Input As #1
Line Input #1,s$
Close #1
MsgBox "First line from " & f$ & " is " & s$

End If
End Sub

See Also MsgBox (statement); AskBox$ (function); AskPassword$ (function); InputBox,
InputBox$ (functions); SaveFilename$ (function); SelectBox (function); AnswerBox
(function).

16-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Notes: The extensions$ parameter must be in the following format:

type:ext[,ext][;type:ext[,ext]]...

Placeholder Description
type Specifies the name of the grouping of files, such as All Files.

ext Specifies a valid file extension, such as *.BAT or *.?F?.

For example, the following are valid extensions$ specifications:
"All Files:*.*"
"Documents:*.TXT,*.DOC"
"All Files:*.*;Documents:*.TXT,*.DOC"

Operator Precedence (topic)

The following table shows the precedence of the operators supported by the Basic Control Engine.
Operations involving operators of higher precedence occur before operations involving operators of
lower precedence. When operators of equal precedence occur together, they are evaluated from left
to right.

Operator Description Precedence Order
() Parentheses Highest
^ Exponentiation

- Unary minus
/, * Division and multiplication
\ Integer division
Mod Modulo
+, - Addition and subtraction
& String concatenation
=, <>, >, <, <=, >= Relational
Like, Is String and object comparison
Not Logical negation
And Logical or binary conjunction
Or Logical or binary disjunction
Xor, Eqv, Imp Logical or binary operators Lowest

The precedence order can be controlled using parentheses, as shown below:
a = 4 + 3 * 2 'a becomes 10.
a = (4 + 3) * 2 'a becomes 14.

GFK-1283G O 16-13

Operator Precision (topic)

When numeric, binary, logical or comparison operators are used, the data type of the result is
generally the same as the data type of the more precise operand. For example, adding an Integer
and a Long first converts the Integer operand to a Long, then performs a long addition,
overflowing only if the result cannot be contained with a Long. The order of precision is shown in
the following table:

Empty Least precise

Boolean

Integer

Long

Single

Date

Double

Currency Most precise

There are exceptions noted in the descriptions of each operator.

The rules for operand conversion are further complicated when an operator is used with variant
data. In many cases, an overflow causes automatic promotion of the result to the next highest
precise data type. For example, adding two Integer variants results in an Integer variant
unless it overflows, in which case the result is automatically promoted to a Long variant.

Option Base (statement)

Syntax Option Base {0 | 1}

Description Sets the lower bound for array declarations.

Comments By default, the lower bound used for all array declarations is 0.

This statement must appear outside of any functions or subroutines.

Example Option Base 1

Sub Main()
Dim a(10) 'Contains 10 elements (not 11).
a(1) = "Hello"
MsgBox "The first element of the array is: " & a(1)

End Sub

See Also Dim (statement); Public (statement); Private (statement).

16-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Option Compare (statement)

Syntax Option Compare [Binary | Text]

Description Controls how strings are compared.

Comments When Option Compare is set to Binary, then string comparisons are case-sensitive (for
example, "A" does not equal "a"). When it is set to Text, string comparisons are case-insensitive
(for example, "A" is equal to "a").

The default value for Option Compare is Binary.

The Option Compare statement affects all string comparisons in any statements that follow the
Option Compare statement. Additionally, the setting affects the default behavior of Instr,
StrComp, and the Like operator. The following table shows the types of string comparisons
affected by this setting:
> < <>
<= >= Instr
StrComp Like

The Option Compare statement must appear outside the scope of all subroutines and functions.
In other words, it cannot appear within a Sub or Function block.

Example This example shows the use of Option Compare.
Option Compare Binary
Sub CompareBinary

a$ = "This String Contains UPPERCASE."
b$ = "this string contains uppercase."
If a$ = b$ Then

MsgBox "The two strings were compared case-insensitive."
Else

MsgBox "The two strings were compared case-sensitive."
End If

End Sub

Option Compare Text
Sub CompareText

a$ = "This String Contains UPPERCASE."
b$ = "this string contains uppercase."
If a$ = b$ Then

MsgBox "The two strings were compared case-insensitive."
Else

MsgBox "The two strings were compared case-sensitive."
End If

End Sub

Sub Main()
CompareBinary 'Calls subroutine above.
CompareText 'Calls subroutine above.

End Sub

See Also Like (operator); InStr (function); StrComp (function); Comparison Operators (topic).

GFK-1283G O 16-15

Option CStrings (statement)

Syntax Option CStrings {On | Off}

Description Turns on or off the ability to use C-style escape sequences within strings.

Comments When Option CStrings On is in effect, the compiler treats the backslash character as an
escape character when it appears within strings. An escape character is simply a special character
that cannot otherwise be ordinarily typed by the computer keyboard.

Escape Description Equivalent Expression
\r Carriage return Chr$(13)

\n Line feed Chr$(10)

\a Bell Chr$(7)

\b Backspace Chr$(8)

\f Form feed Chr$(12)

\t Tab Chr$(9)

\v Vertical tab Chr$(11)

\0 Null Chr$(0)

\" Double quotation mark "" or Chr$(34)

\\ Backslash Chr$(92)

\? Question mark ?

\' Single quotation mark '

\xhh Hexadecimal number Chr$(Val("&Hhh))

\ooo Octal number Chr$(Val("&Oooo"))

\anycharacter Any character anycharacter

With hexadecimal values, the Basic Control Engine stops scanning for digits when it encounters a
nonhexadecimal digit or two digits, whichever comes first. Similarly, with octal values, the Basic
Control Engine stops scanning when it encounters a nonoctal digit or three digits, whichever comes
first.

When Option CStrings Off is in effect, then the backslash character has no special
meaning. This is the default.

Example Option CStrings On

Sub Main()
MsgBox "They said, \"Watch out for that clump of grass!\""
MsgBox "First line.\r\nSecond line."
MsgBox "Char A: \x41 \r\n Char B: \x42"

End Sub

16-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

OptionButton (statement)

Syntax OptionButton X,Y,width,height,title$ [,.Identifier]

Description Defines an option button within a dialog box template.

Comments This statement can only appear within a dialog box template (that is, between the Begin Dialog
and End Dialog statements).

The OptionButton statement accepts the following parameters:

Parameter Description
X, Y Integer coordinates specifying the position of the control (in dialog units)

relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

title$ String containing text that appears within the option button. This text may
contain an ampersand character to denote an accelerator letter, such as
"&Portrait" for Portrait, which can be selected by pressing the P
accelerator.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

Example This example creates a group of option buttons.
Sub Main()

Begin Dialog PowerTemplate 16,31,128,65,"Print"
GroupBox 8,8,64,52,"Amplifier Output",.Junk
OptionGroup .Orientation

OptionButton 16,20,51,8,"10 Watts",.Ten
OptionButton 16,32,51,8,"50 Watts",.Fifty
OptionButton 16,44,51,8,"100 Watts",.Hundred

OKButton 80,8,40,14
End Dialog
Dim PowerDialog As PowerTemplate
Dialog PowerDialog

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement); ListBox
(statement); OKButton (statement); OptionGroup (statement); Picture (statement);
PushButton (statement); Text (statement); TextBox (statement); Begin Dialog
(statement), PictureButton (statement).

Note: Accelerators are underlined, and the accelerator combination Alt+letter is used.

GFK-1283G O 16-17

OptionGroup (statement)

Syntax OptionGroup .Identifier

Description Specifies the start of a group of option buttons within a dialog box template.

Comments The .Identifier parameter specifies the name by which the group of option buttons can be
referenced by statements in a dialog function (such as DlgFocus and DlgEnable). This
parameter also creates an integer variable whose value corresponds to the index of the selected
option button within the group (0 is the first option button, 1 is the second option button, and so
on). This variable can be accessed using the following syntax: DialogVariable.Identifier.

This statement can only appear within a dialog box template (that is, between the Begin Dialog
and End Dialog statements).

When the dialog box is created, the option button specified by .Identifier will be on; all other
option buttons in the group will be off. When the dialog box is dismissed, the .Identifier will
contain the selected option button.

Example This example creates a group of option buttons.
Sub Main()

Begin Dialog PowerTemplate 16,31,128,65,"Print"
GroupBox 8,8,64,52,"Amplifier Output",.Junk
OptionGroup .Orientation

OptionButton 16,20,51,8,"10 Watts",.Ten
OptionButton 16,32,51,8,"50 Watts",.Fifty
OptionButton 16,44,51,8,"100 Watts",.Hundred

OKButton 80,8,40,14
End Dialog
Dim PowerDialog As PowerTemplate
Dialog PowerDialog

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement); ListBox
(statement); OKButton (statement); OptionButton (statement); Picture (statement);
PushButton (statement); Text (statement); TextBox (statement); Begin Dialog
(statement), PictureButton (statement).

16-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Or (operator)

Syntax expression1 Or expression2

Description Performs a logical or binary disjunction on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants, then a logical

If the first expression is and the second expression is then the result is
True True True
True False True
True Null True
False True True
False False False
False Null Null
Null True True
Null False Null
Null Null Null

Binary Disjunction
If the two expressions are Integer, then a binary disjunction is performed, returning an
Integer result. All other numeric types (including Empty variants) are converted to Long and a
binary disjunction is then performed, returning a Long result.

Binary disjunction forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions according to the following table:
1 Or 1 = 1 Example:
0 Or 1 = 1 5 10101001
1 Or 0 = 1 6 01101010
0 Or 0 = 0 Or 11101011

Examples This first example shows the use of logical Or.
Sub Main()

temperature_alert = True
pressure_alert = False
If temperature_alert Or pressure_alert Then

MsgBox "You had better run!",ebExclamation,"Nuclear Disaster Imminent"
End If

End Sub

This second example shows the use of binary Or.
Sub Main()

Dim w As Integer

TryAgain:
s$ = InputBox("Enter a hex number (four digits max).","Binary Or Example")
If Mid(s$,1,1) <> "&" Then

s$ = "&H" & s$
End If
If Not IsNumeric(s$) Then Goto TryAgain

w = Cint(s$)
MsgBox "Your number is &H" & Hex(w)
w = w Or &H8000
MsgBox "Your number with the high bit set is &H" & Hex(w)

End Sub

See Also Operator Precedence (topic); Xor (operator); Eqv (operator); Imp (operator); And (operator).

GFK-1283G 17-1

P

Pi (constant)

Syntax Pi

Description The Double value 3.141592653589793238462643383279.

Comments Pi can also be determined using the following formula:
4 * Atn(1)

Example This example illustrates the use of the Pi constant.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
dia = InputBox("Enter a circle diameter to compute.","Compute Circle")
circ# = Pi * dia
area# = Pi * ((dia / 2) ^ 2)
msg1 = "Diameter: " & dia & crlf
msg1 = msg1 & "Circumference: " & Format(circ#,"Standard") & crlf
msg1 = msg1 & "Area: " & Format(area#,"Standard")
MsgBox msg1

End Sub

See Also Tan (function); Atn (function); Cos (function); Sin (function).

17-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Picture (statement)

Syntax Picture X,Y,width,height,PictureName$,PictureType [,[.Identifier] [,style]]

Description Creates a picture control in a dialog box template.

Comments Picture controls are used for the display of graphics images only. The user cannot interact with these
controls.

The Picture statement accepts the following parameters:

Parameter Description
X, Y Integer coordinates specifying the position of the control (in dialog units)

relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

PictureName$ String containing the name of the picture. If PictureType is 0, then this
name specifies the name of the file containing the image. If PictureType is 10,
then PictureName$ specifies the name of the image within the resource of the
picture library.

If PictureName$ is empty, then no picture will be associated with the control.
A picture can later be placed into the picture control using the
DlgSetPicture statement.

PictureType Integer specifying the source for the image. The following sources are
supported:

0 The image is contained in a file on disk.

10 The image is contained in a picture library as specified by the
PicName$ parameter on the Begin Dialog statement.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). If omitted, then the first two
words of PictureName$ are used

style Specifies whether the picture is drawn within a 3D frame. It can be any of the
following values:

0 Draw the picture control with a normal frame.

1 Draw the picture control with a 3D frame.

If omitted, then the picture control is drawn with a normal frame..

The picture control extracts the actual image from either a disk file or a picture library. In the case of
bitmaps, both 2- and 16-color bitmaps are supported. In the case of WMFs, the Basic Control
Engine supports the Placeable Windows Metafile.

If PictureName$ is a zero-length string, then the picture is removed from the picture control, freeing
any memory associated with that picture.

GFK-1283G P 17-3

Examples This first example shows how to use a picture from a file.
Sub Main()

Begin Dialog LogoDialogTemplate 16,32,288,76,"Introduction"
OKButton 240,8,40,14
Picture 8,8,224,64,"c:\bitmaps\logo.bmp",0,.Logo

End Dialog
Dim LogoDialog As LogoDialogTemplate
Dialog LogoDialog

End Sub

This second example shows how to use a picture from a picture library with a 3D frame.
Sub Main()

Begin Dialog LogoDialogTemplate 16,31,288,76,"Introduction",,"pictures.dll"
OKButton 240,8,40,14
Picture 8,8,224,64,"CompanyLogo",10,.Logo,1

End Dialog
Dim LogoDialog As LogoDialogTemplate
Dialog LogoDialog

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement); ListBox
(statement); OKButton (statement); OptionButton (statement); OptionGroup (statement);
PushButton (statement); Text (statement); TextBox (statement); Begin Dialog
(statement), PictureButton (statement) , DlgSetPicture (statement).

Notes: Picture controls can contain either a bitmap or a WMF (Windows metafile). When extracting images
from a picture library, the Basic Control Engine assumes that the resource type for metafiles is 256.

Picture libraries are implemented as DLLs on the Windows and Win32 platforms.

17-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

PictureButton (statement)

Syntax PictureButton X,Y,width,height,PictureName$,PictureType [,.Identifier]

Description Creates a picture button control in a dialog box template.

Comments Picture button controls behave very much like a push button controls. Visually, picture buttons are
different than push buttons in that they contain a graphic image imported either from a file or from
a picture library.

The PictureButton statement accepts the following parameters:

Parameter Description
X, Y Integer coordinates specifying the position of the control (in dialog units)

relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

PictureName$ String containing the name of the picture. If PictureType is 0, then this
name specifies the name of the file containing the image. If PictureType is
10, then PictureName$ specifies the name of the image within the resource of
the picture library.

If PictureName$ is empty, then no picture will be associated with the control.
A picture can later be placed into the picture control using the
DlgSetPicture statement.

PictureType Integer specifying the source for the image. The following sources are
supported:

0 The image is contained in a file on disk.

10 The image is contained in a picture library as specified by the
PicName$ parameter on the Begin Dialog statement.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

The picture button control extracts the actual image from either a disk file or a picture library,
depending on the value of PictureType. The supported picture formats vary from platform to
platform.

If PictureName$ is a zero-length string, then the picture is removed from the picture button control,
freeing any memory associated with that picture.

Examples This first example shows how to use a picture from a file.
Sub Main()

Begin Dialog LogoDialogTemplate 16,32,288,76,"Introduction"
OKButton 240,8,40,14
PictureButton 8,4,224,64,"c:\bitmaps\logo.bmp",0,.Logo

End Dialog
Dim LogoDialog As LogoDialogTemplate
Dialog LogoDialog

End Sub

GFK-1283G P 17-5

This second example shows how to use a picture from a picture library.
Sub Main()

Begin Dialog LogoDialogTemplate 16,31,288,76,"Introduction",,"pictures.dll"
OKButton 240,8,40,14
PictureButton 8,4,224,64,"CompanyLogo",10,.Logo

End Dialog
Dim LogoDialog As LogoDialogTemplate
Dialog LogoDialog

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement); ListBox
(statement); OKButton (statement); OptionButton (statement); OptionGroup (statement);
PushButton (statement); Text (statement); TextBox (statement); Begin Dialog
(statement), Picture (statement), DlgSetPicture (statement).

Notes: Picture controls can contain either a bitmap or a WMF (Windows metafile). When extracting
images from a picture library, the Basic Control Engine assumes that the resource type for metafiles
is 256.

Picture libraries are implemented as DLLs on the Win32 platforms.

Picture controls can contain either bitmaps or Windows metafiles.

Picture libraries under OS/2 are implemented as resources within DLLs. The PictureName$
parameter corresponds to the name of one of these resources as it appears within the DLL.

Picture controls on the Macintosh can contain only PICT images. These are contained in files of
type PICT.

Picture libraries on the Macintosh are files with collections of named PICT resources. The
PictureName$ parameter corresponds to the name of one the resources as it appears within the file.

Under DOS, PictureButton statements within dialog box templates are ignored at runtime.

17-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Pmt (function)

Syntax Pmt(Rate,NPer,Pv,Fv,Due)

Description Returns the payment for an annuity based on periodic fixed payments and a constant rate of interest.

Comments An annuity is a series of fixed payments made to an insurance company or other investment
company over a period of time. Examples of annuities are mortgages and monthly savings plans.

The Pmt function requires the following parameters:

Parameter Description
Rate Double representing the interest rate per period. If the periods are given in

months, be sure to normalize annual rates by dividing them by 12.

NPer Double representing the total number of payments in the annuity.

Pv Double representing the present value of your annuity. In the case of a
loan, the present value would be the amount of the loan.

Fv Double representing the future value of your annuity. In the case of a loan,
the future value would be 0.

Due Integer indicating when payments are due for each payment period. A 0
specifies payment at the end of each period, whereas a 1 specifies payment
at the start of each period.

Rate and NPer must be expressed in the same units. If Rate is expressed in months, then NPer must
also be expressed in months.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example This example calculates the payment necessary to repay a $1,000.00 loan over 36 months at an
annual rate of 10%. Payments are due at the beginning of the period.
Sub Main()

x = Pmt((.1/12),36,1000.00,0,1)
msg1 = "The payment to amortize $1,000 over 36 months @ 10% is: "
MsgBox msg1 & Format(x,"Currency")

End Sub

See Also IPmt (function); NPer (function); PPmt (function); Rate (function).

GFK-1283G P 17-7

PopupMenu (function)

Syntax PopupMenu(MenuItems$())

Description Displays a pop-up menu containing the specified items, returning an Integer representing the
index of the selected item.

Comments If no item is selected (that is, the pop-up menu is canceled), then a value of 1 less than the lower
bound is returned (normally, –1).

This function creates a pop-up menu using the string elements in the given array. Each array
element is used as a menu item. A zero-length string results in a separator bar in the menu.

The pop-up menu is created with the upper left corner at the current mouse position.

A runtime error results if MenuItems$ is not a single-dimension array.

Only one pop-up menu can be displayed at a time. An error will result if another script executes
this function while a pop-up menu is visible.

Example
Sub Main()

Dim a$()
AppList a$
w% = PopupMenu(a$)

End Sub

See Also SelectBox (function).

17-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

PPmt (function)

Syntax PPmt(Rate,Per,NPer,Pv,Fv,Due)

Description Calculates the principal payment for a given period of an annuity based on periodic, fixed payments
and a fixed interest rate.

Comments An annuity is a series of fixed payments made to an insurance company or other investment
company over a period of time. Examples of annuities are mortgages and monthly savings plans.

The PPmt function requires the following parameters:

Parameter Description
Rate Double representing the interest rate per period.

Per Double representing the number of payment periods. Per can be no less than
1 and no greater than NPer.

NPer Double representing the total number of payments in your annuity.

Pv Double representing the present value of your annuity. In the case of a loan,
the present value would be the amount of the loan.

Fv Double representing the future value of your annuity. In the case of a loan,
the future value would be 0.

Due Integer indicating when payments are due. If this parameter is 0, then
payments are due at the end of each period; if it is 1, then payments are due at
the start of each period.

Rate and NPer must be in the same units to calculate correctly. If Rate is expressed in months, then
NPer must also be expressed in months.

Negative values represent payments paid out, whereas positive values represent payments received.

Example This example calculates the principal paid during each year on a loan of $1,000.00 with an annual
rate of 10% for a period of 10 years. The result is displayed as a table containing the following
information: payment, principal payment, principal balance.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
pay = Pmt(.1,10,1000.00,0,1)
msg1 = "Amortization table for 1,000" & crlf & "at 10% annually for"
msg1 = msg1 & " 10 years: " & crlf & crlf
bal = 1000.00
For per = 1 to 10

prn = PPmt(.1,per,10,1000,0,0)
bal = bal + prn
msg1 = msg1 & Format(pay,"Currency") & " " & Format$(Prn,"Currency")
msg1 = msg1 & " " & Format(bal,"Currency") & crlf

Next per
MsgBox msg1

End Sub

See Also IPmt (function); NPer (function); Pmt (function); Rate (function).

GFK-1283G P 17-9

Print (statement)

Syntax Print [[{Spc(n) | Tab(n)}][expressionlist][{; | ,}]]

Description Prints data to an output device.
Comments The actual output device depends on the platform on which the Basic Control Engine is running.

The following table describes how data of different types is written:
Data Type Description
String Printed in its literal form, with no enclosing quotes.
Any numeric type Printed with an initial space reserved for the sign (space = positive).

Additionally, there is a space following each number.
Boolean Printed as "True" or "False".
Date Printed using the short date format. If either the date or time component is

missing, only the provided portion is printed (this is consistent with the
"general date" format understood by the Format/Format$ functions).

Empty Nothing is printed.
Null Prints "Null".
User-defined errors Printed as "Error code", where code is the value of the user-defined error.

The word "Error" is not translated.
Each expression in expressionlist is separated with either a comma (,) or a semicolon (;). A comma
means that the next expression is output in the next print zone. A semicolon means that the next
expression is output immediately after the current expression. Print zones are defined every 14
spaces.
If the last expression in the list is not followed by a comma or a semicolon, then a carriage return is
printed to the file. If the last expression ends with a semicolon, no carriage return is printed the
next Print statement will output information immediately following the expression. If the last
expression in the list ends with a comma, the file pointer is positioned at the start of the next print
zone on the current line.
The Tab and Spc functions provide additional control over the column position. The Tab function
moves the file position to the specified column, whereas the Spc function outputs the specified
number of spaces.

Examples Sub Main()
i% = 10
s$ = "This is a test."
Print "The value of i=";i%,"the value of s=";s$

'This example prints the value of i% in print zone 1 and s$ in print
'zone 3.
Print i%,,s$

'This example prints the value of i% and s$ separated by 10 spaces.
Print i%;Spc(10);s$

'This example prints the value of i in column 1 and s$ in column 30.
Print i%;Tab(30);s$

'This example prints the value of i% and s$.
Print i%;s$,
Print 67

End Sub

Note: On Win32, the Print statement prints data to stdout.

17-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Print# (statement)

Syntax Print [#]filenumber, [[{Spc(n) | Tab(n)}][expressionlist][{;|,}]]

Description Writes data to a sequential disk file.

Comments The filenumber parameter is a number that is used by the Basic Control Engine to refer to the open
file—the number passed to the Open statement.

The following table describes how data of different types is written:

Data Type Description
String Printed in its literal form, with no enclosing quotes.

Any numeric type Printed with an initial space reserved for the sign (space = positive).
Additionally, there is a space following each number.

Boolean Printed as "True" or "False".
Date Printed using the short date format. If either the date or time component is

missing, only the provided portion is printed (this is consistent with the
"general date" format understood by the Format/Format$ functions).

Empty Nothing is printed.
Null Prints "Null".

User-defined errors Printed to files as "Error code", where code is the value of the user-defined
error. The word "Error" is not translated.

Each expression in expressionlist is separated with either a comma (,) or a semicolon (;). A comma
means that the next expression is output in the next print zone. A semicolon means that the next
expression is output immediately after the current expression. Print zones are defined every 14
spaces.

If the last expression in the list is not followed by a comma or a semicolon, then an end-of-line is
printed to the file. If the last expression ends with a semicolon, no end-of-line is printed the next
Print statement will output information immediately following the expression. If the last
expression in the list ends with a comma, the file pointer is positioned at the start of the next print
zone on the current line.

The Write statement always outputs information ending with an end-of-line. Thus, if a Print
statement is followed by a Write statement, the file pointer is positioned on a new line.

The Print statement can only be used with files that are opened in Output or Append mode.

The Tab and Spc functions provide additional control over the file position. The Tab function
moves the file position to the specified column, whereas the Spc function outputs the specified
number of spaces.

In order to correctly read the data using the Input# statement, you should write the data using the
Write statement.

GFK-1283G P 17-11

Examples Sub Main()
'This example opens a file and prints some data.
Open "test.dat" For Output As #1
i% = 10
s$ = "This is a test."
Print #1,"The value of i=";i%,"the value of s=";s$

'This example prints the value of i% in print zone 1 and s$ in
'print zone 3.
Print #1,i%,,s$

'This example prints the value of i% and s$ separated by ten spaces.
Print #1,i%;Spc(10);s$

'This example prints the value of i in column 1 and s$ in column 30.
Print #1,i%;Tab(30);s$

'This example prints the value of i% and s$.
Print #1,i%;s$,
Print #1,67

Close #1
Kill "test.dat"

End Sub

See Also Open (statement); Put (statement); Write# (statement).

Note: The end-of-line character can be either the carriage-return/line-feed pair, or the line-feed character.

17-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Private (statement)

Syntax Private name [(subscripts)] [As type] [,name [(subscripts)] [As type]]...

Description Declares a list of private variables and their corresponding types and sizes.

Comments Private variables are global to every Sub and Function within the currently executing script.

If a type-declaration character is used when specifying name (such as %, @, &, $, or !), the optional
[As type] expression is not allowed. For example, the following are allowed:

Private foo As Integer
Private foo%

The subscripts parameter allows the declaration of arrays. This parameter uses the following
syntax:

[lower To] upper [,[lower To] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds of the array. If
lower is not specified, then the lower bound as specified by Option Base is used (or 1 if no
Option Base statement has been encountered). Up to 60 array dimensions are allowed.

The total size of an array (not counting space for strings) is limited to 64K.

Dynamic arrays are declared by not specifying any bounds:
Private a()

The type parameter specifies the type of the data item being declared. It can be any of the following
data types: String, Integer, Long, Single, Double, Currency, Object, data object,
built-in data type, or any user-defined data type.

If a variable is seen that has not been explicitly declared with either Dim, Public, or Private,
then it will be implicitly declared local to the routine in which it is used.

Fixed-Length Strings
Fixed-length strings are declared by adding a length to the String type-declaration character:

Private name As String * length

where length is a literal number specifying the string's length.

Initial Values
All declared variables are given initial values, as described in the following table:

Data Type Initial Value
Integer 0

Long 0

Double 0.0

Single 0.0

Currency 0.0

Object Nothing

Date December 31, 1899 00:00:00

Boolean False

GFK-1283G P 17-13

Variant Empty

String "" (zero-length string)

User-defined type Each element of the structure is given a default value, as described above.

Arrays Each element of the array is given a default value, as described above.

Example This example sets the value of variable x# in two separate routines to show the behavior of private
variables.
Private x#

Sub Area()
x# = 10 'Set this copy of x# to 10 and display
MsgBox x#

End Sub

Sub Main()
x# = 100 'Set this copy of x# to 100 and display after calling the Area

subroutine
Area
MsgBox x#

End Sub

See Also Dim (statement); Redim (statement); Public (statement); Option Base (statement).

17-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Public (statement)

Syntax Public name [(subscripts)] [As type] [,name [(subscripts)] [As type]]...

Description Declares a list of public variables and their corresponding types and sizes.

Comments Public variables are global to all Subs and Functions in all scripts.

If a type-declaration character is used when specifying name (such as %, @, &, $, or !), the optional
[As type] expression is not allowed. For example, the following are allowed:

Public foo As Integer
Public foo%

The subscripts parameter allows the declaration of arrays. This parameter uses the following
syntax:

[lower To] upper [,[lower To] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds of the array. If
lower is not specified, then the lower bound as specified by Option Base is used (or 1 if no
Option Base statement has been encountered). Up to 60 array dimensions are allowed.

The total size of an array (not counting space for strings) is limited to 64K.

Dynamic arrays are declared by not specifying any bounds:
Public a()

The type parameter specifies the type of the data item being declared. It can be any of the following
data types: String, Integer, Long, Single, Double, Currency, Object, data object,
built-in data type, or any user-defined data type.

If a variable is seen that has not been explicitly declared with either Dim, Public, or Private,
then it will be implicitly declared local to the routine in which it is used.

For compatibility, the keyword Global is also supported. It has the same meaning as Public.

Fixed-Length Strings
Fixed-length strings are declared by adding a length to the String type-declaration character:

Public name As String * length

where length is a literal number specifying the string's length.

Initial Values
All declared variables are given initial values, as described in the following table:

Data Type Initial Value
Integer 0

Long 0

Double 0.0

Single 0.0

Currency 0.0

Date December 31, 1899 00:00:00

Object Nothing

GFK-1283G P 17-15

Boolean False

Variant Empty

String "" (zero-length string)

User-defined type Each element of the structure is given a default value, as described above.

Arrays Each element of the array is given a default value, as described above.

Sharing Variables
When sharing variables, you must ensure that the declarations of the shared variables are the same
in each script that uses those variables. If the public variable being shared is a user-defined
structure, then the structure definitions must be exactly the same.

Example This example uses a subroutine to calculate the area of ten circles and displays the result in a dialog
box. The variables R and Ar are declared as Public variables so that they can be used in both Main
and Area.
Const crlf = Chr$(13) + Chr$(10)

Public x#,ar#

Sub Area()
ar# = (x# ^ 2) * Pi

End Sub

Sub Main()
msg1 = "The area of the ten circles are:" & crlf & crlf
For x# = 1 To 10

Area
msg1 = msg1 & x# & ": " & Format(ar#,"fixed") & Basic.Eoln$

Next x#
MsgBox msg1

End Sub

See Also Dim (statement); Redim (statement); Private (statement); Option Base (statement).

17-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

PushButton (statement)

Syntax PushButton X,Y,width,height,title$ [,.Identifier]

Description Defines a push button within a dialog box template.

Comments Choosing a push button causes the dialog box to close (unless the dialog function redefines this
behavior).

This statement can only appear within a dialog box template (that is, between the Begin Dialog
and End Dialog statements).

The PushButton statement accepts the following parameters:

Parameter Description
X, Y Integer coordinates specifying the position of the control (in dialog units)

relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

title$ String containing the text that appears within the push button. This text
may contain an ampersand character to denote an accelerator letter, such as
"&Save" for Save.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

If a push button is the default button, it can be selected by pressing Enter on a nonbutton control.

A dialog box template must contain at least one OKButton, CancelButton, or PushButton
statement (otherwise, the dialog box cannot be dismissed).

Example This example creates a bunch of push buttons and displays which button was pushed.
Sub Main()

Begin Dialog ButtonTemplate 17,33,104,84,"Buttons"
OKButton 8,4,40,14,.OK
CancelButton 8,24,40,14,.Cancel
PushButton 8,44,40,14,"1",.Button1
PushButton 8,64,40,14,"2",.Button2
PushButton 56,4,40,14,"3",.Button3
PushButton 56,24,40,14,"4",.Button4
PushButton 56,44,40,14,"5",.Button5
PushButton 56,64,40,14,"6",.Button6

End Dialog
Dim ButtonDialog As ButtonTemplate
WhichButton% = Dialog(ButtonDialog)
MsgBox "You pushed button " & WhichButton%

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement); ListBox
(statement); OKButton (statement); OptionButton (statement); OptionGroup (statement);
Picture (statement); Text (statement); TextBox (statement); Begin Dialog (statement),
PictureButton (statement).

Note: Accelerators are underlined, and the accelerator combination Alt+letter is used.

GFK-1283G P 17-17

Put (statement)

Syntax Put [#]filenumber, [recordnumber], variable

Description Writes data from the specified variable to a Random or Binary file.

Comments The Put statement accepts the following parameters:

Parameter Description
filenumber Integer representing the file to be written to. This is the same value as

returned by the Open statement.

recordnumber Long specifying which record is to be written to the file.

For Binary files, this number represents the first byte to be written starting
with the beginning of the file (the first byte is 1). For Random files, this
number represents the record number starting with the beginning of the file
(the first record is 1). This value ranges from 1 to 2147483647.

If the recordnumber parameter is omitted, the next record is written to the
file (if no records have been written yet, then the first record in the file is
written). When recordnumber is omitted, the commas must still appear, as in
the following example:
Put #1,,recvar

If recordlength is specified, it overrides any previous change in file position
specified with the Seek statement.

The variable parameter is the name of any variable of any of the following types:

Variable Type File Storage Description
Integer 2 bytes are written to the file.
Long 4 bytes are written to the file.
String
(variable-length)

In Binary files, variable-length strings are written by first determining the
specified string variable's length, then writing that many bytes to the file.

In Random files, variable-length strings are written by first writing a 2-byte
length, then writing that many characters to the file.

String
(fixed-length)

Fixed-length strings are written to Random and Binary files in the same
way: the number of characters equal to the string's declared length are
written.

Double 8 bytes are written to the file (IEEE format).
Single 4 bytes are written to the file (IEEE format).
Date 8 bytes are written to the file (IEEE double format).
Boolean 2 bytes are written to the file (either –1 for True or 0 for False).

17-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Variant A 2-byte VarType is written to the file followed by the data as described
above. With variants of type 10 (user-defined errors), the 2-byte VarType is
followed by a 2-byte unsigned integer (the error value), which is then
followed by 2 additional bytes of information.

The exception is with strings, which are always preceded by a 2-byte string
length.

User-defined types Each member of a user-defined data type is written individually.

In Binary files, variable-length strings within user-defined types are written
by first writing a 2-byte length followed by the string's content. This storage
is different than variable-length strings outside of user-defined types.

When writing user-defined types, the record length must be greater than or
equal to the combined size of each element within the data type.

Arrays Arrays cannot be written to a file using the Put statement.

Objects Object variables cannot be written to a file using the Put statement.

With Random files, a runtime error will occur if the length of the data being written exceeds the
record length (specified as the reclen parameter with the Open statement). If the length of the data
being written is less than the record length, the entire record is written along with padding
(whatever data happens to be in the I/O buffer at that time). With Binary files, the data elements
are written contiguously: they are never separated with padding.

Example This example opens a file for random write, then writes ten records into the file with the values 10-
50. Then the file is closed and reopened in random mode for read, and the records are read with the
Get statement. The result is displayed in a dialog box.
Sub Main()

Open "test.dat" For Random Access Write As #1
For x = 1 To 10

r% = x * 10
Put #1,x,r%

Next x
Close

Open "test.dat" For Random Access Read As #1
For x = 1 To 10

Get #1,x,r%
msg1 = "Record " & x & " is: " & r% & Basic.Eoln$

Next x

MsgBox msg1
Close
Kill "test.dat"

End Sub

See Also Open (statement); Put (statement); Write# (statement); Print# (statement).

GFK-1283G P 17-19

Pv (function)

Syntax Pv(Rate,NPer,Pmt,Fv,Due)

Description Calculates the present value of an annuity based on future periodic fixed payments and a constant
rate of interest.

Comments The Pv function requires the following parameters:

Parameter Description
Rate Double representing the interest rate per period. When used with monthly

payments, be sure to normalize annual percentage rates by dividing them by
12.

NPer Double representing the total number of payments in the annuity.

Pmt Double representing the amount of each payment per period.

Fv Double representing the future value of the annuity after the last payment has
been made. In the case of a loan, the future value would be 0.

Due Integer indicating when the payments are due for each payment period. A 0
specifies payment at the end of each period, whereas a 1 specifies payment at
the start of each period.

Rate and NPer must be expressed in the same units. If Rate is expressed in months, then NPer must
also be expressed in months.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example This example demonstrates the present value (the amount you'd have to pay now) for a $100,000
annuity that pays an annual income of $5,000 over 20 years at an annual interest rate of 10%.
Sub Main()

pval = Pv(.1,20,-5000,100000,1)
MsgBox "The present value is: " & Format(pval,"Currency")

End Sub

See Also Fv (function); IRR (function); MIRR (function); Npv (function).

GFK-1283G 18-1

R

Random (function)

Syntax Random(min,max)

Description Returns a Long value greater than or equal to min and less than or equal to max.

Comments Both the min and max parameters are rounded to Long. A runtime error is generated if min is
greater than max.

Example This example sets the randomize seed then generates six random numbers between 1 and 54 for the
lottery.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim a%(5)
Randomize

For x = 0 To 5
temp = Random(1,54)

'Elimininate duplicate numbers.
For y = 0 To 5

If a(y) = temp Then found = true
Next

If found = false Then a(x) = temp Else x = x - 1
found = false

Next

ArraySort a
msg1 = ""
For x = 0 To 5

msg1 = msg1 & a(x) & crlf
Next x

MsgBox "Today's winning lottery numbers are: " & crlf & crlf & msg1
End Sub

See Also Randomize (statement); Random (function).

18-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Randomize (statement)

Syntax Randomize [seed]

Description Initializes the random number generator with a new seed.

Comments If seed is not specified, then the current value of the system clock is used.

Example This example sets the randomize seed then generates six random numbers between 1 and 54 for the
lottery.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim a%(5)
Randomize 'This sets the random seed.

'Omitting this line will cause the random numbers to be
'identical each time the sample is run.

For x = 0 To 5
temp = Rnd(1) * 54 + 1

'Elimininate duplicate numbers.
For y = 0 To 5

If a(y) = temp Then found = true
Next

If found = false Then a(x) = temp Else x = x - 1

found = false
Next

ArraySort a
msg1 = ""
For x = 0 To 5

msg1 = msg1 & a(x) & crlf
Next x

MsgBox "Today's winning lottery numbers are: " & crlf & crlf & msg1
End Sub

See Also Random (function); Rnd (function).

GFK-1283G R 18-3

Rate (function)

Syntax Rate(NPer,Pmt,Pv,Fv,Due,Guess)

Description Returns the rate of interest for each period of an annuity.

Comments An annuity is a series of fixed payments made to an insurance company or other investment
company over a period of time. Examples of annuities are mortgages and monthly savings plans.

The Rate function requires the following parameters:

Parameter Description
NPer Double representing the total number of payments in the annuity.

Pmt Double representing the amount of each payment per period.

Pv Double representing the present value of your annuity. In a loan situation,
the present value would be the amount of the loan.

Fv Double representing the future value of the annuity after the last payment
has been made. In the case of a loan, the future value would be zero.

Due Integer specifying when the payments are due for each payment period. A
0 indicates payment at the end of each period, whereas a 1 indicates payment
at the start of each period.

Guess Double specifying a guess as to the value the Rate function will return.
The most common guess is .1 (10 percent).

Positive numbers represent cash received, whereas negative values represent cash paid out.

The value of Rate is found by iteration. It starts with the value of Guess and cycles through the
calculation adjusting Guess until the result is accurate within 0.00001 percent. After 20 tries, if a
result cannot be found, Rate fails, and the user must pick a better guess.

Example This example calculates the rate of interest necessary to save $8,000 by paying $200 each year for
48 years. The guess rate is 10%.
Sub Main()

r# = Rate(48,-200,8000,0,1,.1)
MsgBox "The rate required is: " & Format(r#,"Percent")

End Sub

See Also IPmt (function); NPer (function); Pmt (function); PPmt (function).

18-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ReadIni$ (function)

Syntax ReadIni$(section$,item$[,filename$])

Description Returns a String containing the specified item from an ini file.

Comments The ReadIni$ function takes the following parameters:

Parameter Description
section$ String specifying the section that contains the desired variable, such as

"windows". Section names are specified without the enclosing brackets.

item$ String specifying the item whose value is to be retrieved.

filename$ String containing the name of the ini file to read.

See Also WriteIni (statement); ReadIniSection (statement).

Notes: If the name of the ini file is not specified, then win.ini is assumed.

If the filename$ parameter does not include a path, then this statement looks for ini files in the
Windows directory.

GFK-1283G R 18-5

ReadIniSection (statement)

Syntax ReadIniSection section$,ArrayOfItems()[,filename$]

Description Fills an array with the item names from a given section of the specified ini file.

Comments The ReadIniSection statement takes the following parameters:

Parameter Description
section$ String specifying the section that contains the desired variables, such as

"windows". Section names are specified without the enclosing brackets.

ArrayOfItems() Specifies either a zero- or a one-dimensioned array of strings or variants. The
array can be either dynamic or fixed.

If ArrayOfItems() is dynamic, then it will be redimensioned to exactly hold
the new number of elements. If there are no elements, then the array will be
redimensioned to contain no dimensions. You can use the LBound,
UBound, and ArrayDims functions to determine the number and size of
the new array's dimensions.

