MOTOROLA

FREEWARE

8-BI T CROSS ASSEMBLERS

USER S MANUAL

EDI TED BY

KEVI N ANDERSON

FI ELD APPLI CATI ONS ENG NEER

TABLE OF CONTENTS

CHAPTER L. . o
1.1 INTRODUCTT ON . .. e e e

1.2 ASSEMBLY LANGUAGE i

1.3 OPERATING ENVIRONMENT e

1.4 ASSEMBLER PROCESSING e
CHAPTER 2 .
2.1 INTRODUCTT ON . .. e e e e

2.2 SQURCE STATEMENT FORMAT e
2.2.1 Label Field

2.2.2 Qperation Field

2.2.3 Qperand Field

2.2.3.1 M800/6801 Operand Syntax

2.2.3.2 M800/ M68HC04 Operand Syntax

2.2.3.3 M805/ M68HCO5 Operand Syntax

2.2.3.4 M809 Operand Syntax

2.2.3.5 M8HC11 Operand Syntax

2.2.3.6 EXPressions

2.2.3.7 Qperators

2.2.3.8 Synmbols ...

2.2.3.9 Constants

2.2.4 Comment Field i,

2.3 ASSEMBLER QUTPUT e
CHAPTER 3 - RUNNING THE ASSEMBLERS
3.1 ASSEMBLER I NVOCATIONo e

3.2 ERROR MESSAGES ot e
CHAPTER 4 - ASSEMBLER DIRECTIVES i
4.1 INTRODUCTT ON . .. e e e

4.2 BSZ - BLOCK STORAGE OF ZERCS i

4.3 EQU - EQUATE SYMBOL TO A VALUE

4.4 FCB - FORM CONSTANT BYTE

4.5 FCC - FORM CONSTANT CHARACTER STRING

4.6 FDB - FROM DOUBLE BYTE CONSTANT

4.7 FILL - FILL MEMORY ... e

4.8 OPT - ASSEMBLER QUTPUT OPTIONS

4.9 ORG - SET PROGRAM COUNTER TOCRIG Nt
4.10 PACGE - TOP OF PAGE e

4.11 RMB - RESERVE MEMORY BYTES

4.12 ZMB - ZERO MEMORY BYTES
APPENDI X A - CHARACTER SET e
APPENDI X B - ADDRESSI NG MODES e
B.1 M6800/ M6801 ADDRESSI NG MODESt

B. 2 M6804/ 68HCO04 ADDRESSI NG MODES

B.3 M6805/ 68HCO5 ADDRESSI NG MODES

TABLE OF CONTENTS

B. 4 M6809 ADDRESSI NG MODES i 22
B.5 M68HCL1 ADDRESSI NG MODES e 26
APPENDI X C - DI RECTIVE SUMVARY e 28
APPENDI X D - ASSEMBLER LISTING FORMAT i 29
APPENDI X E - S-RECORD I NFORMATION e 30
E 1 INTRODUCTT ON . oo e e 30
E 2 S-RECORD CONTENT . .. e 30
E 3 S RECORD TYPES 30
E 4 S-RECORD EXANVPLE 31

CHAPTER 1
GENERAL | NFORVATI ON

1.1 | NTRCDUCT! ON

This is the user's reference manual for the | BM PC hosted Mtorola
Freeware 8 bit cross assenblers. It details the features and
capabilities of the cross assenblers, assenbler syntax and directives,
options, and listings. It is intended as a detailed reference and an

i ntroduction for those unfamliar with Mdtorola assenbl er syntax and
format. Those experienced with Mtorola assenbl er products may w sh
to examne the file ASEMBLER DOC avail able with the cross assenbl ers,
which briefly describes the differences between these assenbl ers and
earlier, non-pc based versions.

Assenbl ers are prograns that process assenbly |anguage source program
statenments and translate theminto executabl e machi ne | anguage obj ect
files. A programer wites his source programusing any text editor
or word processor that can produce an ASCI| text output. Wth sonme
word processors this is known as "non docunent” node. Non docunent
node produces a file w thout the non-printable enbedded control
characters that are used in docunment formating. (Caution: assenbling
a file that has been formatted with enbedded control characters may
produce assenbler errors. The solution is to convert the source file
to ASCI1 text.) Once the source code is witten, the source file is
assenbl ed by processing the file via the assenbl er.

Cross assenblers (such as the Mtorola Freeware Assenbl ers) all ow
source progranms witten and edited on one conmputer (the host) to
gener ate executabl e code for another computer (the target). The
execut abl e object file can then be downl oaded and run on the target
system In this case the host is an IBMPC or conpatible and the
target systemis based on a Mdtorola 8-bit mcroprocessor (6800, 6801
6803, 6805, 68HC05, 6809, or 68HC11).

The assenblers are the executable prograns AS*. EXE where * is any of

0, 1, 4, 5, 9, or 11 dependi ng on which m croprocessor you are witing
code for. The details of executing the assenbler prograns are found
in Chapter 3. The assenbly | anguage format and syntax for the various
processors is very simlar with slight variations due to varied
programm ng resources (instructions, addressing nodes, and registers).
These variations are expl ained i n Appendi x B

1.2 ASSEMBLY LANGUAGE

The synbolic | anguage used to code source prograns to be processed by
the Assenbler is called assenbly | anguage. The | anguage is a
col l ection of mmenonic synbols representing: operations (i.e., machine
i nstructi on menonics or directives to the assenbler), synbolic nanes,
operators, and special synbols. The assenbly | anguage provides
mmenoni ¢ operation codes for all machine instructions in the
instruction set. The instructions are defined and explained in the
Programm ng Reference Manuals for the specific devices, available from
Mot orol a. The assenbly | anguage al so contai ns menoni ¢ directives

Freeware Assenbl ers User's Manual

whi ch specify auxiliary actions to be perforned by the Assenbl er.
These directives are not always translated i nto nmachi ne | anguage.

1.3 OPERATI NG ENVI RONVENT

These assenblers will run on any IBM PC, XT, AT, PS-2, or true
conpati ble. The assenblers may be run off of a floppy disk drive or
they may be copied onto a hard drive for execution. DOS 2.0 or |ater
i s required.

1.4 ASSEMBLER PROCESSI NG

The Macro Assenbler is a two-pass assenbler. During the first pass,
the source programis read to devel op the synbol table. During the
second pass, the object file is created (assenbled) with reference to
the tabl e devel oped in pass one. It is during the second pass that
the source programlisting is al so produced.

Each source statenment is processed conpletely before the next source
statenment is read. As each statenent is processed, the Assenbl er

exam nes the | abel, operation code, and operand fields. The operation
code table is scanned for a match with a known opcode. During the
processi ng of a standard operation code menoni c, the standard
machi ne code is inserted into the object file. If an Assenbl er
directive is being processed, the proper action is taken

Any errors that are detected by the Assenbl er are di splayed before the
actual line containing the error is printed. If no source listing is
bei ng produced, error nessages are still displayed to indicate that
the assenbly process did not proceed nornally.

Freeware Assenbl ers User's Manual

CHAPTER 2
CODI NG ASSEMBLY LANGUAGE PROGRAMS

2.1 | NTRCDUCT! ON

Progranms witten in assenbly | anguage consi st of a sequence of source
statenments. Each source statenent consists of a sequence of ASCI
characters ending with a carriage return. Appendix A contains a |ist
of the supported character set.

