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Abstract

C strings are still in heavy use in C++ programs. Additionally, stan-
dardized C functions such as strcpy() and strstr() are often used to
modify or analyze the content of the strings. Unfortunately, because of
the fact that a C string is just a pointer to a zero-terminated character
array, those functions have a lot of drawbacks regarding performance,
safety and readability.

The std::string class from the C++ standard library and its mem-
ber functions provide a lot of the same functionality without these
downsides. Building on previous work from our term project Pointer-
minator we extended the existing Eclipse CDT plug-in so that it helps
a programmer to find and automatically refactor pieces of code, that
use C strings in an unfavorable way.

We started with an analysis of the various ways C strings and their
related C functions are used in practice. Based on that analysis we
defined possible refactorings for a subset of the standardized C string
functions. We then added this functionality to the existing plug-in,
wrote corresponding unit tests and documented its architecture. Fi-
nally, we tested the plug-in in the code base of an open source C++
application called XBMC. The results of these tests allowed us to op-
timize the plug-in and to fix some of the problems that we discovered
during testing.
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Management Summary

This bachelor thesis builds on the results of our term project Point-
ermintator [Gon13]. The main goal of the term project was to write
an Eclipse CDT plug-in that is able to eliminate pointers in existing
C++ code. In our bachelor thesis we want to extend the functionality
of the Pointerminator plug-in to allow the replacement of C strings
and their related C functions (strcpy(), strcat(), etc.) with std::string
objects and their member functions.

Motivation

In C, a string is just a pointer to a zero-terminated array of characters.
Many existing C++ projects still use C strings along with standard
C functions such as strcpy() and strstr() that are used to manipulate
and analyze the string contents. Unfortunately, extensive use of C
strings can lead to unreadable, inefficient and unsafe code.

The std::string class from the C++ standard library is a modern alter-
native to C strings. Replacing C strings with std::string objects can
improve the safety, performance and readability of the code. How-
ever, programmers often don’t use std::string objects either because
they don’t know about the drawbacks of C strings or because they
have to work with an existing code base that already uses C strings.

Goal

The main goal of this bachelor thesis is to extend the functionality
of the Pointerminator plug-in so that C strings and their related C
functions can be replaced with std::string objects and their member
functions. We first analyze the various ways C strings are used in
practice and define possible refactorings. It is important that these
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refactorings cover all sorts of edge cases so that the tool is reliable
enough to be used in an existing C++ code base.

In the implementation phase we add the new functionality to the
Pointerminator plug-in. Finally, the plug-in is tested with an exist-
ing C++ project. This helps us to find problems and optimize the
refactorings.

Results

The results of our bachelor thesis can roughly be divided into three
parts. First, we analysed the different use cases of C strings and their
related C functions. Based on these use cases we decided to put our
focus on the C string functions shown in the following picture:

C string functions that can be refactored by the CharWars plug-in

In the second phase we extended the functionality of the Pointermina-
tor plug-in so that it can replace calls to those C string functions with
calls to corresponding std::string member functions. The CharWars
plug-in analyzes the code that is being written. If it finds a problem,
it sets a marker in the editor. The programmer can then trigger an
appropriate refactoring through the marker which causes the plug-in
to apply this refactoring. The following page shows screen shots of
the CharWars plug-in in action:
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Refactoring the C string function strstr()
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Finally, to optimize the plug-in, we tested it with an existing open
source C++ project called XBMC[xG14]. In total, the CharWars
plug-in found 776 C strings and marked them accordingly. To check if
the plug-in works correctly, we applied the refactoring for 150 of those
C strings and verified the results. The CharWars plug-in was able
to correctly refactor 65% of the C strings as shown in the following
table:

Markers set Markers tested Solved Unsolved
776 150 98 (65%) 52 (35%)

Further work

The CharWars plug-in is a nice improvement over the existing Point-
erminator plug-in but there is still room for improvement. Further
optimization would be worthwile and there are other refactorings that
could be added in addition to the existing ones such as:

• Refactoring of strings that are allocated on the heap
• Refactoring of string parameters
• Refactoring of string return values
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1. Task description

This section outlines our bachelor thesis and our goals for it.

1.1. Previous work

This bachelor thesis builds on the results of our term project Point-
erminator [Gon13]. The main goal of that project was to improve
the quality of existing C++ code by getting rid of pointers. First,
we did an analysis of the various ways pointers can be used in C++.
Then we developed an Eclipse CDT plug-in that refactors and replaces
pointers automatically. Specifically, the plug-in is capable of doing the
following refactorings:

• Replace C strings with std::string objects
• Replace C arrays with std::array objects
• Replace pointer parameters with reference parameters

1.2. Problem

The Pointerminator plug-in refactors C-style strings to std::string ob-
jects. However, it doesn’t do much more than that. There are several
standard C functions that are commonly used to analyze and modify
C strings. For example, the function strcat() can be used to append
one C string to another. These functions tend to have bad perfor-
mance. This is because C strings are just pointers to an array of
ASCII characters that is terminated with a ‘\0’ character and the size
of the string isn’t stored anywhere. Because of that the size has to be
recalculated each time such a function is called. Additionally, these
functions have difficult to understand names such as strpbrk() and
strchr() which lead to code that is hard to understand. The Pointer-
minator plug-in did not improve that situation. Instead of replacing
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1. Task description

the string functions it just tries to make the new std::string object
work with the existing code.

1.3. Solution

Objects of the class std::string store the size of the string in internal
state. Therefore, it should be possible to improve the performance
and the readability of the code by replacing C string functions with
a combination of std::string member functions and functions from the
standard header <algorithm>.

1.4. Our goals

In our bachelor thesis we will first analyze the various C string func-
tions and how they are used in existing C++ code. Then we try to
define refactorings for each function that allow us to replace the C
string function with a std::string member function or a function from
the standard header <algorithm>. After that we extend the existing
Pointerminator[Gon13] Eclipse CDT plug-in to add the new function-
ality. The overall goal is to develop a plug-in that can improve the
quality of existing C++ code by performing a set of well-defined refac-
torings. In the end we test the plug-in with a well-known C++ open
source project and try to optimize it as much as possible.

1.4.1. Features

The plug-in will replace the following C string functions using a com-
bination of std::string member functions and functions from the stan-
dard header <algorithm>:

Analyzing C string functions
• strlen() : Determines the length of a C string.
• strcmp() : Compares two C strings.
• strncmp() : Compares n characters of two C strings.
• memcmp() : Compares two blocks of memory.
• strstr() : Searches a substring inside a C string.
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1. Task description

• memchr() : Searches a byte inside a block of memory.
• strchr() : Searches a character inside a C string.
• strrchr() : Searches a character inside a C string in reverse

order.
• strpbrk() : Returns a pointer to the first occurrence of any

character from the second C string inside the first C string.
• strcspn() : Returns the length of the initial part of the first C

string not containing any of the characters that are part of the
second C string.
• strspn() : Returns the length of the maximum initial segment

of the first C string that contains only characters from the second
C string.

Modifying C string functions
• strcat() : Appends one C string to another.
• strncat() : Appends n characters of one C string to another.
• strcpy() : Copies a C string into an existing char buffer.
• strncpy() : Copies n characters of a C string into an existing

char buffer.
• memcpy() : Copies one block of memory into another. If the

blocks overlap, the behaviour is undefined.
• memmove() : Copies one block of memory into another. The

blocks may overlap.
• strdup() : Allocates a new buffer and copies a C string into

that buffer.

1.4.2. Additional refactorings

If there is enough time at the end of the project the plug-in will also
include the following refactorings:

• atof() : Converts a C string into a double.
• atoi() : Converts a C string into an int.
• atol() : Converts a C string into a long.
• atoll() : Converts a C string into a long long.
• strtol() : Converts a byte string into a long.
• strtoll() : Converts a byte string into a long long.
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1. Task description

• strtoul() : Converts a byte string into an unsigned long.
• strtoull() : Converts a byte string into an unsigned long long .
• strtof() : Converts a byte string into a float.
• strtod() : Converts a byte string into a double.
• strtold() : Converts a byte string into a long double.
• strtoimax() : Converts a byte string into std::intmax t.
• strtoumax() : Converts a byte string into std::uintmax t.

1.5. Time management

Our project started on the 17th of February, 2014. It will end on June
the 13th, 2014 at 12.00 p.m. which is when the final release has to be
submitted completely.

1.6. Final release

The following items will be included in the final release of the project:

• 4 printed exemplars of the documentation (1 colored)
• Poster for presentation
• Management Summary and Abstract
• 2 CD/DVD with update site that contains the plug-in, project

resources, documentation, virtual machine with operational Eclipse
CDT with plug-in installed
• 1 CD for archive with the documentation and abstract without

personal informations
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2. Analysis

This chapter contains an analysis of C strings and shows their draw-
backs in comparison to std::string objects. It also contains a descrip-
tion of several standard functions that are often used to analyze or ma-
nipulate C strings and demonstrates different refactorings that could
be applied by the plug-in.

2.1. The structure of C strings

In C, a string is just a pointer to an array of characters that is termi-
nated by a ‘\0’ character. No additional information about the length
of the string is stored anywhere. There are several ways to create a C
string which have different effects on the mutability and the memory
location of the string:

2.1.1. Const string literal

One way to create a C string is to initialize a char pointer with the
address of a string literal as shown in Listing 2.1:

Listing 2.1: Const string literal
int main() {

const char *str = "Hello , World!";

//do something with str

}

By default the GCC compiler allocates 14 bytes (13 ASCII characters
+ one ‘\0’ character) in the global/static section of the memory. This
is shown in Figure 2.1:
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2. Analysis

Figure 2.1.: Structure of a C string
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In addition, the string is read-only. This allows the compiler to do an
optimization called string pooling. Listing 2.2 shows an example:

Listing 2.2: String pooling
const char *str1 = "Hello , World!";

int main() {

const char *str2 = "Hello , World!";

std::cout << std:: boolalpha

<< (str1 == str2)

<< std::endl;

}

The above program outputs “true”. Because the strings are immutable
and stored in global/static memory, the compiler can optimize by
storing strings that have the same value only once. All char pointers
that are initialized with the same string literal then point to the same
location in memory.

However, GCC does have an option -fwritable-strings to disable string
pooling. This option also makes the strings mutable.

2.1.2. Char array on the stack

To create a mutable C string the programmer can declare a char array
and initialize it with a string literal as shown in Listing 2.3:

Listing 2.3: Char array on the stack
int main() {

char str[] = "Hello , World!";

//do something with str

}

This string has the same representation as shown in Figure 2.1. How-
ever, the string is mutable and stored on the stack. Therefore, the
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2. Analysis

allocated memory automatically gets freed at the end of the array’s
scope.

Char arrays can also be partially initialized, leaving room to append
another string to the first one as shown in Listing 2.4:

Listing 2.4: Char array on the stack
int main() {

char str [13] = "Hello";

strcat(str , ", World!");

//do something with str

}

Before the call to the function strcat(), the array buffer looks like
this:

Figure 2.2.: Structure of a C string
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After the concatenation it again looks like Figure 2.1.

2.1.3. Char buffer on the heap

Sometimes the size of a string is not known at compile time. Such
strings can be dynamically allocated on the heap using malloc() as
shown in Listing 2.5:

Listing 2.5: String allocation on the heap
char *duplicateString(const char *str) {

char *copy = (char *) malloc(strlen(str)+1);

strcpy(copy , str);

return copy;

}

int main() {

char *str = duplicateString("A string");

//do something with str

free(str);

}
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2. Analysis

In this case clients of the function duplicateString() have to free the
resulting string after they are done with it because strings that are
allocated with malloc() aren’t freed automatically.

2.2. C strings vs. std::string

2.2.1. Memory management

If a programmer wants to concatenate two C strings, he or she has
to make sure, that there is enough space reserved in the destination
buffer to hold the contents of both strings as well as the terminating
‘\0’ character. If the sizes of the strings are known at compile time,
this can be done by defining a char array on the stack as shown in
Listing 2.6.

Listing 2.6: Concatenation of two C strings
int main() {

const char *str1 = "Hello , ";

const char *str2 = "world!";

char str3 [14];

strcpy(str3 , str1);

strcat(str3 , str2);

//do something with str3

}

However, often the sizes are unknown at compile time. In the book
The C++ Programming Language by Bjarne Stroustrup[Str97], there
is a good example that shows how much code can be involved to
achieve a relatively simple thing. The example is shown in List-
ing 2.7:
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2. Analysis

Listing 2.7: Before the refactoring
char *address(const char *iden , const char *dom) {

int iden_len = strlen(iden);

int dom_len = strlen(dom);

char *addr = (char *) malloc(iden_len+dom_len +2);

strcpy(addr , iden);

addr[iden_len] = ’@’;

strcpy(addr+iden_len+1, dom);

return addr;

}

int main() {

char *email = address("someone", "gmail.com");

//do something with email

free(email);

}

The function address() returns a new C string that contains the email
address built from the identifier and the domain part. If the program-
mer uses std::strings instead, the code becomes much more elegant
and readable. This is shown in Listing 2.8:

Listing 2.8: After the refactoring
std:: string address(const std:: string& iden , const std:: string& dom) {

return iden + ’@’ + dom;

}

int main() {

std:: string email = address("someone", "gmail.com");

//do something with email

}

The class std::string takes care of memory management and releases
the memory once the variable “email” goes out of scope. Therefore,
the call to the function free() is not necessary anymore.