If the array is fixed, each array element is first erased, then the new elements
are placed into the array. If there are fewer elements than will fit in the array,
then the remaining elements are initialized to zero-length strings (for
String arrays) or Empty (for Variant arrays). A runtime error results if
the array is too small to hold the new elements.

filename$ String containing the name of an ini file.

On return, the ArrayOfItems() parameter will contain one array element for each variable in the
specified ini section.

Example Sub Main()
Dim items() As String
ReadIniSection "Windows",items$
r% = SelectBox("INI Items",,items$)

End Sub

See Also ReadIni$ (function); WriteIni (statement).

Notes: If the name of the ini file is not specified, then win.ini is assumed.

If the filename$ parameter does not include a path, then this statement looks for ini files in the
Windows directory.

18-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Redim (statement)

Syntax Redim [Preserve] variablename (subscriptRange) [As type],...

Description Redimensions an array, specifying a new upper and lower bound for each dimension of the array.

Comments The variablename parameter specifies the name of an existing array (previously declared using the
Dim statement) or the name of a new array variable. If the array variable already exists, then it must
previously have been declared with the Dim statement with no dimensions, as shown in the
following example:

Dim a$() 'Dynamic array of strings (no dimensions yet)

Dynamic arrays can be redimensioned any number of times.

The subscriptRange parameter specifies the new upper and lower bounds for each dimension of the
array using the following syntax:

[lower To] upper [,[lower To] upper]...

If lower is not specified, then 0 is used (or the value set using the Option Base statement). A
runtime error is generated if lower is less than upper. Array dimensions must be within the
following range:

–32768 <= lower <= upper <= 32767

The type parameter can be used to specify the array element type. Arrays can be declared using any
fundamental data type, user-defined data types, and objects.

Redimensioning an array erases all elements of that array unless the Preserve keyword is
specified. When this keyword is specified, existing data in the array is preserved where possible. If
the number of elements in an array dimension is increased, the new elements are initialized to 0 (or
empty string). If the number of elements in an array dimension is decreased, then the extra elements
will be deleted. If the Preserve keyword is specified, then the number of dimensions of the
array being redimensioned must either be zero or the same as the new number of dimensions.

Example This example uses the FileList statement to redim an array and fill it with filename strings. A new
array is then redimmed to hold the number of elements found by FileList, and the FileList array is
copied into it and partially displayed.
Sub Main()

Dim fl$()
FileList fl$,"*.*"
count = Ubound(fl$)
Redim nl$(Lbound(fl$) To Ubound(fl$))
For x = 1 to count

nl$(x) = fl(x)
Next x
MsgBox "The last element of the new array is: " & nl$(count)

End Sub

See Also Dim (statement); Public (statement); Private (statement); ArrayDims (function); LBound
(function); UBound (function).

GFK-1283G R 18-7

Rem (statement)

Syntax Rem text

Description Causes the compiler to skip all characters on that line.

Example Sub Main()
Rem This is a line of comments that serves to illustrate the
Rem workings of the code. You can insert comments to make it more
Rem readable and maintainable in the future.

End Sub

See Also ' (keyword); Comments (topic).

Reset (statement)

Syntax Reset

Description Closes all open files, writing out all I/O buffers.

Example This example opens a file for output, closes it with the Reset statement, then deletes it with the Kill
statement.
Sub Main()

Open "test.dat" for Output Access Write as # 1
Reset
Kill "test.dat"

If FileExists("test.dat") Then
MsgBox "The file was not deleted."

Else
MsgBox "The file was deleted."

End If
End Sub

See Also Close (statement); Open (statement).

18-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Resume (statement)

Syntax Resume {[0] | Next | label}

Description Ends an error handler and continues execution.

Comments The form Resume 0 (or simply Resume by itself) causes execution to continue with the
statement that caused the error.

The form Resume Next causes execution to continue with the statement following the statement
that caused the error.

The form Resume label causes execution to continue at the specified label.

The Resume statement resets the error state. This means that, after executing this statement, new
errors can be generated and trapped as normal.

Example This example accepts two integers from the user and attempts to multiply the numbers together. If
either number is larger than an integer, the program processes an error routine and then continues
program execution at a specific section using 'Resume <label>'. Another error trap is then set using
'Resume Next'. The new error trap will clear any previous error branching and also 'tell' the
program to continue execution of the program even if an error is encountered.
Sub Main()

Dim a%,b%,x%

Again:
On Error Goto Overflow
a% = InputBox("Enter 1st integer to multiply","Enter Number")
b% = InputBox("Enter 2nd integer to multiply","Enter Number")

On Error Resume Next 'Continue program execution at next line
x% = a% * b% 'if an error (integer overflow) occurs.

If err = 0 Then
MsgBox a% & " * " & b% & " = " & x%

Else
Msgbox a% & " * " & b% & " cause an integer overflow!"

End If

Exit Sub

Overflow: 'Error handler.
MsgBox "You've entered a non-integer value, try again!"
Resume Again

End Sub

See Also Error Handling (topic); On Error (statement).

GFK-1283G R 18-9

Return (statement)

Syntax Return

Description Transfers execution control to the statement following the most recent GoSub.

Comments A runtime error results if a Return statement is encountered without a corresponding GoSub
statement.

Example This example calls a subroutine and then returns execution to the Main routine by the Return
statement.
Sub Main()

GoSub SubTrue
MsgBox "The Main routine continues here."
Exit Sub

SubTrue:
MsgBox "This message is generated in the subroutine."
Return
Exit Sub

End Sub

See Also GoSub (statement).

Right, Right$ (functions)

Syntax Right[$](text,NumChars)

Description Returns the rightmost NumChars characters from a specified string.

Comments Right$ returns a String, whereas Right returns a String variant.

The Right function takes the following parameters:

Parameter Description
text String from which characters are returned. A runtime error is generated if

text is Null.

NumChars Integer specifying the number of characters to return. If NumChars is
greater than or equal to the length of the string, then the entire string is
returned. If NumChars is 0, then a zero-length string is returned.

Example This example shows the Right$ function used in a routine to change uppercase names to lowercase
with an uppercase first letter.
Sub Main()

lname$ = "WILLIAMS"
x = Len(lname$)
rest$ = Right(lname$,x - 1)
fl$ = Left(lname$,1)
lname$ = fl$ & LCase(rest$)
MsgBox "The converted name is: " & lname$

End Sub

See Also Left, Left$ (functions).

18-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

RmDir (statement)

Syntax RmDir dir$

Comments Removes the directory specified by the String contained in dir$.

Example This routine creates a directory and then deletes it with RmDir.
Sub Main()

On Error Goto ErrMake
MkDir("test01")
On Error Goto ErrRemove
RmDir("test01")

ErrMake:
MsgBox "The directory could not be created."
Exit Sub

ErrRemove:
MsgBox "The directory could not be removed."
Exit Sub

End Sub

See Also ChDir (statement); ChDrive (statement); CurDir, CurDir$ (functions); Dir, Dir$
(functions); MkDir (statement).

GFK-1283G R 18-11

Rnd (function)

Syntax Rnd[(number)]

Description Returns a random Single number between 0 and 1.

Comments If number is omitted, the next random number is returned. Otherwise, the number parameter has the
following meaning:

If Then
number < 0 Always returns the same number.

number = 0 Returns the last number generated.

number > 0 Returns the next random number.

Example This example sets the randomize seed then generates six random numbers between 1 and 54 for the
lottery.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim a%(5)
Randomize

For x = 0 To 5
temp = Rnd(1) * 54 + 1

'Elimininate duplicate numbers.
For y = 0 To 5

If a(y) = temp Then found = true
Next

If found = false Then a(x) = temp Else x = x - 1

found = false
Next

ArraySort a
msg1 = ""
For x = 0 To 5

msg1 = msg1 & a(x) & crlf
Next x

MsgBox "Today's winning lottery numbers are: " & crlf & crlf & msg1
End Sub

See Also Randomize (statement); Random (function).

18-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

RSet (statement)

Syntax RSet destvariable = source

Description Copies the source string source into the destination string destvariable.

Comments If source is shorter in length than destvariable, then the string is right-aligned within destvariable
and the remaining characters are padded with spaces. If source is longer in length than destvariable,
then source is truncated, copying only the leftmost number of characters that will fit in
destvariable. A runtime error is generated if source is Null.

The destvariable parameter specifies a String or Variant variable. If destvariable is a
Variant containing Empty, then no characters are copied. If destvariable is not convertible to a
String, then a runtime error occurs. A runtime error results if destvariable is Null.

Example This example replaces a 40-character string of asterisks (*) with an RSet and LSet string and then
displays the result.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim msg1,tmpstr$
tmpstr$ = String(40,"*")
msg1 = "Here are two strings that have been right-" + crlf
msg1 = msg1 & "and left-justified in a 40-character string."
msg1 = msg1 & crlf & crlf
RSet tmpstr$ = "Right|"
msg1 = msg1 & tmpstr$ & crlf
LSet tmpstr$ = "|Left"
msg1 = msg1 & tmpstr$ & crlf
MsgBox msg1

End Sub

See Also LSet (statement).

GFK-1283G R 18-13

RTrim, RTrim$ (functions)

Syntax RTrim[$](text)

Description Returns a string with the trailing spaces removed.

Comments RTrim$ returns a String, whereas RTrim returns a String variant.

Null is returned if text is Null.

Example This example displays a left-justified string and its RTrim result.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
txt$ = " This is text "
tr$ = RTrim(txt$)
MsgBox "Original ->" & txt$ & "<-" & crlf & "Right Trimmed ->" & tr$ & "<-"

End Sub

See Also LTrim, LTrim$ (functions); Trim, Trim$ (functions).

GFK-1283G 19-1

S

SaveFilename$ (function)

Syntax SaveFilename$[([title$ [,extensions$]])]

Description Displays a dialog box that prompts the user to select from a list of files and returns a String
containing the full path of the selected file.

Comments The SaveFilename$ function accepts the following parameters:

Parameter Description
title$ String containing the title that appears on the dialog box's caption. If this

string is omitted, then "Save As" is used.

extensions$ String containing the available file types. Its format depends on the
platform on which the Basic Control Engine is running. If this string is
omitted, then all files are used.

The SaveFilename$ function returns a full pathname of the file that the user selects. A zero-
length string is returned if the user selects Cancel. If the file already exists, then the user is
prompted to overwrite it.
e$ = "All Files:*.BMP,*.WMF;Bitmaps:*.BMP;Metafiles:*.WMF"
f$ = SaveFilename$("Save Picture",e$)

19-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example This example creates a save dialog box, giving the user the ability to save to several different file
types.
Sub Main()

e$ = "All Files:*.BMP,*.WMF;Bitmaps:*.BMP;Metafiles:*.WMF"
f$ = SaveFilename$("Save Picture",e$)
If Not f$ = "" Then

Msgbox "User choose to save file as: " + f$
Else

Msgbox "User canceled."
End IF

End Sub

See Also MsgBox (statement); AskBox$ (function); AskPassword$ (function); InputBox,
InputBox$ (functions); OpenFilename$ (function); SelectBox (function); AnswerBox
(function).

Note: The extensions$ parameter must be in the following format:

description:ext[,ext][;description:ext[,ext]]...

Placeholder Description
description Specifies the grouping of files for the user, such as All Files.

ext Specifies a valid file extension, such as *.BAT or *.?F?.

For example, the following are valid extensions$ specifications:
"All Files:*"
"Documents:*.TXT,*.DOC"
"All Files:*;Documents:*.TXT,*.DOC"

GFK-1283G S 19-3

Screen.DlgBaseUnitsX (property)

Syntax Screen.DlgBaseUnitsX

Description Returns an Integer used to convert horizontal pixels to and from dialog units.

Comments The number returned depends on the name and size of the font used to display dialog boxes.

To convert from pixels to dialog units in the horizontal direction:
((XPixels * 4) + (Screen.DlgBaseUnitsX - 1)) / Screen.DlgBaseUnitsX

To convert from dialog units to pixels in the horizontal direction:
(XDlgUnits * Screen.DlgBaseUnitsX) / 4

Example This example converts the screen width from pixels to dialog units.
Sub Main()

XPixels = Screen.Width
conv% = Screen.DlgBaseUnitsX
XDlgUnits = (XPixels * 4) + (conv% -1) / conv%
MsgBox "The screen width is " & XDlgUnits & " dialog units."

End Sub

See Also Screen.DlgBaseUnitsY (property).

Screen.DlgBaseUnitsY (property)

Syntax Screen.DlgBaseUnitsY

Description Returns an Integer used to convert vertical pixels to and from dialog units.

Comments The number returned depends on the name and size of the font used to display dialog boxes.

To convert from pixels to dialog units in the vertical direction:
(YPixels * 8) + (Screen.DlgBaseUnitsY - 1) / Screen.DlgBaseUnitsY

To convert from dialog units to pixels in the vertical direction:
(YDlgUnits * Screen.DlgBaseUnitsY) / 8

Example This example converts the screen width from pixels to dialog units.
Sub Main()

YPixels = Screen.Height
conv% = Screen.DlgBaseUnitsY
YDlgUnits = (YPixels * 8) + (conv% -1) / conv%
MsgBox "The screen width is " & YDlgUnits & " dialog units."

End Sub

See Also Screen.DlgBaseUnitsX (property).

19-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Screen.Height (property)

Syntax Screen.Height

Description Returns the height of the screen in pixels as an Integer.

Comments This property is used to retrieve the height of the screen in pixels. This value will differ depending
on the display resolution.

This property is read-only.

Example This example displays the screen height in pixels.
Sub Main()

MsgBox "The Screen height is " & Screen.Height & " pixels."
End Sub

See Also Screen.Width (property).

Screen.TwipsPerPixelX (property)

Syntax Screen.TwipsPerPixelX

Description Returns an Integer representing the number of twips per pixel in the horizontal direction of the
installed display driver.

Comments This property is read-only.

Example This example displays the number of twips across the screen horizontally.
Sub Main()

XScreenTwips = Screen.Width * Screen.TwipsPerPixelX
MsgBox "Total horizontal screen twips = " & XScreenTwips

End Sub

See Also Screen.TwipsPerPixelY (property).

GFK-1283G S 19-5

Screen.TwipsPerPixelY (property)

Syntax Screen.TwipsPerPixelY

Description Returns an Integer representing the number of twips per pixel in the vertical direction of the
installed display driver.

Comments This property is read-only.

Example This example displays the number of twips across the screen vertically.
Sub Main()

YScreenTwips = Screen.Height * Screen.TwipsPerPixelY
MsgBox "Total vertical screen twips = " & YScreenTwips

End Sub

See Also Screen.TwipsPerPixelX (property).

Screen.Width (property)

Syntax Screen.Width

Description Returns the width of the screen in pixels as an Integer.

Comments This property is used to retrieve the width of the screen in pixels. This value will differ depending
on the display resolution.

This property is read-only.

Example This example displays the screen width in pixels.
Sub Main()

MsgBox "The screen width is " & Screen.Width & " pixels."
End Sub

See Also Screen.Height (property).

19-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Second (function)

Syntax Second(time)

Description Returns the second of the day encoded in the specified time parameter.

Comments The value returned is an Integer between 0 and 59 inclusive.

The time parameter is any expression that converts to a Date.

Example This example fires and event every 10 seconds based on the system clock.
Sub Main()

trigger = 10
Do

xs% = Second(Now)
If (xs% Mod trigger = 0) Then

Beep
End 'Remove this line to trigger the loop continuously.
Sleep 1000

End If
DoEvents

Loop
End Sub

See Also Day (function); Minute (function); Month (function); Year (function); Hour (function);
Weekday (function); DatePart (function).

GFK-1283G S 19-7

Seek (function)

Syntax Seek(filenumber)

Description Returns the position of the file pointer in a file relative to the beginning of the file.

Comments The filenumber parameter is a number that the Basic Control Engine uses to refer to the open file—
the number passed to the Open statement.

The value returned depends on the mode in which the file was opened:

File Mode Returns
Input Byte position for the next read
Output Byte position for the next write
Append Byte position for the next write
Random Number of the next record to be written or read
Binary Byte position for the next read or write

The value returned is a Long between 1 and 2147483647, where the first byte (or first record) in
the file is 1.

Example This example opens a file for random write, then writes ten records into the file using the PUT
statement. The file position is displayed using the Seek Function, and the file is closed.
Sub Main()

Open "test.dat" For Random Access Write As #1
For x = 1 To 10

r% = x * 10
Put #1,x,r%

Next x
y = Seek(1)
MsgBox "The current file position is: " & y
Close

End Sub

See Also Seek (statement); Loc (function).

19-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Seek (statement)

Syntax Seek [#] filenumber,position

Description Sets the position of the file pointer within a given file such that the next read or write operation will
occur at the specified position.

Comments The Seek statement accepts the following parameters:

Parameter Description
filenumber Integer used by the Basic Control Engine to refer to the open file—the

number passed to the Open statement.

position Long that specifies the location within the file at which to position the file
pointer. The value must be between 1 and 2147483647, where the first byte
(or record number) in the file is 1. For files opened in either Binary,
Output, Input, or Append mode, position is the byte position within the
file. For Random files, position is the record number.

A file can be extended by seeking beyond the end of the file and writing data there.

Example This example opens a file for random write, then writes ten records into the file using the PUT
statement. The file is then reopened for read, and the ninth record is read using the Seek and Get
functions.
Sub Main()

Open "test.dat" For Random Access Write As #1
For x = 1 To 10

rec$ = "Record#: " & x
Put #1,x,rec$

Next x
Close

Open "test.dat" For Random Access Read As #1
Seek #1,9
Get #1,,rec$
MsgBox "The ninth record = " & x
Close
Kill "test.dat"

End Sub

See Also Seek (function); Loc (function).

GFK-1283G S 19-9

Select...Case (statement)

Syntax Select Case testexpression
[Case expressionlist

[statement_block]]
[Case expressionlist

[statement_block]]
.
.

[Case Else
[statement_block]]

End Select

Description Used to execute a block of the Basic Control Engine statements depending on the value of a given
expression.

Comments The Select Case statement has the following parts:

Part Description
testexpression Any numeric or string expression.

statement_block Any group of the Basic Control Engine statements. If the testexpression
matches any of the expressions contained in expressionlist, then this
statement block will be executed.

expressionlist A comma separated list of expressions to be compared against testexpression
using any of the following syntaxes:

expression [,expression]...
expression to expression
is relational_operator expression

The resultant type of expression in expressionlist must be the same as that of
testexpression.

Multiple expression ranges can be used within a single Case clause. For example:
Case 1 to 10,12,15 Is > 40

Only the statement_block associated with the first matching expression will be executed. If no
matching statement_block is found, then the statements following the Case Else will be
executed.

A Select...End Select expression can also be represented with the If...Then
expression. The use of the Select statement, however, may be more readable.

19-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example This example uses the Select...Case statement to output the current operating system.
Sub Main()

OpSystem% = Basic.OS
Select Case OpSystem%

Case 0,2
s = "Microsoft Windows"

Case 1
s = "DOS"

Case 3 to 8,12
s = "UNIX"

Case 10
s = "IBM OS/2"

Case Else
s = "Other"

End Select
MsgBox "This version of the Basic Control Engine is running on: " & s

End Sub

See Also Choose (function); Switch (function); IIf (function); If...Then...Else (statement).

GFK-1283G S 19-11

SelectBox (function)

Syntax SelectBox(title,prompt,ArrayOfItems)

Description Displays a dialog box that allows the user to select from a list of choices and returns an Integer
containing the index of the item that was selected.

Comments The SelectBox statement accepts the following parameters:

Parameter Description
title Title of the dialog box. This can be an expression convertible to a String.

A runtime error is generated if title is Null.

prompt Text to appear immediately above the list box containing the items. This can
be an expression convertible to a String. A runtime error is generated if
prompt is Null.

ArrayOfItems Single-dimensioned array. Each item from the array will occupy a single
entry in the list box. A runtime error is generated if ArrayOfItems is not a
single-dimensioned array.

ArrayOfItems can specify an array of any fundamental data type (structures
are not allowed). Null and Empty values are treated as zero-length strings.

The value returned is an Integer representing the index of the item in the list box that was
selected, with 0 being the first item. If the user selects Cancel, –1 is returned.
result% = SelectBox("Picker","Pick an application:",a$)

Example This example gets the current apps running, puts them in to an array and then asks the user to select
one from a list.
Sub Main()

Dim a$()
AppList a$
result% = SelectBox("Picker","Pick an application:",a$)
If Not result% = -1 then

Msgbox "User selected: " & a$(result%)
Else

Msgbox "User canceled"
End If

End Sub

19-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

See Also MsgBox (statement); AskBox$ (function); AskPassword$ (function); InputBox,
InputBox$ (functions); OpenFilename$ (function); SaveFilename$ (function);
AnswerBox (function).

Note: The SelectBox displays all text in its dialog box in 8-point MS Sans Serif.

SendKeys (statement)

Syntax SendKeys KeyString$ [,[isWait] [,time]]

Description Sends the specified keys to the active application, optionally waiting for the keys to be processed
before continuing.

Comments The SendKeys statement accepts the following parameters:

Parameter Description
KeyString$ String containing the keys to be sent. The format for KeyString$ is

described below.

isWait Boolean value.

If True, then the Basic Control Engine waits for the keys to be completely
processed before continuing.

If you are using SendKeys in a CimEdit/CimView script, you must set this
flag to True. If you do not, when a user tries to execute the SendKeys
statement, the CimView screen freezes and processing will not continue.

If False (or not specified), then the BasicScript continues script execution
before the active application receives all keys from the SendKeys statement.

time Integer specifying the number of milliseconds devoted for the output of the
entire KeyString$ parameter. It must be within the following range:

0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$ parameter
contains ten keys, then a key will be output every 1/2 second. If unspecified
(or 0), the keys will play back at full speed.

Specifying Keys
To specify any key on the keyboard, simply use that key, such as "a" for lowercase a, or "A" for
uppercase a.

Sequences of keys are specified by appending them together: "abc" or "dir /w".

Some keys have special meaning and are therefore specified in a special way—by enclosing them
within braces. For example, to specify the percent sign, use "{%}". The following table shows the
special keys:

Key Special Meaning Example
+ Shift "+{F1}" 'Shift+F1

^ Ctrl "^a" 'Ctrl+A

~ Shortcut for Enter "~" 'Enter

% Alt "%F" 'Alt+F

GFK-1283G S 19-13

[] No special meaning "{[}" 'Open bracket

{} Used to enclose special keys "{Up}" 'Up Arrow

() Used to specify grouping "^(ab)" 'Ctrl+A, Ctrl+B

Keys that are not displayed when you press them are also specified within braces, such as
{Enter} or {Up}. A list of these keys follows:

{BkSp} {BS} {Break} {CapsLock} {Clear}

{Delete} {Del} {Down} {End} {Enter}

{Escape} {Esc} {Help} {Home} {Insert}

{Left} {NumLock} {NumPad0} {NumPad1} {NumPad2}

{NumPad3} {NumPad4} {NumPad5} {NumPad6} {NumPad7}

{NumPad8} {NumPad9} {NumPad/} {NumPad*} {NumPad-}

{NumPad+} {NumPad.} {PgDn} {PgUp} {PrtSc}

{Right} {Tab} {Up} {F1 {Scroll Lock}

{F2} {F3} {F4} {F5} {F6}

{F7} {F8} {F9} {F10} {F11}

{F12} {F13} {F14} {F15} {F16}

Keys can be combined with Shift, Ctrl, and Alt using the reserved keys "+", "^", and "%"
respectively:

For Key Combination Use
Shift+Enter "+{Enter}"
Ctrl+C "^c"
Alt+F2 "%{F2}"

To specify a modifier key combined with a sequence of consecutive keys, group the key sequence
within parentheses, as in the following example:

For Key Combination Use
Shift+A, Shift+B "+(abc)"
Ctrl+F1, Ctrl+F2 "^({F1}{F2})"

Use "~" as a shortcut for embedding Enter within a key sequence:

For Key Combination Use
a, b, Enter, d, e "ab~de"
Enter, Enter "~~"

To embed quotation marks, use two quotation marks in a row:

For Key Combination Use
"Hello" ""Hello""
a"b"c "a""b""c"

Key sequences can be repeated using a repeat count within braces:

For Key Combination Use
Ten "a" keys "{a 10}"
Two Enter keys "{Enter 2}"

19-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example This example runs Notepad, writes to Notepad, and saves the new file using the SendKeys
statement.
Sub Main()

Dim id As Variant
id = Shell ("notepad.exe") 'Run Notepad minimized
AppActivate id 'Now activate Notepad
AppMaximize 'Open and maximize the Notepad window
SendKeys "Hello Notepad", 1 'Write text with time to avoid burst
Sleep 2000
SendKeys "%fs", 1 'Save file (Simulate Alt+F,S keys)
Sleep 2000
SendKeys "name.txt{ENTER}", 1 'Enter name of file to save
AppClose

End Sub

GFK-1283G S 19-15

Set (statement)

Syntax 1 Set object_var = object_expression

Syntax 2 Set object_var = New object_type

Syntax 3 Set object_var = Nothing

Description Assigns a value to an object variable.

Comments Syntax 1
The first syntax assigns the result of an expression to an object variable. This statement does not
duplicate the object being assigned but rather copies a reference of an existing object to an object
variable.

The object_expression is any expression that evaluates to an object of the same type as the
object_var.

With data objects, Set performs additional processing. When the Set is performed, the object is
notified that a reference to it is being made and destroyed. For example, the following statement
deletes a reference to object A, then adds a new reference to B.

Set a = b

In this way, an object that is no longer being referenced can be destroyed.

Syntax 2
In the second syntax, the object variable is being assigned to a new instance of an existing object
type. This syntax is valid only for data objects.

When an object created using the New keyword goes out of scope (that is, the Sub or Function
in which the variable is declared ends), the object is destroyed.

Syntax 3
The reserved keyword Nothing is used to make an object variable reference no object. At a later
time, the object variable can be compared to Nothing to test whether the object variable has been
instantiated:
Set a = Nothing

:
If a Is Nothing Then Beep

Example This example creates two objects and sets their values.
Sub Main()

Dim document As Object
Dim page As Object
Set document = GetObject("c:\resume.doc")
Set page = Document.ActivePage
MsgBox page.name

End Sub

See Also = (statement); Let (statement); CreateObject (function); GetObject (function); Nothing
(constant).

19-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

SetAttr (statement)

Syntax SetAttr filename$,attribute

Description Changes the attribute filename$ to the given attribute. A runtime error results if the file cannot be
found.

Comments The SetAttr statement accepts the following parameters:

Parameter Description
filename$ String containing the name of the file.

attribute Integer specifying the new attribute of the file.

The attribute parameter can contain any combination of the following values:

Constant Value Description
ebNormal 0 Turns off all attributes
ebReadOnly 1 Read-only files
ebHidden 2 Hidden files
ebSystem 4 System files
ebVolume 8 Volume label
ebArchive 32 Files that have changed since the last backup
ebNone 64 Turns off all attributes

The attributes can be combined using the + operator or the binary Or operator.

Example This example creates a file and sets its attributes to Read-Only and System.
Sub Main()

Open "test.dat" For Output As #1
Close #1
MsgBox "The current file attribute is: " & GetAttr("test.dat")
SetAttr "test.dat",ebReadOnly + ebSystem
MsgBox "The file attribute was set to: " & GetAttr("test.dat")
SetAttr "test.dat",ebNormal
Kill "test.dat"

End Sub

See Also GetAttr (function); FileAttr (function).

GFK-1283G S 19-17

Sgn (function)

Syntax Sgn(number)

Description Returns an Integer indicating whether a number is less than, greater than, or equal to 0.

Comments Returns 1 if number is greater than 0.

Returns 0 if number is equal to 0.

Returns –1 if number is less than 0.

The number parameter is a numeric expression of any type. If number is Null, then a runtime
error is generated. Empty is treated as 0.

Example This example tests the product of two numbers and displays a message based on the sign of the
result.
Sub Main()

a% = -100
b% = 100
c% = a% * b%
Select Case Sgn(c%)

Case -1
MsgBox "The product is negative " & Sgn(c%)

Case 0
MsgBox "The product is 0 " & Sgn(c%)

Case 1
MsgBox "The product is positive " & Sgn(c%)

End Select
End Sub

See Also Abs (function).

19-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Shell (function)

Syntax Shell(command$ [,WindowStyle])

Description Executes another application, returning the task ID if successful.

Comments The Shell statement accepts the following parameters:

Parameter Description
command$ String containing the name of the application and any parameters.

WindowStyle Optional Integer specifying the state of the application window after
execution. It can be any of the following values:

1 Normal window with focus

2 Minimized with focus (default)

3 Maximized with focus

4 Normal window without focus

7 Minimized without focus

An error is generated if unsuccessful running command$.

The Shell command runs programs asynchronously: the statement following the Shell
statement will execute before the child application has exited. On some platforms, the next
statement will run before the child application has finished loading.

The Shell function returns a value suitable for activating the application using the
AppActivate statement. It is important that this value be placed into a Variant, as its type
depends on the platform.

Example This example displays the Windows Clock, delays awhile, then closes it.
Sub Main()

id = Shell("clock.exe",1)
AppActivate "Clock"
Sleep(2000)
AppClose "Clock"

End Sub

See Also SendKeys (statement); AppActivate (statement).

Note: This function returns a global process ID that can be used to identify the new process.

Important: On Windows NT, CIMPLICITY runs as a service. Programs started from the Event Manager run as
part of the service. Services, by default, do not interact with the desktop. Therefore, shelling of a
program such as CimView, will cause the program to run, but with no interface.

GFK-1283G S 19-19

Sin (function)

Syntax Sin(angle)

Description Returns a Double value specifying the sine of angle.

Comments The angle parameter is a Double specifying an angle in radians.

Example This example displays the sine of pi/4 radians (45 degrees).
Sub Main()

c# = Sin(Pi / 4)
MsgBox "The sine of 45 degrees is: " & c#

End Sub

See Also Tan (function); Cos (function); Atn (function).

Single (data type)

Syntax Single

Description A data type used to declare variables capable of holding real numbers with up to seven digits of
precision.

Comments Single variables are used to hold numbers within the following ranges:

Sign Range
Negative -3.402823E38 <= single <= -1.401298E-45

Positive 1.401298E-45 <= single <= 3.402823E38

The type-declaration character for Single is !.

Storage
Internally, singles are stored as 4-byte (32-bit) IEEE values. Thus, when appearing within a
structure, singles require 4 bytes of storage. When used with binary or random files, 4 bytes of
storage is required.

Each single consists of the following

• A 1-bit sign

• An 8-bit exponent

• A 24-bit mantissa

See Also Currency (data type); Date (data type); Double (data type); Integer (data type); Long
(data type); Object (data type); String (data type); Variant (data type); Boolean (data
type); DefType (statement); CSng (function).

19-20 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Sleep (statement)

Syntax Sleep milliseconds

Description Causes the script to pause for a specified number of milliseconds.

Comments The milliseconds parameter is a Long in the following range:

0 <= milliseconds <= 2,147,483,647

Example This example displays a message for 2 seconds.
Sub Main()

MsgOpen "Waiting 2 seconds",0,False,False
Sleep 2000
MsgClose

End Sub

Sln (function)

Syntax Sln(Cost,Salvage,Life)

Description Returns the straight-line depreciation of an asset assuming constant benefit from the asset.

Comments The Sln of an asset is found by taking an estimate of its useful life in years, assigning values to
each year, and adding up all the numbers.

The formula used to find the Sln of an asset is as follows:
(Cost - Salvage Value) / Useful Life

The Sln function requires the following parameters:

Parameter Description
Cost Double representing the initial cost of the asset.

Salvage Double representing the estimated value of the asset at the end of its
useful life.

Life Double representing the length of the asset's useful life.

The unit of time used to express the useful life of the asset is the same as the unit of time used to
express the period for which the depreciation is returned.

Example This example calculates the straight-line depreciation of an asset that cost $10,000.00 and has a
salvage value of $500.00 as scrap after 10 years of service life.
Sub Main()

dep# = Sln(10000.00,500.00,10)
MsgBox "The annual depreciation is: " & Format(dep#,"Currency")

End Sub

See Also SYD (function); DDB (function).

GFK-1283G S 19-21

Space, Space$ (functions)

Syntax Space[$](NumSpaces)

Description Returns a string containing the specified number of spaces.

Comments Space$ returns a String, whereas Space returns a String variant.

NumSpaces is an Integer between 0 and 32767.

Example This example returns a string of ten spaces and displays it.
Sub Main()

ln$ = Space(10)
MsgBox "Hello" & ln$ & "over there."

End Sub

See Also String, String$ (functions); Spc (function).

Spc (function)

Syntax Spc(numspaces)

Description Prints out the specified number of spaces. This function can only be used with the Print and
Print# statements.

Comments The numspaces parameter is an Integer specifying the number of spaces to be printed. It can be
any value between 0 and 32767.

If a line width has been specified (using the Width statement), then the number of spaces is
adjusted as follows:
numspaces = numspaces Mod width

If the resultant number of spaces is greater than width - print_position, then the number
of spaces is recalculated as follows:
numspaces = numspaces – (width – print_position)

These calculations have the effect of never allowing the spaces to overflow the line length.
Furthermore, with a large value for column and a small line width, the file pointer will never
advance more than one line.

Example This example displays 20 spaces between the arrows.
Sub Main()

Print "I am"; Spc(20); "20 spaces apart!"
Sleep (10000) 'Wait 10 seconds.

End Sub

See Also Tab (function); Print (statement); Print# (statement).

19-22 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

SQLBind (function)

Syntax SQLBind(ID,array,column)

Description Specifies which fields are returned when results are requested using the SQLRetrieve or
SQLRetrieveToFile function.

Comments The following table describes the parameters to the SQLBind function:

Parameter Description
ID Long parameter specifying a valid connection.

array Any array of variants. Each call to SQLBind adds a new column number (an
Integer) in the appropriate slot in the array. Thus, as you bind additional
columns, the array parameter grows, accumulating a sorted list (in ascending
order) of bound columns.

If array is fixed, then it must be a one-dimensional variant array with
sufficient space to hold all the bound column numbers. A runtime error is
generated if array is too small.

If array is dynamic, then it will be resized to exactly hold all the bound
column numbers.

column Optional Long parameter that specifies the column to which to bind data. If
this parameter is omitted, all bindings for the connection are dropped.

This function returns the number of bound columns on the connection. If no columns are bound,
then 0 is returned. If there are no pending queries, then calling SQLBind will cause an error
(queries are initiated using the SQLExecQuery function).

If supported by the driver, row numbers can be returned by binding column 0.

The Basic Control Engine generates a trappable runtime error if SQLBind fails. Additional error
information can then be retrieved using the SQLError function.

Example This example binds columns to data.
Sub Main()

Dim columns() As Variant
id& = SQLOpen("dsn=SAMPLE",,3)
t& = SQLExecQuery(id&,"Select * From c:\sample.dbf")
i% = SQLBind(id&,columns,3)
i% = SQLBind(id&,columns,1)
i% = SQLBind(id&,columns,2)
i% = SQLBind(id&,columns,6)
For x = 0 To (i% - 1)

MsgBox columns(x)
Next x
id& = SQLClose(id&)

End Sub

See Also SQLRetrieve (function); SQLRetrieveToFile (function).

GFK-1283G S 19-23

SQLClose (function)

Syntax SQLClose(connectionID)

Description Closes the connection to the specified data source.

Comments The unique connection ID (connectionID) is a Long value representing a valid connection as
returned by SQLOpen. After SQLClose is called, any subsequent calls made with the
connectionID will generate runtime errors.

The SQLClose function returns 0 if successful; otherwise, it returns the passed connection ID and
generates a trappable runtime error. Additional error information can then be retrieved using the
SQLError function.

The Basic Control Engine automatically closes all open SQL connections when either the script or
the application terminates. You should use the SQLClose function rather than relying on the
application to automatically close connections in order to ensure that your connections are closed at
the proper time.

Example This example disconnects the data source sample.
Sub Main()

Dim s As String
Dim qry As Long
id& = SQLOpen("dsn=SAMPLE",s$,3)
qry = LExecQuery(id&,"Select * From c:\sample.dbf")
MsgBox "There are " & qry & " records in the result set."
id& = SQLClose(id&)

End Sub

See Also SQLOpen (function).

19-24 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

SQLError (function)

Syntax SQLError(ErrArray [, ID])
Description Retrieves driver-specific error information for the most recent SQL functions that failed.
Comments This function is called after any other SQL function fails. Error information is returned in a two-

dimensional array (ErrArray). The following table describes the parameters to the SQLError
function:
Parameter Description
ErrArray Two-dimensional Variant array, which can be dynamic or fixed.

If the array is fixed, it must be (x,3), where x is the number of errors you
want returned. If x is too small to hold all the errors, then the extra error
information is discarded. If x is greater than the number of errors available,
all errors are returned, and the empty array elements are set to Empty.
If the array is dynamic, it will be resized to hold the exact number of errors.

ID Optional Long parameter specifying a connection ID. If this parameter is
omitted, error information is returned for the most recent SQL function call.

Each array entry in the ErrArray parameter describes one error. The three elements in each array
entry contain the following information:
Element Value
(entry,0) The ODBC error state, indicated by a Long containing the error class and

subclass.
(entry,1) The ODBC native error code, indicated by a Long.
(entry,2) The text error message returned by the driver. This field is String type.
For example, to retrieve the ODBC text error message of the first returned error, the array is
referenced as:

ErrArray(0,2)

The SQLError function returns the number of errors found.
The Basic Control Engine generates a runtime error if SQLError fails. (You cannot use the
SQLError function to gather additional error information in this case.)

Example This example forces a connection error and traps it for use with the SQLError function.
Sub Main()

Dim a() As Variant
On Error Goto Trap
id& = SQLOpen("",,4)
id& = SQLClose(id&)
Exit Sub

Trap:
rc% = SQLError(a)
If (rc%) Then

For x = 0 To (rc% - 1)
MsgBox "The SQL state returned was: " & a(x,0)
MsgBox "The native error code returned was: " & a(x,1)
MsgBox a(x,2)

Next x
End If

End Sub

GFK-1283G S 19-25

SQLExecQuery (function)

Syntax SQLExecQuery(ID, query$)

Description Executes an SQL statement query on a data source.

Comments This function is called after a connection to a data source is established using the SQLOpen
function. The SQLExecQuery function may be called multiple times with the same connection
ID, each time replacing all results.

The following table describes the parameters to the SQLExecQuery function:

Parameter Description
ID Long identifying a valid connected data source. This parameter is returned by

the SQLOpen function.

query$ String specifying an SQL query statement. The SQL syntax of the string must
strictly follow that of the driver.

The return value of this function depends on the result returned by the SQL statement:

SQL Statement Value
SELECT...FROM The value returned is the number of columns returned by the SQL

statement.
DELETE,INSERT,UPDATE The value returned is the number of rows affected by the SQL

statement.

The Basic Control Engine generates a runtime error if SQLExecQuery fails. Additional error
information can then be retrieved using the SQLError function.

Example This example executes a query on the connected data source.
Sub Main()

Dim s As String
Dim qry As Long
id& = SQLOpen("dsn=SAMPLE",s$,3)
qry = SQLExecQuery(id&,"Select * From c:\sample.dbf")
MsgBox "There are " & qry & " columns in the result set."
id& = SQLClose(id&)

End Sub

See Also SQLOpen (function); SQLClose (function); SQLRetrieve (function);
SQLRetrieveToFile (function).

19-26 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

SQLGetSchema (function)

Syntax SQLGetSchema(ID, action, [,[array] [,qualifier$]])

Description Returns information about the data source associated with the specified connection.

Comments The following table describes the parameters to the SQLGetSchema function:

Parameter Description
ID Long parameter identifying a valid connected data source. This parameter is

returned by the SQLOpen function.

action Integer parameter specifying the results to be returned. The following
table lists values for this parameter:

Value Meaning
1 Returns a one-dimensional array of available data sources.

The array is returned in the array parameter.
2 Returns a one-dimensional array of databases (either directory

names or database names, depending on the driver) associated
with the current connection. The array is returned in the array
parameter.

3 Returns a one-dimensional array of owners (user IDs) of the
database associated with the current connection. The array is
returned in the array parameter.

4 Returns a one-dimensional array of table names for a specified
owner and database associated with the current connection.
The array is returned in the array parameter.

5 Returns a two-dimensional array (n by 2) containing
information about a specified table. The array is configured as
follows:

(0,0) Zeroth column name
(0,1) ODBC SQL data type (Integer)
(1,0) First column name
(1,1) ODBC SQL data type (Integer)
 : :
(n,0) Nth column name
(n,1) ODBC SQL data type (Integer)

6 Returns a string containing the ID of the current user.
7 Returns a string containing the name (either the directory

name or the database name, depending on the driver) of the
current database.