2.2 SOURCE STATEMENT FORMAT

Each source statenment may include up to four fields: a label (or "*"
for a cooment |line), an operation (instruction meunonic or assenbl er
directive), an operand, and a coment.

2.2.1 Label Field

The | abel field occurs as the first field of a source statenent. The
| abel field can take one of the follow ng forns:

1. An asterisk (*) as the first character in the label field indicates
that the rest of the source statenent is a comment. Conments are

i gnored by the Assenbler, and are printed on the source listing only
for the progranmer’'s information

2. A whitespace character (blank or tab) as the first character
indicates that the label field is enpty. The line has no | abel and is
not a comment.

3. A synbol character as the first character indicates that the |ine
has a | abel. Synbol characters are the upper or |ower case letters a-
z, digits 0-9, and the special characters, period (.), dollar sign
($), and underscore (_). Synmbols consist of one to 15 characters, the
first of which nmust be al phabetic or the special characters period (.)
or underscore (_). Al characters are significant and upper and | ower
case letters are distinct.

A synbol may occur only once in the label field. If a synbol does
occur nore than once in a |label field, then each reference to that
synmbol will be flagged with an error

Wth the exception of sone directives, a |label is assigned the val ue
of the programcounter of the first byte of the instruction or data
bei ng assenbl ed. The val ue assigned to the | abel is absolute.

Label s may optionally be ended with a colon (:). |If the colon is
used it is not part of the |label but merely acts to set the | abel off
fromthe rest of the source line. Thus the follow ng code fragnents
are equival ent:

here: deca
bne here

Freeware Assenbl ers User's Manual

her e deca
bne here

A |l abel may appear on a line by itself. The assenbler interprets this
as set the value of the label equal to the current value of the
program count er.

The synbol table has roomfor at |east 2000 synmbols of length 8
characters or less. Additional characters up to 15 are perm ssible at
t he expense of decreasing the maxi mum nunber of synbols possible in
the table.

2.2.2 Qperation Field

The operation field occurs after the |abel field, and nmust be preceded
by at | east one whitespace character. The operation field nmust contain
a |l egal opcode mmeunoni c or an assenbler directive. Upper case
characters in this field are converted to | ower case before being
checked as a | egal meunonic. Thus 'nop', 'NOP', and 'NoP' are
recogni zed as the sane mmeunonic. Entries in the operation field may
be one of two types:

Opcode. These correspond directly to the machi ne instructions. The
operation code includes any register name associated with the
instruction. These register nanes nust not be separated fromthe
opcode wi th any whitespace characters. Thus 'clra' nmeans clear
accunul ator A, but 'clr a neans clear nmenory location identified by

the | abel '"a'.

Directive. These are special operation codes known to the Assenbl er
whi ch control the assenbly process rather than being translated into
machi ne instructions.

2.2.3 Qperand Field

The operand field s interpretation is dependent on the contents of the
operation field. The operand field, if required, must follow the
operation field, and nust be preceded by at |east one whitespace
character. The operand field may contain a synbol, an expression, or a
conbi nati on of synbols and expressi ons separated by conmas.

The operand field of machine instructions is used to specify the
addr essi ng node of the instruction, as well as the operand of the

i nstruction. The follow ng tables sumari ze the operand field
formats for the various processor famlies. (NOTE: in these tables
parenthesis "()" signify optional elements and angl e brackets "<>"
denote an expression is inserted. These syntax el enents are present
only for clarification of the format and are not inserted as part of
the actual source program Al other characters are significant and
must be used when required.)

Freeware Assenbl ers User's Manual

2.2.3.1 M800/ 6801 Operand Synt ax

The format of the operand field for M6800/ 6801 instructions is:

Oper and For mat M6800/ M6801 Addr essi ng Mode
no oper and accunul at or and i nherent
<expressi on> direct, extended, or relative
#<expr essi on> i medi at e

<expressi on>, X i ndexed

Details of the Ms800/ 6801 addressi ng nodes may be found in Appendi x B.

2.2.3.2 M804/68HC Operand Synt ax

For the M6804/68HC04, the foll owi ng operand formats exist:

Oper and For mat M6804/ 68HC04 Addr essi ng Mode
no oper and accunul at or and i nherent
<expr essi on> direct, extended, or relative
#<expr essi on> i medi at e

<expressi on> bit set or clear

<expr essi on>, <expr essi on> bit test and branch

[<x> or <y>] regi ster indirect

<expr essi on>, #<expr essi on> nove i ndirect

Details of the Ms804/ 68HCO4 addressi ng nodes may be found in Appendi x
B.

2.2.3.3 M805/ M68HCO5 Oper and Synt ax

For the MB805/ 68HC05, the operand formats are:

Oper and For mat M6805/ 68HCO5 Addr essi ng Mode

no oper and accunul at or and i nherent
<expressi on> direct, extended, or relative
#<expr essi on> i medi at e

<expressi on>, X i ndexed

<expr essi on>, <expr essi on> bit set or clear

<expressi on>, <expr essi on>, <expr essi on> bit test and branch

Details of the Ms805/68HCO5 addressi ng nodes may be found in Appendi x
B.

2.2.3.4 M809 Operand Synt ax

For the M6809, the following operand formats are used:

Freeware Assenbl ers User's Manual

Oper and For mat M6809 Addr essi ng Mdde

no oper and accunul at or and i nherent

<expr essi on> direct, extended, or relative
#<expr essi on> i medi at e

<expressi on>, X i ndexed

<<expr essi on> forced direct

><expr essi on> forced extended

<expr essi on>] ext ended i ndirect

<expressi on> R i ndexed

<<expressi on> R forced 8-bit offset indexed
><expressi on>, R forced 16-bit offset indexed
[<expression> R i ndexed i ndirect

<[<expressi on>, R forced 8-bit offset indexed indirect
>[<expressi on>, R forced 16-bit offset indexed indirect
Qt auto increment by 1

Q++ auto increment by 2

[Q++] aut o i ncrenment indirect

-Q aut o decrenent by

--Q aut o decrenment by 2

[--Q aut o decrenent indirect

WL, [W2, ..., W] i medi at e

where R is one of the registers PCR S, U X, or Y, and Qis one of
the registers S, U X, or Y. W (i=1to n) is one of the synbols A
B, CC, Db DP, PC, S, U X or Y.

Details of the Ms809 addressing nodes may be found in Appendix B

2.2.3.5 M8HC11 Operand Syntax

For the MB8HC11, the foll owi ng operand formats exist:

Oper and For mat M68HC11 Addressi ng Mode

no oper and accunul at or and i nherent
<expressi on> direct, extended, or relative
#<expr essi on> i medi at e

<expressi on>, X i ndexed with X register
<expression>Y i ndexed with Y register

<expr essi on> <expressi on> bit set or clear

<expressi on> <expressi on> <expressi on> bit test and branch

The bit manipul ation instruction operands are separated by spaces in
this case since the HCl11 allows bit mani pul ation instructions on

i ndexed addresses. Thus a ', X or ',Y nmay be added to the final two
formats above to formthe indexed effective address cal cul ation

Details of the Mb8HC11l addressi ng nodes may be found in Appendi x B
The operand fields of assenbler directives are described in Chapter 4.

2.2.3.6 Expressions. An expression is a conbination of synbols,
constants, al gebraic operators, and parentheses. The expression is
used to specify a value which is to be used as an operand.