2.2.2. Performance

As shown in section 2.1, C strings have a compact structure and take
up very little space. While this can be an advantage in computing
environments where memory is scarce (e.g., in embedded systems), it
also comes with a performance penalty. String functions like strlen()
or strcat() have to find out the length of the string to perform their
task. This is shown in a blog post by Joel Spolsky[Spo14] in which he
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shows how strcat(), the function which appends one string to another,
may be implemented:

Listing 2.9: Example from Joel on Software - Back to Basics
void strcat(char* dest , char* src)

{

while(*dest) dest ++;

while(*dest++ = *src++);

}

It is easy to see that this code has O(n) complexity and therefore isn’t
very efficient. Since the length isn’t stored anywhere and there is no
information about the buffer size, the function has to walk through
the string looking for its null-terminator every time it is called. Some-
times compilers may be able to optimize performance for literals at
compile time, but often this is not possible (e.g., if a string is read
from std::cin).

The std::string class has a member function size() that has constant
complexity according to the C++11 standard, indicating that the size
of the string is stored in internal state.

2.2.3. Readability

The examples in the subsection 2.2.1 Memory management show how
much the readability can be improved under certain circumstances.
This not only makes the code easier to read but also lowers the risk
for a programmer to introduce bugs when he or she has to modify the
code.

2.3. Pointers vs. iterators

C strings are often used along with functions, that can be used to ana-
lyze or modify the string’s contents. Some of those functions return a
char * pointer that points to a position inside the string. For example,
the function strstr() takes two C strings and returns a pointer to the
first occurrence of the second string inside the first string. Listing 2.10
shows an example:
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Listing 2.10: C string function that returns a pointer
int main() {

char url [100];

std::cin >> url;

char *found = strstr(url , ".ch");

if(found) {

*(found + 1) = ’d’;

*(found + 2) = ’e’;

}

std::cout << url << std::endl;

}

Once the C string has been refactored to a std::string, the function
strstr() also needs to be replaced by some other means. One way is to
use one of std::string’s member functions as shown in Listing 2.11:

Listing 2.11: Example with std::string member function
int main() {

std:: string url;

std::cin >> url;

std:: size_t found = url.find(".ch");

if(found != std:: string ::npos) {

url[found + 1] = ’d’;

url[found + 2] = ’e’;

}

std::cout << url << std::endl;

}

Sometimes it is better to use one of the functions from the standard
header <algorithm> because they often return an iterator which is
conceptually similar to a pointer. Listing 2.12 shows an example using
the search() function:

Listing 2.12: Example with function from standard header <algorithm>
int main() {

std:: string url;

std::cin >> url;

std:: string searchStr = ".ch";

auto found = std:: search(url.begin(), url.end(), searchStr.begin(),

searchStr.end());

if(found != url.end()) {

*(found + 1) = ’d’;

*(found + 2) = ’e’;

}

std::cout << url << std::endl;

}
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Whether it is better to use a std::string member function or a function
from the standard header <algorithm> depends on what the char *
pointer is used for in the original code.

2.4. Analyzing C string functions

This section contains the analysis of different C string functions. Most
of the analyzed refactorings can also be used to refactor wchar t strings.

2.4.1. strlen

The function strlen() has the following signature:

Listing 2.13: Signature of function strlen()
size_t strlen ( const char * str );

This function returns the length of a C string. The length is calcu-
lated from the beginning of the string to the null character, without
including it. All C strings are terminated with a null character.

The class std::string has a member function called size() that also
calculates the length. The signature of this member function can be
found in Listing 2.14:

Listing 2.14: Signature of member function size()
std:: string :: size_type size() const;

Most of the time size type is the same as size t, so the two functions
are very similar.

The following example shows how a simple use of the strlen() function
could be replaced.

Listing 2.15: Before refactoring
int main() {

char s[] = "Hello!";

size_t l = strlen(s);

std::cout << l;

}

Listing 2.16: After refactoring
int main() {

std:: string s = "Hello!";

size_t l = s.size();

std::cout << l;

}
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2.4.2. strchr / strrchr

The functions strchr() and strrchr() have the following signatures:

Listing 2.17: Signatures of the functions strchr() and strrchr()
const char * strchr(const char *str , int character);

char * strchr( char *str , int character);

const char * strrchr(const char *str , int character);

char * strrchr( char *str , int character);

They return a pointer to the first (strchr) or last (strrchr) occurrence
of a given character in the C string “str”. If the character could not
be found in this string both functions return a null pointer.

The functions can be replaced with the member functions find first of()
and find last of() of the std::string class. Both functions are over-
loaded several times. Listing 2.33 shows the versions that best match
the signatures of the strchr and strrchr function.

Listing 2.18: Signatures of the member functions find first of() and find last of()
size_type find_first_of(CharT ch, size_type pos = 0) const;

size_type find_last_of(CharT ch , size_type pos = npos) const;

These std::string member functions have a different return type. In-
stead of a pointer they return an index (of type size type) that denotes
the position of the character.

A simple way would be to convert the index back to a pointer and
leave the rest of the program unchanged. An example can be found
in the listing below.

Listing 2.19: Before the refactoring
int main() {

char s[] = "Hello";

const char *p =

strchr(s, ’l’);

}

Listing 2.20: After the refactoring
int main() {

std:: string s = "Hello";

const char *p = s.c_str()

+ s.find_first_of(’l’);

}

By calling the member function c str() a const pointer to the first char
of the string is returned. By adding the index to the pointer it points
to the correct position of the character. However, this refactoring
doesn’t take into account that it may be possible that the character is
not part of the string in which case this calculation would be wrong.
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Instead of using a std::string member function it is also possible to
use the std::find function of the standard header <algorithm> to find
the first or last position of the located character. This function uses
iterators as input and returns an iterator. The following listing shows
its signature:

Listing 2.21: Signature of member function std::find()
InputIt find(InputIt first , InputIt last , const T& value);

Using this function we benefit from the iterator return type that allows
us to do a simpler conversion to a pointer. An example can be found
in the listings below.

Listing 2.22: Before the refactoring
int main() {

char s[] = "World";

char *ptr =

strchr(s,’o’);

*ptr = ’A’;

std::cout << ptr;

}

Listing 2.23: After the refactoring
int main() {

std:: string s = "World";

auto ptr = std::find

(s.begin(), s.end(), ’o’);

*ptr = ’A’;

std::cout << &*ptr;

}

The reverse interators “rbegin()” and “rend()” can be used instead of
the normal iterators to get the same behavior as the “strrchr” func-
tion.

There would be more benefit if the plug-in refactors also the resulting
char pointer. This could be difficult because pointers can be used in
a lot of different ways.

Task 1: Handling Null-Values
If a programmer uses the strchr() or strrchr() function to find out
whether a character is inside a string or not, he or she will check if the
result is a null pointer or not. The corresponding std::string member
function returns std::string::npos if the given character was not found
in the string. So the plug-in should scan the code for corresponding
null-checks and change them. For more details see the listings below.
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Listing 2.24: Before the refactoring
int main() {

char s[] = "@mail";

if (strchr(s, ’@’))

{

// contains @ sign

}

}

Listing 2.25: After the refactoring
int main() {

std:: string s = "@mail";

if (s.find_first_of(’@’) !=

std:: string ::npos){

// contains @ sign

}

}

This refactoring can also be done with the std::find function. This
function returns an iterator to the end of the string if the character is
not found:

Listing 2.26: Before the refactoring
int main() {

char s[] = "@mail";

if (strchr(s, ’@’)) {

// contains @ sign

}

}

Listing 2.27: After the refactoring
int main() {

std:: string s = "@mail";

if (std::find(s.begin (), s.end(),

’@’) != s.end()) {

// contains @ sign

}

}

If the pointer is passed to a function or in other special cases where the
pointer can not be replaced the plug-in should still be able to produce
a valid pointer. The first example shows how this is done with the
“find first of” member function of the class std::string:

Listing 2.28: Before the refactoring
int main() {

char s[] = "@mail";

const char *p = strchr(s, ’@’);

print(p);

}

Listing 2.29: After the refactoring
int main() {

std:: string s = "@mail";

size_t pos =s.find_first_of(’@’);

const char *p = pos !=

std:: string ::npos ? s.c_str () +

pos : nullptr;

print(p);

}

The following example uses the “std::find” function to refactor the
same code.
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Listing 2.30: Before the refactoring
int main() {

char s[] = "@mail";

const char *p = strchr(s, ’@’);

print(p);

}

Listing 2.31: After the refactoring
int main() {

std:: string s = "@mail";

auto pos = std::find(s.begin (),

s.end(),’@’);

const char *p = pos != s.end() ?

&*pos : nullptr;

print(p);

}

2.4.3. strstr

The function strstr() has the following signature:

Listing 2.32: Signature of function strstr()
const char* strstr(const char* str1 , const char* str2);

It returns a pointer to the first occurrence of the substring str2 in the
string str1. If str2 is not a substring of str1, the function returns a
null pointer.

The class std::string has several overloads of a member function called
find() that does a similar thing. The signature of the overload that is
the closest match to strstr() is shown in Listing 2.33:

Listing 2.33: Signature of member function find()
size_type find(const CharT* s, size_type pos = 0) const;

The main difference between the two functions is the type of the return
value. While strstr() returns a pointer, find() returns the index of the
substring within str1.

A conservative way of dealing with this problem would be to imme-
diately convert the index back to a pointer and leave the rest of the
program unchanged. Listing 2.34 and Listing 2.35 show an example:
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Listing 2.34: Before the refactoring
int main() {

char s[100];

std::cin >> s;

const char *p =

strstr(s, "@");

//do something with p

}

Listing 2.35: After the refactoring
int main() {

std:: string s;

std::cin >> s;

const char *p =

s.c_str() + s.find("@");

//do something with p

}

The index can be converted back to a pointer by adding it to the char
pointer returned by the member function c str(). However, because
the pointer returned by c str() is const, this only works if the pointer
is not used to modify the contents of the string.

Ideally, the plug-in would refactor not only the call to strstr() but
also the resulting char pointer and the subsequent code that uses this
pointer. This can be difficult because pointers can be used to do a
lot of different things. Often, it is easier to use a function from the
standard header <algorithm> that returns an iterator as described in
section 2.3 Pointers vs. iterators.

In the context of the strstr() function the pointer is often used to
perform one or more of the following tasks:

Task 1: Performing a Null-Check
Often the programmer uses the strstr() function to find out whether
str2 is a substring of str1. The exact value of the pointer is of no
interest. All the code does, is to check whether it is null or not.
Listing 2.36 shows an example:

Listing 2.36: Before the refactoring
int main() {

char url [100];

std::cin >> url;

if(strstr(url , ".com")) {

//url is a .com

}

}

Listing 2.37: After the refactoring
int main() {

std:: string url;

std::cin >> url;

if(url.find(".com")

!= std:: string ::npos) {

//url is a .com

}

}
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The same thing can be achieved using the find() member function but
because it returns an index and not a pointer, the return value has to
be compared with the constant std::string::npos instead of null.

Task 2: Calculating the index
Sometimes the programmer is interested in the index of substring str2
inside of str1. This value can be calculated by doing pointer arithmetic
as shown in Listing 2.38:

Listing 2.38: Before the refactoring
int main() {

char email [100];

std::cin >> email;

int prefix_len = strstr(email ,

"@gmail.com") - email;

//do something with prefix_len

}

Listing 2.39: After the refactoring
int main() {

std:: string email;

std::cin >> email;

int prefix_length = email.find(

"@gmail.com");

//do something with prefix_len

}

The find() member function returns the index directly, so that there
is no need to calculate it.

Task 3: Manipulating the string
If str1 is not const, it is possible to modify it through the pointer
returned by the function strstr():

Listing 2.40: Before the refactoring
int main() {

char url [100];

std::cin >> url;

char *tld_ptr =

strstr(url , ".de");

*( tld_ptr + 1) = ’c’;

*( tld_ptr + 2) = ’h’;

//do something with url

}

Listing 2.41: After the refactoring
int main() {

std:: string url;

std::cin >> url;

std:: string s = ".de";

auto tld_ptr = std:: search(

url.begin(), url.end(),

s.begin(), s.end());

*( tld_ptr + 1) = ’c’;

*( tld_ptr + 2) = ’h’;

//do something with url

}

Listing 2.41 shows how the same thing can be achieved using the
search() function from the standard header <algorithm>. This func-
tion returns an iterator which can be used in the same way as the
pointer.
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The subsequent code didn’t have to be changed, because iterators can
be used just like pointers to modify the contents of a string. However,
an additional variable to hold the value of the search string had to be
introduced.

Task 4: Passing the pointer to a function
Listing 2.42 shows how the pointer could also be passed to a func-
tion:

Listing 2.42: Before the refactoring
int main() {

char email [100];

std::cin >> email;

char *domain_part = strstr(email ,

"@") + 1;

//print domain part of email

address

print(domain_part);

}

Listing 2.43: After the refactoring
int main() {

std:: string email;

std::cin >> email;

auto const found=email.find("@");

std:: string domain_part =

email.c_str () + found + 1;

//print domain part of email

address

print(domain_part.c_str());

}

With a call to the member function c str(), a std::string can be con-
verted back to a C string. However, this C string is const and cannot
be modified.

2.4.4. strcmp

The C string member function strcmp() has the following signature:

Listing 2.44: Signature of function strcmp()
int strcmp(const char *str1 , const char *str2);

The function compares the strings “str1” and “str2”. If both strings
are equal the return value is zero. If the return value is greater than
zero it indicates that the first C string is alphabetically after the second
string, otherwise the return value is lower than zero.

This function can be replaced with the compare() member function of
the std::string class. The function signature that best matches can be
found below.

Listing 2.45: Signature of member function compare()
int compare(const CharT* s) const;
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See an example of this refactoring in the code below.

