PFFT User Manual*

for version 1.0.7-alpha

December 2, 2014

Michael Pippig
Technische Universitdt Chemnitz
Faculty of Mathematics
09107 Chemnitz, Germany
michael.pippig@mathematik.tu-chemnitz.de

Download Parallel Fast Fourier Transform Software Library at
www.tu-chemnitz.de/~mpip/software.php
https://github.com/mpip/pfft.git

*This work was supported by the BMBF grant 01IH08001B from 01.01.2010 until 31.03.2013.

mailto:michael.pippig@mathematik.tu-chemnitz.de
www.tu-chemnitz.de/~mpip/software.php
https://github.com/mpip/pfft.git

Todo list

finish FFTW2PFFT porting example 13
Describe shifted input and output L. 21
Describe pruned FFT with shifted input and output 21
explain ghost cell communication with a test file 22
explain F03 interface with a test file 22
this flag can be used for local_size and planning 26
implement getters and setters for pfft timero 46
Does anybody need non-3d ghost cell communication? 46
Does anybody need r2c ghost cell communication with correct boundary conditions? 50
explain PFFT_GC_SENDRECV and PFFT_GC_RMA+ v v v v v v oo o v 52

Do we need getters and setters for ghost cell timers? 54

Contents

1

Introduction 7
1.1 Alternative parallel FFT implementations 9
1.2 Parallel nonequispaced FFT 9
Tutorial 10
2.1 A first parallel transform - Three-dimensional FF'T with two-dimensional
data decomposition 10
2.2 Porting FFTW-MPI based code to PFFT 13
2.3 Errorcode for communicator creation 17
2.4 Inplace transforms 17
2.5 Higher dimensional data decomposition 18
2.6 Parallel data decomposition Lo 18
2.6.1 Non-transposed and transposed data layout 19
2.6.2 Three-dimensional FFTs with three-dimensional data decomposition 19
2.7 Planning efforto 20
2.8 Preserving input data L Lo 20
2.9 FFTs with shifted indexsets. 21
2.10 Pruned FFT and Shifted Index Sets 21
2.10.1 Pruned FFT 21
2.10.2 Shifted Index Sets 21
2.11 Precisions 21
2.12 Ghost cell communication 22
2.13 Fortran interface 22
Installation and linking 23
3.1 Install of the latest official FFTW release 23
3.2 Install of the PFFT library 23
3.3 How to include PFFT in your program 24
Advanced Features 26
4.1 How to Deal with FFT Index Shifts in Parallel 26
4.1.1 Shift with half the FFT size 26
4.1.2 Arbitrary shifts oL 27

4.2 Parallel pruned FFT o oo 29

Contents 4
5 Interface Layers of the PFFT Library 30
5.1 Basic Interface 30
5.2 Advanced Interface 31
5.3 Preliminary: Skip Serial Transformations 31
6 PFFT Reference 33
6.1 Files and Data Types 33
6.2 MPI Initialization 34
6.3 Using PFFT Plans 34
6.4 Data Distribution Functions 0. 34
6.4.1 Complex-to-Complex FFT 34
6.4.2 Real-to-Complex FFT, 36
6.4.3 Complex-to-Real FFT 38
6.4.4 Real-to-Real FFT 39

6.5 Plan Creation e 40
6.5.1 Complex-to-Complex FFT 40
6.5.2 Real-to-Complex FFT 41
6.5.3 Complex-to-Real FFT 42
6.5.4 Real-to-Real FFT 43

6.6 FFT Execution Timer 44
6.6.1 DBasis Run Time Measurements 44
6.6.2 Advanced Timer Manipulation 45

6.7 Ghost Cell Communication 46
6.7.1 Using Ghost Cell Plans 47
6.7.2 Data Distribution 0o 47
6.7.3 Memory Allocation o 48
6.7.4 Plan Creation for Complex Data, 49
6.7.5 Plan Creation for Real Data 51
6.7.6 Inofficial Flags 52
6.7.7 Ghost Cell Execution Timer 52

6.8 Useful Tools e 54
6.8.1 Initializing Complex Inputs and Checking Outputs 54
6.8.2 Initializing Real Inputs and Checking Outputs 55
6.8.3 Initializing r2c/c2r Inputs and Checking Outputs 56
6.8.4 Operations on Arrays of Type ptrdiff € 57
6.8.5 Print Three-Dimensional Arrays in Parallel 58
6.8.6 Reading Command Line Arguments 59
6.8.7 Parallel Substitutes for vprintf, fprintf, and printf 60

6.9 Generating Periodic Cartesian Communicators 60

Contents

7 Developers Guide
7.1 Search and replace patterns

8 ToDo
8.1 Measuring parallel run times

This user manual describes the usage of PFFT 1.0.7-alpha [18, 20], a MPI-based,
parallel software library for the computation of equispaced fast Fourier transforms (FFT)
on parallel, distributed memory architectures. The reader of this manual should familiar
with the basic usage of FFTW and MPI. For further information we refer to the well
written FFTW user manual [1] and the MPI Standard [15], see also [12] for detailed
explanations.

1 Introduction

A popular software library for computing FFTs is FFTW [11, 10]. This library also
includes a parallel FFT implementation (FFTW-MPI) based on the Message Passing
Interface (MPI). FFTW-MPI parallelizes multi-dimensional FFTs by a mixture of serial
lower-dimensional FFTs and parallel data transpositions. However, FFTW-MPI makes
use of a one-dimensional data decomposition, which shows to be a scalability bottleneck
on large scale, parallel computers. For example, a three-dimensional FFT of size 10243
can be computed with at most 1024 MPI processes. In contrast, using a two-dimensional
data decomposition would increase the maximum number of MPI processes to 10242 in
this case.

The main goal of PFFT is to extend the MPI part of the FFTW software library
to multi-dimensional data decompositions, i.e., d-dimensional FFTs of size N¢ can be
computed in parallel with at most N9~1 MPI processes. In addition, PFFT offers several
extra features that are particular usefull for parallel, distributed memory FFTs but are
not yet present in FFTW-MPI. We refer to the publication [20] for a closer look on the
different data decompositions and the underlying algorithms of the PFFT library.

The interface of PFFT is as close as possible to the FFTW-MPI interface. In fact,
we consider every difference between PFFT and FFTW that is not explicitly mentioned
within this manual as a bug that should be reported to https://github.com/mpip/
pfft.git. Therefore, porting code that uses FFTW-MPI to PFFT is almost trivial,
e.g. see Section 2.2.

Most features of PFFT are inherited from FFTW or similarily implemented. These
include the following;:

e We employ fast O(N log N) algorithms of FFTW to compute arbitrary-size discrete
Fourier transforms of complex data, real data, and even- or odd-symmetric real
data.

e The dimension of the FFT can be arbitrary. However, parallel data decomposition
must be at least one dimension smaller.

e PFFT offers portable performance; e.g., it will perform well on most platforms.

e The application of PFFT is split into a time consuming planning step and a high
performance execution step.

e Installing the library is easy. It is based on the common sequence of configure,
make, and make install.

e The interface of PFFT is very close to the MPI interface of FFTW. In fact, we
tried to add as few extra parameters as possible.

https://github.com/mpip/pfft.git
https://github.com/mpip/pfft.git

1 Introduction 8

e PFFT is written in C but also offers a Fortran interface, see Section 77.

e FFTW includes shared memory parallelism for all serial transforms. This enables
us to benefit from hybrid parallelism to a certain amount, see Section ?77.

e All steps of our parallel FFT can be performed completely in place. This is espe-
cially remarkable for the global transposition routines.

e Confirming to good MPI programming practice, all PFFT transforms can be per-
formed on user defined communicators. In other words, PFFT does not enforce
the user to work with MPI_COMM_WORLD.

e PFFT uses the same algorithm to compute the size of the local array blocks as
FFTW. This implies that the FFT size need not be divisible by the number of
processes.

e PFFT supports single, double and long double precision.

e PFFT supports new-array execution, i.e., a PFFT plan can be planned and exe-
cuted on different plans up to some restrictions, see Section 7?7 for details. Thanks
to Yu Feng for the new-array execute patch.

Furthermore, we added some special features to support repeated tasks that often occur
in practical application of parallel FFTs.

e PFFT includes a very flexible ghost cell exchange module. A detailed description
of this module is given in Section 6.7.

e PFFT accepts three-dimensional data decomposition even for three-dimensional
FFTs. However, the underlying parallel FFT framework is still based on two-
dimensional decomposition. A more detailed description can be found in Sec-
tion ?7.

e PFFT explicitly supports the parallel calculation of pruned FFTs. Details are
given in Section 77.

Finally, we complete this overview with a list of features that are (not yet) implemented
in PFFT.

e Parallel one-dimensional FFT based on MPI. FFTW-MPI uses another paralleliza-
tion strategy for one-dimensional FFTs, which is not implemented in PFFT. The
reason is that we can not achive a scalability benefit due to higher dimensional
data decomposition if the FFT has only one dimension. Therefore, one can also
call FFTW directly in this case.

e There is no equivalent of FFTW wisdom in PFFT, i.e., you can not save a PFFT
plan to disk and restore it for later use.

e PFFT does not have full OpenMP support. All serial FF'T computations and global
communications are implemented with FFTW, which offers OpenMP support, see
Section ?7?7. However, most of the PFFT-only features, such as pruned FFT, ghost
cell send and 3d decompostion of 3d FFTs are not yet parallelized with OpenMP.

e PFFT does not have full SIMD support. All serial FF'T computations and global
communications are implemented with FFTW, which offers SIMD support, see
Section ?7?. However, most of the PFFT-only features, such as pruned FF'T, ghost

1 Introduction 9

cell send and 3d decompostion of 3d FFTs are not yet parallelized with SIMD.

e PFFT does not overlap communication and computation. The code of PFFT is
build in a very modularized structure. Most of these modules consist of FFTWs
routines. Therefore, the global transposition does not support non blocking com-
munication.

e Similar to FFTW, we do not provide any parallel IO routines. The user is respon-
sible of load and store of parallel data.

e PFFT depends on FFTW to perform its serial transforms and does not support
different vendor FFTs (such as Intel’s MKL or IBM’s ESSL). However, this is not
assumed to be a big drawback, since FF'TW seems to perform very well on most
platforms.

e The global communication routines can not be called separately. However, it
should be possible to implement a user interface to our global transposition rou-
tines.

e PFFT does not support GPU parallelization.

You are welcome to propose new PFFT features at https://github.com/mpip/
pfft.git.

1.1 Alternative parallel FFT implementations

There have been several FFT implementations that aim to circumvent the scalability
bottleneck for at least three dimensional FFTs by using two-dimensional decomposition
approach. However, these implementations are often fitted to special problems and
where not published as a stand alone software library. Remarkable exceptions are the
parallel FFT software library by S. Plimpton [23, 22], the P3DFFT software library by
D. Pekurovsky [17, 16] and the 2DECOMP&FFT software library by N. Li [14, 13].

1.2 Parallel nonequispaced FFT

If your are interested in a parallel implementation of nonequispaced fast Fourier trans-
forms (NFFT) for distributed memory architectures, you should have a look at our
PNFFT software library [19, 21] that is also available at https://github.com/
mpip/pnfft.git.

https://github.com/mpip/pfft.git
https://github.com/mpip/pfft.git
https://github.com/mpip/pnfft.git
https://github.com/mpip/pnfft.git

2 Tutorial

The following chapter describes the usage of the PFFT library at the example of a simple
test file in the first section, followed by the more advanced features of PFFT in the next
sections.

2.1 A first parallel transform - Three-dimensional FFT with
two-dimensional data decomposition

We explain the basic steps for computing a parallel FFT with the PFFT library at
the example of the short test program given by Listing 2.1. This test computes a three-
dimensional c2¢c-FF'T on a two-dimensional process mesh. The source code manual_c2c_3d.c
can be found in directory tests/ of the library’s source code tree.

After initializing MPI with MPI_Init and before calling any other PFFT routine
initialize the parallel FF'T computations via

void pfft_init (void);

MPI introduces the concept of communicators to store all the topological information
of the physical process layout. PFFT requires to be called on a process mesh that
corresponds to a periodic, Cartesian communicator. We assist the user in creating such
a communicator with the following routine

int pfft_create_procmesh_2d(
MPI_Comm comm, int npO, int npl,
MPI_Comm *comm_cart_2d);

This routine uses the processes within the communicator comm to create a two-dimensional
process grid of size np0 x np1 and stores it into the Cartesian communicator comm_cart_2d.
Note that comm_cart_2d is allocated by the routine and must be freed with MPI_Comm_free
after usage. The input parameter comm is a communicator, indicating which processes
will participate in the transform. Choosing comm as MPI_COMM_WORLD implies that the
FFT is computed on all available processes.

At the next step we need to know the data decomposition of the input and output
array, that depends on the array sizes, the process grid and the chosen parallel algorithm.
Therefore, we call

ptrdiff t pfft_ local_size_ 3d(
ptrdiff t x*n, MPI_Comm comm cart_2d, unsigned pfft_flags,

2 Tutorial

11

Listing 2.1: Minimal parallel c2¢c-FFT test program.
#include <pfft.h>

int main (int argc, char xxargv) {
int npl[2];
ptrdiff t n[3];
ptrdiff t alloc_local;
ptrdiff t local _ni[3], local_i_start[3];
ptrdiff t local no[3], local_o_start[3];
pfft _complex xin, x*out;
pfft_plan plan=NULL;
MPI Comm comm_cart_2d;

/+ Set size of FFT and process mesh */
n[0] = 2; n[l] = 2; n[2] = 4;
np[0] = 2; np[l] = 2;

/% Initialize MPI and PFFT %/
MPI_TInit (&argc, &argv);
pfft_init ();

/+ Create two-dimensional process grid of size np[0] x np[l] */
pfft_create_procmesh_2d (MPI_COMM_WORLD, np[0], np[l],
&comm_cart_2d) ;

/% Get parameters of data distribution #*/
alloc_local = pfft_local_size_dft_3d(
n, comm_cart_2d, PFFT_TRANSPOSED_NONE,
local_ni, local_i_start, local_no, local_o_start);

/+ Allocate memory x*/
in = pfft_alloc_complex(alloc_local);
out = pfft_alloc_complex(alloc_local);

/* Plan parallel forward FFT */
plan = pfft_plan_dft_3d(n, in, out, comm_cart_2d,
PFFT_FORWARD, PFFT_TRANSPOSED_NONE) ;

/+ Initialize input with random numbers */
pfft_init_input_complex_3d(n, local_ni, local_i_start,
in);

/+* Execute parallel forward FFT #*/
pfft_execute (plan);

/+ free mem and finalize MPI x/
pfft_destroy_plan(plan);
MPI_Comm_free (&comm_cart_2d) ;
pfft_free(in); pfft_free (out);
MPI_Finalize () ;

return O;

2 Tutorial 12

ptrdiff t xlocal_ni, ptrdiff t xlocal i_start,
ptrdiff t xlocal_no, ptrdiff t xlocal_o_start);

Hereby, n, 1local_ni, local_i_start, local_no, local_o_start are arrays of length
3 that must be allocated. The return value of this function equals the size of the local
complex array that needs to be allocated by every process. In most cases, this coincides
with the product of the local array sizes — but may be bigger, whenever the parallel algo-
rithm needs some extra storage. The input value n gives the three-dimensional FFT size
and the flag pfft_flags serves to adjust some details of the parallel execution. For the
sake of simplicity, we restrict our self to the case pfft_flags=PFFT_TRANSPOSED_NONE
for a while and explain the more sophisticated flags at a later point. The output ar-
rays local_ni and local_i_start give the size and the offset of the local input array
that result from the parallel block distribution of the global input array, i.e., every pro-
cess owns the input data in[k[0],k[1],k[2]] with local_i_start[t] <= k[t] <

local_i_start[t] + local_ni[t] for t=0,1, 2. Analogously, the output parameters
local_o_start and local_no contain the size and the offset of the local output array.