Freeware Assenbl ers User's Manual

Expressi ons may consi st of symbols, constants, or the character '*'
(denoting the current value of the program counter) joined together by
one of the operators: + - * [/ %&| " .

2.2.3.7 QOperators. The operators are the sanme as in c:

+ add

subtract

mul tiply

di vi de

remai nder after division
bi twi se and

bi tw se or

bi twi se excl usive or

*

>— o™~

Expressions are evaluated left to right and there is no provision for
par ent hesi zed expressions. Arithnetic is carried out in signed two-
conpl ement integer precision (that's 16 bits on the | BM PC)

2.2.3.8 Synbols. Each synbol is associated with a 16-bit integer
val ue which is used in place of the synbol during the expression
eval uation. The asterisk (*) used in an expression as a synbol
represents the current value of the location counter (the first byte
of a multi-byte instruction).

2.2.3.9 Constants. Constants represent quantities of data that do
not vary in value during the execution of a program Constants may be
presented to the assenbler in one of five formats: deci mal

hexadeci mal, binary, or octal, or ASCII. The progranmer indicates the
nunber format to the assenbler with the follow ng prefixes:

$ HEX
% Bl NARY
@ OCTAL
' ASCI |
Unprefixed constants are interpreted as decimal. The assenbler

converts all constants to binary machi ne code and are displayed in the
assenbly listing as hex.

A deci mal constant consists of a string of nuneric digits. The val ue
of a decimal constant nust fall in the range 0-65535, inclusive. The
foll owi ng exanpl e shows both valid and invalid deci mal constants:

VALI D | NVALI D REASON | NVALI D
12 123456 nmore than 5 digits
12345 12. 3 i nvalid character

A hexadeci mal constant consists of a maxi mum of four characters from
the set of digits (0-9) and the upper case al phabetic letters (A-F),
and is preceded by a dollar sign ($). Hexadecinmal constants nust be

Freeware Assenbl ers User's Manual

in the range $0000 to $FFFF. The fol | owi ng exanpl e shows both valid
and invalid hexadeci mal constants:

VALI D I NVALI D REASON | NVALI D
$12 ABCD no preceding "$"
$ABCD S&RA i nvalid character
$001F $2F018 too many digits

A binary constant consists of a maxi mum of 16 ones or zeros preceded
by a percent sign (%9. The follow ng exanple shows both valid and
i nvalid binary constants:

VALI D | NVALI D REASON | NVALI D
990101 1010101 m ssi ng percent
% %40011000101010111 too many digits
240100 9210101 invalid digit

An octal constant consists of a maxi mumof six nunmeric digits,
excluding the digits 8 and 9, preceded by a comercial at-sign (@.
Cctal constants nmust be in the ranges @ to @77777. The foll ow ng
exanpl e shows both valid and invalid octal constan

ts:
VALI D I NVALI D REASON | NVALI D
@7634 @317234 too many digits
@77 @77272 out of range
@77600 @3914 i nvalid character

A single ASCII character can be used as a constant in expressions.
ASCI | constants are preceded by a single quote ('). Any character,

i ncluding the single quote, can be used as a character constant. The
foll owi ng exanpl e shows both valid and inval

id character constants:

VALI D I NVALID REASON | NVALI D

' "VALI D too | ong

For the invalid case above the assenbler will not indicate an error
Rather it will assenble the first character and ignore the remai nder

2.2.4 Comment Field

The last field of an Assenbl er source statenment is the coment field.
This field is optional and is only printed on the source listing for
docunent ati on purposes. The conment field is separated fromthe
operand field (or fromthe operation field if no operand is required)
by at | east one whitespace character. The comment field can contain
any printable ASCI1 characters.

Freeware Assenbl ers User's Manual

2.3 ASSEMBLER QUTPUT

The Assenbl er output includes an optional listing of the source
program and an object file which is in the Mdtorola S Record format.
Details of the S Record format may be found in Appendi x E. The
Assenbler will normally suppress the printing of the source listing.
This condition, as well as others, can be overridden via options
supplied on the command |ine that invoked the Assenbler.

Each Iine of the listing contains a reference |ine nunber, the address
and bytes assenbled, and the original source input line. |If an input
line causes nore than 6 bytes to be output (e.g. a long FCC
directive), additional bytes (up to 64) are listed on succeeding |ines
wi th no address precedi ng them

The assenbly listing may optionally contain a synbol table or a cross
reference table of all synbols appearing in the program These are

al ways printed at the end of the assenbly listing if either the synbol
table or cross reference table options (Paragraph 4.8) are in effect.
The synbol table contains the nane of each synbol, along with its
defined value. The cross reference table additionally contains the
assenbl er - mai nt ai ned source |ine nunber of every reference to every
synbol . The format of the cross reference table is shown in Appendi x
D.

Freeware Assenbl ers User's Manual

CHAPTER 3
RUNNI NG THE ASSEMBLERS

3.1 ASSEMBLER | NVOCATI ON

The Motorola Freeware Assenbly prograns are named as*.exe where '*' is
any of 0, 1, 4, 5, 9, or 11 depending on which processor fanmly you

wi sh to assenbl e code for. For exanmple, to generate M6800 code run

t he as0.exe program To generate MB8HCO5 code run the asbh. exe
program and so forth. To run the assenbler enter the foll ow ng
conmand |i ne:

as* filel (file2a . . .) (- optionl option2 . . .)

where filel, file2, etc are the nanes of the source files you wish to
assenble. The source filenames may have extensions but the assenbl er
does not check for any particul ar extension (however, do not use the
. S19 extension since that is the extension of the object file created
by the assenbler. |Its creation would overwite the source file when

it iswitten to the disk).

The options are one or nore of the foll ow ng:

I enabl es output listing

no di sabl es output listing (default).

cre enables the cross reference table generation
S enabl es the synbol table generation

c enabl es cycl e counting

noc disables cycle counting

The m nus sign preceding the option should be separated fromthe | ast
file name by a space. These options nmay al so be indicated to the
assenbl er by the use of the OPT directive in the source file. The OPT
directive is described in Paragraph 4.8.

The object file created is witten to disk and given the nanme

" FI LENAME. S19' where 'FILENAME is the nane of the first source file
specified on the conmand Iine. Any errors and the optional listing
(if specified) are displayed on the screen. The listing and/or error
messages may be saved to a file for later exam nation or printing by
append an i/o redirection command to the conmand line. On the PCi/o
redirection is indicated with the greater-than ('>') synbol foll owed
by any new or existing file nane.

Conmmand | i ne exanpl es:
The conmand |ine
as5 nyfile
woul d run the M5805/ 68HCO5 assenbl er on the source file "nyfile' . The

object file would be witten to 'nyfile.s19" and any errors woul d
appear on the screen.

10

Freeware Assenbl ers User's Manual

The conmand | i ne

as9 test.asmnexttest.s -|
woul d run the Mb809 assenbler on the source files '"test.asm and
"nexttest.s'. The object file would be witten to 'test.s19' and any
errors and the assenbly listing would appear on the screen
The conmand | i ne

as9 test.asmnexttest.s -l cre s >test.|st
woul d run the Mb809 assenbler on the source files '"test.asm and
"nexttest.s'. The object file would be witten to "test.s19'. A
listing woul d be created foll owed by a synbol table and cross
reference which would all be witten to the file test.|st

3.2 ERROR MESSAGES

Error diagnostic messages are placed in the listing file just before
the line containing the error. The format of the error line is:

Li ne_nunber: Description of error
or
Li ne_nunber: Warning ---- Description of error

Errors in pass one cause cancellation of pass two. Warning do not
cause cancel lation of pass two but are indications of a possible
problem Error messages are neant to be self-explanatory.