8 Returns a string containing the name of the data source on the
current connection.

9 Returns a string containing the name of the DBMS of the data
source on the current connection (for example, "FoxPro 2.5"
or "Excel Files").

GFK-1283G S 19-27

10 Returns a string containing the name of the server for the data
source.

11 Returns a string containing the owner qualifier used by the
data source (for example, "owner," "Authorization ID,"
"Schema").

12 Returns a string containing the table qualifier used by the data
source (for example, "table," "file").

13 Returns a string containing the database qualifier used by the
data source (for example, "database," "directory").

14 Returns a string containing the procedure qualifier used by the
data source (for example, "database procedure," "stored
procedure," "procedure").

array Optional Variant array parameter. This parameter is only required for
action values 1, 2, 3, 4, and 5. The returned information is put into this array.

If array is fixed and it is not the correct size necessary to hold the requested
information, then SQLGetSchema will fail. If the array is larger than
required, then any additional elements are erased.

If array is dynamic, then it will be redimensioned to hold the exact number
of elements requested.

qualifier Optional String parameter required for actions 3, 4, or 5. The values are
listed in the following table:

Action Qualifier
3 The qualifier parameter must be the name of the database

represented by ID.
4 The qualifier parameter specifies a database name and an

owner name. The syntax for this string is:

DatabaseName.OwnerName
5 The qualifier parameter specifies the name of a table on the

current connection.

The Basic Control Engine generates a runtime error if SQLGetSchema fails. Additional error
information can then be retrieved using the SQLError function.

If you want to retrieve the available data sources (where action = 1) before establishing a
connection, you can pass 0 as the ID parameter. This is the only action that will execute
successfully without a valid connection.

This function calls the ODBC functions SQLGetInfo and SQLTables in order to retrieve the
requested information. Some database drivers do not support these calls and will therefore cause
the SQLGetSchema function to fail.

19-28 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example This example gets all available data sources.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim dsn() As Variant
numdims% = SQLGetSchema(0,1,dsn)
If (numdims%) Then

msg1 = "Valid ODBC data sources:" & crlf & crlf
For x = 0 To numdims% - 1

msg1 = msg1 & dsn(x) & crlf
Next x

Else
msg1 = "There are no available data sources."

End If
MsgBox msg1

End Sub

See Also SQLOpen (function).

GFK-1283G S 19-29

SQLOpen (function)

Syntax SQLOpen(login$ [,[completed$] [,prompt]])

Description Establishes a connection to the specified data source, returning a Long representing the unique
connection ID.

Comments This function connects to a data source using a login string (login$) and optionally sets the
completed login string (completed$) that was used by the driver. The following table describes the
parameters to the SQLOpen function:

Parameter Description
login$ String expression containing information required by the driver to connect

to the requested data source. The syntax must strictly follow the driver's SQL
syntax.

completed$ Optional String variable that will receive a completed connection string
returned by the driver. If this parameter is missing, then no connection string
will be returned.

prompt Integer expression specifying any of the following values:

Value Meaning
1 The driver's login dialog box is always displayed.
2 The driver's dialog box is only displayed if the connection

string does not contain enough information to make the
connection. This is the default behavior.

3 The driver's dialog box is only displayed if the connection
string does not contain enough information to make the
connection. Dialog box options that were passed as valid
parameters are dimmed and unavailable.

4 The driver's login dialog box is never displayed.

The SQLOpen function will never return an invalid connection ID. The following example
establishes a connection using the driver's login dialog box:
id& = SQLOpen("",,1)

The Basic Control Engine returns 0 and generates a trappable runtime error if SQLOpen fails.
Additional error information can then be retrieved using the SQLError function.

Before you can use any SQL statements, you must set up a data source and relate an existing
database to it. This is accomplished using the odbcadm.exe program.

Example This example connects the data source called "sample," returning the completed connection string,
and then displays it.
Sub Main()

Dim s As String
id& = SQLOpen("dsn=SAMPLE",s$,3)
MsgBox "The completed connection string is: " & s$
id& = SQLClose(id&)

End Sub

See Also SQLClose (function).

19-30 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

SQLQueryTimeout (statement)

Syntax SQLQueryTimeout time

Description Specifies the timeout, in seconds, for ODBC queries.

If you do not set SQLQueryTimeout , the default timeout is 60 seconds (1 minute).

Comments The SQLQueryTimeout statement accepts the following parameter:

Parameter Description
time Integer specifying the timeout for ODBC queries in seconds.

Example The following example sets the timeout for ODBC queries to 120 seconds (2 minutes).
Sub Main()

SQLQueryTimeout 120
End Sub

SQLRequest (function)

Syntax SQLRequest(connection$,query$,array [,[output$] [,[prompt][,isColumnNames]]])

Description Opens a connection, runs a query, and returns the results as an array.

Comments The SQLRequest function takes the following parameters:

Parameter Description
connection String specifying the connection information required to connect to the data

source.

query String specifying the query to execute. The syntax of this string must
strictly follow the syntax of the ODBC driver.

array Array of variants to be filled with the results of the query.

The array parameter must be dynamic: it will be resized to hold the exact
number of records and fields.

output Optional String to receive the completed connection string as returned by
the driver.

prompt Optional Integer specifying the behavior of the driver's dialog box.

isColumnNames Optional Boolean specifying whether the column names are returned as the
first row of results. The default is False.

The Basic Control Engine generates a runtime error if SQLRequest fails. Additional error
information can then be retrieved using the SQLError function.

GFK-1283G S 19-31

The SQLRequest function performs one of the following actions, depending on the type of query
being performed:

Type of Query Action
SELECT The SQLRequest function fills array with the results of the

query, returning a Long containing the number of results
placed in the array. The array is filled as follows (assuming an
x by y query):

(record 1,field 1)
(record 1,field 2)

:
(record 1,field y)
(record 2,field 1)
(record 2,field 2)

:
(record 2,field y)

:
:

(record x,field 1)
(record x,field 2)

:
(record x,field y)

INSERT, DELETE, UPDATE The SQLRequest function erases array and returns a Long
containing the number of affected rows.

Example This example opens a data source, runs a select query on it, and then displays all the data found in
the result set.
Sub Main()

Dim a() As Variant
l& = SQLRequest("dsn=SAMPLE;","Select * From c:\sample.dbf",a,,3,True)
For x = 0 To Ubound(a)

For y = 0 To l - 1
MsgBox a(x,y)

Next y
Next x

End Sub

19-32 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

SQLRetrieve (function)

Syntax SQLRetrieve(ID,array[,[maxcolumns] [,[maxrows] [,[isColumnNames] [, isFetchFirst]]]])

Description Retrieves the results of a query.

Comments This function is called after a connection to a data source is established, a query is executed, and
the desired columns are bound. The following table describes the parameters to the
SQLRetrieve function:

Parameter Description
ID Long identifying a valid connected data source with pending query results.

array Two-dimensional array of variants to receive the results. The array has x rows
by y columns. The number of columns is determined by the number of bindings
on the connection.

maxcolumns Optional Integer expression specifying the maximum number of columns to
be returned. If maxcolumns is greater than the number of columns bound, the
additional columns are set to empty. If maxcolumns is less than the number of
bound results, the rightmost result columns are discarded until the result fits.

maxrows Optional Integer specifying the maximum number of rows to be returned. If
maxrows is greater than the number of rows available, all results are returned,
and additional rows are set to empty. If maxrows is less than the number of
rows available, the array is filled, and additional results are placed in memory
for subsequent calls to SQLRetrieve.

isColumnNames Optional Boolean specifying whether column names should be returned as
the first row of results. The default is False.

isFetchFirst Optional Boolean expression specifying whether results are retrieved from
the beginning of the result set. The default is False.

Before you can retrieve the results from a query, you must (1) initiate a query by calling the
SQLExecQuery function and (2) specify the fields to retrieve by calling the SQLBind function.

This function returns a Long specifying the number of rows available in the array.

The Basic Control Engine generates a runtime error if SQLRetrieve fails. Additional error
information is placed in memory.

GFK-1283G S 19-33

Example This example executes a query on the connected data source, binds columns, and retrieves them.
Sub Main()

Dim b() As Variant
Dim c() As Variant
id& = SQLOpen("DSN=SAMPLE",,3)
qry& = SQLExecQuery(id&,"Select * From c:\sample.dbf")
i% = SQLBind(id&,b,3)
i% = SQLBind(id&,b,1)
i% = SQLBind(id&,b,2)
i% = SQLBind(id&,b,6)
l& = SQLRetrieve(id&,c)
For x = 0 To Ubound(c)

For y = 0 To Ubound(b)
MsgBox c(x,y)

Next y
Next x
id& = SQLClose(id&)

End Sub

See Also SQLOpen (function); SQLExecQuery (function); SQLClose (function); SQLBind (function);
SQLRetrieveToFile (function).

19-34 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

SQLRetrieveToFile (function)

Syntax SQLRetrieveToFile(ID,destination$ [,[isColumnNames] [,delimiter$]])

Description Retrieves the results of a query and writes them to the specified file.

Comments The following table describes the parameters to the SQLRetrieveToFile function:

Parameter Description
ID Long specifying a valid connection ID.

destination String specifying the file where the results are written.

isColumnNames Optional Boolean specifying whether the first row of results returned are
the bound column names. By default, the column names are not returned.

delimiter Optional String specifying the column separator. A tab (Chr$(9)) is used
as the default.

Before you can retrieve the results from a query, you must (1) initiate a query by calling the
SQLExecQuery function and (2) specify the fields to retrieve by calling the SQLBind function.

This function returns the number of rows written to the file. A runtime error is generated if there are
no pending results or if the Basic Control Engine is unable to open the specified file.

The Basic Control Engine generates a runtime error if SQLRetrieveToFile fails. Additional
error information may be placed in memory for later use with the SQLError function.

Example This example opens a connection, runs a query, binds columns, and writes the results to a file.
Sub Main()

Dim b() As Variant
id& = SQLOpen("DSN=SAMPLE;UID=RICH",,4)
t& = SQLExecQuery(id&,"Select * From c:\sample.dbf")
i% = SQLBind(id&,b,3)
i% = SQLBind(id&,b,1)
i% = SQLBind(id&,b,2)
i% = SQLBind(id&,b,6)
l& = SQLRetrieveToFile(id&,"c:\results.txt",True,",")
id& = SQLClose(id&)

End Sub

See Also SQLOpen (function); SQLExecQuery (function); SQLClose (function); SQLBind (function);
SQLRetrieve (function).

GFK-1283G S 19-35

Sqr (function)

Syntax Sqr(number)

Description Returns a Double representing the square root of number.

Comments The number parameter is a Double greater than or equal to 0.

Example This example calculates the square root of the numbers from 1 to 10 and displays them.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
msg1 = ""
For x = 1 To 10

sx# = Sqr(x)
msg1 = msg1 & "The square root of " & x & " is " &_

Format(sx#,"Fixed") & crlf
Next x
MsgBox msg1

End Sub

Stop (statement)

Syntax Stop

Description Suspends execution of the current script, returning control to a debugger if one is present. If a
debugger is not present, this command will have the same effect as End.

Example The Stop statement can be used for debugging. In this example, it is used to stop execution when Z
is randomly set to 0.
Sub Main()

For x = 1 To 10
z = Random(0,10)
If z = 0 Then Stop
y = x / z

Next x
End Sub

See Also Exit For (statement); Exit Do (statement); Exit Function (statement); Exit Sub
(statement); End (statement).

19-36 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Str, Str$ (functions)

Syntax Str[$](number)

Description Returns a string representation of the given number.

Comments The number parameter is any numeric expression or expression convertible to a number. If number
is negative, then the returned string will contain a leading minus sign. If number is positive, then the
returned string will contain a leading space.

Singles are printed using only 7 significant digits. Doubles are printed using 15–16 significant
digits.

These functions recognize the decimal separator and thousands separators as specified in the
Regional Settings in the Control Panel. If the regional settings are changed, these functions will
recognize it and act accordingly. The CStr, Format, and Format$ functions also determine
their separators based on the regional settings.

Example In this example, the Str$ function is used to display the value of a numeric variable.
Sub Main()

x# = 100.22
MsgBox "The string value is: " + Str(x#)

End Sub

See Also Format, Format$ (functions); CStr (function).

StrComp (function)

Syntax StrComp(string1,string2 [,compare])

Description Returns an Integer indicating the result of comparing the two string arguments.

Comments Any of the following values are returned:
0 string1 = string2

1 string1 > string2

-1 string1 < string2

Null string1 or string2 is Null

The StrComp function accepts the following parameters:

Parameter Description
string1 First string to be compared, which can be any expression convertible to a

String.

string2 Second string to be compared, which can be any expression convertible to a
String.

compare Optional Integer specifying how the comparison is to be performed. It can
be either of the following values:
0 Case-sensitive comparison
1 Case-insensitive comparison

GFK-1283G S 19-37

If compare is not specified, then the current Option Compare setting is used. If no Option
Compare statement has been encountered, then Binary is used (that is, string comparison is
case-sensitive).

Example This example compares two strings and displays the results. It illustrates that the function
compares two strings to the length of the shorter string in determining equivalency.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
dim abc as boolean
dim abi as boolean
dim cdc as boolean
dim cdi as boolean

a$ = "This string is UPPERCASE and lowercase"
b$ = "This string is uppercase and lowercase"
c$ = "This string"
d$ = "This string is uppercase and lowercase characters"
msg1 = "a = " & a & crlf
msg1 = msg1 & "b = " & b & crlf
msg1 = msg1 & "c = " & c & crlf
msg1 = msg1 & "d = " & d & crlf & crlf

abc = StrComp(a$,b$,0)
msg1 = msg1 & "a and c (insensitive) : " & abc & crlf
abi = StrComp(a$,b$,1)
msg1 = msg1 & "a and c (sensitive): " & abi & crlf
cdc = StrComp(c$,d$,1)
msg1 = msg1 & "c and d (insensitive): " & cdc & crlf
cdi = StrComp(c$,d$,1)
msg1 = msg1 & "c and d (sensitive) : " & cdi & crlf

MsgBox msg1
End Sub

See Also Comparison Operators (topic); Like (operator); Option Compare (statement).

19-38 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

String (data type)

Syntax String

Description A data type capable of holding a number of characters.

Comments Strings are used to hold sequences of characters, each character having a value between 0 and 255.
Strings can be any length up to a maximum length of 32767 characters.

Strings can contain embedded nulls, as shown in the following example:
s$ = "Hello" + Chr$(0) + "there" 'String with embedded null

The length of a string can be determined using the Len function. This function returns the number
of characters that have been stored in the string, including unprintable characters.

The type-declaration character for String is $.

String variables that have not yet been assigned are set to zero-length by default.

Strings are normally declared as variable-length, meaning that the memory required for storage of
the string depends on the size of its content. The following script statements declare a variable-
length string and assign it a value of length 5:
Dim s As String
s = "Hello" 'String has length 5.

Fixed-length strings are given a length in their declaration:
Dim s As String * 20
s = "Hello" 'String has length 20 (internally pads with spaces).

When a string expression is assigned to a fixed-length string, the following rules apply:

• If the string expression is less than the length of the fixed-length string, then the fixed-
length string is padded with spaces up to its declared length.

• If the string expression is greater than the length of the fixed-length string, then the
string expression is truncated to the length of the fixed-length string.

Fixed-length strings are useful within structures when a fixed size is required, such as when passing
structures to external routines.

The storage for a fixed-length string depends on where the string is declared, as described in the
following table:

Strings Declared Are Stored
In structures In the same data area as that of the structure. Local structures are on the

stack; public structures are stored in the public data space; and private
structures are stored in the private data space. Local structures should be
used sparingly as stack space is limited.

In arrays In the global string space along with all the other array elements.

Local routines On the stack. The stack is limited in size, so local fixed-length strings
should be used sparingly.

See Also Currency (data type); Date (data type); Double (data type); Integer (data type); Long
(data type); Object (data type); Single (data type); Variant (data type); Boolean (data
type); DefType (statement); CStr (function).

GFK-1283G S 19-39

String, String$ (functions)

Syntax String[$](number,[CharCode | text$])

Description Returns a string of length number consisting of a repetition of the specified filler character.

Comments String$ returns a String, whereas String returns a String variant.

These functions take the following parameters:

Parameter Description
number Integer specifying the number of repetitions.

CharCode Integer specifying the character code to be used as the filler character. If
CharCode is greater than 255 (the largest character value), then the Basic
Control Engine converts it to a valid character using the following formula:

CharCode Mod 256

text$ Any String expression, the first character of which is used as the filler
character.

Example This example uses the String function to create a line of "=" signs the length of another string and
then displays the character string underlined with the generated string.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = "This string will appear underlined."
b$ = String(Len(a$),"_")
MsgBox a$ & crlf & b$

End Sub

See Also Space, Space$ (functions).

19-40 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Sub...End Sub (statement)

Syntax [Private | Public] [Static] Sub name[(arglist)]
[statements]

End Sub

Where arglist is a comma-separated list of the following (up to 30 arguments are allowed):

[Optional] [ByVal | ByRef] parameter[()] [As type]

Description Declares a subroutine.

Comments The Sub statement has the following parts:

Part Description
Private Indicates that the subroutine being defined cannot be called from other scripts.
Public Indicates that the subroutine being defined can be called from other scripts. If

the Private and Public keywords are both missing, then Public is
assumed.

Static Recognized by the compiler but currently has no effect.

name Name of the subroutine, which must follow the Basic Control Engine naming
conventions:

1. Must start with a letter.

2. May contain letters, digits, and the underscore character (_). Punctuation
and type-declaration characters are not allowed. The exclamation point
(!) can appear within the name as long as it is not the last character.

3. Must not exceed 80 characters in length.
Optional Keyword indicating that the parameter is optional. All optional parameters

must be of type Variant. Furthermore, all parameters that follow the first
optional parameter must also be optional.

If this keyword is omitted, then the parameter is required.
Note

You can use the IsMissing function to determine if an optional parameter
was actually passed by the caller.

ByVal Keyword indicating that the parameter is passed by value.
ByRef Keyword indicating that the parameter is passed by reference. If neither the

ByVal nor the ByRef keyword is given, then ByRef is assumed.

parameter Name of the parameter, which must follow the same naming conventions as
those used by variables. This name can include a type-declaration character,
appearing in place of As type.

type Type of the parameter (i.e., Integer, String, and so on). Arrays are
indicated with parentheses. For example, an array of integers would be
declared as follows:

Sub Test(a() As Integer)
End Sub

GFK-1283G S 19-41

A subroutine terminates when one of the following statements is encountered:
End Sub
Exit Sub

Subroutines can be recursive.

Passing Parameters to Subroutines
Parameters are passed to a subroutine either by value or by reference, depending on the declaration
of that parameter in arglist. If the parameter is declared using the ByRef keyword, then any
modifications to that passed parameter within the subroutine change the value of that variable in the
caller. If the parameter is declared using the ByVal keyword, then the value of that variable cannot
be changed in the called subroutine. If neither the ByRef or ByVal keywords are specified, then
the parameter is passed by reference.

You can override passing a parameter by reference by enclosing that parameter within parentheses.
For instance, the following example passes the variable j by reference, regardless of how the third
parameter is declared in the arglist of UserSub:
UserSub 10,12,(j)

Optional Parameters
The Basic Control Engine allows you to skip parameters when calling subroutines, as shown in the
following example:
Sub Test(a%,b%,c%)

End Sub

Sub Main
Test 1,,4 'Parameter 2 was skipped.

End Sub

You can skip any parameter with the following restrictions:

1. The call cannot end with a comma. For instance, using the above example, the following is not
valid:
Test 1,,

2. The call must contain the minimum number of parameters as required by the called subroutine.
For instance, using the above example, the following are invalid:
Test ,1 'Only passes two out of three required parameters.
Test 1,2 'Only passes two out of three required parameters.

When you skip a parameter in this manner, the Basic Control Engine creates a temporary variable
and passes this variable instead. The value of this temporary variable depends on the data type of
the corresponding parameter in the argument list of the called subroutine, as described in the
following table:

Value Data type
0 Integer, Long, Single, Double, Currency

Zero-length string String

Nothing Object (or any data object)

Error Variant

December 30, 1899 Date

False Boolean

19-42 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Within the called subroutine, you will be unable to determine if a parameter was skipped unless the
parameter was declared as a variant in the argument list of the subroutine. In this case, you can use
the IsMissing function to determine if the parameter was skipped:

Sub Test(a,b,c)
If IsMissing(a) Or IsMissing(b) Then Exit Sub

End Sub

Example This example uses a subroutine to calculate the area of a circle.
Sub Main()

r = inputbox("Enter a circle radius to be converted to area","Radius -> Area")
PrintArea r

End Sub

Sub PrintArea(r)
area! = (r ^ 2) * Pi
MsgBox "The area of a circle with radius " & r & " = " & area!

End Sub

See Also Main (keyword); Function...End Function (statement).

Switch (function)

Syntax Switch(condition1,expression1 [,condition2,expression2 ... [,condition7,expression7]])

Description Returns the expression corresponding to the first True condition.

Comments The Switch function evaluates each condition and expression, returning the expression that
corresponds to the first condition (starting from the left) that evaluates to True. Up to seven
condition/expression pairs can be specified.

A runtime error is generated it there is an odd number of parameters (that is, there is a condition
without a corresponding expression).

The Switch function returns Null if no condition evaluates to True.

Example The following code fragment displays the current operating platform. If the platform is unknown,
then the word "Unknown" is displayed.
Sub Main()

Dim a As Variant
a = Switch(Basic.OS = 0,"Windows 3.1",Basic.OS = 2,"Win32",Basic.OS = 11,"OS/2")
MsgBox "The current platform is: " & IIf(IsNull(a),"Unknown",a)

End Sub

See Also Choose (function); IIf (function); If...Then...Else (statement); Select...Case
(statement).

GFK-1283G S 19-43

SYD (function)

Syntax SYD(Cost,Salvage,Life,Period)

Description Returns the sum of years' digits depreciation of an asset over a specific period of time.

Comments The SYD of an asset is found by taking an estimate of its useful life in years, assigning values to
each year, and adding up all the numbers.

The formula used to find the SYD of an asset is as follows:
(Cost – Salvage_Value) * Remaining_Useful_Life / SYD

The SYD function requires the following parameters:

Parameter Description
Cost Double representing the initial cost of the asset.

Salvage Double representing the estimated value of the asset at the end of its useful
life.

Life Double representing the length of the asset's useful life.

Period Double representing the period for which the depreciation is to be calculated.
It cannot exceed the life of the asset.

To receive accurate results, the parameters Life and Period must be expressed in the same units. If
Life is expressed in terms of months, for example, then Period must also be expressed in terms of
months.

Example In this example, an asset that cost $1,000.00 is depreciated over ten years. The salvage value is
$100.00, and the sum of the years' digits depreciation is shown for each year.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
msg1 = ""
For x = 1 To 10

dep# = SYD(1000,100,10,x)
msg1 = msg1 & "Year: " & x & " Dep: " & Format(dep#,"Currency") & crlf

Next x
MsgBox msg1

End Sub

See Also Sln (function); DDB (function).

19-44 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

System.Exit (method)

Syntax System.Exit

Description Exits the operating environment.

Example This example asks whether the user would like to restart Windows after exiting.
Sub Main

message$="Restart Windows on exit?",ebYesNo,"Exit Windows"
button = MsgBox message$
If button = ebYes Then System.Restart 'Yes button selected.
If button = ebNo Then System.Exit 'No button selected.

End Sub

See Also System.Restart (method).

System.FreeMemory (property)

Syntax System.FreeMemory

Description Returns a Long indicating the number of bytes of free memory.

Example The following example gets the free memory and converts it to kilobytes.
Sub Main()

FreeMem& = System.FreeMemory
FreeKBytes$ = Format(FreeMem& / 1000,"##,###")
MsgBox FreeKbytes$ & " Kbytes of free memory"

End Sub

See Also System.TotalMemory (property); System.FreeResources (property);
Basic.FreeMemory (property).

GFK-1283G S 19-45

System.FreeResources (property)

Syntax System.FreeResources

Description Returns an Integer representing the percentage of free system resources.

Comments The returned value is between 0 and 100.

Example This example gets the percentage of free resources.
Sub Main()

FreeRes% = System.FreeResources
MsgBox FreeRes% & "% of memory resources available."

End Sub

See Also System.TotalMemory (property); System.FreeMemory (property);
Basic.FreeMemory (property).

System.MouseTrails (method)

Syntax System.MouseTrails isOn

Description Toggles mouse trails on or off.

Comments If isOn is True, then mouse trails are turned on; otherwise, mouse trails are turned off.

A runtime error is generated if mouse trails is not supported on your system.

Example This example turns on mouse trails.
Sub Main

System.MouseTrails 1
End Sub

See Also

System.Restart (method)

Syntax System.Restart

Description Restarts the operating environment.

Example This example asks whether the user would like to restart Windows after exiting.
Sub Main

button = MsgBox ("Restart Windows on exit?",ebYesNo, _
"Exit Windows")

If button = ebYes Then System.Restart 'Yes button selected.
If button = ebNo Then System.Exit 'No button selected.

End Sub

See Also System.Exit (method).

19-46 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

System.TotalMemory (property)

Syntax System.TotalMemory

Description Returns a Long representing the number of bytes of available free memory in Windows.

Example This example displays the total system memory.
Sub Main()

TotMem& = System.TotalMemory
TotKBytes$ = Format(TotMem& / 1000,"##,###")
MsgBox TotKbytes$ & " Kbytes of total system memory exist"

End Sub

See Also System.FreeMemory (property); System.FreeResources (property);
Basic.FreeMemory (property).

System.WindowsDirectory$ (property)

Syntax System.WindowsDirectory$

Description Returns the home directory of the operating environment.

Example This example displays the Windows directory.
Sub Main

MsgBox "Windows directory = " & System.WindowsDirectory$
End Sub

See Also Basic.HomeDir$ (property).

System.WindowsVersion$ (property)

Syntax System.WindowsVersion$

Description Returns the version of the operating environment, such as "3.0" or "3.1."

Comments
Example This example sets the UseWin31 variable to True if the Windows version is greater than or equal to

3.1; otherwise, it sets the UseWin31 variable to False.
Sub Main()

If Val(System.WindowsVersion$) > 3.1 Then
MsgBox "You are running a Windows version later than 3.1"

Else
MsgBox "You are running Windows version 3.1 or earlier"

End If
End Sub

See Also Basic.Version$ (property).

GFK-1283G 20-1

T

Tab (function)

Syntax Tab(column)

Description Prints the number of spaces necessary to reach a given column position.

Comments This function can only be used with the Print and Print# statements.

The column parameter is an Integer specifying the desired column position to which to advance.
It can be any value between 0 and 32767 inclusive.

Rule 1: If the current print position is less than or equal to column, then the number of spaces is
calculated as:
column – print_position

Rule 2: If the current print position is greater than column, then column – 1 spaces are printed on
the next line.

If a line width is specified (using the Width statement), then the column position is adjusted as
follows before applying the above two rules:
column = column Mod width

The Tab function is useful for making sure that output begins at a given column position,
regardless of the length of the data already printed on that line.

Example This example prints three column headers and three numbers aligned below the column headers.
Sub Main()

Print "Column1";Tab(10);"Column2";Tab(20);"Column3"
Print Tab(3);"1";Tab(14);"2";Tab(24);"3"
Sleep(10000) 'Wait 10 seconds.

End Sub

See Also Spc (function); Print (statement); Print# (statement).

20-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Tan (function)

Syntax Tan(angle)

Description Returns a Double representing the tangent of angle.

Comments The angle parameter is a Double value given in radians.

Example This example computes the tangent of pi/4 radians (45 degrees).
Sub Main()

c# = Tan(Pi / 4)
MsgBox "The tangent of 45 degrees is: " & c#

End Sub

See Also Sin (function); Cos (function); Atn (function).

Text (statement)
Syntax Text x,y,width,height,title$ [,[.Identifier] [,[FontName$] [,[size] [,style]]]]

Description Defines a text control within a dialog box template. The text control only displays text; the user
cannot set the focus to a text control or otherwise interact with it.

Comments The text within a text control word-wraps. Text controls can be used to display up to 32K of text.

The Text statement accepts the following parameters:

Parameter Description
x, y Integer positions of the control (in dialog units) relative to the upper left

corner of the dialog box.

width, height Integer dimensions of the control in dialog units.

title$ String containing the text that appears within the text control. This text
may contain an ampersand character to denote an accelerator letter, such as
"&Save" for Save. Pressing this accelerator letter sets the focus to the
control following the Text statement in the dialog box template.

Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). If omitted, then the first
two words from title$ are used.

FontName$ Name of the font used for display of the text within the text control. If
omitted, then the default font for the dialog is used.

size Size of the font used for display of the text within the text control. If omitted,
then the default size for the default font of the dialog is used.

style Style of the font used for display of the text within the text control. This can
be any of the following values:
ebRegular Normal font (that is, neither bold nor italic)
ebBold Bold font
ebItalic Italic font
ebBoldItalic Bold-italic font
If omitted, then ebRegular is used.

GFK-1283G T 20-3

Example Sub Main()
Begin Dialog UserDialog 81,64,128,60,"Untitled"

CancelButton 80,32,40,14
OKButton 80,8,40,14
Text 4,8,68,44,"This text is displayed in the dialog box."

End Dialog
Dim d As UserDialog
Dialog d

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement); ListBox
(statement); OKButton (statement); OptionButton (statement); OptionGroup (statement);
Picture (statement); PushButton (statement); TextBox (statement); Begin Dialog
(statement), PictureButton (statement).

Note: Accelerators are underlined, and the Alt+letter accelerator combination is used.
8-point MS Sans Serif is the default font used within user dialogs.

TextBox (statement)

Syntax TextBox x,y,width,height,.Identifier [,[isMultiline] [,[FontName$] [,[size] [,style]]]]

Description Defines a single or multiline text-entry field within a dialog box template.

Comments If isMultiline is 1, the TextBox statement creates a multiline text-entry field. When the user types
into a multiline field, pressing the Enter key creates a new line rather than selecting the default
button.

This statement can only appear within a dialog box template (that is, between the Begin Dialog
and End Dialog statements).

The TextBox statement requires the following parameters:

Parameter Description
x, y Integer position of the control (in dialog units) relative to the upper left

corner of the dialog box.

width, height Integer dimensions of the control in dialog units.

Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates
a string variable whose value corresponds to the content of the text box. This
variable can be accessed using the syntax:

DialogVariable.Identifier

isMultiline Specifies whether the text box can contain more than a single line (0 = single-
line; 1 = multiline).

FontName$ Name of the font used for display of the text within the text box control. If
omitted, then the default font for the dialog is used.

size Size of the font used for display of the text within the text box control. If
omitted, then the default size for the default font of the dialog is used.

20-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

style Style of the font used for display of the text within the text box control. This
can be any of the following values:

ebRegular Normal font (i.e., neither bold nor italic)

ebBold Bold font

ebItalic Italic font

ebBoldItalic Bold-italic font

If omitted, then ebRegular is used.

When the dialog box is created, the Identifier variable is used to set the initial content of the text
box. When the dialog box is dismissed, the variable will contain the new content of the text box.

A single-line text box can contain up to 256 characters. The length of text in a multiline text box is
not limited by the Basic Control Engine; the default memory limit specified by the given platform is
used instead.

Example Sub Main()
Begin Dialog UserDialog 81,64,128,60,"Untitled"

CancelButton 80,32,40,14
OKButton 80,8,40,14
TextBox 4,8,68,44,.TextBox1,1

End Dialog
Dim d As UserDialog
d.TextBox1 = "Enter text before invoking" 'Display text in the Textbox by

setting the default value of the TextBox before showing it.
Dialog d

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement); Dialog
(function); Dialog (statement); DropListBox (statement); GroupBox (statement); ListBox
(statement); OKButton (statement); OptionButton (statement); OptionGroup (statement);
Picture (statement); PushButton (statement); Text (statement); Begin Dialog
(statement), PictureButton (statement).

Note: 8-point MS Sans Serif is the default font used within user dialogs.

GFK-1283G T 20-5

Time, Time$ (functions)

Syntax Time[$][()]

Description Returns the system time as a String or as a Date variant.

Comments The Time$ function returns a String contains the time in 24-hour time format, whereas Time
returns a Date variant.

To set the time, use the Time/Time$ statements.

Example This example returns the system time and displays it in a dialog box.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
oldtime$ = Time
msg1 = "Time was: " & oldtime$ & crlf
Time = "10:30:54"
msg1 = msg1 & "Time set to: " & Time & crlf
Time = oldtime$
msg1 = msg1 & "Time restored to: " & Time
MsgBox msg1

End Sub

See Also Time, Time$ (statements); Date, Date$ (functions); Date, Date$ (statements); Now
(function).

20-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Time, Time$ (statements)

Syntax Time[$] = newtime

Description Sets the system time to the time contained in the specified string.

Comments The Time$ statement requires a string variable in one of the following formats:

HH
HH:MM
HH:MM:SS

where HH is between 0 and 23, MM is between 0 and 59, and SS is between 0 and 59.

The Time statement converts any valid expression to a time, including string and numeric values.
Unlike the Time$ statement, Time recognizes many different time formats, including 12-hour
times.

Example This example returns the system time and displays it in a dialog box.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
oldtime$ = Time
msg1 = "Time was: " & oldtime$ & crlf
Time = "10:30:54"
msg1 = msg1 & "Time set to: " & Time & crlf
Time = oldtime$
msg1 = msg1 & "Time restored to: " & Time
MsgBox msg1

End Sub

See Also Time, Time$ (functions); Date, Date$ (functions); Date, Date$ (statements).

Note: If you do not have permission to change the time, a runtime error 70 will be generated.

Timer (function)

Syntax Timer

Description Returns a Single representing the number of seconds that have elapsed since midnight.

Example This example displays the elapsed time between execution start and the time you clicked the OK
button on the first message.
Sub Main()

start& = Timer
MsgBox "Click the OK button, please."
total& = Timer - start&
MsgBox "The elapsed time was: " & total& & " seconds."

End Sub

See Also Time, Time$ (functions); Now (function).

GFK-1283G T 20-7

TimeSerial (function)

Syntax TimeSerial(hour,minute,second)

Description Returns a Date variant representing the given time with a date of zero.

Comments The TimeSerial function requires the following parameters:

Parameter Description
hur Integer between 0 and 23.

minute Integer between 0 and 59.

second Integer between 0 and 59.

Example Sub Main()
start# = TimeSerial(10,22,30)
finish# = TimeSerial(10,35,27)
dif# = Abs(start# - finish#)
MsgBox "The time difference is: " & Format(dif#,"hh:mm:ss")

End Sub

See Also DateValue (function); TimeValue (function); DateSerial (function).

TimeValue (function)

Syntax TimeValue(time_string$)

Description Returns a Date variant representing the time contained in the specified string argument.

Comments This function interprets the passed time_string$ parameter looking for a valid time specification.

The time_string$ parameter can contain valid time items separated by time separators such as colon
(:) or period (.).

Time strings can contain an optional date specification, but this is not used in the formation of the
returned value.

If a particular time item is missing, then it is set to 0. For example, the string "10 pm" would be
interpreted as "22:00:00."

Example This example calculates the TimeValue of the current time and displays it in a dialog box.
Sub Main()

t1$ = "10:15"
t2# = TimeValue(t1$)
MsgBox "The TimeValue of " & t1$ & " is: " & t2#

End Sub

See Also DateValue (function); TimeSerial (function); DateSerial (function).

20-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Trim, Trim$ (functions)

Syntax Trim[$](text)

Description Returns a copy of the passed string expression (text) with leading and trailing spaces removed.

Comments Trim$ returns a String, whereas Trim returns a String variant.

Null is returned if text is Null.

Example This example uses the Trim$ function to extract the nonblank part of a string and display it.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
txt$ = " This is text "
tr$ = Trim(txt$)
MsgBox "Original ->" & txt$ & "<-" & crlf & "Trimmed ->" & tr$ & "<-"

End Sub

See Also LTrim, LTrim$ (functions); RTrim, RTrim$ (functions).

True (constant)

Description Boolean constant whose value is True.

Comments Used in conditionals and Boolean expressions.

Example This example sets variable a to True and then tests to see whether (1) A is True; (2) the True
constant = -1; and (3) A is equal to -1 (True).
Sub Main()

a = True
If ((a = True) and (True = -1) and (a = -1)) then

MsgBox "a is True."
Else

MsgBox "a is False."
End If

End Sub

See Also False (constant); Constants (topic); Boolean (data type).

GFK-1283G T 20-9

Type (statement)

Syntax Type username
variable As type
variable As type
variable As type
:

End Type

Description The Type statement creates a structure definition that can then be used with the Dim statement to
declare variables of that type. The username field specifies the name of the structure that is used
later with the Dim statement.

Comments Within a structure definition appear field descriptions in the format:

variable As type

where variable is the name of a field of the structure, and type is the data type for that variable. Any
fundamental data type or previously declared user-defined data type can be used within the
structure definition (structures within structures are allowed). Only fixed arrays can appear within
structure definitions.

The Type statement can only appear outside of subroutine and function declarations.

When declaring strings within fixed-size types, it is useful to declare the strings as fixed-length.
Fixed-length strings are stored within the structure itself rather than in the string space. For
example, the following structure will always require 62 bytes of storage:

Type Person
FirstName As String * 20
LastName As String * 40
Age As Integer

End Type

Note

Fixed-length strings within structures are size-adjusted upward to an even byte boundary. Thus, a
fixed-length string of length 5 will occupy 6 bytes of storage within the structure.

Example This example displays the use of the Type statement to create a structure representing the parts of a
circle and assign values to them.
Type Circ

msg As String
rad As Integer
dia As Integer
are As Double
cir As Double

End Type

Sub Main()
Dim circle As Circ
circle.rad = 5
circle.dia = circle.rad * 2
circle.are = (circle.rad ^ 2) * Pi
circle.cir = circle.dia * Pi
circle.msg = "The area of this circle is: " & circle.are
MsgBox circle.msg

End Sub

See Also Dim (statement); Public (statement); Private (statement).

GFK-1283G 21-1

U

UBound (function)

Syntax UBound(ArrayVariable() [,dimension])

Description Returns an Integer containing the upper bound of the specified dimension of the specified array
variable.

Comments The dimension parameter is an integer that specifies the desired dimension. If not specified, then
the upper bound of the first dimension is returned.

The UBound function can be used to find the upper bound of a dimension of an array returned by
an OLE automation method or property:

UBound(object.property [,dimension])

UBound(object.method [,dimension])

Example This example dimensions two arrays and displays their upper bounds.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim a(5 To 12)
Dim b(2 To 100,9 To 20)
uba = UBound(a)
ubb = UBound(b,2)
MsgBox "The upper bound of a is: " & uba & crlf & " The upper bound of b is: " &

ubb

This example uses Lbound and Ubound to dimension a dynamic array to hold a copy of an array
redimmed by the FileList statement.
Dim fl$()
FileList fl$,"*"
count = Ubound(fl$)
If ArrayDims(a) Then
Redim nl$(Lbound(fl$) To Ubound(fl$))
For x = 1 To count
nl$(x) = fl$(x)

Next x
MsgBox "The last element of the new array is: " & nl$(count)

End If
End Sub

See Also LBound (function); ArrayDims (function); Arrays (topic).

21-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

UCase, UCase$ (functions)

Syntax UCase[$](text)

Description Returns the uppercase equivalent of the specified string.

Comments UCase$ returns a String, whereas UCase returns a String variant.

Null is returned if text is Null.

Example This example uses the UCase$ function to change a string from lowercase to uppercase.
Sub Main()
a1$ = "this string was lowercase, but was converted."
a2$ = UCase(a1$)
MsgBox a2$

End Sub

See Also LCase, LCase$ (functions).

Unlock (statement)

Syntax Unlock [#] filenumber [,{record | [start] To end}]

Description Unlocks a section of the specified file, allowing other processes access to that section of the file.

Comments The Unlock statement requires the following parameters:

Parameter Description
filenumber Integer used by the Basic Control Script to refer to the open file—the

number passed to the Open statement.

record Long specifying which record to unlock.

start Long specifying the first record within a range to be unlocked.

end Long specifying the last record within a range to be unlocked.

For sequential files, the record, start, and end parameters are ignored: the entire file is unlocked.