Listing 2.46: Before the refactoring
int main() {

char a[] = "Apple";

char b[] = "Banana";

std::cout << strcmp(a,b);

}

Listing 2.47: After the refactoring
int main() {

std:: string a = "Apple";

char b[] = "Banana";

std::cout << a.compare(b);

}

2.4.5. strncmp

The function strncmp() has the following signature:

Listing 2.48: Signature of function strncmp()
int strncmp(const char *str1 , const char *str2 , size_t num);

The function compares the first “num” characters of the strings “str1”
and “str2”. If the compared characters are equal the return value is
zero. Otherwise is the return value greater or lower than zero depend-
ing on the alphabetical order of the strings.

This function can also be replaced with the compare() member func-
tion of the std::string class. This function has a signature that takes
arguments to define the characters that should be compared. The
function signature can be found below:

Listing 2.49: Signature of member function compare()
int compare(size_type pos1 , size_type count1 , const basic_string& str ,

size_type pos2 , size_type count2) const;

Both functions have the same return values so we just need to change
the function call. The parameters “pos1” and “pos2” are always zero
in this case. So the comparison starts from the beginning of the strings.
An example is shown in the listings below:

Listing 2.50: Before the refactoring
int main() {

char a[] = "google.co";

char b[] = "google.ch";

std::cout <<

strncmp(a,b,6);

}

Listing 2.51: After the refactoring
int main() {

std:: string a = "google.co";

char b[] = "google.ch";

std::cout <<

a.compare(0,6,b,0,6);

}
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2.4.6. memcmp

The function memcmp() has the following signature:

Listing 2.52: Signature of function memcmp()
int memcmp(const void *ptr1 , const void *ptr2 , size_t num);

The memcmp() member function compares the first “num” bytes of
memory blocks of the two pointers. The function will return a zero
if both blocks are identically. Otherwise it returns a greater or lower
value than zero depending on the lexicographical order of the first
value.

The compare() member function of the std::string class has the same
behaviour. The function signature of Listing 2.49 can be used for this
refactoring.

Because both functions have the same return value the refactoring
just need to change the function call. An example can be found in the
listings below.

Listing 2.53: Before the refactoring
int main() {

char a[] = "google.co";

char b[] = "google.ch";

std::cout <<

memcmp(a,b,6);

}

Listing 2.54: After the refactoring
int main() {

std:: string a = "google.co";

char b[] = "google.ch";

std::cout <<

a.compare(0,6,b,0,6);

}

2.4.7. strpbrk

The function strpbrk has the following signature:

Listing 2.55: Signature of function strpbrk()
const char* strpbrk(const char* dest , const char* str);

char* strpbrk( char* dest , const char* str);

It finds the first character in the C string dest, that is also in C string
str and then returns a pointer to that position in dest. If no such
character exists, the functions returns NULL.
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In the standard header <algorithm> there is a function find first of()
that works similarly:

Listing 2.56: Signature of function find first of()
template <class InputIt , class ForwardIt >

InputIt find_first_of(InputIt first , InputIt last ,

ForwardIt s_first , ForwardIt s_last);

Instead of a pointer, it returns an iterator. Listing 2.57 and List-
ing 2.58 show an example refactoring:

Listing 2.57: Before the refactoring
int main() {

char s[100];

std::cin >> s;

char *nr = strpbrk(s, "02468");

if(nr) {

std::cout << nr - s;

}

}

Listing 2.58: After the refactoring
int main() {

std:: string s;

std::cin >> s;

std:: string search = "02468";

auto nr =

std:: find_first_of(s.begin (),

s.end(),

search.begin(),

search.end());

if(nr != s.end()) {

std::cout << nr - s.begin ();

}

}

In order to be able to use the find first of() function, the string “02468”
needs to be assigned to a seperate std::string variable. In practice, the
plug-in needs to make sure that the name of that variable doesn’t
interfere with other variables in the same scope.

2.4.8. strcspn

The function strcspn has the following signature:

Listing 2.59: Signature of function strcspn()
size_t strcspn(const char *dest , const char *src);

Its functionality is very similar to the one of strpbrk(). It returns the
length of the initial segment of C string dest, that consists only of
characters that are not in C string src.
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This C string function can be replaced by the std::string member func-
tion find first of() which does a similar thing. The signature of the
member function find first of() is shown in Listing 2.60:

Listing 2.60: Signature of member function find first of()
size_type find_first_of(const CharT* s, size_type pos = 0) const;

There is a small difference in the return values of the two functions.
When the string dest only consists of characters that are not contained
in the string src, the function strcspn() returns the length of dest.
The function find first of() returns the constant value std::string::npos
instead.

Listing 2.61 and Listing 2.62 show how the refactoring could still be
done:

Listing 2.61: Before the refactoring
int main() {

char s[100];

std::cin >> s;

size_t n =

strcspn(s, "01");

//do something with n

}

Listing 2.62: After the refactoring
int main() {

std:: string s;

std::cin >> s;

size_t found =

s.find_first_of("01");

size_t n =

(found == std:: string ::npos) ?

s.size() : found;

//do something with n

}

2.4.9. strspn

The function strspn() has the following signature:

Listing 2.63: Signature of function strspn()
size_t strspn(const char *dest , const char *src);

It searches for the first character in dest that isn’t contained in src
and then returns the length of the prefix up to that character. For
example, if dest is “123hello” and src is “0123456789” then strspn()
would return 3 because the first 3 characters in dest are all containted
in src.
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The class std::string has several overloads of a member function called
find first not of() that does a similar thing. The signature of the over-
load that is the closest match to strspn() is shown in Listing 2.64:

Listing 2.64: Signature of member function find first not of()
size_t find_first_not_of(const char* s, size_t pos = 0) const;

Unfortunately, there is a subtle but important difference in the return
values of the two functions. When the string dest only consists of char-
acters that are also contained in the string src, the function strspn()
returns the length of dest. The function find first not of() returns the
constant value std::string::npos instead.

Listing 2.65 and Listing 2.66 show how the refactoring could still be
done:

Listing 2.65: Before the refactoring
int main() {

char s[100];

std::cin >> s;

size_t n =

strspn(s, "01");

//do something with n

}

Listing 2.66: After the refactoring
int main() {

std:: string s;

std::cin >> s;

size_t found =

s.find_first_not_of("01");

size_t n =

(found == std:: string ::npos) ?

s.size() : found;

//do something with n

}

2.4.10. memchr

The function memchr() has the following signatures:

Listing 2.67: Signatures of function memchr()
const void * memchr(const void *ptr , int value , size_t num);

void * memchr( void *ptr , int value , size_t num);

The function memchr() searches through the first “num” bytes of the
memory pointed by the “prt” argument for occurrences of the given
“value”. The function returns a pointer to the first occurrence of the
value or a null pointer if the value is not found.
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With the “std::find” function a similar behaviour can be achieved. By
adding the “num” value to the “begin()” iterator we make sure that
only the given characters are passed to the function. For more details
see the example below.

Listing 2.68: Before the refactoring
int main() {

const char s[] = "World!";

char *ptr =

(char*) memchr(s,’o’ ,3);

print(ptr);

}

Listing 2.69: After the refactoring
int main() {

std:: string s = "World!";

auto v = std::find(s.begin(),

s.begin() + 3, ’o’);

char *ptr = v != s.begin()+3 ?

&*v : nullptr;

print(ptr);

}

2.5. Modifying C string functions

This section contains possible refactorings of C string functions that
modify a string.

2.5.1. strcat / strncat

The functions strcat() and strncat() have the following signatures:

Listing 2.70: Signature of functions strcat() and strncat()
char *strcat(char *dest , const char *src);

char *strncat(char *dest , const char *src , std:: size_t count);

They append the content of C string src to C string dest. The buffer
for dest must have enough space to hold dest, src and the terminating
null character. Both functions return a pointer to dest. However, in
practice the return value is often ignored.

The std::string class has an append() member function to concatenate
strings but it also overloads the += operator to do basic concatenation
which leads to conciser code. See Listing 2.71 and Listing 2.72 for a
simple refactoring example:
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Listing 2.71: Before the refactoring
int main() {

char name [100];

char last_name [100];

std::cin >> name

>> last_name;

strcat(name , " ");

strcat(name , last_name);

//do something with name

}

Listing 2.72: After the refactoring
int main() {

std:: string name;

std:: string last_name;

std::cin >> name

>> last_name;

name += " ";

name += last_name;

//do something with name

}

The function strncat() can be used to append just a part of src to dest.
The programmer can specify the start index by adding a number to
the argument for the src parameter and the number of characters
using the count parameter. Listing 2.73 and Listing 2.74 show how
the refactoring can be done using the append() member function:

Listing 2.73: Before the refactoring
int main() {

const char *url =

"www.google.com/";

char s[100] = "TLD: ";

strncat(s, url+10, 4);

//do something with s

}

Listing 2.74: After the refactoring
int main() {

const std:: string url =

"www.google.com/";

std:: string s = "TLD: ";

s.append(url , 10, 4);

//do something with s

}

2.5.2. strdup

The function strdup() creates a mutable copy of an existing C string.
Listing 2.75 shows the signature of the function:

Listing 2.75: Signature of the function strdup()
char *strdup(const char *s);

First, it allocates enough memory to hold the contents of the C string
s and the terminating “\0” character. Then it copies the contents of
s to the new string and returns it. The code that uses this function
has to make sure that the memory for the new string gets freed after
it is not used anymore.
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Listing 2.76 shows how strdup() is used as a simple way of creating a
mutable copy of a const C string. The same thing can be achieved by
simply creating a std::string and initializing it with the const C string
as shown in Listing 2.77. The call to the function free() at the end of
the program is not necessary anymore.

Listing 2.76: Before the refactoring
int main() {

char *str = strdup("Hello");

//do something with str

free(str);

}

Listing 2.77: After the refactoring
int main() {

std:: string str = "Hello";

//do something with str

}

2.5.3. strcpy

The function strcpy() has the following signature:

Listing 2.78: Signature of function strcpy()
char * strcpy(char *destination , const char *source);

The strcpy member function copies the characters from a source string
into a destination buffer. The destination buffer needs to be at least as
large as the source string including its terminating “\0”-character.

One way to get the same behaviour with std::string is to initialize the
destination string directly with the contents of the source string. A
simple refactoring example is shown in Listing 2.79 and Listing 2.80:

Listing 2.79: Before the refactoring
int main() {

char s[] = "HSR";

char r[4];

strcpy(r,s);

std::cout << r;

}

Listing 2.80: After the refactoring
int main() {

std:: string s = "HSR";

std:: string r;

r = s;

std::cout << r;

}

It is also possible to use the “std::copy” function to refactor this code.
Keep in mind that the function std::back inserter() is inefficient when
using it for inserting really long strings.
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Listing 2.81: Before the refactoring
int main() {

char s[] = "HSR";

char r[4];

strcpy(r,s);

std::cout << r;

}

Listing 2.82: After the refactoring
int main() {

std:: string s = "HSR";

std:: string r{};

std::copy(s.begin (),s.end(),

std:: back_inserter(r));

std::cout << r;

}

2.5.4. strncpy

The function strncpy() has the following signature:

Listing 2.83: Signature of function strncpy()
char * strncpy(char *destination , const char *source , size_t num);

It is similar to the strcpy() function. In addition, it takes a num ar-
gument that specifies the number of characters that should be copied
from source into destination. The strncpy() function can best be re-
placed with the std::string member function replace(). The signature
of this function is shown in Listing 2.84.

Listing 2.84: Signature of member function replace()
basic_string& replace(size_type pos , size_type count , const

basic_string& str , size_type pos2 , size_type count2);

An example of how a call to strncpy() could be refactored into a call
to replace() is shown in the following listings:

Listing 2.85: Before the refactoring
int main() {

char a[] = "Hello";

strncpy(a, "Ha", 2);

}

Listing 2.86: After the refactoring
int main() {

std:: string a = "Hello";

a.replace(0, 2, "Ha", 0, 2);

}

Another way to refactor this code is to use the “std::copy n” func-
tion:
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Listing 2.87: Before the refactoring
int main() {

char s[] = "goal";

char r[3];

strncpy(r,s,2);

r[2] = ’\0’;

std::cout << r << s;

}

Listing 2.88: After the refactoring
int main() {

std:: string s = "goal";

std:: string r{};

std:: copy_n(s.begin() ,2,

std:: back_inserter(r));

std::cout << r << s;

}

2.5.5. memmove

The function memmove() has the following signature:

Listing 2.89: Signature of function memmove()
void * memmove(void *destination , const void *source , size_t num);

This function copies the first “num” bytes from the source to the des-
tination. Source and destination can be overlapping. The destination
buffer has to be large enough to hold num bytes.

The memmove() function can be replaced with the std::string member
function replace() which has the following signature:

Listing 2.90: Signature of member function replace()
basic_string& replace(size_type pos , size_type count , const

basic_string& str , size_type pos2 , size_type count2);

While using the memmove() function one has to manually make sure
that a “\0” is also copied. The replace function always ensures that
the resulting string is valid. An example of this refactoring can be
found below.

Listing 2.91: Before the refactoring
int main() {

char s[] = "good goal!";

memmove(s,s+5,4);

std::cout << s;

}

Listing 2.92: After the refactoring
int main() {

std:: string s= "good goal!";

s.replace(0,4,s,5,4);

std::cout << s;

}
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2.5.6. memcpy

The function memcpy() has the following signature:

Listing 2.93: Signature of function memcpy()
void * memcpy(void *destination , const void *source , size_t num);

This function copies the first “num” bytes of the source to the des-
tination. Source and destination can not be overlapping otherwise it
will lead to undefined behaviour and the size of each of them needs to
be at least as big as the given parameter “num”.