If nore than one file is being assenbled, the file name precedes the
error:

Fi | e_nane, Li ne_nunber: Description of error
Sone errors are classed as fatal and cause an i mediate term nati on of

the assenbly. Generally this happens when a tenporary file cannot be
created or is |lost during assenbly.

11

Freeware Assenbl ers User's Manual

CHAPTER 4
ASSEMBLER DI RECTI VES

4.1 | NTRCDUCT! ON

The Assenbler directives are instructions to the Assenbler, rather
than instructions to be directly translated into object code. This
chapter describes the directives that are recognized by the Freeware
Assenbl ers. Detail ed descriptions of each directive are arranged

al phabetically. The notations used in this chapter are:

() Parentheses denote an optional el enent.
XYZ The nanes of the directives are printed in capital letters.

< > The elenent names are printed in | ower case and contained in
angl e brackets. Al elenments outside of the angle brackets '<> nust
be specified as-is. For exanple, the syntactical el enent (<nunber>,)
requires the comma to be specified if the optional elenent <nunber> is
sel ected. The followi ng el enents are used in the subsequent
descriptions:

<conment > A statenent's coment field
<| abel > A statenent | abe
<expression> An Assenbl er expression
<expr > An Assenbl er expression
<nunber > A nuneric constant

<string> A string of ASCII characters
<delimter> A string delimter

<opti on> An Assenbl er option

<synbol > An Assenbl er synbol

<synmp An Assenbl er synbol

<sect > A rel ocat abl e program secti on
<reg list> MB809 register |ist

<reg exp> MB809 regi ster expression

In the follow ng descriptions of the various directives, the syntax,
or format, of the directive is given first. This will be followed
with the directive's description.

4.2 BSZ - BLOCK STORAGE OF ZERCS
(<l abel >) BSZ <expressi on> (<conment >)

The BSZ directive causes the Assenbler to allocate a bl ock of bytes.
Each byte is assigned the initial value of zero. The nunber of bytes
all ocated is given by the expression in the operand field. If the
expression contains synbols that are either undefined or forward
referenced (i.e. the definition occurs later on in the file), or if
t he expression has a value of zero, an error will be generated.

12

Freeware Assenbl ers User's Manual

4.3 EQU - EQUATE SYMBOL TO A VALUE
<l abel > EQU <expressi on> (<coment >)

The EQU directive assigns the value of the expression in the operand

field to the label. The EQU directive assigns a val ue other than the

program counter to the | abel. The | abel cannot be redefined anywhere

el se in the program The expression cannot contain any forward

ref erences or undefined synbols. Equates with forward references are
flagged with Phasing Errors.

4.4 FCB - FORM CONSTANT BYTE
(<l abel >) FCB <expr>(, <expr>, ..., <expr>) (<coment >)

The FCB directive may have one or nore operands separated by comas.
The val ue of each operand is truncated to eight bits, and is stored in
a single byte of the object program Miltiple operands are stored in
successi ve bytes. The operand may be a numeric constant, a character
constant, a synbol, or an expression. If multiple operands are
present, one or nore of themcan be null (two adjacent conmas), in

whi ch case a single byte of zero will be assigned for that operand.

An error will occur if the upper eight bits of the eval uated operands
val ues are not all ones or all zeros.

4.5 FCC - FORM CONSTANT CHARACTER STRI NG
(<l abel >) FCC <del i mter><string><delimter> (<comment>)

The FCC directive is used to store ASCII strings into consecutive
bytes of menmory. The byte storage begins at the current program
counter. The label is assigned to the first byte in the string. Any
of the printable ASCII characters can be contained in the string. The
string is specified between two identical delimters which can be any
printable ASCI| character. The first non-bl ank character after the FCC
directive is used as the delimter

Exanpl e:
LABEL1 FCC , ABC

assenbl es ASCII ABC at |ocation LABEL1

4.6 FDB - FORM DOUBLE BYTE CONSTANT
(<l abel >) FDB <expr>(, <expr>, ..., <expr>) (<coment >)

The FDB directive may have one or nore operands separated by comas.
The 16-bit val ue corresponding to each operand is stored into two
consecutive bytes of the object program The storage begins at the
current programcounter. The |label is assigned to the first 16-bit
val ue. Miltiple operands are stored in successive bytes. The operand
may be a numeric constant, a character constant, a synbol, or an
expression. If multiple operands are present, one or nore of them can

13

Freeware Assenbl ers User's Manual

be null (two adjacent commas), in which case two bytes of zeros will
be assigned for that operand.

4.7 FILL - FILL MEMORY
(<l abel >) FILL <expression>, <expressi on>

The FILL directive causes the assenbler to initialize an area of
menory with a constant value. The first expression signifies the one
byte value to be placed in the nenory and the second expression

i ndicates the total nunmber of successive bytes to be initialized. The
first expression nust evaluate to the range 0-255. Expressions cannot
contain forward references or undefined synbol s.

4.8 OPT - ASSEMBLER QUTPUT OPTI ONS
OPT <option>(, <option>,...,<option>) (<conment>)

The OPT directive is used to control the format of the Assenbler

out put. The options are specified in the operand field, separated by
commas. All options have a default condition. Sone options can be
initialized fromthe conmand |ine that invoked the Assenbl er, however
the options contained in the source file take precedence over any
entered on the conmand line. In the follow ng descriptions, the
parent hetical inserts specify "DEFAULT", if the option is the default
condition. All options nmust be entered in | ower case.

c - Enable cycle counting in the listing. The total cycle count
for that instruction will appear in the listing after the assenbl ed
bytes and before the source code.

cre - Print a cross reference table at the end of the source
listing. This option, if used, nust be specified before the first
synmbol in the source programis encountered. The cross reference
listing format may be found in Appendi x D

Il - Print the listing fromthis point on. A description of the
listing format can be found in Appendi x D

noc - (DEFAULT) Disable cycle counting in the listing. If the "c"
option was used previously in the program this option will cause
cycle counting to cease until the next "OPT c" statement.

nol - (DEFAULT) Do not print the listing fromthis point on. An
"OPT |" can re-enble listing at a later point in the program
s - Print synbol table at end of source listing. The synbol table

format can be found in Appendi x D

4.9 ORG - SET PROGRAM COUNTER TO ORIA N
ORG <expressi on> (<coment >)

The ORG directive changes the programcounter to the value specified
by the expression in the operand field. Subsequent statenents are

14

Freeware Assenbl ers User's Manual

assenbl ed into nmenory | ocations starting with the new program counter
value. If no ORG directive is encountered in a source program the
programcounter is initialized to zero. Expressions cannot contain
forward references or undefined synbol s.

4.10 PAGE - TOP OF PAGE
PAGE

The PAGE directive causes the Assenbler to advance the paper to the
top of the next page. If no source listing is being produced, the PAGE
directive will have no effect. The directive is not printed on the
source listing.

4.11 RMB - RESERVE MEMORY BYTES
(<l abel >) RMB <expressi on> (<conment >)

The RVB directive causes the |ocation counter to be advanced by the
val ue of the expression in the operand field. This directive reserves
a block of menmory the length of which in bytes is equal to the val ue
of the expression. The block of nmenory reserved is not initialized to
any given value. The expression cannot contain any forward references
or undefined synbols. This directive is conmonly used to reserve a
scratchpad or table area for |ater use.