The section of the file is specified using one of the following:

Syntax Description
No record specification Unlock the entire file.

record Unlock the specified record number (for Random files) or byte (for
Binary files).

to end Unlock from the beginning of the file to the specified record (for
Random files) or byte (for Binary files).

start to end Unlock the specified range of records (for Random files) or bytes (for
Binary files).

The unlock range must be the same as that used by the Lock statement.

GFK-1283G U 21-3

Example This example creates a file named test.dat and fills it with ten string variable records. These are
displayed in a dialog box. The file is then reopened for read/write, and each record is locked,
modified, rewritten, and unlocked. The new records are then displayed in a dialog box.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = "This is record number: "
b$ = "0"
rec$ = ""

msg1 = ""
Open "test.dat" For Random Access Write Shared As #1
For x = 1 To 10
rec$ = a$ & x
Lock #1,x
Put #1,,rec$
Unlock #1,x
msg1 = msg1 & rec$ & crlf

Next x
Close
MsgBox "The records are: " & crlf & msg1

msg1 = ""
Open "test.dat" For Random Access Read Write Shared As #1
For x = 1 to 10
rec$ = Mid(rec$,1,23) & (11 - x)
Lock #1,x 'Lock it for our use.
Put #1,x,rec$ 'Nobody's changed it.
UnLock #1,x
msg1 = msg1 & rec$ & crlf

Next x
MsgBox "The records are: " & crlf & msg1
Close

Kill "test.dat"
End Sub

See Also Lock (statement); Open (statement).

21-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

User-Defined Types (topic)
User-defined types (UDTs) are structure definitions created using the Type statement. UDTs are
equivalent to C language structures.
Declaring Structures
The Type statement is used to create a structure definition. Type declarations must appear outside
the body of all subroutines and functions within a script and are therefore global to an entire script.
Once defined, a UDT can be used to declare variables of that type using the Dim, Public, or
Private statement. The following example defines a rectangle structure:
Type Rect
left As Integer
top As Integer
right As Integer
bottom As Integer

End Type
:

Sub Main()
Dim r As Rect
:

r.left = 10
End Sub

Any fundamental data type can be used as a structure member, including other user-defined types.
Only fixed arrays can be used within structures.
Copying Structures
UDTs of the same type can be assigned to each other, copying the contents. No other standard
operators can be applied to UDTs.
Dim r1 As Rect
Dim r2 As Rect
:

r1 = r2

When copying structures of the same type, all strings in the source UDT are duplicated and
references are placed into the target UDT.
The LSet statement can be used to copy a UDT variable of one type to another:
LSet variable1 = variable2

LSet cannot be used with UDTs containing variable-length strings. The smaller of the two
structures determines how many bytes get copied.
Passing Structures
UDTs can be passed both to user-defined routines and to external routines, and they can be
assigned. UDTs are always passed by reference.
Since structures are always passed by reference, the ByVal keyword cannot be used when defining
structure arguments passed to external routines (using Declare). The ByVal keyword can only
be used with fundamental data types such as Integer and String.
Passing structures to external routines actually passes a far pointer to the data structure.
Size of Structures
The Len function can be used to determine the number of bytes occupied by a UDT:
Len(udt_variable_name)

Since strings are stored in the Basic Control Engine's data space, only a reference (currently, 2
bytes) is stored within a structure. Thus, the Len function may seem to return incorrect information
for structures containing strings.

GFK-1283G 22-1

V

Val (function)

Syntax Val(string_expression)

Description Converts a given string expression to a number.

Comments The number parameter can contain any of the following:

• Leading minus sign (for nonhex or octal numbers only)

• Hexadecimal number in the format &Hhexdigits

• Octal number in the format &Ooctaldigits

• Floating-point number, which can contain a decimal point and an optional exponent

Spaces, tabs, and line feeds are ignored.

If number does not contain a number, then 0 is returned.

The Val function continues to read characters from the string up to the first nonnumeric character.

The Val function always returns a double-precision floating-point value. This value is forced to the
data type of the assigned variable.

Example This example inputs a number string from an InputBox and converts it to a number variable.
Sub Main()

a$ = InputBox("Enter anything containing a number","Enter Number")
b# = Val(a$)
MsgBox "The value is: " & b#

End Sub

'The following table shows valid strings and their numeric equivalents:
' "1 2 3" 123
' "12.3" 12.3
' "&HFFFF" -1
' "&O77" 63
' "12.345E-02" .12345

See Also CDbl (function); Str, Str$ (functions).

22-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Variant (data type)

Syntax Variant

Description A data type used to declare variables that can hold one of many different types of data.

Comments During a variant's existence, the type of data contained within it can change. Variants can contain
any of the following types of data:

Type of Data The Basic Control Engine Data Types
Numeric Integer, Long, Single, Double, Boolean, Date,

Currency

Logical Boolean

Dates and times Date

String String

Object Object

No valid data A variant with no valid data is considered Null

Uninitialized An uninitialized variant is considered Empty

There is no type-declaration character for variants.

The number of significant digits representable by a variant depends on the type of data contained
within the variant.

Variant is the default data type for the Basic Control Engine. If a variable is not explicitly
declared with Dim, Public, or Private, and there is no type-declaration character (i.e., #, @, !,
%, or &), then the variable is assumed to be Variant.

Determining the Subtype of a Variant
The following functions are used to query the type of data contained within a variant:

Function Description
VarType Returns a number representing the type of data contained within the variant.
IsNumeric Returns True if a variant contains numeric data. The following are

considered numeric:
Integer, Long, Single, Double, Date, Boolean,
Currency

If a variant contains a string, this function returns True if the string can be
converted to a number.

If a variant contains an Object whose default property is numeric, then
IsNumeric returns True.

IsObject Returns True if a variant contains an object.

IsNull Returns True if a variant contains no valid data.

IsEmpty Returns True if a variant is uninitialized.

GFK-1283G V 22-3

IsDate Returns True if a variant contains a date. If the variant contains a string,
then this function returns True if the string can be converted to a date. If the
variant contains an Object, then this function returns True if the default
property of that object can be converted to a date.

Assigning to Variants
Before a Variant has been assigned a value, it is considered empty. Thus, immediately after
declaration, the VarType function will return ebEmpty. An uninitialized variant is 0 when used
in numeric expressions and is a zero-length string when used within string expressions.

A Variant is Empty only after declaration and before assigning it a value. The only way for a
Variant to become Empty after having received a value is for that variant to be assigned to
another Variant containing Empty, for it to be assigned explicitly to the constant Empty, or for
it to be erased using the Erase statement.

When a variant is assigned a value, it is also assigned that value's type. Thus, in all subsequent
operations involving that variant, the variant will behave like the type of data it contains.

Operations on Variants
Normally, a Variant behaves just like the data it contains. One exception to this rule is that, in
arithmetic operations, variants are automatically promoted when an overflow occurs. Consider the
following statements:

Dim a As Integer,b As Integer,c As Integer
Dim x As Variant,y As Variant,z As Variant

a% = 32767
b% = 1
c% = a% + b% 'This will overflow.

x = 32767
y = 1
z = x + y 'z becomes a Long because of Integer overflow.

In the above example, the addition involving Integer variables overflows because the result
(32768) overflows the legal range for integers. With Variant variables, on the other hand, the
addition operator recognizes the overflow and automatically promotes the result to a Long.

Adding Variants
The + operator is defined as performing two functions: when passed strings, it concatenates them;
when passed numbers, it adds the numbers.

With variants, the rules are complicated because the types of the variants are not known until
execution time. If you use +, you may unintentionally perform the wrong operation.

It is recommended that you use the & operator if you intend to concatenate two String variants.
This guarantees that string concatenation will be performed and not addition.

Variants That Contain No Data
A Variant can be set to a special value indicating that it contains no valid data by assigning the
Variant to Null:

Dim a As Variant
a = Null

The only way that a Variant becomes Null is if you assign it as shown above.

The Null value can be useful for catching errors since its value propagates through an expression.

22-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Variant Storage
Variants require 16 bytes of storage internally:

• A 2-byte type

• A 2-byte extended type for data objects

• bytes of padding for alignment

• An 8-byte value

Unlike other data types, writing variants to Binary or Random files does not write 16 bytes. With
variants, a 2-byte type is written, followed by the data (2 bytes for Integer and so on).

Disadvantages of Variants
The following list describes some disadvantages of variants:

1. Using variants is slower than using the other fundamental data types (that is, Integer, Long,
Single, Double, Date, Object, String, Currency, and Boolean). Each operation
involving a Variant requires examination of the variant's type.

2. Variants require more storage than other data types (16 bytes as opposed to 8 bytes for a
Double, 2 bytes for an Integer, and so on).

3. Unpredictable behavior. You may write code to expect an Integer variant. At runtime, the
variant may be automatically promoted to a Long variant, causing your code to break.

Passing Nonvariant Data to Routines Taking Variants
Passing nonvariant data to a routine that is declared to receive a variant by reference prevents that
variant from changing type within that routine. For example:

Sub Foo(v As Variant)
v = 50 'OK.
v = "Hello, world." 'Get a type-mismatch error here!

End Sub

Sub Main()
Dim i As Integer
Foo i 'Pass an integer by reference.

End Sub

In the above example, since an Integer is passed by reference (meaning that the caller can
change the original value of the Integer), the caller must ensure that no attempt is made to
change the variant's type.

Passing Variants to Routines Taking Nonvariants
Variant variables cannot be passed to routines that accept nonvariant data by reference, as
demonstrated in the following example:

Sub Foo(i As Integer)
End Sub

Sub Main()
Dim a As Variant
Foo a 'Compiler gives type-mismatch error here.

End Sub

See Also Currency (data type); Date (data type); Double (data type); Integer (data type); Long
(data type); Object (data type); Single (data type); String (data type); Boolean (data type);
DefType (statement); CVar (function); Empty (constant); Null (constant); VarType
(function).

GFK-1283G V 22-5

VarType (function)

Syntax VarType(variable)

Description Returns an Integer representing the type of data in variable.

Comments The variable parameter is the name of any Variant.

The following table shows the different values that can be returned by VarType:

Value Constant Data Type
0 ebEmpty Uninitialized
1 ebNull No valid data
2 ebInteger Integer

3 ebLong Long

4 ebSingle Single

5 ebDouble Double

6 ebCurrency Currency

7 ebDate Date

8 ebString String

9 ebObject Object (OLE automation object)

10 ebError User-defined error
11 ebBoolean Boolean

12 ebVariant Variant (not returned by this function)

13 ebDataObject Non-OLE automation object

Comments When passed an object, the VarType function returns the type of the default property of that
object. If the object has no default property, then either ebObject or ebDataObject is
returned, depending on the type of variable.

Example Sub Main()
Dim v As Variant
v = 5& 'Set v to a Long.

If VarType(v) = ebInteger Then
Msgbox "v is an Integer."

ElseIf VarType(v) = ebLong Then
Msgbox "v is a Long."

End If
End Sub

See Also Empty (constant); Null (constant); Variant (data type).

22-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

VLine (statement)

Syntax VLine [lines]

Description Scrolls the window with the focus up or down by the specified number of lines.

Comments The lines parameter is an Integer specifying the number of lines to scroll. If this parameter is
omitted, then the window is scrolled down by one line.

Example This example prints a series of lines to the viewport, then scrolls back up the lines to the top using
VLine.
Sub Main()

"BasicScript Viewport",100,100,500,200

For i = 1 to 50

Print "This will be displayed on line#: " & i

Next i

MsgBox "We will now go back 40 lines..."

VLine -40

MsgBox "...and here we are!"

End Sub

See Also VPage (statement); VScroll (statement).

VPage (statement)

Syntax VPage [pages]

Description Scrolls the window with the focus up or down by the specified number of pages.

Comments The pages parameter is an Integer specifying the number of lines to scroll. If this parameter is
omitted, then the window is scrolled down by one page.

Example This example scrolls the viewport window up five pages.
Sub Main()

"BasicScript Viewport",100,100,500,200

For i = 1 to 500

Print "This will be displayed on line#: " & i

Next i

MsgBox "We will now go back 5 pages..."

VLine -5

MsgBox "...and here we are!"

End Sub

See Also VLine (statement); VScroll (statement).

GFK-1283G V 22-7

VScroll (statement)

Syntax VScroll percentage

Description Sets the thumb mark on the vertical scroll bar attached to the current window.

Comments The position is given as a percentage of the total range associated with that scroll bar. For
example, if the percentage parameter is 50, then the thumb mark is positioned in the middle of the
scroll bar.

Example This example prints a bunch of lines to the viewport, then scrolls back to the top using VScroll.
Sub Main()

"BasicScript Viewport",100,100,500,200

For i = 1 to 50

Print "This will be displayed on line#: " & i

Next i

Message$="We will now go to the the top..."

MsgBox Message$

VScroll 0

VScroll 0

MsgBox "...and here we are!"

End Sub

See Also VLine (statement); VPage (statement).

GFK-1283G 23-1

W

Weekday (function)

Syntax Weekday(date)

Description Returns an Integer value representing the day of the week given by date. Sunday is 1, Monday is
2, and so on.

The date parameter is any expression representing a valid date.

Example This example gets a date in an input box and displays the day of the week and its name for the date
entered.
Sub Main()

Dim a$(7)
a$(1) = "Sunday"
a$(2) = "Monday"
a$(3) = "Tuesday"
a$(4) = "Wednesday"
a$(5) = "Thursday"
a$(6) = "Friday"
a$(7) = "Saturday"

Reprompt:
bd = InputBox("Please enter your birthday.","Enter Birthday")
If Not(IsDate(bd)) Then Goto Reprompt

dt = DateValue(bd)
dw = WeekDay(dt)
Msgbox "You were born on day " & dw & ", which was a " & a$(dw)

End Sub

See Also Day (function); Minute (function); Second (function); Month (function); Year (function);
Hour (function); DatePart (function).

23-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

While...Wend (statement)

Syntax While condition
[statements]

Wend

Description Repeats a statement or group of statements while a condition is True.

Comments The condition is initially and then checked at the top of each iteration through the loop.

Example This example executes a While loop until the random number generator returns a value of 1.
Sub Main()

x% = 0
count% = 0
While x% <> 1 And count% < 500

x% = Rnd(1)
If count% > 1000 Then

Exit Sub
Else

count% = count% + 1
End If

Wend
MsgBox "The loop executed " & count% & " times."

End Sub

See Also Do...Loop (statement); For...Next (statement).

Note: Due to errors in program logic, you can inadvertently create infinite loops in your code. You can
break out of infinite loops using Ctrl+Break.

GFK-1283G W 23-3

Width# (statement)

Syntax Width# filenumber,newwidth

Description Specifies the line width for sequential files opened in either Output or Append mode.

Comments The Width# statement requires the following parameters:

Parameter Description
filenumber Integer used by the Basic Control Engine to refer to the open file—the

number passed to the Open statement.

newwidth Integer between 0 to 255 inclusive specifying the new width. If newwidth
is 0, then no maximum line length is used.

When a file is initially opened, there is no limit to line length. This command forces all subsequent
output to the specified file to use the specified value as the maximum line length.

The Width statement affects output in the following manner: if the column position is greater than
1 and the length of the text to be written to the file causes the column position to exceed the current
line width, then the data is written on the next line.

The Width statement also affects output of the Print command when used with the Tab and
Spc functions.

Example This statement sets the maximum line width for file number 1 to 80 columns.
Const crlf$ = Chr$(13) + Chr$(10)

Sub Main()
Dim i,msg1,newline$

Open "test.dat" For Output As #1 'Create data file.
For i = 0 To 9

Print #1,Chr(48 + i); 'Print 0-9 to test file all on same line.
Next i
Print #1,crlf 'New line.
Width #1,5 'Change line width to 5.

For i = 0 To 9 'Print 0-9 again. This time, five characters print before line
wraps.

Print #1,Chr(48 + i);
Next I
Close #1

msg1 = "The effect of the Width statement is as shown below: " & crlf
Open "test.dat" For Input As #1 'Read new file.
Do While Not Eof(1)

Input #1,newline$
msg1 = msg1 & crlf$ & newline$

Loop
Close #1
msg1 = msg1 & crlf$ & crlf$ & "Choose OK to remove the test file."

MsgBox msg1'Display effects of Width.
Kill "test.dat"

End Sub

See Also Print (statement); Print# (statement); Tab (function); Spc (function).

23-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

WinActivate (statement)

Syntax WinActivate [window_name$ | window_object] [,timeout]

Description Activates the window with the given name or object value.

Comments The WinActivate statement requires the following parameters:

Parameter Description
window_name$ String containing the name that appears on the desired application's title bar.

Optionally, a partial name can be used, such as "Word" for "Microsoft
Word."

A hierarchy of windows can be specified by separating each window name
with a vertical bar (|), as in the following example:
WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title
contains the word "Notepad". If found, the windows owned by the top
level window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.

timeout Integer specifying the number of milliseconds for which to attempt activation
of the specified window. If not specified (or 0), then only one attempt will be
made to activate the window. This value is handy when you are not certain
that the window you are attempting to activate has been created.

If window_name$ and window_object are omitted, then no action is performed.

Example This example runs the clock.exe program by activating the Run File dialog box from within
Program Manager.
Sub Main()

WinActivate "Program Manager"
Menu "File.Run"
WinActivate "Program Manager|Run"
SendKeys "clock.exe{ENTER}"

End Sub

See Also AppActivate (statement).

GFK-1283G W 23-5

WinClose (statement)

Syntax WinClose [window_name$ | window_object]

Description Closes the given window.

Comments The WinClose statement requires the following parameters:

Parameter Description
window_name$ String containing the name that appears on the desired application's title bar.

Optionally, a partial name can be used, such as "Word" for "Microsoft
Word."

A hierarchy of windows can be specified by separating each window name
with a vertical bar (|), as in the following example:
WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title
contains the word "Notepad". If found, the windows owned by the top
level window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.

If window_name$ and window_object are omitted, then the window with the focus is closed.

This command differs from the AppClose command in that this command operates on the
current window rather than the current top-level window (or application).

Example This example closes Microsoft Word if its object reference is found.
Sub Main()

Dim WordHandle As HWND
Set WordHandle = WinFind("Word")
If (WordHandle Is Not Nothing) Then WinClose WordHandle

End Sub

See Also WinFind (function).

Notes Under Windows, the current window can be an MDI child window, a pop-up window, or a top-
level window.

23-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

WinFind (function)

Syntax WinFind(name$) As HWND

Description Returns an object variable referencing the window having the given name.

Comments The name$ parameter is specified using the same format as that used by the WinActivate
statement.

Example This example closes Microsoft Word if its object reference is found.
Sub Main()

Dim WordHandle As HWND
Set WordHandle = WinFind("Word")
If (WordHandle Is Not Nothing) Then WinClose WordHandle

End Sub

See Also WinActivate (statement).

WinList (statement)

Syntax WinList ArrayOfWindows()

Description Fills the passed array with references to all the top-level windows.

Comments The passed array must be declared as an array of HWND objects.

The ArrayOfWindows parameter must specify either a zero- or one-dimensioned dynamic array
or a single-dimensioned fixed array. If the array is dynamic, then it will be redimensioned to
exactly hold the new number of elements. For fixed arrays, each array element is first erased,
then the new elements are placed into the array. If there are fewer elements than will fit in the
array, then the remaining elements are unused. A runtime error results if the array is too small to
hold the new elements.

After calling this function, use the LBound and UBound functions to determine the new size of
the array.

Example This example minimizes all top-level windows.
Sub Main()

Dim a() As HWND
WinList a
For i = 1 To UBound(a)

WinMinimize a(i)
Next i

End Sub

See Also WinFind (function).

GFK-1283G W 23-7

WinMaximize (statement)

Syntax WinMaximize [window_name$ | window_object]

Description Maximizes the given window.

Comments The WinMaximize statement requires the following parameters:

Parameter Description
window_name$ String containing the name that appears on the desired application's title bar.

Optionally, a partial name can be used, such as "Word" for "Microsoft
Word."

A hierarchy of windows can be specified by separating each window name
with a vertical bar (|), as in the following example:
WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title
contains the word "Notepad". If found, the windows owned by the top
level window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.

If window_name$ and window_object are omitted, then the window with the focus is
maximized.

This command differs from the AppMaximize command in that this command operates on the
current window rather than the current top-level window.

Example This example maximizes all top-level windows.
Sub Main()

Dim a() As HWND
WinList a
For i = 1 To UBound(a)

WinMaximize a(i)
Next i

End Sub

See Also WinMinimize (statement); WinRestore (statement).

Notes Under Windows, the current window can be an MDI child window, a pop-up window, or a top-
level window.

23-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

WinMinimize (statement)

Syntax WinMinimize [window_name$ | window_object]

Description Minimizes the given window.

Comments The WinMinimize statement requires the following parameters:

Parameter Description
window_name$ String containing the name that appears on the desired application's title bar.

Optionally, a partial name can be used, such as "Word" for "Microsoft
Word."

A hierarchy of windows can be specified by separating each window name
with a vertical bar (|), as in the following example:
WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title
contains the word "Notepad". If found, the windows owned by the top
level window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.

If window_name$ and window_object are omitted, then the window with the focus is minimized.

This command differs from the AppMinimize command in that this command operates on the
current window rather than the current top-level window.

Example See example for WinList (statement).

See Also WinMaximize (statement); WinRestore (statement).

Notes Under Windows, the current window can be an MDI child window, a pop-up window, or a top-
level window.

GFK-1283G W 23-9

WinMove (statement)

Syntax WinMove x,y [window_name$ | window_object]

Description Moves the given window to the given x,y position.

Comments The WinMove statement requires the following parameters:

Parameter Description
x,y Integer coordinates given in twips that specify the new location for the

window.

window_name$ String containing the name that appears on the desired application's title bar.
Optionally, a partial name can be used, such as "Word" for "Microsoft
Word."

A hierarchy of windows can be specified by separating each window name
with a vertical bar (|), as in the following example:
WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title
contains the word "Notepad". If found, the windows owned by the top
level window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.

If window_name$ and window_object are omitted, then the window with the focus is moved.

This command differs from the AppMove command in that this command operates on the
current window rather than the current top-level window. When moving child windows,
remember that the x and y coordinates are relative to the client area of the parent window.

Example This example moves Program Manager to upper left corner of the screen.
WinMove 0,0,"Program Manager"

See Also WinSize (statement).

Notes Under Windows, the current window can be an MDI child window, a pop-up window, or a top-
level window.

23-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

WinRestore (statement)

Syntax WinRestore [window_name$ | window_object]

Description Restores the specified window to its restore state.

Comments Restoring a minimized window restores that window to its screen position before it was
minimized. Restoring a maximized window resizes the window to its size previous to
maximizing.

The WinRestore statement requires the following parameters:

Parameter Description
window_name$ String containing the name that appears on the desired application's title bar.

Optionally, a partial name can be used, such as "Word" for "Microsoft
Word."

A hierarchy of windows can be specified by separating each window name
with a vertical bar (|), as in the following example:
WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title
contains the word "Notepad". If found, the windows owned by the top
level window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.

If window_name$ and window_object are omitted, then the window with the focus is restored.

This command differs from the AppRestore command in that this command operates on the
current window rather than the current top-level window.

Example This example minimizes all top-level windows except for Program Manager.
Sub Main()

Dim a() As HWND
WinList a
For i = 0 To UBound(a)
WinMinimize a(i)

Next I
WinRestore "Program Manager"

End Sub

See Also WinMaximize (statement); WinMinimize (statement).

Notes Under Windows, the current window can be an MDI child window, a pop-up window, or a top-
level window.

GFK-1283G W 23-11

WinSize (statement)

Syntax WinSize width,height [,window_name$ | window_object]

Description Resizes the given window to the specified width and height.

Comments The WinSize statement requires the following parameters:

Parameter Description
width,height Integer coordinates given in twips that specify the new size of the window.

window_name$ String containing the name that appears on the desired application's title bar.
Optionally, a partial name can be used, such as "Word" for "Microsoft
Word." A hierarchy of windows can be specified by separating each window
name with a vertical bar (|), as in the following example:
WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title
contains the word "Notepad". If found, the windows owned by the top
level window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.

If window_name$ and window_object are omitted, then the window with the focus is resized.

This command differs from the AppSize command in that this command operates on the
current window rather than the current top-level window.

Example This example runs and resizes Notepad.
Sub Main()

Dim NotepadApp As HWND
id = Shell("Notepad.exe")
set NotepadApp = WinFind("Notepad")
WinSize 4400,8500,NotepadApp

End Sub

See Also WinMove (statement).

Note Under Windows, the current window can be an MDI child window, a pop-up window, or a top-
level window.

23-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Word$ (function)

Syntax Word$(text$,first[,last])

Description Returns a String containing a single word or sequence of words between first and last.

Comments The Word$ function requires the following parameters:

Parameter Description
text$ String from which the sequence of words will be extracted.

first Integer specifying the index of the first word in the sequence to return. If
last is not specified, then only that word is returned.

last Integer specifying the index of the last word in the sequence to return. If
last is specified, then all words between first and last will be returned,
including all spaces, tabs, and end-of-lines that occur between those words.

Words are separated by any nonalphanumeric characters such as spaces, tabs, end-of-lines, and
punctuation.

If first is greater than the number of words in text$, then a zero-length string is returned.

If last is greater than the number of words in text$, then all words from first to the end of the text
are returned.

Example This example finds the name "Stuart" in a string and then extracts two words from the string.
Sub Main()

s$ = "My last name is Williams; Stuart is my surname."
c$ = Word$(s$,5,6)
MsgBox "The extracted name is: " & c$

End Sub

See Also Item$ (function); ItemCount (function); Line$ (function); LineCount (function);
WordCount (function).

WordCount (function)

Syntax WordCount(text$)

Description Returns an Integer representing the number of words in the specified text.

Comments Words are separated by spaces, tabs, and end-of-lines.

Example This example counts the number of words in a particular string.
Sub Main()

s$ = "My last name is Williams; Stuart is my surname."
i% = WordCount(s$)
MsgBox "'" & s$ & "' has " & i% & " words."

End Sub

See Also Item$ (function); ItemCount (function); Line$ (function); LineCount (function); Word$
(function).

GFK-1283G W 23-13

Write# (statement)

Syntax Write [#]filenumber [,expressionlist]

Description Writes a list of expressions to a given sequential file.

Comments The file referenced by filenumber must be opened in either Output or Append mode.

The filenumber parameter is an Integer used by the Basic Control Engine to refer to the open
file—the number passed to the Open statement.

The following table summarizes how variables of different types are written:

Data Type Description
Any numeric type Written as text. There is no leading space, and the period is always used

as the decimal separator.
String Written as text, enclosed within quotes.
Empty No data is written.
Null Written as #NULL#.

Boolean Written as #TRUE# or #FALSE#.

Date Written using the universal date format:

#YYYY-MM-DD HH:MM:SS#

user-defined errors Written as #ERROR ErrorNumber#, where ErrorNumber is the value
of the user-defined error. The word ERROR is not translated.

The Write statement outputs variables separated with commas. After writing each expression in
the list, Write outputs an end-of-line.

The Write statement can only be used with files opened in Output or Append mode.

Example This example opens a file for sequential write, then writes ten records into the file with the values
10...50. Then the file is closed and reopened for read, and the records are read with the Input
statement. The results are displayed in a dialog box.
Sub Main()

Open "test.dat" For Output Access Write As #1
For x = 1 To 10

r% = x * 10
Write #1,x,r%

Next x
Close
msg1 = ""

Open "test.dat" For Input Access Read As #1
For x = 1 To 10

Input #1,a%,b%
msg1 = msg1 & "Record " & a% & ": " & b% & Basic.Eoln$

Next x

MsgBox msg1
Close

End Sub

See Also Open (statement); Put (statement); Print# (statement).

23-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

WriteIni (statement)

Syntax WriteIni section$,ItemName$,value$[,filename$]

Description Writes a new value into an ini file.

Comments The WriteIni statement requires the following parameters:

Parameter Description
section$ String specifying the section that contains the desired variables, such as

"windows." Section names are specified without the enclosing brackets.

ItemName$ String specifying which item from within the given section you want to
change. If ItemName$ is a zero-length string (""), then the entire section
specified by section$ is deleted.

value$ String specifying the new value for the given item. If value$ is a zero-
length string (""), then the item specified by ItemName$ is deleted from the
ini file.

filename$ String specifying the name of the ini file.

Example This example sets the txt extension to be associated with Notepad.
Sub Main()

WriteIni "Extensions","txt","c:\windows\notepad.exe ^.txt","win.ini"
End Sub

See Also ReadIni$ (function); ReadIniSection (statement).

Note: If filename$ is not specified, the win.ini file is used.

If the filename$ parameter does not include a path, then this statement looks for ini files in the
Windows directory.

GFK-1283G 24-1

X

X or (operator)

Syntax expression1 Xor expression2

Description Performs a logical or binary exclusion on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants, then a logical
exclusion is performed as follows:

If the first
expression is

and the second
expression is

then the
result is

True True False

True False True

False True True

False False False

If either expression is Null, then Null is returned.

Binary Exclusion
If the two expressions are Integer, then a binary exclusion is performed, returning an Integer
result. All other numeric types (including Empty variants) are converted to Long, and a binary
exclusion is then performed, returning a Long result.

Binary exclusion forms a new value based on a bit-by-bit comparison of the binary representations
of the two expressions according to the following table:

1 Xor 1 = 0 Example:

0 Xor 1 = 1 5 01101001

1 Xor 0 = 1 6 10101010

0 Xor 0 = 0 Xor 11000011

24-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example This example builds a logic table for the XOR function and displays it.
Const crlf = Chr$(13) + Chr$(10)

Sub Main()
msg1 = "Logic table for Xor:" & crlf & crlf
For x = -1 To 0

For y = -1 To 0
z = x Xor y
msg1 = msg1 & CBool(x) & " Xor "
msg1 = msg1 & CBool(y) & " = "
msg1 = msg1 & CBool(z) & crlf

Next y
Next x
MsgBox msg1

End Sub

See Also Operator Precedence (topic); Or (operator); Eqv (operator); Imp (operator); And (operator).

GFK-1283G 25-1

Y

Year (function)

Syntax Year(date)

Description Returns the year of the date encoded in the specified date parameter. The value returned is between
100 and 9999 inclusive.

The date parameter is any expression representing a valid date.

Example This example returns the current year in a dialog box.
Sub Main()

tdate$ = Date$
tyear! = Year(DateValue(tdate$))
MsgBox "The current year is " & tyear!

End Sub

See Also Day (function); Minute (function); Second (function); Month (function); Hour (function);
Weekday (function); DatePart (function).

GFK-1283G 26-1

CIMPLICITY Extensions to Basic

Acquire (Function)

Syntax bool = Acquire(Region$, TimeOut&)

Description Acquire a Critical Section with a timeout. If the section is not acquired within the specified
timeout, a value of False is returned.

Critical Sections are used in multithreaded application to control reentrancy, protect access global
data structures, and provide synchronization. Only one thread of an application can be within a
critical section at a time. Since the Basic Control Engine is a multithreaded application, you may
need to use critical sections to prevent race type conditions.

Acquire and Release only work with the same process. In other words, two standalone
executables cannot protect against each other using this mechanism.

Note

In the Basic Control Engine, when an event occurs, the script is started in parallel with any other
currently executing scripts. If two scripts compete for the same resource in your factory (e.g.
controlling a pump) you may need to use critical sections to control access.

Unlike a C application, access to public and private variables is controlled automatically by
BASIC. That is, if two threads are trying to set and get the value of a variable access to the
variable is synchronous. In other words, the thread, which is reading the value, won't get a value,
which is half-written by the other thread. However, if you are accessing more than one element of a
global data structure and expect another thread to be accessing the data, then you must protect the
access with a critical section.

The Basic Control Engine automatically releases any critical sections held by the script when it
terminates. While the script is running, you can use the Acquire and Release commands to
control when a critical section is released. You must make a call to Release for each call you
make to Acquire for a critical section.

Comments Parameter Description
Region$ String. A unique identifier of the region to be operated on.

TimeOut& Long. The time in milliseconds to wait.

26-2 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example Prevent reentry into the routine if the script is already in progress. If the script can't acquire the
region immediately, it will exit.
sub main()
private LastDate as String
Sub Main()

if Acquire("DATETIME",0) = FALSE then
exit sub

end if
if Date$ <> LastDate then

LastDate = Date$
PointSet "DATE",LastDate

end if
PointSet "TIME",Time$
Release "DATETIME"

End Sub

Acquire, Release (Statements)

Syntax Acquire Region$
Release Region$

Description Acquire a Critical Section. The script will wait until the region is available. Use this to provide
synchronous access to data.

Release an acquired critical section.

A region can be acquired multiple times and must be released as many times as it is acquired.

Acquire and Release only work with the same process. In other words, two standalone
executables cannot protect against each other using this mechanism.

Note

In the Basic Control Engine, when an event occurs, the script is started in parallel. If another event
triggers the same script before the script ends, two scripts will be running in parallel. The
Acquire and Release routines can be used to modify this behavior. Two options are available.

1. Serialize the processing. In this case, the second instance of the script waits until the first is
complete and then begins execution. This is accomplished by placing an acquire statement at
the start of the script.

2. Skip processing. In this case, the second instance of the script exits without performing any
processing. The example in Acquire (FUNCTION) illustrated this.

Important

Be careful when acquiring more than one section (nesting), as deadlock can occur
if two threads acquire the sections in different order. Consider the following:
Thread1

Acquire "Section1"
Acquire "Section2"
..

Thread2
Acquire "Section2"
Acquire "Section1"

In the above example, if Thread1 acquires Section1 and then Thread2 acquires Section2, both
Thread1 and Thread2 will be blocked indefinitely.

GFK-1283G CIMPLICITY Extensions to Basic 26-3

Comments Parameter Description
Region$ String. A unique identifier of the region to be operated on.

Example Consider the following example. Trigger is a point which caused the make decision to execute.
The function may be called in response to two separate events with a different Point ID. The
function will make a decision only if the timestamp of the point is more recent than the time the last
decision was made.
Dim lastTime as Date

sub MakeDecision(trigger as Point, decision as Point)
' Only one thread may be within this loop.
Acquire "MakeDecision"
' Make sure we release the "MakeDecision" section prior to leaving.
ON ERROR GOTO RELEASEIT
' If we made a decision after this point changed then return
if lastTime < trigger.TimeStamp then

goto RELEASEIT
end if
lastTime = trigger.TimeStamp
decision.Value = trigger.Value
decision.Write

RELEASEIT:
Release "MakeDecision"
exit sub

end sub

26-4 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

AlarmGenerate (Method)

Syntax AlarmGenerate Project$, AlarmId$, ResourceId$, Message$
[, UserId$ [, RefId$ [, Master]]]

Description To generate an alarm on a local or remote CIMPLICITY project.

Note

The Alarm ID must have an Alarm Type of $CIMBASIC otherwise the alarm message may not be
displayed correctly.

A unique alarm in CIMPLICITY is defined by the Alarm ID, Resource ID and Reference ID
combination. Each unique alarm can be displayed as a distinct entry in the Alarm Viewer. Non-
unique alarms are stacked, so that the user only sees the most recent occurrence. In general, the
Resource ID is used to control the routing of alarms to users. The Reference ID is used by an
application to distinguish between different instances of the same alarm.

Comments Parameter Description
Project$ String. The project to generate the alarm on, an empty string "" indicates

the current project

AlarmId$ String. The ID of the Alarm. Must be a valid alarm of type $CIMBASIC

ResourceId$ String. The Resource ID to generate the alarm against. Used to control
routing of the alarm.

Message$ String. The update alarm message to display.

Note
This string is substituted into the first variable field of the Alarm's message.
For a user-defined alarm message, this will be the first %s field in the
message. For a point alarm message, it will be the first variable field
(%VAL, %ID, etc.) in the alarm message. For this reason, it is not
recommended that you use the AlarmMessage$ field when updating point
alarms.

UserId$ String (optional). The User ID which generated the alarm.

RefId$ String (optional). A Reference ID used to distinguish to identical alarms.

Master Boolean (optional). By default on a computer with Server Redundancy,
alarms sent by the slave computer's Event Manager are ignored.

To allow an alarm to be generated from a script on a slave computer, set this
parameter to True.

GFK-1283G CIMPLICITY Extensions to Basic 26-5

Example
sub main()

' Generate a single alarm with no reference Id.
AlarmGenerate "BCEDEMO","MY_ALARM_1","$SYSTEM",_

"Electrical Bus 1 Failure"
' Generate three of the same alarm for different resources.
AlarmGenerate "BCEDEMO","MY_ALARM_2","RESOURCE_1",_

"Multiple Instance for each resource"
AlarmGenerate "BCEDEMO","MY_ALARM_2","RESOURCE_2",_

"Multiple Instance for each resource"
AlarmGenerate "BCEDEMO","MY_ALARM_2","RESOURCE_3",_

"Multiple Instance for each resource"
' Generate three of the same alarm for the same resource
' but use a different reference id.
AlarmGenerate "BCEDEMO","MY_ALARM_3","RESOURCE_1",_

"Multiple Instances for RefId","","1"
AlarmGenerate "BCEDEMO","MY_ALARM_3","RESOURCE_1",_

"Multiple Instances for RefId","","2"
AlarmGenerate "BCEDEMO","MY_ALARM_3","RESOURCE_1",_

"Multiple Instances for RefId","","3"
end sub

See Also AlarmUpdate

26-6 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

AlarmUpdate (Method)

Syntax AlarmUpdate Project$, AlarmId$, ResourceId$, Action%
[, AlarmMessage$ [, UserId$ [,RefId$]]]

Description To update a currently generated alarm. The alarm being updated may be of any alarm type.
However, if the AlarmMessage$ is specified, it must be an alarm with an alarm type of
$CIMBASIC.

Note

When updating an alarm, the AlarmId$, ResourceId$ and RefId$ must match exactly to the alarm to
be updated, if they don't match the alarm will not be updated.

When updating a point alarm, the RefId$ is always the Point ID (which is also the Alarm ID)

Comments Parameter Description
Project$ String. The project to generate the alarm on, an empty string "" indicates

the current project

AlarmId$ String. The ID of the Alarm. Must be a valid alarm.

ResourceId$ String. The Resource ID to generate the alarm against. Used to control
routing of the alarm.

Action% Integer. Indicates whether to acknowledge or reset the alarm. Use the
manifest constants AM_ACKNOWLEDGED, AM_RESET or
AM_ACKNOWLEDGED + AM_RESET to perform and acknowledgment and
a reset.

By default on a computer with Server Redundancy, alarm updates from the
slave computer's Event Manager are ignored. To acknowledge or reset an
alarm on the master computer from the slave computer, use
AM_ACKNOWLEDGED_M or AM_RESET_M to override the default
behavior.

AlarmMessage$ String (optional). The update alarm message to display.

Note

This string is substituted into the first variable field of the Alarm's message.
For a user-defined alarm message, this will be the first %s field in the
message. For a point alarm message, it will be the first variable field
(%VAL, %ID, etc.) in the alarm message. For this reason, it is not
recommended that you use the AlarmMessage$ field when updating point
alarms.

UserId$ String (optional). The User ID which generated the alarm.

RefId$ String (optional). A Reference ID used to distinguish between identical
alarms. The Reference ID needs to match the Reference ID of the generated
alarm. If the alarm was generated without a Reference ID, then this field
can be omitted from the call.

GFK-1283G CIMPLICITY Extensions to Basic 26-7

Example
sub main()

a$ = time$
AlarmUpdate "BCEDEMO","MY_ALARM_1","$SYSTEM",x,_

"Electrical Bus 1 " & a$
AlarmUpdate "BCEDEMO","MY_ALARM_2","RESOURCE_1",x,_

"Multiple Instance for each resource " & a$
AlarmUpdate "BCEDEMO","MY_ALARM_2","RESOURCE_2",x,_

"Multiple Instance for each resource " & a$
AlarmUpdate "BCEDEMO","MY_ALARM_2","RESOURCE_3",x,_

"Multiple Instance for each resource " & a$
AlarmUpdate "BCEDEMO","MY_ALARM_3","RESOURCE_1",x,_

"Multiple Instances for RefIf " & a$,"","1"
AlarmUpdate "BCEDEMO","MY_ALARM_3","RESOURCE_1",x,_

"Multiple Instances for RefIf " & a$,"","2"
AlarmUpdate "BCEDEMO","MY_ALARM_3","RESOURCE_1",x,_

"Multiple Instances for RefIf " & a$,"","3"
end sub

See Also AlarmGenerate

ChangePassword (Method)

Syntax ChangePassword Project$, OldPassword$, NewPassword$

Description To change a password for a currently logged in user on a specified project.

Note: The user must be logged into the specified project or the function will fail.