There is a replace() member function in the std::string class that pro-
vides similar functionality. The signature of this function is shown in
Listing 2.94:

Listing 2.94: Signature of member function replace()
basic_string& replace(size_type pos , size_type count , const

basic_string& str , size_type pos2 , size_type count2);

Listing 2.95 and Listing 2.96 show how a call to the memcpy() function
can be refactored into a call to the replace() member function:

Listing 2.95: Before the refactoring
int main() {

char a[] = "Hello";

memcpy(a, "Ha", 2);

}

Listing 2.96: After the refactoring
int main() {

std:: string a = "Hello";

a.replace(0, 2, "Ha", 0, 2);

}

If memcpy is just used to copy a complete C string one can just ini-
tialize a new std::string with the same value as the source string. The
example below demonstrates this case.

Listing 2.97: Before the refactoring
int main() {

char s[] = "copy";

char r[4];

memcpy(r,s,4);

std::cout << r;

}

Listing 2.98: After the refactoring
int main() {

std:: string s = "copy";

std:: string r{s};

std::cout << r;

}
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2.6. Converting C string functions

This section contains possible refactorings for C string functions that
convert a string into another data type. Because all of these func-
tions use a “const char *” as parameter they can also be used with
std::string objects because there is a member function called c str()
which converts the std::string into a “const char *”. Listing 2.99 shows
an example:

Listing 2.99: Before the refactoring
int main() {

char s[] = "0.01";

double n =

std::atof(s);

}

Listing 2.100: After the refactoring
int main() {

std:: string s = "0.01";

double n =

std::atof(s.c_str ());

}

2.6.1. atof

The function atof() has the following signature:

Listing 2.101: Signature of function atof()
double atof(const char *str);

This function converts a given C string into a double. It will return
the converted value. If the converted value is out of range the return
value is undefined. If the string can’t be converted into a double, the
function returns “0.0”.

In the C++ standard library there is a function called “stod” that
converts a std::string into a double. If no conversion can be done a
“std::invalid argument” exception will be thrown. A “std::out of range”
exception is thrown if the converted value falls out of range. If a valid
input value is provided, the function returns the converted double.
The signature of this function can be found below:

Listing 2.102: Signature of function stod()
double stod(const std:: string& str , size_t *pos = 0);

In the case of a successful conversion, the two functions behave the
same. An example of a simple refactoring can be found below:
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Listing 2.103: Before the refactoring
int main() {

char s[] = "0.01";

double n = std::atof(s);

std::cout << n;

}

Listing 2.104: After the refactoring
int main() {

std:: string s = "0.01";

double n = std::stod(s);

std::cout << n;

}

However, if the input value is invalid, they behave differently. There-
fore, it may not be possible to simply replace the std::atof() function
with the std::stod() function like that. For example, it may be nec-
essary to catch the exception and adapt the error handling accord-
ingly.

2.6.2. atoi / atol / atoll

The functions atoi(), atol() and atoll() are very similar. See their
function signatures below.

Listing 2.105: Signature of function atoi() atol() and atoll()
int atoi(const char *str);

long atol(const char *str);

long long atoll(const char *str);

These functions take a C string and convert it into the data type int,
long or long long, respectively. The converted value is returned if the
conversion was successful. If the conversion fails, the integer value ’0’
is returned. If the converted value is out of range the return value is
undefined.

Similar functions can also be found in the <string> header. They are
called stoi(), stol() and stoll(). The signatures of these functions are
shown in Listing 2.106:

Listing 2.106: Signatures of member functions stoi() stol() and stoll()
int stoi(const std:: string& str , size_t *pos = 0, int base = 10);

long stol(const std:: string& str , size_t *pos = 0, int base = 10);

long long stoll(const std:: string& str ,size_t *pos = 0,int base = 10);

Also these functions return the same value as their corresponding C
string function if the conversion was successful. However, if the con-
version could not be performed an “std::invalid argument” exception
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is thrown. An “std::out of range” exception is thrown if the resulting
value is out of range. The following listings show an example:

Listing 2.107: Before the refactoring
int main() {

char s[] = "42";

double n = std::atoi(s);

std::cout << n;

}

Listing 2.108: After the refactoring
int main() {

std:: string s = "42";

double n = std::stoi(s);

std::cout << n;

}

2.6.3. strtol / strtoll

The function signatures of the strtol() and strtoll() functions are shown
in the listing below.

Listing 2.109: Signatures of functions strtol() and strtoll()
long strtol(const char *str , char **str_end , int base);

long long strtoll(const char *str , char **str_end , int base);

The functions strtol() and strtoll() convert a byte string into a long
or long long. The integer value ’0’ is returned if no conversion can be
done. The out parameter “str end” returns a pointer to the position in
the string up to which the conversion could be performed successfully.
For example, if the input string is “123abc” this pointer will be pointed
to the position of the letter ’a’.

It is possible to refactor these functions with the stol() or stoll() func-
tions from the <string> header. The signature of these functions can
be found in Listing 2.106. In the listing below an example of this
refactoring can be found.

Listing 2.110: Before the refactoring
int main() {

char s[] = "42";

char * pEnd;

long n =

std:: strtol(s,&pEnd ,10);

std::cout << n;

}

Listing 2.111: After the refactoring
int main() {

std:: string s = "42";

long n =

std::stol(s);

std::cout << n;

}
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2.6.4. strtoul / strtoull

Both of these functions are similar to strtol and strtoll. They also set
the out parameter “str end” to the position up to which the conversion
could be performed successfully. Only the return type is different:

Listing 2.112: Signature of function strtoul() and strtoull()
unsigned long strtoul(const char *str , char **str_end , int base);

unsigned long long strtoull(const char *str , char **str_end ,int base);

These function can be refactored with the “stoul()” and “stoull” func-
tions from the <string> header. The signatures of both functions are
listed below.

Listing 2.113: Signature of function stoul() and stoull()
unsigned long stoul(const std:: string& str , size_t *pos = 0,

int base = 10);

unsigned long long stoull(const std:: string& str , size_t *pos = 0,

int base = 10);

The following listings show how the function strtoul() could be refac-
tored:

Listing 2.114: Before the refactoring
int main() {

char s[] = "42";

char * pEnd;

unsigned long n =

std:: strtoul(s,&pEnd ,10);

std::cout << n;

}

Listing 2.115: After the refactoring
int main() {

std:: string s = "42";

unsigned long n = std::stoul(s);

std::cout << n;

}

2.6.5. strtof / strtod / strtold

The strtof, strtod and strtold functions have the following signatures:

Listing 2.116: Signatures of functions strtof() strtod() and strtold()
float strtof(const char *str , char ** str_end);

double strtod(const char *str , char ** str_end);

long double strtold(const char *str , char ** str_end);

They convert a byte string into a corresponding floating point data
type. If the conversion fails they return in case of an out of range
value an error and in case no conversion can be performed the value
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’0’. The out parameter “str end” returns a pointer to the position to
which the conversion could be performed successfully.

These functions can be refactored with the corresponding conversion
functions from the <string> header. Those are called stof(), stod()
and stold():

Listing 2.117: Signatures of functions strtof() strtod() and strtold()
float stof(const std:: string& str , size_t *pos = 0);

double stod(const std:: string& str , size_t *pos = 0);

long double stold(const std:: string& str , size_t *pos = 0);

While the return value of a successful conversion remains the same
when using these functions, their behaviour differs if the conversion
fails. See an example refactoring below:

Listing 2.118: Before the refactoring
int main() {

char s[] = "3.6 e12";

char * pEnd;

double n =

std:: strtod(s,&pEnd);

std::cout << n;

}

Listing 2.119: After the refactoring
int main() {

std:: string s = "3.6e12";

double n = std::stod(s);

std::cout << n;

}

2.6.6. strtoimax / strtoumax

The C char functions strtoimax() and strtoumax() have the following
signatures.

Listing 2.120: Signature of function strtoimax() and strtoumax()
std:: intmax_t strtoimax(const char* nptr , char** endptr , int base);

std:: uintmax_t strtoumax(const char* nptr , char** endptr , int base);

The functions take as many characters as possible from a byte string
and convert them into an integer or unsigned integer number. With
the base one can define the range of numbers that are used in the byte
string to represent the integer. The out parameter “str end” returns
the position to which the conversion could be performed successfully.
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Both member functions can be refactored with stoll() or stoull(). The
signature of these functions can be found in Listing 2.113 and List-
ing 2.106. An example of this refactoring can be found in the following
listings.

Listing 2.121: Before the refactoring
int main() {}

char s[] = "123456";

char * pEnd;

std:: intmax_t n =

std:: strtod(s,&pEnd);

std::cout << n;

}

Listing 2.122: After the refactoring
int main() {

std:: string s = "123456";

long long n = std:: stoll(s);

std::cout << n;

}

2.7. Refactoring example

This section contains a possible refactoring of a function from the
WebKit Open Source Project[Pro14b]. More information about this
project can be found under www.webkit.org. This example shows
how the C strings in this function could be refactored to std::string
objects.

Listing 2.123: Example code to refactor
#include "config.h"

#include "EnvironmentUtilities.h"

#include <wtf/text/CString.h>

void stripValuesEndingWithString(const char* environmentVariable ,

const char* searchValue) {

ASSERT(environmentVariable);

ASSERT(searchValue);

The C string parameters can be replaced with const references to
std::string objects since the parameters are not modified inside the
function body. The ASSERT() statements can be removed because
it is not possible to pass NULL as an argument to a function that
expects a reference parameter.
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Listing 2.124: Possible refactoring
#include <cstdlib >

#include <string >

#include <algorithm >

void stripValuesEndingWithString(const std:: string &

environmentVariable , const std:: string &searchValue) {

Listing 2.125: Example code to refactor
// Grab the current value of the environment variable.

char* environmentValue = getenv(environmentVariable);

if (! environmentValue || environmentValue [0] == ’\0’)

return;

The function getenv() can return NULL. In C++, constructing a
std::string object with char pointer that is NULL is undefined be-
haviour. Therefore, the variable “environmentValue” can’t be directly
converted into a std::string object:

Listing 2.126: Possible refactoring
char *tmp = getenv(environmentVariable.c_str());

if (!tmp || tmp[0] == ’\0’)

return;

std:: string environmentValue = tmp;

Listing 2.127: Example code to refactor
// Set up the strings we’ll be searching for.

size_t searchLength = strlen(searchValue);

if (! searchLength)

return;

Because we changed the type of the “searchValue” variable the size()
member function of the std::string class can be used to get the length
of the string.
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Listing 2.128: Possible refactoring
auto searchLength = searchValue.size();

if (! searchLength)

return;

Listing 2.129: Example code to refactor
Vector <char > searchValueWithColonVector;

searchValueWithColonVector.grow(searchLength + 2);

char* searchValueWithColon = searchValueWithColonVector.data();

size_t searchLengthWithColon = searchLength + 1;

memcpy(searchValueWithColon , searchValue , searchLength);

searchValueWithColon[searchLength] = ’:’;

searchValueWithColon[searchLengthWithColon] = ’\0’;

Because the vector is just used for the initialization of a C string there
is no need for it while using the class std::string. The whole content
of the string “searchValue” is copied into this C string so a direct
initialization of a std::string with the correct value does the same.

Listing 2.130: Possible refactoring
std:: string searchValueWithColon = searchValue;

auto searchLengthWithColon = searchLength + 1;

searchValueWithColon.append(’:’);

Listing 2.131: Example code to refactor
// Loop over environmentValueBuffer , removing any components that

match the search value ending with a colon.

char* componentStart = environmentValue;

char* match = strstr(componentStart , searchValueWithColon);

bool foundAnyMatches = match != NULL;

Because the “componentStart” pointer is used afterwards for itera-
tion over the characters it can be replaced with an iterator. Also
the “strstr” function call can be replaced with a std::search function
call that takes iterators as arguments. The calculation of the bool
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value needs to be changed, because the std::search function returns an
iterator and not a pointer.

Listing 2.132: Possible refactoring
auto componentStart = environmentValue.begin();

auto match = std:: search(environmentValue.begin (),environmentValue.

end(),searchValueWithColon.begin(),searchValueWithColon.end());

bool foundAnyMatches = match != environmentValue.end();

Listing 2.133: Example code to refactor
while (match != NULL) {

// Update componentStart to point to the colon immediately

preceding the match.

char* nextColon = strstr(componentStart , ":");

while (nextColon && nextColon < match) {

componentStart = nextColon;

nextColon = strstr(componentStart + 1, ":");

}

The strstr() function calls can be replaced with calls to the correspond-
ing std::find function that takes iterators as arguments. Because the
variables “match” and “nextColon” are now iterators and not pointers
anymore, the checks have to be adapted accordingly as well.

Listing 2.134: Possible refactoring
while (match != environmentValue.end()) {

auto nextColon = std::find(componentStart , environmentValue.end(),

’:’);

while (nextColon != environmentValue.end() && nextColon < match) {

componentStart = nextColon;

nextColon = std::find(componentStart + 1, environmentValue.end()

,’:’);

}
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Listing 2.135: Example code to refactor
// Copy over everything right of the match to the current

component start , and search from there again.

if (componentStart [0] == ’:’) {

// If componentStart points to a colon , go ahead and copy the

colon over.

strcpy(componentStart , match + searchLength);

} else {

// Otherwise , componentStart still points to the beginning of

environmentValueBuffer , so don’t copy over the colon.

// The edge case is if the colon is the last character in the

string , so "match + searchLengthWithoutColon + 1" is the

// null terminator of the original input , in which case this is

still safe.

strcpy(componentStart , match + searchLengthWithColon);

}

match = strstr(componentStart , searchValueWithColon);}

“Strcpy” calls can be replaced with the replace member function of the
std::string class. The std::search function can be used for the “strstr”
call.