4.12 ZMB - ZERO MEMORY BYTES (sanme as BS2)
(<l abel >) ZMB <expressi on> (<conment >)

The ZMB directive causes the Assenbler to allocate a bl ock of bytes.
Each byte is assigned the initial value of zero. The nunber of bytes
all ocated is given by the expression in the operand field. If the
expression contains synbols that are either undefined or forward
references, or if the expression has a value of zero, an error will be
gener at ed.

15

Freeware Assenbl ers User's Manual

APPENDI X A
CHARACTER SET

The character set recognized by the Freeware Assenblers is a subset of
ASCI 1. The ASCII code is shown in the following figure. The foll ow ng
characters are recogni zed by the Assenbl er:

1

10.

The upper case letters A through Z and | ower case letters a
t hrough z.

The digits 0 through 9.

Five arithnetic operators: +, -, *, [/ and % (remai nder
after division).

Three | ogical operators: & |, and ~.

The speci al synbol characters: underscore (_), period (.),
and dollar sign ($). Only the underscore and period may be
used as the first character of a synbol.

The characters used as prefixes for constants and
addr essi ng nodes:

| mredi at e addr essi ng
Hexadeci nal const ant
Deci mal const ant

Cctal constant

Bi nary const ant

ASClI | character constant

serew

The characters used as suffixes for constants and
addr essi ng nodes:

, X Indexed addressing

, PCR M6809 i ndexed addressi ng

, S MB809 indexed addressing

, U M809 indexed addressing

, Y ©MB809 and MB8HC11 i ndexed addressing

Three separator characters: space, carriage return, and
conma.

The character "*" to indicate conments. Conments nmay
contain any printable characters fromthe ASCII set.

The speci al synbol backslash "\" to indicate |ine

conti nuati on. Wen the assenbler encounters the |ine

conti nuation character it fetches the next |line and adds it
to the end of the first line. This continues until a |line
is seen which doesn't end with a backslash or until the
system maxi num buffer size has been collected (typically
greater or equal to 256).

16

Freeware Assenbl ers User's Manual

11. For the MB809 Assenbler, the character "<" precedi ng an
expression to indicate direct addressing node or 8-bit
of fset in indexed node, and the character ">" preceding an
expression to indicate extended addressi ng node or 16-bit
of fset in indexed node.

12. For the Mb809 Assenbl er, the characters used to indicate

auto increnent and auto decrenent in the i ndexed node: +,
++, - - -

ASCI | CHARACTER CCDES

’

NUL DLE SP
SOH DCl
STX DC2 !
ETX DC3 #
EOT D4 $
ENQ NAK %
ACK SYN &
BEL ETB
BS CAN

o nw-H—w
©Co~NoOUOR~AWNEO

o -

LF SUB

FF FS

>— T N<XXS<CHNWITOT

SO RS .
S1 us /

OZZIr X" IOTMUOW>EQ
QT N<S X s<cT0 AT

TMTMUOW>OO~NOUNAWNEREO
O~ xXTTSTQ 0 Q0T

NV I AT

L

17

Freeware Assenbl ers User's Manual

APPENDI X B
ADDRESSI| NG MCDES

B. 1 M6800/ M6801 ADDRESSI NG MODES.

| NHERENT OR ACCUMULATOR ADDRESSI NG

The MB800 i ncl udes sone instructions which require no operands. These
instructions are self-contained and enpl oy the inherent addressing or
t he accunmul at or addressi ng node.

| MVEDI ATE ADDRESSI NG

| mredi ate addressing refers to the use of one or two bytes of
information that inmediately foll ow the operation code in nmenory.

| mredi ate addressing is indicated by preceding the operand field with
t he pound sign or number sign character (#). The expression foll ow ng
the # will be assigned one or two bytes of storage, depending on the
i nstruction.

RELATI VE ADDRESSI NG

Rel ati ve addressing is used by branch instructions. Branches can only
be executed within the range -126 to +129 bytes relative to the first
byte of the branch instruction. For this node, the programmer
specifies the branch address expression and places it in the operand
field. The actual branch offset is calculated by the assenbl er and put
into the second byte of the branch instruction. The offset is the
two's conpl ement of the difference between the location of the byte

i medi ately followi ng the branch instruction and the |ocation of the
destination of the branch. Branches out of bounds are flagged as
errors by the assenbler.

| NDEXED ADDRESSI NG

I ndexed addressing is relative to the index register. The address is
calcul ated at the tine of instruction execution by adding a one-byte
di spl acenent (in the second byte of the instruction) to the current
contents of the X register. Since no sign extension is perforned on
this one-byte displacenent, the offset cannot be negative. |ndexed
addressing is indicated by the characters ", X" follow ng the
expression in the operand field. The special case of ", X', without a
precedi ng expression, is treated as "0, X"

DI RECT AND EXTENDED ADDRESSI NG

Direct and extended addressing utilize one (direct) or two (extended)
bytes to contain the address of the operand. Direct addressing is
limted to the first 256 bytes of nmenory. Direct and extended
addressing are indicated by only having an expression in the operand
field. Direct addressing will be used by the Assenbl er whenever
possi bl e.

18

Freeware Assenbl ers User's Manual

B. 2 M6804/ M68HCO4 ADDRESSI NG MCDES.

| NHERENT OR ACCUMULATOR ADDRESSI NG

The MB800 i ncl udes sone instructions which require no operands. These
instructions are self-contained and enpl oy the inherent addressing or
t he accunmul at or addressi ng node.

| MVEDI ATE ADDRESSI NG

I mredi ate addressing refers to the use of one byte of information that
i mediately foll ows the operation code in nmenory. |Immediate addressing
is indicated by preceding the operand field with the pound sign or
nunber sign character (#). The expression following the # will be
assigned one byte of storage.

RELATI VE ADDRESSI NG

Rel ati ve addressing is used by branch instructions. Branches can only
be executed within the range -15 to +16 bytes relative to the first
byte of the branch instruction. For this node, the programmer
specifies the branch address expression and places it in the operand
field. The actual branch offset is calculated by the assenbl er and put
into the second byte of the branch instruction. The offset is the
two's conpl ement of the difference between the |location of the byte

i medi ately followi ng the branch instruction and the |ocation of the
destination of the branch. Branches out of bounds are flagged as
errors by the assenbler.

DI RECT AND EXTENDED ADDRESSI NG

Direct and extended addressing utilize byte to contain the address of
the operand. Direct addressing is limted to the first 256 bytes of
menory. Extended addressing concatenates the four |east-significant
bits of the opcode with the byte followi ng the opcode to forma 12-bit
address. Direct and extended addressing are indicated by only having
an expression in the operand field. Direct addressing will be used by
t he Assenbl er whenever possible.

SHORT DI RECT

Sone opcodes allow 4 nmenory | ocations in data space ram ($80, $81
$82, and $83 to be referenced as part of the opcode. The opcode
determ nes the data space RAM | ocation, and the instruction is only
one byte. The X and Y registers are at |ocations $80 and $81,
respectively. An expression used with short direct addressing nust
not be forward referenced (that is its definition nmust occur before,
not after this point in the file) and nust equate to the range $80-
$83.