Afterward, the input and output arrays must be allocated. Hereby,

pfft_complexx pfft_alloc_complex(size_t size);

is a simple wrapper of fftw_alloc_complex, which in turn allocates the memory via
fftw_malloc to ensure proper alignment for SIMD. Have a look at the FFTW user man-
ual [9] for more details on SIMD memory alignment and fftw_malloc. Nevertheless,
you can also use any other dynamic memory allocation.

The planning of a single three-dimensional parallel FFT of size n[0] x n[1] X n[2]
is done by the function

pfft_plan pfft plan_dft_3d(
ptrdiff t xn, pfft_complex xin, pfft_complex =xout,
MPI_Comm comm_cart_2d, int sign, unsigned pfft_flags);

We provide the address of the input and output array by the pointers in and out,
respectively. An inplace transform is assumed if these pointers are equal. The integer
sign gives the sign in the exponential of the FFT. Possible values are PFFT_FORWARD
(—1) and PFFT_BACKWARD (+1). Flags passed to the planner via pfft_flags must
coincide with the flags that were passed to pfft_local_size_3d. Otherwise the data
layout of the parallel execution may not match calculated local array sizes. As return
value we get a PFFT plan, some structure that stores all the information needed to
perform a parallel FFT.

Once the plan is generated, we are allowed to fill the input array in. Note, that per
default the planning step pfft_plan_dft_3d will overwrite input array in. Therefore,
you should not write any sensitive data into in until the plan was generated. For
simplicity, our test program makes use of the library function

void pfft_init_input_complex_3d(

2 Tutorial 13

ptrdiff t xn, ptrdiff t xlocal ni, ptrdiff t xlocal i_start,
pfft_complex xin);

to fill the input array with some numbers. Alternatively, one can fill the array with a
function func of choice and the following loop that takes account of the parallel data
layout

ptrdiff t m=0;
for (ptrdiff t k0=0; kO < local_ni[0]; kO++)
for (ptrdiff t k1=0; k1l < local_ni[l]; kl++)
for (ptrdiff t k2=0; k2 < local_ni[2]; k2++)
in[m++] = func (k0 + local_i_start[0],
kl + local_i_start[1l],
k2 + local_i_start[2]);

The parallel FFT is computed when we execute the generated plan via
void pfft_execute (const pfft_plan plan);

Now, the results can be read from out with an analogous three-dimensional loop. If we
do not want to execute another parallel FFT of the same type, we free the allocated
memory of the plan with

void pfft_destroy_plan (pfft_plan plan);

Additionally, we use

int MPI_Comm_free (MPI_Comm xcomm) ;

to free the communicator allocated by pfft_create_procmesh_2d and
void pfft_free(void =xptr);

to free memory allocated by pfft_alloc_complex. Finally, we exit MPI via

int MPI_Finalize (void);

2.2 Porting FFTW-MPI based code to PFFT

We illustrate the close connection between FFTW-MPI and PFFT at a three-dimensional
MPT example analogous to the example given in the FFTW manual [2].
Exactly the same task can be performed with PFFT as given in Listing ?77.

#include <pfft.h>
int main (int argc, char xxargv)

{
const ptrdiff t n[(3] = {..., ..., ...};

CO O UL i W N+

20
21
22
23
24
25
26

27
28

29

30
31
32
33
34

35

36
37
38
39
40

2 Tutorial

Listing 2.2: Minimal parallel c2¢c-FFT test program.

#include <fftw3-mpi.h>

int main (int argc, char xxargv)

{

const ptrdiff t n0 = 4, nl = 4, n2 = 4;

fftw_plan plan;

fftw_complex xdata;

ptrdiff t alloc_local, local_n0O, local O_start, i, Jj, k;

MPI_Init (&argc, &argv);
fftw_mpi_init ();

/+ get local data size and allocate +*/

alloc_local = fftw_mpi_local_size_3d(n0, nl, n2, MPI_COMM WORLD,
&local_n0O, &local_0_start);

data = fftw_alloc_complex(alloc_local);

/% create plan for in-place forward DFT x*/
plan = fftw_mpi_plan_dft_3d(n0, nl, n2, data, data,
MPI_COMM_WORLD,
FFTW_FORWARD, FFTW_ESTIMATE) ;

/* initialize data to some function my_ function (x,y) #*/

for (i = 0; 1 < local_n0; ++i)
for (j = 0; Jj < nl; ++3)
for (k = 0; k < n2; ++k)
data[ixnl*n2 + j*n2 + k] = my_function(local_0_start + i,
Jj, k);
ptrdiff t local _ni[3] = {local _nO, nl, n2}, local_i_start[3] =

{local_0O_start, 0, 0};
pfft_apr_complex_3d(data, local_ni, local_i_start, "input:",
MPI_COMM_WORLD) ;

/+* compute transforms, in-place, as many times as desired #*/
fftw_execute (plan);

ptrdiff t local no[3] = {local_n0O, nl, n2}, local_o_start[3] =
{local_0O_start, 0, 0};

pfft_apr complex_ 3d(data, local_no, local o_start, "output:",
MPI_COMM_WORLD) ;

fftw_destroy_plan (plan);

}

MPI_Finalize();

2 Tutorial 15

pfft_plan plan;

pfft_complex *data;

ptrdiff t alloc_local, local_ni[3], local_i_start[3],
local_no[3], local_o_start[3], i, 3j, k;

unsigned pfft_flags = 0;

MPI_Init (&argc, &argv);
pfft_init ();

/* get local data size and allocate +*/
alloc_local = pfft_local_size_dft_3d(n, MPI_COMM WORLD,
pfft_flags,
local _ni, local_i_start,
local_no, local_o_start);
data = pfft_alloc_complex(alloc_local);

/#* create plan for in-place forward DFT %/
plan = pfft_plan_dft_3d(n, data, data, MPI_COMM_WORLD,
PFFT_FORWARD, PFFT_ESTIMATE) ;

/* initialize data to some function my_function (x,y,z) #*/
for (i = 0; 1 < local_n[0]; ++i)
for (j = 0; j < nf[l]; ++3)
for (k = 0; k < n[2]; ++k)
datal[i*n[l]*n[2] + J*n[2] + k] =
my_function(local_ i_start([0] + i, 3j, k);

/* compute transforms, in-place, as many times as desired #*/
pfft_execute (plan);

pfft_destroy_plan(plan);

MPI_Finalize();

substitute fftw3-mpi.h by pfft.h

substitute all prefixes fftw_ and fftw_mpi_ by pfft_

substitute all prefixes FFTW_ by PFFT_

the integers N, 1ocal_n0, local_0_start become arrays of length 3

dft_ in pfft_local_size_dft_3d

pfft_local_size_dft_3d has additional input pfft_flags and additional out-
puts local_no, local_o_start

The loop that inits data becomes splitted along all three dimensions. We could
also use

First, All prefixes fftw_ are substituted by pfft_

2 Tutorial

16

Now, the changes in order to use a two-dimensional process mesh are marginal as can

be seen in Listing ?77.

#include <pfft.h>

int main (int argc, char xxargv)
{
const ptrdiff t n[(3] = {..., ..., ...};
const int np0 = ..., npl = ...;
pfft_plan plan;
pfft_complex xdata;
ptrdiff t alloc_local, local_ni[3], local_i_start[3],
local_no[3], local_o_start[3], i, 3, k;
unsigned pfft_flags = 0;
MPI_Comm comm_cart_2d;

MPI_Init (&argc, &argv);
pfft_init ();

/* create two-dimensional process grid of size np0O x npl
pfft_create_procmesh_2d(MPI_COMM_WORLD, npO, npl,

&comm_cart_2d) ;

/+ get local data size and allocate */

*/

alloc_local = pfft_local_size dft_3d(n, comm_ cart_2d, pfft_flags,

local_ni, local_i_start,
local_no, local_o_start);

data = pfft_alloc_complex(alloc_local);

/* create plan for in-place forward DFT x*/
plan = pfft_plan dft_3d(n, data, data, MPI_COMM_WORLD,
PFFT_FORWARD, PFFT_ESTIMATE) ;

/+ initialize data to some function my_ function (x,y,z) */

for (i = 0; 1 < local_n[0]; ++i)
for (j = 0; j < local _n[l]; ++7)
for (k = 0; k < local_n[2]; ++k)
data[ixlocal n[l]xlocal_n[2] + jxlocal_nf[2] + k] =

ny_function(local_i_start[0] + i,
local_i_start[1l] + 73,
local i start[2] + k);

/+ compute transforms, in-place, as many times as desired

pfft_execute (plan);

pfft_destroy_plan(plan);

*/

2 Tutorial 17

MPI_Finalize();

2.3 Errorcode for communicator creation

As we have seen the function

int pfft_create_procmesh_2d(
MPI_Comm comm, int npO, int npl,
MPI Comm xcomm_cart_2d);

creates a two-dimensional, periodic, Cartesian communicator. The int return value
(not used in Listing 2.1) is the forwarded error code of MPI_Cart_create. It is equal to
zero if the communicator was created successfully. The most common error is that the
number of processes within the input communicator comm does not fit np0 x npl. In
this case the Cartesian communicator is not generated and the return value is unequal
to zero. Therefore, a typical sanity check might look like

/* Create two-dimensional process grid of size np[0] x np[l],
if possible */
if (pfft_create_procmesh_2d(MPI_COMM WORLD, np[0], np[l],
&comm_cart_2d))
{
pfft_fprintf (MPI_COMM_WORLD, stderr,
"Error: This test file only works with %d processes.\n",
np[0]+np[1]);
MPI_Finalize();
return 1;

}
Hereby, we use the PFFT library function

void pfft_fprintf (
MPI_Comm comm, FILE *stream, const char xformat, ...);

to print the error message. This function is similar to the standard C function fprintf
with the exception, that only the process with MPI rank 0 within the given communicator
comm will produce some output; see Section 6.8.7 for details.

2.4 Inplace transforms

Similar to FFTW, PFFT is able to compute parallel FFTs completely in place, which
means that beside some constant buffers, no second data array is necessary. Especially,
the global data communication can be performed in place. As far as we know, there is

2 Tutorial 18

no other parallel FFT library beside FF'TW and PFFT that supports this feature. This
feature is enabled as soon as the pointer to the output array out is equal to the pointer
to the input array in. E.g., in Listing 2.1 we would call

/+ Plan parallel forward FFT */
plan = pfft_plan_dft_3d(n, in, in, comm_cart_2d,
PFFT_FORWARD, PFFT_TRANSPOSED_NONE) ;

2.5 Higher dimensional data decomposition

The test program given in Listing 2.1 used a two-dimensional data decomposition of
a three-dimensional data set. Moreover, PFFT support the computation of any d-
dimensional FFT with r-dimensional data decomposition as long as r < d — 1. For
example, one can use a one-dimensional data decomposition for any two- or higher-
dimensional data set, while the data set must be at least four-dimensional to fit to a
three-dimensional data decomposition. The case r = d is not supported efficiently, since
during the parallel computations there is always at least one dimension that remains
local, i.e., one dimensions stays non-decomposed. The only exception from this rule is
the case d = r = 3 that is supported by PFFT in a special way, see Section 2.6.2 for
details.

The dimensionality of the data decomposition is given by the dimension of the Carte-
sian communicator that goes into the PFFT planing routines. Therefore, we present a
generalization of communicator creation function

int pfft_create_procmesh (
int rnk_np, MPI_Comm comm, const int xnp,
MPI Comm xcomm_cart);

Hereby, the array np of length rnk_np gives the size of the Cartesian communicator
cart_comm.

2.6 Parallel data decomposition

In the following, we use the notation % to symbolize that an array of length n is broken
into disjoint blocks and distributed on P MPI processes. Hereby, the data is distributed
in compliance to the FFTW-MPI data decompostion [5], i.e., the first P/block (rounded
down) processes get a contiguous chunk of block elements, the next process gets the re-
maining n - block * (n/block) data elements, and all remaining processes get noth-
ing. Thereby, the block size block defaults to n/p (rounded down) but can also be user
defined.

2 Tutorial 19

2.6.1 Non-transposed and transposed data layout

In the following, we use the notation % to symbolize that an array of length n is dis-
tributed on P MPI processes. The standard PFFT data decomposition of h interleaved
d-dimensional arrays of equal size ng X n1 X ... X ng_1 on a r-dimensional process mesh
of size Py X ... x P._1 is given by the blocks

ng Ny Np—1
— X — X ...X
P P P

X Ny X N1 X oo X Ng—q X h.

A PFFT created with planning flag PFFT_TRANSPOSED_NONE requires the inputs to be
decomposed in this standard way and produces outputs that are decomposed in the same
way.
PFFT can save half of the global communication amount, if the data reordering to
standard decomposition is omitted. The transposed data decomposition is given by
ny _ n Ty

X =2 X L. X
P P P

XNg X Nyl X ... XNg—1 X h

A PFFT plan created with planning flag PFFT_TRANSPOSED_OUT produces outputs with
transposed data decomposition. Analogously, a PFFT plan created with planning flag
PFFT_TRANSPOSED_IN requires its inputs to be decomposed in the transposed way. Typ-
ically, one creates a forward plan with PFFT_TRANSPOSED_OUT and a backward plan with
planning flag PFFT_TRANSPOSED_IN.