Listing 2.136: Possible refactoring
if (componentStart [0] == ’:’) {

environmentValue.replace(componentStart ,

environmentValue.end(),

match + searchLength ,

environmentValue.end());

} else {

environmentValue.replace(componentStart ,

environmentValue.end(),

match + searchLengthWithColon ,

environmentValue.end());

}

match = std:: search(componentStart ,environmentValue.end(),

searchValueWithColon.begin(),searchValueWithColon.end());}
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Listing 2.137: Example code to refactor
// Search for the value without a trailing colon , seeing if the

original input ends with it.

match = strstr(componentStart , searchValue);

while (match != NULL) {

if (match[searchLength] == ’\0’)

break;

match = strstr(match + 1, searchValue);

}

Again, the strstr() calls to search for the corresponding variable can
be replaced with calls to the std::search function. The check in the
while statement needs to be adapted as well.

Listing 2.138: Possible refactoring
match = std:: search(componentStart ,environmentValue.end(),

searchValue.begin(),searchValue.end());

while (match != environmentValue.end()) {

if (match[searchLength] == ’\0’)

break;

match = std:: search(match + 1,

environmentValue.end(),

searchValue.begin(),

searchValue.end());

}

Listing 2.139: Example code to refactor
// Since the original input ends with the search , strip out the last

component.

if (match) {

// Update componentStart to point to the colon immediately

preceding the match.

char* nextColon = strstr(componentStart , ":");

while (nextColon && nextColon < match) {

componentStart = nextColon;

nextColon = strstr(componentStart + 1, ":");

}

// Whether componentStart points to the original string or the

last colon , putting the null terminator there will get us the

desired result.

componentStart [0] = ’\0’;

foundAnyMatches = true;

}

In these two “strstr” calls only one character is searched inside the
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string. Therefore, it can be replaced with a std::find function call that
searches for a single character. The corresponding conditions need to
be adapted as well.

Listing 2.140: Possible refactoring
if (match != environmentValue.end()) {

auto nextColon = std::find(componentStart ,environmentValue.end(),’

:’);

while (nextColon != environmentValue.end() && nextColon < match) {

componentStart = nextColon;

nextColon = std::find(componentStart + 1, environmentValue.end()

,’:’);

}

componentStart [0] = ’\0’;

foundAnyMatches = true;

}

Listing 2.141: Example code to refactor
// If we found no matches , don’t change anything.

if (! foundAnyMatches)

return;

// If we have nothing left , just unset the variable

if (environmentValue [0] == ’\0’) {

unsetenv(environmentVariable);

return;

}

setenv(environmentVariable , environmentValue , 1);

}

Because “setenv” and “unsetenv” take C string parameters the std::string
objects are converted back into C strings using the c str() member
function.

Listing 2.142: Possible refactoring

if (! foundAnyMatches)

return;

if (environmentValue [0] == ’\0’) {

unsetenv(environmentVariable.c_str ());

return;

}

setenv(environmentVariable.c_str (), environmentValue.c_str(), 1);

}
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In the Analysis section we described the disadvantages and the use
cases of C strings. We also looked at ways to refactor C strings and
the standardized functions that are commonly used to analyze or mod-
ify them. In this section we write about how we built an Eclipse CDT
plug-in that can apply those refactorings automatically and the prob-
lems we had to solve along the way.

3.1. Overall architecture and functionality

The following subsections describe the functionality and architecture
of the CharWars plug-in. The subsections 3.1.1, 3.1.2, 3.1.3, 3.1.4,
3.1.5, 3.1.6, 3.1.7 and 3.1.8 have been taken out of the Pointerminator
[Gon13] documentation.

3.1.1. The refactoring cycle

To implement its functionality, the CharWars plug-in relies heavily
on Codan[fC14]. Codan is a C/C++ Static Analysis Framework for
Eclipse CDT. It provides basic components to build and test a plug-in
that does static analysis.

Each refactoring, in turn, consists of a checker and a quick-fix. The
typical refactoring cycle is illustrated in Figure 3.1.

1. The programmer modifies the source code.
2. Codan[fC14] detects those changes and notifies all active check-

ers.
3. Each checker is responsible for a specific problem (e.g, unused

variables). After a checker is notified by Codan, it analyzes the
code. If it finds an occurrence of its problem, the checker reports
it back to Codan. Codan, in turn, sets a marker in the editor to
make the programmer aware of the problem.
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Figure 3.1.: Refactoring cycle

4. The programmer can then select the marker and trigger the cor-
responding quick-fix.

5. Finally, the triggered quick-fix modifies the code in order to fix
the problem. Codan writes those changes back to the editor.

3.1.2. Parser and Abstract Syntax Tree (AST)

When a cpp-file is opened in an Eclipse CDT editor, the parser cre-
ates a tree-representation of the code, which is called the Abstract
Syntax Tree (AST). The AST consists of nodes that all implement
the IASTNode interface. Each node has one parent node and an ar-
ray of child nodes. The AST can be used by static analysis tools such
as the CharWars plug-in to traverse the code and find problems. Most
refactorings can be done by simply modifying and rewriting the AST.
Listing 3.1 and Figure 3.2 show an example of what the AST looks
like for a short program.
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Listing 3.1: AST example
int main() {

int side = 2;

int area = side * side;

}

Figure 3.2.: AST tree of Listing 3.1
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3.1.3. Bindings

Every C++ identifier (e.g., variable, function, class) is represented
as a node of type “IASTName” in the Abstract Syntax Tree. Each
such node has a reference to its binding object. Each occurrence of
that identifier references the same binding object. For example, if
a program has a function called func() then there will be a single
binding object that represents func(). This binding object stores all
the information about the func identifier, including the locations of
the declaration, the definition and all the places where the function is
called. The algorithm used to compute the bindings is called “Binding
Resolution”. Binding resolution is performed on the AST after the
code has been parsed.
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3.1.4. The index

Parsing and binding resolution is a slow process. Therefore, Eclipse
CDT stores the binding information in an on-disk cache called “the
index”. To build the index, all the code has to be parsed and all the
bindings have to be resolved. The index is then updated every time
the programmer edits a file.

Figure 3.3 shows how everything fits together [oP14].

Figure 3.3.: How everything fits together
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3.1.5. The plug-in components

The CharWars plug-in consists of a set of checkers and quick-fixes.
Each time a file is changed by the programmer, Codan starts the
checkers. Each checker traverses through the AST and searches for a
specific problem. For example, there is a CharPointerChecker, that
searches for C strings that could be refactored to std::string. If a
checker reports a problem, a marker is placed in the editor. When the
programmer hovers over the marker with the mouse, a description of
the problem appears.

Figure 3.4.: Plug-in components

The programmer can choose to apply the refactoring or ignore it. If the
programmer applies the refactoring, Codan triggers the corresponding
quick-fix in the CharWars plug-in. The quick-fix is then responsible
to solve the problem by modifying and rewriting the AST. After the
refactoring is done, the quick-fix deletes the marker and returns.

3.1.6. Traversing the AST

Checkers need to be able to traverse the AST in order to find prob-
lems in the code. Similarly, quick-fixes traverse the AST to find all
occurrences of the refactored variable to do additional adjustments.

The AST is built to be easily traversable using the Visitor pattern
[Gam94]. Eclipse CDT comes with a few predefined visitors that can
be sub-classed to override the visit methods. Only the visit methods
that differ from the subclass need to be overridden. Here is an example
of a simple checker that uses a visitor to find variables with the name
“test” and marks them with a marker. When the user edits a file,
Codan automatically calls the checker’s processAst()-method, which
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starts the traversal of the AST using the visitor implemented as an
inner class. For more details see the example in Listing 3.2:

Listing 3.2: Visitor example
class MyChecker extends AbstractIndexAstChecker {

public final static String PROBLEM_ID =

"ch.hsr.pointerminator.problems.ExanpleProblem";

@Override

public void processAst(IASTTranslationUnit ast) {

ast.accept(new ExampleVisitor ());

}

class ExampleVisitor extends ASTVisitor {

public ExampleVisitor () {

shouldVisitNames = true;

}

@Override

public int visit(IASTName name) {

if(name.toString ().equals("test")) {

reportProblem(PROBLEM_ID , name);

}

return PROCESS_CONTINUE;

}

}

}

3.1.7. Modifying and Rewriting the AST

Eclipse CDT comes with a set of classes that build the infrastructure
for modifying code by describing changes to AST nodes. The AST
rewriter collects descriptions of modifications to nodes and translates
these descriptions into text edits that can then be applied to the origi-
nal source. It is important to note, that this does not actually modify
the original AST. That allows to, for example, show the programmer
the changes that will be made by a quick-fix. Listing 3.3 shows a bit of
sample code, that replaces a node in the AST, collects the description
of the changes in a Change-object and finally performs the change on
the original AST[AST14].
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Listing 3.3: AST rewrite example
ASTRewrite rewrite = ASTRewrite.create(ast);

rewrite.replace(oldNode , newNode , null);

Change c = rewrite.rewriteAST ();

try {

c.perform(new NullProgressMonitor ());

marker.delete ();

} catch (CoreException e) {

e.printStackTrace ();

}

3.1.8. Dealing with global variables

The C string refactoring has to be able to deal with global variables.
Those do have a node structure in the Abstract Syntax Tree that is
different from the node structure of local variables. A local variable
is defined as a “DeclarationStatement” node in the AST. Inside this
“DeclarationStatement” is a nested “SimpleDeclaration” node.

Global variables do not have a “DeclarationStatement” node. Their
“SimpleDeclaration” node is a direct child of the root node (Transla-
tionUnit). See Figure 3.5 for an example.

Figure 3.5.: AST structure - Global vs. local variable
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3.1.9. Two-step transformation

Consider the code in Listing 3.4:

Listing 3.4: Before refactoring
int main() {

const char *str = "my string";

char *found = strstr(str , "ing");

if(found != nullptr) {

int index = found - str;

std::cout << "Found substring at: " << index << std::endl;

}

}

When a programmer uses the plug-in in order to convert the C string
str into a std::string object, this would ideally result in the code shown
in Listing 3.5:

Listing 3.5: After refactoring
int main() {

const std:: string str = "my string";

std:: string :: size_type found_pos = str.find("ing");

if(found_pos != std:: string ::npos) {

int index = found_pos;

std::cout << "Found substring at: " << index << std::endl;

}

}

This refactoring would involve a lot of changes, some of which the
programmer might not expect. For example, the refactoring of the
strstr() function means that the type of the variable that holds the
return value of that function call changes. Then the refactoring may
also change the name of that variable in order to reflect its new type
and adapt subsequent occurrences of that variable.

Since the programmer initially just wanted to convert the C string into
a std::string object this can be confusing. Thus, the plug-in performs
this refactoring in two steps, each of which have to be triggered by the
programmer:
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Step 1 : Char pointer refactoring
In the first step the CharPointerChecker marks C string variables that
can be refactored into std::string objects. When a programmer applies
the refactoring through a marker, the CharPointerQuickFix starts by
replacing the C string definition with the definition of a std::string
variable. Then it uses an ASTVisitor to find subsequent occurrences
of the variable.

In order to handle the different refactoring cases there is a set of sub-
classes of the abstract StringRefactoring class. Each subclass can per-
form a different refactoring. For example, there is a StrlenRefactoring
class that can replace a call to the strlen() function with a call to
the size() member function. Table 3.1 shows all the StringRefactoring
subclasses and how the C string functions are mapped into functions
from the <string> / <algorithm> headers.

For each occurrence of the variable, the visitor tries to find an instance
of an applicable StringRefactoring subclass and then uses it to refactor
that occurrence. Finally, after all occurrences have been refactored,
the quick-fix adds the necessary include statements and completes the
refactoring by performing a rewrite of the AST.

The process of the Char pointer refactoring is shown in Figure 3.6 in
the form of a flow chart.
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Table 3.1.: StringRefactoring subclasses

StringRefactoring C string <string> / <algorithm>
subclass function function
StrlenRefactoring strlen() size()
StrcmpRefactoring strcmp() == / compare()
StrncmpRefactoring strncmp() compare()
MemcmpRefactoring memcmp() compare()
StrcatRefactoring strcat() +=
StrncatRefactoring strncat() append()
StrcpyRefactoring strcpy() = / replace()
StrncpyRefactoring strncpy() replace()
MemcpyRefactoring memcpy() replace()
MemmoveRefactoring memmove() 0
StrstrRefactoring strstr() find()
StrchrRefactoring strchr() find first of()
StrrchrRefactoring strrchr() find last of()
MemchrRefactoring memchr() std::find()
StrcspnRefactoring strcspn() find first of()
StrspnRefactoring strspn() find first not of()
StrdupRefactoring strdup() =
StrpbrkRefactoring strpbrk() find first of()
ConvertingFunction- atof() / atoi() / std::stod() / std::stoi() /
Refactoring atol() / atoll() std::stol() / std::stoll()
NullRefactoring - -
DefaultRefactoring - -
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Figure 3.6.: Flow chart of the Char pointer refactoring
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Applying the Char pointer refactoring to the code in Listing 3.4 results
in the code shown in Listing 3.6:

Listing 3.6: After step 1
int main() {

const std:: string str = "my string";

char* found = strstr (&*str.begin (), "ing");

if(found != nullptr) {

int index = found - str.c_str();

std::cout << "Found substring at: " << index << std::endl;

}

}

Step 2 : Char pointer cleanup refactoring
In the second step the Char pointer cleanup refactoring searches C
string function calls such as strstr(), strchr(), etc. that are executed
on std::string objects. These calls should mostly be the result from ex-
ecuting the Char pointer refactoring as in Listing 3.6. The CharPoint-
erCleanupChecker marks such function calls. The programmer can
then trigger the corresponding quick-fix via the marker which starts
the Char pointer cleanup refactoring. The main job of the refactoring
is to replace the C string function with a suitable std::string member
function. Often, the member function doesn’t have the same return
type as the C string function. Thus, the variable that holds the return
value of the function call and its subsequent occurrences have to be
refactored as well. In the case of Listing 3.6 applying the Char pointer
cleanup refactoring would lead to the code shown in Listing 3.5.