BIT SET AND CLEAR

In the bit set/clear addressing node, the bit to be set or cleared is
part of the opcode. The byte follow ng the opcode specifies the
direct address of the byte which will have the bit set or cleared.
Any bit in the 256 byte data space nmenory that can be witten (with

19

Freeware Assenbl ers User's Manual

the exception of the data direction registers) can be set or cleared
with these two byte instructions.

BI T TEST AND BRANCH

The bit test and branch addressing node is a conbination of the direct
addressing and rel ative addressing. The bit to be tested, and it
condition (set or clear), is included in the opcode. The data space
address of the byte to be tested is in the single byte i mediately
foll owi ng the opcode byte and foll ows direct addressing rules. The
third byte is sign extended by the processor during execution to form
the 12-bit relative address which is added to the program counter if
the condition is true. This allows branches based on any readable bit
in the data space. The branch span is -125 to +130 fromthe opcode
address. The branch target address is used by the programrer to
signify the relative offset -- the assenbler cal cul ates the of fset

val ue. Branches out of bounds are flagged as errors by the

assenbl er.

REG STER | NDI RECT

In the register indirect node, the operand is at the address in data
space pointed to by the contents of one of the indirect registers, X
or Y. The particular indirect register is encoded in bit 4 of the
opcode by the assenbler. The assenbler operand syntax for register
indirect is

[<X> or <Y>]
MOVE | MVEDI ATE
The MVI (nove i mediate) instruction has its own format:
nvi <expressi on 1>, #<expression 2>
where <expression 1> is a direct address and <expression 2> is the

data value to be witten.

M SCELLANEQUS SYNTAX | SSUES
The registers in the 6804/ HC6804 are nenory | ocations and have
addresses assigned to them The assenbl er has predefined

a=A= $FF
b =B = $80
c=C= $81

This al so neans that for the '04 assenbler clr x is equivalent to clrx
since x is both a register and a nmenory | ocati on.

The ' 04 series has separate program and data spaces. There is no

program nenory in the range $10-$7F. Bytes assenbled into that range
will go into the data space.

20

Freeware Assenbl ers User's Manual

B. 3 M6805/ 68HCO5 ADDRESSI NG MODES.

| NHERENT OR ACCUMULATOR ADDRESSI NG

The MB805 i ncl udes sone instructions which require no operands. These
instructions are self-contai ned, and enpl oy the inherent addressing or
t he accunmul at or addressi ng node.

| MVEDI ATE ADDRESSI NG

I mredi ate addressing refers to the use of one byte of information that
i mediately foll ows the operation code in nmenory. |Immediate addressing
is indicated by preceding the operand field with the pound sign or
nunber sign character (#). The expression following the # will be
assigned one byte of storage.

RELATI VE ADDRESSI NG

Rel ati ve addressing is used by branch instructions. Branches can only
be executed within the range -126 to +129 bytes relative to the first
byte of the branch instruction. For this node, the progranmer
specifies the branch address expression and places it in the operand
field. The actual branch offset is calculated by the assenbl er and put
into the second byte of the branch instruction. The offset is the
two's conpl ement of the difference between the |location of the byte

i medi ately followi ng the branch instruction and the |ocation of the
destination of the branch. Branches out of bounds are flagged as
errors by the assenbler.

| NDEXED ADDRESSI NG

I ndexed addressing is relative to the index register. The address is
calcul ated at the tine of instruction execution by adding a one- or
two- byte di spl acenent to the current contents of the X register. The
di spl acenent imedi ately follows the operation code in nmenory. |If the
di spl acenent is zero, no offset is added to the index register. In
this case, only the operation code resides in nmenory. Since no sign
extension is performed on a one-byte displacenent, the offset cannot
be negative. Indexed addressing is indicated by the characters ", X'
follow ng the expression in the operand field. The special case of
", X", without a preceding expression, is treated as "0, X'. Sone

i nstructions do not allow a two-byte displacenent.

DI RECT AND EXTENDED ADDRESSI NG

Direct and extended addressing utilize one (direct) or two (extended)
bytes to contain the address of the operand. Direct addressing is
l[imted to the first 256 bytes of nmenory. Direct and extended
addressing are indicated by only having an expression in the operand
field. Sone instructions do not allow extended addressing. Direct
addressing will be used by the Macro Assenbl er whenever possible.

BIT SET OR CLEAR

The addressing node used for this type of instruction is direct,

al t hough the format of the operand field is different fromthe direct
addr essi ng node descri bed above. The operand takes the form

21

Freeware Assenbl ers User's Manual

<expression 1> <expression 2>. <expression 1> indicates which bit is
to be set or cleared. It nust be an absol ute expression in the range
0-7. It is used in generating the operation code. <expression 2> is
handl ed as a direct address, as described above. Since the bit
mani pul ation address is direct, only the first 256 |ocations may be
operated on by bit manipul ati on operati ons.

BI T TEST AND BRANCH

Thi s conbi nes two addressing nodes: direct and relative. The format of
the operand is: <expression 1> <expression 2> <expression 3>.
<expression 1> and <expression 2> are handled in the sanme manner as
descri bed above in "bit set or clear". <expression 3> is used to
generate a rel ative address, as described above in "relative

addr essi ng".

B.4 M;809 ADDRESSI NG MODES.

| NHERENT OR ACCUMULATOR ADDRESSI NG

The MB809 i ncl udes sone instructions which require no operands. These
instructions are self-contai ned, and enpl oy the inherent addressing or
t he accunmul at or addressi ng node.

| MVEDI ATE ADDRESSI NG

| mredi ate addressing refers to the use of one or two bytes of
information that inmediately foll ow the operation code in nmenory.

| mredi ate addressing is indicated by preceding the operand field with

t he pound sign or nunmber sign (#) -- i.e., #<expression>. The
expression following the # will be assigned one or two bytes of
storage, depending on the instruction. Al instructions referencing

the accumulator "A" or "B", or the condition code register "CC', wll
generate a one-byte i medi ate val ue. Al so, imedi ate addressi ng used
with the PSHS, PULS, PSHU, and PULU instructions generates a one-byte
i medi ate val ue. | nmedi ate operands used in all other instructions
generate a two-byte val ue.

The register list operand does not take the form #<expressi on> but
still generates one byte of i mediate data. The form of the operand
is:

R1,R2,...,Rn

where R (i=1ton) is one of the synbols A, B, CC, D, DP, PC, S, U
X or Y. The nunber and type of synbols vary, depending on the specific
i nstruction.