Comments Parameter Description
Project$ String. The project to change the password on. An empty string indicates

the current default project.

OldPassword$ String. The old password of the user

NewPassword$ String. The new password of the user

Example
sub main()

ChangePassword "CIMPDEMO", "OLDPASS", "NEWPASS"
end sub

26-8 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CimEMAlarmEvent (Object)

Overview The CimEMAlarmEvent object provides information for scripts invoked from an alarm event.

Example Dim alarmEvent As CimEmAlarmEvent
Set alarmEvent = CimGetEMEvent().AlarmEvent()
PointSet "ALARM_MESSAGE", alarmEvent.Message

Note: CimEMAlarmEvent can only be used from the Event Manager. It is not valid in
CimView/CimEdit.

CimEMAlarmEvent.AlarmID (Property, Read)

Syntax AlarmEvent.AlarmId

Description String. Returns the Alarm ID of the Alarm that triggered the event.

Example
Sub Main()

Dim AlarmEvent as CimEmAlarmEvent
Set AlarmEvent = CimGetEMEvent().AlarmEvent()
PointSet “LAST_ALARM_ID”, AlarmEvent.AlarmID
End if

end sub

GFK-1283G CIMPLICITY Extensions to Basic 26-9

CimEMAlarmEvent.FinalState (Property, Read)

Syntax AlarmEvent.FinalState

Description Integer. Returns the final state of the alarm after the requested action. For example, if the user
acknowledged the alarm and the deletion requirements for the alarm only require acknowledgement
then the final state would be AM_DELETED.

Valid States are :

•••• AM_GENERATED

•••• AM_ACKNOWLEDGED

•••• AM_RESET

• AM_DELETED
Example

Sub Main()
Dim AlarmEvent as CimEmAlarmEvent
Set AlarmEvent = CimGetEMEvent().AlarmEvent()
If AlarmEvent.FinalState = AM_ACKNOWLEDGED then

PointSet “ALARM_MESSAGE”, “Alarm is Acknowledged”
End if

end sub

See Also

CimEMAlarmEvent.GenTime (Property, Read)

Syntax AlarmEvent.GenTime

Description Date. Returns the day and time the alarm was generated.

Example
Sub Main()

Dim AlarmEvent as CimEmAlarmEvent
Set AlarmEvent = CimGetEMEvent().AlarmEvent()
PointSet “TEXT_ALARM_GEN_TIME”, cstr(AlarmEvent.GenTime)
End if

end sub

26-10 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CimEMAlarmEvent.Message (Property, Read)

Syntax AlarmEvent.Message

Description String. Returns the text of the Alarm Message of the alarm that triggered the event.

Example
Sub Main()

Dim AlarmEvent as CimEmAlarmEvent
Set AlarmEvent = CimGetEMEvent().AlarmEvent()
PointSet “LAST_ALARM_MESSAGE”, AlarmEvent.Message
End if

end sub

CimEMAlarmEvent.PrevState (Property, Read)

Syntax AlarmEvent.PrevState

Description Integer. Returns the previous state of the alarm. Valid States are :

•••• AM_GENERATED

•••• AM_ACKNOWLEDGED

•••• AM_RESET

• AM_DELETED
Example

Sub Main()
Dim AlarmEvent as CimEmAlarmEvent
Set AlarmEvent = CimGetEMEvent().AlarmEvent()
If AlarmEvent.PrevState = AM_ACKNOWLEDGED then

PointSet “ALARM_PREVSTATE”, “ACKNOWLEDGED”
End if

end sub

GFK-1283G CIMPLICITY Extensions to Basic 26-11

CimEMAlarmEvent.RefID (Property, Read)

Syntax AlarmEvent.RefID

Description String. Returns the Reference ID of the alarm that triggered the event.

Example
Sub Main()

Dim AlarmEvent as CimEmAlarmEvent
Set AlarmEvent = CimGetEMEvent().AlarmEvent()
PointSet “LAST_ALARM_REF_ID”, AlarmEvent.RefID
End if

end sub

CimEMAlarmEvent.ReqAction (Property, Read)

Syntax AlarmEvent.ReqAction

Description Integer. Returns the action requested on the alarm. For example, if the user had acknowledged the
alarm in the Alarm Viewer the requested action would be AM_ACKNOWLEDGED.

Example
Sub Main()

Dim AlarmEvent as CimEmAlarmEvent
Set AlarmEvent = CimGetEMEvent().AlarmEvent()
If AlarmEvent.ReqAction = AM_ACKNOWLEDGED then

PointSet “ALARM_MESSAGE”, “Alarm has been Acknowledged”
End if

end sub

CimEMAlarmEvent.ResourceID (Property, Read)

Syntax AlarmEvent.ResourceID

Description String. Returns the Resource ID of the alarm that triggered the event.

Example
Sub Main()

Dim AlarmEvent as CimEmAlarmEvent
Set AlarmEvent = CimGetEMEvent().AlarmEvent()
PointSet “LAST_ALARM_RESOURCE_ID”, AlarmEvent.ResourceID
End if

end sub

26-12 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CimEMEvent (Object)
Overview

An object used by the Event Manager to hold information about the event that triggered the action.

Example
Sub Main()

Dim event as CimEMEvent
Set event = CimGetEMEvent()
PointSet “LAST_EVENT_ID”, event.EventId

End Sub

Note: CimEMEvent can only be used from the Event Manager. It is not valid in
CimView/CimEdit.

CimEMEvent.ActionID (Property, Read)

Syntax Event.ActionID

Description String. Returns the Action ID that is a running the script.

Example
Sub Main()

Dim event as CimEMEvent
Set event = CimGetEMEvent()
PointSet “LAST_ACTION_ID”, event.ActionID

End Sub

CimEMEvent.AlarmEvent (Function)

Syntax Event.AlarmEvent

Description Returns CimEMAlarmEvent. Returns the Alarm Event object that triggered the action, or empty if
action was not triggered by an alarm.

Example
Sub Main()

Dim event as CimEMEvent
Set event = CimGetEMEvent()
If event.Type = EM_ALARM_GEN then

Dim alarmEvent as CimEMAlarmEvent
Set AlarmEvent = event.AlarmEvent()
‘ Process the alarm

End If

End Sub

GFK-1283G CIMPLICITY Extensions to Basic 26-13

CimEMEvent.EventID (Property, Read)

Syntax Event.EventID

Description String. Returns the EventID that triggered the event.

Example
Sub Main()

Dim event as CimEMEvent
Set event = CimGetEMEvent()
PointSet “LAST_EVENT_ID”, event.EventId

End Sub

CimEMEvent.ObjectID (Property, Read)

Syntax Event.ObjectID

Description String. If the script is invoked from an object event, the Object ID invoking the action is returned.
If the script is invoked from a non-object event, an empty string is returned

Example
Sub Main()

Dim event as CimEMEvent
Set event = CimGetEMEvent()
PointSet “LAST_OBJECT_ID”, event.ObjectID

End Sub

CimEMEvent.PointEvent

Syntax Event.PointEvent

Description Returns CimEMPointEvent. Returns the Point Event object that triggered the action, or empty if
action was not triggered by point event.

Example
Sub Main()

Dim event as CimEMEvent
Set event = CimGetEMEvent()
Dim pointEvent as CimEMPointEvent
Set pointEvent = event.PointEvent()

End Sub

26-14 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CimEMEvent.TimeStamp (Property, Read)

Syntax Event.TimeStamp

Description Date. Returns the Time Stamp at which the event occurred.

Example
Sub Main()

Dim event as CimEMEvent
Set event = CimGetEMEvent()
PointSet “LAST_EVENT_TIME”, cstr(event.TimeStamp)

End Sub

CimEMEvent.Type (Property, Read)

Syntax Event.Type

Description Integer. Returns the type of event that triggered the action. Valid values are:

• EM_ALARM_GEN – Alarm Generated

• EM_ALARM_ACK – Alarm Acknowledged

• EM_ALARM_RST – Alarm Reset

• EM_ALARM_DEL – Alarm Deleted

• EM_POINT_CHANGE – Point Changed

• EM_POINT_UNAVAIL – Point Unavailable

• EM_POINT_EQUALS – Point Equals

• EM_POINT_UPDATE – Point Updated

• EM_POINT_TRANS_HIGH – Point Transition to High

• EM_POINT_TRANS_LOW – Point Transition to Low

• EM_TIMED – Timed Event

• EM_RUN_ONCE – Run Once

• EM_TRIGGERED – Externally trigged by BCEUI or Action Calendar

Consult the Event Editor documentation for more details.

GFK-1283G CIMPLICITY Extensions to Basic 26-15

Example
Sub Main()

Dim event as CimEMEvent
Set event = CimGetEMEvent()
If event.Type = EM_ALARM_GEN then

Dim alarmEvent as CimEMAlarmEvent
Set AlarmEvent = event.AlarmEvent()
‘ Process the alarm

End If

End Sub

CimEMPointEvent (Object)

Overview
An Event Manager Object used to contain information about a Point Event

Example
Sub Main()

Dim PointEvent as CimEmPointEvent
Set PointEvent = CimGetEMEvent().PointEvent()
‘ perform processing
‘ reset the event point to 0
PointSet PointEvent.Id, 0

end sub

Related
Function

CimEMPointEvent.Id

Syntax PointEvent.Id

Description String. Returns the Point ID of the point that triggered the event.

Example
Sub Main()

Dim PointEvent as CimEmPointEvent
Set PointEvent = CimGetEMEvent().PointEvent()
‘ perform processing
‘ reset the event point to 0
PointSet PointEvent.Id, 0

end sub

Note: CimEMPointEvent can only be used from the Event Manager. It is not valid in
CimView/CimEdit

26-16 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CimEmPointEvent.Quality (Property, Read)

Syntax CimEMPointEvent.Quality

Description Long. Returns the 16-bit quality mask for the point that triggered the event.

Example
Sub Main()

Dim p as new CimEMPointEvent
Set p = CimGetEmEvent().PointEvent()
X = p.Quality

End Sub

CimEmPointEvent.QualityAlarmed (Property, Read)

Syntax CimEMPointEvent.QualityAlarmed

Description Boolean. Returns TRUE if the point that triggered the event is in alarm, FALSE otherwise.

Example
Sub Main()

Dim p as new CimEMPointEvent
Set p = CimGetEmEvent().PointEvent()
if p.QualityAlarmed then

DoSomething
End If

End Sub

CimEmPointEvent.QualityAlarms_Enabled (Property,
Read)

Syntax CimEMPointEvent.QualityAlarms_Enabled

Description Boolean. Returns TRUE if alarming for the point that triggered the event is enabled, FALSE
otherwise.

Example
Sub Main()

Dim p as new CimEMPointEvent
Set p = CimGetEmEvent().PointEvent()
if p.QualityAlarms_Enabled then

DoSomething
End If

End Sub

GFK-1283G CIMPLICITY Extensions to Basic 26-17

CimEmPointEvent.QualityDisable_Write (Property, Read)

Syntax CimEMPointEvent.QualityDisable_Write

Description Boolean. Returns TRUE if setpoints have been disabled for the point that triggered the event,
FALSE otherwise.

Example
Sub Main()

Dim p as new CimEMPointEvent
Set p = CimGetEmEvent().PointEvent()
if p.QualityDisable_Write Then

DoSomething
End If

End Sub

CimEmPointEvent.QualityIs_Available (Property, Read)

Syntax CimEMPointEvent.QualityIs_Available

Description Boolean. Returns TRUE if the value of the point that triggered the event is available, FALSE if the
value is unavailable.

Example
Sub Main()

Dim p as new CimEMPointEvent
Set p = CimGetEmEvent().PointEvent()
if p.QualityIs_Available = FALSE then

DoSomething
End If

End Sub

CimEmPointEvent.QualityIs_In_Range (Property, Read)

Syntax CimEMPointEvent.QualityIs_In_Range

Description Boolean. Returns TRUE if the value of the point that triggered the event is in range, FALSE if the
point is out of range. When a point is out of range its value is unavailable.

Example
Sub Main()

Dim p as new CimEMPointEvent
Set p = CimGetEmEvent().PointEvent()
if p.QualityIs_In_Range = FALSE then

DoSomething
End If

End Sub

26-18 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CimEmPointEvent.QualityLast_Upd_Man (Property,
Read)

Syntax CimEMPointEvent.QualityLast_Upd_Man

Description Boolean. Returns TRUE if the value of the point that triggered the event came from a manual
update rather than a device read.

Example
Sub Main()

Dim p as new CimEMPointEvent
Set p = CimGetEmEvent().PointEvent()
If p.QualityLast_Upd_Man then

DoSomething
End If

End Sub

CimEmPointEvent.QualityManual_Mode (Property, Read)
Syntax CimEMPointEvent.QualityManual_Mode

Description Boolean. Returns TRUE if the point that triggers the event was in Manual Mode, otherwise
FALSE.

Example
Sub Main()

Dim p as new CimEMPointEvent
Set p = CimGetEmEvent().PointEvent()
if p.QualityManual_Mode then
ProcessManualMode

End if
End Sub

CimEmPointEvent.QualityStale_Data (Property, Read)

Syntax CimEMPointEvent.QualityStale_Data

Description Boolean. Returns TRUE if the value of the point that triggered the event is stale, otherwise
FALSE.

Example
Sub Main()

Dim p as new CimEMPointEvent
Set p = CimGetEmEvent().PointEvent()
if p.QualityStale_Data = TRUE

DoSomething
End If

End Sub

GFK-1283G CIMPLICITY Extensions to Basic 26-19

CimEMPointEvent.State (Property, Read)

Syntax PointEvent.State

Description Integer. Returns the state of the point. Can be used to determine if the point is available. See
Point.State for a complete description of states.

Example
Sub Main()

Dim PointEvent as CimEmPointEvent
Set PointEvent = CimGetEMEvent().PointEvent()
If PointEvent.State = CP_UNAVAILABLE THEN

LogStatus CIM_FAILURE,"Main()", _
"Point “ & Point.Id & “is unavailable"

end
End if

end sub

CimEMPointEvent.TimeStamp (Property, Read

Syntax PointEvent.TimeStamp

Description Date. Returns the date and time of the point change that triggered the event.)

Example
Sub Main()

Dim PointEvent as CimEmPointEvent
Set PointEvent = CimGetEMEvent().PointEvent()
PointSet “LAST_EVENT_TIME”, cstr(PointEvent.TimeStamp)

end sub

CimEmPointEvent.UserFlags (Property, Read}

Syntax CimEMPointEvent.UserFlags

Description Long. Returns the value of the 16-bit user defined flags for the point that triggered the event.

Example
Sub Main()

Dim p as new CimEMPointEvent
Set p = CimGetEmEvent().PointEvent()
X = p.UserFlags

End Sub

26-20 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CimEMPointEvent.Value (Property, Read)

Syntax PointEvent.Value

Description Variant. Returns the value of the point that triggered the event.

Example
Sub Main()

Dim PointEvent as CimEmPointEvent
Set PointEvent = CimGetEMEvent().PointEvent()
PointSet “OUTPUT_POINT”, PointEvent.Value + 100

end sub

CimGetEMEvent (Function)

Syntax CimGetEMEvent()

Description Returns a CimEMEvent object. A function to return the event object that causes the action to run.
Only valid from Event Manager.

Example
Sub Main()

Dim event as CimEMEvent
Set event = CimGetEMEvent()
PointSet “LAST_EVENT_TIME”, cstr(event.TimeStamp)

End Sub

Note: CimGetEMEvent can only be used from the Event Manager. It is not valid in
CimView/CimEdit. See the "CIMPLICITY HMI Basic Control Engine Program Editor Operation Manual"
(GFK-1305) for information about fabricating an event.

CimIsMaster (Function)

Syntax CimIsMaster

Description In a computer with Server Redundancy, to determine if the computer is operating in Master or
Slave mode.

This function returns True if the computer is currently the active master.

This function returns False if the computer is currently the slave.

Example
Sub Main()

If CimIsMaster then
MoveCrane

End if
End Sub

GFK-1283G CIMPLICITY Extensions to Basic 26-21

CimLogin (Procedure)

Syntax CimLogin project$

Description Initiates a login for the specified project. Similar in effect to selecting login from the Login Panel.
Only valid when the user is actively using points or viewing alarms from the project, otherwise it
has no effect. Initiating a login will cause the CIMPLICITY login box to be displayed.

Comments Parameter Description
project$ String. The project to login to.

Example
Sub Main()

CimLogin “CIMPDEMO”
End Sub

CimLogout (Procedure)

Syntax CimLogout project$

Description Logs the user out of the specified project. Similar in effect to selecting logout from the Login
Panel. When the user is logged out of the project, all points from the project will be unavailable
and no alarm information will be available. If the user is not logged into the project, the call has no
effect.

Comments Parameter Description
project$ String. The project to logout of.

Example
Sub Main()

CimLogout “CIMPDEMO”
End Sub

26-22 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CimProjectData (Object)

Overview The CimProjectData object provides the ability to search and return specific pieces of a project’s
configuration. The underlying APIs used by the CimProjectData object are the same as those used
to browse point configuration on a remote project. In general, this object provides a convenient
way to retrieve a set of attributes based on specified filter criteria. This object provides a read-only
capability.

To write configuration, please see the help file for the CIMPLICITY Configuration Object Model.

Example
Sub Main()

‘ This example retrieves all points beginning with A for Device MY_PLC
‘ in project MY_PROJECT and displays the point id and resource id of
‘ each matching item.
Dim d as new CimProjectData
d.Project = “MY_PROJECT”
d.Entity = “POINT”
d.Filters = “POINT_ID=A*,DEVICE_ID=MY_PLC”
d.Attributes = “POINT_ID,RESOURCE_ID”
Dim p as string
Dim r as String

top:
if d.GetNext(p,r) = TRUE then

MsgBox “Point Id = “ & p & “ Resource Id = “ & r
goto top

End if
end sub

CimProjectData.Project (Property, Read/Write)

Syntax CimProjectData.Project

Description String. Get/set the project to browse data from.

Must be specified when used from CimView.

For use in the Event Manager, the project name should be empty to browse the local project.

Example
Dim d as new CimProjectData
d.project = “MY_PROJECT”

GFK-1283G CIMPLICITY Extensions to Basic 26-23

CimProjectData.Entity (Property, Read/Write)

Syntax CimProjectData.Entity

Description String. The entity to obtain data for. Below is a list of the available entities and their attributes.

Entity Description
ACTION Contains Action information

Attribute ID Filter Description
ACTION_ID Yes Action ID
ACTION_TYPE No Action Type
POINT_ID No Point ID targeted by the action
PT_VAL No Point value
PROC_OF_SRCPT No Source point,

ALARM_CLASS Contains Alarm Class information
Attribute ID Filter Description
CLASS_ID Yes Class ID
CLASS_TITLE Yes Class title
CLASS_ORDER No Class order
CLASS_ALARM_FG No The foreground color to use for

points of this class that are in alarm
state

CLASS_ALARM_BG No The background color to use for
points of this class that are in alarm
state

CLASS_NORMAL_FG No The foreground color to use for
points of this class that are in
normal state

CLASS_NORMAL_BG No The background color to use for
points of this class that are in
normal state

CLASS_ACK_FG No The foreground color to use for
points of this class that are in
acknowledged state

CLASS_ACK_BG No The background color to use for
points of this class that are in
acknowledged state

CLASS_WAVE_FILE No The WAV file to play from the
Alarm Sound Manager

CLASS_BEEP_FREQ No Frequency of beeps from the Alarm
Sound Manager

CLASS_BEEP_DURATION No Duration of beeps from the Alarm
Sound Manager

CLASS_BEEP_DELAY No Delay between beeps from the
Alarm Sound Manager

26-24 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

ALARM_DEF Contains Alarm information
Attribute ID Filter Description
ALARM_ID Yes Alarm ID
CLASS_ID Yes Alarm Class of the alarm
ALARM_TYPE_ID Yes Alarm Type ID of the alarm
DESCRIPTION Yes Description of the alarm

AMLP Contains Alarm Printer information
Attribute ID Filter Description
AMLP_NAME Yes Alarm printer name
AMLP_PORT No Alarm printer port
PAGE_WIDTH No Page width
PAGE_LENGTH No Page length
DATE_FORMAT No Date format
TIME_FORMAT No Time format

CLASS Contains Class information
Attribute ID Filter Description
CLASS_ID Yes Class ID
DESCRIPTION Yes Description of the class

CLIENT Contains Client information
Attribute ID Filter Description
NODE_ID Yes Computer name
USER_ID No Default User ID
TRUSTED No Trusted computer

DEVICE Contains Device information
Attribute ID Filter Description
DEVICE_ID Yes Device ID
RESOURCE_ID Yes Resource ID for the device
DESCRIPTION Yes Device description
PORT_ID Yes Port ID for the device

EVENT Contains Event information
Attribute ID Filter Description
EVENT_ID Yes Event ID
EVENT_TYPE No Event type
EM_ENABLED No Event enabled flag
ID No Event source identifier
RESOURCE_ID No Resource ID of the event
PT_VAL No For Point Equal event, the value of

the point

EVENT_ACTION Contains Event-Action information
Attribute ID Filter Description
EVENT_ID Yes Event ID
ACTION_ID Yes Action ID for the event
LOG_FLAG No Flag indicating if the event-action

is to be logged

GLB_PARMS Contains Global Parameter information for the project
Attribute ID Filter Description
PARM_ID Yes Global Parameter ID
PARM_VALUE No Value of the global parameter

GFK-1283G CIMPLICITY Extensions to Basic 26-25

OBJECT Contains object information
Attribute ID Filter Description
OBJECT_ID Yes Object ID
CLASS_ID Yes Class ID for the object
DESCRIPTION Yes Object description

OBJECT_INF This is a specialized entity used to extract information from a specified
object. The filter for this entity is OBJECT_ID=MY_OBJECT, where
MY_OBJECT is replaced with the object name you wish to read. Since the
function returns specialized attribute information, only one of the attributes
may be used at a time.

This entity may not be used from the Event Manager or without a specified
running project.
Attribute ID Filter Description
DATA_ITEM No Returns all data items for the

object. Each data item returns by a
GetNext call.

ATTRIBUTE, VALUE No Returns the attribute for the object.
If VALUE is specified, it must be
the second attribute, and the value
of the attribute will be returned

CLASS_ID No The Class ID of the object
DEFAULT_GRAPHIC No Returns the name of the default

graphic for the object's class. Must
be specified with
GRAPHICS_FILE
Example
obj.Attributes=
"GRAPHICS_FILE,DEFAULT_
GRAPHIC"

GRAPHICS_FILE No The Graphics File specified for the
object’s class

HELP_FILE No The Help File specified for the
object’s class

26-26 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

POINT Contains Point information
Attribute ID Filter Description
POINT_ID Yes Point ID
DEVICE_ID Yes The Device ID for the point.

If the point is a global point, the
device is “$GLOBAL”.
If the point is an equation point,
the device is “$DERIVED

RESOURCE_ID Yes The Resource ID of the point
POINT_TYPE_ID Yes The Point Type ID of the point

(UINT, REAL, etc.)
DESCRIPTION Yes The description of the point
DISPLAY_LIMITS_HI No The high display limit of the point
DISPLAY_LIMITS_LO No The low display limit of the point
DISPLAY_LIMITS No The low and high display limits of

the point separated by a hyphen
DISPLAY_FORMAT No The display format for the point
ELEMENTS No The number of array elements
ADDRESS No The device address of the point
ADDRESS_OFFSET No The address offset for the point
HAS_EU No Set to 1 if the point has EU

Conversion, otherwise set to 0
ALARM_HI No The high alarm limit for the point
ALARM_LO The low alarm limit for the point
WARNING_HI The high warning limit for the

point
WARNING_LO The low warning limit for the point
ACCESS_FILTER Yes If the point is an enterprise point,

this field is set to “E”
READ_WRITE No Indicates if point is read/write
MODIFIED No The data and time in string format

that the point was last edited

POINT_ALSTR Contains Alarm String information
Attribute ID Filter Description
ALARM_STR_ID No Alarm String ID
ALARM_HI_STR No String for Alarm High state
ALARM_LOW_STR No String for Alarm Low state
WARNING_HI_STR No String for Warning High state
WARNING_LO_STR No String for Warning Low state

POINT_DISP Contains Point Display information
Attribute ID Filter Description
POINT_ID Yes Point ID
SCREEN_ID No The screen associated with the

point
DISPLAY_LIM_LOW No The low limit for the point value

display. Values below this limit
will display as asterisks (***)

DISPLAY_LIM_HIGH No The high limit for the point value
display. Values above this limit
will display as asterisks (***)

GFK-1283G CIMPLICITY Extensions to Basic 26-27

POINT_TYPE Contains Point Type information
Attribute ID Filter Description
POINT_TYPE_ID Yes The Point Type ID
DATA_TYPE No The numeric data type code for the

point type
DATA_LENGTH No The numeric data length for the

point type

PORT Contains Port information
Attribute ID Filter Description
PORT_ID Yes The Port ID
PROTOCOL_ID No The protocol used by the port
DESCRIPTION No Port description

PROJECTS Contains information on Remote Projects
Attribute ID Filter Description
PROJECT_NAME Yes Project Name
USER_ID No The User ID to log into the project
PASSWORD No Encrypted password for project

login
ENABLE No Indicates if the project is enabled
EXCLUSIVE No Indicates if the project is exclusive
CONCPOINTS No For an Enterprise Server, indicates

if points are collected
CONCALARMS No For an Enterprise Server, indicates

if alarms are collected

PROTOCOL Contains Protocol information
Attribute ID Filter Description
PROTOCOL_ID Yes Protocol ID

RESOURCE Contains Resource information
Attribute ID Filter Description
RESOURCE_ID Yes The Resource ID
DESCRIPTION No Description of the resource

ROLE Contains Role information
Attribute ID Filter Description
ROLE_ID Yes The Role ID

SYS_PARMS Contains global parameter information for the system
Attribute ID Filter Description
PARM_ID Yes System Parameter ID
PARM_VALUE No Value of the system parameter

USER Contains User Information
Attribute ID Filter Description
USER_ID Yes The User ID
ROLE_ID Yes The user’s Role ID
PASSWORD No The user’s encrypted password
USER_NAME No The user’s name
ENABLE No Indicates if the user account is

enabled or disabled.

Example
Dim d as New CimProjectData
d.Entity = “POINT”

26-28 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CimProjectData.Attributes (Property, Read/Write)

Syntax CimProjectData.Attributes

Description String. The list of attributes, separated by commas, of the entity to return for each item matching
the filter criteria.

The Attribute IDs are case sensitive and must be entered in the case documented in
CimProjectData.Entity.

Example
Dim d as new CimProjectData
d. Attributes = “POINT_ID,RESOURCE_ID,DESCRIPTION”

CimProjectData.Filters (Property, Read/Write)

Syntax CimProjectData.Filters

Description String. The filter set to be used to determine which items to return. Each filter contains an
Attribute ID and Value pair. You can use “*” and “?”as wildcard characters.

The filters are documented in CimProjectData.Entity.

Filters must be in uppercase even when matching against lowercase data.

Example
Dim d as new CimProjectData
d.Filters = “POINT_ID=P*”,DEVICE_ID=TESTP?C”

GFK-1283G CIMPLICITY Extensions to Basic 26-29

CimProjectData.GetNext (Function)

Syntax CimProjectData.GetNext(p1$ [,p2$ [,p3$…) as Boolean

Description This function returns the specified attributes for the next item that matches the filter criteria. If a
record is found, a value of TRUE is returned, otherwise a value of FALSE is returned.

The function takes a variable number (20 maximum) of string parameters.

The values returned into the parameters are defined by the attributes specified for the object.

Comments Parameter Description
p1$ String. First attribute for the object

: :

p20$ String. Twentieth attribute for the object

Example The following sample script returns all the data items for the PID1 object.
Sub main()

Dim browse as new CimProjectData
Browse.Project = “MY_PROJ”
Browse.Entity = “OBJECT_INF”
Browse.Attributes = DATA_ITEM”
Browse.Filters = “OBJECT_ID=PID1”
Dim dataItem as String

Top:
If Browse.GetNext(dataItem) = False then end
Msgbox dataitem
Goto top

End Sub

The following sample script returns all points for a device:
Sub main()

Dim browse as new CimProjectData
Browse.Project = “MY_PROJ”
Browse.Entity = “POINT”
Browse.Attributes = “POINT_ID,RESOURCE_ID”
Browse.Filters = “DEVICE_ID=PLC1”

Top:
If Browse.GetNext(p$,r$) = False then end
Msgbox “Point Id “ & p$ & “ Resource id “ & r$
Goto top

End Sub

26-30 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CimProjectData.Reset (Method)

Syntax CimProjectData.Reset

Description Resets the list so that a new set of search criteria, attributes, or project may be specified.

Example
d.reset

GetKey (Function)

Syntax a$ = GetKey(key$, string$)

Description To search for a keyword and returns its value. This is of use particularly from the Basic Control
Engine to extract the EVENT and ACTION, which caused the script to run. An empty string is
returned if the key is not found.

Comments Parameter Description
key$ String. The keyword to search for.

string$ String. The string to search for the keyword. The format of this string is
keyword followed by an equal sign and the value. A comma separates
multiple keyword value combinations.

Example
sub main()

event_id$= GetKey("EVENT", command$)
action_id$ = GetKey("ACTION", command$)
' Name$ will contain PETE after this statement.
name$ = GetKey("NAME","NAME=PETE,LOCATION=ALBANY")

end sub

GetSystemWindowsDirectory (Function)
Syntax d$ = GetSystemWindowsDirectory

Description Returns the true Windows directory and not the per user Windows directory when running under
Terminal Services.

Example
Sub Main()

direct$ = GetSystemWindowsDirectory
MsgBox "GetSystemWindowsDirectory = " & direct$

End Sub

GFK-1283G CIMPLICITY Extensions to Basic 26-31

GetTSSessionId (Function)
Syntax id& = GetTSSessionId

Description The Session ID of the Terminal Services client. This is 0 if running on the console or if Terminal
Services is not running.

Example
Sub Main()

myid& = GetTSSessionId
MsgBox "Terminal Services Session Id = " & myid&

End Sub

IsTerminalServices (Function)
Syntax IsTerminalServices

Description Returns True if this computer is running Terminal Services.

Example
Sub Main()

MsgBox "Terminal Services = " & IsTerminalServices
End Sub

26-32 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

LogStatus (Property, Read/Write)

Syntax LogStatus Severity, Procedure$, Message$ [, error_code [, error_reference]]

Description To provide the programmer with the ability to log errors to the CIMPLICITY Status Log. To view
the errors, use the CIMPLICITY Status Log Viewer.

Comments Parameter Description
Severity Integer. The severity of the error.

• CIM_SUCCESS - An Informational Error

• CIM_WARNING - A warning message

• CIM_FAILURE - A failure message

Procedure$ String. The name of the Basic Procedure which logged the error.

Message$ String. The error message to log.

error_code Long (optional). A user-defined error code.

error_reference Long (optional). A user-defined error reference. Used to distinguish the
difference between two errors with the same error_code.

Example
sub main()

on error goto error_handler
....
..

exit sub
error_handler :

' error$, err, and erl are BASIC variables which contain the
' error text, error code and error line respectively.
LogStatus CIM_FAILURE, "main()", error$, err, erl
exit sub

end sub

GFK-1283G CIMPLICITY Extensions to Basic 26-33

Point (Subject)

Overview The values of CIMPLICITY HMI points can be used in a variety of ways by a script. You can use
scripts that act on point values to define reactions to changing conditions in your process.

Points are manipulated by the PointSet statement and PointGet function or the point object.
In general, PointSet and PointGet are useful if you require the value of the point or wish to
set the point. The point object extends your capabilities by allowing you to receive point values as
they change, access array points, provide more information about the point’s configuration; and
improve performance when repeatedly setting a point.

Security The CIMPLICITY extensions to Basic provide the same security which all your CIMPLICITY
HMI applications use; Set Point Security, Set Point Privilege, Download Password and Set Point
Audit trail. Consult your CIMPLICITY HMI for Windows NT and Windows 95 Base System User's
Manual (GFK-1180) for a detailed description of these features.

In order to discuss security, first we will need to understand when security is imposed on your
access to points. There are two categories of processes running on your CIMPLICITY HMI
Server; User Applications and Resident Processes.

User Applications are applications run by the user, that usually provide a user interface. Examples
of such programs are CimView, CimEdit, Alarm Viewer and Program Editor. In order for the
application to access a point on the local CIMPLICITY HMI project or a remote CIMPLICITY
HMI project, a user login is required. The CIMPLICITY HMI privileges defined for your User ID
define your capabilities.

Resident Processes are processes that are started as part of your CIMPLICITY HMI project.
Examples of resident processes are the Database Logger, Point Manager and scripts automatically
run by the Basic Control Engine. Since a resident process is a trusted part of your system, a
resident process is not required to obtain a login in order to access points in their project. If the
resident process wishes to access a point on a remote system, a remote project must be configured
to supply the resident process with the User ID and Password with which to log in to the remote
system.

Performance The CIMPLICITY extensions to Basic provide a high performance mechanism to interact with your
Point Database. However, there are several considerations to keep in mind when designing your
application to obtain the highest performance possible.

First, is the Set Point Audit Trail. For each CIMPLICITY HMI role, you may configure whether or
not the user will generate an audit trail for each setpoint. The audit trail is composed of a
$DOWNLOAD event containing information on who set the point. This information is sent to your
event log and can provide a detailed audit trail of who and what was set. However, the audit trail
imposes significant overhead (20 times slower), since the record is logged to the database for each
setpoint. This is particularly noticeable when running setpoints in a loop in the Program Editor.
However, when the script is run from the Basic Control Engine, a $DOWNLOAD event will not be
generated since a resident process is trusted. If you do not require an audit trail is it recommended
that you disable it through role configuration (this is the default).

26-34 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Second, is the difference between a PointSet statement and using the Point Object. With a Point
Object, you create the object once and initialize its point information once (data type, elements,
etc.). Subsequent operations on the Point are very fast, since the point characteristics are contained
in the object. Conversely, PointSet and PointRead must fetch the point information on each
execution (in benchmark testing this is 2 times slower.)

Consider the following example :
' Example One
sub slow_set()

for I = 0 to 100
PointSet "MY_POINT", I

next I
end sub
' Example two
sub fast_set

Dim MyPoint as new Point
MyPoint.Id = "MY_POINT"
for I = 0 to 100

MyPoint.SetValue = I
next I

end sub

The subroutine fast_set ramps the point ten times faster than the slow_set routine. While the
second example at first may appear more complex, you will find that the object interface provides
much more flexibility. As a rule, use PointGet and PointSet when you need to read or set the
point's value once within your script.

Polling CIMPLICITY HMI provides a high performance Point Interface. As a result, improperly written
applications can degrade the overall performance of a system. One common issue is polling a point
to wait for it to change. Consider the following example.

Incorrect Code
Poll:
If PointGet("POLL_POINT") = 0 then

Sleep 100
Goto poll

Endif

The sleep statement causes a 100ms delay between polls. However many extra polls are still being
performed.

Correct and Most Efficient Code
Dim p as new point
p.Id = "POLL_POINT"
p.Onchange
Poll:
Wait_for

p.GetNext
if p.Value=0 then goto wait for

In this example, the script requests the value of the point as it changes. When the point changes, the
GetNext statement returns. When the point is not changing the script is waiting and using no
system resources.

GFK-1283G CIMPLICITY Extensions to Basic 26-35

Error
Handling

Basic provides a flexible error handling capability with the On Error command. The CIMPLICITY
extensions to Basic are designed to use the built in error handling capability. When an error occurs
while executing your CIMPLICITY command, a Basic Run Time error is generated. There are
many ways you can implement error handling. Among these are :

• No error handling. When an error occurs, the script's execution halts and the error is
reported (in the Program Editor, this is via a Message Box, and in the control engine by
logging an error message to the status log).

• Error Handler. When an error occurs, the script's execution moves to the defined error
handler. Within the error handler, the user can report the error or try to recover.

• In line error checking. When an error occurs, the script's execution continues on the next
program statement. The user can check the err variable to determine if an error occurred.

In the fast_set example above a run time error could be generated on the setting of the ID or the
setting of the value. Since the routine provides no error handling, when an error occurs, the routine
exits and returns to the calling routine. If no error handler is found as the program returns up the
call stack, a default error handler reports the run-time error. If you run the script from the Program
Editor, a dialog box opens, and if it is run from the Basic Control Engine, a Status Log message is
created.

Consider the two examples below:
sub inline_errorcheck()

' When an error occurs continue execution at the next statement
on error resume next
PointSet "BAD_POINT", 10
' Did an error occur?
If err <> 0 then

' clear the error
err = 0
exit sub

End if
PointSet "BAD_POINT1", 10
if err <> 0 then

err = 0
exit sub

end if
end sub

sub outline_errorcheck()
' When an error occurs goto the error handler
on error goto error_handler
PointSet "BAD_POINT", 10
PointSet "BAD_POINT1", 10
exit sub

error_handler:
MsgBox "Error"
exit sub

end sub

You can choose how to handle or not handle error conditions.

26-36 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Point (Object)

Overview The Point object provides an object-oriented interface to CIMPLICITY HMI real-time point data.
Through the object, you may set and read point values. Methods are supplied to receive the point
value as it changes, periodically, or when the alarm state changes.

Example
Dim MyPoint as new Point ' Creates a new empty point object
Dim ThisPoint as Point ' Creates a pointer to a point object
Set ThisPoint = MyPoint ' Now the two object are equal

Notes

In the above example, we create a point object in two different ways. The first example using the
new keyword, is typically the method you will use. This constructs a point object, at which time
you can set the ID of the point and use it. The second example creates a reference to a point and
sets it to empty. A run-time error will occur if you attempt to access methods of the object, since it
is currently unassigned. You can assign the reference to a particular object by using the set
command. In general, you will use this with the PointGetNext function, which takes a list of
point objects and returns the first one that changes.

Point.AlarmAck (Property, Read)

Syntax Point.AlarmAck

Description Boolean. When used in combination with the Point.OnAlarmAck method, a Boolean is
returned indicating if the point's alarm is in an Acknowledged state.

Example
Sub Main()

Dim x as new Point
x.ID = "Some_point"
x.OnAlarmAck

top:
x.GetNext
Trace "Alarm Ack state is " & x.AlarmAck

end sub

GFK-1283G CIMPLICITY Extensions to Basic 26-37

Point.Cancel (Method)

Syntax Point.Cancel

Description To cancel the currently active OnChange, OnAlarm, OnTimed or OnAlarmAck request.

Example
Sub Main()

Dim t as new Point
t.Id = "TIME"
' Read the next two values of the point
t.OnChange
for i = 1 to 2

t.GetNext
next I
' Cancel the onchange request.
t.Cancel
' Get the point value every three seconds
t.OnTimed 3
for i = 1 to 2

t.GetNext
next I

End Sub

See Also Point.OnChange, Point.OnTimed, Point.OnAlarm, Point.OnAlarmAck

Point.DataType (Property, Read)

Syntax Point.DataType

Description Integer. To return the numeric data type of the point.

Comments The following are the possible return values.

Return Value Description
CP_DIGITAL A digital or Boolean value. Range True or False

CP_STRING A character string.
CP_USHORT An unsigned short (8-Bit) integer.
CP_UINT An unsigned (16-Bit) integer.
CP_UDINT An unsigned long (32-Bit) integer, returned as a double precision floating

point number
CP_SHORT A signed short (8-bit) integer.
CP_INT A signed (16-bit) integer.
CP_DINT A signed long (32-bit) integer.
CP_REAL A double precision floating point.
CP_BITSTRING A bitstring. Can only be returned as a character string.
CP_STRUCT A structure point. Structure points are not currently supported.

26-38 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example
if MyPoint.DataType = CP_STRING then

a$ = MyPoint.Value
else

a% = MyPoint.Value
end if

See Also Point.PointTypeId

Point.DisplayFormat (Property, Read)

Syntax Point.DisplayFormat

Description String. To return a string containing the configured display format for the point.

Point.DownloadPassword (Property, Read)

Syntax Point.DownLoadPassword

Description Boolean. To determine if a download password is required to set the point.

Example
' Prompt the user for the download password if required to set
' the point.
Sub Main()

Dim p as new Point
p.Id = "CP_UINT"
p.Value = 10
if p.DownLoadPassword then

pass$ = AskPassword("DownLoad Password:")
p.Set pass$

else
p.Set

end if
End Sub

Related
Function

Point.SetPointPriv, Point.InUserView

GFK-1283G CIMPLICITY Extensions to Basic 26-39

Point.Elements (Property, Read)

Syntax Point.Elements

Description Integer. To return the number of elements configured for the point. For array points this will be
greater than 1, for non-array points the value will be 1.