Sometimes the Char pointer cleanup refactoring isn’t as straightfor-
ward as in this example. For example, consider the code in List-
ing 3.7:

Listing 3.7: After step 1
int main() {

const std:: string str = "my string";

char* found = strstr (&*str.begin (), "ing");

func(found);

}
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The main problem is that the strstr() function and the find() mem-
ber function behave differently when the second string is not a sub-
string of the first one. While the strstr() function returns a nullptr,
the find() member function returns the constant std::string::npos. In
Listing 3.6 the code had an if statement that verified that the return
value captured in the variable found was not NULL. This meant that
the refactoring was able to directly convert from the index returned
by the find() member function back to a pointer that is equivalent to
the pointer returned by strstr(). Unfortunately, the code in Listing 3.7
doesn’t contain such an NULL-check. Therefore, the refactoring has
to make sure that the pointer passed to the function func() stays the
same after the refactoring even if the second string is not a substring
of the first one. This leads to the code shown in Listing 3.8:

Listing 3.8: After step 2
int main() {

const std:: string str = "my string";

std:: string :: size_type found_pos = str.find("ing");

char* found = found_pos != std:: string ::npos ? &str[found_pos] :

nullptr;

func(found);

}

The refactoring added a temporary variable that holds the result of
the find() function call and uses it to immediately convert back to a
pointer. Thus, the subsequent code can be left unchanged because
there still is a pointer-variable named found.

3.1.10. Default-Refactoring

As described in 3.1.9 the Char pointer refactoring tries to find a
StringRefactoring subclass that is applicable for every occurrence of
the string variable. More precisely, there is a for-loop that loops
through an array that contains an instance of each StringRefactor-
ing subclass. The method isApplicable() is called on each instance.
The corresponding StringRefactoring then checks whether it is able to
handle the occurrence of the string variable and returns an integer.
The reason why the return value is an integer and not a boolean has
to do with the fact that a single StringRefactoring can have multiple
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sub-refactorings each of which would then be denoted with a different
integer value. Internally, each class defines an enum which describes
the specific sub-refactorings. However, since the StringRefactoring
classes have different enums they return an integer instead. A re-
turn value of 0 means that the StringRefactoring is not applicable.
Every other value means that the StringRefactoring can be applied.
Once the for-loop has found an applicable StringRefactoring it calls
its apply() method and breaks out of the loop. The order in which
the StringRefactoring subclasses are tested doesn’t matter because
they are mutually exclusive. That means that it isn’t possible for two
StringRefactoring subclasses to be applicable for the same occurrence
of the string variable.

However, there is one exception. The DefaultRefactoring is a special
StringRefactoring subclass that should always be the last one to check
in the for-loop. It never returns 0 from the isApplicable() method
and therefore acts as a fallback refactoring for string variable occur-
rences that can’t be refactored by any of the other StringRefactoring
subclasses. In those cases the DefaultRefactoring has to convert the
std::string variable back to either a char pointer or a const char pointer
depending on the context in which the variable is used. For example,
in Listing 3.9 the string variable is passed as an argument to two cus-
tom functions. The print() function simply prints the string on the
standard output. The makeUppercase() function on the other hand
modifies the contents of the string:

Listing 3.9: Before refactoring
void print(const char* s) {

std::cout << s << std::endl;

}

void makeUppercase(char *s) {

for(int i = 0; i < strlen(s); ++i) {

s[i] = std:: toupper(s[i]);

}

}

int main() {

char str[] = "Hello , world!";

print(str);

makeUppercase(str);

print(str);

}
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The DefaultRefactoring checks whether the function to which the
string variable is passed as an argument expects a char pointer or
a const char pointer and adapts the variable accordingly. If the corre-
sponding parameter is a const char pointer the std::string variable can
be converted by calling its c str() member function. Otherwise it uses
the iterator returned by the begin() member function and converts it
to a char pointer. Therefore, refactoring the str variable in Listing 3.9
leads to the code in Listing 3.10:

Listing 3.10: After refactoring
void print(const char* s) {

std::cout << s << std::endl;

}

void makeUppercase(char *s) {

for(int i = 0; i < strlen(s); ++i) {

s[i] = std:: toupper(s[i]);

}

}

int main() {

std:: string str = "Hello , world!";

print(str.c_str());

makeUppercase (&* str.begin ());

print(str.c_str());

}

3.1.11. Extracting common code

The checkers, quick-fixes and the StringRefactoring classes of the
CharWars plug-in require a lot of common code. This code can be
divided into three main categories. For each of those categories there
is a seperate class, that consists solely of public static methods:

• ASTAnalyzer to analyze a node or a subtree of the AST.
• ExtendedNodeFactory to create new nodes or trees of nodes.
• ASTModifier to modify the AST.

Figure 3.7 is a class diagram of those three classes with some of their
methods:

Since a lot of these methods are used both by checkers and quick-fixes
which don’t belong into the same class hierarchy, it wasn’t possible to
just put them in a common base class.
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Figure 3.7.: Class diagram

3.2. Problems and Decisions

This section lists the various problems that occurred during the im-
plementation of the refactorings and describes how we solved them.

3.2.1. std::string vs. const std::string

Whenever the plug-in replaces a C string definition with a std::string
definition it has to decide whether to make the variable const or not.
The main goal is to preserve the constness of the original code. Since C
strings are actually pointers, they can have four states of constness:

char * - strings
A C string variable that is defined as char * is not const in any way.
The characters of the string can be changed and the variable can be
repointed to another array of characters. Thus, it only makes sense to
make the variable a non-const std::string.

const char * / char const * - strings
On the other hand, if a variable is defined to be either a const char
* or a char const * this means that the pointer can be repointed to
another array of characters but that the characters themselves can’t
be changed. Therefore, the decision whether to make the std::string
const or not is not as straightforward as before. However, consider the
code in Listing 3.11:
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Listing 3.11: Example of a const char * string
int main() {

const char *email = "example1@hsr.ch";

//...

email = "example2@hsr.ch";

}

This is valid code which makes it clear, that the resulting std::string
object can’t be const because the reassignment of a const std::string
is not possible.

char * const - strings
If a variable is defined as char * const this means that the variable
cannot be pointed to another array of characters. However, the char-
acters within the string can be changed because the variable is a const
pointer to char. Therefore, the resulting std::string object can’t be
const because it is not possible to change the characters of a const
std::string.

const char * const / char const * const - strings
Lastly, a C string that is defined as const char * const or char const
* const cannot be repointed to another string and its characters can’t
be changed either. Therefore, this is the only situation in which the
variable can safely be refactored into a const std::string.

3.2.2. std::string member functions vs. algorithm
functions

As described in section 2.3 both std::string member functions and
functions from the standard header <algorithm> could be used to
refactor C string functions. However, during the implementation it
became clear that std::string member functions are usually the better
choice. For example, consider the code in Listing 3.12:

Listing 3.12: Before refactoring
int main() {

const char *email = "example@hsr.ch";

if(strstr(email , "@hsr.ch")) {

std::cout << "HSR email address" << std::endl;

}

}
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One possibility to refactor this code would be to use the search()
function from the standard header <algorithm>. This function takes
4 iterators. The first two iterators delimit the string to be searched
through while the other two define the string to search after. In most
cases the second argument to strstr() will either be a C string variable
or a literal as in Listing 3.12. Therefore, the plug-in would have to
either refactor that C string variable into a std::string object or create
a new std::string variable from the literal that is passed to strstr().
The resulting code is shown in Listing 3.13.

Listing 3.13: After refactoring with search()
int main() {

const std:: string email = "example@hsr.ch";

const std:: string str = "@hsr.ch";

if(search(email.begin(), email.end(), str.begin (), str.end()) !=

email.end()) {

std::cout << "HSR email address" << std::endl;

}

}

In contrast, the same refactoring could be accomplished in a much
simpler way using the std::string member function find(). This is
shown in Listing 3.14:

Listing 3.14: After refactoring with find()
int main() {

const std:: string email = "example@hsr.ch";

if(email.find("@hsr.ch") != std:: string ::npos) {

std::cout << "HSR email address" << std::endl;

}

}

Because this second version of the refactoring is easier to read and
easier to implement, the plug-in uses mostly std::string member func-
tions to refactor C string functions. As shown in Table 3.1, the only
refactoring that uses functions from the <algorithm> header instead is
the MemchrRefactoring which replaces calls to the memchr() function
with calls to std::find().

64



3. Implementation

3.2.3. Multiple rewrites in the same AST subtree

As mentioned above, after the Char pointer refactoring replaces the
C string definition, it loops through all the occurrences of the variable
and tries to find an applicable StringRefactoring for each occurrence.
However, this sometimes led to an issue if there were multiple occur-
rences in the same AST subtree. For example, consider the code in
Listing 3.15:

Listing 3.15: Before refactoring
int main() {

char filename [] = "myfile.txt";

strncpy(filename + strlen(filename) - 3, "doc", 3);

}

Figure 3.8 shows a compact version of the Abstract Syntax Tree of
the second statement in Listing 3.15:

Figure 3.8.: Abstract Syntax Tree of Listing 3.15

The first occurrence of the string variable is handled by the StrncpyRefac-
toring and the second one is handled by the StrlenRefactoring. The
plug-in uses the built-in ASTRewrite class to modify the Abstract Syn-
tax Tree. The way this class works is that it lets you record changes
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to the AST and then performs them all at once when its rewriteAST()
method is called. In the above example, the StrlenRefactoring would
first record a change in which the call to strlen() is replaced with a call
to the size() member function. Then the StrncpyRefactoring would
record a second change in which the call to strncpy() is replaced with
a call to the replace() member function. Unfortunately, it turned out
that the ASTRewrite class can’t handle this refactoring correctly, be-
cause the subtree at the strlen() node is affected by both recorded
changes which caused one change to overwrite the other.

In order to avoid this limitation the plug-in now changes the nodes
in each statement directly without using the ASTRewrite. Once all
occurrences of the variable in the statement have been refactored, the
ASTRewrite class is used to replace the complete statement at once.

3.2.4. Testing

The Codan[fC14] testing framework has been used to test the Point-
erminator plug-in which was the result of our term project. Unfor-
tunately, there were problems with randomly failing tests even if no
changes have been done to the code. This seems to happen due to
race conditions in the Codan testing infrastructure. Because of that,
an alternative testing framework called CDT Testing[cdt14] has been
used to test the CharWars plug-in.

CDT Testing has the following benefits:

• The tests check the entire program code not just certain parts
of it.
• The code that will be tested is separated from the unit test for

better readability.
• In comparison to the Codan testing framework, CDT Testing

seems to be more stable and reliable.

Testing checkers
All unit tests for the checkers inherit from an abstract base class that
defines the two methods configureTest() and runTest(). The first
method loads the value of the “markerPositions” property which is
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defined in a seperate rts-file (see below). This property contains the
positions of the markers that ought to be set by the checker. In the
runTest() method the unit test checks whether the markers at this po-
sitions have actually been set. Listing 3.16 shows the implementation
of the runTest() method:

Listing 3.16: A unit tests for a checker
@Override

@Test

public void runTest () throws Throwable {

if(markerPositions != null) {

assertProblemMarkerPositions(markerPositions.toArray(

new Integer[markerPositions.size()]));

} else {

assertProblemMarkerPositions ();

}

}

The unit test classes load the corresponding rts-files which contain
the actual unit-tests using a Java annotation. They also override the
method getProblemId() to determine which checker should be tested.
An example of a unit test class for a checker can be found below:

Listing 3.17: A unit tests class for testing a checker
@RunFor(rtsFile="/resources/Checkers/CharPointerChecker.rts")

public class CharPointerCheckerTest extends BaseCheckerTest {

@Override

protected String getProblemId () {

return CharPointerChecker.PROBLEM_ID;

}

}

Inside the rts-file one provides the code that will be used to test the
checker. An entry is identified by its test name. First, there is a
config section that is used to define the markerPositions property.
Then there is a section that contains the actual code. Listing 3.18
contains an example:

Listing 3.18: A rts file entry for a checker test expecting a marker in line two
//!CharPointerString

//@.config

markerPositions =2

//@main.cpp

int main() {

const char *str = "Hello , World!"; //line 2

}
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Testing quick-fixes
The quick-fix unit tests also inherit from a base class. The base class
contains a method that returns the first marker that was found in the
code. It also has two methods to remove all line breaks from the actual
and the expected code inside the assert call. This workaround is used
because it’s hard to configure the formatter for adding the line breaks
at the correct position. Also if the project is imported into another
Eclipse instance one would need to configure the formatter correctly
before running the tests because otherwise some tests may fail.