For the instructions PSHS, PULS, PSHU, and PULU, any of the above

regi ster names may be included in the register list. The only
restriction is that "U' cannot be specified with PSHU or PULU, and "S"
cannot be specified with PSHS or PULS. The one-byte inmedi ate val ue
assigned to the operand is calculated by the assenbler and is

determ ned by the registers specified. Each regi ster name causes the
assenbler to set a bit in the imediate byte as foll ows:

22

Freeware Assenbl ers User's Manual

Regi ster Bit

PC 7
U S 6
Y 5
X 4
DP 3
B, D 2
A D 1
CcC 0

For the instructions EXG and TFR, exactly two of the above register
nanes must be included in the register list. The other restriction is
the size of the registers specified. For the EXG instruction, the two
regi sters nust be the same size. For the TFR instruction, the two
regi sters nust be the same size, or the first can be a 16-bit register
and the second an 8-bit register. In the case where the transfer is
froma 16-bit register to an 8-bit register, the |least significant 8
bits are transferred. The 8-bit registers are A, B, CC, and DP. The
16-bit registers are DL PC, S, U X, and Y. The one-byte inmedi ate
val ue assigned to the operand by the assenbler is determ ned by the
regi ster names. The nost significant four bits of the i medi ate byte
contain the value of the first register nanme; the |east significant
four bits contain the value of the second register, as shown by the
foll owi ng table:

Regi ster Val ue (hex)

%8W>8WC-<><U
WS> OO RNWNRO

RELATI VE ADDRESSI NG

Rel ative addressing is used by branch instructions. There are two
forns of the branch instruction. The short branch can only be executed
within the range -126 to +129 bytes relative to the first byte of the
branch instruction. For this node, the programrer specifies the branch
address expression and places it in the operand field. The actua
branch offset is calculated by the assenbler and put into the second
byte of the branch instruction. The |ong branch can execute in the
full range of addressing from 0000- FFFF (hexadeci mal) because a two-
byte offset is calculated by the assenbler and put into the operand
field of the branch instruction. The offset is the two' s conpl ement
of the difference between the |ocation of the byte i mediately

23

Freeware Assenbl ers User's Manual

followi ng the branch instruction and the | ocation of the destination
of the branch.

DI RECT AND EXTENDED ADDRESSI NG

Direct and extended addressing utilize one (direct) or two (extended)
bytes to contain the address of the operand. Direct and extended
addressing are indicated by having only an expression in the operand
field (i.e., <expression>). Direct addressing will be used whenever
possi bl e.

Regardl ess of the criteria described above, it is possible to force
the Assenbler to use the direct addressi ng node by preceding the
operand with the "<" character. Simlarly, extended addressing can be
forced by preceding the operand with the ">" character. These two
operand forms are: <<expression> and ><expression>.

| NDEXED ADDRESSI NG

I ndexed addressing is relative to one of the index registers. The
general formis <expression> R The address is calculated at the tine
of instruction execution by adding the val ue of <expression> to the
current contents of the index register. The other general formis

[<expression> R]. In this indirect form the address is cal cul ated
at the tine of instruction execution by first adding the value of
<expression> to the current contents of the index register, and then
retrieving the two bytes fromthe cal cul ated address and address+1
This two-byte value is used as the effective address of the operand.
The al |l owabl e fornms of indexed addressing are described below. In the
description below, Rrefers to one of the index registers S, U X or
Y.

The accumul ator of fset nobde all ows one of the accunulators to be
specified instead of an <expression>. Valid forns are:

<acc>, R and [<acc>, R

where <acc> is one of the accurmulators A, B, or D. This form
generates a one-byte operand (post-byte only). Wen accunulator A or B
is specified, sign extension occurs prior to adding the value in the
accunul ator to the index register.

The valid fornms for the automatic increnent/decrenent nbpde are shown
bel ow. For each row, the three entries shown are equival ent.

R+ , R+ 0, R+
-R ,-R 0,-R
R++ , R++ 0, R++
--R ,--R 0,--R

[R++] , Rt++] [0, R++]

[--R [.--R [0,--K

In this form the only valid expression is 0. Like the accumul ator
of fset node, this form generates a one-byte operand (post-byte only).

24

Freeware Assenbl ers User's Manual

The valid forms for the expression offset node are:

R , R <expressi on> R
[R] [, R [<expressi on>, R
<R <R <<expressi on> R
<[R <[,R <[<expression> R
>R > R ><expressi on>, R
>[R >[,R] >[<expression> R

The "<" and ">" characters force an 8- or 16-bit offset, respectively,
and are described below If no expression is specified, or if an
expression with a value of zero is specified, only the postbyte of
the operand is generated. If an expression with a value in the range
-16 to +15 is specified without indirection, a one- byte operand is
gener ated which contains the expression's value, as well as the index
regi ster indicator. At execution time, the expression's value is
expanded to 16 bits with sign extension before being added to the

i ndex register.

Al other forns will generate a post-byte, as well as either a one- or
two- byte offset which contains the value of the expression. The size
of the offset is determ ned by the type and size of the expression
Expressions with values in the range -128 to +127 generate an 8-bit

of fset. Al'l other cases will result in a 16-bit offset being
generated. In the case where an 8-bit offset is generated, the val ue
is expanded to 16 bits with sign extension at execution time.

Regardl ess of the criteria described above, it is possible to force
the Assenbler to generate an 8-bit offset by preceding the operand

with the "<" character. Simlarly, a 16-bit offset can be forced by
precedi ng the operand with the ">" character

If the relative address calculated is not in the range -128 to +127,
or if the expression references a synbol that has not yet been
defined, a two-byte offset is generated after the post-byte. A one-
byte offset is generated if the relative address is in the range -128
to +127.

Li ke the expression offset node, a one-byte offset can be forced by
preceding the operand with a "<". A ">" forces a two-byte offset. A
byte overflow error is generated if a one-byte offset is forced when
the relative address is not in the range -12

8 to +127.

The extended indirect node has the form

[<expressi on>]
Al t hough extended indirect is a | ogical extension of the extended
addressing node, this node is inplenented using an encodi ng of the

post byt e under the indexed addressing node. A post-byte and a two-
byte offset which contains the value of the expression is generated.

25

Freeware Assenbl ers User's Manual

B.5 M8HCL1 ADDRESSI NG MODES

PREBYTE

The nunber of conbinations of instructions and addressi ng nodes for
the 68HC11 is larger than that possible to be encoded in an 8-bit word
(256 conbinations). To expand the opcode map, certain opcodes ($18,
$1A, and $CD) cause the processor to fetch the next address to find
the actual instruction. These opcodes are known as prebytes and are
inserted automatically by the assenbler for those instructions that
require it.l In general the instructions contained in the alternate
maps are those involving the Y register or addressi ng nodes that

i nvol ve the Y index register. Thus the programer make the tradeoff
bet ween t he conveni ence of using the second index register and the
additional time and code space used by the prebyte.

| NHERENT OR ACCUMULATOR ADDRESSI NG

The MB8HC11 i ncl udes sone instructions which require no operands.
These instructions are self-contai ned, and enpl oy the inherent
addressing or the accunul at or addressi ng node.

| MVEDI ATE ADDRESSI NG

| mredi ate addressing refers to the use of one or nore bytes of
information that inmediately foll ow the operation code in nmenory.

| mredi ate addressing is indicated by preceding the operand field with
t he pound sign or number sign character (#). The expression foll ow ng
the # will be assigned one byte of storage.

RELATI VE ADDRESSI NG

Rel ati ve addressing is used by branch instructions. Branches can only
be executed within the range -126 to +129 bytes relative to the first
byte of the branch instruction. For this node, the progranmer
specifies the branch address expression and places it in the operand
field. The actual branch offset is calculated by the assenbl er and put
into the second byte of the branch instruction. The offset is the
two's conpl ement of the difference between the |location of the byte

i medi ately followi ng the branch instruction and the |ocation of the
destination of the branch. Branches out of bounds are flagged as
errors by the assenbler.

| NDEXED ADDRESSI NG

I ndexed addressing is relative one of the index registers X or Y. The
address is calculated at the time of instruction execution by adding a
one- byte displacenent to the current contents of the X register. The
di spl acenent imedi ately follows the operation code in nenory. |If the
di spl acenent is zero, zero resides in the byte follow ng the opcode.
Since no sign extension is perforned on a one-byte displacenent, the
of fset cannot be negative. Indexed addressing is indicated by the
characters ", X" followi ng the expression in the operand field. The
speci al case of ", X", without a preceding expression, is treated as
"0, X".