Note that the flags PFFT_TRANSPOSED_OUT and PFFT_TRANSPOSED_IN must be passed
to the array distribution function (see Section 6.4) as well as to the planner (see Sec-
tion 6.5).

2.6.2 Three-dimensional FFTs with three-dimensional data decomposition

Many applications work with three-dimensional block decompositions of three-dimensional
arrays. PFFT supports decompositions of the kind

o ni ng

L 2 % h,
POXPIXPQX

However, PFFT applies a parallel algorithms that needs at least one non-distributed
transform dimension (we do not transform along h), Therefore, we split the number of
processes along the last dimension into two factors P» = (Q1Q2, remap the data to the
two-dimensional decomposition

1o % ni

PoQo Pt
and compute the parallel FFT with this two-dimensional decomposition. Note that the
3d to 2d remap implies some very special restrictions on the block sizes for ng and

XTLQXh,

2 Tutorial 20

n1, i.e., the blocks must be divisible by (g and)1. More precisely, the default blocks
of the 2d-decomposition are given by n0/ (P0+Q0) and n1/ (P1+Q1) (both divisions
rounded down). This implies that the default blocks of the 3d-decomposition must be
n0/ (P0*Q0) * Q0, nl/(P1x01)« Q1, and n2/ (Q0+01) (all divisions rounded down).

2.7 Planning effort

Pass one of the following flags

e PFFT_ESTIMATE,

e PFFT_MEASURE,

e PFFT_PATIENT, or,

e PFFT_EXHAUSIVE
to the PFFT planner in order to plan all internal FFTW plans with FFTW_ESTIMATE,
FFTW_MEASURE, FFTW_PATIENT, or FFTW_EXHAUSIVE, respectively. The default value is
PFFT_MEASURE.

PFFT uses FFTW plans for parallel array transposition and the serial transforms.
In fact, every serial transform is a combination of strided lower-dimensional FFTs and
a serial array transposition (necessary to prepare the global transposition) which can
be done by a single FFTW plan. However, it turns out that FFTW sometimes per-
forms better if the serial transposition and the strided FFTs are executed separately.
Therefore, PFFT introduces the flag PFFT_TUNE that enables extensive run time tests
in order to find the optimal sequence of serial strided FFT and serial transposition for
every serial transform. These tests are disable on default which corresponds to the flag
PFFT_NO_TUNE.

2.8 Preserving input data

The following flags

e PFFT_PRESERVE_INPUT,

e PFFT_DESTROY_INPUT, and,

e PFFT_BUFFERED_INPLACE
only take effect for out-of-place transforms. The first one behaves analogously to the
FFTW flag FFTW_PRESERVE_INPUT and ensures that the input values are not overwrit-
ten. In fact, this flag implies that only the first serial transform is executed out-of-place
and all successive steps are performed in-place on the output array. In compliance to
FFTW, this is the default behaviour for out-of-place plans.

The second flag behaves analogously to the FFTW flag FFTW_DESTROY_INPUT and
tells the planner that the input array can be used as scratch array. This may give some
speedup for out-of-place plans, because all the intermediate transforms and transposition
steps can be performed out-of-place.

2 Tutorial 21

Finally, the flag PFFT_BUFFERED_INPLACE can be used for out-of-place plans that
store its inputs and outputs in the same array, i.e., array out is used for intermediate
out-of-place transforms and transpositions but the PFFT inputs and outputs are stored
in array in.

2.9 FFTs with shifted index sets

e PFFT_SHIFTED_IN
e PFFT_SHIFTED_OUT

2.10 Pruned FFT and Shifted Index Sets

2.10.1 Pruned FFT
For pruned r2r- and c2c-FFT are defined as

n;—1

~ 2okl
gl:ng‘e i /na l:O,...,no—l,
k=0
where n; < n and n, < n.

2.10.2 Shifted Index Sets

For N € 2N we define the FFT with shifted inputs
For K,L,N € 2N, L < N, L < N we define

2.11 Precisions

PFFT handles multiple precisions exactly in the same way as FFTW. Therefore, we
quote part [8] of the FFTW manual in the context of PFFT:
You can install single and long-double precision versions of PFFT, which replace dou-
ble with float and long double, respectively; see 7?7. To use these interfaces, you must
e Link to the single/long-double libraries; on Unix, -1pfftf or -1pfftl instead
of (or in addition to) -1pfft. (You can link to the different-precision libraries
simultaneously.)
e Include the same <pfft.h> header file.

2 Tutorial 22

e Replace all lowercase instances of ‘pfft_’ with ‘pfftf_’ or ‘pfftl_’ for single
or long-double precision, respectively. (p£ft_complex becomes pfftf_complex,
pfft_execute becomes pfftf_execute, etcetera.)

e Uppercase names, i.e. names beginning with ‘PFFT_’, remain the same.

e Replace double with float or long double for subroutine parameters.

i

2.12 Ghost cell communication

2.13 Fortran interface

3 Installation and linking

The install of PFFT is based on the Autotools and follows the typical workflow

./configure
make
make install

3.1 Install of the latest official FFTW release

PFFT depends on Release 3.3.3 of the FFTW library [11]. For the sake of completeness,
we show the command line based install procedure in the following. However, note that
we provide install scripts on www.tu-chemnitz.de/~mpip/software.php that
simplify the install a lot. We highly recommend to use these install scripts, since they
additionally apply several performance patches and bugfixes that have been submitted
to the FF'TW developers but are not yet included in the official FF'TW releases.

wget http://www.fftw.org/fftw-3.3.3.tar.gz

tar xzvf fftw-3.3.3.tar.gz

cd fftw-3.3.3

./configure —--enable-mpi —--prefix=$HOME/local/fftw3_mpi
make

make install

The MPT algorithms of FFTW must be build with a MPI C compiler. Add the statement
MPICC=$MPICCOMP at the end of line 4 if the configure script fails to determine the
right MPI C compiler $MpICccoMpP. Similarly, the MPI Fortran compiler $MPIFCOMP is
set by MPIFC=$MPIFCOMP.

3.2 Install of the PFFT library

In the simplest case, the hardware platform and the FFTW-3.3.3 library are recognized
by the PFFT configure script automatically, so all we have to do is

wget http://www.tu-chemnitz.de/~mpip/software/pfft-1.0.7-alpha.tar.gz
tar xzvf pfft-1.0.7-alpha.tar.gz

cd pfft-1.0.7-alpha

./configure

make

www.tu-chemnitz.de/~mpip/software.php

3 Installation and linking 24

make check
make install

Hereby, the optional call make check builds the test programs. If the FFTW-3.3.3
software library is already installed on your system but not found by the configure
script, you can provide the FFTW installation directory SFFTWDIR to configure by

./configure ——with-fftw3=$FFTWDIR

This call implies that the FF'TW header files are located in SFFTWDIR/include and the
FFTW library files are located in $SFFTWDIR/1ib. Otherwise, one should specify the
FFTW include path SFFTWINC and the FFTW library path $FFTWLIB separately by

./configure ——with-fftw3-includedir=$FFTWINC \
——with-fftw3-1ibdir=S$SFFTWLIB

At the end, this is equivalent to

./configure CPPFLAGS=-ISFFTWINC LDFLAGS=-LSFFTWLIB

which is more common to experienced users of the Autotools. To install PFFT in a user
specified directory $PFFTINSTDIR call configure with the option

./configure —-prefix=$PFFTINSTDIR

However, this option is mandatory whenever you do not have root permissions on your
machine, since the default install paths of configure are not accessible by standard
users. The PFFT library must be built with a MPI compiler. In Section 3.1 we already
described how to hand the right compilers to the configure script. Some more options
are
e ——enable-float: Produces a single-precision version of PFFT (float) instead of
the default double-precision (double); see 2.11.
e ——enable-long-double: Produces a long-double precision version of PFFT (long
double) instead of the default double-precision (double); see 2.11.
e ——disable-fortran: Disables inclusion of Fortran wrapper routines in the stan-
dard PFFT libraries.
e ——disable-tests: Disables build of test programs.
For more details on the options of the configure script call

./configure —--help

3.3 How to include PFFT in your program

All programs using PFFT should include its header file

#include <pfft.h>

3 Installation and linking 25

This header includes the FF'TW headers £ftw.h, fftw-mpi .h automatically. Make sure
that the compiler can find them by setting the include flags appropriately. You must
also link to the PFFT, FFTW and FFTW-MPI libraries. On Unix, this means adding
-lpfft -1fftw3_mpi -1fftw3 —1m at the end of the link command. For example, to
build pfft_test.c use the following compiler invocation

mpicc pfft_test.c —-ISPFFTINC —-ISFFTWINC -LSPFFTLIB —-LSFFTWLIB \
—lpfft -1fftw3 mpi -1fftw3 -Im

Substitute mpicc by any other MPI C compiler if you like. $PFFTINC, S$SFFTWINC,
SPFFTLIB, and $FFTWLIB denote the PFFT and FFTW include and library paths, re-
spectively. If you use the install scripts mentioned in Sect. 3.2, these paths will be

PFFTINC = $HOME/local/pfft-1.0.7-alpha/include
FFETWINC SHOME/local/fftw-3.3.3/include
PFFTINC SHOME/local/pfft-1.0.7-alpha/lib
FEFTWINC = SHOME/local/fftw-3.3.3/1lib

4 Advanced Features

4.1 How to Deal with FFT Index Shifts in Parallel

Let n € 2N. A common problem is that the index of the FFT input and/or output
array runs between —n/2,...,n/2 — 1, but the FFT library requires them to run between
0,...,n—1. With serial program execution one can easily remap the input data gi in a
way that is suitable for the library, i.e.,

fk ::g(k—n/Qmodn)? k=0,...,n—1

Similarly, one could remap the outputs of the library f;, [=0,--- ,n— 1 in the opposite
direction in order to get the required outputs, i.e.,

gl::flmodna l:_n/2a'--7n/2_1-

These shifts are also known as fftshift in Matlab.

However, with distributed memory these fftshift operations require more complex
data movements and result in a global communication. For example, the first index of
the array moves to the middle and, therefore, the corresponding data move to another
MPI process. Fortunately, this communication can be avoided at the cost of little extra
computation. At the end of the section we present two PFFT library functions that
perform the necessary pre- and postprocessing for shifted input and output index sets.

4.1.1 Shift with half the FFT size

The special case of input shift ks = —n/2 and/or output shift I, = —n/2 is supported
by PFFT. User can choose to shift the input (PFFT_SHIFTED_IN) and/or to shift the
output (PFFT_SHIFTED_OUT).

Here, we are interested in the computation of

n;f2—1

a1 = Z gke_27rikl/nv l= —Tbo/Q’ s an0/2 -1
k=—mni/2

with n,n;,n, € 2N and n > n;, n > n,.

4 Advanced Features 27

With an index shift of »/2 both in k& and [this equivalent to the computation of

n/a4n;/2—1
Jumn = D H-n)
k=n/2—n;/2
n/2+4n;/2—1
— ot Z (g(k_n/z)e-l-m(k—n/Q)) e—2mkl/n
k=n/2—n;/2
n/24n;/2—1
— tmill—n/2) Z (g(k_n/2)e+7rik) o—2miki/n

k=m/2—n /o N ——
T

fi

o—2mi(k—n/2)(1=7/2)/n

for | =mn/2 —nof2,...,m/2 4 no/2 — 1. Therefore, we get the following algorithm

n
fi= ngefz’”kl/”, | = —mof2,... ,m0f2 — 1
k=0

The special case ks = =%, s = —" corresponds to the shifts the arrays (FFTSHIFT)

1: For k=0,...,n—1set fz =0.

2: For k = —ni/2,... ni/2 — 1 compute f(;H_n/Q) = (=1)kt72) g,

3: For | =0,...,n—1 compute f; =3}, fre~2mikl/n ysing PFFT.
4: For | = —nof2,... no/2 — 1 compute g; = (—1)lf(l+n/2).

Note, that this shift implies that the library deals with pruned FFTs in a special way,
i.e., half of the zeros are added at the beginning of the inputs and the other half is added
at the end.

4.1.2 Arbitrary shifts

More general shifts must be done by the user.
In a more general setting, we are interested in the computation of FFTs with shifted
index sets, i.e., assume kg, ls € Z and compute

n;+ks—1

9= Z .gk‘e_%rikl/na I = lsa"'ano"i'ls —-1.
k=ks

4 Advanced Features 28

Algorithm 4.1 Shifted FFT with explicit data movement.

1: For k=0,...,n; — 1 assign fk = G(k+ks mod n;)-
2: For [=0,...,n, — 1 compute f; = Zzi:o fkefz’rikl/” using PFFT.

3: For 1 =0,...,n, — 1 assign g1 = f(1_1, mod n,)-

Because of the periodicity of the FFT this can be easily performed by Alg. 4.1.2.
However, this involves explicit data movement since the sequence of data changes. For a
our parallel data decomposition the change of data layout requires data communication.
A simple index shift results in the computation of

ni+ks—1 n;—1
A —2mik(I41s _ ~ —2mi(k+ks)(I4+1s
Giel, = Z Gre 2™ (I+ls)/n _ Z Gtk e mi(k+ks)(1+1s)/n

k=ks k=0

TLZ'—I
— o—2miksl/n Z (gk+kse—2wi(k+ks)ls/n> o—2mikl/n
k=0
=:fk

forall I =0,...,n, — 1. The resulting Alg. 4.1.2 preserves the sequence of data at the
price of some extra computation.

Algorithm 4.2 Shifted FFT without explicit data movement.
—2mi(k+ks)ls/n

1: For £k =0,...,n; — 1 compute fk = J(ktks)€
2: For 1 =0,...,n,— 1 compute f; =", fre 2mkl/n ysing PFFT.

3: For [=0,...,n, — 1 compute g4;,) = fre~2miksl/n

The special case ks = —%,ls = —" corresponds to the shifts the arrays (FFTSHIFT)

1: For k=0,...,n; — 1 compute fj, = g(k_ni/Q)e+”i(k—”i/2)no/n‘

2: For 1 =0,...,n,— 1 compute f; =", fke_%ikl/” using PFFT.

3: For [=0,...,n, — 1 compute g_n, = fret™ml/m,

4 Advanced Features 29

4.2 Parallel pruned FFT

Within PFFT we define a pruned FFT as

n;—1

g = Z gke*%ikl/", 1=0,...,n,— 1.
k=0

Formally, this is equivallent to the following regular size n FFT

n—1
2 : £ —2mikl

fl: fke ™ /n7 lZO,...,'l’L,
k=0

with .
o) Sk tkE=0,00m — 1,
Ik 0 ck=mn4...,n—1,
and f; :==¢;, k=0,...,n, — 1. Le., we add n — n; zeros at the end of the input array

and throw away n — n, entries at the end of the output array.
The definition of pruned FF'T changes for PFFT_SHIFTED_IN and PFFT_SHIFTED_OUT.

