
1

O N E

Windows Shell Programming

With each operating system release, service pack, and Internet
Explorer upgrade, Microsoft adds more possibilities for vendors to
extend and enhance the Windows user interface.This has been the
case with earlier versions of Windows through its latest release,
Windows 2000. The first version of Windows many of us did any
serious development for was Windows 3.x. With the 3.x versions,
you could add limited modifications to the shell:

• Control Panel applets
• Screen savers
• File manager extensions

The early file manager extensions allowed developers to only add menu
items and toolbar buttons. On any given Windows installation, a computer
could have up to five extensions installed. A lot of time has passed since
then, and the developers at Microsoft have continued to enhance the extensi-
bility of the shell. With Windows 2000, the shell still allows you to write your
own Control Panel applets and screen savers, but you can also do more—
much more. For example, you can:

• Customize the Windows taskbar
• Add extra menu options when right-clicking on a file
• Add advanced handling of folders, drives, and printers
• Handle new data formats when a file is copied and pasted
• Allow specialized actions when a file gets dropped on a file type
• Monitor copying of folders, drives, and printers
• Add your own views of data in Windows Explorer

ch01 5/10/00 1:15 PM Page 1

2 Chapter 1 • Windows Shell Programming

• Add various types of toolbars to Windows and Internet Explorer
• Allow the shell to do work for you in your own applications, such

as filename auto-completion

Looking at the list, it should be clear that the shell is no longer a simple
windowing environment. We can customize Windows as we see fit and Mi-
crosoft gives us this ability at a price—they increase the chance of Windows’
instability. This level of customization makes it such that no two installations
of Windows ever remain the same for very long. As the user installs more ap-
plications on their machine, the shell gains new capabilities and features. A
few applications will add items to the system tray (clock area) on the taskbar.
Another may add items to a context menu in Explorer. If the machine sud-
denly (or worse, slowly) becomes unstable, the user will not blame the peo-
ple at Foobar, Inc. for a bad shell extension. To the user, all of the right-click
functionality, drag-and-drop capabilities, and Explorer enhancements are part
of the operating system , so Microsoft will be blamed for shoddy workman-
ship. This means that we have a responsibility to create stable additions so
that people continue to trust Microsoft operating systems with their corporate
and personal data. Failing to do so may lead Microsoft to remove our ability
to customize the shell.

1.1 Goals of this Book
It is my belief that a book on a specific technology should not just explain
the technology; it should also make it easier to use that technology. For ex-
ample, I have a few fairly popular C++ books:

• Effective C++ by Scott Meyers
• More Effective C++ by Scott Meyers
• Large Scale C++ Software Design by John Lakos
• C++ FAQs by Marshall Cline and Greg Lomow
• The C++ Programming Language by Bjarne Stroustrup

I have learned more from the first four books than from the fifth, which was
written by the inventor of the language! Do not get me wrong, Stroustrup’s
text has helped me around syntactical errors, but the others have given me
tools to write better code faster.1 I will try to show how to write good code
that uses and enhances the Windows shell. In order to accomplish this, I pro-
vide a lot of fully functional examples as well as what I hope are production-
quality libraries and wizards to make your life easier.

1. Stroustrup has written many articles and USENET posts that will help you use the
language better. However, The C++ Programming Language is just a language refer-
ence, not a “how to do it better” kind of book.

ch01 5/10/00 1:15 PM Page 2

In the following pages I want to accomplish a number of things:

1. Explain how the shell works and what opportunities for en-
hancement are available. The first thing the reader expects from this
book is that it will explain the shell in detail. This means going over
many of the interfaces, functions, and other items needed to under-
stand the shell. There is a need to explain these things more clearly
than the Microsoft Developer Network does.

2. Show how to use MFC and ATL to enhance the shell. The book
targets a specific group of developers: those who use Visual C++ as
their development tool of choice. Consequently, I have a responsibility
to show the readers how to develop solutions that leverage what they
already know. For example, if something displays a window, the
reader wants to know how to use a CWnd to handle the message loop.

3. Speed up development time. This book targets programmers who
have projects to complete as fast as possible. Many of them will not
even read an entire chapter unless they have problems that they can-
not figure out. For some readers, the most valuable part of the book
will probably be the included CD. To them, the book is nothing more
than a user manual for that CD.