26

Freeware Assenbl ers User's Manual

DI RECT AND EXTENDED ADDRESSI NG

Direct and extended addressing utilize one (direct) or two (extended)
bytes to contain the address of the operand. Direct addressing is
l[imted to the first 256 bytes of nmenory. Direct and extended
addressing are indicated by only having an expression in the operand
field. Direct addressing will be used by the Assenbl er whenever
possi bl e.

BI T(S) SET OR CLEAR

The addressing node used for this type of instruction is direct,

al t hough the format of the operand field is different fromthe direct
addr essi ng node descri bed above. The operand takes the form
<expression 1> <expression 2> where the two expressions are separated
by a bl ank. <expression 1> signifies the operand address and may be
either a direct or an indexed address. Wen the address node is

i ndexed, <expression 1> is followed by ', R where Ris either X or Y.
This allows bit manipulation instructions to operate across the

conpl ete 64K address map. <expression 2> is the mask byte. The
bit(s) to be set or cleared are indicated by ones in the correspondi ng
| ocation(s) in the mask byte. The mask byte nmust be an expression in
the range 0-255 and is encoded by the programer.

BI T TEST AND BRANCH

Thi s combi nes two addressi ng nodes: direct or indexed and relative.
The format of the operand is: <expression 1> <expression 2>
<expression 3> where the expressions are separated by bl anks.
<expression 1> identifies the operand an may indicate either a direct
or indexed address. |ndexed addresses are signified with ', R
followi ng the expression where Ris either X or Y. <expression 2> is
the mask byte. The bit(s) to be set or cleared are indicated by ones
in the corresponding | ocation(s) in the mask byte. The mask byte nust
be an expression in the range 0-255 and is encoded by the programer.
<expression 3> is used to generate a relative address, as descri bed
above in "relative addressing".

27

Freeware Assenbl ers User's Manual

APPENDI X C
DI RECTI VE SUMVARY

A conplete description of all directives appears in Chapter 4.

ASSEMBLY CONTRCL
ORG Oigin program counter
SYMBOL DEFI NI TI ON
EQU Assign pernmanent val ue
DATA DEFI NI TI OV STORAGE ALLOCATI ON
BSZ Bl ock storage of zero; single bytes
FCB Form constant byte
FCC Form constant character string
FDB Form constant doubl e byte
FILL Initialize a block of menory to a constant
RVB Reserve nenory; single bytes

ZMB Zero Menory Bytes; same and BSZ

LI STI NG CONTRCL
OPT ¢ Enabl e cycl e counting

OPT cre Print cross reference table

OPT | Print source listing fromthis point
OPT nol Inhibit printing of source listing fromthis point
OPT s Print synmbol table

PAGE Print subsequent statements on top of next page

28

Freeware Assenbl ers User's Manual

APPENDI X D
ASSEMBLER LI STI NG FORNVAT

The Assenbler listing has the foll owi ng fornmat:
LINE# ADDR OBJECT CODE BYTES [# CYCLES] SOURCE LI NE

The LINE# is a 4 digit deci mal nunber printed as a reference. This
reference nunber is used in the cross reference. The ADDR is the hex
val ue of the address for the first byte of the object code for this

i nstruction. The OBJECT CODE BYTES are the assenbl ed object code of
the source line in hex. |If an source line causes nore than 6 bytes
to be output (e.g. a long FCC directive), additional bytes (up to 64)
are listed on succeeding lines with no address precedi ng them

The # CYCLES will only appear in the listing if the "c" optionis in
effect. It is enclosed in brackets which hel ps distinguish it from
the source listing. The SOURCE LINE is reprinted exactly fromthe
source program including |abels.
The synbol table has the follow ng format:

SYMBCL ADDR
The synbol is taken directly fromthe [abel field in the source
program The ADDR is the hexadeci mal address of the location
ref erenced by the synbol.
The cross reference listing has the follow ng format:

SYMBOL ADDR *LOCl1 LOC2 LCC3 ...
The SYMBCL and ADDR are the sane as above. The * indicates the start

of the line reference nunbers. The LOCs are the decinal |ine nunbers
of the assenbler listing where the | abel occurs.

29

Freeware Assenbl ers User's Manual

APPENDI X E
S- RECORD | NFORVATI ON

E 1 | NTRCDUCT! ON

The S-record output format encodes program and data object nodul es
into a printable (ASCI1) format. This allows view ng of the object
file with standard tools and allows display of the nodule while
transferring fromone conputer to the next or during | oads between a
host and target. The S-record format al so includes information for
use in error checking to insure the integrity of data transfers.

E.2 S-RECORD CONTENT

S-Records are character strings made of several fields which identify
the record type, record | ength, nenory address, code/data, and
checksum Each byte of binary data is encoded as a 2-character
hexadeci mal nunber: the first character representing the high-order
4 bits, and the second the loworder 4 bits of the byte.

The 5 fields which conprise an S-record are:

TYPE RECORD LENGTH ADDRESS CODE/ DATA CHECKSUM

The fields are defined as follows:

FI ELD CHARACTERS CONTENTS

Type 2 S-record type - Sl1, S9, etc

Record 2 The count of the character pairs in the

l ength record, excluding the type and record
| engt h.

Addr ess 4, 6, The 2-, 3-, or 4-byte address at which

or 8 the data field is to be | oaded into

nenory.

Code/ dat a 0- 2n FromO to n bytes of executabl e code

menory | oadabl e data, or descriptive
i nformation.

Checksum 2 The | east significant byte of the one's
conpl ement of the sum of the val ues
represented by the pairs of characters
maki ng up the record | ength, address,
and the code/data fields.

Each record may be terminated with a CR/ LF/ NULL

E 3 S- RECORD TYPES

Ei ght types of s-records have been defined to accommodat e vari ous

30

encodi ng,

Freeware Assenbl ers User's Manual

transportati on, and decodi ng needs. The Freeware

assenbl ers use only two types, the S1 and S9:

S1

S9

A record containing code/data and the 2-byte
address at which the code/data is to reside.

A termination record for a block of Sl records. The address
field may optionally contain the 2-byte address of the
instruction to which control is to be passed. |If not
specified, the first entry point specifica

tion encountered in the object nodule input will be used.
There is no code/data field.

E 4 S- RECORD EXAMPLE

The following is a typical S-record nodul e:

S1130000285F245F2212226A000424290008237C2A
S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492

S9030000FC

The nodul e consists of four code/data records and an S9 term nation

record.

The first

S1

13

00

S1 code/data record is explained as foll ows:

S-record type S1, indicating a code/data record to be
| oaded/verified at a 2-byte address.

Hex 13 (decimal 19), indicating 19 character pairs,
representing 19 bytes of binary data, follow

Four -character 2-byte address field: hex address 0000,
i ndi cates |l ocation where the following data is to be | oaded.

The next 16 character pairs are the ASCII bytes of the actua
pr ogr am code/ dat a

2A

Checksum of the first S1 record.

The second and third S1 code/data records each al so contain $13

char act er

pairs and are ended with checksuns. The fourth S1 code/data

record contains 7 character pairs.

The S9 termnation record is explained as fol |l ows:

S9

03

00

00

FC

S-record type S9, indicating a term nation record.

Hex 03, indicating three character pairs (3 bytes) to
fol | ow

Four character 2-byte address field, zeroes.

Checksum of S9 record.

31