5 Interface Layers of the PFFT Library

We give a quick overview of the PFF'T interface layers in the order of increasing flex-
ibility at the example of c2c-FFTs. For r2c-, c2r-, and r2r-FFT similar interface layer
specifications apply. A full reference list of all PFFT functions is given in Chapter 6.

5.1 Basic Interface

The _3d interface is the simplest interface layer. It is suitable for the planning of three-
dimensional FFTs.

ptrdiff t pfft local_size dft_3d(
const ptrdiff t »n, MPI_Comm comm_cart, unsigned pfft_flags,
ptrdiff t xlocal_ni, ptrdiff t xlocal_ i_start,
ptrdiff t xlocal no, ptrdiff t xlocal_o_start);
void pfft_local_block_dft_3d(
const ptrdiff t xn, MPI_Comm comm_cart,
int pid, unsigned pfft_flags,
ptrdiff t xlocal_ni, ptrdiff t xlocal i_start,
ptrdiff t xlocal _no, ptrdiff t xlocal_o_start);
pfft_plan pfft_plan_dft_3d(
const ptrdiff t =xn,
pfft_complex xin, pfft_ complex *out, MPI_Comm comm_cart,
int sign, unsigned pfft_flags);

Hereby, n, 1ocal_ni, local_i_start, local_no, and local_o_start are ptrdiff_t
arrays of length 3.
The basic interface generalizes the _3d interface to FFTs of arbitrary dimension rnk_n.

ptrdiff t pfft_ local_size_dft (
int rnk_n, const ptrdiff t =xn,
MPI_Comm comm_cart, unsigned pfft_flags,
ptrdiff t xlocal ni, ptrdiff t xlocal i_start,
ptrdiff t xlocal no, ptrdiff t xlocal o_start);
void pfft_local block_dft (
int rnk_n, const ptrdiff t =xn,
MPI_Comm comm_cart, int pid, unsigned pfft_flags,
ptrdiff t xlocal ni, ptrdiff t xlocal_ i_start,
ptrdiff t xlocal no, ptrdiff t xlocal o_start);
pfft_plan pfft_plan_dft (

5 Interface Layers of the PFFT Library 31

int rnk_n, const ptrdiff t =xn,
pfft_complex xin, pfft_complex xout, MPI_Comm comm_cart,
int sign, unsigned pfft_flags);

Therefore, n, local_ni, local_i_start, local_no, and local_o_start become ar-
rays of length rnk_n.

5.2 Advanced Interface

The advanced interface introduces the arrays ni and no of length rnk_n that give the
pruned FFT input and output size. Furthermore, the arrays iblock and oblock of
length rnk_pm (rnk_pm being the dimension of the process mesh) serve to adjust the
block size of the input and output block decomposition. The additional parameter
howmany gives the number of transforms that will be computed simultaneously.

ptrdiff t pfft_ local_size_many_dft (
int rnk_n, const ptrdiff t «n,
const ptrdiff t xni, const ptrdiff t xno, ptrdiff t howmany,
const ptrdiff t xiblock, const ptrdiff t xoblock,
MPI_Comm comm_cart, unsigned pfft_flags,
ptrdiff t xlocal _ni, ptrdiff t xlocal_i_start,
ptrdiff t xlocal no, ptrdiff t xlocal o_start);
void pfft_local block_many_ dft (
int rnk_n, const ptrdiff t xni, const ptrdiff t »+no,
const ptrdiff t xiblock, const ptrdiff t xoblock,
MPI_Comm comm_cart, int pid, unsigned pfft_flags,
ptrdiff t xlocal ni, ptrdiff t xlocal_i_start,
ptrdiff t xlocal no, ptrdiff t xlocal o_start);
pfft_plan pfft_plan_many dft (
int rnk_n, const ptrdiff t =xn,
const ptrdiff t xni, const ptrdiff t xno, ptrdiff t howmany,
const ptrdiff t xiblock, const ptrdiff t xoblock,
pfft_complex xin, pfft_ complex xout, MPI_Comm comm_cart,
int sign, unsigned pfft_flags);

5.3 Preliminary: Skip Serial Transformations

The _skipped interface extends the _many interface by adding the possibility to skip
some of the serial FFTs.

pfft_plan pfft_plan _many dft_skipped/(
int rnk_n, const ptrdiff t =xn,
const ptrdiff t xni, const ptrdiff t xno, ptrdiff t howmany,
const ptrdiff t xiblock, const ptrdiff t xoblock,

5 Interface Layers of the PFFT Library 32

const int xskip_trafos,
pfft_complex xin, pfft_complex xout, MPI_Comm comm_cart,
int sign, unsigned pfft_flags);

Hereby, skip_trafos is an int array of length rnk_pm+1 (rnk_pm being the mesh di-

mension of the communicator comm_cart). For t=0, ..., rnk_pmset skip_trafos[t]=1
if the t-th serial transformation should be computed, otherwise set skip_trafos[t]=0.

Note that the local transpositions are always performed, since they are a prerequisite for

the global communication to work. At the moment it is only possible to skip the whole

serial transform along the last rnk_n-rnk_pm-1 dimensions. However, this behaviour

can be realized by a call of a (rnk_pm+1)-dimensional PFFT with

for (int t=rnk_pm+l; t<rnk_n; t++)
howmany *= n[t];

and manual computation of the desired serial transforms along the last rnk_n-rnk_pm-1
dimensions.

6 PFFT Reference

6.1 Files and Data Types

You must include the PFFT header file by

#include <pfft.h>

in the preamble of each source file that calls PFFT. This header automatically includes
fftw.h and fftw3-mpi.h. Therefore, PFFT can use the £ftw_complex data type
defined in fftw.h, see [3]. Note that f£ftw_complex is defined to be the C99 na-
tive complex whenever <complex.h> is included before <fftw.h>, <fftw-mpi.h> and
<pfft.h>. Otherwise it is defined as

typedef double fftw_complex[2];

For the sake of a clean namespace we define the wrapper data type p££ft_complex as

typedef fftw_complex pfft_complex;

that can be used equivallently to ££ftw_complex. Futhermore, we define the wrapper
functions

void xpfft_malloc(size_t n);

double xpfft_alloc_real (size_t n);
pfft_complex xpfft_alloc_complex(size_t n);
void pfft_free(void =*p);

as substitues for their corresponding FFTW equivalents, see [4]. Note that memory
allocated by one of these functions must be freed with pfft_free (or its equivalent
fftw_free). Because of the performance reasons given in [9] we recommend to use one
of the pfft_ (or its equivalent fftw_) allocation functions for all arrays containing FFT
inputs and outputs. However, PFFT will also work (possibly slower) with any other
memory allocation method.

Different precisions are handled as in FFTW: That is pfft_ functions and datatypes
become pfftf_ (single precision) or pfft1_ (long double precision) prefixed. Quadruple
precision is not yet supported. The main problem is that we do not know about a suitable
MPI datatype to represent _ float128.

6 PFFT Reference 34

6.2 MPI Initialization

Initialization and cleanup of PFFT in done in the same way as for FFTW-MPI, see [6].
In order to keep a clean name space, PFFT offers the wrapper functions

void pfft_init (void);
void pfft_cleanup (void) ;

that can be used as substitutes for fftw_mpi_init and fftw_mpi_cleanup, respec-
tively.

6.3 Using PFFT Plans

PFFT follows exactly the same workflow as FFTW-MPI. A plan created by one of the
functions given in Section 6.5 is executed with

void pfft_execute (const pfft_plan plan);
and freed with
void pfft_destroy_plan (const pfft_plan plan);

Note, that you can not apply fftw_mpi_execute or fftw_destroy on PFFT plans.
The new array execute functions are given by

void pfft_execute_dft (const pfft_plan plan, pfft_complex xin,
pfft_complex xout);

void pfft_execute_dft_r2c (const pfft plan plan, double x*in,
pfft_complex xout);

void pfft_execute_dft_c2r (const pfft_plan plan, pfft_complex *in,
double =x*out);

void pfft_execute_r2r (const pfft_plan plan, double xin, double x*out);

The arrays given by in and out must have the correct size and the same alignement as
the array that were used to create the plan, just as it is the case for FFTW, see 77.

6.4 Data Distribution Functions
6.4.1 Complex-to-Complex FFT

ptrdiff t pfft_local_size_dft_3d(
const ptrdiff t xn, MPI_Comm comm_cart, unsigned pfft_flags,
ptrdiff t xlocal ni, ptrdiff t xlocal_ i_start,
ptrdiff t xlocal no, ptrdiff t xlocal o_start);
ptrdiff t pfft local size_dft(
int rnk_n, const ptrdiff t =xn,
MPI_Comm comm_cart, unsigned pfft_flags,

6 PFFT Reference 35

ptrdiff t xlocal_ni, ptrdiff t xlocal i_start,
ptrdiff t xlocal_no, ptrdiff t xlocal_o_start);

ptrdiff t pfft_ local_size_many_dft (

int rnk_n, const ptrdiff t xn, const ptrdiff t xni, const

ptrdiff t =*no,

ptrdiff t howmany, const ptrdiff t xiblock, const ptrdiff t

*oblock,

MPI_Comm comm_cart, unsigned pfft_flags,
ptrdiff t xlocal ni, ptrdiff t xlocal_ i_start,
ptrdiff t xlocal no, ptrdiff t xlocal o_start);

Compute the data distribution of a parallel, complex input/output discrete Fourier trans-
form (DFT) in two or more dimensions, returning the number of complex numbers that
must be allocated to hold the parallel transform.

Arguments:

rnk_n is the rank of the transform (typically the size of the arrays n, ni, no) that
can be any integer > 2. The _3d planner corresponds to a rnk_n of 3.

The array n of size rnk_n specifies the transform dimensions. They can be any
positive integer.

The array ni of size rnk_n specifies the input array dimensions. They can be any
positive integer with ni[t] <= n[t] for all dimensions t=0, ..., rnk_n-1. For
nif[t]<n[t] the inputs will be padded with zeros up to size n[t] along the t-th
dimension before the transform, see Section ?77.

The array no of size rnk_n specifies the output array dimensions. They can be any
positive integer with no[t] <= n[t] for all dimensions t=0, ..., rnk_n-1. For
no[t]<n[t] the outputs will be pruned to size no[t] along the t-th dimension
after the transform, see Section 77.

howmany is the number of transforms to compute. The resulting plan computes
howmany transforms, where the input of the k-th transform is at location in+k (in
C pointer arithmetic) with stride howmany, and its output is at location out+k with
stride howmany. The basic pfft_plan_dft interface corresponds to howmany=1.
comm_cart is a Cartesian communicator of dimension rnk_pm that specifies the
parallel data decomposition, see Section 7?7. Most of the time, PFFT requires
rnk_pm < rnk_n. The only exception is the case rnk_pm == rnk_n == 3, see
Section 2.6.2. If an ordinary (i.e. non-Cartesian) communicator is passed, PFFT
internally converts it into a one-dimensional Cartesian communicator while retain-
ing the MPI ranks (this results in the FFTW-MPI data decomposition).

The arrays iblock and oblock of size rnk_pm+1 specify the block sizes for the
first rnk_pm+1 dimensions of the input and output data, respectively. These must
be the same block sizes as were passed to the corresponding local_size function.
You can pass PFFT_DEFAULT_BLOCKS to use PFFT’s default block sizes. Further-
more, you can use PFFT_DEFAULT_BLOCK to set the default block size in separate

6 PFFT Reference 36

dimensions, e.g., iblock [t]=PFFT_DEFAULT_BLOCK.

e pfft_flags is a bitwise OR (’|’) of zero or more planner flags, as defined in
Section 77.

e The array local_ni of size rnk_n returns the size of the local input array block
in every dimension (counted in units of complex numbers).

e The array local_i_start of size rnk_n returns the offset of the local input array
block in every dimension (counted in units of complex numbers).

e The array 1ocal_no of size rnk_n returns the size of the local output array block
in every dimension (counted in units of complex numbers).

e The array local_o_start of size rnk_n returns the offset of the local output
array block in every dimension (counted in units of complex numbers).

In addition, the following 1local_block functions compute the local data distribution
of the process with MPI rank pid. The local_size interface can be understood as a
call of 1ocal_block where pid is given by MPI_Comm_rank (comm_cart, &pid), i.e.,
each MPI process computes its own data block. However, 1ocal_block functions have a
void return type, i.e., they omit the computation of the local array size that is necessary
to hold the parallel transform. This makes 1ocal_block functions substantially faster
in exectuion.

void pfft_local_block_dft_3d(
const ptrdiff t xn, MPI Comm comm_cart, int pid, unsigned
pfft_flags,
ptrdiff t xlocal_ni, ptrdiff t xlocal i_start,
ptrdiff t xlocal no, ptrdiff t xlocal_ o_start);
void pfft_local_block_dft (
int rnk_n, const ptrdiff t «n,
MPI_Comm comm_cart, int pid, unsigned pfft_flags,
ptrdiff t xlocal_ni, ptrdiff t xlocal i_start,
ptrdiff t xlocal_no, ptrdiff t xlocal_ o_start);
void pfft_local block_many_dft (
int rnk_n, const ptrdiff t xni, const ptrdiff t «no,
const ptrdiff t xiblock, const ptrdiff t xoblock,
MPI_Comm comm_cart, int pid, unsigned pfft_flags,
ptrdiff t xlocal_ni, ptrdiff t xlocal_ i_start,
ptrdiff t xlocal no, ptrdiff t xlocal o_start);

6.4.2 Real-to-Complex FFT

ptrdiff t pfft_ local_size_dft_r2c_3d(
const ptrdiff t xn, MPI_Comm comm_cart, unsigned pfft_flags,
ptrdiff t xlocal_ni, ptrdiff t xlocal i_start,
ptrdiff t xlocal_no, ptrdiff t xlocal_ o_start);

ptrdiff t pfft_local_size_dft_r2c(

6 PFFT Reference 37

int rnk_n, const ptrdiff t =xn,

MPI_Comm comm_cart, unsigned pfft_flags,

ptrdiff t xlocal ni, ptrdiff t xlocal_i_start,

ptrdiff t xlocal no, ptrdiff t xlocal o_start);

ptrdiff t pfft local _size many dft_r2c(

int rnk_n, const ptrdiff t xn, const ptrdiff t xni, const
ptrdiff t =xno,

ptrdiff t howmany, const ptrdiff t xiblock, const ptrdiff t
*oblock,

MPI Comm comm_cart, unsigned pfft_ flags,

ptrdiff t xlocal ni, ptrdiff t xlocal i start,

ptrdiff t xlocal_no, ptrdiff t xlocal_ o_start);

Compute the data distribution of a parallel, real-input/complex-output discrete Fourier
transform (DFT) in two or more dimensions, returning the number of complez numbers
that must be allocated to hold the parallel transform.