Because I went the extra step to see how to create generic solutions, I
forced myself to understand the technology outside the scope of my current
sample project. Many of the libraries and wizards presented in the book take
the unfamiliar Windows shell and mold it to the world of the MFC/ATL devel-
oper. C++ is an extremely pliant language and will let you do almost any-
thing. Together, MFC, ATL and C++ allow you to do amazing things. Using
them along with the libraries and wizards in this book, the reader will realize
the benefits of learning the ins and outs of MFC.

1.2 What is the Windows Shell?
The Windows shell is nothing like the UNIX or the DOS shells. With UNIX
shells and their command line interfaces (CLI),2 users have to know that a
feature exists before they can use it. Compare this to the Windows shell,
which can advertise new features to the user. For example, let us look at how
a user would go about opening a JPEG file. To view the picture with a com-
mand line interface, users have to know that they need a graphics viewer to

1.2 What i s the Windows She l l? 3

2. If you have no UNIX experience, think back to the days of MS-DOS. Now imagine
a lot more expressiveness and power on the command line.

ch01 5/10/00 1:15 PM Page 3

4 Chapter 1 • Windows Shell Programming

look at the file and how to start a viewer. Windows provides hooks that allow
the viewer application to advertise its association with the JPEG files. When
users select a file with the right mouse button, Windows will reveal a menu
allowing them to view, move, or possibly even translate the file to another
graphics format. They discover these capabilities simply by knowing that a
right mouse click will tell them what they can do with the file. This circum-
vents the need to tell the users about all the different programs available for
file manipulation.

The Windows shell provides the means to interact with the computer.
The shell is composed of the following elements:

• The Desktop. When Windows starts up, this is the first thing a user
sees.

• The Taskbar. The taskbar provides a clock, a way to start applica-
tions, and a place for applications to notify the user about program
activity. With Active Desktop installed, the taskbar can contain tool-
bars beyond the standard task list.

• The Control Panel. The Control Panel provides a single location to
configure devices and programs on the computer. Besides the abil-
ity to add applets to the Control Panel, some of the packaged Con-
trol Panel applets allow third parties to add extra property pages.3

• Internet Explorer. Like it or not, Microsoft has made the browser
part of the shell. For some time now, we have been able to view
drives across the network as if they were on the local machine. It is
easy to see the benefits of viewing FTP sites the same way. The
only stretch happens when looking at hyperlinks. Hyperlinks and
HTML documents allow us to navigate to new directories and files
by clicking on links in files. This navigational model seems as valid
as the hierarchical file systems we use on a daily basis. Because of
the spider web that HTML documents produce, browsers present
the best-known way to navigate these documents. Integrating the
browser allows Internet Explorer to be the ultimate in common file
type navigation.

• Windows Explorer. Windows Explorer allows us to navigate what-
ever information is presented on our machines. It provides the abil-
ity to move files around, drop files on other files, and display infor-
mation regarding files, among other things. If you want to add
something that is not file related, you can do so by extending Ex-
plorer’s capabilities.4

• File Viewers. The people at Microsoft will cringe when they see
this because the feature has been removed from the operating sys-

3. Specifically, these are the display, keyboard, and mouse applets.

4. See Chapter 9 for how to customize Explorer.

ch01 5/10/00 1:15 PM Page 4

tem as of Windows 98 SE. Still, Windows 95, 98, and Windows NT
4.0 all provide hooks that allow vendors to distribute DLLs which
present a read-only view of a file. Typically users can distribute the
viewer without risk of copyright or licensing violations.

• Disk Cleanup. Starting with Windows 98, the shell provides a jani-
tor named CLEANMGR.EXE. Applications can provide the janitor
with instructions on how to free up space on the local hard drives.
This way, when users need more space, they do not have to start by
deciding which files they should get rid of. Instead, the janitor gets
rid of all the truly useless stuff first.

• The Registry. The entire registry is not a part of the shell, although
two parts of the registry do a significant job of customizing the
user’s interaction with Windows: HKEY_CURRENT_USER (HKCU)
and HKEY_LOCAL_MACHINE (HKLM). Because of this, the shell
team has created a number of functions that make it easier for pro-
grams to interact with those two hives.

1.3 Chapter Summaries
My aim was to present each topic so that it stands on its own. You should be
able to go to any one chapter and find all the information you need to get
your job done. The only required reading in this book is this chapter and the
chapter that covers your topic, unless your topic is namespace extensions. A
namespace extension can be a fairly complex beast. As a result, that topic is
split into three chapters: one to explain namespace extensions, one to docu-
ment the library and wizard I wrote, and one to design and create an exten-
sion. Furthermore, in each chapter I reference the related material found in
the appendices and other chapters as needed. For example, many of the shell
customizations require you to implement the COM interface IcontextMenu, so
whenever IContextMenu enters the discussion, I reference section 7.2.