Example
sub main()

Dim MyPoint as new Point
MyPoint.Id = "ARRAY_POINT"
for x = 0 to MyPoint.Elements - 1
MyPoint.Value(x) = x

next x
MyPoint.Set

end sub

Point.EnableAlarm (Method)

Syntax Point.EnableAlarm enable

Description To enable or disable alarming on the point. Can be used to temporarily disable alarming on a point.

Comments Parameter
Enable – Boolean – a value of TRUE enables alarming for the point and value of FALSE disables
alarming for the point.

Example
Sub Main()

Dim myPoint As New point
myPoint.Id = "ALARM_POINT"
' Disable alarm for point.
myPoint.EnableAlarm FALSE

End Sub

Point.Enabled (Property, Read)

Syntax Point.Enabled

Description Boolean. To determine if the point is enabled to be collected from the PLC.
' Return if the point is disabled.
If MyPoint.Enabled = FALSE then

exit sub
end if

26-40 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Point.EuLabel (Property, Read)

Syntax Point.EuLabel

Description String. To retrieve the Engineering Units Label for a point.

Example
a$ = MyPoint.EuLabel

or
if MyPoint.EuLabel = "Litres" then

...
end if

Point.Get (Method)

Syntax Point.Get

Description To get the current value of the point from the CIMPLICITY Point Manager and store it in the
object. You may inspect the value through the Value and RawValue properties.

Example
Sub Main()

Dim MyPoint as new Point
MyPoint.Id = "\\PROJECT1\POINT1"
MyPoint.Get
MsgBox "The value is " & MyPoint.Value

End Sub

Related
Routines

Point.Value, Point.OnChange, Point.OnTimed

GFK-1283G CIMPLICITY Extensions to Basic 26-41

Point.GetArray (Method)

Syntax Point.GetArray array [, startElement [, endElement [, fromElement]]]

Description To retrieve an array point's values directly into a Basic array using Engineering Units Conversion if
applicable. There are several rules to keep in mind:

• If the array is undimensioned, the array will be redimensioned to the same size as the
point.

• If the array is dimensioned smaller than the point, only that many elements will be
copied into the array.

• If the array is larger than the point, all elements of the point are copied, and the rest of
the array is left as is.

If the startElement is specified, the function will start copying data into the array at this element
and will continue until the end of the point is reached or the array is full whichever occurs first.

If the endElement is specified, the function will stop copying data into the array after populating
this element or when the end of the point is reached.

If the fromElement is specified, the values copied into the array start at this element in the point
array and continue as described above.

Note

You must get the point value using the Get or GetNext method prior to using the GetArray
method. The GetArray method does not retrieve the current value from the Point Manager.
Instead, it retrieves the current value in the Point Object, which was generated during the last Get
or GetNext. See the example below.

Comments Parameter Description
array Array. A dimensioned or undimensioned Basic Array to which the point

data will be copied.

startElement (optional) Integer. The first array element to which data will be copied.

endElement (optional) Integer. The last array element to which data will be copied.

fromElement (optional) Integer. The first point element from which data is to be copied.

Example
sub main()

Dim values() as integer
Dim p as new Point ' Declare the point object
p.Id = "ARRAY_POINT" ' Set the Id
p.Get ' Get value from CIMPLICITY
p.GetArray values ' Copy the object into values

end sub

Related
Function

Point.SetArray, Point.GetRawArray, Point.HasEuConv, Point.Value,
Point.RawValue

26-42 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Point.GetNext (Function)

Syntax Point.GetNext[(timeout)]

Description Boolean. A function, to read the next value of a point with a specified timeout in milliseconds.
Returns True if the point was read, False if it timed out.

Example
sub main()

Dim MyPoint as new Point
MyPoint.Id = "TIME" ' Set the Id
MyPoint.OnChange ' Request the value on change
MyPoint.GetNext ' The current value is returned immediately.
if MyPoint.GetNext(1000) then ' Wait 1 second for the next value.

MsgBox MyPoint.Value ' Display the value.
Else

MsgBox "Timeout" ' Point didn't change in one second.
end if

end sub

Related
Routines

Point.OnChange, Point.OnTimed, Point.OnAlarm, Point.OnAlarmAck,
Point.Cancel

Point.GetNext (Method)

Syntax Point.GetNext

Description To wait for and get the next value of the point. This method returns when a point update is
received for the point, based on a previously submitted OnChange, OnAlarm, OnTimed or
OnAlarmAck call. If the point never changes, the call never returns. To wait with a timeout, see
the GetNext(function.)

Example
' Calculate the average of the next two point values.
Sub main()

Dim MyPoint as new Point
MyPoint.Id = "TANK_TEMPERATURE" ' Set the Id
MyPoint.OnChange ' Request point onchange
MyPoint.GetNext ' Retrieve the first value.
x = MyPoint.Value ' Record the value.
MyPoint.GetNext ' Wait for the next value.
x1 = MyPoint.Value ' Record the value
ave# = (x + x1)/ 2 ' Calculate the average
MsgBox "The average was " & str$(ave)

end sub

See Also Point.OnChange, Point.OnAlarm, Point.OnTimed, Point.OnAlarmAck

GFK-1283G CIMPLICITY Extensions to Basic 26-43

Point.GetRawArray (Method)

Syntax Point.GetRawArray array [, startElement [, endElement [, fromElement]]]

Description To retrieve an array points value directly into a Basic array bypassing Engineering Units
Conversion. There are several rules to keep in mind

• If the array is undimensioned, the array will be redimensioned to the same size as the
point.

• If the array is dimensioned smaller than the point, only that many elements will be
copied into the array.

• If the array is larger than the point, all elements of the point are copied, and the rest of
the array is left as is.

If the startElement is specified, the function will start copying data into the array at this element
and will continue until the end of the point is reached or the array is full whichever occurs first.

If the endElement is specified, the function will stop copying data into the array after populating
this element or when the end of the point is reached.

If the fromElement is specified, the values copied into the array start at this element in the point
array and continue as described above.

Comments Parameter Description
array Array. A dimensioned or undimensioned Basic Array to which the point data

will be copied.

startElement (optional) Integer. The first array element to which data will be copied.

endElement (optional) Integer. The last array element to which data will be copied.

fromElement (optional) Integer. The first point element from which data is to be copied.

Example
sub main()

Dim rawValues() as integer
Dim p as new Point ' Declare the point object
p.Id = "ARRAY_POINT" ' Set the Id
p.Get ' Get value from CIMPLICITY
p.GetRawArray rawValues ' Copy the object into values

end sub

See Also Point.GetArray, Point.SetRawArray, Point.HasEuConv, Point.Value,
Point.RawValue

26-44 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Point.GetValue (Property, Read)

Syntax Point.GetValue

Description To get a snapshot of the point value from the Point Manager and return it. This operation combines
the Get Method and Value Property into a single command.

Note

If the point is unavailable (due to the device being down, remote server unavailable, etc.) an error
will be generated if you attempt to access the value (since the value is unavailable.) See the
Point.State property if you need to determine if the point is available or not.

Example
sub main()

Dim MyPoint as new Point ' Declare the point object
MyPoint.Id = "TANK_LEVEL" ' Set the point id
x = MyPoint.GetValue ' Read and return the value.

end sub

Point.HasEuConv (Property, Read)

Syntax Point.HasEuConv

Description Boolean. To determine if the point has Engineering Units conversion configured.

Example
sub main()

Dim MyPoint as new Point
MyPoint.Id = "DEVICE_POINT_1"
if MyPoint.HasEuConv then

MsgBox "Has Eu Conversion"
else

MsgBox "No Eu Conversion"
end if

end sub

Related
Function

Point.SetRawArray, Point.SetArray, Point.GetArray,
Point.GetRawArray, Point.Value, Point.RawValue

GFK-1283G CIMPLICITY Extensions to Basic 26-45

Point.Id (Property, Read/Write)

Syntax Point.Id

Description String. To get or set the object's CIMPLICITY Point ID. The function generates an error if the
point is not configured or the remote server is not available.

Comments If an error is generated, one of the following error codes may be reported.

Err Description
CP_POINT_NOTFOUND The Point ID specified is invalid and was not found.

Example
sub main()

Dim MyPoint as new Point
MyPoint.Id = "\\PROJECT1\POINT1" ' Set the id

end sub

sub processPoint(MyPoint as Point)
if MyPoint.Id = "GEF_DEMO_COS" then ' Compare the Id

...
end if

end sub

Point.InUserView (Property, Read)

Syntax Point.InUserView

Description Boolean. To determine if the point is in the user's view. If setpoint security is enabled on the
point's project and the point's resource is not in the user's view, then FALSE is returned; otherwise,
TRUE is returned.

Note

If the point is not in the user's view, a run time error will be generated if you try to set it.

Example
sub main()

Dim MyPoint as new Point
MyPoint.Id = "TEST_POINT"
if MyPoint.InUserView = TRUE

MyPoint.SetValue = 10
else

MsgBox "Point not in user view, setpoint not allowed"
end if

end sub

Related
Routines

Point.SetPointPriv, Point.DownLoadPassword

26-46 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Point.Length (Property, Read)

Syntax Point.Length

Description Integer. To return the length in Bytes of the point value. This is valid only for character strings.

Related
Routines

Point.Elements

Point.OnAlarm (Method)

Syntax Point.OnAlarm [cond1 [, cond2 [, cond3 [, cond4]]]]

Description To request the point's value when its alarm state changes. If no parameters are specified, the value
will be returned whenever the alarm state changes. The four optional parameters can be used to
restrict which alarm conditions will be reported to the application.

Call GetNext to obtain the next value of the point.

Only one of the OnChange, OnAlarm, OnTimed or OnAlarmAck requests may be active at a
time.

Comments Optional Parameters

Value Description
CP_ALARM Send the value whenever the point changes into an Alarm (Hi or Low)

State
CP_WARNING Send the value whenever the point changes into a Warning (Hi or

Low) State
CP_ALARM_HIGH Send the value whenever the point changes into an Alarm High State.
CP_ALARM_LOW Send the value whenever the point changes into an Alarm Low State.
CP_WARNING_HIGH Send the value whenever the point changes into a Warning High State.
CP_WARNING_LOW Send the value whenever the point changes into a Warning Low State.

Note

Due to a current limitation, selecting ALARM_HIGH and WARNING_LOW, for example, will return
the point for all alarm and warning states. In other words, the High and Low end up applying to
both the Alarm and Warning.

GFK-1283G CIMPLICITY Extensions to Basic 26-47

Example
sub main()

Dim MyPoint as new Point
MyPoint.Id = "TANK_LEVEL"
MyPoint.OnAlarm

top:
MyPoint.GetNext
if MyPoint.State = CP_ALARM_HIGH then

MsgBox "Alarm High"
elseif MyPoint.State = CP_ALARM_LOW then

MsgBox "Alarm Low"
elseif MyPoint.State = CP_WARNING_HIGH then

MsgBox "Warning High"
elseif MyPoint.State = CP_WARNING_LOW then

MsgBox "Warning Low"
elseif MyPoint.State = CP_UNAVAILABLE then

MsgBox "Unavailable"
else

MsgBox "Normal"
end if
goto top

end sub

Related
Routines

Point.GetNext, Point.Cancel, Point.OnAlarmAck

Point.OnAlarmAck (Method)

Syntax Point.OnAlarmAck

Description To receive the point's value when the alarm acknowledgment state changes.

Only one of the OnChange, OnAlarm, OnTimed or OnAlarmAck requests may be active at a
time.

Related
Routines

Point.GetNext, Point.Cancel, Point.OnAlarm

26-48 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Point.OnChange (Method)

Syntax Point.OnChange

Description To request the point's value on change. The next value of the point may be received by calling the
GetNext method or function. The current value of the point is returned immediately. Any
subsequent GetNext call will block until the point's value changes.
Only one of the OnChange, OnAlarm, OnTimed or OnAlarmAck requests may be activate at a
time.

Example Read the point value on change forever.
Sub main()

Dim MyPoint as new Point ' Declare the point object
MyPoint.Id = "TANK_LEVEL" ' Set the Id
MyPoint.OnChange ' Request the value on change

top :
MyPoint. GetNext ' Get the value
Trace MyPoint.Value ' trace it to the output window
goto top ' repeat forever

end sub

Related
Routines

Point.GetNext, Point.OnTimed, Point.Cancel

GFK-1283G CIMPLICITY Extensions to Basic 26-49

Point.OnTimed (Method)

Syntax Point.OnTimed time_period

Description To poll the points value periodically. A new value will be sent to the application every time_period
seconds. The application should call GetNext to retrieve the next value.

Note

Unlike the OnChange method, you may miss values of the point if it changes in between your
polls. Use the OnChange method to receive the point whenever it changes. OnTimed is useful if
the point is rapidly changing and you are only interested in its value in a periodic manner.

Only one of the OnChange, OnAlarm, OnTimed or OnAlarmAck requests may be active at a
time.

Comments Parameter Description
time_period Integer. Time period in seconds to read the point

Example
Sub main()

Dim MyPoint as new Point ' Declare the point object
MyPoint.Id = "TANK_LEVEL" ' Set the point Id
MyPoint.OnTimed 60 ' Request value every minute

top :
MyPoint.GetNext ' Read the value
Trace MyPoint.Value ' Put it out to the trace buffer
goto top ' Repeat forever

end sub

See Also Point.GetNext, Point.OnChange, Point.Cancel.

Point.PointTypeId (Property, Read)

Syntax Point.PointTypeId

Description String. To retrieve the character based Point Type ID.
Example

sub main()
Dim MyPoint as new Point
MyPoint.Id = "CP_DIGITAL"
if MyPoint.PointTypeId = "DIGITAL" then

MsgBox "It is a digital point"
else

MsgBox "Point Type ID is : " & MyPoint.PointTypeId
endif

end sub

See Also Point.DataType

26-50 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Point.Quality (Property, Read)

Syntax Point.Quality

Description Long. Return the 16-bit quality mask for the point.

Example
Sub Main()

Dim p as new Point
p.Id = “VALVE_1”
p.Get
MsgBox cstr(p.Quality)

End Sub

Point.QualityAlarmed (Property, Read)

Syntax Point.QualityAlarmed

Description Boolean. Returns TRUE if the point is in alarm, FALSE otherwise.

Example
Sub Main()

Dim p as new Point
p.Id = “VALVE_1”
p.Get
if p.QualityAlarmed then

MsgBox “Point is in alarm”
End If

End Sub

Point.QualityAlarms_Enabled (Property, Read)

Syntax Point.QualityAlarms_Enabled

Description Boolean. Returns TRUE if alarming for the point is enabled, FALSE otherwise.

Example
Sub Main()

Dim p as new Point
p.Id = “VALVE_1”
p.Get
if p.QualityAlarms_Enabled then

MsgBox “Alarming is enabled”
End If

End Sub

GFK-1283G CIMPLICITY Extensions to Basic 26-51

Point.QualityDisable_Write (Property, Read)

Syntax Point.QualityDisable_Write

Description Boolean. Returns TRUE if setpoints have been disabled for the point, FALSE otherwise.

Example
Sub Main()

Dim p as new Point
p.Id = “VALVE_1”
p.Get
if p.QualityDisable_Write Then

MsgBox “Writing disabled for point”
End If

End Sub

Point.QualityIs_Available (Property, Read)

Syntax Point.QualityIs_Available

Description Boolean. Returns TRUE if the points value is available, FALSE if the value is unavailable.

Example
Sub Main()

Dim p as new Point
p.Id = “VALVE_1”
p.Get
if p.QualityIs_Available = FALSE then

MsgBox “Point is not available”
End If

End Sub

Point.QualityIs_In_Range (Property, Read)

Syntax Point.QualityIs_In_Range

Description Boolean. Returns TRUE if the current value of the point is in range, FALSE if the point is out of
range. When a point is out of range its value is unavailable.

Example
Sub Main()

Dim p as new Point
p.Id = “VALVE_1”
p.Get
if p.QualityIs_In_Range = FALSE then

MsgBox “Point is out of range”
End If

End Sub

26-52 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Point.QualityLast_Upd_Man (Property, Read)

Syntax Point.QualityLast_Upd_Man

Description Boolean. Returns TRUE if the current value of the point came from a manual update rather than a
device read.

Example
Sub Main()

Dim p as new Point
p.Id = “VALVE_1”
p.Get
if p.QualityLast_Upd_Man then

MsgBox “Last Update Manual”
End If

End Sub

Point.QualityManual_Mode (Property, Read)

Syntax Point.QualityManual_Mode

Description Boolean. Returns TRUE if the point has been placed into Manual Mode, otherwise FALSE.

Example
Sub Main()

Dim p as new Point
p.Id = “VALVE_1”
p.Get
if p.QualityManual_Mode then

PointSet “VALVE_1_STATE”, “In Manual”
Else

PointSet “VALVE_1_STATE”, “”
End If

End Sub

GFK-1283G CIMPLICITY Extensions to Basic 26-53

Point.QualityStale_Data (Property, Read)

Syntax Point.QualityStale_Data

Description Boolean. Returns TRUE if the value of the point is stale, otherwise FALSE.

Example
Sub Main()

Dim p as new Point
p.Id = “VALVE_1”
p.Get
if p.QualityStale_Data = TRUE

MsgBox “Value is stale”
End If

End Sub

Point.RawValue (Property, Read/Write)

Syntax Point.RawValue[(index)]

Description Same as Point.Value except bypasses Engineering Units conversion if configured for the point.
Will return into any type subject to some restrictions. All numeric types may be returned into any
other numeric type and into string types. String and BitString types can only be returned into string
types. If the variable being returned into does not have a type, the variable will be changed to the
appropriate type, based on the point type.

Note

The option base (see language reference), determines if the first element of an array point will
be zero or one. If you do not explicitly set the option base, all arrays in Basic start at 0. If you
set it to 1, all arrays in Basic start at 1. See the example below.

Comments Parameter Description
index (Optional) Integer. The array element to access. Range depends on the

option base setting.

26-54 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Example
' Increment the points raw value by one.
sub main()

Dim MyPoint as new Point ' Declare the point object
MyPoint.Id = "TANK_LEVEL" ' Set the Id
MyPoint.Get ' Read the point
x = MyPoint.RawValue ' Return the raw value
MyPoint.RawValue = x + 1 ' Set the raw value
MyPoint.Set ' Write the value.

end sub
' Find the maximum raw value in the array.
option base 1 ' Arrays start at one.
sub main()

Dim MyPoint as new Point ' Declare point object
MyPoint.Id = "ARRAY_POINT" ' Set the Point Id
MyPoint.Get ' Get the value of the point
max = MyPoint.RawValue(1) ' Get first value (option base = 1)
for I = 2 to MyPoint.Elements ' Loop through all elements

if MyPoint.RawValue(I) > max then max = MyPoint.RawValue(I)
next I

end sub
' Set all elements of the array to 10
option base 0 ' Arrays start at 0 (default)
sub main()

Dim MyPoint as new Point ' Declare the object
MyPoint.Id = "ARRAY_POINT" ' Set the Id
' Loop through all elements. Since arrays are set to start
' at 0, the index of the last element is one less than the
' count of the elements.
for I = 0 to MyPoint.Elements - 1

MyPoint.RawValue(I) = 10 ' Set the raw value
next I
' Values are not written to CIMPLICITY until this
' set is executed.
MyPoint.Set ' Write the point

end sub

Related
Routines

Point.Value

Point.ReadOnly (Property, Read)

Syntax Point.ReadOnly

Description Boolean. To determine if the point is read only.

Example
sub main()

Dim MyPoint as new Point ' Declare the point object
MyPoint.Id = "TANK_LEVEL" ' Set the Id
if MyPoint.ReadOnly then ' Is the point read-only?

MsgBox "Point cannot be set, point is read-only"
else

MyPoint.SetValue = 10 ' Set the value and write to CIMPLICITY.
end if

end sub

GFK-1283G CIMPLICITY Extensions to Basic 26-55

Point.Set (Method)

Syntax Point.Set [downloadPassword]

Description To write the point's value out to the CIMPLICITY HMI project. An optional download password
can be supplied.

Note

The values set into the Point using the Value, RawValue, SetArray and SetRawArray
methods are not written out to the CIMPLICITY HMI project until they are committed with a Set
statement.

Parameter Description
downloadPassword (Optional) String. The download password for the project.

Example
sub main()

Dim MyPoint as new Point ' Declare the point object
MyPoint.Id = "TANK_LEVEL" ' Set the Id
MyPoint.Value = 10 ' Set the value
MyPoint.Set ' Write the value out to CIMPLICITY

end sub

See Also Point.SetValue, PointSet

26-56 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Point.SetArray (Method)

Syntax Point.SetArray array [, startElement [, endElement [, fromElement]]]

Description To set an array point's values directly from a Basic array. There are several rules to keep in mind:

• If the array is dimensioned smaller than the point, only that many elements will be
copied into the point.

• If the array is larger than the point, all elements of the array are copied, and the rest of
the array is ignored.

If the startElement is specified, the function will start copying data from the array at this element
and will continue until the end of the array is reached or the point is full whichever occurs first.

If the endElement is specified, the function will stop copying data from the array after copying this
element or when the point is full.

If the fromElement is specified, the values copied from the array start at this element in the point
array and continue as described above.

Note

The SetArray method only updates the internal value of the point object. The Set method must
be executed to write the value out to the CIMPLICITY HMI project.

Comments Parameter Description
array Array. A dimensioned or undimensioned Basic Array from which the point

data will be copied.

startElement (optional) Integer. The first array element from which data will be copied.

endElement (optional) Integer. The last array element from which data will be copied.

fromElement (optional) Integer. The first point element to which data is to be copied.

Example
' Read an array point, sort the elements by value and write them
' out to CIMPLICITY sorted.
sub main()

Dim x() as integer 'Declare the value array
Dim MyPoint as new Point 'Declare the point object
Point.Get 'Get the point value
Point.GetArray x 'Transfer point element into array
ArraySort x 'Sort the array
Point.SetArray x 'Transfer to array into the point
Point.Set 'Transfer the sorted data to CIMPLICITY.

end sub

Related
Routines

Point.SetRawArray, Point.Value, Point.GetArray, Point.Set

GFK-1283G CIMPLICITY Extensions to Basic 26-57

Point.SetElement (Method)

Syntax Point.SetElement index, [download password]

Description To write a single element of the point to the Point Manager

Comments Parameter Description
Index Integer. The index of the element to write.

download password (optional) String. Optional download password

Example
‘ Read an array point, sort the elements by value and write them
‘ out to CIMPLICITY sorted
sub main()

Dim x() as integer ‘Declare the value array
Dim MyPoint as new Point ‘Declare the point object
MyPoint.Value(3) = 10 ‘Assign the value of the third element
MyPoint.SetElement 3 ‘Write only the third element

end sub

Point.SetpointPriv (Property, Read)

Syntax Point.SetpointPriv

Description Boolean. To determine if the user accessing the point has Setpoint privilege.

Example
sub main()

Dim MyPoint as new Point
MyPoint.Id = "TANK_LEVEL"
if MyPoint.SetpointPriv = FALSE then

MsgBox "You do not have the setpoint privilege"
else

MyPoint.SetValue = InputBox$("Setpoint Value:")
end if

end sub

Related
Routines

Point.DownloadPassword, Point.InUserView

26-58 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Point.SetRawArray (Method)

Syntax Point.SetRawArray array [, startElement [, endElement [, fromElement]]]

Description To set an array point's values directly from a Basic array, bypassing Engineering Units Conversion.
There are several rules to keep in mind:

• If the array is dimensioned smaller than the point, only that many elements will be
copied into the point.

• If the array is larger than the point, all elements of the point are set.
If the startElement is specified, the function will start copying data from the array at this element
and will continue until the end of the array is reached or the point is full whichever occurs first.
If the endElement is specified, the function will stop copying data from the array after copying this
element or when the point is full.
If the fromElement is specified, the values copied from the array start at this element in the point
array and continue as described above.

Note

The SetRawArray method only updates the internal value of the point object. The Set method
must be executed to write the value out to the CIMPLICITY HMI project.

Comments Parameter Description
array Array. A dimensioned or undimensioned Basic Array from which the point

data will be copied.
startElement (optional) Integer. The first array element from which data will be copied.
endElement (optional) Integer. The last array element from which data will be copied.
fromElement (optional) Integer. The first point element to which data is to be copied.

Example
' Copy the log value of one array point to another array point.
sub main()

Dim source as new Point ' Declare source point
Dim dest as new Point ' Declare destination point
Dim x() as double ' Declare array
source.Id = "INPUT" ' Set the ID of the source point
source.Get ' Get the value of the source point
dest.Id = "OUTPUT" ' Set the ID of the destination point
source.GetRawArray x ' Transfer value to array
' Loop through array point, taking logarithm.
for I = 0 to source.Elements - 1

x(I) = log(x(I))
next I
dest.SetRawArray x ' Transfer value into destination object
dest.Set ' Set the value to CIMPLICITY

end sub

Related
Routines

Point.SetArray, Point.RawValue, Point.GetRawArray

GFK-1283G CIMPLICITY Extensions to Basic 26-59

Point.SetValue (Property, Write)

Syntax Point.SetValue = a

Description To set the point's value in a CIMPLICITY HMI project. This operation combines the Value and
Set operations into one command. The SetValue method uses Engineering Units Conversion
and cannot be used to set elements of an array point.

Example
' Ramp tank level from 0 to 100 in steps of five, with a delay
' on 100ms between each set.
sub main()

Dim MyPoint as new Point 'Declare the point object
MyPoint.Id = "TANK_LEVEL" 'Set the Id
for I = 0 to 100 step 5 'Loop in steps of 5

MyPoint.SetValue = I 'Set and write value to CIMPLICITY
Sleep 100 'Sleep 100ms

next I 'Loop
end sub

26-60 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Point.State (Property, Read)

Syntax Point.State

Description Integer. To return the state of the point's value.

Comments Any of the following states may be returned.

State Description
CP_NORMAL Point is in Normal State
CP_ALARM_HIGH Point is in Alarm High State.
CP_ALARM_LOW Point is in Alarm Low State.
CP_WARNING_HIGH Point is in Warning High State.
CP_WARNING_LOW Point is in Warning Low State.
CP_ALARM Point is in Alarm State.
CP_WARNING Point is in Warning State.
CP_AVAILABLE Point has gone from Unavailable to Available.
CP_UNAVAILABLE Point is Unavailable

Example
' Increment the point value by one, if the point is unavailable,
' set it to 0.
sub main()

Dim MyPoint as new Point
MyPoint.Id = "TANK_LEVEL"
MyPoint.Get
if MyPoint.State = CP_UNAVAILABLE then

MyPoint.SetValue = 0
else

MyPoint.SetValue = MyPoint.Value + 1
end if

end sub

Related
Routines

Point.Get, Point.GetNext

GFK-1283G CIMPLICITY Extensions to Basic 26-61

Point.TimeStamp (Property, Read)

Syntax Point.TimeStamp

Description Date. To retrieve the timestamp into a Basic Date Object. The timestamp indicates the time at
which the point's value was read from the PLC.

Example
Sub Main()

Dim x as new Point
a$ = InputBox$("Enter a point id")
x.Id = a$
x.OnChange

top :
x.GetNext
Trace str$(x.TimeStamp) & " " & x.Value
goto top

End Sub

Related
Routines

Point.Get, Point.GetNext

Point.UserFlags (Property, Read)

Syntax Point.UserFlags

Description Long. Returns the value of the 16-bit user defined flags for the point.

Example
Sub Main()

Dim p as new Point
p.Id = “VALVE_1”
p.Get
MsgBox cstr(p.UserFlags)

End Sub

26-62 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Point.Value (Property, Read/Write)

Syntax Point.Value[(index)]

Description To retrieve or set the value in the point object. The optional index may be supplied to access values
of an array point. The first element of the array is at the zero index. The value property uses
Engineering Units conversion if supplied by the point. To bypass Engineering Units conversion, use
the RawValue property.

Automatic conversion will be performed between data types as needed. The only exceptions are
String and BitString points, which can only be assigned from Strings.

Note

To retrieve the point value, the Point.Get method must be invoked first. Once the value has been
read, it can be accessed many times without having to retrieve it from the Point Manager on each
reference. If the point hasn't been read, an exception is generated.

Note

When setting a value, the value is not written to the device until the Set method is invoked.

Example
' This subroutine show automatic type conversion
sub main()

Dim MyPoint as new Point 'Declare the point object
MyPoint.Id = "INTEGER_POINT" 'Set the Id, Point Type is INTEGER
' The string value of "10" is automatically converted to a integer
' value of 10 and place in point object.
MyPoint.Value = "10"
MyPoint.Set ' Write the point
' The floating point value of 10.01 is truncated to 10 and place
' in the point
MyPoint.Value = 10.01
MyPoint.Set ' Write the point

end sub

Related
Routines

Point.RawValue, Point.GetArray, Point.GetRawArray

GFK-1283G CIMPLICITY Extensions to Basic 26-63

PointGet (Function)

Syntax PointGet(pointId$)

Description To read a particular point and return the value.

Comments Parameter Description
pointId$ String. The Point ID to get the value from.

Example
' Prompt user for point id, get the point value and display
' it into a message box.
sub main()

MsgBox "Value is " & PointGet(InputBox$("Enter Point Id"))
end sub

Related
Routines

PointGetMultiple

PointGetMultiple (Function)

Syntax PointGetMultiple point1[,point2[,point3…]]

Description Request data from up to 30 points in a single snapshot request.

If the function fails, an error is generated.

If you need to get data from several points, use this function rather than issuing a single PointGet
command for each point. For the example below, it is six times more efficient to use
PointGetMultiple, since the data is retrieved from the Point Manager in a single request,
rather than six separate PointGet requests.

Comments Parameter Description
pointn String. Point objects for which data is going to be requested. Up to 30 may

be specified as function parameters.

Example
sub main()

Dim x As New Point: x.Id = “R1”
Dim x1 As New Point: x1.Id = “R2”
Dim x2 As New Point: x2.Id = “R3”
Dim x3 As New Point: x3.Id = “R4”
Dim x4 As New Point: x4.Id = “R5”
Dim x5 As New Point: x5.Id = “R6”

PointGetMultiple x,x1,x2,x3,x4,x5
End Sub

Related
Routines

PointGet

26-64 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

PointGetNext (Function)

Syntax PointGetNext(timeOutMs, point1 [,... [, point16])
or
PointGetNext(timeOutMs, PointArray)

Description To return the next point value from a list of points with a timeout.

The timeout value is in milliseconds, a timeout of -1 indicates to wait forever, a timeout of 0
indicates to not wait and a positive integer indicates the timeout period in milliseconds.

Point1 is a Point object with an outstanding request. Up to 16 points can be specified on the
function call.

Alternatively, the user may pass an array of point objects.

The function returns the object whose value changed or empty.
Comments Parameter Description

timeOutMs Integer. Maximum time to wait in milliseconds. -1 = INFINITE, 0 = Do
not wait, > 0 wait. Current resolution is 10ms, all values will be rounded up
to the next 10ms increment.

pointn Point object with an OnChange, etc. Up to 16 may be specified as function
parameters.

PointArray An array of Point object with OnChange, etc.
Example

' Trace the values of 2 point as they change or trace timeout if neither
' point change in 1 second.
sub main()

Dim Point1 as new Point ' Declare Point Object
Dim Point2 as new Point ' Declare Point Object
Point1.Id = "TANK_LEVEL" ' Set the Id
Point2.Id = "TANK_TEMP" ' Set the Id
Point1.OnChange ' Register OnChange request
Point2.OnChange ' Register OnChange request
Dim Result as Point ' Declare result pointer

top :
' Set result equal to result of waiting on Point1 and Point2
' to change for 1 second
Set Result = PointGetNext(1000, Point1, Point2)
if Result is empty then ' Empty is returned if timeout

Trace "TimeOut"
else
' Otherwise Result is Point1 or Point2 depending on which one
' changed last.
Trace Result.Id & " " & str$(Result.TimeStamp) & Result.Value

end if
goto top

end sub

See Also Point.OnChange, Point.GetNext, Point.OnAlarm, Point.OnTimed,
Point.OnAlarmAck

GFK-1283G CIMPLICITY Extensions to Basic 26-65

PointSet (Statement)

Syntax PointSet pointId$, value

Description To set a point's value.
Comments Parameter Description

pointId$ String. The point ID to set.
value Value to set it to.

Example
sub main()

PointSet InputBox$("Point Id:"), InputBox$("Value:")
end sub

Trace (Command)

Syntax Trace a$

Description Traces (prints) a string to the trace output. By default, when running in the Program Editor, tracing
will be output to the trace window. When running from the Event Manager, tracing must be
specifically enabled (TraceEnable) in order for tracing to occur.

Example
Sub Main()

Dim x as new Point
a$ = InputBox$("Enter a point id")
x.Id = a$
x.OnChange

top :
x.GetNext
Trace str$(x.TimeStamp) & " " & x.Value
goto top

End Sub

26-66 CIMPLICITY HMI Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

TraceEnable/TraceDisable (Command)

Syntax TraceEnable file$
TraceDisable

Description TraceEnable enables tracing to a file. The file will be located in your project's log directory.
Tracing to a file is only supported from the event manager. The trace output will be written to the
log directory. Tracing has a performance impact since the file is opened and closed for each write.
Tracing is intended for debug use only and should be removed from production code.

TraceDisable disables tracing to a file

Example
sub main()

if PointSet("TRACE_TRIGGER") = TRUE then
TraceEnable "MY_LOG"

end if
Trace "Trace Message 1"
Trace "Trace Message 2"
TraceDisable

end sub

GFK-1283G Index-i

Index

'
' (apostrophe), used with comments 2-1–2-3

– (minus sign), subtraction operator 2-5–2-6

!
! (exclamation point)

activating parts of files 9-5
used within user-defined formats 8-16

"
" (quote), embedding within strings 13-11

#
(number sign)

as delimiter for date literals 13-11
delimiter for date literals 6-1
delimiter for parsing input 11-4–11-6
used to specify ordinal values 6-24
used within user-defined formats 8-14
wildcard used with Like (operator) 13-5

#ERROR code#
writing to sequential files 23-13

#FALSE#
writing to sequential files 23-13

#NULL#
writing to sequential files 23-13

#TRUE#
writing to sequential files 23-13

%
% (percent)

used within user-defined formats 8-14

&
& (ampersand)

concatenation operator 2-1
octal/hexadecimal formats 13-11
used within user-defined formats 8-16

& (operator), vs. addition 2-4

(
(26-9
() (parentheses)

used in expressions 2-2
() (parentheses)

used to pass parameters by value 2-2

*
* (asterisk)

multiplication operator 2-3
used within user-defined formats 8-15
wildcard used with Like (operator) 13-5

,
, (comma)

used with Print 17-9
used within user-defined formats 8-15

.