Arguments are the same as for c2c transforms (see Section 6.4.1) with the following
exceptions:

e The logical input array size ni will differ from the physical array size of the real
inputs if the flag PFFT_PADDED_R2C is included in pfft_flags. This results from
the padding at the end of the last dimension that is necessary to align the real val-
ued inputs and complex valued outputs for inplace transforms, see [7]. In contrast
to FFTW-MPI, PFFT does not pad the r2c inputs per default.

e local_ni is counted in units of real numbers. It will include padding

e local_i_start is counted in units of real numbers.

The corresponding local_block functions compute the local data distribution of the
process with MPI rank pid.

void pfft_local_block_dft_r2c_3d(
const ptrdiff t xn, MPI_Comm comm_cart, int pid, unsigned
pfft_flags,
ptrdiff t xlocal ni, ptrdiff t xlocal i_start,
ptrdiff t xlocal_no, ptrdiff t xlocal o_start);
void pfft_local_block_dft_r2c(
int rnk_n, const ptrdiff t =xn,
MPI_Comm comm_cart, int pid, unsigned pfft_flags,
ptrdiff t xlocal ni, ptrdiff t xlocal_ i_start,
ptrdiff t xlocal no, ptrdiff t xlocal o_start);
void pfft_local block_many_dft_r2c(
int rnk_n, const ptrdiff t xni, const ptrdiff t »+no,
const ptrdiff t xiblock, const ptrdiff t xoblock,
MPI_ Comm comm_cart, int pid, unsigned pfft_flags,
ptrdiff t xlocal ni, ptrdiff t xlocal_ i_start,
ptrdiff t xlocal no, ptrdiff t xlocal o_start);

6 PFFT Reference 38

6.4.3 Complex-to-Real FFT

ptrdiff t pfft local size_dft_c2r_ 3d(
const ptrdiff t »n, MPI_Comm comm_cart, unsigned pfft_flags,
ptrdiff t xlocal _ni, ptrdiff t xlocal_i_start,
ptrdiff t xlocal no, ptrdiff t xlocal o_start);
ptrdiff t pfft_ local_size_ dft_c2r(
int rnk_n, const ptrdiff t =xn,
MPI_Comm comm_cart, unsigned pfft_flags,
ptrdiff t xlocal_ni, ptrdiff t xlocal i_start,
ptrdiff t xlocal no, ptrdiff t xlocal_ o_start);
ptrdiff t pfft local_size _many dft_c2r(
int rnk_n, const ptrdiff t xn, const ptrdiff t *ni, const
ptrdiff t =xno,
ptrdiff t howmany, const ptrdiff t xiblock, const ptrdiff t
*oblock,
MPI_ Comm comm_cart, unsigned pfft_flags,
ptrdiff t xlocal ni, ptrdiff t xlocal i start,
ptrdiff t xlocal_no, ptrdiff t xlocal o_start);

Compute the data distribution of a parallel, complex-input /real-output discrete Fourier
transform (DFT) in two or more dimensions, returning the number of complez numbers
that must be allocated to hold the parallel transform.

Arguments are the same as for c2c transforms (see Section 6.4.1) with the following
exceptions:

e The logical output array size no will differ from the physical array size of the real
outputs if the flag PFFT_PADDED_C2R is included in pfft_flags. This results
from the padding at the end of the last dimension that is necessary to align the
real valued outputs and complex valued inputs for inplace transforms, see [7]. In
contrast to FFTW-MPI, PFFT does not pad the ¢2r outputs per default.

e local no is counted in units of real numbers.

e local_o_start is counted in units of real numbers.

The corresponding local_block functions compute the local data distribution of the
process with MPI rank pid.

void pfft_local block_ dft_c2r_3d(
const ptrdiff t xn, MPI_Comm comm_cart, int pid, unsigned
pfft_flags,
ptrdiff t xlocal ni, ptrdiff t xlocal i_start,
ptrdiff t xlocal no, ptrdiff t xlocal o_start);
void pfft_local block_ dft_c2r(
int rnk_n, const ptrdiff t =xn,
MPI_Comm comm_cart, int pid, unsigned pfft_flags,
ptrdiff t xlocal ni, ptrdiff t xlocal_i_start,
ptrdiff t xlocal no, ptrdiff t xlocal o_start);

6 PFFT Reference 39

void pfft_local_block_many_dft_c2r(
int rnk_n, const ptrdiff t xni, const ptrdiff t »+no,
const ptrdiff t xiblock, const ptrdiff t xoblock,
MPI_Comm comm_cart, int pid, unsigned pfft_flags,
ptrdiff t xlocal ni, ptrdiff t xlocal i start,
ptrdiff t xlocal_no, ptrdiff t xlocal o_start);

6.4.4 Real-to-Real FFT

ptrdiff t pfft_local_size_r2r_ 3d(
const ptrdiff t »n, MPI_Comm comm_cart, unsigned pfft_flags,
ptrdiff t xlocal_ni, ptrdiff t xlocal_ i_start,
ptrdiff t xlocal no, ptrdiff t xlocal o_start);
ptrdiff t pfft_ local_size_r2r(
int rnk_n, const ptrdiff t «n,
MPI_Comm comm_cart, unsigned pfft_flags,
ptrdiff t xlocal_ni, ptrdiff t xlocal i_start,
ptrdiff t xlocal no, ptrdiff t xlocal_ o_start);
ptrdiff t pfft_ local_size_many_ r2r (
int rnk_n, const ptrdiff t xn, const ptrdiff t xni, const
ptrdiff t =xno,
ptrdiff t howmany, const ptrdiff t xiblock, const ptrdiff t
*oblock,
MPI_Comm comm_cart, unsigned pfft_flags,
ptrdiff t xlocal ni, ptrdiff t xlocal i_start,
ptrdiff t xlocal_no, ptrdiff t xlocal o_start);

Compute the data distribution of a parallel, complex input/output discrete Fourier trans-
form (DFT) in two or more dimensions, returning the number of real numbers that must
be allocated to hold the parallel transform.
Arguments are the same as for c2c transforms (see Section 6.4.1) with the following
exceptions:
e local ni is counted in units of real numbers.
e local_i_start is counted in units of real numbers.
e local no is counted in units of real numbers.
e local_o_start is counted in units of real numbers.
The corresponding local_block functions compute the local data distribution of the
process with MPI rank pid.

void pfft_ local block_r2r 3d(
const ptrdiff t xn, MPI_Comm comm_cart, int pid, unsigned
pfft_flags,
ptrdiff t xlocal _ni, ptrdiff t xlocal_i_start,
ptrdiff t xlocal no, ptrdiff t xlocal o_start);
void pfft_local block_r2r(

6 PFFT Reference 40

int rnk_n, const ptrdiff t =xn,

MPI_Comm comm_cart, int pid, unsigned pfft_flags,

ptrdiff t xlocal ni, ptrdiff t xlocal_i_start,

ptrdiff t xlocal no, ptrdiff t xlocal o_start);
void pfft_local block_many_r2r (

int rnk_n, const ptrdiff t xni, const ptrdiff t »+no,

const ptrdiff t xiblock, const ptrdiff t xoblock,

MPI_Comm comm_cart, int pid, unsigned pfft_flags,

ptrdiff t xlocal ni, ptrdiff t xlocal_ i_start,

ptrdiff t xlocal no, ptrdiff t xlocal o_start);

6.5 Plan Creation
6.5.1 Complex-to-Complex FFT

pfft_plan pfft_plan_dft_3d(
const ptrdiff t xn, pfft_complex xin, pfft_complex x*out,
MPI_Comm comm_cart,
int sign, unsigned pfft_flags);
pfft_plan pfft_plan_dft (
int rnk_n, const ptrdiff t xn, pfft_complex xin, pfft_complex
*out, MPI_Comm comm_cart,
int sign, unsigned pfft_flags);
pfft_plan pfft_plan_many_ dft (
int rnk_n, const ptrdiff t xn, const ptrdiff t xni, const
ptrdiff t =xno,
ptrdiff t howmany, const ptrdiff t xiblock, const ptrdiff t
*oblock,
pfft_complex xin, pfft_complex xout, MPI_Comm comm_cart,
int sign, unsigned pfft_flags);
pfft_plan pfft_plan _many dft_skipped/(
int rnk_n, const ptrdiff t xn, const ptrdiff t xni, const
ptrdiff t «no,
ptrdiff t howmany, const ptrdiff t xiblock, const ptrdiff t
+*oblock,
const int *skip trafos, pfft complex xin, pfft complex xout,
MPI_Comm comm_cart,
int sign, unsigned pfft_flags);

Plan a parallel, complex input/output discrete Fourier transform (DFT) in two or more
dimensions, returning an p££t_plan. The planner returns NULL if the plan cannot be
created.

Arguments:
e rnk_n, n, ni, no, howmany, iblock, oblock, comm_cart must be the same as

passed to the corresponding pfft_local_size_dft function, see Section 6.4.1.

6 PFFT Reference 41

e The array skip_trafos of size rnk_pm+1 specifies the serial transforms that will
be omitted. For t=0, ..., rnk_pm set skip_trafos[t]=1 if the t-th serial trans-
formation should be computed, otherwise set skip_trafos[t]=0, see Section 5.3
for more details.

e in and out point to the complex valued input and output arrays of the transform,
which may be the same (yielding an in-place transform). These arrays are over-
written during planning, unless PFFT_ESTIMATE | PFFT_NO_TUNE is used in the
flags. (The arrays need not be initialized, but they must be allocated.)

e sign is the sign of the exponent in the formula that defines the Fourier transform.
It can be -1 (= PFFT_FORWARD) or +1 (= PFFT_BACKWARD).

e pfft_flags is a bitwise OR (’|’) of zero or more planner flags, as defined in
Section 77.

PFFT computes an unnormalized transform: computing a forward followed by a back-
ward transform (or vice versa) will result in the original data multiplied by the size of
the transform (the product of the dimensions n{t1]).

6.5.2 Real-to-Complex FFT

pfft_plan pfft_plan_dft_r2c_3d(
const ptrdiff t xn, double xin, pfft_complex xout, MPI_Comm
comm_cart,
int sign, unsigned pfft_flags);
pfft_plan pfft_plan_dft_r2c(
int rnk_n, const ptrdiff t xn, double xin, pfft_ complex xout,
MPI_Comm comm_cart,
int sign, unsigned pfft_flags);
pfft_plan pfft_plan_many_dft_r2c(
int rnk_n, const ptrdiff t xn, const ptrdiff t xni, const
ptrdiff t =*no,
ptrdiff t howmany, const ptrdiff t xiblock, const ptrdiff t
*oblock,
double xin, pfft_complex xout, MPI_Comm comm_cart,
int sign, unsigned pfft_flags);
pfft_plan pfft_plan_many dft_r2c_skipped(
int rnk_n, const ptrdiff t xn, const ptrdiff t xni, const
ptrdiff t =xno,
ptrdiff t howmany, const ptrdiff t xiblock, const ptrdiff t
*oblock,
const int *skip_trafos, double xin, pfft_complex *out, MPI_Comm
comm_cart,
int sign, unsigned pfft_flags);

Plan a parallel, real-input/complex-output discrete Fourier transform (DFT) in two or
more dimensions, returning an pfft_plan. The planner returns NULL if the plan cannot

6 PFFT Reference 42

be created.
Arguments:

e rnk_n, n, ni, no, howmany, iblock, oblock, comm_cart must be the same
as passed to the corresponding pfft_local_size_dft_r2c function, see Sec-
tion 6.4.2.

e in and out point to the real valued input and complex valued output arrays of the
transform, which may be the same (yielding an in-place transform). These arrays
are overwritten during planning, unless PFFT_ESTIMATE | PFFT_NO_TUNE is used
in the flags. (The arrays need not be initialized, but they must be allocated.)

e sign is the sign of the exponent in the formula that defines the Fourier transform.
It can be -1 (= PFFT_FORWARD) or +1 (= PFFT_BACKWARD). Note that this pa-
rameter is not part of the FFTW-MPI interface, where r2c transforms are defined
to be forward transforms. However, the backward transform can be easily realized
by an additional conjugation of the complex outputs as done by PFFT.

6.5.3 Complex-to-Real FFT

pfft_plan pfft_plan_dft_c2r_ 3d(
const ptrdiff t xn, pfft complex xin, double xout, MPI_Comm
comm_cart,
int sign, unsigned pfft_flags);
pfft_plan pfft_plan_dft_c2r(
int rnk_n, const ptrdiff t xn, pfft_complex xin, double x*out,
MPI_ Comm comm_cart,
int sign, unsigned pfft_flags);
pfft_plan pfft_plan_many dft_c2r(
int rnk_n, const ptrdiff t xn, const ptrdiff t xni, const
ptrdiff t =xno,
ptrdiff t howmany, const ptrdiff t xiblock, const ptrdiff t
*oblock,
pfft_complex xin, double *out, MPI_Comm comm_cart,
int sign, unsigned pfft_flags);
pfft_plan pfft_plan_many_dft_c2r_skipped
int rnk_n, const ptrdiff t xn, const ptrdiff t xni, const
ptrdiff t «*no,
ptrdiff t howmany, const ptrdiff t xiblock, const ptrdiff t
+*oblock,
const int =xskip_trafos, pfft_complex xin, double *out, MPI_Comm
comm_cart,
int sign, unsigned pfft_flags);

Plan a parallel, complex-input/real-output discrete Fourier transform (DFT) in two or
more dimensions, returning an p££t_plan. The planner returns NULL if the plan cannot
be created.

6 PFFT Reference 43

Arguments:

® rnk_n, n, ni, no, howmany, iblock, oblock, comm_cart must be the same
as passed to the corresponding pfft_local_size_dft_c2r function, see Sec-
tion 6.4.3.

e in and out point to the complex valued input and real valued output arrays of the
transform, which may be the same (yielding an in-place transform). These arrays
are overwritten during planning, unless PFFT_ESTIMATE | PFFT_NO_TUNE is used
in the flags. (The arrays need not be initialized, but they must be allocated.)

e sign is the sign of the exponent in the formula that defines the Fourier transform.
It can be -1 (= PFFT_FORWARD) or +1 (= PFFT_BACKWARD). Note that this pa-
rameter is not part of the FFTW-MPI interface, where c2r transforms are defined
to be backward transforms. However, the forward transform can be easily realized
by an additional conjugation of the complex inputs as done by PFFT.