The unit test classes have one method to get the problem id of the
corresponding checker and another method that runs the test by exe-
cuting the corresponding quick-fix with the marker. The path to the
rts-file that contains the test cases is defined as well. In Listing 3.19
an example of a quick-fix unit test is shown:

Listing 3.19: A quick-fix unit test class
@RunFor(rtsFile="/resources/QuickFixes/CharPointerQuickFix.rts")

public class CharPointerQuickFixTest extends BaseTest {

@Override

protected String getProblemId () {

return CharPointerChecker.PROBLEM_ID;

}

@Override

@Test

public void runTest () throws Throwable {

IMarker firstMarker = getFirstMarker ();

runQuickFix(firstMarker , new CharPointerQuickFix ());

assertEquals(getNormalizedExpectedSource (),

getNormalizedCurrentSource ());

}

}

All tests are defined inside the rts-file that is referenced in the quick-
fix unit test class. A test is identified by its name. First, there is
a section that contains the code before the refactoring. After that,
there is a section with the code that is expected after the refactoring
is done. An example is shown below in Listing 3.20:
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Listing 3.20: A quick-fix test
//!CharPointerString

//@main.cpp

int main() {

char *str = "Hello , World";

}

//=

#include <string >

int main() {

std:: string str = "Hello , World";

}

3.2.5. Checking if a variable name exists

In the description of the Char pointer cleanup refactoring (3.1.9) List-
ing 3.7 and Listing 3.8 showed that it is sometimes necessary to intro-
duce a new variable. Since the new variables hold position values the
plug-in takes the name of the original pointer variable and appends
“ pos” to it. So for example, in Listing 3.7 the pointer variable is
called “found” which means that in Listing 3.8 the name of the new
variable is “found pos”.

However, it could be that a variable with the same name in the same
block already exists. This would cause an error to occur after the
refactoring is done because two variables with the same name can’t be
defined in the same block. If a variable with the same name is just used
but not defined within the same block this would also lead to problems,
because the new variable would shadow the old one. Therefore, the
plug-in has to scan the current block to find out whether a variable
with the same name is used or defined in it. It does so using a visitor
as shown in subsection 3.1.6. If the variable name is already in use,
the plug-in modifies the name by appending an index number to the
name and then scans the block again. If the new name is taken as
well, it increments the index number and tries again until it finds a
free name for the variable. So for example, “found pos” first becomes
“found pos2”, then “found pos3” and so on.
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3.2.6. Exception and error handling

If a known exception occurs that can not be corrected by our plug-in
it will be logged to the internal error log of Eclipse. This can be done
with the built-in logger functionality. An example of such code can
be found in Listing 3.21.

Listing 3.21: Logging to internal error log
Activator activator = Activator.getDefault ();

activator.getLog ().log(new Status(Status.ERROR , Activator.PLUGIN_ID ,

Status.OK, "Unable to delete marker", e));

If an exception doesn’t impact the process of the refactoring like a
failed removal of a marker only this logging will take place. An error
dialog will be shown to the user for exceptions that cause the refactor-
ing to fail, so the user knows that something went wrong. A screenshot
of the dialog that is shown to the user can be found in Figure 3.9.

Figure 3.9.: Error dialog-box

Because quick-fixes don’t have a way of showing a popup to the user
the class Refactoring is used. This class shows user feedback automat-
ically when an error is occurred. In our case the Refactoring class is
only used to show the error dialog-box. Therefore, it only creates an
error message during the initial condition check that will then auto-
matically be shown to the user.

A Refactoring class can not be created without a RefactoringWizard.
Because the RefactoringWizard will not be shown if the initial condi-
tion check of the refactoring fails it doesn’t need to have any content.
The RefactoringWizard can be started with a
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RefactoringWizardOpenOperation[Fel14]. The code that is used to
create the error dialog-box can be found in Listing 3.22.

Listing 3.22: Show error dialog-box to user
ErrorRefactoring refactoring =

new ErrorRefactoring(getErrormsg ());

ErrorRefactoringWizard refactoringWizard =

new ErrorRefactoringWizard(refactoring , 0);

RefactoringWizardOpenOperation op =

new RefactoringWizardOpenOperation(refactoringWizard);

try {

op.run(null , "Error occurred");

} ...

3.2.7. Marker position calculation

To set a marker, a checker needs to pass a problem location back to
Codan. Based on this location the problematic code will be marked
in the editor. Get an example from Figure 3.10.

Figure 3.10.: Problem marker

IASTNode objects have a method called “getNodeLocations()” that
allows a programmer to get the location of a node. This method
returns an array of IASTNodeLocation objects. Each IASTNodeLo-
cation consists of an offset and a length. Normally, the array only
contains one IASTNodeLocation object which fully describes the lo-
cation of the node.

In special cases there are more than one IASTNodeLocation to de-
scribe the full location of the node. For example, if macros are used
inside a node, there is one IASTNodeLocation object that describes
the location of the code before the macro, another one that describes
the location of the code after the macro and a third one to describe
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the location of the macro itself. Unfortunately, this last IASTNodeLo-
cation object always has an offset of 1 and a length of 0. An example
of this case is illustrated in Figure 3.11. It represents the locations of
the node “s[ ] = HI” in Listing 3.23.

Listing 3.23: Example code with macro
#include <iostream >

#define HI "Hello World!"

int main() {

char s[] = HI; //char pointer with macro

std::cout << s << std::endl;

}

Figure 3.11.: IASTNodeLocation array of Listing 3.23

When a macro is used in the middle of a node one can just use the
offset of the first IASTNodeLocation object to get the start position of
the node. The end position of the node can be calculated by building
the sum of the offset and the length of the last IASTNodeLocation
object. But this calculation will not work if the macro is at the end of
the node. In this case the last IASTNodeLocation object can not be
used to calculate the correct end position because it has wrong offset
and length values.
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A workaround to calculate the correct end position of the node is to
take the offset of the first location and add to it the length of the node’s
“RawSignature”. So the node will be marked and not the whole line
that contains the node. The code for this workaround is shown in
Listing 3.24.

Listing 3.24: Calculate positions of node
IASTNodeLocation [] nodeLocations = node.getNodeLocations ();

IASTNodeLocation firstLoc = nodeLocations [0];

int start = firstLoc.getNodeOffset ();

int end = firstLoc.getNodeOffset () + node.getRawSignature ().length ();
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This section describes how the plug-in performs in real-life situations
and which C string functions are frequently used. It also shows in
which context the functions are normally used.

4.1. Statistics

The top 100 C++ repositories on Github[Git14c] have been used in
May 2014 to create the statistics. The repositories have been sorted
according their Github star rating. This list of repositories contains
well-known projects such as “node-webkit”, “texmate”, “mongo db”,
“xbmc” and “fish-shell”.

The repositories were scanned to find occurrences of the various C
string functions that the plug-in supports. Afterwards, the context in
which each function is used was analyzed and categorized according
to certain patterns.

The CharWars plug-in only supports these functions if they are used
with C string arguments. If a function like “memchr” is used to search
a byte in something other than a C string, it can not be refactored.

As shown in Table 4.1 we differentiated between the following con-
texts:

• If statement: The function call happens directly inside an If
statement condition.
• Assignment: The return value of the function call is assigned

to a variable.
• Return value: The result of the function call is returned from

another function.
• Single statement: The function is just called in a seperate

statement. The return value is not captured.
• Other: Everything that is not recognized by a pattern.
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Table 4.1.: Ocurrency statistics

Function If Assignment Return Single Other
name statement value statement
strlen 164 155 4 0 349
strcmp 1507 39 105 0 283
strncmp 559 53 50 1 158
memcmp 447 90 137 36 387
strcat 6 1 0 383 23
strncat 1 0 0 67 1
strdup 8 349 34 0 85
strcpy 18 4 1 1168 56
strncpy 22 1 16 594 12
memmove 3 0 6 403 72
memcpy 8 7 7 1446 108
strchr * 133 613 17 0 192
strrchr * 3 254 0 0 24
strstr * 292 250 24 2 121
strpbrk * 9 27 0 0 11
strcspn * 0 13 0 2 5
strspn * 2 9 0 0 3
memchr * 7 59 4 8 42

For the functions that have a star next to their name in the table there
exists a two-step refactoring as described in subsection 3.1.9.

4.2. Refactoring XBMC

The XBMC repository has been used to test the CharWars plug-in.
We took a snapshot of the application’s source code (in May 2014)
from Github[xG14] and tried to apply as many C string refactor-
ings as possible. More information about XBMC can be found under
xbmc.org.
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4.2.1. First real-life test

The plug-in added 776 std::string markers in total. Because the XBMC
source code also contains C code and the plug-in can’t differentiate
between C and C++ code some markers can not be resolved. These
markers were omitted for the creation of the statistics.

Due to the fact that resolving all markers would exceed the scope
of this thesis only the first 150 have been checked. All markers have
been tested without changing anything manually. If the code compiled
afterwards without errors the marker counted as “solved” otherwise it
counted as “unsolved”. Table 4.2 shows the amount of resolved and
unresolved markers.

Table 4.2.: Refactoring statistics

Markers set Markers tested Solved Unsolved
776 150 72 (48%) 78 (52%)

In the following subsections there are some examples of C string func-
tions that have been found inside the XBMC code and could be refac-
tored correctly with the CharWars plug-in. To provide for as many
functions as possible an example sometimes some small code changes
have been taken before applying the refactoring.

strlen
The strlen function is used in a wide variety of contexts. Many calls are
inside If-statement conditions and assignments. The function is also
often used for index calculations, asserts and function arguments.

If strlen is used to calculate the length of a string literal it can not be
refactored with our plug-in.

The code of the following example that could be successfully refactored
can be found in the file lib/UnrarXLib/pathfn.cpp inside XBMC’s
code.
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Listing 4.1: Before the refactoring
char cIllegalChars [] =

" <>=?;\"*+ ,/|";

unsigned int iIllegalCharSize =

strlen(cIllegalChars);

Listing 4.2: After the refactoring
std:: string cIllegalChars =

" < >=?;\"*+ ,/|";

unsigned int iIllegalCharSize =

cIllegalChars.size();

strcmp
This function is mostly used inside If-statement conditions.

The following code that is located inside xbmc/linux/PosixMount-
Provider.cpp contains several strcmp calls that can be refactored cor-
rectly with our plug-in.

Listing 4.3: Before the refactoring
const char* fs = "";

...

if (strcmp(fs, "fuseblk") == 0

|| strcmp(fs, "vfat") == 0

|| strcmp(fs, "ext2") == 0

|| strcmp(fs, "ext3") == 0

|| strcmp(fs, "reiserfs") == 0

|| strcmp(fs, "xfs") == 0

|| strcmp(fs, "ntfs -3g") == 0

|| strcmp(fs, "iso9660") == 0

|| strcmp(fs, "exfat") == 0

|| strcmp(fs, "fusefs") == 0

|| strcmp(fs, "hfs") == 0)

Listing 4.4: After the refactoring
std:: string fs = fsStr;

...

if (fs == "fuseblk"

|| fs == "vfat"

|| fs == "ext2"

|| fs == "ext3"

|| fs == "reiserfs"

|| fs == "xfs"

|| fs == "ntfs -3g"

|| fs == "iso9660"

|| fs == "exfat"

|| fs == "fusefs"

|| fs == "hfs")

strncmp
Like “strcmp” this function is also used mostly inside If-statements.
It is not used as frequently as strcmp.

Below is an example of a successfully refactored example that can be
found inside the file xbmc/guilib/XBTFReader.cpp. To be able to
refactor this code one needs to change the declaration of the C string
into an initialization. After applying the quick-fix this initialization
can be removed again.
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Listing 4.5: Before the refactoring
char magic [4] = "";

...

if (strncmp(

magic ,

XBTF_MAGIC ,

sizeof(magic)) != 0){

return false ;}

Listing 4.6: After the refactoring
std:: string magic = "";

magic.reserve (4);

...

if (magic.compare(0,

sizeof(magic.c_str ()),

XBTF_MAGIC , 0,

sizeof(magic.c_str ())) != 0){

return false ;}

memcmp
“Memcmp” is a function that is often used inside If-statements. It
is also frequently used as a return value or in an assignment to a
variable.

The following example can be found inside xbmc/guilib/AnimatedGif.cpp.
To successfully refactor it one needs to change the definition of the
string into an initialization. After the refactoring has been done one
can remove the initialization again.

Listing 4.7: Before the refactoring
char szSignature [6] = "";

...

if(memcmp(szSignature , "GIF", 2) !=

0) {

...

Listing 4.8: After the refactoring
std:: string szSignature = "";

szSignature.reserve (6);

...

if(szSignature.compare(0, 2,"GIF",

0, 2) != 0) {

...

strcat
This function is typically used on its own in a seperate statement. An
occurrence that can be refactored with the CharWars plug-in could be
found inside lib/libmodplug/src/load pat.cpp:

Listing 4.9: Before the refactoring
static char timiditycfg [128] ="";

...

strcat(timiditycfg ,

"/timidity.cfg");

Listing 4.10: After the refactoring
static std:: string timiditycfg ="";

...

timiditycfg +=

"/timidity.cfg";
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strncat
This function is used sparely. It is used mostly as a single statement.
Out of three occurrences that could be found inside the XBMC source
code none of them could be refactored correctly.

strdup
This function is frequently used inside assignments and as return value.
In the XBMC source code it is often used as return value which can’t
be handled correctly by the CharWars plug-in.

strcpy
With more than a thousand occurrences in the top 100 repositories the
strcpy function is used primarily on its own in a seperate statement.

The following example that can be found inside lib/libmodplug/sr-
c/load pat.cpp shows how this function is refactored by the plug-in:

Listing 4.11: Before the refactoring
static char timiditycfg [128] ="";

...

strcpy(timiditycfg , p);

Listing 4.12: After the refactoring
static std:: string timiditycfg ="";

...

timiditycfg = p;

strncpy
Like the strcpy function this function is also used mainly as a seperate
statement.

The following occurrence that could be successfully refactored is lo-
cated inside tools/TexturePacker/SDL anigif.cpp.