Each of the following sections describes a chapter in the book and what
extending the shell in that area can do.

1.3.1 Chapter 2: The Taskbar
This chapter explains how to manipulate the taskbar. It teaches how to do
the following:

• Get information about the taskbar (location, size, auto-hide, always-
on-top)

• Add and remove taskbar buttons, which can either increase or de-
crease the number of applications that appear to be running

• Add and remove links on the Start menu

1.3 Chapter Summar ies 5

ch01 5/10/00 1:15 PM Page 5

6 Chapter 1 • Windows Shell Programming

• Add icons to the system tray.5 It also shows how to animate an icon
in the tray

1.3.2 Chapter 3: Application Desktop Toolbars
The best-known application desktop toolbar, or appbar, is the taskbar. The
first runner up in popularity is the Microsoft Office Shortcut Bar. Appbars pro-
vide a nice way to present information without getting in the user’s way.
They usually dock to one of the edges of the desktop and sit there. The user
can even make them automatically hide themselves so that they take up al-
most no space on the screen. Chapter 3 covers the following topics:

• Guidelines for creating appbars
• Explanation of how appbars work
• Explanation of AppBarLib and the MFC Application Desktop Tool-

bar AppWizard
• How to use the tools presented to build an appbar of your own

1.3.3 Chapter 4: Control Panel Applets
The Control Panel provides a place to put any utilities for configuring hard-
ware or software. For example, you would place applets to configure a ser-
vice or fax machine there. People expect to find the configuration utility for
background processes and hardware in the Control Panel. Microsoft also has
a new utility out: the Microsoft Management Console. If your configuration
user interface works best in a dialog, write an applet. Otherwise, write an
MMC snap-in.6 Chapter 4 covers the following items:

• How to decide if the Control Panel is an appropriate place to put
your applet

• Ways of packaging Control Panel applets
• Control Panel basics
• Motivation and design of a Control Panel applet wizard
• Building an applet using the wizard

1.3.4 Chapter 5: Screen Savers
Screen savers do so much more than entertain and delight bored work-
ers. They also help extend the life of a monitor, “lock up” a computer when
the user is away, and hide what one was working on when called away from
the machine. This chapter presents a library that is feature-compatible with

5. This is the little window on the taskbar that the clock lives in.

6. MMC Snap-ins are not part of the shell. Thankfully, wizards and libraries are pro-
vided for them in Visual C++.

ch01 5/10/00 1:15 PM Page 6

SCRNSAVE.LIB with an added benefit: you can use MFC to do all your work.
Chapter 5 covers the following topics:

• Screen saver responsibilities
• Screen saver internals
• Benefits of SCRNSAVE.LIB over writing your own
• An MFC Screen Saver App wizard
• Writing a screen saver using the wizard

1.3.5 Chapter 6: File Viewers
A file viewer presents a read-only view of the file. You can look at and some-
times even print the file, but you cannot do anything else to the file. Viewers
exist for most Microsoft documents, including Word, Excel, and PowerPoint.
You can also find them for viewing other file types, including bitmaps, text
files, and executables (DLLs and EXEs). Chapter 6 covers these topics:

• File viewer basics—when to create a viewer, how to invoke one, etc.
• File viewer internals
• A File Viewer library/wizard
• A sample file viewer

1.3.6 Chapter 7: Shell Extensions
If you want to find out how to set what users will see and what they can do
within Windows Explorer, check out this chapter. You can also do some in-
teresting things to the folders, printers, and drives attached to the machine.
Chapter 7 explains the following items:

Extensions registered by file type (a.k.a. class)

• Context Menu Handler: Adds items to the context menu (a.k.a.
right-click menu) for a file object. You may add verbs and other ac-
tions for a file type. (7.2)

• Icon Handler: Typically used to add icons specific to the file ob-
ject. You can also use this to add icons for all files belonging to the
same class. (7.3)

• Data Handler: Provides an IDataObject interface for a specific class
type. The shell passes this interface to the OLE DoDragDrop func-
tion. (7.4)

• Drop Handler: Provides drop behavior for files that can accept
drag and drop objects. (7.5)

• Property Sheet Handler: Adds pages to the property sheet that the
shell displays for a given file type. You can also extend items such as
the Display Properties dialog using a property sheet handler. (7.6)

Extensions associated with file operations and directories (move, copy,
rename, etc.)