6.5.4 Real-to-Real FFT

pfft_plan pfft_plan_r2r_ 3d(

const ptrdiff t xn, double xin, double *out, MPI_Comm comm_cart,
const pfft_r2r_kind xkinds, unsigned pfft_flags);

pfft_plan pfft_plan_r2r(

int rnk_n, const ptrdiff t *n, double xin, double xout, MPI_Comm
comm_cart,
const pfft_r2r kind xkinds, unsigned pfft_flags);

pfft_plan pfft_plan_many_r2r(

int rnk_n, const ptrdiff t xn, const ptrdiff t xni, const
ptrdiff t «no,

ptrdiff t howmany, const ptrdiff t xiblock, const ptrdiff t
*oblock,

double *xin, double *out, MPI_Comm comm_cart,

const pfft_r2r_kind xkinds, unsigned pfft_flags);

pfft_plan pfft_plan_many_r2r_ skipped (

int rnk_n, const ptrdiff t xn, const ptrdiff t xni, const
ptrdiff t =*no,

ptrdiff t howmany, const ptrdiff t xiblock, const ptrdiff t
*oblock,

const int xskip_trafos, double *xin, double xout, MPI_Comm
comm_cart,

const pfft_r2r kind xkinds, unsigned pfft_flags);

Plan a parallel, real input/output (r2r) transform in two or more dimensions, returning

an pf£ft_plan. The planner returns NULL if the plan cannot be created.

Arguments:
e rnk_n, n, ni, no, howmany, iblock, oblock, comm_cart must be the same as
passed to the corresponding pfft_local_size_r2r function, see Section 6.4.4.

6 PFFT Reference 44

e in and out point to the real valued input and output arrays of the transform, which
may be the same (yielding an in-place transform). These arrays are overwritten
during planning, unless PFFT_ESTIMATE | PFFT_NO_TUNE is used in the flags.
(The arrays need not be initialized, but they must be allocated.)

e The array kinds of length rnk_n specifies the kind of r2r transform that is com-
puted in the corresponding dimensions. Just like FFTW-MPI we compute the
separable product formed by taking each transform kind along the corresponding
dimension, one dimension after another.

6.6 FFT Execution Timer

PFFT offers an easy way to perform run time measurements and print/write the results.

6.6.1 Basis Run Time Measurements

PFFT-plans automatically accumulate the local run times of every call to pfft_execute.
For most applications it is sufficient to print run time of a plan ths averaged over all
runs with

void pfft_print_average_timer (
const pfft_plan ths, MPI_Comm comm) ;

Note, that for each timer the maximum time over all processes is reduced to rank 0
of communicator comm, i.e., a call to MPI_Reduce is performed and the output is only
printed on this process. The following function works in the same way but prints more
verbose output

void pfft_print_average_timer adv (
const pfft_plan ths, MPI_Comm comm) ;

To write the averaged run time of plan ths into a file called name use

void pfft write_ average_timer (

const pfft_plan ths, const char xname, MPI_Comm comm) ;
void pfft_write_average_timer_adv (

const pfft_plan ths, const char xname, MPI_Comm comm) ;

Again, the output is only written on rank 0 of communicator comm.
Discard all the recorded run times with

void pfft_reset_timer (
pfft_plan ths);

This function is called per default at the end of every PFFT plan creation function.

6 PFFT Reference 45

6.6.2 Advanced Timer Manipulation

In order to access the run times directly a new typedef p££ft_timer is introduced. The
following function returns a copy of the timer corresponding to PFFT plan ths

pfft_timer pfft_get_timer(
const pfft_plan ths);

Note that the memory of the returned p££ft_timer must be released with

void pfft_destroy_timer (
pfft_timer ths);

as soon as the timer is not needed anymore.

In the following we introduce some routines to perform basic operations on timers.
For all functions with a pfft_timer return value you must use pfft_destroy_timer
in order to release the allocated memory of the timer. Create a copy of a PFFT-timer
orig with
pfft_timer pfft_copy_timer (

const pfft_timer orig);

Compute the average, local time over all runs of a timer ths with

void pfft_average_timer (
pfft_timer ths);

Create a new timer that contains the sum of two timers suml and sum2 with

pfft_timer pfft_add_timers (
const pfft timer suml, const pfft timer sum2);

Create a timer that contains the maximum times of all the timers ths from all processes
belonging to communicator comm with

pfft_timer pfft_reduce_max_timer (
const pfft timer ths, MPI_Comm comm) ;

Since this function calls MPI_Reduce, only the first process (rank 0) of comm will get the
desired data while all the other processes have timers with undefined values.

Note, that you can not access the elements of a timer directly, since it is only a pointer
to a struct. However, PFFT offers a routine that creates an array and copies all the
entries of the timer into it

doublex pfft_convert_timer2vec (
const pfft_timer ths);

Remember to use free in order to release the allocated memory of the returned array
at the moment it is not needed anymore. The entries of the returned array are ordered
as follows:

e dimension of the process mesh rnk_pm

6 PFFT Reference 46

number of serial trafos rnk_trafo
number of global remaps rnk_remap
number of pfft_execute runs iter
local run time of all runs
rnk_n local times of the serial trafos
rnk_remap local times of the global remaps
2 times of the global remaps that are only necessary for three-dimensional FFTs
on three-dimensional process meshes
e time for computing twiddled input (as needed for PFFT_SHIFTED_OUT)
e time for computing twiddled output (as needed for PFFT_SHIFTED_IN)
The complementary function

pfft_timer pfft_convert_vec2timer (
const double xtimes);

creates a timer and fills it’s entries with the data from array times. Thereby, the entries
of times must be in the same order as above.

6.7 Ghost Cell Communication

In the following we describe the PFFT ghost cell communication module. At the mo-
ment, PFFT ghost cell communication is restricted to three-dimensional arrays.

Assume a three-dimensional array data of size n[3] that is distributed in blocks such
that each process has a local copy of data[k[0],k[1],k[2]] with

local_start[t] <= k[t] < local_start[t] + local_n[t]

Here and in the following, we assume t=0,1,2. The “classical” ghost cell exchange
communicates all the necessary data between neighboring processes, such that each
process gets a local copy of data[k[0],k[1],k[2]] with

local_gc_start[t] <= k[t] < local_gc_start[t] + local_ngc|[t]
where

local_gc_start[t] = local_start[t] - gc_below[t];
local_ngc[t] = local_n[t] + gc_below[t] + gc_abovel[t];

Le., the local array block is increased in every dimension by gc_below elements below
and gc_above elements above. Hereby, the data is wrapped periodically whenever
k[t] exceeds the array dimensions. The number of ghost cells in every dimension can
be chosen independently and can be arbitrary large, i.e., PFFT ghost cell communication
also handles the case where the requested data exceeds next neighbor communication.

6 PFFT Reference 47

The number of ghost cells can even be bigger than the array size, which results in multiple
local copies of the same data elements at every process. However, the arrays gc_below
and gc_above must be equal among all MPI processes.

PFFT ghost cell communication can work on both, the input and output array dis-
tributions. Substitute local_n and local_start by local_ni and local_i_start if
you are interested in ghost cell communication of the input array. For ghost cell commu-
nication of the output array, substitute local_n and local_start by local_no and
local_o_start.

6.7.1 Using Ghost Cell Plans

We introduce a new datatype p££t_gcplan that stores all the necessary information for
ghost cell communication. Using a ghost cell plan follows the typical workflow: At first,
determine the parallel data distribution; cf. Section 6.7.2. Next, create a ghost cell plan;
cf. Section 6.7.4 and Section 6.7.5. Execute the ghost cell communication with one of
the following two collective functions

void pfft_exchange (
pfft_gcplan ths);

void pfft_reduce (
pfft_gcplan ths);

Hereby, a ghost cell exchange creates duplicates of local data elements on next neigh-
boring processes, while a ghost cell reduce is the adjoint counter part of the exchange,
i.e., it adds the sum of all the duplicates of a local data element to the original data
element. Finally, free the allocated memory with

void pfft_destroy_gcplan (
pfft_gcplan ths);

if the plan is not needed anymore. Passing a freed plan to pfft_exchange or pfft_reduce
results in undefined behavior.

6.7.2 Data Distribution

Corresponding to the three interface layers for FFT planning, there are the following
three layers for computing the ghost cell data distribution:

ptrdiff t pfft_ local_size_gc_3d(
const ptrdiff t xlocal n, const ptrdiff t xlocal_start,
const ptrdiff t xgc_below, const ptrdiff t xgc_above,
ptrdiff t xlocal_ngc, ptrdiff t xlocal gc_start);
ptrdiff t pfft_local_size_gc(
int rnk_n,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,
const ptrdiff t xgc_below, const ptrdiff t xgc_above,

6 PFFT Reference 48

ptrdiff t xlocal_ngc, ptrdiff t xlocal gc_start);
ptrdiff t pfft_local_size_many_gc (

int rnk_n,

const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,

ptrdiff t howmany,

const ptrdiff t xgc_below, const ptrdiff t xgc_above,

ptrdiff t xlocal_ngc, ptrdiff t xlocal gc_start);

Hereby, rnk_n and howmany must be the exactly same variables that were used for the
PFFT plan creation. However, only the case rnk_n==3 is completely implemented at
the moment. The local array size local_n must be equal to local_ni or local_no
(computed by an appropriate call of pfft_local_size; cf. Section 6.4) depending on
whether the ghost cell plan works on the FFT input or output array. Amnalogously,
local_start becomes local_i_start or local_o_start. The number of ghost cells
is given by the two arrays gc_below and gc_above that must be equal among all MPI
processes. All the ghost cell data distribution functions return the local array plus
ghost cell size 1ocal_ngc and the corresponding offset 1ocal_gc_start as two arrays
of length rnk_n. In addition, the ptrdiff t return value gives the number of data
elements that are necessary in order to store the array plus ghost cells.

Note, that the array distribution functions do not distinguish between real and com-
plex valued data. That is because local_n and local_start count array elements
in units of complex or real depending on the transform. In addition, it does not mat-
ter if the local array is transposed or not, i.e., it is not necessary to pass the flags
PFFT_TRANSPOSED_IN and PFFT_TRANSPOSED_OUT to the ghost cell distribution func-
tion. In constrast, the ghost cell plan creation depends on the transform type as well as
the transposition flags.

6.7.3 Memory Allocation

In most applications we must ensure that the data array is large enough to suit the
memory requirements of a parallel FFT and the ghost cell communication. The following
two code snippets illustrate the correct allocation of memory in for complex valued and
real valued arrays.

/+ Get parameters of data distribution x/
/* alloc_local, local_no, local_o_start are given in complex units */
/* local_ni, local_1i_start are given in real units #*/
alloc_local = pfft_local_size_dft_r2c_3d(n, comm_cart_2d,
PFFT_TRANSPOSED_NONE,
local_ni, local_i_start, local_no, local_o_start);

/* alloc_local_gc, local_ngc, local_gc_start are given in complex
units =/
alloc_local_gc = pfft_local_size_gc_3d(

6 PFFT Reference 49

local_no, local_o_start, gc_below, gc_above,
local_ngc, local_gc_start);

/+ Allocate enough memory for FFT and ghost cells */
pfft_complex xcdata = pfft_alloc_complex(alloc_local _gc >
alloc_local ? alloc_local_gc : alloc_local);

Here, alloc_local gives the number of data elements that are necessary to hold all
steps of the parallel FFT, while alloc_local_gc gives the number of data elements
that are necessary to hold all steps of the ghost cell communication. Note that we took
the maximum of these both numbers as argument for pfft_alloc_complex. The code
snippet for real valued arrays looks very similar.

/* Get parameters of data distribution #*/
/+ alloc_local, local_no, local_o_start are given in complex units */
/* local_ni, local_i_start are given in real units #*/
alloc_local = pfft_local_size_dft_r2c_3d(n, comm_cart_2d,
PFFT_TRANSPOSED_NONE,
local_ni, local_i_start, local_no, local_o_start);

/+ alloc_local_gc, local_ngc, local_gc_start are given in real units
*/

alloc_local _gc = pfft_local_size_gc_3d(
local _ni, local_ i_start, gc_below, gc_above,
local_ngc, local_gc_start);

/+ Allocate enough memory for FFT and ghost cells x/
double xrdata = pfft_alloc_real(alloc_local _gc > 2xalloc_local ?
alloc_local gc : 2xalloc_local);

Note that the number of real valued data elements is given by two times alloc_local
for r2c transforms, whereas the last line would change into

double x*rdata = pfft_alloc_real(alloc_local_gc > alloc_local ?
alloc_local_gc : alloc_local);

for r2r transforms.

6.7.4 Plan Creation for Complex Data

The following functions create ghost cell plans that operate on complex valued arrays,
i.e.,

c2c inputs,

c2c outputs,

r2¢ outputs (use flag PFFT_GC_C2R), and

c2r inputs (use flag PFFT_GC_R2C).

6 PFFT Reference 50

Corresponding to the three interface layers for FFT planning, there are the following
three layers for creating a complex valued ghost cell plan:

pfft_gcplan pfft_plan_ cgc_3d(

const ptrdiff t xn,

const ptrdiff t xgc_below, const ptrdiff t xgc_above,

pfft_complex xdata, MPI_Comm comm_cart, unsigned gc_flags);
pfft_gcplan pfft_plan_cgc(

int rnk_n, const ptrdiff t «n,

const ptrdiff t xgc_below, const ptrdiff t xgc_above,

pfft_complex xdata, MPI_Comm comm_cart, unsigned gc_flags);
pfft_gcplan pfft_plan_many_cgc (

int rnk_n, const ptrdiff t «n,

ptrdiff t howmany, const ptrdiff t xblock,

const ptrdiff t xgc_below, const ptrdiff t xgc_above,

pfft_complex xdata, MPI_Comm comm_cart, unsigned gc_flags);

Hereby, rnk_n, n, howmany and comm_cart must be the variables that were used for
the PFFT plan creation. However, only the case rnk_n==3 is completely implemented
at the moment. Remember that n is the logical FFT size just as it is the case for
FFT planning. The block size block must be equal to iblock or oblock depending
on whether the ghost cell plan works on the FFT input or output array. Analogously,
data becomes in or out. Set the number of ghost cells by gc_below and gc_above as
described in Section 6.7. The flags gc_flags must be set appropriately to the flags that
were passed to the FF'T planner. Table 6.1 shows the ghost cell planner flags that must
be set in dependence on the listed FFT planner flags. In addition, we introduce the flag

] FFT flag ghost cell flag
PFFT_TRANSPOSED_NONE | PFFT_GC_TRANSPOSED_NONE
PFFT_TRANSPOSED_TIN PFFT_GC_TRANSPOSED

PFFT_TRANSPOSED_OUT PFFT_GC_TRANSPOSED

Table 6.1: Mapping of FFT and complex valued ghost cell planner flags.