Listing 4.13: Before the refactoring
char version [4];

...

strncpy(version , (char*)buf+3, 3);

version [3] = ’\0’;

if(( strcmp(version ,"87a") != 0)

&& (strcmp(version ,"89a")!= 0)) {

Listing 4.14: After the refactoring
std:: string version = "";

version.reserve (4);

...

version.replace(0, 3, (char*) (buf)

+ 3, 0, 3);

version [3] = ’\0’;

if(( version != "87a")

&& (version != "89a")) {
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memmove
Memmove is a function that is often used in seperate statements. In
the XBMC code the memmove function is mostly used with buffers
that don’t represent strings. These cases can’t be handled by the
CharWars plug-in.

memcpy
Also this function is used mostly as a seperate statement. One occur-
rence that is used to copy C strings can be found in the file lib/lib-
modplug/src/sndfile.cpp. See an example of the refactoring below:

Listing 4.15: Before the refactoring
char sztmp [40] = "";

memcpy(sztmp ,

m_szNames[nSample ],32);

Listing 4.16: After the refactoring
std:: string sztmp = "";

sztmp.reserve (40);

sztmp.replace(0, 32,

m_szNames[nSample], 0, 32);

strchr
The strchr function is typically used inside assignments or if statement
conditions.

The following example that could successfully be refactored can be
found inside the file xbmc/lib/timidity/timidity/m2m.cpp:

Listing 4.17: Before the refactoring
char program_str [20] =""

...

if (strchr(program_str ,

’!’))

Listing 4.18: After the refactoring
std:: string program_str = "";

program_str.reserve (20);

....

if (program_str.find_first_of(’!’)

!= std:: string ::npos)

strrchr
The strrchr function is also often used inside assignments.

An occurrence that shows the typical usage and could be refactored
correctly is inside the following file: xbmc/linux/LinuxTimezone.cpp.
The char pointer cleanup refactoring has not been performed because
the variable “p” is afterwards modified with pointer operators which
can’t be handled by the CharWars plug-in.
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Listing 4.19: Before the refactoring
char timezoneName [255];

timezoneName[rlrc] = ’\0’;

...

char* p = strrchr(timezoneName ,

’/’);

Listing 4.20: After the refactoring
std:: string timezoneName = "";

timezoneName.reserve (255);

timezoneName[rlrc] = ’\0’;

...

char* p = strrchr (&* timezoneName.

begin(),’/’);

strstr
The strstr function is frequently used inside if statement conditions
and assignments.

To get a working example one needs to manually change an if state-
ment that does a NULL check. The code is located inside /xbmc/xbm-
c/cores/dvdplayer/DVDInputStreams/DVDInputStreamHTSP.cpp

Listing 4.21: Before the refactoring
const char* method ="";

...

if (strstr(method ,

"channelAdd"))

CHTSPSession :: ParseChannelUpdate(

msg , m_channels);

else if(strstr(method , "

channelUpdate"))

CHTSPSession :: ParseChannelUpdate(

msg , m_channels);

else if(strstr(method , "

channelRemove"))

CHTSPSession :: ParseChannelRemove(

msg , m_channels);

Listing 4.22: After the refactoring
std:: string method ="";

...

if (method.find("channelAdd") !=

std:: string ::npos)

CHTSPSession :: ParseChannelUpdate(

msg , m_channels);

else if (method.find("channelUpdate

") != std:: string ::npos)

CHTSPSession :: ParseChannelUpdate(

msg , m_channels);

else if (method.find("channelRemove

") != std:: string ::npos)

CHTSPSession :: ParseChannelRemove(

msg , m_channels);

strpbrk
With forty occurrences in the top 100 C++ projects strpbrk is not used
very frequently. The function is typically used inside assignments.

The following example from the file xbmc/filesystem/iso9660.cpp shows
an assignment and a condition that could be refactored successfully
with the plug-in:
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Listing 4.23: Before the refactoring
char *pointer = ""

...

pointer = (char*) filename;

while(strpbrk(pointer , "\\/")) {

pointer = strpbrk(pointer , "\\/")

+ 1;

Listing 4.24: After the refactoring
std:: string pointer = "";

...

pointer = (char*) filename;

while (pointer.find_first_of("\\/")

!= std:: string ::npos)

std:: string :: size_type pointer_pos

=pointer.find_first_of("\\/");

pointer = pointer_pos != std::

string ::npos ? &pointer[

pointer_pos] : nullptr + 1;

strcspn
The strcspn function is also used sparely in the top 100 C++ projects.

There are two occurrences inside the code of XBMC. None of them
could be refactored correctly because in both cases there are pointer
operators that modify the content of the C string pointer.

strspn
Strspn is only used fourteen times in the top 100 projects, typically
inside an assignment.

Only one occurrence of the function strspn could be found found inside
the XBMC code. Because the pointer variable is manually modified
using pointer arithmetic, the plug-in was unable to handle this case.

memchr
With a bit more than hundred occurrences in the top 100 repositories
memchr is used more often. It can mainly be found inside assign-
ments.

None of the three occurrences in the XBMC project could be refac-
tored, mainly because the function wasn’t used to search inside a C
string.
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4.2.2. Second real-life test

In the first round of tests many occurrences could not be refactored
because the string variables were defined at namespace or class level.
Because of that the CharWars plug-in was unable to refactor them.

Therefore, we improved the plug-in to support these cases and cre-
ated the statistics a second time. Again 150 occurrences have been
tested and the amount of successfully refactored occurrences by the
CharWars plug-in increased 17 percent. The result can be found in
Table 4.3.

Table 4.3.: Refactoring statistics

Markers set Markers tested Solved Unsolved
776 150 98 (65%) 52 (35%)

4.3. Where the plug-in needs manual
corrections

This section describes how in some cases the plug-in doesn’t have
enough information to determine whether a variable is a C string or
not. Sometimes it is then possible to do some manual adjustments
that cause the plug-in to behave correctly. It also describes in which
cases the plug-in may fail to get a correct result.

4.3.1. How to refactor C string definitions

To avoid producing code that doesn’t work, only C strings that are de-
fined and initialized in the same statement are marked by the checker.
This way we can be sure, that the pointer isn’t just a pointer to a
single character.

With a small change one can also refactor a C string that is initialized
later. First one needs to be sure that the pointer does actually point
to a C string. Then the definition can temporarily be changed into
an initialization with an empty string literal. After that, the plug-in
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marks the string and the automated refactoring can be performed.
Finally, the manual changes can be undone.

Listing 4.25: Original code
char *gender;

if (isMasculine ()){

gender = "masculine";

} else {

gender = "feminine";

}

Listing 4.26: Code to refactor
char *gender = "";

if (isMasculine ()){

gender = "masculine";

} else {

gender = "feminine";

}

4.3.2. How to refactor C string assignments

If a C string is initialized with a function call or another variable,
it won’t be marked because the assigned value could be NULL or a
pointer to a character instead of a C string. If the programmer feels
certain that the C string is always initialized with a valid string, the
plug-in can still be used. To be able to refactor such variables one
needs to do the following: First, add a statement that defines and
initializes the variable with an empty string literal. Change the old
definition into an assignment below the new definition. Now the code
can be refactored with the plug-in. After the refactoring the temporary
changes can be removed again.

Listing 4.27: Original code
char *name = person.getName ();

std::cout << "Welcome " << name;

Listing 4.28: Code to refactor
char *name = ""

name = person.getName ();

std::cout << "Welcome " << name;

4.3.3. How to refactor C string parameters

To be able to refactor C string parameters one also needs to make
some manual changes. First, one has to make sure that the function
is never called with a NULL argument. After that one needs to tem-
porarily rename the parameter and add a local C string variable with
the original parameter name. The refactoring is then performed on
this new variable. After the refactoring, the new variable can be re-
moved and the parameter can be turned into a std::string object with
its original name.
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Listing 4.29: Original code
void printString(char *s){

std::cout << s;

}

Listing 4.30: Code to refactor
void printString(char *tmp_s){

char *s = "";

std::cout << s;

}

4.3.4. Known issues

Problems that may occur while using this plug-in are described in this
section.

Position of includes
The correct position of the includes that will be added during the
refactoring can not be calculated correctly if de code contains if direc-
tives like “#if”, “#else” or “#endif”. The position will also not be
calculated correctly if there are includes between the code.

In such cases it is recommended to add the includes manually before
the refactoring is performed. The plug-in checks if the includes already
exist and will not include them.

Global variables
Global variables that are defined as extern inside header files will also
not be refactored correctly because the data type of the external def-
inition also needs to be changed. This change has to be performed
manually. It can be done before or after the refactoring.

Pointer operators
This plug-in will fail to correctly refactor C string pointers that are
manipulated with pointer operators. In these cases a manual rewrite
of the program logic is necessary.

Resource allocation
If a C string is allocated on the heap and is used across multiple blocks
as a shared resource, the CharWars plug-in can’t refactor it correctly.
In this case the refactoring has to be performed manually.
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C files
Files containing C code are automatically scanned by Codan. There-
fore, these files could also contain some markers from the CharWars
plug-in. Because std::string only works in C++ the refactoring doesn’t
work and these markers can’t be resolved. In this case the markers can
be ignored or some components of the plug-in can be deactivated.

NULL checks
While a C string can be a nullptr and it makes sense to compare it
against NULL a std::string can not be a nullptr. Therefore, all NULL
checks of the string will not be needed any more. The programmer
may need to change some parts of the logic or use std::optional to
achieve the same behaviour as the original program.
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This chapter describes the results of the CharWars bachelor thesis. It
also describes how this project can be continued and the plug-in can
be extended and improved.

With 65 percent of successfully refactored C strings inside XBMC
[xG14] many cases of the C string functions are covered by the plug-in.
With some manual changes before or after triggering the refactoring
even more C strings could be refactored. There are only a few cases
where the code can’t be refactored even after making some manual
changes.

5.1. Achievements

The following achievements were made during the bachelor thesis:

• The C string functions have been analyzed and compared to
corresponding std::string member functions.
• Refactorings for the C string functions have been implemented

and continuously tested with unit tests.
• For special C string functions a second refactoring has been pro-

grammed to provide more flexibility and compatibility.
• A refactoring for a subset of the converting C functions (e.g.,

atol()) has been programmed.
• The plug-in has been tested with a real-life project and the re-

sults have been documented.

87



5. Conclusion

5.2. Future Work

The CharWars plug-in is an improvement over the existing Pointer-
minator [Gon13] plug-in. It provides a lot more functionality and is
well tested. However, there is still plenty of room for improvement.
Here are some of the features that could be added to the plug-in in a
future project:

• Refactoring of strings that are allocated on the heap
• Refactoring of string parameters
• Refactoring of string return values
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A. User manual

This chapter describes how to de-/install the CharWars plug-in, how
to use it and how some parts of it can be deactivated.

A.1. Installation

The CharWars plug-in requires the Eclipse CDT IDE (preferably the
Kepler release or newer) and at least Java 1.6 installed on the sys-
tem.

To install the plug-in first click on “Help” and select “Install New
Software”.

Figure A.1.: Install plug-in
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Enter the plug-in url under “Work with:” and check the check-box
that is shown next to the plug-in name.

Figure A.2.: Install plug-in

Press next to go through the wizard and install the plug-in. At the
end a prompt will ask you whether you want to restart Eclipse. Click
“Yes”. After the restart you should be able to use the CharWars
plug-in.
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A.2. Usage and configuration

This section shows how the plug-in can be used and how parts of it
can be deactivated.

A.2.1. Usage

The CharWars plug-in sets problem markers inside Eclipse. Markers
can be selected with a left-click on the bug icon or with a corresponding
short-cut (Ctrl+1 or Cmd+1, depending on your operating system)
when the cursor is inside the marked code. This opens a new popup
that shows the possible quick-fixes that can be applied.

Figure A.3.: Resolving a problem marker
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Pressing on the corresponding quick-fix will start the refactoring pro-
cess of the CharWars plug-in. After the refactoring is done one can
review the code and save the changes. Sometimes the code can still be
improved by doing some manual changes. The changes can be reverted
by pressing “Undo”.

Figure A.4.: Resolving a problem marker
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A.2.2. Configuration

The CharWars plug-in contains four checkers. One is used to set mark-
ers on C arrays, one for reference parameters and two for C strings.
You can deactivate and reactivate these four markers individually. The
following needs to be done to deactivate or reactivate a marker:

First you need to press on “Windows” and select “Preferences”.

Figure A.5.: Deactivate marker

In the settings window open the section “C/C++” in the left panel.
After that you need to press on “Code Analysis”.

This view shows a list with all markers that are set by plug-ins or CDT
itself. All problems listed there can be deactivated and reactivated
individually. The markers of the CharWars plug-in are activated by
default. So there is no need to activate them when you use the plug-in
for the first time.
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The surrounded four problems that can be found in Figure A.6 are the
ones that come from the CharWars plug-in. To deactivate one of theses
problems one just needs to uncheck the corresponding checkbox. To
reactivate a deactivated problem one just needs to check the checkbox
again. By clicking “Apply” and then “OK” the settings are saved.

Figure A.6.: Deactivate marker
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A.3. De-installation

To de-install the plug-in the following steps need to be performed:

First press on “Help” and select “About Eclipse”.

Figure A.7.: De-install plug-in

95



A. User manual

In the newly opened window press on “Installation Details” to open
the details about the current Eclipse installation.

Figure A.8.: De-install plug-in
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Under “Installed Software” in the “Installation Details” window all
installed plug-ins are shown. Select the CharWars plug-in and then
press the “Uninstall...” button. For more information see Figure A.9.
Navigate with the “Next” button through the de-installation wizard
and finish the de-installation.

Figure A.9.: De-install plug-in
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