1.3 Chapter Summar ies 7

ch01 5/10/00 1:15 PM Page 7

8 Chapter 1 • Windows Shell Programming

• Copy Hook Handler: These get called whenever a folder object is
about to be copied, moved, deleted, or renamed. The handler can
allow or prevent the operation. (7.7)

• Drag-and-Drop Handler: A context menu handler that the shell
calls when the user drops an object after dragging it to a new posi-
tion. (7.8)

1.3.7 Chapter 8: Disk Cleanup Handlers
Today’s large hard drives allow us to install many programs and store thou-
sands of files. Because of all this space, most of us do not actively clean up
anymore. If an application leaves temp files strewn about our machines, we
will not notice the decline in space for months. Other programs, such as web
browsers, cache web pages to speed up perceived download times. As a re-
sult, the task of maintaining one’s hard drive has become very difficult. To
address the problem, Microsoft introduced disk cleanup handlers with Win-
dows 98. As a developer you have a responsibility to provide a handler for
any application you create that leaves behind temporary or unnecessary files.
A handler also comes in handy when an application that you think is well-be-
haved uses temporary files. Many applications will leave these behind if the
computer loses power. A handler can clean up part of the resulting mess.
Most sizable applications need a cleanup handler. On any non-trivial project,
make sure you include development time for one of these.7 Chapter 8 covers
the following topics:

• The Disk Cleanup Utility and its relationship to disk cleanup han-
dlers

• The various interfaces employed by disk cleanup handlers and how
they work

• An example program

1.3.8 Chapter 9: Namespace Extensions
Starting with this chapter and continuing through Chapter 11, I departed from
the rule of one topic per chapter. Developing a namespace extension can be
as complex as developing a full-scale application. As a result, I chose to sepa-
rate the subject matter into distinct chapters. When a namespace extension is
activated, it assumes a lot of control over Explorer’s menus, toolbars, and
right-hand pane. You have to make a lot of design decisions and understand
user expectations. This chapter goes into detail explaining the interaction be-
tween Explorer and an extension. It then explains what a user will expect
from a full-featured namespace.

7. I would really appreciate a cleanup handler from the Visual Studio team that
would delete all the PCH, SBR, OBJ, APS, PLG, and OPT files from the hard drive.

ch01 5/10/00 1:15 PM Page 8

1.3.9 Chapter 10: Tools to Build a Namespace Extension
Once the interaction and design of a namespace extension has been ex-
plained (Chapter 9), we need to make the whole experience of building a
namespace something easier to do. For example, I have no desire to build
menus the way I would for context menu handlers. I would rather handle
these by building them using the Visual Studio menu editor. This chapter ex-
plains a library and wizard that allow quick creation of a namespace exten-
sion. Along the way, I explain why I chose one design over another so that
you have more insight as you debug your own namespaces.

1.3.10 Chapter 11: Namespace
Extension Example: The Registry
This chapter covers the design and construction of a namespace extension
that contains many of the capabilities found in REGEDIT.8 It also covers all
the decisions I had to make:

• What should I put into the Explorer menu?
• What buttons should show up in the toolbars?
• What should the context menus look like?
• What data should I display?

1.3.11 Chapter 12: Explorer Bars and Desktop Bands
Way back in Chapter 2, I explained how to manipulate the taskbar but
avoided the topic of adding extra band objects. The topic really deserves sep-
arate treatment because of the breadth of things you can do. Using band ob-
jects, you can add the following types of toolbars:

• Desk bands: These augment the toolbars available in the taskbar.
They are only available when Active Desktop has been installed.
This feature is included with Windows 98, 2000, and courtesy of In-
ternet Explorer, version 4.x and Active Desktop.9

• Comm Bands: These display information at the bottom of Internet
Explorer and Windows Explorer. Only one comm band can display
at any given time.

• Explorer Bands: These display on the left hand side of Internet
Explorer and Windows Explorer. Only one explorer band can dis-
play at any given time.

1.3 Chapter Summar ies 9

8. This example has a few more capabilities than the SDK registry namespace exten-
sion example and takes nothing from the SDK version.

9. The desktop update did not ship with Internet Explorer 5.0 as an installable com-
ponent.

ch01 5/10/00 1:15 PM Page 9

10 Chapter 1 • Windows Shell Programming

• Radio Bars: You can add extra toolbars to the top of Internet Ex-
plorer and Windows Explorer to do whatever you want them to do.