PFFT_GC_R2C (and its equivalent PFFT_GC_C2R) to handle the complex array storage
format of r2¢c and c2r transforms. In fact, these two flags imply an ordinary complex
valued ghost cell communication on an array of size n[0] x ... x n[rnk_n-2] x
(n[rnk_n-11/2+1). Please note that we wrongly assume periodic boundary conditions
in this case. Therefore, you should ignore the data elements with the last index behind
n[rnk_n-11/2.

(Does anybody need r2c¢ ghost cell communication with correct boundary conditions?]

6 PFFT Reference 51

6.7.5 Plan Creation for Real Data

The following functions create ghost cell plans that operate on real valued arrays, i.e.,
e 12r inputs,
e 121 outputs,
e r2c inputs, and
e c2r outputs.
Corresponding to the three interface layers for FFT planning, there are the following
three layers for creating a real valued ghost cell plan:

pfft_gcplan pfft_plan_rgc_3d(

const ptrdiff t xn,

const ptrdiff t xgc_below, const ptrdiff t xgc_above,

double xdata, MPI_Comm comm_cart, unsigned gc_flags);
pfft_gcplan pfft_plan_rgc(

int rnk_n, const ptrdiff t «n,

const ptrdiff t xgc_below, const ptrdiff t xgc_above,

double xdata, MPI_Comm comm_cart, unsigned gc_flags);
pfft_gcplan pfft_plan_many_rgc(

int rnk_n, const ptrdiff t «n,

ptrdiff t howmany, const ptrdiff t xblock,

const ptrdiff t xgc_below, const ptrdiff t xgc_above,

double xdata, MPI_Comm comm_cart, unsigned gc_flags);

Hereby, rnk_n, n, howmany and comm_cart must be the variables that were used for
the PFFT plan creation. Remember that n is the logical FFT size just as it is the case
for FFT planning. The block size block must be equal to iblock or oblock depending
on whether the ghost cell plan works on the FFT input or output array. Analogously,
data becomes in or out. Set the number of ghost cells by gc_below and gc_above
as described in Section 6.7.2. The flags gc_flags must be set appropriately to the
flags that were passed to the FFT planner. Table 6.2 shows the ghost cell planner
flags that must be set in dependence on the listed FFT planner flags. Note that the

FFT flag ghost cell flag
PFFT_TRANSPOSED_NONE | PFFT_GC_TRANSPOSED_NONE
PFFT_TRANSPOSED_IN PFFT_GC_TRANSPOSED
PFFT_TRANSPOSED_OUT | PFFT_GC_TRANSPOSED
PFFT_PADDED_R2C PFFT_GC_PADDED_R2C
PFFT_PADDED_C2R PFFT_GC_PADDED_C2R

Table 6.2: Mapping of FFT and real valued ghost cell planner flags.

flag PFFT_GC_PADDED_R2C (or its equivalent PEFT_GC_PADDED_C2R) implies an ordinary
real valued ghost cell communication on an array of size n[0] x ... x n[rnk_n-2]

6 PFFET Reference 52

x 2% (n[rnk_n-1]1/2+1). Especially, the padding elements will be handles as normal
data points, i.e., you must we aware that the numbers of ghost cells gc_below[rnk_n-1]
and gc_above [rnk_n-1] include the number of padding elements.

6.7.6 Inofficial Flags

6.7.7 Ghost Cell Execution Timer

PFFT ghost cell plans automatically accumulate the local run times of every call to
pfft_exchange and pfft_reduce. For most applications it is sufficient to print run
time of a plan ths averaged over all runs with

void pfft_print_average_gctimer (
const pfft gcplan ths, MPI_Comm comm) ;

Note, that for each timer the maximum time over all processes is reduced to rank 0
of communicator comm, i.e., a call to MPI_Reduce is performed and the output is only
printed on this process. The following function works in the same way but prints more
verbose output

void pfft_print_average_gctimer_adv (
const pfft_gcplan ths, MPI_Comm comm) ;

To write the averaged run time of a ghost cell plan ths into a file called name use

void pfft_write_average_gctimer (

const pfft_gcplan ths, const char xname, MPI_Comm comm) ;
void pfft_write_average_gctimer_ adv (

const pfft gcplan ths, const char xname, MPI_Comm comm) ;

Again, the output is only written on rank 0 of communicator comm.
Discard all the recorded run times with

void pfft_reset_gctimers (
pfft_gcplan ths);

This function is called per default at the end of every ghost cell plan creation function.
In order to access the run times directly a new typedef p££ft_timer is introduced.

The following functions return a copy of the timer corresponding to ghost cell plan ths

that accumulated the time for ghost cell exchange or ghost cell reduce, respectively:

pfft_gctimer pfft_get_gctimer_ exg(
const pfft_gcplan ths);

pfft_gctimer pfft_get_gctimer_ red(
const pfft_gcplan ths);

6 PFFT Reference 53

Note that the memory of the returned p££ft_gctimer must be released with

void pfft_destroy_gctimer (
pfft_gctimer ths);

as soon as the timer is not needed anymore.

In the following we introduce some routines to perform basic operations on timers. For
all functions with a pfft_gctimer return value you must use pfft_destroy_gctimer
in order to release the allocated memory of the timer. Create a copy of a ghost cell timer
orig with
pfft_gctimer pfft_copy_gctimer (

const pfft gctimer orig);

Compute the average, local time over all runs of a timer ths with

void pfft_average_gctimer (
pfft_gctimer ths);

Create a new timer that contains the sum of two timers suml and sum2 with

pfft_gctimer pfft_add gctimers (
const pfft_gctimer suml, const pfft_gctimer sum?2);

Create a timer that contains the maximum times of all the timers ths from all processes
belonging to communicator comm with

pfft_gctimer pfft_reduce_max_gctimer (
const pfft _gctimer ths, MPI_Comm comm) ;

Since this function calls MPT_Reduce, only the first process (rank 0) of comm will get the
desired data while all the other processes have timers with undefined values.

Note, that you can not access the elements of a timer directly, since it is only a pointer
to a struct. However, PFFT offers a routine that creates an array and copies all the
entries of the timer into it

void pfft_ convert_gctimer2vec (
const pfft_gctimer ths, double xtimes);

Remember to use free in order to release the allocated memory of the returned array
at the moment it is not needed anymore. The entries of the returned array are ordered
as follows:

e number of pfft_execute runs iter

e local run time of all runs

e local run time of zero padding (make room for incoming ghost cells and init with

Z€eros)

e local run time of the ghost cell exchange or reduce (depending on the timer)

The complementary function

6 PFFT Reference 54

pfft_gctimer pfft_convert_vec2gctimer (
const double xtimes);

creates a timer and fills it’s entries with the data from array t imes. Thereby, the entries
of times must be in the same order as above.
[Do we need getters and setters for ghost cell timers? J

6.8 Useful Tools

The following functions are useful tools but are not necessarily needed to perform parallel
FFTs.

6.8.1 Initializing Complex Inputs and Checking Outputs

To fill a complex array data with reproducible, complex values you can use one of the
functions

void pfft_init_input_complex_3d(
const ptrdiff t =xn,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_n_start,
pfft_complex xdata);

void pfft_init_ input_complex(
int rnk_n, const ptrdiff t =xn,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,
pfft_complex xdata);

Hereby, the arrays n, local_n and local_n_start of length rnk_n (rnk_n==3 for _3d)
give the size of the FFT, the local array size and the local array offset as computed by
the array distribution functions described in Section 6.4 The functions

double pfft_check_ output_complex_3d(
const ptrdiff t =xn,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_n_start,
const pfft_complex xdata, MPI_Comm comm) ;

double pfft_check_ output_complex (
int rnk_n, const ptrdiff t «n,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,
const pfft_ complex xdata, MPI_Comm comm) ;

compute the [;-norm between the elements of array data and values produced by
pfft_init_input_complex_3d, pfft_init_input_complex. In addition, we supply
the following functions for setting all the input data to zero at once

void pfft_clear input_complex_3d(

const ptrdiff t xn,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_n_start,

6 PFFT Reference 55

pfft_complex xdata);
void pfft_clear_ input_complex (
int rnk_n, const ptrdiff t «n,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,
pfft_complex xdata);

Note, that these functions can be combined for a quick consistency check of the FFT.
Since a forward FF'T followed by a backward FFT reproduces the inputs up to a scaling
factor, the following code snippet should give a result equal to zero up to machine
precision.

/+ Initialize input with random numbers */
pfft_init_input_complex_3d(n, local_ni, local_i_start,
in);

/* execute parallel forward FFT %/
pfft_execute (plan_forw);

/+ clear the old input =/
if(in != out)
pfft_clear input_complex_ 3d(n, local_ni, local_i_start, in);

/+* execute parallel backward FFT x/
pfft_execute (plan_back);

/+ Scale data +*/
for (ptrdiff t 1=0; 1 < local ni[0] x local_ni[l] % local_nif[2]; 1++)
in[1l] /= (n[0]xn[1l]xn[2]);

/% Print error of back transformed data =*/

err = pfft_check_output_complex 3d(n, local_ni, local i start, in,
comm_cart_2d) ;

pfft_printf (comm_cart_2d, "Error after one forward and backward
trafo of size n=(%td, %td, %td):\n", n[0], n[l], n[2]);

pfft_printf (comm_cart_2d, "maxerror = %6.2e;\n", err);

Hereby, we set all inputs equal to zero after the forward FFT in order to be sure that all
the final results are actually computed by the backward FFT instead of being a buggy
relict of the forward transform.

6.8.2 Initializing Real Inputs and Checking Outputs

To fill a real array data with reproducible, real values use one of the functions

void pfft_init_input_real_3d(
const ptrdiff t =xn,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_n_start,

6 PFFT Reference 56

double =xdata);
void pfft_init_input_real (
int rnk_n, const ptrdiff t «n,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,
double =xdata);

Hereby, the arrays n, local_n and local_n_start give the size of the FFT, the local
array size and the local array offset as computed by the array distribution functions
described in Section 6.4 The functions

double pfft_check_ output_real_3d(
const ptrdiff t xn,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_n_start,
const pfft_complex xdata, MPI_Comm comm) ;

double pfft_check_ output_real (
int rnk_n, const ptrdiff t «n,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,
const pfft_ complex xdata, MPI_Comm comm) ;

compute the [;-norm between the elements of array data and values produced by
pfft_init_input_real_3d, pfft_init_input_real. In addition, we supply the fol-
lowing functions for setting all the input data to zero at once
void pfft_clear input_real_ 3d(

const ptrdiff t xn,

const ptrdiff t xlocal_n, const ptrdiff t xlocal_n_start,

double =xdata);
void pfft_clear_ input_real (

int rnk_n, const ptrdiff t =xn,

const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,

double =xdata);

Note, that both pfft_init_input_real* functions will set all array elements to zero
were local_n + local_n_start >= n. Inaddition, bothpfft_check_output_real~
function will ignore all the errors resulting from these elements. Therefore, it is safe to
use all these functions for a consistency check of a r2c transform followed by a c2r
transform since all padding elements will be ignored.

6.8.3 Initializing r2c/c2r Inputs and Checking Outputs

The real inputs of a r2c transform can be initialized with the functions decribed in Sec-
tion 6.8.2. However, generating suitable inputs for a ¢2r transform requires more caution.
In order to get real valued results of a DFT the complex input coefficients need to sat-
isfy an radial Hermitian symmetry, i.e., X[k] = X*[—k|. We use the following trick to
generate the complex input values for c2r transforms. Assume any N-periodic complex
valued function f. It can be easily shown that the values X[k] := % (f(k) + f*(—k))
satisfy the radial Hermitian symmetry.

6 PFFT Reference 57

To fill a complex array data with reproducible, complex values that fulfill the radial
Hermitian symmetry use one of the functions

void pfft_init_input_complex_hermitian_3d(
const ptrdiff t =xn,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_n_start,
double =xdata);

void pfft_init input_complex_hermitian (
int rnk_n, const ptrdiff t =xn,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,
double =xdata);

Hereby, the arrays n, local_n and local_n_start give the size of the FFT, the local
array size and the local array offset as computed by the array distribution functions
described in Section 6.4 The functions

double pfft_check_ output_complex_hermitian_3d(
const ptrdiff t =xn,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_n_start,
const pfft_ complex xdata, MPI_Comm comm) ;

double pfft_check output_complex_hermitian (
int rnk_n, const ptrdiff t =xn,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,
const pfft complex xdata, MPI_Comm comm) ;

compute the [;-norm between the elements of array data and values produced by
pfft_init_input_complex_hermitian_ 3d,pfft_init_input_complex_hermitian.
In addition, we supply the following functions for setting all the input data to zero at
once
void pfft_clear_ input_complex _hermitian_3d(
const ptrdiff t xn,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_n_start,
pfft_complex xdata);
void pfft_clear_input_complex_hermitian (
int rnk_n, const ptrdiff t «n,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,
pfft_complex xdata);

Note, that these functions can also be used in order to generate complex inputs with
radial Hermitian symmetry for ordinary c2c transforms. Of course the results of such a
c2c DFT will have all imaginary parts equal to zero up to machine precision.

6.8.4 Operations on Arrays of Type ptrdiff t

The following routines are shortcuts for the elementwise manipulation of ptrdiff t
valued arrays. In the following, all arrays vec, vecl, and vec2 are of length d and type
ptrdiff t.

6 PFFT Reference 58

ptrdiff t pfft_ prod_ INT (
int d, const ptrdiff t xvec);

Returns the product over all elements of vec.

ptrdiff t pfft_sum_ INT (
int d, const ptrdiff t »xvec);

Returns the sum over all elements of vec.

int pfft_equal_ INT (
int d, const ptrdiff t xvecl, const ptrdiff t xvec2);

Returns 1 if both arrays have equal entries, 0 otherwise.

void pfft_vcopy_ INT (
int d, const ptrdiff t xvecl,
ptrdiff t xvec2);

Copies the elements of vecl into vec2.

void pfft_vadd INT (
int d, const ptrdiff t xvecl, const ptrdiff t x*vec2,
ptrdiff t xsum);

Fills sum with the componentwise sum of vecl and vec2.

void pfft_vsub_INT (
int d, const ptrdiff t xvecl, const ptrdiff t xvec2,
ptrdiff t xsum);

Fills sum with the componentwise difference of vecl and vec2.