. (period)
used to separate object from property 2-6
used with structures 2-6
used within user-defined formats 8-14

/
/ (slash)

division operator 2-7
used within user-defined formats 8-15

:
: (colon)

used with labels 9-7
: (colon)

used within user-defined formats 8-15

;
; (semicolon), used with Print 17-9, 17-10

Index-ii CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

?
? (question mark)

wildcard used with Like (operator) 13-5

@
@ (at sign)

used within user-defined formats 8-16

\
\ (backslash)

integer division operator 2-9
used with escape characters 16-15
used within user-defined formats 8-15

^
^ (caret), exponentiation operator 2-10

_
_ (underscore), line-continuation character 2-11

+
+ (plus sign), addition operator 2-4–2-5

<
< (less than)

comparison operator 2-7
used within user-defined formats 8-16

<= (less than or equal), comparison operator 2-7
<> (not equal), comparison operator 2-8

=
= (equal sign)

assignment statement 2-8
comparison operator 2-8

>
> (greater than)

comparison operator 2-8
used within user-defined formats 8-16

>= (greater than or equal), comparison operator 2-9

0
0 (digit), used within user-defined formats 8-14

A
Abs (function) 3-1
absolute value 3-1
Acquire (Function) 26-1
Acquire (Statement) 26-2
actions, dialog 6-41
activating

applications 3-5
windows 23-4

Alarm
Request point value on alarm ack 26-47
Request point value on alarm state change 26-46

AlarmAck
Point property 26-36

AlarmGenerate (Method) 26-4
AlarmUpdate (Method) 26-6
And (operator) 3-2
annuities

future values of 8-22
interest rates of 18-3
number of periods for 15-10
payments for 17-6
present value of 15-11, 17-19
principal payments for 17-8

AnswerBox (function) 3-3–3-4
antilogarithm function (Exp) 7-34
Any (data type) 3-4
AppActivate (statement) 3-5
AppClose (statement) 3-6
Append (keyword) 16-9–16-10
AppFind$ (function) 3-7
AppGetActive$ (function) 3-7
AppGetPosition (statement) 3-8
AppGetState (function) 3-9
AppHide (statement) 3-10
applications

activating 3-5
changing size of 3-18
closing 3-6
finding 3-7
finding active 3-7
getting position of 3-8
getting state of 3-9
getting type of 3-19
hiding 3-10
listing 3-11
maximizing 3-12
minimizing 3-13
moving 3-14
restoring 3-15
running 19-18
setting state of 3-16
showing 3-17

AppList (statement) 3-11

Index-iii CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

AppMaximize (statement) 3-12
AppMinimize (statement) 3-13
AppMove (statement) 3-14
AppRestore (statement) 3-15
AppSetState (statement) 3-16
AppShow (statement) 3-17
AppSize (statement) 3-18
AppType (function) 3-19
arctangent function (Atn) 3-26
arguments

parentheses use 2-2
passed to functions 8-20
passed to subroutines 19-41
to external routines 4-8, 6-21, 6-23

ArrayDims (function) 3-20
arrays 3-21

ArrayDims (function) 3-20
declaring 3-21

as local 6-29–6-30
as private 17-12–17-13
as public 17-14–17-15

Dim (statement) 6-29–6-30
dimensions

getting bounds of 3-22
getting lower bound 13-1
getting number of 3-20, 3-22
getting upper bound 21-1
LBound (function) 13-1
maximum number of 6-29
reestablishing 18-6
UBound (function) 21-1

dynamic 3-21, 6-29, 17-12, 17-14, 18-6
erasing 7-25
filling combo boxes from 6-39
filling drop list boxes from 6-39
filling list boxes from 6-39
filling with

window objects 23-6
filling with application names 3-11
filling with disk names 6-33
filling with query results 19-32
fixed-sized, declaring 3-21
list of language elements 1-3
operations on 3-22
passing 3-21
Private (statement) 17-12–17-13
Public (statement) 17-14–17-15
selecting items of 19-11–19-12
setting default lower bound of 16-13
size, changing while running 18-6
sorting 3-23
total size of 6-29, 17-12, 17-14

Arrays 26-39
ArraySort (statement) 3-23
Asc (function) 3-23

AskBox$ (function) 3-24
AskPassword$ (function) 3-25
assigning, objects 19-15
assignment

= (statement) 2-8
Let (statement) 13-4
LSet (statement) 13-17
overflow during 2-8, 13-4
rounding during 7-35
RSet (statement) 18-12

Atn (function) 3-26
used to calculate Pi 17-1

B
Basic Control Engine

free memory of 4-2
home directory of 4-2
version of 4-4

Basic.Capability (method) 4-1
Basic.Eoln$ (property) 4-2
Basic.FreeMemory (property) 4-2
Basic.HomeDir$ (property) 4-2
Basic.OS (property) 4-3
Basic.PathSeparator$ (property) 4-3
Basic.Version$ (property) 4-4
BasicScript

functions to get information from 1-9
Beep (statement) 4-4
Begin Dialog (statement) 4-5–4-6
Binary (keyword) 16-9–16-10
binary data

reading 9-1–9-3
writing 17-17–17-18

binary files
opening 16-9–16-10
reading from 9-1–9-3
writing to 17-17–17-18

binary operators
And (operator) 3-2
Eqv (operator) 7-24
Imp (operator) 11-3
list of 1-10
Not (operator) 15-8
Or (operator) 16-18
Xor (operator) 24-1–24-2

bitmaps, used in dialog boxes 17-2, 17-4
Boolean (data type) 4-7

converting to 5-3
range of values 4-7
storage requirements 4-7

Boolean constants
False (constant) 8-1
True (constant) 20-8

browse dialog box 15-4

Index-iv CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

bugs (error trapping) 7-30, 16-7–16-8
by value, forcing parameters 8-20, 19-41
ByRef (keyword) 4-7, 6-21, 8-19, 8-20, 19-40, 19-41
ByVal (keyword) 2-2, 4-8, 6-21, 8-19, 8-20,

19-40, 19-41

C
Call (statement) 5-1
calling

external routines 6-19–6-24
other routines 5-1

calling conventions
under Win32 6-24

Cancel
Point method 26-37

Cancel buttons
adding to dialog template 5-2
getting label of 6-46
setting label of 6-45

capabilities
of platform 4-1

Case Else (statement) 19-9
case sensitivity, when comparing strings 16-14
case statement 19-9–19-10
CBool (function) 5-3
CCur (function) 5-4
CDate, CVDate (functions) 5-5
CDbl (function) 5-6
CDecl (keyword) 6-19–6-24
ChangePassword (Method) 26-7
character

codes 3-23
converting to number 3-23

ChDir (statement) 5-6
ChDrive (statement) 5-7
check boxes

adding to dialog template 5-8
getting state of 6-48
setting state of 6-49

CheckBox (statement) 5-8
Choose (function) 5-9
Chr, Chr$ (functions) 5-10
CimEMAlarmEvent (Object) 26-8
CimEMAlarmEvent. Alarm ID (Property Read 26-8
CimEMAlarmEvent. ReflD(Property Read) 26-11
CimEMAlarmEvent. ResourceID (Property

Read) 26-11
CimEMAlarmEvent.FinalState (Property Read) 26-9
CimEMAlarmEvent.GenTime (Property Read) 26-9
CimEMAlarmEvent.Message (Property Read) 26-10
CimEMAlarmEvent.PrevState (Property Read) 26-10
CimEMAlarmEvent.ReqAction

(Property Read) 26-11
CimEMEvent (Object) 26-12

CimEMEvent. TimeStamp (Property Read) 26-14
CimEMEvent.ActionID (Property Read) 26-12
CimEMEvent.AlarmEvent (Function) 26-12
CimEMEvent.EventID (Property Read) 26-13
CimEMEvent.ObjectID (Property Read) 26-13
CimEMEvent.PointEvent 26-13
CimEMEvent.Type (Property Read) 26-14
CimEMPointEvent (Object) 26-15
CimEMPointEvent.Id 26-15
CimEmPointEvent.Quality (Property Read) 26-16
CimEmPointEvent.QualityAlarmed (Property

Read) 26-16
CimEmPointEvent.QualityAlarms_Enabled (Property

Read) 26-16
CimEmPointEvent.QualityDisable_Write (Property

Read) 26-17
CimEmPointEvent.QualityIs_Available (Property

Read) 26-17
CimEmPointEvent.QualityIs_In_Range (Property

Read) 26-17
CimEmPointEvent.QualityLast_Upd_Man (Property

Read) 26-18
CimEmPointEvent.QualityStale_Data (Property

Read) 26-18
CimEmPointEvent.QualtyManual_Mode (Property

Read) 26-18
CimEMPointEvent.State (Property Read) 26-19
CimEMPointEvent.TimeStamp

(Property Read) 26-19
CimEmPointEvent.UserFlags (Property Read) 26-19
CimEMPointEvent.Value (Property Read) 26-20
CimGetEMEvent (Function) 26-20
CimIsMaster (Function) 26-20
CimLogin (Procedure) 26-21
CimLogout (Procedure) 26-21, 26-28
CimProjectData (Object) 26-22
CimProjectData.Attributes (Property

Read/Write) 26-28
CimProjectData.Entity (Property Read/Write) 26-23
CimProjectData.GetNext (Function) 26-29
CimProjectData.Project (Property Read/Write) 26-22
CimProjectData.Reset (Method) 26-30
CInt (function) 5-11
Clipboard

erasing 5-13
getting contents of 5-12, 5-14
getting type of data in 5-13
list of language elements 1-3
setting contents of 5-12, 5-14

Clipboard$ (function) 5-12
Clipboard$ (statement) 5-12
Clipboard.Clear (method) 5-13
Clipboard.GetFormat (method) 5-13
Clipboard.GetText (method) 5-14
Clipboard.SetText (method) 5-14

Index-v CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CLng (function) 5-15
Close (statement) 5-15
closing

all files 18-7
applications 3-6
files 5-15
windows 23-5

collections
defined 16-4
elements, identifying 16-4
indexing 16-4
methods of 16-4
properties of 16-4

combo boxes
adding to dialog template 5-16–5-17
getting edit field of 6-46
setting edit field of 6-45
setting items in 6-39

ComboBox (statement) 5-16–5-17
Command

Trace 26-65
TraceEnable/TraceDisable 26-66

command line, retrieving 5-17
Command, Command$ (functions) 5-17
comments 5-17

' (apostrophe) 2-1–2-3
list of language elements 1-3
Rem (statement) 18-7

common dialogs
file open 16-11–16-12
file save 19-1–19-2

comparing strings 19-36–19-37
comparison operators 5-18

list of 1-3
table of 5-18
used with mixed types 5-18
used with numbers 5-18
used with strings 5-18
used with variants 5-19

compatibility mode, opening files in 16-10
concatenation operator (&) 2-1
conditionals

Choose (function) 5-9
If...Then...Else (statement) 11-1–11-2
IIf (function) 11-2
Switch (function) 19-42

conjunction operator (And) 3-2
Const (statement) 5-20–5-21
constants

declaring 5-20–5-21
ebAbort (constant) 7-1
ebApplicationModal (constant) 7-2
ebArchive (constant) 7-2
ebBold (constant) 7-2
ebBoldItalic (constant) 7-3

ebBoolean (constant) 7-3
ebCancel (constant) 7-3
ebCritical (constant) 7-4
ebCurrency (constant) 7-4
ebDataObject (constant) 7-4
ebDate (constant) 7-5
ebDefaultButton1 (constant) 7-6
ebDefaultButton2 (constant) 7-6
ebDefaultButton3 (constant) 7-6
ebDirectory (constant) 7-7
ebDos (constant) 7-7
ebDouble (constant) 7-8
ebEmpty (constant) 7-8
ebError (constant) 7-5
ebExclamation (constant) 7-8
ebHidden (constant) 7-9
ebIgnore (constant) 7-9
ebInformation (constant) 7-10
ebInteger (constant) 7-10
ebItalic (constant) 7-11
ebLong (constant) 7-11
ebNo (constant) 7-11
ebNone (constant) 7-12
ebNormal (constant) 7-12
ebNull (constant) 7-13
ebObject (constant) 7-13
ebOK (constant) 7-13
ebOKCancel (constant) 7-14
ebOKOnly (constant) 7-14
ebQuestion (constant) 7-14
ebReadOnly (constant) 7-15
ebRegular (constant) 7-15
ebRetry (constant) 7-16
ebRetryCancel (constant) 7-16
ebSingle (constant) 7-17
ebString (constant) 7-17
ebSystem (constant) 7-18
ebSystemModal (constant) 7-18
ebVariant (constant) 7-18
ebVolume (constant) 7-19
ebWin32 (constant) 7-19
ebYes (constant) 7-19–7-20
ebYesNo (constant) 7-20
ebYesNoCancel (constant) 7-20
Empty (constant) 7-21
False (constant) 8-1
folding 13-11
giving explicit type to 5-20
list of language elements 1-14
naming conventions of 5-20
Nothing (constant) 15-9
Null (constant) 15-12
Pi (constant) 17-1
scoping of 5-21
True (constant) 20-8

Index-vi CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Constants
list of 5-22

control IDs, retrieving 6-34
control structures 7-21

Do...Loop (statement) 6-53–6-54
Exit Do (statement) 7-32
Exit For (statement) 7-33
Exit Function (statement) 7-33
Exit Sub (statement) 7-34
For...Next (statement) 8-11–8-12
Function...End Function (statement) 8-18–8-21
GoSub (statement) 9-6, 18-9
Goto (statement) 9-7
If...Then...Else (statement) 11-1–11-2
list of 1-4
Select...Case (statement) 19-9–19-10
Sub...End Sub (statement) 19-40–19-42
While...Wend (statement) 23-2

controlling applications
list of language elements 1-4
SendKeys (statement) 19-12–19-14

coordinate systems
dialog base units 19-3
pixels 19-4, 19-5
twips per pixel 19-4, 19-5

copying
data

using = (statement) 2-8
using Let (statement) 13-4
using LSet (statement) 13-17
using RSet (statement) 18-12

files 8-3
user-defined types 13-17

Cos (function) 5-23
cosine 5-23
counters, used with For...Next (statement) 8-11
counting

items in string 11-21
lines in string 13-8
words 23-12

CP_BITSTRING 26-37
CP_DIGITAL 26-37
CP_FLOAT 26-37
CP_INT 26-37
CP_LONG 26-37
CP_SHORT 26-37
CP_STRING 26-37
CP_STRUCT 26-37
CP_UDINT 26-37
CP_UINT 26-37
CP_USHORT 26-37
CreateObject (function) 5-23–5-24
creating new objects 6-29, 15-2–15-7
cross-platform scripting

determining platform 4-1

getting end-of-line character 4-2
getting path separator 4-3
getting platform 4-3

CSng (function) 5-25
CStr (function) 5-26
CurDir, CurDir$ (functions) 5-27
Currency (data type) 5-27

converting to 5-4
range of values 5-27
storage requirements 5-27

currency format 8-13
CVar (function) 5-28
CVDate (function) 5-5
CVErr (function) 5-29

D
data conversion

character to number 3-23
during expression evaluation 7-35
list of language elements 1-5
number to character 5-10
number to hex string 10-1
number to octal string 16-5
string to number 22-1
testing for numbers 11-18
to Boolean 5-3
to Currency 5-4
to Date 5-5, 6-9, 11-15, 20-7
to Double 5-6
to error 5-29
to Integer 5-11
to Long 5-15
to Single 5-25
to String 5-26, 8-13–8-17, 19-36
to Variant 5-28

data conversion functions
Asc (function) 3-23
CBool (function) 5-3
CCur (function) 5-4
CDate, CVDate (functions) 5-5
CDbl (function) 5-6
Chr, Chr$ (functions) 5-10
CInt (function) 5-11
CLng (function) 5-15
CSng (function) 5-25
CStr (function) 5-26
CVar (function) 5-28
CVErr (function) 5-29
Format, Format$ (functions) 8-13–8-17
Hex, Hex$ (functions) 10-1
Oct, Oct$ (functions) 16-5
Str, Str$ (functions) 19-36
Val (function) 22-1

Index-vii CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

data formatting, Format, Format$
(functions) 8-13–8-17

data sources
retrieving DBMS of 19-26
retrieving list of 19-26
retrieving name of 19-26
retrieving owner qualifier of 19-27
retrieving server of 19-27

data types
Any (data type) 3-4
Boolean (data type) 4-7
changing default 6-25–6-26
Currency (data type) 5-27
Date (data type) 6-1
Dim (statement) 6-29–6-30
Double (data type) 6-55–6-56
Integer (data type) 11-10
list of 1-6
Long (data type) 13-16
Object (data type) 16-1–16-2
Private (statement) 17-12–17-13
Public (statement) 17-14–17-15
Single (data type) 19-19
String (data type) 19-38
user-defined 21-4
Variant (data type) 22-2–22-4

database
list of language elements 1-6

database functions
SQLBind (function) 19-22
SQLClose (function) 19-23
SQLError (function) 19-24
SQLExecQuery (function) 19-25
SQLGetSchema (function) 19-26
SQLOpen (function) 19-29
SQLQueryTimeout (statement) 19-30
SQLRequest (function) 19-29–19-30
SQLRetrieve (function) 19-32
SQLRetrieveToFile (function) 19-34

databases
closing 19-23
opening 19-29
placing data 19-22
querying 19-25, 19-29–19-30, 19-32, 19-34
retrieving errors from 19-24
retrieving information about 19-26
retrieving list of 19-26
retrieving list of owners of 19-26
retrieving name of 19-26
retrieving qualifier of 19-27
tables

retrieving list of 19-26
DataType

Point property 26-37
Date (data type) 6-1

converting to 5-5, 6-9, 20-7
formatting 8-13–8-17
range of values 6-1
specifying date constants 6-1
storage requirements 6-1

Date, Date$ (functions) 6-2
Date, Date$ (statements) 6-3
date/time functions

Date, Date$ (functions) 6-2
Date, Date$ (statements) 6-3
DateAdd (function) 6-4–6-5
DateDiff (function) 6-6–6-7
DatePart (function) 6-7–6-8
DateSerial (function) 6-8
Day (function) 6-9
FileDateTime (function) 8-4
Format, Format$ (functions) 8-13–8-17
Hour (function) 10-2
IsDate (function) 11-15
list of language elements 1-6
Minute (function) 14-6
Month (function) 14-8
Now (function) 15-9
Second (function) 19-6
Time, Time$ (functions) 20-5
Time, Time$ (statements) 20-6
Timer (function) 20-6
TimeSerial (function) 20-7
Weekday (function) 23-1
Year (function) 25-1

DateAdd (function) 6-4–6-5
DateDiff (function) 6-6–6-7
DatePart (function) 6-7–6-8
dates

adding 6-4–6-5
converting to 6-8, 11-15
current 6-2, 15-9
Date (data type) 6-1
day of month 6-9
day of week 23-1
file creation 8-4
file modification 8-4
month of year 14-8
parts of 6-7–6-8
reading from sequential files 11-5
setting 6-3
subtracting 6-6–6-7
year 25-1

DateSerial (function) 6-8
DateValue (function) 6-9
Day (function) 6-9
DDB (function) 6-10
DDE

AppActivate (statement) 3-5
changing timeout 6-18

Index-viii CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DoEvents (function) 6-55
DoEvents (statement) 6-55
ending conversation 6-16
executing remote command 6-11
getting text 6-14
getting value from another application 6-14
initiating conversation 6-12
list of language elements 1-7
sending text 6-13
SendKeys (statement) 19-12–19-14
setting data in another application 6-15
setting value in another application 6-13
Shell (function) 19-18
starting conversation 6-12
terminating conversation 6-16, 6-17

DDEExecute (statement) 6-11
DDEInitiate (function) 6-12
DDEPoke (statement) 6-13
DDERequest, DDERequest$ (functions) 6-14
DDESend (statement) 6-15
DDETerminate (statement) 6-16
DDETerminateAll (statement) 6-17
DDETimeout (statement) 6-18
deadlock 26-2
debugger, invoking 19-35
decision making

Choose (function) 5-9
If...Then...Else (statement) 11-1–11-2
IIf (function) 11-2
Select...Case (statement) 19-9–19-10
Switch (function) 19-42

Declare (statement) 3-4, 6-19–6-24
declaring

implicit variables 6-29
object variables 6-29, 15-2–15-7, 16-1, 16-2
with Dim (statement) 6-29–6-30
with Private (statement) 17-12–17-13
with Public (statement) 17-14–17-15

default data type, changing 6-25–6-26
default properties 7-36
DefType (statement) 6-25–6-26
degrees, converting to radians 3-26
DELETE (SQL statement) 19-25, 19-31
delimited files, reading 11-4–11-6
depreciation

calculated using double-declining balance
method 6-10

straight-line depreciation 19-20
sum of years' digits depreciation 19-43

Dialog (function) 6-27–6-28
Dialog (statement) 6-28
dialog actions 6-41
dialog controls

Cancel buttons
adding to dialog template 5-2

getting label of 6-46
setting label of 6-45

changing focus of 6-38
changing text of 6-45
check boxes

adding to dialog template 5-8
getting state of 6-48
setting state of 6-49

combo boxes
adding to dialog template 5-16–5-17
getting edit field of 6-46
setting edit field of 6-45
setting items in 6-39

disabling 6-36
drop list boxes

adding to dialog template 6-57–6-58
getting selection index of 6-48
getting selection of 6-46
setting items in 6-39
setting selection of 6-45, 6-49

enabling 6-36
getting enabled state of 6-35
getting focus of 6-37
getting text of 6-46–6-47
getting value of 6-48
getting visibility of 6-50
group boxes

adding to dialog template 9-8
getting label of 6-46
setting label of 6-45

list boxes
adding to dialog template 13-9–13-10
getting selection index of 6-48
getting selection of 6-46
setting items in 6-39
setting selection of 6-45, 6-49

OK buttons
adding to dialog template 16-6
getting label of 6-46
setting label of 6-45

option buttons
adding to dialog template 16-16
getting label of 6-46
getting selection index of 6-48
grouping within dialog template 16-17
selecting 6-49
setting label of 6-45

picture button controls
adding to dialog template 17-4–17-5

picture controls
adding to dialog template 17-2–17-3
setting image of 6-44

Index-ix CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

push buttons
adding to dialog template 17-16
getting label of 6-46
setting label of 6-45

retrieving ID of 6-34
setting value of 6-49
setting visibility of 6-51–6-52
text boxes

adding to dialog template 20-3–20-4
getting content of 6-46
setting content of 6-45

text controls
adding to dialog template 20-2–20-3
getting label of 6-46
setting label of 6-45

dialog procedures 6-41–6-43
actions sent to 6-41

dialog units, calculating 19-3
dialogs, built in, OpenFilename$

(function) 16-11–16-12
dialogs, built-in

AnswerBox (function) 3-3–3-4
AskBox$ (function) 3-24
AskPassword$ (function) 3-25
InputBox, InputBox$ (functions) 11-8
listing of 1-11
Msg.Open (method) 14-12
Msg.Text (property) 14-13
Msg.Thermometer (property) 14-14
MsgBox (function) 14-9–14-11
MsgBox (statement) 14-11
MsgClose (method) 14-11
PopupMenu (function) 17-7
SaveFilename$ (function) 19-1–19-2
SelectBox (function) 19-11–19-12
user-defined 4-5–4-6

Dim (statement) 6-29–6-30
Dir, Dir$ (functions) 6-31–6-32
directories

changing 5-6
containing

Windows 19-46
containing Basic Control Engine 4-2
creating 14-7
getting list of 8-5
getting path separator 4-3
parsing names of 8-9
removing 18-10
retrieving 5-27
retrieving filenames from 6-31–6-32, 8-7–8-8

disabling, dialog controls 6-36
disjunction operator (Or) 16-18

disk drives
changing 5-7
getting free space of 6-33
retrieving current directory of 5-27
retrieving list of 6-33

DiskDrives (statement) 6-33
DiskFree (function) 6-33
DisplayFormat

Point property 26-38
displaying messages 14-9–14-11

breaking text across lines 14-10
DlgControlId (function) 6-34
DlgEnable (function) 6-35
DlgEnable (statement) 6-36
DlgFocus (function) 6-37
DlgFocus (statement) 6-38
DlgListBoxArray (function) 6-39
DlgListBoxArray (statement) 6-40
DlgProc (function) 6-41–6-43
DlgSetPicture (statement) 6-44
DlgText (statement) 6-45
DlgText$ (function) 6-46–6-47
DlgValue (function) 6-48
DlgValue (statement) 6-49
DlgVisible (function) 6-50
DlgVisible (statement) 6-51–6-52
DLLs

calling 6-19–6-24
Declare (statement) 6-19–6-24

Do...Loop (statement) 6-53–6-54
exiting Do loop 7-32

DoEvents (function) 6-55
DoEvents (statement) 6-55
Double (data type) 6-55–6-56

converting to 5-6
internal format 6-56
range of values 6-56
storage requirements 6-55–6-56

double-declining balance method, used to calculate
depreciation 6-10

DownloadPassword
Point property 26-38

drop list boxes
adding to dialog template 6-57–6-58
getting selection index of 6-48
getting selection of 6-46
setting items in 6-39
setting selection of 6-45, 6-49

DropListBox (statement) 6-57–6-58
dynamic arrays 3-21

Index-x CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

E
ebAbort (constant) 7-1
ebAbortRetryIgnore (constant) 7-1
ebApplicationModal (constant) 7-2
ebArchive (constant) 7-2
ebBold (constant) 7-2
ebBoldItalic (constant) 7-3
ebBoolean (constant) 7-3
ebCancel (constant) 7-3
ebCritical (constant) 7-4
ebCurrency (constant) 7-4
ebDataObject (constant) 7-4
ebDate (constant) 7-5
ebDefaultButton1 (constant) 7-6
ebDefaultButton2 (constant) 7-6
ebDefaultButton3 (constant) 7-6
ebDirectory (constant) 7-7
ebDos (constant) 7-7
ebDouble (constant) 7-8
ebEmpty (constant) 7-8
ebError (constant) 7-5
ebExclamation (constant) 7-8
ebHidden (constant) 7-9
ebIgnore (constant) 7-9
ebInformation (constant) 7-10
ebInteger (constant) 7-10
ebItalic (constant) 7-11
ebLong (constant) 7-11
ebNo (constant) 7-11
ebNone (constant) 7-12
ebNormal (constant) 7-12
ebNull (constant) 7-13
ebObject (constant) 7-13
ebOK (constant) 7-13
ebOKCancel (constant) 7-14
ebOKOnly (constant) 7-14
ebQuestion (constant) 7-14
ebReadOnly (constant) 7-15
ebRegular (constant) 7-15
ebRetry (constant) 7-16
ebRetryCancel (constant) 7-16
ebSingle (constant) 7-17
ebString (constant) 7-17
ebSystem (constant) 7-18
ebSystemModal (constant) 7-18
ebVariant (constant) 7-18
ebVolume (constant) 7-19
ebWin32 (constant) 7-19
ebYes (constant) 7-19–7-20
ebYesNo (constant) 7-20
ebYesNoCancel (constant) 7-20
Elements

Point property 26-39
Else (keyword) 11-1–11-2

ElseIf (keyword) 11-1–11-2
embedded quotation marks 13-11
Empty (constant) 7-21
Empty, testing for 11-15
Enabled

Point property 26-39
enabling, dialog controls 6-36
End (statement) 7-21
end of file

checking 7-23
checking for 7-23

end-of-line, in sequential files 11-6
Engineering Units 26-44

Point.EuLabel (Property Read) 26-40
Engineering Units conversion 26-53
entry points, Main (statement) 14-1
Environ, Environ$ (functions) 7-22
environment variables, getting 7-22
environment, controlling

list of language elements 1-5
EOF (function) 7-23
equivalence operator (Eqv) 7-24
Eqv (operator) 7-24
Erase (statement) 7-25
Erl (function) 7-26
Err (function) 7-27
Err (statement) 7-28
Error (statement) 7-29
error handlers

cascading 7-30
nesting 7-30, 16-7
removing 16-7
resetting 7-28, 16-7
resuming 16-7, 18-8

error trapping 7-30, 16-7–16-8
Error, Error$ (functions) 7-31
errors

BasicScript-specific 7-30
cascading 7-30
Erl (function) 7-26
Err (function) 7-27
Err (statement) 7-28
Error (statement) 7-29
Error, Error$ (functions) 7-31
generating 7-29
getting error number of 7-27
getting line number of 7-26
getting text of 7-31
handling 7-30
list of language elements 1-7
On Error (statement) 16-7–16-8
range of values for 7-28
resetting state of 7-28
Resume (statement) 18-8
resuming control after 7-30

Index-xi CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

setting 7-28
SQL 19-24
Stop (statement) 19-35
trapping 16-7–16-8
user-defined 7-30

converting to 5-29
printing 17-9
printing to sequential files 17-10
reading from binary/random files 9-2
testing for 11-16
writing to random/binary files 17-18
writing to sequential files 23-13

Visual Basic compatibility with 7-30
escape characters, table of 16-15
EuLabel

Point property 26-40
exclusive or operator (Xor) 24-1–24-2
Exit Do (statement) 6-53, 7-32
Exit For (statement) 7-33, 8-11
Exit Function (statement) 7-33
Exit Sub (statement) 7-34
exiting operating environment 19-44
Exp (function) 7-34
exponentiation operator (^) 2-10
expressions

evaluation of 7-35–7-36
promotion of operands within 7-35
propagation of Null through 15-12

external routines
calling 6-19–6-24
calling conventions of 6-21
passing parameters 6-21

data formats 6-22
null pointers 6-22
strings 6-21
using ByVal (keyword) 4-8, 6-23

specified with ordinal numbers 6-24
under Win32 6-24

F
False (constant) 8-1
file I/O

Close (statement) 5-15
EOF (function) 7-23
Get (statement) 9-1–9-3
Input# (statement) 11-4–11-6
Input, Input$ (functions) 11-7
Line Input# (statement) 13-6
Loc (function) 13-12
Lock (statement) 13-13–13-14
Lof (function) 13-15
Open (statement) 16-9–16-10
Print# (statement) 17-9
Put (statement) 17-17–17-18

Reset (statement) 18-7
Seek (function) 19-7
Seek (statement) 19-8
Spc (function) 19-21
Tab (function) 20-1
Unlock (statement) 21-2–21-3
Width# (statement) 23-3
Write# (statement) 23-13

file numbers, finding available 8-18
file open dialog box 16-11–16-12
file save dialog box 19-1–19-2
file system

list of language elements 1-8
FileAttr (function) 8-2
FileCopy (statement) 8-3
FileDateTime (function) 8-4
FileDirs (statement) 8-5
FileExists (function) 8-6
FileLen (function) 8-6
FileList (statement) 8-7–8-8
FileParse$ (function) 8-9
files

attributes of
ebArchive (constant) 7-2
ebDirectory (constant) 7-7
ebHidden (constant) 7-9
ebNone (constant) 7-12
ebNormal (constant) 7-12
ebReadOnly (constant) 7-15
ebSystem (constant) 7-18
ebVolume (constant) 7-19
getting 9-4
setting 19-16
used with Dir, Dir$ (functions) 6-32
used with FileList (statement) 8-8
used with GetAttr (function) 9-4

attributes, used with SetAttr (statement) 19-16
checking existence of 8-6
checking for end of 7-23
closing 5-15
closing all 18-7
copying 8-3
deleting 12-2
getting date and time of 8-4
getting length of 8-6
getting list of 6-31–6-32, 8-7–8-8
getting mode of 8-2
getting next available file number 8-18
getting position within 13-12, 19-7
getting size of 13-15
list of language elements 1-8
locking regions in 13-13–13-14

Index-xii CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

opening 16-9–16-10
access capabilities 16-9
modes 16-9
setting another process's access rights 16-10
setting record length 16-10
truncating to zero length 16-9

reading 11-4–11-6, 11-7
reading binary data from 9-1–9-3
reading lines from 13-6
renaming 15-1
requesting name of 16-11–16-12, 19-1–19-2
setting read/write position in 19-8
sharing 16-10
splitting names of 8-9
types of

ebDos (constant) 7-7
unlocking regions in 21-2–21-3
writing binary data to 17-17–17-18
writing query results to 19-34
writing to 17-9, 23-13

financial functions
DDB (function) 6-10
Fv (function) 8-22
IPmt (function) 11-11–11-12
IRR (function) 11-13
list of 1-9
MIRR (function) 14-6–14-7
NPer (function) 15-10
Npv (function) 15-11
Pmt (function) 17-6
PPmt (function) 17-8
Pv (function) 17-19
Rate (function) 18-3
Sln (function) 19-20
SYD (function) 19-43

finding
applications 3-7
files 6-31–6-32
strings 11-9
windows 23-6

Fix (function) 8-10. See also Int (function)
fixed arrays 3-21
fixed numeric format 8-13
fixed-length strings

conversion between variable-length 19-38
declaring 6-29, 17-12, 17-14
passing to external routines 6-21, 6-23
within structures 20-9

floating-point values
Double (data type) 6-55–6-56
Single (data type) 19-19

focus, of dialog controls
getting 6-37
setting 6-38

fonts, within user-dialogs 4-6

For...Next (statement) 8-11–8-12
exiting For loop 7-33

Format, Format$ (functions) 8-13–8-17
formatting data 8-13–8-17

built-in 8-13
built-in formats

date/time 8-14
numeric 8-13

in files
Spc (function) 19-21
Tab (function) 20-1
Width# (statement) 23-3

user-defined formats 8-14
date/time 8-16
numeric 8-14
string 8-16

forward referencing, with Declare (statement) 3-4,
6-19–6-24

FreeFile (function) 8-18
Function

Acquire 26-1
CimEMEvent.AlarmEvent 26-12
CimGetEMEvent 26-20
CimIsMaster 26-20
CimProjectData.GetNext 26-29
GetKey 26-30
GetSystemWindowsDirectory 26-30
GetTSSessionId 26-31
IsTerminalServices 26-31
Point.GetNext 26-42
PointGet 26-63
PointGetMultiple 26-63
PointGetNext 26-64

Function...End Function (statement) 8-18–8-21
Function...End Sub (statement), exiting function 7-33
functions

defining 8-18–8-21
exiting function 7-33
naming conventions of 8-18
returning values from 8-19

future value of annuity, calculating 8-22
fuzzy string comparisons 13-5
Fv (function) 8-22

G
general date format 8-14
general number format 8-13
generating random numbers 18-1
Get

Point function 26-63
Point method 26-40

Get (statement) 9-1–9-3
Get Multiple Points function 26-63

Index-xiii CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

GetArray
Point method 26-41

GetAttr (function) 9-4
GetKey (Function) 26-30
GetNext

Point function 26-42
Point method 26-42

GetSystemWindowsDirectory
Function 26-30

GetTSSessionId
Function 26-31

GetValue
Point property 26-44

global (public) variables 17-14–17-15
Global (statement) (Public [statement]) 17-14–17-15
GoSub (statement) 9-6

returning from 18-9
Goto (statement) 9-7
grep (Like [operator]) 13-5
group boxes

adding to dialog template 9-8
getting label of 6-46
setting label of 6-45

GroupBox (statement) 9-8
grouping option buttons 16-17

H
handles, getting operating system file handles 8-2
HasEuConv

Point property 26-44
Height, of screen 19-4
Hex, Hex$ (functions) 10-1
hexadecimal characters, in strings 16-15
hexadecimal strings

converting to 10-1
converting to numbers 22-1

hiding
applications 3-10
dialog controls 6-51–6-52

HLine (statement) 10-2
home directory 4-2
Hour (function) 10-2
HPage (statement) 10-3
HScroll (statement) 10-3
HWND (object) 10-4

getting value of 10-5

I
Id

Point property 26-45
idle loops

DoEvents (function) 6-55
DoEvents (statement) 6-55

If...Then...Else (statement) 11-1–11-2
If...Then...End If (statement), shorthand for (IIf) 11-2
IIf (function) 11-2
Imp (operator) 11-3
implication operator (Imp) 11-3
implicit variable declaration, with DefType

(statement) 6-25–6-26
indexing collections 16-4
infinite loops, breaking out of 6-54, 8-12, 23-2
ini files

list of language elements 1-10
reading items from 18-4
reading section names from 18-5
writing items to 23-14

Inline (statement) 11-4
Input (keyword) 16-9–16-10
Input# (statement) 11-4–11-6
Input, Input$ (functions) 11-7
InputBox, InputBox$ (functions) 11-8
INSERT (SQL statement) 19-25, 19-31
instantiation of OLE objects 5-23–5-24
InStr (function) 11-9
Int (function) 11-10. See also Fix (function)
Integer (data type) 11-10

converting to 5-11
range of values for 11-10
storage requirements of 11-10

integer division operator (\) 2-9
intercepting (trapping) errors 7-30, 16-7–16-8
interest payments, calculating 11-11–11-12
internal rate of return, calculating 11-13, 14-6–14-7
international formatting 8-13–8-17
InUserView

Point property 26-45
IPmt (function) 11-11–11-12
IRR (function) 11-13
Is (operator) 11-14
IsDate (function) 11-15
IsEmpty (function) 11-15
IsError (function) 11-16
IsMissing (function) 8-21, 11-17, 19-42
IsNull (function) 11-17
IsNumeric (function) 11-18
IsObject (function) 11-19
IsTerminalServices

Function 26-31
Item$ (function) 11-20
ItemCount (function) 11-21
iterating through collections 16-4

Index-xiv CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

J
jumps

GoSub (statement) 9-6
Goto (statement) 9-7
Return (statement) 18-9

K
keystrokes, sending

DoEvents (function) 6-55
DoEvents (statement) 6-55

keystrokes, sending to applications 19-12–19-14
keystrokes, sending, SendKeys (statement) 19-12–

19-14
keywords

list of 12-1
restrictions for 12-1

Kill (statement) 12-2

L
labels

in place of line numbers 13-6
naming conventions of 9-7
used with GoSub (statement) 9-6
used with Goto (statement) 9-7

LBound (function) 13-1
used with OLE arrays 13-1

LCase, LCase$ (functions) 13-2
least precise operand 16-13
Left, Left$ (functions) 13-2
Len (function) 13-3–13-4
Len (keyword), specifying record length 16-9–16-10
Length

Point property 26-46
Let (statement) 13-4
Lib (keyword) 6-19–6-24
Like (operator) 13-5
line breaks, in MsgBox (statement) 14-10
line continuation 2-11
Line Input# (statement) 13-6
line numbers 13-6
Line$ (function) 13-7
LineCount (function) 13-8
list boxes

adding to dialog template 13-9–13-10
getting selection index of 6-48
getting selection of 6-46
setting items in 6-39
setting selection of 6-45, 6-49

ListBox (statement) 13-9–13-10
Literal characters

used within user-defined formats 8-15
literals 13-11

Loc (function) 13-12
local variables

declaring 6-29–6-30
Lock (statement) 13-13–13-14
locking file regions 13-13–13-14
Lof (function) 13-15
Log (function) 13-15
logarithm function (Log) 13-15
logarithms

Exp (function) 7-34
Log (function) 13-15

logical constants
False (constant) 8-1
True (constant) 20-8

logical negation 15-8
logical operators

And (operator) 3-2
Eqv (operator) 7-24
Imp (operator) 11-3
list of 1-10
Not (operator) 15-8
Or (operator) 16-18
Xor (operator) 24-1–24-2

LogStatus (Property Read/Write) 26-32
Long (data type) 13-16

converting to 5-15
range of values 13-16
storage requirements for 13-16

long date format 8-14
long time format 8-14
looping

Do...Loop (statement) 6-53–6-54
exiting Do loop 7-32
exiting For loop 7-33
For...Next (statement) 8-11–8-12

lowercasing strings 13-2
LSet (statement) 13-17
LTrim, LTrim$ (functions) 13-18

M
Main (statement) 14-1
matching strings 13-5
math functions

Abs (function) 3-1
Atn (function) 3-26
Cos (function) 5-23
Exp (function) 7-34
Fix (function) 8-10
Int (function) 11-10
list of 1-10
Log (function) 13-15
Randomize (statement) 18-2
Rnd (function) 18-11
Sgn (function) 19-17

Index-xv CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Sin (function) 19-19
Sqr (function) 19-35
Tan (function) 20-2

maximizing
applications 3-12
windows 23-7

MCI (function) 14-2
medium date format 8-14
medium time format 8-14
memory

available 19-44
resources 19-45

available within Basic Control Engine 4-2
total 19-46
total size for arrays 6-29

menus
pop-up 17-7

message dialog
changing text of 14-13
closing 14-11
creating 14-12
setting thermometer 14-14

metafiles
used in dialog boxes 17-2, 17-4
used with picture controls 6-44, 17-3, 17-5

Method
AlarmGenerate 26-4
AlarmUpdate 26-6
ChangePassword 26-7
CimProjectData.Reset 26-30
Point.Cancel 26-37
Point.EnableAlarm 26-39
Point.Get 26-40
Point.GetArray 26-41
Point.GetNext 26-42
Point.GetRawArray 26-43
Point.OnAlarm 26-46
Point.OnAlarmAck 26-47
Point.OnChange 26-48
Point.OnTimed 26-49
Point.Set 26-55
Point.SetArray 26-56
Point.SetElement 26-57
Point.SetRawArray 26-58

methods
defined 16-2
invoking 16-3
with OLE automation 16-1

Mid, Mid$ (functions) 14-2–14-4
Mid, Mid$ (statements) 14-5
minimizing

applications 3-13
windows 23-8

Minute (function) 14-6
MIRR (function) 14-6–14-7

MkDir (statement) 14-7
Mod (operator) 14-8
modeless message dialog 14-12
modes, for open files 8-2
Month (function) 14-8
most precise operand 16-13
mouse

trails, setting 19-45
moving

applications 3-14
windows 23-9

Msg.Close (method) 14-11
Msg.Open (method) 14-12
Msg.Text (property) 14-13
Msg.Thermometer (property) 14-14
MsgBox (function) 14-9–14-11
MsgBox (statement) 14-11

constants used with
ebAbort (constant) 7-1
ebApplicationModal (constant) 7-2
ebArchive (constant) 7-2
ebCancel (constant) 7-3
ebCritical (constant) 7-4
ebDataObject (constant) 7-4
ebDefaultButton1 (constant) 7-6
ebDefaultButton2 (constant) 7-6
ebDefaultButton3 (constant) 7-6
ebExclamation (constant) 7-8
ebIgnore (constant) 7-9
ebInformation (constant) 7-10
ebNo (constant) 7-11
ebOK (constant) 7-13
ebOKCancel (constant) 7-14
ebOKOnly (constant) 7-14
ebQuestion (constant) 7-14
ebRetry (constant) 7-16
ebRetryCancel (constant) 7-16
ebSystemModal (constant) 7-18
ebYes (constant) 7-19–7-20
ebYesNo (constant) 7-20
ebYesNoCancel (constant) 7-20

N
Name (statement) 15-1
Named parameters (topic) 15-2
naming conventions

of constants 5-20
of functions 8-18
of labels 9-7
of subroutines 19-40
of variables 6-30

negation
logical 15-8
unary minus operator 2-5–2-6

Index-xvi CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

nesting, For...Next (statement) 8-11
net present value, calculating 15-11
Net.AddCon (method) 15-3
Net.Browse$ (method) 15-4
Net.CancelCon (method) 15-5
Net.GetCon$ (method) 15-6
Net.User$ (property) 15-6
networks

canceling connection 15-5
getting

name of connection 15-6
user name 15-6

invoking 15-4
redirecting local device 15-3

New (keyword) 6-29, 15-2–15-7, 19-15
Next (keyword) 8-11–8-12
Not (operator) 15-8
Nothing (constant) 15-9

used with Is (operator) 11-14
Now (function) 15-9
NPer (function) 15-10
Npv (function) 15-11
Null

checking for 11-17
propagation of 15-12
vs. Empty 15-12

Null (constant) 15-12
nulls, embedded within strings 19-38
numbers

adding 2-4
converting from strings 22-1
converting to strings 19-36
floating-point 6-55–6-56, 19-19
formatting 8-13–8-17
getting sign of 19-17
hexadecimal representation 13-11
IsNumeric (function) 11-18
octal representation 13-11
printing 17-9
reading from binary/random files 9-1–9-3
reading from sequential files 11-4–11-6
testing for 11-18
truncating 8-10, 11-10
writing to binary/random files 17-17–17-18
writing to sequential files 17-9, 23-13

numeric operators
– (operator) 2-5–2-6
\ (operator) 2-9
* (operator) 2-3
/ (operator) 2-7
^ (operator) 2-10
+ (operator) 2-4–2-5
list of 1-11

O
Object

CimEMAlarmEvent 26-8
CimEMEvent 26-12
CimEMPointEvent 26-15
CimProjectData 26-22
Point 26-36

Object (data type) 16-1–16-2
storage requirements for 16-1

objects 16-2–16-4
accessing methods of 16-3
accessing properties of 16-1, 16-3
assigning 19-15
assigning values to 16-3
automatic destruction 16-2
collections of 16-4
comparing 11-14, 16-3
creating 19-15
creating new 6-29, 15-2–15-7
declaring 6-29–6-30, 16-1, 16-2, 17-12–17-13
declaring as public 17-14–17-15
defined 16-2
instantiating 16-1
invoking methods of 16-1
list of language elements 1-11
OLE, creating 5-23–5-24
predefined, table of 16-4
testing for 11-19
testing if uninitialized 11-14
using dot separator 16-1

Oct, Oct$ (functions) 16-5
octal characters, in strings 16-15
octal strings

converting to 16-5
converting to numbers 22-1

OK buttons
adding to dialog template 16-6
getting label of 6-46
setting label of 6-45

OKButton (statement) 16-6
OLE automation

automatic destruction 16-2
CreateObject (function) 5-23–5-24
creating objects 5-23–5-24
default properties of 7-36
Object (data type) 16-1–16-2
Set (statement) 19-15