• HTML Based Bands: Microsoft implemented an HTML-capable
band object. This band object allows you to display HTML by sim-
ply writing a REG script and some HTML.

1.4 Versions of the Shell
In order to use the content in chapters 6 through 12 and the appendices ef-
fectively, you must be cognizant of the shell version your application works
with. Your user will be able to use pretty much anything you write as long as
they are running version 4.72 of the shell, distributed with Internet Explorer
4.01 and Internet Explorer 4.0, SP1. In the past, Microsoft has bundled interim
shell updates with Internet Explorer, not as a separate package. The grid
below shows the various versions of the shell and gives you an idea of how
to upgrade your users to the correct version:

Version DLL Distribution Platform

4.00 All Windows 95/NT 4.0

4.70 All Internet Explorer 3.x

4.71 All Internet Explorer 4.0

4.72 All Internet Explorer 4.01 and Windows 98

5.00 Shlwapi.dll Internet Explorer 5

5.00 Shell32.dll Windows 2000

5.80 Comctl32.dll Internet Explorer 5

5.81 Comctl32.dll Windows 2000

Along with the preceding table, Microsoft delivers these clarifying notes:10

Note 1 The 4.00 versions of Shell32.dll and Comctl32.dll are found on the original versions of
Windows 95 and Windows NT 4. New versions of Commctl.dll were shipped with all
Internet Explorer releases. Shlwapi.dll first shipped with Internet Explorer 4.0, so its first
version number is 4.71. The shell was not updated with the Internet Explorer 3.0 release,
so Shell32.dll does not have a version 4.70. While Shell32.dll versions 4.71 and 4.72
were shipped with the corresponding Internet Explorer releases, they were not necessarily
installed (see Note 2). For subsequent releases, the version numbers for the three DLLs are
not identical. In general, you should assume that all three DLLs may have different version
numbers, and test each one separately.

10. From MSDN. Article Title: Shell and Common Controls Versions.

ch01 5/10/00 1:15 PM Page 10

Note 2 All systems with Internet Explorer 4.0 or 4.01 will have the associated version of Com-
ctl32.dll and Shlwapi.dll (4.71 or 4.72, respectively). However, for systems prior to Win-
dows 98, Internet Explorer 4.0 and 4.01 can be installed with or without the integrated
shell. If they are installed with the integrated shell, the associated version of Shell32.dll
will be installed. If they are installed without the integrated shell, Shell32.dll is not up-
dated. In other words, the presence of version 4.71 or 4.72 of Comctl32.dll or
Shlwapi.dll on a system does not guarantee that Shell32.dll has the same version number.
All Windows 98 systems have version 4.72 of Shell32.dll.

Note 3 Version 5.80 of Comctl32.dll and version 5.0 of Shlwapi.dll are distributed with Internet
Explorer 5. They will be found on all systems on which Internet Explorer 5 is installed, ex-
cept Windows 2000. Internet Explorer 5 does not update the shell, so version 5.0 of
Shell32.dll will not be found on Windows NT, Windows 95, or Windows 98 systems.
Version 5.0 of Shell32.dll will be distributed with Windows 2000, along with version
5.0 of Shlwapi.dll, and version 5.81 of Comctl32.dll.

1.5 Summary
Chapter 1 outlines what the book is about and where to find information on
the various extensions. I have tried to make each chapter independent of the
others and I have cross-referenced other sections as needed. Chapters 9
through 11 break this rule because namespace extensions make for bigger
projects than things like context menu extensions. Section 1.4 outlined the
versions of the shell and how to get them to your users.

This book covers a lot of the shell, but you may discover that pieces are
missing. Before you send me an e-mail, flaming me for incompetence, poor
upbringing, or anything else, check out the Prentice Hall Web site at
www.phptr.com or visit my site at www.scottseely.com. These sites are up-
dated regularly, so if neither contains the new information you have uncov-
ered, e-mail me to let me know what I’ve missed. The first person to name
any missing feature will be named on the Web site and in the acknowledge-
ments section of the next revision of this book. I will list your name (unless
you ask me not to) and the item you caught to acknowledge your contribu-
tion. I apologize for not covering everything in the shell this first go around.
Microsoft has updated the shell seven times in five years. I had to decide to
leave out some minor features.

Now, go extend the shell!

1.5 Summary 11

ch01 5/10/00 1:15 PM Page 11