6.8.5 Print Three-Dimensional Arrays in Parallel

Use the following routine to print the elements of a block decomposed three-dimensional
(real or complex valued) array data in a nicely formatted way.

void pfft_apr_real_ 3d(
const double xdata,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,
const char *name, MPI_Comm comm) ;

void pfft_apr complex_3d(
const pfft_complex xdata,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,
const char *name, MPI_Comm comm) ;

Obviously, this makes only sense for arrays of moderate size. The block decomposition
is given by local_n, local_n_start as returned by the array distribution function
decribed in Section 6.4. Furthermore, some arbitrary string name can be added at the
beginning of each output - typically this will be the name of the array. Communicator

6 PFFT Reference 59

comm must be suitable to the block decomposition and is used to synchronize the outputs
over all processes.

Generalizations for the case where the dimensions of the local arrays are permuted
are given by

void pfft_apr real permuted_3d(
const double xdata,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,
int perm0O, int perml, int perm2,
const char *name, MPI_Comm comm) ;
void pfft_ apr complex_ permuted_ 3d(
const pfft_complex xdata,
const ptrdiff t xlocal_n, const ptrdiff t xlocal_start,
int perm0O, int perml, int perm2,
const char *name, MPI_Comm comm) ;

Hereby, perm0, perml, and perm2 give the array’s permutation of dimension.

6.8.6 Reading Command Line Arguments

The following function offers a simple way to read command line arguments into an array

parameter

void pfft_get_args(
int argc, char xxargv, const char xname,
int neededArgs, unsigned type,
void xparameter) ;

Hereby, argc and argv are the standard argument of the main routine. Furthermore,
name, neededAgrs, and type give the name, number of entries and the type of the com-
mand line argument. Supported types are PFFT_INT, PFFT_PTRDIFF_T, PFFT_FLOAT,
PFFT_DOUBLE, and PFFT_UNSIGNED, which denote the standard C type that is used for
typecasting. In addition, you can use the special type PFFT_SWITCH that is an integer
type equal to one if the corresponding command line argument is given. The array
parameter must be of sufficient size to hold neededArgs elements of the given data
type. Special attention is given
For example, a program containing the following code snippet

double x=0.1;

pfft_get_args (argc, argv, "-pfft_x", 1, PFFT_DOUBLE, &X);

int npl2]={2,1};

pfft_get_args(argc, argv, "-pfft_np", 2, PFFT_INT, np);
ptrdiff t n([3]1={32,32,32};

pfft_get_args (argc, argv, "-pfft_n", 3, PFFT_PTRDIFF_T, n);
int switch=0;

pfft_get_args(argc, argv, "-pfft_on", 0, PFFT_SWITCH, switch);

6 PFFT Reference 60

that is executed via
./test -pfft_x 3.1 -pfft_np 2 3 -pfft_n 8 16 32 —-pfft_on

will read x=3.1, np[2] = {2,3}, n[3]={8,16,32}, and turn on the switch=1. Note
the address operator & in front of x in the second line! Furthermore, note that the
initialization of all variables with default values before the call of pfft_get_args avoids
trouble if the user does not provide all the command line arguments.

6.8.7 Parallel Substitutes for vprint£, fprintf, and printf

The following functions are similar to the standard C function vfprintf, fprintf and
printf with the exception, that only rank 0 within the given communicator comm will
produce output. The intension is to avoid the flood of messages that is produced when
simple print f statement are run in parallel.

void pfft_vfprintf (
MPI_Comm comm, FILE *xstream, const char xformat, va_list ap);
void pfft_fprintf (

MPI_Comm comm, FILE *stream, const char *format, ...);
void pfft_ printf (
MPI_Comm comm, const char *format, ...);

6.9 Generating Periodic Cartesian Communicators

Based on the processes that are part of the given communicator comm the following
routine

int pfft_create_procmesh_1d(
MPI_Comm comm, int npO,
MPI_ Comm xcomm_cart_1d);

allocates and creates a one-dimensional, periodic, Cartesian communicator comm_cart_1d
of size np0. Thereby, a non-zero error code is returned whenever np0 does not fit the
size of comm. The memory of the generated communicator should be released with
MPI_Comm_free after usage. Analogously, use

int pfft_create_procmesh_2d(
MPI_Comm comm, int npO, int npl,
MPI Comm xcomm_cart_2d);

in order to allocate and create two-dimensional, periodic, Cartesian communicator comm_cart_2d
of size npOxnpl or

int pfft_create_procmesh (
int rnk_np, MPI_Comm comm, const int =xnp,
MPI Comm xcomm_cart);

6 PFFT Reference 61

in order to allocate and create a rnk_np-dimensional, periodic, Cartesian communica-
tor of size np[0]*np[1]«...*np[rnk_np-1]. Hereby, np is an array of length rnk_np.
Again, the memory of the generated communicator should be released with MPI_Comm_free
after usage.

7 Developers Guide

7.1 Search and replace patterns

Correct alignment of pfft.h header
$s/"\ ([~ IN+HIA\NNT+N) AN/ NIN\N/g
Expand most macros of pfft.h to generate the function reference of this manual:

sed -e s/ *\\$//g’ -e ’'s/PFFT_EXTERN //g’ \
—e "s/PX(\([")]1*\))/pfft_\1/g’" -e ’'s/ INT/ ptrdiff t/g’ \
-e s/ R/ double/g’ -e ’'s/ C/ pfft_complex/g’ \
-e s/~ //g’' pfft.h > pfft.h.expanded

8 ToDo

e PFFT_FORWARD is defined as FFTW_FORWARD
e FFTW_FORWARD is defined as —1

e PFFET allows to chose between FFTW_FORWARD and FFTW_BACKWARD, which is not
implemented by FFTW.

e Matlab uses the same sign convention, i.e., —1 for £ft and +1 for ifftn

8.1 Measuring parallel run times

Use MPI_Barrier in front of every call to pfft_ function to avoid unbalanced run times.

8 ToDo 64

Acknowledgments

We are thankful to Yu Feng who implemented the new array execute and the clear input
functions.

Bibliography

1]

M. Frigo and S.G. Johnson: FFTW wusers manual. http://www.fftw.org/
fftw3_doc.

M. Frigo and S.G. Johnson: FFTW users manual: 2d mpt example. http://www.
fftw.org/fftw3_doc/2d-MPI-example.html#g_t2d-MPI-example.

M. Frigo and S.G. Johnson: FFTW wusers manual: Complex numbers. http://
www.fftw.org/fftw3_doc/Complex—-numbers.html#Complex—numbers.

M. Frigo and S.G. Johnson: FFTW wsers manual: Memory allocation.
http://www.fftw.org/fftw3_doc/Memory—-Allocation.html#
Memory—-Allocation.

M. Frigo and S.G. Johnson: FFTW wusers manual: Mpi data distri-
bution. http://www.fftw.org/fftw3_doc/MPI-Data-Distribution.
html#MPI-Data-Distribution.

M. Frigo and S.G. Johnson: FFTW wusers manual: MPI initialization.
http://www.fftw.org/fftw3_doc/MPI-Initialization.html#
MPI-Initialization.

M. Frigo and S.G. Johnson: FFTW users manual: MPI initialization. http:
//www.fftw.org/fftw3_doc/Real_002ddata-DFT-Array-Format.
html#Real_002ddata-DFT-Array-Format.

M. Frigo and S.G. Johnson: FFTW users manual: Precision. http://www.fftw.
org/fftw3_doc/Precision.html#Precision.

M. Frigo and S.G. Johnson: FFTW wusers manual: SIMD
alignment and fftw_malloc. http://www.fftw.org/
fftw3_doc/SIMD-alignment—and-fftw_005fmalloc.html#
SIMD-alignment—-and-fftw_005fmalloc.

M. Frigo and S.G. Johnson: The design and implementation of FFTW3. Proc.
IEEE, 93:216 — 231, 2005.

M. Frigo and S.G. Johnson: FFTW, C subroutine library.
http://www.fftw.org, 2009. http://www.fftw.org.

http://www.fftw.org/fftw3_doc
http://www.fftw.org/fftw3_doc
http://www.fftw.org/fftw3_doc/2d-MPI-example.html#g_t2d-MPI-example
http://www.fftw.org/fftw3_doc/2d-MPI-example.html#g_t2d-MPI-example
http://www.fftw.org/fftw3_doc/Complex-numbers.html#Complex-numbers
http://www.fftw.org/fftw3_doc/Complex-numbers.html#Complex-numbers
http://www.fftw.org/fftw3_doc/Memory-Allocation.html#Memory-Allocation
http://www.fftw.org/fftw3_doc/Memory-Allocation.html#Memory-Allocation
http://www.fftw.org/fftw3_doc/MPI-Data-Distribution.html#MPI-Data-Distribution
http://www.fftw.org/fftw3_doc/MPI-Data-Distribution.html#MPI-Data-Distribution
http://www.fftw.org/fftw3_doc/MPI-Initialization.html#MPI-Initialization
http://www.fftw.org/fftw3_doc/MPI-Initialization.html#MPI-Initialization
http://www.fftw.org/fftw3_doc/Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format
http://www.fftw.org/fftw3_doc/Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format
http://www.fftw.org/fftw3_doc/Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format
http://www.fftw.org/fftw3_doc/Precision.html#Precision
http://www.fftw.org/fftw3_doc/Precision.html#Precision
http://www.fftw.org/fftw3_doc/SIMD-alignment-and-fftw_005fmalloc.html#SIMD-alignment-and-fftw_005fmalloc
http://www.fftw.org/fftw3_doc/SIMD-alignment-and-fftw_005fmalloc.html#SIMD-alignment-and-fftw_005fmalloc
http://www.fftw.org/fftw3_doc/SIMD-alignment-and-fftw_005fmalloc.html#SIMD-alignment-and-fftw_005fmalloc
http://www.fftw.org

Bibliography 66

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

W. Gropp, E. Lusk, and R. Thakur: Using MPI-2: Advanced Features of the
Message-Passing Interface. MIT Press, Cambridge, MA, USA, 1999.

N. Li: 2DECOMP&FFT, Parallel FET subroutine library. http://www.
2decomp.org.

N. Li and S. Laizet: 2DECOMP & FFT - A Highly Scalable 2D Decomposition
Library and FFT Interface. In Cray User Group 2010 conference, pp. 1 — 13,
Edinburgh, Scotland, 2010.

MPI Forum: MPI: A Message-Passing Interface Standard. Version 2.2, 2009. http:

//www.mpi-forum.org.

D. Pekurovsky: P3DFFT, Parallel FFT subroutine library. http://code.
google.com/p/p3dfft.

D. Pekurovsky: P3DFFT: A Framework for Parallel Computations of Fourier
Transforms in Three Dimensions. SIAM J. Sci. Comput., 34:C192 — C209, 2012.

M. Pippig: PFFT, Parallel FFT subroutine library, 2011. http://www.
tu-chemnitz.de/~mpip/software.php.

M. Pippig: PNFFT, Parallel Nonequispaced FFT subroutine library, 2011. http:
//www.tu-chemnitz.de/~mpip/software.php.

M. Pippig: PFFT - An extension of FETW to massively parallel architectures. STAM
J. Sci. Comput., 35:C213 — C236, 2013.

M. Pippig and D. Potts: Parallel three-dimensional nonequispaced fast Fourier trans-
forms and their application to particle simulation. SIAM J. Sci. Comput., accepted,
2013.

S.J. Plimpton: Parallel FFT subroutine library. http://www.sandia.gov/
~sJplimp/docs/fft/README.html.

S.J. Plimpton, R. Pollock, and M. Stevens: Particle-Mesh Fwald and rRESPA for
Parallel Molecular Dynamics Simulations. In Proceedings of the 8th SIAM Confer-
ence on Parallel Processing for Scientific Computing (Minneapolis, 1997), Philadel-
phia, 1997. STAM.

http://www.2decomp.org
http://www.2decomp.org
http://www.mpi-forum.org
http://www.mpi-forum.org
http://code.google.com/p/p3dfft
http://code.google.com/p/p3dfft
http://www.tu-chemnitz.de/~mpip/software.php
http://www.tu-chemnitz.de/~mpip/software.php
http://www.tu-chemnitz.de/~mpip/software.php
http://www.tu-chemnitz.de/~mpip/software.php
http://www.sandia.gov/~sjplimp/docs/fft/README.html
http://www.sandia.gov/~sjplimp/docs/fft/README.html

	Introduction
	Alternative parallel FFT implementations
	Parallel nonequispaced FFT

	Tutorial
	A first parallel transform - Three-dimensional FFT with two-dimensional data decomposition
	Porting FFTW-MPI based code to PFFT
	Errorcode for communicator creation
	Inplace transforms
	Higher dimensional data decomposition
	Parallel data decomposition
	Non-transposed and transposed data layout
	Three-dimensional FFTs with three-dimensional data decomposition

	Planning effort
	Preserving input data
	FFTs with shifted index sets
	Pruned FFT and Shifted Index Sets
	Pruned FFT
	Shifted Index Sets

	Precisions
	Ghost cell communication
	Fortran interface

	Installation and linking
	Install of the latest official FFTW release
	Install of the PFFT library
	How to include PFFT in your program

	Advanced Features
	How to Deal with FFT Index Shifts in Parallel
	Shift with half the FFT size
	Arbitrary shifts

	Parallel pruned FFT

	Interface Layers of the PFFT Library
	Basic Interface
	Advanced Interface
	Preliminary: Skip Serial Transformations

	PFFT Reference
	Files and Data Types
	MPI Initialization
	Using PFFT Plans
	Data Distribution Functions
	Complex-to-Complex FFT
	Real-to-Complex FFT
	Complex-to-Real FFT
	Real-to-Real FFT

	Plan Creation
	Complex-to-Complex FFT
	Real-to-Complex FFT
	Complex-to-Real FFT
	Real-to-Real FFT

	FFT Execution Timer
	Basis Run Time Measurements
	Advanced Timer Manipulation

	Ghost Cell Communication
	Using Ghost Cell Plans
	Data Distribution
	Memory Allocation
	Plan Creation for Complex Data
	Plan Creation for Real Data
	Inofficial Flags
	Ghost Cell Execution Timer

	Useful Tools
	Initializing Complex Inputs and Checking Outputs
	Initializing Real Inputs and Checking Outputs
	Initializing r2c/c2r Inputs and Checking Outputs
	Operations on Arrays of Type ptrdifft
	Print Three-Dimensional Arrays in Parallel
	Reading Command Line Arguments
	Parallel Substitutes for vprintf, fprintf, and printf

	Generating Periodic Cartesian Communicators

	Developers Guide
	Search and replace patterns

	ToDo
	Measuring parallel run times