On Error (statement) 7-30, 16-7–16-8
on/off format 8-13
OnAlarm

Point method 26-46
OnAlarmAck

Point method 26-47

Index-xvii CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

OnChange
Point method 26-48

OnTimed
Point method 26-49

Open (statement) 16-9–16-10
OpenFilename$ (function) 16-11–16-12
operating environment

exiting 19-44
free

memory of 19-44
resources of 19-45

restarting 19-45
total memory in 19-46

operators
– (operator) 2-5–2-6
& (operator) 2-1
\ (operator) 2-9
* (operator) 2-3
/ (operator) 2-7
^ (operator) 2-10
+ (operator) 2-4–2-5
< (operator) 2-7
<= (operator) 2-7
<> (operator) 2-8
= (operator) 2-8
> (operator) 2-8
>= (operator) 2-9
And (operator) 3-2
Eqv (operator) 7-24
Imp (operator) 11-3
Is (operator) 11-14
Like (operator) 13-5
Mod (operator) 14-8
Not (operator) 15-8
Or (operator) 16-18
precedence of 16-12
precision of 16-13
Xor (operator) 24-1–24-2

Option Base (statement) 6-29, 16-13, 17-12, 17-14
option buttons

adding to dialog template 16-16
getting label of 6-46
getting selection index of 6-48
grouping within dialog template 16-17
selecting 6-49
setting label of 6-45

Option Compare (statement) 16-14
effect on InStr (function) 11-9
effect on Like (operator) 13-5
effect on string comparisons 5-18, 19-37

Option CStrings (statement) 16-15
Optional (keyword) 8-19, 19-40

optional parameters
checking for 11-17
passed to functions 8-20
passed to subroutines 19-41
passing to functions 8-19
passing to subroutines 19-40

OptionButton (statement) 16-16
OptionGroup (statement) 16-17
Or (operator) 16-18
ordinal values 6-24
Output (keyword) 16-9–16-10
overflow, in assignment 2-8, 13-4

P
parameters

passing by reference 4-7
passing by value 2-2, 4-8
to external routines 4-8, 6-21, 6-23

parentheses, used in expressions 2-2
parsing

filenames 8-9
list of language elements 1-11
strings

by item 11-20
by line 13-7
by words 23-12
counting items within 11-21
counting lines within 13-8
counting words within 23-12

password, requesting from user 3-25
path separator

getting 4-3
paths

extracting from filenames 8-9
pausing script execution 19-20
percent format 8-13
period (.), used to separate object from property 2-6
period (.), used with structures 2-6
Pi (constant) 17-1
PICT files, on the Macintosh 17-5
Picture (statement) 17-2–17-3
picture button controls

adding to dialog template 17-4–17-5
picture controls

adding to dialog template 17-2–17-3
automatic loading of images into 6-51
caching 6-51
deleting image of 6-44
setting image of 6-44

PictureButton (statement) 17-4–17-5
platform constants 4-3
Pmt (function) 17-6

Index-xviii CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

Point
Request point value on alarm state change 26-46
Request value on alarm ack 26-47
Request value on change 26-48

Point (Object) 26-36
Point (Subject) 26-33
Point.AlarmAck (Property Read) 26-36
Point.Cancel (Method) 26-37
Point.DataType (Property Read) 26-37
Point.DisplayFormat (Property Read) 26-38
Point.DownloadPassword (Property Read) 26-38
Point.Elements (Property Read) 26-39
Point.EnableAlarm (Method) 26-39
Point.Enabled (Property Read) 26-39
Point.EuLabel (Property Read) 26-40
Point.Get (Method) 26-40
Point.GetArray (Method) 26-41
Point.GetNext (Function) 26-42
Point.GetNext (Method) 26-42
Point.GetRawArray (Method) 26-43
Point.GetValue (Property Read) 26-44
Point.HasEuConv (Property Read) 26-44
Point.Id (Property Read/Write) 26-45
Point.InUserView (Property Read) 26-45
Point.Length (Property Read) 26-46
Point.OnAlarm 26-37
Point.OnAlarm (Method) 26-46
Point.OnAlarmAck 26-37
Point.OnAlarmAck (Method) 26-47
Point.OnChange 26-37
Point.OnChange (Method) 26-48
Point.OnTimed 26-37
Point.OnTimed (Method) 26-49
Point.PointTypeId (Property Read) 26-49
Point.Quality (Property Read) 26-50
Point.QualityAlarmed (Property Read) 26-50
Point.QualityAlarms_Enabled (Property Read) 26-50
Point.QualityDisable_Write (Property Read) 26-51
Point.QualityIs_Available (Property Read) 26-51
Point.QualityIs_In_Range (Property Read) 26-51
Point.QualityLast_Upd_Man (Property Read) 26-52
Point.QualityManual_Mode (Property Read) 26-52
Point.QualityStale_Data (Property Read) 26-53
Point.RawValue (Property Read/Write) 26-53
Point.ReadOnly (Property Read) 26-54
Point.Set (Method) 26-55
Point.SetArray (Method) 26-56
Point.SetElement (Method) 26-57
Point.SetpointPriv (Property Read) 26-57
Point.SetRawArray (Method) 26-58
Point.SetValue (Property Write) 26-59
Point.State (Property Read) 26-60
Point.TimeStamp (Property Read) 26-61
Point.UserFlags (Property Read) 26-61
Point.Value (Property Read/Write) 26-62

PointGet (Function) 26-63
PointGetMultiple (Function) 26-63
PointGetNext (Function) 26-64
PointSet (Statement) 26-65
PointTypeId

Point property 26-49
PopupMenu (function) 17-7
PPmt (function) 17-8
precedence of operators 16-12
precision

loss of 2-8
of operators 16-13

predefined objects, table of 16-4
present value, calculating 17-19
Preserve (keyword) 18-6
preserving elements while redimensioning arrays 18-6
Print (statement) 17-9
print zones 17-9, 17-10
Print# (statement) 17-9
printing

list of language elements 1-12
to stdout 17-9

Private (keyword) 8-18, 19-40
Private (statement) 17-12–17-13
private variables, declaring 17-12–17-13
Procedure

CimLogin 26-21
CimLogout 26-21, 26-28

procedures
list of language elements 1-12

promotion
automatic 16-13
of operands in expressions 7-35

properties
accessing 16-3
defined 16-2
with OLE automation 16-1

Property 26-17
Property Read

CimEMAlarmEvent. AlarmID 26-8
CimEMAlarmEvent. RefID 26-11
CimEMAlarmEvent. ResourceID 26-11
CimEmAlarmEvent.FinalState 26-9
CimEmAlarmEvent.Message 26-10
CimEMAlarmEvent.PrevState 26-10
CimEMAlarmEvent.ReqAction 26-11
CimEMEvent. TimeStamp 26-14
CimEMEvent.ActionID 26-12
CimEMEvent.EventID 26-13
CimEMEvent.ObjectID 26-13
CimEMEvent.Type 26-14
CimEmPointEvent.QualityAlarmed 26-16
CimEmPointEvent.QualityAlarms_Enabled 26-16
CimEmPointEvent.QualityDisable_Write 26-17
CimEmPointEvent.QualityIs_In_Range 26-17

Index-xix CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

CimEmPointEvent.QualityLast_Upd_Man 26-18
CimEmPointEvent.QualityManual_Mode 26-18
CimEmPointEvent.QualityStale_Date 26-18
CimEMPointEvent.Qualtiy 26-16
CimEMPointEvent.State 26-19
CimEMPointEvent.TimeStamp 26-19
CimEmPointEvent.UserFlags 26-19
CimEMPointEvent.Value 26-20
Point. ReadOnly 26-54
Point.AlarmAck 26-36
Point.DataType 26-37
Point.DisplayFormat 26-38
Point.DownloadPassword 26-38
Point.Elements 26-39
Point.Enabled 26-39
Point.EuLabel 26-40
Point.GetValue 26-44
Point.HasEuConv 26-44
Point.InUserView 26-45
Point.Length 26-46
Point.PointTypeId 26-49
Point.Quality 26-50
Point.QualityAlarmed 26-50
Point.QualityAlarms_Enabled 26-50
Point.QualityDisable_Write 26-51
Point.QualityIs_Available 26-51
Point.QualityIs_In_Range 26-51
Point.QualityLast_Upd_Man 26-52
Point.QualityManual_Mode 26-52
Point.QualityStale_Data 26-53
Point.SetpointPriv 26-57
Point.State 26-60
Point.TimeStamp 26-61
Point.UserFlags 26-61
Point.Value 26-62

Property Read/Write
CimProjectData.Attributes 26-28
CimProjectData.Entity 26-23
CimProjectData.Project 26-22
LogStatus 26-32
Point.Id 26-45
Point.RawValue 26-53

Property Write
Point.SetValue 26-59

Public (keyword) 8-18, 19-40
Public (statement) 17-14–17-15
public variables, declaring 17-14–17-15
push buttons

adding to dialog template 17-16
getting label of 6-46
setting label of 6-45

PushButton (statement) 17-16
Put (statement) 17-17–17-18
Pv (function) 17-19

Q
qualifiers

of database owners 19-27
of databases 19-27
of tables 19-27

queues
waiting for playback of 6-55

R
radians, converting to degrees 3-26
Random (function) 18-1
Random (keyword) 16-9–16-10
random files

opening 16-9–16-10
reading 9-1–9-3
setting record length 16-10
writing to 17-17–17-18

random numbers
generating

between 0 and 1 18-11
within range 18-1

initializing random number generator 18-2
Randomize (statement) 18-2
Rate (function) 18-3
RawValue

Point property 26-53
Read (keyword) 16-9–16-10
Read Next Point Value 26-64
Read Point Value 26-63
ReadIni$ (function) 18-4
ReadIniSection (statement) 18-5
ReadOnly

Point property 26-54
recursion 8-19, 19-41
Redim (statement) 18-6
redimensioning arrays 18-6
reference counting 16-2
regular expressions, with Like (operator) 13-5
relaxed type checking 3-4
Release (Satement) 26-2
Rem (statement) 18-7
remainder, calculating 14-8
remote execution, with DDEExecute (statement) 6-11
renaming files 15-1
reserved words 12-1
Reset (statement) 18-7
resetting error handler 16-7
resizing

applications 3-18
windows 23-11

resolution, of screen 19-4, 19-5
resources, of operating environment 19-45

Index-xx CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

restoring
applications 3-15
windows 23-10

restricted words 12-1
Resume (statement) 7-30, 16-7–16-8, 18-8
Return (statement) 18-9
Right, Right$ (functions) 18-9
RmDir (statement) 18-10
Rnd (function) 18-11
rounding 7-35
RSet (statement) 18-12
RTrim, RTrim$ (functions) 18-13
running other programs 19-18

S
SaveFilename$ (function) 19-1–19-2
scientific format 8-13
Scientific notation operators

used within user-defined formats 8-15
scoping

of constants 5-21
of object variables 19-15

Screen.DlgBaseUnitsX (property) 19-3
Screen.DlgBaseUnitsY (property) 19-3
Screen.Height (property) 19-4
Screen.TwipsPerPixelX (property) 19-4
Screen.TwipsPerPixelY (property) 19-5
Screen.Width (property) 19-5
scrolling

HLine (statement) 10-2
HPage (statement) 10-3
HScroll (statement) 10-3
VLine (statement) 22-6
VPage (statement) 22-6
VScroll (statement) 22-7

Second (function) 19-6
Security

Download Password 26-38
In User View 26-45
Setpoint Privilege 26-57

seed, for random number generator 18-2
Seek (function) 19-7
Seek (statement) 19-8
SELECT (SQL statement) 19-25, 19-31
Select...Case (statement) 19-9–19-10
SelectBox (function) 19-11–19-12
sending keystrokes 19-12–19-14
SendKeys (statement) 6-55, 19-12–19-14

predefined keys used with 19-12–19-14
separator lines, in dialog boxes 9-8

sequential files
opening 16-9–16-10
reading 11-4–11-6
reading lines from 13-6
writing to 17-9, 23-13

Set
Point method 26-55

Set (statement) 19-15
Set Point Array Element 26-57
Set Point Array Raw Values 26-58
Set Point Array Values 26-56
Set Point Value 26-55, 26-59
SetArray

Point method 26-56
SetAttr (statement) 19-16
SetpointPriv

Point property 26-57
SetRawArray

Point method 26-58
SetValue

Point property 26-59
Sgn (function) 19-17
Shared (keyword) 16-9–16-10
sharing

files 16-10
sharing variables 17-15
Shell (function) 19-18
short date format 8-14
short time format 8-14
showing

applications 3-17
dialog controls 6-51–6-52

sign, of numbers 19-17
Sin (function) 19-19
sine function (Sin) 19-19
Single (data type) 19-19

conversion to 5-25
range of values 19-19
storage requirements 19-19

Sleep (statement) 19-20
Sln (function) 19-20
sounds

Beep (statement) 4-4
Space, Space$ (functions) 19-21
Spc (function) 17-9, 17-10, 19-21
special characters 5-10

escape characters 16-15
SQLBind (function) 19-22
SQLClose (function) 19-23
SQLError (function) 19-24
SQLExecQuery (function) 19-25
SQLGetSchema (function) 19-26
SQLOpen (function) 19-29
SQLQueryTimeout (statement) 19-30
SQLRequest (function) 19-29–19-30

Index-xxi CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

SQLRetrieve (function) 19-32
SQLRetrieveToFile (function) 19-34
Sqr (function) 19-35
square root function (Sqr) 19-35
standard numeric format 8-13
State

Point Property 26-60
Statement

Acquire 26-2
PointSet 26-65
Release 26-2

Static (keyword) 8-18, 19-40
Status Viewer 26-32
stdout, printing to 17-9
Step (keyword) 8-11–8-12
Stop (statement) 19-35
stopping script execution 7-21, 19-35
storage

for fixed-length strings 19-38
Str, Str$ (functions) 19-36
straight-line depreciation 19-20
StrComp (function) 19-36–19-37
String (data type) 19-38
string functions

Item$ (function) 11-20
LCase, LCase$ (functions) 13-2
Left, Left$ (functions) 13-2
Len (function) 13-3–13-4
Line$ (function) 13-7
LTrim, LTrim$ (functions) 13-18
Mid, Mid$ (functions) 14-2–14-4
Option Compare (statement) 16-14
Right, Right$ (functions) 18-9
RTrim, RTrim$ (functions) 18-13
Space, Space$ (functions) 19-21
StrComp (function) 19-36–19-37
String, String$ (functions) 19-39
Trim, Trim$ (functions) 20-8
UCase, UCase$ (functions) 21-2
Word$ (function) 23-12

string operators
& (operator) 2-1
+ (operator) 2-4–2-5
Like (operator) 13-5
list of 1-12

String, String$ (functions) 19-39
strings

comparing 5-18, 13-5, 16-14, 19-36–19-37
concatenation 2-1, 2-4–2-5

vs. addition 2-1, 2-4
converting from numbers 19-36
converting to 5-26
converting to lowercase 13-2
converting to numbers 22-1
converting to uppercase 21-2

copying 13-17, 18-12
counting items within 11-21
counting lines within 13-8
counting words within 23-12
escape characters in 16-15
finding one within another 11-9
fixed-length vs. variable-length 19-38
fixed-length, declaring 6-29, 17-12, 17-14
getting leftmost characters from 13-2
getting length of 13-3–13-4
getting rightmost characters from 18-9
getting substrings from 14-2–14-4
list of language elements 1-12
of same characters 19-39
of spaces 19-21
parsing by item 11-20
printing 17-9
reading from sequential files 11-4–11-6, 11-7, 13-6
requesting from user 3-24, 11-8
retrieving items from 11-20
retrieving lines from 13-7
retrieving words from 23-12
setting substrings in 14-5
String (data type) 19-38
trimming leading and trailing spaces from 20-8
trimming leading spaces from 13-18
trimming trailing spaces from 18-13
writing to sequential files 17-9, 23-13

Sub...End Sub (statement) 19-40–19-42
exiting subroutine 7-34

Subject
Point 26-33

subroutines
defining 19-40–19-42
exiting subroutine 7-34
naming conventions of 19-40

substrings
finding 11-9
getting 14-2–14-4
getting leftmost characters from 13-2
getting rightmost characters from 18-9
setting 14-5

sum of years' digits depreciation 19-43
Switch (function) 19-42
SYD (function) 19-43
System.Exit (method) 19-44
System.FreeMemory (property) 19-44
System.FreeResources (property) 19-45
System.MouseTrails (method) 19-45
System.Restart (method) 19-45
System.TotalMemory (property) 19-46
System.WindowsDirectory$ (property) 19-46
System.WindowsVersion$ (property) 19-46

Index-xxii CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

T
Tab (function) 17-9, 17-10, 20-1
tables

retrieving column data types 19-26
retrieving column names of 19-26
retrieving list of 19-26
retrieving qualifier of 19-27

Tan (function) 20-2
tangent function (Tan) 20-2
task list, filling array with 3-11
Text

used within user-defined formats 8-15
Text (statement) 20-2–20-3
text boxes

adding to dialog template 20-3–20-4
getting content of 6-46
setting content of 6-45

text controls
adding to dialog template 20-2–20-3
getting label of 6-46
setting label of 6-45

TextBox (statement) 20-3–20-4
thermometers, in message dialogs 14-14
time

forming from components 20-7
getting current time 15-9, 20-5
getting specific time 20-7
hours 10-2
minutes 14-6
seconds 19-6
seconds since midnight 20-6
setting current time 20-6

Time, Time$ (functions) 20-5
Time, Time$ (statements) 20-6
Timer (function) 20-6
TimeSerial (function) 20-7
TimeStamp

Point property 26-61
TimeValue (function) 20-7
Trace (Command) 26-65
TraceDisable (Command) 26-66
TraceEnable (Command) 26-66
trigonometric functions

Atn (function) 3-26
Cos (function) 5-23
Sin (function) 19-19
Tan (function) 20-2

Trim, Trim$ (functions) 20-8
trimming

leading and trailing spaces from strings 20-8
leading spaces from strings 13-18
trailing spaces from strings 18-13

True (constant) 20-8
true/false format 8-13

truncating numbers 8-10, 11-10
twips per pixel, calculating 19-4, 19-5
Type (statement) 20-9
type checking, relaxed, with Declare (statement) 3-4
type coercion 7-35
type-declaration characters

effect on interpretation when reading numbers from
sequential files 11-5

for Currency 5-27
for Double 6-56
for Integer 11-10
for Long 13-16
for Single 19-19
for String 19-38
used when converting to number 11-18
used when declaring literals 13-11
used with Dim (statement) 6-29

U
UBound (function) 21-1

used with OLE arrays 21-1
UCase, UCase$ (functions) 21-2
unary minus operator 2-5–2-6
underflow 2-8
uninitialized objects 16-1, 16-2

Nothing (constant) 15-9
testing for with Is (operator) 11-14

universal date format
reading 11-5
used with literals 6-1, 13-11
writing 23-13

Unlock (statement) 21-2–21-3
unlocking file regions 21-2–21-3
UPDATE (SQL statement) 19-25, 19-31
uppercasing strings 21-2
user dialogs

automatic timeout for 6-27
available controls in 4-5
Begin Dialog (statement) 4-5–4-6
CheckBox (statement) 5-8
ComboBox (statement) 5-16–5-17
control outside bounds of 6-41
creating 4-5–4-6
default button for 6-27
Dialog (function) 6-27–6-28
Dialog (statement) 6-28
dialog procedures of 6-41–6-43
DlgControlId (function) 6-27–6-28
DlgEnable (function) 6-35
DlgEnable (statement) 6-36
DlgFocus (function) 6-37
DlgFocus (statement) 6-38
DlgListBoxArray (function) 6-39
DlgListBoxArray (statement) 6-40

Index-xxiii CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

DlgProc (function) 6-41–6-43
DlgSetPicture (statement) 6-44
DlgText (statement) 6-45
DlgText$ (function) 6-46–6-47
DlgValue (function) 6-48
DlgValue (statement) 6-49
DlgVisible (function) 6-50
DlgVisible (statement) 6-51–6-52
DropListBox (statement) 6-57–6-58
expression evaluation within 4-6
GroupBox (statement) 9-8
idle processing for 6-42
invoking 6-27–6-28
list of language elements 1-13
ListBox (statement) 13-9–13-10
nesting capabilities of 6-42
OKButton (statement) 16-6
OptionButton (statement) 16-16
OptionGroup (statement) 16-17
Picture (statement) 17-2–17-3
PictureButton (statement) 17-4–17-5
pressing Enter within 16-6
pressing Esc within 5-2
PushButton (statement) 17-16
required statements within 4-6
showing 6-41
Text (statement) 20-2–20-3
TextBox (statement) 20-3–20-4

user-defined errors
converting to 5-29
generating 7-29
printing 17-9
printing to sequential files 17-10
reading from binary/random files 9-2
testing for 11-16
writing to random/binary files 17-18
writing to sequential files 23-13

user-defined types 21-4
copying 21-4
declaring 21-4
defining 20-9
getting size of 13-3–13-4, 21-4
passing 21-4

V
Val (function) 22-1
Value

Point property 26-62
Value (property) 10-5
variables

assigning objects 19-15
declaring

as local 6-29–6-30
as private 17-12–17-13

as public 17-14–17-15
with Dim 6-29–6-30
with Private (statement) 17-12–17-13
with Public (statement) 17-14–17-15

getting storage size of 13-3–13-4
implicit declaration of 6-29
initial values of 6-30, 17-12, 17-14
list of language elements 1-14
naming conventions of 6-30

Variant (data type) 22-2–22-4
variants

adding 2-4, 22-3
assigning 22-3
automatic promotion of 16-13
containing no data 15-12, 22-3
converting to 5-28
disadvantages 22-4
Empty (constant) 7-21
getting length of 13-3–13-4
getting types of 22-2, 22-5
list of language elements 1-14
Null (constant) 15-12
operations on 22-3
passing nonvariant data to routines taking

variants 22-4
passing to routines taking nonvariants 22-4
printing 17-9
reading from sequential files 11-4–11-6
storage requirements of 22-4
testing for Empty 11-15
testing for Error 11-16
testing for Null 11-17
testing for objects 11-19
types of 22-2, 22-5

ebBoolean (constant) 7-3
ebCurrency (constant) 7-4
ebDate (constant) 7-5
ebDouble (constant) 7-8
ebEmpty (constant) 7-8
ebError (constant) 7-5
ebInteger (constant) 7-10
ebLong (constant) 7-11
ebNull (constant) 7-13
ebObject (constant) 7-13
ebSingle (constant) 7-17
ebString (constant) 7-17
ebVariant (constant) 7-18

Variant (data type) 22-2–22-4
writing to sequential files 17-9, 23-13

VarType (function) 22-5
version

of Basic Control Engine 4-4
version, of

Windows 19-46
VLine (statement) 22-6

Index-xxiv CIMPLICITY Basic Control Engine Language Reference Manual–July 2001 GFK-1283G

VPage (statement) 22-6
VScroll (statement) 22-7

W
Weekday (function) 23-1
While...Wend (statement) 23-2
Width# (statement) 23-3
width, of screen 19-5
wildcards

used with Dir, Dir$ (functions) 6-31
win.ini file 8-17, 18-4, 18-5, 23-14
WinActivate (statement) 23-4
WinClose (statement) 23-5, 23-6
windows

activating 23-4
closing 23-5
finding 23-6
getting

list of 23-6
value of 10-5

maximizing 23-7
minimizing 23-8
moving 23-9
resizing 23-11
restoring 23-10
scrolling 10-2, 10-3, 22-6, 22-7

Windows
directory of 19-46
version of 19-46

WinFind (function) 23-6
WinList (statement) 23-6, 23-7
WinMaximize (statement) 23-7
WinMinimize (statement) 23-8, 23-9
WinMove (statement) 23-9
WinRestore (statement) 23-10, 23-11
WinSize (statement) 23-11
Word$ (function) 23-12
WordCount (function) 23-12
word-wrapping, in MsgBox (statement) 14-10
Write (keyword) 16-9–16-10
Write# (statement) 23-13
WriteIni (statement) 23-14

X
Xor (operator) 24-1–24-2

Y
Year (function) 25-1
yes/no format 8-13
yielding 6-55, 19-20

	CIMPLICITY HMI: BCE Language Reference
	Preface
	Table of Contents
	1. Introduction
	About the Basic Control Syntax
	Using the Basic Control Engine Language Reference
	Language Elements By Category
	Arrays
	Clipboard
	Comments
	Comparison operators
	Controlling other programs
	Controlling program flow
	Controlling the operating environment
	Conversion
	Data types
	Database
	Date/time
	DDE
	Error handling
	File I/O
	File system
	Financial
	Getting information from Basic Control Engine
	INI Files
	Logical/binary operators
	Math
	Miscellaneous
	Numeric operators
	Objects
	Parsing
	Predefined dialogs
	Printing
	Procedures
	String operators
	Strings
	User dialogs
	Variables and constants
	Variants

	2. Symbols
	& (operator)
	' (keyword)
	() (keyword)
	* (operator)
	+ (operator)
	- (operator)
	. (keyword)
	/ (operator)
	< (operator)
	<= (operator)
	<> (operator)
	= (statement)
	= (operator)
	> (operator)
	>= (operator)
	\ (operator)
	^ (operator)
	_ (keyword)

	3. A
	Abs (function)
	And (operator)
	AnswerBox (function)
	Any (data type)
	AppActivate (statement)
	AppClose (statement)
	AppFind$ (function)
	AppGetActive$ (function)
	AppGetPosition (statement)
	AppGetState (function)
	AppHide (statement)
	AppList (statement)
	AppMaximize (statement)
	AppMinimize (statement)
	AppMove (statement)
	AppRestore (statement)
	AppSetState (statement)
	AppShow (statement)
	AppSize (statement)
	AppType (function)
	ArrayDims (function)
	Arrays (topic)
	ArraySort (statement)
	Asc (function)
	AskBox$ (function)
	AskPassword$ (function)
	Atn (function)

	4. B
	Basic.Capability (method)
	Basic.Eoln$ (property)
	Basic.FreeMemory (property)
	Basic.HomeDir$ (property)
	Basic.OS (property)
	Basic.PathSeparator$ (property)
	Basic.Version$ (property)
	Beep (statement)
	Begin Dialog (statement)
	Boolean (data type)
	ByRef (keyword)
	ByVal (keyword)

	5. C
	Call (statement)
	CancelButton (statement)
	CBool (function)
	CCur (function)
	CDate, CVDate (functions)
	CDbl (function)
	ChDir (statement)
	ChDrive (statement)
	CheckBox (statement)
	Choose (function)
	Chr, Chr$ (functions)
	CInt (function)
	Clipboard$ (function)
	Clipboard$ (statement)
	Clipboard.Clear (method)
	Clipboard.GetFormat (method)
	Clipboard.GetText (method)
	Clipboard.SetText (method)
	CLng (function)
	Close (statement)
	ComboBox (statement)
	Command, Command$ (functions)
	Comments (topic)
	Comparison Operators (topic)
	Const (statement)
	Constants (topic)
	Cos (function)
	CreateObject (function)
	CSng (function)
	CStr (function)
	CurDir, CurDir$ (functions)
	Currency (data type)
	CVar (function)
	CVErr (function)

	6. D
	Date (data type)
	Date, Date$ (functions)
	Date, Date$ (statements)
	DateAdd (function)
	DateDiff (function)
	DatePart (function)
	DateSerial (function)
	DateValue (function)
	Day (function)
	DDB (function)
	DDEExecute (statement)
	DDEInitiate (function)
	DDEPoke (statement)
	DDERequest, DDERequest$ (functions)
	DDESend (statement)
	DDETerminate (statement)
	DDETerminateAll (statement)
	DDETimeout (statement)
	Declare (statement)
	DefType (statement)
	Dialog (function)
	Dialog (statement)
	Dim (statement)
	Dir, Dir$ (functions)
	DiskDrives (statement)
	DiskFree (function)
	DlgControlId (function)
	DlgEnable (function)
	DlgEnable (statement)
	DlgFocus (function)
	DlgFocus (statement)
	DlgListBoxArray (function)
	DlgListBoxArray (statement)
	DlgProc (function)
	DlgSetPicture (statement)
	DlgText (statement)
	DlgText$ (function)
	DlgValue (function)
	DlgValue (statement)
	DlgVisible (function)
	DlgVisible (statement)
	Do...Loop (statement)
	DoEvents (function)
	DoEvents (statement)
	Double (data type)
	DropListBox (statement)

	7. E
	ebAbort (constant)
	ebAbortRetryIgnore (constant)
	ebApplicationModal (constant)
	ebArchive (constant)
	ebBold (constant)
	ebBoldItalic (constant)
	ebBoolean (constant)
	ebCancel (constant)
	ebCritical (constant)
	ebCurrency (constant)
	ebDataObject (constant)
	ebError (constant)
	ebDate (constant)
	ebDefaultButton1 (constant)
	ebDefaultButton2 (constant)
	ebDefaultButton3 (constant)
	ebDirectory (constant)
	ebDos (constant)
	ebDouble (constant)
	ebEmpty (constant)
	ebExclamation (constant)
	ebHidden (constant)
	ebIgnore (constant)
	ebInformation (constant)
	ebInteger (constant)
	ebItalic (constant)
	ebLong (constant)
	ebNo (constant)
	ebNone (constant)
	ebNormal (constant)
	ebNull (constant)
	ebObject (constant)
	ebOK (constant)
	ebOKCancel (constant)
	ebOKOnly (constant)
	ebQuestion (constant)
	ebReadOnly (constant)
	ebRegular (constant)
	ebRetry (constant)
	ebRetryCancel (constant)
	ebSingle (constant)
	ebString (constant)
	ebSystem (constant)
	ebSystemModal (constant)
	ebVariant (constant)
	ebVolume (constant)
	ebWin32 (constant)
	ebYes (constant)
	ebYesNo (constant)
	ebYesNoCancel (constant)
	Empty (constant)
	End (statement)
	Environ, Environ$ (functions)
	EOF (function)
	Eqv (operator)
	Erase (statement)
	Erl (function)
	Err (function)
	Err (statement)
	Error (statement)
	Error Handling (topic)
	Error, Error$ (functions)
	Exit Do (statement)
	Exit For (statement)
	Exit Function (statement)
	Exit Sub (statement)
	Exp (function)
	Expression Evaluation (topic)

	8. F
	False (constant)
	FileAttr (function)
	FileCopy (statement)
	FileDateTime (function)
	FileDirs (statement)
	FileExists (function)
	FileLen (function)
	FileList (statement)
	FileParse$ (function)
	Fix (function)
	For...Next (statement)
	Format, Format$ (functions)
	FreeFile (function)
	Function...End Function (statement)
	Fv (function)

	9. G
	Get (statement)
	GetAttr (function)
	GetObject (function)
	Global (statement)
	Goto (statement)
	GroupBox (statement)

	10. H
	Hex, Hex$ (functions)
	HLine (statement)
	Hour (function)
	HPage (statement)
	HScroll (statement)
	HWND (object)
	HWND.Value (property)

	11. I
	If...Then...Else (statement)
	IIf (function)
	Imp (operator)
	Inline (statement)
	Input# (statement)
	Input, Input$ (functions)
	InputBox, InputBox$ (functions)
	InStr (function)
	Int (function)
	Integer (data type)
	IPmt (function)
	IRR (function)
	Is (operator)
	IsDate (function)
	IsEmpty (function)
	IsError (function)
	IsMissing (function)
	IsNull (function)
	IsNumeric (function)
	IsObject (function)
	Item$ (function)
	ItemCount (function)

	12. K
	Keywords (topic)
	Kill (statement)

	13. L
	LBound (function)
	LCase, LCase$ (functions)
	Left, Left$ (functions)
	Len (function)
	Let (statement)
	Like (operator)
	Line Input# (statement)
	Line Numbers (topic)
	Line$ (function)
	LineCount (function)
	ListBox (statement)
	Literals (topic)
	Loc (function)
	Lock (statement)
	Lof (function)
	Log (function)
	Long (data type)
	LSet (statement)
	LTrim, LTrim$ (functions)

	14. M
	Main (statement)
	MCI (function)
	Mid, Mid$ (functions)
	Mid, Mid$ (statements)
	Minute (function)
	MIRR (function)
	MkDir (statement)
	Mod (operator)
	Month (function)
	MsgBox (function)
	MsgBox (statement)
	Msg.Close (method)
	Msg.Open (method)
	Msg.Text (property)
	Msg.Thermometer (property)

	15. N
	Name (statement)
	Named Parameters (topic)
	Net.AddCon (method)
	Net.Browse$ (method)
	Net.CancelCon (method)
	Net.GetCon$ (method)
	Net.User$ (property)
	New (keyword)
	Not (operator)
	Nothing (constant)
	Now (function)
	NPer (function)
	Npv (function)
	Null (constant)

	16. O
	Object (data type)
	Objects (topic)
	Oct, Oct$ (functions)
	OKButton (statement)
	On Error (statement)
	Open (statement)
	OpenFilename$ (function)
	Operator Precedence (topic)
	Operator Precision (topic)
	Option Base (statement)
	Option Compare (statement)
	Option CStrings (statement)
	OptionButton (statement)
	OptionGroup (statement)
	Or (operator)

	17. P
	Pi (constant)
	Picture (statement)
	PictureButton (statement)
	Pmt (function)
	PopupMenu (function)
	PPmt (function)
	Print (statement)
	Print# (statement)
	Private (statement)
	Public (statement)
	PushButton (statement)
	Put (statement)
	Pv (function)

	18. R
	Random (function)
	Randomize (statement)
	Rate (function)
	ReadIni$ (function)
	ReadIniSection (statement)
	Redim (statement)
	Rem (statement)
	Reset (statement)
	Resume (statement)
	Return (statement)
	Right, Right$ (functions)
	RmDir (statement)
	Rnd (function)
	RSet (statement)
	RTrim, RTrim$ (functions)

	19. S
	SaveFilename$ (function)
	Screen.DlgBaseUnitsX (property)
	Screen.DlgBaseUnitsY (property)
	Screen.Height (property)
	Screen.TwipsPerPixelX (property)
	Screen.TwipsPerPixelY (property)
	Screen.Width (property)
	Second (function)
	Seek (function)
	Seek (statement)
	Select...Case (statement)
	SelectBox (function)
	SendKeys (statement)
	Set (statement)
	SetAttr (statement)
	Sgn (function)
	Shell (function)
	Sin (function)
	Single (data type)
	Sleep (statement)
	Sln (function)
	Space, Space$ (functions)
	Spc (function)
	SQLBind (function)
	SQLClose (function)
	SQLError (function)
	SQLExecQuery (function)
	SQLGetSchema (function)
	SQLOpen (function)
	SQLQueryTimeout (statement)
	SQLRequest (function)
	SQLRetrieve (function)
	SQLRetrieveToFile (function)
	Sqr (function)
	Stop (statement)
	Str, Str$ (functions)
	StrComp (function)
	String (data type)
	String, String$ (functions)
	Sub...End Sub (statement)
	Switch (function)
	SYD (function)
	System.Exit (method)
	System.FreeMemory (property)
	System.FreeResources (property)
	System.MouseTrails (method)
	System.Restart (method)
	System.TotalMemory (property)
	System.WindowsDirectory$ (property)
	System.WindowsVersion$ (property)

	20. T
	Tab (function)
	Tan (function)
	Text (statement)
	TextBox (statement)
	Time, Time$ (functions)
	Time, Time$ (statements)
	Timer (function)
	TimeSerial (function)
	TimeValue (function)
	Trim, Trim$ (functions)
	True (constant)
	Type (statement)

	21. U
	UBound (function)
	UCase, UCase$ (functions)
	Unlock (statement)
	User-Defined Types (topic)

	22. V
	Val (function)
	Variant (data type)
	VarType (function)
	VLine (statement)
	VPage (statement)
	VScroll (statement)

	23. W
	Weekday (function)
	While...Wend (statement)
	Width# (statement)
	WinActivate (statement)
	WinClose (statement)
	WinFind (function)
	WinList (statement)
	WinMaximize (statement)
	WinMinimize (statement)
	WinMove (statement)
	WinRestore (statement)
	WinSize (statement)
	Word$ (function)
	WordCount (function)
	Write# (statement)
	WriteIni (statement)

	24. X
	X or (operator)

	25. Y
	Year (function)

	26. CIMPLICITY Extensions to Basic
	Acquire (Function)
	Acquire, Release (Statements)
	AlarmGenerate (Method)
	AlarmUpdate (Method)
	ChangePassword (Method)
	CimEMAlarmEvent (Object)
	CimEMAlarmEvent.AlarmID (Property, Read)
	CimEMAlarmEvent.FinalState (Property, Read)
	CimEMAlarmEvent.GenTime (Property, Read)
	CimEMAlarmEvent.Message (Property, Read)
	CimEMAlarmEvent.PrevState (Property, Read)
	CimEMAlarmEvent.RefID (Property, Read)
	CimEMAlarmEvent.ReqAction (Property, Read)
	CimEMAlarmEvent.ResourceID (Property, Read)
	CimEMEvent (Object)
	CimEMEvent.ActionID (Property, Read)
	CimEMEvent.AlarmEvent (Function)
	CimEMEvent.EventID (Property, Read)
	CimEMEvent.ObjectID (Property, Read)
	CimEMEvent.PointEvent
	CimEMEvent.TimeStamp (Property, Read)
	CimEMEvent.Type (Property, Read)
	CimEMPointEvent (Object)
	CimEMPointEvent.Id
	CimEmPointEvent.Quality (Property, Read)
	CimEmPointEvent.QualityAlarmed (Property, Read)
	CimEmPointEvent.QualityAlarms_Enabled (Property, Read)
	CimEmPointEvent.QualityDisable_Write (Property, Read)
	CimEmPointEvent.QualityIs_Available (Property, Read)
	CimEmPointEvent.QualityIs_In_Range (Property, Read)
	CimEmPointEvent.QualityLast_Upd_Man (Property, Read)
	CimEmPointEvent.QualityManual_Mode (Property, Read)
	CimEmPointEvent.QualityStale_Data (Property, Read)
	CimEMPointEvent.State (Property, Read)
	CimEMPointEvent.TimeStamp (Property, Read
	CimEmPointEvent.UserFlags (Property, Read}
	CimEMPointEvent.Value (Property, Read)
	CimGetEMEvent (Function)
	CimIsMaster (Function)
	CimLogin (Procedure)
	CimLogout (Procedure)
	CimProjectData (Object)
	CimProjectData.Project (Property, Read/Write)
	CimProjectData.Entity (Property, Read/Write)
	CimProjectData.Attributes (Property, Read/Write)
	CimProjectData.Filters (Property, Read/Write)
	CimProjectData.GetNext (Function)
	CimProjectData.Reset (Method)
	GetKey (Function)
	GetSystemWindowsDirectory (Function)
	GetTSSessionId (Function)
	IsTerminalServices (Function)
	LogStatus (Property, Read/Write)
	Point (Subject)
	Point (Object)
	Point.AlarmAck (Property, Read)
	Point.Cancel (Method)
	Point.DataType (Property, Read)
	Point.DisplayFormat (Property, Read)
	Point.DownloadPassword (Property, Read)
	Point.Elements (Property, Read)
	Point.EnableAlarm (Method)
	Point.Enabled (Property, Read)
	Point.EuLabel (Property, Read)
	Point.Get (Method)
	Point.GetArray (Method)
	Point.GetNext (Function)
	Point.GetNext (Method)
	Point.GetRawArray (Method)
	Point.GetValue (Property, Read)
	Point.HasEuConv (Property, Read)
	Point.Id (Property, Read/Write)
	Point.InUserView (Property, Read)
	Point.Length (Property, Read)
	Point.OnAlarm (Method)
	Point.OnAlarmAck (Method)
	Point.OnChange (Method)
	Point.OnTimed (Method)
	Point.PointTypeId (Property, Read)
	Point.Quality (Property, Read)
	Point.QualityAlarmed (Property, Read)
	Point.QualityAlarms_Enabled (Property, Read)
	Point.QualityDisable_Write (Property, Read)
	Point.QualityIs_Available (Property, Read)
	Point.QualityIs_In_Range (Property, Read)
	Point.QualityLast_Upd_Man (Property, Read)
	Point.QualityManual_Mode (Property, Read)
	Point.QualityStale_Data (Property, Read)
	Point.RawValue (Property, Read/Write)
	Point.ReadOnly (Property, Read)
	Point.Set (Method)
	Point.SetArray (Method)
	Point.SetElement (Method)
	Point.SetpointPriv (Property, Read)
	Point.SetRawArray (Method)
	Point.SetValue (Property, Write)
	Point.State (Property, Read)
	Point.TimeStamp (Property, Read)
	Point.UserFlags (Property, Read)
	Point.Value (Property, Read/Write)
	PointGet (Function)
	PointGetMultiple (Function)
	PointGetNext (Function)
	PointSet (Statement)
	Trace (Command)
	TraceEnable/TraceDisable (Command)

	Index

